Golder Associates Ltd.

500 - 4260 Still Creek Drive Burnaby, British Columbia, Canada V5C 6C6 Telephone 604 296-4200 Fax 604-298-5253

FINAL REPORT DETAILED DESIGN OF CENTRAL DIKE MEADOWBANK GOLD PROJECT VOLUME 3

Submitted to:

Meadowbank Mining Corporation Suite 950, One Bentall Center 505 Burrard Street Vancouver, BC V7X 1M4

DISTRIBUTION:

1 Copy Dr. N. Morgenstern

2 Copies - Meadowbank Mining Corporation

3 Copies - Golder Associates Ltd.2 Copies - Nunavut Water Board

March 16, 2007 06-1413-089/4000 Doc. No. 420 Ver. 0

APPENDIX VII FEASIBILITY LEVEL DESIGN REPORT

The feasibility-level design for the Central Dike at the Meadowbank Gold Project was presented in the report:

Golder, 2004. Meadowbank Gold Project Tailings Dike Basic Engineering Design, Report. Golder Associates Ltd.

The feasibility-level design included:

- Final elevation of main tailings dam of El. 139.6 masl;
- Options for full and partial cutoff;
- Optional grout curtain; and
- Frozen tailings concept.

Economic analyses and an increase in the ore reserve led to several conceptual changes in the dike design concept that were presented in a variety of documents. However, no technical analyses were completed or used to support the final design.

The final design presented in this report differs from the feasibility level design. Major differences include:

- Section changed from core of compacted till, dual granular filter layers, and rockfill shells to: rock fill embankment with upstream bituminous liner with two zone upstream filter;
- Final crest elevation changed from El. 139.6 masl to El. 148 masl. to accommodate change in ore reserve from 19.8 Mt to 22.0 Mt;
- Change from 2 Horizontal: 1 Vertical sideslopes to 1.5 Horizontal: 1 Vertical sideslopes;
- Dike alignment is updated for 2006 bathymetry; and
- Cutoff and grout curtain are included in the design.

The Stormwater Dike and Saddle Dams cross sections have also been revised.

- Section change similar to the Central Dike with the exception of upstream sideslopes regraded to 3 Horizontal: 1 Vertical, and two options are presented for the impermeable element including compacted till or bituminous liner.
- New design includes cutoff trench to bedrock.
- Final crest elevations have been increased to accommodate changes in ore reserves.
- Material properties updated to reflect latest laboratory test results.

Golder Associates Ltd.

500 – 4260 Still Creek Drive Burnaby, British Columbia, Canada V5C 6C6 Telephone (604) 296-4200 Fax (604) 298-5253

REPORT ON

MEADOWBANK GOLD PROJECT TAILINGS DIKE BASIC ENGINEERING DESIGN

Submitted to:

Cumberland Resources Ltd. Suite 950, One Bentall Centre 505 Burrard Street Vancouver, BC V7X 1M4

DISTRIBUTION:

3 Copies - Cumberland Resources Ltd.

2 Copies - Golder Associates Ltd.

February 13, 2004 03-1413-427/4210

EXECUTIVE SUMMARY

This report presents a basic engineering design for the proposed tailings containment dike at the Meadowbank Gold Project in Nunavut. This report was prepared for use by Cumberland Resources Ltd. (CRL) as part of their overall feasibility study. The proposed tailings dike will be required to contain approximately 20 million tonnes of tailings within the northwest arm of Second Portage Lake. The tailings will be produced by milling of the ore obtained from mining of the Portage, Goose Island, and Vault Pits. The mine will be operated over a period of ten years.

Due to uncertainty about whether the in situ foundation material will perform adequately as a seepage control barrier, two dike design cross-sections have been considered in the seepage analyses, a 'Full Cutoff' (conservative) design, and a 'Partial Cutoff' design. The Full Cutoff design assumes that the foundation material will be permeable and that a cutoff trench and grout curtain will be required. The Partial Cutoff design assumes that the foundation material is of sufficiently low permeability to control seepage. Therefore, neither the till cutoff nor the grout curtain would be required, and only a nominal key-in trench for the till core would be constructed.

If mining of the North Portage area adjacent to the dike is not started until Year 4, then the Partial Cutoff design could be implemented, relying on deposited tailings to act as an upstream seepage blanket, if necessary. This scenario was also considered in the seepage analyses.

The tailings dike will be constructed 'in the dry', after drawing down the water in the northwest arm of Second Portage Lake by approximately 28 m. The dike will be constructed in two stages: Stage 1 will be constructed in Year -1 of the mine life to a crest elevation of 120 m A.S.L., while Stage 2 construction will occur in Year 3, raising the dam to the final crest elevation of 139.6 m A.S.L.

Based on current materials balance calculations, sufficient quantities of suitable rockfill and till borrow materials will be available from pre-mining and starter pit mining activities for the Stage 1 construction. Construction materials for the Stage 2 raise will be available from ongoing mining activities in Year 3.

Slope stability analyses indicate that the dike will be stable under static and pseudostatic load conditions, in the short-term and long-term cases, for frozen, partially frozen, or unfrozen conditions.

During operation of the mine, the dike will need to control seepage from the tailings impoundment area toward the west wall of the Portage Pit both through, and beneath the dike structure. Current mine planning indicates that the north portion of Portage Pit, closest to the proposed tailings dike, will be mined beginning in Year 4.

The seepage modelling indicates that the maximum seepage expected to reach the west wall of the Portage Pit, due to the effects of the tailings pond, will be:

- For Full Cutoff design = approximately 30 litres/second;
- For Partial Cutoff design = approximately 30 litres/second;
- For Partial Cutoff design with upstream tailings seepage blanket = approximately 70 litres/second (assuming the foundation till is permeable, as for Full Cutoff design).

The possibility of using the deposited tailings as an upstream seepage blanket could offer significant advantages over the Full Cutoff design. This design approach should be considered further in future stages of design, if the current plan for mining the north portion of the Portage Pit in Year 4 is maintained.

The design concept for the tailings storage facility involves the control of the acid generating potential and metal leaching potential of the tailings through the promotion of partial freezing of the tailings as they are deposited during operations, and complete freezing of the tailings during post-closure. At the end of the mine life, the northwest arm of Second Portage Lake will be filled to above the existing lake surface with tailings. During closure portions of the pit de-watering dikes will be breached. This will result in the lake coming in contact with the tailings dike, and potentially acting as a heat source on the dike face. Consequently, a key aspect to the success of the frozen tailings concept will be the ability to maintain the core of the dike in a frozen state, similar in concept to a natural shoreline.

Both steady-state and transient thermal modeling for the post-closure indicate that the dike will remain frozen with the lake against its outside face. The transient thermal analyses included an allowance for climate change over the 100 years following closure of the tailings impoundment.

TABLE OF CONTENTS

SECT	CION	<u>PAGE</u>
1.0	INTRODUCTION	1
2.0	TAILINGS DIKE SELECTION STUDY	
3.0	GENERAL SITE CONDITIONS	
	3.1 Topography and Lake Bathymetry	
	3.2 Surficial Geology	3
	3.3 Permafrost	
	3.4 Climate	
	3.5 Seismicity	6
4.0	DESIGN BASIS AND CRITERIA	7
	4.1 Requirement for Thermal Barrier after Closure	8
5.0	DESIGN ALTERNATIVES	9
	5.1 Tailings Dike Site Conditions	g
	5.2 Design Alternatives	
	5.3 Proposed Tailings Dike Sections	
	5.4 Tailings Facility Design Capacity and Required Crest Elevation	
	5.5 Proposed Construction Methodology	
	5.6 Stormwater Dike and Saddle Dams	
6.0	GEOTECHNICAL ANALYSES	
	6.1 Slope Stability	
	6.2 Seepage	
7.0	POST-CLOSURE THERMAL ANALYSES	20
	7.1 Steady State Analysis	
	7.2 Transient Analyses	
8.0	DIKE CONSTRUCTION MATERIAL VOLUME ESTIMATES	
	8.1 Tailings Dike	
	8.2 Tailings Dike Grout Curtain	
	8.3 Stormwater Dike and Saddle Dams	
	8.4 Available Till and Rockfill Quantities	
9.0	CONSTRUCTION METHODOLOGY	
10.0	CONSTRUCTION MATERIAL GUIDELINES	
	10.1 Rockfill Shell	
	10.2 Till Core and Cutoff	
11.0	CONCLUSIONS AND RECOMMENDATIONS	
12.0	CLOSING REMARKS	
REFE	ERENCES	32
LIST	OF TABLES	
Table	\mathcal{E}	e
	Thermistors	
Table	1	
Table	y y	
Table	Peak Horizontal Ground Accelerations for Meadowbank Site	
Table	4-1 Summary of Tailings Dike Design Criteria	
Table		

Table 6-1	Summary of Material Properties Used in Slope Stability Analyses
Table 6-2	Summary of End of Stage 1 Construction Stability Analyses
Table 6-3	Summary of Long-Term Slope Stability Analyses
Table 6-4	Summary of Material Properties Used in Seepage Analyses
Table 6-5	Seepage Fluxes and Flows at the Portage Pit West Wall
Table 7-1	Summary of Material Properties Used in Post-Closure Thermal
	Analyses
Table 7-2	Summary of Modelling Parameters for Post-Closure Transient
	Thermal Modelling
Table 8-1	Quantity Estimates for Tailings Dike Construction Materials
Table 8-2	Quantity Estimates for Grout Curtain and Concrete Cap – Full Cutoff
	Design Only
Table 8-3	Quantity Estimates for Stormwater Dike and Saddle Dam Construction
	Materials

LIST OF FIGURES

	(LO
Figure 1.1	Location Plan – Meadowbank Project
Figure 1.2	Meadowbank Mine – Proposed Site Plan
Figure 2.1	Proposed Tailings Facility – Layout
Figure 3.1	Seismic Zoning Map – Meadowbank Project
Figure 5.1	Proposed Tailings Dike – Plan
Figure 5.2	Proposed Tailings Dike – Site Conditions
Figure 5.3	Proposed Tailings Dike – Design Alternatives – Typical Cross-
	Sections
Figure 5.4	Proposed Tailings Facility – Tailings Storage Capacity
Figure 5.5	Stormwater Dike and Saddle Dams – Conceptual Cross-Sections
Figure 7.1	Post-Closure Thermal Modelling – Proposed Tailings Dike – Steady-
	State Analysis
Figure 7.2	Surface Temperature Function for Transient Thermal Analysis
Figure 7.3	Surface Temperature Function for Transient Thermal Analysis
	Including Climate Change Prediction
Figure 7.4	Post-Closure Thermal Modelling – Proposed Tailings Dike – Transient
	Analyses
Figure 7.5	Post-Closure Thermal Modelling – Proposed Tailings Dike – Transient
	Analyses Including Climate Change Effects
Figure 10.1	Material Guidelines – Proposed Grain Size Distribution – Till Core
	and Rockfill

LIST OF APPENDICES

Appendix I	Geotechnical Borehole Logs
Appendix II	Stability Analyses
Appendix III	Seepage Analyses
Appendix IV	Materials Balance
Appendix V	Seismic Risk Calculation for Meadowbank Site

1.0 INTRODUCTION

Cumberland Resources Ltd. (CRL) is currently evaluating the feasibility of developing the Meadowbank Gold Project. The project is located approximately 70 km north of Baker Lake in Nunavut, as shown on Figure 1.1.

The Meadowbank Gold Project consists of several gold-bearing deposits within close proximity to one another. A general site plan of the proposed Meadowbank Mine is shown in Figure 1.2. The four main deposits are the:

- Vault Deposit;
- Third Portage Deposit (including Bay Zone and Connector Zone);
- North Portage Deposit; and
- Goose Island Deposit.

The Third Portage Deposit is located on a peninsula, and extends northward under Second Portage Lake, and southward under Third Portage Lake. The North Portage Deposit is located on the northern shore of Second Portage Lake. The Third Portage Deposit, Bay Zone, Connector Zone, and North Portage Deposit will be mined from a single pit that will extend approximately 2 km in a north-south direction, and between about 200 m and 400 m in an east-west direction.

The Goose Island Deposit lies approximately 1000 m to the south of the Third Portage Deposit, and beneath Third Portage Lake.

The deposits are situated adjacent to and beneath lakes. Consequently, a series of dewatering dikes will be required to isolate the mining activities from the lakes (see the East, Bay Zone, and Goose Island Dikes as shown on Figure 1.2).

The tailings resulting from the mining and milling of the ore will be deposited into the northwest arm of Second Portage Lake. The tailings will be discharged as a slurry (Golder 2004a).

The purpose of this report is to present tailings dike design alternatives, and to evaluate the technical feasibility of constructing the tailings dike at the proposed location crossing Second Portage Lake. In addition, this report provides quantity estimates adequate to be used by CRL in a feasibility-level cost estimate.

2.0 TAILINGS DIKE SELECTION STUDY

A site selection study was conducted previously to identify a preferred storage location and deposition method for tailings at the Meadowbank site (Golder 2004a).

The key criteria used to select the preferred tailings storage area were the following:

- The location should be within a catchment draining toward the open pits;
- The facility must have capacity to store the expected volume of tailings produced over the mine life;
- The facility must have potential to store increased volumes of tailings if ore reserves are expanded;
- The location must not preclude future mine expansion; and
- The facility must allow for collection and control of supernatant.

Seven potential tailings storage options were considered in the site selection study. The option of sub-aerial slurry disposal in the North Arm of Second Portage Lake was selected as the preferred option due to the following main factors:

- Reduced potential for ARD/ML generation;
- Ease of operation in the harsh arctic climate; and
- Relatively low capital cost of.

The proposed tailings facility layout is shown on Figure 2.1.

3.0 GENERAL SITE CONDITIONS

Much of the following description of general site conditions is summarized from site studies carried out by Golder (Golder 2002b, Golder 2002c, Golder 2003a), or from the Project Description Report (CRL 2003).

3.1 Topography and Lake Bathymetry

The general site area consists of low, rolling hills with numerous small lakes. The topography in the immediate vicinity of the main deposits (Third Portage, Connector Zone, North Portage, and Goose Island Deposits) is generally flat, with topographic relief on the order of 10 m to 12 m, but as high as 60 m locally. Elevations vary from about 133 m Above Sea Level (A.S.L.) along the Third and Second Portage Lake shorelines, and up to maximum elevations of approximately 200 m A.S.L. to the northwest of the deposits.

Elevations in the vicinity of the Vault Deposit range from about 139 m A.S.L. at the Vault Lake shoreline to about 160 m A.S.L. just west of the deposit.

Bathymetric surveys of the lakes adjacent to and overlying the main deposits have been carried out, and are presented in previous reports (Golder 2002a, Golder 2003b). The results of the surveys indicate maximum lake depths of approximately 38 m in Second Portage Lake.

3.2 Surficial Geology

The project area is covered by laterally extensive deposits of glacial till. In general terms, the till can be described as a silty sand/gravel till, having a fines (silt plus clay) content between about 30% and 40%, based on laboratory grain size analyses (Golder 2002b, Golder 2002c, Golder 2003a). The till also contains up to boulder-sized particles.

The material that has been recovered from beneath Second Portage and Third Portage Lakes during geotechnical drilling along the alignments of the proposed tailings an dewatering dikes generally can be described as cobbles and gravel with traces of sand, silt, and clay. Locally, samples of sand have been obtained. Samples of clayey sand material have been recovered using split spoon sampling methods.

3.3 Permafrost

The project is located within the zone of continuous permafrost. The land surface in the project area is underlain by continuous permafrost, while lakes that are deeper than about 2 m will be underlain by a talik, or zone of permanently unfrozen ground. Based on thermal studies carried out to date (Golder 2003c, Golder 2004b), the project is underlain

by permafrost up to 550 m deep, depending on proximity to lakes and other factors. The depth of the active layer in the project area ranges from about 1.3 m in areas of shallow overburden and away from the influence of lakes, to 4.0 m nearest to lakes. A summary of estimated geothermal properties for two thermistors in the area of the proposed tailings dike are given in Table 3-1. Detailed information is provided in Golder's Permafrost Report (Golder 2003c).

Based on recent ground conductivity surveys (Golder 2003d) and compilation of regional data, the ground ice content is expected to be low. Locally on land, ice lenses and ice wedges are present, as indicated by ground conductivity, and by permafrost features such as frost mounds. These areas of local ground ice are generally associated with low lying areas of poor drainage. Over most of its length, the tailings dike will be constructed below existing lake level, where no ground ice will be present. Ground ice could be present at the abutments of the dike, outside the current shoreline.

Table 3-1: Summary of Estimated Geothermal Properties for Tailings Dike Thermistors

Borehole	Location	Vertical Depth of Installation (below ground surface)	Approx. Depth of Zero Annual Amplitude	Estimated Zero Amplitude Temp.	Estimated Geothermal Gradient	Estimated Mean Annual Surface Temp.	Estimated Vertical Depth of Active Layer	Estimated Vertical Depth of Permafrost
		(m)	(m)	(°C)	(°C/m)	(°C)	(m)	(m)
03GT-TD5A	Tailings Dike South Abutment	42.5	Insufficient Data	Insufficient Data	0.051	N/A	2.8	N/A
03GT-TD-1	Tailings Dike 2nd Portage Abutment	44.2	Insufficient Data	Insufficient Data	0.051	N/A	1.3	N/A

Notes:

- 1. Where thermistors are installed adjacent to lake bodies, and are installed in the direction of, or terminate beneath, the lake surface, geothermal properties are indicative of borehole specific thermal conditions, and not necessarily of the regional thermal regime.
- 2. N/A indicates the estimation of a certain geothermal property is Not Applicable due to the proximity of installation to lake body.

A talik exists below Second Portage Lake, and is expected to extend through the permafrost.

3.4 Climate

Table 3-2 summarizes precipitation data from the Meadowbank site.

Table 3-2: Annual Precipitation Data 1998 – 2002

Year	Recorded Precipitation (mm)
1998	177.1
1999	190.2
2000	100.5
2001	84.1
2002	146.7

Source: Meadowbank Gold Property – Project Description, 2003 – CRL 2003.

The annual precipitation at the site generally falls as rain between June and September, while snow falls generally between October and May. Snowfall may, however, occur at any time of year. Table 3-3 summarizes mean monthly climate data collected from the site since 1997.

Table 3-3: Summary of Monthly Climate Data

	Air Temperature					Mean Soil	
Month	Extreme Day		Average Monthly			Temperature at 0.2 m to	
	Max (°C)	Min (°C)	Max (°C)	Min (°C)	Mean (°C)	0.3 m depth (°C)	
January	-4.9	-43.0	-28.2	-34.9	-31.6	-24.7	
February	-9.1	-46.8	-27.9	-35.2	-31.7	-28.2	
March	-3.1	-43.6	-21.7	-29.7	-25.5	-24.4	
April	2.1	-35.4	-12.7	-22.1	-17.2	-17.6	
May	8.0	-22.3	-2.3	-9.3	-5.6	-7.4	
June	22.7	-12.9	7.8	0.0	3.8	1.9	
July	29.8	1.3	17.2	7.6	12.4	11.0	
August	27.4	-0.4	13.6	6.7	9.9	9.6	
September	20.5	-8.2	5.8	1.1	3.3	3.7	
October	5.3	-24.1	-4.8	-10.6	-7.6	-2.9	
November	-1.3	-34.4	-14.5	-21.5	-18.0	-12.1	
December	-5.4	-39.8	-22.3	-28.9	-25.6	-19.2	

Source: AMEC 2003 and Golder 2003c.

Wind speeds of greater than 100 km/h have been reported at the site. Estimates of wave heights on Third Portage Lake during one such event were reportedly on the order of 2 ft to 3 ft (0.6 m to 0.9 m), based on personal communication with CRL site personnel during 2002.

Based on data obtained during recent geotechnical drilling investigations carried out between late April and early June of 2003 (Golder 2003a), ice thickness on the lakes is expected to vary from about 1.5 m to about 2.5 m.

3.5 Seismicity

The Meadowbank project is located in an area of low seismicity, as shown in Figure 3.1 and Table 3-4. Low seismicity is considered to correspond to areas where the PGA for the 1 in 475 year seismic event (10% probability of exceedance in 50 years) is less than 0.04g (CDA 1999).

Table 3-4: Peak Horizontal Ground Accelerations for Meadowbank Site

Return Period of Seismic Event (years)	Peak Horizontal Ground Acceleration (g)
100	0.018
200	0.025
475	0.034
975	0.044

Source: Seismic Risk Calculation for Meadowbank Project Site, Geological Survey of Canada, Natural Resources Canada, Sidney, B.C., July, 2003 – See Appendix V.

4.0 DESIGN BASIS AND CRITERIA

Table 4-1 includes the key design basis and criteria for the current tailings dike design.

Table 4-1: Summary of Tailings Dike Design Criteria

Design Criteria	Value	Source/Comments
Mine Design life	11 years	CRL
Mill Production (solids)	5500 tonnes per day	AMEC
Total Mass of Tailings solids to be contained	19.8 million tonnes	Golder Mine Waste Management Report (Golder 2004a)
Average Specific Gravity of Ore	2.9	Golder Mine Waste Management Report (Golder 2004a)
Average Settled Void Ratio of Tailings	1.0	Experience with similar tailings
Average Settled Moisture Content of Tailings	35%	Experience with similar tailings
Average Settled Dry Density of Tailings	1.45 tonnes/m ³	Calculated based on specific gravity and settled void ratio
Minimum setback from pit crest to inside toe of dike	60 m	See Note 1.
Maximum size of haul trucks on dike	Caterpillar 777D	Dam Crest to serve as part of Vault haul road
• Width	6.05 m	Caterpillar handbook
Tire diameter	2.5 m	Caterpillar handbook (27.00R49 tire)
Maximum wave height	0.6 to 0.9 m	Meadowbank Site (pers. com. 2002)
Maximum Ice thickness	1.5 to 2.5 m	Based on geotechnical drilling
Minimum dike crest width	30 m	To comply with NWT Mine Health and Safety Regulations – See Note 2.
1 in 975 design seismic event	PHGA = .044g PHGV = .039 m/s	Pacific Geoscience Centre Seismic Hazard Evaluation
Canadian Dam Association hazard classification	High	Canadian Dam Association Dam Safety Guidelines
Minimum factor of safety for static load conditions	1.5	Canadian Dam Association Dam Safety Guidelines
Minimum factor of safety for pseudostatic load conditions	1.2	Canadian Dam Association Dam Safety Guidelines
Minimum factor of safety for end-of- construction condition – see Note 3.	1.3	Canadian Dam Association Dam Safety Guidelines
Minimum freeboard	2.0 m during operations, 1.0 m at closure	Canadian Dam Association Dam Safety Guidelines
Second Portage Lake surface elevation	133.1m ASL	
Third Portage Lake surface elevation	134.1m ASL	
Required minimum reclaim water pond volume	600,000 m ³	CRL – this volume is required by mill to maintain proper chemistry for process
Final Tailings Surface Elevation	136.6 m ASL	Golder Mine Waste Management Draft Report (Golder 2004a)

Notes for Table 4-1:

- 1. A minimum setback of 60 m (80 m nominal setback) between the open pit side toe of the dike and the edge of the Portage open pit ultimate crest has been assumed. This distance has been assigned to allow a reasonable working distance to the crest of the Portage pit. The 60-m minimum distance is less than the 80 m assigned for the dewatering dikes, due to the low likelihood that the Portage Pit would be expanded toward the tailings dike (i.e., toward the west). The final setback distance will be based on other factors, including:
 - Pit slope stability;
 - Peak particle velocities and acceleration of embankment materials due to blasting;
 - Porewater pressure increase and potential deformation related to blasting.
- 2. The tailings dike crest will act as a portion of the haul road from the Vault Pit to the mill site. The dike crest width should comply with NWT Mine Health and Safety Act and Regulations, or equivalent regulations for Nunavut, for minimum width of haul roads (NWT and Nunavut 1995). For single lane traffic the minimum width is twice the width of the widest haulage vehicle used on the road; for double lane traffic the minimum width is three times the width of the widest haulage vehicle. A shoulder barrier of at least three-quarters the height of the largest tire on any vehicle using the road is required.
- 3. The end-of-construction condition for the tailings dike ends when tailings deposition begins.

An additional criterion is that the dike section should maximize the use of materials obtained during pre-stripping and mining. These materials are till and run-of-mine rockfill

4.1 Requirement for Thermal Barrier after Closure

The conceptual closure plan for the tailings impoundment includes flooding the Portage Pit area by breaching the Goose Island Dike. This will result in water eventually ponding on the east side of the tailings dike, to an elevation of approximately 134.1 m A.S.L. (the current lake level for Third Portage Lake).

The potential for acid generation and metal leaching from the tailings via seepage to the deep groundwater regime can be reduced by limiting the contact of water with the tailings mass. This can be achieved by developing a horizontally-continuous layer of frozen tailings across the facility in the long term. Therefore, after closure, the tailings dike must also act as a thermal barrier toward the tailings area.

Frozen conditions are not required to maintain the physical stability of the tailings dike. The tailings dike has been designed to be physically stable under unfrozen, partially frozen, and frozen conditions.

5.0 DESIGN ALTERNATIVES

5.1 Tailings Dike Site Conditions

The proposed tailings facility layout is shown on Figure 2.1, and the proposed tailings dike embankment is shown in plan on Figure 5.1. The site conditions along the proposed dike centreline are shown in Figure 5.2. This section was developed using the information obtained from geotechnical investigations conducted in 2002 and 2003 (Golder 2002b, 2002c, 2003a). Logs for boreholes in the area of the proposed tailings dike are included in Appendix I.

These boreholes indicate the following:

- The maximum depth of foundation soil is approximately 18 m;
- The foundation soil consists of glacial till and possibly glacial outwash deposits. The till contains significant amounts of gravel, and cobbles. Based on samples collected from surface around the Meadowbank project site, the material could also contain significant silt or clay. Since water was circulated during drilling, very few fines were recovered.
- At the bedrock contact, there is a zone of highly fractured bedrock. This zone extends along most of the proposed alignment of the tailings dike.
- The zone of fractured bedrock is at least 10 m thick. None of the boreholes reached a less-fractured zone. However, based on results from drilling at nearby locations, the fractured zone may be less than 20 m thick.

In addition to the fractured surficial bedrock, the Second Portage Lake fault will underlie the tailings dike, and will cross the proposed dike alignment approximately perpendicularly. The fault is expected to be a relatively discrete structural feature, based on geotechnical drilling investigations (Golder 2002b, Golder 2003a). The hydraulic conductivity of the fault was measured as 5.1 x 10⁻⁶ m/s (see Appendix I).

5.2 Design Alternatives

Due to the inability to recover the fine fraction of the foundation material during sampling, it is uncertain whether the in situ till material along the alignment of the proposed tailings dike is of sufficiently low permeability and of sufficient extent to act as part of a seepage control blanket. This information might not be available until such time as the area has been dewatered. As such, two possible design cross-sections have been developed, as shown in Figure 5.3.

The first design alternative, the 'Full Cutoff' design, includes a full cutoff through the foundation till materials to bedrock. In addition to the compacted till cutoff component, this design would include a pressure grouted curtain in the fractured bedrock.

The second design alternative, the 'Partial Cutoff' design assumes that the foundation till material has sufficiently low permeability, and is of sufficient lateral extent, that a full foundation cutoff is unnecessary. In this case, only a shallow key-in has been included in the section.

Current mine planning indicates that the north portion of Portage Pit, closest to the proposed tailings dike, will be mined beginning in Year 4. In this case, it is possible that the deposited tailings could act as a low-permeability upstream seepage blanket. This scenario was also considered in the seepage analyses.

5.3 Proposed Tailings Dike Sections

The proposed typical tailings dike cross-sections are shown on Figure 5.3.

The proposed dike cross-sections consist of:

- A rockfill shell, constructed from run-of-mine waste rock. The upstream and downstream faces have been designed at a 2H:1V slope;
- Upstream and downstream filter zones;
- A low-permeability till core;
- The dike will have a minimum crest width of 30 m.

Additionally, for the Full Cutoff design, the cross-section includes:

- A low-permeability compacted till cutoff through the foundation soil.
- A pressure-grouted grout curtain through the fractured bedrock zone. At this time it has been assumed that the fractured bedrock is up to 20 m deep, based on available geotechnical drilling information along the dike alignment.

Design details for the proposed cross-sections are presented in the following sections.

5.4 Tailings Facility Design Capacity and Required Crest Elevation

The elevation of the crest of the dike has been selected to provide storage capacity for the presently-known ore reserves, plus 3 m to provide freeze-thaw and traffic protection for the core.

The required capacity for storage of tailings is calculated using the total mass of tailings (19.8 million tonnes), and the predicted settled dry density (1.45 tonnes / m^3). This gives a total required volume of 13.7 million m^3 .

Figure 5.4 shows the storage capacity – elevation curve for the proposed tailings facility. From Figure 5.4, the maximum elevation for the required volume of tailings is shown to

be 136.6 m A.S.L. Allowing 3 m for freeze-thaw and traffic protection, the required crest elevation for the dike is 139.6 m A.S.L. The additional three metres of height is in excess of the estimated height required for freeboard, and wave run-up.

5.5 Proposed Construction Methodology

The tailings dike will be constructed under 'dry' conditions, after a portion of Second Portage Lake has been dewatered to elevation 105 m. The area will be dewatered once the East and Bay Zone dikes have been completed (see Figures 1.2 and 2.1).

The tailings dike will be constructed to elevation 120 m in Year -1 of the mine life. Subsequently, by Year 3, the dike will be constructed to its final crest elevation of 139.6 m.

The sequencing of the tailings dike construction, and the overall tailings facility, is summarized in Table 5-1.

Table 5-1: Summary of Tailings Storage Facility Development

Year	Description of Activities						
-1	 Dewater Second Portage Arm to at least elevation 105 m. Construct first stage of tailings dike up to elevation 120 m. 						
1	Commence discharging slurry.						
3	 Construct second stage of tailings dike to elevation 139.6 m. Construct perimeter dikes at west end. Operate water pond within main portion of tailings facility. 						
5	Construct Stormwater Dike to elevation 136.6 m.						
6 to 10	 Operate water pond in western portion of 2nd Portage Arm. Place slurry to elevation 136.6 m (3.5 m above current lake level). Maintain water management pond at west end of lake. 						
Closure	Place ultramafic capping layer to maintain tailings frozen below active layer.						

5.6 Stormwater Dike and Saddle Dams

As part of the operation of the tailings impoundment, it will be necessary to maintain a separate stormwater pond within the tailings impoundment. In order to keep the stormwater separate from the tailings and supernatant, it will be necessary to construct a stormwater dike within the tailings impoundment. In the last two to three years of operation, the stormwater pond will be inundated with tailings.

The Stormwater Dike and the Saddle Dams 1 to 4 are shown in plan on Figure 2.1. Figure 5.5 shows conceptual cross-sections for the stormwater dike, and for the saddle dams.

At the perimeter of the tailings impoundment, saddle dams will be required. For Saddle Dams 2 and 3, the existing ground elevation at the proposed saddle dams is higher than 136.6 m A.S.L. (the maximum elevation of tailings). Therefore, the function of these saddle dams is only to act as freeboard, and not to retain tailings or water. As such, the embankments for Saddle Dams 2 and 3 will comprise only rockfill.

For Saddle Dams 1 and 4, the existing ground elevation at the proposed saddle dams is approximately 135.0 m A.S.L. (lower than the maximum elevation of tailings). Therefore, these saddle dams could retain tailings or water, up to a maximum of approximately 1.6 m. As such, the embankments for Saddle Dams 1 and 4 will comprise a till core with rockfill shells.

6.0 GEOTECHNICAL ANALYSES

6.1 Slope Stability

Slope stability analyses were carried out for the two alternative design sections for the tailings dike. The section chosen for slope stability analyses is included on Figure 5.3. This section corresponds to the maximum section of the dike.

The slope stability analyses were done for unfrozen conditions. If the dike and/or the foundation materials freeze, the strength of the materials would increase, and the slope stability of the dike would increase.

Stability analyses have been carried out for four stages of development, as follows:

1. End of Stage 1 construction: The first stage of the tailings dike would be constructed up to elevation 120 m. For the Full Cutoff design, it was assumed that the foundation soil is a permeable material. Strength of this material was assigned effective stress parameters.

For the Partial Cutoff design, it was assumed that the foundation soil would be undrained, and the strength governed by the undrained shear strength of the material. However, since no data is available about the shear strength of the foundation soil, a range of undrained strengths from 10 to 100 kPa was modelled for the foundation till to determine the minimum undrained shear strength required to achieve Factor-of-Safety design criteria. A potential upstream failure, through the foundation till layer, was modelled.

- 2. High Water Condition: During the initial stages of mine life, water will be ponded against the upstream face of the tailings dike, at a maximum elevation of 120 m A.S.L. A potential downstream slope failure was modelled for this condition.
- 3. In Year 10 of the mine life, deposition of tailings will be complete, to elevation 136.6 m. A potential downstream slope failure was modelled for this condition.
- 4. After closure, the Goose Island dewatering dike will be breached, and water will be allowed to flood the Portage Pit area, up to elevation 134.1 (the elevation of Third Portage Lake surface). A possible downstream failure was modelled for this condition.

Limit equilibrium analyses were carried out using the commercially available software SLIDETM.

The range of possible failure surfaces was limited to those that pass through the till core. This was done since it is only when the till core is affected that the overall performance of the tailings dike is compromised.

Long-term conditions were analyzed using effective stress strength parameters for drained conditions.

Static and pseudostatic conditions were modelled. Pseudostatic analyses for earthquake load conditions were carried out for the long-term condition using effective stress strength parameters.

Both circular and block-type failures were considered. In all cases, circular failures were found to be more critical.

Material properties used in the analyses are summarized in Table 6-1.

Table 6-1: Summary of Material Properties used in Slope Stability Analyses

	Saturated Unit	Effective Param		Undrained Strength	Pore Pressure Basis for Prop	Basis for Property	
Material	Weight (kN/m³)	Cohesion, c' (kPa)	Angle of Internal Friction (°)	C _u	f Parameter, Cu Ratio	Ratio	Selection
Till Core and Cutoff	15.7	0	28		0.3	Direct shear testing ¹	
Rockfill	18.6	0	40			Previous experience with similar material	
Foundation Till	17	0	28 to 32	10 to 100		Previous experience with material with similar grain size distribution	

Notes: 1. Golder 2002b.

For the Meadowbank site, the predicted PGA is 0.044 g for a seismic event with a return period of 975 years (see Table 3-4.). The pseudo-static analyses have been done using a horizontal acceleration of 0.022 g. This value corresponds to one-half of the firm ground acceleration for the 1000-year return period event (USACE 1984). The 1000-year return period is considered appropriate, given that:

- The dike will be retaining water and tailings while men and equipment are working in the Portage pit, and
- The design life of the dike is less than 20 years.

Results of the stability analyses are included in Appendix II.

6.1.1 Results of Analyses for End of Stage 1 Construction Conditions

Slope stability analyses were carried out to evaluate the short-term, end of Stage 1 construction situation, for both design sections. For the Full Cutoff design, the

^{2.} For till core material, c'=0 assumed for effective stress case.

foundation till material was assumed to be permeable and, consequently, stability was assessed using effective stress parameters. For the Partial Cutoff design, the foundation till was assumed to be undrained, and stability was assessed using a range of undrained shear strengths of 10 to 100 kPa.

In both cases, the dike was modelled using a crest elevation of 120 m. This corresponds to the first stage of construction, to be completed in Year -1 of the mine life.

For the Partial Cutoff design case, the section was analyzed to determine the values of the undrained shear strength (c_u) which would yield Factors of Safety (FOS) of 1.0 and 1.3. The results of the stability analyses are contained in Appendix II.

A FOS of 1.3 is the minimum value required for the end of construction condition. A FOS of 1.0 is the value at which failure would begin to occur.

Condition	Strength Mi Parameters Calcu		Required Undrained Shear Strength of Foundation Till to Achieve a Factor of Safety of 1.3 (kPa)
Drained	c', φ	2.7	
Undrained c _u		See Note 1	60 to 70

Table 6-2: Summary of End of Stage 1 Construction Stability Analyses

Notes: 1. A factor of safety of 1.3 has been assumed in order to calculate the minimum undrained shear strength of the foundation till to meet design requirements.

As shown in Table 6-2, the analyses indicate that the Stage 1 dike will be stable for drained end-of-construction conditions, with an associated FOS of 2.7.

The analyses also indicate that, for undrained end of construction conditions, the minimum undrained shear strength of the foundation materials required to achieve a FOS of 1.3 is about 60 to 70 kPa. The foundation soils that have been recovered during the geotechnical investigations carried out in other areas of the Meadowbank site indicate silty till material containing significant proportions of gravel and cobbles. Undrained shear strengths of this material are expected to be at least equal to or greater than 70 kPa, based on experience with similar materials at other sites. In the Partial Cutoff design case, undrained shear strength testing will be required during the detailed engineering design stage for the dike.

If, during construction, it is determined that the undrained shear strength of the foundation till is lower than 70 kPa, then the stability of the embankment can be increased by flattening the overall slopes of the rockfill zones, to achieve the required FOS.

A potential progressive failure scenario was also modelled for the end-of construction scenario (see Appendix II). The progressive failure was modelled by steepening a portion of the upstream face of the dike, simulating a prior failure of a portion of the upstream slope near the toe. These analyses indicate that the dike will be stable for steepened upstream slope angles, and the dike will not be prone to progressive slope failure.

6.1.2 Results of Analyses for Long-Term, Steady State Seepage Conditions

Slope stability analyses were done to evaluate the stability of the dike under long-term, steady-state seepage conditions, at three critical points in the operational life of the dike, and after closure as follows:

- In the early stages of mine life, free water ponded against the dike, with the water surface at approximately 120 m A.S.L. This situation was modelled under static and pseudostatic conditions;
- At the end of Year 10, deposition of tailings will be complete, and the tailings will be at their maximum elevation. This situation was modelled under static and pseudostatic conditions;
- During closure of the facility, water will be allowed to flood the Portage Pit side of the tailings dike. This situation was modelled under static and pseudostatic conditions.

Stability of the embankment was assessed using effective stress parameters (see Table 6-1). During operations, the minimum required FOS under static loading conditions is 1.5 and under pseudo-static loading is 1.2.

The full results of the long-term analyses are included in Appendix II, and are summarized in Table 6-3.

Table 6-3: Summary of Long-Term Slope Stability Analyses

Fallow Made	Minimum Factors	Minimum Yield		
Failure Mode	Static (Minimum Required = 1.5)	Pseudostatic (Minimum Required = 1.2)	Acceleration (g)	
High Water (Water at Elevation 120 m)	2.0	1.8	0.21	
End of Deposition (Tailings at Elevation 136.6)	2.3	2.2	0.41	
Closure	4.9	4.3	0.43	

Note: Yield acceleration = the peak horizontal ground acceleration (PGA) that produces a FOS of 1.0.

The calculated Factors of Safety are greater than the minimum values required for static and pseudostatic conditions.

The minimum yield acceleration indicated in Table 6-3 is 0.21 g. Since the predicted PGA of 0.044 g is below the minimum calculated yield acceleration, the deformation of the dike will be small during the design earthquake event.

Based on the analyses, the dikes will be stable in the long-term, for static and pseudostatic loading conditions.

6.2 Seepage

Seepage analyses were carried out for the maximum section, for both the Full Cutoff and Partial Cutoff designs (see Figure 5.3) using the commercially available software SEEP/WTM. The material parameters used in the analyses are presented in Table 6-4.

Unfrozen soil conditions were generally assumed in the model. One analysis scenario modelled the seepage assuming the till core of the dike was frozen. The conditions modelled represent the anticipated high water condition in the early stages of mine life. This represents the maximum seepage expected during the life of the dike. During subsequent years, tailings will be deposited near the upstream face of the dike, and seepage should decrease. By Year 5, it is anticipated that the tailings pond will be approximately 800 m from the upstream face of the dike.

The hydraulic conductivity assumed for the fractured bedrock is based on the falling head tests completed in boreholes 03GT-TD-02, -04, and -06 (drilled approximately along the centreline of the proposed dike), and corresponds to the maximum value of 4.0 x 10⁻⁵ m/s recorded in the three tests (see Appendix I). The value of hydraulic conductivity used is a higher permeability than that measured in the Second Portage fault zone, by approximately one order of magnitude. The lower permeability in the fault zone is thought to be a result of the infilling of fractures within the fault zone. A contingency has been designed to include for drilling and grouting of discrete features within the fractured bedrock.

Fluxes were computed at the proposed Portage Pit west wall for each of the two designs. Table 6-5 shows the predicted fluxes.

The final deposited surface elevation of the tailings is anticipated to be 136.6 m A.S.L. Under these circumstances, a small hydraulic gradient toward the re-flooded Portage pit area would exist. In the event that the total mine production is less than anticipated, or the settled density of the tailings is greater than expected, then the final elevation of the deposited tailings could be lower than elevation 134.1 m A.S.L. In this case, a hydraulic

gradient toward the tailings would exist. This situation has been modelled as part of this study (see Appendix III).

Table 6-4: Summary of Material Properties Used in Seepage Analyses

Material	Hydraulic Conductivity (X 10 ⁻⁶ m/s)	Comments/Basis for Properties	
Till Core and Cutoff (Cutoff is for Full Cutoff Design only)	0.1	 Falling head tests from Dec 2002 geotechnical testing; and Experience with materials with similar genesis and grain size distribution If till core and / or cutoff material is thawed after initial freezing, it is possible that the hydraulic conductivity of this material could increase, unless the upstream portion of the till is maintained in a frozen state – see Section 7.2. 	
Rockfill	10,000		
Foundation Till – Full Cutoff Design	100	Assumes material is free-draining	
Foundation Till – Partial Cutoff Design	0.1	Assumes material is relatively low permeability	
Grout Curtain – Full Cutoff Design only	0.05	Previous experience	
Fractured Bedrock	40	BH 03GT-TD-4 falling head packer test – see Appendix I.	
Deeper Bedrock	0.001	Report on Hydrogeology Baseline Studies; (Golder 2003e).	
Tailings	0.1	Conservative estimate for fine-grained tailings, based on experience with similar materials, and published values (Vick 1990)	

According to the current mining plan, the north portion of the Portage pit nearest to the proposed tailings dike will not be mined until at least Year 4 of the mine life. This situation could allow for an optimization of the dike design by relying on the low permeability of the deposited tailings to act as a seepage barrier to flow toward the Portage open pit. This situation has also been analyzed for the situation where:

- The foundation till is of higher permeability;
- The dike cross-section includes a till core but no cutoff structures;
- Tailings have been deposited against the upstream face of the dike, and at a nominal slope into the impoundment;
- The tailings pond is at a distance of 200 m from the face of the dike (based on Year 3 predictions).

The resulting flux and flow are indicated in Table 6-5.

Table 6-5: Seepage Fluxes and Flows at the Portage Pit West Wall

Design	Flux (m³/s/m)	Flow into Portage Pit (L/s)
Full Cutoff Design	3.3 x 10 ⁻⁵	26
Partial Cutoff Design	3.5 x 10 ⁻⁵	28
Partial Cutoff Design with Year 3 tailings beach (pond at 200 m from upstream dike face)	9.0 x 10 ⁻⁵	71
Partial Cutoff Design with Frozen Core and Cutoff	3.3 x 10 ⁻⁵	26
Full Cutoff Design with tailings beach at 100 m from upstream dike face	1.5 x 10 ⁻⁵	12

The total flow was determined by applying the calculated flux over a dike length of 800 m. The calculated flux corresponds to the maximum section, and therefore produces a conservatively high estimate when applied over the length of the proposed dike.

Seepage flow-nets are included in Appendix III.

It is anticipated that the majority of the seepage flows will report to the pit dewatering system. This water would be returned to the reclaim water pond.

The seepage analyses show that the proposed designs are effective at controlling seepage through the tailings dike during mine operation.

7.0 POST-CLOSURE THERMAL ANALYSES

The potential for acid generation and metal leaching from the tailings via seepage to the deep groundwater regime will be reduced by the development of a horizontally-continuous layer of frozen tailings across the tailings mass. This will limit the infiltration of air and water to the tailings.

A cover of ultramafic rock will be placed over the tailings, such that the active layer does not develop within the tailings mass, thereby limiting cryoturbation within the frozen tailings.

After closure, the tailings dike will need to act as a thermal barrier to limit the heat transfer from lake water toward the tailings. The current analyses of the overall tailings facility predict that the tailings and the existing talik below the North Arm of Second Portage Lake will freeze in the long term (Golder 2004b).

A thermal model of the tailings dike was developed using the software TEMP/WTM. The objective of this thermal analysis was to determine whether the 0°C isotherm would lie within the tailings dike, or would penetrate into the tailings. Both steady-state and transient models were run.

7.1 Steady State Analysis

A steady state analysis of the post-closure dike configuration was performed using the following boundary conditions:

- Ground surface temperature = -11°C;
- Water temperature = $+4^{\circ}$ C:
- Geothermal flux at base of model = 0.051 W/m^2

The ground surface temperature was applied over the surface of the tailings, and on the exposed portion of the tailings dike. The water table in the east side of the dike was assumed to extend horizontally through the rockfill, to the till core.

Material properties used in the thermal analyses are shown in Table 7-1.

Table 7-1: Summary of Material Properties Used in Post-Closure Thermal Analyses

Material	Thermal Conductivity (J/sec-m-°C)		Volumetric Heat Capacity (J/m³-°C) (x10 ⁶)		Volumetric Water Content	Basis for Properties
	Frozen	Unfrozen	Frozen	Unfrozen		
Till Core and Cutoff (Cutoff is for Full Cutoff Design only)	3.3	2.4	1.9	2.5	0.28	See Note 1
Rockfill	3.3	2.8	2.4	2.6	0.12	See Note 1
Foundation Till	3.3	2.8	2.4	2.6	0.12	See Notes 2 and 3
Fractured Bedrock	3.3	2.8	2.4	2.6	0.12	See Note 1
Deep Bedrock	3.5	3.4	2.39	2.4	0.02	See Note 1
Tailings	2.2	1.6	2.2	2.95	0.50	See Note 1

Notes:

- 1. Golder 2004b
- 2. Farouki 1986.
- 3. Johansen 1975.

Figure 7.1 shows the results of the steady-state thermal analyses. The 0°C isotherm is located within the tailings dike, indicating that the dike would be an effective thermal barrier between the lake and the tailings.

7.2 Transient Analyses

The tailings dike area was also analyzed for the transient thermal case, for:

- The case where no variation from the current climate patterns is anticipated; and,
- The case where there will be a 5.5°C increase in average air temperature over the one-hundred years following closure of the mine.

The purpose of the transient model was to assess the potential for seasonal variations in temperature to affect the till core of the dike, particularly the top portion of the core. Given that the hydraulic conductivity of the till could increase if thawed after being frozen, it was also important to assess the potential for thawing due to climate change.

The material thermal properties used in the transient analyses were the same as those used in the steady-state analysis, as given in Table 7-1.

Other parameters used in the analyses are shown in Table 7-2.

Table 7-2: Summary of Modelling Parameters for Post-Closure Transient Thermal Modelling

Parameter	Conditions Used in Model	
Initial Conditions	Post-Closure steady-state conditions assumed.	
Boundary Condition	 For tailings surface and exposed portion of tailings dike, a function assuming no snow cover was used – see temperature functions in Figure 7.2, as taken from Golder thermal modelling report (Golder 2004b). 	
Functions	 For climate change, a linear warming trend of 5.5°C over 100 years was used – see Figure 7.3. 	
	 A constant temperature of +4°C was used for water. 	
Time steps	Ten-day time steps used.	
Total duration of modelling	Ten years for transient modelling not including climate change. Duration chosen to be sufficient to allow stabilization of 0°C isotherm below active layer. For climate change, 100 years was used.	

Figure 7.4 summarizes the results of the transient thermal modelling without including for climate change, and shows the isotherms for January and August. Figure 7.5 shows the results for the transient thermal modelling including the effects of climate change.

The figures indicate that the active layer does not penetrate into the till core, and the till core will remain frozen.

8.0 DIKE CONSTRUCTION MATERIAL VOLUME ESTIMATES

8.1 Tailings Dike

Based on the alignment shown in Figure 5.1 and on the typical sections for each of the design alternatives shown on Figure 5.3, volumes of construction fill materials were estimated using previous bathymetry studies, and the 3D terrain modeling software Land Development DesktopTM (LDD). The volumes were checked by end-area method using contour areas taken from AutoCadTM.

Table 8-1 summarizes the estimated fill volumes for each of the tailings dike construction materials. These quantities are accurate to within 20%, and are considered suitable for feasibility-level purposes. The quantities are not intended to be used for bidding purposes.

Table 8-1: Quantity Estimates for Tailings Dike Construction Materials

	Volume (m³)		
Construction Material	Full Cutoff Design	Partial Cutoff Design	
Stage 1 Construction to crest elevation 120 m – Year -1			
Rockfill	490,000	490,000	
Till Core	200,000	200,000	
Till Cutoff (Full Cutoff) / Till Core Key-In (Partial Cutoff Design)	162,500	20,000	
Filter	30,000	20,000	
Road Surfacing	15,000	15,000	
Stage 2 Construction to crest elevation 139.6 m – Year 3			
Rockfill	330,000	330,000	
Till Core	60,000	60,000	
Filter	20,000	20,000	
Road Surfacing	7,000	7,000	
Excavation of Lake-Bottom Sediments (Assume 1 m thickness)	75,000	75,000	

8.2 Tailings Dike Grout Curtain

Table 8-2 includes estimated quantities for drilling and grouting for the injection-grouted grout curtain. Table 8-2 also includes estimated quantities for the concrete cap. These quantities apply to the Full Cutoff design.

Table 8-2: Quantity Estimates for Grout Curtain and Concrete Cap – Full Cutoff Design Only

Item	Quantity
No. of Grout Curtain Holes	800
Total drilling length – grout curtain	16,000 m
Volume of grout – grout curtain	1,650,000 litres
No. of consolidation grouting holes	1,200
Total drilling length – consolidation grouting	6,000 m
Volume of grout – grout curtain	250,000 litres

The quantities in Table 8-2 are based on the designs shown in Figures 5.1, 5.3 and 5.5, and on the following assumptions.

- Foundation rock is characterized as highly fractured. Average conductivity from field tests is around 3 to 4 x 10⁻⁵ m/s in the upper 5 m to 10 m of bedrock;
- Assume a nominal depth of treatment to 20 m in bedrock across the foundation. Note that the geotechnical drilling did not penetrate through the fractured bedrock layer;
- Estimates assume a single row grout curtain;
- Slope length along centreline of core trench: 1,200 m;
- Average hole spacing in completed curtain: 1.5 m
- One upstream and one downstream row of consolidation grout holes;
- Average hole spacing in consolidation rows: 2 m;
- Depth of consolidation grout holes: 5 m; and
- Assume 75 l/m grout admission, with 15% waste.

8.3 Stormwater Dike and Saddle Dams

Estimated fill quantities for the stormwater dike and saddle dams are shown in Table 8-3, based on the alignments shown on Figure 2.1, and the conceptual cross-sections shown on Figure 5.5.

Table 8-3: Quantity Estimates for Stormwater Dike and Saddle Dam Construction Materials

Construction Material	Volume (m³)		
Stormwater Dike – crest elevation 136.6 m			
Rockfill	9,100		
Till Core	2,900		
Filter	400		
Saddle Dams – crest elevation 139.6			
Saddle Dam #1 – Rockfill – Till Core – Filter	9,300 3,000 500		
Saddle Dam #2 – Rockfill	1,000		
Saddle Dam #3 – Rockfill	1,700		
Saddle Dam #4 – Rockfill – Till Core – Filter	5,500 1,700 300		

8.4 Available Till and Rockfill Quantities

Both till and rockfill for construction of the Stage 1 tailings dike will come from prestripping at the proposed North Portage and Third Portage pit areas, and from mining at a proposed starter pit at the Third Portage Deposit. The initial source of rockfill will be a Third Portage starter pit. The starter pit would be entirely enclosed by land at the Third Portage Deposit.

The volumes of available till and rockfill are based on the latest mine plan. (see Appendix IV).

Materials to construct the tailings dike could consist of:

- Intermediate volcanic (IV) rock in the upstream rockfill;
- Iron formation (IF) rock in the downstream rockfill; and
- Till overburden from stripping of open pits.

The final determination of the appropriate use of one rock type or the other as fill for either the upstream or downstream rockfills will depend on considerations such as potential for acid generation, and metal leaching. Additional geochemical testing, water

balance studies, and lake basin hydraulic modeling will help to address questions relating to the appropriate usage of the particular rock types. These studies are underway.

Preliminary material balance estimates (see Appendix IV) indicate that:

- Sufficient quantities of rockfill borrow materials for the Stage 1 tailings dike will be available through a combination of mining of the Third Portage starter pit, and stripping of the North Portage Deposit.
- Sufficient quantities of till borrow material for the Stage 1 tailings dike will be available from stripping of the Third Portage and North Portage deposits.
- The required volumes of till and rockfill material for construction of the Stage 2 tailings dike in Year 3 will be sufficient. These materials will come from on-going mining activities at the Portage pit.

9.0 CONSTRUCTION METHODOLOGY

The proposed construction sequence consists of the following main components:

- 1. Lower the water level in the North Arm of Second Portage Lake to elevation 105 m.
- 2. Remove and dispose of lake-bottom sediments which are unsuitable as foundation material. Lake-bottom sediments will be removed using conventional earth-moving equipment, under 'dry' conditions. The sediments will be disposed of within the proposed tailings impoundment. The foundation area of the proposed dike slopes to the west, therefore any sediment-laden runoff will be naturally contained within the tailings impoundment.
- 3. Assess the suitability of the foundation material as a low-permeability seepage barrier.

In order to determine whether the in situ foundation material is suitable as a low-permeability seepage barrier, it will be necessary to perform site and laboratory investigations on this material, prior to proceeding with the construction of the dike section. The primary objective of the investigation will be to confirm the permeability of the foundation material, and its areal extent, to determine whether it would perform adequately as a seepage barrier.

The investigations could consist of the following:

- Logging and sampling of approximately 50 test pits within the dike footprint and in the area directly upstream of the dike;
- Logging and sampling of approximately five to ten boreholes within the dike footprint and in the area directly upstream of the dike. Downhole falling head or constant head tests will also be performed, one in each borehole;
- Laboratory testing of fine-grained materials from the test pits and boreholes, including index testing, and flexible-wall permeameter testing of the fine fraction of the samples. A minimum of approximately five sets of tests would be required.

For the Full Cutoff Design only (if it is determined that neither the foundation material is adequate as a seepage barrier, nor that blanketing the upstream side of the dike with tailings will reduce the seepage to the Portage Pit sufficiently):

- 3(a) Excavate till cutoff to bedrock contact. Excavated material could be suitable as fill in the rockfill zone of the dike;
- 3(b) Construct concrete mat. Drill and grout the fractured bedrock zone;
- 3(c) Backfill cutoff zone with compacted, low-permeability till material;
- 4. For both designs, construct Stage 1 rockfill, filter, and till core embankment to elevation 120 m in Year -1.
- 5. For both designs, Construct Stage 2 rockfill, filter, and till core embankment to elevation 139.6 m in Year 3.

10.0 CONSTRUCTION MATERIAL GUIDELINES

10.1 Rockfill Shell

The function of the rockfill is to support the till core, and to act as a freeze-thaw protection layer for the core. This material should be a durable, coarse, free-draining material with high shear strength.

The design criteria for the rockfill include the following:

- 1. The material should be free-draining. Material with a fines content (passing the No. 200 sieve) of less than approximately 8% to 10% is acceptable.
- 2. Particles should be large and durable enough to resist wave and ice erosion.
- 3. The grain size distribution of the filter adjacent to the till core must meet filter requirements with the till, and with the rockfill shell. This might require adjusting the blast pattern to produce a finer material than would normally be blasted during prestrip operations. Additionally, it might be necessary to screen the blast-run rockfill to obtain a fine rockfill filter material.

Based on the above, it is recommended that the rockfill and filter gradation limits be set, on a preliminary basis, as shown on Figure 10.1.

10.2 Till Core and Cutoff

The purpose of the core material is to act as a seepage and thermal barrier, as discussed in previous sections. A material guideline grain size distribution for the till core material is shown on Figure 10.1. Grain size determinations of till materials recovered from the Meadowbank project area indicate that the till available from the pre-stripped materials at the Third and North Portage Deposits is within these limits.

The material used in the till core and cutoff (Full Cutoff design only) should have a maximum hydraulic conductivity of 1×10^{-7} m/s.

The materials specified in this section are similar to the materials specified for use in the dewatering dikes (Golder 2003f).

11.0 CONCLUSIONS AND RECOMMENDATIONS

The following are conclusions and recommendations based on the results of the Meadowbank tailings dike design study.

1. The foundation of the proposed tailings dike includes a highly-fractured zone of shallow bedrock. In order to control seepage through this zone, a low-permeability cutoff will be required. If the existing dike foundation material is of sufficiently low permeability, and of sufficient areal extent, it could act as an upstream seepage control blanket. If the dike foundation material is permeable, a cutoff and injection-grouted grout curtain may be required, depending on the sequencing of the open pit development and tailings deposition against the tailings dike. The cutoff would be constructed through the dike foundation material, and the grout curtain would be constructed through the fractured bedrock and into less-fractured rock.

Due to the uncertainty about whether the dike foundation soil is of sufficiently low permeability and areal extent to act as a seepage control blanket, it is recommended that two design options be carried to the detailed design stage, to allow flexibility in sequencing of the development of the Portage Pit, until such information is available. These designs are:

- Full Cutoff design: This design is for the case where the dike foundation material is permeable. The dike section will consist of a rockfill shell, till core embankment, a till cutoff to bedrock contact, and an injection-grouted grout curtain through the fractured bedrock zone.
- Partial Cutoff design: This design is for the case where the foundation material is adequate as a seepage control barrier. This dike section would be essentially the same as for the Full Cutoff, but would not include a till cutoff or grout curtain.
- 2. The possibility of using the deposited tailings as an upstream seepage blanket could offer significant advantages over the Full Cutoff design. If the current plan for mining the northern portion of the Portage Pit in Year 4 is maintained, it is recommended that the Partial Cutoff Design with an upstream tailings blanket be used for cost estimation purposes, and a contingency be made for grouting discrete permeable features within the foundation.
- 3. The tailings dike will be constructed in two stages. Stage 1 construction, to an elevation of 120.0 m A.S.L., will take place in Year -1, after the North Arm of Second Portage Lake has been lowered to elevation 105 m. Stage 2 construction will take place in Year 3, up to the final crest elevation of 139.6 m.
- 4. The slope stability analyses indicate that the tailings dike will be stable under short-term, undrained, static load conditions, and under long-term, static and earthquake load conditions.
- 5. The seepage modelling indicates that the maximum seepage expected to reach the west wall of the Portage Pit, during the time that the tailings pond is in contact with the dike face, will be:

- For Full Cutoff design = approximately 30 litres/second;
- For Partial Cutoff design = approximately 30 litres/second;
- For Partial Cutoff design with upstream tailings seepage blanket = approximately 70 litres/second.

This seepage will be captured by the pit dewatering system, and will ultimately be pumped back to the tailings pond.

Over time, seepage is expected to decrease due to the development of a tailings beach against the dike face, and the corresponding movement of the tailings pond westward, away from the dike face.

- 6. Thermal modelling indicates that the dike will be an effective thermal barrier between the re-flooded lake area and the tailings. Transient thermal modelling included an estimate of climate change during the 100 years following closure.
- 7. Based on preliminary material balance calculations, the quantities of till and rockfill available from mining activities will be sufficient to construct the dike.

The required volumes of till and rockfill material for construction of the Stage 1 tailings dike in Year -1 will need to be generated during mining of a proposed starter pit at the Third Portage Deposit, and during on-land pre-stripping activities at the North Portage Deposit. This will require careful sequencing.

The required volumes of till and rockfill material for the Stage 2 construction of the tailings dike in Year 3 will come from on-going mining activities at the Portage pit.

8. Further investigations of the foundation materials along the proposed dike alignment are recommended prior to construction. These investigations would provide additional data for geotechnical design of the tailings dike, and would reduce uncertainty about the suitability of the existing foundation material as a seepage control barrier.

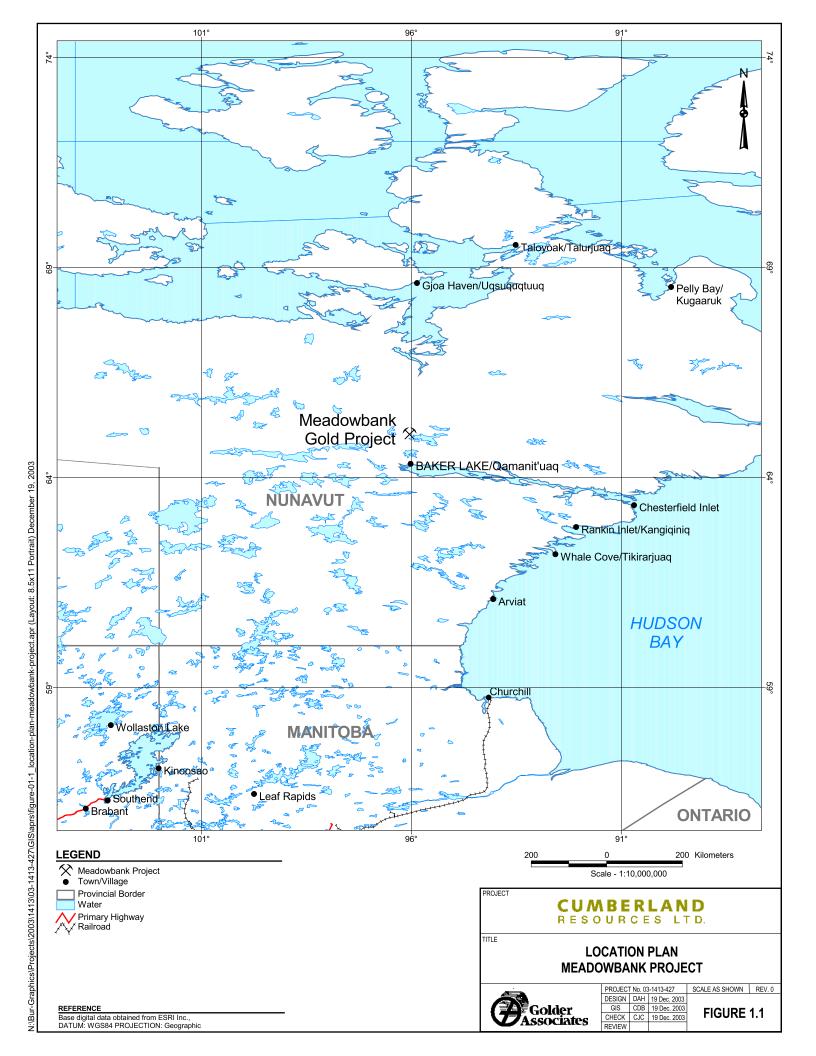
12.0 CLOSING REMARKS

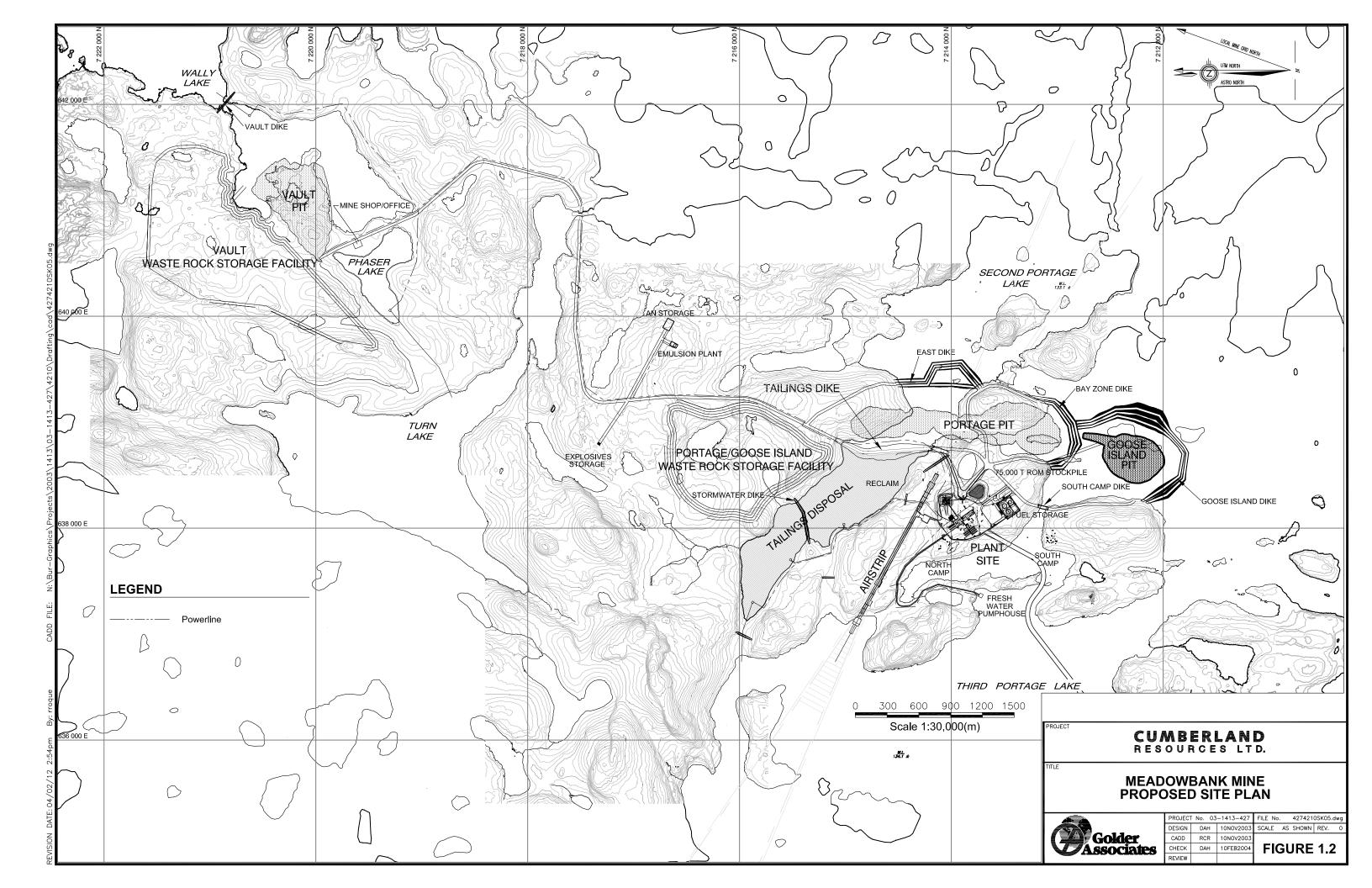
We trust the information contained in the above report meets your requirements at this time. Please feel free to contact us if you need more detailed information on any of the information presented in the report.

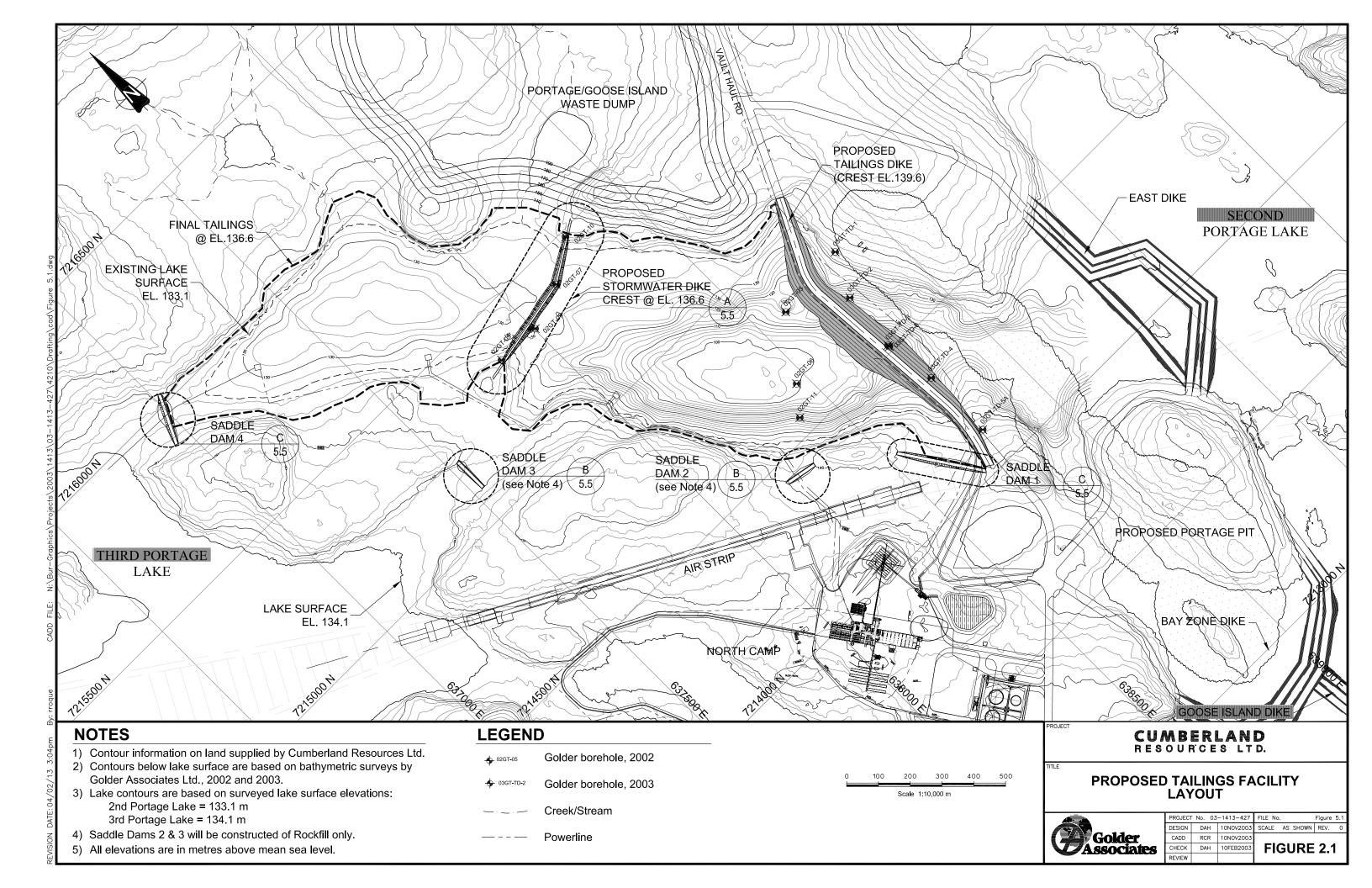
GOLDER ASSOCIATES LTD.

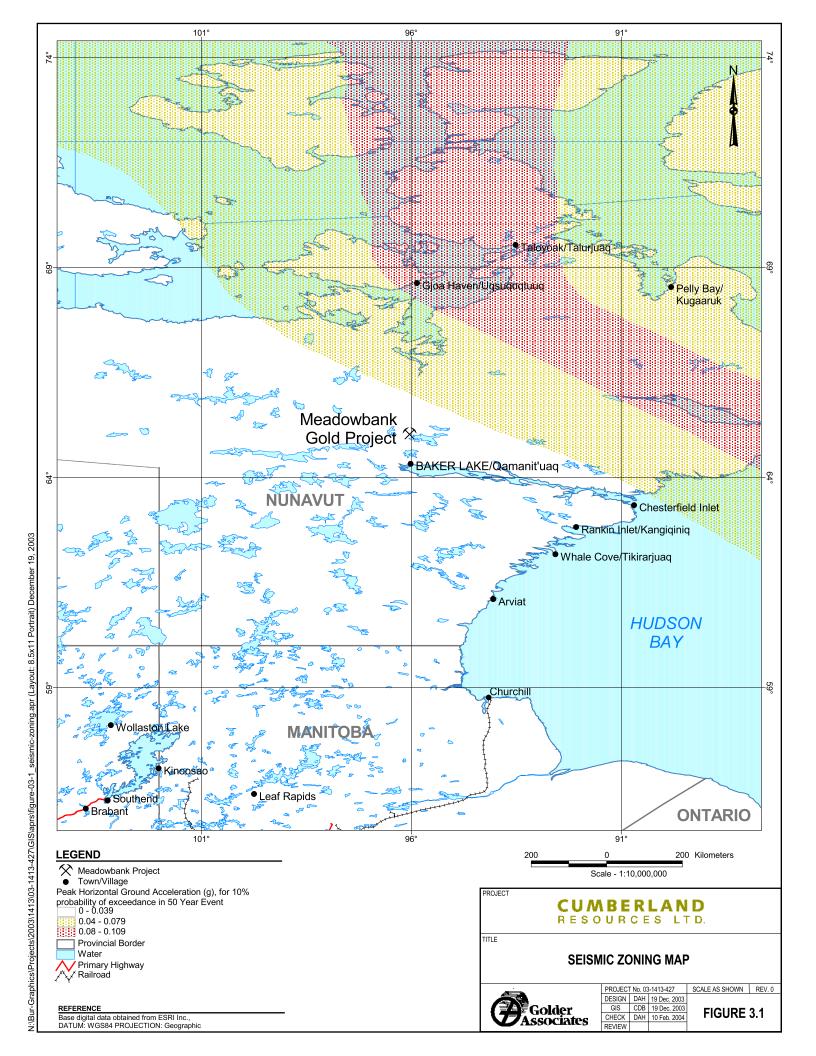
Don Hickson, P.Eng. Geotechnical Engineer

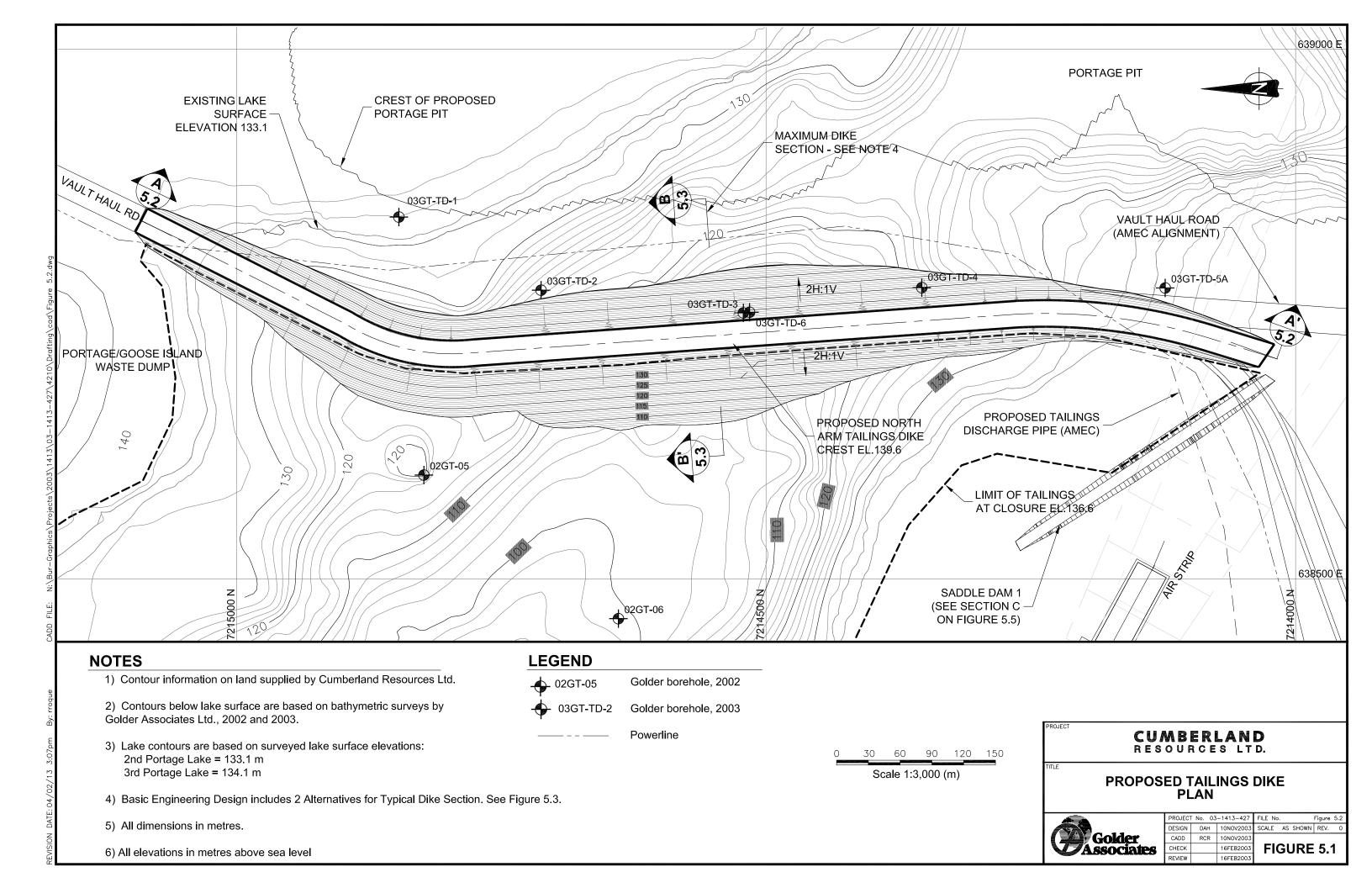
Cameron Clayton, P.Geo. Mining Group

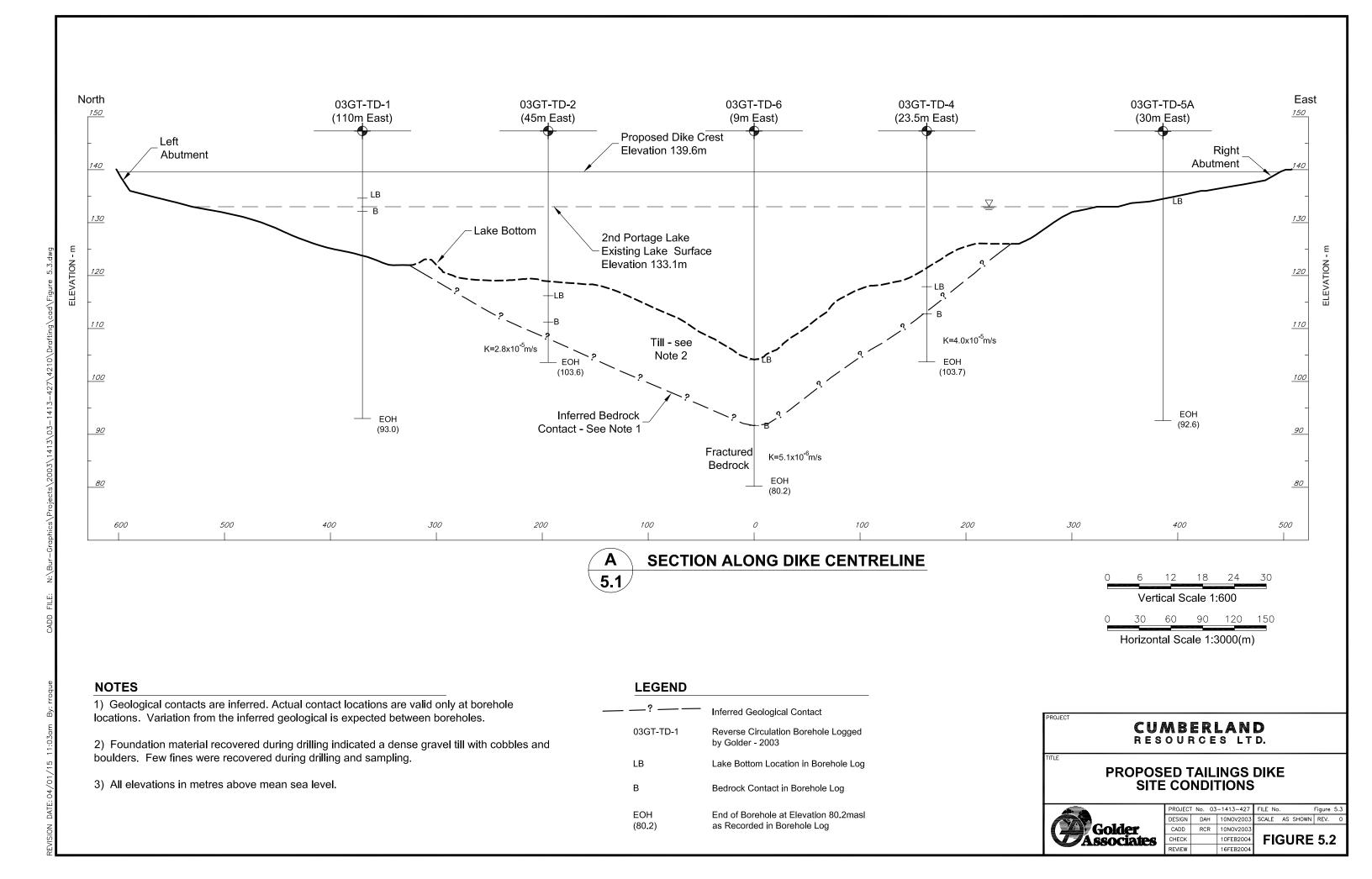

Terry Eldridge, P.Eng. Principal DAH/CJC/TLE/dah/vee 03-1413-427/4200

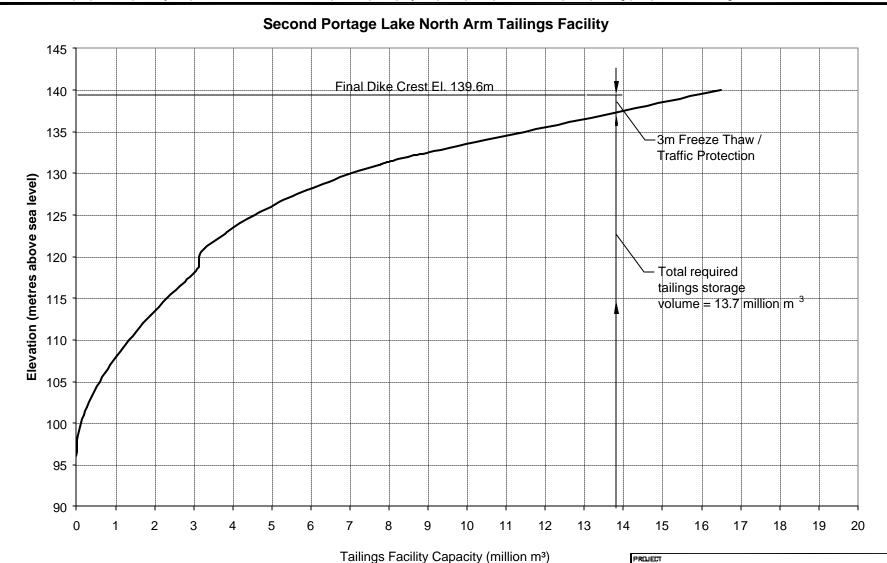

N:\FINAL\2003\1413\03-1413-427\RPT0213 - BASIC ENGINEERING DESIGN.DOC


REFERENCES


Golder 2002a	Lake Bathymetry Survey, Meadowbank Project, Golder Associates Ltd., November 2002.
Golder 2002b	Factual Report on Geotechnical Drilling, Hydrogeological, and Geophysical Investigations, Meadowbank Project, Nunavut; Golder Associates Ltd., 2002.
Golder 2002c	Factual Report on Summer 2002 Geotechnical Drilling, Hydrogeological and Permafrost Investigations, Meadowbank Gold Project, Nunavut; Golder Associates Ltd., 2002.
Golder 2003a	Summary Report on Spring 2003 Field Geotechnical Studies, Meadowbank Project, Nunavut; Golder Associates Ltd., September, 2003.
Golder 2003b	2003 Bathymetry Survey, Meadowbank Project, Nunavut, Golder Associates Ltd., September, 2003.
Golder 2003c	Report on Permafrost Thermal Regime Baseline Studies Meadowbank Project Nunavut, Golder Associates Ltd., December 2003.
Golder 2003d	Report on Ground Ice EM31 Investigation, Meadowbank Project, Nunavut, Golder Associates Ltd., September, 2003.
Golder 2003e	Report on Hydrogeology Baseline Studies – Meadowbank Gold Project, Golder Associates Ltd., December, 2003.
Golder 2003f	Report on Design of Dikes with Soil-Bentonite Cutoff Wall - Meadowbank Gold Project, Golder Associates Ltd., October, 2003.
Golder 2004a	Report on Mine Waste Management, Meadowbank Gold Project, Nunavut, Golder Associates Ltd., 2004 (in progress).
Golder 2004b	Report on Preliminary Thermal Modelling of Tailings Disposal in the Second Portage Lake – Meadowbank Gold Project, Golder Associates Ltd., 2004 (in progress).
CRL 2003	Meadowbank Gold Property, Project Description Report, Cumberland Resources Ltd. March, 2003.


AMEC 2003	Meadowbank Gold Project Baseline Hydrology Report, AMEC Earth and Environmental Ltd., December 2003.
CDA 1999	Dam Safety Guidelines, Canadian Dam Association, January 1999.
NWT and Nunavut 1995	Northwest Territories and Nunavut Consolidation of Mine Safety and Health Regulations R-125-95, 1995.
USACE 1984	Rationalizing the Seismic Coefficient Method, M. Hynes-Griffin and A. Franklin, USACE, WES, Miscellaneous Paper GI-84-13, 1984
Farouki 1986	Thermal Properties of Soils, Farouki, O.T. 1986, Trans Tech Publications, Clausthal-Zellerfeld, Germany.
Johansen 1975	Thermal conductivity of Soils. Ph.D. diss., Johansen, Ø. 1975, Norwegian Technical Univ., Trondheim; also, U.S. Army Cold Reg. Res. Eng. Lab. Transl. 637, July 1977.
Vick 1990	Planning, Design, and Analysis of Tailings Dams. Vick, Steven G., BiTech Publishers Ltd., Vancouver, B.C., Canada, 1990.

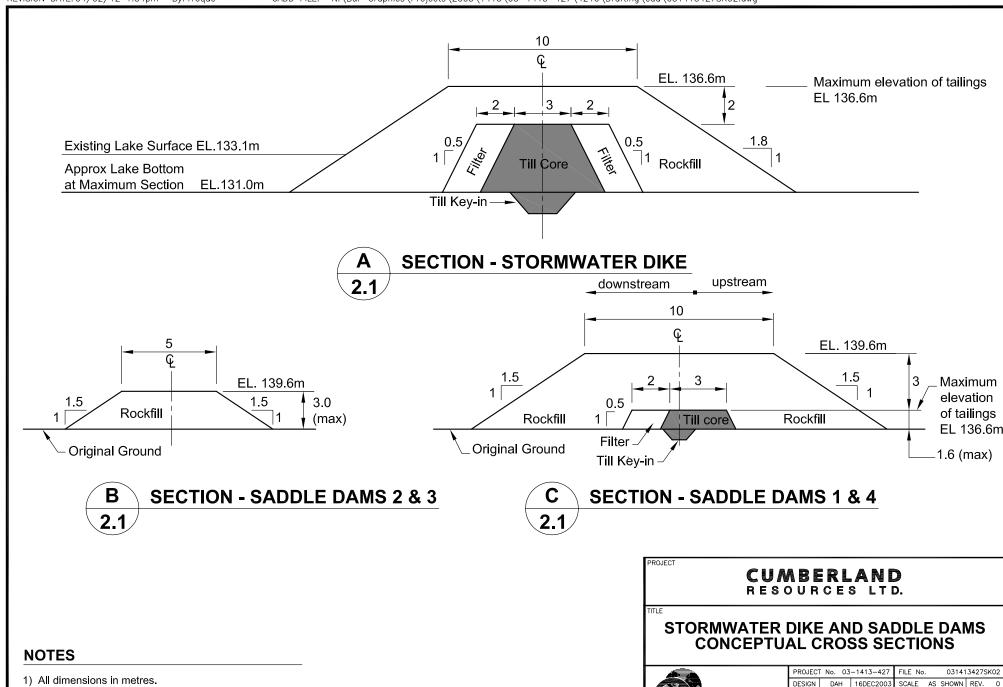




NOTES

1) Total tailings volume assumes total tailings of 19.8 million m 3 , and a settled dry density of 1.45 tonnes/m 3 (corresponding to a void ratio of 1.0).

CUMBERLAND RESOURCES LTD.


TITLE

PROPOSED TAILINGS FACILITY - TAILINGS STORAGE CAPACITY

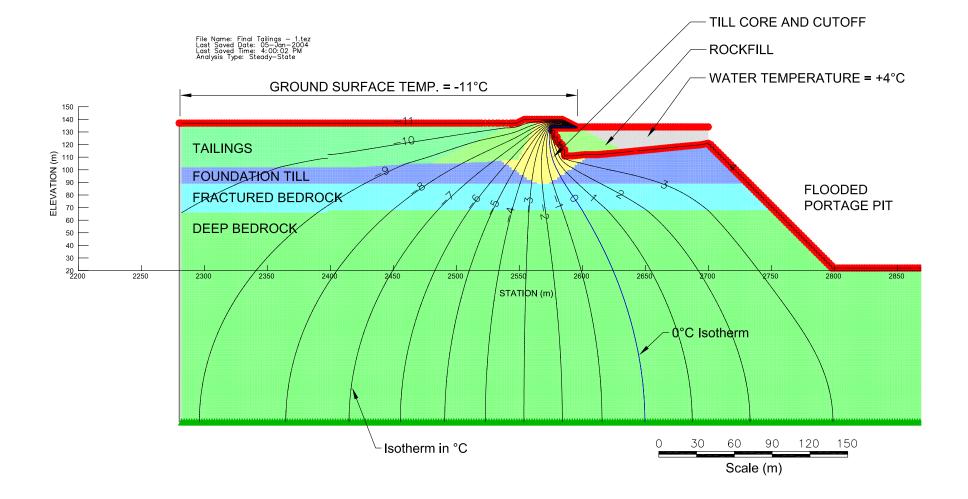
PROJEC	PRDJECT No. 03-1413-427 FILE No. 4274					D6
DESIGN	DAH	03DEC2003	SCALE	NA	REV.	0
CADO	RCR	G3DEC20G3				
CHECK		10FEB2DD4	FIGU	RE	5.4	
REVIEW		16FEB2004				

2) All elevations in metres above mean sea level.

Scale in Meters

CADD

CHECK


REVIEW

23DEC2003

10FEB2004

16FEB2004

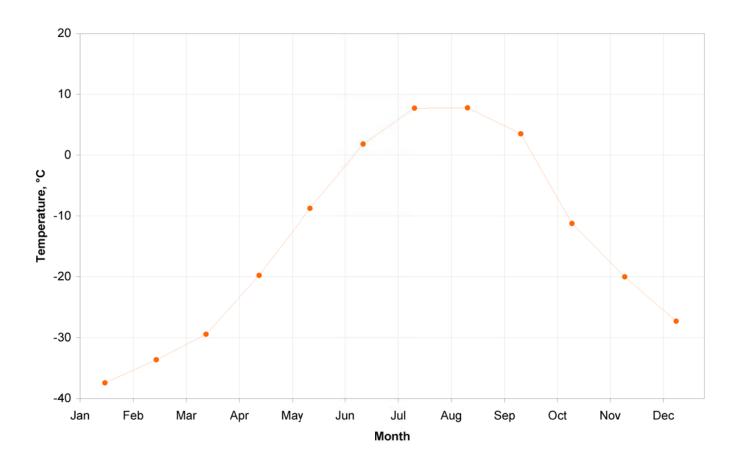
FIGURE 5.5

MATERIAL PROPERTIES

Material Type	Thermal Conductivity (J/sec-m-°C)		Volumetric Heat Capacity (J/m³-°C)(x 10 ⁶)		Volumetric Water Content	
	Frozen	Unfrozen	Frozen	Unfrozen	Contone	
Till Core & Cutoff	3.3	2.4	1.9	2.5	0.28	
Rockfill	3.3	2.8	2.4	2.6	0.12	
Foundation Till	3.3	2.8	2.4	2.6	0.12	
Fractured Bedrock	3.3	2.8	2.4	2.6	0.12	
Deep Bedrock	3.5	3.4	2.4	2.4	0.02	
Tailings	2.2	1.6	2.2	2.95	0.5	

NOTES

1) Analyses done using TEMP/WTM Software.


CUMBERLAND RESOURCES LTD.

POST-CLOSURE THERMAL MODELLING
PROPOSED TAILINGS DIKE - STEADY
STATE ANALYSIS

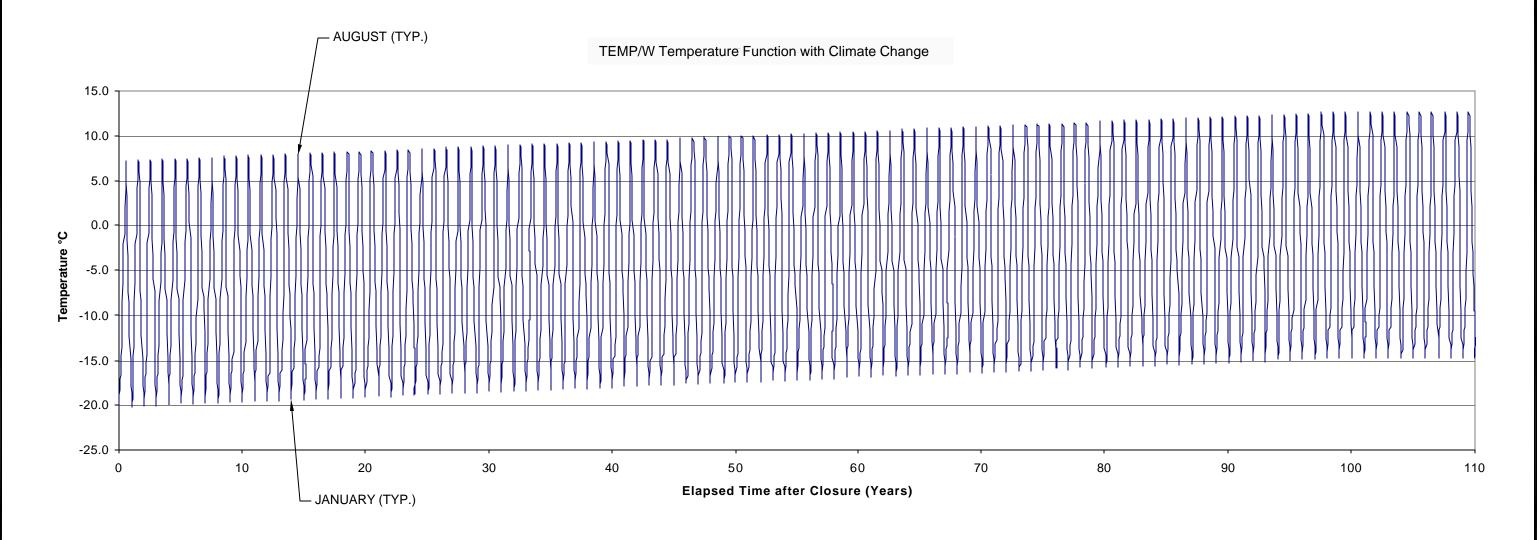
PROJECT No. 03-1413-427			FILE No.	427421	0SK09.c	lwg		
ESIGN	DAH	23DEC2003	SCALE	NA	REV.	0		
CADD	RCR	23DEC2003						
CHECK		10FEB2004	FIGURE 7.1					
REVIEW		16FEB2004						

TEMP/W Temperature function

PROJECT

CUMBERLAND RESOURCES LTD.

TITLE

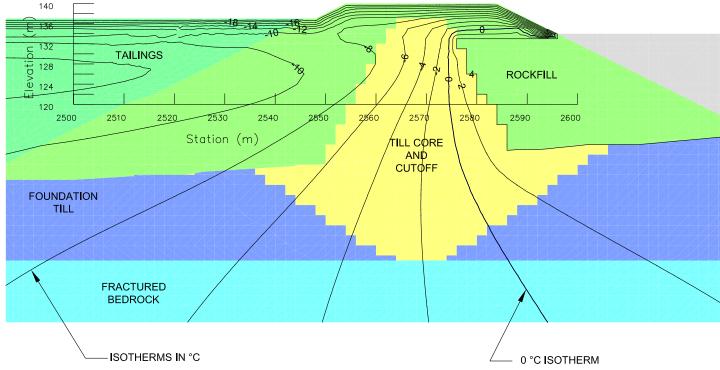

SURFACE TEMPERATURE FUNCTION FOR TRANSIENT THERMAL ANALYSIS

-427 FILE No. 4274210SK1	PROJECT No. 03-1413-427					
12004 SCALE NTS REV.	09JAN2004	DAH	DESIGN			
	09JAN2004	SRR	CADD			
12004 FIGURE 7.2	09JAN2004		CHECK			
2004	16FEB2004		REVIEW			

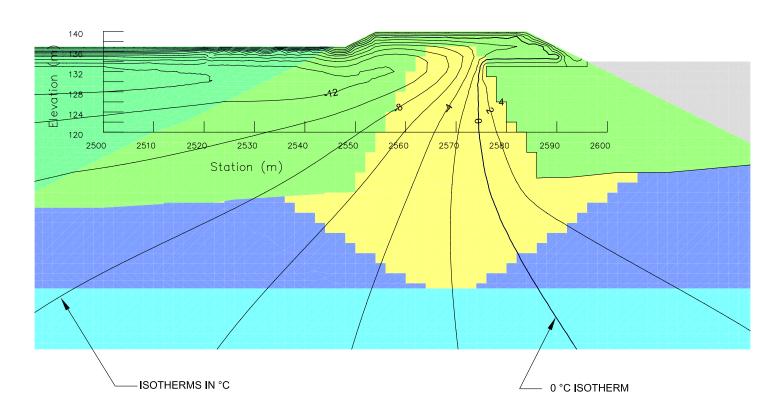
NOTES

1) Analyses done using TEMP/WTM Software.

NOTES


- Analyses done using TEMP/W TM Software.
 Temperature increase of 5.5°C based on draft report on Mine Waste Management, Meadowbank Gold Project, Nunavut, Golder Associates Ltd, December 2003.

SURFACE TEMPERATURE FUNCTION FOR TRANSIENT THERMAL ANALYSIS **INCLUDING CLIMATE CHANGE PREDICTION**

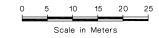


ROJEC	F Np. 03	-1413 -4 27	FILE No.	427	42105K	15
DESIGN	DAH	1DFEB2DO4	SCALE	NA	REV.	٥
CADD	SRR	10FEB2004				
HECK		10FEB2004	FIGUE	RΕ	7.3	
REVIEW		1BFEB2004				

File Name: Small mesh transient.tez Last Saved Date: 09—Jan—2004 Last Saved Time: 11:41:07 AM Analysis Type: Transient

File Name: Small mesh transient.tez Last Saved Date: 09-Jan-2004 Last Saved Time: 11: 46: 26 AM Analysis Type: Transient

THERMAL REGIME IN AUGUST


THERMAL REGIME IN JANUARY

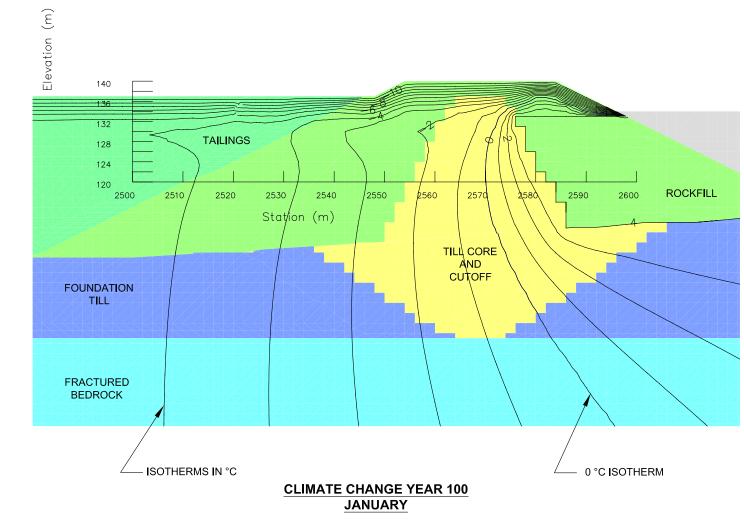
MATERIAL PROPERTIES

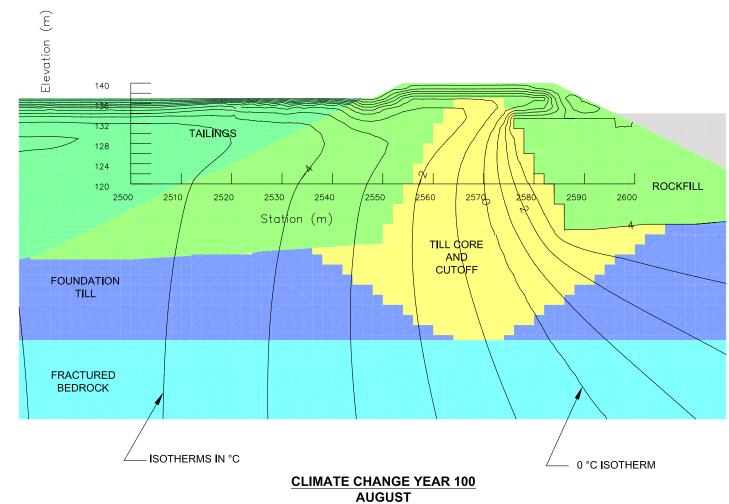
Material Type	Thermal Conductivity (J/sec-m-°C)		Volumetric Heat Capacity (J/m³-°C)(x 10 ⁶)		Volumetric Water Content
	Frozen	Unfrozen	Frozen	Unfrozen	Contont
Till Core & Cutoff	3.3	2.4	1.9	2.5	0.28
Rockfill	3.3	2.8	2.4	2.6	0.12
Foundation Till	3.3	2.8	2.4	2.6	0.12
Fractured Bedrock	3.3	2.8	2.4	2.6	0.12
Deep Bedrock	3.5	3.4	2.4	2.4	0.02
Tailings	2.2	1.6	2.2	2.95	0.5
1		1		ı	

NOTES

- 1) Analyses done using TEMP/WTM Software.
- 2) All dimensions are in metres. All elevations in metres above sea level.

CUMBERLAND RESOURCES LTD.


POST-CLOSURE THERMAL MODELLING
PROPOSED TAILINGS DIKE TRANSIENT ANALYSES



FILE No. 4274210SK1	PROJECT No. 03-1413-427			
SCALE AS SHOWN REV.	23DEC2003	DAH	ESIGN	
	23DEC2003	RCR	CADD	
FIGURE 7.4	10FEB2004		CHECK	

16FEB2004

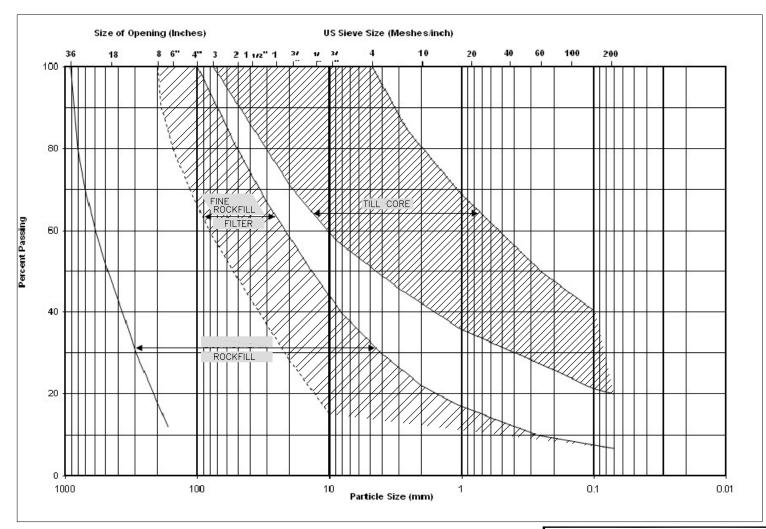
File Name: Small mesh transient with climate change — large time steps for checking.tez Last Saved Date: 12—Feb—2004 Last Saved Time: 8:10:56 AM Analysis Type: Transient File Name: Small mesh transient with climate change — large time steps for checking.tez Last Saved Date: 12—Feb—2004 Last Saved Time: 8:10:56 AM Analysis Type: Transient

MATERIAL PROPERTIES

Material Type	Thermal Conductivity (J/sec-m-°C)		Volumetric Heat Capacity (J/m³-°C)(x 10 ⁶)		Volumetric Water Content
	Frozen	Unfrozen	Frozen	Unfrozen	
Till Core & Cutoff	3.3	2.4	1.9	2.5	0.28
Rockfill	3.3	2.8	2.4	2.6	0.12
Foundation Till	3.3	2.8	2.4	2.6	0.12
Fractured Bedrock	3.3	2.8	2.4	2.6	0.12
Deep Bedrock	3.5	3.4	2.4	2.4	0.02
Tailings	2.2	1.6	2.2	2.95	0.5

NOTES

- 1) Analyses done using TEMP/WTM Software.
- 2) All dimensions are in metres. All elevations in metres above sea level.


CUMBERLAND RESOURCES LTD.

POST-CLOSURE THERMAL MODELLING
PROPOSED TAILINGS DIKE - TRANSIENT ANALYSES
INCLUDING CLIMATE CHANGE EFFECTS

PROJECT No. 03-1413-427			FILE No).	427	4210Sł	<16
DESIGN	DAH	10FEB2004	SCALE	SCALE AS SHOWN REV.		REV.	0
CADD	SRR	10FEB2004					
CHECK		10FEB2004	l FIG	31	IRF	7.5	:

16FEB2004

NOTES

- 1) Till core gradation based on samples analyzed as reported in Winter 2002 and Summer 2002 factual reports by Golder.
- 2) Fine rockfill filter and rockfill designed to be filter-compatible using criteria developed by Sherard, et.al. (self filtering not considered), and presented by U.S. Army Corps of Engineers.

PROJECT

CUMBERLAND RESOURCES LTD.

MATERIAL GUIDELINES PROPOSED GRAIN SIZE DISTRIBUTION **TILL CORE AND ROCK FILL**

PROJECT No. 03-1413-427			FILE No.	427	'4210Sł	<18
DESIGN	DAH	10FEB2004	SCALE	NA	REV.	0
CADD	RCR	10FEB2004				
CHECK		10FEB2004	FIGUE	₹E	10.	1
REVIEW		16FEB2004				-

APPENDIX I GEOTECHNICAL BOREHOLE LOGS

LOCATION: Causeway Alignment, North Hole

RECORD OF DRILLHOLE: 02GT-05

DRILLING DATE: 17 May, 2002

SHEET 1 OF 3

DATUM: Local

DRILL RIG: LY38

DRILLING CONTRACTOR: Boart-Longyear HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES CORE **GRADATION** % BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER OR STANDPIPE INSTALLATION STRATA PLOT BLOWS/0.3m RUN No. GRAVEL NUMBER SAND FINES ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION RECOVERY % DEPTH OW Wp ⊢ Ice Surface 0.00 Ice. 2.00 Water. CUSTOM LOG 3 022-14-1.GPJ GLDR_CAN.GDT 25/2/04 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: CJC/JRT 1:50 CHECKED:

LOCATION: Causeway Alignment, North Hole

RECORD OF DRILLHOLE: 02GT-05

DRILLING DATE: 17 May, 2002

DRILL RIG: LY38

DRILLING CONTRACTOR: Boart-Longyear

SHEET 2 OF 3

DATUM: Local

HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES CORE **GRADATION** % BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.3m NUMBER RUN No. GRAVEL FINES STANDPIPE SAND ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION RECOVERY % INSTALLATION DEPTH -OW - WI Wp -10 Water. (continued) 11 11.00 Inferred lake bottom sediments and coarse sand, cobbles and gravel. (OVERBURDEN) 12 Bedrock Encountered. Refer to ROCK LOG for continuation of rock description. 14 15 16 17 18 CUSTOM LOG 3 022-14~1.GPJ GLDR_CAN.GDT 25/2/04 19 20 DEPTH SCALE LOGGED: CJC/JRT 1:50 CHECKED:

DRILLHOLE 022-14~1.GPJ GLDR_CAN.GDT 25/2/04

LOCATION: Causeway Alignment, North Hole

RECORD OF DRILLHOLE: 02GT-05

DRILLING DATE: 17 May, 2002

SHEET 3 OF 3

DATUM: Local

DRILL RIG: LY38

																СТС	R: I	Boa	rt-Lo	ongyear								
щ		ORD)G			ATE	FLUSH COLOUR % RETURN	CL-C	RAC CLEA	VAG			AULT DINT	-			л-SM ROU	OOT GH	H FL-FLEXURED UE-UNEVEN		-BRO B-MEC						
DEPTH SCALE	3	DRILLING RECORD		SYMBOLIC LOG	ELEV.	Š	i) NR (ii	COLO RET		SHEA /EIN	R			OLIS LICK		IDED			PPE			BEDD I-CHL		IZED)			NOTES WATER LEVELS
TH S		NG	DESCRIPTION	BOL	DEPTH	N N N	(m/m	. %	-	RECC		RY	Τ.	R.Q.E	\neg	FRAC	CT.		DIS	CONTINUITY DATA	Ü.	F	ROCK		w	EATH	H-	INSTRUMENTATION
DEF	•	RILL		SYM	(m)	"	ENE	FLUSH		TAL RE %		OLID ORE %		%		PER	0.3	DIP V		TYPE AND SURFAC DESCRIPTION	Œ	"	(ADE	×		RING		
	+	□					Δ.	교	88	11 88	8	11 8 8 8	i [€	11 88 8	R	1 T	28	o R	88 TT	DESCRIPTION		8.2	1 2 2 2	7 2	×	³ ⁸ √	*	
_	H	Т	Continued from SOIL LOG.	V V V	12.50					$^{+}$	Ш				+			\mathbf{H}	Н	BC,,		Ш		Н				_
E				7 7 7 7 7 7	ļ																							_
Ŀ,	13			\[\sigma'\cong\]	1																							
<u> </u>			Slightly weathered, light grey, foliated, fine to medium grained, medium strong, INTERMEDIATE VOLCANICS, with	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]	١,									▮▮													
- -			INTERMEDIATE VOLCANICS, with quartz.	7 7 7 7 7 7	ļ	1									Ш													- -
Ė			quare.	V V V V V V V V V V V V V V V V V V V	1										Ш					BC,,								_
-				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]										Ш													=
F 1	14			A A 2	14.00					$^{+}$					Н													
Ē				7 7 7 7 7 7 7 7 7											П					FO,PL,R								_
E	ž			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1										П													_
-	Poart-Longwear	H/Ot		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]										П			,	$\ $	FO,PL,R								-
-	art-	38-1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ļ										∥			•	$\ $	FO,PL,R								- -
F 1	15 12	احا		4 A A	1										$\ $													15.0m to 17.0m Falling Head
F			Freeh light grov folioted fine to median	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]																							Packer Test –
E			Fresh, light grey, foliated, fine to medium grained, strong, INTERMEDIATE VOLCANICS, with quartz.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ł	2														FO,PL,R								k=2.6X10-3 cm/s
E			VOLCANICS, with quartz.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1															,								_
L 1	16			7 V V											П													
<u> </u>					l										Ħ			11.		EDI D								_
-				A A A]										Ш			Ш		F,PL,R								_
-				A A A	ļ										Ш													_
F				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1										Ш													=
F 1	17		F. 1. (PDII.110) F	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	17.00				+	$^{+}$	╀		Н	+	$^{+}$	$^{+}$	+	$^{+}$	\vdash				+	Н		H	+	
E			End of DRILLHOLE.												Ш													_
_															Ш													
<u> </u>															Ш							Ш						_ -
F															Ш													_
- 1 -	18														Ш													-
Ē															Ш													
E															Ш													
Ŀ															Ш													_ -
<u> </u>	19														Ш													
-															Ш													_
-															Ш													_
F															Ш													=
Ė													$\ \ $															=
L 2	20																											-
þ																												=
F													$\ \ $		$\ $													_
F													$\ \ $		$\ $													=
Ē,	,												$\ \ $															=
- 2 -	'												$\ \ $		$\ $													
Ė																												_
Ė													$\ \ $		$\ $													-
þ													$\ \ $		$\ $													
<u> </u>	22												$\ \ $															
F																												_
E													$\ \ $		$\ $													=
Ī																												_
				1				Ш	لل مر	┵			ш	11	11	11	ш	Ш	Ш			ш	Ш	ш	Ш	Ш		
[DEP	TH S	CALE					1		7 A	Y	G	ol	de	r									I	LOG	GEI	D: (CJC/JRT
1	1:5	50							V		A	SS	<u> </u>	<u>cì</u>	<u>āt</u>	es											СН	ECKED:

RECORD OF DRILLHOLE: 02GT-06

02GT-06 SHEET 1 OF 5

DATUM: Local

LOCATION: Causeway INCLINATION: -90°

DRILLING DATE: 17 May, 2002

DRILL RIG:

щ	ОО	SOIL PROFILE			SA	AMPL	ES		С	ORE		-	GRAI	DATIC	ON %	HYDRAULIC CONDUC k, cm/s	CTIVITY, T	رن ا	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)		TYPE	BLOWS/0.3m	RUN No.		ECOV			GRAVEL	SAND	FINES	10 ⁻⁵ 10 ⁻⁴ WATER CONTEN Wp I → V	10 ⁻³ 10 ⁻² IT PERCENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0		Ice Surface							Ľ	Ĭ	Ţ	Ħ					Ĭ		
. 1		Ice.		0.00															
3 3	EOH - 86.A.I	Water.		2.00															
- 8																			
9																			
10 -	_	CONTINUED NEXT PAGE]			† -	Γ-	1-		†-	1	-						
DEF		SCALE	1	1		ı		7		Go	- old	er er					LOG	GED: C	JC/JRT ECKED:

LOCATION: Causeway

RECORD OF DRILLHOLE: 02GT-06

DRILLING DATE: 17 May, 2002

SHEET 2 OF 5

DATUM: Local

DRILL RIG:

DRILLING CONTRACTOR: Boart-Longyear HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES CORE **GRADATION** % BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER OR STANDPIPE INSTALLATION STRATA PLOT BLOWS/0.3m RUN No. GRAVEL NUMBER SAND FINES ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION RECOVERY % DEPTH -0₩ Wp ⊢ 11 12 13 14 15 Water. (continued) 16 17 18 CUSTOM LOG 3 022-14~1.GPJ GLDR_CAN.GDT 25/2/04 19 20 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: CJC/JRT 1:50 CHECKED:

LOCATION: Causeway

CUSTOM LOG 3 022-14~1.GPJ GLDR_CAN.GDT 25/2/04

RECORD OF DRILLHOLE: 02GT-06

DRILLING DATE: 17 May, 2002

SHEET 3 OF 5

DATUM: Local

DRILL RIG:

										NG C		ITRA	СТС	DR: Bo	art-	Longyea						
щ	QO	SOIL PROFILE	_		SA	AMPL	ES		CC	DRE	_	G	GRAE	DATION	%	HYDRA	ULIC C k, cm/s	ONDUCT	TIVITY,	T	اق	DIEZOMETED
DEPTH SCALE METRES	BORING METHOD		LOT		R		.3m	·					_			10				0°2	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
PTH	ING I	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	RUN No.	RE	COVE	ERY	%	GRAVEL	SAND	INE O			ONTENT			DDIT B. TE	STANDPIPE INSTALLATION
DE	BOR		STRA	DEPTH (m)	N	-	BLO	≅		99	0 0		9	0	_	Wp 1		OW 20 3		WI 40	₹₹	
			0,						Ϊ́	Î	1						<u> </u>		1	+0		
— 20 -									Ħ		Ħ											-
-																						_
-																						_
-																						_ _
- 21																						
-																						_
-																						-
-																						=
- - - 22																						_
- 22																						
-																						=
-																						=
-																						=
23																						
-																						=
-																						_
-																						-
- - 24			====																			_
-																						-
-																						- -
-																						_ _
- - - 25	L V38 - HO3	Water. (continued)	====																			_
-	αε.Λ.	Traisi. (commisse)																				=
-																						<u>-</u>
-																						_
-																						-
- 26 -																						-
-			====																			-
																						-
																						- -
_ 27																						
-																						-
																						-
																						_
- - 28																						<u>-</u>
																						_ -
-																						<u>-</u>
																						=
- 29 -																						_
-																						=
-																						Ξ
																						Ξ
_ 30	⊢∟			1			-		1	+-	† †	+	-+	-	-					+		<u> </u>
		CONTINUED IVEX I PAGE																				
DE	PTH	SCALE						Ì		\mathbb{C}^{ω}	144	ρr								LOG	GED: 0	CJC/JRT
1 :	50							D	Ā	55()Ci	iat	<u>e</u> s								СН	ECKED:

LOCATION: Causeway

RECORD OF DRILLHOLE: 02GT-06

DRILLING DATE: 17 May, 2002

SHEET 4 OF 5

DATUM: Local

DRILL RIG:

DRILLING CONTRACTOR: Boart-Longyear HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES CORE **GRADATION** % BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER OR STANDPIPE INSTALLATION STRATA PLOT BLOWS/0.3m RUN No. GRAVEL NUMBER SAND FINES ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION RECOVERY % DEPTH **→**W Wp ⊢ 31 32 33 34 35 Water. (continued) 36 37 38 CUSTOM LOG 3 022-14~1.GPJ GLDR_CAN.GDT 25/2/04 39 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: CJC/JRT 1:50 CHECKED:

LOCATION: Causeway

RECORD OF DRILLHOLE: 02GT-06

DRILLING DATE: 17 May, 2002

DRILL RIG:

DRILLING CONTRACTOR: Boart-Longyear

HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES CORE **GRADATION** % BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT OR STANDPIPE BLOWS/0.3m NUMBER RUN No. GRAVEL FINES SAND ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION RECOVERY % INSTALLATION DEPTH -OW - WI Wp -(m) 40 Water. (continued) 42 42.70 End of DRILLHOLE. 44 45 HOLE ABANDONED. Lake Bottom at Approximately 42.7m depth. - casing set to bottom, NQ rods lowered to start drilling. - entire drill string and casing lost. 46 47 48 CUSTOM LOG 3 022-14~1.GPJ GLDR_CAN.GDT 25/2/04 49 50 DEPTH SCALE LOGGED: CJC/JRT

1:50

SHEET 5 OF 5

DATUM: Local

RECORD OF DRILLHOLE: 02GT-07

BORING DATE: 13 May, 2002 LOCATION: West Dyke

SHEET 1 OF 3 DATUM: Local

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SAMPLES PIEZOMETER SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES OR STANDPIPE INSTALLATION STRATA PLOT BLOWS/0.3m NUMBER ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH -OW - WI Wp | (m) Ice Surface 0.00 Ice. 1.80 Water. Loose, yellow, silty CLAY. [LAKE BOTTOM SEDIMENTS] 50 DO 15 4.05 50 DO 50 DO Firm, massive, grey, silty, sandy clay. (TILL) [OVERBURDEN] - at 4.05m to 4.5m yellow to grey, silty, sandy clay with gravel. 50 DO 35 50 DO 5 15 0 5.8m to 7.1m Falling Head Packer Test 6 50 DO 6.50 0 ٠. ٥ 0 Inferred loose, wet, grey, green, white, pink, rounded to subrounded COBBLES, GRAVEL and coarse SAND. (i.e. cobbles, gravel, and inferred boulders contained within a sand matrix.)
[OVERBURDEN] ٠. ر 7 ws , 0 ٥, ٥ 022-14~1.GPJ GLDR_CAN.GDT 25/2/04 0) ،ه Ó ٠. (. C CONTINUED NEXT PAGE DEPTH SCALE

1:50

LOGGED: CJC/JRT CHECKED:

BOREHOLE 022-14~1.GPJ GLDR_CAN.GDT 25/2/04

RECORD OF DRILLHOLE: 02GT-07

LOCATION: West Dyke BORING DATE: 13 May, 2002

SHEET 2 OF 3

DATUM: Local

<u>"</u>	QQ	SOIL PROFILE			SA	MPL	.ES	DYNAM RESIS	MIC PENE TANCE, E	TRATI	ON 5/0.3m	1	HYDRA	ULIC Co	ONDUCT	ΓΙVITY,	T		PIEZOMETER OR
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	BER	TYPE	BLOWS/0.3m	2	0 40) (60 8	Q - •	10 ⁻	4 10	0 ⁻³ 1		 ENT	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
DEP	BORIN	DESCRIPTION	STRAT/	DEPTH (m)	NUMBER	Σ	BLOW	Cu, kPa	R STRENC a 0 40			ũ-ŏ 80		—	→ _W			ADC LAB.	
— 10			• 7						J										
- - -			6 O																- - -
-		Inferred grey, green, white, pink, rounded to subrounded COBBLES, GRAVEL and coarse SAND. (i.e. cobbles, gravel, and	00																- -
- - - 11 -		coarse SAND. (i.e. cobbies, gravel, and inferred boulders contained within a sand matrix.) [OVERBURDEN] (continued)	00																<u>-</u> -
- - -																			- - -
- - -		Bedrock Encountered. Refer to	, C																- - -
- 12 -		ROCK LOG for continuation of rock description.																	
-																			- - -
- - -																			- - -
— 13 - -																			
- - -																			- - -
- - - - 14																			- - -
-																			- - -
-																			-
- - 15 -																			- -
- - -																			- -
- - -																			- - -
- 16 -																			
- -																			=
-																			- -
— 17 - -																			
-																			=
- - - - 18																			- - -
-																			=
- - -																			- -
- - - 19																			- -
- - -																			- -
- - -																			- - -
																			_
	PTH	H SCALE			_	1		Â		.1.4 -		<u> </u>	Į .			1	LOG	GED: C	JC/JRT
	50							J	Go Asso	nae: Ocia	r Ates								ECKED:

LOCATION: West Dyke

RECORD OF DRILLHOLE: 02GT-07

 DRILLHOLE:
 02GT-07
 SHEET 3 OF 3

 DRILLING DATE:
 13 May, 2002
 DATUM: Local

DRILL RIG: LY38

DRILLING CONTRACTOR: Boart-Longyear

DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV.	RUN No.	(TION RATE	FLUSH COLOUR	FR-F CL-C SH-S VN-V	FRAC CLEA SHEA VEIN	TURE VAGE	F J P	-FAULT I-JOINT P-POLISHI S-SLICKEI	ED	F S IDED F	R-RO		UE-UNEVEN ED W-WAVY R C-CURVED	MB- B-B	-MEC EDDI -CHL	DRITI	EAK ZED			NOTES WATER LEVELS
DEPTH	DRILLING		SYMBC	DEPTH (m)	RUI	PENETRA (m)	FLUSH	TO COF 88	TAL RE %	SO COF 8 8	LID RE %	R.Q.D. %	Т	FRACT. INDEX PER 0.3		DIS		CE	STR	OCK ENGT IDEX	ТН	EF IN	ATH- RING DEX	INSTRUMENTATION
	_	Continued from SOIL LOG.		11.75				Ш	+	Ш		ЩЦ	ļ		\parallel	\coprod	BC,,			\mathbb{H}	╙	Ш	\Box	1
- 12 - 13	Boart-Longyear	Slightly weathered, light grey-green, foliated, fine to medium grained, medium strong to strong, SILICIFIED INTERMEDIATE VOLCANICS. - Transitional into quartzite?	V V V V V V V V V V V V V V V V V V V		2											•	BC., FO,C,R J,PL,SM FO,PL,SM ×4× F	e						13.04m to 13.33m Sample Taken. 13.5m to 15.5m Packer Test
- 14 - 15	Boart-	Fresh, white, fine grained, strong to very strong, QUARTZITE Fracture surfaces are silicified.		13.65	2												J,PL,R FO,PL,R Seric FO,PL,SM Ser	ricite site ricite ricite						15.30m to 15.5m Sample Taken.
		End of DRILLHOLE.		15.50																				
- 16																								
- 17																								
- 18																								
- 19																								
- 20																								
- 21																								
DEF		SCALE									∐ Go	older Ocia] r_									og		CJC/JRT HECKED:

RECORD OF DRILLHOLE: 02GT-08

SHEET 1 OF 2 BORING DATE: 14 May, 2002 DATUM: Local LOCATION: West Dyke DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s PIEZOMETER SAMPLES SOIL PROFILE BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING OR STANDPIPE INSTALLATION STRATA PLOT BLOWS/0.3m NUMBER ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH -OW - WI Wp | (m) Ice Surface 0.00 Ice. 2.30 Water. . НОЗ 50 DO 56 Dense, yellow, CLAY, SILT, SAND and GRAVEL. (Inferred) - Sa #1: Su est. = 25 kPa 50 DO 94 2 5.70 Ŏ Loose, gravel and cobbles. [OVERBURDEN] 6.50 ° C SH , O Inferred loose, grey-green, white, rounded to sub-rounded, COBBLES, coarse GRAVEL and SAND. (Inferred) [OVERBURDEN] ٠. ٥ 50 DO 29 0 o.C 022-14~1.GPJ GLDR_CAN.GDT 25/2/04 Bedrock Encountered. Refer to ROCK LOG for continuation of rock description. 10

DEPTH SCALE

1:50

LOCATION: West Dyke

DRILLHOLE 022-14~1.GPJ GLDR_CAN.GDT 25/2/04

RECORD OF DRILLHOLE: 02GT-08

DRILLING DATE: 14 May, 2002

SHEET 2 OF 2

DATUM: Local

DRILL RIG: LY38

														LY3 TNO		СТС	OR:	Boa	art-L	ongyear							
Щ		ORD		90			ATE	TURN	CL-	CLE	AVA	JRE GE	J-c	FAUL [*] JOINT			R	M-SN -ROL	JGH	UE-UNEVEN MI	B-ME	CH. I	I COF				
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV.	RUN No.	PENETRATION RATE (m/min)	COLO RET	SH- VN-	SHE VEI	N			POLIS				T-STI L-PL/	ANAF	R C-CURVED C	н-сн		TIZED	_			NOTES WATER LEVELS
ME				YMBC	DEPTH (m)	RUI	NETRA (m)	HS	т	OTAL	T	SOLI)	R.Q.I	D.	FRA IND PER	EX	DIP CORE	w.r.t.	SCONTINUITY DATA	ST	ROC REN INDE	GTH	E	EATH- RING NDEX		INSTRUMENTATION
	\downarrow	<u>R</u>		Ś			E E	FLUSH		8 8 8 1 T		CORE	- 1	884	8	2 P		0 8 T T		TYPE AND SURFACE DESCRIPTION	1	¥ 22			¥ % %	84 4	
	H	Н	Continued from SOIL LOG. Slightly weathered, white to light grey,		8.30										Н				+	BC,,		Н	$^{+}$			Н	
-			massive, fine to medium grained, medium strong, QUARTZ VEIN, with	***																							=
Ē			sulphides.		8.80	1			H				Н		Н					BC,,							=
- 9 -			\- Vein has open vuggy fractures.	V V V														•	•	J,PL,R Fe VN,W,VR Fe VN,W,R Fe							-
E				, A A	1															J,PL,SM							9.38m to 9.50m
Ė				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1				П											BC,,							Sample Taken.
-				A A 4	1															BC,, BC,, Fe							=
10			Fresh white to see a section for	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1															BG,, 16							
-			Fresh, white to grey, massive, fine grained to medium grained, strong, silicified, INTERMEDIATE to FELSIC	A A 4	1													.		BC,, Fe							Ξ
Ē			VOLCANICLASTICS.	7	1													ŀ		J,PL,R Fe J,PL,SM						Н	10.50m to 12.50m Falling Head
Ė ,,			- Sporadic quartz veins throughout which are vuggy.	7	7	2														J,PL,SM Fe J,PL,SM x2x Fe							Test – k=1.1x10-2 cm/s –
- 11 -			- Open fractures have up to 2mm	A A 4	1	_														J,PL,SM Fe							
Ē			aperature and are vuggy.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1													•		J,PL,SM Fe J,,							44.5
-			- Fe staining on all fracture surfaces.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1															J,, BC,, BC.						Н	11.5m to 17.0m = Falling Head = Test = -
12			2 to 3 joint sets; 1 Foliation.2 Sets are at high angles and are relatively closely spaced (centimetre to	A A A														:		J,W,R Fe CI J,PL,SM Fe FO,,							k=7.3x10-3 cm/s -
Ė			metre scale).	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1													•	\dagger	FO,, J,PL,SM x2x Fe FO,PL,SM QZ							12.20m to 12.35m
E	nvear	MH/C	- Less Iron staining below approx. 12m.	V V V	1				Ц				Ц		Ц					YFO,PL,SM QZ							Sample Taken.
Ė	Boart-Longwear	LY38 - HQ/HW	3	7																							- - -
13				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1													-		J,PL,SM							<u>-</u>
-				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	3												ľ		J,PL,SM FO,PL,SM Fe							
-				7	•												Ħ	-		BC,, BC,, J,PL,SM							13.5m to 17.00m
-				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	d													•	-	J,I,VR J,PL,SM FO,PL,SM Fe						Н	Falling Head
14				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13.95				H				Ħ		H					,, 13.95m-15.5m MB							k=3.7x10-4 cm/s -
E																											=
-				*****																							=
Ė				*****	!	4																					-
15			Fresh, pinkish-grey, massive, medium		! ! !																						
-			grained, strong to very strong, GRANITE.		; •																						- - -
-			- RQD is not indicative of quality of rock.						H			П	T		T												=
F			Run #4 was re-cored and rock was mechanically broken.																								=
— 16 —					• •													.		J,PL,SM Fe							-
-						5														→ J,PL,SM							16.42m to 16.60m
E					;								$\ $		$\ $												Sample Taken.
17	L			*****	;							Ш	\prod				Ш						Ш				
ļ ''			End of DRILLHOLE.		17.00								$\ $														-
E											$\ $		$\ $		$\ $												-
E											$\ $		$\ $		$\ $												=
_ 18											$\ $				$\ $												<u>-</u>
Ė											$\ $				$\ $												-
											$\ $				$\ $												
L'1	- P	гu о	CALE		•		•	•		•	d		'							•					CED		IC/IPT
	=Ρ : 5		CALE					(C	1		G	O	lde OCi	r	ውር								LUG			JC/JRT ECKED:
<u> </u>									7		<u> </u>	20	<u> </u>	/LI	al	CS	<u> </u>									,, IL	

LOCATION: West Dyke

RECORD OF DRILLHOLE: 02GT-09

BORING DATE: 15 May, 2002

INCLINATION: -48.368°

AZIMUTH: 79°

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s PIEZOMETER SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING OR STANDPIPE INSTALLATION STRATA PLOT 10⁻³ BLOWS/0.3m NUMBER ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH -OW - WI Wp -(m) Ice Surface 0.00 Inferred boulders. (TILL) [OVERBURDEN]. Bedrock Encountered. Refer to ROCK LOG for continuation of rock description. BOREHOLE 022-14~1.GPJ GLDR_CAN.GDT 25/2/04 10

DEPTH SCALE 1:50

SHEET 1 OF 4

DATUM: Local

LOCATION: West Dyke

RECORD OF DRILLHOLE:

02GT-09

SHEET 2 OF 4

DATUM: Local

DRILLING DATE: 15 May, 2002

DRILL RIG: LY38

INCLINATION: -48.368° AZIMUTH: 79°

DRILLING CONTRACTOR: Boart-Longyear

FR-FRACTURE F-FAULT SM-SMOOTH FL-FLEXURED **BC-BROKEN CORE** DRILLING RECORD DEPTH SCALE METRES CL-CLEAVAGE J-JOINT P-POLISHED R-ROUGH ST-STEPPED UE-UNEVEN MB-MECH. BREAK SYMBOLIC LOG SH-SHEAR W-WAVY **B-BEDDING** NOTES WATER LEVELS PENETRATION R (m/min) ELEV. VN-VEIN S-SLICKENSIDED PL-PLANAR C-CURVED CH-CHLORITIZED DESCRIPTION WEATH-ERING INDEX DEPTH DISCONTINUITY DATA INSTRUMENTATION FRACT. INDEX PER 0.3 R.Q.D. (m) TOTAL CORE % SOLID CORE % DIP w.r.t. TYPE AND SURFACE DESCRIPTION 8888 o 8 8 8 W2 W4 Continued from SOIL LOG. 1.60 FO,U,R Thermistor TC-4 installed Fresh, light grey, foliated, fine to medium from ground surface to FO,U,R grained, medium strong to strong, QUARTZITE. 15.0m depth. FO,U,R Nodal Down Hole Depths 2.50 1 0.3m 2 0.8m 3 2.8m 4 4.8m FO,U,R 5 9.8m 6 14.8m FO,U,R 7 9.8m 8 -0.2m FO,U,R Fresh, light grey, foliated, fine to medium grained, strong, QUARTZITE. FO,U,R FO,U,R FO.U.R 5.50 FO,U,R FO,U,R FO.U.R FO.U.R FO,U,R Fresh, light grey, foliated, fine to medium grained, strong, QUARTZITE. FO,U,R FO,PL,SM FO,U,R 9.5m to 14.5m Falling Head Test No responce Fresh, light grey, foliated, fine to medium grained, strong, QUARTZITE. FO,U,R FO.U.R 11 FO,U,R FO,U,R 11.50m to 11.75m UCS #1 11.50 CONTINUED NEXT PAGE

DEPTH SCALE 1:50

022-14~1.GPJ GLDR_CAN.GDT 25/2/04

LOCATION: West Dyke

022-14~1.GPJ GLDR_CAN.GDT 25/2/04

RECORD OF DRILLHOLE: 02GT-09

DRILLING DATE: 15 May, 2002

DRILL RIG: LY38

INCLINATION: -48.368° AZIMUTH: 79°

DRILLING CONTRACTOR: Boart-Longyear

SHEET 3 OF 4

DATUM: Local

FR-FRACTURE F-FAULT SM-SMOOTH FL-FLEXURED DRILLING RECORD PENETRATION RATE (m/min) CL-CLEAVAGE J-JOINT P-POLISHED R-ROUGH ST-STEPPED UE-UNEVEN MB-MECH. BREAK DEPTH SCALE METRES SYMBOLIC LOG SH-SHEAR W-WAVY B-BEDDING NOTES WATER LEVELS ELEV. VN-VEIN S-SLICKENSIDED PL-PLANAR C-CURVED CH-CHLORITIZED DESCRIPTION WEATH-ERING INDEX DEPTH DISCONTINUITY DATA INSTRUMENTATION FRACT. INDEX PER 0.3 R.Q.D. (m) TOTAL CORE % SOLID CORE % DIP w.r.t. CORE AXI TYPE AND SURFACE DESCRIPTION 8888 o 8 8 8 W2 W4 12 Fresh, light grey, foliated, fine to medium grained, strong, QUARTZITE. *(continued)* 13 14 15 FO,U,R FO,U,R F,PL,R 16.22m to 16.50m Sample Taken. Fresh, light grey, foliated, fine to medium grained, strong to very strong, QUARTZITE. 17 FO,PL,R ,PL,R Orthogonal 18 ,PL,R Orthogonal FO.PL.R 19 ,PL, Contact 19.20 FO,U,SM FO,PL,SM Fe FO,PL,VR Fresh, grey, thinly laminated (foliated), fine grained, medium strong, interbedded IRON Fm and ULTRAMAFIC VOLCANICS. 20 FO,PL,SM - Weak magnatite banding. - 19.60m Vuggy quartz/hematite bands J,I,VR CaCO3 - Fine grained disseminated sulphide 21 throughout. CONTINUED NEXT PAGE DEPTH SCALE LOGGED: CJC/JRT 1:50 CHECKED:

LOCATION: West Dyke

022-14~1.GPJ GLDR_CAN.GDT 25/2/04

RECORD OF DRILLHOLE: 02GT-09

DRILLING DATE: 15 May, 2002

SHEET 4 OF 4

DATUM: Local

DRILL RIG: LY38

INCLINATION: -48.368° AZIMUTH: 79° DRILLING CONTRACTOR: Boart-Longyear FR-FRACTURE F-FAULT SM-SMOOTH FL-FLEXURED **BC-BROKEN CORE** DRILLING RECORD PENETRATION RATE (m/min) CL-CLEAVAGE J-JOINT P-POLISHED R-ROUGH ST-STEPPED UE-UNEVEN MB-MECH. BREAK DEPTH SCALE METRES SYMBOLIC LOG SH-SHEAR W-WAVY B-BEDDING NOTES WATER LEVELS ELEV. VN-VEIN S-SLICKENSIDED PL-PLANAR C-CURVED CH-CHLORITIZED DESCRIPTION DEPTH DISCONTINUITY DATA INSTRUMENTATION FRACT. INDEX PER 0.3 R.Q.D. (m) TOTAL CORE % SOLID CORE % DIP w.r.t. CORE AXI TYPE AND SURFACE DESCRIPTION 8888 o 8 8 8 22 FO,PL,R CaCO3, Fresh, grey, thinly laminated (foliated), fine grained, medium strong, interbedded IRON Fm and ULTRAMAFIC FO,PL,SM FO,PL,R VOLCANICS. 23 - Weak magnatite banding. FO,PL,R - 19.60m Vuggy quartz/hematite bands FO,PL,VR BC,, ,PL,VR Contact 23.50 - Fine grained disseminated sulphide throughout. (continued) FO,I,VR 24.5m to 30.8m Falling Head k=2.1x10-6cm/s 25 25.00m to 25.24m Sample Taken. FO,PL,R FO,W,R 26 Fresh, green, laminated, fine to medium grained, silicified and chloritized, medium strong, ULTRAMAFIC VOLCANICS. FO,PL,SM 27 FO,U,SM 28 FO,PL,SM x4x FO,PL,SM Sericite 29 FO,PL,SM 29.50 30 Fresh, white, massive to weakly foliated, fine to medium grained, very strong, QUARTZITE. 30.80 End of DRILLHOLE 31 DEPTH SCALE LOGGED: CJC/JRT 1:50 CHECKED:

RECORD OF DRILLHOLE: 02GT-10

SHEET 1 OF 4

BORING DATE: 13 May, 2002 LOCATION: West Dyke DATUM: Local INCLINATION: -48.693° AZIMUTH: 238° DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s PIEZOMETER SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING OR STANDPIPE INSTALLATION STRATA PLOT BLOWS/0.3m 80 10⁻³ NUMBER ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH -0₩ - WI Wp -(m) Ground Surface 0.00 50DO 50 Silty sand and gravel, with cobbles and boulders. (TILL) Bedrock Encountered. Refer to ROCK LOG for continuation of rock description. BOREHOLE 022-14~1.GPJ GLDR_CAN.GDT 25/2/04 10

DEPTH SCALE 1:50

LOGGED: CJC/JRT CHECKED:

RECORD OF DRILLHOLE: 02GT-10

LOCATION: West Dyke DRILLING DATE: 13 May, 2002

DRILL RIG: LY38

INCLINATION: -48.693° AZIMUTH: 238°

DRILLING CONTRACTOR: Boart-Longyear

SHEET 2 OF 4

DATUM: Local

DESCRIPTION Section Description Desc	B-MECH. BREAK BEDDING H-CHLORITIZED	NOTES WATER LEVELS
Fresh, grey, wealthy laminaed to thickly to the control of the con	ROCK STRENGTH ERING INDEX INDEX	INSTRUMENTATIO
Fresh, grey, weakly laminaed to thickly beddied, medium strong INTERMEDIATE VOLCANICS. Fresh, grey, weakly laminaed to thickly beddied, medium strong INTERMEDIATE VOLCANICS. Fresh, grey, weakly laminaed to thickly beddied, medium strong INTERMEDIATE VOLCANICS. Fresh, grey, weakly laminaed to thickly beddied, medium strong INTERMEDIATE VOLCANICS. Sightly weathered, grey, foliated, fine to medium strong INTERMEDIATE VOLCANICS. Fresh, grey, foliated, fine to medium volume to the property of the property		
Fresh, grey, weakly laminaed to thickly bedded, medium strong INTERNEDIATE VOLCANICS. - Foliation surfaces have iron staining. - Foliation surfaces have i		Thermistor TC-3 installed to 30.0m depth. Nodal Down Hole Depth 1 0.3m 2 0.8m 3 2.8m
Slightly weathered, grey, foliated, fine to medium grained, strong intermediate your your your your your your your your		4 4.8m 5 9.8m 6 14.8m 7 19.8m 8 29.8m
8 Presh, grey, foliated, fine to medium grained, strong INTERMEDIATE 10 Fresh, grey, foliated, fine to medium grained, strong INTERMEDIATE 10 JPLR Fe JPLR JPLR JPLR JPLR JPLR JPLR JPLR JPLR		4.90m to 5.05m Sample Taken.
Fresh, grey, foliated, fine to medium grained, strong INTERMEDIATE VOLCANICS. Fresh, grey, foliated, fine to medium yo		
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
7 V V V V V V V V V V V V V V V V V V V		9.5m to 14.5m Falling Head Test - No response
CONTINUED NEXT PAGE		

LOCATION: West Dyke

RECORD OF DRILLHOLE: 02GT-10

DRILLING DATE: 13 May, 2002

DRILL RIG: LY38

INCLINATION: -48.693° AZIMUTH: 238°

DRILLING CONTRACTOR: Boart-Longyear

SHEET 3 OF 4

DATUM: Local

FR-FRACTURE F-FAULT SM-SMOOTH FL-FLEXURED **BC-BROKEN CORE** DRILLING RECORD PENETRATION RATE (m/min) CL-CLEAVAGE J-JOINT P-POLISHED R-ROUGH ST-STEPPED UE-UNEVEN MB-MECH. BREAK DEPTH SCALE METRES SYMBOLIC LOG SH-SHEAR W-WAVY **B-BEDDING** NOTES ELEV. WATER LEVELS VN-VEIN S-SLICKENSIDED PL-PLANAR C-CURVED CH-CHLORITIZED DESCRIPTION ROCK STRENGTH INDEX DEPTH DISCONTINUITY DATA INSTRUMENTATION FRACT. INDEX PER 0.3 R.Q.D. % (m) TOTAL CORE % SOLID CORE % DIP w.r.t. CORE AXI TYPE AND SURFACE DESCRIPTION 8888 2558 o 8 8 8 11.50 J,U,R J,PL,R Fe 12 J,U,R Fe J,PL,R Fe J.PL.R Fe J,PL,R J,PL,R Fe Fresh, grey, foliated, fine to medium J,PL,R Fe grained, medium strong INTERMEDIATE VOLCANICS. 13 J,PL,R Fe J.PL.R Fe J,PL,R J,PL,R Fe BC,, 14 BC,, J,PL,R Fe • • • • • • J,PL,SM J,PL,SM J,PL,R Fe J,PL,R Fe J,PL,R Fe J,PL,R J,PL,R J,PL,R Fe BC,, 14.50 15 J,PL,R Fe 15.5m to 28.0m J.PL.R Falling Head Test J,PL,R Fe Fresh, grey, foliated, fine to medium grained, medium strong INTERMEDIATE VOLCANICS. k=3.1x10-5cm/s 16 J,PL,R Fe J,PL,R J,PL,R Fe J,PL,R Fe 17 J,PL,R Fe BC,, J,PL,R Fe 17.50 J,, 18 J,, J., Fresh, grey, foliated, fine to medium grained, medium strong INTERMEDIATE VOLCANICS. 19 - 18.5m to 18.80m Fault zone contains clay rich Breccia, weathered weak, soapy texture. 25/2/04 20 022-14~1.GPJ GLDR_CAN.GDT 21 J,PL,R J.PL.R CONTINUED NEXT PAGE DEPTH SCALE LOGGED: CJC/JRT Golder 1:50 CHECKED:

LOCATION: West Dyke

25/2/04

022-14~1.GPJ GLDR_CAN.GDT

RECORD OF DRILLHOLE: 02GT-10

DRILLING DATE: 13 May, 2002

DRILL RIG: LY38

AZIMUTH: 238°

DRILLING CONTRACTOR: Boart-Longyear

SHEET 4 OF 4

DATUM: Local

INCLINATION: -48.693° FR-FRACTURE F-FAULT SM-SMOOTH FL-FLEXURED **BC-BROKEN CORE** DRILLING RECORD PENETRATION RATE (m/min) CL-CLEAVAGE J-JOINT R-ROUGH ST-STEPPED UE-UNEVEN MB-MECH. BREAK DEPTH SCALE METRES SYMBOLIC LOG SH-SHEAR P-POLISHED W-WAVY B-BEDDING NOTES WATER LEVELS ELEV. VN-VEIN S-SLICKENSIDED PL-PLANAR C-CURVED CH-CHLORITIZED DESCRIPTION ROCK STRENGTH INDEX WEATH-ERING INDEX DEPTH DISCONTINUITY DATA INSTRUMENTATION FRACT. INDEX PER 0.3 R.Q.D. % (m) FLUSH TOTAL CORE % SOLID CORE % DIP w.r.t. CORE AXI TYPE AND SURFACE DESCRIPTION 8888 o 8 8 8 21.5m to 30.0m Falling J,PL,R Test k=1.1x10-7cm/s J,PL,R Fe J,PL,R Fe 22 J,PL,R Fe 23 J,PL,R Fe FO,W,R FO,PL,R FO,PL,R Fe FO,PL,SM 24 FO,PL,SM FO,PL,SM FO,PL,SM VN,I,R 25 FO,PL,R 24.70m to 24.90m Sample Taken. Fresh, grey, foliated, fine to medium grained, strong INTERMEDIATE VOLCANICS. J,I,VR Fe FO,PL,SM - 23.86m Iron Staining. 26 - 25.6m Iron Staining. VN,W,SM - 26.0m Foliation surfaces are sericitic. - 28.10m Vuggy quartz vein. - 28.5m Iron staining on foliation FO,PL,SM surfaces. (continued) 27 FO.PL.SM FO,PL,SM 28 10 FO,PL,SM FO,PL,SM -J,PL,R Fe -J,PL,SM Fe 29 FO,PL,SM FO,PL,SM Fe FO,PL,SM Fe FO,PL,SM Fe J,W,VR Fe CI 30.00 End of DRILLHOLE. 31 DEPTH SCALE LOGGED: CJC/JRT 1:50 CHECKED:

LOCATION: Causeway

RECORD OF DRILLHOLE: 02GT-11

DRILLING DATE: 10 May, 2002

SHEET 1 OF 3

DATUM: Local

DRILL RIG: LY38

DRILLING CONTRACTOR: Boart-Longyear HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES CORE **GRADATION** % BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER OR STANDPIPE INSTALLATION STRATA PLOT BLOWS/0.3m RUN No. GRAVEL NUMBER SAND FINES ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION RECOVERY % DEPTH -0₩ Wp ⊢ Ice Surface 0.00 Ice. 2.00 Water. CUSTOM LOG 3 022-14-1.GPJ GLDR_CAN.GDT 25/2/04 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: CJC/JRT 1:50 CHECKED:

LOCATION: Causeway

RECORD OF DRILLHOLE: 02GT-11

DRILLING DATE: 10 May, 2002

DRILL RIG: LY38

DRILLING CONTRACTOR: Boart-Longyear

HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES CORE **GRADATION** % BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT OR STANDPIPE BLOWS/0.3m NUMBER RUN No. GRAVEL FINES SAND ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION RECOVERY % INSTALLATION DEPTH -OW - WI Wp | 12 13 14 Water. (continued) 15 16 17 18 CUSTOM LOG 3 022-14~1.GPJ GLDR_CAN.GDT 25/2/04 18.30 Inferred lake bottom sediments and overburden (TILL) [OVERBURDEN] 20 Bedrock Encountered. Refer to ROCK LOG for continuation of DEPTH SCALE LOGGED: CJC/JRT

SHEET 2 OF 3

DATUM: Local

LOCATION: Causeway

DRILLHOLE 022-14~1.GPJ GLDR_CAN.GDT 25/2/04

RECORD OF DRILLHOLE: 02GT-11

DRILLING DATE: 10 May, 2002

DRILL RIG: LY38

SHEET 3 OF 3

DATUM: Local

															AC	TOI				_ongyear								
ALE 3	DRII I ING RECORD	COAD				RAIE	LOUR ETURN	FR- CL-	FRAC CLE/	AVA		J-	-FAU	NT	-D		R-	ROL	JGH	UE-UNEVEN	MB-	BRO MEC EDD	H. B					NOTES
DEPTH SCALE METRES	IG RF	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH	LEV. Z O CONTROL VIN-VEIN S-SLICKENSIDED PL-PLANAR C-CURVED CH-C					CHL		_	V	VEAT	TH-	WATER LEVELS INSTRUMENTATION												
DEP		NICLE IN THE CONTRACT OF THE C	SYMB	(m)	R	R.Q.D. NDEX ORE % CORE % PER 0.3 CORE AUS TYPE AND SURFACE DESCRIPTION 2 注 記 2 2 2 2 2 2		1	ERIN INDE	IG X																		
	_	Continued from SOIL LOG.				_	ш	8.8	388	8	888	8	88	3 4 8	2	5 5	8	T T	88	BEGGINI HON		25.25	28.8	7 2	Š	W2	∮ ≱	
21 22 23 2 24 2 24 2 2 2 2 2 2 2 2 2 2 2 2	Boart-Longyear	Slightly weathered, green, very thinly laminated, vuggy, fine grained, weak to medium strong ULTRAMAFIC VOLCANICS. - Quartz veins occur every 0.2 to 0.3m these are up to several centimetres in width and very vuggy with Iron staining. - Broken core areas are characterized by vuggy vein.			2														•	BC,, BC,, BC,, Lost Core 21.0-21.3m BC,, J,PL,SM FO,PL,SM Fe VN,I,VR FO,W,SM BC,, J,PL,R J,PL,R J,I,LR J,I,LR J,I,LR J,I,VR FO,C,SM Fe BC,, BC,, BC,, J,W,VR BC,, BC,, J,W,VR	onal							22.0m to 27.0m Falling Head Test k=1.6x10-3 cm/s
25 26 26 27 27		Fresh, green, very thinly laminated, fine grained, medium strong ULTRAMAFIC VOLCANICS. - Core is pitted and vuggy locally, much less than previous interval. End of DRILLHOLE.	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.00	3													•	•	BC,, J,PL,SM PL,VR Orthog FO,PL,SM J,W,R FO,PL,SM	onal							25.0m to 27.0m
28 																												
	DEPTH SCALE 1:50 LOGGED: CJC/JRT Associates CHECKED:																											

APPENDIX II STABILITY ANALYSES

Table AII-1: Summary of Limit Equilibrium Slope Stability Analyses –
Meadowbank Tailings Dike
(Page 1 of 2)

Figure No. (II-)	Conditions Modelled	Calculated Minimum FOS	Calculated Yield Acceleration (g)	Required Undraine Shear Strength of Foundation Till (kPa) to Achieve		
			(9)	FOS=1.0	FOS=1.3	
	End of Construction					
1	Drained Condition for foundation till; Circular Surfaces	2.8				
1	Drained Condition for foundation till; Block Surfaces	2.7				
1	Undrained Condition for foundation till; Circular Surfaces			~50	~65	
1	Undrained Condition for foundation till; Block Surfaces			~45	~60	
6	Construction-induced pore water pressures in till core and cutoff (r_u = 0.3); undrained condition for foundation till; circular surfaces.			~50	~70	
6	Construction-induced pore water pressures in till core and cutoff (r_u = 0.3); undrained condition for foundation till; block surfaces			~40	~60	
6	Construction-induced pore water pressures in till core and cutoff (r_u = 0.3); drained condition for foundation till; circular surfaces.	2.8				
6	Construction-induced pore water pressures in till core and cutoff (r _u = 0.3); drained condition for foundation till; block surfaces	2.7				
8	Progressive failure; undrained; circular surfaces	1.9				
8	Progressive failure; undrained; circular surfaces			~45	~60	
	High Water					
2	Circular Surfaces; Static	2.0				
2	Block Surfaces; Static	2.5				
2	Circular Surfaces; Pseudostatic	1.8				
2	Block Surfaces; Pseudostatic	2.3				

Notes:

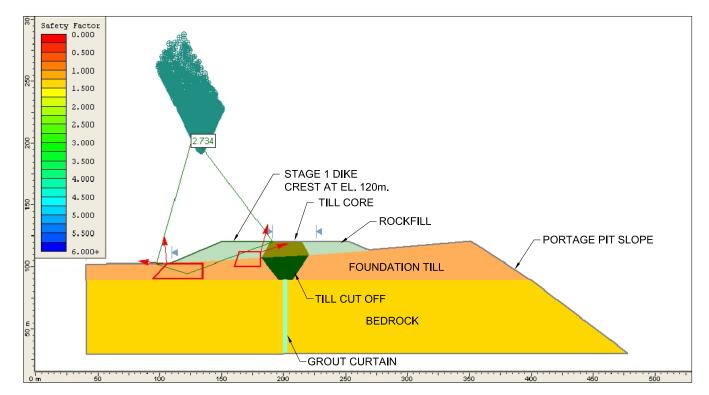
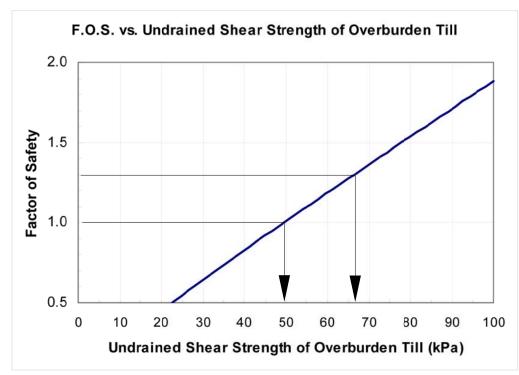
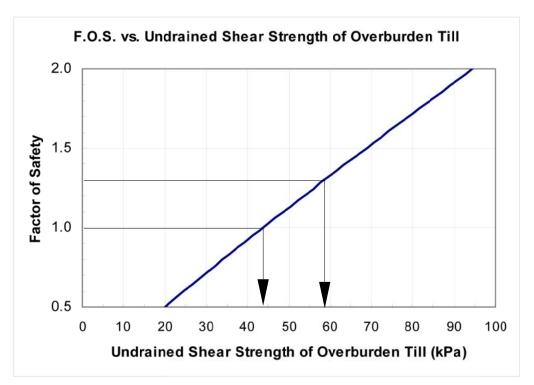

- 1. Yield acceleration = the peak horizontal ground acceleration (PGA) that produces a FOS of 1.0.
- 2. Shading indicates that value is not applicable to given modelling scenario.

Table AII-1: Summary of Limit Equilibrium Slope Stability Analyses – Meadowbank Tailings Dike (Page 2 of 2)

Figure No. (II-)	Conditions Modelled	Calculated Minimum FOS	Calculated Yield Acceleration (g)	Required Undrained Shear Strength of Foundation Till (kPa) to Achieve
	End of Tailings Deposition			
3	Circular Surfaces; Static	2.3		
3	Block Surfaces; Static	2.3		
3	Circular Surfaces; Pseudostatic	2.3		
3	Block Surfaces; Pseudostatic	2.2		
5	Yield Acceleration; Circular Surfaces		~0.41	
5	Yield Acceleration; Block Surfaces		~0.47	
7	Friction Angle of Foundation Till = 30°; circular	2.4		
7	Friction Angle of Foundation Till = 30°; block	2.6		
7	Friction Angle of Foundation Till = 32°; circular	2.5		
7	Friction Angle of Foundation Till = 32°; block	2.7		
	Post-Closure			
4	Circular Surfaces; Static	6.2		
4	Block Surfaces; Static	4.9		
4	Circular Surfaces; Pseudostatic	5.4		
4	Block Surfaces; Pseudostatic	4.3		
5	Yield Acceleration; Circular Surfaces		~0.43	
5	Yield Acceleration; Block Surfaces		~0.67	


Notes:

- 1. Yield acceleration = the peak horizontal ground acceleration (PGA) that produces a FOS of 1.0.
- 2. Shading indicates that value is not applicable to given modelling scenario.



CIRCULAR FAILURE - DRAINED CONDITION IN FOUNDATION TILL

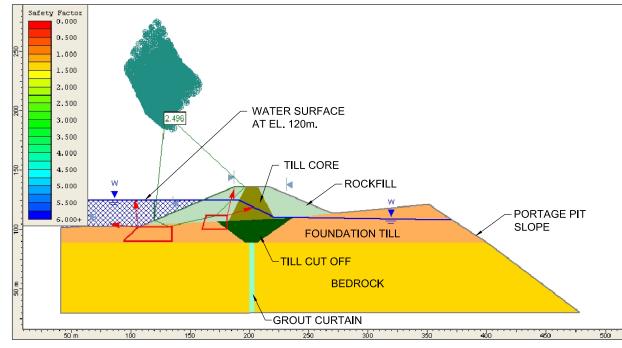
BLOCK FAILURE - DRAINED CONDITION IN FOUNDATION TILL

CIRCULAR FAILURE - UNDRAINED CONDITION IN FOUNDATION TILL - SENSITIVITY PLOT

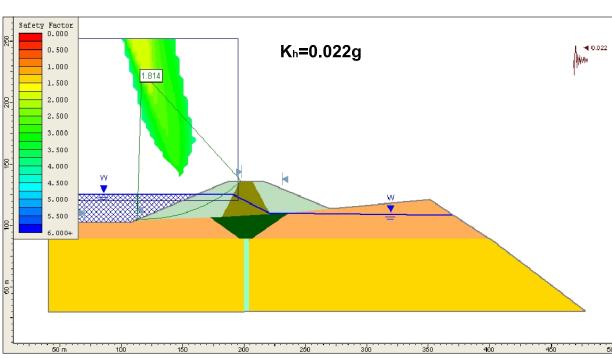
BLOCK FAILURE - UNDRAINED CONDITION IN FOUNDATION TILL - SENSITIVITY PLOT

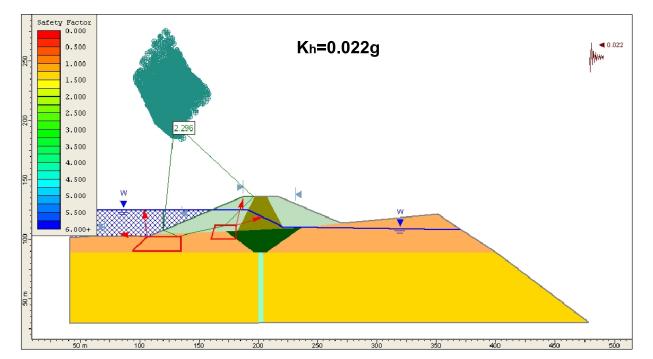
MATERIAL PROPERTIES							
MATERIAL TYPE	ø'						
TILL CORE	28						
ROCKFILL	40						
TILL CUT OFF	28						
FOUNDATION TILL	28 - see Note 3						
BEDROCK	INFINITE STRENGTH						

- 1) Cohesion assumed to be equal to zero for all materials in drained conditions.
- 2) All values of Ø' in degrees.
- 3) In undrained case Ø' was not used for Foundation Till.
- 4) Analyses done using limit equilibrium Slope Stability Software SlideTM.


CUMBERLAND RESOURCES LTD.

IILE


TAILINGS DIKE STABILITY AT END OF STAGE 1 CONSTRUCTION


T No. 03	-1413-427	FILE No.	42	74210S	K01
DAH	10NOV2003	SCALE	NA	REV.	0
RCR	10NOV2003				
DAH	10NOV2003	FIGU	RE	-1	
	DAH RCR	DAH 10N0V2003 RCR 10N0V2003	DAH 10N0V2003 SCALE RCR 10N0V2003	DAH 10N0V2003 SCALE NA RCR 10N0V2003	DAH 10NOV2003 SCALE NA REV. RCR 10NOV2003

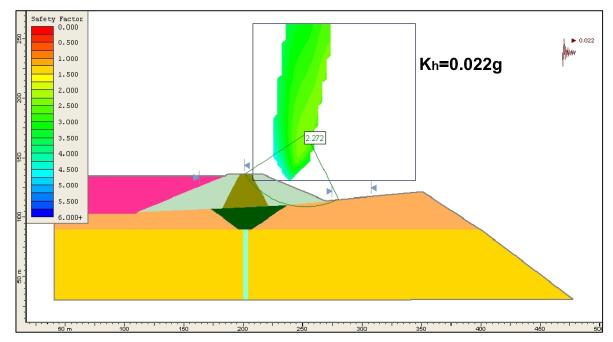
BLOCK FAILURE - STATIC

CIRCULAR FAILURE - PSEUDO STATIC

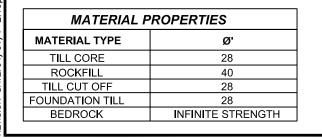
BLOCK FAILURE - PSEUDO STATIC

MATERIAL PROPERTIES							
MATERIAL TYPE	ø'						
TILL CORE	28						
ROCKFILL	40						
TILL CUT OFF	28						
FOUNDATION TILL	28						
BEDROCK	INFINITE STRENGTH						

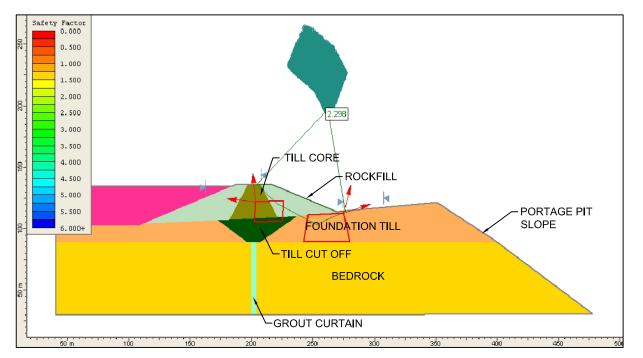
- 1) Cohesion assumed to be equal to zero for all materials in drained conditions.
- 2) All values of Ø' in degrees.
- 3) Kh = 0.022g corresponds to 1:975 YEAR SEISMIC EVENT
 4) Analyses done using limit equilibrium Slope Stability Software Slide TM.

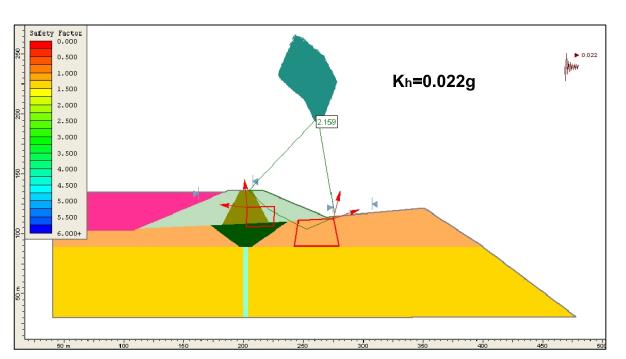

ECT	
	CUMBERLAND
	RESOURCES LTD.

TAILINGS DIKE STABILITY AT HIGH WATER CONDITION



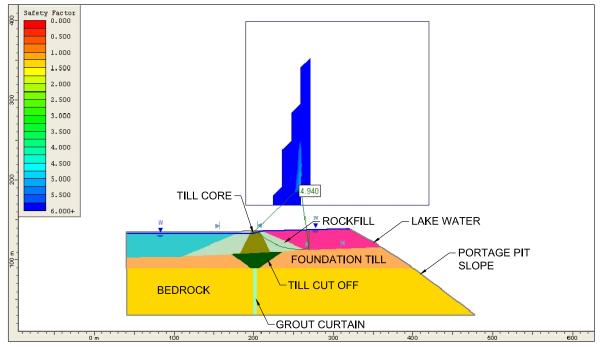
FILE No. 4274210SK02	PROJECT No. 03-1413-427				
SCALE AS SHOWN REV. C	03NOV03	DAH	DESIGN		
	03DEC03	RCR	CADD		
FIGURE II-2	03DEC03		CHECK		
1	16FEB04		REVIEW		


CIRCULAR FAILURE - STATIC

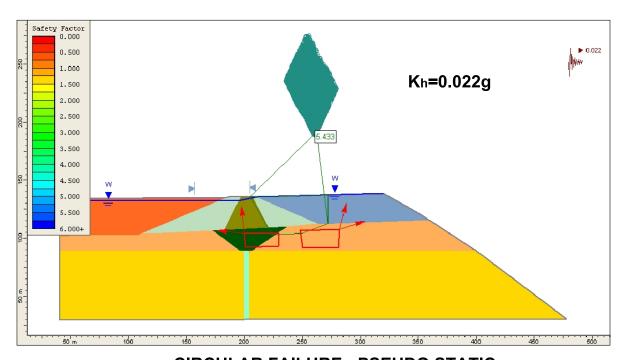

CIRCULAR FAILURE - PSEUDO STATIC

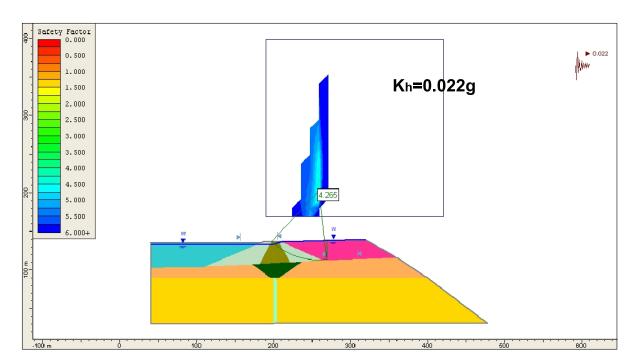
- 1) Cohesion assumed to be equal to zero for all materials in drained conditions.
- 2) All values of Ø' in degrees.
- 3) Kh = 0.022g corresponds to 1:975 YEAR SEISMIC EVENT
- 4) Analyses done using limit equilibrium Slope Stability Software Slide ™.

BLOCK FAILURE - STATIC


BLOCK FAILURE - PSEUDO STATIC

ROJECT											
				飄	R	F		S	A	N	D
	R	E	S	O	U	R	C	ES	5	LI	ΓD


TAILINGS DIKE STABILITY AT END OF TAILINGS DEPOSITION


FILE No. 4274210SK03	PROJECT No. 03-1413-427				
SCALE AS SHOWN REV. 0	03NOV03	DAH	DESIGN		
·	03DEC03	RCR	CADD		
FIGURE II-3	03DEC03	DAH	CHECK		
			00.404		

BLOCK FAILURE - STATIC

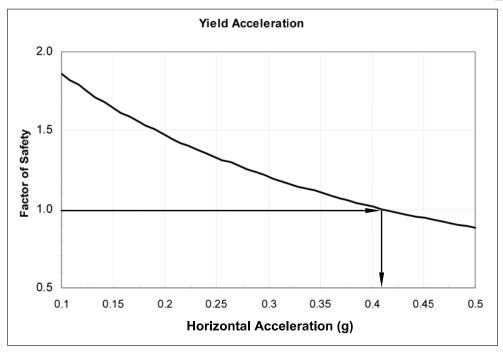
CIRCULAR FAILURE - PSEUDO STATIC

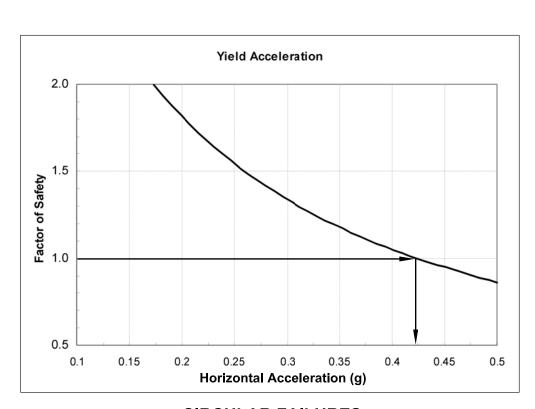
BLOCK FAILURE - PSEUDO STATIC

MATERIAL	MATERIAL PROPERTIES								
MATERIAL TYPE	ø'								
TILL CORE	28								
ROCKFILL	40								
TILL CUT OFF	28								
FOUNDATION TILL	28								
BEDROCK	INFINITE STRENGTH								

- 1) Cohesion assumed to be equal to zero for all materials in drained conditions.
- 2) All values of Ø' in degrees.
- 3) K_h = 0.022g corresponds to 1:975 YEAR SEISMIC EVENT

OJECT	
	CUMBERLAND
	CUMBERLAND
	RESOURCES LTD.

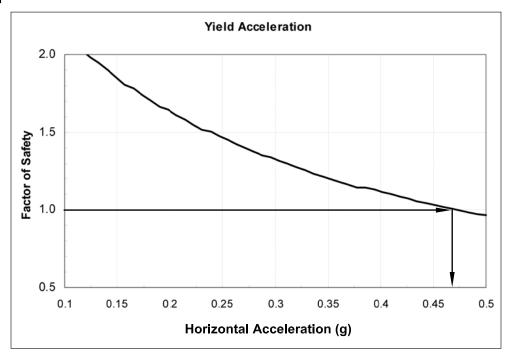

TAILINGS DIKE STABILITY AT CLOSURE


PROJECT No. 03-1413-427			FILE No	٠.	427	4210SF	(04
ESIGN	DAH	03NOV03	SCALE	AS	SHOWN	REV.	0
CADD	RCR	03DEC03					
HECK		03DEC03	l FIG	Gι	JRE	11-4	l l
EVIEW		16FFB04	I '			'	-

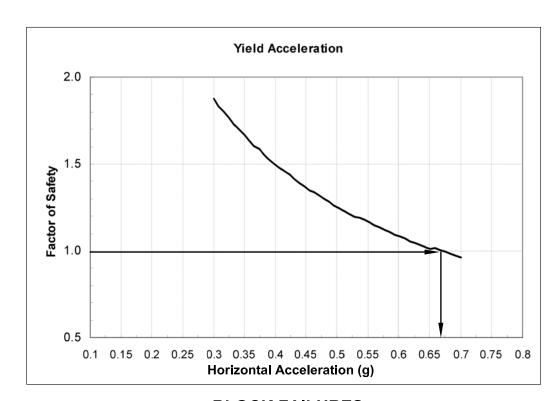
END OF DEPOSITION

CLOSURE

CIRCULAR FAILURES



CIRCULAR FAILURES

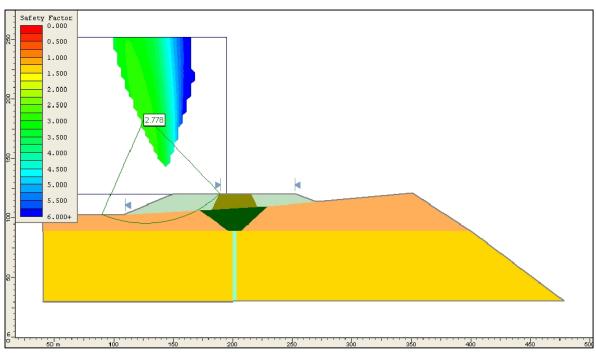

MATERIAL PROPERTIES				
MATERIAL TYPE	ø'			
TILL CORE	28			
ROCKFILL	40			
TILL CUT OFF	28			
FOUNDATION TILL	28			
BEDROCK	INFINITE STRENGTH			

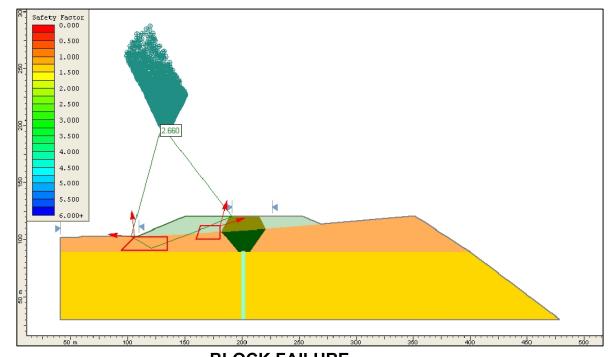
NOTES

- 1) Cohesion assumed to be equal to zero for all materials in drained conditions.
- 2) All values of Ø' in degrees.3) Yield acceleration is peak horizontal ground acceleration
- corresponding to a factor-of-safety of 1.0.
 4) Analyses done using Slide[™] software
 5) Design PGA for Meadowbank = 0.022g.

BLOCK FAILURES

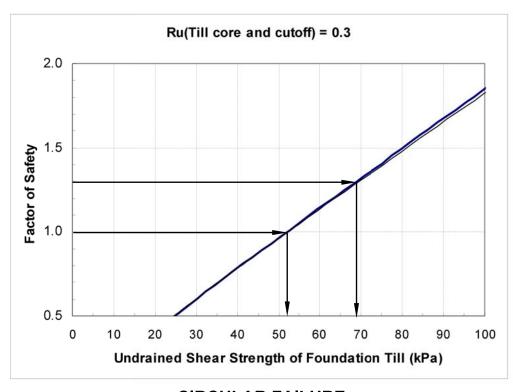
BLOCK FAILURES


ROJECT		
	CUMBERI	
	RESOURCE	S LTD


YIELD ACCELERATION AT END OF DEPOSITION AND AT CLOSURE

PROJECT No. 03-1413-427			FILE No		427	4210SF	(12
DESIGN	DAH	07JAN04	SCALE AS SHOWN		REV.	0	
CADD	RCR	07JAN04					
CHECK	DAH	07JAN04	l FIC	21	IPF	11_5	:

DRAINED CONDITION FOR FOUNDATION TILL



CIRCULAR FAILURE

BLOCK FAILURE

UNDRAINED CONDITION FOR FOUNDATION TILL

2	2.0									/	
Safety	1.5							/			
Factor of Safety	1.0										
(0.5	10	20	30	40	50	60	70	80	90	10

BLOCK FAILURE

MATERIAL PROPERTIES				
MATERIAL TYPE	ø'			
TILL CORE	28			
ROCKFILL	40			
TILL CUT OFF	28			
FOUNDATION TILL	28 - See Note 2			
BEDROCK	INFINITE STRENGTH			

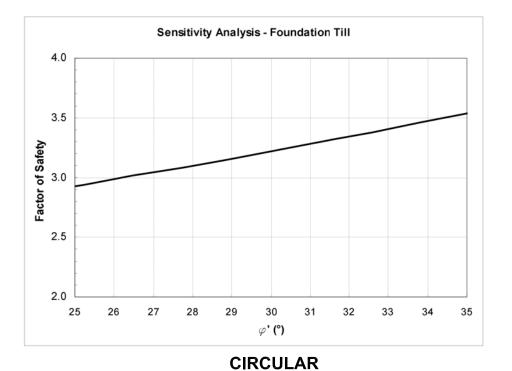
NOTES

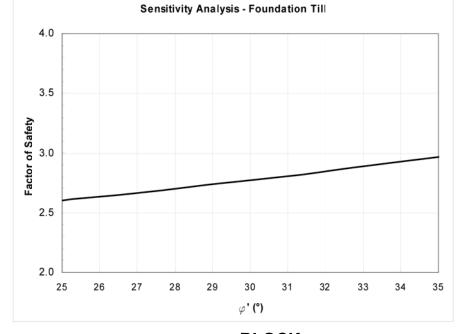
- 1) r_u for till core and cutoff assumed to be equal to 0.3.
- 2) For undrained case Ø=0 for foundation till.

CT		
	CUMBER	
		LANU
	RESOURCE	ES ITD
	REGUGRU	

TITLE

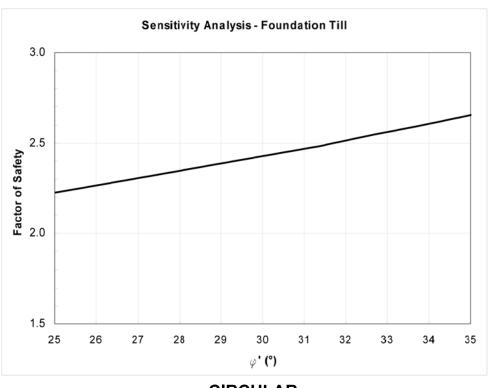
CONSTRUCTION - INDUCED PORE WATER PRESSURES IN TILL CORE AND CUTOFF

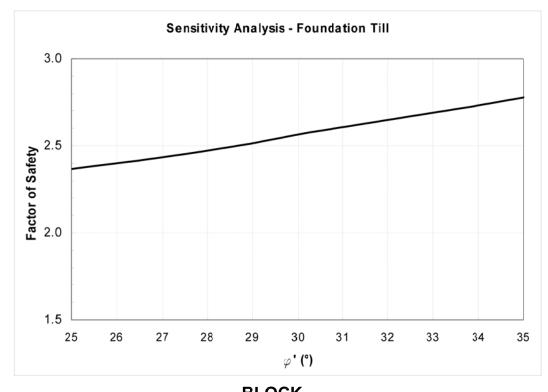

	PROJECT	No. 03	-1413-427	FILE No		427	4210SI	<13
	DESIGN	DAH	07JAN04	SCALE	AS	SHOWN	REV.	0
	CADD	RCR	07JAN04					
ı	CHECK	DAH	07JAN04	l FIC	Эl	JRE	11-6	ì
	DEVIEW			1 '	_			


rroque CADD FILE: N:\Bur-Graphics\Projects\2003\1413\03-1413-

1/8 2:22pm By: rroque

N DATE: 04/01/8 2:22pm Bv: r


HIGH WATER



END OF DEPOSITION

BLOCK

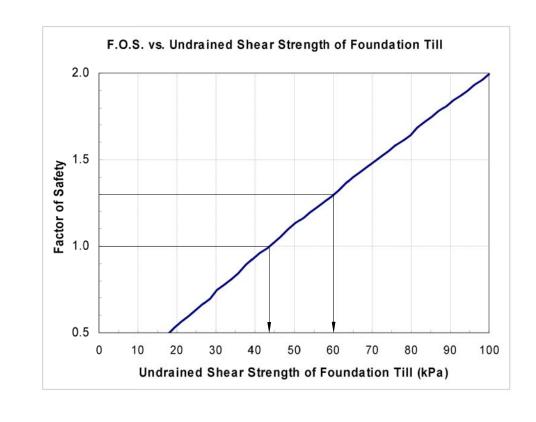
CIRCULAR

BLOCK

MATERIAL PROPERTIES				
MATERIAL TYPE	Ø'			
TILL CORE	28			
ROCKFILL	40			
TILL CUT OFF	28			
FOUNDATION TILL	28			
BEDROCK	INFINITE STRENGTH			

NOTES

- 1) r_u for till core and cutoff assumed to be equal to 0.3.
- 2) For undrained case Ø=0 for foundation till.


TITLE			
SENSITIVITY	ANALYSIS	- FRICTION	ANG

3LE OF FOUNDATION TILL

CUMBERLAND RESOURCES LTD.

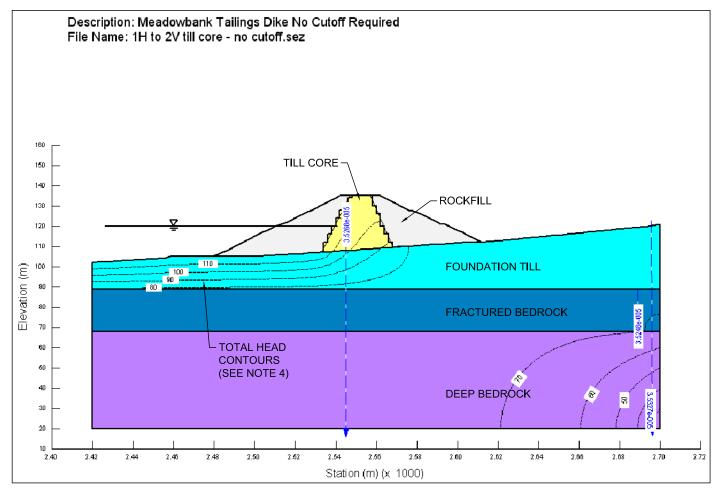
PROJECT No. 03-1413-427			FILE No	٠.	427	4210Sk	(14
DESIGN	DAH	07JAN04	SCALE	AS	SHOWN	REV.	0
CADD	RCR	07JAN04					
CHECK		07JAN04	l FIG	Gι	JRE	II-7	'
REVIEW		14FEB04		_			

MATERIAL PROPERTIES					
MATERIAL TYPE	ø'				
TILL CORE	28				
ROCKFILL	40				
TILL CUT OFF	28				
FOUNDATION TILL	28				
BEDROCK	INFINITE STRENGTH				

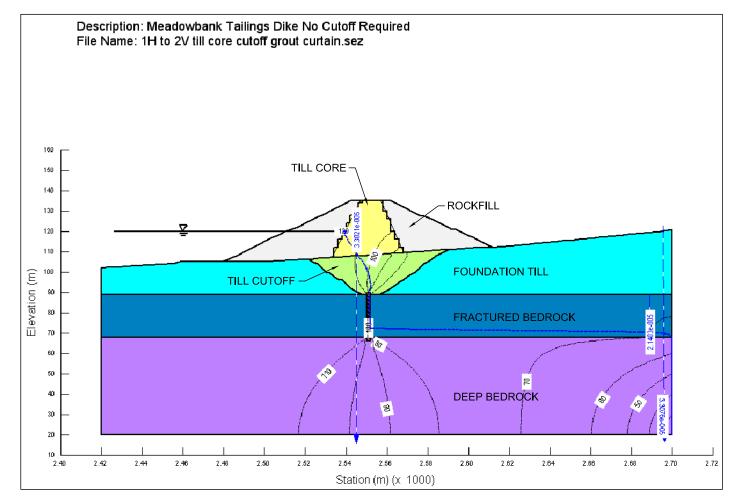
1) r_u for till core and cutoff assumed to be equal to 0.3.

CUMBERLAND RESOURCES LTD.

TITLE


PROGRESSIVE SLOPE FAILURE AT END OF STAGE 1 CONSTRUCTION

PROJECT	No. 03	-1413-427	FILE No.	427	4210SK15
DESIGN	DAH	07JAN04	SCALE .	AS SHOWN	REV. 0
CADD	RCR	07JAN04			
CHECK	DAH	07JAN04	FIG	URE	II-8


APPENDIX III SEEPAGE ANALYSES

ALTERNATIVE DESIGN CASE - HIGH WATER

FLUX TO PORTAGE PIT = $3.5 \times 10^{-5} \text{m}^3/\text{s/m}$

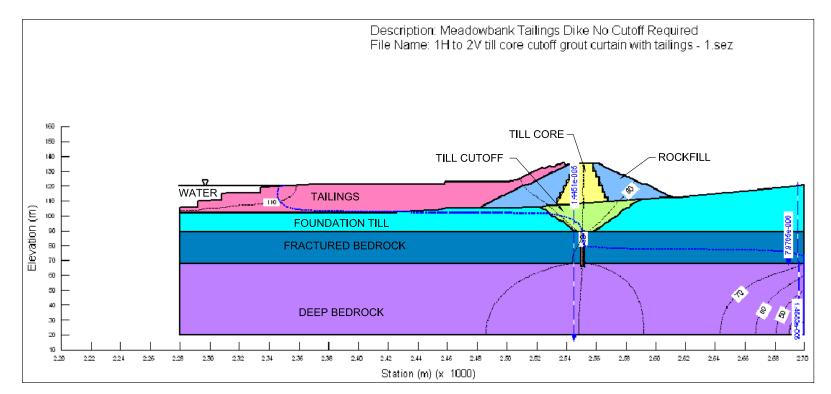
BASE CASE DESIGN - HIGH WATER

FLUX TO PORTAGE PIT = $3.3x10^{-5}$ m³/s/m

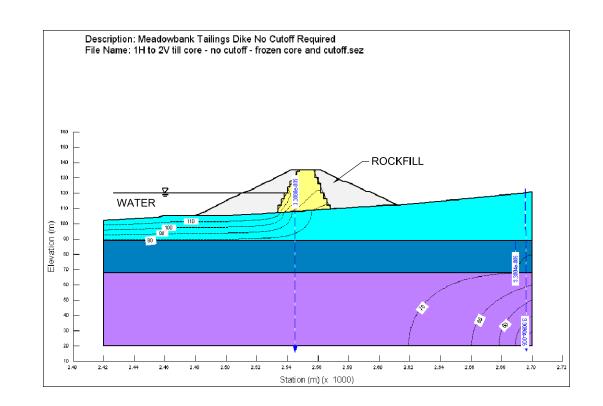
LEGEND

MATERIAL PROPERTIES					
MATERIAL TYPE	SATU (k x 10 BASECASE	RATED) ⁻⁶ m/s) T ALTERNATIVE			
TILL CORE	0.1				
ROCKFILL	NOT INCLUDED IN ANALYSES - SEE NOTE 1				
TILL CUT OFF	0.1				
FOUNDATION TILL	100	0.1			
FRACTURED BEDROCK	40				
DEEP BEDROCK	0.001				
GROUT CURTAIN	0.	.05			

NOTES


- 1) Rockfill permeability will be very high relative to other materials, therfore not relevant to seepage analysis.
- 2) Analyses are for unfrozen conditions.
- 3) Analyses done using Seep/W™ software.
- 4) Total head displayed in metres above sea level.

CUMBERLAND RESOURCES LTD. TAILINGS DIKE SEEPAGE ANALYSES - 1 OF 3
 PROJECT No. 03-1413-427
 FILE No.
 4274210SK07


 DESIGN
 DAH
 03DEC03
 SCALE
 AS SHOWN
 REV.
 0
 CADD RCR 03DEC03 DAH 11FEB04 FIGURE III-1 CHECK

REVIEW

BASE CASE - TAILINGS BEACH 100m UPSTREAM OF DIKE

ALTERNATIVE DESIGN CASE - FROZEN CORE AND CUTOFF

FLUX TO PORTAGE PIT = $1.5 \times 10^{-5} \text{m}^3/\text{s/m}$

FLUX TO PORTAGE PIT = $3.3 \times 10^{-5} \text{m}^3/\text{s/m}$

LEGEND

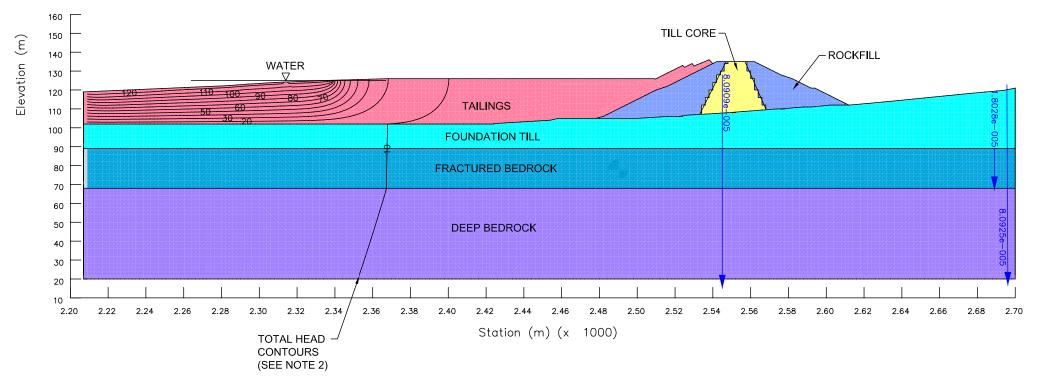
MATERIAL PROPERTIES					
MATERIAL TYPE	SATU (k x 10 BASECASE	RATED J ⁻⁶ m/s) I ALTERNATIVE			
TILL CORE	0.1/0.0001 (
ROCKFILL	10,000				
TILL CUT OFF	0.1/0.0001 (see Note 1)				
FOUNDATION TILL	100	0.1			
FRACTURED BEDROCK	40				
DEEP BEDROCK	0.001				
GROUT CURTAIN	0.05				
TAILINGS	0.1				

NOTES

- 1) Lower permeability for till core and cutoff is for frozen conditions.
- 2) Analyses done using Seep/W $^{\text{TM}}$ software.
- 3) Total head displayed in metres above sea level.

CUMBERLAND RESOURCES LTD.

> TAILINGS DIKE SEEPAGE ANALYSES - 2 OF 3


FILE No.	-1413-427	No. 03	PROJECT
SCALE AS SH	08JAN04	DAH	DESIGN
	08JAN04	RCR	CADD
FIGUR	13FEB04		CHECK
1	16FEB04		REVIEW

6pm By: rroque CADD FILE: N:\Bur-Graphics\Projects\2003\1413\0

VISION DATE: 04/01/7 12:06pm By: rrodue

TAILINGS SEEPAGE BLANKET

Description: Meadowbank Tailings Dike No Cutoff Required File Name: Year 3 Pond at 125, tails at 123.dxf

FLUX TO PORTAGE PIT = $9.0 \times 10^{-5} \text{m}^3/\text{s/m}$

LEGEND

MATERIAL PROPERTIES					
MATERIAL TYPE	SATURATED (k x 10 ⁻⁶ m/s)				
TILL CORE	0.1				
ROCKFILL	10,000				
FOUNDATION TILL	100				
FRACTURED BEDROCK	40				
DEEP BEDROCK	0.001				
TAILINGS	0.1				

NOTES

- Analyses done using Seep/W[™] software.
 Total head displayed in metres above sea level.
- 3) Analyses are for unfrozen conditions.

CUMBERLAND RESOURCES LTD.

TAILINGS DIKE SEEPAGE ANALYSES - 3 OF 3

PROJECT	Г No. 03	-1413-427	FILE No. 4274210SK19
DESIGN	DAH	11FEB04	SCALE AS SHOWN REV. 0
CADD	SRR	11FEB04	
CHECK	DAH	11FEB04	FIGURE III-3

APPENDIX IV MATERIALS BALANCE

Figure 2-1 Meadowbank Mined Tonnages and Volumes

Year			2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total
TONNES		Assumptions	-2	-1	1	2	3	4	5	6	7	8	9	10	11	
Mined Ore Open Pit				553,539.88	1,453,960.46	2,007,500.34	2,007,500.34	2,007,500.34	2,007,500.34	2,007,500.34	2,007,500.34	2,007,500.34	2,007,500.34	1,589,509.95	110,868.84	19,767,881.86
Grade				7.07	5.13	4.22	3.93	4.07	4.43	3.84	4.02	3.49	4.04	6.36	6.36	4.38
Recovery	t		-	0.95	0.95	0.95	0.95	0.94	0.94	0.94	0.94	0.93	0.92	0.92	0.92	
7.77				553,536,16	4 450 050 00	0.007.400.00	0.007.400.05	0.007.400.00	0.007.400.00	0.007.400.44	0.007.100.70	0.007.400.00	0.007.400.00	4 500 500 07	110.868.19	10 707 000 00
Tailings Produced	t		-	553,536.16	1,453,953.38	2,007,492.29	2,007,492.85	2,007,492.68	2,007,492.00	2,007,493.14	2,007,492.79	2,007,493.82	2,007,492.89	1,589,500.67	110,868.19	19,767,800.86
Portage Pit					<u> </u>	<u> </u>										
Overburden	t			915,145	1,181,899	344,052	1,415,052	858,362	0	1,028,930	151,364	0	0	0	0	5,894,804
Overburden	t t		-	161,424	870,165	2,047,706	2,606,760	4,030,192	2,756,831	2,869,373	4,230,059	2,320,748	2,422,948	680,212	53,835	25,050,256
IE .	t			1,350,376	3,505,432	3,766,198	4,674,081	3,716,710	3,329,997	2,872,252	2,808,018	1,860,802	1,610,966	905.506	312,928	30,713,265
IV	t			1,749,376	3,096,487	3,468,825	3,693,520	3,710,710	2,601,659	2,672,232	1,744,856	608,850	426,829	127,400	45.150	23,387,736
07	t			1.013	138,407	161,194	541,603	125,157	186,388	16,364	1,744,030	000,000	720,029	127,400	13,130	1,170,126
Total	t		0	4,177,333	8,792,390	9,787,975	12,931,016	11,862,366	8,874,875	9,479,759	8,934,298	4,790,400	4,460,743	1,713,119	411.913	86,216,187
				1,111,000	0,7 02,000	0,7 07,07 0	12,001,010	11,002,000	0,011,010	0,110,100	0,001,200	1,7 00, 100	1,100,110	1,7 10,110	111,010	00,210,101
Goose Island Pit					 				İ							
Overburden	t			0	0	0	0	0	0	1,028,930	151,364	0	0	0	0	1,180,294
UM	t			0	0	0	0	0	0	494,268	2,632,476	3,196,324	2,391,415	812,413	0	9,526,897
IF	t			0	0	0	0	0	0	354,271	466,229	453,435	626,081	663,942	0	2,563,958
IV	t			0	0	0	0	0	0	572,477	943,310	1,068,105	815,196	232,219	0	3,631,307
QZ	t		-	0	0	0	0	0	0	133,913	484,366	143,185	0	0	0	761,463
Total	t		0	0	0	0	0	0	0	2,583,859	4,677,745	4,861,049	3,832,692	1,708,575	0	17,663,920
Vault Pit																
Overburden	t		-	0	0	0	0	0	0	0	0	0	0	0	0	(
UM	t		-	0	0	0	0	0	0	0	0	0	0	0	0	
IF	t		-	0	0											(
IV	t		-	0	5,870,425	6,719,315	3,547,203	4,815,741	7,336,539	6,864,792	4,495,692	6,765,350	4,826,036	2,298,941		53,540,034
QZ	t		-	0	0	0	0	0	0	0	0	0	0	0	0	(
Total	t		-	0	5,870,425	6,719,315	3,547,203	4,815,741	7,336,539	6,864,792	4,495,692	6,765,350	4,826,036	2,298,941	0	53,540,034
L																
ALL PITS																
Overburden	t		-	915,145	1,181,899	344,052	1,415,052	858,362	0	2,057,860	302,728	0	0	0	0	7,075,099
UM	t		-	161,424	870,165	2,047,706	2,606,760	4,030,192	2,756,831	3,363,641	6,862,535	5,517,072	4,814,364	1,492,626	53,835	34,577,153
ir n/	t		-	1,350,376	3,505,432	3,766,198	4,674,081	3,716,710	3,329,997	3,226,523	3,274,247	2,314,237	2,237,047	1,569,448	312,928	33,277,223
07	t		-	1,749,376	8,966,911	10,188,140	7,240,723	7,947,686	9,938,197	10,130,110	7,183,858	8,442,305	6,068,060	2,658,560	45,150	80,559,077
QZ	t			1,013	138,407	161,194	541,603	125,157	186,388	150,277	484,366	143,185	0	5 700 005	444.042	1,931,590
Total Pit	t		-	4,177,333	14,662,815	16,507,291	16,478,219	16,678,107	16,211,414	18,928,411	18,107,735	16,416,799	13,119,471	5,720,635	411,913	157,008,229
									<u> </u>	<u> </u>				<u> </u>		
VOLUMES																
Portage and Goose Pits																
Construction Rock Required					-											
Overburden	m3		-	_	_	-	-	-	-	_	-	-	_	-	_	
UM+QZ	m3		-	89,380	- 1	-		-	29,483		-	- 1	-	-	_	118,864
IF	m3		-	-	- 1	-	-	-	-	-	-	- 1	-	-	_	-
 IV	m3		-	301,632	- 1	-	-	-	_	-	-	- 1	-	-	-	301,632
							i	İ	İ					i		****,***
Dike Rock Required					i	i						İ				
Overburden	m3			323,101	62,728	62,728	62,728	62,728	331,728	62,728	62,728	62,728	62,728	-	-	1,156,652
UM+QZ	m3		-	-	19,138	-	-	-	11,082	-	-	-	-	-	-	30,220
IF	m3		-	375,132	-	-	-	-	426,000	-	-	-	-	-	-	801,132
IV	m3		-	400,223	62,728	62,728	62,728	62,728	488,728	62,728	62,728	62,728	62,728	-	-	1,390,774
Capping Volume Required																
UM+QZ	m3		-	-	236,364	676,364	676,364	676,364	676,364	676,364	676,364	676,364	676,364	676,364	2,576,364	8,900,000
Portage Waste Rock Dump		1.90 t/m3														
Overburden	m3		-	158,554	559,324	118,352	682,036	389,042	331,728	1,020,356	96,603 -	62,728		-		2,567,084
Overburden Cumulative	m3		-	158,554	717,878	836,230	1,518,267	1,907,308	1,575,581	2,595,937	2,692,540	2,629,812	2,567,084	2,567,084	2,567,084	2,567,084
UM+QZ				- 3,887	275,326	486,216	980,670	1,510,662	832,134	1,173,067	3,190,426	2,302,719	1,857,512	109,229 -	2,548,029	10,166,044
UM+QZ Cumulative	m3			- 3,887	271,438	757,654	1,738,323	3,248,986	4,081,120	5,254,187	8,444,613	10,747,332	12,604,844	12,714,073	10,166,044	10,166,044
Ir N	m3		-	335,592	1,844,964	1,982,209	2,460,043	1,956,163	1,326,630	1,698,170	1,723,288	1,218,019	1,177,393	826,025	164,699	16,713,196
Not Wests Bask	m3		-	218,869	1,567,002	1,762,969	1,881,230	1,585,664	880,566	1,655,860	1,352,096	819,880	590,969	189,273	23,763	12,528,143
Net Waste Rock	m3			709,128	4,246,616	4,349,747	6,003,978	5,441,531	2,707,602	5,547,454	6,362,414	4,277,891	3,563,147	1,124,528 -	2,359,568	41,974,467
Cumulative Waste Rock	m3		-	709,128	4,955,744	9,305,490	15,309,469	20,751,000	23,458,602	29,006,056	35,368,470	39,646,360	43,209,507	44,334,034	41,974,467	41,974,467
Vault Pit		+		+			+			+-				+-	·	
Vauit Pit Construction and Dike Rock Requi	uired				-			+	-		+					
Overburden	m3		-	14,557	_	-	-	_	_	-	_		-	-	_	14,557
IV	m3		-	41,152	-	-	-	-	-	-	-	-	-	-		41,152
<u> </u>	III3		-	41,102	-	-	-	-	-	-	-	-	-	-	-	41,152
Vault Pit Dump									+							
Overburden	m3	1.90 t/m3		- 14.557	_	-	-	-	_	-	_	-	_	_		14,557
5.00.00	m3	01110		- 14,357 - 41,152	3,089,697	3,536,482	1,866,949	2,534,600	3,861,336	3,613,048	2,366,153	3,560,710	2,540,019	1,209,969		28,137,813
IIV				- 55,709	3,089,697	3,536,482	1,866,949	2,534,600	3,861,336	3,613,048	2,366,153	3,560,710	2,540,019	1,209,969	_	28,123,256
IV Net Waste Rock	m3			- 55,709	3,033,988	6,570,470	8,437,419	10,972,020	14,833,356	18,446,405	20,812,558	24,373,268	26,913,287	28,123,256	28,123,256	28,123,256
IV Net Waste Rock Cumulative Waste Rock	m3 m3		- :-		-,,-50 ;	.,,	.,,	-,,	.,,	.,,	.,,	.,,_30	*,,	-,,	.,,	
	m3 m3			55,1.55		1	i		:	:				i	I	
Cumulative Waste Rock	m3						<u> </u>	<u> </u>	<u> </u>			<u> </u>				
	m3	1.45 t/m3	0	381,749	1,002,726	1,384,477	1,384,478	1,384,478	1,384,477	1,384,478	1,384,478	1,384,478	1,384,478	1,096,207	76,461	13,632,966
Cumulative Waste Rock	m3	1.45 t/m3					1,384,478 4,153,431								76,461 13,632,966	13,632,966 13,632,966

APPENDIX V SEISMIC RISK CALCULATION FOR MEADOWBANK SITE

NATURAL RESOURCES CANADA GEOLOGICAL SURVEY OF CANADA	RESSOURCES NATURELLES CANADA COMMISSION GEOLOGIQUE DU CANADA
SEISMIC RISK CALCULATION *	CALCUL DE RISQUE SEISMIQUE *
REQUESTED BY/ DEMANDE PAR	Don Hickson, Golder Assoc., Vancouver
SITE	Tenek Lake, Nunavut
LOCATED AT/ SITUE AU	65.00 NORTH/NORD 96.05 WEST/OUEST
PROBABILITY OF EXCEEDENCE PER ANNUM/ PROBABILITE DE DEPASSEMENT PAR ANNEE	 0.010
PROBABILITY OF EXCEEDENCE IN 50 YEARS/ PROBABILITE DE DEPASSEMENT EN 50 ANS	
PEAK HORIZONTAL GROUND ACCELERATION (G) ACCELERATION HORIZONTALE MAXIMALE DU SOL (G)	 0.018
PEAK HORIZONTAL GROUND VELOCITY (M/SEC) VITESSE HORIZONTALE MAXIMALE DU SOL (M/SEC)	 0.011

* REFERENCES

- 1. NEW PROBABILISTIC STRONG SEISMIC GROUND MOTION MAPS
 OF CANADA: A COMPILATION OF EARTHQUAKE SOURCE ZONES, METHODS AND RESULTS.
 P.W. BASHAM, D.H. WEICHERT, F.M. ANGLIN, AND M.J. BERRY
 EARTH PHYSICS BRANCH OPEN FILE NUMBER 82-33, OTTAWA, CANADA 1982.
- 2. ENGINEERING APPLICATIONS OF NEW PROBABILISTIC
 SEISMIC GROUND-MOTION MAPS OF CANADA.
 A.C. HEIDEBRECHT, P.W. BASHAM, J.H. RAINER, AND M.J. BERRY
 CANADIAN JOURNAL OF CIVIL ENGINEERING, VOL. 10, NO. 4, P. 670-680, 1983.
- 3. NEW PROBABILISTIC STRONG GROUND MOTION MAPS OF CANADA.
 P.W. BASHAM, D.H. WEICHERT, F.M. ANGLIN, AND M.J. BERRY, BULLETIN OF
 THE SEISMOLOGICAL SOCIETY OF AMERICA, VOL. 75, NO. 2, P. 563-595, 1985.
- 4A.SUPPLEMENT TO THE NATIONAL BUILDING CODE OF CANADA 1990, NRCC NO. 30629. CHAPTER 1: CLIMATIC INFORMATION FOR BUILDING DESIGN IN CANADA. CHAPTER 4: COMMENTARY J: EFFECTS OF EARTHQUAKES.
- 4B.SUPPLEMENT DU CODE NATIONAL DU BATIMENT DU CANADA 1990, CNRC NO 30629F. CHAPITRE 1: DONNEES CLIMATIQUES POUR LE CALCUL DES BATIMENTS AU CANADA. CHAPITRE 4: COMMENTAIRE J: EFFETS DES SEISMES.

ZONING FOR ABOVE SITE/ ZONAGE DU SITE CI-DESSUS

1990 NBCC/CNBC: ZA = 0; ZV = 0; V = 0.00 M/S

ACCELERATION ZONE/ ZONE D'ACCELERATION ZONAL ACCELERATION/ ACCELERATION ZONALE 0.00 G

VELOCITY ZONE/ ZONE DE VITESSE ZV=0ZONAL VELOCITY/ VITESSE ZONALE $0.00 \, \text{M/s}$

1990 NBCC/CNBC ** SEISMIC ZONING MAPS/ CARTES DU ZONAGE SEISMIQUE

PROBABILITY LEVEL: 10% IN 50 YEARS NIVEAU DE PROBABILITE: 10% EN 50 ANNEES

G OR M/S	ZONE	ZONAL VALUE/ VALEUR ZONALE
0.00		
0.04	0	0.00
0.08	1	0.05
	2	0.10
0.11	3	0.15
0.16	4	0.20
0.23		
0.32	5	0.30
	6*	0.40

- * ZONE 6: NOMINAL VALUE/ VALEUR NOMINALE 0.40; SITE-SPECIFIC STUDIES SUGGESTED FOR IMPORTANT PROJECTS/ ETUDES COMPLEMENTAIRES SUGGEREES POUR DES PROJETS D'IMPORTANCE.
- ** FOR NBCC APPLICATIONS, CALCULATED ZONE VALUES AT A SITE SHOULD BE REPLACED BY EFFECTIVE ZONE VALUES [ZA(EFF) OR ZV(EFF)] AS SHOWN BELOW/ POUR APPLICATIONS SELON LE CNBC, ON DOIT REMPLACER LES VALEURS ZONALES CALCULEES POUR UN SITE PAR LES VALEURS EFFECTIVES [ZA(EFF) OU ZV(EFF)] COMME MONTRE CI-DESSOUS:
- 1. IF/SI (ZA ZV) > 1, ===> ZA(EFF) = ZV + 1. OR/OU
- 2. IF/SI (ZA ZV) < 1, ===> ZA(EFF) = ZV - 1. OR/OU
 - 3. IF/SI ZV=0 AND/ET ZA > 0, ===> ZV(EFF) = 1.

(SEE REFERENCE 2 CITED ABOVE, PAGE 677) (VOIR PAGE 677 DE LA REFERENCE 2 CI-DESSUS) Jul 9 2003 12:44