Lupin Mines Incorporated

A wholly owned indirect subsidiary of Mandalay Resources Corporation

Lupin Mine Site

Nunavut, Canada

Water Quality Monitoring Plan and Water and Soil Quality Assurance/ Quality Control Plan

(Care and Maintenance)
August 2020

Lupin Mines Incorporated
Mandalay Resources Corporation
76 Richmond Street East, Suite 330
Toronto, Ontario M5C 1P1

Document Control

Revision No.	Date	Details	Author	Approver
1.0	30/03/2013	Replaces Care and Maintenance Plan – Sampling Procedure: Tailings Containment Area and Sewage Lakes Disposal Facility, March 2012 Replaces the Environmental Laboratory Quality Assurance / Control Plan, Prepared: March 1993, Revised: December 1995 Update contact and general information Revised to include bioassay sample requirements	D. Vokey	W. Osborne
2.0	18/03/2016	Updated to reflect new water licence Added Landfill and Landfarm facility requirements Updated parameters and frequency of testing for all stations Added provisions for the annual sampling of the interior ponds of the TCA Updated contact and general information Updated UTM coordinates for sample stations to agree with those shown on the figures. Corrected reference to ammonia as NH ₃ not NH ₄ (NH ₄ is ammonium) Updated laboratory accreditations Provided additional direction for the discharge from the sewage and TCA added	SRK	K. Lewis
3.0	14/08/2020	Updated to reflect new water licence Updated parameters and frequency of testing for all stations Updated laboratory accreditations Added QA/QC for Soils	Golder	K. Lewis

i

Executive Summary

Lupin Mines Incorporated (LMI), a wholly owned indirect subsidiary of Mandalay Resources Corporation (Mandalay), has prepared this Monitoring Plan.

A review of the Plan takes place and revisions are submitted as necessary with the annual report. The current Type A Water Licence 2AM-LUP2032 (Water Licence) for the Lupin Gold Mine (Lupin or the Lupin Mine or the Site) is valid until February 27, 2032.

Executive Summary Inuktitut

Awaiting translation – to be provided as soon as possible								

Executive Summary Inuinnaqtun

Awaiting translation – to be provided	d as soon as possible	

Table of Contents

1. Intro	oduction	1
1.1	Project and Company Information	1
1.2	Site Location	2
1.3	Environmental and Sustainable Development Policy	2
1.4	Purpose and Scope	3
Quality	Assurance/Quality Control for Water at the Lupin Mine Site	3
2 Field	d Sampling	3
2.1	Sample Collection	3
2.2	Sample Identification	19
2.3	Sample Preservation	19
2.4	Sample Transportation	20
2.5	Chain of Custody Forms	21
3 Field	d Quality Control	21
3.1	Trip or Travel Blanks	21
3.2	Duplicates or Replicates	21
4 Labo	oratory Analyses	22
5 Rep	orting	22
Quality .	Assurance/Quality Control for Soils at the Lupin Mine Site	24
6 Field	d Layout and Remedial Excavations	24
7 Field	d Screening	24
7.1	Petroleum Hydrocarbons (PHC's)	25
7.2	Total Arsenic	25
7.3	Confirmation Sampling	27
7.4	Sample Collection and Handling	27

Table of Contents

7.5	Sample Labelling	27
7.6	Sample Transportation	28
7.7	Chain of Custody Forms	28
8 Dupli	cate Samples	28
9 Labo	ratory Analyses	29
10 Repo	rting	29
Figures		
Figure 1:	Location map, Lupin Mine	30
Figure 2:	Sampling Locations, Lupin Mine	31
Tables		
Table 2.1	: Sample collection requirements	5
Table 2.2	: Sampling event schedule	12
Table 2.3	: Discharge notification schedule.	16
Table 2.4	: Lupin Mine sampling locations using the UTM NAD85, Zone 12N coordinates	16
	Required sample containers, preservation, holding times, and sample volumes for analysis parameters	
Table 7.1	: Strategy for Interpretation of XRF Field Screening Results	27
Appendi	ces	
Appendix	A: Chain of Custody	

Appendix B: Scope of Accreditations

1 Introduction

Lupin Mines Incorporated (LMI), a wholly owned indirect subsidiary of Mandalay Resources Corporation (Mandalay), has prepared this Water Quality Monitoring Plan and Quality Assurance / Quality Control Plan (the Plan).

An annual review of the Plan takes place and revisions are submitted as necessary with the Annual Report to the Nunavut Water Board (NWB). The current Type A Water Licence 2AM-LUP2032 (Water Licence) for the Lupin Gold Mine (Lupin or the Lupin Mine or the Site) is valid until February 27, 2032.

1.1 Project and Company Information

Mandalay is a Canadian based company focused on producing assets in Australia, Chile and Sweden, a development project in Chile and the exploration and development of the past-producing Lupin Gold Mine and the Ulu gold project, both located in Nunavut, Canada.

Mandalay purchased Elgin Mining Inc., which owns LMI and the Lupin Mine, in September 2014. Lupin was in operation from 1982 to 2005 with temporary suspensions of activities between January 1998 and April 2000, and again between August 2003 and March 2004. The mine resumed production in March 2004 until February 2005.

Lupin Mine is currently in Closure and Reclamation with final reclamation and closure of on-site facilities being conducted in accordance with the *Final Closure and Reclamation Plan* and the *Closure and Reclamation Plan for the Tailings Containment Area*. Progressive reclamation will be implemented during the Closure and Post Closure Phase in accordance with *Care and Maintenance Plan* for the Project. Surface exploration is conducted under Water Licence 2BE-LEP1217. All camp infrastructure required for the surface exploration program currently exists at the Lupin Mine

Company: LMI

Project: Lupin Mine, Nunavut

Company Address: Suite 330, 76 Richmond Street East, Toronto, ON M5C 1P1

Telephone: 778-386-7340

Email: klewis@elginmining.com

Attention: Karyn Lewis, General Administration

Effective date: 14 Aug 2020

Distribution List:

Karyn Lewis General Administration

Discovery Mining Services Site Contractor
Golder Associates Site Consultant
SRK Consulting Site Consultant

Additional copies of this Plan are available from General Administration. This Plan will be posted in key locations at the Site, and all employees and contractors will be made aware of its contents.

1.2 Site Location

The Lupin Mine is located in the Kitikmeot Region, Nunavut, 400 km north of Yellowknife, Northwest Territories and 285 km southeast of Kugluktuk, Nunavut. The airport serving this Site is at 65°46′00″ N and 111 14′41″ W. The Site is on the western shore of Contwoyto Lake, approximately 60 km south of the Arctic Circle (Figure 1).

1.3 Environmental and Sustainable Development Policy

Lupin Mine Incorporated (LMI) is committed to maintaining a safe, clean, compliant and respectful work environment. LMI looks to our employees, contractors and managers to adopt and grow a culture of social responsibility and environmental excellence. Together we achieve this by:

- Promoting environmental stewardship in all tasks. Nothing is too important that it cannot be done in a clean and responsible manner. We strive towards maintaining a zero-incident work place.
- Recognizing that we have a shared responsibility as stewards of the environment in which we operate.
 We will not walk away from a non-compliant act.
- Identifying, managing and mitigating environmental, business and social risks in an open, honest and transparent manner.
- Planning our work so it is done in the cleanest possible manner and executing work according to plan.
- Continually improving environmental and operational performance by setting and reviewing achievable targets.
- Providing appropriate and necessary resources in the form of training, personnel and capital, including that required for closure planning and reclamation.
- Managing our materials and waste streams, maintaining a high degree of emergency response preparedness and minimizing our operational footprint to maintain environmental protection at all stages of projectdevelopment.
- Procuring goods and services locally, where available, and favouring suppliers with environmentally and socially responsible business practices.
- Seeking to understand, learn from and mitigate the root causes of environmental incidents and near misses when they do occur.
- Employing systems and technology to achieve compliance, increase efficiency and promote industry best practices in development, operations and environmental stewardship.
- Working with stakeholders to identify and pursue opportunities for sustainable social and economic development and capacity building.
- Conducting early and ongoing stakeholder engagement relevant to the stage of project and mine development and operation.
- Recognizing diversity in the workplace and building meaningful relationships with all stakeholders in a timely, collaborative and transparent manner.

Through implementation of this policy, LMI seeks to earn the public's trust and be recognized as a respectful and conscientious employer, neighbor, and environmental steward.

1.4 Purpose and Scope

The purpose of this Plan is to identify water quality and soils monitoring requirements for the Site and minimize the impacts of potential sampling and analytical errors by providing a set of standardized procedures for sampling, analysis and reporting. These procedures are to be implemented by any personnel involved in monitoring for the purpose of regulatory compliance or internal environmental management.

The Plan documents Quality Assurance (QA) and Quality Control (QC) procedures for the Lupin Mine Monitoring Program as required by Type A Water Licence 2AM-LUP2032 Part J, Items 5, 6 and 7. The Plan also documents QA/QC procedures for the Lupin Mine Monitoring Program as required by the *Metal and Diamond Mine Effluent Regulations* (MDMER) under the *Fisheries* Act Part 2 Division 1 Item 11 and Part 2 Division 2 Items 12(1) and (2), 14(1), (2), and (3), 17(1) and (2), and 19(3) as well as Schedule 4 and 5.

QA/QC planning has been developed in accordance with the Crown-Indigenous Relations and Northern Affairs Canada (CCIRNAC), Quality Assurance (QA) and Quality Control (QC) Guidelines for use by Class 'A' Licensees in meeting SNP Requirements and for Submission of a QA/QC Plan, July 1996 which defines QA and QC as follows:

Quality Assurance: is the system of activities designed to better ensure that quality control is done effectively.

Quality Control: is the use of established procedures to achieve standards of measurement for the three principal components of quality: precision, accuracy and reliability.

This Plan outlines field sample collection procedures including sampling requirements and methods; field sample identification, preservation and transport procedures; field sampling quality control measures; analytical laboratory information; and reporting requirements.

Quality Assurance/Quality Control Plan for Water

2 Field Sampling

2.1 Sample Collection

2.1.1 Sampling Station Locations, Requirements and Parameters

Sampling station locations, requirements, and parameter analyses are set out in the Type A Water Licence 2AM-LUP2032 Table 1 of Schedule J and in the MDMER Part 2 Division 2 Items 12 thru 18 and Schedules 4 and 5. In addition, LMI's site monitoring program includes the collection of additional samples to assess the progression of water quality and the performance of or need for treatment measures.

Generally, samples are required from the following locations:

- Freshwater intake at Contwoyto Lake,
- Tailings Containment Area (TCA):
 - o Annual characterization samples;
 - Prior to discharge;
 - During discharge;
 - o Reference areas; and
 - o Downstream exposure areas,
- Sewage Lakes Disposal Facility,
- Bulk Fuel Storage Facility
- · Landfarm Facility, and
- Landfill Facility.

The monitoring requirements outlined in the Water Licence and MDMER effluent monitoring requirements are outlined in Table 2.1. Water sampling under the Environmental Effects Monitoring Program of the MDMER will accompany any planned discharges from the TCA. Monitoring guided by LMI's initiative are also outlined.

A sample event schedule is also provided in Table 2.2 which outlines the Water Licence and MDMER effluent monitoring requirements as well as field monitoring and QC sample requirements (see Section 3 of this Plan for more details about QC monitoring). LMI's routine sampling initiatives are also listed. This table is intended to serve as a guide to on-site personnel with sampling responsibilities.

Regulatory authorities are to be notified of planned discharge events. Table 2.3 provides the notification schedule.

Table 2.1: Sample collection requirements

Station ID	Location			Metals				Anions	Fecal	BOD, TKN	ВТЕХ	Bio	oassay	Frequency
IU	Description	Field ^(a)	Conventional ^(b)	and Mercury	Nutrients ^(c)	Cyanide	Ra-226	and TP ^(d)	Coliform	and ortho- phosphorus ^(e)	and O&G ^(f)	Acute ^(g)	Sublethal ^(h)	
LUP-01	Freshwater Intake from Contwoyto Lake	х	Х	х	-	-	-	-	Х	-	-	-	-	Annually
	х	х	Х	-	Х	-	ı	ı	-	ı	-	-	Daily during periods of discharge	
	Х	Х	Х	X	Х	Х	ı	ı	-	ı	-	-	Weekly	
LUP-10	Pond 2 discharge at Dam 1A	х	X	Х	Х	х	х	Х	-	-	+	х	-	Monthly (no less than one month Intervals) commencing with the first day of decant
		Х	х	х	Х	Х	Х	Х	-	-	-	Х	Х	Once per calendar quarter
LUP10a (LUP-102)	Internal station in TCA Pond 2, approximately 100 m upstream from siphon intake	х	х	Х	х	х	х	-	-	-	-	х	-	Once prior to initiation of decant and once prior to termination of decant
LUP-11	Mine-water discharge at automatic sampler in the mill	-	-	-	-	-	-	-	-	-	-	-	-	Not Active
LUP-12	Mill tailings taken at the mill	-	-	-	-	-	-	-	-	-	-	-	-	Not Active
LUP-14	Decant structure from the Sewage Lakes Disposal Facilities	х	Х	х	Х	-	-	-	х	х	-	-	-	First day of discharge and then monthly thereafter during periods of flow
LUP-15	Discharge from TCA Pond 1 (east pond) into TCA Pond 2 (west pond)	-	-	-	-	-	-	-	-	-	1	-	-	Not Active

Table 2.1: Sample collection requirements

							Parame	eters						
Station ID	Location			Metals				Anions	Fecal	BOD, TKN	ВТЕХ	Bio	oassay	Frequency
ID	Description	Field ^(a)	Conventional ^(b)	and Mercury	Nutrients ^(c)	Cyanide	Ra-226	and TP ^(d)	Coliform	and ortho- phosphorus ^(e)	and O&G ^(f)	Acute ^(g)	Sublethal ^(h)	
LUP-16	TCA Pond 2 at center	-	-	-	-	-	-	-	-	-	-	-	-	Not Active
LUP-17	TCA Pond 2 upstream of Station LUP-10	-	-	-	-	-	-	-	-	-	-	-	-	Not Active
LUP-19	East end of Seep Creek in Dam 2 Lake	-	-	-	-	-	-	-	-	-	-	-	-	Not Active
LUP-20	West end of Seep Creek before discharge into Unnamed Lake	Х	Х	х	х	х	х	-	-	-	-	-	-	Weekly during discharge from the Tailings Containment Area, commencing with the first day of decant
LUP-21	North end of Concession Creek before discharge into Unnamed Lake	Х	Х	Х	Х	х	х	-	-	-	-	-	-	Weekly during discharge from the Tailings Containment Area, commencing with the first day of decant
		Х	X	Х	Х	Х	Х	Х	-	-	ı	1	-	Four times per year
LUP-22	Inner Sun Bay near center and midway between end of peninsula and west shore	х	х	X	x	х	х	-	-	-	-	-	-	Weekly at mid-depth, commencing one (1) week prior to discharge from the Tailings Containment Area and concluding two (2) weeks after cessation of the discharge

Table 2.1: Sample collection requirements

							Parame	ters						
Station ID	Location Description	()		Metals				Anions	Fecal	BOD, TKN	BTEX	Bio	oassay	Frequency
ID .	Description	Field ^(a)	Conventional ^(b)	and Mercury	Nutrients ^(c)	Cyanide	Ra-226	and TP ^(d)	Coliform	and ortho- phosphorus ^(e)	and O&G ^(f)	Acute ^(g)	Sublethal ^(h)	
LUP-24	Inner Sun Bay at mid-way point in narrows	X	X	X	X	X	X	•	-	-	-	-	•	Weekly at mid-depth, commencing one (1) week prior to discharge from the Tailings Containment Area, and concluding two (2) weeks after cessation of the discharge and when bioassay sample is collected at LUP-10 just prior to termination of decant
		Х	Х	Х	Х	Х	Х	Х	-	-	-	-	=	Four times per year
LUP-25	Outer Sun Bay (Total Rather than specific metals)	х	X	Х	х	х	х	-	-	-	-	-	-	Weekly at mid-depth, commencing one (1) week prior to discharge from the Tailings Containment Area, and concluding two (2) weeks after cessation of the discharge
LUP-26	Contwoyto Lake in bay east of water intake	-	-	-	-	-	-	-	-	-	ı	-	-	Inactive
LUP-27	Bulk Fuel Storage Facility	х	Х	х	Х	-	-	-	-	-	х	-	-	Once prior to discharge and weekly during periods of discharge
LUP-28	Discharge from the Landfarm Facility.	х	Х	х	Х	-	-	-	-	-	х	-	-	Once prior to discharge and weekly during periods of discharge

Table 2.1: Sample collection requirements

							Parame	ters						
Station ID	Location Description			Metals				Anions	Fecal	BOD, TKN	BTEX	Bio	oassay	Frequency
ID	Description	Field ^(a)	Conventional ^(b)	and Mercury	Nutrients ^(c)	Cyanide	Ra-226	and TP ^(d)	Coliform	and ortho- phosphorus ^(e)	and O&G ^(f)	Acute ^(g)	Sublethal ^(h)	
LUP-29	Landfarm Facility Monitoring Well – Up gradient	Х	X	Х	X	-	-	1	-	-	X	-	-	Monthly during periods of observed flow – June through September
LUP-30a	Landfarm Facility Monitoring Well – Down gradient	Х	Х	Х	X	-	-	ı	-	-	X	-	-	Monthly during periods of observed flow – June through September
LUP-30b	Landfarm Facility Monitoring Well – Down gradient	х	Х	х	Х	-	-	1	-	-	х	-	-	Monthly during periods of observed flow – June through September
LUP-31	Seepage from the Landfill Facility	х	х	х	Х	-	-	-	-	-	х	-	-	Monthly during periods of observed flow
LUP-32	Landfill Facility Monitoring Well – Up gradient	х	Х	х	Х	-	-	1	-	-	X	-	-	Monthly during periods of observed flow – June through September
LUP-33a	Landfill Facility Monitoring Well – Down gradient	х	Х	х	Х	-	-	1	-	-	х	-	-	Monthly during periods of observed flow – June through September
LUP-34b	Landfill Facility Monitoring Well – Down gradient	Х	Х	Х	Х	-	-	-	-	-	Х	-	-	Monthly during periods of observed flow – June through September
LUP-35	Seepage from the Landfill Facility	х	Х	Х	Х	-	-	-	-	-	Х	-	-	Monthly during periods of observed flow – June through September

Table 2.1: Sample collection requirements

							Parame	eters						
Station	Location			Metals				Anions	Fecal	BOD, TKN	BTEX	Bio	oassay	Frequency
ID	Description	Field ^(a)	Conventional ^(b)	and Mercury	Nutrients ^(c)	Cyanide	Ra-226	and TP ^(d)	Coliform	and ortho- phosphorus ^(e)	and O&G ^(f)	Acute ^(g)	Sublethal ^(h)	
LUP-36 ⁽ⁱ⁾	Demolition Landfill Facility Monitoring Well – Up gradient	х	Х	Х	X	-	-	-	-	-	Х	-	-	Monthly during periods of observed flow – June through September
LUP-37a ⁽ⁱ⁾	Demolition Landfill Facility Monitoring Well – Down gradient	х	Х	Х	Х	-	-	-	-	-	х	-	-	Monthly during periods of observed flow – June through September
LUP-37b ⁽ⁱ⁾	Demolition Landfill Facility Monitoring Well – Down gradient	х	Х	Х	Х	-	-	-	-	-	х	-	-	Monthly during periods of observed flow – June through September
LUP-EL- 01	East Lake near shoreline near the potential seepage inputs	х	x	х	-	-	-	-	-	-	-	-	-	Twice-yearly: Once in freshet and once in late open-water season, ensuring that baseline samples are collected prior to construction of the waste rock dome.
LUP-BL- 01	Boot Lake near shoreline near the potential seepage inputs	х	X	x	-	-	-	-	-	-	•	-	-	Twice-yearly: Once in freshet and once in late open-water season, ensuring that baseline samples are collected prior to construction of the waste rock dome.
LUP-LSL- 01	Lower Sewage Lake near shoreline near the potential seepage inputs	Х	Х	Х	-	-	-	-	-	-	-	-	-	Twice-yearly: Once in freshet and once in late open-water season, ensuring that baseline samples are collected prior to construction of the waste rock dome.

Table 2.1: Sample collection requirements

							Parame	eters						
Station ID	Location Description			Metals and Mercury				Anions	Fecal	BOD, TKN	BTEX	Bioassay		Frequency
ID	Description	Field ^(a)	Conventional ^(b)		Nutrients ^(c)	Cyanide	Ra-226	and TP ^(d)	Californ	and ortho- phosphorus ^(e)	and O&G ^(f)	Acute ^(g)	Sublethal ^(h)	
LUP-SP- 01 to LUP-SP- XX ^(j)	Seeps from the Waste Rock Dome, Locations of observed seepage or flow from waste rock pile	Х	х	x	-	-	-	-	-	-	-	-	-	Twice-yearly: Once in freshet and once in late open-water season
LUP-TCA- 01 to LUP-TCA- XX ^(j)	Seeps from the Tailings Containment Area (TCA), Locations of observed seepage or flow from waste rock pile	х	х	х	-	-	-	-	-	-	-	-	-	Twice-yearly: Once in freshet and once in late open-water season

Notes:

- (a) pH, conductivity, temperature and dissolved oxygen (receiving environment only).
- (b) pH, conductivity, total suspended solids, alkalinity, hardness.
- (c) Total ammonia, nitrate, and nitrite.
- (d) Chloride and sulphate. TP = Total Phosphorus.
- (e) Biochemical Oxygen Demand, Total Kjedahl Nitrogen and ortho-phosphorus.
- (f) Benzene, toluene, ethyl benzene, xylene, and Oil and Grease.
- (g) Acute Toxicity Testing: Rainbow Trout and Daphnia Magna.
- (h) Sublethal Toxicity Testing for Fathead Minnows, Ceriodaphnia dubia, Lemna minor and P. subcapitata.
- (i) Monitoring requirements are as per Water Licence, but are not applicable because the Demolition Landfill is not planned for construction.
- (j) Seep sampling locations will be added to the post-closure monitoring program as new seeps are documented.

Table 2.2: Sampling event schedule.

Sampling Events	Station	Samples and Parameters	Quality Control ⁽¹⁾				
TAILINGS CONTAINMENT FACILITY							
	LUP-10a (LUP-102)	Field pH, temperature, conductivity					
Annually	LUP-POND1	pH, TSS, hardness	1 field duplicate				
Allitually	LUP-CELL4	Total Metals	1 Heid duplicate				
	LUP-CELL5	Dissolved Metals					
		Field pH, temperature, conductivity					
		pH, conductivity, TSS, alkalinity, hardness,					
		NO ₂ , NO ₃ , NH ₃					
One month prior to discharge	LUP-10a (LUP-102)	Total Metals and Hg]-				
		CN (total cyanide)					
		²²⁶ Ra	1				
Upon receipt of results meeting discharge		Field pH, temperature and conductivity					
criteria (expect pH) and not less than two weeks prior to discharge	LUP-10a (LUP-102)	Static pass/ fail Bioassay with pH adjustment ⁽²⁾]-				
		Field pH, temperature conductivity					
	Pond 2 (various locations and depths)	Field pH, temperature, and conductivity (Daily)					
One week prior to discharge		pH, conductivity, TSS, alkalinity, hardness	1 field duplicate or field blank				
	LUP-22, 24, 25 (at	Total Metals and Hg					
	mid-depth)	NO ₂ , NO ₃ , NH ₃					
		CN					
		Field pH, temperature, and conductivity					
		Field observation of visual sheen					
Daily during discharge	LUP-10	flow rate m ³	1 field duplicate or field blank nor week				
Daily during discharge	104-10	pH, conductivity, TSS, alkalinity, hardness	1 field duplicate or field blank per week				
		CN					
		Total Metals and Hg					

Table 2.2: Sampling event schedule.

Sampling Events	Station	Samples and Parameters	Quality Control ⁽¹⁾	
		NO ₂ , NO ₃ , NH ₃		
		Total Metals and Hg		
	LUP-10	MDMER Bioassays: LC50		
		226 _{Ra}		
First day of discharge (in addition to daily		Field pH, temperature, conductivity, dissolved oxygen		
sampling)	LUP-20, 21 (surface),	pH, conductivity, TSS, alkalinity, hardness	1 field duplicate or field blank	
	LUP-22, 24, 25 (at mid-depth)	Total Metals and Hg		
		NO ₂ , NO ₃ , NH ₃		
		CN		
	LUP-21 (surface), LUP-24 (at mid-depth)	Anions and Total Phosphorus		
	LUP-10	NO ₂ , NO ₃ , NH ₃		
		226 _{Ra}		
	LUP-20, 21 (surface), LUP-22, 24, 25 (at mid-depth)	pH, conductivity, TSS, alkalinity, hardness		
Weekly during discharge (in addition to daily sampling)		Total Metals and Hg	1 field duplicate or field blank	
(iii addition to daily sampling)		NO ₂ , NO ₃ , NH ₃		
		CN		
		226 _{Ra}		
Monthly during discharge (in addition to daily and weekly sampling	LUP-10	MDMER Bioassay LC50 and sublethal ⁽³⁾		
	LUP-21 (surface), LUP-24 (at mid-depth)	Total Hg	1 field duplicate or field blook	
		Field dissolved oxygen	1 field duplicate or field blank	
		Anions and Total Phosphorus		

Table 2.2: Sampling event schedule.

Sampling Events	Station	Samples and Parameters	Quality Control ⁽¹⁾		
	LUP-21 (surface), LUP-24 (at mid- depth)	pH, conductivity, TSS, alkalinity, hardness			
		Total Metals and Hg			
Just before the bioassay sample at LUP- 102 prior to termination of decant		NO ₂ , NO ₃ , NH ₃	1 field duplicate or field blank		
prior to termination of decant		CN			
		226 _{Ra}			
		Static Pass/ Fail Bioassay			
		Field pH, temperature, conductivity and dissolved oxygen			
		pH, TSS, alkalinity, hardness			
Last day of discharge	LUP-10a (LUP-102)	Total Metals and Hg	7-		
		CN			
		NO ₂ , NO ₃ , NH ₃			
		226 _{Ra}			
	LUP-22, 24, 25 (at mid-depth)	pH, TSS, alkalinity, hardness	1 field duplicate or field blank		
Weekly for two weeks following		Total Metals			
termination of discharge		NO ₂ , NO ₃ , NH ₃			
		CN			
SEWAGE LAKES DISPOSAL FACILITY	SEWAGE LAKES DISPOSAL FACILITY				
	LUP-14	Field pH, temperature, conductivity			
		Field observation for visual sheen			
		pH, conductivity, TSS, alkalinity, hardness			
Three weeks prior to discharge		Total Metals and Hg	1 field duplicate		
		NO ₂ , NO ₃ , NH ₃ , TKN, TP, OPO4			
		BOD5			
		Fecal Coliforms			
		Field flow rate in m ³			
Daily during discharge		Field pH, temperature, conductivity	<u></u>]-		
		Field observation for visual sheen			

Table 2.2: Sampling event schedule.

Sampling Events	Station	Samples and Parameters	Quality Control ⁽¹⁾	
		pH, TSS, alkalinity, hardness		
First day of discharge and Monthly		Total Metals and Hg		
thereafter ⁽²⁾		BOD5	1 field duplicate or field blank	
(in addition to daily sampling)		Fecal Coliforms		
		NO ₂ , NO ₃ , NH ₃ , TKN, TP, OPO4		
FRESHWATER INTAKE FACILITY				
Daily during intake		Field flow rate in m ³		
		Field pH, temperature, conductivity		
Ammunilli	LUP-01	pH, conductivity, TSS, conductivity]-	
Annually		Total Metals and Hg		
		Fecal Coliforms		
BULK FUEL STORAGE FACILITY				
		Field pH, temperature, conductivity		
		Field observation for visual sheen		
One week prior to discharge		pH, conductivity, TSS, hardness, alkalinity		
(RUSH 48 hour turnaround for sample results are to be requested of the		Total Metals and Hg	1 field duplicate	
laboratory)		Total Oil and Grease		
		ВТЕХ	1	
		NO ₂ , NO ₃ , NH ₃		
	LUP-27	Field flow rate in m ³		
Daily during discharge		Field pH, temperature, conductivity	-	
		Field observation for visual sheen		
		pH, conductivity, TSS, hardness, alkalinity		
		Total Metals and Hg		
Weekly during discharge (in addition to daily testing)		Total Oil and Grease	1 field duplicate or field blank	
dan, cesting,		ВТЕХ		
		NO ₂ , NO ₃ , NH ₃		

Table 2.2: Sampling event schedule.

Sampling Events	Station	Samples and Parameters	Quality Control ⁽¹⁾	
LANDFARM				
	LUP-28, LUP-29, LUP-30a, LUP-30b	pH, conductivity, TSS, hardness, alkalinity		
		Total Metals and Hg	1 field duplicate or field blank	
Monthly during discharge during periods of observed flow – June through September		Total Oil and Grease		
Julie illiough September		ВТЕХ		
		NO ₂ , NO ₃ , NH ₃		
LANDFILL FACILITY				
Monthly during discharge during periods of observed flow – June through September	LUP-31, LUP-32, LUP- 33a, LUP-33b	pH, conductivity, TSS, hardness, alkalinity		
		Total Metals and Hg	1 field duplicate or field blank	
		NO ₂ , NO ₃ , NH ₃		

Notes:

- (1) Duplicate and Blank samples must be collected for approximately every ten (10) field samples collected across the range of parameters. At least one duplicate must be submitted per sample shipment.
- (2) Samples are to be collected on the morning of the next plane departure after discharge commences where hold time restraints apply.
- (3) Twice per year. Nautilus Environmental should be advised that the dilution series for Ceriodaphnia and Lemna should be adjusted prior to sublethal testing.

Table 2.3: Discharge notification schedule.

Discharge Event	Schedule	Action Required
	30 days prior to MDMER Bioassay	Provide notice to Environment and Climate Change Canada (ECCC) of planned sample date.
TAILINGS CONTAINMENT AREA	10 days prior to discharge	Provide notice to the CIRNAC inspector, include analytical results and estimated volume of discharge.
LOWER SEWAGE LAKE	10 days prior to discharge	Provide notice to the CIRNAC inspector, include analytical results and estimated volume of discharge.
BULK FUEL STORAGE FACILITY	10 days prior to discharge	Provide notice to the CIRNAC inspector and estimated volume of discharge ⁽¹⁾ . Analytical results will be provided upon receipt and no discharge to occur prior to CIRNAC acknowledgment of receipt.

Note:

(1) Discharge from the bulk fuel storage facilities needs to commence as soon as possible when water starts accumulating in the spring.

Active monitoring (sampling) station locations as shown in Figure 2.1 are clearly identified in the field with permanent stakes and appropriate signage.

Samples must always be collected from the same locations, unless the sampling locations are relocated at the request of the designated CIRNAC Inspector or sampling location modifications are approved in writing by the NWB. The following Table 2.4 summarizes the current UTM coordinates of the active sampling locations:

Table 2.4: Lupin Mine sampling locations using the UTM NAD85, Zone 12N coordinates

Monitoring Station No.	Description	UTM Northing	UTM Easting
LUP-01	Freshwater intake from Contwoyto Lake	7294933	490030
LUP-10	TCA Pond 2 discharge at Dam 1A	7289689	485843
LUP-102 (Station 102)	Approximately 100 m upstream from the siphon intake in TCA Pond 2	7289875	486196
LUP-14	Decant structure from the Sewage Lakes Disposal Facilities	7293013	490187
LUP-20	West end of Seep Creek before discharge into Unnamed Lake	7290197	480149
LUP-21	North end of Concession Creek before discharge into Unnamed Lake	7290217	479841
LUP-22	Inner Sun Bay near centre midway between end of peninsula and west shore	7291715	479160
LUP-24	Inner Sun Bay near narrows	7293125	478989
LUP-25	Outer Sun Bay	7293770	478330
LUP-27	Bulk Fuel Storage Facility	7293609	489072
LUP-28	Discharge from the Landfarm Facility	TBD	TBD
LUP-29	Landfarm Facility monitoring well – upgradient	TBD	TBD
LUP-30a	Landfarm Facility monitoring well – downgradient	TBD	TBD

Table 2.4: Lupin Mine sampling locations using the UTM NAD85, Zone 12N coordinates

Monitoring Station No.	Description	UTM Northing	UTM Easting
LUP-30b	Landfarm Facility monitoring well – downgradient	TBD	TBD
LUP-31	Seepage from the Landfill Facility	TBD	TBD
LUP-32	Landfill Facility monitoring well – upgradient	TBD	TBD
LUP-33a	Landfill Facility monitoring well – downgradient	TBD	TBD
LUP-33b	Landfill Facility monitoring well – downgradient	TBD	TBD
LUP-EL-01	East Lake near shoreline near the potential seepage inputs	7293910	490496
LUP-BL-01	Boot Lake near shoreline near the potential seepage inputs	7294246	488593
LUP-LSL-01	Lower Sewage Lake near shoreline near the potential seepage inputs	7293164	489874

2.1.2 Field Measurements and Field Log Book

Where required by the monitoring program, pH, temperature, conductivity and dissolved oxygen of water is measured and recorded in the field directly from the water body being sampled wherever possible. Where it is not possible to take field measurements directly from the water body, the measurements can be taken from the sample bottle.

The pH and conductivity meters must be calibrated in advance of each day's sampling activities according to the manufacturer's instructions, using fresh standard calibration solutions. Any discrepancies must be recorded in the Field Log Book along with the sampling data; however recorded field measurements must not be altered due to calibration issues. Refer to the pH and conductivity meter manuals for instructions regarding how to calibrate and take measurements with the particular devices.

Details of all sampling activities are recorded in the Field Log Book including:

- Date and time of each sample collected,
- Sampling location visited,
- Weather conditions and air temperature,
- Flow rates where applicable,
- Integrity of sample location and water observations,
- Samples collected at each location including identification number (see Section 2.2), whether the sample will be submitted for analysis, and type of analysis as well and sample preservation measures,
- · Sample depth where applicable, and
- Field measurements (i.e. pH, conductivity, temperature, dissolved oxygen) as well as any calibration discrepancies with the field meters.

Immediately following field activities, an electronic copy of the Field Log data must be made. Field log entries in the Field Log Book must not be altered; pages must not be removed; space or pages left blank must be labeled as such and crossed with a diagonal line; and errors must be crossed out, not erased.

2.1.3 Sample Containers

Sample container sizes and materials of construction depend upon the parameter(s) to be analyzed. A summary of sample container requirements for various parameters is provided in Table 2.5 (Section 2.3 of this Plan).

All water quality sample containers will be prepared and supplied by the contracted laboratory. Only clean, unused containers should be used to limit contamination and preservation errors. Samples analyzed for fecal coliform tests must be contained in bottles provided by the laboratory to ensure that the bottle is sterilized prior to use. Toxicity samples are to be collected in food grade containers, such as water jugs or buckets. The food grade containers must be thoroughly cleaned and rinsed and then triple rinsed with the sample water prior to being filled.

2.1.4 Sampling Methods

Water quality sampling methods are as follows:

- Record details of the sampling activity and field measurements in the Field Log Book (see Section 2.1.2 for details).
- In the field, disposable nitrile sampling gloves must be worn during handling of all the bottles and equipment.
- Triple rinse sample bottles with the source water prior to sample collection, except for those bottles with preservative already added by the laboratory (i.e., BTEX), as well as those bottles for Oil and Grease or Fecal Coliform analysis.
- Collect samples off-shore as much as possible without disturbing bottom sediments.
- When collecting samples from flowing bodies of waters (i.e. stream, creeks):
 - The sample must be collected as close as possible to the middle of the flowing water body.
 To prevent the stirring up of sediment, use a container attached to a pole extension.
 Otherwise, if wading into the stream is unavoidable, wait for the sediment to settle or flow away before collecting the sample.
 - When rinsing, plunge the sample bottle into the flowing water toward the current allowing it to fill at a depth of approximately half the stream depth. If the stream depth is too shallow to collect a clean sample without disturbing sediment or too shallow to fill the bottle completely, use a smaller bottle and transfer the water to the larger sample bottle.
 - o Empty rinse water downstream of the sample locations so as not to disturb sediments.
- When collecting samples from surface water bodies (ponds, lakes) follow the same procedures as above for flowing bodies of water, ensuring that subsequent samples are collected at the same location, and by plunging the sample bottle into the water to a depth of about six (6) inches below the water surface.

- Sample bottles must be filled with room left for preservative addition and mixing. Add preservatives after filling as directed by the laboratory (unless the bottle was provided pre-loaded with preservatives by the laboratory).
- Record field measurements (pH, temperature, conductivity, dissolved oxygen) and any deviations from the sample collection method in the Field Log Book.

2.2 Sample Identification

All water samples must be provided with a unique sample identification number based on the following example:

Example: LUP-22-200801-50

LUP-22 Refers to the monitoring station.

130801 Refers to the date that the sample was collected (yy/mm/dd). In this example the date the sample was collected was August 1, 2020.

Refers to the depth in centimeters from surface which the same was collected. If the depth of the sample is not applicable do not include the suffix.

Sample labels including at a minimum: sample identification number, location, date, and parameters for analyses should be prepared as much as possible before entering the field for the sampling event with a waterproof, non-smear pen. Then, sample labels, bottles and preservatives should be packed, preferably in a cooler to maintain constant temperature, for transport to the field.

Sample bottle labels must be clearly and consistently labeled prior to being sent to the external laboratory with the following information:

- Company name,
- Site name,
- Sample Station Number,
- Sample Number,
- Sample Date and Time, and
- Analysis required.

Quality Control (QC) samples (i.e., field blanks, trip blanks, duplicates) are provided with unique sample identification numbers and note of the sample as a QC sample is recorded in the Field Log Book.

2.3 Sample Preservation

Water quality samples must be preserved, either by laboratory issued chemical preservative or temperature control, immediately following sample collection to ensure that the quality of the water sample remains similar to the source water. The following Table 2.5 summarizes the required containers, preservatives, and holding times for each parameter as outlined in ALS Sample Collection pocket Guide, Version 2 and additional information provided directly by ALS staff.

Table 2.5: Required sample containers, preservation, holding times, and sample volumes for analysis of specific parameters.

Parameter	Container Type	Preservative	Holding Time
pH ^(1,5)	500 mL plastic	4° C	0.25 hours
TSS ⁽¹⁾	500 mL plastic	4° C	7 days
Conductivity (1,5)	500 mL plastic	4° C	28 days
Total Metals and Hardness (4)	80 mL plastic	3 mL 1:3 Nitric Acid	6 months
Mercury	40 mL glass vial	2 mL Hydrochloric acid	28 days
Radium226	0.5 – 1 L plastic	6 mL 1:3 Nitric Acid	6 months
Cyanide (Total or WAD (low level))	60 mL plastic	3 mL 6N Sodium Hydroxide	14 days
Alkalinity (1)	500 mL plastic	4° C	14 days
Total Ammonia	100 mL amber glass with septa cap	1 mL 1:1 Sulphuric Acid	28 days
Nitrogen, Nitrate and Nitrite	500 mL plastic	4° C	28 days
Kjeldahl or Organic Nitrogen	100 mL amber glass with septa cap	1 mL 1:1 Sulphuric Acid	28 days
Total Phosphorus	100 mL amber glass with septa cap	1 mL 1:1 Sulphuric Acid	28 days
Ortho Phosphate ⁽¹⁾	500 mL plastic	4° C	2 days
BOD5 ⁽¹⁾	500 mL plastic	500 mL plastic	2 days
Fecal Coliforms	250 mL sterilized plastic	Sodium Thiosulphate	30 hours
Oil and Grease	2 x 250 mL amber glass	2 mL 1:1 H2SO4	28 days
BTEX (2,3)	2 x 40 mL glass vials	Sodium Bisulphate or Thiosulphate	14 days
Daphnia magna (pass/fail, LC50) (6)	2 v 20 L carbon	4° C	5 days
Rainbow Trout (pass/ fail, LC50) (7)	2 x 20 L carboy	4° C	5 days
Fathead Minnows (sublethal)		4° C	5 days
C. dubia (sublethal)	3 x 20 L carboy	4° C	5 days
L. minor (sublethal)	3 x 20 L carboy	4° C	5 days
P. subcapitata (sublethal)		4° C	5 days

Notes

- (1) Parameters may be analyzed from a single unpreserved bottle.
- (2) 40 mL glass vials must be filled with no headspace. May contain preservative. Do not pre-rinse with sample. If sample is chlorinated use thiosulphate preservative.
- (3) All volatile organics in water (chlorinated aromatics, BTEX, volatile organics, THMs and halogenated aliphatics) can be analyzed from the same set of vials. Consult ALS whether 2 or 3 vials are required.
- (4) If field filtering is not possible, or poses unacceptable risks for sample contamination, then send the samples unfiltered to and unpreserved to the laboratory as soon as possible.
- (5) Testing in the field is recommended.
- (6) For Daphnia Magna (LC50), require 2 L minimum volume. For Daphnia Magna (Pass/Fail), require 1 L minimum volume.
- (7) For Rainbow Trout (LC50), 2 x 20 L bladder and 40 L minimum volume required. For Rainbow Trout (Pass/Fail), 1 x 20 L bladder and 20 L minimum volume required.

2.4 Sample Transportation

Sample integrity will be preserved from the time of sample collection to completion of delivery to the laboratory by limiting exposure of samples to heat, light, and agitation.

Sample bottles will be packed standing upright and immobile in a new or laboratory issued portable cooler. Samples suspected of elevated contaminant levels, such as a sewage sample, will be shipped separately from clean samples. All samples will be stored and transported at 10°C to 1°C in the coolers with ice packs and the cooler will be securely closed prior to shipping. Samples will be shipped as soon as possible following sample collection with appropriate transportation instructions such as "refrigerate" and "do not freeze".

2.5 Chain of Custody Forms

A Chain of Custody Form containing the following information is completed by the sampler for every cooler shipment of samples:

- · Company name and contact information,
- Analytical laboratory name, address, and contact person,
- Invoicing instructions,
- Report format requested,
- Project information,
- Sampler's name,
- Sample identification number, time and date of sampling, sample type, and analyses requested,
- Any special instructions, and
- Name of person releasing the shipment as well as date and time of release. Each person relinquishing and receiving the samples, including the courier, must sign the Chain of Custody form.

Each cooler shipped must have a Chain of Custody form indicating those samples contained in the particular cooler. Chain of Custody forms should be enclosed in a Ziploc bag to protect them from possible water damage during shipment.

One copy of the Chain of Custody form is included with the shipment and one copy must remain at the mine site for recording keeping. An example of the Chain of Custody Form is provided in Appendix A.

3 Water Field Quality Control

3.1 Trip or Travel Blanks

Travel blanks are supplied and shipped by the laboratory to test for possible contamination that might arise during the handling, transport, or storage of the samples. The identity of these samples must be recorded in the Field Log Book.

One travel blank must be submitted per sample shipment.

3.2 Duplicates or Replicates

Duplicate or replicate sampling is the collection of more than one sample for a given analysis at a given location to test the validity of sampling procedures and laboratory methodology. Duplicates are collected, handled, and analysed using the same procedures applied to routine samples. Duplicates are submitted to the laboratory with a unique (fictitious) identifier to prevent association of the paired samples. The identity of these samples must be recorded in the Field Log Book.

Duplicate samples must be collected for approximately every ten (10) field samples collected across the range of parameters. At least one duplicate must be submitted per sample shipment.

4 Laboratory Analyses

ALS Environmental laboratories (ALS) located in Yellowknife, NWT performs the required environmental analyses for the Lupin Mine, with the exception of MDMER toxicity testing which is completed by Nautilus Environmental in Calgary, AB.

ALS is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) and conforms to the requirements of ISO/IEC Standard 17025. Attached in Appendix B is a copy of the ALS Yellowknife laboratory scope of accreditation. The scope of accreditation of all ALS laboratories is available from their website at:

https://www.alsglobal.com/en/myals/downloads

Nautilus Environmental is accredited by the CALA to conduct acute lethality and Daphnia magna monitoring tests and conforms to the requirements of ISO/IEC Standard 17025. Nautilus Environmental should be advised that the dilution series for *Ceridodaphnia* and *Lemna* should be adjusted prior to sublethal testing. Attached in Appendix B is a copy of the Nautilus Environmental Burnaby laboratory scope of accreditation.

All analyses are conducted in accordance with methods prescribed in the current edition of Standard Methods for the Examination of Water and Wastewater including regular QA/QC during the analysis of field samples including a program of method blanks, laboratory control samples, instrument calibration samples, matrix spikes, and duplicates.

5 Reporting

All analytical results will be forwarded in electronic format from ALS to LMI for data collection and management. Upon receipt, LMI will review the results to identify any anomalies. Anomalous results will be either re-analyzed by the laboratory or new samples will be collected to confirm the analytical results.

Any analytical results that indicate exceedance of regulatory criteria will be reported to the appropriate agencies including the NWB and the CIRNAC inspector.

Part J Item 10 of the Lupin Mine Water Licence requires LMI to include in its Annual Report (due March 31st), all data, monitoring results and information required by Part J of the Water Licence. Under the MDMER effluent monitoring reporting of all tests and monitoring conducted during each quarter is to be reported not later than 45 days after the end of a quarter. A report summarizing the previous calendar year is also required under the MDMER to Environment and Climate Change Canada (due March 31st).

To facilitate the required annual reporting, LMI prepares written monthly reports supported by laboratory analyses results table summaries and quality assurance review. Each monthly report includes the following:

- A description of the sample activities undertaken,
- Description of the existing conditions at each sampling station,
- Tabular summary of analytical lab result including the results of the quality control samples (travel blank, field blank, duplicate samples), and
- Interpretation of the analytical lab results including comparison of the results with water licence criteria and assessment of the reliability of the results.
- Within the annual report, the acceptability of samples will be evaluated qualitatively by examination of the trip blanks and field duplicate sample data. Reproducibility of samples will be expressed as relative percent difference (RPD):

RPD =
$$100 * ((X_1 - X_2) / (X_1 + X_2) / 2)$$

Where X_1 is the original sample concentration, X_2 is the duplicate sample concentration, and X_1 - X_2 denotes the absolute value of the difference between these two concentrations.

Quality Assurance/Quality Control Plan for Soils at the Lupin Mine

The purpose of this document is to provide a quality assurance (QA) / quality control (QC) plan for the remediation of contaminated soils at Lupin Mine (the Site). This QA/QC plan for contaminated soils outlines the field screening and confirmatory sampling program for the remediation of contaminated soils that will be required as part of Site closure. The objective of this QA/QC plan is to confirm that the contractor successfully remediates the areas of contaminated soils and meets the intent of the design.

The remediation of contaminated soils will require a field QA/QC plan to confirm compliance with the established remedial criteria. The QA/QC program will include four primary components:

- Field layout and remedial excavation.
- Field screening.
- Confirmation sampling.
- Reporting.

6. Field Layout and Remedial Excavations

The excavation of contaminated soils will be initially defined in the field based on the locations of test pits where contaminated soils were identified as part of the 2006 Phase I and II ESA (Morrow 2006) and the 2017 Phase I and II ESA Update (Golder 2017a). The layout of the locations of the planned remedial excavations will be surveyed in the field and the locations will be verified prior to remedial work commencing.

The remedial excavations of contaminated soils will be monitored, and the type and quantity of excavated material will be documented as remedial activities advance. Visual observations will initially be used to identify the limits of contaminated materials and a photographic log of remedial activities will be maintained. The advancement of remedial activities will be tracked and compared with the design estimates of remedial volumes and excavation limits.

7. Field Screening

Soil samples will be screened to obtain "real-time" field data to guide the remedial activities and to enable the collection of a subset of confirmatory samples for laboratory analysis. Field screening techniques such as portable combustible gas instruments (CGIs) and x-ray fluorescence (XRF) instruments are widely used during remediation activities. Although these field tools do not replace the collection of confirmation laboratory analysis, they provide complimentary data to support field decisions with respect to soil excavation and will be used to verify soil quality compliance.

The CGI and XRF instruments must be calibrated by the equipment supplier prior to shipment to the Site. Afterwards, regular "bump" tests of the CGI instrument should be completed according to the manufacture's instructions. As part of the daily field screening, field notes should be collected which include the following information:

- · Date of field screening.
- · Weather conditions.
- Excavation and field screening sample identifications.
- Field screening sample depths.
- Field screening concentrations.

The following sections summarize the field screening instruments and methodologies for the primary contaminants of concern: PHCs and total arsenic.

7.1. Petroleum Hydrocarbons (PHCs)

Field screening of PHCs will consist of a combination of visual assessment of staining and the use of a portable CGI. The presence of residual volatile hydrocarbons within soil affected by weathered diesel and fuel oil is likely low and it is therefore expected that field screening for PHCs may not be highly effective. The portable CGI measures concentrations of volatile hydrocarbons from soil in either the parts per million (ppm) or percentage Lower Explosive Limit ranges. The unit will be calibrated to a reference gas, typically operated in methane elimination mode.

Discrete soil samples will be collected from the walls and base of the remedial excavations following the definition of the potential limits. The frequency of discrete field screening will be determined on an excavation by excavation basis based upon the lateral and vertical extents. If bedrock or permafrost is encountered below PHC contaminated soil, discrete soil samples will be collected if possible. However, if ex-situ screening can not be completed due to terrain limitations, a visual assessment of the bedrock or permafrost surface will be completed and documented.

Discrete soil samples will be collected in the field from the excavation or the excavator bucket depending on the depth of the excavation and applicable health and safety requirements. Samples will be stored in re-sealable plastic bags and allowed to acclimatise to room temperature for approximately 15 minutes. The CGI probe is then inserted into the bag for measurement of combustible vapours. It is anticipated that field screening results using the CGI will generally fall into two categories:

- Field screening data indicates a high likelihood of a below applicable criteria confirmation laboratory result. Field screening data should include CGI readings less than 50 ppm and no staining or olfactory indications of contamination observed.
- Field screening data characterized by elevated CGI readings exceeding 50 ppm and/or significant staining or olfactory indications of contamination observed indicates a low likelihood of a below applicable criteria confirmation laboratory result.

It is recognized that the interpretation of field screening data will evolve as correlations between laboratory and field screening results become established. The results of the field screening program will be used to identify sample locations designated for confirmatory sampling.

7.2. Total Arsenic

Field screening of total arsenic will be completed using a portable XRF instrument, which allows for the detection of mg/kg concentrations of a wide spectrum of metals within soil. The XRF instrument will be used to estimate total arsenic concentrations in the field and the results will be used to determine whether additional excavation is required or if confirmatory soil sampling may be initiated. The XRF is a radiation source and requires health and safety training for use as well as specific Transport Canada documentation associated with land and air transport.

Upon completion of the remedial excavations, it is assumed that residual soil will be present along the base and walls of the excavations. As a result, once the potential limits of the remedial excavations are encountered, detailed field screening of the walls and bases will be completed using discrete samples collected on a grid pattern. Discrete soil samples (approximately 250 ml in size) will be collected directly from the excavation or bucket of the excavator depending on the depth of the excavation and applicable health and safety requirements. Samples will be collected such that minimal organic material and/or gravel-sized fragments are present in order to minimize interference with the XRF. Three methods will be used to complete the XRF field screening:

- Unprocessed ex-situ method. This method involves sample placement in thin walled plastic bags. No sample processing (i.e., drying, sieving, or blending) will occur. Measurements are taken in a trailer located on-site with the instrument mounted to a stand.
- Processed ex-situ method. This method requires sample preparation (i.e., drying, sieving, and blending) and compaction/placement in XRF sample cups. Measurements are also taken in an on-site trailer with instrument mounted to stand.
- In-Situ "point and shoot" method. This method involves collecting in-field readings of total arsenic concentrations from soil remaining on bedrock terrain or permafrost exposed during remedial activities. Although this method is generally not considered to provide as accurate of results as the ex-situ methods, it will be used to assess soil quality in bedrock terrain or permafrost where sample collection for ex-situ screening methods is not considered feasible.

The majority of the discrete soil samples will be field screened using the unprocessed ex-situ method in order to reduce the time and effort required to prepare each sample. If a discrete sample is observed to be frozen or have excessive moisture, that sample will need to be field screened using the processed ex-situ method as moisture content will interfere with the XRF readings. For each of the methods, a minimum of three readings will be taken per sample using the XRF. These three readings will be collected sequentially and averaged to produce a single screening value. The frequency of discrete field screening will be determined on an excavation by excavation basis and will be based on the final extents of the excavation.

The results of the field screening program will be used to either: (i) temporarily suspend excavation activities and proceed with confirmatory sampling; or (ii) continue remedial excavation activities. The field screening results will be used to predict expected compliance with the applicable criteria, whereas the confirmatory sampling analytical data will be used to verify compliance with the applicable criteria. It is recognized that the interpretation of field screening data will evolve as correlations between laboratory and field screening results become established. It is anticipated that field screening results using the XRF will generally fall into three categories:

- Field screening data indicates a high likelihood of a below applicable criteria confirmation laboratory result.
- Field screening result is marginally below the applicable criteria, suggesting the confirmation laboratory result may be just below or above the applicable criteria.
- Field screening data indicates a low likelihood of a below applicable criteria confirmation laboratory result.

Table 7.1 summarizes the planned strategy for the interpretation of the XRF field screening results.

Table 7.1: Strategy for Interpretation of XRF Field Screening Results

XRF Screening Result	Strategy
Less than 50% of arsenic "hotspot" value (<2,000 mg/kg total arsenic)	Proceed with confirmatory sample collection
Between 50% to 100% of arsenic "hotspot" value (2,000 mg/kg to 4,000 mg/kg total arsenic)	Proceed with limited additional remedial work and field screening
Greater than 100% of arsenic "hotspot" value (>4,000 mg/kg total arsenic)	Continue with remedial work and field screening

7.3. Confirmation Sampling

Confirmatory sampling will be completed throughout the remedial works for the purposes of verifying the contaminant concentrations prior to proceeding with backfilling activities. It is expected that the field screening results for both the CGI and XRF will correlate with the laboratory results. However, this correlation will be assessed following the collection of approximately 100 sample pairs.

The analytical testing program will focus on verifying contaminant concentrations at the limits of remedial excavations and thereby confirming compliance with the remedial objectives. Discrete soil samples,

selected based on field screening results, will be submitted to an accredited analytical laboratory for chemical analysis. Discrete confirmatory soil samples will be collected within a grid pattern from the walls and bases of the excavations. The frequency of confirmatory soil sample submission will be determined on an excavation by excavation basis and will consider the lateral extents of the excavation. However, the generally frequency for confirmatory soil sampling will consist of a maximum confirmatory soil sampling grid pattern of 10 m by 10 m (CCME 2016).

7.4. Sample Collection and Handling

Confirmatory samples will be collected for laboratory analysis of either benzene, toluene, ethylbenzene, xylenes (BTEX), and PHC Fractions F1 through F4 or total arsenic. All samples will be collected directly from the excavator bucket and will be gathered using dedicated Terracore samplers and/or a putty knife. All samples will be handled using dedicated nitrile gloves and sampling equipment will be decontaminated using Liquinox and distilled water between sample locations. The confirmatory samples will be placed within laboratory supplied sample containers. Samples for analysis of BTEX and PHC Fractions F1 through F4 will be placed into two 40 mL vials pre-charged with methanol for field preservation and one 125 mL jar, while samples for analysis of total arsenic will be placed in sealable plastic bags. Afterwards the samples will be placed in coolers with ice packs in order to limit the loss of volatile compounds.

7.5. Sample Labelling

Samples must be clearly and consistently labeled using a waterproof, non-smear pen prior to being sent to the laboratory with the following information:

- Company name.
- Site name.
- Sample identification.
- · Sample date and time.
- Analysis required.

7.6. Sample Transportation

Sample integrity will be preserved from the time of sample collection to completion of delivery to the laboratory by limiting exposure of samples to heat, light, and agitation. The sample containers will be packed standing upright and immobile in a new or laboratory issued portable cooler. Samples suspected of elevated contaminant levels will be shipped separately from clean samples. All samples will be stored and transported at 10°C to 1°C in the coolers with ice packs and the cooler will be securely closed prior to shipping. Samples will be shipped as soon as possible following sample collection with appropriate transportation instructions such as "refrigerate" and "do not freeze".

7.7. Chain of Custody Forms

A Chain of Custody (CoC) form containing the following information must be completed by the sampler for every cooler shipment of samples:

- Company name and contact information.
- Analytical laboratory name, address, and contact person.
- Invoicing instructions.
- Report format requested.
- Project information.
- · Sampler's name.
- Sample identification number, time and date of sampling, sample type, and analyses requested.
- Any special instructions.
- Name of person releasing the shipment as well as date and time of release.

Each person relinquishing and receiving the samples, including the courier, must sign the CoC form. Each cooler shipped must have a CoC form indicating those samples contained in the particular cooler. CoC forms should be enclosed in a Ziploc bag to protect them from possible water damage during shipment. One copy of the CoC form is included with the shipment and one copy must remain at the Site for recording keeping.

8. Duplicate Samples

Duplicate or replicate sampling is the collection of more than one sample for a given analysis at a given location to test the validity of sampling procedures and laboratory methodology. Duplicates are collected, handled, and analyzed using the same procedures applied to the parent samples. Duplicate soil samples will be collected at an approximate 10% frequency. The location of the duplicate soil samples will be recorded in the field notebook. The duplicate soil samples will be submitted to the laboratory with a unique (fictitious) identifier to prevent association of the paired samples and should be stored and handled the same as the parent samples. At least one duplicate soil sample should be submitted per sample shipment.

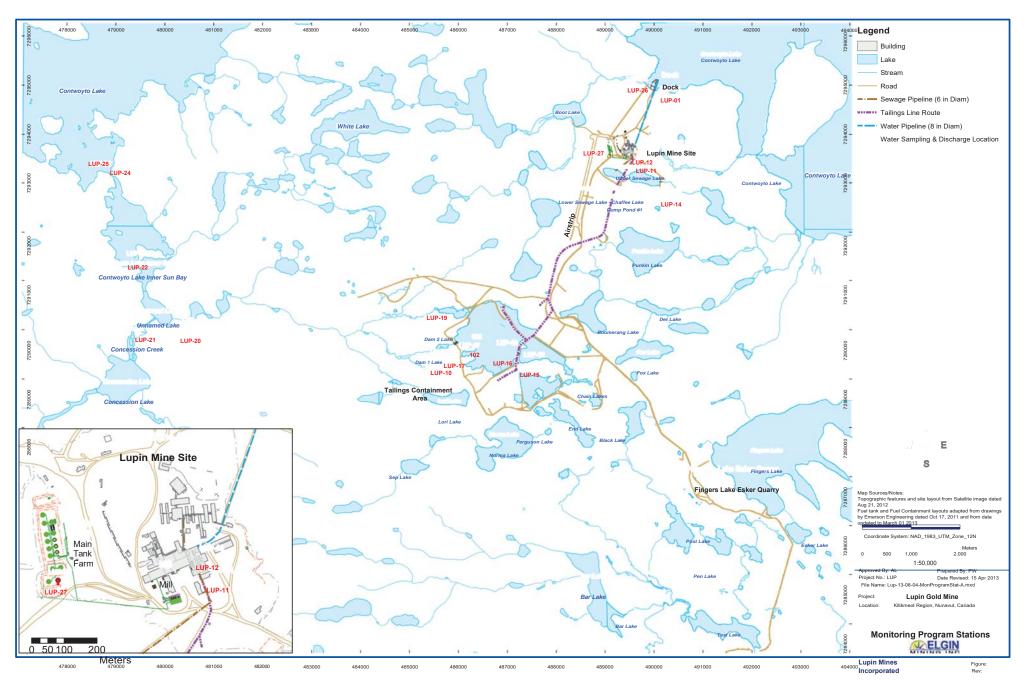
9. Laboratory Analysis

ALS Environmental Laboratories (ALS) located in Yellowknife, Northwest Territories will perform the required environmental analyses for the confirmatory samples. ALS is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) and conforms to the requirements of ISO/IEC Standard 17025. The scope of accreditation of all ALS laboratories is available from their website at: https://www.alsglobal.com/en/myals/downloads

Should results of the laboratory analysis confirm contaminant concentrations below the applicable remedial objectives, the limits of the remedial excavations will be documented, and backfilling activities will commence. However, should the results identify contaminant concentrations exceeding the applicable remedial objectives, additional excavation will be required, and new samples will be collected

from the revised excavation limits for field screening and confirmatory sampling. This process will continue until the analytical results from all soil samples confirm the contaminant concentrations are below the applicable remedial objectives.

10. Reporting


Throughout the remedial works, daily reports will be produced which will include the following information:

- Date and hours worked.
- Weather and other notable site conditions.
- Daily construction activities completed.
- Daily monitoring activities completed.
- Drawings showing excavation extents and sample locations.
- Field screening concentrations.
- Samples submitted for confirmation sampling.
- Select photographs of the daily work.

In addition, on a weekly basis, field data, field notes, and photographs will be scanned and uploaded to an electronic server for ease of retrieval. As analytical results are received from the laboratory, the results will be communicated by e-mail to the contractor, client, and any other relevant parties.

At the conclusion of the contaminated soils remedial works, a closure report will be produced for LMI. This report will document the results of the remedial excavation activities and will include a description and summary of the remedial works, a summary of the field screening concentrations, a comparison of the results of the confirmatory soil sample analyses to the applicable criteria, and a discussion of the results. The report will also include tables summarizing the analytical results and figures outlining the Site features, excavation extents, confirmatory sampling locations, and analytical results. The report will also include appendices with select photographs of the daily work and copies of the laboratory certificates of analysis.

Appendix A: Chain of Custody

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here

Page o

Canada Toll Free: 1 800 668 9878

Report To	Contact and compa	ny name below will app	ear on the final repo	Report Format / Distribution					Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)																		
Company: Lupin Mines Inc.					Select Report Format:																						
Contact: Karyn Lewis				Quality Control (QC) Report with Report					ୁ ବିଷ day [P4-20%] ☐						្គំ 1 Business day [E - 100%]												
Phone:					Compare Results to Criteria on Report - provide details below if box checked					3 day [P3-25%]						Same Day, Weekend or Statutory holiday [E2 -200%											
1 7					Select Distribution:					a is						(Laboratory opening fees may apply)]											
treet: 76 Richmond Street, Suite 330					Email 1 or Fax k.lewis@mandalayresources.com					Date and Time Required for all E&P TATs: dd-mmm-yy hh:mm																	
,					Email 2 erichard@golder.com					ts that ca	an not be	e perfori	med acc	cording 1	to the se	rvice le	vel selec	ted, you	u will be	contact	ed.						
ostal Code: M5C 1P1					Email 3 jim.mckinley@stantec.com											Ana	alysis	Requ	iest								
nvoice To	Same as Report To YES NO				Invoice Distribution					Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below Strong Str													<u> </u>				
	Copy of Invoice with Report				Select Invoice Distribution:																			$ \preceq $	l ig		
Company:					Email 1 or Fax					, TS	nia)													우	št		
					Email 2					ssac	ammonia)								s	ä		ıta			<u>=</u>		
Project Information					Oil and Gas Required Fields (client use)					hardness,	al an								Mou	ı dubia				N O	peci		
ALS Account # / Quote #: Q80133					AFE/Cost Center: PO#				CONTAINER	ot, 1	total				gna	Trout		ļ	Ξ	hinik	minor	apita		0	S S		
Job#:					Major/Minor Code:		Routing Code:		OF C		and .	l			Acute Toxicity Daphnia magna	Ę	, 1	ίς	heac	Ceridaphinia	- Lemna ı	subcapitata		S	SUSPECTED HAZARD (see Special Instructions)		
PO / AFE:					Requisitioner:					EC,	Nitrite				hnia	, oqt		metr	Fat	Ö	Fell			Щ	ARI		
LSD:					Location:					(pH,		Нg			Оар	Rainbowm	'	olori	city -	city -	city -	city -		Ы	¥		
ALS Lab Work Order # (lab use only):					ALS Contact:	Oliver Gregg	Sampler:		NUMBER	nal (Nutrients (Nitrate	+ 8	56	56	icity	icity		Phosphorus (colorimetric)	Toxicity - Fathead Minnows	Toxicity	ļ Š	Sublethal Toxicity - P.		Ħ	l e		
					4	Date	Time	1	Ξ	Conventional	ents (Meta	g	Radium-226	Xo L	Acute Toxicity	Major Ions	phor	Sublethal	thal	thal	thal		SAME	🖺		
ALS Sample # (lab use only)	Sample Identification and/or Coordinates (This description will appear on the report)				(dd-mmm-yy)	(hh:mm)	Sample Type	l⊋	onve	lutrie	Fotal Metals	Cyanide	adiu	cute	cute	lajor	hosp	nple	Sublethal	Sublethal Toxicity	aldus		δ	š			
<u> </u>	LUP-10					(dd ffillilli yy)	(Effluent	Ι-	R	∠ R	⊢ R	R	R	∢ R	R	≥ R	R	R	R	R	R			<u>ه</u>		
	201-10						+	Lindent	<u> </u>	- 1	- 1	-		- 1		- 11			- 1		-	- 1			\vdash		
				-		<u> </u>																lacktriangledown					
																						Ш					
																							-				
						1																		Н			
																									\blacksquare		
										CAI	MDLE	CON	DITIO	NI AC	DECI	IVED	/lab		m ls d								
Drinking Water (DW) Samples ¹ (client use)					pecify Criteria to add on report by clicking on the drop-down list below (electronic COC only)				Froze	n n	$\overline{\Box}$		SIF Observ				ON AS RECEIVED (lab use only) vations Yes					No					
Are samples taken from a Regulated DW System?					(clocalonia coc ciny)				4	Custody seal intact Yes					È	_		No		5							
☐ YES ☑ NO										Ice Packs						·											
Are samples for human consumption/ use?										INIITIAL COOLER TEMPERA						TURES °C FINAL COOLER						R TEMPERATURES °C					
YES NO																											
SHIPMENT RELEASE (client use)					INITIAL SHIPMENT RECEPTION (lab use only)					FINAL SHIPMENT RECEPTION (lab use only))									
Released by: Date: Time:				Received by: Date:				Time: Received by:						Date: Time:													

Appendix B: Scope of Accreditations

Canadian Association for Laboratory Accreditation Inc.

Certificate of Accreditation

ALS Environmental (Vancouver) ALS Canada Ltd. 8081 Lougheed Highway Suite 100 Burnaby, British Columbia

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Accreditation No.: A1719

Issued On: December 12, 2018 Accreditation Date: January 3, 2005 Expiry Date: June 11, 2021

This certificate is the property of the Canadian Association for Laboratory Accreditation Inc. and must be returned on request; reproduction must follow policy in place at date of issue. For the specific tests to which this accreditation applies, please refer to the laboratory's scope of accreditation at www.cala.ca.

CALA Directory of Laboratories

Membership Number: 1719

Laboratory Name: ALS Environmental (Vancouver)

Parent Institution: ALS Canada Ltd.

Address: 8081 Lougheed Highway Suite 100 Burnaby BC V5A 1W9

Contact: Ms. Helenita Franco **Phone:** (604) 253-4188 **Fax:** (604) 253-6700

Email: quality.vancouver@alsglobal.com

Standard: Conforms with requirements of ISO/IEC 17025

Clients Served: All Interested Parties Revised On: June 18, 2020

Valid To: June 11, 2021

Scope of Accreditation

Air (Inorganic)

Dustfall - Air [Dustfall] (227)

VA-TM-1039; ASTM D1739-98 and BC MOE LABORATORY MANUAL

GRAVIMETRIC

Fixed Dustfall

Total Dustfall

Total Insoluble Dustfall

Total Soluble Dustfall

Air (Inorganic)

Mercury - Air [Dustfall] (271)

NA-TM-1005, NA-TP-2012, VA-TP-2063; modified from BC MOE LABORATORY MANUAL and EPA 1631E COLD VAPOUR AAS - DIGESTION

Mercury

Air (Inorganic)

Metals - Air [Dustfall] (224)

NA-TM-1002, NA-TP-2007, VA-TP-2063; modified from BC MOE LABORATORY MANUAL and EPA 6020B ICP/MS - DIGESTION

Aluminum

Antimony

Arsenic

Barium

Beryllium

Bismuth

Boron

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Calcium

Chromium

Cobalt

Copper

Lead

Lithium

Magnesium

Manganese

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Strontium

Thallium

Tin

Uranium

Vanadium

Zinc

Air (Inorganic)

Total Particulates - Air [Filter, Particulate] (035)

VA-TM-1041; modified from ASTM D2009-65 and BC WORKERS COMPENSATION BOARD STANDARDS (BCWCB) 1150

GRÁVIMETRIC

Respirable Dust

Total Particulate Matter

Air (Organic)

Volatile Organic Compounds (VOC) - Air (206)

VA-TM-1109; modified from EPA TO-17

GC/MS

- 1,1-Dichloroethane
- 1,1-Dichloroethylene
- 1,1-Dichloropropene
- 1,1,1-Trichloroethane
- 1,1,1,2-Tetrachloroethane
- 1,1,2-Trichloroethane
- 1,1,2-Trichlorotrifluoroethane
- 1,1,2,2-Tetrachloroethane
- 1,2-Dibromo-3-chloropropane (DBCP)
- 1,2-Dibromoethane (Ethylene dibromide)
- 1,2-Dichlorobenzene
- 1,2-Dichloroethane
- 1,2-Dichloropropane
- 1,2,3-Trichlorobenzene
- 1,2,3-Trichloropropane

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

- 1.2.4-Trichlorobenzene
- 1,2,4-Trimethylbenzene
- 1,3-Butadiene
- 1.3-Dichlorobenzene
- 1,3-Dichloropropane
- 1,3,5-Trimethylbenzene
- 1,4-Dichlorobenzene
- 2-Butanone (Methyl ethyl ketone, MEK)
- 2-Chlorophenol
- 2-Chlorotoluene
- 2-Hexanone (Methyl butyl ketone, MBK)
- 2-Propanol (Isopropyl alcohol)
- 2,2-Dichloropropane
- 4-Chlorotoluene (p-Chlorotoluene)
- 4-isopropyltoluene (p-Cymene)
- 4-Methyl-2-pentanone (MIBK)

Acetone (2-Propanone)

Benzene

Biphenyl (1,1-Biphenyl)

Bromobenzene

Bromochloromethane

Bromodichloromethane

Bromoform

Bromomethane

Carbon disulfide

Carbon tetrachloride

Chlorobenzene

Chloroethane (Ethyl Chloride)

Chloroethene (Vinyl chloride)

Chloroform

Chloromethane (Methyl chloride)

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropene

Cyclohexane

Decane

Dibromochloromethane

Dibromomethane

Dichlorodifluoromethane

Dichloromethane (Methylene Chloride)

Ethyl acetate

Ethylbenzene

Hexachlorobutadiene

Isopropylbenzene (Cumene)

m,p-Xylene

Methyl tert-butyl ether (MTBE)

Methylcyclohexane

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

```
n-Butylbenzene
```

n-Heptane

n-Hexane

n-Octane

n-Propylbenzene

Naphthalene

o-Xylene

sec-Butylbenzene

Styrene

tert-Butylbenzene

Tetrachloroethylene

Toluene

trans-1,2-Dichloroethylene

trans-1,3-Dichloropropene

Trichloroethylene

Trichlorofluoromethane

Air (Organic)

Volatile Organic Compounds (VOC) - Air (207)

VA-TM-1109; modified from EPA TO-17

GC/FID

F1: C6-C10

F2: C10-C16

Total Volatile Organic Compounds (TVOC): >C10-C12

Total Volatile Organic Compounds (TVOC): >C12-C16

Total Volatile Organic Compounds (TVOC): >C6-C8

Total Volatile Organic Compounds (TVOC): >C8-C10

Volatile Hydrocarbons (VH): C6-C13

Dust (Inorganic)

Soluble Anions - Dustfall (255)

NA-TM-1001, VA-TM-1039; modified from BC MOE LABORATORY MANUAL and EPA 300.0 and SM 4110 ION CHROMATOGRAPHY

Chloride

Nitrate

Food

Arsenic Speciation - Food [Egg, Fresh Fruit, Meat, Processed Food, Vegetables] (236)

NA-TM-1002, NA-TP-2007, VA-TM-1082; modified from CFIA SOM-DAR-CHE-053-04 and EPA 6020A

HPLC - ICP/MS

Arsenate (As(V))

Arsenite (As(III))

Arsenobetaine (AsB)

Arsenocholine (AsC)

Dimethylarsinic acid (DMA)

Monomethyl arsenate (MMA)

Food (Inorganic)

Methyl mercury - Seafood (272)

NA-TM-1002, VA-TM-1088; modified from FDA METHOD 4.8

HPLC - ICP/MS

Methyl mercury

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

```
Oil (Organic)
Total Polychlorinated Biphenyls (PCB) - Oil (080)
VA-TM-1118, VA-TP-2116; modified from EPA 3620C and EPA 3660B and EPA 3665A and EPA 600/4-81-045
and EPA 8082A
     GC/ECD
     Aroclor 1016
     Aroclor 1221
     Aroclor 1232
     Aroclor 1242
     Aroclor 1248
     Aroclor 1254
     Aroclor 1260
     Aroclor 1262
     Aroclor 1268
     Total PCB
Paint (Inorganic)
Lead - Paint (261)
NA-TM-1002, NA-TP-2004; modified from EPA 200.2 and EPA 6020B
     ICP/MS - DIGESTION
     Lead
Soil (Inorganic)
Acidity - Solids [Soil] (257)
VA-TM-1053, VA-TM-1074; modified from MEND REPORT 1.20.1 and SM 2320 B
     TITRIMETRIC - SHAKEFLASK EXTRACTION
     Acidity
Soil (Inorganic)
Alkalinity - Solids [Soil] (258)
VA-TM-1053, VA-TM-1074; modified from MEND REPORT 1.20.1 and SM 2320 B
     TITRIMETRIC - SHAKEFLASK EXTRACTION
     Alkalinity
Soil (Inorganic)
Anions - Solids [Leachate] (256)
NA-TM-1001, VA-TM-1078; modified from BC MOE LABORATORY MANUAL and EPA 300.0 and SM 4110
     ION CHROMATOGRAPHY (IC) - FIXED RATIO EXTRACTION
     Chloride
     Chloride
     Sulphate
     Sulphate (Sulfate)
Soil (Inorganic)
Leachable Anions - Solids [Soil] (244)
NA-TM-1001, VM-TM-1074; modified from EPA 300.1 and MEND REPORT 1.20.1
     IC - SHAKEFLASK EXTRACTION
     Bromide
     Chloride
     Fluoride
```

Nitrate as Nitrogen Nitrite as Nitrogen Sulphate (Sulfate)

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

```
Soil (Inorganic)
Leachable Metals - Solids [Soil] (247)
NA-TM-1002, NA-TP-2007, VA-TM-1074; modified from EPA 6020B and MEND REPORT 1.20.1 ICP/MS - SHAKEFLASK EXTRACTION
     Aluminum
     Antimony
     Arsenic
      Barium
      Beryllium
      Bismuth
      Boron
      Cadmium
      Calcium
      Chromium
      Cobalt
      Copper
      Iron
      Lead
     Lithium
     Magnesium
      Manganese
      Molybdenum
      Nickel
      Phosphorus
      Potassium
      Selenium
      Silicon
      Silver
      Sodium
      Strontium
     Thallium
      Tin
      Uranium
     Vanadium
     Zinc
Soil (Inorganic)
      pH METER-Shake flask Extraction
```

pH - Solids [Soil] (250)

VA-TM-1074; modified from MEND REPORT 1.20.1 and SM 4500-H

рН

Soil (Microbiology)

Fecal (Thermotolerant) Coliforms - Solids [Soil] (245)

VA-TM-1200; modified from EPA 1680

MOST PROBABLE NUMBER

Fecal (Thermotolerant) Coliforms

† "OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Solids (Inorganic)

Acid Volatile Sulphide (AVS) - Solids [Soil] (230) VA-TM-1021; modified from EPA 821-R-91-100

COLORIMETRIC - EXTRACTION

Acid Volatile Sulfides

Solids (Inorganic)

Anions - Solids [Soil] (148)

NA-TM-1001, VA-TP-2066; modified from EPA 300.1 and SM 4110 B and SOIL SAMPLING & METHODS OF ANALYSIS CHAPTER 15

IC-SATURATED EXTRACTION

Bromide

Chloride

Fluoride

Nitrate-N

Nitrite

Sulphate

Solids (Inorganic)

Conductivity - Solids [Soil] (147)

VA-TM-1053, VA-TP-2066; modified from SM 2510 B and SOIL SAMPLING & METHODS OF ANALYSIS CHAPTER 15

METER - SATURATION EXTRACTION

Conductivity

Solids (Inorganic)

Cyanide - Solids [Soil] (213)

NA-TM-1003, VA-WI-3019; modified from BC MOE LABORATORY MANUAL and ISO 14403 and ON MOECC E3015 and SM 4500-CN- I

AUTO COLOR - DISTILLATION-EXTRACTION

Cyanide (SAD)

Cyanide (WAD)

Solids (Inorganic)

Cyanide - Solids [Soil] (214)

NA-TM-1003, VA-WI-3019; modified from ASTM 7237 and BC MOE LABORATORY MANUAL and ON MOECC E3015

AUTO COLOR/GAS DIFFUSION-EXTRACTION

Cyanide, Free

Solids (Inorganic)

Flashpoint - Solids [Ash] (264)

VA-TM-1090; modified from ASTM D93-15

PENSKE-MARTEN CLOSED CUP

Flashpoint

Solids (Inorganic)

Leachable Mercury - Solids [Soil] (270)

NA-TM-1005, NA-TP-2012, VA-TM-1074; modified from MEND REPORT 1.20.1 COLD VAPOUR AA - SPECTROMETRIC SHAKE FLASK EXTRACTION

Mercury

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

```
Solids (Inorganic)
Leachable Mercury - Solids [Waste] (267)
NA-TM-1005, NA-TP-2012, VA-TM-1071; modified from BC MOE ENVIRONMENTAL MANAGEMENT ACT
HAZARDOUS WASTE REGULATION (EMA/HWR) and EPA 1631E
    CVAAS-MELP EXTRACTION
    Mercury
Solids (Inorganic)
Leachable Mercury - Solids [Waste] (268)
NA-TM-1005, NA-TM-1700, NA-TP-2012; modified from EPA 1311 (PREPARATION) and EPA 1631E
(ANALYSIS)
     COLD VAPOUR AA - TCLP EXTRACTION
    Mercury
Solids (Inorganic)
Leachable Metals - Solids (121)
VA-TM-1066, VA-TM-1071, VA-TP-2072; modified from BC MOE ENVIRONMENTAL MANAGEMENT ACT
HAZARDOUS WASTE REGULATION (EMA/HWR) and EPA 6010D
     ICP/OES- MLEP EXTRACTION
     Arsenic
     Barium
     Boron
     Cadmium
     Chromium
     Copper
     Lead
     Selenium
     Silver
     Uranium
    Zinc
Solids (Inorganic)
Leachable Metals - Solids (122)
NA-TM-1700, VA-TM-1066, VA-TP-2072; modified from EPA 1311 (PREPARATION) and EPA 6010D
(ANALYSIS)
     ICP/OES - EXTRACTION - TCLP
    Antimony
     Arsenic
     Barium
     Beryllium
     Boron
```

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Nickel

Selenium

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Silver

Thallium

Vanadium

Zinc

Zirconium

Solids (Inorganic)

Leachable Metals - Solids [Soil] (235)

NA-TM-1002, NA-TM-1700, NA-TP-2007; modified from BC PROTOCOL 13 (ANALYSIS) and EPA 1311 (PREPARATION) and EPA 6020B (ANALYSIS)

ICP/MS - Extraction - TCLP

Antimony

Arsenic

Barium

Bervllium

Boron

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Nickel

Selenium

Silver

Thallium

Uranium

Vanadium

Zinc

Zirconium

Solids (Inorganic)

Mercury - Solids [Soil] (269)

NA-TM-1005, NA-TP-2004, NA-TP-2012; modified from BC MOE LABORATORY MANUAL, SALM (PREPARATION) and EPA 1631E (ANALYSIS) and EPA 200.2 (ANALYSIS)

COLD VAPOUR AAS - DIGESTION

Mercury

Solids (Inorganic)

Metals - Solids [Soil] (152)

NA-TM-1002, NA-TP-2004, NA-TP-2007; modified from BC MOE LABORATORY MANUAL, SALM (PREPARATION) and EPA 200.2 (ANALYSIS) and EPA 6020B (ANALYSIS)

ICP/MS - DÍGESTION

Aluminum

Antimony

Arsenic

Barium

Beryllium

Bismuth

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Boron

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Lithium

Magnesium

Manganese

Molybdenum

Nickel

Phosphorus

Potassium

Selenium

Silver

Sodium

Strontium

Thallium

Tin

Titanium

Uranium

Vanadium

Zinc

Zirconium

Solids (Inorganic)

Metals - Solids [Soil] (153)

VA-TM-1066, VA-TP-2066, VA-TP-2072; modified from EPA 6010D and SOIL SAMPLING & METHODS OF ANALYSIS CHAPTER 15

ICP/OES - SATURATION EXTRACTION

Calcium

Magnesium

Potassium

Sodium

Solids (Inorganic)

Methyl Mercury - Solids [Soil] (173) VA-TM-1062; modified from EPA 1630 P&T - GC - CVAFS - EXTRACTION

Methyl mercury

Solids (Inorganic)

Moisture - Solids [Soil] (089)

NA-TM-1200; CCME CWS PETROLEUM HYDROCARBONS IN SOIL - TIER 1 METHOD GRAVIMETRIC

Percent Moisture

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Solids (Inorganic)

Oil and Grease - Solids [Soil] (239)

VA-TM-1125; modified from BC MOE LABORATORY MANUAL

GRAVIMETRIC - EXTRACTION

Mineral Oil and Grease

Solids (Inorganic)

Paint Filter - Solids [Paint] (262) VA-TM-1055; modified from EPA 9095B

FILTRATION

Paint Filter (Free Liquid)

Solids (Inorganic)

Percent Saturation - Solids [Saturated Paste] (149)

VA-TP-2066; modified from SOIL SAMPLING & METHODS OF ANALYSIS CHAPTER 15

GRAVIMETRIC - SATURATED PASTE

Percent Saturation

Solids (Inorganic)

pH - Solids [Soil] (120)

VA-TM-1078, VA-TP-2066; modified from SM 4500-H+ B and SOIL SAMPLING & METHODS OF ANALYSIS CHAPTER 15

METER - SATURATION EXTRACTION

Solids (Inorganic)

pH - Solids [Soil] (169)

VA-TM-1078; modified from BC MOE LABORATORY MANUAL and SM 4500-H+ B

METER - FIXED RATIO EXTRACTION

pΗ

Solids (Inorganic)

Simultaneously Extracted Metals (SEM) - Solids [Soil] (228)

NA-TM-1005, NA-TP-2011, NA-TP-2012, VA-TM-1021; modified from EPA 1631E and EPA 821-R-91-100 **CVAFS - SEM EXTRACTION**

Mercury

Solids (Inorganic)

Simultaneously Extracted Metals (SEM) - Solids [Soil] (229)

VA-TM-1021, VA-TM-1066, VA-TP-2072; modified from EPA 6010D and EPA 821-R-91-100

ICP/OÉS - SEM EXTRACTION

Arsenic

Cadmium

Copper

Lead

Nickel

Zinc

Solids (Inorganic)

Waste Oil - Solids (123)

VA-TM-1111; BC MOE LABORATORY MANUAL

GRAVIMETRIC - EXTRACTION

Waste Oil Content

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Solids (Organic)

Extractable Hydrocarbons - Solids [Soil] (184)

NA-TM-1106, NA-TP-2106; modified from BC MOE LABORATORY MANUAL and EPA 3570

GC/FID - EXTRACTION (COLD SHAKE)

EPH C10-C19 (sg)

EPH C19-C32 (sg)

Extractable Petroleum Hydrocarbons (EPH): C10-C19

Extractable Petroleum Hydrocarbons (EPH): C19-C32

Solids (Organic)

Glycols - Solids [Soil] (156)

VA-TM-1113; modified from EPA 8015B

GC/FID - EXTRACTION

Diethylene glycol

Ethylene glycol

Propylene glycol

Triethylene glycol

Solids (Organic)

Organochlorine (OC) Pesticides - Solids [Soil] (079)

VA-TM-1121, VA-TP-2117; modified from EPA 3540C and EPA 3630C and EPA 3660B and EPA 8081B

GC/ECD - EXTRACTION

2,4'-DDD (o,p'-DDD) 2,4'-DDE (o,p'-DDE)

2,4'-DDT (o,p'-DDT)

4,4'-DDD (p,p'-DDD)

4,4'-DDE (p,p'-DDE)

4,4'-DDT (p,p'-DDT)

4,4'-Methoxychlor (p,p'-Methoxychlor)

Aldrin

alpha-BHC

alpha-Chlordane

beta-BHC

beta-HCH (beta-Hexachlorocyclohexane (b-HCH, b-BHC, beta-BHC, beta-Hexachlorocyclohexane)

cis-Nonachlor

Dieldrin

Endosulfan I (a-Endosulfan)

Endosulfan II (b-Endosulfan)

Endosulfan Sulfate

Endrin

gamma-Chlordane

Heptachlor

Heptachlor epoxide

Lindane (gamma-BHC)

Mirex

Oxychlordane

trans-Nonachlor

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Solids (Organic)

Petroleum Hydrocarbons (PHC) - Solids [Soil] (189)

NA-TM-1100, NA-TP-2100; modified from ALBERTA ENVIRONMENT INTERPRETATION, SEPT 2003 and CCME CWS PETROLEUM HYDROCARBONS IN SOIL - TIER 1 METHOD (DEC 2000 NO. 1310)

GC/FID - TUMBLER EXTRACTION

F2: C10-C16

F3: C16-C34

F4: C34-C50

Solids (Organic)

Petroleum Hydrocarbons (PHC) - Solids [Soil] (190)

NA-TM-1100; modified from ALBERTA ENVIRONMENT INTERPRETATION, SEPT 2003 and CCME CWS PETROLEUM HYDROCARBONS IN SOIL - TIER 1 METHOD (DEC 2000 NO. 1310)

GRAVIMETRIC - TUMBLER EXTRACTION

F4: Gravimetric

F4G-SG: Gravimetric Heavy Hydrocarbons - Silica

Solids (Organic)

Phenols - Solids [Soil] (071)

VA-TM-1122, VA-TP-2113; modified from EPA 3570 and EPA 8270D and KNAPP 1979

GC/MS - EXTRACTION

- 2-Chlorophenol
- 2-Methylphenol (o-Cresol)
- 2,3-Dichlorophenol
- 2,3,4-Trichlorophenol
- 2,3,4,5-Tetrachlorophenol
- 2,3,4,6-Tetrachlorophenol
- 2,3,5-Trichlorophenol
- 2,3,5,6-Tetrachlorophenol
- 2,3,6-Trichlorophenol
- 2,4-Dichlorophenol + 2,5-Dichlorophenol
- 2,4-Dimethylphenol
- 2,4,5-Trichlorophenol
- 2,4,6-Trichlorophenol
- 2,6-Dichlorophenol
- 3-Chlorophenol
- 3,4-Dichlorophenol
- 3,4,5-Trichlorophenol
- 3,5-Dichlorophenol
- 4-Chloro-3-methylphenol
- 4-Chlorophenol
- 4-Methylphenol (p-Cresol)

m-Cresol

Pentachlorophenol

Phenol

Solids (Organic)

Polycyclic Aromatic Hydrocarbons (PAH) - Solids [Soil] (185)

NA-TM-1106, NA-TP-2103; modified from EPA 3570 and EPA 8270D

GC/MS - EXTRACTION (COLD SHAKE)

2-Methylnaphthalene

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Acenaphthene

Acenaphthylene

Anthracene

Benzo(a)anthracene

Benzo(a)pyrene

Benzo(b,j)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Chrysene

Dibenzo(a,h)anthracene

Fluoranthene

Fluorene

Indeno(1,2,3 - cd)pyrene

Naphthalene

Phenanthrene

Pyrene

Quinoline

Solids (Organic)

Total Polychlorinated Biphenyls (PCB) - Solids [Soil] (112)

VA-TM-1119, VA-TP-2116; modified from EPA 3570 and EPA 3620C and EPA 3660B and EPA 3665A and EPA 8082A

GC/ECD - EXTRACTION

Aroclor 1016

Aroclor 1221

Aroclor 1232

Aroclor 1242

Aroclor 1248

Aroclor 1254

Aroclor 1260

Aroclor 1262

Aroclor 1268

Total PCB

Solids (Organic)

Volatile Hydrocarbons (VH) - Solids [Soil] (202)

NA-TM-1102, NA-TP-2102; modified from BC MOE LABORATORY MANUAL and CCME CWS PETROLEUM HYDROCARBONS IN SOIL - TIER 1 METHOD and EPA 5021A

GC/FID - HEADSPACE

F1: C6-C10 VH: C6-C10

Solids (Organic)

Volatile Organic Compounds (VOC) - Solids (263)

NA-TM-1102, VA-TM-1126; modified from EPA 1311 (PREPARATION) and EPA 8260C (ANALYSIS)

GC/MS - HEADSPACE - TCLP

1,1-Dichloroethene

1,2-Dichlorobenzene

1,2-Dichloroethane

1,4-Dichlorobenzene

Benzene

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Bromodichloromethane

Bromoform

Carbon tetrachloride

Chlorobenzene

Chlorodibromomethane

Chloroethene (Vinyl chloride)

Chloroform

Dichloromethane (Methylene Chloride)

Ethylbenzene

m,p-Xylene

Methyl ethyl ketone

o-Xylene

Tetrachloroethylene

Toluene

Trichloroethylene

Solids (Organic)

Volatile Organic Compounds (VOC) - Solids [Soil] (201)

NA-TM-1102, NA-TP-2102; modified from EPA 5021A and EPA 8260C

GC/MS - HEADSPACE

1,1-Dichloroethane

1,1-Dichloroethylene

1,1,1-Trichloroethane

1,1,1,2-Tetrachloroethane

1,1,2-Trichloroethane

1,1,2,2-Tetrachloroethane

1,2-Dichlorobenzene

1,2-Dichloroethane

1,2-Dichloropropane

1,2,4-Trimethylbenzene

1,3-Dichlorobenzene

1,3,5-Trimethylbenzene

1,4-Dichlorobenzene

4-Isopropylbenzene

Benzene

Bromodichloromethane

Bromoform

Carbon tetrachloride

Chlorobenzene

Chlorodibromomethane

Chloroethane (Ethyl Chloride)

Chloroethene (Vinyl chloride)

Chloroform

Chloromethane (Methyl chloride)

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropene

Dichloromethane

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Ethylbenzene

Ethylene Dibromide

Isopropylbenzene (Cumene)

m,p-Xylene

Methyl t-butyl ether

n-Propylbenzene

Naphthalene

o-Xylene

Styrene

Tetrachloroethylene

Toluene

trans-1,2-Dichloroethylene

trans-1,3-Dichloropropene

Trichloroethylene

Trichlorofluoromethane

Swab (Organic)

Total Polychlorinated Biphenyls (PCB) - Solids [Swab] (249)

VA-TM-1120, VA-TP-2116; modified from EPA 3620C and EPA 3660B and EPA 3665A and EPA 8082A GC/ECD - EXTRACTION

Aroclor 1016

Aroclor 1221

Aroclor 1232

Aroclor 1242

Aroclor 1248

Aroclor 1254

Aroclor 1260

Aroclor 1262

Aroclor 1268

Tissue (Inorganic)

Ashfree - Tissue (259)

VM-TM-1051; modified from SM 10300

GRAVIMETRIC

Ash-free weight

Tissue (Inorganic)

Lipid Content - Tissue (241)

VA-TM-1112; modified from EPA 3570 and EPA 8290A

GRAVIMETRIC

Lipid Content

Tissue (Inorganic)

Methyl Mercury - Tissue (172)

VA-TM-1062; modified from EPA 1630

P&T - GC - CVAFS - DIGESTION

Methyl mercury

Tissue (Inorganic)

Moisture - Tissue (090)

VA-TM-1087; modified from PUGET SOUND PROTOCOLS

GRAVIMETRIC

Percent Moisture

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Tissue (Inorganic)

Selenium Speciation - Tissue (253)

NA-TM-1002, NA-TP-2007, VA-TM-1085; CFIA METHOD SOM-DAR CHE-053-04

HPLC - ICP/MS

Selenium (IV)

Selenium (VI)

SelenoMethionine

Tissue (Inorganic)

Total Mercury - Tissue (266)

NA-TM-1005, NA-TP-2006, NA-TP-2012; modified from EPA 1631E and EPA 200.3

COLD VAPOUR AA - SPECTROMÉTRIC

Mercury

Tissue (Inorganic)

Total Metals - Tissue (100)

NA-TM-1002, NA-TP-2006, NA-TP-2007; modified from EPA 200.3 and EPA 6020A

ICP/MS - DIGESTION

Aluminum

Antimony

Arsenic

Barium

Beryllium

Bismuth

Boron

Cadmium

Calcium

Cesium

Chromium

Cobalt

Copper

Iron

Lead

Lithium

Magnesium

Manganese

Molybdenum

Nickel

Phosphorus

Potassium

Rubidium

Selenium

Silver

Sodium

Strontium

Sulphur (Sulfur)

Tellurium

Thallium

Tin

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Titanium

Uranium

Vanadium

Zinc

Zirconium

Urine (Inorganic)

Creatinine - Biomaterials [Urine] (234)

VA-TM-1052; THERMO DRI CREATININE-DETECT SPECIMEN VALIDITY TEST

COLORIMETRIC

Creatinine

Urine (Organic)

Arsenic Speciation - Biomaterials [Urine] (233)

NA-TM-1002, NA-TP-2007, VA-TM-1081; modified from CDC METHOD ID ITU003B, 2004 and EPA 6020A HPLC-ICPMS

Arsenate (As(V))

Arsenite (As(III))

Arsenobetaine (AsB)

Dimethylarsinic acid (DMA)

Monomethyl arsenate (MMA)

Total Arsenic Species

Total Inorganic Arsenic

Total Inorganic Arsenic and Methylated Metabolites

Water (Inorganic)

Acidity - Water (219)

VA-TM-1053; modified from SM 2310

TITRIMETRIC

Acidity

Water (Inorganic)

Alkalinity - Water (001)

VA-TM-1053; modified from SM 2320 B

TITRIMETRIC

Alkalinity (pH 4.5)

Alkalinity-Bicarbonate

Alkalinity-Carbonate

Alkalinity-Hydroxide

Phenolphthalein Alkalinity

Water (Inorganic)

Ammonia - Water (208)

VA-TM-1024; JOURNAL OF ENVIRONMENTAL MONITORING (2005) SECTION 7, P. 37-42

AUTO-FLUORESCENCE

Ammonia

Water (Inorganic)

Anions - Water (026)

NA-TM-1001; modified from EPA 300.1

IC

Bromide

Chloride

Fluoride

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Nitrate

Nitrate plus Nitrite

Nitrite

Sulfate

Water (Inorganic)

Arsenic - Water (232)

NA-TM-1002, NA-TP-2007, VA-TM-1086; modified from USGS Water Resources Investigation Report 02-4144 HPLC - ICPMS

Arsenate (AsV)

Arsenite (ASIII)

Arsenobetaine (AsB)

Dimethylarsinic acid (DMA)

Monomethyl arsenate (MMA)

Total Arsenic Species

Total Inorganic Arsenic

Total Inorganic Arsenic and Methylated Metabolites

Water (Inorganic)

Biochemical Oxygen Demand (BOD) - Water (027)

VA-TM-1032; modified from SM 5210 B

D.O. METER

BOD (5 day)

CBOD (5 day)

Soluble Biological Oxygen Demand (SBOD)

Water (Inorganic)

Carbon - Water (091)

VA-TM-1037; modified from SM 5310 B

IR - COMBUSTION

Inorganic Carbon

Organic Carbon

Total Carbon (TC)

Water (Inorganic)

Chemical Oxygen Demand (COD) - Water (028)

VA-TM-1033; modified from SM 5220 D

COLOR - DIGESTION

COD

Water (Inorganic)

Chlorophyll A - Water (220)

VA-TM-1038, VA-TP-2011; modified from EPA 445.0

FLUORIMETRY

Chlorophyll a

Water (Inorganic)

Colour - Water (015)

VA-TM-1004; modified from BC MOE Laboratory Manual and SM 2120 C

COLORIMETRIC

Apparent Colour

True Colour

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Water (Inorganic)

Conductivity - Water (004) VA-TM-1053; modified from SM 2510 B

CONDÚCTIVITY METER

Conductivity (25°C)

Water (Inorganic)

Cyanide - Water (209)

NA-TM-1003; modified from ISO 14403 and SM 4500-CN-I

AUTO COLOR - DISTILLATION

Cyanide (SAD)

Cyanide (WAD)

Water (Inorganic)

Cyanide - Water (210)

NA-TM-1003; modified from ASTM D7237

AUTO COLOR (GAS DIFFUSION)

Cyanide, Free

Water (Inorganic)

Dissolved Ferrous Iron - Water (242)

VA-TM-1046, VA-TP-2009; modified from SM 3500-FE COLORIMETRIC - FILTRATION

Ferrous Iron

Water (Inorganic)

Dissolved Metals - Water (032) NA-TM-1002, NA-TP-2002, NA-TP-2007; modified from EPA 6020B and SM 3030 B

ICP/MS - FILTRATION

Aluminum

Antimony

Arsenic

Barium

Beryllium

Bismuth

Boron

Cadmium

Calcium

Cesium

Chromium

Cobalt

Copper

Gallium

Gold

Indium

Iron

Lanthanum

Lead

Lithium

Magnesium

Manganese

Molybdenum

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Nickel Niobium Phosphorus Potassium Rhenium Rubidium Selenium Silicon Silver Sodium Strontium Sulphur (Sulfur) **Tantalum Tellurium Thallium Thorium** Tin Titanium Tungsten Uranium Vanadium Yttrium Zinc Zirconium Water (Inorganic) Dissolved Metals - Water (036) NA-TP-2002, VA-TM-1066, VA-TP-2072; modified from EPA 6010D and SM 3030 B ICP/OES Aluminum **Antimony** Arsenic **Barium** Beryllium **Bismuth** Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium

Magnesium Manganese Molybdenum

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Nickel **Phosphorus** Potassium Selenium Silicon Silver Sodium Strontium **Thallium** Tin **Titanium** Vanadium Zinc Water (Inorganic) Mercury - Water (136) NA-TM-1005, NA-TP-2002, VA-TP-2068; modified from EPA 1631E **CVAFS - BrCI DIGESTION** Mercury Water (Inorganic) Mercury - Water (265) NA-TM-1005, NA-TP-2002, NA-TP-2012; modified from EPA 1631E COLD VAPOUR AA - SPECTROMÉTRIC Mercury Water (Inorganic) Methyl Mercury - Water (192) VA-TM-1062; modified from EPA 1630 P&T GC-CVAFS-DISTILLATION Methyl mercury Water (Inorganic) **AUTO COLOR - DIGESTION** Total Dissolved Nitrogen **Total Nitrogen**

Nitrogen - Water (217) VA-TM-1047, VA-WI-3046; modified from SM 4500-P J

Water (Inorganic)

Oil and Grease - Water (061) NA-TM-1107; modified from EPA 1664 GRAVIMETRIC - EXTRACTION

Mineral Oil and Grease Total Oil and Grease

Water (Inorganic)

pH - Water (018) VA-TM-1053; modified from SM 4500-H+ B pH METER Hq

† "OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Water (Inorganic)

Phosphorus - Water (179)

VA-TM-1025, VA-TP-2009, VA-WI-3046; modified from SM 4500-P B and SM 4500-P E

COLOR - DIGESTION (AUTOCLAVE)

Phosphate

Total Dissolved Phosphorus

Total Phosphorus

Water (Inorganic)

Reactive Silica - Water (008)

VA-TM-1018; modified from SM 4500-SIO2 D

COLORIMETRIC

Reactive Silica

Water (Inorganic)

Selenium Speciation - Water (252)

NA-TM-1002, NA-TP-2007, VA-TM-1084; Spectrochimica Acta Part B60 (2005) 633-641

HPLC - ICP/MS

Selenium (IV)

Selenium (VI)

SelenoMethionine

Water (Inorganic)

Solids - Water (016)

NA-TM-1004, VA-TM-1009, VA-TM-1050; modified from SM 2540 B and SM 2540 C and SM 2540 D and SM 2540 E

GRAVIMETRIC

Fixed Suspended Solids

Total Dissolved Solids

Total Solids (TS)

Total Suspended Solids

Volatile Suspended Solids

Water (Inorganic)

Sulphide - Water (010)

VA-TM-1020; modified from SM 4500-S2- D

COLOR

Sulphide

Water (Inorganic)

Thiocyanate - Water (014)

VA-TM-1029; modified from SM 4500-CN- M

COLOR

Thiocyanate

Water (Inorganic)

Total Kjeldahl Nitrogen (TKN) - Water (211)

VA-TM-1044; modified from SM 4500-NORG D

AUTO FLUORESCENCE - DIGESTION

Dissolved Kjeldahl Nitrogen

Total Kjeldahl Nitrogen

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Water (Inorganic) Total Metals - Water (031) NA-TM-1002, NA-TP-2001, NA-TP-2007; modified from EPA 200.2 and EPA 6020B ICP/MS - DIGESTION Aluminum **Antimony** Arsenic **Barium** Beryllium **Bismuth** Boron Cadmium Calcium Cesium Chromium Cobalt Copper Gallium Gold Indium Iron Lanthanum Lead Lithium Magnesium Manganese Molybdenum Nickel Niobium **Phosphorus** Potassium Rhenium Rubidium Selenium Silicon Silver Sodium Strontium Sulphur (Sulfur) **Tantalum**

Tellurium Thallium Thorium Tin Titanium Tungsten

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Uranium Vanadium Yttrium Zinc

Water (Inorganic)

Zirconium

Total Metals - Water (041)

NA-TP-2001, VA-TM-1066, VA-TP-2072; modified from EPA 6010D and SM 3030 E

ICP/OÉS - DIGESTIÓN

Aluminum

Antimony

Arsenic

Barium

Beryllium

Bismuth

Boron

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Lithium

Magnesium

Manganese

Molybdenum

Nickel

Phosphorus

Potassium

Selenium

Selenium

Silicon

Silver

Sodium

Strontium

Thallium

Tin

Titanium

Vanadium

Zinc

Water (Inorganic)

Turbidity - Water (020)

VA-TM-1011; modified from SM 2130 B

TURBIDIMETRIC

Turbidity

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Water (Inorganic)

UV Absorbance and Transmittance - Water (254) VA-TM-1042, VA-TP-2011; modified from SM 5910 B SPECTROPHOTOMETRIC

UV Absorbance

UV Transmittance

Water (Microbiology)

Coliforms - Water (145)

NA-TM-1300; modified from SM 9223 B

MOST PROBABLE NUMBER (ENZYME SUBSTRATE)

Escherichia coli

Fecal (Thermotolerant) Coliforms

Total Coliforms

Water (Microbiology)

Enterococci - Water (186)

VA-TM-1203; modified from SM 9230 C

MEMBRANE FILTRATION (mENTEROCOCCUS)

Enterococci

Water (Microbiology)

Escherichia coli (E. coli) - Water (240)

VA-TM-1201; modified from SM 9222 G

MEMBRANE FILTRATION (mFC/NA-MUG)

Escherichia coli

Water (Microbiology)

Fecal (Thermotolerant) Coliforms - Water (029)

VA-TM-1200; modified from SM 9221 E

MOST PROBABLE NUMBER

Fecal (Thermotolerant) Coliforms

Water (Microbiology)

Fecal (Thermotolerant) Coliforms - Water (030)

VA-TM-1201; modified from SM 9222 D

MEMBRANE FILTRATION (mFC)

Fecal (Thermotolerant) Coliforms

Water (Microbiology)

Heterotrophic Plate Count (HPC) - Water (126)

NA-TM-1301; modified from SM 9215 B

POUR PLATE (PLATE COUNT AGAR)

Heterotrophic Plate Count (HPC)

Water (Microbiology)

Pseudomonas aeruginosa - Water (187)

VA-TM-1204; modified from SM 9213 E

MEMBRANE FILTRATION (mPAC)

Pseudomonas aeruginosa

Water (Microbiology)

Total Coliforms - Water (142)

VA-TM-1200; modified from SM 9221 B

MOST PROBABLE NUMBER

Total Coliforms

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Water (Microbiology)

Total Coliforms - Water (143)

VA-TM-1201; modified from SM 9222 B

MEMBRANE FILTRATION (mENDO)

Total Coliforms

Water (Organic)

Extractable Petroleum Hydrocarbons (EPH) - Water (251)

NA-TM-1112, VA-TP-2127, VA-TP-2129; BC MOE LABORATORY MANUAL

GC/FID - EXTRACTION

EPH C10-C19 (sg)

EPH C19-C32 (sg)

Extractable Petroleum Hydrocarbons (EPH): C10-C19

Extractable Petroleum Hydrocarbons (EPH): C19-C32

Total Extractable Hydrocarbons (TEH): C10-C30

Water (Organic)

Glycols - Water (155)

VA-TM-1113; modified from EPA 8015C

GC/FID - EXTRACTION

Diethylene glycol

Ethylene glycol

Propylene glycol

Triethylene glycol

Water (Organic)

Petroleum Hydrocarbons (PHC) - Water (238)

NA-TM-1112, NA-TP-2100; modified from CCME CWS PETROLEUM HYDROCARBONS IN SOIL - TIER 1 METHOD and EPA 3511

GC/FID - EXTRACTION

F2: C10-C16

F3: C16-C34

F4: C34-C50

Water (Organic)

Phenols - Water (059)

VA-TM-1101, VA-TP-2113; modified from BC MOE LABORATORY MANUAL and EPA 3510C and EPA 8270D GC/MS - EXTRACTION

- 2-Chlorophenol
- 2-Methylphenol (o-Cresol)
- 2,3-Dichlorophenol
- 2,3,4-Trichlorophenol
- 2,3,4,5-Tetrachlorophenol
- 2,3,4,6-tetrachlorophenol
- 2,3,5-Trichlorophenol
- 2,3,5,6-Tetrachlorophenol
- 2,3,6-Trichlorophenol
- 2,4-Dichlorophenol
- 2,4-Dimethylphenol
- 2,4,5-Trichlorophenol
- 2,4,6-trichlorophenol
- 2,6-Dichlorophenol

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

- 3-Chlorophenol
- 3,4-Dichlorophenol
- 3,4,5-Trichlorophenol
- 3,5-Dichlorophenol
- 4-Chloro-3-methylphenol
- 4-Chlorophenol
- 4-Methylphenol (p-Cresol)
- m-Cresol
- Pentachlorophenol
- Phenol

Water (Organic)

Polycyclic Aromatic Hydrocarbons (PAH) - Water (237)

NA-TM-1112, VA-TP-2128; modified from EPA 3511 and EPA 8270D

GC/MS - EXTRACTIÓN

- 1-Methylnaphthalene
- 2-Methylnaphthalene
- Acenaphthene
- Acenaphthylene
- Acridine
- Anthracene
- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b,j)fluoranthene
- Benzo(g,h,i)perylene
- Benzo(k)fluoranthene
- Chrysene
- Dibenzo(a,h)anthracene
- Fluoranthene
- Fluorene
- Indeno(1,2,3 cd)pyrene
- Naphthalene
- Phenanthrene
- Pyrene
- Quinoline

Water (Organic)

Resin and Fatty Acids - Water (212)

VA-TM-1105, VA-TP-2114; modified from EPA 3510C and EPA 8270D

GC/MS/LIQUID-LIQUID EXTRACTION

- 12-Chlorodehydroabietic acid
- 14-Chlorodehydroabietic acid
- Abietic acid
- Arachidic acid
- Behenic acid
- Dehydroabietic acid
- Dichlorodehydroabietic acid
- Dodecanoic acid (Lauric acid)
- Hexadecanoic acid (Palmitic acid)

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Isopimaric acid + Palustric acid

Levopimaric acid

Lignoceric acid

Linoleic acid

Linolenic acid (Octadecadienoic acid)

Myristic acid (Tetradecanoic Acid)

Neoabietic acid

Oleic acid

Pimaric acid

Sandaracopimaric acid

Stearic acid (Octadecanoic acid)

Water (Organic)

Total Polychlorinated Biphenyls (PCB) - Water (115)

VA-TM-1115, VA-TP-2116; modified from EPA 3510C and EPA 3620C and EPA 3660B and EPA 3665A and EPA 8082A

GC/ECD - EXTRACTION

Aroclor 1016

Aroclor 1221

Aroclor 1232

Aroclor 1242

Aroclor 1248

Aroclor 1254

Aroclor 1260

Aroclor 1262

Aroclor 1268

Total PCB

Water (Organic)

Volatile Hydrocarbons (VH) - Water (197)

NA-TM-1102; modified from BC MOE LABORATORY MANUAL and CCME CWS PETROLEUM HYDROCARBONS IN SOIL - TIER 1 METHOD and EPA 5021A

GC/FID - HEADSPACE

F1: C6-C10

Volatile Hydrocarbons (VH): C6-C10

Water (Organic)

Volatile Organic Compounds (VOC) - Water (196)

NA-TM-1102, NA-TP-2102; modified from EPA 5021A and EPA 8260C

GC/MS - HEADSPACE

- 1,1-Dichloroethane
- 1,1-Dichloroethylene
- 1,1,1-Trichloroethane
- 1,1,1,2-Tetrachloroethane
- 1,1,2-Trichloroethane
- 1,1,2,2-Tetrachloroethane
- 1,2-Dichlorobenzene
- 1,2-Dichloroethane
- 1,2-Dichloropropane
- 1,2,4-Trimethylbenzene
- 1,3-Dichlorobenzene

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

1,3,5-Trimethylbenzene

1,4-Dichlorobenzene

4-isopropyltoluene (p-Cymene)

Acetone (2-Propanone)

Benzene

Bromodichloromethane

Bromoform

Carbon tetrachloride

Chlorobenzene

Chlorodibromomethane

Chloroethane (Ethyl Chloride)

Chloroform

Chloromethane (Methyl chloride)

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropene

Dichloromethane

Ethylbenzene

Ethylene Dibromide

Isopropylbenzene (Cumene)

m,p-Xylene

Methyl ethyl ketone

Methyl isobutyl ketone (MIBK)

Methyl t-butyl ether

n-Propylbenzene

Naphthalene

o-Xylene

Styrene

Tetrachloroethylene

Toluene

trans-1,2-Dichloroethylene

trans-1,3-Dichloropropene

Trichloroethylene

Trichlorofluoromethane

Vinyl chloride

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

CALA Directory of Laboratories

Membership Number: 2800

Laboratory Name: Nautilus Environmental-Calgary

Parent Institution: Nautilus Environmental Company Inc.

Address: #4, 6125 12th St. S.E. Calgary AB T2H 2K1

Contact: Ms. Tamara Pomeroy **Phone:** (403) 253-7121 **Fax:** (403) 252-9363

Email: tamara@nautilusenvironmental.ca; tanya@nautilusenvironmental.ca

Standard: Conforms with requirements of ISO/IEC 17025

Clients Served: All Interested Parties Revised On: September 12, 2019 Valid To: November 25, 2021

Scope of Accreditation

Solids (Toxicology)

Chironomids - Solids [Sediment] (013)

WTR-ME-026; EPS 1/RM/32 SURVIVAL AND GROWTH

Freshwater midge Chironomus dilutus (formerly Chironomus tentans) (10d)

Solids (Toxicology)

Hyalella azteca - Solids [Sediment] (014)

WTR-ME-021; EPS 1/RM/33 SURVIVAL AND GROWTH

Freshwater Amphipod Hyalella Azteca (14d)

Water (Microbiology)

Microcystins - Water (058)

WTRQ-ME-016; ENZYME-LINKED IMMUNOSORBENT ASSAY FOR THE CONGENER-INDEPENDENT DETERMINATION OF MICROCYSTINS & NODULARINS IN WATER SAMPLES

ELISA

Microcystins

Water (Toxicology)

Ceriodaphnia dubia - Water (006) WTR-ME-018; EPS 1/RM/21 SURVIVAL AND REPRODUCTION

Ceriodaphnia dubia

Water (Toxicology)

Daphnia magna - Water (002) WTR-ME-015; EPS 1/RM/11 and EPS 1/RM/14 ACUTE LETHALITY (SURVIVAL)

Daphnia LC50 (48 h)

† "OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Daphnia Single Concentration (48h)

Water (Toxicology)

Fathead Minnow - Water (007) WTR-ME-046; EPS 1/RM/22 GROWTH AND SURVIVAL

Fathead minnow (Pimephales promelas)

Water (Toxicology)

Hyalella azteca - Water (059) WTR-ME-065; EPS 1/RM/33 SURVIVAL AND GROWTH

Hyalella azteca

Water (Toxicology)

Lemna minor - Water (017) WTR-ME-030; EPS 1/RM/37 GROWTH INHIBITION

Freshwater macrophyte (Lemna minor)

Water (Toxicology)

Microtox - Water (003) SOIL-ME-001; EPS 1/RM/24 BIOLUMINESCENCE Microtox IC50 (15 min)

Water (Toxicology)

Pseudokirchneriella subcapitata - Water (008)
WTR-ME-034; EPS 1/RM/25
GROWTH INHIBITION
Freshwater alga (Pseudokirchneriella subcapitata)

Water (Toxicology)

Rainbow Trout - Water (001)
WTR-ME-041; EPS 1/RM/13 and EPS 1/RM/9
ACUTE LETHALITY (SURVIVAL)
Single Concentration (96h)
Trout LC50 (96 h)

Water (Toxicology)

Rainbow Trout [pH Stabilization] - Water (057) WTR-ME-062; EPS 1/RM/13 and EPS 1/RM/50 ACUTE LETHALITY (pH STABILIZATION) Single Concentration (96h) Trout LC50 (96h)

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

CALA Directory of Laboratories

Membership Number: 2635

Laboratory Name: Taiga Environmental Laboratory

Parent Institution: Government of Northwest Territories (GNWT)

Address: P.O. Box 1320 4601 - 52nd Avenue Yellowknife NT X1A 2L9

Contact: Mr. Bruce Stuart **Phone:** (867) 767-9235 **Fax:** (867) 920-8740

Email: bruce stuart@gov.nt.ca; taiga@gov.nt.ca; Glen hudy@gov.nt.ca

Standard: Conforms with requirements of ISO/IEC 17025

Clients Served: All Interested Parties Revised On: December 11, 2019 Valid To: March 5, 2022

Scope of Accreditation

Solids (Inorganic)

Moisture - Solids [Soil] (030)

TEL007; CCME CWS PETRÓLEUM HYDROCARBONS IN SOIL - TIER 1 METHOD

GRAVIMETRIC
Percent Moisture

Solids (Organic)

BTEX - Solids [Soil] (072)

TEL038; modified from EPA 502.2 and EPA 5030B and EPA 602

GC/MS - PURGE AND TRAP

Benzene

Ethylbenzene

m,p-Xylene

o-Xylene

Toluene

Solids (Organic)

Purgeable Hydrocarbons - Solids [Soil] (074)

TEL056; CCME CWS PETROLEUM HYDROCARBONS IN SOIL - TIER 1 METHOD

GC/FID - PURGE AND TRAP

F1: C6-C10

Water (Inorganic)

Alkalinity - Water (066)

TEL060:PC TITRATE; modified from SM 2320 A and SM 2320 B

AUTO TITRIMETRIC

Alkalinity (pH 4.5)

† "OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Water (Inorganic)

Ammonia Nitrogen - Water (089)
TEL068; modified from SM 4500-NH3 G
COLORIMETRIC - DISCRETE

Ammonia

Water (Inorganic)

Anions - Water (059)

TEL055; modified from SM 4110 B ION CHROMATOGRAPHY

Chloride

Fluoride

Nitrate

Nitrite

Sulfate

Water (Inorganic)

Biochemical Oxygen Demand (BOD) - Water (004) TEL019; modified from SM 5210 A and SM 5210 B

D.O. METER

BOD (5 day)

CBOD (5 day)

Water (Inorganic)

Carbon - Water (029)

TEL033; modified from SM 5310 B

INFRARED

Organic Carbon

Water (Inorganic)

Cations - Water (042)

TEL055; modified from SM 4110 B

ION CHROMATOGRAPHY

Calcium

Magnesium

Potassium

Sodium

Water (Inorganic)

Chemical Oxygen Demand (COD) - Water (061)

TEL016; modified from SM 5220 D

RÉFLUX - COLORIMETRIC

COD

Water (Inorganic)

Colour - Water (063)

TEL051; modified from SM 2120 C

SPECTROPHOTOMETRIC

Apparent Colour

True Colour

Water (Inorganic)

Conductivity - Water (068)

TEL059:PC TITRATE; modified from SM 2510 B

AUTO CONDUCTIVITY METER

Conductivity (25°C)

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

```
Water (Inorganic)
Dissolved Metals - Water (013)
TEL035; modified from EPA 200.8
     ICP/MS
     Aluminum
     Antimony
     Arsenic
     Barium
     Beryllium
     Boron
     Cadmium
     Cesium
     Chromium
     Cobalt
     Copper
     Iron
     Lead
     Lithium
     Manganese
     Molybdenum
     Nickel
     Rubidium
     Selenium
     Silver
     Strontium
     Thallium
     Tin
     Titanium
     Uranium
     Vanadium
     Zinc
Water (Inorganic)
Mercury - Water (080)
TEL062; modified from EPA 245.7
     ATOMIC FLUORESCENCE
     Mercury
Water (Inorganic)
Oil and Grease - Water (060)
TEL024: HEM; modified from EPA 1664A (REVISION A)
     GRAVIMETRIC - EXTRACTION
     Total Oil and Grease
Water (Inorganic)
```

pH - Water (067) TEL058:PC TITRATE; modified from SM 4500-H+ A and SM 4500-H+ B

AUTO - pH METER

рΗ

† "OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Water (Inorganic)

Phosphate - Water (087) TEL069; modified from SM 4500-P F CÓLORIMETRIC - DISCRETE

Phosphate

Water (Inorganic)

Reactive Silica - Water (090) TEL070; modified from SM 4500-SI F CÓLORIMETRIC - DISCRETE

Reactive Silica

Water (Inorganic)

Solids - Water (011)

TEL008, TEL009; modified from SM 2540 C and SM 2540 D

GRAVIMETRIC

Total Dissolved Solids

Total Suspended Solids

Water (Inorganic)

Total and Dissolved Nitrogen - Water (086) TEL066; modified from ASTM D5176-91 and ISO 11905 PYROLYSIS - CHEMILUMINESCENCE

Dissolved Nitrogen

Total Nitrogen

Water (Inorganic)

Total and Dissolved Phosphorus - Water (088) TEL069; modified from SM 4500-P F

CÓLORIMETRIC - DISCRETE

Dissolved Phosphorus

Total Phosphorus

Water (Inorganic)

Total Metals - Water (054)

TEL035: modified from EPA 200.8

ICP/MS

Aluminum

Arsenic

Barium

Beryllium

Boron

Cadmium

Cesium

Chromium

Cobalt

Copper

Iron

Lead

Lithium

Manganese

Mercury

Molybdenum

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Nickel

Rubidium

Selenium

Silver

Strontium

Thallium

Tin

Titanium

Uranium

Vanadium

Zinc

Water (Inorganic)

Turbidity - Water (028)

TEL006; modified from SM 2130 B

NEPHELOMETRY

Turbidity

Water (Microbiology)

Coliforms - Water (045)

TEL053; modified from IDEXX QUANTI-TRAY

MOST PROBABLE NUMBER (QUANTI-TRAY)

Escherichia coli

Total Coliforms

Water (Microbiology)

Fecal (Thermotolerant) Coliforms - Water (041)

TEL017; modified from SM 9222 D

MÉMBRANE FILTRATION (mFC)

Fecal (Thermotolerant) Coliforms

Water (Microbiology)

Fecal Streptococci - Water (055)

TEL053; modified from IDEXX QUANTI-TRAY

MOST PROBABLE NUMBER (QUANTI-TRAY)

Fecal streptococci

Water (Organic)

BTEX - Water (070)

TEL037:BTEX; modified from EPA 502.2 and EPA 5030B and EPA 602

GC/MS - PURGE AND TRAP

Benzene

Ethylbenzene

m,p-Xylene

o-Xylene

Toluene

Water (Organic)

Extractable Hydrocarbons - Water (085) TEL067; modified from EPA 3510C and EPA 3630C and SM 6010

GC/FID - SOLID PHASE EXTRACTION

C10-C50

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).

Water (Organic)

Purgeable Hydrocarbons - Water (084)
TEL044; modified from EPA 5030 and EPA 8000 and EPA 8015 and EPA 8260B
GC/FID - PURGE AND TRAP
C6-C10

Water (Organic)

Trihalomethanes (THM) - Water (077)
TEL039:THM; modified from EPA 502.2 and EPA 5030B and EPA 602
GC/MS - PURGE AND TRAP

Bromodichloromethane

Bromoform

Chlorodibromomethane

Chloroform

^{† &}quot;OSDWA" indicates the appendix is used for the analysis of Ontario drinking water samples, which is subject to the rules and related regulations under the Ontario "Safe Drinking Water Act" (2002).