APPENDIX B17 -	2013 WATER MAN	IAGEMENT REPOR 2014)	RT AND PLAN, VEI	RSION 1 (MARCH

MEADOWBANK GOLD MINE

2013 WATER MANAGEMENT REPORT AND PLAN

MARCH 2014

EXECUTIVE SUMMARY

Agnico Eagle Mines Ltd. Meadowbank Division (AEM) is operating the Meadowbank Gold Mine (the Mine), located on Inuit-owned surface lands in the Kivalliq region approximately 70 km north of the Hamlet of Baker Lake, Nunavut. The mine is subject to the terms and conditions of both the Project Certificate issued in accordance with the Nunavut Land Claims Agreement Article 12.5.12 on December 30, 2006, and the Nunavut Water Board Water Type A Licence No. 2AM-MEA0815 issued on June 9, 2008. This report has been written to meet Part E, Item 7 of the NWB Type A License, which in summary states, the water balance and water quality model shall be re-calibrated as necessary, and at a minimum of once every two years following the commencement of operations. Further, it presents a comparison of the predicted and recently remodeled pit water quality forecast as required in Part E Item 6.

This report presents an updated version of the SNC Lavalin Water Management Plan 2012 to provide the site-wide water balance in order to determine the demand and storage requirements over the life of the mine. The report discusses water usage for 2013 and the operational storage strategies and required transfers going forward through 2014. The necessitiy of this particular water management update has come following changes in the observed natural pit water inflows, mine and milling life schedules and production rate, tailings management and pit backfilling strategies. The plan considers results of the water quality modelling predictions prepared by SNC, 2014 (presented in Appendix B); which will assist in informing reflooding, treatment and water management during closure. Certain concepts within the water balance, including pit flooding, remain at the conceptual stage for now and will be further detailed as the mine progresses, and will be updated in future annual reports.

MEADOWBANK GOLD MINE 2013 WATER MANAGEMENT REPORT AND PLAN

DOCUMENT CONTROL

		Revision		D		
#	Prep.	Rev.	Date	Pages Revised	Remarks	
	SNC	AEM	March 2013	All	Meadowbank Gold Project – Water Management Plan 2012	
01	AEM	Internal	March 2014	All	Revision of SNC Meadowbank Gold Project – Water Management Plan 2012	

Prepared By:		
	Engineering and Environmental Department	
Approved by:		
,, ,	Engineering and Environmental Department	

MEADOWBANK GOLD MINE 2013 WATER MANAGEMENT REPORT AND PLAN

TABLE OF CONTENTS

1	INTRODUCTION	6
2	BACKGROUND INFORMATION	7
2.1	Site Conditions	
	2.1.1 Climate	
	2.1.2 Faults	
	2.1.3 Permafrost	10
	2.1.4 Hydrology	
2.2	Mining Operation Description	
	2.2.1 Portage Pit Area	
	2.2.2 Goose Pit Area	
0.0	2.2.3 Vault Pit Area	
2.3	Life Of Mine Description	
	2.3.1 Changes from the SNC Water Management Plan 2012 (issued Management Plan 2012)	ch 2013) 18
3	WATER MANAGEMENT PLAN AND WATER BALANCE	
3.1	General Water Management Strategy	
	3.1.1 Fresh Water from Third Portage Lake	
	3.1.2 Reclaim Tailings Water	
	3.1.4 North Cell	
	3.1.5 South Cell	
	3.1.6 Portage Pit	
	3.1.7 Goose Pit	
3.2	Water Transfers	23
	3.2.1 TSF Water Transfers	
	3.2.2 East Dike Seepage Collection	
3.3	Pit Reflooding Operation	25
4	WATER QUALITY MODELLING REPORT	28
5	2013 INTEGRATED DEPOSITION PLAN	30
6	RSF SEEPAGE WATER MANAGEMENT	31
7	CONCLUSION	34
8	RECOMMENDATIONS	35
9	REFERENCES	36
APPE	PENDIX A – WATER BALANCE	37
ΔΡΡΕ	PENDIX B – GENERAL WATER MOVEMENT	55

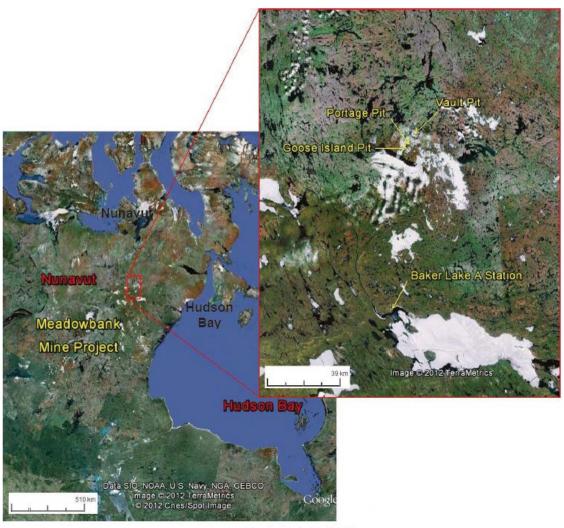
APPENDIX	C – ROCK STORAGE FACILITY SEEPAGE REPORT6	1
APPENDIX	D – WATER QUALITY REPORT62	2
APPENDIX	E – 2013 INTEGRATED TAILINGS DEPOSITION PLAN6	3
	LIST OF TABLES	
Table 2.1: I	Estimated average monthly climate data – Meadowbank site	8
	Total annual precipitation for varying return periods1	
	Predicted LOM monthly milling tonnage1	
Table 3.1:	Targetted water hourly consumption per month2	C
	Yearly water consumption summary2	
	Monthly average ore material moisture content observed at the mill2	
	TSF water transfers24	
Table 3.5:	Wally Lake annual discharge29	5
	LIST OF FIGURES	
Figure 2.1:	Meadowbank Mine Site Location	7
	Portage Pit area map	
	Baker Lake A meteorological IDF curves	
	Portage Pit area map	
	Goose Pit area map	
	Vault Lake Basin Nomenclature	
	Freshet Water Monitoring Location and RSF Seepage Flow	
i iguic o.i.	Treshet trace memoring Location and Net Scepage Flow	ر

1 INTRODUCTION

Agnico Eagle Mines Ltd. (AEM) has been operating the Meadowbank Gold Mine since 2008, officially beginning production in 2010. The mine is located approximately 70km north of the Hamlet of Baker Lake, Nunavut. The mine is subject to the terms and conditions of both the Project Certificate issued in accordance with the Nunavut Land Claims Agreement Article 12.5.12 on December 30, 2006, and the Nunavut Water Board Water Type A Licence No. 2AM_MEA0815 issued on June 9, 2008. This report has been written to meet Part E, Item 7 of the NWB Type A License; the water balance and water quality model shall be re-calibrated as necessary in accordance with the action plan outlined in section 3.2.5.2 of the Water Quality and Flow Monitoring Plan (August 2007), and at a minimum of once every two years following the commencement of operations. The results and implications of the re-calibrated model shall be reported to the Board. Further, it meets Part E Item 6 which states that the Licensee shall submit a Water Balance and Water Quality Monitoring Reports to the Board for review, biannually (twice a year) for two years following the commencement of operations and annually thereafter. The Report shall include a comparison of predicted and measured parameters. it presents a comparison of the predicted and measured parameters as required in Part E Item 6.

In response to questions during the January 22nd, 2014 Meadowbank freshwater use amendment, on November 28th, AEM hosted a workshop to review questions made by participants of the pre hearing technical meetings. As discussed during the workshop, this report presents an updated version of the SNC Lavalin Water Management Plan 2012, by reporting the 2013 water usage and providing the 2014 site-wide water balance in order to determine the demand and storage requirements over the life of the mine. The 2014 storage strategies and required transfers will are discussed in this report. Certain concepts within the water balance, including pit flooding, remain at the conceptual stage for now and will be further detailed as the mine progresses.

The necessitiy of this water management update has come following changes in the observed natural pit water inflows, mine and milling life schedule and production rate, tailings management and pit backfilling strategies.


The Vault Pit data presented in this report comes from the actual dewatering process that was undertaken in 2013 as well as the forecasted 2014 dewatering process. Runoff values and pit inflows for the Vault area have been taken from from the SNC Lavalin Water Management Plan 2012 until runoff values can be validated and revised with field observations.

2 BACKGROUND INFORMATION

2.1 SITE CONDITIONS

The location of the Meadowbank mine site is shown below in Figure 2.1. A close-up is also provided to show the location of the Baker Lake A Station used to obtain meteorological data.

Source: Google Earth Pro, 2012

Figure 2.1: Meadowbank Mine Site Location

2.1.1 Climate

The Meadowbank region is located within a low Arctic ecoclimate described as one of the coldest and driest regions of Canada. Arctic winter conditions occur from October through May, with temperatures ranging from +5°C to -40°C. Summer temperatures range from -5°C to +25°C with isolated rainfall increasing through September (Table 2.1).

Table 2.1: Estimated average monthly climate data – Meadowbank site

Month	Max. Air Temp. (°C)	Min. Air Temp. (°C)	Rainfall (mm)	Snowfall (mm)	Total Precip. (mm)	Lake Evap. (mm)	Min. Relative Humidity (%)	Max. Relative Humidity (%)	Wind Speed (km/h)	Soil Temp. (°C)
January	-29.1	-35.5	0	6.9	6.9	0	67.1	75.9	16.3	-25.5
February	-27.8	-35.2	0	6.0	6.1	0	66.6	76.5	16.0	-28.1
March	-22.3	-30.5	0.0	9.2	9.2	0	68.4	81.4	16.9	-24.9
April	-13.3	-22.5	0.4	13.6	14.0	0	71.3	90.1	17.3	-18.1
May	-3.1	-9.9	5.2	7.7	12.8	0	75.7	97.2	18.9	-8.0
June	7.6	0.0	18.6	3.1	21.7	8.8	62.6	97.2	16.4	2.0
July	16.8	7.2	38.6	0.0	38.6	99.2	47.5	94.3	15.1	10.5
August	13.3	6.4	42.8	0.6	43.4	100.4	59.2	97.7	18.4	9.3
September	5.7	0.9	35.2	6.7	41.9	39.5	70.8	98.6	19.3	3.6
October	-5.0	-10.6	6.5	22.6	29.1	0.1	83.1	97.4	21.4	-2.8
November	-14.8	-22.0	0.2	16.2	16.4	0	80.6	91.1	17.9	-11.7
December	-23.3	-29.9	0	9.4	9.5	0	73.3	82.7	17.7	-19.9

Note: Data from Baker Lake A station is available from 1946 to 2011. During this period, the data quality is good, with the exception of years 1946 to 1949, and 1993 which were removed from the compilation.

The long-term mean annual air temperature for Meadowbank is estimated to be approximately 11.1°C. Air temperatures in the Meadowbank area are, on average, about 0.6°C cooler than Baker Lake air temperatures, and extreme temperatures tend to be larger in magnitude. This climatic difference is thought to be the effect of a moderating maritime influence at Baker Lake.

The prevailing winds at Meadowbank for both the winter and summer months are from the northwest. A maximum daily wind gust of 93 km/h was recorded on September 1, 2009. Light to moderate snowfall is accompanied by variable winds up to 70 km/h, creating large, deep drifts and occasional whiteout conditions. Skies tend to be more overcast in winter than in summer.

The Table 2.1 presents monthly rainfall, snowfall and total precipitation values for the mine site. August is the wettest month, with a total precipitation of 43.4 mm, and February is the driest month, with a total precipitation of 6.1 mm. During an average year the total precipitation is 249.6 mm, split between 147.5 mm of rainfall and 102.1 mm of snowfall precipitation.

2.1.2 Faults

As shown in Figure 2.2, two main faults are inferred in the Portage deposit area. The Second Portage fault trends to the northwest and is expected underneath the Central Dike and TSF, roughly parallel to the orientation of the Second Portage Lake. Analysis conducted during the design of the Central Dike showed little seepage potential. To date Central Dike has been partially completed to El. 112m and no seepage has been evident into Portage pit.

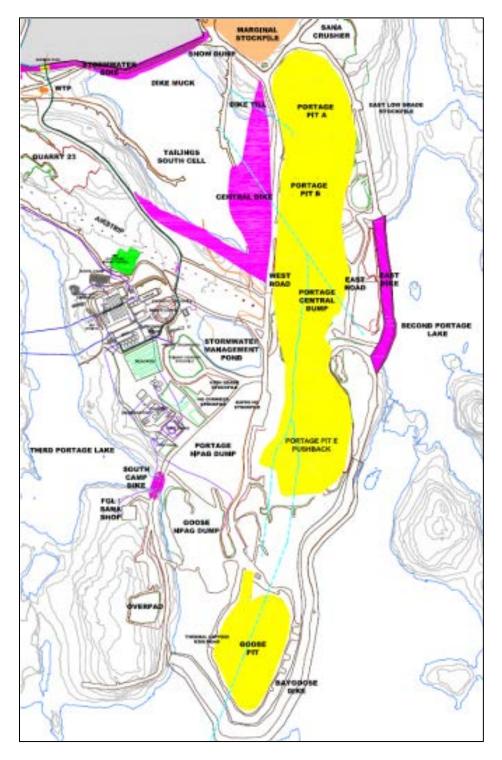


Figure 2.2: Portage Pit area map

2.1.3 Permafrost

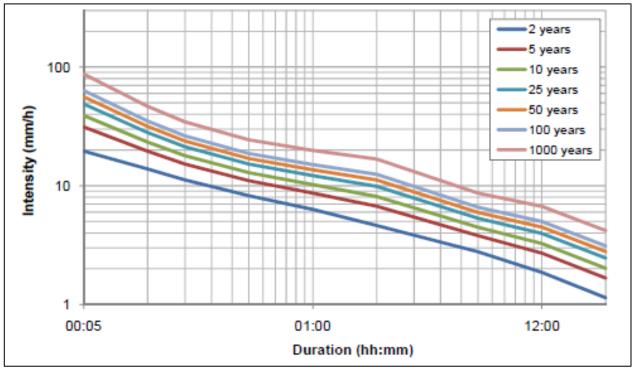
The Meadowbank Gold Mine is located in the area of continuous permafrost. Lake ice thicknesses of between 1.5 m and 2.5 m have been encountered during geotechnical investigations in mid to late spring. Taliks (areas of permanently unfrozen ground) are expected where water depth is greater than about 2 to 2.5 m. Based on thermal studies and measurements of ground temperatures (Golder, 2003), the depth of permafrost at site is estimated to be in the order of 450 to 550 m, depending on proximity to lakes. The depth of the active layer ranges based on depth of overburden, vegetation and organics, proximity to lakes, and aspect is about 1 to 1.5 m.

Based on ground conductivity surveys and compilation of regional data, the ground ice content is expected to be low. Locally on land, ice lenses and ice wedges are present, as indicated by ground conductivity, and by permafrost features such as frost mounds. These areas of local ground ice are generally associated with low-lying areas of poor drainage.

A thermal monitoring plan, which meets the requirement of the Water Licence, is presented in Section 8 of this document.

2.1.4 Hydrology

As shown above in Table 2.1, the Baker Lake A meteorological station was used to tabulate the monthly precipitation data. Using this data SNC-Lavalin completed a Log-Pearson 3 probility dristribution to determine the annual precipitation for different return periods. The results of this statistical analysis can be seen in Table 2.2.


Table 2.2: Total annual precipitation for varying return periods

Return Period (years)	Precipitation (mm)
2	246
5	295
10	322
20	345
100	391

Source: SNC-Lavalin Water Management Plan 2012

Intensity duration frequency curves (IDF), previously presented by SNC in the Water Management Plan 2012, are seen below in Figure 2.3. These curves prepared by Environement Canada from the Barker Lake A meteorological station, show the IDF curves for precipitations of short duration (5min-24hrs) based on data between 1987 and 2006.

Source: SNC-Lavalin Water Management Plan 2012

Figure 2.3: Baker Lake A meteorological IDF curves

Freshet (spring period) will vary from year to year however it has been shown that towards the snow accumulation during the winter period (October to May) will begin to melt in the beginning June and throughout the month.

2.2 MINING OPERATION DESCRIPTION

The Meadowbank Gold Mine consists of several gold-bearing deposits within reasonably close proximity to one another. The three main deposits are: Vault (including Phaser), Portage (South, Center and North Portage deposits), and Goose.

The South Portage deposit is located on a peninsula, and extends northward under the former Second Portage Lake (2PL) and southward under Third Portage Lake (3PL). The North Portage deposit is located on the northern shore of 2PL. The South, Center and North Portage deposits are mined as a single pit, termed the Portage Pit, which extends approximately 2 km in a north-south direction. The Goose deposit lies approximately 1 km to the south of the Portage deposit, and beneath the dewatered portion of 3PL. The Vault deposit is located adjacent to Vault Lake, approximately 6 km North of the Portage deposits.

A series of dewatering dikes (East, West Channel, Bay-Goose, South Camp and Vault) were required to isolate the mining activities from the lakes (2PL. 3PL, Vault). Additional dikes (the Central Dike, Stormwater Dike and Saddle Dams) are required to manage tailings within the dewatered North West arm of 2PL. East Dike, West Channel, Bay-Goose, South Camp and Stormwater Dikes, Saddle Dam 1 and Saddle Dam 2 were all constructed within the past 5 years. The dikes were and will be constructed primarily using materials produced on site.

201 AGNICO EAGLE

MEADOWBANK GOLD MINE 2013 WATER MANAGEMENT REPORT AND PLAN

Mining of Portage pit began in early 2010 and is operated using truck-and-shovel open pit operation under the terms established by the Water License. Any modifications to the dewatering process, Life of Mine (LOM), TSF and any other aspects associated to the water management have been updated through dewatering or water management plans, reported annually and updated as necessary in the Meadowbank Water Management Report and Plan.

2.2.1 Portage Pit Area

The Portage area located between the 3PL and 2PL contains most of the infrastructure of the Meadowbank mine site including but not limited to the Rock Storage Facility (RSF), North and South Tailings Storage Facilites (NC & SC TSF), mill and Stormwater Management Pond. Note that the SC is currently used as the Portage Attenuation Pond (ATP). The ATP receives excess pit water from the Portage and Goose pits as well as runoff from the South Eastern portions of the Waste Rock Storage Facility (WRSF). The East Dike was constructed to isolate the North portion of the Portage Pit from 2PL. Subsequent renaming of the pits led to the new nomenclature for each pit (A, B, C, D and E). Mining in Pits B, C, D are now completed and are and will be the site of pit infilling operations. As seen below in Figure 2.4, the current nomenclature for the Portage Pits and surrounding infrastructure is portrayed.

As of now, the marjority of the water coming in to Portage Pit has been observed coming from the East wall, due to seepage from the East Dike. This is now controlled via two seppage collection points that currently pump the water back to 2PL. On July 3, 2013, NWB approved AEM's request for a modification of the license to include East Dike non-contact seepage water discharge to 2PL. This discharge is subject to MMER and the Type A Water License sampling requirements and the associated discharge criteria. If there any exceedences of discharge criteria (none to date) or any other problems, the contingency is to redirect this water back to the Portage Central Pit area, where the water flows in the backfill towards Pit C. This contingency strategy is to fill the rockfill voids with this redirected water (if necessary). The other major source of water in the Portage Pits was observed in the bottom benches of Pit C and D. These two pits are located in a talik area and also cross a regional fault. These geological parameters explain the presence of groundwater flow into these pits. On the other hand, Pits A, B and E are located in the permafrost and little, if any, groundwater has historically been observed. All water pumped from the Portage Pits, with the exception of the East Dike seepage, is directed to the Portage ATP (future South Cell). As will be discussed later, it is important to note that, once tailing deposition begins in the South Cell, the Portage ATP will be switched to Goose Pit as the mining will have been completed (Q1 2015). Thus, at this point any pit water observed in the Portage pits will be pumped/transferred to the mined out Goose pit and will become part of the Goose reflooding program.

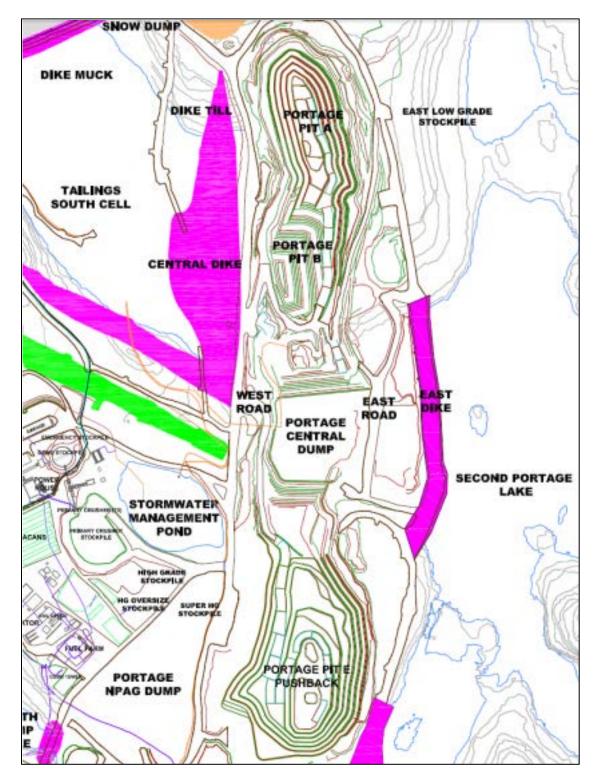


Figure 2.4: Portage Pit area map

MEADOWBANK GOLD MINE 2013 WATER MANAGEMENT REPORT AND PLAN

2.2.2 Goose Pit Area

The Goose Pit area is located under the dewatered portion of 3PL which required the construction of the Bay-Goose Dike to isolate this area of the lake from the mining area. Active mining commenced in Goose pit in May, 2012 and is expected to be completed by the end of the first quarter of 2015. At that point the Goose pit will become an ATP. Any groundwater inflows after mining stops will be allowed to re-flood this pit. As seen below in Figure 2.5, the Goose Pit area and surrounding infrastructure are illustrated.

The majority of the water in to Goose Pit has been observed to be coming from the South and West pitwalls adjacent to the Bay-Goose dike due to natural groundwater inflow from the fractrured quartzite rock formation. No major water inflow is observed on the Eastern wall associated with iron formation with small volcanic lenses. Between the quartzite and iron formation a large band of ultramafic rock (soapstone) is found. Most of this pit is located in the talik zone which explains why the groundwater inflow is associated with the geological formations. The water is managed with a system of sumps and trenches along the access ramp, on the #5109 catch bench and on the working elevation. All water pumped from the Goose Pit is directed to the Portage ATP. Once the Goose Pit becomes the ATP at the beginning of 2015, the water will be allowed to flow into and accumulate in the pit as part of the reflooding process. As noted in the site water balance (Appendix A), some of this water will intermittently be pumped in 2016 to the South Cell TSF to aid in the reclaim pond water management.

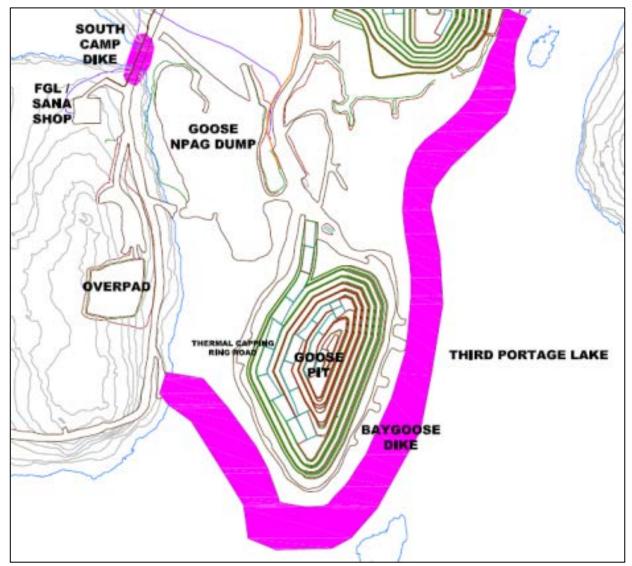


Figure 2.5: Goose Pit area map

2.2.3 Vault Pit Area

The Vault Pit area infrastructure includes the Vault RSF, ore and marginal storage pads, Vault Dike, Vault Pit, a service building and emergency shelter. The Vault Pit, located under the former Vault Lake, required the construction of Vault Dike in order to isolate the mining area and create the Vault ATP. Vault pit began pre-mining operations (stripping) in 2013. Active mining will commence in January 2014 and is expected to be completed by the end of 2017. As seen below in Figure 2.6, the Vault Pit area and surrounding infrastructure are illustrated. As of December 31, 2013, Vault Lake has been partially dewatered in order to isolate four separate deeper basins (A, B, C and D) which will act as the future Vault Attenuation Pond starting in 2014. Some dewaterwing will continue in 2014 (May 2014) from Basins B and C. This water is still considered lake water until Vault pit water is discharged into the ATP. It is important to note that the waste dump seen in Figure 2.6, represents the ultimate toe limit and that the actual toe sits well within the footprint outlined. In addition, the Phaser Pit depicted in Figure 2.6 is conceptual and is not currently in the water management plan. As discussed with NIRB during a conference call on

March 11th, 2014, should AEM decide to mine this area approval from NIRB and ammendments to the NWB will be required.

To date, the majority of the anticipated inflow to the Vault Pit during mining activity will be the freshet flows from the surrounding watershed. No major groundwater inflow has been observed originating from the pit walls and there is no talik anticipated in the former Vault Lake due to the shallow depth and area which has continuous permafrost. The water will be managed with a system of sumps and trenches along the pit crest, the main access ramp and on the working benches. All water pumped from the Vault Pit will be directed to the Vault ATP. If needed, the water will be treated for TSS removal with an ACTIFLO solids removal system (Vault WTP) during summer months and discharged into Wally Lake. The discharge is subject to both the Type A Water License and MMER discharge criteria.

In 2013, the primary water management activities were dewatering Vault Lake in preparation for the mining. All dewatering was in accordance with the Water License. A total of 2,329,343m³ was discharged to Wally Lake during the dewatering in 2013.

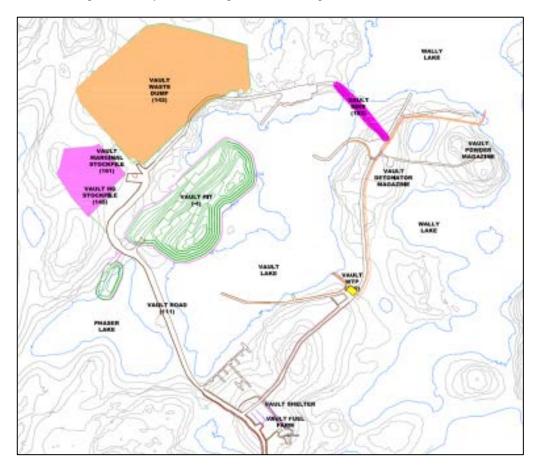


Figure 2.6: Vault Pit area map

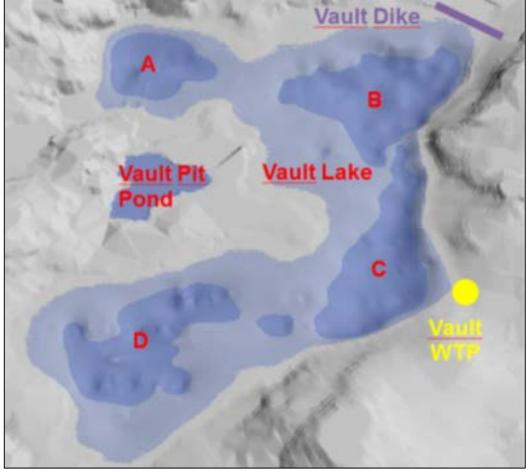


Figure 2.7: Vault Lake Basin Nomenclature

2.3 LIFE OF MINE DESCRIPTION

The current life-of-mine (LOM) has been updated with the current mining surfaces, operational fleet, stockpile situation and milling forecasts. An update to the pit design has caused an expansion to Phase 3 of Portage Pit E. The specifics of the predicted monthly milling tonnage is summarized in Table 2.3 below.

Table 2.3: Predicted LOM monthly milling tonnage

	2014	2015	2016	2017
January	360,989	351,540	352,439	354,361
February	288,994	317,520	329,701	320,068
March	367,009	351,540	352,439	354,361
Q1	1,016,992	1,020,600	1,034,579	1,028,790
April	348,990	340,200	341,070	342,930
May	325,004	351,540	352,439	354,361
June	354,990	340,200	341,070	342,930
Q2	1,028,984	1,031,940	1,034,579	1,040,221
July	360,995	351,540	352,439	354,361
August	325,004	351,540	352,439	354,361
September	348,990	340,200	341,070	342,930
Q3	1,034,989	1,043,280	1,045,948	1,051,652
October	360,995	351,540	352,439	354,361
November	313,980	340,200	341,070	17,249
December	360,995	351,540	352,439	-
Q4	1,035,970	1,043,280	1,045,948	371,610
Total	4,116,935	4,139,100	4,161,054	3,492,273

2.3.1 Changes from the SNC Water Management Plan 2012 (issued March 2013)

As previously stated, recent updates to the LOM have required revision of AEM's water management plan. The major changes observed in the life-of-mine plan affecting the water management includes but is not limited to:

- Expansion of Portage Pit E
- Goose and Vault Pit modifications
- Updated truck mining fleet
- Updated stockpile status
- Modification to the Central Portage Pit Wasterock Disposal Area design and overall volume

The above mentioned modifications to the LOM have added two months to the life-of-mine and tailings storage requirements as well as slightly affecting the pit flooding curves. In addition to the changes to the LOM, other modifications were made to the water balance that form the basis of this update. The major points ares:

- Fresh water consumption revision
- Total daily mill water requirement
- Updated tailings deposition plan affecting the North Cell and South Cell deposition calendar
- Pit water inflow revision based on observed flowmeter data
- Water transfer requirements
- Updated East Dike seepage water management

These changes will be discussed further in the Section 3, Water Management Plan and Water Balance, detailing the nature of the revisions and their effects on the overall water management strategy.

3 WATER MANAGEMENT PLAN AND WATER BALANCE

3.1 GENERAL WATER MANAGEMENT STRATEGY

At Meadowbank, there are three major sources of water entering into the water management system: freshwater pumped from Third Portage Lake, natural pit groundwater inflow and freshet flows. The water is removed from the system through the following mechanisms: water treatment plants at the attenuations ponds (Portage ATP and Vault ATP), trapped in the capillary voids of the tailings fraction and ice entrapment at the TSF, East Dike seepage discharge into Second Portage Lake and water trapped within the in-pit central wasterock disposal area voids.

The AEM water balance is subdivided into the following sections: Fresh Water from Third Portage, Reclaim Tailings Water, Mill, North Cell TSF, South Cell TSF, ATPs (Portage and Vault), Portage Pit, Goose Pit, Water Transfers and East Dike Seepage pumped to Portage. The following sections will discuss each item and their inherent parameters.

3.1.1 Fresh Water from Third Portage Lake

Fresh water from Third Portage Lake is pumped utilizing the fresh water barge in order to service the camp, mill, shop and all other fresh water users at Meadowbank. The amount pumped from the barge is tracked and reported in the water balance. The two main consumers of fresh water are the mill with an average of 132,284m³/month in 2013 (expected average of 54,780m³/month in 2014) and the camp, that averaged 2,890m³/month in 2013.

The freshwater going to the mill is used in the milling process. After the milling and gold extraction process, the tailings (water and solid waste) is discharged to the North Cell Tailings Storage Facility (TSF). The available water portion after solids settling in the TSF is recycled back in the mill process as reclaim water. However, it is important to note that 40% of the discharged water content is entrapped in the void space of the tailings (20%) and through ice entrapment (20%)(SNC, 2013). Thus only 60% of the tailings water is available for reclaim purposes.

The water going to the camp has multiple uses ranging from washing facilities to consumption. The majority of the camp fresh water is returned to the Stormwater Management Pond after treatment in the onsite sewage treatment plant (STP). This water is transferred to the active TSF twice per year on average and is not discharged to the environment.

The total expected fresh water use planned for 2014 to mine closure varies from 70-90m³/hr during mill operation, and drops to 4m³/hr (exclusively for camp use) once the mill has ceased operation at the end of 2017. The variation seen in the fresh water consumption during the mill operation is required to prevent a reclaim water deficit in the TSF. During summer months, 70m³/hr freshwater is required as there is a surplus of reclaim water as a result of the ice cover melting (approximately 1.3m in February 2014) and freshet inflow. During the winter months AEM will require 90m³/hr of freshwater in order to maintain an adequate reclaim water volume in the TSF as seen in Table 3.1. The ice cover during the winter months on the reclaim pond will vary between 0-1.8m in thickness which may represent up to 80% of the total reclaim water volume. For this reason, the water balance is completed in conjunction with the tailings deposition plan.

In 2013, problems associated with the booster pump and the reclaim barge at the North Cell TSF, led to an increase in fresh water consumption that exceeded the 700,000m³/yr licence limit. Adjustments at the mill and in the water management strategies led to adjusted fresh water consumptions. A summary of the fresh water consumption per year can be seen in Table 3.2.

As a result of the increased fresh water use in 2013, AEM applied to amend the Type A Water License in April, 2013 to reflect the increase to 1,587,409 m³ in 2013 and for subsequent years to mine closure. AEM anticipates that the amendment will be granted as the hearing has been completed (January 2014) and no objections were noted. Specifically, AEM applied for an increase to 1,870,000m³/yr (1,587,409 m³ actual) for 2013 (due to the problems at the reclaim barge) and 1,120,000m³/yr for 2014 – 2018. These totals do not include the water required to re flood the pits from 2PL and 3PL and this volume will be discussed through the water license renewal process (application for renewal scheduled for June, 2014).

Table 3.1: Targetted water hourly consumption per month

Month	Fresh Water Flow (m³/h)	Reclaim Water Flow (m ³ /h)	Total Water Flow (m³/h)
January	90 m³/hr	330 m³/hr	420 m³/hr
February	90 m³/hr	330 m³/hr	420 m ³ /hr
March	90 m³/hr	330 m³/hr	420 m³/hr
April	90 m³/hr	330 m³/hr	420 m³/hr
May	70 m³/hr	350 m³/hr	420 m ³ /hr
June	70 m³/hr	350 m³/hr	420 m ³ /hr
July	70 m ³ /hr	350 m ³ /hr	420 m ³ /hr
August	70 m³/hr	350 m³/hr	420 m ³ /hr
September	70 m³/hr	350 m³/hr	420 m³/hr
October	70 m³/hr	350 m³/hr	420 m³/hr
November	90 m³/hr	330 m ³ /hr	420 m ³ /hr
December	90 m³/hr	330 m ³ /hr	420 m ³ /hr
Average	80 m³/hr	340 m³/hr	420 m³/hr

Table 3.2: Yearly water consumption summary

Year	Average Fresh Water Flow (m³/h)	Total Fresh Water (m³)	Average Reclaim Water Flow (m³/h)	Total Reclaim Water (m³)
2013	181 m ³ /hr	1,587,409 m ³	261 m ³ /hr	2,286,400 m ³
2014	79 m³/hr	693,120 m ³	341 m ³ /hr	2,986,080 m ³
2015	80 m³/hr	700,080 m ³	340 m ³ /hr	2,979,120 m ³
2016	80 m³/hr	702,240 m ³	340 m ³ /hr	2,987,040 m ³
2017	66 m³/hr	574,145 m ³	282 m ³ /hr	2,465,280 m ³
2018-2025	4 m³/hr*	34,675 m ³ *	0 m ³ /hr	0 m ³

^{*} Non-leap year value excluding pit reflooding volumes

3.1.2 Reclaim Tailings Water

Reclaim water represents the water reclaimed from the TSF (North and future South Cell) reclaim ponds. Currently, the pumping system utilizes a barge similar to the one used for fresh water intake. As seen in the water balance (Appendix A), the reclaim water originates from the active TSF except at the closure of the North Cell during its last two months of operation (September and October 2015). This is due to the operational limitations that the pumping will be subject to during this period, i.e. high TSS and lack of depth to support the reclaim barge pumps. Specifically, the low reclaim water quality (high TSS) and quantity due the low volume of water in the tailings pond could lead to operation problems at the mill. Due to the geometry of the South Cell, a different reclaim pumping system will be established once deposition starts in this TSF (Ocotber 2014); this system will consist of an HL250 pump that will be repositioned continually during operation to reflect the rise in the reclaim pond as a result of tailings deposition. The pumping rate of the reclaim water will range from 330-350m³/hr to balance the variation seen in the fresh water use (Table 3.1). Historically, it has been shown that the total water usage (fresh and reclaim) for the site will average 420m³/hr, therefore the reclaim represents the difference between total and freshwater volumes - see Table 3.1. A summary of the reclaim water sent to the mill in 2013 and on a projected annual basis to 2017 can be seen in Table 3.2.

3.1.3 Mill

The mill water use stated in the water balance includes the latest LOM figures as per Table 2.3 for the monthly mill throughput as well as the historical averages of ore material moisture content seen in Table 3.3.

Table 3.3: Monthly average ore material moisture content observed at the mill

Month	Observed Average Moisture Content (%)
January	1.21%
February	1.22%
March	1.19%
April	1.33%
May	0.98%
June	0.89%
July	0.99%
August	0.72%
September	0.93%
October	0.99%
November	0.98%
December	1.53%
Average	1.08%

3.1.4 North Cell

The North Cell TSF has been in operation since January 2010 and will be receiving tailings from the mill until November 2015. Closure and capping of this TSF will occur progressively starting in 2015. As per the design specifications, the reclaim pond of this cell is limited by a two meter water freeboard required within the surrounding structures (Stromwater Dike, Saddle Dams 1 & 2), thus the reclaim water will stop at the El. 148.0m for the North Cell. The South Cell reclaim pond will be subject to the same 2.0m freeboard.

As seen in the water balance, no tailings will be deposited in the North Cell during the winter 2015 (October 2014 - June 2015) due to the difficulty of operating the TSF during the winter months nearing closure. The thick ice cover will dramatically reduce the amount of free water which may render the pumping of the reclaim water impossible.

For a detailed look at the Integrated Tailings Deposition Plan, please refer to Appendix E.

3.1.5 South Cell

The future South Cell TSF currently acts as the Portage Attenuation Pond which collects site contact water and pit contact water originating from both Portage and Goose pits. In the summer 2014, it is approximated that 1,041,000m³ of water from this attenuation pond will be treated via the WTP (water treatment plant) and discharged to Third Portage Lake compared to 485,015m³ in 2013. Following this operation, the South Cell TSF will commence receiving tailings in October 2014 until October 2017 (LOM mine closure). Once tailings deposition begins in the South Cell TSF, the Portage Attenuation water will no longer be discharged into 3PL. Closure and capping of the South Cell TSF will occur at the end of the mine life. Mining is scheduled to stop in the Goose pit at the beginning of 2015. Once the South Cell becomes operational as a TSF the Goose Pit will serve as the site Attenuation Pond and all pit water originating from Portage Pits will be pumped to this location. This will form part of the pit reflooding process. No water will be pumped to the environment from the Goose Pit.

As noted in the water balance and the deposition plan (Appendix E), no tailings will be deposited in the South Cell during the summer 2015 (June 2015 - November 2015) in order to finalize deposition in the North Cell (for closure and capping purposes). Any remaining water in the North Cell will be transferred to the South Cell to form part of the reclaim water system for the mill. The water transfers, discussed in Section 3.1.8, and water management strategies inbedded within the water balance reflect the latest deposition plan developed by AEM.

3.1.6 Portage Pit

Portage pit incorporates all sub-pits (A, B, C, D & E) and their associated pushback areas if applicable. Currently, Portage pit contains a Central waste rock disposal area which extends from Pit C to D with a second section located in Pit B. The Portage pit natural inflow has been revised from the SNC estimates with measured data from 2013. The majority of the groundwater inflow originated from the bottom benches of Pit C and D. Since these areas are now backfilled, it has been observed that a reduction in water inflow has occurred. It is estimated that, towards the bottom benches of both Pit A and E, additional water may be encountered due to the greater hydraulic pressure associated with 2PL. All water pumped from the Portage pits will be pumped to the current Portage Attenuation Pond (which becomes the South Cell TSF in October 2014) until pit flooding operations begin in Portage pit, at which point the Portage Pit pumping system will be decommissioned to be replaced by the infrastructure required for the pit flooding.

3.1.7 Goose Pit

Mining is scheduled to be completed in the Goose pit near the end of 2014 or at the beginning of 2015. The inflow values have been revised from SNC, 2013. Specifically AEM has observed that the current pit groundwater inflow decreases during the winter due to the freezing of the pit walls; however a large amount of ice has been building on the walls and is subsequently partially removed (only accessible areas) on a recurring basis which accounts for a significant amount of water (approximately 1,500 m³ per month). The values for the 2014 Goose pit inflow have been adjusted based on the actual 2013 pumping values. When referring back to the initial estimates originating from the 2012 SNC document, an important increase is observed in the water inflow during the mining of the bottom benches of Goose. Current information suggests that the 2012 SNC estimates are accurate therefore the 2014 water balance has assumed the same flow values. The only change is the timeframe reflecting pit mining, and flooding operations. The water pumped out from Goose is currently discharged to the Portage Attenuation Pond during the mining process. Once mining of this pit has been completed in early 2015, the inflow will be allowed to collect in the pit as part of the reflooding process. In mid to late 2016, specifically in June, July, September, October and December, a total of approximately 410,500m3 of water will be transferred to the South Cell for optimal tailing deposition and reclaim pond operation.

3.2 WATER TRANSFERS

Water transfers from various locations around the site are required to reduce freshwater consumption, optimize the water balance and maintain the good working order of the different facilities around the mine site.

3.2.1 TSF Water Transfers

In order to optimize the tailings deposition sequence, maintaining an adequate reclaim pond (operating volume and water quality) and the closure of each cell, water transfers within the tailing storage facilities and pits are required throughout their operating life. As seen in Table 3.4, water transfers from the South Cell (Portage ATP) to the North Cell was required in 2013 to maintain an adequate pond. In 2014 and 2015, water transfers from the North Cell towards the South Cell are required for the closure of the North Cell. In 2015, 2017 and 2018, water transfers from the South Cell to the Goose and Portage pits are undertaken to optimize the reclaim pond and to close the South Cell TSF.

Table 3.4: TSF water transfers

	TSF Water Transfers						
Year	South Cell (ATP) to North Cell (m³)	North Cell to South Cell (m³)	South Cell to Goose Pit (m³)	South Cell to Portage Pit (m³)			
2013	507,144	0	0	0			
2014	0	72,281	0	0			
2015	0	929,923	495,000	0			
2016	0	85,148	0	0			
2017	0	0	0	300,000			
2018	0	0	0	67,926			
Total	507,144	1,087,352	495,000	367,926			

3.2.1.1 Portage Water Treatment Plant

In 2013, the Portage water treatment plant (WTP) was used to treat water from the Portage Attenuation Pond (future South Cell TSF) to be discharged to Third Portage Lake. Treatment volumes are determined and guided by the future deposition of tailings in the South Cell. The volume of water remaining in the current attenuation pond needs to be optimized prior to deposition to ensure proper settling of solids and to ensure there is an adequate reclaim water pond. Treatment requirements were minimized in 2013 as a total of 485,018 m³ of water was treated; significantly less than in 2012 (1,648,348m³). To prepare for the deposition of tailings in the South Cell in October 2014 a total of 1,041,000m³ of water will need to be treated and discharged to 3PL in 2014. Once this final volume is removed, the Portage WTP will no longer be required as there will be no further discharge to 3PL for the rest of the mine life.

3.2.1.2 Vault Water Treatment Plant

In 2013, the dewatering of Vault Lake commenced. A total of 2,315,483m³ was pumped to Wally Lake (all in accordance with Water License and MMER requirements). In 2014, the remaining balance (approximately 750,000m³), assumed to require treatment to remove excessive suspended solids, will be dischaged to Wally Lake (all in accordance with Water License and MMER requirements). After that, this area will become the Vault Attenuation Pond which will operate until the end of mine life in 2017. All discharge will be through the Vault WTP which is designed to remove TSS only. Additional discharge in 2014 will be completed to remove the Vault Pit contact water estimated to be around 422,549m³, totaling the 2014 annual discharge to 1,172,549m³. All other parameters are predicted to be within Water License and MMER criteria. The Vault Attenuation pond will collect all pit and contact runoff water prior to any discharge to Wally Lake. Summarized in Table 3.5, are the volumes of water that will be discharged to Wally Lake over the life of mine.

Table 3.5: Wally Lake annual discharge

Year	Wally Lake Annual Discharge (m ³)					
	Lake Dewatering	WTP Volumes				
2013	2,315,483	0				
2014	750,000	422,549				
2015	0	472,549				
2016	0	472,774				
2017	0	480,264				
Total	2,3151483	2,598,136				

3.2.1.3 Stormwater Management Pond

The Stormwater Management Pond is a small shallow and fishless, water body that can be seen in Figure 2.2 adjacent to Portage Pit. Treated sewage is discharged into this pond before being transferred to the active TSF. The quantity of water transferred each year, occurring only during the summer months, totals 34,675m³ which represents less than 1% of the total inflow in the TSF.

3.2.2 East Dike Seepage Collection

As previously stated, the East Dike Seepage Collection system, collects the seepage originating from the East Dike. The water originates from Second Portage Lake (2PL) and flows through the East Dike in two discrete locations termed the North and South sumps. There is no contact with current operational mining activity. The collection system pumps the seepage back into 2PL as a combined flow through a common header to the prescribed discharge diffuser. This discharge was approved by the Nunavut Water Board in 2013 and is subject to Water License and MMER requirements. In 2013, the seepage discharge was located within Portage Pit and pumped to the Portage Attenuation Pond (future South Cell TSF). This seepage water was included as part of the overall Portage water management system. Starting in January 2014 the East Dike seepage is discharged directly to Second Portage Lake via a diffuser as mentioned previously. In October 2016, after mining in South Portage (pit E) is completed, the East Dike seepage will remain in the Portage pit to be included in the pit reflooding operations. The total monthly flow observed from this seepage is 30,000m³.

3.3 PIT REFLOODING OPERATION

The current reflooding technique proposed to fill Goose and Portage pits (closure) is to use Canadian dewatering pumps to achieve the pumping rates prescribed by the water balance. Passive techniques, such as siphons, will be investigated to determine their viability for this operation. A total of 34Mm³ will need to be transferred from 2PL to accomplish the required pit reflooding. The current mining plan shows that the Goose pit mining will be completed in the first quarter of 2015 at which point Goose pit reflooding may commence. Reflooding of Portage Pit will commence in 2018 once mining operations have ceased. AEM has determined that the Portage and Goose basins will join and combine as one at El 131.0m. The entire flooding sequence is estimated to be completed by the beginning of 2025. It is important to note that there may be opportunity to begin flooding parts of Portage pit, primarily pit E, once mining in that area has been completed (Q2 2016). This will be explored further to investigate the impacts this may have on pit backfilling and other mining operations.

MEADOWBANK GOLD MINE 2013 WATER MANAGEMENT REPORT AND PLAN

The operation of the TSF facilities will lead to the need to store approximately 900,000m³ of reclaim water by the end of the mine life. The initial water management plan proposed by SNC stated that the water quantity should be split evenly between Portage and Goose at the time of reflooding. Due to operational constraints and date of availability for water storage, the current water management plan shows that approximately 500,000m³ (55%) would go to Goose in 2015. and the balance (approximately 400,000m³ – or 45%) going to Portage in 2017 (300,000m³ to Pit E specifically) and 2018 (100,000m³) during the closure of the South Cell. As the flooding occurs, it is important to note that the Portage and Goose area will connect at El 131m creating only one water body. The reclaim water treatment requirements will be determined as per the water quality modelling analysis completed by SNC (Appendix D). The water quantities split between Portage and Goose will be reviewed regularly as AEM updates the water balance. AEM will also make determinations based on the mining sequence flexibility to optimize water transfers from the TSF to the pits in order to minimize treatment requirements. For example, discharge of reclaim water to the pits can be designed to increase aeration (cascading over pit walls) to reduce the ammonia content. More options on possible treatment requirements are discussed in the SNC Water Quality Modeling Report – Appendix D. The details surrounding treatment will be refined as the water quality models and balance are updated.

The current pit backfilling strategy with mine waste rock incorporates two wasterock disposal areas, one for Pit B and another for Pit C and D. Combined, these areas provide 8.5Mm³ of waste rock storage, primarily consisting of potentially acid-generating (PAG) material. These waste rock disposal sites form part of AEM's fish habitat compensation in accordance with DFO requirements. These wasterock disposal areas will be completely submerged once the reflooding process has been completed. This will provide a final minimum water cover of 4m thickness providing the oxygen barrier to prevent acid generation. It is assumed that a 30% void volume will be available for water to occupy at the time of re-flooding. The disposal of potentially acid generating (PAG) material in a sub aqueous setting as seen in the above mentioned pit backfilling operation, is a standard practice to prevent the acid generating process by effectively reducing the oxidation process. The deposition will lessen the requirement of reflooding volume such that the entire pit flooding operation to obtain a water elevation of El 134m will require a total of 45Mm³ of water. As previously stated, 34Mm³ originates from 2nd Portage Lake, 900,000m³ as reclaim water from the TSF and the balance being the natural pit water inflow including groundwater, East Dike seepage, runoff and precipitation from 2015 - 2025.

Reflooding of the pits will occur gradually, with the summer period being the major reflooding operation period. Goose pit will begin to be flooded in May 2015, after mining has been completed, by first removing all dewatering infrastructures and letting the natural pit inflow to begin collecting in the excavation. Sample monitoring will be conducted throughout the reflooding process at both pits at regular intervals for water chemistry and metals content. In 2016, additional reflooding efforts will be added for the summer period to accelerate the flooding operation via the utilization of pumps or siphons from 2PL. This additional flow will increase the pit water inflow by 90,000m³/month, from June to October of each year until 2022. By the third quarter of 2022, the Goose area will have reached the El 131m and will remain stable until the third quarter of 2024 when Portage Pit water elevation reaches the El 131m. Portage pit will begin to be reflooded in August 2017, by first transferring water from the South cell to Pit A. Once mining is completed in October 2017, all dewatering infrastructure will be removed. Natural pit inflow and the East Dike seepage will then begin the reflooding process. In 2018, additional reflooding volume will be added for the summer period to accelerate the flooding operation via the utilization of pumps or siphons from 2PL. The increased volume will augment the pit water inflow by 1,130,000m³/month, from June to October of each year until 2025 when the reflooding is anticipated to be completed. By 2025, elevation will reach El 134.0m, the same level as 3PL. Once the water quality in the reflooded area meets CCME Criteria for the Protection of Aquatic Life the intent is to breach the containment dikes to reconnect the Portage an Goose areas to 3PL. It should be understood that the dikes will not be breached unless the water quality meets the CCME criteria.

MEADOWBANK GOLD MINE 2013 WATER MANAGEMENT REPORT AND PLAN

The Vault area will follow a similar reflooding process, with an incoming flow rate from Wally Lake, equivalent to that of the spring freshet (4,182,604m³) through pump stations or syphons. The total flooding volume required is 28Mm³ to return Vault Lake to its initial state (El 139.5m) and will be accomplished by the end of the third quarter of 2024. The water required for the flooding will originate from Wally lake, as well as the natural groundwater and runoff (including freshet volumes). Reflooding of the Vault pit will occur gradually, with the summer period being the major flooding operation period. Vault pit will begin to be flooded in October 2017, after mining has been completed, by first removing all dewatering infrastructures and letting the natural pit inflow to begin collecting in the excavation and attenuation pond area. In 2018, additional reflooding efforts will be added for the summer period to accelerate the flooding operation via the utilization of pumps or siphons from Wally Lake. This additional flow will increase the water inflow by an average of 1,045,651m³/month, from June to October of each year until 2025. By the end of the third quarter of 2024, the Vault Lake will have reached the El 139.5m.

4 WATER QUALITY MODELLING REPORT

A Water Quality Modeling Report prepared by SNC Lavalin has been used to model the quality of the water in the pits at closure (as per condition Part E Item 6 of the NWB Type A water license). As stated in the water management strategies, TSF water will be transferred to both Portage and Goose pits once their respective mining has been completed. The water pumped from 2PL in the the reflooding process as well as freshet and pit inflows (including East Dike seepage) will mix with South Cell reclaim water from 2015 – 2018. SNC has modeled the predicted water quality based on current levels of contaminants in the North Cell TSF and water flows to determine the overall quality and need for treatment once the former mining pits have been reflooded. This report is presented in Appendix D. Based on water quality results in 2013, SNC provides an update on the previous model that forms part of the 2012 SNC Water Management Report.

Condition Part E Item 6 requires that AEM make a comparison of the predicted (originally modelled during the NWB Type A License) against the measured parameters. As per follow-up discussions with regulators after the prehearing conference for the Meadowbnak freshwater use amendment application. Table 4.1 summarizes the SNC water quality concentrations (based on measured parameters) predicted in the pit and compares them to originally predicted concentrations. SNC evaluated parameters of concern that included Cyanide (total), Copper, Iron, Nitrate, Chloride and Ammonia; no other parameters are expected to exceed CCME guidelines and were therefore not modelled.

As illustrated in Table 4.1, originally predicted poor end scenario periodically exceeded CCME limits for copper, nitrate and chloride. Recent updates in SNC, 2014 suggest copper and ammonia are expected to exceed CCME limits.

Table 4.1: Comparison of originally predicted pit water quality versus SNC(2014) modelled water quality

	CCME	Portage Pit (mg/L)				Goose Pit (mg/L)			
Parameter	(mg/L)	Original Prediction		SNC, 2014		Original Prediction		SNC, 2014	
		Probabl	Possible Poor end Scenari	Aug	Dec	Probabl	Possible Poor end Scenari	July	Dec
		е	0	2017	2025	е	0	2015	2025
Total Cyanide (CN)	0.005 as free CN	-	-	0.00	0.00	-	-	0.00	0.00
				0.004					
Copper (Cu)	0.004	0.0014	0.013	2	0.06	0.001	0.001	0.0048	0.28
Iron (Fe)	0.3	-	-	0.00	0.006	-	-	0.00	0.029
Ammonia (NH3)	0.86 (mg N/L)	0.00057	0.0006	0.212	0.97	0.0006	0.0006	0.2956	3.38
Nitrate (NO3)	2.9 (mg N/L)	2.60	4.40	0.00	0.26	4.00	4.00	0.00	1.13
Chloride (CI)	120	630	630	0.00	12.97	440	440	0.00	51.61

Grey shading indicates exceedances of CCME guidelines

AGNICO EAGLE

MEADOWBANK GOLD MINE 2013 WATER MANAGEMENT REPORT AND PLAN

Based on current water quality and the 2013 water balance, the report identifies that ammonia and copper may require removal treatment in order for the pit water quality to meet CCME criteria in 2025.

The report identifies several recommendations. These are:

- In addition to the current set of chemical analyses, regular (at least monthly) monitoring
 of all inflows and outflows of the North and South Cells TSF Reclaim Pond for cyanide,
 copper, iron, ammonia, nitrate, and chloride should be undertaken. In the future, the
 addition of total copper and iron, free CN in addition to other contaminants regulated by
 the CCME guidelines should be evaluated (such as Total Suspended Solids).
- 2. Regular analysis are also required of the mill effluent water discharged to the TSF in order to better monitor the changes in cyanide, copper, iron, ammonia, nitrate and chloride concentrations. Samples should be taken at least once a quarter.
- 3. Once transfer begins to the Portage and Goose Pits (2017 and 2015, respectively), regular (at least monthly) monitoring of all inflows of the TSF Reclaim Pond for cyanide, copper, iron, ammonia, nitrate, and chloride should be undertaken.
- 4. Sample and analyze the North and South Cell TSF Reclaim Pond at different depths and locations to determine if there is a concentration gradient in the Reclaim Pond.
- 5. Continued monitoring of the water in the South Cell TSF Reclaim Pond in 2015 on a regular basis to monitor the evolution of the parameters of concern.
- 6. In order to validate the assumption of a well mixed system in Portage and Goose pits, it is recommended to sample and analyze the water at different depths before, during and after the pit is filled with water from South Cell TSF and/or Third Portage Lake.
- 7. Once Portage and Goose pits are hydraulically connected, it is recommended to sample the water at different points in the pit area in order to evaluate the mixing efficiency over the entire area. The samples should be taken at different depths over the entire area of the flooded pits before and after the filling season.
- 8. For the Water Management Plan 2014, consider evaluating the volume of water in Portage and Goose pits once they are hydraulically connected.
- 9. Consider reviewing the volumes of water sent from South Cell TSF pond to Goose and Portage pit in order to achieve lower concentrations of copper and ammonia in Goose Pit.

The SNC 2012 Water Management Plan referenced discharging all of the South Cell reclaim water into the pits in 2018. This updated plan calls for the discharge to commence in 2015 and cease in 2018. This should assist in minimizing stratification of contaminants as the mixing and attenuation will be over a number of years instead of one discharge over a 3 month period with a larger volume and higher concentration of contaminants. It will also allow for smaller volumes for treatment, if required, which will assist in treatment effectiveness.

5 2013 INTEGRATED DEPOSITION PLAN

The processed material by-product as a result of the gold recovery process, called tailings, is pumped as a slurry to the active TSF. The slurry is composed of more than 50% solids by volume. The solid fraction will naturally deposit itself as "tailings beaches" in the TSF. The water fraction separates as the solids settle forming a reclaim pond. Approximately 40% (SNC, 2013) of the water within the tailings will remain with the tailings as void porewater (20%) and/or ice entrapment (20%). This leads to approximately 60% of the water fraction within the slurry being released back to the reclaim pond and available to be pumped back to the mill.

A tailings deposition plan integrated with the water balance model, was developed by AEM in September 2013 and is presented in Appendix E. Due to the integrated nature of the tailing deposition with the water balance, the two are developed concurrently in order to maximize storage capacity of the TSF as well as minimize fresh water consumption and required water transfers.

The tailings deposition plan presented in Appendix E. may contain small discrepencies when compared to the water balance presented in this report. The discrepancies stem from the fact that the water balance presented in this report contains updated figures for the end of 2013 as well as conceptual modifications to the deposition plan which had been produced in September 2013. Particularly, the final phase of the North Cell (closure) was offset one month earlier in the updated water balance to take advantage of the warmer season, and the pond volumes will be slightly different from the water balance presented due to the updated monthly pumping figures of the last four months of 2013. In November 2013, AEM presented the Integrated Meadowbank Tailings Deposition Plan 2013, seen in Appendix E, to the Meadowbank Dike Review Board (MDRB). This plan was the first deposition plan that AEM completed in-house. This report presents a deposition plan until the closure of the North Cell Tailings Storage Facilities and only includes the start-up of the South Cell Tailings Storage Facility. The South Cell closure has subsequently been modeled with an updated water balance which will not be presented in this report. Tailings deposition plans are completed using the software Muck3D developed by Minebridge Software. The parameters used for this model are similar to the ones used by Golder in the past. The modifications of the parameters include updated tailings beach slopes and tailings dry density based on new bathymetric information, and an ice model to reflect the winter deposition. The model reveals that more than 75% of the reclaim water in the North Cell TSF will be frozen from March to May 2014. AEM has since completed a risk assessment to identify the risks and the potential mitigations required. Two mitigations being considered by AEM are:

- Increase freshwater consumption higher than the forecasted 90m³/hr for the winter months and subsequently decrease freshwater use during the summer to less than the forecasted 70 m³/hr.
- Use of a Canadian Dewatering Pump (HL250) to replace the reclaim barge, which offers
 more flexibility as far as its suction elevation in the water, thus able to operate in tougher
 conditions where the water depth and quality are low.

6 RSF SEEPAGE WATER MANAGEMENT

In July 2013, it was noted that seepage from the Wate Rock Storage Facity (RSF) had migrated through a rockfill road at a seepage sump located north-east side of the RSF, as seen in Figure 6.1 depicted by the red arrow. The seepage, which contained elevated copper, nickel, ammonia and cvanide entered NP-2 Lake. It was determined through investigation that the likely source of the contaminants was reclaim water from the North Cell TSF. This water migrated underneath the RSF through a former watercourse into the seepage sump area (known as ST-16 Sample AEM took immediate measures to stop the seepage and implement corrective measures to prevent a recurrence. This included keeping the sump area pumped to a low level, installing an impermeable barrier in the rockfill road, implementing a comprehensive monitoring program and ensuring tailings deposition was enhanced in the North Cell to create beaches that would stop any water egress (this activity is still ongoing and is part of AEM's Tailings Deposition Plan). The Nunavut Water Board has been kept informed of AEM's actions and in October 2013 AEM commissioned Golder and Associates to complete a report on Rock Storage Facility Seepage – attached in Appendix C. It is important to note that AEM will collect additional water samples in NP2, in downstream ponds and at Second Portage Lake and that there have been no fish mortalities observed to date (incl. two toxicity samples that have been deemed non-lethal for trout). AEM plans to develop a comprehensive plan to manage the seepage based on a combination of Golder' recommendations and AEM's internal Freshet Action Plan. Golder recommendations include:

- AEM should continue to develop and maintain tailings beaches adjacent to RF1 and RF2 and to operate the Reclaim Pond towards the centre of the TSF. These are the key recommendations.
- 2) AEM should consider the installation of additional water management infrastructure which could take the form of a permanent collection and pumping system at the sampling station ST-16 current sump. Also, consideration should be given for contact water ditches and sumps in the surrounding areas of the RSF if additional seepages of contaminated water are observed in the future.
- 3) The seepage at station ST-16 should continue to be collected and redirected to the TSF and monitored (location, quantity, quality). Continued monitoring is strongly recommended during the winter for seepage water quantity monitoring and possible development of an ice plug in the RSF. The area at ST-16 should be kept clean of snow to allow visual observation and to ensure that water at ST-16 does not overflow over the till plug into Lake NP-2.
- 4) Regular inspections all around the RSF should be performed, particularly during freshet, to ensure that runoff or any observed seepage is controlled and monitored prior to being released into the environment if the analyses results meet the requirement.
- 5) AEM should continue to monitor the tailings and waste rock freeze back following the Thermistor Monitoring Plan in accordance with Part 1, Item 11 of the Type-A water license
- 6) AEM should provide the results of the 2014 monitoring to Golder for review and comment.

It is AEM' intent to implement the Golder recommendations and include them in an overall Freshet Action Plan to be prepared prior to the 2014 freshet (anticipated May 15th 2014). In addition to the Golder recommendations listed above AEM will also include, as a minimum, in the Action Plan:

1) Continue monthly monitoring of the ST-16 location and bi weekly in NP-2 South, East, West and NP-1 West locations after ice out (see Golder report Fig 3) for total and dissolved metals, general chemistry, Total CN and CN WAD. AEM also proposes to add

AGNICO EAGLE

MEADOWBANK GOLD MINE 2013 WATER MANAGEMENT REPORT AND PLAN

- sample locations, in 2014, in Dogleg and Second Portage Lake (see Figure 6.1 below for approximate location for Dogleg-North and SPL-RSF Seep).
- 2) Monitor NP-2 Lake monthly in one location through the ice during winter for the same parameters listed above.
- 3) Ensure the snow is removed from the East Diversion ditch prior to freshet to ensure water can flow out of NP-2 easily and not impact the access road separating NP-2 and the ST-16 seepage location.
- 4) Install an additional 4 thermistors on top and around the RSF to increase thermal monitoring capability to assist with Golder recommendation # 5 above.

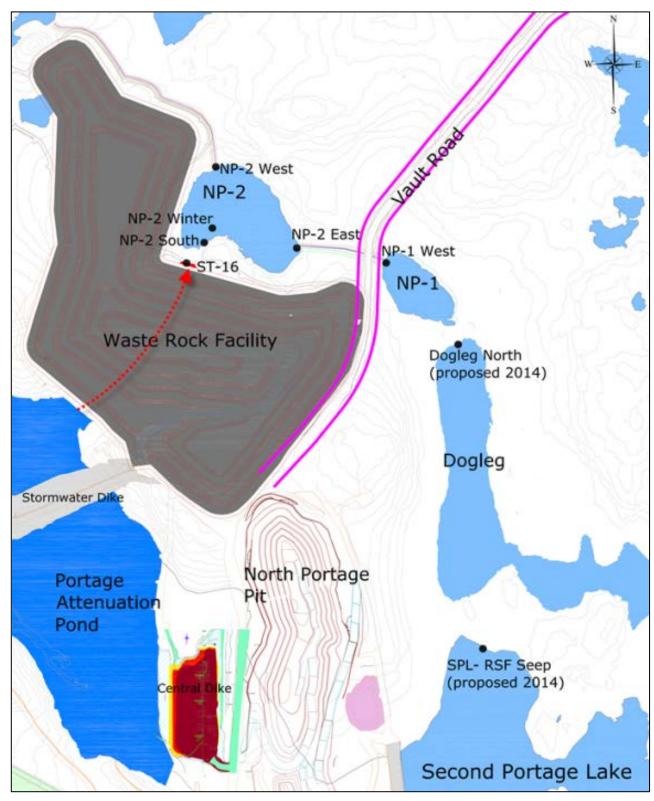


Figure 6.1: Freshet Water Monitoring Location and RSF Seepage Flow

MEADOWBANK GOLD MINE 2013 WATER MANAGEMENT REPORT AND PLAN

7 CONCLUSION

This report presents an updated/revised water management plan for the Meadowbank mine based on the SNC 2012 Water Management Plan submitted to the NWB as part of the AEM 2013 Annual Report. Validation and updates of the site parameters (i.e. runoff and pit inflows) was conducted in 2013 as well as modifications to the global water management strategies and operating schedule. The updated life of mine schedule has led to the revisions in water management strategies while the updated tailings deposition plan has allowed further detailing within the water balance presented in this report.

The water balance presented has been optimized to reduce freshwater consumption to a minimum and minimize water treatment requirements through our water treatment plants. The water deficit encountered in the Tailings Storage Facilities during the winter months due to the ice cover, which can represent up to 75% of the pond volume at its peak thickness (maximum thickness of 1.8m in March and April), is mitigated by an increase in freshwater consumption during these cold months. The East Dike seepage has been redirected to Second Portage Lake in order to reduce the water entry into the system, thus reducing the in-pit pumping requirements and subsequently the water treatment required in 2014. Once Portage Pit enters its reflooding stage, the East Dike seepage controls will be removed allowing the water to passively flow into Portage Pit with the reflooding operation.

Pit reflooding volumes and sequence (including Portage, Goose and Vault Pits) is presented in this report. Reflooding will commence in 2015 with Goose Pit once mining has been completed, and subsequently in 2017 for both Portage and Vault Pits, and the entire reflooding process will be completed by the beginning of 2025. Contingent that the water quality meets CCME Guidelines for the Protection of Aquatic Life, dike breaching of the surrounding structures will occur to reconnect the Portage and Goose areas to Second Portage Lake and Vault area to Wally Lake (2025). It should be understood that the dikes will not be breached unless the water quality meets the CCME criteria.

Water quality modelling was completed by SNC Lavallin for the life of mine and included in this report. The mandate of this report is to analyse the water quality as we proceed through the operating life of the mine and the reflooding operation and to determine the need for potential treatment of identified parameters of concern. The impact of transferring the TSF water to the pits during the reflooding process was explored using the latest available water quality results from the North Cell TSF, actual mill tailings and the Portage Attenuation pond obtained in 2013. Based on current water quality and the 2013 water balance, the report identifies that ammonia and copper may require removal treatment in order for the pit water quality to meet CCME criteria in 2025.

The rock fill storage seepage was discussed and a mitigation strategy is presented based on recommendations from Golder (2014) and AEM. AEM took immediate measures to stop the seepage and implement corrective measures to prevent a recurrence. AEM plans on further developing a comprehensive approach to manage the seepage as part of an overall Freshet Action Plan to be completed prior to the 2014 freshet period – app May 15, 2014.

8 RECOMMENDATIONS

This section presents a series of recommendations in order to improve on the current water management strategies and water balance.

- Continue to monitor and include any new flow monitoring locations/devices wherever
 possible to determine trends in pit water inflows, freshet volumes and seepage rates by
 using flowmeters. Specifically, flowmeters could be added to monitor the volume of water
 pumped at the toe of Saddle Dam 1 to the North Cell and also water pumped from the
 RSF seepage collection area (ST-16).
- Ensure all flowmeters are calibrated to ensure flows used in the water balance are accurate.
- Continue to update the deposition plans of the North and South Cell as needed to maximize water use and availability as well as increasing the accuracy of the models including but not limited to bathymetric readings.
- Conduct the water quality modelling analysis on a yearly basis based on updated water quality results and water balance through the life of mine. It will be beneficial to look at the opportunities to begin reflooding Portage Pit earlier if the mining schedule allows for such an operation to occur. As per the water quality modelling report, the water split between Portage and Goose must be considered in subsequent versions of the water balance to attempt to minimize potential future treatment requirements. Please refer to additional recommendations in the Water Quality Report in Appendix D.
- Develop or prepare a comprehensive Freshet Action Plan in 2013 to address the
 diversion ditches and their associated TSS control, including the possible implementation
 of a settling facility, RSF seepage including collection systems and long term control
 through the mine closure, required monitoring program of seepage around various
 infrastructures, Vault culvert TSS control. This includes implementation of the Golder
 recommendations regarding the RSF seep.
- Include the Phaser deposit in the application to renew the Type A Water License which is due to be submitted in June 2014, one year in advance of expiration of the current License. Also include this updated Plan in the application.

9 REFERENCES

- 1. SNC (2013) Water Management Plan 2012. SNC Lavalin. March 2013.
- 2. Environnement Canada (2011a) National Climate Data and Information Archive, http://climat.meteo.gc.ca/advanceSearch/searchHistoricData_f.html.
- 3. 14. Nunnavut Water Board, Water Licence NO: 2AM-MEA0815, June 9 2008 to May 31 2015.

APPENDIX A - WATER BALANCE

						Year	2013						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Tailings (tonnes):	320,729	329,710	368,323	309,458	363,625	355,498	368,058	321,294	357,595	377.118	300,779	370.655	4,142,842
Cummulative Tailings (tonnes):	8,811,301	9,141,011	9,509,334	9,818,792	10,182,417	10,537,915	10,905,973	11,227,267	11,584,862	11,961,980	12,262,759	12,633,414	-
Cummulative Tailings (tonnes) - North Cell	8,811,301	9,141,011	9,509,334	9,818,792	10,182,417	10,537,915	10,905,973	11,227,267	11,584,862	11,961,980	12,262,759	12,633,414	-
Cummulative Tailings (tonnes) - South Cell	0	0	0	0	0	0	0	0	0	0	0	0	-
North Cell (TSF)													
Water from tailings slurry (m ³)	202,903	194,123	213,032	195,934	204,739	204,752	199,909	188,770	183,256	184,275	169,968	188,340	2,330,001
Runoff (m ³)	0	0	0	0	0	86,343	11,995	17,489	44,005	0	0	0	159,832
Transfer from South Cell (m³)	0	0	0	0	0	146,753	220,391	0	0	140,000	0	0	507,144
Sewage water from Tear Drop Lake (m³)	0	0	0	0	23,085	0	0	0	0	0	0	0	23,085
Total Inflow (m ³)	202,903	194,123	213,032	195,934	227,824	437,848	432,295	206,259	227,261	324,275	169,968	188,340	3,020,062
Reclaim water to the mill (m ³)	268,611	201,270	0	114,731	149,134	109,504	245,860	216,534	252,576	240,089	223,826	264,265	2,286,400
Total Outflow (m ³)	268,611	201,270	0	114,731	149,134	109,504	245,860	216,534	252,576	240,089	223,826	264,265	2,286,400
Net Inflow (m³)	-65,708	-7,147	213,032	81,203	78,690	328,344	186,435	-10,275	-25,315	84,187	-53,859	-75,925	733,662
End-of-Month Volume (m³)	808,995	801,848	1,014,880	1,096,083	1,174,773	1,269,454	1,455,036	1,444,761	1,419,446	1,503,633	1,449,774	1,337,312	-
South Cell (ATP)													
Pumped From Goose Pit (m³)	29,033	29,033	29,033	29,033	29,033	29,033	53,674	34,150	28,957	25,870	11,439	16,706	344,994
Pumped From Portage Pit (m³)	80,533	80,533	80,533	80,533	80,533	80,533	31,172	23,420	59,088	39,037	14,399	26,392	676,706
Runoff (m ³)	0	0	0	0	0	246,491	23,545	0	22,443	0	0	0	292,479
Total Inflow (m ³)	109,566	109,566	109,566	109,566	109,566	356,057	108,391	57,570	110,488	64,907	25,838	43,098	1,314,179
Decant - TSS to Third Portage (m ³)	0	0	0	0	0	0	0	94,440	307,618	82,960	0	0	485,018
Transfer to North Cell (m³)	0	0	0	0	0	146,753	220,391	0	0	140,000	0	0	507,144
Total Outflow (m ³)	0	0	0	0	0	146,753	220,391	94,440	307,618	222,960	0	0	992,162
Net Inflow (m ³)	109,566	109,566	109,566	109,566	109,566	209,304	-112,000	-36,870	-197,130	-158,053	25,838	43,098	322,017
End-of-Month Volume (m³)	225,302	334,868	444,434	554,000	744,000	816,000	704.000	667.130	470,000	361,947	477,785	520,883	_
Mill/Camp	223,302	33 1,000	111,131	33 1,000	711,000	010,000	70 1,000	007,130	170,000	301,317	177,703	320,003	
Ore water (m ³)	3,948	4,459	5,377	3,546	3,417	3,511	2,720	2,073	3,717	3,394	2,406	5,633	44,201
Reclaim water (m ³)	268,611	201,270	0	114,731	149,134	109,504	245,860	216,534	252,576	240,089	223,826	264,265	2,286,400
Freshwater from Third Portage Lake (m³)	68,558	120,469	352,622	211.130	191,626	231,088	87,546	98,955	51,984	66,588	59,897	46,947	1,587,409
Total Inflow (m³)	341,117	326,198	357,999	329,407	344,176	344,103	336,126	317,561	308,277	310,071	286,129	316,845	3,918,010
Freshwater for camp purposes (m³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Slurry water (m ³)	338.172	323.538	355.054	326.557	341.231	341.253	333.181	314.616	305.427	307.126	283,279	313.900	3.883.335
Total Outflow (m³)	341,117	326,198	357,999	329,407	344,176	344,103	336,126	317,561	308,277	310,071	286,129	316,845	3,918,010
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
	361	300	0	159	200	152	330	291	351	323	311	355	-
Reclaim water pumping rate (m³/hr)	92	179	474	293	258	321	118	133	72	90	83	63	_
Freshwater pumping rate (m³/hr) TSF Water Balance	92	1/9	4/4	293	258	321	118	155	12	90	83	03	-
Slurry water (m ³)	338,172	323,538	355,054	326,557	341,231	341,253	333,181	314.616	305,427	307,126	283,279	313,900	3.883.335
, , ,	135,269	129,415	142,022	130,623	136,492	136,501	133,272	125,846	122,171	122,850	113,312	125,560	1,553,334
Void and ice entrapment losses (m³)				,			,			,			
Slurry water returned to the pond (m ³)	202,903	194,123	213,032	195,934	204,739	204,752	199,909	188,770	183,256	184,275	169,968	188,340	2,330,001

						Year	2013						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Goose Pit													
Runoff (m³)	29,033	29,033	29,033	29,033	29,033	29,033	53,674	34,150	28,957	25,870	11,439	16,706	344,994
Total Inflow (m ³)	29,033	29,033	29,033	29,033	29,033	29,033	53,674	34,150	28,957	25,870	11,439	16,706	344,994
Pumped to Attenuation Pond (m ³)	29,033	29,033	29,033	29,033	29,033	29,033	53,674	34,150	28,957	25,870	11,439	16,706	344,994
Total Outflow (m ³)	29,033	29,033	29,033	29,033	29,033	29,033	53,674	34,150	28,957	25,870	11,439	16,706	344,994
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	0	0	0	0	0	0	0	0	0	0	0	0	-
Portage Pit													
Runoff (m³)	50,533	50,533	50,533	50,533	50,533	50,533	1,172	0	22,508	9,037	0	0	335,915
East Dike Seepage (m³)	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	36,537	366,537
Total Inflow (m ³)	80,533	80,533	80,533	80,533	80,533	80,533	31,172	30,000	52,508	39,037	30,000	36,537	702,452
Pumped to Attenuation Pond (m ³)	80,533	80,533	80,533	80,533	80,533	80,533	31,172	23,420	59,088	39,037	14,399	26,392	676,706
Total Outflow (m ³)	80,533	80,533	80,533	80,533	80,533	80,533	31,172	23,420	59,088	39,037	14,399	26,392	676,706
Net Inflow (m ³)	0	0	0	0	0	0	0	6,580	-6,580	0	15,601	10,145	25,746
End-of-Month Volume (m³)	0	0	0	0	0	0	0	6,580	0	0	15,601	25,746	-
Vault Attenuation Pond													
Pumped From Vault Pit (m³)	0	0	0	0	0	0	0	0	0	0	45,000	0	45,000
Runoff (m³)	0	0	0	0	0	549,362	0	0	0	0	0	0	549,362
Total Inflow (m³)	0	0	0	0	0	549,362	0	0	0	0	45,000	0	594,362
Decant - TSS to Wally Lake (m ³)	0	0	0	0	0	44,614	449,146	727,426	784,648	309,649	0	0	2,315,483
Total Outflow (m ³)	0	0	0	0	0	44,614	449,146	727,426	784,648	309,649	0	0	2,315,483
Net Inflow (m ³)	0	0	0	0	0	504,748	-449,146	-727,426	-784,648	-309,649	45,000	0	-1,721,121
End-of-Month Volume (m³)	2,203,504	2,203,504	2,203,504	2,203,504	2,203,504	2,708,252	2,259,106	1,531,680	747,032	437,383	482,383	482,383	-
Vault Open Pit													
Runoff (m³)	0	0	0	0	0	30,000	20,000	0	0	0	0	0	50,000
Total Inflow (m³)	0	0	0	0	0	30,000	20,000	0	0	0	0	0	50,000
Pumped to Vault Attenuation Pond (m ³)	0	0	0	0	0	0	0	0	0	0	45,000	0	45,000
Total Outflow (m ³)	0	0	0	0	0	0	0	0	0	0	45,000	0	45,000
Net Inflow (m ³)	0	0	0	0	0	30,000	20,000	0	0	0	-45,000	0	5,000
End-of-Month Volume (m³)	0	0	0	0	0	30,000	50,000	50,000	50,000	50,000	5,000	5,000	-

						Year	2014						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Tailings (tonnes):	360,989	288,994	367,009	348,990	325,004	354,990	360,995	325,004	348,990	360,995	313,980	360,995	4,116,935
Cummulative Tailings (tonnes):	12,994,403	13,283,397	13,650,406	13,999,396	14,324,400	14,679,390	15,040,385	15,365,389	15,714,379	16,075,374	16,389,354	16,750,349	-
Cummulative Tailings (tonnes) - North Cell	12,994,403	13,283,397	13,650,406	13,999,396	14,324,400	14,679,390	15,040,385	15,365,389	15,714,379	15,714,379	15,714,379	15,714,379	-
Cummulative Tailings (tonnes) - South Cell	0	0	0	0	0	0	0	0	0	360,995	674,975	1,035,970	-
North Cell (TSF)	•	<u> </u>	ı	1		<u> </u>				<u> </u>			
Water from tailings slurry (m ³)	188,333	169,861	188,337	182,510	187,627	181,618	187,855	187,127	181,676	0	0	0	1,654,945
Runoff (m ³)	0	0	0	0	0	86,002	12,101	17,684	44,122	0	0	0	159,909
Sewage water from Tear Drop Lake (m ³)	0	0	0	0	23,085	0	0	0	11,590	0	0	0	34,675
Total Inflow (m³)	188,333	169,861	188,337	182,510	210,712	267,620	199,956	204,811	237,388	0	0	0	1,849,529
Transfer to South Cell (m³)	0	0	0	0	0	0	0	0	36,521	0	0	0	36,521
Reclaim water to the mill (m ³)	260,400	235,200	260,400	252,000	260,400	252,000	260,400	260,400	252,000	0	0	0	2,293,200
Total Outflow (m ³)	260,400	235,200	260,400	252,000	260,400	252,000	260,400	260,400	288,521	0	0	0	2,329,721
Net Inflow (m³)	-72,067	-65,339	-72,063	-69,490	-49,688	15,620	-60,444	-55,589	-51,133	0	0	0	-480,192
End-of-Month Volume (m³)	1,265,245	1,199,907	1,127,844	1,058,354	1,008,666	1,024,286	963,841	908,253	857,120	857,120	857,120	857,120	-
South Cell (ATP & TSF)													
Pumped From Goose Pit (m³)	25,000	25,000	25,000	25,000	50,000	50,000	38,000	38,000	38,000	38,000	38,000	38,000	428,000
Pumped From Portage Pit (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
Runoff (m ³)	0	0	0	0	0	246,773	34,972	50,705	126,439	0	0	0	458,889
Transfer from North Cell (m³)	0	0	0	0	0	0	0	0	36,521	0	0	0	36,521
Water from tailings slurry (m³)	0	0	0	0	0	0	0	0	0	187,871	181,579	189,029	
Total Inflow (m ³)	25,000	25,000	25,000	25,000	60,000	311,773	82,972	98,705	210,960	225,871	219,579	227,029	1,536,889
Decant - TSS to Third Portage (m³)	0	0	0	0	0	350,000	341,000	350,000	0	0	0	0	1,041,000
Reclaim water to the mill (m³)	0	0	0	0	0	0	0	0	0	245,520	237,600	245,520	728,640
Total Outflow (m³)	0	0	0	0	0	350,000	341,000	350,000	0	245,520	237,600	245,520	1,769,640
Net Inflow (m³)	25,000	25,000	25,000	25,000	60,000	-38,227	-258,028	-251,295	210,960	-19,649	-18,021	-18,491	-232,751
End-of-Month Volume (m³)	545,883	570,883	595,883	620,883	680,883	642,656	384,628	133,333	344,293	324,644	306,622	288,132	_
Mill/Camp	0 10,000	0.10,000	000,000	020,000	200,000	0.12,000	00 1,020	200,000	011,200	02.90	000,022	200,202	
Ore water (m ³)	4,354	3,522	4,360	4,634	3,177	3,146	3,556	2,344	3,244	3,583	3,081	5,514	44,515
Reclaim water (m³)	260,400	235,200	260,400	252,000	260,400	252,000	260,400	260,400	252,000	245,520	237,600	245,520	3,021,840
Freshwater from Third Portage Lake (m ³)	52,080	47.040	52.080	50.400	52,080	50,400	52.080	52.080	50.400	66,960	64.800	66,960	657.360
Total Inflow (m³)	316,834	285,762	316,840	307,034	315,657	305,546	316,036	314,824	305,644	316,063	305,481	317,994	3,723,715
Freshwater for camp purposes (m ³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2.945	34,675
Slurry water (m³)	313,889	283,102	313,895	304,184	312,712	302,696	313,091	311,879	302,794	313,118	302,631	315,049	3,689,040
Total Outflow (m³)	316,834	285,762	316,840	307,034	315,657	305,546	316,036	314,824	305,644	316,063	305,481	317,994	3,723,715
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Reclaim water pumping rate (m³/hr)	350	350	350	350	350	350	350	350	350	330	330	330	_
Freshwater pumping rate (m /m)	70	70	70	70	70	70	70	70	70	90	90	90	_
TSF Water Balance	70	70	70	70	70	70	70	70	70	30	50	50	
	313,889	283,102	313,895	304,184	312,712	302,696	313,091	311,879	302,794	313,118	302,631	315,049	3,689,040
Slurry water (m ³)	125,556	113,241	125,558	121,674	125,085	121,078	125,236	124,752	121,118	125,247	121,052	126,020	1,475,616
Void and ice entrapment losses (m³)				,	,						,	,	
Slurry water returned to the pond (m ³)	188,333	169,861	188,337	182,510	187,627	181,618	187,855	187,127	181,676	187,871	181,579	189,029	2,213,424

						Year	2014						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Goose Pit (ATP)													
Runoff (m³)	25,000	25,000	25,000	25,000	50,000	50,000	38,000	38,000	38,000	38,000	38,000	38,000	428,000
Total Inflow (m ³)	25,000	25,000	25,000	25,000	50,000	50,000	38,000	38,000	38,000	38,000	38,000	38,000	428,000
Pumped to Attenuation Pond (m ³)	25,000	25,000	25,000	25,000	50,000	50,000	38,000	38,000	38,000	38,000	38,000	38,000	428,000
Total Outflow (m³)	25,000	25,000	25,000	25,000	50,000	50,000	38,000	38,000	38,000	38,000	38,000	38,000	428,000
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	0	0	0	0	0	0	0	0	0	0	0	0	-
Portage Pit													
Runoff (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
East Dike Seepage (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Inflow (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
Pumped to Attenuation Pond (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
Total Outflow (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	-
Vault Attenuation Pond													
Pumped From Vault Pit (m³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Inflow (m ³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Decant - TSS to Wally Lake (m ³)	0	0	0	0	0	0	0	700,000	254,932	0	0	0	954,932
Total Outflow (m³)	0	0	0	0	0	0	0	700,000	254,932	0	0	0	954,932
Net Inflow (m ³)	0	0	0	0	0	251,982	37,226	-646,652	-124,939	0	0	0	-482,383
End-of-Month Volume (m³)	482,383	482,383	482,383	482,383	482,383	734,365	771,591	124,939	0	0	0	0	-
Vault Open Pit													
Runoff (m ³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Total Inflow (m ³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Pumped to Vault Attenuation Pond (m ³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Total Outflow (m ³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	0	0	0	0	0	0	0	0	0	0	0	0	-

						Year	2015						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Tailings (tonnes):	351,540	317,520	351,540	340,200	351,540	340,200	351,540	351,540	340,200	351,540	340,200	351,540	4,139,100
Cummulative Tailings (tonnes):	17,101,889	17,419,409	17,770,949	18,111,149	18,462,689	18,802,889	19,154,429	19,505,969	19,846,169	20,197,709	20,537,909	20,889,449	-
Cummulative Tailings (tonnes) - North Cell	15,714,379	15,714,379	15,714,379	15,714,379	15,714,379	16,054,579	16,406,119	16,757,659	17,097,859	17,449,399	17,449,399	17,449,399	-
Cummulative Tailings (tonnes) - South Cell	1,387,510	1,705,030	2,056,570	2,396,770	2,748,310	2,748,310	2,748,310	2,748,310	2,748,310	2,748,310	3,088,510	3,440,050	-
North Cell (TSF)		<u> </u>	1				l e						
Water from tailings slurry (m ³)	0	0	0	0	0	181,538	187,799	187,243	181,627	187,814	0	0	926,021
Runoff (m ³)	0	0	0	0	0	2,767	1,962	0	0	0	0	0	4,729
Total Inflow (m ³)	0	0	0	0	0	184,305	189,761	187,243	181,627	187,814	0	0	930,750
Transfer to South Cell (m³)	0	0	0	0	0	80,512	66,260	78,000	332,487	372,664	0	0	929,923
Reclaim water to the mill (m ³)	0	0	0	0	0	252,000	260,400	260,400	0	0	0	0	772,800
Total Outflow (m ³)	0	0	0	0	0	332,512	326,660	338,400	332,487	372,664	0	0	1,702,723
Net Inflow (m³)	0	0	0	0	0	-148,207	-136,899	-151,157	-150,860	-184,850	0	0	-771,973
End-of-Month Volume (m³)	857,120	857,120	857,120	857,120	857,120	708,914	572,014	420,857	269,997	85,148	85,148	85,148	-
South Cell (TSF)													
Pumped From Goose Pit (m³)	82,100	82,100	82,100	82,100	0	0	0	0	0	0	0	0	328,400
Pumped From Portage Pit (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
Runoff (m³)	0	0	0	0	0	246,107	10,726	13,954	25,856	0	0	0	296,643
Transfer from North Cell (m³)	0	0	0	0	0	80,512	66,260	78,000	332,487	372,664	0	0	929,923
Sewage water from Tear Drop Lake (m³)	0	0	0	0	23,085	0	0	0	11,590	0	0	0	34,675
Water from tailings slurry (m ³)	188,265	170,070	188,227	182.441	187,783	0	0	0	0	0	181.733	188.942	1,287,461
Total Inflow (m³)	270,365	252,170	270,327	264,541	220,868	341,619	86,986	101,954	379,933	372,664	181,733	188,942	2,932,102
Reclaim water to the mill (m ³)	245,520	221,760	245,520	237,600	260,400	0	0	0	252,000	260,400	237,600	245,520	2,206,320
Transfer to Goose Pit (m³)	0	0	0	0	0	0	65,000	80,000	150,000	200,000	0	0	495,000
Total Outflow (m³)	245,520	221,760	245,520	237.600	260,400	0	65,000	80,000	402,000	460,400	237,600	245,520	2,701,320
Net Inflow (m³)	24,845	30,410	24,807	26,941	-39,532	341,619	21,986	21,954	-22,067	-87,736	-55,867	-56,578	230,782
End-of-Month Volume (m³)	312,977	343,387	368,193	395.134	355,602	697,221	719,207	741,161	719,094	631,358	575,491	518,914	230,762
Mill/Camp	312,977	343,367	300,193	393,134	333,002	097,221	719,207	741,101	719,094	031,338	373,491	310,914	-
Ore water (m ³)	4,240	3,870	4,176	4,518	3,436	3,014	3,463	2,536	3,162	3,489	3,339	5,369	44,612
Reclaim water (m³)	245,520	221,760	245,520	237,600	260,400	252,000	260,400	260,400	252,000	260,400	237,600	245,520	2,979,120
	66,960	60,480	66,960	64,800	52,080	50,400	52,080	52,080	50,400	52,080	64,800	66,960	700,080
Freshwater from Third Portage Lake (m³)	316,720	286,110	316,656	306,918	315,916	305,414	315,943	315,016	305,562	315,969	305,739	317,849	3,723,812
Total Inflow (m³)	· ·		2.945	,			,				,	2.945	
Freshwater for camp purposes (m³)	2,945	2,660	,	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	,	34,675
Slurry water (m³)	313,775	283,450	313,711	304,068	312,971	302,564	312,998	312,071	302,712	313,024	302,889	314,904	3,689,137
Total Outflow (m³)	316,720	286,110	316,656	306,918	315,916	305,414	315,943	315,016	305,562	315,969	305,739	317,849	3,723,812
Net Inflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Reclaim water pumping rate (m³/hr)	330	330	330	330	350	350	350	350	350	350	330	330	-
Freshwater pumping rate (m³/hr)	90	90	90	90	70	70	70	70	70	70	90	90	-
TSF Water Balance													
Slurry water (m ³)	313,775	283,450	313,711	304,068	312,971	302,564	312,998	312,071	302,712	313,024	302,889	314,904	3,689,137
Void and ice entrapment losses (m ³)	125,510	113,380	125,484	121,627	125,188	121,026	125,199	124,828	121,085	125,210	121,156	125,962	1,475,655
Slurry water returned to the pond (m ³)	188,265	170,070	188,227	182,441	187,783	181,538	187,799	187,243	181,627	187,814	181,733	188,942	2,213,482

						Year	2015						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Goose Pit (ATP)													
Runoff (m³)	82,100	82,100	82,100	82,100	82,100	82,100	82,100	82,100	82,100	82,100	82,100	82,100	985,200
Transfer from South Cell (m³)	0	0	0	0	0	0	65,000	80,000	150,000	200,000	0	0	495,000
Total Inflow (m ³)	82,100	82,100	82,100	82,100	82,100	82,100	147,100	162,100	232,100	282,100	82,100	82,100	1,480,200
Pumped to Attenuation Pond (m ³)	82,100	82,100	82,100	82,100	0	0	0	0	0	0	0	0	328,400
Total Outflow (m ³)	82,100	82,100	82,100	82,100	0	0	0	0	0	0	0	0	328,400
Net Inflow (m³)	0	0	0	0	82,100	82,100	147,100	162,100	232,100	282,100	82,100	82,100	1,151,800
End-of-Month Volume (m³)	0	0	0	0	82,100	164,200	311,300	473,400	705,500	987,600	1,069,700	1,151,800	-
Portage Pit													
Runoff (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
East Dike Seepage (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Inflow (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
Pumped to Attenuation Pond (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
Total Outflow (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	-
Vault Attenuation Pond													
Pumped From Vault Pit (m³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Total Inflow (m ³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Decant - TSS to Wally Lake (m ³)	0	0	0	0	0	0	0	220,567	251,982	0	0	0	472,549
Total Outflow (m ³)	0	0	0	0	0	0	0	220,567	251,982	0	0	0	472,549
Net Inflow (m³)	0	0	0	0	0	251,982	37,226	-167,219	-121,989	0	0	0	0
End-of-Month Volume (m³)	0	0	0	0	0	251,982	289,208	121,989	0	0	0	0	-
Vault Open Pit													
Runoff (m³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Total Inflow (m ³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Pumped to Vault Attenuation Pond (m ³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Total Outflow (m ³)	0	0	0	0	0	251,982	37,226	53,348	129,993	0	0	0	472,549
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	0	0	0	0	0	0	0	0	0	0	0	0	-

						Year	2016						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	29	31	30	31	30	31	31	30	31	30	31	366
Tailings (tonnes):	352,439	329,701	352,439	341,070	352,439	341,070	352,439	352,439	341,070	352,439	341,070	352,439	4,161,054
Cummulative Tailings (tonnes):	21,241,888	21,571,589	21,924,028	22,265,098	22,617,537	22,958,607	23,311,046	23,663,485	24,004,555	24,356,994	24,698,064	25,050,503	-
Cummulative Tailings (tonnes) - North Cell	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	-
Cummulative Tailings (tonnes) - South Cell	3,792,489	4,122,190	4,474,629	4,815,699	5,168,138	5,509,208	5,861,647	6,214,086	6,555,156	6,907,595	7,248,665	7,601,104	-
North Cell (TSF)													
Total Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Transfer to South Cell (m ³)	0	0	0	85,148	0	0	0	0	0	0	0	0	85,148
Total Outflow (m ³)	0	0	0	85,148	0	0	0	0	0	0	0	0	85,148
Net Inflow (m ³)	0	0	0	-85,148	0	0	0	0	0	0	0	0	-85,148
End-of-Month Volume (m³)	85,148	85,148	85,148	0	0	0	0	0	0	0	0	0	-
South Cell (TSF)													
Pumped From Goose Pit (m ³)	0	0	0	0	0	82,100	82,100	0	82,100	82,100	0	82,100	410,500
Pumped From Portage Pit (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	30,000	30,000	30,000	145,000
Runoff (m³)	0	0	0	0	0	48,766	9,120	12,021	25,135	0	0	0	95,042
Transfer from North Cell (m³)	0	0	0	85,148	0	0	0	0	0	0	0	0	85,148
Sewage water from Tear Drop Lake (m ³)	0	0	0	0	23,180	0	0	0	11,590	0	0	0	34,770
Water from tailings slurry (m ³)	188,272	176,150	188,233	182,447	187,788	181,543	187,804	187,246	181,632	187,820	181,738	188,951	2,219,624
Total Inflow (m ³)	188,272	176,150	188,233	267,595	220,968	327,409	289,024	209,267	310,457	299,920	211,738	301,051	2,990,084
Reclaim water to the mill (m ³)	245,520	229,680	245,520	237,600	260,400	252,000	260,400	260,400	252,000	260,400	237,600	245,520	2,987,040
Total Outflow (m³)	245,520	229,680	245,520	237,600	260,400	252,000	260,400	260,400	252,000	260,400	237,600	245,520	2,987,040
Net Inflow (m³)	-57,248	-53,530	-57,287	29,995	-39,432	75,409	28,624	-51,133	58,457	39,520	-25,862	55,531	3,044
End-of-Month Volume (m³)	461,665	408,135	350,848	380,844	341,412	416,821	445,445	394,312	452,769	492,289	466,427	521,958	-
Mill/Camp													
Ore water (m³)	4,251	4,018	4,187	4,529	3,445	3,022	3,472	2,542	3,170	3,498	3,347	5,383	44,864
Reclaim water (m ³)	245,520	229,680	245,520	237,600	260,400	252,000	260,400	260,400	252,000	260,400	237,600	245,520	2,987,040
Freshwater from Third Portage Lake (m³)	66,960	62,640	66,960	64,800	52,080	50,400	52,080	52,080	50,400	52,080	64,800	66,960	702,240
Total Inflow (m ³)	316,731	296,338	316,667	306,929	315,925	305,422	315,952	315,022	305,570	315,978	305,747	317,863	3,734,144
Freshwater for camp purposes (m ³)	2,945	2,755	2.945	2,850	2.945	2,850	2.945	2,945	2,850	2,945	2,850	2,945	34.770
Slurry water (m ³)	313,786	293,583	313,722	304,079	312,980	302,572	313,007	312,077	302,720	313,033	302,897	314,918	3,699,374
Total Outflow (m³)	316,731	296,338	316,667	306,929	315,925	305,422	315,952	315,022	305,570	315,978	305,747	317,863	3,734,144
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Reclaim water pumping rate (m³/hr)	330	330	330	330	350	350	350	350	350	350	330	330	-
Freshwater pumping rate (m ³ /hr)	90	90	90	90	70	70	70	70	70	70	90	90	
TSF Water Balance	50	50	50	50	,,,	,,,	70	,,,	70	,,,	50	50	
Slurry water (m³)	313,786	293,583	313,722	304,079	312,980	302,572	313,007	312,077	302,720	313,033	302,897	314,918	3,699,374
Void and ice entrapment losses (m ³)	125,514	117,433	125,489	121,632	125,192	121,029	125,203	124,831	121,088	125,213	121,159	125,967	1,479,750
Slurry water returned to the pond (m ³)	188,272	176,150	188,233	,		181,543	187,804	187,246	181,632	187,820	181,738		
Siurry water returned to the pond (m*)	188,272	176,150	188,233	182,447	187,788	181,543	187,804	187,246	181,632	187,820	181,738	188,951	2,219,624

						Year	2016						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Goose Pit (ATP)													
Runoff (m ³)	82,100	82,100	82,100	82,100	82,100	82,100	82,100	82,100	82,100	82,100	82,100	82,100	985,200
Pumped from Third Portage Lake (m³)	0	0	0	0	0	90,000	90,000	90,000	90,000	0	0	0	360,000
Total Inflow (m ³)	82,100	82,100	82,100	82,100	82,100	172,100	172,100	172,100	172,100	82,100	82,100	82,100	1,345,200
Pumped to Attenuation Pond (m ³)	0	0	0	0	0	82,100	82,100	0	82,100	82,100	0	82,100	410,500
Total Outflow (m³)	0	0	0	0	0	82,100	82,100	0	82,100	82,100	0	82,100	410,500
Net Inflow (m³)	82,100	82,100	82,100	82,100	82,100	90,000	90,000	172,100	90,000	0	82,100	0	934,700
End-of-Month Volume (m³)	1,233,900	1,316,000	1,398,100	1,480,200	1,562,300	1,652,300	1,742,300	1,914,400	2,004,400	2,004,400	2,086,500	2,086,500	-
Portage Pit													
Runoff (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
East Dike Seepage (m³)	0	0	0	0	0	0	0	0	0	30,000	30,000	30,000	90,000
Total Inflow (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	30,000	30,000	30,000	145,000
Pumped to South Cell (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	30,000	30,000	30,000	145,000
Total Outflow (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	30,000	30,000	30,000	145,000
Net Inflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	25,746	-
Vault Attenuation Pond													
Pumped From Vault Pit (m³)	0	0	0	0	0	251,975	37,322	53,445	130,032	0	0	0	472,774
Total Inflow (m ³)	0	0	0	0	0	251,975	37,322	53,445	130,032	0	0	0	472,774
Decant - TSS to Wally Lake (m ³)	0	0	0	0	0	0	0	220,799	251,975	0	0	0	472,774
Total Outflow (m³)	0	0	0	0	0	0	0	220,799	251,975	0	0	0	472,774
Net Inflow (m³)	0	0	0	0	0	251,975	37,322	-167,354	-121,943	0	0	0	0
End-of-Month Volume (m³)	0	0	0	0	0	251,975	289,297	121,943	0	0	0	0	-
Vault Open Pit													
Runoff (m³)	0	0	0	0	0	251,975	37,322	53,445	130,032	0	0	0	472,774
Total Inflow (m³)	0	0	0	0	0	251,975	37,322	53,445	130,032	0	0	0	472,774
Pumped to Vault Attenuation Pond (m ³)	0	0	0	0	0	251,975	37,322	53,445	130,032	0	0	0	472,774
Total Outflow (m ³)	0	0	0	0	0	251,975	37,322	53,445	130,032	0	0	0	472,774
Net Inflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	0	0	0	0	0	0	0	0	0	0	0	0	-

							2017						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	ANNUAL TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Tailings (tonnes):	354,361	320,068	354,361	342,930	354,361	342,930	354,361	354,361	342,930	354,361	17,249	0	3,492,273
Cummulative Tailings (tonnes):	25,404,864	25,724,932	26,079,293	26,422,223	26,776,584	27,119,514	27,473,875	27,828,236	28,171,166	28,525,527	28,542,776	28,542,776	-
Cummulative Tailings (tonnes) - North Cell	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	-
Cummulative Tailings (tonnes) - South Cell	7,955,465	8,275,533	8,629,894	8,972,824	9,327,185	9,670,115	10,024,476	10,378,837	10,721,767	11,076,128	11,093,377	11,093,377	-
North Cell (TSF)													
NORTH CELL CLOSED													
South Cell (TSF)													
Pumped From Portage Pit (m³)	30,000	30,000	30,000	30,000	40,000	45,000	40,000	40,000	40,000	0	0	0	325,000
Runoff (m ³)	0	0	0	0	0	48,589	7,474	10,494	24,588	0	0	0	91,145
Sewage water from Tear Drop Lake (m ³)	0	0	0	0	23,085	0	0	0	11,590	0	0	0	34,675
Water from tailings slurry (m ³)	197,213	178,153	197,175	191,102	178,871	172,913	178,887	178,327	173,003	187,831	101	0	1,833,577
Total Inflow (m³)	227,213	208,153	227,175	221,102	241,956	266,502	226,361	228,821	249,181	187,831	101	0	2,284,397
Pumped to Portage Pit (m ³)	0	0	0	0	0	0	0	100,000	200,000	0	0	0	300,000
Reclaim water to the mill (m ³)	260,400	235,200	260,400	252,000	245,520	237,600	245,520	245,520	237,600	189,720	0	0	2,409,480
Total Outflow (m³)	260,400	235,200	260,400	252,000	245,520	237,600	245,520	345,520	437,600	189,720	0	0	2,709,480
Net Inflow (m³)	-33,187	-27,047	-33,225	-30,898	-3,564	28,902	-19,159	-116,699	-188,419	-1,889	101	0	-425,083
End-of-Month Volume (m³)	488,771	461,724	428,499	397,601	394,038	422,940	403,781	287,082	98,663	96,774	96,875	96,875	_
Mill/Camp				, , , , , , , , , , , , , , , , , , , ,	,,,,,,			, - ,					
Ore water (m³)	4,274	3,901	4,210	4,554	3,464	3,039	3,490	2,556	3,188	3,517	169	0	36,362
Reclaim water (m³)	260,400	235,200	260,400	252,000	245,520	237,600	245,520	245,520	237,600	189,720	0	0	2,409,480
Freshwater from Third Portage Lake (m ³)	66,960	60,480	66,960	64,800	52,080	50,400	52,080	52,080	50,400	122,760	2,880	2,976	644,856
Total Inflow (m³)	331,634	299,581	331,570	321,354	301,064	291,039	301,090	300,156	291,188	315,997	3,049	2,976	3,090,698
Freshwater for camp purposes (m ³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2.880	2,976	34,736
Slurry water (m ³)	328,689	296,921	328.625	318,504	298,119	288,189	298,145	297,211	288,338	313,052	169	0	3,055,962
Total Outflow (m³)	331,634	299,581	331,570	321,354	301,064	291,039	301,090	300,156	291,188	315,997	3,049	2,976	3,090,698
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Reclaim water pumping rate (m ³ /hr)	350	350	350	350	330	330	330	330	330	255	0	0	-
Freshwater pumping rate (m ³ /hr)	90	90	90	90	70	70	70	70	70	165	4	4	_
TSF Water Balance	50	30	50		,,,	,,,	,,,	,,,	,,,	103			
Slurry water (m³)	328,689	296.921	328,625	318,504	298,119	288,189	298,145	297,211	288,338	313,052	169	0	3,055,962
Void and ice entrapment losses (m ³)	131,476	118,768	131,450	127,402	119,248	115,276	119,258	118,884	115,335	125,221	68	0	1,222,385
Slurry water returned to the pond (m ³)	197,213	178.153	197,175	191,102	178,871	172,913	178,887	178,327	173,003	187,831	101	0	1,833,577
Siurry water returned to the pond (m ⁻)	197,213	1/8,153	197,175	191,102	1/8,8/1	172,913	1/8,88/	1/8,32/	173,003	187,831	101	U	1,833,5//

						Year	2017						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Goose Pit (ATP)													
Runoff (m³)	84,108	84,108	84,108	84,108	84,108	84,108	84,108	84,108	84,108	84,108	84,108	84,108	1,009,296
Pumped from Third Portage Lake (m³)	0	0	0	0	0	90,000	90,000	90,000	90,000	0	0	0	360,000
Total Inflow (m ³)	84,108	84,108	84,108	84,108	84,108	174,108	174,108	174,108	174,108	84,108	84,108	84,108	1,369,296
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m³)	84,108	84,108	84,108	84,108	84,108	174,108	174,108	174,108	174,108	84,108	84,108	84,108	1,369,296
End-of-Month Volume (m³)	2,170,608	2,254,716	2,338,824	2,422,932	2,507,040	2,681,148	2,855,256	3,029,364	3,203,472	3,287,580	3,371,688	3,455,796	-
Portage Pit													
Runoff (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
East Dike Seepage (m³)	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	360,000
Pumped from South Cell (m³)	0	0	0	0	0	0	0	100,000	200,000	0	0	0	300,000
Total Inflow (m ³)	30,000	30,000	30,000	30,000	40,000	45,000	40,000	140,000	240,000	30,000	30,000	30,000	715,000
Pumped to South Cell (m ³)	30,000	30,000	30,000	30,000	40,000	45,000	40,000	40,000	40,000	0	0	0	325,000
Total Outflow (m ³)	30,000	30,000	30,000	30,000	40,000	45,000	40,000	40,000	40,000	0	0	0	325,000
Net Inflow (m³)	0	0	0	0	0	0	0	100,000	200,000	30,000	30,000	30,000	390,000
End-of-Month Volume (m³)	25,746	25,746	25,746	25,746	25,746	25,746	25,746	125,746	325,746	355,746	385,746	415,746	-
Vault Attenuation Pond													
Pumped From Vault Pit (m³)	0	0	0	0	0	251,753	40,522	56,864	131,305	0	0	0	480,444
Total Inflow (m ³)	0	0	0	0	0	251,753	40,522	56,864	131,305	0	0	0	480,444
Decant - TSS to Wally Lake (m ³)	0	0	0	0	0	0	0	228,469	251,975	0	0	0	480,444
Total Outflow (m³)	0	0	0	0	0	0	0	228,469	251,975	0	0	0	480,444
Net Inflow (m ³)	0	0	0	0	0	251,753	40,522	-171,605	-120,670	0	0	0	0
End-of-Month Volume (m³)	0	0	0	0	0	251,753	292,275	120,670	0	0	0	0	-
Vault Open Pit													
Runoff (m³)	0	0	0	0	0	251,753	40,522	56,864	131,305	0	0	0	480,444
Total Inflow (m³)	0	0	0	0	0	251,753	40,522	56,864	131,305	0	0	0	480,444
Pumped to Vault Attenuation Pond (m ³)	0	0	0	0	0	251,753	40,522	56,864	131,305	0	0	0	480,444
Total Outflow (m ³)	0	0	0	0	0	251,753	40,522	56,864	131,305	0	0	0	480,444
Net Inflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	0	0	0	0	0	0	0	0	0	0	0	0	-

No. of days	7,449,399	Mar 31 0 28,542,776 17,449,399 11,093,377 0 0 0 0 0 96,875	Apr 30 0 28,542,776 17,449,399 11,093,377 0 0 0 0 96,875	May 31 0 28,542,776 17,449,399 11,093,377 0 0 0	Jun 30 0 28,542,776 17,449,399 11,093,377	Jul 31 0 28,542,776 17,449,399 11,093,377	Aug 31 0 28,542,776 17,449,399 11,093,377	Sep 30 0 28,542,776 17,449,399 11,093,377	Oct 31 0 28,542,776 17,449,399 11,093,377	Nov 30 0 28,542,776 17,449,399 11,093,377	Dec 31 0 28,542,776 17,449,399 11,093,377	TOTAL 365 0 - -
Tailings (tonnes): 0 Cummulative Tailings (tonnes): 28,542,776 28,542,776 28,542,776 28,542,776 28,542,776 28,542,776 28,542,776 28,542,776 28,776 28,776 28,776 28,776 28,776 28,776 28,776 28,776 28,776 28,776 28,776 28,776 28,777 11,744,399 17,744,399	0 8,542,776 ; 7,449,399 ; 1,093,377 ; 0 0 0 0 0 0 96,875	0 28,542,776 17,449,399 11,093,377 0 0 0 0 0 96,875	0 28,542,776 17,449,399 11,093,377 0 0 0	0 28,542,776 17,449,399 11,093,377 0 0	0 28,542,776 17,449,399 11,093,377	0 28,542,776 17,449,399 11,093,377	0 28,542,776 17,449,399 11,093,377	0 28,542,776 17,449,399 11,093,377	0 28,542,776 17,449,399 11,093,377	0 28,542,776 17,449,399	0 28,542,776 17,449,399	0 - -
Cummulative Tailings (tonnes): 28,542,776 28,5 Cummulative Tailings (tonnes) - North Cell 17,449,399 17,2 Cummulative Tailings (tonnes) - South Cell 11,093,377 11,1 North Cell (TSF) 11,093,377 11,1 North Cell (TSF) 0 0 Total Inflow (m³) 0 0 Pumped to Portage Pit (m³) 0 0 Net Inflow (m³) 0 0 End-of-Month Volume (m³) 96,875 90 Mill/camp 96,875 90 Freshwater from Third Portage Lake (m³) 2,945 2 Freshwater for camp purposes (m³) 2,945 2 Total Inflow (m³) 2,945 2 Total Outflow (m³) 0 0 Freshwater for camp purposes (m³) 2,945 2 Total Outflow (m³) 0 0 Freshwater pumping rate (m³/hr) 4 0 Goosse Pit 84,108 8 Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 <	8,542,776	28,542,776 17,449,399 11,093,377 0 0 0 0 96,875	28,542,776 17,449,399 11,093,377 0 0 0	28,542,776 17,449,399 11,093,377 0 0	28,542,776 17,449,399 11,093,377	28,542,776 17,449,399 11,093,377	28,542,776 17,449,399 11,093,377	28,542,776 17,449,399 11,093,377	28,542,776 17,449,399 11,093,377	28,542,776 17,449,399	28,542,776 17,449,399	
Cummulative Tailings (tonnes) - North Cell 17,449,399 17,449,399 17,449,399 17,449,399 17,449,399 17,449,399 11,093,377 10,000 10,000 10,000 11,093,377 10,000 10,000 10,000 11,093,377 10,000 11,093,377 10,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000	0 0 0 0 0 0 0 96,875	0 0 0 0 0 96,875	17,449,399 11,093,377 0 0 0	17,449,399 11,093,377 0 0	17,449,399 11,093,377	17,449,399 11,093,377	17,449,399 11,093,377	17,449,399 11,093,377	17,449,399 11,093,377	17,449,399	17,449,399	-
Cummulative Tailings (tonnes) - South Cell 11,093,377	0 0 0 0 0 0 96,875	0 0 0 0 0 96,875	0 0 0 0	0 0	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377			
North Cell (TSF) NORTH CELL CLOSED	0 0 0 0 0 96,875	0 0 0 0 96,875	0 0 0	0	0	0				11,093,377	11,093,377	-
NORTH CELL CLOSED	0 0 0 96,875 2,660 2,660	0 0 0 96,875	0 0	0			0	0				
South Cell (TSF) Total Inflow (m³) 0 Pumped to Portage Pit (m³) 0 Total Outflow (m³) 0 Net Inflow (m³) 0 End-of-Month Volume (m³) 96,875 Mill/Camp Freshwater from Third Portage Lake (m³) 2,945 Freshwater for camp purposes (m³) 2,945 2 Total Inflow (m³) 2,945 2 Net Inflow (m³) 0 2 Freshwater for camp purposes (m³) 0 2 Freshwater pumping rate (m³/hr) 4 6 Goose Pit 84,108 8 Pumped from Third Portage Lake (m³) 0 7 Total Inflow (m³) 84,108 8 Portage Pit 84,108 8 Runoff (m³) 0 8 Portage Pit 8 8 Runoff (m³) 0 3 Sewage water from Tear Drop Lake (m³) 0 9 Pumped from South Cell (m³) 0 9 Pumped from Morthird Portage Lake (m³) 0 0 </td <td>0 0 0 96,875 2,660 2,660</td> <td>0 0 0 96,875</td> <td>0 0</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td>	0 0 0 96,875 2,660 2,660	0 0 0 96,875	0 0	0			0	0				
Total Infilow (m³) 0 Pumped to Portage Pit (m³) 0 Total Outflow (m²) 0 Net Infilow (m³) 0 End-of-Month Volume (m³) 96,875 96 Mill/Gemp Freshwater from Third Portage Lake (m³) 2,945 2 Freshwater for camp purposes (m³) 2,945 2 Freshwater for camp purposes (m³) 2,945 2 Net Inflow (m³) 0 0 Freshwater pumping rate (m³/hr) 4 4 Goose Pit 84,108 8 Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Outflow (m³) 84,108 8 Total Outflow (m³) 84,108 8 End-of-Month Volume (m³) 3,539,904 3,6 Portage Pit Runoff (m³) 0 1 East Dike Seepage (m³) 30,000 3 Sewage water from Tear Drop Lake (m³) 0 1 Pumped from South Cell (m³) 0 1 Pumped from Four Four Four Four Four Four Fo	0 0 0 96,875 2,660 2,660	0 0 0 96,875	0 0	0			0	0				
Pumped to Portage Pit (m³) 0 Total Outflow (m³) 0 Net Inflow (m³) 0 End-of-Month Volume (m³) 96,875 99 Mill/Camp Freshwater from Third Portage Lake (m³) 2,945 2 Total Inflow (m³) 2,945 2 Freshwater for camp purposes (m³) 2,945 2 Total Outflow (m³) 0 Freshwater pumping rate (m³/hr) 4 Coose Pit Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 0 Net Inflow (m³) 0 Sewage water from Third Portage Lake (m³) 0 East Dike Seepage (m³) 3,539,904 3,6 Pumped from Total (m³) 0 East Dike Seepage (m³) 0 Pumped from Total (m³) 0 Pumped from Total (m³) 0 Fortage Pit Runoff (m³) 0 East Dike Seepage (m³) 30,000 33 Sewage water from Tear Drop Lake (m³) 0 Total Inflow (m³) 0 Pumped from South Cell (m³) 0 Total Inflow (m³) 30,000 33 Total Outflow (m³) 30,000 33 Total Outflow (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 33 Total Outflow (m³) 30,000 33 Total Outflow (m³) 0 30,000 33	0 0 0 96,875 2,660 2,660	0 0 0 96,875	0 0	0					0	0	0	0
Total Outflow (m³) 0 Net Inflow (m³) 96,875 99 Mill/camp Freshwater from Third Portage Lake (m³) 2,945 2 Total Inflow (m³) 2,945 2 Total Inflow (m³) 0 Freshwater for camp purposes (m³) 2,945 2 Total Outflow (m³) 0 Freshwater pumping rate (m²/hr) 4 Goose Pit Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 0 Net Inflow (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 0 Net Inflow (m³) 0 Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 33 Sewage water from Tear Drop Lake (m³) 0 Total Inflow (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 0 Total Inflow (m³) 30,000 33 Total Outflow (m³) 0 Total Inflow (m³) 0 Total Inflow (m³) 0 Net Inflow (m³) 0	0 0 96,875 2,660 2,660	0 0 96,875 2,945	0		U	96,875	0	0	0	0	0	96,875
Net Inflow (m³) 0 End-of-Month Volume (m³) 96,875 96 Mill/Camp Freshwater from Third Portage Lake (m³) 2,945 2 Total Inflow (m³) 2,945 2 Freshwater for camp purposes (m³) 2,945 2 Total Outflow (m³) 0 2 Freshwater pumping rate (m²/hr) 4 4 Goose Pit Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 1 Total Inflow (m³) 84,108 8 Total Outflow (m³) 0 84,108 8 End-of-Month Volume (m³) 3,539,904 3,6 Portage Pit Runoff (m³) 0 3 30,000 36 Sewage water from Tear Drop Lake (m³) 0 9 Pumped from South Cell (m³) 0 0 Pumped from Third Portage Lake (m³) 0 0 0 7 Total Inflow (m³) 30,000 30 30,000 30 Total Inflow (m³) 0 0	0 96,875 2,660 2,660	0 96,875 2,945	0	U	0	96,875	0	0	0	0	0	96,875
End-of-Month Volume (m³) 96,875 99 Mill/Comp Freshwater from Third Portage Lake (m³) 2,945 2 Total Inflow (m³) 2,945 2 Total Outflow (m³) 2,945 2 Net Inflow (m³) 0 0 Freshwater pumping rate (m³/hr) 4 Goose Pit Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 0 0 Total Inflow (m³) 84,108 8 End-of-Month Volume (m³) 84,108 8 End-of-Month Volume (m³) 3,539,904 3,60 Portage Pit Runoff (m³) 0 0 East Dike Seepage (m³) 3 Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 3 Sewage water from Tear Drop Lake (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 33 Total Outflow (m³) 30,000 33 Total Outflow (m³) 0 0 Net Inflow (m³) 0 0	96,875 2,660 2,660	96,875 2,945		0	0	-96,875	0	0	0	0	0	-96,875
Mill/Comp Freshwater from Third Portage Lake (m³) 2,945 2 Total Inflow (m³) 2,945 2 Freshwater for camp purposes (m³) 2,945 2 Total Outflow (m³) 0 2,945 2 Net Inflow (m³) 0 0 Freshwater pumping rate (m³/hr) 4 6 Goose Pit Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 0 Total Inflow (m³) 84,108 8 Total Outflow (m³) 0 84,108 8 End-of-Month Volume (m³) 3,539,904 3,6 Portage Pit Runoff (m³) 0 0 East Dike Seepage (m³) 30,000 30 Sewage water from Tear Drop Lake (m³) 0 0 Pumped from South Cell (m³) 0 0 Pumped from Third Portage Lake (m³) 0 0 Total Inflow (m³) 30,000 30 Total Inflow (m³) 0 0	2,660 2,660	2,945	96,875			-90,873	0	0	0	0	0	-30,673
Freshwater from Third Portage Lake (m³) 2,945 2 Total Inflow (m³) 2,945 2 Freshwater for camp purposes (m³) 2,945 2 Freshwater for camp purposes (m³) 2,945 2 Total Outflow (m³) 2,945 2 Net Inflow (m³) 0 Freshwater pumping rate (m³/hr) 4 Goose Pit Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 84,108 8 Net Inflow (m³) 84,108 8 Fortage Dit Runoff (m³) 0 Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 Pumped from Total Cell (m³) 0 Total Inflow (m³) 0 Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 Total Inflow (m³) 0 Total Inflow (m³) 30,000 3 Total Inflow (m³) 0 Net Inflow (m³) 0 Net Inflow (m³) 0 Total Outflow (m³) 0 Net Inflow (m³) 0 Net Inflow (m³) 0 Net Inflow (m³) 0 Total Inflow (m³) 0 Net Inflow (m³) 30,000 30	2,660	,		96,875	96,875	0	0	0	0	0	0	-
Total Inflow (m³) 2,945 2 Freshwater for camp purposes (m³) 2,945 2 Total Outflow (m³) 2,945 2 Total Outflow (m³) 0 Freshwater pumping rate (m³/hr) 0 Freshwater pumping rate (m³/hr) 4 Goose Pit Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 0 Net Inflow (m³) 84,108 8 Fortage Pit Runoff (m³) 0 Net Inflow (m³) 0 Sewage water from Tear Drop Lake (m³) 0 Pumped from Third Portage Inflow (m³) 30,000 30 Sewage water from Tear Drop Lake (m³) 0 Pumped from Third Portage Lake (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 0 Total Inflow (m³) 30,000 30 Total Inflow (m³) 30,000 30 Total Inflow (m³) 30,000 30 Net Inflow (m³) 30,000 30	2,660	,	2.850	2,945	2,850	2,945	2,945	2.850	2,945	2.850	2.945	34,675
Freshwater for camp purposes (m³) 2,945 2 Total Outflow (m³) 2,945 2 Net Inflow (m³) 0 Freshwater pumping rate (m³/hr) 4 Goose Pit Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 84,108 8 Runoff (m³) 0 Net Inflow (m³) 84,108 8 End-of-Month Volume (m³) 3,539,904 3,66 Portage Pit Runoff (m³) 0 East Dike Seepage (m³) 30,000 33 Sewage water from Tear Drop Lake (m³) 0 Pumped from Third Portage Lake (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 33 Total Outflow (m³) 30,000 33 Total Outflow (m³) 30,000 33			2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Total Outflow (m³) 2,945 2 Net Inflow (m³) 0 0 Freshwater pumping rate (m³/hr) 4 4 Goose Pit 84,108 8 Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 0 Total Inflow (m³) 84,108 8 Total Outflow (m³) 0 8 Net Inflow (m³) 84,108 8 End-of-Month Volume (m³) 0,539,904 3,6 Portage Pit Runoff (m³) 0 East Dike Seepage (m³) 30,000 36 Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 0 Pumped from Third Portage Lake (m³) 0 0 Total Inflow (m³) 30,000 36 Total Outflow (m³) 0 0 Net Inflow (m³) 30,000 36	2,000	2,945 2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	-	2,945	34,675
Net Inflow (m³) 0 Freshwater pumping rate (m³/hr) 4 Goose Pit Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 84,108 8 Total Outflow (m³) 0 84,108 8 End-of-Month Volume (m³) 3,539,904 3,6 Portage Pit Runoff (m³) 0 0 6 East Dike Seepage (m³) 30,000 30 Sewage water from Tear Drop Lake (m³) 0 0 0 Pumped from South Cell (m³) 0 0 0 0 Total Inflow (m³) 30,000 30 30,000 30 Total Inflow (m³) 0 0 0 0 Pumped from Third Portage Lake (m³) 0 0 0 0 Total Inflow (m³) 0 <td>2,000</td> <td>2,945</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>2,850 2.850</td> <td>2,945</td> <td></td>	2,000	2,945			-				-	2,850 2.850	2,945	
Freshwater pumping rate (m³/hr) 4 Goose Pit Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 84,108 8 End-of-Month Volume (m³) 3,539,904 3,6 Portage Pit Runoff (m³) 0 East Dike Seepage (m³) 30,000 33 Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 Total Inflow (m³) 30,000 33 Total Outflow (m³) 0 Total Inflow (m³) 0 Total Inflow (m³) 0 Total Inflow (m³) 0 Total Inflow (m³) 30,000 33 Total Outflow (m³) 0 Net Inflow (m³) 0 Total Inflow (m³) 30,000 33	2,660	,	2,850	2,945	2,850	2,945	2,945 0	2,850	2,945	,	,-	34,675
Runoff (m³)	0	0	0	0	0	0		0	0	0	0	U
Runoff (m³) 84,108 8 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 84,108 8 Total Outflow (m³) 0 0 Net Inflow (m³) 84,108 8 End-of-Month Volume (m³) 3,539,904 3,6 Portage Pit Runoff (m³) 0 0 East Dike Seepage (m³) 30,000 3 Sewage water from Tear Drop Lake (m³) 0 0 Pumped from South Cell (m³) 0 0 Total Inflow (m³) 30,000 3 Total Outflow (m³) 0 0 Net Inflow (m³) 30,000 3	4	4	4	4	4	4	4	4	4	4	4	-
Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 84,108 8 Total Outflow (m³) 0 Net Inflow (m³) 84,108 8 End-of-Month Volume (m³) 84,108 8 End-of-Month Volume (m³) 3,539,904 3,69 Portage Pit Runoff (m³) 0 East Dike Seepage (m³) 30,000 30 Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 30 Total Outflow (m³) 0 Net Inflow (m³) 30,000 30	04.400	04.400	01.100	0.1.00	0.1.00	0.100	24.400	24.422	0.1.00	0.1.00	0.1.00	
Total Inflow (m³)	84,108	84,108	84,108	84,108	84,108	84,108	84,108	84,108	84,108	84,108	84,108	1,009,296
Total Outflow (m³) 0 Net Inflow (m³) 84,108 8 End-of-Month Volume (m³) 3,539,904 3,6 Portage Pit 0 8 Runoff (m³) 0 30,000 3 Sewage water from Tear Drop Lake (m³) 0 9 Pumped from South Cell (m³) 0 0 Pumped from Third Portage Lake (m³) 0 0 Total Inflow (m³) 30,000 3 Total Outflow (m³) 0 0 Net Inflow (m³) 30,000 3	0	0	0	0	90,000	90,000	90,000	90,000	0	0	0	360,000
Net Inflow (m³)	84,108	84,108	84,108	84,108	174,108	174,108	174,108	174,108	84,108	84,108	84,108	1,369,296
End-of-Month Volume (m³) 3,539,904 3,6 Portage Pit 0 8 Runoff (m³) 0 30,000 30 Sewage water from Tear Drop Lake (m³) 0 9 Pumped from South Cell (m³) 0 0 Pumped from Third Portage Lake (m³) 0 0 Total Inflow (m³) 30,000 30 Total Outflow (m³) 0 0 Net Inflow (m³) 30,000 30	0	0	0	0	0	0	0	0	0	0	0	0
Portage Pit Runoff (m³) 0 East Dike Seepage (m³) 30,000 Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 Total Outflow (m³) 0 Net Inflow (m³) 30,000 30,000 30	84,108	84,108	84,108	84,108	174,108	174,108	174,108	174,108	84,108	84,108	84,108	1,369,296
Runoff (m³) 0 East Dike Seepage (m³) 30,000 30 Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 30 Total Outflow (m³) 0 Net Inflow (m³) 30,000 30	3,624,012	3,708,120	3,792,228	3,876,336	4,050,444	4,224,552	4,398,660	4,572,768	4,656,876	4,740,984	4,825,092	-
East Dike Seepage (m³) 30,000 30 Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 30 Total Outflow (m³) 0 Net Inflow (m³) 30,000 30												
Sewage water from Tear Drop Lake (m³) 0 Pumped from South Cell (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 30 Total Outflow (m³) 0 Net Inflow (m³) 30,000 30	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
Pumped from South Cell (m³) 0 Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 3 Total Outflow (m³) 0 Net Inflow (m³) 30,000 3	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	360,000
Pumped from Third Portage Lake (m³) 0 Total Inflow (m³) 30,000 3: Total Outflow (m³) 0 Net Inflow (m³) 30,000 3:	0	0	0	23,085	0	0	0	11,590	0	0	0	34,675
Total Inflow (m³) 30,000 30 Total Outflow (m³) 0 0 Net Inflow (m³) 30,000 30	0	0	0	0	0	96,875	0	0	0	0	0	34,770
Total Outflow (m³) 0 Net Inflow (m³) 30,000 36	0	0	0	0	1,130,000	1,130,000	1,130,000	1,130,000	0	0	0	4,520,000
Net Inflow (m³) 30,000 3	30,000	30,000	30,000	63,085	1,175,000	1,266,875	1,170,000	1,181,590	30,000	30,000	30,000	5,066,550
	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³) 445,746 47	30,000	30,000	30,000	63,085	1,175,000	1,266,875	1,170,000	1,181,590	30,000	30,000	30,000	5,066,550
	475,746	505,746	535,746	598,831	1,773,831	3,040,706	4,210,706	5,392,296	5,422,296	5,452,296	5,482,296	-
Vault Attenuation Pond/Vault Lake												
Pumped From Wally Lake (m³) 0		0	0	0	605,831	1,006,306	1,360,338	1,212,177	0	0	0	4,184,652
Total Inflow (m ³)	0	0	0	0	605,831	1,006,306	1,360,338	1,212,177	0	0	0	4,184,652
Total Outflow (m³) 0	0 0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m ³) 0		0	0	0	605,831	1,006,306	1,360,338	1,212,177	0	0	0	4,184,652
End-of-Month Volume (m³) 0	0	0	0	0	605,831	1,612,137	2,972,475	4,184,652	4,184,652	4,184,652	4,184,652	-

						Year	2019						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Tailings (tonnes):	0	0	0	0	0	0	0	0	0	0	0	0	0
Cummulative Tailings (tonnes):	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	-
Cummulative Tailings (tonnes) - North Cell	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	-
Cummulative Tailings (tonnes) - South Cell	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	-
North Cell (TSF)													
NORTH CELL CLOSED													
South Cell (TSF)													
SOUTH CELL CLOSED													
Mill/Camp		2.552		2.050			2.245	2015		2017	2.050		
Freshwater from Third Portage Lake (m ³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Total Inflow (m³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Freshwater for camp purposes (m ³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Total Outflow (m³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Net Inflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Freshwater pumping rate (m³/hr)	4	4	4	4	4	4	4	4	4	4	4	4	-
Goose Pit													
Runoff (m ³)	62,608	62,608	62,608	62,608	62,608	62,608	62,608	62,608	62,608	62,608	62,608	62,608	751,296
Pumped from Third Portage Lake (m³)	0	0	0	0	0	90,000	90,000	90,000	90,000	0	0	0	360,000
Total Inflow (m ³)	62,608	62,608	62,608	62,608	62,608	152,608	152,608	152,608	152,608	62,608	62,608	62,608	1,111,296
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m³)	62,608	62,608	62,608	62,608	62,608	152,608	152,608	152,608	152,608	62,608	62,608	62,608	1,111,296
End-of-Month Volume (m³)	4,887,700	4.950.308	5,012,916	5,075,524	5,138,132	5,290,740	5,443,348	5,595,956	5,748,564	5,811,172	5,873,780	5,936,388	-
Portage Pit	.,,	1,000,000	0,022,020	0,010,021	5,255,252	0,200,110	5,115,515	5,000,000	0,1 10,00	0,022,212	5,515,155	2,000,000	
Runoff (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
East Dike Seepage (m³)	30,000	30,000	30,000	30.000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	360.000
Sewage water from Tear Drop Lake (m ³)	0	0	0	0	23,085	0	0	0	11,590	0	0	0	34,675
Pumped from Third Portage Lake (m³)	0	0	0	0	0	1,130,000	1,130,000	1,130,000	1,130,000	0	0	0	4,520,000
	30,000	30,000	30,000	30,000	63,085	1,175,000	1,170,000	1,170,000	1,181,590	30,000	30,000	30,000	4,969,675
Total Inflow (m³)	0	0	0	0	03,083	0	0	0	0	0	0	0	4,303,073
Total Outflow (m³)			_	30.000	-			_					
Net Inflow (m ³)	30,000	30,000	30,000	,	63,085	1,175,000	1,170,000	1,170,000	1,181,590	30,000	30,000	30,000	4,969,675
End-of-Month Volume (m³)	5,512,296	5,542,296	5,572,296	5,602,296	5,665,381	6,840,381	8,010,381	9,180,381	10,361,971	10,391,971	10,421,971	10,451,971	-
Vault Attenuation Pond/Vault Lake					0	602 705	4.005.305	4 250 222	4 242 477				4 402 50
Pumped From Wally Lake (m³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
Total Inflow (m³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
Total Outflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
End-of-Month Volume (m³)	4,184,652	4,184,652	4,184,652	4,184,652	4,184,652	4,788,435	5,794,741	7,155,079	8,367,256	8,367,256	8,367,256	8,367,256	-
Vault Open Pit													
VAULT PIT CLOSED: REFLOODING OF VAULT LAK	E INCLUDES PIT	TVOLUME											

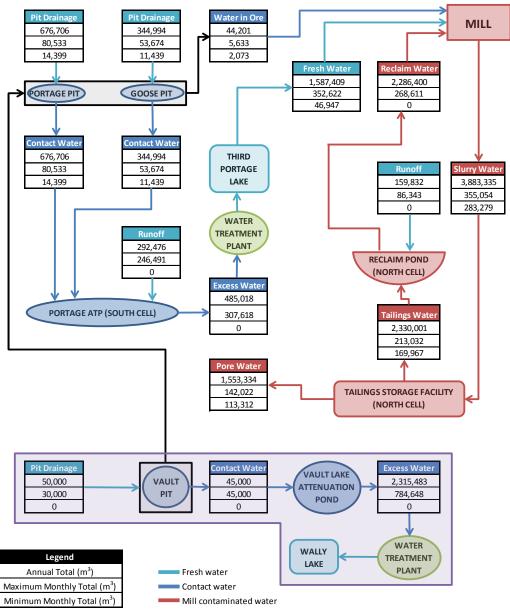
						Year	2020						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	29	31	30	31	30	31	31	30	31	30	31	366
Tailings (tonnes):	0	0	0	0	0	0	0	0	0	0	0	0	0
Cummulative Tailings (tonnes):	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	-
Cummulative Tailings (tonnes) - North Cell	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	-
Cummulative Tailings (tonnes) - South Cell	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	-
North Cell (TSF)													
NORTH CELL CLOSED													
South Cell (TSF)													
SOUTH CELL CLOSED													
Mill/Camp	2015									2.045			
Freshwater from Third Portage Lake (m³)	2,945	2,755	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,770
Total Inflow (m ³)	2,945	2,755	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,770
Freshwater for camp purposes (m³)	2,945	2,755	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,770
Total Outflow (m³)	2,945	2,755	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,770
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Freshwater pumping rate (m³/hr)	4	4	4	4	4	4	4	4	4	4	4	4	-
oose Pit													
Runoff (m³)	62,608	62,608	62,608	62,608	62,608	62,608	62,608	62,608	62,608	62,608	62,608	62,608	751,296
Pumped from Third Portage Lake (m ³)	0	0	0	0	0	90,000	90,000	90,000	90,000	0	0	0	360,000
Total Inflow (m ³)	62,608	62,608	62,608	62,608	62,608	152,608	152,608	152,608	152,608	62,608	62,608	62,608	1,111,296
Total Outflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m³)	62,608	62,608	62,608	62,608	62,608	152,608	152,608	152,608	152,608	62,608	62,608	62,608	1,111,296
End-of-Month Volume (m³)	5,998,996	6,061,604	6,124,212	6,186,820	6,249,428	6,402,036	6,554,644	6,707,252	6,859,860	6,922,468	6,985,076	7,047,684	
Portage Pit	5,555,555	0,000,000	3,223,222	0,200,020	0,2 10, 120	0, 102,000	5,55 1,5 11	3,101,202	0,000,000	0,022,100	5,555,515	1,011,001	
Runoff (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
East Dike Seepage (m³)	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	360,000
Sewage water from Tear Drop Lake (m ³)	0	0	0	0	23,085	0	0	0	11,590	0	0	0	34,675
Pumped from Third Portage Lake (m³)	0	0	0	0	0	1,130,000	1,130,000	1,130,000	1,130,000	0	0	0	4,520,000
Total Inflow (m ³)	30,000	30,000	30,000	30,000	63,085	1,175,000	1,170,000	1,170,000	1,181,590	30,000	30,000	30,000	4,969,675
` ' <u> </u>	0	0	0	0	03,083	0	0	0	0	0	0	0	0
Total Outflow (m³)		30,000	30,000	30,000	63,085			1,170,000	_	30,000	30,000		
Net Inflow (m³)	30,000			,		1,175,000	1,170,000		1,181,590	,	,	30,000	4,969,675
End-of-Month Volume (m³)	10,481,971	10,511,971	10,541,971	10,571,971	10,635,056	11,810,056	12,980,056	14,150,056	15,331,646	15,361,646	15,391,646	15,421,646	-
Vault Attenuation Pond/Vault Lake	0	0		0	0	602.702	1,000,000	1 200 220	1 212 177	0	0	0	4 402 553
Pumped From Wally Lake (m³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
Total Inflow (m³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m ³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
End-of-Month Volume (m³)	8,367,256	8,367,256	8,367,256	8,367,256	8,367,256	8,971,039	9,977,345	11,337,683	12,549,860	12,549,860	12,549,860	12,549,860	-
Vault Open Pit													
VAULT PIT CLOSED: REFLOODING OF VAULT LAK	E INCLUDES PIT	VOLUME											

						Year	2021						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Tailings (tonnes):	0	0	0	0	0	0	0	0	0	0	0	0	0
Cummulative Tailings (tonnes):	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	-
Cummulative Tailings (tonnes) - North Cell	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	-
Cummulative Tailings (tonnes) - South Cell	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	-
North Cell (TSF)													
NORTH CELL CLOSED													
South Cell (TSF)													
SOUTH CELL CLOSED													
Mill/Camp	2.045	2.550	2.045	2.050	2.045	2.050	2.045	2.045	2.050	2.045	2.050	2.045	24.675
Freshwater from Third Portage Lake (m³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Total Inflow (m³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Freshwater for camp purposes (m ³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Total Outflow (m ³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Net Inflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Freshwater pumping rate (m³/hr)	4	4	4	4	4	4	4	4	4	4	4	4	-
Goose Pit													
Runoff (m³)	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	495,900
Pumped from Third Portage Lake (m ³)	0	0	0	0	0	90,000	90,000	90,000	90,000	0	0	0	360,000
Total Inflow (m³)	41,325	41,325	41,325	41,325	41,325	131,325	131,325	131,325	131,325	41,325	41,325	41,325	855,900
Total Outflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m³)	41,325	41,325	41,325	41,325	41,325	131,325	131,325	131,325	131,325	41,325	41,325	41,325	855,900
End-of-Month Volume (m³)	7,089,009	7,130,334	7,171,659	7,212,984	7,254,309	7,385,634	7,516,959	7,648,284	7,779,609	7,820,934	7,862,259	7,903,584	-
Portage Pit	1,000,000	1,200,00	1,212,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,20 1,000	.,,	1,020,000	1,010,00	1,110,000	1,020,001	1,000,000	1,000,001	
Runoff (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55.000
East Dike Seepage (m³)	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	360,000
Sewage water from Tear Drop Lake (m ³)	0	0	0	0	23,085	0	0	0	11,590	0	0	0	34,675
Pumped from Third Portage Lake (m³)	0	0	0	0	0	1,130,000	1,130,000	1,130,000	1,130,000	0	0	0	4,520,000
Total Inflow (m ³)	30,000	30,000	30,000	30,000	63,085	1,175,000	1,170,000	1,170,000	1,181,590	30,000	30.000	30,000	4,969,675
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
	30,000	30,000	30,000	30,000	63,085	1,175,000	1,170,000	1,170,000	1,181,590	30,000	30,000	30,000	4,969,675
Net Inflow (m³)		15,481,646	15,511,646	15,541,646	15,604,731		17,949,731	19,119,731	20,301,321	20,331,321	20,361,321	20,391,321	-,505,075
End-of-Month Volume (m³)	15,451,646	15,481,646	15,511,646	15,541,646	15,604,731	16,779,731	17,949,731	19,119,731	20,301,321	20,331,321	20,361,321	20,391,321	
Vault Attenuation Pond/Vault Lake	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
Pumped From Wally Lake (m³)			-			,				-		0	
Total Inflow (m³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0		4,182,604
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m ³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
End-of-Month Volume (m³)	12,549,860	12,549,860	12,549,860	12,549,860	12,549,860	13,153,643	14,159,949	15,520,287	16,732,464	16,732,464	16,732,464	16,732,464	-
Vault Open Pit													
VAULT PIT CLOSED: REFLOODING OF VAULT LAK	E INCLUDES PIT	VOLUME											

						Year	2022						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Tailings (tonnes):	0	0	0	0	0	0	0	0	0	0	0	0	0
Cummulative Tailings (tonnes):	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	-
Cummulative Tailings (tonnes) - North Cell	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	-
Cummulative Tailings (tonnes) - South Cell	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	-
North Cell (TSF)													
NORTH CELL CLOSED													
South Cell (TSF)													
SOUTH CELL CLOSED													
Mill/Camp				1						1			
Freshwater from Third Portage Lake (m ³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Total Inflow (m³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Freshwater for camp purposes (m ³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Total Outflow (m³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Net Inflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Freshwater pumping rate (m³/hr)	4	4	4	4	4	4	4	4	4	4	4	4	-
Goose Pit													
Runoff (m³)	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	495,900
Pumped from Third Portage Lake (m ³)	0	0	0	0	0	90,000	90,000	90,000	90,000	0	0	0	360,000
Total Inflow (m³)	41,325	41,325	41,325	41.325	41,325	131,325	131,325	131,325	131,325	41,325	41,325	41,325	855,900
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
. ,	41,325	41,325	41,325	41.325	41,325	131,325	131,325	131.325	131,325	41,325	41,325	41,325	855.900
Net Inflow (m ³)	· ·			,				- ,				,	,
End-of-Month Volume (m³)	7,944,909	7,986,234	8,027,559	8,068,884	8,110,209	8,241,534	8,372,859	8,504,184	8,635,509	8,676,834	8,718,159	8,759,484	-
Portage Pit					40.000	45.000	40.000	40.000	40.000				
Runoff (m ³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
East Dike Seepage (m ³)	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	360,000
Sewage water from Tear Drop Lake (m ³)	0	0	0	0	23,085	0	0	0	11,590	0	0	0	34,675
Pumped from Third Portage Lake (m ³)	0	0	0	0	0	1,130,000	1,130,000	1,130,000	1,130,000	0	0	0	4,520,000
Total Inflow (m³)	30,000	30,000	30,000	30,000	63,085	1,175,000	1,170,000	1,170,000	1,181,590	30,000	30,000	30,000	4,969,675
Total Outflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m ³)	30,000	30,000	30,000	30,000	63,085	1,175,000	1,170,000	1,170,000	1,181,590	30,000	30,000	30,000	4,969,675
End-of-Month Volume (m³)	20,421,321	20,451,321	20,481,321	20,511,321	20,574,406	21,749,406	22,919,406	24,089,406	25,270,996	25,300,996	25,330,996	25,360,996	-
Vault Attenuation Pond/Vault Lake				<u> </u>				, ,		<u> </u>			
Pumped From Wally Lake (m ³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
Total Inflow (m³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m ³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
` '	-	-				,	, ,						+,102,004
End-of-Month Volume (m³)	16,732,464	16,732,464	16,732,464	16,732,464	16,732,464	17,336,247	18,342,553	19,702,891	20,915,068	20,915,068	20,915,068	20,915,068	-

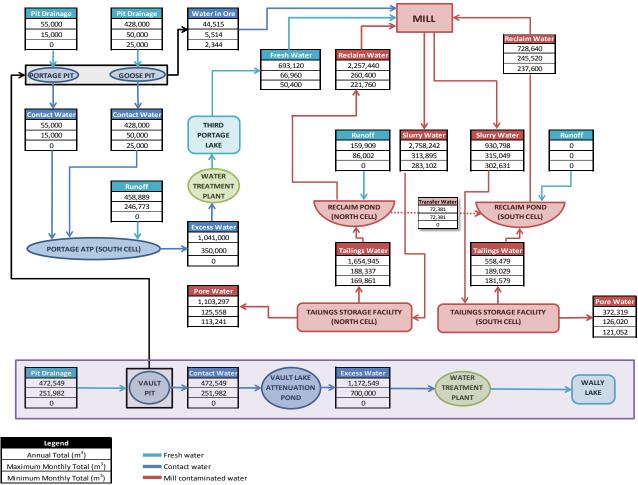
						Year	2023						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Tailings (tonnes):	0	0	0	0	0	0	0	0	0	0	0	0	0
Cummulative Tailings (tonnes):	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	-
Cummulative Tailings (tonnes) - North Cell	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	-
Cummulative Tailings (tonnes) - South Cell	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	-
North Cell (TSF)													
NORTH CELL CLOSED													
South Cell (TSF)													
SOUTH CELL CLOSED													
Mill/Camp	2.045	2.550	2.045	2.050	2.045	2.050	2.045	2.045	2.050	2.045	2.050	2.045	24.675
Freshwater from Third Portage Lake (m³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Total Inflow (m³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Freshwater for camp purposes (m ³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Total Outflow (m³)	2,945	2,660	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,675
Net Inflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Freshwater pumping rate (m³/hr)	4	4	4	4	4	4	4	4	4	4	4	4	•
Goose Pit - NOW JOINED WITH THE PORTAGE P	IT REFLOODING	<u>î</u>											
Runoff (m³)	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	495,900
Total Inflow (m³)	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	495,900
Flow to Portage Pit (m ³)	0	20,431	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	433,681
Total Outflow (m³)	0	20,431	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	433,681
Net Inflow (m³)	41,325	20,894	0	0	0	0	0	0	0	0	0	0	62,219
End-of-Month Volume (m³)	8,800,809	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	-
Portage Pit													
Runoff (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
East Dike Seepage (m³)	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	360,000
Sewage water from Tear Drop Lake (m³)	0	0	0	0	23,085	0	0	0	11,590	0	0	0	34,675
Inflow from Goose Pit (m³)	0	20,431	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41.325	433.681
Pumped from Third Portage Lake (m³)	0	0	0	0	0	1,130,000	1,130,000	1,130,000	1,130,000	0	0	0	4,520,000
Total Inflow (m³)	30,000	50,431	71,325	71,325	104,410	1,216,325	1,211,325	1,211,325	1,222,915	71,325	71,325	71,325	5,403,356
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m ³)	30,000	50,431	71,325	71,325	104,410	1,216,325	1,211,325	1,211,325	1,222,915	71,325	71,325	71,325	5,403,356
	· '		, ,	· ·	· ·		, ,			,		,	3,403,330
End-of-Month Volume (m³) Vault Attenuation Pond/Vault Lake	25,390,996	25,441,427	25,512,752	25,584,077	25,688,487	26,904,812	28,116,137	29,327,462	30,550,377	30,621,702	30,693,027	30,764,352	-
	0	0	0	0	0	603,783	1 006 206	1 260 229	1,212,177	0	0	0	4 192 604
Pumped From Wally Lake (m³)	0	0	0	0	0		1,006,306	1,360,338			0	0	4,182,604
Total Inflow (m³)				-		603,783	1,006,306	1,360,338	1,212,177	0	· ·		4,182,604
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m ³)	0	0	0	0	0	603,783	1,006,306	1,360,338	1,212,177	0	0	0	4,182,604
End-of-Month Volume (m³)	20,915,068	20,915,068	20,915,068	20,915,068	20,915,068	21,518,851	22,525,157	23,885,495	25,097,672	25,097,672	25,097,672	25,097,672	-
Vault Open Pit													

		-				Year	2024						ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	29	31	30	31	30	31	31	30	31	30	31	366
Tailings (tonnes):	0	0	0	0	0	0	0	0	0	0	0	0	0
Cummulative Tailings (tonnes):	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	-
Cummulative Tailings (tonnes) - North Cell	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	
Cummulative Tailings (tonnes) - South Cell	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	-
North Cell (TSF)													
NORTH CELL CLOSED													
South Cell (TSF)													
SOUTH CELL CLOSED													
Mill/Camp	2.045	2.755	2.045	2.050	2.045	2.050	2.045	2.045	2.050	2.045	2.050	2.045	24 770
Freshwater from Third Portage Lake (m³)	2,945	2,755	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,770
Total Inflow (m³)	2,945	2,755	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,770
Freshwater for camp purposes (m ³)	2,945	2,755	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,770
Total Outflow (m³)	2,945	2,755	2,945	2,850	2,945	2,850	2,945	2,945	2,850	2,945	2,850	2,945	34,770
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Freshwater pumping rate (m³/hr)	4	4	4	4	4	4	4	4	4	4	4	4	•
Goose Pit - NOW JOINED WITH THE PORTAGE PI	T REFLOODING	i											
Runoff (m³)	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	495,900
Total Inflow (m ³)	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	495,900
Flow to Portage Pit (m ³)	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	495,900
Total Outflow (m ³)	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	495,900
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	-
Portage Pit													
Runoff (m³)	0	0	0	0	10,000	15,000	10,000	10,000	10,000	0	0	0	55,000
East Dike Seepage (m³)	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	360,000
Sewage water from Tear Drop Lake (m³)	0	0	0	0	23,085	0	0	0	11,590	0	0	0	34,675
Inflow from Goose Pit (m³)	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	41,325	495,900
Pumped from Third Portage Lake (m ³)	0	0	0	0	0	1,130,000	1,130,000	1,130,000	1,130,000	0	0	0	4,520,000
Total Inflow (m³)	71,325	71,325	71,325	71,325	104,410	1,216,325	1,211,325	1,211,325	1,222,915	71,325	71,325	71,325	5,465,575
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
2	71,325	71,325	71,325	71,325	104,410	1,216,325	1,211,325	1,211,325	1,222,915	71,325	71,325	71,325	5,465,575
Net Inflow (m³)	30,835,677	30,907,002	30,978,327	31,049,652	31,154,062	32,370,387	33,581,712	34,793,037	36,015,952	36,087,277	36,158,602	36,229,927	3,403,57
End-of-Month Volume (m³) Vault Attenuation Pond/Vault Lake	30,633,677	30,907,002	30,976,327	31,049,052	31,134,062	32,370,387	33,301,712	34,793,037	30,013,952	30,067,277	30,136,002	30,223,327	-
	0	0	0	0	0	603,783	1,006,306	1,279,043	1,164,730	0	0	0	4,053,862
Pumped From Wally Lake (m³)	0	0	0	-	0	,				0	0	0	
Total Inflow (m³)				0		603,783	1,006,306	1,279,043	1,164,730				4,053,862
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	
Net Inflow (m³)	0	0	0	0	0	603,783	1,006,306	1,279,043	1,164,730	0	0	0	4,053,862
End-of-Month Volume (m³)	25,097,672	25,097,672	25,097,672	25,097,672	25,097,672	25,701,455	26,707,761	27,986,804	29,151,534	29,151,534	29,151,534	29,151,534	-
Vault Open Pit													

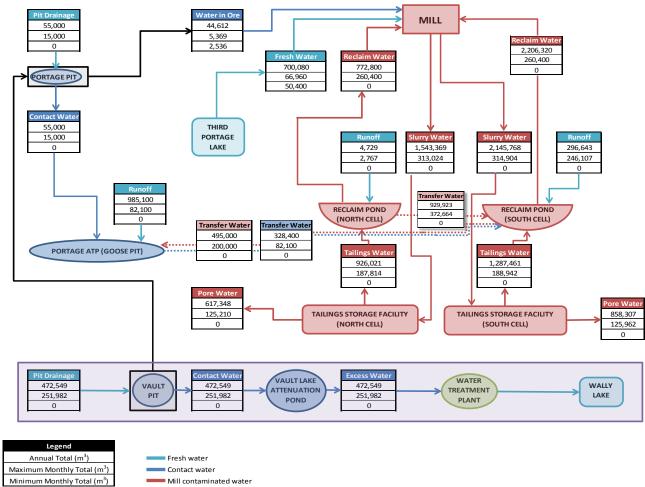


						Year	2025	•			-	,	ANNUAL
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
No. of days	31	28	31	30	31	30	31	31	30	31	30	31	365
Tailings (tonnes):	0	0	0	0	0	0	0	0	0	0	0	0	0
Cummulative Tailings (tonnes):	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	28,542,776	-
Cummulative Tailings (tonnes) - North Cell	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	17,449,399	-
Cummulative Tailings (tonnes) - South Cell	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	11,093,377	-
North Cell (TSF)													
NORTH CELL CLOSED													
South Cell (TSF)													
SOUTH CELL CLOSED													
Mill/Camp					_								
Freshwater from Third Portage Lake (m ³)	2,945	0	0	0	0	0	0	0	0	0	0	0	2,945
Total Inflow (m³)	2,945	0	0	0	0	0	0	0	0	0	0	0	2,945
Freshwater for camp purposes (m ³)	2,945	0	0	0	0	0	0	0	0	0	0	0	2,945
Total Outflow (m³)	2,945	0	0	0	0	0	0	0	0	0	0	0	2,945
Net Inflow (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Freshwater pumping rate (m³/hr)	4	0	0	0	0	0	0	0	0	0	0	0	-
Goose Pit - NOW JOINED WITH THE PORTAGE P	IT REFLOODING	ì											
Runoff (m ³)	22,726	0	0	0	0	0	0	0	0	0	0	0	22,726
Total Inflow (m³)	22,726	0	0	0	0	0	0	0	0	0	0	0	22,726
Flow to Portage Pit (m ³)	22,726	0	0	0	0	0	0	0	0	0	0	0	22,726
Total Outflow (m³)	22,726	0	0	0	0	0	0	0	0	0	0	0	22,726
Net Inflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
End-of-Month Volume (m³)	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	8,821,703	_
Portage Pit	0,021,703	0,021,703	0,021,703	0,021,703	0,021,703	0,021,703	0,021,703	0,021,703	0,021,703	0,022,703	0,021,703	0,021,703	
East Dike Seepage (m³)	16,498	0	0	0	0	0	0	0	0	0	0	0	16,498
Inflow from Goose Pit (m³)	22,726	0	0	0	0	0	0	0	0	0	0	0	22,726
Total Inflow (m³)	39,224	0	0	0	0	0	0	0	0	0	0	0	39,224
Total Outflow (m³)	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Inflow (m ³)	39,224	0	0	0	0	0	0	0	0	0	0	0	39,224
		36,269,151	36,269,151	36,269,151	36,269,151	36,269,151	36,269,151	36,269,151	36,269,151	36,269,151	36,269,151	36,269,151	•
End-of-Month Volume (m³)	36,269,151	30,209,151	36,269,151	36,269,151	36,269,151	30,209,151	36,269,151	30,269,151	36,269,151	36,269,151	30,209,151	36,269,151	-
Vault Attenuation Pond/Vault Lake													
VAULT LAKE REFLOODING COMPLETED													
Vault Open Pit													
VAULT PIT CLOSED: REFLOODING OF VAULT LAK	E INCLUDES PI	I VOLUME											

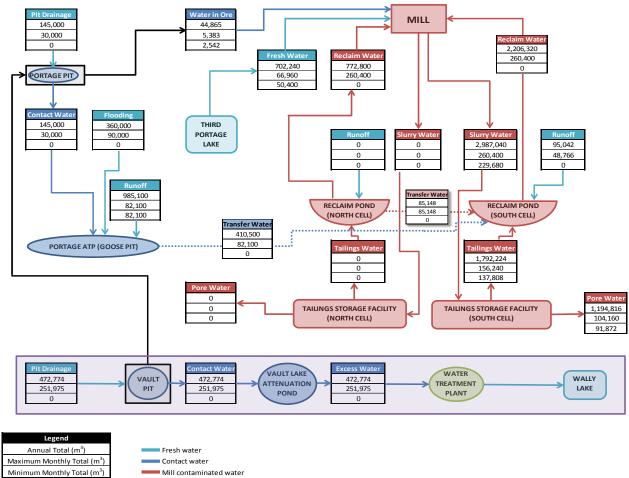
APPENDIX B - GENERAL WATER MOVEMENT


9.1.1.1.1.1.1 GENERAL WATER MOVEMENT - 2013

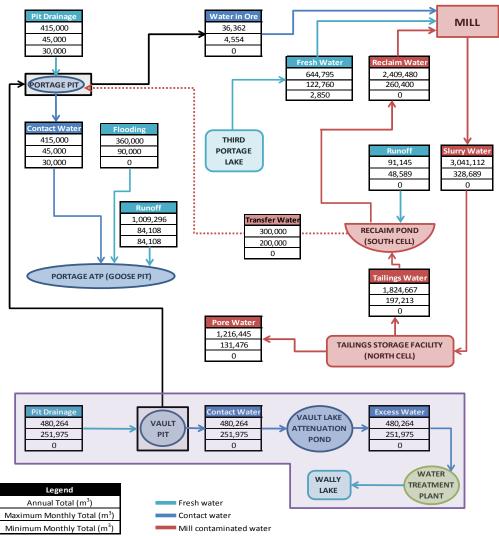
 $[\]hbox{*Small water transfers are not shown on this drawing, refer to water balance tables for detailed water movement.}$


9.1.1.1.1.1.2 GENERAL WATER MOVEMENT - 2014

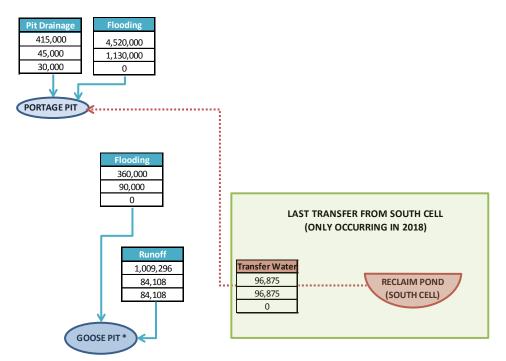
*Small water transfers are not shown on this drawing, refer to water balance tables for detailed water movement.

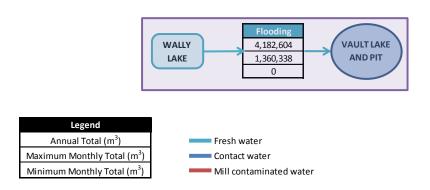

9.1.1.1.1.1.3 GENERAL WATER MOVEMENT - 2015

*Small water transfers are not shown on this drawing, refer to water balance tables for detailed water movement.


9.1.1.1.1.1.4 GENERAL WATER MOVEMENT - 2016

*Small water transfers are not shown on this drawing, refer to water balance tables for detailed water movement


9.1.1.1.1.1.5 GENERAL WATER MOVEMENT - 2017


 $\hbox{*Small water transfers are not shown on this drawing, refer to water balance tables for detailed water movement.}$

9.1.1.1.1.1.6 GENERAL WATER MOVEMENT: PIT FLOODING - 2018-2025

*Goose pit will finish flooding in 2022

APPENDIX C - ROCK STORAGE FACILITY SEEPAGE REPORT

REPORT ON

Rock Storage Facility Seepage - Meadowbank Gold Mine, Nunavut

Submitted to:

Mr. Kevin Buck Environmental Superintendent Agnico-Eagle Mines Limited Meadowbank Division PO Box 540 Baker Lake, Nunavut X0C 0A0

Report Number: Doc 1447 1312210115_0103_14 - MB

Rev 0 Ver 1 Distribution:

1 e-copy and 2 copies : Agnico-Eagle Mines Limited, Baker

Lake NU

2 copies: Golder Associés Ltée, Montréal QC

Table of Contents

1.0	INTRO	DUCTION	1							
2.0	BACKO	GROUND	1							
	2.1	TSF and RSF Overview								
	2.2	Basis of the Assessment	2							
	2.3	TSF and RSF Design Bases	2							
3.0	REVIE	W OF FACTUAL INFORMATION	3							
	3.1	TSF and RSF Configuration	3							
	3.2	Review of Monitoring and Sample Analyses	3							
	3.3	Thermistor Data	4							
4.0	SUMM	ARY OF AEM'S MITIGATION STRATEGY	5							
5.0	ASSES	SMENT ON RSF SEEPAGE FINDINGS AND AEM'S MITIGATION PLAN	6							
6.0	RECOMMENDATIONS									
7.0	REPOR	RT CLOSURE	8							

FIGURES

- Figure 1: General configuration of the TSF and RSF facilities
- Figure 2: Sampling location from July 30 to August 27, 2013
- Figure 3: Short-term monitoring program
- Figure 4: Thermistors location and readings (2012-2013)
- Figure 5: Location of additional instruments installed in the RSF

APPENDICES

APPENDIX A

Chemical Analysis Results provided by AEM

APPENDIX B

Preliminary AEM Report - Seepage Water from Waste Rock Storage Facility at Sample Location ST-16

APPENDIX C

Tailings Storage Facilities – 2013 Instrumentation Review

APPENDIX D

Construction Summary Report Rock Storage Facility - Interim Till Plug

APPENDIX E

TSF Deposition Plan 2013-Update 2013-10-17

1.0 INTRODUCTION

On November 8, 2013, Agnico-Eagle Mines Limited (AEM) received an inspector's direction from the Aboriginal Affairs and Northern Development of Canada (AANDC) related to the seepage of water from the Portage Rock Storage Facility (RSF) into Lake NP-2. According to the received direction, the RSF seepage contravenes AEM's type A water license #2AM-MEA0815 (water license). The inspector requested that AEM:

- Conduct an investigation about the release of waste from ST-16 sump location to Lake NP-2, which includes determining the source of the contaminated water in ST-16 sump;
- Conduct an investigation, in consultation with an independent firm, about possible failure of the Till plug designed to prevent waste from migrating out of ST-16 sump into Lake NP-2;
- Develop a plan in consultations with an independent engineering firm about:
 - Corrective measures that will be taken to immediately stop the release of waste;
 - Long term corrective measures that will be taken to secure waste in the future;
 - Counteraction and/or remediation of the adverse impacts of the prior releases.

On November 15, 2013, AEM requested that Golder Associates Ltd. (Golder) prepare an assessment report regarding the RSF based on the above. The assessment report includes findings and immediate actions, as well as presenting recommendations about the immediate- and long-term corrective actions.

2.0 BACKGROUND

This section presents the basic background information for the seepage through the RSF. The first subsection describes the general configuration of the concerned area and the second describes the basis of the assessment.

2.1 TSF and RSF Overview

Figure 1 presents the general configuration of the Tailings Storage Facility (TSF) and the RSF. The RSF is adjacent to the North Cell of the TSF and is used to store potentially acid generating (PAG) and non-acid generating (non-AG) waste rock. The North Cell of the TSF is used to store tailings and reclaim water for milling processes.

Rockfill roads RF1 and RF2 are located along the north-east side of the TSF and are perimeter structures that separate the RSF from the North Cell. The East and West diversion ditches are located around the northern area of the North Cell of the TSF to keep surface water from reaching the RSF and the TSF. Lake NP-2 and NP-1 are located north and east, respectively, of the RSF.

According to AEM, the access road between the RSF and Lake NP-2 was initially constructed to provide a separation between the RSF and Lake NP-2. It was also used to construct and service the diversion ditches (East and West) in 2012; this road is constructed with non-AG rockfill. The East Ditch flows through Lake NP-2 and connects to Lake NP-1. This ditch controls the water levels in these lakes such that the water level does not rise and overflow into the active mine area (i.e., the RSF).

1

2.2 Basis of the Assessment

During the AANDC Water License Inspection on July 29 and 30, 2013, AEM and the AANDC inspector observed red coloured seepage (suggesting the presence of iron precipitate) flowing from the northwest side of the RSF through the road perimeter into Lake NP-2, near monitoring station ST-16. Sample location ST-16 is a known area of seepage and is in a natural low depression area that serves as a sump.

AEM and the inspector took split water samples from Lake NP-2 and station ST-16. The chemical analyses from this sampling showed that these samples had elevated levels of metals (copper and nickel) when compared to samples collected at ST-16 from 2010 to July 2013, including a sample collected on July 11, 2013. Additional samples collected in August and September 2013 from ST-16 showed elevated concentration of copper, nickel and presence of cyanide. Additional sampling in Lake NP-2 showed that the same parameters were present in this lake at lower concentrations than ST-16.

When the red-coloured seepage was observed, AEM's immediate action plan (starting on July 27) consisted of dewatering the water from the sump area at the ST-16 water monitoring station. The sump area at sampling station ST-16 was completely dewatered by August 4, 2013. This action stopped the seepage to Lake NP-2 and confirmed that seepage from the RSF was visible at base of the RSF near the ST-16 location. Seepage water from the RSF was then redirected to the TSF North Cell by pumper trucks. AEM also designed and constructed a till plug on the upstream slope of the RSF perimeter road which, combined with the pumping program keeping a low water level within the sump, prevent the seepage from reaching Lake NP-2. Construction of till plug was performed between August 26 and September 1, 2013. Pumping of the sump continued on a regular basis from July 29 until approximately mid-October when the seepage water froze.

2.3 TSF and RSF Design Bases

The designs of the TSF and RSF were reviewed. The design of the TSF requires that a tailings beach is required against all perimeter structures of the TSF to reduce seepage from the TSF. In addition, the reclaim pond is to be operated towards the centre of the TSF North Cell to reduce seepage flow from the TSF (AEM 2009; Golder 2008b).

The rockfill roads of the TSF, RF1 and RF2, are designed as unlined rockfill roads for use as pipe berms for tailings deposition. The rockfill roads are designed for tailings containment and not to limit seepage. The design is based on the expectation that the seepage from the TSF to the RSF will be limited by the deposition of tailings adjacent to the rockfill faces, the operation of the Reclaim Pond toward the centre of the facility, and the freezing of tailings in the post-closure period (Golder 2011). The design recognizes the possibility of water moving from the TSF to the RSF once the pond reaches a certain elevation. It also notes, if necessary, the need to establish a system of contact water ditches and sumps to surround the RSF to capture and allow the monitoring of surface runoff and seepage from the RSF and direct it to suitable storage/treatment facilities (Golder 2011).

The RSF is expected to freeze within two years of placement, thereby reducing the risk of acid drainage and assisting in containing the seepage of water (Golder 2011). The RSF is to be capped with an insulating layer of non-AG rock.

2

3.0 REVIEW OF FACTUAL INFORMATION

Golder reviewed the available information to assess the current conditions and the potential sources of the seepage.

3.1 TSF and RSF Configuration

Prior to mine development, a watercourse ran from Lake NP-2 to the northwest arm of the Second Portage Lake where the TSF is now located as shown in Figure 1.

The water surface in Lake NP-2 is at EI. 141.2 m, the base of the RSF on its north side (near ST-16) is at approximately EI. 142 m, and the tailings pond water level was approximately between EI. 145.6 m and 146.1 m from mid-July to mid-October 2013. This information confirms that the hydraulic gradient flows from the TSF to the sump at ST-16 upstream from Lake NP-2; this gradient is the reverse to that which existed before mine development started. This suggests the presence of saturated rockfill in a thawed condition at the bottom of the RSF having its water surface at EI. 142 m; this corresponds to the seepage level at the exit of the RSF on its north side.

The review of the TSF operating configuration in September 2013 shows that tailings water was pounding directly against RF1 and RF2. Further, there was no tailings beach against RF2 and less than half of RF1 had a tailings beach. By mid-October, AEM confirms that the tailings beach along RF1 was covering 90% of the structure and that no beach along RF2 was yet in place.

It is also noted that the water management system consisting of diversion ditches surrounding the RSF is not completed. Since the water catchment basin of the TSF and RSF area directes the water towards the North and South Cells of the TSF and the only seepage observed out of the area is near the natural sump at sampling station ST-16, AEM considered that the provision of a collection system was not necessary. Rather, AEM used an observational approach at the natural sump and sampling station ST-16 to ensure that the water analyses results are appropriate.

3.2 Review of Monitoring and Sample Analyses

All the laboratory testing results provided by AEM to Golder, summarized below, are presented in Appendix A.

From July 30 to August 27, 2013, various water samples were taken by AEM and the AANDC inspector at sampling station ST-16 and at various sampling station on Lake NP-2 and NP-1. The locations of these samples are shown in Figure 3.

Starting August 28, 2013, AEM implemented a short-term monitoring program that included daily monitoring of weak acid dissociable cyanide (CN WAD) at the seepage area ST-16 and at NP-2 South. This short-term cyanide program used the non-accredited onsite assay lab. The program also includes once every-two-weeks monitoring for total and dissolved metals, general chemistry as well as total and free cyanide at sampling station ST-16, NP-2 South, NP-2 East and NP-2 West. These analyses were performed by Multi-Lab, an accredited laboratory. The once every-two-weeks monitoring was temporarily stopped in October due to the frozen conditions. A monthly monitoring station has been set for the winter on Lake NP-2; refer to Figure 3. The locations of the sampling areas as part of the short-term monitoring program are shown in Figure 4.

3

AEM provided Golder with the results of the sample analyses described above. Historical results at station ST-16 and the results from sampling station ST-21 (located inside the TSF) were also made available for comparison purposes. Multi Lab provided comments to AEM that it is difficult to compare the results from Multi Lab and those from AEM's onsite laboratory because the onsite free cyanide analysis is based on a qualitative method rather than a distillation standardized method used for the total and WAD cyanide.

The results show that the concentrations of copper, nickel, ammonia, and cyanide exceed the CCME criteria for Protection of Aquatic Life. The result of the trout toxicity test, sampled on August 28, show that the concentration was not lethal. An additional toxicity sample was taken on Dec 9, 2013 and the result was also not lethal for trout. A sample was analysed for copper in Lake NP-1 on August 21, 2013 and showed a low concentration. The concentration of metals observed from July 30 to August 27, 2013 at sampling station ST-16 are higher than the historical results from 100 to 1,000 times. These results are similar to the results from the samples taken at ST-21 inside the TSF, except for the concentration of iron which is much higher at ST-16 than at ST-21. These results, coupled with the presence of cyanide at ST-16, indicate that the origin of the seepage water is from the TSF.

The results from the short-term monitoring program show that the concentrations of metals and cyanide at sampling station ST-16 and in Lake NP-2 decreased from August to October 2013. This is an indication that the immediate actions taken by AEM to pump and control the RSF seepage were effective in decreasing the concentrations of metals and cyanide.

3.3 Thermistor Data

Golder reviewed the thermistor data in the area of the RSF. The location of these thermistors and their temperature versus depth profiles during 2012 and 2013 are shown in Figure 5. Figure 5 was developed using the TSF - Instrumentation Review document provided by AEM and is presented in Appendix C. The following points were developed during the review of the thermistor data:

- The thermistor inside the North Cell of the TSF (T-90-2) shows that the tailings are below 0°C near Saddle Dam 1. This thermal condition, coupled with the expectation that the tailings are saturated, indicates that the tailings are frozen in this area.
- The thermistor inside the RSF (RSF-1) indicates that the waste rock pile is below 0°C at this location. This thermistor is located in an area where the natural ground surface is above El. 142 m.
- RF2 (T122-1) indicates that rockfill road RF2 is below 0°C in this area.
- The RF1-3 thermistor is installed along the upstream slope in a PVC casing partially covered with tailings. RF1-3 indicates that the tailings are thawed from their surface at approximately El. 145 m down to approximately El. 144.2 m. Below El. 144.2 m, the temperature is below 0°C; as the tailings are expected to be saturated in this location, it is inferred that the tailings are frozen below El. 144.2 m.
- RF1-1 (T121-1) indicates that the rockfill was below 0°C throughout 2013 at this location. Note that the natural ground surface is relatively shallow in this area.
- RF1-2 is located close to the former watercourse (like RF1-1) but its natural ground surface is at a lower level and indicates that the rockfill is thawed at the tailings water level (El. 145.7 m) and below 0°C below El. 143 m. As the tailings are expected to be saturated, the tailings are expected to be frozen below El. 143 m.

These observations indicate that some parts of the rockfill road RF1 are not frozen due to thermal conditions (i.e., temperatures above 0°C) and the lack of saturated rockfill.

From November 8 to 11, 2013, AEM installed four additional thermistors in the RSF (RSF3 to RSF6) to monitor the temperatures in the structure and in the vicinity of the former lake and water course between Lake NP-2 and the second Portage arm (North Cell). The locations of these instruments are shown in Figure 5. The available results are limited for interpretation as the instruments are still showing a cooling trend but these data will be helpful to follow the freezing of the RSF along the former water course.

The following are noted based on a review of the data to December 6, 2013 for thermistors RSF3 to RSF6, inclusive:

- Thermistor RSF3 shows that the rockfill is at temperatures ranging from 0 to -5°C.
- Thermistor RSF4 shows temperatures in the rockfill from 2 to 10°C.
- Thermistor RSF5 shows temperatures in the rockfill from 0 to -5 °C.
- Thermistor RSF6 shows that the temperature of the rockfill ranges from -2 to -9°C.

Thermistors RSF3 to RSF6, inclusive, show that the thermistors continue to adjust to the ground temperature conditions; this is expected due to their recent installation dates. Continued monitoring of these thermistors is required for future interpretation.

SUMMARY OF AEM'S MITIGATION STRATEGY 4.0

Golder reviewed AEM's preliminary report on the seepage of water from the waste rock storage facility (included in Appendix B). This report contains AEM's findings and actions for the RSF. From the review of this document and from additional information provided by AEM, the following items are noted:

- AEM established a short-term monitoring program, as presented in Section 3.2, and will keep sampling one location during the winter;
- AEM established a pumping program (by pumper truck) to keep the water level low in the sump at sampling station ST-16 and to pump the seepage back into the TSF;
- AEM constructed a till plug to limit the seepage from the RSF to Lake NP-2. AEM will increase the pumping of the seepage water into the sump. The construction summary report of this structure was provided to Golder and is presented in Appendix D.;
- AEM modified the tailings deposition plan to promote the development of tailings beaches against RF1 and RF2 and to ensure that the reclaim pond is operated away from the rockfill roads. AEM changed the tailings discharge point on September 2, 2013 to promote the development of a tailings beach against RF1 where tailings water was pounding directly against the structure. A new deposition plan was completed by AEM on November 17, 2013 and is presented in Appendix E.
- AEM installed four additional thermistors in the RSF to monitor ground temperatures in this area.
- AEM estimated the 2014 freshet water quantities for the freshet season emergency plan preparedness.

5.0 ASSESSMENT ON RSF SEEPAGE FINDINGS AND AEM'S MITIGATION PLAN

Golder considers that the long-term design intent of the TSF and the RSF can still be met provided that the design is executed in the field. The requirements include providing tailings beaches along any of the TSF perimeter structures, including the rockfill roads, and operating the reclaim pond toward the centre of the facility, namely, away from dikes and rockfill roads. It is to be noted that the concept envisaged the possibility of seepage. This is the reason why a contact water collection system was planned as a contingency measure.

TSF and RSF Configuration

The review of the TSF operating configuration indicates that tailings water was ponding directly against RF1 and RF2; these are perimeter structures of the TSF. The formation and maintenance of tailings beaches are required at all perimeter structures of the TSF to limit seepage from the facility and to maintain the reclaim pond in a centralized location. The updated deposition plan prepared, and currently being used, by AEM focusses on beach development at RF1 and RF2.

The water management system, consisting of diversion ditches surrounding the RSF has not been required to date. AEM stated that this system has not yet been constructed due to the ability of AEM to manage the seepage appropriately historically. The pumping activities and the construction of the till plug are considered to be effective seepage control measures.

Monitoring and Sample Analysis

Golder agrees with AEM that the cause of the high metals and cyanide concentration of the RSF seepage near ST-16 is due to the ingress of process water from the TSF. This suggests the presence of saturated and thawed rockfill linking the TSF to the RSF seepage near sampling station ST-16.

From the review of the data at the sampling station ST-16 and within Lake NP-2, where the metals and cyanide concentration decreased from August 4 to mid-October, it appears that the till plug, combined with the pumping program to maintain a low water level within the sump at sampling station ST-16, were appropriate measures to prevent further seepage from reaching Lake NP-2.

Till Plug

The till plug is constructed of low permeability till material placed on a granular filter layer against the rockfill road. This structure is considered to be physically stable. In terms of seepage control, the performance of the till plug and the associated pumping keeping a low water level in the sump at the sampling station ST-16 appears to be effective in managing seepage to Lake NP-2.

Thermistor Data

From the thermistor data, it is noted that the tailings near SD1 are frozen. Freeze-back of the tailings reduces the seepage of water from the TSF. It is expected that the tailings adjacent to RF1 and RF2, following the formation of the tailing beaches in these locations, would also freeze, thereby limiting seepage through the rockfill roads to the RSF.

The flow of tailings water through the RSF is complex and cannot be readily tracked with thermistors or others instruments. The recently-installed thermistors in the RSF will allow monitoring of the ground temperatures. This information will further enable overall monitoring of thermal and seepage conditions in and around the RSF.

2014 Freshet Water Quantity

AEM has estimated the 2014 freshet water quantity in preparing the freshet season emergency plan. Golder did not review this work. This evaluation should provide suitable information to help plan for the 2014 freshet season. This may include determining if a pumper truck, the sump, and the till plug at ST-16 will be adequate during the 2014 freshet.

6.0 RECOMMENDATIONS

Based on review summarized above, Golder recommends the following:

- 1) AEM should continue to develop and maintain tailings beaches adjacent to RF1 and RF2 and to operate the Reclaim Pond towards the centre of the TSF. These are the key recommendations.
- 2) AEM should consider the installation of additional water management infrastructure which could take the form of a permanent collection and pumping system at the sampling station ST-16 current sump. Also, consideration should be given for contact water ditches and sumps in the surrounding areas of the RSF if additional seepages of contaminated water are observed in the future.
- 3) The seepage at station ST-16 should continue to be collected and redirected to the TSF and monitored (location, quantity, quality). Continued monitoring is strongly recommended during the winter for seepage water quantity monitoring and possible development of an ice plug in the RSF. The area at ST-16 should be kept clean of snow to allow visual observation and to ensure that water at ST-16 does not overflow over the till plug into Lake NP-2.
- 4) Regular inspections all around the RSF should be performed, particularly during freshet, to ensure that runoff or any observed seepage is controlled and monitored prior to being released into the environment if the analyses results meet the requirement.
- 5) AEM should continue to monitor the tailings and waste rock freeze back following the Thermistor Monitoring Plan in accordance with Part 1, Item 11 of the Type-A water license.
- 6) AEM should provide the results of the 2014 monitoring to Golder for review and comment.

7.0 REPORT CLOSURE

We trust that this report satisfies your current requirements. Please contact the undersigned should you have any questions.

GOLDER ASSOCIÉS LTÉE

Yves Boulianne, P.Eng (NU) Associate, Project Manager Annie Beaulieu, Eng. (Qc) Associate, Project Director

Reviewed by:

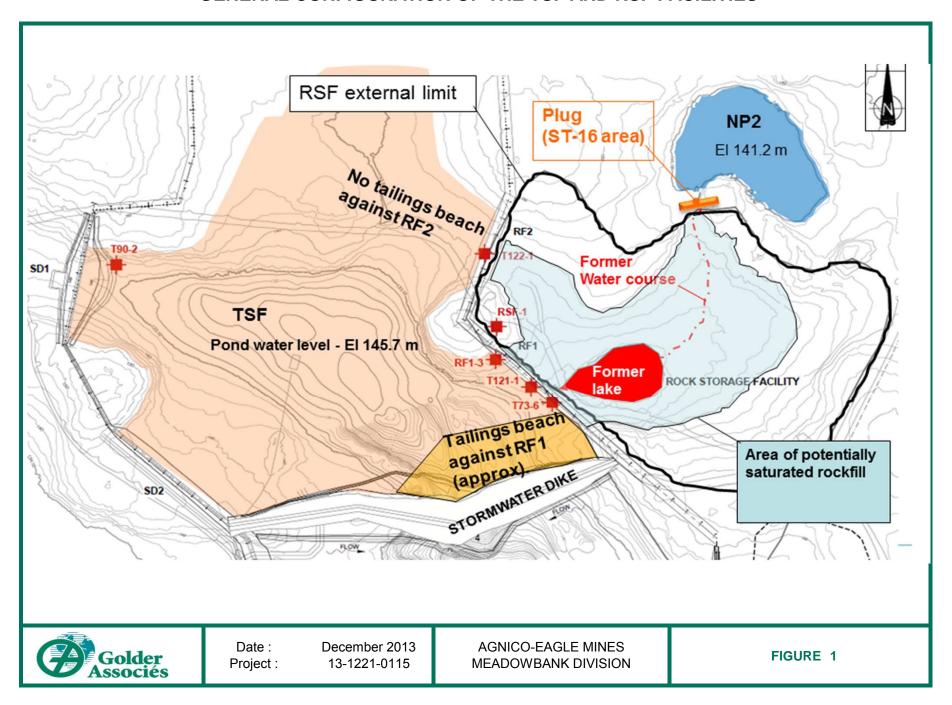
FOR

Paul Bedell, M.E.Sc., P. Eng.(NWT/NU) Principal, Senior Geotechnical Engineer

FLB/YB/AB/PMB/

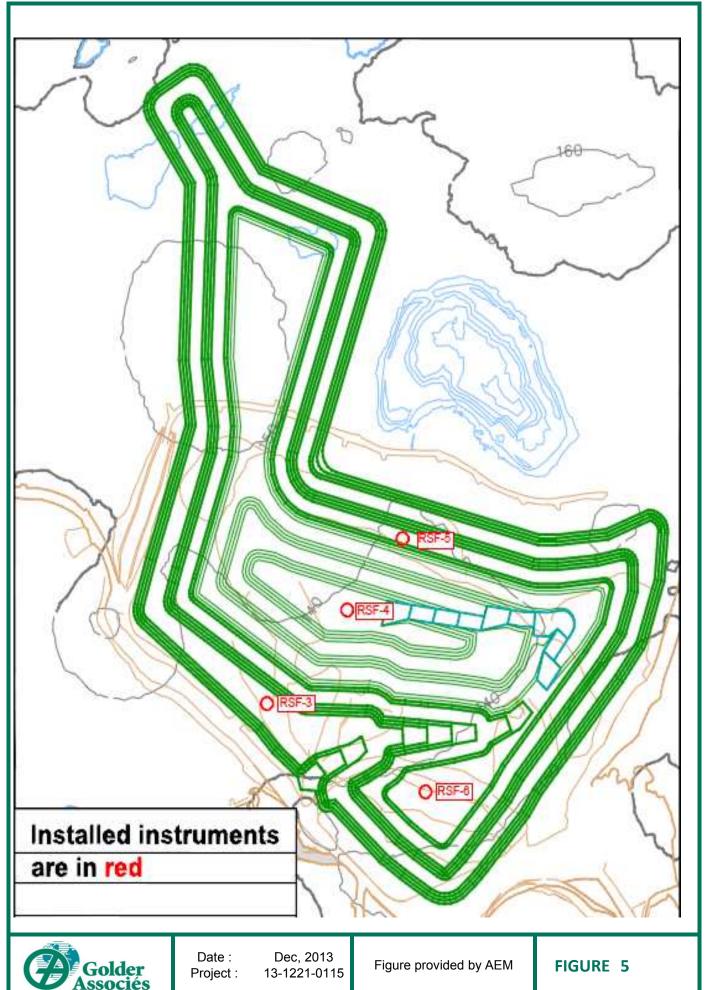
Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

n:\actif\2013\1221\113-1221-0115 aem- rsf seepage report - meadowbank\6 livrables émis\doc 1447 1312210115_0103_14 rsf seepage report - mb rev 0 ver 1.docx


REPORT ON RSF SEEPAGE REPORT - MEADOWBANK

REFERENCES

- Aboriginal Affairs and Northern Development Canada. 2013. Inspector's Direction Pursuant to Section 87(1) of the Nunavut Waters and Nunavut Surface Rights to Tribunal Act (SC 2002, c. 10), as Amended. November 8th, 2013.
- Agnico-Eagle Mine Ltd (AEM) Meadowbank Division. 2009. Meadowbank Gold Project Mine Waste Management Plan. October 2009.
- Nunavut Water Board License. 2008. License No : 2AM0MEA0815. June 9th, 2008.
- Golder Associates Ltd. (Golder). 2008A. Draft Design Criteria and Development Plan for Waste Rock Dumps at the Meadowbank Gold Project, Doc. 721 08-1428-0013 Rev B. July 17th, 2008.
- Golder Associates Ltd. (Golder). 2008B. Report on Tailings Storage Facility Dike Design Meadowbank Gold Project. Doc 784 08-1428-0029 Rev 0. Submitted to Agnico-Eagle Mines Ltd. December 17, 2008.
- Golder Associates Ltd. (Golder). 2009. Tailings Deposition Plan Meadowbank Gold Project Nunavut. Doc 956 09-1428-0015 Rev 0. Submitted to Agnico-Eagle Mines Ltd. October 29, 2009.
- Golder Associates Ltd. (Golder). 2011. Design Rationale for Rockfill Road 1 and Rockfill Road 2, Tailings Storage Facility, Meadowbank Gold Project, Nunavut. Doc No. 1258 09-1428-5007/3000 Rev 0. Submitted to Agnico-Eagle Mines Ltd. March 24, 2011.



GENERAL CONFIGURATION OF THE TSF AND RSF FACILITIES

REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF NO. DESSIN DRAWING NO. FORMAT ANSI B-11x17 East Diversion Ditch NP2-West Bi-weekly monitoring REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF NP2-Winter Monthly/monitoring NP-2 NP2-South NP2-East Bi-weekly/momitoring + Bi-weekly monitoring CN WAD daily Bi-weekly monitoring + NP-1 CN WAD daily Waste Rock Facility / mle AGNICO EAGLE — Meadowbank Division Marie-Pier Marcil 2013 Bi-weekly/Monthly Monitoring Station RSF Seepage **Short-Term Monitoring Program** 21/11/2013 MPM **AGNICO EAGLE** TITRE / TITLE # DWG DESCRIPTION FEUILLE/SHT FIGURE 3 1/1 DESSINS EN RÉFÉRENCE / REFERENCE DRAWINGS **REVISIONS** C:\Users\marie-pier.marcil\Documents\Dessin Autocad\Sampling Location Seep + NP2 2013 Golder.dwg-2013-02-19 14:20:05

LOCATION OF THERMISTOR INSTALLED IN THE RSF IN NOVEMBER 2013

Golder Associés

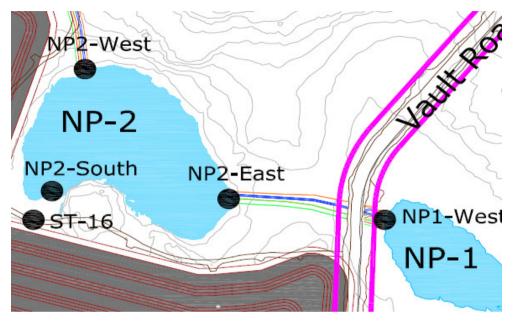
APPENDIX A

Chemical Analysis Results provided by AEM

MEADOWBANK DIVISION

Table 1 – Historical ST-16 Results

Parameters	Date Units	ST-16 Average 2011	ST-16 Average 2012		ST-16 /06/2013	04	ST-16 4/07/2013		Γ-16 Split 0/07/2013		ST-16 Split AANDC Result 0/07/2013
*pH		6.49	7.30		6.45		7.21				7.20
*Turbidity	NTU	17	34				17				123
*Conductivity	us/cm		154		420		1485				4510
Alkalinity	mg CaCo3/L	34	67		46		89		272		162
Aluminum	mg/L	0.159	0.513				0.464		0.042		0.045
Dissolved Aluminium	mg/L						0.027	<	0.006		
Ammonia	mgN/L	0.07	0.03	<	0.05		0.20		1.20		
Ammonia-nitrogen	mgN/L		0.22		0.45		7.80		34.00		
Total Dissolved Solids	mg/L	55	175		37		969		3792		
Total Suspended Solids	mg/L										50
Arsenic	mg/L	0.0020	0.0045		0.0029		0.0091		0.0139		0.0083
Dissolved As	mg/L						0.0031		0.0058		
Barium	mg/L	0.0095	0.0196				0.0741		0.1414		0.1480
Dissolved Barium	mg/L						0.0558		0.1433		
Cadmium	mg/L	0.00060	0.00004				0.00014		0.00065		0.00020
Dissolved Cadmium	mg/L						0.0001		0.0007		
Chloride	mg/L	2	3				15		450		192
Chromium	mg/L		0.0048				0.0034		0.0011		0.0010
Copper	mg/L	0.0017	0.0046		0.0028		2.3110		2.0380		3.3500
Dissolved Copper	mg/L						1.909		1.712		
Fluoride	mg/L	0.106	0.098				0.110		0.290		
Hardness	mg CaCO3/L	62	59				361		1417		1020
Iron	mg/L	1.21	1.94				1.60		4.40		21.90
Dissolved Iron	mg/L						0.17		0.06		
Lead	mg/L	0.0010	0.0056	<	0.0003		0.0015		0.0013	<	0.0001
Dissolved Lead	mg/L					<	0.0003	<	0.0003		
Manganese	mg/L	0.588	0.961				2.447		6.370		5.850
Dissolved Manganese	mg/L						2.110		6.055		
Mercury	mg/L	0.00062	0.00007			<	0.00010		0.00005		0.00015
Dissolved Mercury	mg/L					<	0.0001	<	0.0001		
Molybdenum	mg/L	0.001	0.001				0.026		0.170		0.083
Dissolved Molybdenum	mg/L						0.0204		0.1773		
Nickel	mg/L	0.0339	0.0395		0.0069		0.5149		2.0150		1.3300
Dissolved Nickel	mg/L						0.415		1.810		
Nitrate	mg/L	0.17	0.34				8.10		37.80		23.70
Selenium	mg/L	0.002	0.001				0.007		0.020		0.013
Dissolved Selenium	mg/L						0.005		0.023		



MEADOWBANK DIVISION

Silver	mg/L	0.0006	0.0049								0.0056
Dissolved Silver	mg/L					<	0.0002		0.0019		
Sulphate	mg/L	24	9				406		2400		1450
Thallium	mg/L	0.0025	0.0025			<	0.0050	<	0.0050	<	0.0001
Dissolved Thallium	mg/L					<	0.005	<			
Zinc	mg/L	0.005	0.008	<	0.001		0.010		0.009	<	0.005
Dissolved Zinc	mg/L						0.003		0.008		
Calcium (Ca)	mg/L										312
Magnesium (Mg)	mg/L										60
Potassium (K)	mg/L										88
Sodium (Na)	mg/L										590
Cesium	mg/L										0.0009
Rubidium	mg/L										0.0687
Ortho-Phosphate as											
Phosphorus	mg/L										
Antimony (Sb)	mg/L						0.0004		0.0012		0.0007
Boron (B)	mg/L						0.04		0.15		
Beryllium (Be)	mg/L					<	0.0005	<	0.0005	<	0.0001
Cobalt (Co)	mg/L						0.0729		0.3114		0.2290
Lithium (Li)	mg/L					<	0.005		0.006		0.004
Tin (Sn)	mg/L					<	0.001	<	0.001		
Strontium (Sr)	mg/L						0.44		2.14		1.40
Tianium (Ti)	mg/L						0.1300		0.5500		0.0007
Uranium (U)	mg/L						0.034		0.170		0.115
Vanadium (V)	mg/L					<	0.0005	<	0.0005		0.0011
Nitrite	mg/L						0.07		0.41		

Cyanide WAD (provided by AEM)

		location	
Date		ST-16	
	east	west	south
2013-08-21			
2013-08-27			
2013-08-28	7,280	3,38	
2013-08-29	3,960		0,2930
2013-08-30	1,520		0,0810
2013-08-31	1,290		0,0694
2013-09-01	0,970		0,0247
2013-09-02	2,830		0,0671
2013-09-03	2,500		0,0120
2013-09-04	2,490		0,5440
2013-09-05	1,600		0,0204
2013-09-07	1,650		0,0289
2013-09-10	0,671		0,3320
2013-09-13	2,150		0,0247
2013-09-15	0,459		0,0289
2013-09-17	0,443		0,0723
2013-09-19	0,493		<0.01
2013-09-21	0,070		0,0600
2013-09-23	0,050		<0.01
2013-09-25	0,063		0,0162
2013-09-27	0,148		<0.01
2013-09-29	0,556		0,0332
2013-10-01	0,091		0,0341
2013-10-02	0,204		0,0772
2013-10-08	0,154		0,0482
2013-10-11	0,069		0,0553

Data provided by AEM

	Date		ST	T-16						NP-2	South			NP2- winter
Parameters	Unit	30-juil-13			10-09-2013	23-09-2013	02-10-2013	30-juil-13	21-08-2013	27-08-2013		23-09-2013	02-10-2013	17-11-2013
Alaklinity	mg CaCo3/L	272			174	92	106	177			55	54	55	
Ammonia nitrogen (NH3-NH4)	mg N/L	34			11,4	7,2	8,2	27,4			3,4	3,6	3,9	
TDS	mg/L	3792			934	640	617	2854			266	277	262	
CN total	mg/L		6,47	0,036	0,18	0,068	1,2		0,069	0,007	0,013	0,014	0,03	
CN Free	mg/L		-,	7, 2, 2, 2	3	2,5	6		,,,,,,	,,,,,	1	1	1	
pH (Env. Dept.)	8/ =				7,1	7,05	7,01				7	6,73	7,47	7,36
Conductivity (Env. Dept.)					1879	1083	1095				395	442	424	501
Turbidity (Env. Dept.)	NTU				20,4	7,57	8,18				2,83	3,87	3,43	2,36
Chloride	mg/L	450			175	94,1	86	587			21,7	18,7	17,6	,
Fluoride	mg/L	0,29			0,26	0,26	0,22	0,02			0,13	0,03	0,12	
Hardness	mg CaCo3/L	1417			458	216	268	1031			134	101	106	
Nitrate	mg/L	37,8			5	3,9	2,9	23,5			1,3	1,3	1,2	
Nitrite	mg/L	0,41			1	0,68	1	0,4			0,16	0,14	0,14	
Sulphate	mg/L	2400			643	338	329	1546			110	118	111	
Dissolved Aluminium (Al)	mg/L	< 0.006			<0.006	<0.006	<0.006	<0.006			<0.006	<0.006	0,117	
Dissolved Arsenic (As)	mg/L	0,0058			<0.000	<0.000	<0.000	0,0022			<0.000	<0.0005	<0.0005	
Dissolved Barium (Ba)	mg/L	0,0038			0,0439	0,0223	0,032	0,0022			0,0135	0,0117	0,0133	
Dissolved Cadmium (Cd)	mg/L	0,00065			0,0439	0,0223	<0.0002	0,1329			<0.0002	<0.0002	0,0133	
, ,							Ť						-	
Dissolved Copper (Cu) Dissolved Iron (Fe)	mg/L	1,712			0,4663	0,046	0,0017	2,949			0,0081	<0.0005	0,0217 0,39	
1	mg/L	4,4			0,16	0,08	0,03	0,15			0,01	0,02	· ·	
Dissolved Lead (Pb)	mg/L	<0.0003			< 0.0003	<0.0003	<0.0003	<0.0003			<0.0003	0,0011	<0.0003	
Dissolved Manganese (Mn)	mg/L	6,055			5,441	2,644	0,0337	5,427			0,1781	0,1094	0,1065	
Dissolved Mercury (Hg)	mg/L	<0.0001			<0.0001	<0.0001	<0.0001	<0.0001			<0.0001	<0.0001	<0.0001	
Dissolved Molybdenum (Mo)	mg/L	0,1773			0,0222	0,0122	0,0027	0,0716			<0.0005	0,0009	0,0033	
Dissolved Nickel (Ni)	mg/L	1,81			0,3017	0,1065	0,0197	1,246			0,0324	0,0269	0,0298	
Dissolved Selenium (Se)	mg/L	0,023			0,004	0,002	0,003	0,014			< 0.001	<0.001	0,001	
Dissolved Silver (Ag)	mg/L	0,0019			<0.0001	<0.0003	<0.0001	0,0024			<0.0001	<0.0001	0,0007	
Dissolved Thallium (TI)	mg/L	<0.005			<0.005	<0.005		<0.005			<0.005	<0.005		
Dissolved Zinc (Zn)	mg/L	0,008			0,019	0,014		0,007			0,008	<0.001		
Aluminium (Al)	mg/L	0,042			0,078	0,048	0,15	0,024			0,008	0,011	0,154	
Antimony (Sb)	mg/L	0,0012			< 0.0001	0,0001	<0.0001	0,0004			< 0.0001	<0.0001	<0.0001	
Arsenic (As)	mg/L	0,0139		0,0241	0,0044	0,0019	<0.0005	0,0068		0,0015	<0.0005	0,001	<0.0005	
Boron (B)	mg/L	0,15			0,07	0,02	0,04	0,09			< 0.01	<0.01	<0.01	
Barium (Ba)	mg/L	0,1414			0,0451	0,0239	0,0331	0,1419			0,0147	0,0133	0,0133	
Beryllium (Be)	mg/L	<0.0005			<0.0005	<0.0005	<0.0005	< 0.0005			<0.0005	<0.0005	<0.0005	
Cadmium (Cd)	mg/L	0,00065			0,00034	<0.00002	0,00004	0,0003			<0.00002	<0.00002	<0.00002	
Copper (Cu)	mg/L	2,038		3,281	0,4963	0,0583	0,1417	3,261	0,1173	0,0887	0,0081	<0.0005	0,022	
Chromium (Cr)	mg/L	0,0011			< 0.0006	<0.0006	<0.0006	< 0.0006			<0.0006	<0.0006	<0.0006	
Cobalt (Co)	mg/L	0,3114			0,0808	0,0333	0,0412	0,2515			0,0106	0,0087	0,0079	
Iron (Fe)	mg/L	4,4		21,3	2,9	1,1	1,5	23,6		1,9	0,55	0,42	0,42	
Lithium (Li)	mg/L	0,006			<0.005	0,016	<0.005	0,005			<0.005	0,012	<0.005	
Manganese (Mn)	mg/L	6,37			5,533	2,628	3,287	6,464			0,1975	0,1189	0,0903	
Mercury (Hg)	mg/L	0,00005			<0.00001	<0.00001	<0.00001	0,00002			<0.00001	<0.00001	<0.00001	
Molybdenum (Mo)	mg/L	0,1704			0,0234	0,0128	0,0129	0,0871			0,0015	0,001	0,0008	
Nickel (Ni)	mg/L	2,015		1,227	0,2966	0,1092	0,1501	1,465		0,1319	0,0348	0,0287	0,037	
Lead (Pb)	mg/L	0,0013		<0.0003	<0.0003	<0.0003	<0.0003	< 0.0003		< 0.0003	< 0.0003	<0.0003	<0.0003	
Selenium (Se)	mg/L	0,02		3.0003	0,005	0,002	0,004	0,014		3.0003	< 0.001	<0.001	0,001	
Tin (Sn)	mg/L	<0.001			<0.001	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	
Strontium (Sr)	mg/L	2,14			0,439	0,27	0,317	1,62			0,118	0,112	0,131	
Titanium (Ti)	mg/L	0,55			0,439	0,27	0,317	0,39			0,118	0,112	0,131	
Thallium (TI)	mg/L	<0.005			<0.005	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
Uranium (U)	mg/L	0,17			0,018	0,006	0,008	0,144			0,002	0,001	0,001	
Vanadium (V)		<0.0005			<0.005	<0.005	<0.008	<0.0005			<0.002	<0.0005	<0.0005	
	mg/L			0.000						0.004				
Zinc (Zn)	mg/L	0,009		0,009	0,05	0,014	0,005	0,006		0,001	<0.001	<0.001	0,002	

Data provided by AEM

JK

	Date	l			NP-2 East			JK			NP-2 West			NP-2 North	NP-1 West		Phaser Lake	JK
Parameters	Unit	04-août-12	21-08-2013	27-08-2013		10-09-2013	23-09-2013	02-10-2013	21-08-2013	30-08-2013	10-09-2013	23-09-2013	02-10-2013	27-08-2013	21-08-2013	10-09-2013		02-10-2013
Alaklinity	mg CaCo3/L	04 d0dt 12	21 00 2013	27 00 2013	30 00 2013	54	54	55	21 00 2013	30 00 2013	54,0000	54,0000	55,0000	27 00 2013	21 00 2013	49	49	45
Ammonia nitrogen (NH3-NH4)	mg N/L					3,2	3,8	3,9			3,1000	3,6000	3,8000			0,08	0,32	<0.01
TDS	mg/L					281	276	264			284,0000	279,0000	263,0000			36	36	36
CN total	mg/L			0,012	0,018	0,011	0,014	0,014		0,0100	0,0170	0,0150	0,0170	0,017		0,007	<0.005	<0.005
				0,012	0,018		,	1		0,0100	3			0,017		-		
CN Free	mg/L					1	<1					<1	1			<1	<1	<1
pH (Env. Dept.)						7,07	6,98	7,34			7,0400	6,8400	7,5400			6,83	7,12	7,57
Conductivity (Env. Dept.)	NITT					403	439	418			400,0000	446,0000	419,0000			37	56,2	60,1
Turbidity (Env. Dept.)	NTU					2,71	4,7	3,05			3,6800	3,7500	3,1400			0,7	0,68	0,56
Chloride	mg/L					21,3	19,2	16,8			20,9000	19,0000	17,1000			1,2	0,8	1,1
Fluoride	mg/L					0,12	0,02	0,12			0,0900	0,0200	0,1500			0,15	0,03	0,12
Hardness	mg CaCo3/L					122	104	108			131,0000	94,0000	102,0000			26	19	23
Nitrate	mg/L					3,1	1,3	1,4			1,2000	1,3000	1,3000			0,03	0,07	0,15
Nitrite	mg/L					0,16	0,14	0,14			0,1600	0,1400	0,1600			<0.01	<0.01	<0.01
Sulphate	mg/L					110	115	113			111,0000	118,0000	113,0000			3,9	8,3	4,2
Dissolved Aluminium (Al)	mg/L					0,012	<0.006	<0.006			0,0270	<0.006	<0.006			<0.006	<0.006	<0.006
Dissolved Arsenic (As)	mg/L					<0.0005	<0.0005	0,0006			<0.0005	<0.0005	<0.0005			<0.0005	<0.0005	0,0006
Dissolved Barium (Ba)	mg/L					0,0133	0,0127	0,0136			0,0129	0,0114	0,0138			0,002	0,0019	0,0026
Dissolved Cadmium (Cd)	mg/L					<0.00002	<0.00002	<0.00002			<0.00002	<0.00002	<0.00002			<0.00002	<0.00002	<0.00002
Dissolved Copper (Cu)	mg/L					0,0143	<0.0005	0,006			0,0142	<0.0005	0,0048			0,0006	<0.0005	<0.0005
Dissolved Iron (Fe)	mg/L					0,02	0,03	0,02			0,0100	0,0100	0,0200			< 0.01	<0.01	< 0.01
Dissolved Lead (Pb)	mg/L					< 0.0003	< 0.0003	< 0.0003			< 0.0003	< 0.0003	<0.0003			< 0.0003	< 0.0003	< 0.0003
Dissolved Manganese (Mn)	mg/L					0,1889	0,1226	0,0812			0,1856	0,0995	0,0643			< 0.0005	<0.0005	< 0.0005
Dissolved Mercury (Hg)	mg/L					< 0.0001	<0.0001	<0.0001			< 0.0001	<0.0001	<0.0001			< 0.0001	< 0.0001	< 0.0001
Dissolved Molybdenum (Mo)	mg/L					<0.0005	0,0008	0,0011			< 0.0005	0,0007	0,0011			<0.0005	<0.0005	<0.0005
Dissolved Nickel (Ni)	mg/L					0,0312	0,0266	0,0243			0,0313	0,0238	0,0243			<0.0005	<0.0005	<0.0005
Dissolved Selenium (Se)	mg/L					<0.001	0,001	0,001			< 0.001	<0.001	0,0010			< 0.001	<0.001	<0.001
Dissolved Silver (Ag)	mg/L					< 0.0001	<0.0001	<0.0001			< 0.0001	<0.0001	<0.0001			<0.001	<0.001	<0.0001
Dissolved Thallium (TI)	mg/L					<0.005	<0.005				<0.005	<0.005				<0.005	<0.005	
Dissolved Zinc (Zn)	mg/L					0,01	<0.001				0,0200	<0.001				<0.001	<0.001	
Aluminium (Al)	mg/L	0,046				0,122	<0.006	0,067			0,0270	0,0150	0,0790			0,023	<0.006	<0.006
Antimony (Sb)	mg/L	0,0001				0,0001	<0.0001	<0.0001			<0.0001	<0.0001	<0.0001			<0.0001	<0.0001	<0.0001
Arsenic (As)	mg/L	<0.0005		<0.0005	<0.0005	0,0001	<0.0001	0,0015		0,0006	0,0009	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	0,0022
Boron (B)	mg/L	0,09		10.0003	10.0003	<0.01	<0.01	<0.01		0,0000	<0.01	<0.01	<0.01	10.0003		<0.01	<0.01	<0.01
Barium (Ba)	mg/L	0,0135				0,013	0,0128	0,0146			0,0143	0,0121	0,0143			0,0024	0,0019	0,0029
Beryllium (Be)	mg/L	<0.0005				<0.0005	<0.0005	<0.0005			< 0.0005	<0.0005	<0.0005			<0.0005	<0.0005	<0.0029
' '	_	<0.0003				<0.0003	<0.0003	0,00002			<0.0003	<0.0003	<0.0003			<0.0003	<0.0003	<0.0003
Cadmium (Cd)	mg/L	0,1713	0,0399	0,0389	0,0388	0,0302	<0.0005	0,00002	0,0406	0,0404		<0.0005	0,0182	0,0405	<0.0005		<0.00002	<0.0005
Copper (Cu)	mg/L			0,0389	0,0388	<0.0006			0,0406	0,0404			<0.0006	0,0405	<0.0005			
Chromium (Cr)	mg/L	0,0018					<0.0006	<0.0006			<0.0006	<0.0006				<0.0006	<0.0006	<0.0006
Cobalt (Co)	mg/L	0,0132		0.40	0.47	0,0094	0,0089	0,0082		0.40	0,0104	0,0079	0,0076	0.64		<0.0005	<0.0005	<0.0005
Iron (Fe)	mg/L	0,41		0,48	0,47	0,43	0,41	0,51		0,49	•	0,47	0,48	0,61		<0.01	<0.01	0,04
Lithium (Li)	mg/L	0,01				<0.005	0,006	<0.005			<0.005	0,0120	<0.005			< 0.005	<0.005	<0.005
Manganese (Mn)	mg/L	0,4091				0,1862	0,1301	0,0953			0,2023	0,1130	0,0939			<0.0005	<0.0005	0,0006
Mercury (Hg)	mg/L	<0.00001				<0.00001	<0.00001	<0.00001			<0.00001	<0.00001	<0.00001			<0.00001	<0.00001	<0.00001
Molybdenum (Mo)	mg/L	0,0035			_	0,0006	0,0008	0,0009		_	0,0012	0,0008	0,0008			<0.0005	<0.0005	<0.0005
Nickel (Ni)	mg/L	0,0568		0,0330	0,0354	0,0291	0,0288	0,0275		0,0363	0,0327	0,0259	0,0263	0,0319		<0.0005	<0.0005	0,0005
Lead (Pb)	mg/L	0,0099		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		0,0014	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003
Selenium (Se)	mg/L	<0.001				<0.001	<0.001	<0.001			<0.001	<0.001	<0.001			<0.001	<0.001	<0.001
Tin (Sn)	mg/L	0,003				<0.001	<0.001	<0.001			<0.001	<0.001	<0.001			<0.001	<0.001	<0.001
Strontium (Sr)	mg/L	0,118				0,107	0,094	0,123			0,1050	0,1090	0,1330			0,026	0,027	0,032
Titanium (Ti)	mg/L	0,03				0,02	0,02	0,01			0,0300	0,0200	0,0100			< 0.01	<0.01	<0.01
Thallium (Tl)	mg/L	<0.005				<0.005	<0.005	< 0.005			< 0.005	< 0.005	<0.005			< 0.005	<0.005	<0.005
Uranium (U)	mg/L	0,003				0,001	0,001	0,001			0,0020	0,0010	0,0010			< 0.001	<0.001	<0.001
Vanadium (V)	mg/L	<0.0005				<0.0005	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005
Zinc (Zn)	mg/L	<0.001		<0.001	0,008		<0.001	0,002		0,0150		0,0010	0,0020	0,004		<0.001	<0.001	0,001
\ - <i>j</i>	6/ -	\0.001		\0.001	0,000	10.001	*0.001	0,002		0,0130	-0.001	0,0010	0,0020 mt	0,004		~0.001	10.001	0,001

mt mt

----CN WAD

CN in the tailing pond

Date	CN wad (Assay lab) ppm	CN wad (multilab) mg/L	CN free (multilab) mg/L	CN tot (multilab) mg/L	
03/04/2012		Шуль	шұл	59.37	
24/04/2012 26/04/2012	46.3	33.01		79.14	CN WAD Reclaim Water Nitrate Concentration at Reclaim barge 60 T CN WAD Reclaim Water
27/04/2012 28/04/2012	41.3 41.2				70 F
29/04/2012	55.4				3 50 S
30/04/2012 01/05/2012	52.6 49.2			63.38	Q
02/05/2012	40.5			00.00	\$ 40 ÷ \$ 0 + \$ 0 + \$ 1
03/05/2012 04/05/2012	41.6 38.6				The state of the s
05/05/2012	38.5				CN Total $\frac{1}{8}$ 20 - Nitrate $\frac{1}{8}$ 20 - CN Total $\frac{1}{8}$
06/05/2012 07/05/2012	54.8 33.1				
08/05/2012 09/05/2012	40.9 39.2				
10/05/2012	50.6				23127001 10017001 100
11/05/2012 12/05/2012	28.4 40.8				23h2froi1 10fr/froi2 1
13/05/2012	38 35.3				
14/05/2012 15/05/2012	36.5				
16/05/2012	27.1				Iron Concentration at Reclaim Barge Copper Concentration at Reclaim barge
17/05/2012 18/05/2012	26.8 32.3				Iron Concentration at Reciaim Barge Copper Concentration at Reciaim Darge
19/05/2012	31.2				
20/05/2012 21/05/2012	35.4 38.5	22.93		52.76	2 50 1 (2 Bu) 40 40
22/05/2012 23/05/2012	31 36.1				§ 40
24/05/2012	37.7 35.4				9 30 CNWAD
25/05/2012 26/05/2012	36.3				To the state of t
27/05/2012 28/05/2012	41.9 35.8				-Dissolved Iron 10 10 V V V V V V V V V V V V V V V V V
29/05/2012	31.7				
30/05/2012 31/05/2012	39.1 39.1				23/12/2017 10/01/2012 26/01/2013 14/08/2013 02/03/2014 00/03/2013 15/07/2013 26/07/2013 15/07/2013
01/06/2012	34				521. 201. 381. 581. 581. 071.
02/06/2012 03/06/2012	33.5 34				
05/06/2012 06/06/2012	31 22.9				
07/06/2012	22.9 23.5				Ammonia Concentration at Reclaim barge Chloride Concentration at Reclaim barge
08/06/2012 09/06/2012	27.6 28.1				80 T 1800 T 1500 T
10/06/2012 11/06/2012	27.3				
12/06/2012	26.1 28.1 31.2				E so 1
13/06/2012 14/06/2012	31.2 27.8				\$ 100 \$ 1000 \$
15/06/2012	21.2				
16/06/2012 17/06/2012	27.5 27.5				5 20 + Ammonia Nitrogen 5 400 +
18/06/2012 19/06/2012	30.7 28.6				200
20/06/2012	32				m1 m1 m2 m2 m2 m3 m3 m3 m3 m3 m3 m3
21/06/2012 22/06/2012	32.3 27				23/12/7011 10/10/10/10/10/10/10/10/10/10/10/10/10/1
23/06/2012	29.8	29.7			
24/06/2012 25/06/2012	31.4 26 27.2				
26/06/2012 27/06/2012	27.2 22.6				CHIMAD AND A State
28/06/2012	30.4				CN WAD at Reclaim barge
29/06/2012 30/06/2012	27 27.7				200 [
01/07/2012 02/07/2012	29.7				180 -
03/07/2012	29.7 ???				
04/07/2012 11/07/2012	30 10				160
13/07/2012 14/07/2012	28.7 27.4 25.9				140
15/07/2012	25.9				
16/07/2012 18/07/2012	27.4 27.8				§ 120
19/07/2012	27.8 ???				120 1 120 1
20/07/2012 21/07/2012	25.9 26.9 27.3				₩AD
22/07/2012 23/07/2012	27.3 25.9				E SO COMMII
24/07/2012	27.9				
25/07/2012 26/07/2012	24.1 19.1				∞ + ¶
27/07/2012 28/07/2012	27.2 25.74				TIETHINTATATAYY'NEWALAAN K MA K , , , , , , , , , , , , , , , , , ,
29/07/2012	25.8				
30/07/2012 31/07/2012	18.5 16.3				20
01/08/2012	22.8				
02/08/2012 03/08/2012	37.8 23.7				o F 1 I I I I I I I I I I I I I I I I
04/08/2012	23.7 23.6	24.0714286			23/12/12017 07/04/12017 12/04/12012 28/04/12012 08/06/12012 14/08/12013 25/17/12013
05/08/2012 06/08/2012	23.4 20.9				ρ
07/08/2012	28	l	l		

13-1221-0115

CN in the tailing pond

Date	CN wad	CN wad	CN free	CN tot
Date	(Assay lab) ppm	(multilab) mg/L	(multilab) mg/L	(multilab) mg/L
08/08/2012	24.4	III SALE	шуль	III M/L
09/08/2012	23.3			
10/08/2012	22.8	05.7		
12/08/2012	21.7 24.9	23.5		
13/08/2012	24.9			
14/08/2012	22.1			
15/08/2012	21.3			
16/08/2012	23			
17/08/2012	21.3 19.9	22 21/2057		
18/08/2012 19/08/2012	19.9 22.6	22.2142857		
20/08/2012	21.6			
21/08/2012	20.2			
22/08/2012	27			
23/08/2012 24/08/2012	23.6			
25/08/2012	26.4 18.2	22.8		
26/08/2012	21.8			
27/08/2012	21.2			
28/08/2012	17.7			
29/08/2012 30/08/2012	19.4 None			
31/08/2012	19.6			
01/09/2012	15.6	18		
02/09/2012	16.7			
03/09/2012	19.3			
04/09/2012 07/09/2012	19.3 19.3	18.65		
11/09/2012	19.3	10.00		
16/09/2012	15.5			
18/09/2012	16.6			
23/09/2012	9.45			
26/09/2012 30/09/2012	9.19 9.53	9.36		
03/10/2012	8.68	3.30		
07/10/2012	17			
10/10/2012	8.26			
14/10/2012	10.5 8.77			
17/10/2012 23/10/2012	8.77	10.2166667		
27/10/2012	7.96	10.2.100007		
30/10/2012	4.91			
07/11/2012	8.22			
14/11/2012 17/11/2012	9.57 10.2			
22/11/2012	15.3			
30/11/2012	19.4			
07/12/2012	19.5			
13/12/2012	20.3 23.6			
16/12/2012 19/12/2012	23.6			
27/12/2012	19.5	41.7		
30/12/2012	22.2	20.85		
02/01/2013	20.4			
08/01/2013	19.3			
11/01/2013	19.1			
14/01/2013	12.8			
19/01/2013	19.7 17.9			
22/01/2013 30/01/2013	17.9 20.0			
04/02/2013	18.7			
10/02/2013	18.0			
17/02/2013	21.4			
23/02/2013	22.0			
28/02/2013 04/03/2013	20.4 22.0			
10/03/2013	15.2			
19/03/2013	8.4			
25/03/2013	7.9			
31/03/2013	10.0			
06/04/2013 12/04/2013	9.6 32.8			
16/04/2013	17.0	1.24	3	19.87
21/04/2013	18.7			
27/04/2013	16.5			
08/05/2013	17.1 19.7			
15/05/2013	19.7 16.8			
19/05/2013	19.7			
25/05/2013	16.9			
31/05/2013	18			
04/06/2013	19.1			
08/06/2013	6.01 5.21			
12/06/2013 16/06/2013	5.21 3.64			
20/06/2013	2.0			
	0.0967			
27/06/2013	0.156			
05/07/2013	0.5			
05/07/2013	0.0829			
05/07/2013	0.0829 0.247 0.142			
05/07/2013 12/07/2013 19/07/2013 25/07/2013	0.0829 0.247 0.142 0.237			
05/07/2013 12/07/2013 19/07/2013 25/07/2013 01/08/2013 11/08/2013	0.247 0.142 0.237 0.0829			
05/07/2013 12/07/2013 19/07/2013 25/07/2013 01/08/2013 11/08/2013 14/08/2013	0.247 0.142 0.237 0.0829 0.0765			
05/07/2013 12/07/2013 19/07/2013 25/07/2013 01/08/2013 11/08/2013 14/08/2013 19/08/2013	0.247 0.142 0.237 0.0829 0.0765 0.133			
05/07/2013 12/07/2013 19/07/2013 25/07/2013 01/08/2013 11/08/2013 14/08/2013	0.247 0.142 0.237 0.0829 0.0765			

Calendar reference	ST-21 (a)
Sample ID	ST-21
Old calendar reference	SW2a /SW2b
Sampling location	Tailings reclaim pond (reclaim pond)

Number bold - italic = < LMD

Ename and	Donomotono	Date	03/01/2012	13/02/2012	06/03/2012	03/04/2012	01/05/2012	05/06/2012	19/06/2012	26/06/2012	03/07/2012	02/08/2012	04/09/2012	01/10/2012
Frequency	Parameters	Units												
ST-21 (a)	Alkalinity	(mg CaCO3/L)	126	125	147	157	145	75			98	102	117	114
Monthly (open water)	Ammonia (NH3)	mg/L	1.6	0.44	1.8	2.9	2.6	0.73			1	40.3	48	38.2
	Chloride	mg/L	449	559	639	672	853	634			626	826	13.5	889
	Cyanide (Cn(tot))	mg/L	5.89	14.22	23.18	59.37	63.38	48.76			39.26	24.34	14.87	1.44
	Fluoride	mg/L	0.5	0.49	0.54	0.3	2.5	0.02			0.06	0.23	0.52	0.48
	Hardness	(mg CaCO3/L)	914	1087	1057	1369	1008	1001			574	771	1045	1313
	Nitrate (NO3)	mg/L	7.2	8.6	10.4	11.8	10.5	7.3			8.6	9.1	10	10
	Nitrite (NO2)	mg/L	0.23	0.22	0.21	0.2	0.17	0.12			0.1	0.12	0.15	0.12
	pH	004/	8.42	8.03	8.49	9.06	9.39	8.74	7.89		8.94	8.47	8.04	7.89
	Sulphate (SO2-4)	mg SO4/L	1825	2173	2477	2384	2508	1555			1457	1551	1703	1910
	TDS Turbidity	mg/L NTU	3012 0.88	3334 2.53	3620 6.49	3843 2.51	3374 2.21	4955 14.74	12.36		2343 16.8	2590 4.18	3213 3.87	3206 4.16
	Dissolved Ag	mg/L	0.006	0.008	0.005	0.005	0.005	0.005	12.30		0.068	0.005	0.005	0.005
	Dissolved Ag Dissolved Al	mg/L	0.000	0.008	0.003	0.003	0.003	0.003			0.008	0.003	0.003	0.05
	Dissolved As	mg/L	0.02	0.018	0.015	0.041	0.071	0.006			0.011	0.012	0.009	0.008
	Dissolved As Dissolved Ba	mg/L	0.043	0.078	0.096	0.041	0.052	0.029			0.034	0.012	0.057	0.008
	Dissolved Cd	mg/L	0.005	0.005	0.005	0.005	0.005	0.005			0.005	0.005	0.005	0.005
	Dissolved Cu	mg/L	7.68	6.83	9.91	26.85	7.13	20.39			19.58	5.94	0.549	1.86
	Dissolved Fe	mg/L	1.3	1.1	2.4	8.9	1.5	9.5			7.4	0.93	0.05	0.05
	Dissolved Hg	mg/L	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005			0.0005	0.0005	0.0005	0.0005
	Dissolved Mn	mg/L	0.023	0.034	0.032	0.005	0.032	0.005			0.009	0.005	0.017	0.095
	Dissolved Mo	mg/L	0.29	0.308	0.332	0.0005	0.31	0.232			0.262	0.29	0.349	0.361
	Dissolved Ni	mg/L	0.455	0.887	1.52	0.6	1.21	2.01			2.54	2.22	1.28	1.08
	Dissolved Pb	mg/L	0.005	0.005	0.005	0.009	0.005	0.005			0.005	0.005	0.005	0.005
	Dissolved Se	mg/L	0.005	0.005	0.006	0.014	0.021	0.013			0.009	0.02	0.015	0.014
	Dissolved TI	mg/L	0.01	0.01	0.01	0.01	0.01	0.01			0.01	0.01	0.01	0.01
	Dissolved Zn	mg/L	0.018	0.01	0.006	0.005	1.39	0.005			0.034	0.005	0.005	0.006
	Ammonia-Nitrogen	mg/L							2.450					
	Ag	mg/L							0.158	0.263				
	Al	mg/L							0.0049 0.0305	0.0119 0.0321				
	As Ba	mg/L mg/L							0.0305 0.0005	0.0321 0.0005				
	Be	mg/L							0.00055	0.00019				
	Cd	mg/L							0.0092	0.0213				
	Co	mg/L							1.038	2.744				
	Cu	mg/L							0.0006	0.0106				
	Cr	mg/L							0.83	0.7				
	Fe	mg/L												
	Hg	mg/L							0.005	0.005				
	Li	mg/L							0.0194	0.0314				
	Mn	mg/L							0.2209	0.2576				
	Мо	mg/L							1.354	1.68				
	Ni	mg/L							0.0006	0.0003				
	Pb	mg/L							0.0007	0.0001				
	Sb	mg/L							0.009	0.008				
	Se	mg/L							0.001	0.001				
	Sn	mg/L							1.1	0.837				
	Sr Ti	mg/L							0.34 0.005	0.43 0.005				
	TI	mg/L mg/L							0.005	0.005				
	U	mg/L							0.0005	0.009				
	V	mg/L							0.001	0.005				
	Zn	mg/L							0.001	0.010				
	ZII	mg/L												

Calendar reference	ST-21 (a)
Sample ID	ST-21
Old calendar reference	SW2a /SW2b
Sampling location	Tailings reclaim pond (reclaim pond)

F	D	Date	05/11/2012	03/12/2012	10/12/2012	08/01/2013	06/02/2013	05/03/2013	02/04/2013	07/05/2013	04/06/2013	04/07/2013	13/08/2013	02/09/2013
Frequency	Parameters	Units												
ST-21 (a)	Alkalinity	(mg CaCO3/L)	129		134			142	113	106	77	127	154	143
Monthly (open water)	Ammonia (NH3)	mg/L	38.7		69.3						46.2			
	Chloride	mg/L	872		1267	1463	1582			1217	683			917
	Cyanide (Cn(tot))	mg/L	3.26		16.45	17.3	12.11			20.85		0.008	0.054	0.991
	Fluoride	mg/L	0.07		0.22	21.9	0.33		0.38	0.33		0.26	1.1	0.16
	Hardness	(mg CaCO3/L)	1177		1497	1607	2116			1583		662		759
	Nitrate (NO3)	mg/L	11.9		14.1	12.9	17.9		14.4	20.3				13.5
	Nitrite (NO2)	mg/L	0.07		0.19	0.27	0.29			0.33			0.9	1.1
	pH	00.4#	8.09	8.59	8.14	9.04	9.42			9	8.85			8
	Sulphate (SO2-4)	mg SO4/L	2332		2644	2960	3125			2304	1276		1169	1457
	TDS	mg/L	4.04	4.0	4.40	4943	568		4242	4476			5.05	2020
	Turbidity	NTU	4.94 0.005	1.9	1.13	1.01 <i>0.005</i>	36.7 0.011		43.3 0.005	8.8		9.25 0.0002	5.65 0.0057	20.1 0.0138
	Dissolved Ag Dissolved Al	mg/L	0.003		0.015 0.04					0.0138				
	Dissolved As	mg/L			0.04	0.05 0.019	0.012		0.08	0.093			0.14 0.0161	0.204 0.0246
	Dissolved As Dissolved Ba	mg/L	0.011 0.082		0.012	0.019	0.012		0.011	0.0165 0.104			0.0606	0.0246
	Dissolved Cd	mg/L mg/L	0.082		0.084 0.005	0.107	0.101		0.096 0.005	0.00085	0.00054		0.0008	0.00089
	Dissolved Cu Dissolved Cu	mg/L	1.71		12.96		18.55		5.56	18.43			0.0008	1.777
	Dissolved Cu Dissolved Fe	mg/L	0.05		1.2	1.6	1.1		0.67	1.3		0.01	0.4103	0.38
	Dissolved Hg	mg/L	0.0005		0.0003				0.0002	0.0002		0.0001	0.0001	0.0001
	Dissolved Mn	mg/L	0.039		0.007	0.005	0.071			0.0005	0.0713		0.5621	0.4087
	Dissolved Mo	mg/L	0.411		0.437	0.492				0.4128			0.2217	0.3091
	Dissolved Ni	mg/L	0.183		0.152		0.032		0.026	0.808			0.2999	0.6015
	Dissolved Pb	mg/L	0.005		0.005				0.005	0.0003	0.0003		0.0012	0.0045
	Dissolved Se	mg/L	0.019		0.021	0.023	0.026		0.019	0.026			0.01	0.009
	Dissolved TI	mg/L	0.01		0.01	0.01	0.01	0.01	0.01	0.005	0.005	0.005	0.005	0.005
	Dissolved Zn	mg/L	0.005		0.006	0.005	0.569		0.015	0.009		0.004	0.004	0.015
	Ammonia-Nitrogen	mg/L									46.2	17.6	33.5	32.3
	Ag	mg/L												
	Al	mg/L										0.409		
	As	mg/L										0.0208		
	Ва	mg/L										0.0598		
	Be	mg/L										0.0005		
	Cd	mg/L										0.00043		
	Со	mg/L												
	Cu	mg/L										0.6531		
	Cr	mg/L										0.0007		
	Fe	mg/L										0.56		
	Hg Li	mg/L mg/L										0.00001		
		mg/L										0.005		
	Mn Mo	mg/L										0.5164 0.2041		
		mg/L										0.2041		
	Ni Pb	mg/L mg/L										0.1204		
	Sb	mg/L										0.0045		
	Se	mg/L										0.0014		
	Sn	mg/L										0.012		
	Sr	mg/L										0.798		
	Ti	mg/L										0.29		
	TI	mg/L										0.005		
	U	mg/L										0.009		
	V	mg/L										0.0005		
	Zn	mg/L										0.006		
	L	···ʊ' =										0.000		

Sans Frais: +1 (866) 365-2310 1:+1 (418) 878-4927 F:+1 (418) 878-7185 E:venles@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Request number:	13-558291
Date Received:	2013-08-30
Date Certificate Issued:	2013-09-13
Certificate Version:	1
Official Certificate	of Analysis
☐ Preliminary Certific	cate of Analysis

Client

MULTI-LAB DIRECT - Val d' Or

900, 5e Avenue Val-d'Or, Québec, Canada J9P 1B6

Telephone:

Fax:

(819) 874-0350 (819) 874-0360

P.O. Number	Your project ID.	Project Manager		
NA	29228	M. Roger Turmel		
	Commonto			

Comments								

This version replaces and cancels all earlier version.

NA: Information Not Available

AVIS DE CONFIDENTIALITÉ: Ce document est à l'usage exclusif du requérant ci-dessus et est confidentiel. Si vous n'êtes pas le destinataire, soyez avisé que tout usage, reproduction, ou distribution de ce document est strictement interdit. Si vous avez reçu ce document par erreur, veuillez nous en informer immédiatement. / CONFIDENTIALITY NOTICE: This document is intended for the addressee only and is considered confidential. If you are not the addressee, you are hereby notified that any use, reproduction or distribution of this document is strictly prohibited. If you have received this document by error, please notify us immediately.

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 559204 - Revision 1 - Page 1 of 3

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W:www.exova.com

Certificate of Analysis

Client: MULTI-LAB DIRECT - \	/al d' Or	Req	uest Number:	13-558291				
P.O. Number	Your Project II	D.	Project	Manager				
NA NA	29228		M. Roge	r Turmel				
NA		Sample(s)						
	Lab. No.	2428475						
	Your 2 Reference	9228 NP-2-North						
	Matrix	Wastewater						
	Sampled by M	I. Samuel Tapp / Jamie Kataluk						
	Site sampled	Meadowbank						
	Date sampled	2013-08-28						
	Date received	2013-08-30						
Parameter(s) Method Reference								
Résultats toxicité truite	Preparation	12 12						
QE006-01 (Accredited)	Analysis	417						
Q2000-01 (Accreamed)	Sequential No.	NA						
LC50-96h	% v/v	>100						
% mortality at 100% v/v	% mort 96h	NA						
CI 95% lower		NA						
CI 95% upper		NA						
Code Statistical method		AUCUN						
Toxic units	U.T.	<1.0						
Conclusion Analysis details		Not lethal APPENDIX						

Sans Frals: +1 (866) 365-2310 1: +1 (418) 878-4927 F: +1 (418) 878-7185 E: ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

29228 NP-2-North

2428475

Client: MULTI-LAB DIREC	T - Val d' Or	Request Number:	13-558291			
P.O. Number	Your Project ID.	Project	Manager			
NA	29228	M. Roge	er Turmel			
		Sample(s)				
	Lab. No. 2428475					
	Your 29228 NP-2-Nor Reference	th				
	Matrix Wastewater					
	Sampled by M. Samuel Tapp Jamie Kataluk					
	Site sampled Meadowbank					
	Date sampled 2013-08-28					
	Date received 2013-08-30					
Parameter(s) Method Reference						
Comments:		01.50				

Note 1: Results and comments, if any, relate only to samples submitted for analysis at the Saint-Augustin-de-Desmaures laboratory.

Linda Bouchard, biologist

finde beenland

Truites - Type d'essai : CL50

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 559204 - Revision 1 - Page 3 of 3

Appendix

Client:

MULTI-LAB DIRECT

Request number:

13-558291

BIOASSAY Rainbow trout

Lab. No: Your reference: Matrix:

2428475

29228 NP-2-North

Sampled by: Site sampled: Wastewater

M. Samuel Tapp / Jamie Kataluk

Meadowbank

Sampling method:

Date sampled (date and hour): Date received (date and hour): State of sampled received:

2013-08-28 08:00:00 2013-08-30 08:00:00 Conform

Date and hour start analysis (0hrs):

2013-09-01 14:00

Date and hour end analysis (96hrs): 2013-09-05 14:00

Analysed by:

JB JG

Organisms:

Average weight of control fish (g):

± std. dev.:
Average fork length of control fish (mm):
± std. dev.:

Number of fish/container:

Loading density (g/L): Volume of test solutions (L): Height of test solutions (cm):

Photoperiod: Dilution water:

Pre-aeration of sample:

Pre-aeration and aeration rate (mL/min/L ±1):

Pre-treatment of sample:

Protocol / Reference method:

Oncorhynchus mykiss; Acclimation: ≥ 2 weeks

% mortality 7 days before test:<1 PAV130809

0.45 0.07 36.4 3.5 10 0.45 10

Minimum: 0.33

Maximum: 0.54

Minimum: 32

Maximum: 43

16hrs light / 8hrs darkness Dechlorinated municipal water 30 minutes

6.5 NA

SPE1/RM/13, 2000, mod. 05/2007

sample concentration	number of fish	volume (L)	atypical or stressed 96hrs	atypical or stressed 96hrs	mortality 96hrs (number)	No modificat mortality 96hrs (%)	tempe (°	erature C)		Н	oxy (m	olved /gen g/L)	(μS/cm)
(% v/v)	0 hrs		(number)	(%)		William I	Ohrs	96hrs	0hrs	96hrs	Ohrs	96hrs	Uhrs
0.00	10	10	0	0	0	0	15.5	14.6	7.8	7.7	9.6	9.6	291
6.25	10	10	0	0	0	0	15.5	14.6	7.8	7.7	9.8	9.1	299
12.50	10	10	0	0	0	0	15.5	14.4	7.8	7.7	9.7	9.3	301
25.00	10	10	0	0	0	0	15.5	14.3	7.8	7.6	9.9	9.2	324
50.00	10	10	0	0	0	0	15.6	14.3	7.7	7.5	9.0	9.1	357
100.0	10	10	0	0	0	0	15.8	14.2	7.5	7.4	9.5	9.1	421
Sample ch	aracteristic	s before			irance		1	5.8		 7.5] 3.9	419
	analysis			Yellov	v,clear		15.8		1.0 0.9		J.0	110	

Reference assay (Phenol) Reference assay date:

2013-08-30 10.82 9.000 13.00

Geometric average: Lower control limit: Upper control limit:

9.110 6.580 11.63

LC50-96h (mg/L of Phenol): Lower C.I. at 95%: Lower C.I. at 95%:

NA

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1F6

T:+1 (514) 697-3273 F:+1 (514) 697-2090 E: ventes@exova.com W: www.exova.com

Certificate of Analysis

· .	Request number:	13-577001
	Date Received:	2013-12-13
	Date Certificate Issued:	2013-12-23
	Certificate Version:	3
	✓ Official Certificate of Analysis	
	☐ Preliminary Certificate of Analys	sis
	Clie	ent
MAXXAM ANALYT	IQUE INC.	
2690, avenue Dalton		
Québec, Québec, Canada		
G1P 3S4		
Telephone: (418) 658-5784 Fax: (418) 658-6594		
P.O. Number	Your project ID.	Project Manager

B381001

	Comments									
/ersion 3: English certificate requested by the client.										

This version replaces and cancels all earlier version.

NA: Information Not Available

AVIS DE CONFIDENTIALITÉ : Ce document est à l'usage exclusif du requérant ci-dessus et est confidentiel. Si vous n'êtes pas le destinataire, soyez avisé que tout usage, reproduction, ou distribution de ce document est strictement interdit. Si vous avez reçu ce document par erreur, veuillez nous en informer immédiatement. / CONFIDENTIALITY NOTICE : This document is intended for the addressee only and is considered confidential. If you are not the addressee, you are hereby notified that any use, reproduction or distribution of this document is strictly prohibited. If you have received this document by error, please notify us immediately.

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 576678 - Revision 3 - Page 1 of 2

Mme Martine Bergeron

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E:ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W:www.exova.com

Certificate of Analysis

Client: MAXXAM ANALYTIQUE IN	C.		Request Number:	13-577001
P.O. Number	Your Project	et ID.	Projec	t Manager
NA	B38100	1	Mme Mart	ine Bergeron
1	100 to		Sample(s)	A 10 10 10 10 10 10 10 10 10 10 10 10 10
	Lab. No.	2501751		
	Your Reference	X08009-01R\31784		
	Matrix	Water		
	Sampled by	M. THÉRIAULT ET T. THOMSON		
	Site sampled	NA		
	Date sampled	2013-12-09		
	Date received	2013-12-13		
Parameter(s) Method				
Reference				
Resultats toxicite truite	Liebaiana.			
QE006-01 (Accredited)	Analysis	-		
	Sequential No.	NA		
LC50-96h	% v/v	NA		
% mortality at 100% V/V	% топ уоп	U		
Cl 95% lower		NA		
CI 95% upper		NA		
Code Statistical method		NA		
Toxic units	U.T.	NA		
Conclusion		Not lethal		
Analysis details		APPENDIX		

Note 1: Results and comments, if any, relate only to samples submitted for analysis at the Saint-Augustin-de-Desmaures laboratory.

Trout - Test type: Single concentration

Stephan Veilleux, kiologist

Terms and conditions: http://www.exova.ca/terms&conditions

X08009-01R\31784

2501751

Certificate of Analysis No. 576678 - Revision 3 - Page 2 of 2

Appendix

Client:

Maxxam Analytique Inc.

Request number:

13-577001

BIOASSAY Rainbow trout

Lab. No:

Your reference:

2501751 X08009-01R\31784

Matrix:

Sampled by: Site sampled: Water

NA

M. THERIAULT ET T. THOMSON

Sampling method:

Date sampled (date and hour): Date received (date and hour): State of sampled received:

Grab 2013-12-09 15:30:00 2013-12-13 13:00:00

Conform

Date and hour start analysis (0hrs):

2013-12-14 10:45

Date and hour end analysis (96hrs): 2013-12-18 10:45

Analysed by:

JB GF

Organisms:

Lot #: Average weight of control fish (g):

± std. dev.:

Average fork length of control fish (mm):

Average fork length of control
± std. dev.:
Number of fish/container:
Loading density (g/L):
Volume of test solutions (L):
Height of test solutions (cm):
Photoperiod:
Dilution water:

Dilution water:
Pre-aeration of sample: Pre-aeration and aeration rate (mL/min/L ±1):

Pre-treatment of sample: Protocol / Reference method:

Oncorhynchus mykiss; Acclimation: ≥ 2 weeks

% mortality 7 days before test:<1 PAV131112

Minimum: 0.34

Maximum: 0.52

Minimum: 35

Maximum: 41

0.45 0.07 38.5 2.2 0.45 10

16hrs light / 8hrs darkness Dechlorinated municipal water

30 minutes

SPE1/RM/13, 2000, mod. 05/2007

sample	number	volume	atypical	atypical	mortality	mortality	on to protoco tempe	rature	p	Н	diss	olved	conductivity
concentration	of	(L)	or stressed	or stressed	96hrs	96hrs	(°C)				oxygen		(µS/cm)
	fish	3.07 %	96hrs	96hrs	(number)	(%)					(mg/L)		OF
(% v/v)	0 hrs		(number)	(%)			0hrs	96hrs	0hrs	96hrs	0hrs	96hrs	Ohrs
0	10	10	0	0	0	0	14.2	15.9	7.3	7.3	9.9	9.4	270
100	10	10	0	0	0	0	14.8	15.7	6.9	7.3	9.9	9.7	564
													-
	&												
		_											
Sample ch	aracteristics	s before		and the second second	earance		15.4		6.7		11.0		559
	analysis			Yellow	, clear			···		0.7		11.0	

Reference assay (Phenol)

Reference assay date: LC50-96h (mg/L of Phenol): Lower C.I. at 95%: Lower C.I. at 95%:

2013-12-13 10.00 8.57 11.60

Geometric average: Lower control limit: Upper control limit:

9.16 6.61

APPENDIX B

Preliminary AEM Report - Seepage Water from Waste Rock Storage Facility at Sample Location ST-16

MEADOWBANK MINE

Preliminary AEM Report – Seepage Water From Waste Rock Storage Facility – Sample Location ST-16

SEPTEMBER 2013

AGNICO EAGLE

MEADOWBANK DIVISION

TABLE OF CONTENTS

1.	ISSUE	3
2.	BACKGROUND INFORMATION	6
3.	MEASURES TAKEN/ACTION PLAN	16
4.	CONCLUSION	19

1. Issue

During an AANDC Water License inspection on July 29th and 30th 2013 it was observed that "red" colored seepage from the south - east side of the Waste Rock Storage Facility was seeping through the road perimeter into Lake NP-2. Samples were taken by both the Inspector and AEM staff (split sample). Analysis results from this sampling were received by AEM on August 16th, 2013. See Photos 1 and 2 below and Table 1.

Photo 1 – Shore of NP-2

Photo 2 – ST-16 Waste Rock seepage.

MEADOWBANK DIVISION

Table 1 – Historical ST-16 Results

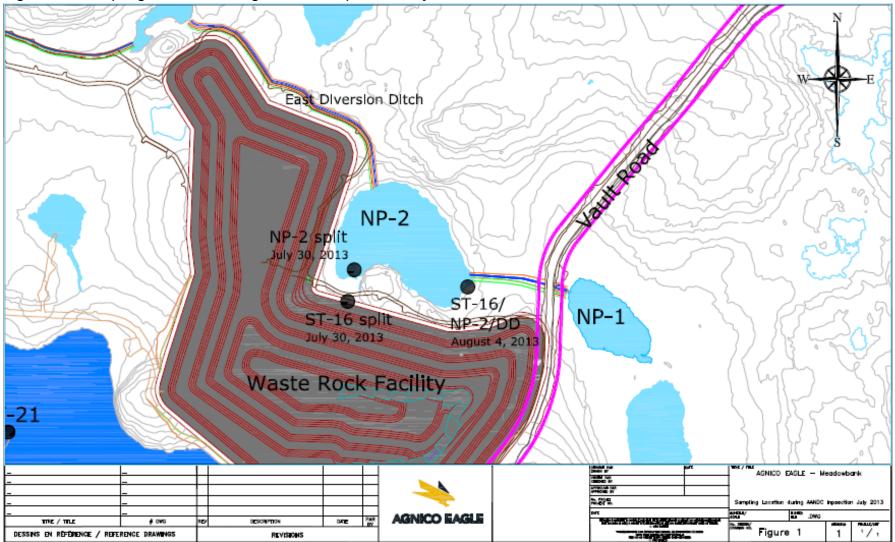
Parameters	Date Units	ST-16 Average 2011	ST-16 Average 2012		ST-16 /06/2013	04	ST-16 4/07/2013		Γ-16 Split 0/07/2013		ST-16 Split AANDC Result 0/07/2013
*pH		6.49	7.30		6.45		7.21				7.20
*Turbidity	NTU	17	34				17				123
*Conductivity	us/cm		154		420		1485				4510
Alkalinity	mg CaCo3/L	34	67		46		89		272		162
Aluminum	mg/L	0.159	0.513				0.464		0.042		0.045
Dissolved Aluminium	mg/L						0.027	<	0.006		
Ammonia	mgN/L	0.07	0.03	<	0.05		0.20		1.20		
Ammonia-nitrogen	mgN/L		0.22		0.45		7.80		34.00		
Total Dissolved Solids	mg/L	55	175		37		969		3792		
Total Suspended Solids	mg/L										50
Arsenic	mg/L	0.0020	0.0045		0.0029		0.0091		0.0139		0.0083
Dissolved As	mg/L						0.0031		0.0058		
Barium	mg/L	0.0095	0.0196				0.0741		0.1414		0.1480
Dissolved Barium	mg/L						0.0558		0.1433		
Cadmium	mg/L	0.00060	0.00004				0.00014		0.00065		0.00020
Dissolved Cadmium	mg/L						0.0001		0.0007		
Chloride	mg/L	2	3				15		450		192
Chromium	mg/L		0.0048				0.0034		0.0011		0.0010
Copper	mg/L	0.0017	0.0046		0.0028		2.3110		2.0380		3.3500
Dissolved Copper	mg/L						1.909		1.712		
Fluoride	mg/L	0.106	0.098				0.110		0.290		
Hardness	mg CaCO3/L	62	59				361		1417		1020
Iron	mg/L	1.21	1.94				1.60		4.40		21.90
Dissolved Iron	mg/L						0.17		0.06		
Lead	mg/L	0.0010	0.0056	<	0.0003		0.0015		0.0013	<	0.0001
Dissolved Lead	mg/L					<	0.0003	<	0.0003		
Manganese	mg/L	0.588	0.961				2.447		6.370		5.850
Dissolved Manganese	mg/L						2.110		6.055		
Mercury	mg/L	0.00062	0.00007			<	0.00010		0.00005		0.00015
Dissolved Mercury	mg/L					<	0.0001	<	0.0001		
Molybdenum	mg/L	0.001	0.001				0.026		0.170		0.083
Dissolved Molybdenum	mg/L						0.0204		0.1773		
Nickel	mg/L	0.0339	0.0395		0.0069		0.5149		2.0150		1.3300
Dissolved Nickel	mg/L						0.415		1.810		
Nitrate	mg/L	0.17	0.34				8.10		37.80		23.70
Selenium	mg/L	0.002	0.001				0.007		0.020		0.013
Dissolved Selenium	mg/L						0.005		0.023		

MEADOWBANK DIVISION

Silver	mg/L	0.0006	0.0049								0.0056
Dissolved Silver	mg/L					<	0.0002		0.0019		
Sulphate	mg/L	24	9				406		2400		1450
Thallium	mg/L	0.0025	0.0025			<	0.0050	<	0.0050	<	0.0001
Dissolved Thallium	mg/L					<	0.005	<			
Zinc	mg/L	0.005	0.008	<	0.001		0.010		0.009	<	0.005
Dissolved Zinc	mg/L						0.003		0.008		
Calcium (Ca)	mg/L										312
Magnesium (Mg)	mg/L										60
Potassium (K)	mg/L										88
Sodium (Na)	mg/L										590
Cesium	mg/L										0.0009
Rubidium	mg/L										0.0687
Ortho-Phosphate as											
Phosphorus	mg/L										
Antimony (Sb)	mg/L						0.0004		0.0012		0.0007
Boron (B)	mg/L						0.04		0.15		
Beryllium (Be)	mg/L					<	0.0005	<	0.0005	<	0.0001
Cobalt (Co)	mg/L						0.0729		0.3114		0.2290
Lithium (Li)	mg/L					<	0.005		0.006		0.004
Tin (Sn)	mg/L					<	0.001	<	0.001		
Strontium (Sr)	mg/L						0.44		2.14		1.40
Tianium (Ti)	mg/L						0.1300		0.5500		0.0007
Uranium (U)	mg/L						0.034		0.170		0.115
Vanadium (V)	mg/L					<	0.0005	<	0.0005		0.0011
Nitrite	mg/L						0.07		0.41		

2. Background Information

Historically, this "red" coloured water had not been observed previously at this location. The water was typically brown colored, indicative of freshet water which is usually impounded by the road and the waste rock. In the spring of 2012, a crushed NPAG rock road was constructed to isolate the sump from NP-2. Results from 2012 and initially in 2013 indicated that the water quality was good with no elevated copper or nickel and typical of freshet surface water quality (see Table 1 above). Based on the June water quality results and historical results in ST-16, AEM continued to monitor the sump as per the Type A water license.

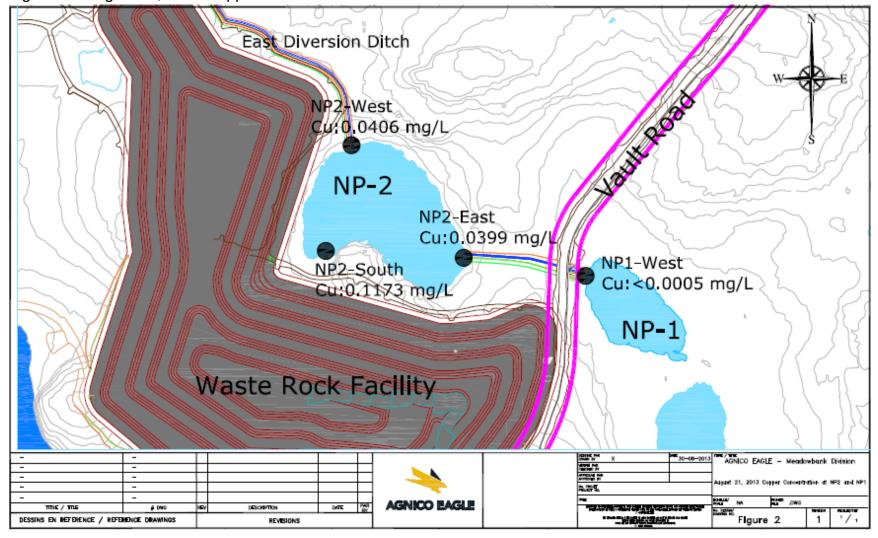

In 2012 the construction of the East and West Diversion ditches was completed. These ditches are designed to keep freshet surface drainage from contacting the Waste Rock Storage Facility and the Tailings Storage Facility (TSF). The East ditch flows through Lakes NP- 2 and connects to Lake NP-1. After freshet there is little turnover in these lakes and the only inflows and outflows would be rainwater (See Figure 1). The ditches ensure that the water levels in these lakes do not rise and overflow into active mine areas such as the Waste Rock Facility and TSF.

In June 2013 we observed the normal brown color in the seep area initially up until approximately July 26th and 27th when the colour had changed to "red". This is indicative of iron precipitate. The normal procedure is to have site water trucks pump out the seepage and deposit either in the TSF or use as dust suppressant in the mine pit only. Sample results from July 4th indicated that copper and nickel were elevated. This was an anomaly and our plan was to verify with the next sampling results (August 4th). There was no confirmed indication of actual seepage migrating through the perimeter road to Lake NP-2 until the red coloured seepage appeared around July 26th and 27th. At that point the red could be observed along the shoreline in NP-2. This was confined to the near shore and not in the main part of the lake. It was not observed at the exit of Lake NP-2. Removal of the seep water had previously commenced and was continuing at this point in time. There was and has been no fish mortalities observed to date.

As mentioned the AANDC inspector was on site July 29th and 30th, 2013 and split samples were taken. The seepage was evident in the Lake, along the near shore only (see photo 2), and we increased the removal of the seep water from the ST-16 sample location. Please see Figure 1 below for sample locations.

Figure 1 – Sampling Location during AANDC Inspection July 2013

By August 4th AEM had lowered the level in the seepage area to the point where it was felt that the seepage through the road had stopped. Pumping of the sump continued and is still ongoing. Also on August 4th a sample was taken in NP-2 at the East end of the Lake in an area that exhibited clear water – see Figure 1 location.


On August 16th results were received from the sampling conducted with AANDC (see Table 1 above for results) and the certificates are attached as Appendix 1. The copper, nickel, iron, manganese and sulphate were elevated. A preliminary investigation was launched by the Environment and Engineering Departments. Pumping of the seep water continued and all of this water was directed to the TSF. On August 19th the results from AEM's August 4th sample in NP-2 Lake at the East end were received and this too indicated elevated copper at a level of 0.1713 mg/l which exceeded the CCME criteria for Protection of Aquatic Life. All of this information was forwarded to the AANDC Inspector including all analysis results.

The investigation at this time was centered on seepage from the waste rock, specifically from the PAG material. Some waste rock at the site contains copper, iron and sulphides which could explain the elevated values observed in the sample results. This was not observed historically at this site. The main immediate action was to keep the waste rock seepage pumped down to prevent migration through the road into NP-2 Lake.

Further monitoring for copper only was undertaken in NP-2 Lake on August 21st, 2013. Results were received on August 24th and are indicated on Figure 2 below. The level had dropped significantly at NP-South, East and West and was not detected in NP-1 Lake. This was an indication that the seepage to the Lake had stopped due to pumping.

Figure 2 - August 21, 2013 Copper Concentration at NP-2 and NP-1

The investigation continued and a Plug/Dike design request to prevent any seepage from migrating through the road to NP-2 Lake was submitted to AEM's Engineering Department. A design was produced (see Figure 3 below). This was an additional measure taken to augment the pumping of the seep water. Construction of the Waste Rock Plug commenced on August 26th, 2013. Also, it was observed, after the pumping out of the water to a low level, that water was still seeping from the waste rock and this included two distinct areas in close proximity (approximately 15 m apart) to each other. One was "red" colored and the other "brown" - see photos 3 and 4 below.

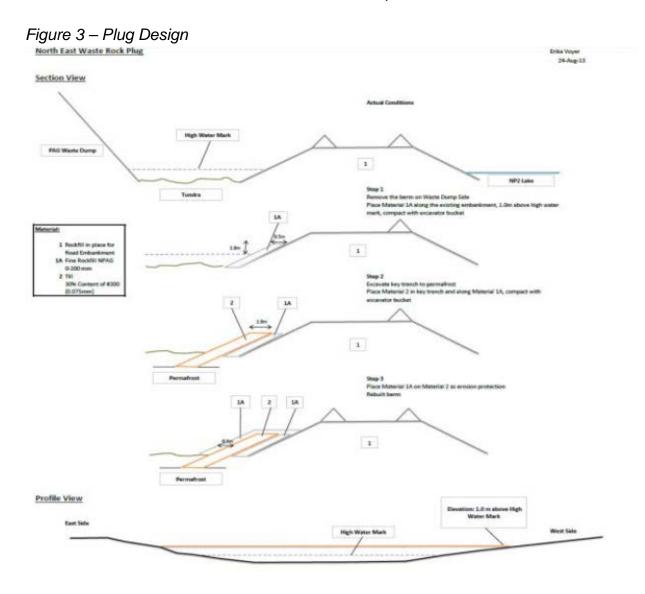


Photo 3 – Brown seepage

Photo 4 – Red seepage

A staff gauge has been placed at the seepage to determine the water level increases more definitively – see photo 5 below.

Photo 5 – Seepage Staff Gauge

On August 27th two Inspectors from AANDC and two Inspectors from Environment Canada attended the Meadowbank site and conducted sampling at the seep – ST-16 and at four locations around NP-2 Lake. AEM took duplicate samples during this visit. The construction project of the Waste Rock Plug had started and was being conducted during the visit. As previously stated AEM was of the opinion that the seepage through the road had stopped by August 21st.

Concurrent to the inspection, the preliminary investigation had determined that there was a hydraulic gradient that existed between the TSF reclaim water level and NP-2 Lake. The TSF water level was at elevation 145.7 m and NP-2 Lake was at elevation 141.2 m. Upon examining a topographical photo prior to mine development there was an indication that the former watercourse connecting the seep area to the North West Arm Second Portage Lake (now the TSF) could act as a conduit under the waste rock to the seep area – see photo 6 below. After conducting a comparison analysis of sample results in the TSF (sample station ST-21) several similarities became evident. Notably this included copper, nickel, chloride, sulphate, hardness – see comparison Table 2 below. AEM determined that is was possible that the TSF reclaim water could be migrating through the former water course to the seep area at a location along RF 1 rockfill road (TSF perimeter structure). This is the suspected migration route.

Table 2 – Comparison between ST-21 and ST-16

Parameters	Date	ST-21 Average		ST-21		ST-16 Split		/07/2013 Split
	Units	2013	04	4/07/2013	3()/07/2013		AANDC Result
*pH		8.95		8.28				7.20
*Turbidity	NTU	20		9				123
*Conductivity	us/cm							4510
Alkalinity	mg CaCo3/L	116		127		272		162
Aluminum	mg/L	0.409		0.409		0.042		0.045
Dissolved Aluminium	mg/L	0.124		0.152	<	0.006		
Ammonia	mgN/L	25.70				1.20		
Ammonia-nitrogen	mgN/L	31.9		17.6		34.0		
Total Dissolved Solids	mg/L	3504		1988		3792		
Total Suspended Solids	mg/L							50
Arsenic	mg/L	0.0208		0.0208		0.0139		0.0083
Dissolved As	mg/L	0.0129		0.0137		0.0058		
Barium	mg/L	0.0598		0.0598		0.1414		0.1480
Dissolved Barium	mg/L	0.0936		0.0465		0.1433		
Cadmium	mg/L	0.00043		0.00043		0.00065		0.00020
Dissolved Cadmium	mg/L	0.00203		0.00035		0.0007		
Chloride	mg/L	1129		292		450		192
Chromium	mg/L	0.0007		0.0007		0.0011		0.0010
Copper	mg/L	0.6531		0.6531		2.0380		3.3500
Dissolved Copper	mg/L	10.8004		0.3915		1.712		
Fluoride	mg/L	3.36		0.26		0.290		
Hardness	mg CaCO3/L	1454		662		1417		1020
Iron	mg/L	0.56		0.56		4.4		21.9
Dissolved Iron	mg/L	0.71	<	0.01		0.06		
Lead	mg/L	0.0045		0.0045		0.0013	<	0.0001
Dissolved Lead	mg/L	0.0019	<	0.0003	<	0.0003		
Manganese	mg/L	0.5164		0.5164		6.370		5.850
Dissolved Manganese	mg/L	0.0839		0.4254		6.055		
Mercury	mg/L	0.000005	<	0.00001		0.00005		0.00015
Dissolved Mercury	mg/L	0.00015	<	0.0001	<	0.0001		
Molybdenum	mg/L	0.2041		0.2041		0.170		0.083
Dissolved Molybdenum	mg/L	0.372		0.171		0.1773		
Nickel	mg/L	0.1204		0.1204		2.0150		1.3300
Dissolved Nickel	mg/L	0.1638		0.0962		1.810		
Nitrate	mg/L	15.6		12.2		37.8		23.7
Selenium	mg/L	0.012		0.012		0.020		0.013
Dissolved Selenium	mg/L	0.021		0.010		0.023		
Silver	mg/L							0.0056
Dissolved Silver	mg/L	0.0067	<	0.0002		0.0019		
Sulphate	mg/L	2268		1085		2400		1450

MEADOWBANK DIVISION

Thallium	mg/L	0.0025	<	0.0050	<	0.0050	<	0.0001
Dissolved Thallium	mg/L	0.01	<	0.01				
Zinc	mg/L	0.006		0.006		0.009	<	0.005
Dissolved Zinc	mg/L	0.0865		0.004		0.008		
Calcium	mg/L							312
Magnesium	mg/L							60
Potassium	mg/L							88
Sodium	mg/L							590
Cesium	mg/L							0.0009
Rubidium	mg/L							0.0687
Antimony	mg/L	0.0014		0.0014		0.0012		0.0007
Boron	mg/L					0.15		
Beryllium	mg/L	0.00025	<	0.0005	<	0.0005	<	0.0001
Cobalt	mg/L					0.3114		0.2290
Lithium	mg/L	0.0025	<	0.005		0.006		0.004
Tin	mg/L	0.0005	<	0.001	<	0.001		
Strontium	mg/L	0.798		0.798		2.14		1.40
Titanium	mg/L	0.2900		0.2900		0.5500		0.0007
Uranium	mg/L	0.009		0.009		0.170		0.115
Vanadium	mg/L	0.00025	<	0.0005	<	0.0005		0.0011
Nitrite	mg/L	0.25		0.31		0.41		

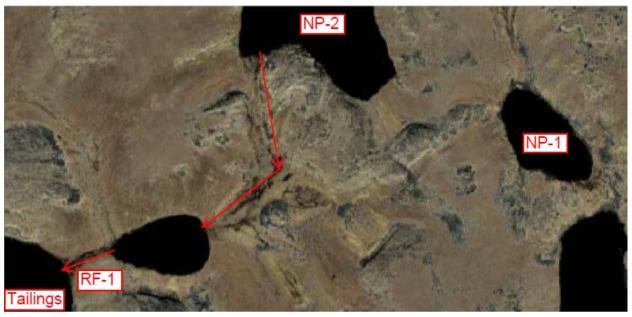


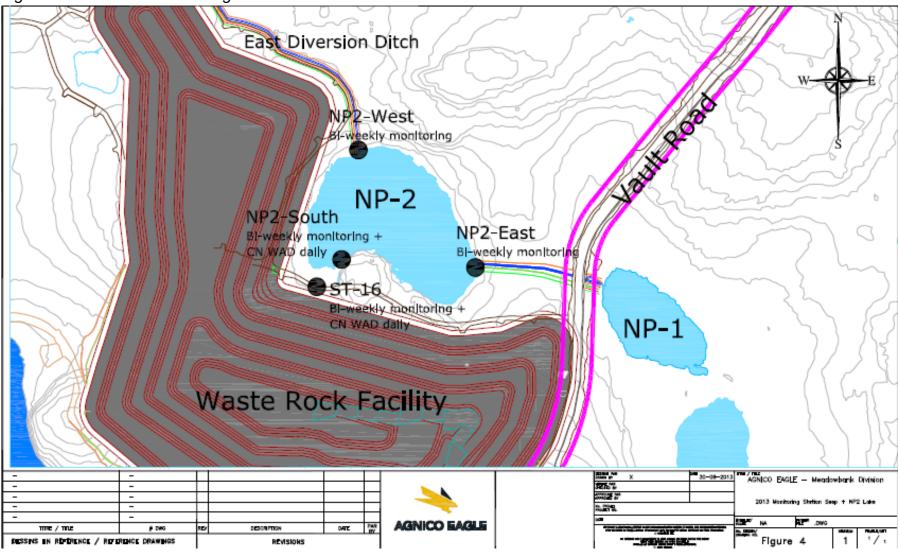
Photo 6 – Topography prior to mine development

Construction of the Waste Rock Plug was completed on September 1st. The seep areas are segregated and have been kept at low levels – see photo 7 below.

Photo 7 – Construction of Waste Rock Plug

3. Measures Taken/Action Plan

- Upon first noting the "red" seep water in NP-2 Lake (approximately July 26th) and after the initial AANDC inspection of July 30th AEM increased pumping of the seep water to prevent migration through the road. The seeps will be monitored daily and pumped out accordingly daily if necessary;
- After receiving the sample analysis results from July 30th sampling conducted with the AANDC Inspector indicating elevated copper, nickel, etc. an investigation was started to determine the source of these metals. There was no previous history of this. Initially AEM concentrated on the waste rock properties and possible seepage of PAG rock;
- By August 28th, after noting a hydraulic gradient between the TSF and NP-2 Lake, the fact that a former watercourse connected the two areas (RF-1 and ST-16) under the Waste Rock Facility and the results of a comparative analysis of sample results from the TSF (ST-21) and the ST-16 seep area it was determined that it was possible for TSF reclaim to migrate to the seep area;
- A short term monitoring program was implemented (See Figure 4). The short term monitoring program includes daily monitoring of CN WAD using our on site assay laboratory at the seep areas ST-16 and in NP-2 Lake South location. In addition we will sample ST-16, NP-2 South, East and West bi weekly for total and dissolved metals, general chemistry as well as total and free cyanide (Group 2 and 3 of our NWB Water License parameters). Phaser Lake will be sampled also as an external reference; background samples for most metals were taken in 2003:
- A Waste Rock Plug/Dike was designed and constructed (commencing August 26th), under the supervision of the AEM Engineering Department, along the perimeter road to prevent any further seepage to Lake NP-2. This was completed on September 1st. A complete construction report and as-built drawing will be prepared;
- A staff gauge was placed in the seeps to better determine the seepage inflow;
- An internal SOP was completed (see Appendix 2) to ensure that seeps are pumped in a timely manner at the commencement of freshet and kept at a low level;
- Tailing deposition will be concentrated along the rockfill road in the area where
 the former watercourse was located to a level higher than the current water level
 in the TSF. This will direct the water away from the suspected migration route
 toward the reclaim barge and act as a plug. This commenced on September 2nd;
 and


MEADOWBANK DIVISION AG

• AEM has submitted (on September 2nd) a request for proposal from a third party engineering firm to assess why this seepage has occurred, verify the pathway under the waste rock storage area, if there any additional short term measures that can be implemented, further suggestions for management of freshet, whether an engineered collection and sump system is required for the seepage area, an evaluation of the seepage risk in the TSF and provision of recommendations for a permanent solution.

Figure 4 – Short term monitoring stations

4. Conclusion

AEM has completed a preliminary investigation into the discharge of seepage from the Waste Rock Storage Area in the location of sampling station ST-16 and determined that this material has likely seeped through the perimeter road into NP-2 Lake (fish bearing). Further to this, it appears likely that the seepage source is possibly reclaim water from the TSF migrating under the waste rock pile to ST-16 and subsequently through the perimeter road to NP-2 Lake. The seepage water at the ST-16 location has been kept to a low level and is checked daily.

Measures were implemented to stop the seepage to NP- 2 Lake and prevent it from reoccurring (Waste Rock Plug installation). Tailings deposition was changed on September 2nd to an area where the seepage is thought to be migrating. This action will also assist in pushing the water away from the rockfill perimeter structure and act as an additional "plug".

A third party engineering firm was requested, on September 2nd, to submit a proposal to provide further assessment and recommendations, including whether additional permanent structures are required to correct this problem.

AEM is of the opinion that appropriate corrective and preventive measures have been undertaken in the short term to isolate the seepage and protect the receiving environment. For the longer term AEM plans to assess the findings of the third party engineering firm and submit any additional actions that are necessary.

APPENDIX 1

Results from the sampling conducted with AANDC

Company: Agnico Eagle Division Meadowbank

Client: M. Stéphane Robert Address: General Delivery

Baker Lake Nunavut X0C 0A0

Phone: (604) 677-0689 (--) Fax: (604) 677-0687

Lab number: V-28320

Sampling location: SW-6(S-RSF) split (ST-6) Sampling date: July 30, 2013

Sample name: SW-6(S-RSF) split (ST-6) Sampling hour: N/D

Sampled by: Jeff Pratt Date received: July 31, 2013

Matrix: Water

Drinking water distribution:

Reported on: August 16, 2013

Unless otherwise stated, all samples were received in acceptable condition.

Results relate only to the sample tested.

All samples will be disposed of after 30 days following analysis.

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155

multilab@cablevision.qc.ca

Courriel:

Version 3^{ième}: 26/10/2005

F-02-06

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6) Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6) Sampling hour: N/D

ParameterResultMethod nameAnalysis dateAlkalinity272 mg CaCO3/LM-TIT-1.0August 01, 2013Aluminium (AI)0.042 mg/LSous-traitance\Multilab DirectAugust 05, 2013Dissolved Aluminium (AI)<0.006 mg/LSous-traitance\Multilab DirectAugust 05, 2013Antimony (Sb)0.0012 mg/LSous-traitance\Multilab DirectAugust 05, 2013Dissolved Silver (Ag)0.0019 mg/LSous-traitance\Multilab DirectAugust 05, 2013Arsenic (As)0.0139 mg/LSous-traitance\Multilab DirectAugust 05, 2013Dissolved Arsenic (As)0.0058 mg/LSous-traitance\Multilab DirectAugust 05, 2013Ammonia nitrogen (NH3-NH4)34 mg N/LSous-traitance\Multilab DirectAugust 05, 2013Barium (Ba)0.1414 mg/LSous-traitance\Multilab DirectAugust 05, 2013Dissolved Barium (Ba)0.1433 mg/LSous-traitance\Multilab DirectAugust 05, 2013Beryllium (Be)<0.0005 mg/LSous-traitance\Multilab DirectAugust 05, 2013Boron (B)0.15 mg/LSous-traitance\Multilab DirectAugust 05, 2013Cadmium (Cd)0.00065 mg/LSous-traitance\Multilab DirectAugust 05, 2013Dissolved Cadmium (Cd)0.00065 mg/LSous-traitance\Multilab DirectAugust 05, 2013Chloride450 mg/LSous-traitance\Multilab DirectAugust 05, 2013Chrome (Cr)0.0011 mg/LSous-traitance\Multilab DirectAugust 05, 2013
Aluminium (Al) Dissolved Aluminium (Al) O.042 mg/L Dissolved Aluminium (Al) Antimony (Sb) O.0012 mg/L Dissolved Silver (Ag) O.0019 mg/L Dissolved Arsenic (As) O.00139 mg/L Dissolved Arsenic (As) O.0058 mg/L Dissolved Barium (Ba) O.1414 mg/L Dissolved Barium (Ba) O.1433 mg/L Dissolved Barium (Ba) O.0055 mg/L Dissolved Barium (Ba) O.1415 mg/L Dissolved Barium (Ba) O.1416 mg/L Dissolved Barium (Ba) O.1417 mg/L Dissolved Barium (Ba) O.1418 mg/L Dissolved Barium (Ba) O.1419 mg/L Dissolved Barium (Ba) O.1410 mg/L Dissolved Barium (Ba) O.1413 mg/L Dissolved Barium (Ba) O.1414 mg/L Dissolved Barium (Ba) O.1415 mg/L Dissolved Barium (Ba) O.1416 mg/L Dissolved Barium (Ba) O.15 mg/L Dissolved Cadmium (Cd) O.00065 mg/L Dissolved Cadmium (Cd) O.00065 mg/L Sous-traitance\Multilab Direct August 05, 2013 Coustraitance\Multilab Direct August 05, 2013
Dissolved Aluminium (AI)
Antimony (Sb) Dissolved Silver (Ag) O.0012 mg/L Sous-traitance\Multilab Direct August 05, 2013 Arsenic (As) Dissolved Arsenic (As) O.0058 mg/L Sous-traitance\Multilab Direct August 05, 2013 Dissolved Arsenic (As) O.0058 mg/L Sous-traitance\Multilab Direct August 05, 2013 Ammonia nitrogen (NH3-NH4) Barium (Ba) O.1414 mg/L Dissolved Barium (Ba) O.1433 mg/L Sous-traitance\Multilab Direct August 05, 2013 August 05, 2013 Sous-traitance\Multilab Direct August 05, 2013 Sous-traitance\Multilab Direct August 05, 2013 Beryllium (Be) Sous-traitance\Multilab Direct August 05, 2013 Boron (B) Colonos mg/L Sous-traitance\Multilab Direct August 05, 2013 Cadmium (Cd) O.00065 mg/L Sous-traitance\Multilab Direct August 05, 2013 Cous-traitance\Multilab Direct August 05, 2013 Sous-traitance\Multilab Direct August 05, 2013 Sous-traitance\Multilab Direct August 05, 2013 Cadmium (Cd) O.00065 mg/L Sous-traitance\Multilab Direct August 05, 2013 Chloride August 05, 2013 August 05, 2013 Chloride
Dissolved Silver (Ag)0.0019 mg/LSous-traitance\Multilab DirectAugust 05, 2013Arsenic (As)0.0139 mg/LSous-traitance\Multilab DirectAugust 05, 2013Dissolved Arsenic (As)0.0058 mg/LSous-traitance\Multilab DirectAugust 05, 2013Ammonia nitrogen (NH3-NH4)34 mg N/LSous-traitance\Multilab DirectAugust 02, 2013Barium (Ba)0.1414 mg/LSous-traitance\Multilab DirectAugust 05, 2013Dissolved Barium (Ba)0.1433 mg/LSous-traitance\Multilab DirectAugust 05, 2013Beryllium (Be)<0.0005 mg/L
Arsenic (As) Dissolved Arsenic (As) O.0139 mg/L Dissolved Arsenic (As) O.0058 mg/L O.0058 mg/L Sous-traitance\Multilab Direct August 05, 2013 Ammonia nitrogen (NH3-NH4) Barium (Ba) O.1414 mg/L Dissolved Barium (Ba) O.1433 mg/L Sous-traitance\Multilab Direct August 02, 2013 Sous-traitance\Multilab Direct August 05, 2013 Sous-traitance\Multilab Direct August 05, 2013 Dissolved Barium (Ba) O.1433 mg/L Sous-traitance\Multilab Direct August 05, 2013 Cadmium (Cd) O.00065 mg/L Sous-traitance\Multilab Direct August 05, 2013 Cadmium (Cd) O.00065 mg/L Sous-traitance\Multilab Direct August 05, 2013 Chloride Sous-traitance\Multilab Direct August 05, 2013 Cous-traitance\Multilab Direct A
Dissolved Arsenic (As) Ammonia nitrogen (NH3-NH4) Barium (Ba) Dissolved Barium (Ba) Beryllium (Be) Boron (B) Cadmium (Cd) Dissolved Cadmium (Cd) Chloride O.0058 mg/L Sous-traitance\Multilab Direct Sous-traitance\Multilab Direct August 05, 2013 Chloride
Ammonia nitrogen (NH3-NH4) Barium (Ba) Dissolved Barium (Ba) Beryllium (Be) Boron (B) Cadmium (Cd) Dissolved Cadmium (Cd) Chloride August 02, 2013 Sous-traitance\Multilab Direct August 05, 2013 Chloride
Barium (Ba)0.1414 mg/LSous-traitance\Multilab DirectAugust 05, 2013Dissolved Barium (Ba)0.1433 mg/LSous-traitance\Multilab DirectAugust 05, 2013Beryllium (Be)<0.0005 mg/L
Dissolved Barium (Ba)0.1433 mg/LSous-traitance\Multilab DirectAugust 05, 2013Beryllium (Be)<0.0005 mg/L
Beryllium (Be) <0.0005 mg/L Sous-traitance\Multilab Direct August 05, 2013 Boron (B) 0.15 mg/L Sous-traitance\Multilab Direct August 05, 2013 Cadmium (Cd) 0.00065 mg/L Sous-traitance\Multilab Direct August 05, 2013 Dissolved Cadmium (Cd) 0.00065 mg/L Sous-traitance\Multilab Direct August 05, 2013 Chloride 450 mg/L Sous-traitance\Multilab Direct August 01, 2013
Boron (B) O.15 mg/L Cadmium (Cd) Dissolved Cadmium (Cd) Chloride O.00065 mg/L O.00065 mg/L Sous-traitance\Multilab Direct Sous-traitance\Multilab Direct August 05, 2013 August 05, 2013 Sous-traitance\Multilab Direct August 05, 2013 Sous-traitance\Multilab Direct August 05, 2013 August 05, 2013 August 05, 2013
Cadmium (Cd)0.00065 mg/LSous-traitance\Multilab DirectAugust 05, 2013Dissolved Cadmium (Cd)0.00065 mg/LSous-traitance\Multilab DirectAugust 05, 2013Chloride450 mg/LSous-traitance\Multilab DirectAugust 01, 2013
Dissolved Cadmium (Cd) 0.00065 mg/L Sous-traitance\Multilab Direct August 05, 2013 Chloride 450 mg/L Sous-traitance\Multilab Direct August 01, 2013
Chloride 450 mg/L Sous-traitance\Multilab Direct August 01, 2013
Chrome (Cr) 0.0011 mg/L Sous-traitance\Multilab Direct August 05, 2013
Cobalt (Co) 0.3114 mg/L Sous-traitance\Multilab Direct August 05, 2013
Copper (Cu) 2.038 mg/L Sous-traitance\Multilab Direct August 05, 2013
Dissolved Copper (Cu) 1.712 mg/L Sous-traitance\Multilab Direct August 05, 2013
Hardness 1417 mg CaCO3/L Sous-traitance\Multilab Direct August 05, 2013
Tin (Sn) <0.001 mg/L Sous-traitance\Multilab Direct August 05, 2013
Iron (Fe) 4.4 mg/L Sous-traitance\Multilab Direct August 05, 2013
Dissolved Iron (Fe) 0.06 mg/L Sous-traitance\Multilab Direct August 05, 2013
Fluoride (F) 0.29 mg/L Sous-traitance\Multilab Direct August 08, 2013
Lithium (Li) 0.006 mg/L Sous-traitance\Multilab Direct August 07, 2013
Manganese (Mn) 6.370 mg/L Sous-traitance\Multilab Direct August 05, 2013
Dissolved Manganese (Mn) 6.055 mg/L Sous-traitance\Multilab Direct August 05, 2013
Mercury (Hg) 0.00005 mg/L Sous-traitance\Multilab Direct August 02, 2013
Dissolved Mercury (Hg) <0.0001 mg/L Sous-traitance\Multilab Direct August 15, 2013
Molybdenum (Mo) 0.1704 mg/L Sous-traitance\Multilab Direct August 05, 2013
Dissolved Molybdenum (Mo) 0.1773 mg/L Sous-traitance\Multilab Direct August 05, 2013
Ammonia (NH3) 1.2 mg N/L Sous-traitance\Multilab Direct August 02, 2013
Nickel (Ni) 2.015 mg/L Sous-traitance\Multilab Direct August 05, 2013
Dissolved Nickel (Ni) 1.810 mg/L Sous-traitance\Multilab Direct August 05, 2013
Nitrate (NO3) 37.8 mg N/L Sous-traitance\Multilab Direct August 01, 2013
Nitrite (NO2) 0.41 mg N/L Sous-traitance\Multilab Direct August 01, 2013
Lead (Pb) 0.0013 mg/L Sous-traitance\Multilab Direct August 05, 2013
Dissolved Lead (Pb) <0.0003 mg/L Sous-traitance\Multilab Direct August 05, 2013
Selenium (Se) 0.02 mg/L Sous-traitance\Multilab Direct August 05, 2013
Dissolved Selenium (Se) 0.023 mg/L Sous-traitance\Multilab Direct August 05, 2013

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6) Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6) Sampling hour: N/D

Parameter	Result	Method name	Analysis date
Dissolved Solids	3792 mg/L	M-TIT-1.0	August 01, 2013
Strontium (Sr)	2.14 mg/L	Sous-traitance\Multilab Direct	August 07, 2013
Sulfate (SO4)	2400 mg SO4/L	Sous-traitance\Multilab Direct	August 05, 2013
Thallium (TI)	<0.005 mg/L	Sous-traitance\Multilab Direct	August 07, 2013
Dissolved thallium (TI)	<0.005 mg/L	Sous-traitance\Multilab Direct	August 07, 2013
Titanium (Ti)	0.55 mg/L	Sous-traitance\Multilab Direct	August 05, 2013
Uranium (U)	0.17 mg/L	Sous-traitance\Multilab Direct	August 05, 2013
Vanadium (V)	<0.0005 mg/L	Sous-traitance\Multilab Direct	August 05, 2013
Zinc (Zn)	0.009 mg/L	Sous-traitance\Multilab Direct	August 05, 2013
Dissolved Zinc	0.008 mg/L	Sous-traitance\Multilab Direct	August 05, 2013

Detection limit

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6) Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6) Sampling hour: N/D

Parameter Value Unit Method Accreditation Alkalinity 2 mg CaCO3/L M-TIT-1.0 Aluminium (AI) 0.006 mg/L Sous-traitance Dissolved Aluminium (AI) 0.006 mg/L Sous-traitance Antimony (Sb) 0.0001 mg/L Sous-traitance Yes Dissolved Silver (Ag) 0.0005 mg/L Sous-traitance Yes Dissolved Arsenic (As) 0.0005 mg/L Sous-traitance Yes Dissolved Arsenic (As) 0.0005 mg/L Sous-traitance Yes Ammonia nitrogen (NH3-NH4) 0.01 mg N/L Sous-traitance Yes Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Yes Beryllium (Be) 0.0005 mg/L Sous-traitance Yes Boron (B) 0.01 mg/L Sous-traitance Yes Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Dissolved Cadmium (Cd) 0.0006 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0006	Sampling location: SW		Sampling hour: N/D	
Aluminium (AI) 0.006 mg/L Sous-traitance Dissolved Aluminium (AI) 0.006 mg/L Sous-traitance Antimony (Sb) 0.0001 mg/L Sous-traitance Arsenic (As) 0.0005 mg/L Sous-traitance Arsenic (As) 0.0005 mg/L Sous-traitance Sissolved Arsenic (As) 0.0005 mg/L Sous-traitance Ammonia nitrogen (NH3-NH4) 0.01 mg N/L Sous-traitance Barium (Ba) 0.0005 mg/L Sous-traitance Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Beryllium (Be) 0.0005 mg/L Sous-traitance Boron (B) 0.01 mg/L Sous-traitance Cadmium (Cd) 0.00002 mg/L Sous-traitance Ves Dissolved Cadmium (Cd) 0.00002 mg/L Sous-traitance Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved (Copper (Cu) 0.0005 mg/L Sous-traitance Yes <td>Parameter</td> <td>Value Unit</td> <td>Method</td> <td>Accreditation</td>	Parameter	Value Unit	Method	Accreditation
Dissolved Aluminium (AI) 0.006 mg/L Sous-traitance Yes Dissolved Silver (Ag) 0.0001 mg/L Sous-traitance Yes Dissolved Silver (Ag) 0.0005 mg/L Sous-traitance Yes Dissolved Arsenic (As) 0.0005 mg/L Sous-traitance Yes Arsenic (As) 0.0005 mg/L Sous-traitance Yes Barium (Ba) 0.001 mg N/L Sous-traitance Yes Barium (Ba) 0.0005 mg/L Sous-traitance Yes Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Yes Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Yes Cadmium (Cd) 0.0005 mg/L Sous-traitance Yes Dissolved Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Chrome (Cr) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes	Alkalinity	2 mg CaCO3/L	M-TIT-1.0	
Antimony (Sb) 0.0001 mg/L Sous-traitance Yes Dissolved Silver (Ag) 0.0002 mg/L Sous-traitance Yes Arsenic (As) 0.0005 mg/L Sous-traitance Yes Dissolved Arsenic (As) 0.0005 mg/L Sous-traitance Yes Ammonia nitrogen (NH3-NH4) 0.01 mg N/L Sous-traitance Yes Barium (Ba) 0.0005 mg/L Sous-traitance Yes Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Yes Beryllium (Be) 0.0005 mg/L Sous-traitance Yes Boron (B) 0.01 mg/L Sous-traitance Yes Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Dissolved Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chloride 0.0006 mg/L Sous-traitance Yes Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Chloride	Aluminium (AI)	0.006 mg/L	Sous-traitance	
Dissolved Silver (Ag) 0.0002 mg/L Sous-traitance Yes Arsenic (As) 0.0005 mg/L Sous-traitance Yes Dissolved Arsenic (As) 0.0005 mg/L Sous-traitance Yes Barium (Ba) 0.0005 mg/L Sous-traitance Yes Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Yes Beryllium (Be) 0.0005 mg/L Sous-traitance Yes Boron (B) 0.01 mg/L Sous-traitance Yes Cadmium (Cd) 0.0002 mg/L Sous-traitance Yes Dissolved Cadmium (Cd) 0.0002 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Irin (Sn) 0.01 mg/L Sous-traitance Yes Iron (Fe) 0.	Dissolved Aluminium (AI)	0.006 mg/L	Sous-traitance	
Arsenic (As) 0.0005 mg/L Sous-traitance Yes Dissolved Arsenic (As) 0.0005 mg/L Sous-traitance Amonia nitrogen (NH3-NH4) 0.01 mg N/L Sous-traitance Yes Barium (Ba) 0.0005 mg/L Sous-traitance Yes Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Yes Beryllium (Be) 0.0005 mg/L Sous-traitance Yes Boron (B) 0.01 mg/L Sous-traitance Yes Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Dissolved Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Uranghamese (Cr) 0.0005 mg/L Sous-traitance Yes Irin (Sn) 0.001 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L	Antimony (Sb)	0.0001 mg/L	Sous-traitance	Yes
Dissolved Arsenic (As) 0.0005 mg/L Sous-traitance Yes Ammonia nitrogen (NH3-NH4) 0.01 mg N/L Sous-traitance Yes Barium (Ba) 0.0005 mg/L Sous-traitance Yes Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Yes Beryllium (Be) 0.0002 mg/L Sous-traitance Yes Boron (B) 0.00002 mg/L Sous-traitance Yes Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Dissolved Cadmium (Cd) 0.0002 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chrome (Cr) 0.0005 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved Toper (Cu) 0.0005 mg/L Sous-traitance Yes Irin (Sn) 0.001 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Lithi	Dissolved Silver (Ag)	0.0002 mg/L	Sous-traitance	
Ammonia nitrogen (NH3-NH4) 0.01 mg N/L Sous-traitance Yes Barium (Ba) 0.0005 mg/L Sous-traitance Yes Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Yes Beryllium (Be) 0.0000 mg/L Sous-traitance Yes Boron (B) 0.01 mg/L Sous-traitance Yes Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Dissolved Cadmium (Cd) 0.0002 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Hardness 1 mg CaCO3/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Lithium (Li)	Arsenic (As)	0.0005 mg/L	Sous-traitance	Yes
Barium (Ba) 0.0005 mg/L Sous-traitance Yes Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Beryllium (Be) 0.0005 mg/L Sous-traitance Boron (B) 0.01 mg/L Sous-traitance Yes Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Dissolved Cadmium (Cd) 0.0002 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance	Dissolved Arsenic (As)	0.0005 mg/L	Sous-traitance	
Dissolved Barium (Ba) 0.0005 mg/L Sous-traitance Beryllium (Be) 0.0005 mg/L Sous-traitance Boron (B) 0.01 mg/L Sous-traitance Cadmium (Cd) 0.00002 mg/L Sous-traitance Chloride 0.5 mg/L Sous-traitance Chloride 0.5 mg/L Sous-traitance Chrome (Cr) 0.0006 mg/L Sous-traitance Cobalt (Co) 0.0005 mg/L Sous-traitance Copper (Cu) 0.0005 mg/L Sous-traitance Ves Dissolved Copper (Cu) 0.0005 mg/L Hardness 1 mg CaCO3/L Sous-traitance Tin (Sn) 0.001 mg/L Sous-traitance Ves Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Pluoride (F) 0.02 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0	Ammonia nitrogen (NH3-NH4)	0.01 mg N/L	Sous-traitance	Yes
Beryllium (Be)	Barium (Ba)	0.0005 mg/L	Sous-traitance	Yes
Boron (B) 0.01 mg/L Sous-traitance Yes Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Dissolved Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.005 mg/L Sous-traitance Yes Irin (Sn) 0.001 mg/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Marcury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) </td <td>Dissolved Barium (Ba)</td> <td>0.0005 mg/L</td> <td>Sous-traitance</td> <td></td>	Dissolved Barium (Ba)	0.0005 mg/L	Sous-traitance	
Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Dissolved Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Hardness 1 mg CaCO3/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Marcury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Dissolved M	Beryllium (Be)	0.0005 mg/L	Sous-traitance	_
Dissolved Cadmium (Cd) 0.00002 mg/L Sous-traitance Yes Chloride 0.5 mg/L Sous-traitance Yes Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Hardness 1 mg CaCO3/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0000 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (M	Boron (B)	0.01 mg/L	Sous-traitance	Yes
Chloride 0.5 mg/L Sous-traitance Yes Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Hardness 1 mg CaCO3/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes D	Cadmium (Cd)	0.00002 mg/L	Sous-traitance	Yes
Chrome (Cr) 0.0006 mg/L Sous-traitance Yes Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Yes Hardness 1 mg CaCO3/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.02 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes	Dissolved Cadmium (Cd)	0.00002 mg/L	Sous-traitance	
Cobalt (Co) 0.0005 mg/L Sous-traitance Yes Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Hardness 1 mg CaCO3/L Sous-traitance Tin (Sn) 0.001 mg/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Pluoride (F) 0.02 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.005 mg/L Sous-traitance Yes Nickel (Ni) 0.0005 mg/L Sous-traitance Yes Dissolved Nickel (Ni) 0.0005 mg/L <	Chloride	0.5 mg/L	Sous-traitance	Yes
Copper (Cu) 0.0005 mg/L Sous-traitance Yes Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Hardness 1 mg CaCO3/L Sous-traitance Tin (Sn) 0.001 mg/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Fluoride (F) 0.02 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.005 mg/L Sous-traitance Yes Nickel (Ni) 0.0005 mg/L Sous-traitance Yes Nitrate (NO3) 0.01 mg N/L <td>Chrome (Cr)</td> <td>0.0006 mg/L</td> <td>Sous-traitance</td> <td>Yes</td>	Chrome (Cr)	0.0006 mg/L	Sous-traitance	Yes
Dissolved Copper (Cu) 0.0005 mg/L Sous-traitance Hardness 1 mg CaCO3/L Sous-traitance Tin (Sn) 0.001 mg/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Eluoride (F) 0.02 mg/L Sous-traitance Yes Lithium (Li) 0.0005 mg/L Sous-traitance Yes Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.005 mg/L Sous-traitance Yes Nickel (Ni) 0.005 mg/L Sous-traitance Yes Dissolved Nickel (Ni) 0.005 mg/L Sous-traitance Yes Nitrate (NO2) 0.01 mg N/L <td>Cobalt (Co)</td> <td>0.0005 mg/L</td> <td>Sous-traitance</td> <td></td>	Cobalt (Co)	0.0005 mg/L	Sous-traitance	
Hardness 1 mg CaCO3/L Sous-traitance Tin (Sn) 0.001 mg/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Lithium (Li) 0.02 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Nickel (Ni) 0.0005 mg/L Sous-traitance Yes Dissolved Nickel (Nii) 0.0005 mg/L Sous-traitance Yes Nitrate (NO2) 0.01 mg N/L Sous-traitance Yes Nitrite (NO2) 0.01 mg N/L Sous-traitance Yes Dissolved Lead (Pb)	Copper (Cu)	0.0005 mg/L	Sous-traitance	Yes
Tin (Sn) 0.001 mg/L Sous-traitance Yes Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Fluoride (F) 0.02 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Nickel (Ni) 0.0005 mg/L Sous-traitance Yes Dissolved Nickel (Ni) 0.0005 mg/L Sous-traitance Yes Nitrate (NO2) 0.01 mg N/L Sous-traitance Yes Nitrite (NO2) 0.0003 mg/L Sous-traitance Yes Dissolved Lead (Dissolved Copper (Cu)	0.0005 mg/L	Sous-traitance	
Iron (Fe) 0.01 mg/L Sous-traitance Yes Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Yes Fluoride (F) 0.02 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Yes Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Yes Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Yes Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Yes Nickel (Ni) 0.005 mg/L Sous-traitance Yes Dissolved Nickel (Nii) 0.0005 mg/L Sous-traitance Yes Nitrate (NO3) 0.01 mg N/L Sous-traitance Yes Nitrite (NO2) 0.01 mg N/L Sous-traitance Yes Dissolved Lead (Pb) 0.0003 mg/L Sous-traitance Yes	Hardness	1 mg CaCO3/L	Sous-traitance	
Dissolved Iron (Fe) 0.01 mg/L Sous-traitance Fluoride (F) 0.02 mg/L Sous-traitance Lithium (Li) 0.005 mg/L Sous-traitance Manganese (Mn) 0.0005 mg/L Sous-traitance Mercury (Hg) 0.0001 mg/L Sous-traitance Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Molybdenum (Mo) 0.0005 mg/L Sous-traitance Molybdenum (Mo) 0.0005 mg/L Sous-traitance Molybdenum (Mo) 0.0005 mg/L Sous-traitance Molybdenum (Mo) 0.0005 mg/L Sous-traitance Ammonia (NH3) 0.05 mg N/L Sous-traitance Nickel (Ni) 0.0005 mg/L Sous-traitance Nickel (Ni) 0.0005 mg/L Sous-traitance Nitrate (NO3) 0.01 mg N/L Sous-traitance Nitrite (NO2) 0.01 mg N/L Sous-traitance Nitrite (NO2) 0.01 mg N/L Sous-traitance Nitrite (NO2) 0.0003 mg/L Sous-traitance Nissolved Lead (Pb) 0.0003 mg/L Sous-traitance Yes Dissolved Lead (Pb) 0.0003 mg/L Sous-traitance Yes Dissolved Lead (Pb) 0.0003 mg/L Sous-traitance	Tin (Sn)	0.001 mg/L	Sous-traitance	Yes
Fluoride (F) 0.02 mg/L Sous-traitance Yes Lithium (Li) 0.005 mg/L Sous-traitance Manganese (Mn) 0.0005 mg/L Sous-traitance Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Mercury (Hg) 0.00001 mg/L Sous-traitance Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Molybdenum (Mo) 0.0005 mg/L Sous-traitance Molybdenum (Mo) 0.0005 mg/L Sous-traitance Mickel (Ni) 0.005 mg/L Sous-traitance Nickel (Ni) 0.0005 mg/L Sous-traitance Nickel (Ni) 0.0005 mg/L Sous-traitance Nitrate (NO3) 0.01 mg N/L Sous-traitance Nitrite (NO2) 0.01 mg N/L Sous-traitance Lead (Pb) 0.0003 mg/L Sous-traitance Nissolved Lead (Pb) Sous-traitance Nissolved Lead (Pb) 0.0003 mg/L Sous-traitance	Iron (Fe)	0.01 mg/L	Sous-traitance	Yes
Lithium (Li)0.005 mg/LSous-traitanceManganese (Mn)0.0005 mg/LSous-traitanceYesDissolved Manganese (Mn)0.0005 mg/LSous-traitanceMercury (Hg)0.00001 mg/LSous-traitanceYesDissolved Mercury (Hg)0.0001 mg/LSous-traitanceMolybdenum (Mo)0.0005 mg/LSous-traitanceYesDissolved Molybdenum (Mo)0.0005 mg/LSous-traitanceAmmonia (NH3)0.05 mg N/LSous-traitanceNickel (Ni)0.0005 mg/LSous-traitanceYesDissolved Nickel (Ni)0.0005 mg/LSous-traitanceYesNitrate (NO3)0.01 mg N/LSous-traitanceYesNitrite (NO2)0.01 mg N/LSous-traitanceYesLead (Pb)0.0003 mg/LSous-traitanceYesDissolved Lead (Pb)0.0003 mg/LSous-traitanceYes	Dissolved Iron (Fe)	0.01 mg/L	Sous-traitance	
Manganese (Mn)0.0005 mg/LSous-traitanceYesDissolved Manganese (Mn)0.0005 mg/LSous-traitanceMercury (Hg)0.00001 mg/LSous-traitanceYesDissolved Mercury (Hg)0.0001 mg/LSous-traitanceMolybdenum (Mo)0.0005 mg/LSous-traitanceYesDissolved Molybdenum (Mo)0.0005 mg/LSous-traitanceAmmonia (NH3)0.05 mg N/LSous-traitanceNickel (Ni)0.0005 mg/LSous-traitanceDissolved Nickel (Ni)0.0005 mg/LSous-traitanceNitrate (NO3)0.01 mg N/LSous-traitanceNitrite (NO2)0.01 mg N/LSous-traitanceLead (Pb)0.0003 mg/LSous-traitanceDissolved Lead (Pb)0.0003 mg/LSous-traitanceDissolved Lead (Pb)0.0003 mg/LSous-traitance	Fluoride (F)	0.02 mg/L	Sous-traitance	Yes
Dissolved Manganese (Mn) 0.0005 mg/L Sous-traitance Mercury (Hg) 0.00001 mg/L Sous-traitance Dissolved Mercury (Hg) 0.0001 mg/L Sous-traitance Molybdenum (Mo) 0.0005 mg/L Sous-traitance Molybdenum (Mo) 0.0005 mg/L Sous-traitance Dissolved Molybdenum (Mo) 0.0005 mg/L Sous-traitance Ammonia (NH3) 0.05 mg N/L Sous-traitance Nickel (Ni) 0.0005 mg/L Sous-traitance Dissolved Nickel (Ni) 0.0005 mg/L Sous-traitance Nitrate (NO3) 0.01 mg N/L Sous-traitance Nitrite (NO2) 0.01 mg N/L Sous-traitance Lead (Pb) 0.0003 mg/L Sous-traitance Dissolved Lead (Pb) 0.0003 mg/L Sous-traitance Sous-traitance Yes Dissolved Lead (Pb) 0.0003 mg/L Sous-traitance	Lithium (Li)	0.005 mg/L	Sous-traitance	
Mercury (Hg)0.00001 mg/LSous-traitanceYesDissolved Mercury (Hg)0.0001 mg/LSous-traitanceMolybdenum (Mo)0.0005 mg/LSous-traitanceDissolved Molybdenum (Mo)0.0005 mg/LSous-traitanceAmmonia (NH3)0.05 mg N/LSous-traitanceNickel (Ni)0.0005 mg/LSous-traitanceDissolved Nickel (Ni)0.0005 mg/LSous-traitanceNitrate (NO3)0.01 mg N/LSous-traitanceNitrite (NO2)0.01 mg N/LSous-traitanceLead (Pb)0.0003 mg/LSous-traitanceDissolved Lead (Pb)0.0003 mg/LSous-traitance	Manganese (Mn)	0.0005 mg/L	Sous-traitance	Yes
Dissolved Mercury (Hg) Molybdenum (Mo) Dissolved Molybdenum (Mo) Dissolved Molybdenum (Mo) O.0005 mg/L Sous-traitance Sous-traitance Sous-traitance Sous-traitance Sous-traitance Nickel (Ni) O.0005 mg/L Sous-traitance Yes Dissolved Nickel (Ni) O.0005 mg/L Sous-traitance Yes Dissolved Nickel (Ni) O.0005 mg/L Sous-traitance Yes Nitrate (NO3) O.01 mg N/L Sous-traitance Yes Nitrite (NO2) Nitrite (NO2) O.01 mg N/L Sous-traitance Yes Dissolved Lead (Pb) O.0003 mg/L Sous-traitance Yes Dissolved Lead (Pb) O.0003 mg/L Sous-traitance Yes Dissolved Lead (Pb) Sous-traitance Yes Dissolved Lead (Pb) Sous-traitance	Dissolved Manganese (Mn)	0.0005 mg/L	Sous-traitance	
Molybdenum (Mo)0.0005 mg/LSous-traitanceYesDissolved Molybdenum (Mo)0.0005 mg/LSous-traitanceAmmonia (NH3)0.05 mg N/LSous-traitanceNickel (Ni)0.0005 mg/LSous-traitanceDissolved Nickel (Ni)0.0005 mg/LSous-traitanceNitrate (NO3)0.01 mg N/LSous-traitanceNitrite (NO2)0.01 mg N/LSous-traitanceLead (Pb)0.0003 mg/LSous-traitanceDissolved Lead (Pb)0.0003 mg/LSous-traitance	Mercury (Hg)	0.00001 mg/L	Sous-traitance	Yes
Dissolved Molybdenum (Mo) Ammonia (NH3) 0.05 mg N/L Sous-traitance Nickel (Ni) 0.0005 mg/L Sous-traitance Yes Dissolved Nickel (Ni) 0.0005 mg/L Sous-traitance Yes Nitrate (NO3) 0.01 mg N/L Sous-traitance Yes Nitrite (NO2) 0.01 mg N/L Sous-traitance Yes Ves Dissolved Lead (Pb) 0.0003 mg/L Sous-traitance Yes Sous-traitance Yes Sous-traitance Yes Sous-traitance Yes Dissolved Lead (Pb) Sous-traitance Yes Sous-traitance	Dissolved Mercury (Hg)	0.0001 mg/L	Sous-traitance	
Ammonia (NH3)0.05 mg N/LSous-traitanceNickel (Ni)0.0005 mg/LSous-traitanceYesDissolved Nickel (Ni)0.0005 mg/LSous-traitanceNitrate (NO3)0.01 mg N/LSous-traitanceYesNitrite (NO2)0.01 mg N/LSous-traitanceYesLead (Pb)0.0003 mg/LSous-traitanceYesDissolved Lead (Pb)0.0003 mg/LSous-traitance	Molybdenum (Mo)	0.0005 mg/L	Sous-traitance	Yes
Nickel (Ni)0.0005 mg/LSous-traitanceYesDissolved Nickel (Ni)0.0005 mg/LSous-traitanceNitrate (NO3)0.01 mg N/LSous-traitanceYesNitrite (NO2)0.01 mg N/LSous-traitanceYesLead (Pb)0.0003 mg/LSous-traitanceYesDissolved Lead (Pb)0.0003 mg/LSous-traitance	Dissolved Molybdenum (Mo)	0.0005 mg/L	Sous-traitance	
Dissolved Nickel (Ni)0.0005 mg/LSous-traitanceNitrate (NO3)0.01 mg N/LSous-traitanceYesNitrite (NO2)0.01 mg N/LSous-traitanceYesLead (Pb)0.0003 mg/LSous-traitanceYesDissolved Lead (Pb)0.0003 mg/LSous-traitance	Ammonia (NH3)	0.05 mg N/L	Sous-traitance	
Nitrate (NO3)0.01 mg N/LSous-traitanceYesNitrite (NO2)0.01 mg N/LSous-traitanceYesLead (Pb)0.0003 mg/LSous-traitanceYesDissolved Lead (Pb)0.0003 mg/LSous-traitance	Nickel (Ni)	0.0005 mg/L	Sous-traitance	Yes
Nitrite (NO2) 0.01 mg N/L Sous-traitance Yes Lead (Pb) 0.0003 mg/L Sous-traitance Yes O.0003 mg/L Sous-traitance	Dissolved Nickel (Ni)	0.0005 mg/L	Sous-traitance	
Lead (Pb)0.0003 mg/LSous-traitanceYesDissolved Lead (Pb)0.0003 mg/LSous-traitance	Nitrate (NO3)	0.01 mg N/L	Sous-traitance	Yes
Lead (Pb)0.0003 mg/LSous-traitanceYesDissolved Lead (Pb)0.0003 mg/LSous-traitance	Nitrite (NO2)		Sous-traitance	Yes
Dissolved Lead (Pb) 0.0003 mg/L Sous-traitance	* *	_	Sous-traitance	Yes
· /	• ,	-		
\cdot	· · ·	S	Sous-traitance	Yes
Dissolved Selenium (Se) 0.001 mg/L Sous-traitance	` ,	<u> </u>	Sous-traitance	

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Detection limit

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6) Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6)

Sampling hour: N/D

Parameter	Value Unit	Method	Accreditation
Dissolved Solids	1 mg/L	M-TIT-1.0	
Strontium (Sr)	0.005 mg/L	Sous-traitance	
Sulfate (SO4)	1 mg SO4/L	Sous-traitance	Yes
Thallium (TI)	0.005 mg/L	Sous-traitance	
Dissolved thallium (TI)	0.005 mg/L	Sous-traitance	
Titanium (Ti)	0.01 mg/L	Sous-traitance	
Uranium (U)	0.001 mg/L	Sous-traitance	
Vanadium (V)	0.0005 mg/L	Sous-traitance	Yes
Zinc (Zn)	0.001 mg/L	Sous-traitance	Yes
Dissolved Zinc	0.001 mg/L	Sous-traitance	

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6)

Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6)

Sampling hour: N/D

Parameter

Alkalinity mg CaCO3/L Standard name STD alcalinité

Result 158 Accuracy 91% Limit 123 - 167

Aluminium (Al) mg/L Blank <0.006

Standard name DMR-0311-2013-23m

Result 5.77 Accuracy 93.2%

Limit 5.26 - 7.12

Dissolved Aluminium (Al) mg/L Blank < 0.006

Standard name DMR-0311-2013-23

Result 6.22 Accuracy 99.5% Limit 5.26 - 7.12

Antimony (Sb) mg/L Blank <0.0001

Standard name DMR-0311-2013-23m

Result 0.1885 Accuracy 85.3%

Limit 0.188 - 0.254

Dissolved Silver (Ag) mg/L

Blank < 0.0002

Arsenic (As) mg/L

Blank < 0.0005

Standard name DMR-0311-2013-23m

Result 0.3401 Accuracy 79.8% Limit 0.198 - 0.368

Dissolved Arsenic (As) mg/L Blank < 0.0005

Standard name DMR-0311-2013-23

Result 0.3176 Accuracy 95.5% Limit 0.236 - 0.372

Ammonia nitrogen (NH3-NH4) m Blank < 0.01

Standard name DMR-0446-2013-NH3

Result 5.3 Accuracy 98.5% Limit 4.44 - 6.00

Barium (Ba) mg/L Blank <0.0005

Standard name DMR-0311-2013-23m

Result 2.146 Accuracy 89.4% Limit 2.0 - 2.8

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6) Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6) Sampling hour: N/D

Parameter Dissolved Barium (Ba) mg/L Blank < 0.0005 Standard name DMR-0311-2013-23 Result 2.254 Accuracy 93.9% Limit 2.04 - 2.76 Beryllium (Be) mg/L Blank < 0.0005 Standard name DMR-0311-2013-23m Result 1.591 Accuracy 93.6% Limit 1.4 - 2.0 Boron (B) mg/L Blank < 0.01 Standard name DMR-0311-2013-23m Result 2.5 Accuracy 86.8% Limit 2.45 - 3.31 Cadmium (Cd) mg/L Blank < 0.00002 Standard name DMR-0311-2013-23m Result 0.91111 Accuracy 98.8% Limit 0.8 - 1.0 Dissolved Cadmium (Cd) mg/L Blank < 0.00002 Standard name DMR-0311-2013-23 Result 0.87322 Accuracy 97% Limit 0.8 - 1.0 Chloride mg/L Blank < 0.5 Standard name DMR-0446-2013-CL Result 100 Accuracy 99% Limit 87 - 111 Chrome (Cr) mg/L Blank < 0.0006 Standard name DMR-0311-2013-23m Result 4.064 Accuracy 99.7% Limit 3.44 - 4.66 Cobalt (Co) mg/L Blank < 0.0005 Standard name DMR-0311-2013-23m Result 1.643 Accuracy 94.7% Limit 1.33 - 1.79

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6) Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6)

Sampling hour: N/D

Parameter Copper (Cu) mg/L Blank < 0.0005 Standard name DMR-0311-2013-23m Result 1.404 Accuracy 86.8% Limit 1.05 - 1.43 Dissolved Copper (Cu) mg/L Blank < 0.0005 Standard name DMR-0311-2013-23 Result 1.301 Accuracy 95.1% Limit 1.05 - 1.43 Tin (Sn) mg/L Blank < 0.001 Iron (Fe) mg/L Blank < 0.01 Standard name DMR-0311-2013-23m Result 11.6 Accuracy 89.5% Limit 8.9 - 12.1 Blank < 0.01 Dissolved Iron (Fe) mg/L Standard name DMR-0311-2013-23 Result 10.4 Accuracy 99% Limit 8.9 - 12.1 Fluoride (F) mg/L Blank < 0.02 Standard name DMR-0446-2013-12-F Result 2.9 Accuracy 94.8% Limit 2.83 - 3.29 Lithium (Li) mg/L Blank < 0.005 Standard name DMR-0773-2011-18a Result 0.863 Accuracy 97.3% Limit 0.714 - 0.966 Manganese (Mn) mg/L Blank < 0.0005 Standard name DMR-0311-2013-23m Result 3.956 Accuracy 97.5% Limit 3.28 - 4.44 Dissolved Manganese (Mn) mg/L Blank < 0.0005 Standard name DMR-0311-2013-23 Result 3.675 Accuracy 95.2%

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6) Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6) Sampling hour: N/D

Parameter

Limit 3.28 - 4.44

Mercury (Hg) mg/L

Blank < 0.00001

Standard name DMR-0311-2013-14-Hg

Result 0.00418 Accuracy 95.5%

Limit 0.003 - 0.005

Dissolved Mercury (Hg) mg/L

Blank < 0.0001

Standard name DMR-0311-2013-14-Hg

Result 0.0032 Accuracy 80%

Limit 0.003 - 0.005

Molybdenum (Mo) mg/L

Blank < 0.0005

Standard name DMR-0311-2013-23m

Result 0.6781

Accuracy 96.2%

Limit 0.599 - 0.811

Dissolved Molybdenum (Mo) mg

Blank < 0.0005

Standard name DMR-0311-2013-23

Result 0.6419

Accuracy 91%

Limit 0.599 - 0.811

Ammonia (NH3) mg N/L

Blank < 0.05

Standard name DMR-0446-2013-NH3

Result 5.3

Accuracy 98.5%

Limit 4.44 - 6.00

Nickel (Ni) mg/L Blank < 0.0005

Standard name DMR-0311-2013-23m

Result 1.232

Accuracy 91%

Limit 0.96 - 1.30

Dissolved Nickel (Ni) mg/L Blank < 0.0005

Standard name DMR-0311-2013-23

Result 1.147

Accuracy 92.5%

Limit 1.05 - 1.43

Nitrate (NO3) mg N/L

Blank < 0.01

Sample duplicate 37.8-35.3

Nitrite (NO2) mg N/L

Blank < 0.01

Standard name DMR-0446-2013-NO2

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6)

Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6) Sampling hour: N/D

Parameter

Result 2.5

Accuracy 99.2%

Limit 2.14 - 2.90

Sample duplicate 0.41-0.40

Lead (Pb) mg/L

Blank < 0.0003

Standard name DMR-0311-2013-23m

Result 0.9249

Accuracy 97.2%

Limit 0.8 - 1.0

Dissolved Lead (Pb) mg/L

Blank < 0.0003

Standard name DMR-0311-2013-23

Result 0.9053

Accuracy 99.4%

Limit 0.8 - 1.0

Selenium (Se) mg/L

Blank < 0.001

Standard name DMR-0311-2013-23m

Result 1.46

Accuracy 91.9%

Limit 1.15 - 1.55

Dissolved Selenium (Se) mg/L

Blank < 0.001

Standard name DMR-0311-2013-23

Result 1.39

Accuracy 97%

Limit 1.15 - 1.55

Strontium (Sr) mg/L

Blank < 0.005

Standard name DMR-0773-2011-18a

Result 1.25

Accuracy 99.2%

Limit 1.05 - 1.43

Sulfate (SO4) mg SO4/L

Blank < 0.6

Standard name DMR-0446-2013-SO4

Result 117

Accuracy 93.6%

Limit 99 - 121

Thallium (TI) mg/L

Blank < 0.005

Standard name STD TI SC0187114 1000ppm

Result 1001

Accuracy 99.9%

Limit 850 - 1150

Dissolved thallium (TI) mg/L

Blank < 0.005

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel:

multilab@cablevision.qc.ca

Version 3^{ième}: 26/10/2005

Page 10 of 12

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6) Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6)

Sampling hour: N/D

	ion: 500-6(5-R5F) s	JIII (31-0)	Sampling nour: N/D
Parameter	`		
	Standard name	STD TI SC0187114 1000ppm	
	Result	1001	
	Accuracy	99.9%	
	Limit	850 - 1150	
Titanium (Ti) mg/L	Blank	<0.01	
Uranium (U) mg/L	Blank	<0.001	
	Standard name	DMR-0311-2013-23m	
	Result	2.01	
	Accuracy	85.1%	
	Limit	1.49 - 2.01	
Vanadium (V) mg/L	Blank	<0.0005	
	Standard name	DMR-0311-2013-23m	
	Result	1.950	
	Accuracy	98%	
	Limit	1.69 - 2.29	
Zinc (Zn) mg/L	Blank	<0.001	
	Standard name	DMR-0311-2013-23m	
	Result	5.07	
	Accuracy	87.6%	
	Limit	3.83 - 5.19	
Dissolved Zinc mg/L	Blank	<0.001	
	Standard name	DMR-0311-2013-23	
	Result	4.78	
	Accuracy	94%	
	Limit	3.83 - 5.19	

Additional information

Lab number: V-28320

Sample name: SW-6(S-RSF) split (ST-6) Sampling date: July 30, 2013

Sampling location: SW-6(S-RSF) split (ST-6)

Sampling hour: N/D

Lab method	Method reference
M-TIT-1.0	MA.303-Titr Auto 2.0
M-MET-3.0	MA.200-Mét. 1.2
M-NH3-2.0	MA.300-N 2.0
M-CL-2.0	MA.300-lons 1.3
M-CI-1.0	MA.300-Anions 1.0
M-NITR-2.0	MA.300-NO3 2.0
M-Lix-1.0	MA.100-Lix.com. 1.1
M-SULF-2.0	MA.300-lons 1.3
I	

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

Company: Agnico Eagle Division Meadowbank

Client: M. Stéphane Robert Address: General Delivery

Baker Lake Nunavut X0C 0A0

Phone: (604) 677-0689 (--) Fax: (604) 677-0687

Lab number: V-28321

Sampling location: NP2 split Sampling date: July 30, 2013

Sample name: NP2 split Sampling hour: 15:00

Sampled by: Jeff Pratt Date received: July 31, 2013

Matrix: Waste Water

Drinking water distribution:

Reported on: August 16, 2013

Unless otherwise stated, all samples were received in acceptable condition.

Results relate only to the sample tested.

All samples will be disposed of after 30 days following analysis.

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155

multilab@cablevision.qc.ca

Courriel:

F-02-06

Lab number: V-28321
Sample name: NP2 split
Sampling location: NP2 split
Sampling hour: 15:00

Method name Analysis date
·
CaCO3/L M-TIT-1.0 August 01, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
N/L Sous-traitance\Multilab Direct August 02, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 01, 2013
L Sous-traitance\Multilab Direct August 05, 2013
CaCO3/L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 07, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 02, 2013
L Sous-traitance\Multilab Direct August 15, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
N/L Sous-traitance\Multilab Direct August 02, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
N/L Sous-traitance\Multilab Direct August 01, 2013
N/L Sous-traitance\Multilab Direct August 01, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013
L Sous-traitance\Multilab Direct August 05, 2013

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Lab number: V-28321
Sample name: NP2 split
Sampling location: NP2 split
Sampling hour: 15:00

Parameter	Result	Method name	Analysis date
Dissolved Solids	2854 mg/L	M-TIT-1.0	August 01, 2013
Strontium (Sr)	1.62 mg/L	Sous-traitance\Multilab Direct	August 07, 2013
Sulfate (SO4)	1546 mg SO4/L	Sous-traitance\Multilab Direct	August 05, 2013
Thallium (TI)	<0.005 mg/L	Sous-traitance\Multilab Direct	August 07, 2013
Dissolved thallium (TI)	<0.005 mg/L	Sous-traitance\Multilab Direct	August 07, 2013
Titanium (Ti)	0.39 mg/L	Sous-traitance\Multilab Direct	August 05, 2013
Uranium (U)	0.144 mg/L	Sous-traitance\Multilab Direct	August 05, 2013
Vanadium (V)	<0.0005 mg/L	Sous-traitance\Multilab Direct	August 05, 2013
Zinc (Zn)	0.006 mg/L	Sous-traitance\Multilab Direct	August 05, 2013
Dissolved Zinc	0.007 mg/L	Sous-traitance\Multilab Direct	August 05, 2013

Detection limit

Lab number: V-28321
Sample name: NP2 split
Sampling location: NP2 split
Sampling hour: 15:00

Sampling location: NP2		Sampling hour: 1	
Parameter	Value Unit	Method	Accreditation
Alkalinity	2 mg CaCO3/L	M-TIT-1.0	
Aluminium (AI)	0.006 mg/L	Sous-traitance	
Dissolved Aluminium (Al)	0.006 mg/L	Sous-traitance	
Antimony (Sb)	0.0001 mg/L	Sous-traitance	Yes
Dissolved Silver (Ag)	0.0002 mg/L	Sous-traitance	
Arsenic (As)	0.0005 mg/L	Sous-traitance	Yes
Dissolved Arsenic (As)	0.0005 mg/L	Sous-traitance	
Ammonia nitrogen (NH3-NH4)	0.01 mg N/L	Sous-traitance	Yes
Barium (Ba)	0.0005 mg/L	Sous-traitance	Yes
Dissolved Barium (Ba)	0.0005 mg/L	Sous-traitance	
Beryllium (Be)	0.0005 mg/L	Sous-traitance	
Boron (B)	0.01 mg/L	Sous-traitance	Yes
Cadmium (Cd)	0.00002 mg/L	Sous-traitance	Yes
Dissolved Cadmium (Cd)	0.00002 mg/L	Sous-traitance	
Chloride	0.5 mg/L	Sous-traitance	Yes
Chrome (Cr)	0.0006 mg/L	Sous-traitance	Yes
Cobalt (Co)	0.0005 mg/L	Sous-traitance	
Copper (Cu)	0.0005 mg/L	Sous-traitance	Yes
Dissolved Copper (Cu)	0.0005 mg/L	Sous-traitance	
Hardness	1 mg CaCO3/L	Sous-traitance	
Tin (Sn)	0.001 mg/L	Sous-traitance	Yes
Iron (Fe)	0.01 mg/L	Sous-traitance	Yes
Dissolved Iron (Fe)	0.01 mg/L	Sous-traitance	
Fluoride (F)	0.02 mg/L	Sous-traitance	Yes
Lithium (Li)	0.005 mg/L	Sous-traitance	
Manganese (Mn)	0.0005 mg/L	Sous-traitance	Yes
Dissolved Manganese (Mn)	0.0005 mg/L	Sous-traitance	
Mercury (Hg)	0.00001 mg/L	Sous-traitance	Yes
Dissolved Mercury (Hg)	0.0001 mg/L	Sous-traitance	
Molybdenum (Mo)	0.0005 mg/L	Sous-traitance	Yes
Dissolved Molybdenum (Mo)	0.0005 mg/L	Sous-traitance	
Ammonia (NH3)	0.05 mg N/L	Sous-traitance	
Nickel (Ni)	0.0005 mg/L	Sous-traitance	Yes
Dissolved Nickel (Ni)	0.0005 mg/L	Sous-traitance	
Nitrate (NO3)	0.01 mg N/L	Sous-traitance	Yes
Nitrite (NO2)	0.01 mg N/L	Sous-traitance	Yes
Lead (Pb)	0.0003 mg/L	Sous-traitance	Yes
Dissolved Lead (Pb)	0.0003 mg/L	Sous-traitance	
Selenium (Se)	0.001 mg/L	Sous-traitance	Yes
Dissolved Selenium (Se)	0.001 mg/L	Sous-traitance	

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Detection limit

Lab number: V-28321
Sample name: NP2 split
Sampling leasting: NP3 split
Sampling leasting: NP3 split
Sampling leasting: NP3 split

Sampling location: NP2 split			Sampling hour: 15:00		
Parameter	Value	Unit	Method	Accreditation	
Dissolved Solids	1 r	ng/L	M-TIT-1.0		
Strontium (Sr)	0.005 r	ng/L	Sous-traitance		
Sulfate (SO4)	1 r	ng SO4/L	Sous-traitance	Yes	
Thallium (TI)	0.005 r	ng/L	Sous-traitance		
Dissolved thallium (TI)	0.005 r	ng/L	Sous-traitance		
Titanium (Ti)	0.01 r	ng/L	Sous-traitance		
Uranium (U)	0.001 r	ng/L	Sous-traitance		
Vanadium (V)	0.0005 r	ng/L	Sous-traitance	Yes	
Zinc (Zn)	0.001 r	ng/L	Sous-traitance	Yes	
Dissolved Zinc	0.001 r	ng/L	Sous-traitance		

Lab number: V-28321
Sample name: NP2 split
Sampling location: NP2 split

Sampling date: July 30, 2013

Sampling hour: 15:00

Parameter

Alkalinity mg CaCO3/L Standard name STD alcalinité

Result 158 Accuracy 91% Limit 123 - 167

Aluminium (Al) mg/L Blank <0.006

Standard name DMR-0311-2013-23m

Result 5.77 Accuracy 93.2%

Limit 5.26 - 7.12

Dissolved Aluminium (Al) mg/L Blank <0.006

Standard name DMR-0311-2013-23

Result 6.22 Accuracy 99.5% Limit 5.26 - 7.12

Antimony (Sb) mg/L Blank <0.0001

Standard name DMR-0311-2013-23m

Result 0.1885 Accuracy 85.3%

Limit 0.188 - 0.254

Dissolved Silver (Ag) mg/L

Blank < 0.0002

Arsenic (As) mg/L Blank <0.0005

Standard name DMR-0311-2013-23m

Result 0.3401 Accuracy 79.8% Limit 0.198 - 0.368

Dissolved Arsenic (As) mg/L Blank < 0.0005

Standard name DMR-0311-2013-23

Result 0.3176 Accuracy 95.5% Limit 0.236 - 0.372

Ammonia nitrogen (NH3-NH4) m Blank <0.01

Standard name DMR-0446-2013-NH3

Result 5.3 Accuracy 98.5% Limit 4.44 - 6.00

Barium (Ba) mg/L Blank <0.0005

Standard name DMR-0311-2013-23m

Result 2.146 Accuracy 89.4% Limit 2.0 - 2.8

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Lab number: V-28321
Sample name: NP2 split
Sampling location: NP2 split
Sampling hour: 15:00

Sampling location.	THI Z SPIIL		Sampling nour. 15.00
Parameter			
Dissolved Barium (Ba) mg/L	Blank	<0.0005	
	Standard name	DMR-0311-2013-23	
	Result	2.254	
	Accuracy	93.9%	
	Limit	2.04 - 2.76	
Beryllium (Be) mg/L	Blank	<0.0005	
	Standard name	DMR-0311-2013-23m	
	Result	1.591	
	Accuracy	93.6%	
	Limit	1.4 - 2.0	
Boron (B) mg/L	Blank	<0.01	
	Standard name	DMR-0311-2013-23m	
	Result	2.5	
	Accuracy	86.8%	
	Limit	2.45 - 3.31	
Cadmium (Cd) mg/L	Blank	<0.00002	
	Standard name	DMR-0311-2013-23m	
	Result	0.91111	
	Accuracy	98.8%	
	Limit	0.8 - 1.0	
Dissolved Cadmium (Cd) me	g/L Blank	<0.00002	
, ,	Standard name	DMR-0311-2013-23	
	Result	0.87322	
	Accuracy	97%	
	Limit	0.8 - 1.0	
Chloride mg/L	Blank	<0.5	
-	Standard name	DMR-0446-2013-CL	
	Result	100	
	Accuracy	99%	
	Limit	87 - 111	
Chrome (Cr) mg/L	Blank	<0.0006	
. , -	Standard name	DMR-0311-2013-23m	
	Result	4.064	
	Accuracy		
	Limit	3.44 - 4.66	
Cobalt (Co) mg/L		<0.0005	
, , 3		DMR-0311-2013-23m	
	Result		
	Accuracy		
		1.33 - 1.79	

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Lab number: V-28321
Sample name: NP2 split
Sampling location: NP2 split
Sampling hour: 15:00

	141 Z opiit		Sampling nour. 15.00
Parameter			
Copper (Cu) mg/L	Blank	<0.0005	
	Standard name	DMR-0311-2013-23m	
	Result	1.404	
	Accuracy	86.8%	
	Limit	1.05 - 1.43	
		<0.0005	
	Standard name	DMR-0311-2013-23	
	Result	1.301	
	Accuracy	95.1%	
	Limit	1.05 - 1.43	
Tin (Sn) mg/L	Blank	<0.001	
Iron (Fe) mg/L	Blank	<0.01	
, , ,	Standard name	DMR-0311-2013-23m	
	Result	11.6	
	Accuracy	89.5%	
		8.9 - 12.1	
Dissolved Iron (Fe) mg/L	Blank	<0.01	
, ,	Standard name	DMR-0311-2013-23	
	Result	10.4	
	Accuracy	99%	
		8.9 - 12.1	
Lithium (Li) mg/L	Blank	< 0.005	
, , ,	Standard name	DMR-0773-2011-18a	
	Result	0.863	
	Accuracy	97.3%	
		0.714 - 0.966	
Manganese (Mn) mg/L	Blank	< 0.0005	
, , ,	Standard name	DMR-0311-2013-23m	
	Result	3.956	
	Accuracy	97.5%	
		3.28 - 4.44	
Dissolved Manganese (Mn)	mg/L Blank	< 0.0005	
3 (, ,	_	DMR-0311-2013-23	
	Result		
	Accuracy		
		3.28 - 4.44	
Mercury (Hg) mg/L		<0.00001	
, (), 3		DMR-0311-2013-14-Hg	
		0.00418	
	Accuracy		

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Lab number: V-28321
Sample name: NP2 split
Sampling date: July 30, 2013

Sampling location: NP2 split Sampling hour: 15:00 Parameter Limit 0.003 - 0.005 Dissolved Mercury (Hg) mg/L Blank < 0.0001 Standard name DMR-0311-2013-14-Hg Result 0.0032 Accuracy 80% Limit 0.003 - 0.005 Molybdenum (Mo) mg/L Blank < 0.0005 Standard name DMR-0311-2013-23m Result 0.6781 Accuracy 96.2% Limit 0.599 - 0.811 Dissolved Molybdenum (Mo) mg Blank < 0.0005 Standard name DMR-0311-2013-23 Result 0.6419 Accuracy 91% Limit 0.599 - 0.811 Ammonia (NH3) mg N/L Blank < 0.05 Standard name DMR-0446-2013-NH3 Result 5.3 Accuracy 98.5% Limit 4.44 - 6.00 Nickel (Ni) mg/L Blank < 0.0005 Standard name DMR-0311-2013-23m Result 1.232 Accuracy 91% Limit 0.96 - 1.30 Blank < 0.0005 Dissolved Nickel (Ni) mg/L Standard name DMR-0311-2013-23 Result 1.147 Accuracy 92.5% Limit 1.05 - 1.43 Nitrate (NO3) mg N/L Blank < 0.01 Nitrite (NO2) mg N/L Blank < 0.01 Standard name DMR-0446-2013-NO2 Result 2.5 Accuracy 99.2% Limit 2.14 - 2.90 Lead (Pb) mg/L Blank < 0.0003 Standard name DMR-0311-2013-23m Result 0.9249

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Version 3^{ième}: 26/10/2005

F-02-06

Lab number: V-28321
Sample name: NP2 split
Sampling date: July 30, 2013

Sampling location: NP2 split Sampling hour: 15:00 Parameter Accuracy 97.2% Limit 0.8 - 1.0 Dissolved Lead (Pb) mg/L Blank < 0.0003 Standard name DMR-0311-2013-23 Result 0.9053 Accuracy 99.4% Limit 0.8 - 1.0 Selenium (Se) mg/L Blank < 0.001 Standard name DMR-0311-2013-23m Result 1.46 Accuracy 91.9% Limit 1.15 - 1.55 Dissolved Selenium (Se) mg/L Blank < 0.001 Standard name DMR-0311-2013-23 Result 1.39 Accuracy 97% Limit 1.15 - 1.55 Strontium (Sr) mg/L Blank < 0.005 Standard name DMR-0773-2011-18a Result 1.25 Accuracy 99.2% Limit 1.05 - 1.43 Sulfate (SO4) mg SO4/L Blank < 0.6 Standard name DMR-0446-2013-SO4 Result 117 Accuracy 93.6% Limit 99 - 121 Thallium (TI) mg/L Blank < 0.005 Standard name STD TI SC0187114 1000ppm Result 1001 Accuracy 99.9% Limit 850 - 1150 Dissolved thallium (TI) mg/L Blank < 0.005 Standard name STD TI SC0187114 1000ppm Result 1001 Accuracy 99.9% Limit 850 - 1150 Titanium (Ti) mg/L Blank < 0.01 Uranium (U) mg/L Blank < 0.001 Standard name DMR-0311-2013-23m

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

Lab number: V-28321
Sample name: NP2 split
Sampling leasting: NP3 split
Sampling leasting: NP3 split
Sampling leasting: NP3 split

Sampling location: NP2 split Sampling hour: 15:00 Parameter Result 2.01 Accuracy 85.1% Limit 1.49 - 2.01 Vanadium (V) mg/L Blank < 0.0005 Standard name DMR-0311-2013-23m Result 1.950 Accuracy 98% Limit 1.69 - 2.29 Zinc (Zn) mg/L Blank < 0.001 Standard name DMR-0311-2013-23m Result 5.07 Accuracy 87.6% Limit 3.83 - 5.19 Dissolved Zinc mg/L Blank < 0.001 Standard name DMR-0311-2013-23 Result 4.78 Accuracy 94% Limit 3.83 - 5.19

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

Additional information

Lab number: V-28321
Sample name: NP2 split
Sampling location: NP2 split
Sampling hour: 15:00

Lab method	Method reference
M-TIT-1.0	MA.303-Titr Auto 2.0
M-MET-3.0	MA.200-Mét. 1.2
M-NH3-2.0	MA.300-N 2.0
M-CL-2.0	MA.300-lons 1.3
M-CI-1.0	MA.300-Anions 1.0
M-NITR-2.0	MA.300-NO3 2.0
M-Lix-1.0	MA.100-Lix.com. 1.1
M-SULF-2.0	MA.300-lons 1.3

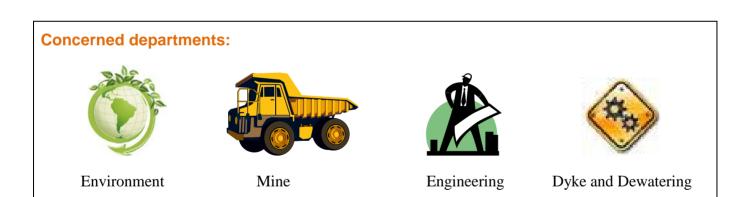
Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

APPENDIX 2

SOP: Management of Water in Diversion Ditches, Seeps, and Collection Locations during Freshet

Water Management in Diversion Ditches, Seeps, and Collection Locations during Freshet



PROCEDUR		CEDURE NUMBER:	MBK-ENV-0006	
People	Mine, Dikes,	Prepared by	Jeffrey Pratt Environmental Coordinator	
concerned	Engineering and Environment	Authorized by	Kevin Buck Environmental Superintendent	
Effective :	September 4, 2013		"Safety First, Safety Last Safety Always!" "No Repeats" – Our Stepping Stone to ZERO HARM	

This procedure corresponds to the required minimum standard. Each and everyone also have to comply with the rules and regulations of the Nunavut Government in terms of health and safety at work.

Objective:

This procedure is put in place to give specific dates in which actions must be taken to avoid excess non-contact water impacting on site mining activity, and also to prevent excessive pooling of contact water that could lead to a release of contact water off the mine site. This procedure will keep the project in conformance with NWB license, Part D, Item 33; Part E, Item 9.

Water Management in Diversion Ditches, Seeps, and Collection Locations during Freshet

Management of Water in Diversion Ditches, Seeps, and Collection Locations during Freshet

Procedure	Risks / Impacts				
Diversion Ditches					
 No later than May 1, all diversion ditches must be cleaned free of ice and snow to allow freshet melt water to flow freely and prevent any obstructions within the diversion ditches. 	Avoid Environmental Impact Avoid Excess water on Mine Site				
Culverts under Vault road are to be steamed, if necessary, to free ice obstructions.	Avoid Environmental Impact Avoid Excess water on Mine Site and road wash out				
 Starting May 1 commence monitoring water moving through the diversion ditch system. Sampling for TSS must be completed by Environment Department, and shall initiate as soon as water flowing. 	Avoid Environmental Impact				
4. If TSS levels are elevated Sediment control measures must be put in place. This may include installation of silt fence, or turbidity barrier. To be conducted by Environment staff	Avoid Environmental Impact				

Water Management in Diversion Ditches, Seeps, and Collection Locations during Freshet

Seep and Collection Locations

1.

May 1st begin weekly inspections of seep areas and melt water collection locations. As per NWB license, Part E, Item 9.

Avoid Environmental Impact

Avoid Excess water on Mine Site

2.

At first sign of melt water collection, contact Environment Department. It will need to be determined if the water requires analysis prior to movement.

Avoid Environmental Impact

Avoid Excess water on Mine Site

3.

At first sign of melt water arrange with Mine or Dyke and Dewatering to begin removing water from seep and collection locations. Be sure to get an approved disposal location from the Environment Department.

Avoid Environmental Impact

4.

Any movement of water must be recorded. Quantity of water moved and location water is drawn and dispensed must be recorded.

Required for Reporting to Government Agencies

5. All actions listed in this SOP are required corrective measures to mitigate any impacts related to surface drainage resulting from the Project's activities on off site receiving waters. As per NWB license, Part D, Item 33.

Avoid Environmental Impact

APPENDIX C

Tailings Storage Facilities – 2013 Instrumentation Review

Tailings Storage Facilities Instrumentation Review

Agnico Eagle Mines-Meadowbank Division

Meadowbank Dike Review Board

Meeting # 14 – September 9 to 11th, 2013

Meadowbank Mine Site, Nunavut

NORTH CELL

Saddle Dam 1

Thermistor – 4 Total T1, T2, T3 and T4

Rockfill Road 1 and 2

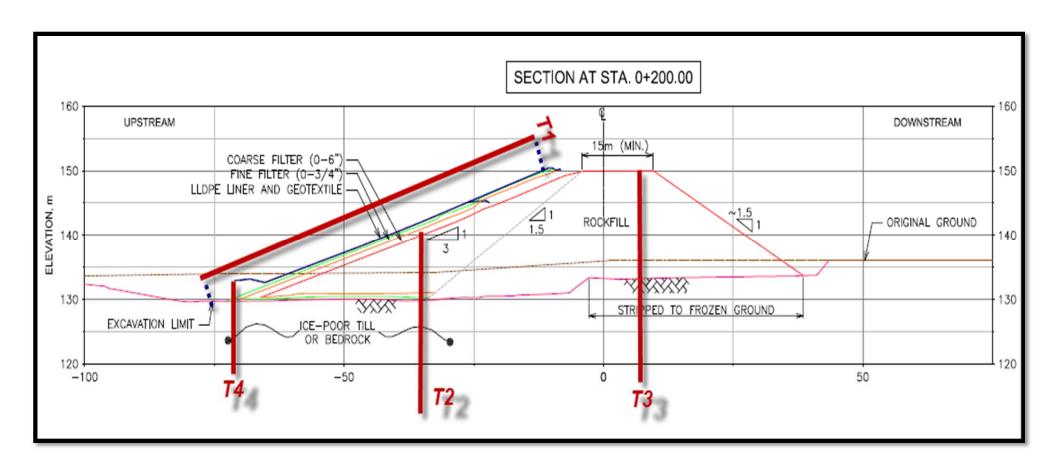
Thermistor – 4 Total T121-1, T122-1, RF1-3 and T73-6

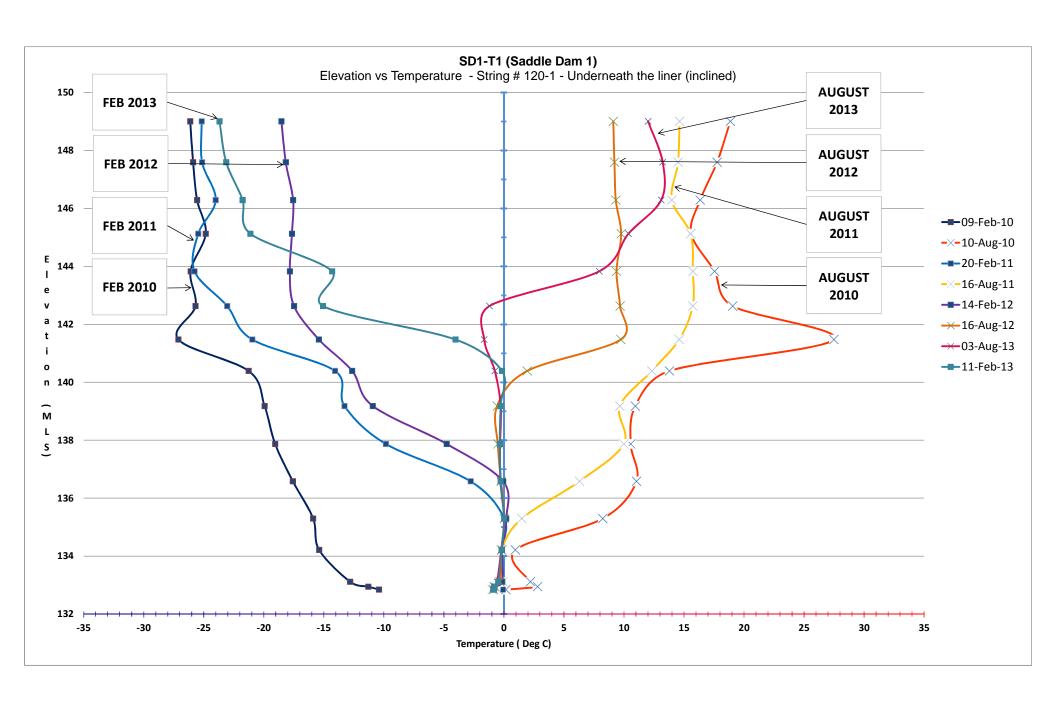
Waste Dump

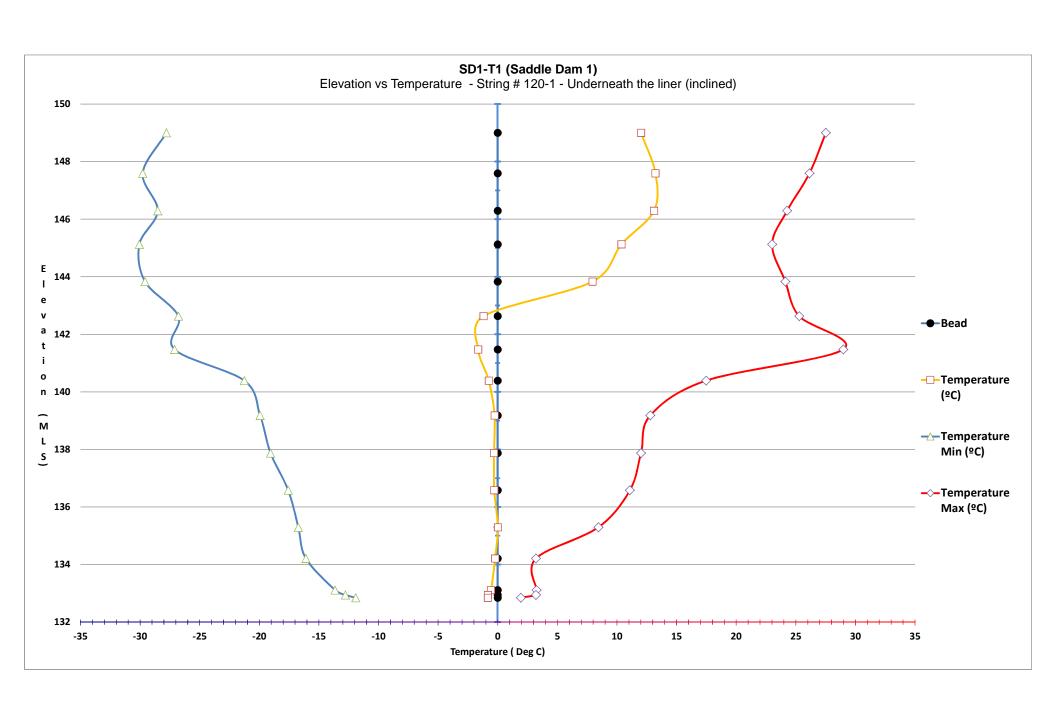
Thermistor - 1 Total RSF1

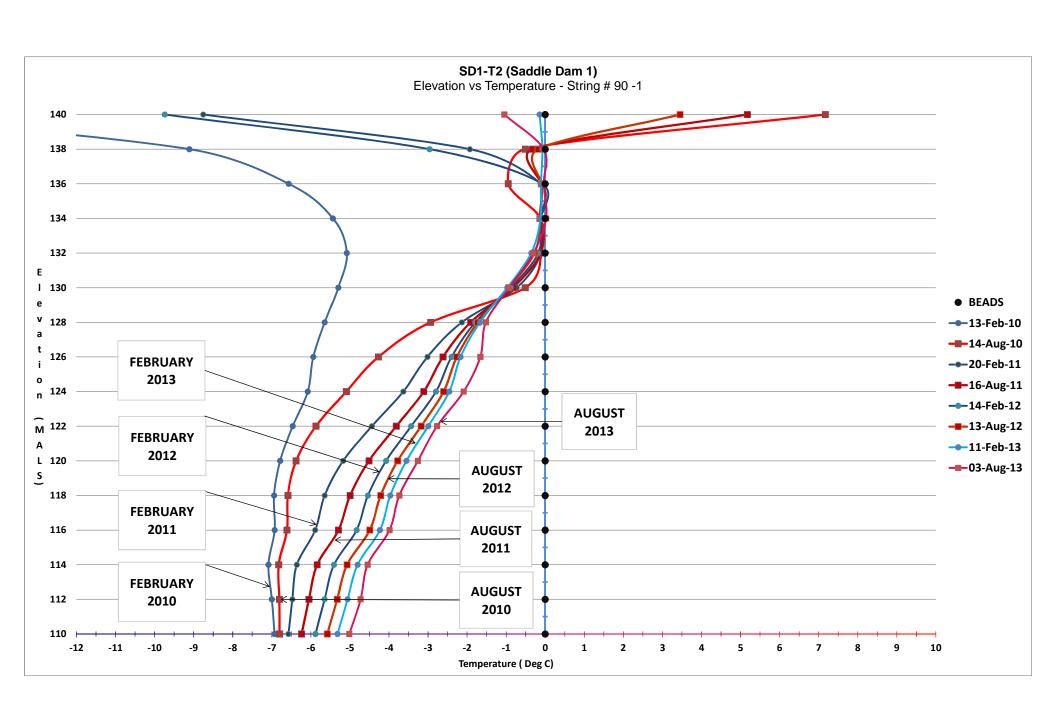
Tailings

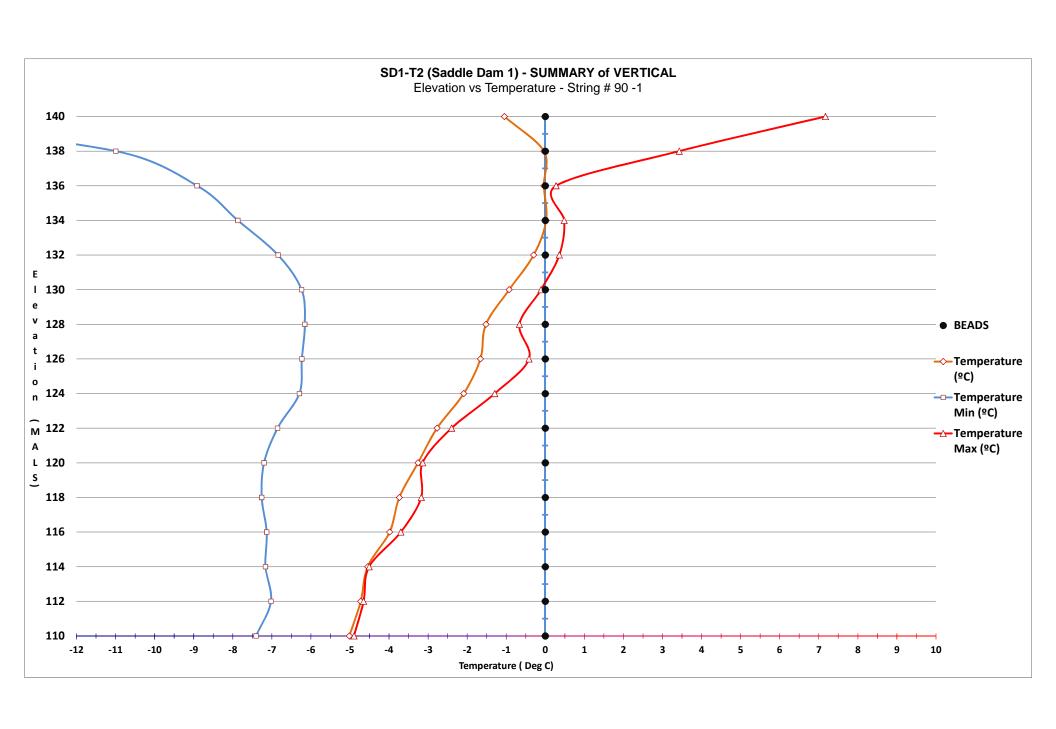
Thermistor – 1 Total, 90-2

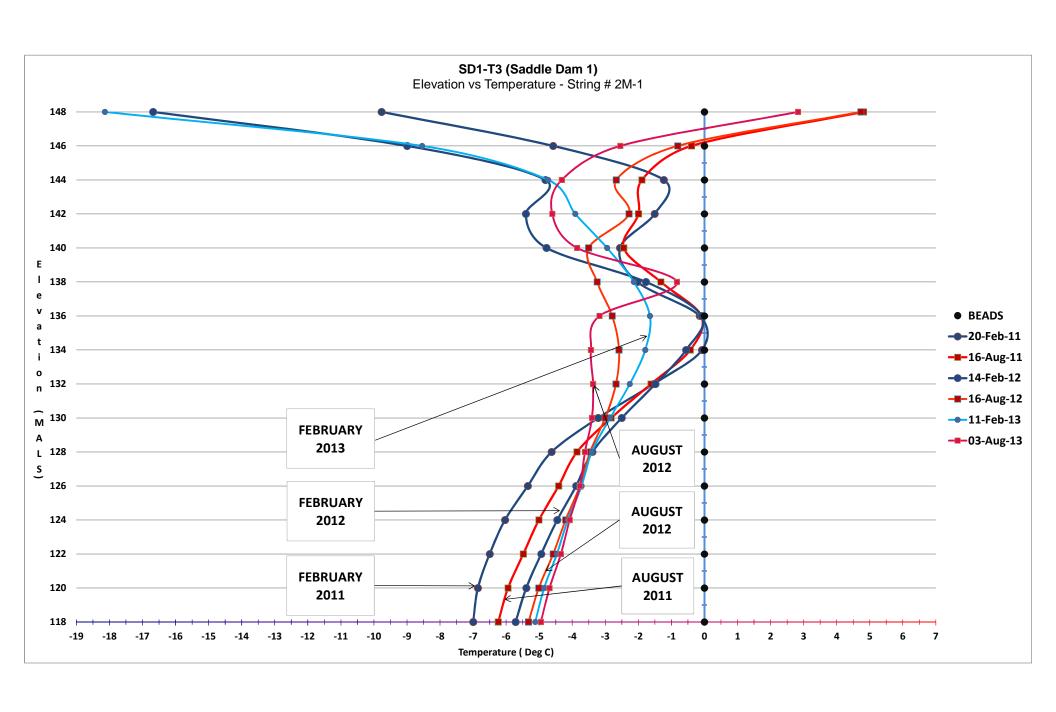

Saddle Dam 2

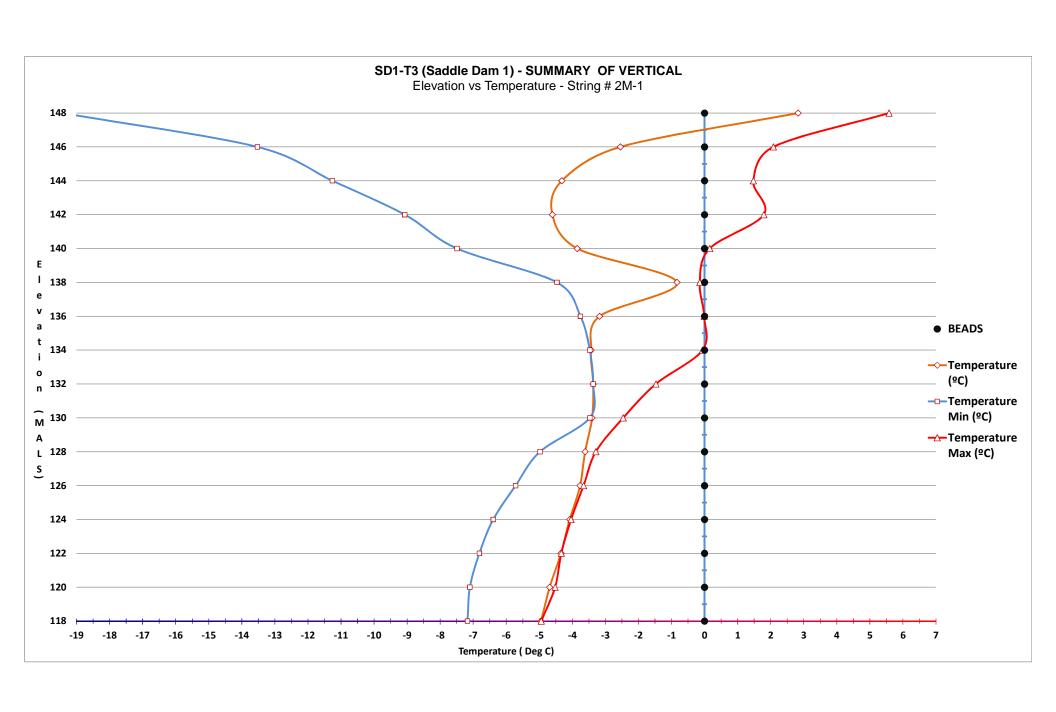

Thermistor – 4 Total T1, T2, T3 and T4

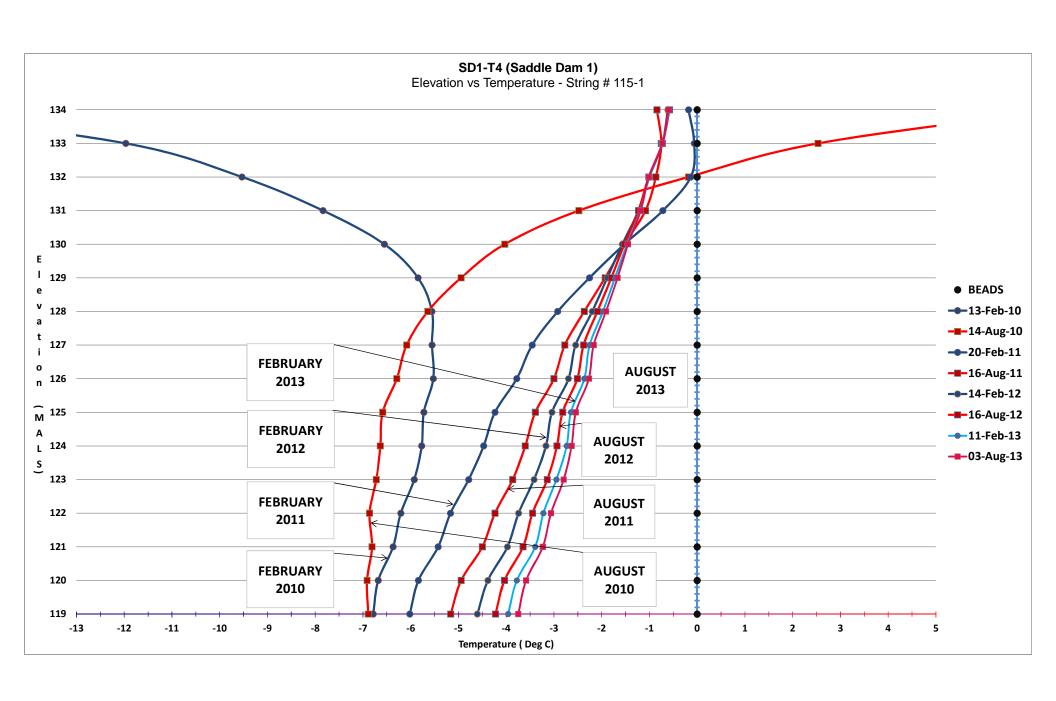

Stormwater Dike

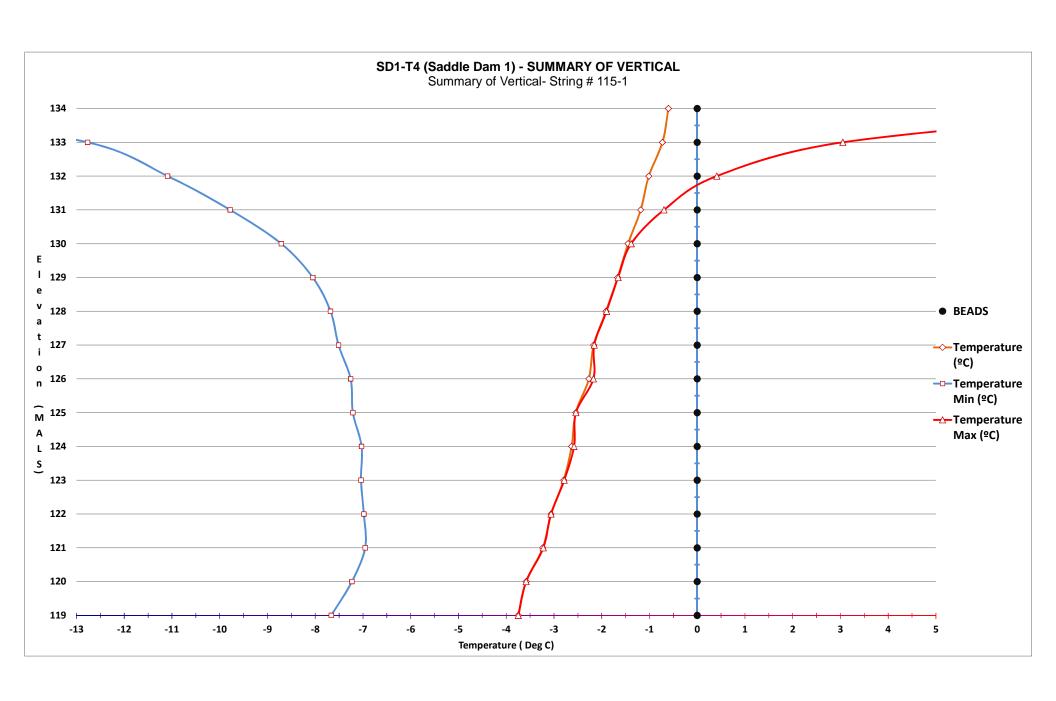

Piezo – 1 Total VWP 13265
Thermistor – 1 Total T147-1

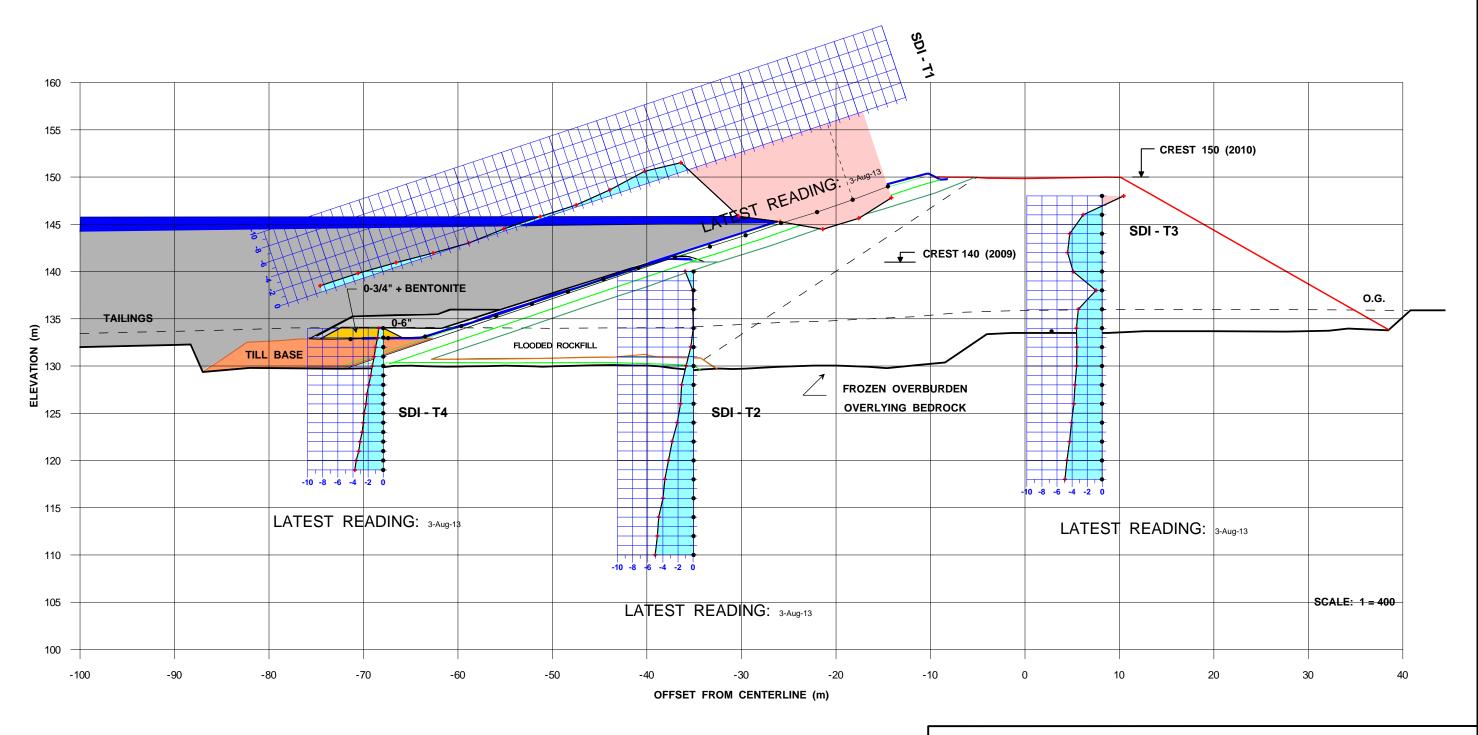

SD₁

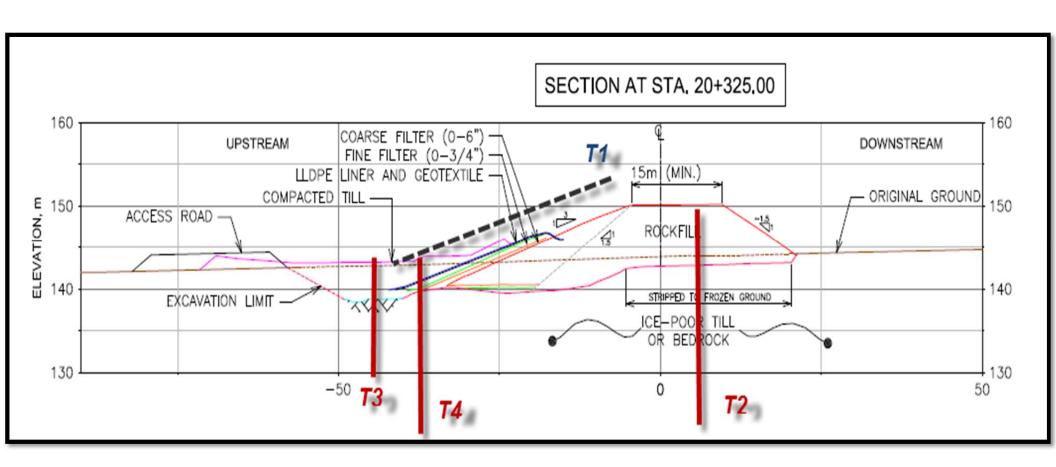


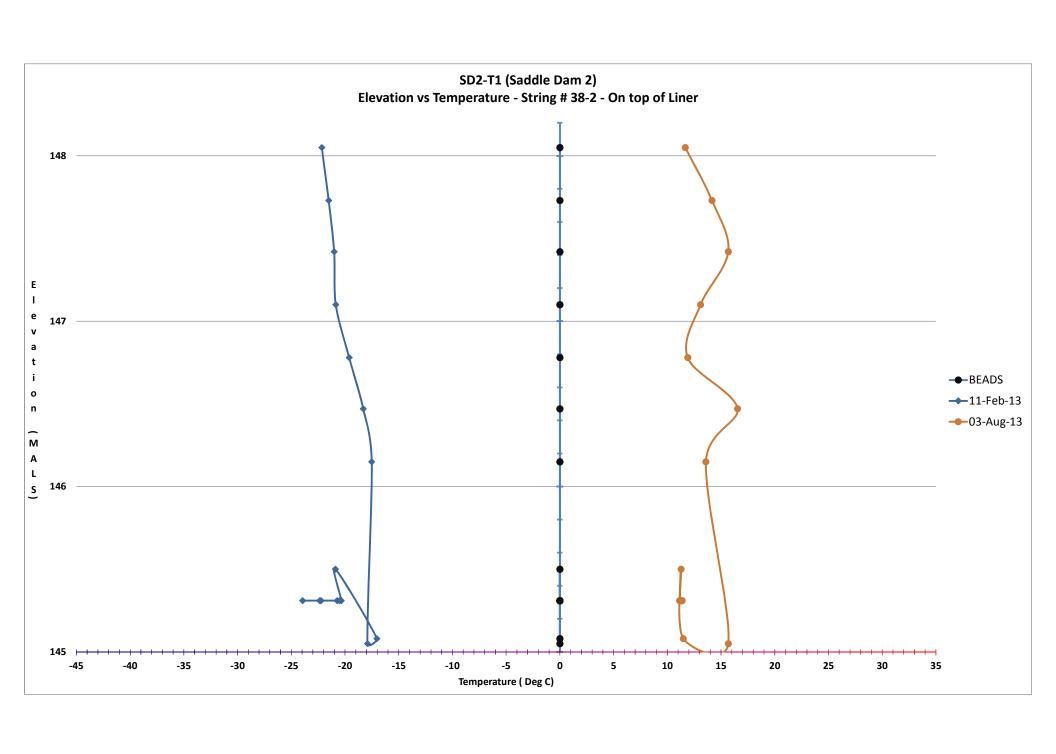


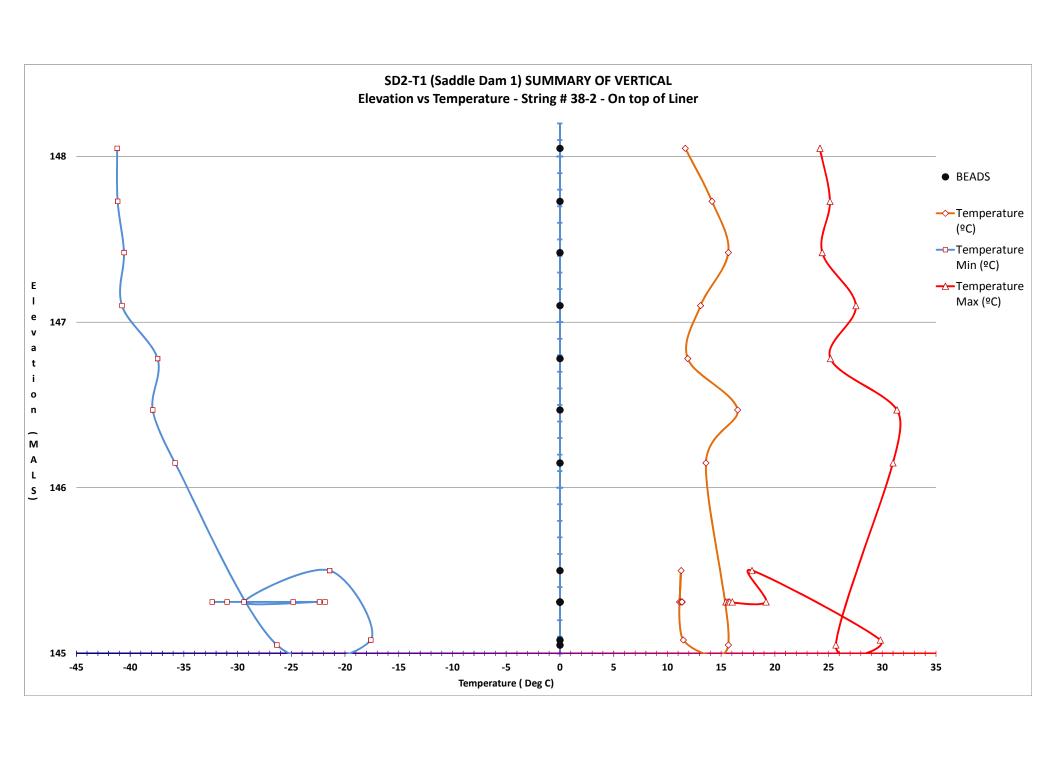


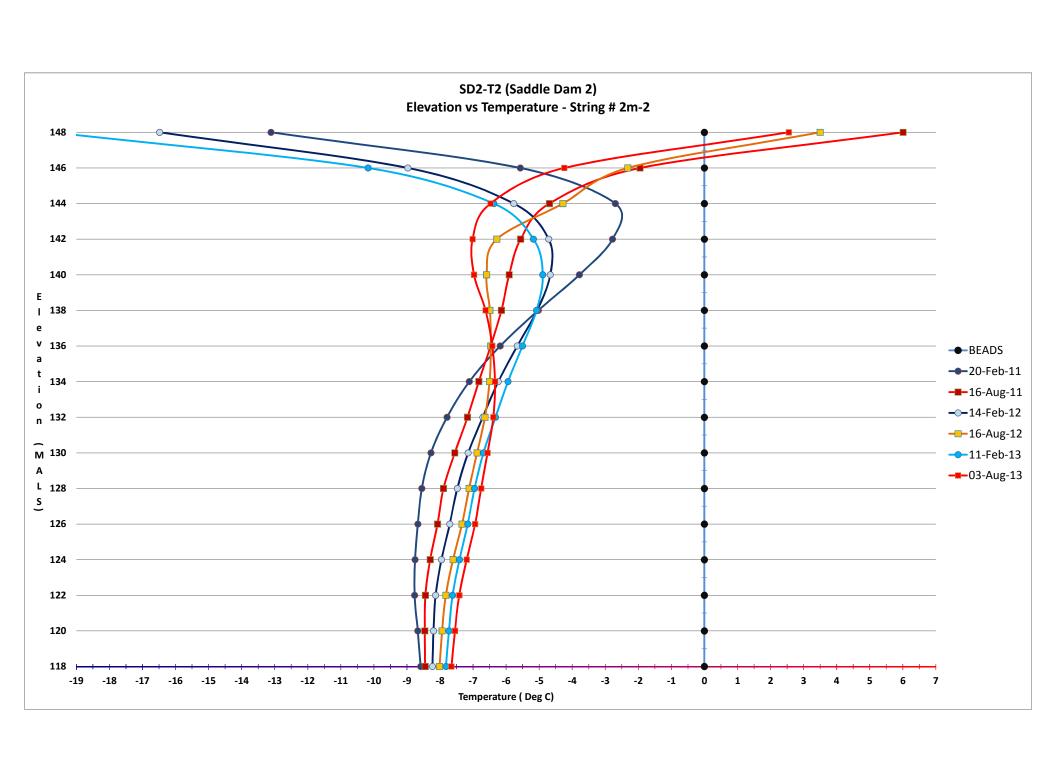


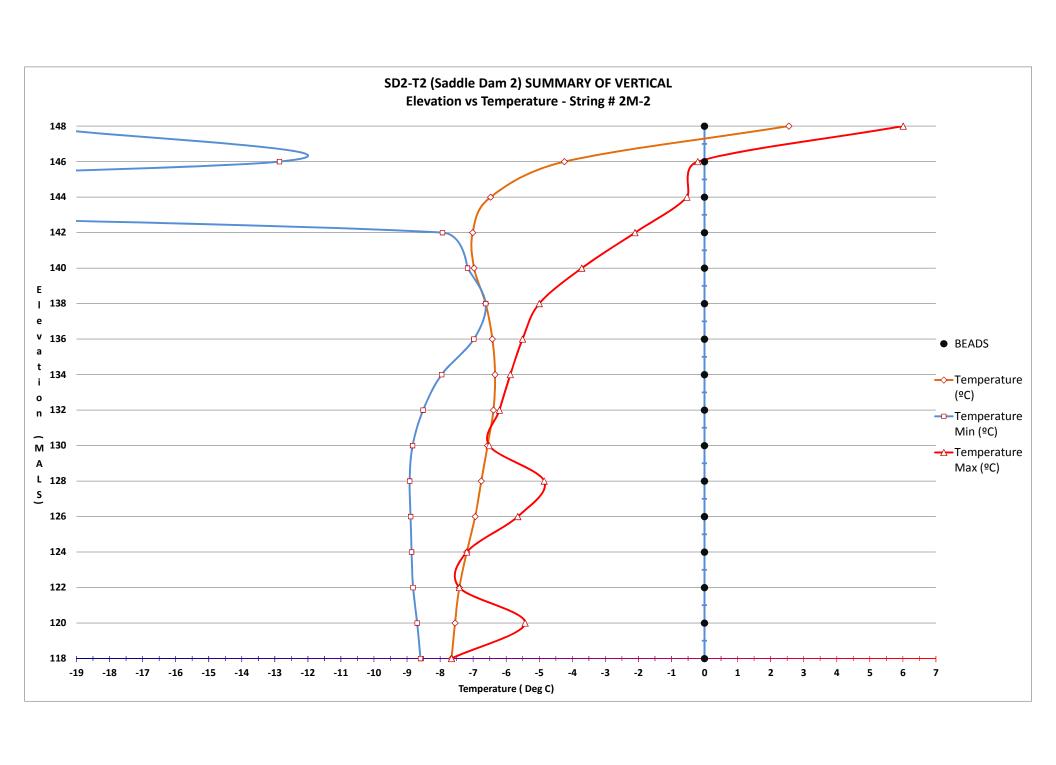


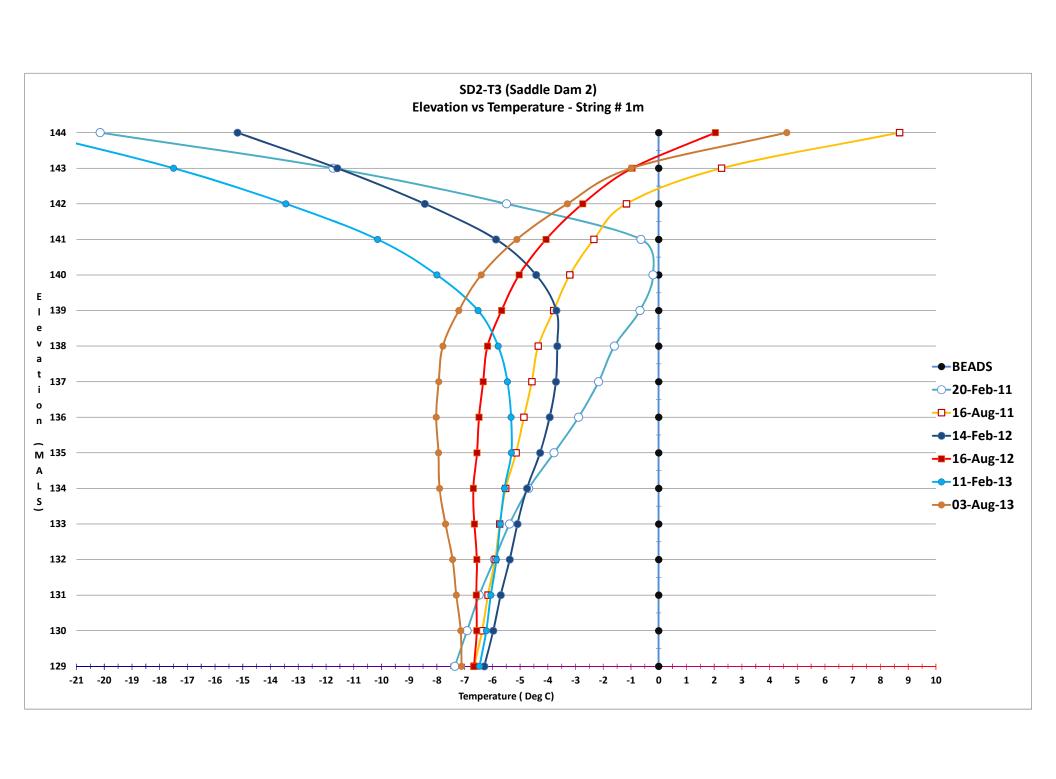


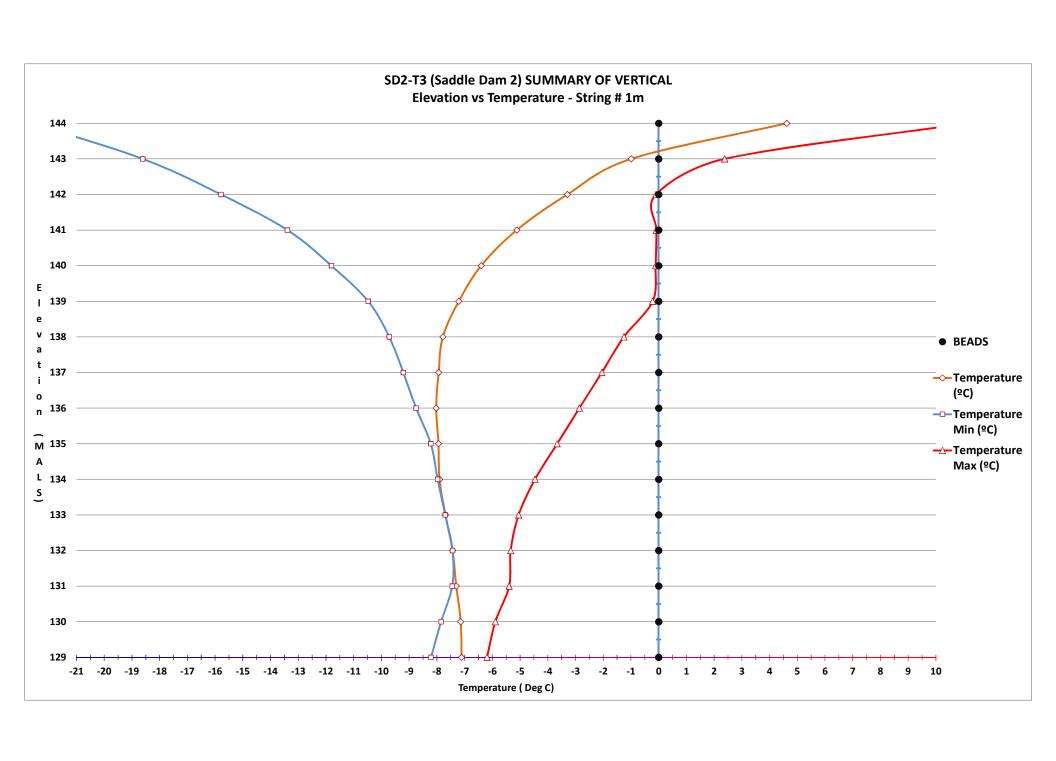


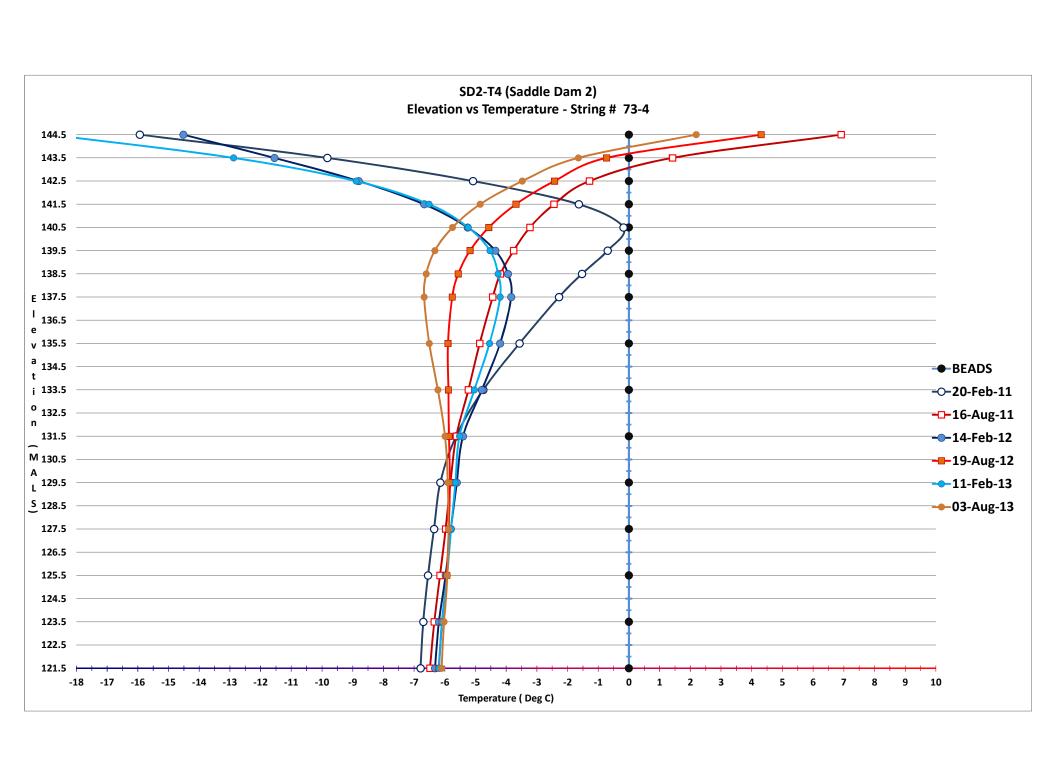

AGNICO-EAGLE MINES LIMITED - MEADOWBANK DIVISION

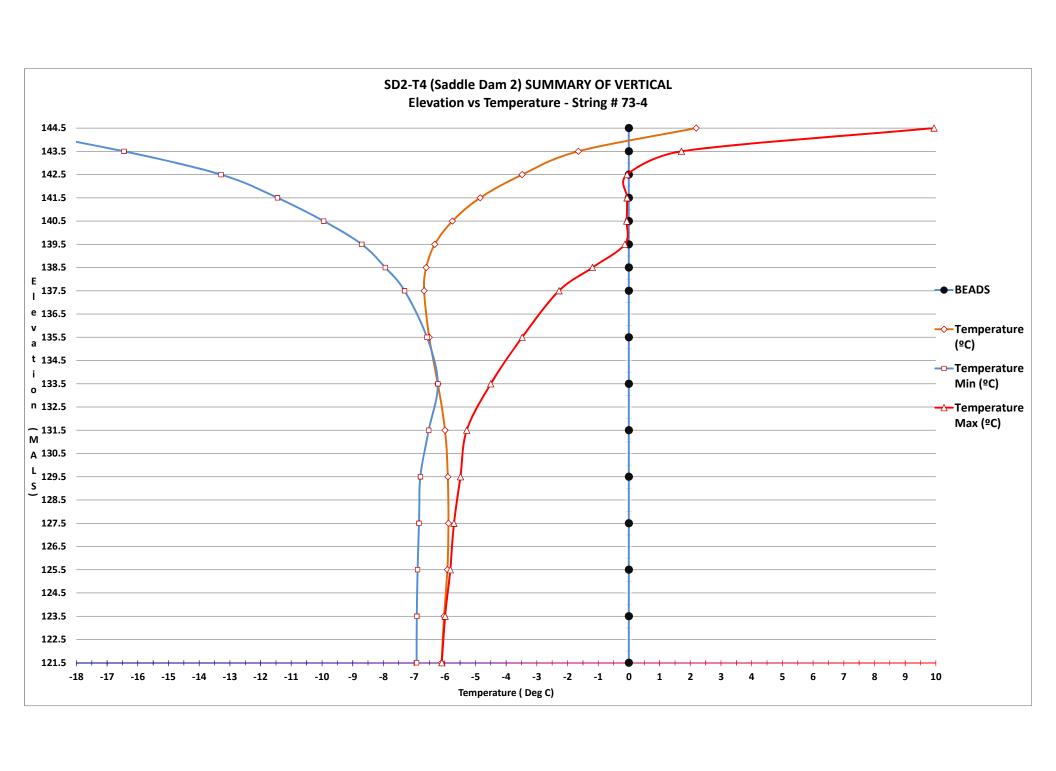

AGNICO EAGLE - MEADOWBANK MINE
SADDLE DAM 1 - GROUND TEMPERATURE MONITORING
LATEST TEMPERATURE PROFILES - AUGUST 2013
TAILINGS ELEVATION: 145 MASL WATER POND ELEVATION: 145.6 MASL

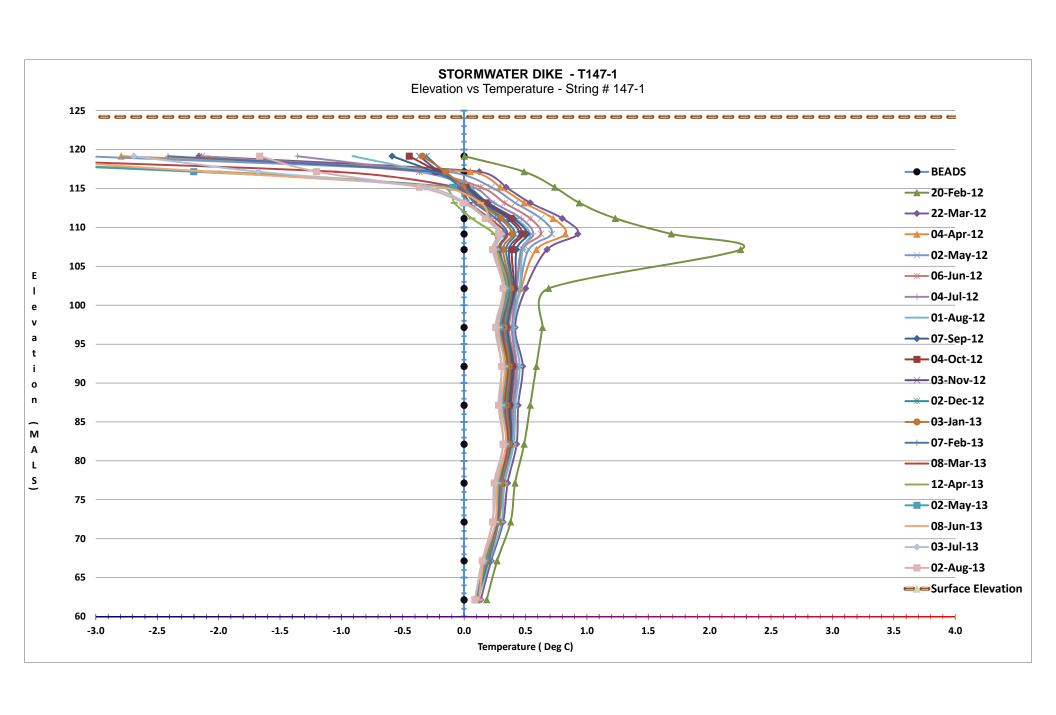

SD₂

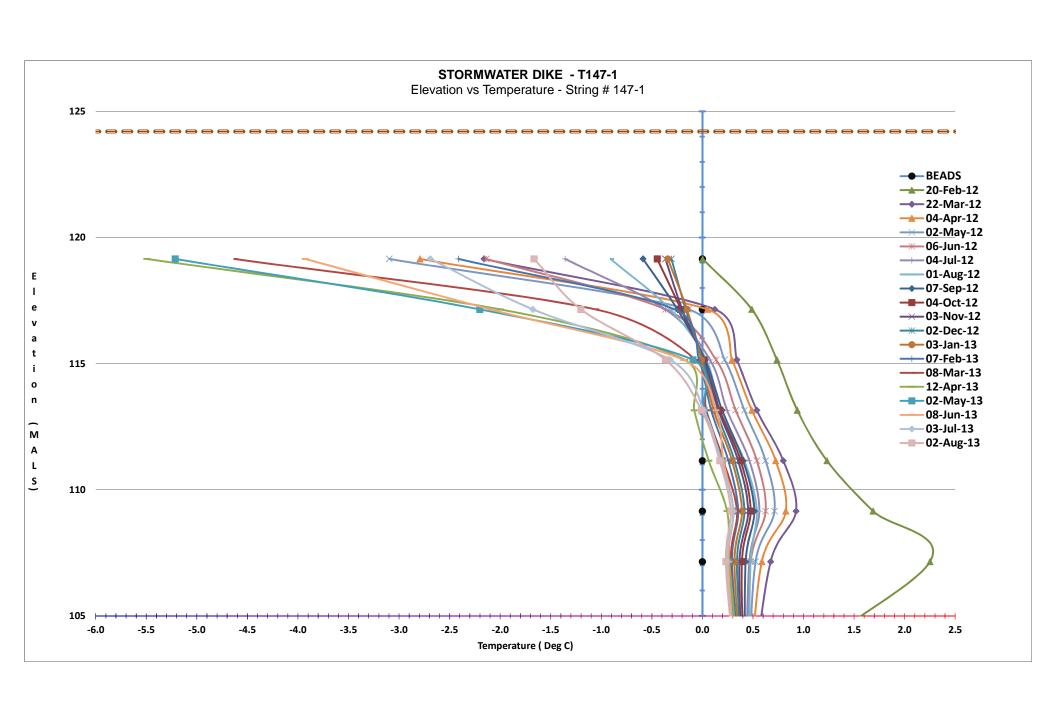


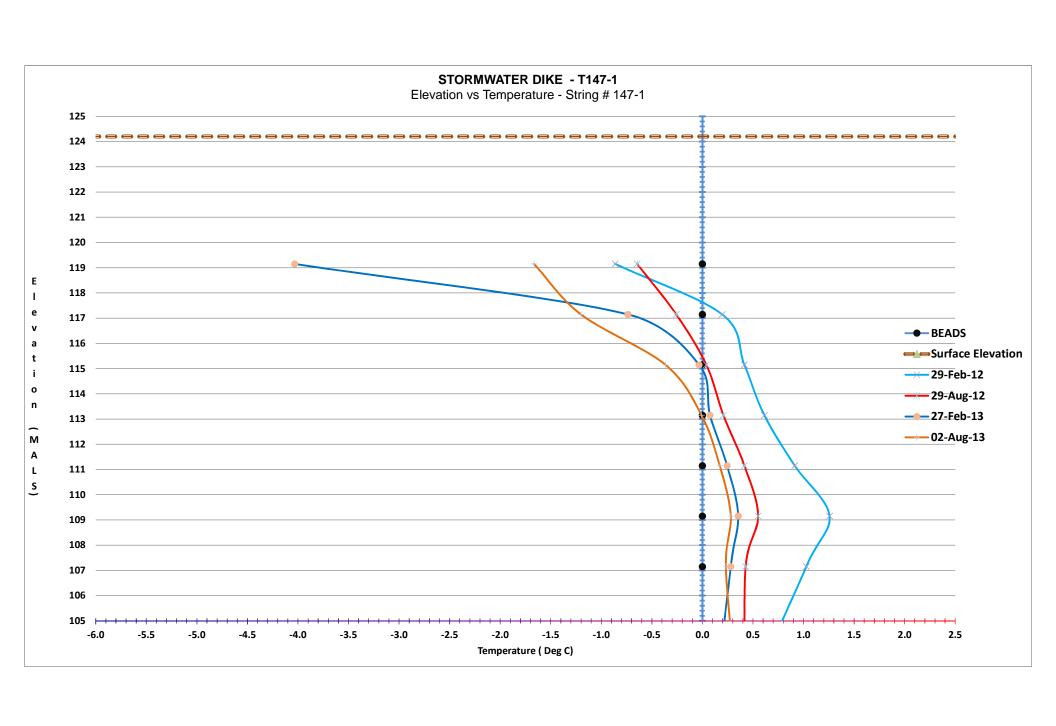


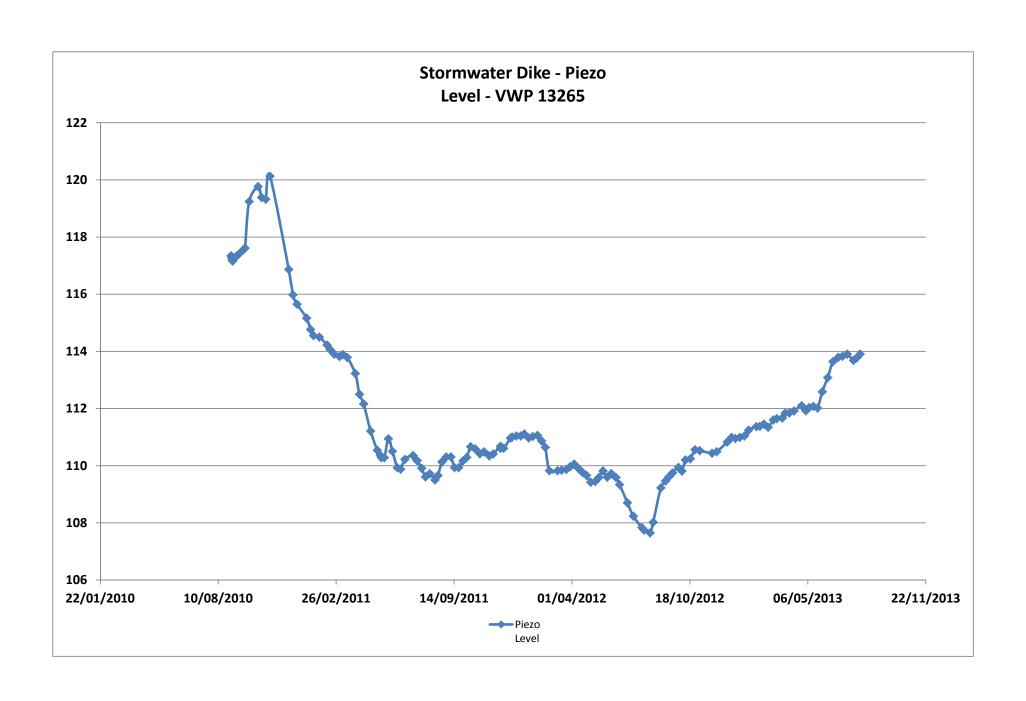


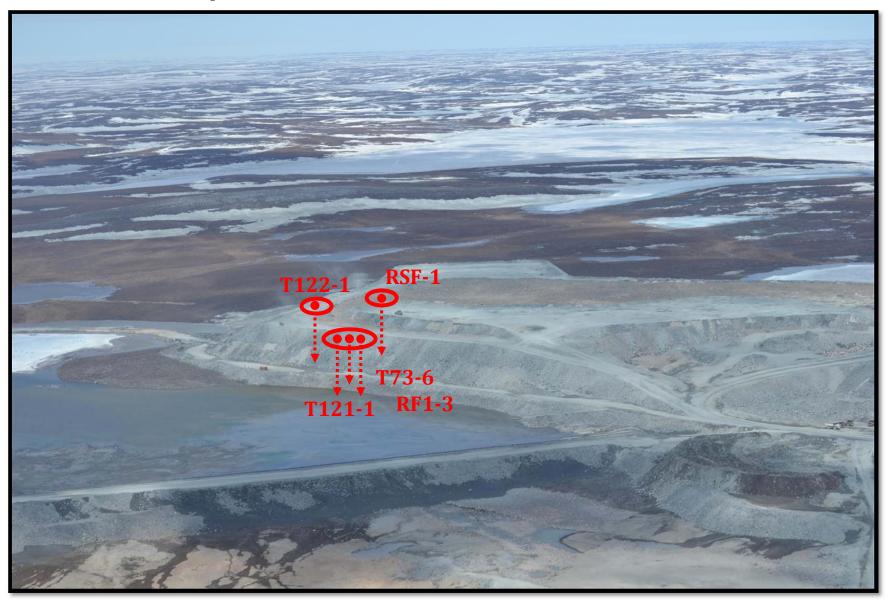


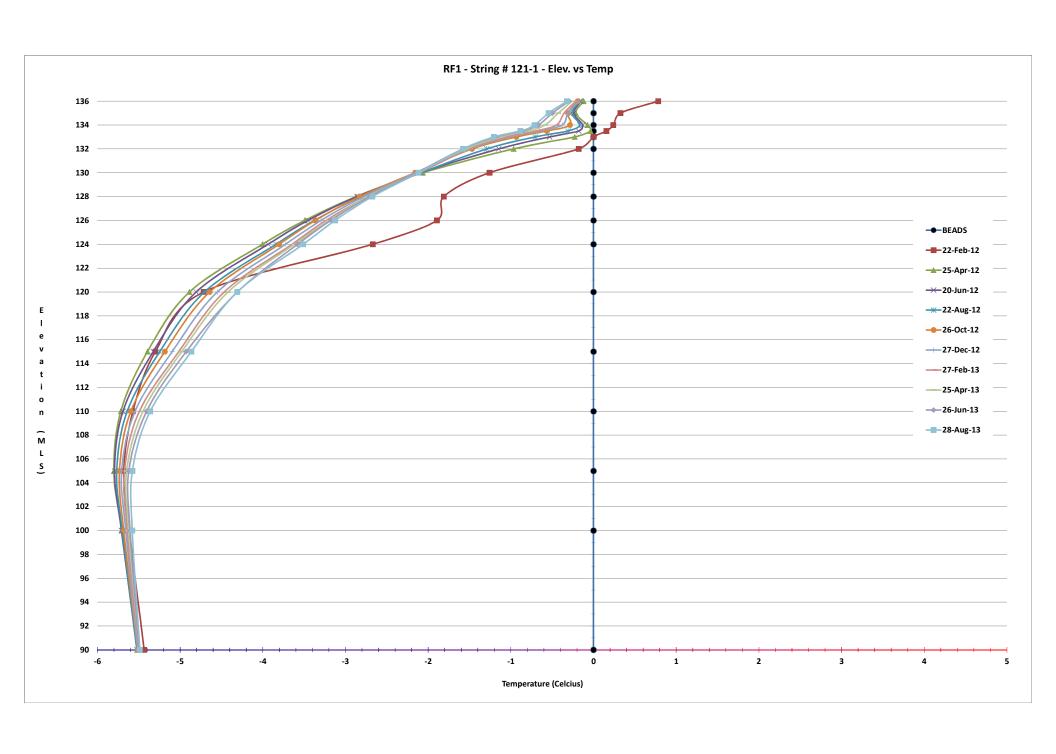


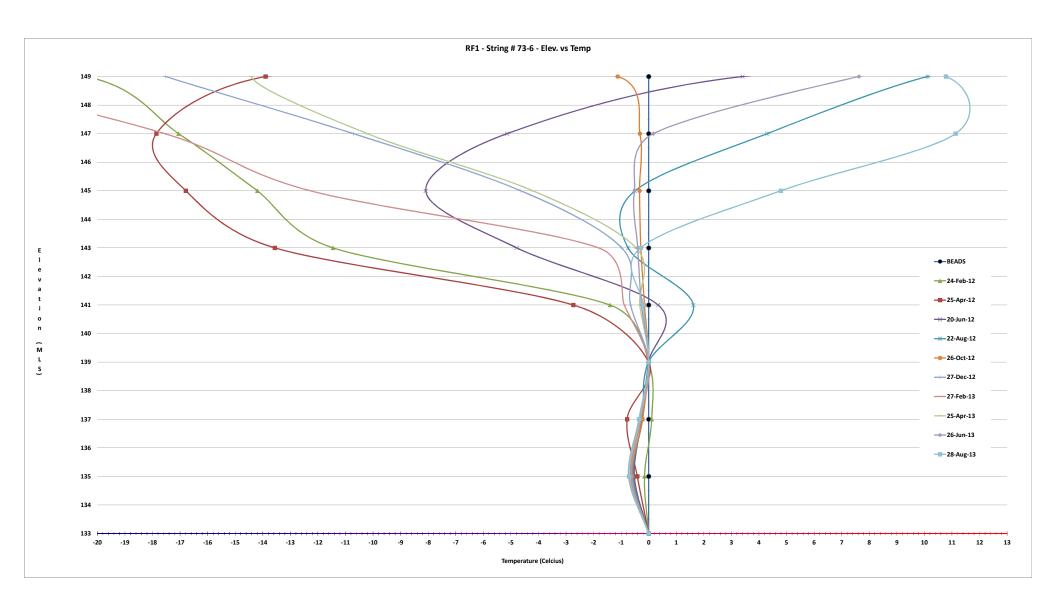


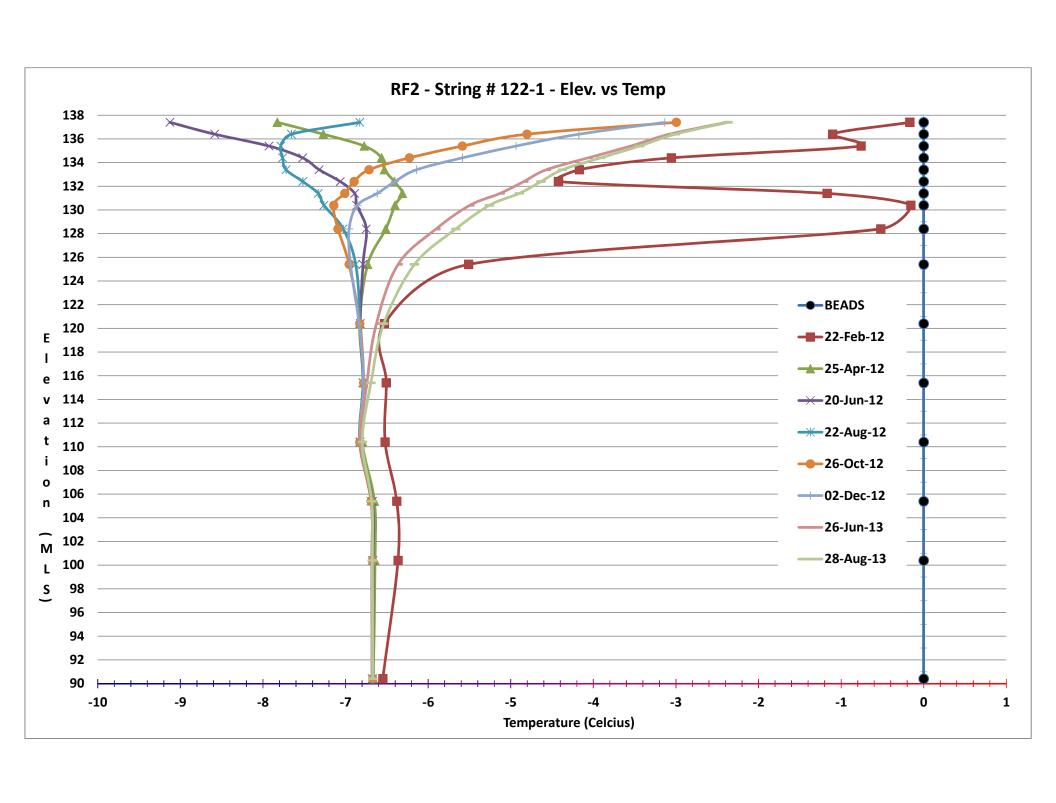


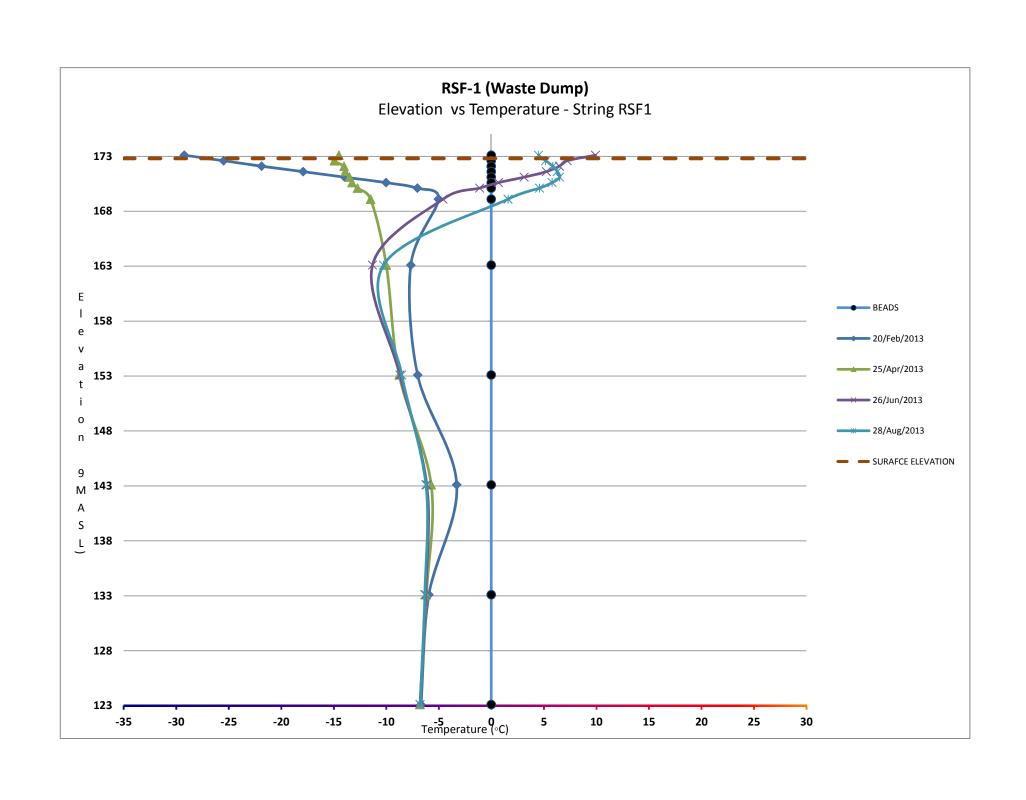

Stormwater

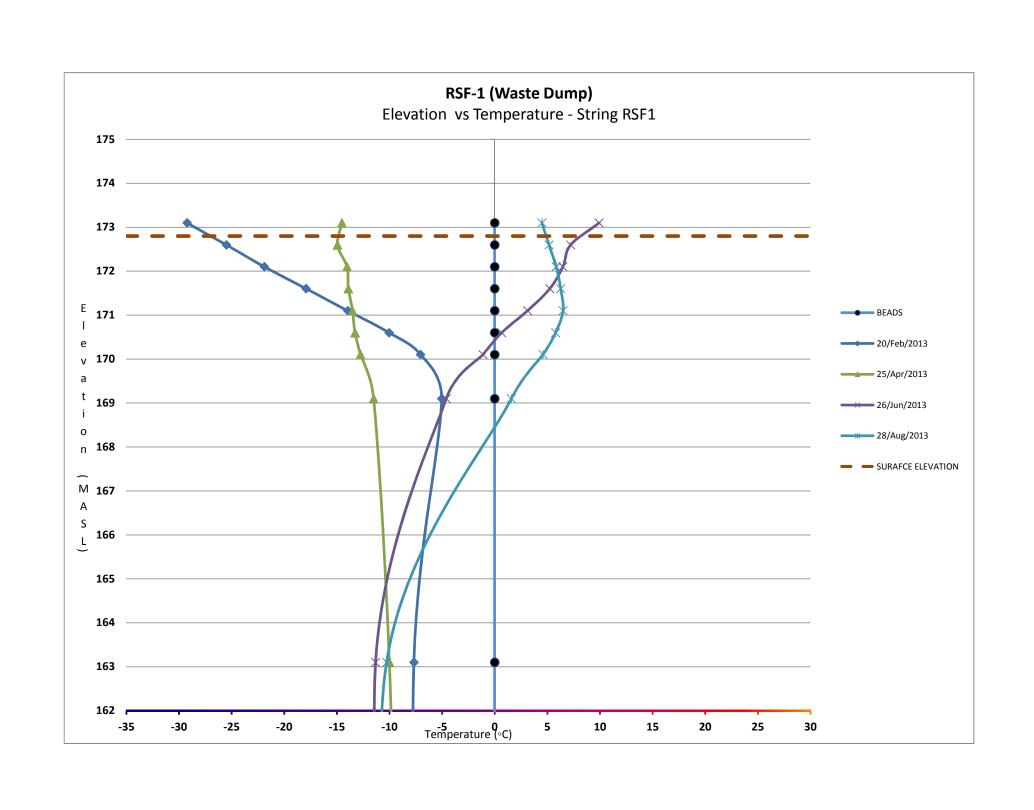


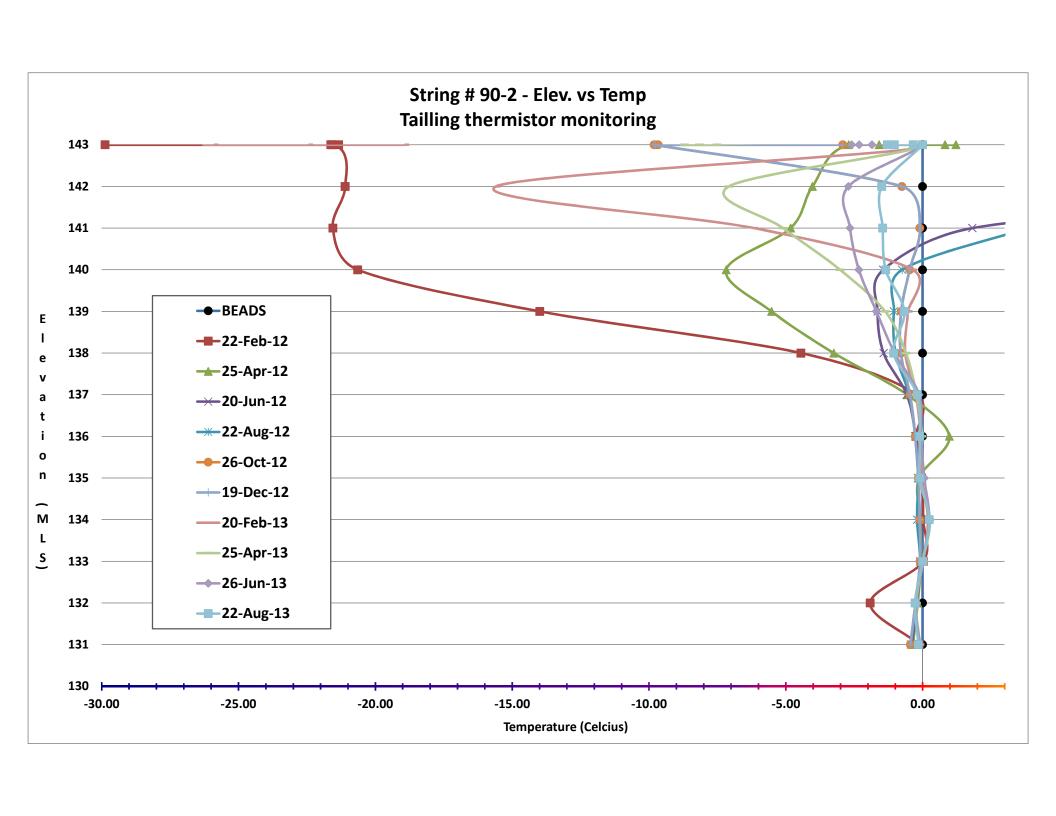


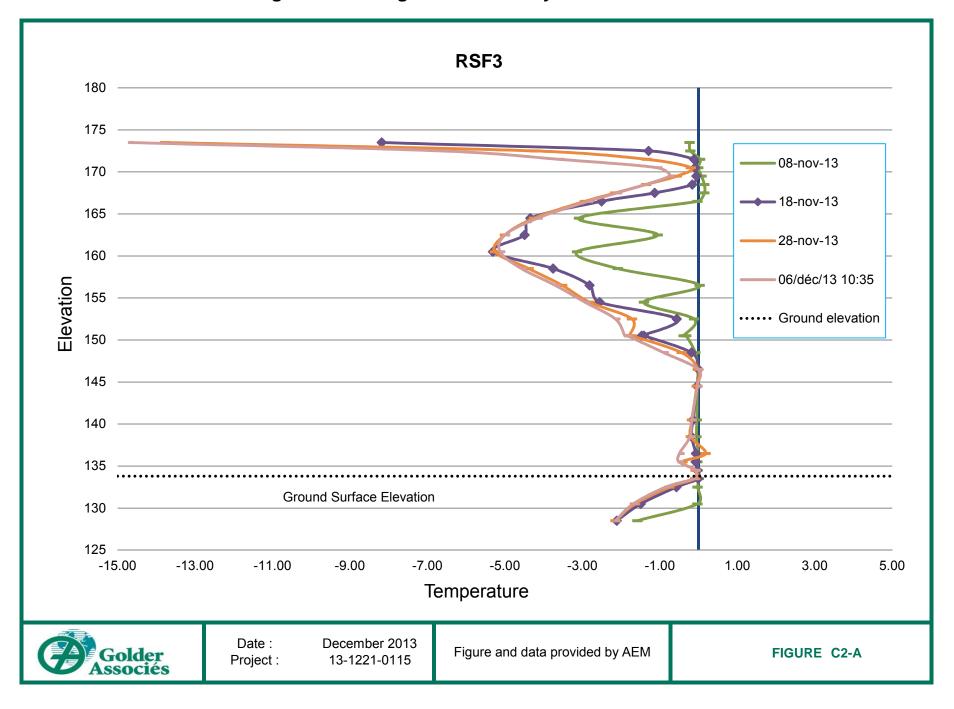


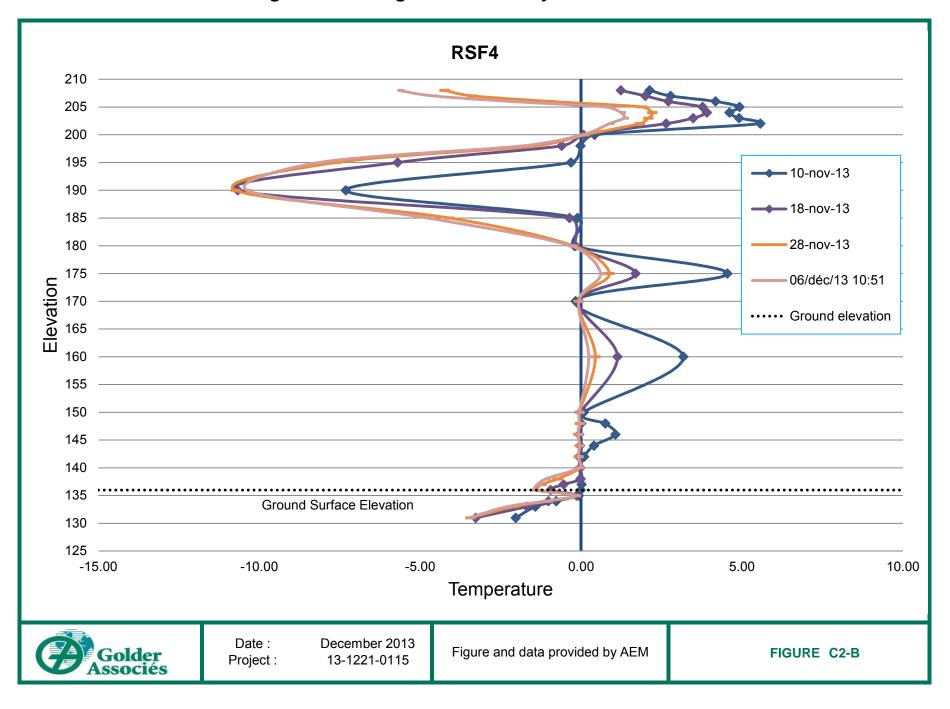

Waste Dump, RF1 and RF2

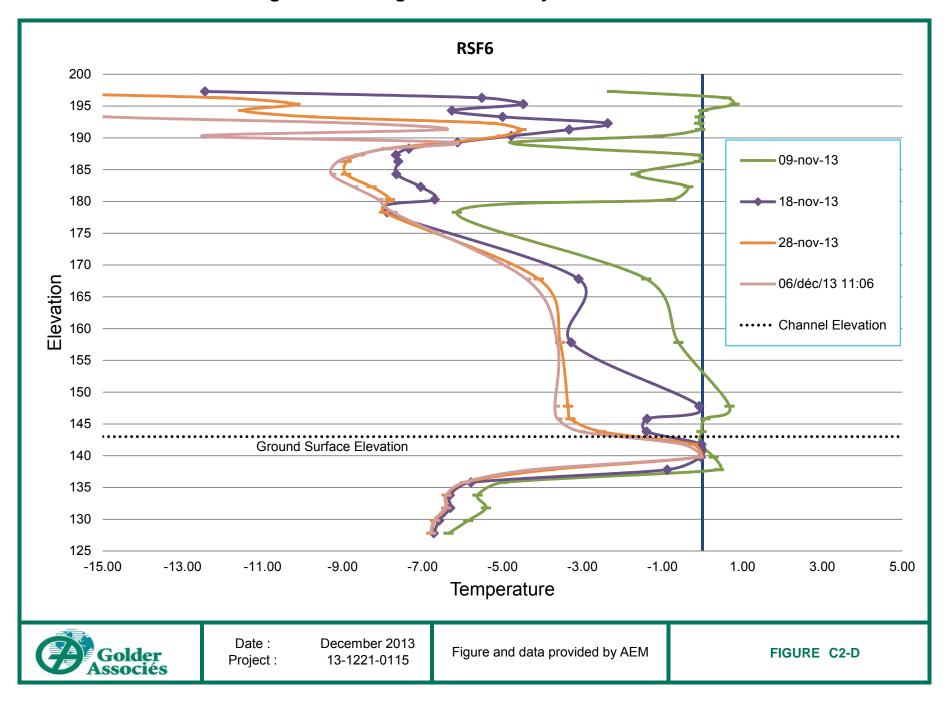


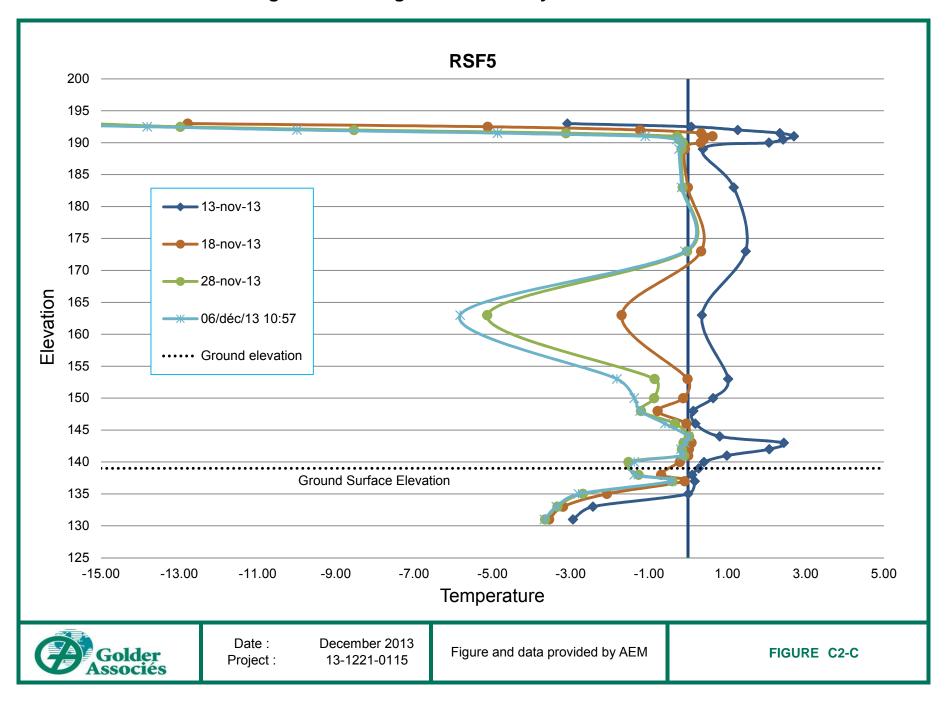









Tailings



APPENDIX D

Construction Summary Report Rock Storage Facility - Interim Till Plug

CONSTRUCTION SUMMARY REPORT ROCK STORAGE FACILITY – INTERIM TILL PLUG

AGNICO-EAGLE MINES LIMITED MEADOWBANK GOLD PROJECT

OCTOBER 30TH, 2013

EXECUTIVE SUMMARY

The construction of the Interim till plug at Meadowbank was conducted from August 26th 2013 and September 1st 2013. The till plug is located on the upstream side of the access road to the North Cell Ditches, between the Waste Rock Storage Facility (RSF) and the NP2 lake. The till plug is designed and constructed as a zoned earth fill structure intended to block seepage coming from the RSF to go into NP2 lake and facilitate seepage collection on the upstream side.

Work carried out during construction of the till plug included excavation of soft sediment, till placement and water seepage control work. This construction report issued by AEM presents the general construction procedure.

As-Built data have been sent to the Tailings Storage Facility (TSF) designer for integration of the structure in the North Tailings Cell revised design.

DOCUMENT CONTROL

Document Version	Date	Revised Section	Revision
Draft	2013-09-30		
Final	2013-10-30		

CONSTRUCTION SUMMARY REPORT ROCK STORAGE FACILITY – INTERIM TILL PLUG

TABLE OF CONTENT

SECTION	۱ 1.0 - IN	TRODUCTION	1
SECTION	N 2.0 - SC	OPE	2
SECTION	N 3.0 - DE	ESIGN AND TECHNICAL SPECIFICATIONS	2
3.1	FILL N	MATERIALS AND PLACEMENT SPECIFICATIONS	2
	3.1.1	Zone 1 – NPAG Rockfill	3
		Zone 1A - Fine Rockfill (0-200 mm)	
		Zone 2 –Till	
SECTION	N 4.0 - C0	DNSTRUCTION ACTIVITIES AND DESCRIPTION OF THE WORK	5
4.1		DEWATERING AND SEEPAGE CONTROL	
4.2		SITION LAYER OF ZONE 1A FINE ROCKFILL ALONG THE ROAD	
4.3	EXCA	VATION OF THE TRENCH BELOW THE ROAD	6
4.4		2 TILL PLACEMENT IN THE EXCAVATION AND ALONG THE ROAD	
4.5		1A FINE ROCKFILL PLACEMENT OVER THE TILL AS EROSION	
		ECTION	
SECTION	N 5.0 - Q0	CONTINUITY TESTING AND RESULTS	7
5.1		NSPECTION AND PROCEDURE REVIEW	
SECTION	N 6.0 - OF	PERATION AND MONITORING	8
SECTION	N 7 0 - SI	JMMARY AND CLOSURE	۶

APPENDIX

APPENDIX A Selected Construction Photos

APPENDIX B As-Built Drawings

CONSTRUCTION SUMMARY REPORT ROCK STORAGE FACILITY – INTERIM TILL PLUG

SECTION 1.0 - INTRODUCTION

The Portage Rockfill Storage Facility (RSF) at Meadowbank is located in the north portion of the main mine site, adjacent to the Tailing Storage Facilities (TSF). The Rockfill Roads (RF1 and RF2) along the west side of the RSF are part of the TSF North Cell. The North Cell Diversion Ditches (Diversion Ditches) are located around the North Cell to keep freshet surface drainage water from contacting the RSF and the TSF. The East ditch flows through Lake NP-2 and connects to Lake NP-1. Figure 1 presents the general arrangement of the TSF and RSF.

During an AANDC Water License inspection on July 29th and 30th 2013, it was observed that red colored seepage from the northwest side of the RSF was seeping through the road perimeter into Lake NP-2. Samples were taken by both the Inspector and AEM staff (split sample). Analysis results from this sampling were received by AEM on August 16th, 2013. The results received shown that the water collecting in the sump behind the waste dump and that seeped to NP-2 could originate from the supernatant tailing water.

To avoid further contamination of the Lake NP-2, design and construction of an interim till plug was undertaken by Agnico Eagle Mines (AEM). This construction was aimed to reduce the amount of seepage reported to NP-2 lake and to increase the pumping of the seep water contained within the sump. This construction is considered as a first step emergency action and further investigation will be undertaken to assess, prevent and control possible seepage from the TSF and RSF.

Following assessment of the situation, future permanent structures might be constructed if required. The interim plug structure might be incorporated to the permanent containment structure.

The construction work for the till plug was done by Fernand Gilbert Limited (SANA) under the supervision of AEM. The construction surveillance was done by AEM representatives. Survey of the work was completed by AEM.

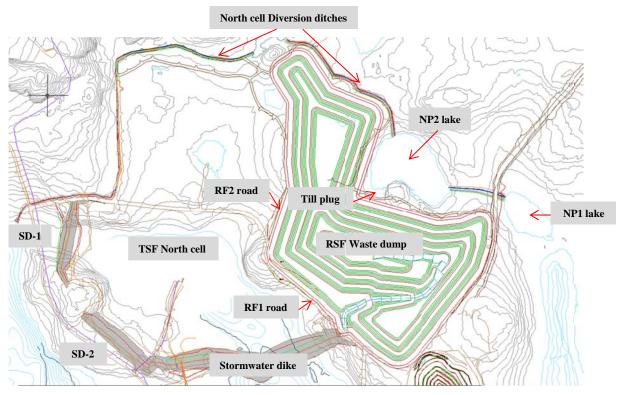


Figure 1: General arrangement of the TSF and RSF

SECTION 2.0 - SCOPE

This construction summary report presents the general construction procedure for the till plug conducted between August 26th 2013 and September 1st 2013 at Meadowbank. Work procedures and construction steps are summarized in this report. A review of the proposed design and technical specifications is presented, followed by the description of construction activities. The site inspection during construction, operation and monitoring are then presented.

SECTION 3.0 - DESIGN AND TECHNICAL SPECIFICATIONS

Design and Technical Specifications were elaborated by AEM Engineering prior to the start of the till plug construction and are resumed in the following section. Typical sections from the original design are available in Figure 2.

3.1 FILL MATERIALS AND PLACEMENT SPECIFICATIONS

The construction of the till plug includes three different zones of material. The requirements for each zone are described below.

3.1.1 Zone 1 – NPAG Rockfill

- The selected fill material consists of waste clean blasted rock from Portage/Goose pit composed of non-potentially acid generating (NPAG) rocks;
- The existing road along NP2 Lake and the RSF includes NPAG Rockfill material.

3.1.2 Zone 1A - Fine Rockfill (0-500 mm)

- The selected fill material consists of waste clean blasted rock (0-500 mm) from Portage/Goose Pit and is composed of NPAG rock;
- No topsoil, unsuitable organic soils, snow, ice are allowed in this zone;
- Lift thickness specified: 500 mm to 1 000 mm before compacting;
- Compaction achieved during placement with excavator bucket.

3.1.3 Zone 2 - Till

- Natural till is obtained from stripping of the Goose Pit or excavation in the Central Dike;
- Non-dispersive soil, including glacial till or clay with fines (sieve # 200 or <0.075 mm) content of minimum 30%, moisture requiring from -2% to +2% of OMC (Optimum Moisture Content).
- No topsoil, unsuitable organic soil, snow, ice, frozen lumps;
- Lift thickness specified: 300 mm to 500 mm before compacting;
- Compaction achieved during placement with excavator bucket.

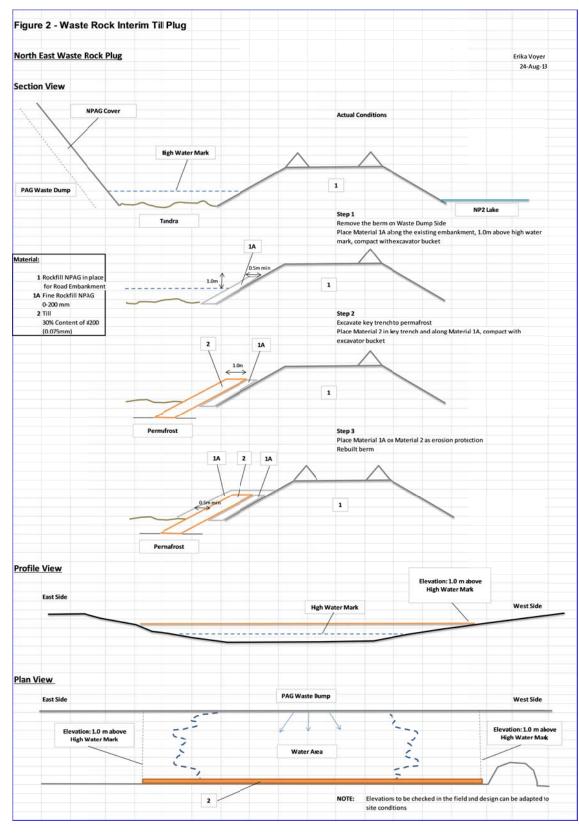


Figure 2: design drawings of the interim waste rock storage facility till plug to prevent seeping water from reaching NP-2 lake.

SECTION 4.0 - CONSTRUCTION ACTIVITIES AND DESCRIPTION OF THE WORK

The scope of work for the construction of the till plug conducted from August 26th 2013 to September 1st 2013 consists of activities listed in the following major work items:

- Sump dewatering and seepage control;
- Placement of the transition layer of Zone 1A "Fine Rockfill" along the road;
- Excavation of the trench below the road elevation;
- Zone 2 "Till" placement in the excavation and along the road;
- Zone 1A "Fine Rockfill" placement over the till as erosion protection.

These items are discussed in the following sections below.

Please note that in order to have the smallest section of the road exposed to seepage at any given time, all works was done in small section not wider than 3-4 meters. The steps followed were: preparation of the upstream slope, excavation of the foundation and till placement. Final cover for erosion protection placement over the till layer was done once before the end of the day. This sequence of events was also chosen to minimize the exposure time of the permafrost to the elements and prevent it to thaw. The concept of the design was to have a foundation composed of either bedrock or permafrost.

Selected photographs of the work progress taken throughout the construction program, showing various aspects of the construction work, are available in Appendix A.

As-built drawings are available in Appendix B.

4.1 SUMP DEWATERING AND SEEPAGE CONTROL

The first step prior to all works in the area is to pump the seepage water from the two main channels out of the till plug area. In order to control the water level through the entire construction period, a water truck from SANA was hauling (as needed) 14,000 litres of seepage water and disposed of it in the tailings pond over the Stormwater dike. A 3" diesel pump (model Godwin CD103) was placed within the 2 main deepest channels to keep them as empty as possible to allow the working area to be as dry as possible for the beginning of the excavation. The pump was moved as the work progresses.

Figure 3: view of the 2 main channels and the pumping station after the completion of the works.

4.2 TRANSITION LAYER OF ZONE 1A NPAG ROCKFILL ALONG THE ROAD

According to the design, a transition layer 1A needs to be put in place prior to the excavation and till placement along the entire upstream side of the road (on the RSF side). As the primary constituent material of the road was already fine NPAG soapstone, the 1A layer was replace by remodeling the in-situ material. The coarser material encountered was removed from the slope and the remaining finer soapstone was flattened and recompacted with the excavator bucket to create a 2 in 1 slope. The preparation of the road upstream slope began 1m above the high water marks left on the tundra after freshet, on both eastern and western abutments of the natural topographic low.

4.3 EXCAVATION OF THE TRENCH BELOW THE ROAD

Excavation of the unfrozen deleterious material was realized with a CAT 345 excavator. The excavation depth was adapted according to the material encountered. Unfrozen tundra, soft till and/or sediments were removed until refusal either on frozen till or bedrock. The foundation exposed was then cleaned and approved by AEM representative before further works performed. The excavation depth over the entire length of the road was ranging from 0.5 to 2.5 m deep (averaging around 1.3m). The deepest portions that had been excavated were the 2 main seepage channels and the shallowest were the eastern and western abutments that were directly over bedrock. As suggested by the Environment department, the excavation debris was put in front of the trench to act as a first barrier against any extraordinary event that might happen in the

area. During the excavation, most of the water flooding the trench was flowing from the actual road structure itself and not from the tundra.

4.4 ZONE 2 TILL PLACEMENT IN THE EXCAVATION AND ALONG THE ROAD

Once a zone of 4-5m wide was excavated and the foundation exposed and approved by the AEM representative, a till layer of at least 500mm was placed in the excavation and compacted with the shovel bucket. The selected till was chosen to meet the specifications presented in section 3.1.3. The till was coming from a stock pile that was built in 2012 for Central dike construction, hauled with 50T trucks and dumped in the slope where it was pick up and spread with the excavator. Prior to any till placement, all the material coarser than 150mm was automatically discarded by the operator.

4.5 ZONE 1A FINE ROCKFILL PLACEMENT OVER THE TILL AS EROSION PROTECTION

Once the till layer was completed, a protective layer of fine filter has to be put in place to prevent any erosion of the layer. The selected material was fine soapstone that was hauled with 50T trucks from SANA. The rock was coming from Goose pit and dumped over the till blanket to be spread, placed and compacted by the excavator bucket. Every boulders or rocks over 500mm was discarded by the operator. The thickness of the protective layer was at least 500mm and has been adapted to the topography of the excavation.

SECTION 5.0 - QC CONTINUITY TESTING AND RESULTS

5.1 <u>SITE INSPECTION AND PROCEDURE REVIEW</u>

AEM representatives routinely conducted visual observation of work procedure during the construction. Review of the work procedure was done on a daily basis and corrections were made if needed. Daily survey was conducted by AEM representatives for daily progress and to ensure that limits and grades were followed correctly during the construction. Photographs of the work progress were taken throughout the construction program recorded. Daily report for each shift work were issued and filed by AEM representatives. The foundation of the trench was also assessed, approved and surveyed by the AEM representative prior to all material placements but no report was filed on this activity.

SECTION 6.0 - OPERATION AND MONITORING

Since the completion of the works, the water level is closely monitored by the both Environment and Engineering departments. A staff gauge has been placed at the seepage location to determine and visually quantify the water level increases. A visual daily inspection of the area is done after to ensure we keep the level as low as possible. Whether the water became too high, the Mine department or SANA is advise and a water truck is sent to the area to pump the water and dispose of it in the tailings pond. This operation will be continued until weather permitting in fall 2013 and will be restarted as soon as freshet begins in 2014.

SECTION 7.0 - SUMMARY AND CLOSURE

The construction of the interim till plug was conducted between August 26th and September 1st 2013. Construction was completed in accordance with the requirements of the construction design elaborated by AEM.

During the course of the work, one (1) field change was made to the proposed design to optimize the construction activities.

A visual monitoring program consisting of frequent field visit by the Geotechnical team was put in place to insure the integrity of the structure. As part of their normal routine, a water sampling campaign, of both upstream and downstream sides of the structure, is conducted by the Environment department.

APPENDIX A Selected Till plug Construction Photos

Figure 1: Excavation of the active layer until reaching the permafrost. Between 0.5 and 3.8 m were required to reach proper foundation.

Figure 2: excavation of the foundation to permafrost / bedrock). The width of the trench at the bottom was at least one bucket wide. Note the excavated material is discarded on the upstream side.

Figure 3: till placement with the excavator bucket and compaction.

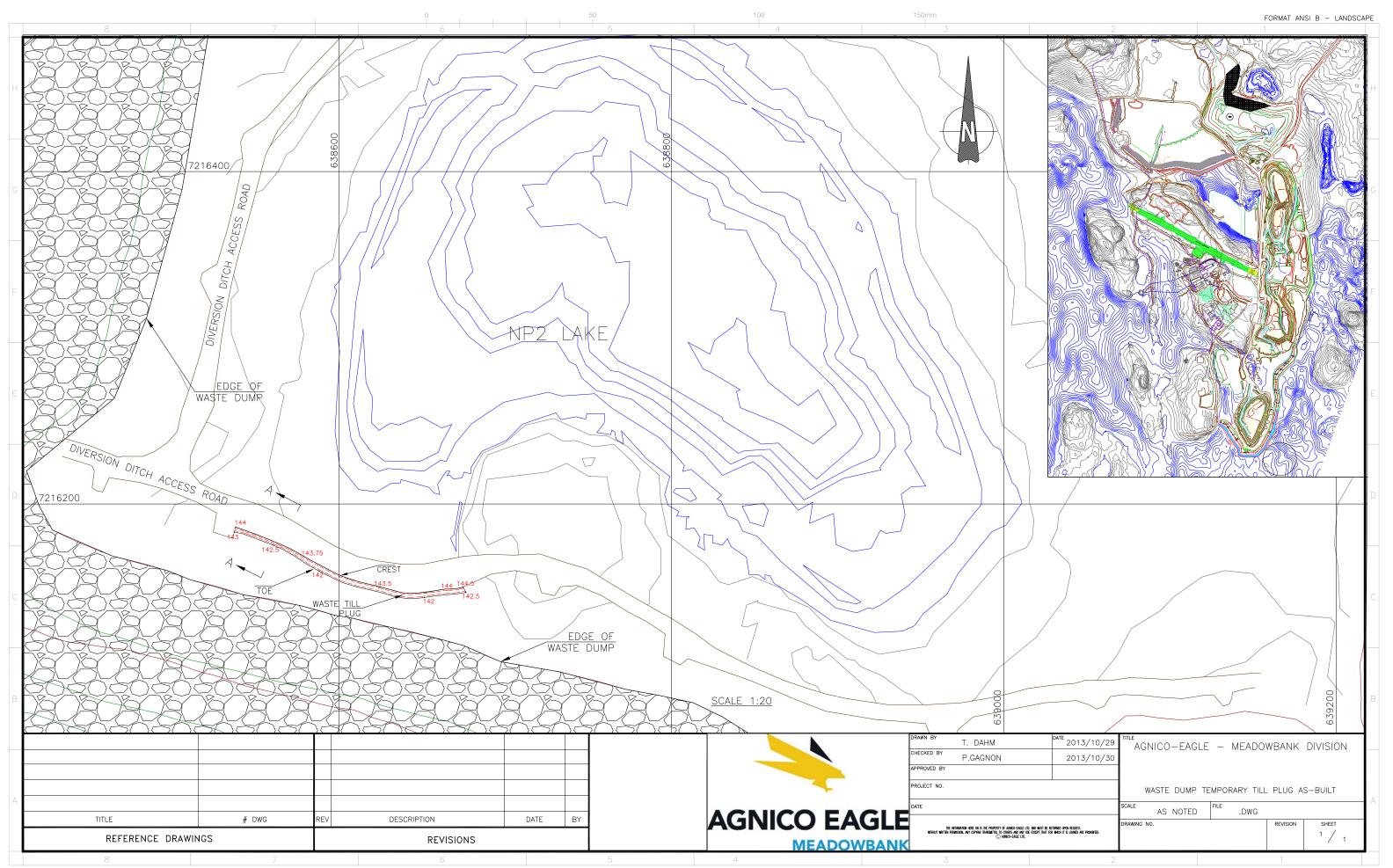
Figure 4: preparation of the transition NPAG on the roadside. Once excavation completed, soapstone was flattened and compacted before any till placement. Note the coarser material discarded from the till (red arrow).

Figure 5: final till placement over an entire section after 1 day of work. The till is flattened and compacted before any rockfill placement.

Figure 6: Final placement of soapstone rockfill protective layer (1A) over the till, once compacted.

Figure 7: water accumulation along the side of the road before works begin. View of the eastern channel.

Figure 8: water accumulation along the side of the road before works begin. View of the western channel.



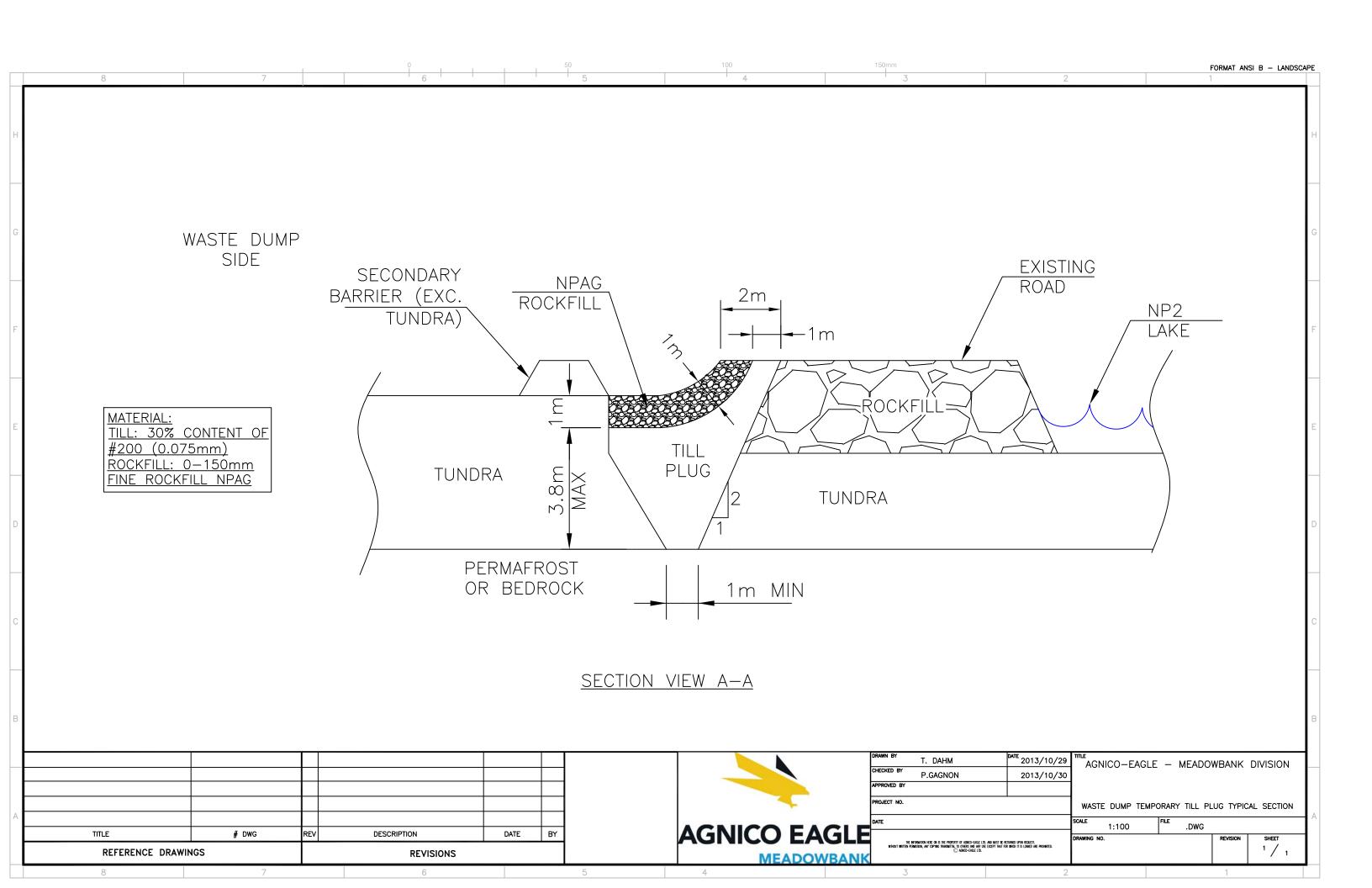

Figure 9: water control during the construction. A small 3" electric pump and a 3" diesel pumps were used.

Figure 10: photo of the final result of the entire till plug from West to East. The actual pumping station and the 2 active seepage channels are visible on the eastern abutment.

APPENDIX B As-built drawings

APPENDIX E

TSF Deposition Plan 2013-Update 2013-10-17

North Cell TSF model guideline

GUIDELINE

- Avoiding ice accumulation on the dike liner;
- Prevent tailings beach to reach the reclaim barge;
- Reclaim water pond maximum elevation of 148m;
- A minimum of two days per month of discharge by the by-pass of the booster pump is assumed for maintenance activities;
- Tailings beach to reach elevation 150m;
- Limit as much as possible deposition at the north end of the tailings pond during winter to reduce risk of freezing pipe;
- Raise beach on RF1 and RF2 to prevent tailings water from seeping out of the North Cell;
- Raise beaches on all external structures such as the roads around the tailings pond to prevent reclaim water from seeping towards the diversion ditches.

South Cell TSF model guideline

GUIDELINE

- Avoiding ice accumulation on the Central Dike liner;
- Prevent tailings beach to reach the reclaim barge;
- A minimum of two days per month of discharge by the by-pass of the booster pump is assumed for maintenance activities;
- Modelization of phase 1 of this cell, closure of this cell to be determined.

Model Parameters and assumptions

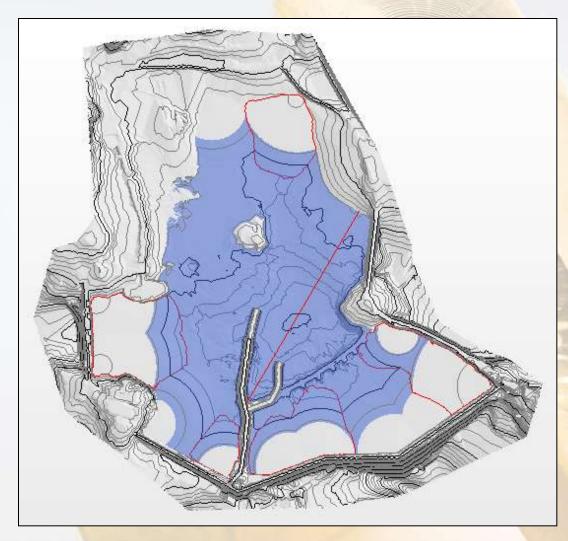
ASSUMPTIONS

- Deposition points will be moderately mobile in time (i.e. we can extend them on the tundra, and retract them as we deposit tailings throughout time);
- Ice formation in the reclaim pond during winter months follow the ice model table.
- Deposition points are added towards the end of life of the cell for closure purposes;

PARAMETERS

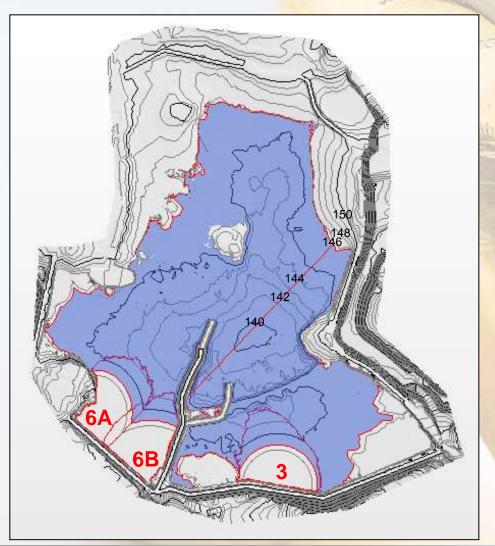
- The water balance used in this model assumes reclaim flow changes in function of season: summer 70 m³/h fresh water (FW) & 380m³/hr reclaim water (RW), and winter 90 m³/h FW & 360 m³/h RW;
- The model assumes a tailings dry density and a water balance that incorporates ice entrapment of 1.21t/m³ for both the North and South Cell;
- Sub aerial tailings slope set at 0.5% for both North and South Cell
- Sub aqueous tailings slope set at 2.3% for the North cell (obtained from summer 2013 bathymetric analysis) and 4% for the South Cell (taken from the 2012 Golder Deposition plan of the North Cell) as this value seems to better represent the start of a new cell.

Ice Model		
Month	Ice thickness (m)	
January	1.1	
February Personal Per	1.5	
March	1.8	
<mark>Ap</mark> ril	1.8	
May	1.1	
<mark>Ju</mark> ne	0	
July	0	
August	0	
<mark>Se</mark> ptember	0	
October	0.2	
November	0.5	
December	0.8	

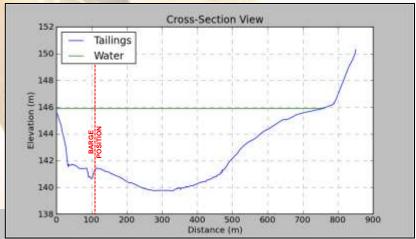

TSF deposition plan schedule

North and South Cell deposition phases

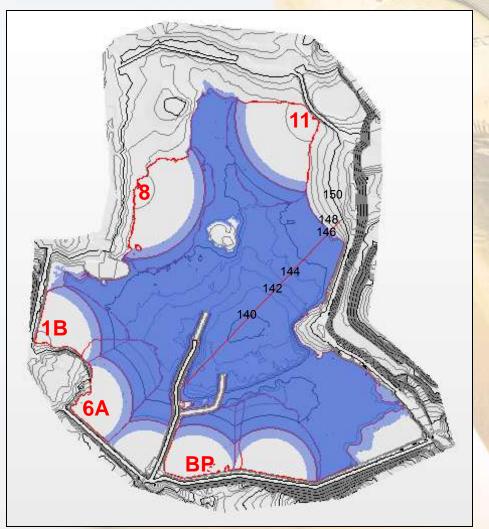
Period Active Cell – Phase		Description	
Current – September 2014	- Bring the North Cell to the beginning of the win 2014; the decreasing size and volume of the pond adversely affects the amount of free wat due to ice formation, thus the North Cell cannot be closed off during the 2014/2015 winter.		
October 2014 – June 2015	South Cell – Phase 1	- South Cell deposition during the winter months	
July 2015 - September 2015	North Cell – Phase 2	- North Cell closure	
September 2015 – End of mine life	South Cell - Phase 2	- South Cell deposition until end of mine life *Still on-going; therefore will not be presented*	


Section View Plot

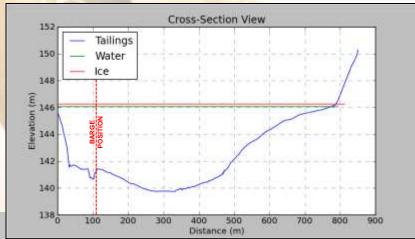
A section view along the alignment shown on the diagram will be included for each month. This will show a section view plotted on an elevation graph to show the change in pond topography across the reclaim water barge area. Left limit of the chart represents the barge area and as you look to the right on the graph you are going towards deposition point 7 (North-eastern direction).


North Cell TSF deposition plan From 09/16/2013 to 09/30/2013

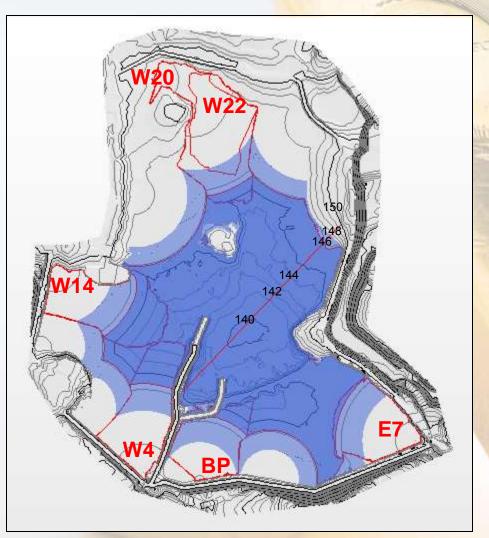
Duration	Deposition Point	Tonnes
7	6B	76,120
5	3	60,725
3	6A	35,488


MODEL	INPUT
Water Balance Volume (m³)	1 455 036
Ice thickness (m)	0.00
Tonnes (t)	172 177

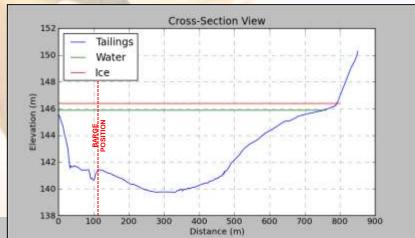
MODEL R	MODEL RESULTS		
Pond volume (m³)	1 416 508		
Pond depth (m)	6.248		
Pond elevation (m)	145.903		
Min pond ele (m)	139.655		
Ice thickness (m)	0		
Unfrozen water elevation (m)	145.903		
lce volume (m³)	0		
Ice ratio (%)	0		
Transfer from South Cell (m³)	o		


North Cell TSF deposition plan October 2013

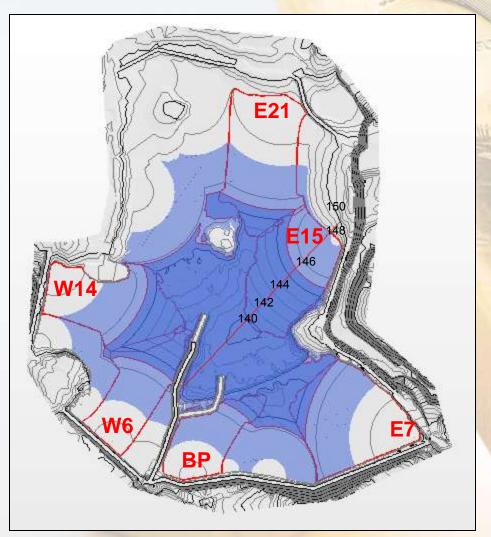
Duration	Deposition Point	Tonnes
3	BP	43,009
3	6A	35,470
3	3	38,009
5	1B	56,733
12	11	145,711
5	8	66,857


MODEL INPUT	
Water Balance Volume (m³)	1 503 962
Ice thickness (m)	0.20
Tonnes (t)	363,600

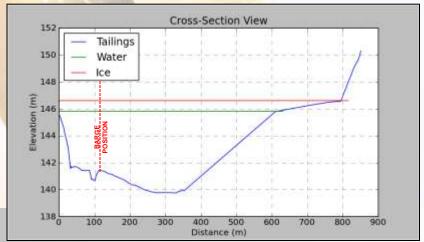
MODEL RESULTS		
Pond volume (m³)	1 362 552	
Pond depth (m)	6.608	
Pond elevation (m)	146.263	
Min pond ele (m)	139.655	
Ice thickness (m)	0.186	
Unfrozen water elevation (m)	146.077	
lce volume (m³)	141 410	
Ice ratio (%)	9%	
Transfer from South Cell (m³)	140 000	


North Cell TSF deposition plan November 2013

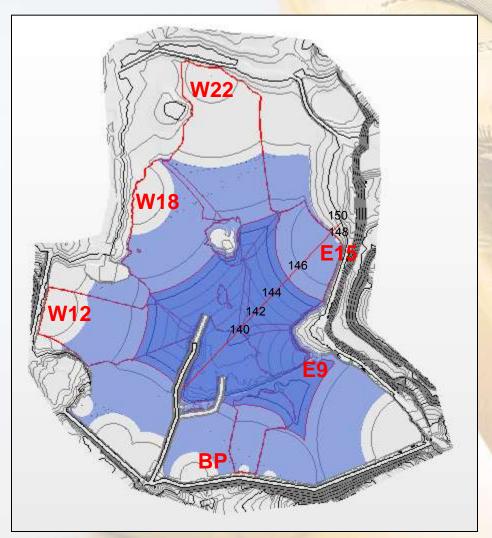
Duration	Deposition Point	Tonnes
2	BP	20,474
5	W22	51,004
5	W20	55,385
6	W14	71,786
6	W4	71,875
3	E7	27,937


MODEL INPUT		
Water Balance Volume (m³)	1 443 996.00	
Ice thickness (m)	0.50	
Tonnes (t)	321 180	

MODEL RESULTS	
Pond volume (m³)	1 122 802
Pond depth (m)	6.735
Pond elevation (m)	146.390
Min pond ele (m)	139.655
Ice thickness (m)	0.50
Unfrozen water elevation (m)	145.890
lce volume (m³)	321 194
Ice ratio (%)	22%
Transfer to South Cell (m³)	0


North Cell TSF deposition plan December 2013

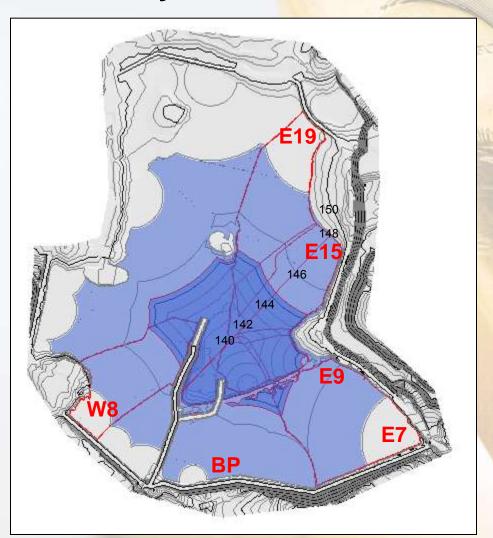
Duration	Deposition Point	Tonnes
2	BP	23,445
5	E7	70,165
6	W18	70,259
6	W12	70,252
6	E21	71,365
4	E15	47,694


MODEL	INPUT
Water Balance Volume (m³)	1 372 715
Ice thickness (m)	1.10
Tonnes (t)	369,660

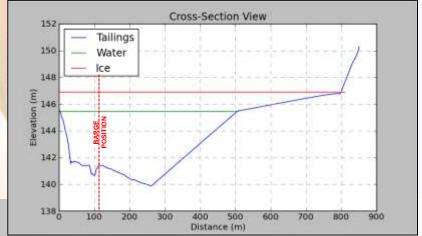
MODEL RESULTS		
Pond volume (m³)	887 636	
Pond depth (m)	6.869	
Pond elevation (m)	146.610	
Min pond ele (m)	139.741	
Ice thickness (m)	0.501	
Unfrozen water elevation (m)	145.798	
lce volume (m³)	485 079	
Ice ratio (%)	35%	
Transfer to South Cell (m³)	o	

North Cell TSF deposition plan January 2014

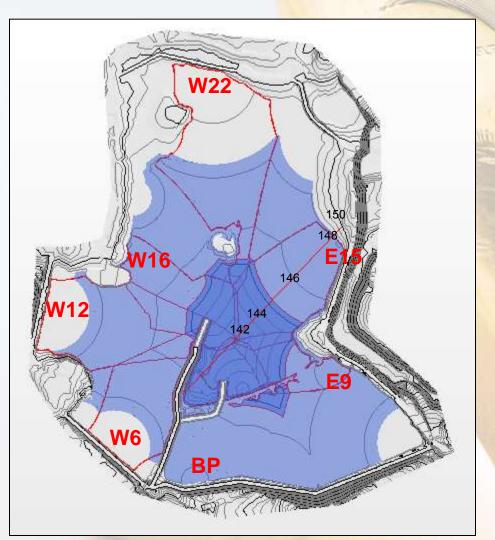
Duration	Deposition Point	Tonnes
2	BP	23,196
3	E9	34,873
8	W22	92,932
7	W18	81,366
4	W12	46,472
7	E15	81,419


MODEL INPUT		
Water Balance Volume (m³)	1 300 648	
Ice thickness (m)	1.10	
Tonnes (t)	360,995	

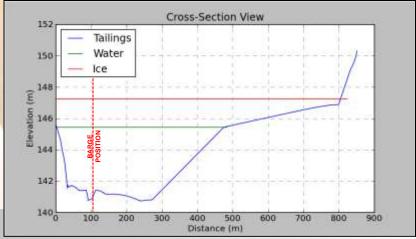
MODEL RESULTS		
Pond volume (m³)	669 758	
Pond depth (m)	6.039	
Pond elevation (m)	145.701	
Min pond ele (m)	139.662	
Ice thickness (m)	1.11	
Unfrozen water elevation (m)	146.809	
lce volume (m³)	630 890	
Ice ratio (%)	49%	
Transfer to South Cell (m³)	0	


North Cell TSF deposition plan February 2014

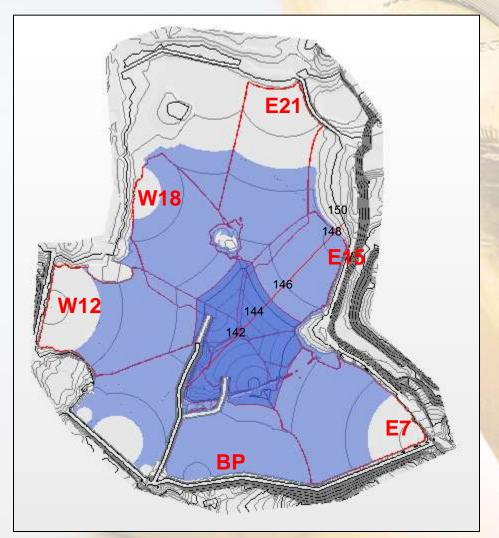
Duration	Deposition Point	Tonnes
2	BP	20,669
2	E9	20,665
4	E7	41,080
6	W8	62,027
8	E19	82,452
6	E15	62,077


MODEL INPUT		
Water Balance Volume (m³)	1,185,974	
Ice thickness (m)	1.50	
Tonnes (t)	288,988	

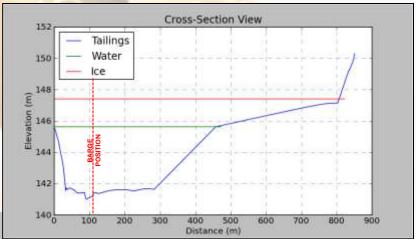
MODEL R	ESULTS
Pond volume (m³)	459 343
Pond depth (m)	7.029
Pond elevation (m)	146.978
Min pond ele (m)	139.874
lce thickness (m)	1.504
Unfrozen water elevation (m)	145.474
lce volume (m³)	797 203
Ice ratio (%)	65%
Transfer to South Cell (m³)	0

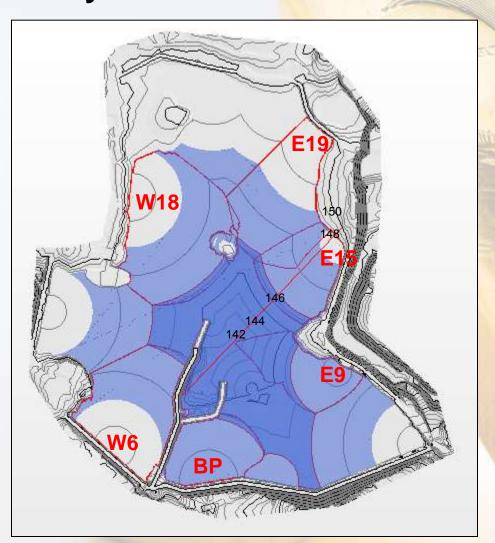

North Cell TSF deposition plan March 2014

Duration	Deposition Point	Tonnes
2	BP	20,662
5	W22	58,960
6	W16	70,926
6	W10	70,984
4	E15	47,335
4	E9	47,188
4	W6	47,771

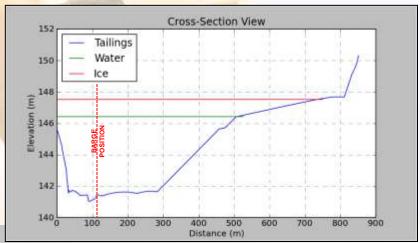

MODEL INPUT		
Water Balance Volume (m³)	1 163 247	
Ice thickness (m)	1.80	
Tonnes (t)	367,009	

MODEL RESULTS		
Pond volume (m³)	309 900	
Pond depth (m)	6.728	
Pond elevation (m)	147.245	
Min pond ele (m)	140.517	
Ice thickness (m)	1.795	
Unfrozen water elevation (m)	145.450	
lce volume (m³)	853 347	
Ice ratio (%)	73%	
Transfer to South Cell (m³)	0	

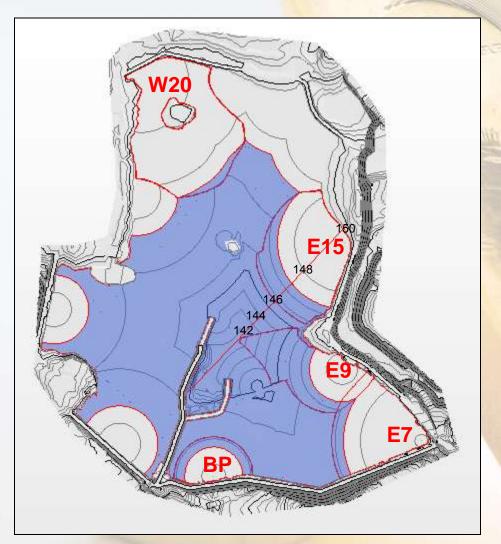

North Cell TSF deposition plan April 2014


MODEL INPUT		
Water Balance Volume (m³)	1,054,214	
Ice thickness (m)	1.80	
Tonnes (t)	348,990	

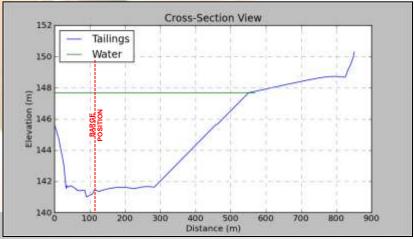
MODEL RESULTS		
Pond volume (m³)	260 298	
Pond depth (m)	6.699	
Pond elevation (m)	147.411	
Min pond ele (m)	140.712	
Ice thickness (m)	1.780	
Unfrozen water elevation (m)	145.631	
lce volume (m³)	833 459	
Ice ratio (%)	76%	
Transfer to South Cell (m³)	0	


North Cell TSF deposition plan May 2014

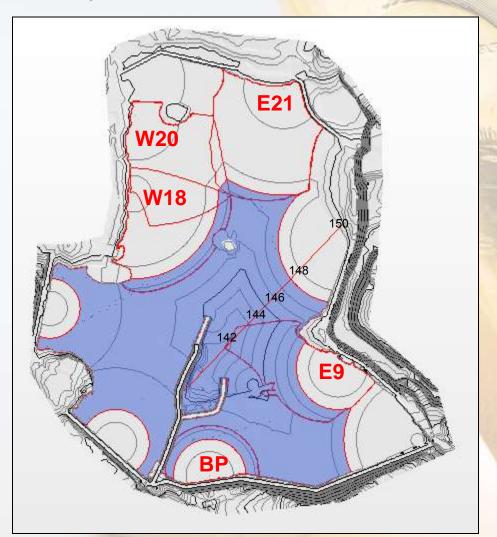
Duration	Deposition Point	Tonnes
2	BP	23,401
9	W18	93,536
6	W6	64,411
6	E19	64,344
4	E15	41,497
4	E9	41,577


MODEL INPUT		
Water Balance Volume (m³)	1 044 070	
Ice thickness (m)	1.10	
Tonnes (t)	325,004	

MODEL RESULTS		
Pond volume (m³)	412 777	
Pond depth (m)	6.047	
Pond elevation (m)	147.518	
Min pond ele (m)	141.471	
lce thickness (m)	1.108	
Unfrozen water elevation (m)	146.410	
lce volume (m³)	631 293	
Ice ratio (%)	60%	
Transfer to South Cell (m³)	0	

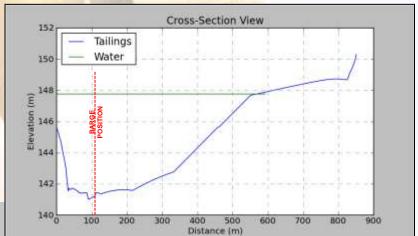

North Cell TSF deposition plan June 2014

Duration	Deposition Point	Tonnes
2	BP	23,377
9	W20	105,309
4	E9	46,790
9	E15	70,141
6	E7	70,141

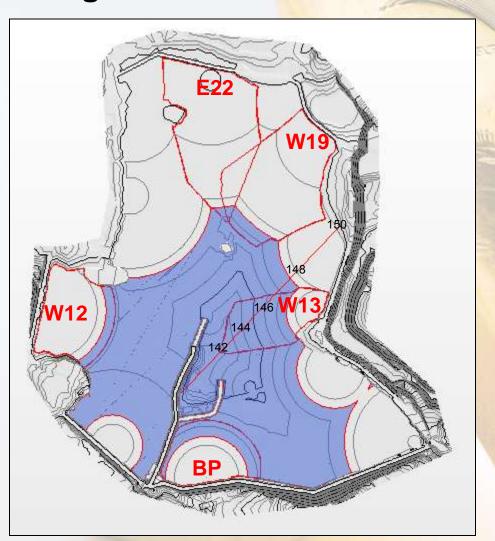


MODEL INPUT		
Water Balance Volume (m³)	1 059 689	
Ice thickness (m)	o	
Tonnes (t)	354 990	

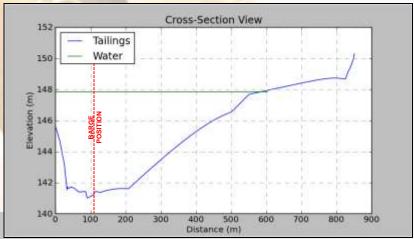
MODEL RESULTS		
Pond volume (m³)	1 056 178	
Pond depth (m)	6.202	
Pond elevation (m)	147.682	
Min pond ele (m)	141.480	
Ice thickness (m)	0	
Unfrozen water elevation (m)	147.682	
lce volume (m³)	0	
Ice ratio (%)	0	
Transfer to South Cell (m³)	0	


North Cell TSF deposition plan July 2014

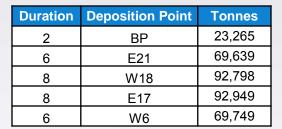
Duration	Deposition Point	Tonnes
2	BP	23,269
9	E21	104,342
6	E9	69,856
5	W20	58,066
9	W18	104,633

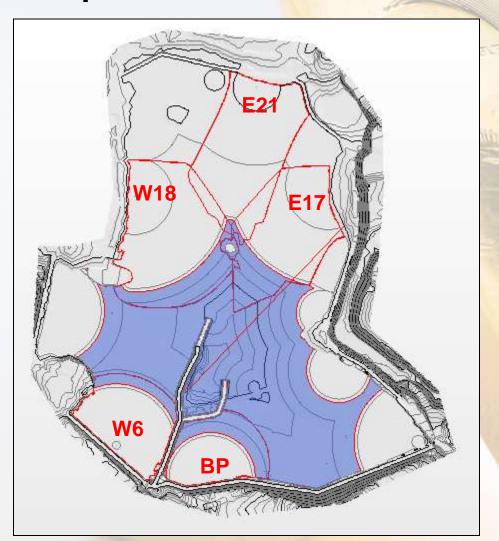

MODEL INPUT		
Water Balance Volume (m³)	999 244	
Ice thickness (m)	O	
Tonnes (t)	354,234	

MODEL RESULTS	
Pond volume (m³)	994 558
Pond depth (m)	6.219
Pond elevation (m)	649 483
Min pond ele (m)	141.549
lce thickness (m)	0
Unfrozen water elevation (m)	147.768
lce volume (m³)	0
Ice ratio (%)	0
Transfer to South Cell (m³)	0

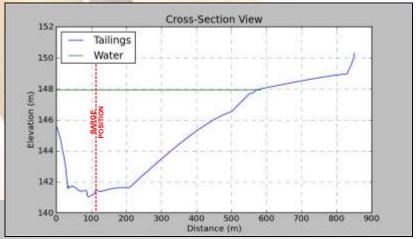

North Cell TSF deposition plan August 2014

Duration	Deposition Point	Tonnes
2	BP	23,401
9	W18	93,536
6	W6	64,411
6	E19	64,344
4	E15	41,497
4	E9	41,577




MODEL INPUT				
Water Balance Volume (m³)	1,197,430			
Ice thickness (m)	o			
Tonnes (t)	354,234			

MODEL RESULTS				
Pond volume (m³)	911,888			
Pond depth (m)	6.047			
Pond elevation (m)	147.855			
Min pond ele (m)	141.808			
Ice thickness (m)	0			
Unfrozen water elevation (m)	147.855			
lce volume (m³)	0			
Ice ratio (%)	0			
Transfer to South Cell (m³)	0			


North Cell TSF deposition plan September 2014

MODEL INPUT			
Water Balance Volume (m³)	892 523		
Ice thickness (m)	0.00		
Tonnes (t)	348,990		

MODEL RESULTS				
Pond volume (m³)	889 585			
Pond depth (m)	6.423			
Pond elevation (m)	147.939			
Min pond ele (m)	141.516			
Ice thickness (m)	o			
Unfrozen water elevation (m)	147.939			
Ice volume (m³)	0			
Ice ratio (%)	o			
Transfer to South Cell (m³)	o			

AGNICO EAGLE agnicoeagle.com WORLD GOLD COUNCIL MEMBER agnicoeagle.com

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa + 27 11 254 4800 Asia + 86 21 6258 5522 Australasia + 61 3 8862 3500 Europe + 356 21 42 30 20 North America + 1 800 275 3281 South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associés Ltée 1001 Blvd. de Maisonneuve West, suite 700 Montreal (Québec) H3A 3C8 Canada

T: +1 (514) 383-0990

APPENDIX D - WATER QUALITY REPORT

March 2014 62

SUSTAINABLE MINE DEVELOPMENT

AGNICO-EAGLE MINES

TECHNICAL NOTE

MEADOWBANK GOLD PROJECT WATER QUALITY FORECASTING UPDATE FOR 2013-2025

Our file: 617429-0000-40ER-0001

March 2014

•))
SNC · LAVALIN

TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
		Date	Page	
617429-0000-40ER-0001	00	March 20 th , 2014	i	

Title of

Water Quality Forecasting Update for

document: 2013-2025

Client:

AGNICO-EAGLE MINES

Project:

Meadowbank Gold Project

Prepared by:

Geneviève Beaudoin-Lebeuf, ing. Granie BL 2014-03-20

Anh-Long Nguyen, ing., M.Sc.

The broad of the second second

Reviewed by:

Sustainable Mine Development Global Mining & Metallurgy

TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
		Date	Page	
617429-0000-40ER-0001	00	March 20 th , 2014	ii	

REVISION INDEX

Revi	sion			Pages	Remarks
#	Prep.	App.	Date	Revised	Remarks
PA	GBL	ALN	2014-02-21	All	For internal review
РВ	GBL	ALN	2014-02-25	All	For Client's comments
00	GBL	ALN	2014-03-20	All	

NOTICE TO READER

This document contains the expression of the professional opinion of SNC-Lavalin Inc. ("SLI") as to the matters set out herein, using its professional judgment and reasonable care. It is to be read in the context of the agreement dated * (the "Agreement") between SLI and Agnico Eagle Mine (the "Client") and the methodology, procedures and techniques used, SLI's assumptions, and the circumstances and constraints under which its mandate was performed. This document is written solely for the purpose stated in the Agreement, and for the sole and exclusive benefit of the Client, whose remedies are limited to those set out in the Agreement. This document is meant to be read as a whole, and sections or parts thereof should thus not be read or relied upon out of context.

SLI has, in preparing estimates, as the case may be, followed accepted methodology and procedures, and exercised due care consistent with the intended level of accuracy, using its professional judgment and reasonable care, and is thus of the opinion that there is a high probability that actual values will be consistent with the estimate(s). Unless expressly stated otherwise, assumptions, data and information supplied by, or gathered from other sources (including the Client, other consultants, testing laboratories and equipment suppliers, etc.) upon which SLI's opinion as set out herein are based have not been verified by SLI; SLI makes no representation as to its accuracy and disclaims all liability with respect thereto.

To the extent permitted by law, SLI disclaims any liability to the Client and to third parties in respect of the publication, reference, quoting, or distribution of this report or any of its contents to and reliance thereon by any third party

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025

617429-0000-40ER-0001

Prepared by: G. Beaudoin-Lebeuf Reviewed by: A.-L. Nguyen

Rev.DatePage00March 20th, 2014iii

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	Mandate	1
	1.2	Study Objectives and Content	1
	1.3	Water Management Plan	1
2.0	RFVII	EW OF MEADOWBANK WATER QUALITY DATA FOR 2013	3
	2.1	Documents Reviewed	
	2.1.1	Updates in the Water Management Plan	
	2.2	Review of Meadowbank Water Quality Data	
	2.2.1	North Cell TSF Reclaim Pond (ST-21)	
	2.2.2	Mill Effluent	
	2.2.3	Additional Mill Effluent Water Quality Results	
	2.2.4	Attenuation Pond	12
3.0	UPDA	ATED MASS BALANCE MODEL	13
	3.1	Description	
	3.2	Assumptions	
	3.3	Limitations	14
	3.4	Input Parameters	
	3.4.1	Mill Effluent Concentration	_
	3.4.2	Initial Concentrations in the TSF Reclaim Ponds and Pits	
	3.5	Cyanide Decay	18
4.0	MASS	S BALANCE RESULTS	20
	4.1	Results	
	4.2	Discussion	20
	4.2.1	Key Dates	
	4.2.2	Forecasted Concentrations in the North and South Cells TSF Reclaim Pond	
	4.2.3	Forecasted Concentrations in Portage and Goose Pits	
	4.2.4	Treatment Requirements	
	4.2.5	Distribution of South Cell TSF Pond Water to Portage and Goose Pits	25
5.0	CON	CLUSION	32
	5.1	Limitations	32
	5.2	Results Summary and Treatment	
	5.3	Recommendations	33

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025

617429-0000-40ER-0001

Prepared by: G. Beaudoin-Lebeuf

Reviewed by: A.-L. Nguyen

Rev.DatePage00March 20th, 2014iv

LIST OF TABLES

Table 1-1: Water Management Phases	2
Table 2-1: Discharge Criteria for the Parameters Evaluated	5
Table 2-2: Mill Effluent Concentrations Sampled On January 29, 2014 & October 10 and 11, 2012	12
Table 2-3: Average (2013 and November 2011 to November 2012) Concentrations in the Attenuation Pond	12
Table 3-1: Mill Effluent Concentrations Selected for the Mass Balance Model	16
Table 3-2: Initial Concentration in the North and South Cells TSF Reclaim Pond	17
Table 3-3: Natural Cyanide Degradation: Assumptions and Constants	19
Table 4-1: Summary of Input Parameter Concentrations in the Mass Balance Model	20
Table 4-2: Summary of Forecasted Concentrations in Reclaim Pond	21
Table 4-3: Summary of Forecasted Concentrations in Portage and Goose Pits	23
LIST OF FIGURES	
Figure 2-1: Concentration in the North Cell TSF Reclaim Pond	5
Figure 2-2: Dissolved Metal Concentrations and Cyanide (CN-WAD) in the Mill Effluent from January to December 2013	11
Figure 3-1: Cyanide Volatilization Process	18
Figure 4-1: Total Cyanide Concentration in the North and South Cells TSF Reclaim Pond	
Figure 4-2: Total Cyanide Concentration in the Portage and Goose Pits	26
Figure 4-3: Total Copper Concentration in the North and South Cells TSF Reclaim Pond	
Figure 4-4: Total Copper Concentration in the Portage and Goose Pits	27
Figure 4-5: Total Iron Concentration in the North and South Cells TSF Reclaim Pond	28
Figure 4-6: Total Iron Concentration in the Portage and Goose Pits	28
Figure 4-7: Ammonia Concentration in the North and South Cells TSF Reclaim Pond	29
Figure 4-8: Ammonia Concentration in the Portage and Goose Pits	29
Figure 4-9: Nitrate Concentration in the North and South Cells TSF Reclaim Pond	30
Figure 4-10: Nitrate Concentration in the Portage and Goose Pits	30
Figure 4-11: Chloride Concentration in the North and South Cells TSF Reclaim Pond	31
Figure 4-12: Chloride Concentration in the Portage and Goose Pits	31

LIST OF APPENDICES

APPENDIX A: WATER QUALITY ANALYSES

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
		Date	Page	
617429-0000-40ER-0001	00	March 20 th , 2014	1	

1.0 INTRODUCTION

1.1 MANDATE

SNC-Lavalin (SLI) was mandated by Agnico-Eagle Mines (AEM) to review and update the water quality forecasting model developed in 2012 based on the Water Management Plan 2013 evaluated by AEM.

1.2 STUDY OBJECTIVES AND CONTENT

This Technical Note will present the update of the water quality forecast model for the Meadowbank Gold Project. The update developed in this study was based on the Water Management Plan 2013 of AEM that is based on the updated LOM and mine development sequence provided by AEM in January 2014 and summarized in Table 1-1. The updated water quality forecast model applies to the North and South Cell TSF Reclaim Ponds, and the Portage and Goose pits.

The objective of this Technical Note is to forecast the concentration of selected parameters of concern within the North and South Cell TSF Reclaim Ponds, and the Portage and Goose Pits from 2013 until closure, verify last year's assumptions and results, update the model if required, develop recommendations and determine whether water treatment will be required.

For the Vault pit, no treatment would be required when re-flooding the pit. This is largely due to the fact that there is no tailings disposal facility at the Vault site. The Vault Attenuation pond only receives mine pit and freshet water. This will be confirmed through regular monitoring required by the Type A Water License from 2014 – 2018. Active mining of the Vault pit began in Jan, 2014. Water quality results from 2014 will form part of the Water Quality modeling in 2014.

1.3 WATER MANAGEMENT PLAN

The Water Management Plan (2013) and water balance was developed by AEM. They evaluated the monthly flows and volumes in the Portage and Vault areas, including the maximum storage volumes required for the water management infrastructures during the active life of mine, pit re-flooding activities and post closure, all under average hydrologic conditions.

The Water Management Plan (2013) was based on the revised mining schedule presented in Table 1-1 below.

TECHNICAL NOTE

Water Quality Forecasting Update for 2013-2025

610756-0000-40ER-0002

Prepared by: G. Beaudoin-Lebeuf Reviewed by: A.-L. Nguyen

Date Page Rev. March 20th, 2014 00 2

Table 1-1: Water Management Phases

ACTIVITY	UPDATED START DATE ¹	UPDATED END DATE ¹	WMP 2012 START DATE	WMP 2012 END DATE			
Pits Mining							
Portage Pit	January 2010	October 2017	January 2010	December 2016			
North	January 2010	October 2017	January 2010	December 2015			
Central	January 2010	April 2013	January 2010	December 2013			
South	January 2010	April 2016	January 2010	December 2016			
Goose Island Pit	April 2012	October 2015	April 2012	June 2015			
Vault Pit	January 2014	October 2017	January 2014	February 2018			
Tailings Storage Facility Operatio	ns						
North Cell	January 2010	March 2016	January 2010	March 2015			
South Cell	October 2014	October 2017	April 2015	February 2018			
Rock Storage Facility (RSF) Opera	ations						
Portage RSF	January 2009	June 2018	January 2009	December 2016			
Vault RSF	January 2014	October 2017	January 2014	February 2018			
Attenuation / Reclaim Pond Water	Management						
Attenuation Pond (South Cell) ²	January 2009	October 2014	January 2009	March 2015			
Attenuation Pond Vault Lake	January 2014	February 2018	January 2014	February 2018			
Mill Operations	January 2010	February 2018	January 2010	February 2018			
Other Key Activities							
Dewatering of Vault Lake	June 2013	July 2014	September 2013	November 2013			
Dewatering of Phaser Lake	September 2016	October 2016	September 2016	October 2016			
Flooding of Portage Pit	August 2017	January 2025	March 2017	September 2023			
Flooding of Goose Island Pit	May 2015	January 2025	July 2015	September 2023			
Flooding of Vault Pit	March 2018	October 2023	March 2018	October 2023			
Mine Closure completed	n/a	January 2025	n/a	January 2024			
Note:							

Periods are given from the beginning of the starting month to the end of the ending month.

After October 2014, the Reclaim Pond is relocated to the South Cell TSF. After this date, there is no Attenuation Pond.

TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
	Water Quality Forecasting Update for 2013-2025		Date	Page
	610756 0000 40ED 0002	00	March 20 th 2014	2

2.0 REVIEW OF MEADOWBANK WATER QUALITY DATA FOR 2013

2.1 DOCUMENTS REVIEWED

A review of the available water quality data measured in 2013 was undertaken by SLI. This included a review of the following documents:

- Chemical analysis results for the Portage Area for 2013. The chemical analysis results of interest for this Technical Note are presented in Appendix A and were integrated in the data previously obtained in 2012, specifically:
 - North Cell TSF Reclaim Pond (ST-21) from 2010 to 2013.
 - Attenuation Pond (future South Cell TSF Reclaim Pond) (ST-18) from November 2011 to October 2013.
 - Mill effluent metal and cyanide concentrations from April 2012 to December 2013.

Moreover, since the water samples for the mill effluent were taken before the cyanide destruction system, additional chemical analyses were requested by SLI in January 2014. These results are presented in section 2.2.3.

It should be noted that the mill effluent is currently discharged to the North Cell TSF. The North Cell TSF Reclaim Pond thus collects water from the mill effluent; and additional runoff water from surrounding areas.

It is important to remember that the review of the Meadowbank water quality data was undertaken to gain a better understanding of the water quality in the Portage Area, particularly as it affects the TSF Reclaim Pond, and to provide a basis for the development and update of the mass balance.

2.1.1 Updates in the Water Management Plan

In the 2012 Water Management Plan, South Cell water was transferred to the pits in 2018 when there was approximately 6 Mm³ of non-contact water already accumulated in the pits.

In the 2013 Water Management Plan, the South Cell water will be transferred beginning in 2015 when there is very little water in the pits. Runoff water will then be allowed to flow into the pit and mix with the South Cell water. This approach should help improve the attenuation of the contact water with runoff water coming into the pit and minimize stratification.

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
		Date	Page	
610756-0000-40ER-0002	00	March 20 th , 2014	4	

2.2 REVIEW OF MEADOWBANK WATER QUALITY DATA

in the Water Management Plan 2012 by SLI.

Based on the flows in the Portage Area, it was determined that the most important contributor to the water quality in the TSF Reclaim Pond was the mill effluent, since the other inflows consist of snow and ice melt, precipitation, and runoff from nearby areas (assumed to be *non-contact water*, i.e. not contaminated water).

2.2.1 North Cell TSF Reclaim Pond (ST-21)

A review of the chemical analysis for water samples collected in the North Cell TSF Reclaim Pond (station ST-21) was undertaken by SLI in order to identify contaminants that were either above discharge criteria (as stipulated in the MMER, CCME and/or the Water License, Part F). It is understood that the MMER, CCME and Water License criteria apply to mining effluents discharged to the environment and are as such not applicable to the TSF Reclaim Pond since no effluent is discharged from this area to the environment. However, the MMER, CCME and Water License criteria were used as a guide, to identify potential parameters that may become a problem should they be discharged to the environment without treatment.

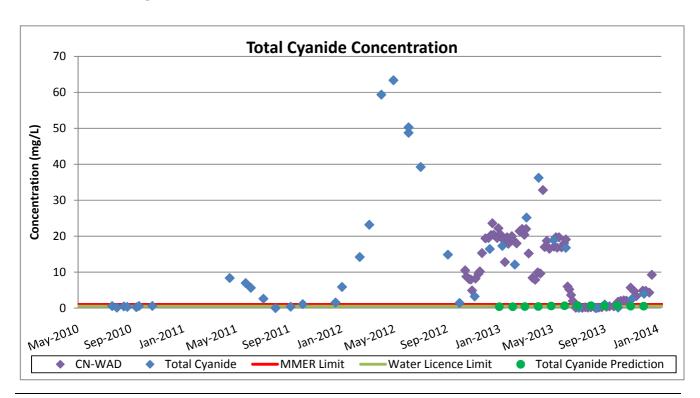
It should also be noted that the parameters of concern were only determined based on the chemical analyses provided by Meadowbank and summarized in Appendix A. As such, parameters for which the North Cell TSF Reclaim Pond were not analyzed (such as total suspended solids) were not evaluated within the framework of this study.

The updated water quality review showed that the concentrations of the same following parameters identified in 2012 should be estimated since they may represent a potential long-term contamination risk:

- Cyanide (total)
 Nitrate
 Copper
 Iron
 Ammonia
- Figure 2-1 presents the concentration of these parameters measured in the North Cell TSF Pond from 2010 till 2013. Also shown in this figure is the estimated concentrations forecasted

Table 2-1 presents the MMER, Water License and CCME discharge criteria for these parameters that may represent a potential contamination risk in the Portage Area when filling Portage and Goose pits after the mining sequence is complete. These criteria are also presented in Figure 2-1, when applicable.

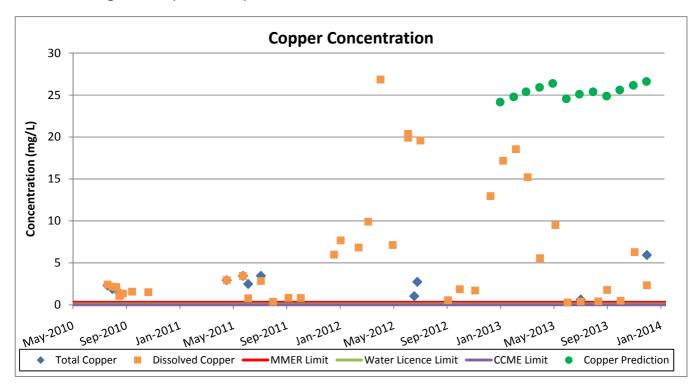
TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
		Date	Page	
610756-0000-40ER-0002	00	March 20 th , 2014	5	

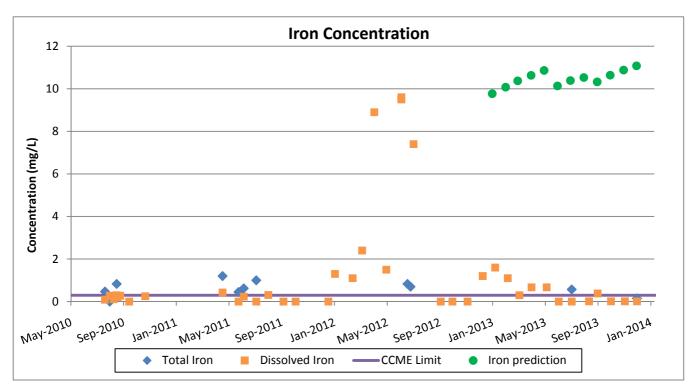

Table 2-1: Discharge Criteria for the Parameters Evaluated

PARAMETER	DISCHARGE CRITERIA				
TAKAMETEK	MMER (1)	Water License ⁽²⁾ (Part F)	CCME ⁽³⁾ (criteria date)		
Cyanide (CN)	1.00 mg/L	0.5 mg/L	5 μg/L (as free CN) (1987)		
Copper (Cu)	0.30 mg/L	0.1 mg/L	4 μg/L ⁽⁴⁾ (1987)		
Iron (Fe)	no criteria	no criteria	0.3 mg/L (1987)		
Ammonia (NH ₃)	no criteria	16 mg N/L	0.86 mg N/L ⁽⁵⁾ (2001)		
Nitrate (NO₃)	no criteria	20 mg N/L	2.94 mg N/L (2012)		
Chloride (CI)	no criteria	1,000 mg/L	120 mg/L ⁽⁶⁾ (2011)		

Notes

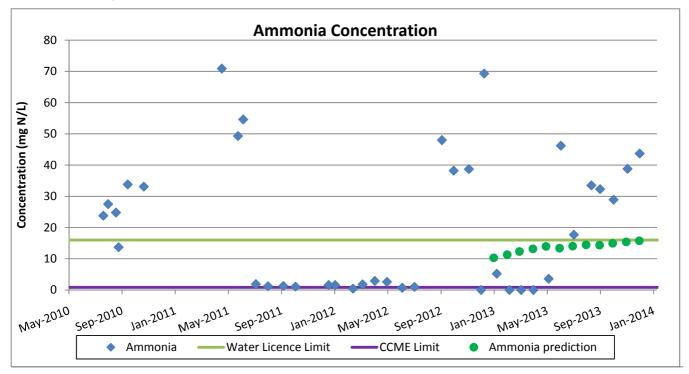
- (1) MMER criteria corresponding to the maximum average monthly concentration
- (2) Water License (Part F) criteria corresponding to the maximum average concentration
- (3) CCME criteria as per the Water Quality Guidelines for the Protection of Aquatic Life for freshwater and long-term exposure. Criteria referenced from www.ccme.ca in Feb. 2014.
- (4) The copper discharge criterion depends on hardness. For water hardness between 200 to 1000 mg/L of CaCO₃ (average hardness levels in the North Cell TSF Reclaim Pond and in Third Portage Lake) the copper limit is 4 µg/L.
- (5) The ammonia concentration limit depends on temperature and pH (an increase in temperatures and pH leads to a more stringent ammonia concentration limit). In this case, 1.04 mg/L of NH₃, or 0.855 mg N/L was determined assuming a temperature of 10°C and a pH of 8.0.
- (6) This is the long-term chloride concentration limit. The short term concentration limit is 640 mg/L.

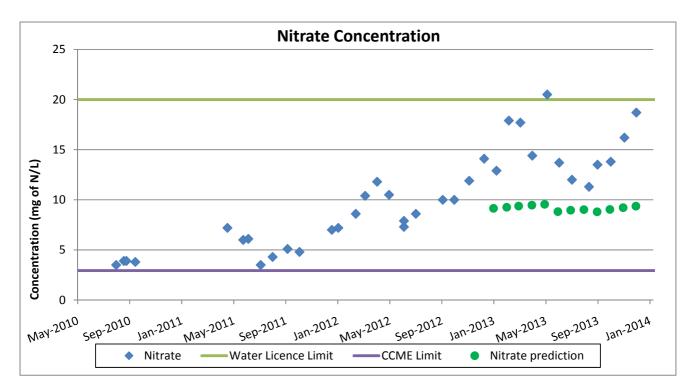

Figure 2-1: Concentration in the North Cell TSF Reclaim Pond



TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
		Date	Page	
610756-0000-40ER-0002	00	March 20 th , 2014	6	

Figure 2-1: (continued) Concentration in the North Cell TSF Reclaim Pond





TECHNICAL NOTE	Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
Water Quality Forecasting Update for 2013-2025		Date	Page
610756-0000-40ER-0002	00	March 20 th , 2014	7

Figure 2-1: (continued) Concentration in the North Cell TSF Reclaim Pond

Sep-2010

Jan-2011

Chloride

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025

Prepared by: G. Beaudoin-Lebeuf Reviewed by: A.-L. Nguyen Rev. Date

610756-0000-40ER-0002

Page March 20th, 2014 00 8

Sep-2013

Chloride prediction

Chloride Concentration 1800 1600 1400 Concentration (mg/L) 1200 1000 800 600 400 200

Figure 2-1: (continued) Concentration in the North Cell TSF Reclaim Pond

From the graphs shown in Figure 2-1, the following observations can be made:

Jan-2012

Water Licence Limit

Cyanide concentration in the North Cell TSF Reclaim Pond was considerably lower in 2013 than in 2012. The concentrations were high at the beginning of the year, increasing from approximately 20 mg/L in Jan. 2013 to a peak of 36 mg/L in April. There were no major issues reported with the cyanide destruction at the mill during that period. The concentrations then started to decrease significantly in the summer months. In October, the concentration started to increase once more, up to a peak concentration of approximately 4 mg/L in December.

Sep-2012

CCME Limit

Copper concentrations followed the same trend as for cyanide in 2013. The similar ii. trend indicates that the treatment performance of the cyanide destruction system has an influence on the residual copper and cyanide concentration in the TSF Reclaim pond. However, the concentrations measured in 2013 are lower than in 2012, and are considered more representative of the normal operation of the cyanide destruction system at the site.

TECHNICAL NOTE		Reviewed by: AL. Nguyen		
		Rev.	Date	Page
	610756-0000-40ER-0002	00	March 20 th , 2014	9

- iii. Dissolved iron concentrations were, in the first six months of 2013, slightly above the CCME limits. There is no criterion for iron in the Water License (Part F) or in the MMER. For the following six months of 2013, concentrations dropped and were under the limits. Note that total iron concentration was only measured twice in 2013 (July and December).
- iv. Ammonia concentrations at the start of the year were very low. Afterwards, there was a notable increase in May, rising until December to a value of 44 mg N/L. Ammonia is produced by the hydrolysis of cyanate, which is by-product of the cyanide destruction system. Therefore, when the cyanide destruction system is operating efficiently, it is expected that the concentration of ammonia will increase.
- v. Nitrate concentrations also steadily increased in 2013, with a peak value of 21 mg N/L measured in May 2013.
- vi. Chloride concentrations were quite variable during 2013. The primary source of chloride found in the TSF Reclaim Pond is due to the use of calcium chloride as an anti-freeze solution. There is a reduction in its use during the summer months, which could explain the drop seen in the summer months.

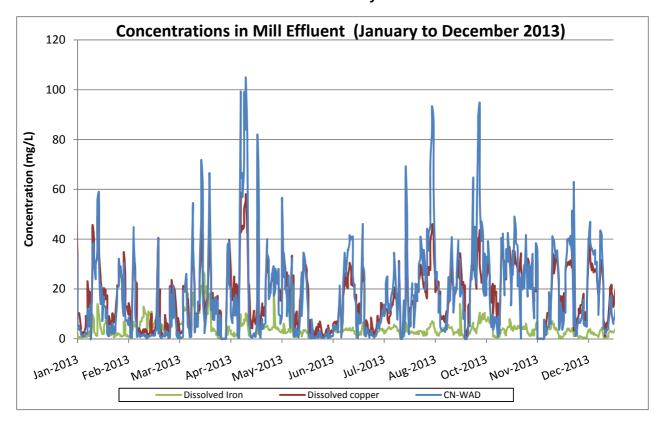
The graphs in Figure 2-1 also present the 2012 forecasted values versus the actual measured values. A couple of points to note:

- i. The forecasted concentrations for cyanide were in the same range as the actual measured values during the summer months. However, during the winter months, the forecasted values were too low. The data suggest that very little natural cyanide degradation occurs during the winter months. The water quality model will be adjusted to take this into account.
- ii. Forecasted concentrations for copper and iron are very high when compared to the actual measurements. This is mainly due to assumption of a very high concentration of copper and iron in the mill effluent in 2012. Adjustment will be made to the model based on updated copper and iron concentrations (refer to section 3.4.1).
- iii. Forecasted concentrations for ammonia were too low compared to the actual measured values. The 2012 model did not model hydrolysis of cyanate (CNO-) to ammonia (NH₃). The revised model will take this into account.
- iv. Forecasted nitrate and chloride concentrations were also too low compared to the measured value. A review of the mill effluent quality for nitrate and chloride concentrations will be undertaken and the model will be updated with the proper concentrations.

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
		Date	Page	
610756-0000-40ER-0002	00	March 20 th , 2014	10	

2.2.2 Mill Effluent

A review of the chemical analysis for the mill effluent was undertaken by SLI in order to identify the impact of the mill effluent water quality on the water quality observed in the North Cell TSF Reclaim Pond (section 2.2.1). The mill effluent is tested twice daily for gold (solid and dissolved) and iron (dissolved), copper (dissolved) and cyanide (CN-WAD). These chemical analyses were provided to SLI for January to December 2013 and the results are presented in Appendix A.


Figure 2-2 shows the daily average dissolved metal concentrations and cyanide (CN-WAD) in the mill effluent. This figure illustrates the following:

- Dissolved iron and copper concentrations are present in the mill effluent. Thus the main source of iron and copper in the TSF Reclaim Pond comes from the mill effluent.
- Dissolved iron and copper concentrations peaked in May, August and October. 2013,
- There is a relationship between iron, copper and cyanide concentrations at the mill effluent. This is clearly represented in Figure 2-2, where all three (3) graphs behaved similarly in 2013. A low concentration of CN-WAD is generally accompanied with lower iron and copper concentration.
- Cyanide concentrations have been lower in general in 2013 than in 2012. The cyanide (CN-WAD) concentrations in the mill effluent often meet the 15 ppm discharge criterion, but there are still times when concentrations are higher than 40 ppm.

TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
		Date	Page	
610756-0000-40ER-0002	00	March 20 th , 2014	11	

Figure 2-2: Dissolved Metal Concentrations and Cyanide (CN-WAD) in the Mill Effluent from January to December 2013

2.2.3 Additional Mill Effluent Water Quality Results

SLI requested a sample taken of the water fraction of mill effluent after cyanide destruction in order to have representative data of the tails water being discharged to the North Cell. The sample was collected on January 29th, 2014. It is understood that this data points represent a very limited sampling campaign that may not be representative of the mill effluent water quality of the entire year.

The chemical analysis results of the additional sampling undertaken for the mill effluent are presented in Appendix A and are summarized in Table 2-2. The values of 2012 are also shown for comparison.

TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
		Date	Page	
610756-0000-40ER-0002	00	March 20 th , 2014	12	

Table 2-2: Mill Effluent Concentrations Sampled On January 29, 2014 & October 10 and 11, 2012

PARAMETER	MILL EFFLUENT CONCENTRATION (mg/L)			
	January 29, 2014	October 10, 2012	October 11, 2012	
Total Cyanide (CN)	18.80	4.7	10.13	
Copper (Cu)	25	10.08	9.02	
Dissolved Copper	7.8	9.53	7.07	
Iron (Fe)	6.7	1.8	2.2	
Dissolved Iron	0.8	0.83	0.83	
Ammonia (NH ₃)	71.5 (mg N/L)	N/A	N/A	
Nitrate (NO ₃)	31.6 (mg N/L)	13.2 (mg N/L)	10.8 (mg N/L)	
Chloride (CI)	2129	1288	1375	

Table 2-2 shows that concentrations in the mill effluent are higher than those observed in the North Cell TSF Reclaim Pond. This shows that the main parameters of concern identified in the North Cell TSF Reclaim Pond can be traced to the mill effluent.

2.2.4 Attenuation Pond

Table 2-3 presents the average concentrations (November 2011 to November 2012 and for 2013) observed in the Attenuation Pond. The average values measured in 2013 was selected as representing the initial (October 2014 when tailings will first be deposited) concentrations in the South Cell TSF Reclaim Pond.

Table 2-3: Average (2013 and November 2011 to November 2012)

Concentrations in the Attenuation Pond

PARAMETER	AVERAGE CONCEN ATTENUATION	
	2013	Nov 2011 to Nov 2012
Total Cyanide (CN)	0.15	0.114 (1)
Copper (Cu)	0.02	0.005
Iron (Fe)	1.26	1.26
Ammonia (NH ₃)	0.20 (mg N/L)	0,15 (mg N/L)
Nitrate (NO ₃)	4.20	8,6
Chloride (CI)	75.70	39.5

¹ This is a one-time CN-WAD measurement that took place in April 2012.

Prepared by: G. Beaudoin-Lebeuf **TECHNICAL NOTE** Reviewed by: A.-L. Nguyen Water Quality Forecasting Update for 2 610756-0000-40ER-0002

		, , ,		
2013-2025	Rev.	Date	Page	
	00	March 20 th , 2014	13	

3.0 **UPDATED MASS BALANCE MODEL**

3.1 **DESCRIPTION**

The water quality updated mass balance model presented in this Technical Note was developed to help forecast trends in water quality in the Portage Area of Meadowbank for different parameters of interest from June 2013 to mine closure in 2025. This mass balance model was based on the following:

- Flows and volumes provided in the water balance developed in the Water Management Plan 2013 (AEM, 2013);
- Assumptions presented below in section 3.2;
- Chemical analyses for ST-21 (North Cell TSF Reclaim Pond) (2010-2013):
- Chemical analyses for Third Portage Lake (2013);
- Chemical analyses for ST-18 (Attenuation Pond) (2011-2013);
- Chemical analyses for the mill effluent (2013 and sample taken in January 2014).

3.2 **ASSUMPTIONS**

The assumptions used in the development of the mass balance model for the Portage Area of Meadowbank were the following:

- For simplification of the model, the North and South Cell TSF Reclaim Ponds and the Portage and Goose pits are assumed to be completely mixed systems.
- The main source of cyanide, copper, ammonia, iron, nitrate, and chloride in the TSF Reclaim Pond is the mill effluent. All other inflow contaminant concentrations (Third Portage Lake¹, precipitation, runoff, etc.) are assumed to be negligible.
- The water quality of the mill effluent is constant over time for cyanide, copper, iron and nitrates. For ammonia, the water quality for this parameter will continue to vary due to the hydrolysis of cyanate to ammonia. For chloride, the water quality for this parameter will continue to increase due to the continued use of calcium chloride on the site.
- The pH in the TSF Reclaim Pond is on average at 8 during the summer months, and on average 8.4 for the year (2013).

¹ 2013 water quality data continue to show that the concentrations observed in Third Portage Lake were on average 95% lower than those in the North Cell TSF Reclaim Pond. It was therefore assumed that any input of contaminants from Third Portage Lake would be negligible.

TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
	Water Quality Forecasting Update for 2013-2025		Date	Page
	610756-0000-40ER-0002	00	March 20 th , 2014	14

- For simplification of the model, the parameters of interest are assumed to be inert: they do not degrade or react with other elements in the system, with the exception of cyanide.
- For cyanide, it is assumed that the mill effluent meets AEM's CN-WAD operational target of 15 mg/L at all times.
- The total cyanide in the TSF Reclaim Pond is comprised of free cyanide and metal-cyanide complexes (weak and strong metal cyanide complexes). As per discussions with AEM, most of the iron- and metal-cyanide complexes are precipitated in the mill. However, since the reaction is not complete or perfect, some dissolved iron- and metal-cyanide complexes are expected to remain in the mill effluent. Therefore it was assumed that 10% of the total cyanide concentration was bound as strong iron-cyanide complexes, and that another 10% of the total cyanide concentration was present as weak metal-cyanide complexes (cyanide bound with copper, zinc, and nickel). The balance is present as free cyanide (i.e. HCN and CN). This agrees with values observed at other gold mine tailings sites (Simovic, 1984). These same proportions are assumed to apply to the cyanide at the mill effluent.
- For this model, natural cyanide degradation is only considered for the summer months.
- The initial concentration of total cyanide, copper, iron, ammonia, nitrate, and chloride in the Portage and Goose Pits are assumed to be negligible.
- The initial concentration of total cyanide, copper, iron, ammonia, nitrate, and chloride in the North Cell TSF Reclaim Pond is the concentration obtained in June 2013 for station ST-21.
- The initial concentration of total cyanide, copper, iron, ammonia, nitrate, and chloride in the South Cell TSF Reclaim Pond is assumed to be the average concentration obtained of 2013 for station ST-18 (current Attenuation Pond).
- For this analysis, it is assumed that no treatment will take place at the North or South Cell TSF Reclaim Pond, or at the Portage or Goose Pits.

3.3 LIMITATIONS

The limitations of the Meadowbank water quality mass balance model and ensuing results and conclusions presented in this Technical Note are listed below:

• In order to simplify the model, the mass balance model assumes that the pond and pits are completely mixed systems. It is understood that given the nature, size, and location of the ponds and pits, and based on the nature of their inflows and outflows, these ponds and pits are not actual well-mixed systems. Therefore, the concentration may be higher in certain areas within the pond/pit and lower in other areas.

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen	
		Date	Page
610756-0000-40ER-0002	00	March 20 th , 2014	15

Consequently, the results from this model provide only an indication of the concentrations in the ponds and pits and should not to be considered as an absolute value at this time. Future monitoring results both for flows and water quality will provide for a better indication of concentrations of contaminants.

- The mass balance model is based on the water quality analysis results provided by AEM:
 - Water quality data provided for ST-21 is taken from samples collected at the surface of the North Cell TSF Reclaim Pond. Therefore the concentrations provided by AEM for ST-21 may not be representative of the entire TSF Reclaim Pond water quality.
 - There is limited water quality data available for the mill effluent, in terms of contaminants analyzed: the mill effluent is only analyzed on a regular basis for a total of four (4) parameters: gold, iron, copper, cyanide (CN-WAD).
- The model does not make allowances for the impact that changes in the TSF (surface area, volume, tailings characteristics, etc.) will have on the TSF Reclaim Pond water quality over time.
- The model is based on a monthly time-step and the resulting concentrations provided represent monthly values.
- It should be noted that at this point, given the limitations, assumptions and limited data currently available, the model should be used as a preliminary means to evaluate the impact of mill effluent on the future water quality in the North and South Cell TSF Reclaim Pond and Portage and Goose Pits.
- Furthermore, this model is intended as an initial model for the mass balance in the Portage Area and should be updated and calibrated as concentrations of different flows in the Portage Area become available. Refer to section 5.3 for recommendations on improving the mass balance.

3.4 INPUT PARAMETERS

The mass balance model for the Portage area of Meadowbank was developed to forecast the long-term concentration of cyanide, copper, ammonia, nitrate and chloride in the North and South Cell TSF Reclaim Pond and in the pits, based on the assumptions presented in section 3.2 and on the following input parameters:

- Mill effluent concentration;
- Initial concentration in the North and South Cells TSF Reclaim Pond;
- Initial concentration in the Portage and Goose Pits.

TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen	
		Date	Page
610756-0000-40ER-0002		March 20 th , 2014	16

3.4.1 Mill Effluent Concentration

Table 3-1 presents the mill effluent concentrations considered for the mass balance. The additional samples taken in 2014 were used as 2013 values because they were found to be more representative. The 2013 values are also compared to the 2012 values used in the previous model.

Table 3-1: Mill Effluent Concentrations Selected for the Mass Balance Model

PARAMETER	MILL EFFLUENT CONCENTRATION (mg/L)	
	2013	2012
Total Cyanide (CN)	15	16.7 ⁽¹⁾
Copper (Cu)	7.8 ²	28.3 ⁽²⁾
Iron (Fe)	0.8 ²	11.8 ⁽²⁾
Ammonia (NH ₃)	+ 45 (mg N/L/month)	17.1 (mg N/L) (3)
Nitrate (NO ₃)	31.6 (mg N/L)	9.9 (mg N/L) ⁽⁴⁾
Chloride (CI)	+ 600 (mg/L/month)	674 ⁽⁴⁾

A couple of items to note on the parameters used for the 2013 updated water quality forecast model:

- For copper and iron, the dissolved concentration values were used instead of the total concentrations since the copper and iron precipitates will settle in the TSF.
- To evaluate the concentration of ammonia that may be added to the TSF Reclaim Pond on a monthly basis, the difference in concentration of CN-WAD before and after the cyanide destruction system was evaluated. In 2013, on average, 83 mg/L of CN-WAD was removed and converted to cyanate (CNO). Assuming that 100% of the cyanate is hydrolyzed to ammonia (NH₃), it was evaluated that on average approximately 45 mg N/L of ammonia was added to the mill effluent. For the purpose

¹ The internal CN-WAD criterion for the mill effluent is a CN-WAD concentration of 15 mg/L. Assuming that CN-WAD represents 90% of total CN (refer to section 3.2), then this CN-WAD internal criterion translates to a CN total criterion of 16.7 mg/L.

² The dissolved copper and iron concentration were used instead of the total concentrations, since the solids will tend to decant in the TMF.

³ Average January to December 2012 ST-21 concentrations.

⁴ Average April to December 2012 mill effluent concentrations.

TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen	
		Date	Page
610756-0000-40ER-0002	00	March 20 th , 2014	17

of the model, it is assumed that 45 mg N/L of ammonia is added to the mill effluent every month. This additional ammonia load is added to the load already present in the reclaim water.

Based on the measured data, the chloride concentration continues to increase in the
mill effluent. To account for this trend, it is assumed that 600 mg/L of chloride is
added to the mill effluent every month. This additional chloride load is added to the
load already present in the reclaim water. This value was evaluated by adjusting the
model to fit with the measured chloride values in the Reclaim Pond in 2013.

3.4.2 Initial Concentrations in the TSF Reclaim Ponds and Pits

The mass balance model begins in June 2013. Therefore, the initial concentrations selected for the North Cell TSF Reclaim Pond correspond to the June 2013 chemical analysis results from station ST-21. These initial concentrations are presented in Table 3-2.

On the other hand, the initial (October 2014) concentrations selected for the South Cell TSF Reclaim Pond (former Attenuation Pond) correspond to the 12-month (2013) average concentration results from station ST-18 (current Attenuation Pond). Note that in general, the concentrations observed in the Attenuation Pond had little variation from one month to the other. These initial concentrations are also presented in Table 3-2.

At this time, the Portage and Goose Pits collect non-contact water (such as runoff and seepage). Therefore it was assumed that the initial concentration (cyanide, copper, iron, ammonia, nitrate, and chloride) in the Portage and Goose Pits is 0, until the transfer from the TSF Reclaim Pond to the pits begins in 2015.

The results of the mass balance model are presented in section 4.0.

Table 3-2: Initial Concentration in the North and South Cells TSF Reclaim Pond

	INITIAL CONCENTRATION (mg/L)		
PARAMETER	NORTH CELL TSF RECLAIM POND (June 2013)	SOUTH CELL TSF RECLAIM POND (Average 2013)	
Total Cyanide (CN)	16.8	0.15	
Copper (Cu)	0.6 ¹	0.02	
Iron (Fe)	0.6 ¹	1.26 ²	
Ammonia (NH₃)	46.2 (mg N/L)	0.2 (mg N/L)	

¹ Initial iron and copper concentrations were not available, so the values taken in July were used instead.

² There was no iron data in 2013; therefore the average of November 2010 to November 2012 was used.

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025 610756-0000-40ER-0002 Prepared by: G. Beaudoin-Lebeuf Reviewed by: A.-L. Nguyen Rev. Date Page 00 March 20th, 2014 18

	INITIAL CONCENTRATION (mg/L)		
PARAMETER	NORTH CELL TSF RECLAIM POND (June 2013)	SOUTH CELL TSF RECLAIM POND (Average 2013)	
Nitrate (NO ₃)	13.7 (mg N/L)	4.2 (mg N/L)	
Chloride (CI)	683	75.7	

3.5 CYANIDE DECAY

The water quality model developed during this study takes natural cyanide degradation into account: the most important mechanism in the natural degradation of cyanide is the volatilization of hydrogen cyanide (HCN). In fact, tests carried out in Canada found that volatilization of HCN accounted for 90% of cyanide removed from solution in a tailings impoundment (Botz and Mudder, 2000).

Oxidation of cyanide ions (CN-) to orthocyanate (OCN) with atmospheric oxygen is possible but extremely slow when compared to HCN volatilization. Similarly, the probability of microbial degradation of cyanide to carbon dioxide, ammonia, nitrite and nitrate is low due to the limited presence of microorganisms and low nutrient levels in tailings water.

Cyanide volatilization can be summarized as a two (2)-step process presented in Figure 3-1 below. First, metal-cyanide complexes dissociate to free cyanide (HCN and CN $^{-}$) based on a first-order decay constant 2 (k_{1}); followed by HCN volatilization based on a first-order decay constant 2 (k_{v}). Both decay constants k_{1} and k_{v} depend on the presence of UV light (sun) and air (wind), and water temperature and pH. The volatilization decay constant, k_{v} , also depends on the surface area to volume ratio of the pond.

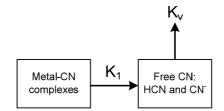


Figure 3-1: Cyanide Volatilization Process

Since both constants depend to a great extent on temperature, UV light and air, separate constants were determined for summer (May to October) and winter (November to April) conditions. The decay constants were based on laboratory values recorded by Simovic

¹ Equilibrium between HCN and CN is based on pH.

² A first order decay constant signifies that the final concentration (C_f) can be estimated as, $C_f = C_i e^{-kt}$, where k is the first order decay constant.

TECHNICAL NOTE	Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
Water Quality Forecasting Update for 2013-2025	Rev.	Date	Page
610756-0000-40ER-0002	00	March 20 th , 2014	19

(1984). The assumptions made for the development of the cyanide decay constants were the following:

- Summer conditions: an average water temperature of 10°C, presence of air and UV light. Furthermore, since metal-CN dissociation and HCN volatilization by air and UV is particularly important in the summer months, the decay constant factors in the physical property of the tailings impoundment, represented by the open surface area to volume ratio. Multiplying the decay constant by this ratio takes into account the accelerated reaction due to a large exposed surface area of the Reclaim Pond.
- Winter conditions: no natural cyanide degradation occurs.
- The pH in the Reclaim Pond is maintained constant at 8.0, which means that most (94%)¹ of the free cyanide will be present as HCN. Note that as the pH decreases, the proportion of free cyanide as HCN increases, which increases cyanide degradation through volatilization.
- As stated in section 3.2, it was assumed that 10% of the total cyanide concentration
 was bound as iron-cyanide complexes, another 10% as metal (copper, nickel and
 zinc) cyanide complexes, and 80% as free cyanide. This agrees with values observed
 at other gold mine tailings impoundments.

It should be noted that these decay constants (referred to as k_0) were established based on an hourly time step, and were not deemed reliable for longer time-periods (i.e. months). Therefore, the summer and winter decay constants obtained based on volatilization conditions and assumptions, were calibrated so as to represent more accurately and conservatively the expected cyanide concentrations on a monthly time-step.

Table 3-3 presents the assumptions and cyanide decay constants used in the water quality model.

Table 3-3: Natural Cyanide Degradation: Assumptions and Constants

DECAY	DECORIDEION	WINTER CONDITIONS ²			SUMMER CONDITIONS		
CONSTANT	DESCRIPTION	Conditions	k ₀	Calibrated value (k)	Conditions	k ₀	Calibrated value (k)
K ₁	Metal-CN dissociation	4°	n/a	n/a	10° Air (wind) UV (sunlight)	0.01443/hr	2.11/month
K _V ⁽³⁾	HCN volatilization	No air No UV	n/a	n/a		2.382 cm/hr	58.0 m/month

¹ The dissociation constant for HCN is pKa = 10^{-9.2}.

_

² During the winter, most of the Reclaim Pond is covered in ice and/or snow. Assume no natural degradation of cyanide is occurring.

³ In the summer k_v strongly depends on the presence of air and UV, and thus it also depends on the surface area to volume ratio (A/V). Therefore, the k_v value for the summer season has units of cm/h or m/month and should be multiplied by A/V.

TECHNICAL NOTE	Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen			
Water Quality Forecasting Update for 2013-2025		Date	Page	
610756-0000-40ER-0002	00	March 20 th , 2014	20	

4.0 MASS BALANCE RESULTS

4.1 RESULTS

The results of the mass balance model are presented in the Figures 4-1 to 4-14, for total cyanide, copper, iron, ammonia, nitrate, and chloride. The graphs show the forecasted monthly concentration of the parameter from 2013 to 2025. A total of two (2) graphs are presented per parameter: the first shows the forecasted concentration in the North and South Cells TSF Reclaim Pond and the second shows the forecasted concentration in the Portage and Goose Pits, assuming that the water is pumped without treatment. The Water License and CCME limits (refer to Table 2-1) were also included in the figures, when applicable.

Again, it is important to remember that the results presented in Figures 4-1 to 4-14 are based on the concentrations presented in Tables 3-1 and 3-2, and summarized in the following Table 4-1. It is also important to note that the results from this model assume that no treatment of the Reclaim Pond effluent is undertaken; and provide only a forecast of the concentrations of the selected parameters. These results must be reviewed while keeping in mind the assumptions and limitations described in section 3.2 and 3.3.

Table 4-1: Summary of Input Parameter Concentrations in the Mass Balance Model

	CONCENTRATION (mg/L)						
PARAMETER	NORTH CELL TSF RECLAIM POND June 2013	RECLAIM POND EFFLUENT					
Total Cyanide (CN)	Cyanide (CN) 16.8		0.15				
Copper (Cu)	0.6	7.8	0.02				
Iron (Fe)	0.6	0.8	1.26				
Ammonia (NH ₃)	46.2 (mg N/L)	+ 45 (mg N/L/mth)	0.2 (mg N/L)				
Nitrate (NO ₃)	13.7 (mg N/L)	31.6 (mg N/L)	4.2 (mg N/L)				
Chloride (CI)	683	+ 600 (mg/L/mth)	75.7				

4.2 DISCUSSION

4.2.1 Key Dates

The mass balance model presented in this Technical Note is based on the updated water management plan. The following key dates are important to keep in mind while reviewing the forecasted concentration data presented in Figures 4-1 to 4-14:

TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen			
Water Quality Forecasting Update for 2013-2025	Rev.	Date	Page		
610756-0000-40ER-0002	00	March 20 th , 2014	21		

- 1. October 2014: The former Attenuation Pond becomes the South Cell and TSF Reclaim Pond.
- 2. July 2015: start of water transfer from the South Cell TSF Reclaim Pond to Goose Pit.
- 3. August 2017: start of water transfer from South Cell TSF Reclaim Pond to Portage Pit
- 4. June 2018: South Cell TSF Reclaim Pond is completely empty.
- 5. May 2015 to February 2023: Pumping water from Third Portage Lake to Goose Pit and allow runoff water and ground water to accumulate in pit.
- 6. October 2017 to January 2025: Pumping water from Third Portage Lake to Portage Pit and allow runoff water, ground water and East Dike Seepage to accumulate in pit.

4.2.2 Forecasted Concentrations in the North and South Cells TSF Reclaim Pond

Table 4-2 summarizes the observations noted in Figures 4-1 to 4-12, specifically for the forecasted concentrations in the Reclaim Pond (North and South cells).

Table 4-2: Summary of Forecasted Concentrations in Reclaim Pond

		FORECASTED CONCENTRATION (mg/L)					
PARAMETER		H CELL TSF AIM POND	SOUTH RECLA	WATER LICENSE PART F (CCME)			
	June 2013 (initial)	2013 to 2016	Oct 2014 (initial)	2014 to 2018	(mg/L)		
Total Cyanide (CN)	16.8	Fluctuate from 0.07 to 14.9	0.15	Fluctuate from 0.05 to 9.4	0.5 (free CN 0.005)		
Copper (Cu)	0.6	Fluctuate from 1.4 to 7	0.02	Fluctuate from 0.6 to 7.5	0.1 (0.004)		
Iron (Fe)	0.6	Fluctuate from 0.5 to 0.7	1.26	Fluctuate from 0.4 to 0.7	n/a (0.3)		
Ammonia (NH ₃)	46.2 (mg N/L)	Fluctuate from 42 to 111	0.2 (mg N/L)	Fluctuate from 12 to 119	16 (0.86) (mg N/L)		
Nitrate (NO ₃)	13.7 (mg N/L)	Fluctuate from 14 to 30	4.2 (mg N/L)	Fluctuate from 4 to 30	20 (2.9) (mg N/L)		
Chloride (CI)	683	Fluctuate from 600 to 1502	75.7	Fluctuate from 154 to 1600	1000 (120)		

TECHNICAL NOTE	Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
Water Quality Forecasting Update for 2013-2025		Date	Page
610756-0000-40ER-0002	00	March 20 th , 2014	22

Based on the model for forecasting concentrations in the North and South Cell TSF Reclaim Pond, the following notes and observations can be made:

- i. The fluctuations observed from 2013 to 2018 are primarily due on seasonal variability (runoff from nearby areas, snow and ice melt, temperature, etc.).
- ii. Natural degradation of cyanide during summer plays a significant role in reducing the concentration of cyanide in the TSF Reclaim Ponds.
- iii. For ammonia, it is important to note that (1) the mass balance model developed here does not include seasonal variability (sunlight, microbial or algae degradation of ammonia, etc.), and (2) ammonia concentrations can vary significantly depending on temperature, pH, sunlight, algae activity, etc. Ammonia concentrations may be lower in the summer and higher in the winter.
- iv. Similarly, for nitrate, it is important to remember that (1) the mass balance model developed here does not include seasonal variability, and (2) ammonia decomposes to nitrate, therefore nitrate concentrations can vary significantly depending on temperature, pH, sunlight, algae activity, etc. Nitrate concentrations may be lower in the winter and higher in the summer.

v. Guidelines:

- a. For comparison purposes, the forecasted concentrations in the North and South Cells TSF Reclaim pond for all the parameters are above the Water License discharge criteria.
- b. For comparison purposes, the forecasted concentrations for all the parameters are also above the CCME guidelines for the protection of aquatic life
- **c.** However, it is important to note that no water in the TSF Reclaim Pond from 2013 to July 2018 is discharged to the environment. Thus, the Water License discharge criteria are not applicable.

TECHNICAL NOTE	Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen			
Water Quality Forecasting Update for 2013-2025		Date	Page	
610756-0000-40ER-0002	00	March 20 th , 2014	23	

4.2.3 Forecasted Concentrations in Portage and Goose Pits

Table 4-3 summarizes the observations noted in Figures 4-1 to 4-12, specifically for the forecasted concentrations in Portage and Goose Pits.

Table 4-3: Summary of Forecasted Concentrations in Portage and Goose Pits

	FORECASTED CONCENTRATION (mg/L)						
PARAMETER	PORTA		GOOS	CCME			
	August 2017 (initial)	Dec. 2025 ⁽¹⁾ (end)	July 2015 (initial)	Dec. 2025 ⁽¹⁾ (end)	(mg/L)		
Total Cyanide (CN)	0.00	0.00	0.00	0.00	0.005 as free CN		
Copper (Cu)	0.0042	0.06	0.0048	0.28	0.004		
Iron (Fe)	0.00	0.006	0.00	0.029	0.3		
Ammonia (NH ₃)	0.2120 (mg N/L)	0.97 (mg N/L)	0.2956 (mg N/L)	3.83 (mg N/L)	0.86 (mg N/L)		
Nitrate (NO ₃)	0.00 (mg N/L)	0.26 (mg N/L)	0.00 (mg N/L)	1.13 (mg N/L)	2.9 (mg N/L)		
Chloride (CI)	0.00	12.97	0.00	51.61	120		

Based on the model for forecasting of the concentrations in the Reclaim Pond, the following notes and observations can be made:

i. In general, the concentrations of all parameters in the pits are initially elevated but then decrease when the pits are flooded with water from Third Portage Lake, and from runoff and seepage inflows to the pits.

ii. Guidelines:

ii. Guide

- a. In December 2025, the forecasted concentrations are above the Water License discharge criteria guidelines limits for copper in Goose Pit, and above the CCME guidelines limits for copper in Portage and Goose Pits.
- b. In December 2025, the forecasted concentrations for Portage and Goose Pit are above the CCME guidelines for ammonia.
- c. However, it is important to note that the water quality in the pits will be subject to CCME guidelines once the water level in the Goose and Portage pits are equal to the water level in Second Portage Lake, and the dikes are breached.
- d. It is also important to note that once the water elevation in the pits reaches a level above 131 m, both Portage and Goose pits will be hydraulically

_

¹ This represents the final, stable forecasted concentration in the Pits.

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025 610756-0000-40ER-0002 Prepared by: G. Beaudoin-Lebeuf Reviewed by: A.-L. Nguyen Rev. Date Page 00 March 20th, 2014 24

connected. This should help in attenuating some of the concentrations in Goose Pits.

Consequently, the parameters of concern are copper and ammonia.

4.2.4 Treatment Requirements

Based on the results of the water quality mass balance presented in section 4.2, treatment may be required for copper and ammonia. Treatment could be undertaken at the South Cell TSF Reclaim Pond, or in the Portage and Goose Pits.

If high copper concentrations persist, this metal may be removed through pH adjustment: caustic or lime can be added to the effluent to increase the pH to 9, causing the formation of metal hydroxide precipitates, which settle out. The different treatment options that may be considered to implement the precipitation of copper are listed below:

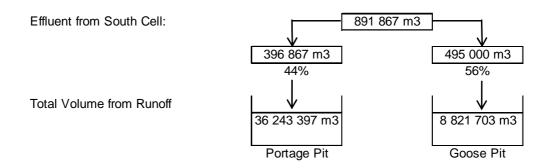
- a) The existing Attenuation Pond water treatment plant (WTP) can be modified for copper precipitation with the addition of lime or caustic dosing system. The water from the South Cell TSF pond can be pumped to the WTP for treatment, with the treated water recycled back to the pond. Note that the average pH in 2013 in the Attenuation Pond was 7.4.
- b) Treatment in situ at South Cell TSF Reclaim Pond or at Portage and Goose pits. Note that the average pHs in 2013 in the Reclaim Pond, in Portage, and in Goose pit were respectively of 8.4, 7.5 and 7.7.

If ammonia concentrations are too high, ammonia can be removed through a variety of treatment methods:

- In-situ aeration during the summer months;
- Biological treatment;
- Chemical oxidation;
- Membrane processes such as reverse osmosis;
- Ion exchange.

These technologies should be studied and evaluated in detail to determine if they are applicable to site and effluent conditions at Meadowbank. Laboratory and/or in-situ pilot tests should also be considered to validate the treatment method selected.

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025 Revi


Prepared by: G. Beaudoin-Lebeuf Reviewed by: A.-L. Nguyen

	, , ,	
Rev.	Date	Page
00	March 20 th , 2014	25

610756-0000-40ER-0002

4.2.5 Distribution of South Cell TSF Pond Water to Portage and Goose Pits

In the 2013 water management plan, the South Cell TSF water is sent to Goose Pit beginning in 2015 and Portage Pit in 2017. As shown in the figure below, approximately 44% of the South Cell TSF Reclaim water is sent to Portage Pit, with the balance to Goose Pit.

Considering that Portage Pit has almost 4 times more available volume than in Goose Pit, better attenuation of the loads could be achieved by sending more of the South Cell TSF pond water to Portage Pit.

One scenario that could be looked at is to send, at most, 20% of South Cell TSF pond water to Goose Pit, with the remainder sent to Portage Pit. This should help lower the ammonia concentration forecasted in Goose pit.

	TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen			
	Water Quality Forecasting Update for 2013-2025	Rev.	Date	Page		
ĺ	610756-0000-40ER-0002	00	March 20 th , 2014	26		

Figure 4-1: Total Cyanide Concentration in the North and South Cells TSF Reclaim Pond

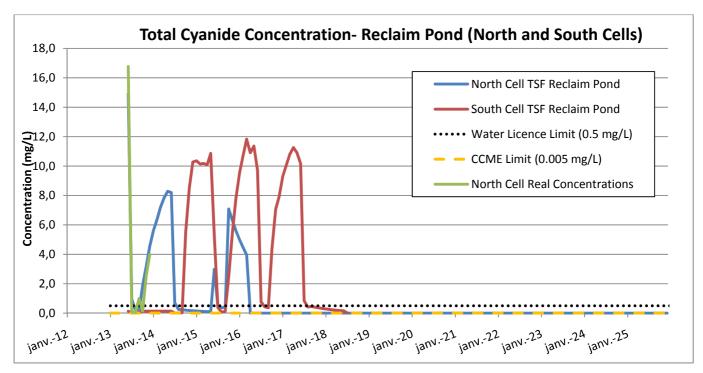
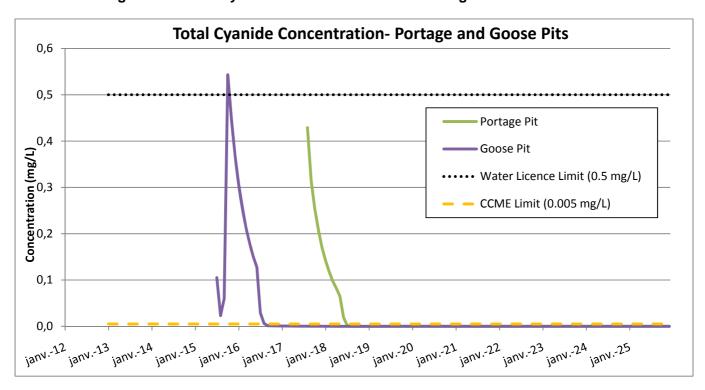



Figure 4-2: Total Cyanide Concentration in the Portage and Goose Pits

TECHNICAL NOTE		Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen		
		Date	Page	
610756-0000-40ER-0002	00	March 20 th , 2014	27	

Figure 4-3: Total Copper Concentration in the North and South Cells TSF Reclaim Pond

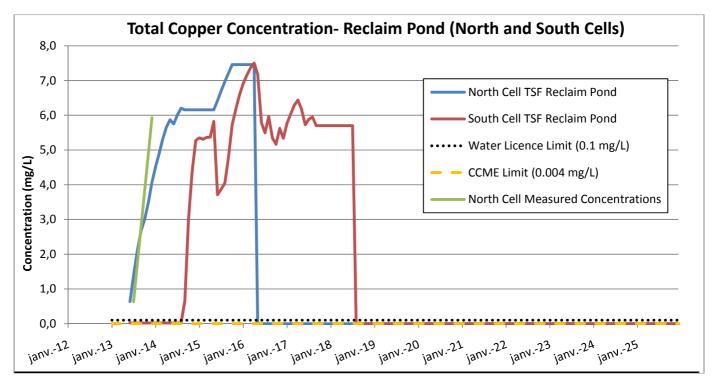
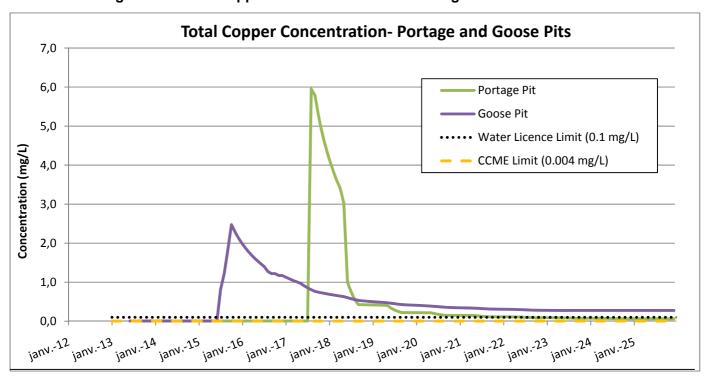



Figure 4-4: Total Copper Concentration in the Portage and Goose Pits

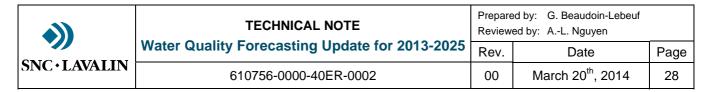


Figure 4-5: Total Iron Concentration in the North and South Cells TSF Reclaim Pond

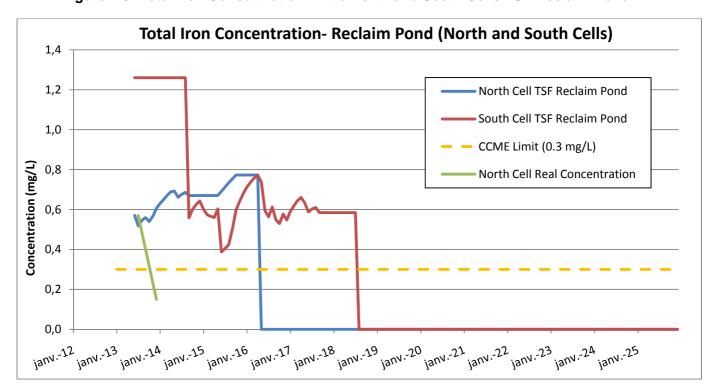
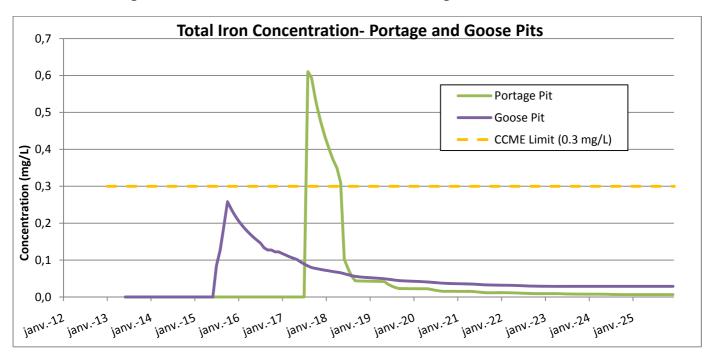



Figure 4-6: Total Iron Concentration in the Portage and Goose Pits

TECHNICAL NOTE	Review	ed by: AI. Nauven	
Water Quality Forecasting Update for 2013-2025	Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen Rev. Date Page O March 20 th , 2014 29		
610756-0000-40ER-0002	00	March 20 th , 2014	29

Figure 4-7: Ammonia Concentration in the North and South Cells TSF Reclaim Pond

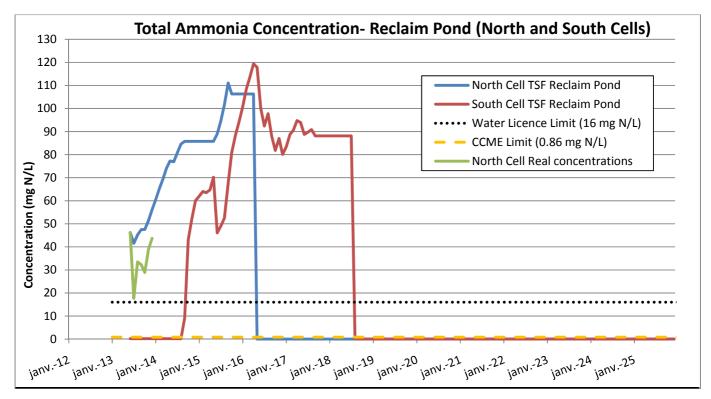
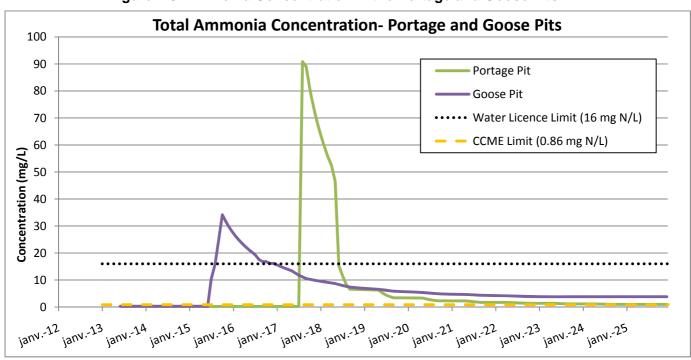



Figure 4-8: Ammonia Concentration in the Portage and Goose Pits

TECHNICAL NOTE	Review	ed by: G. Beaudoin-Lebeuf ed by: AL. Nguyen	
Water Quality Forecasting Update for 2013-2025	Rev.	Date	Page
610756-0000-40ER-0002	00	March 20 th , 2014	30

Figure 4-9: Nitrate Concentration in the North and South Cells TSF Reclaim Pond

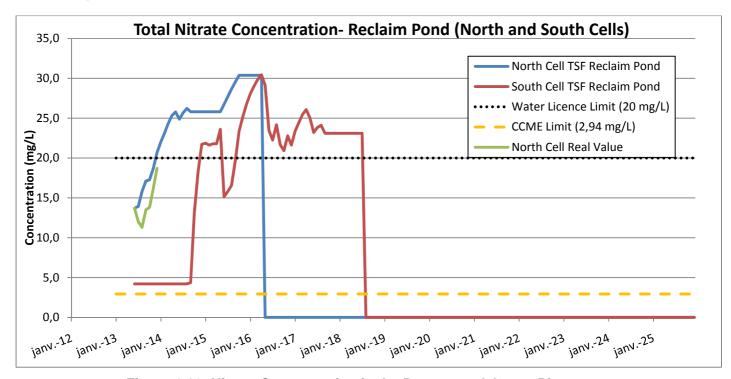
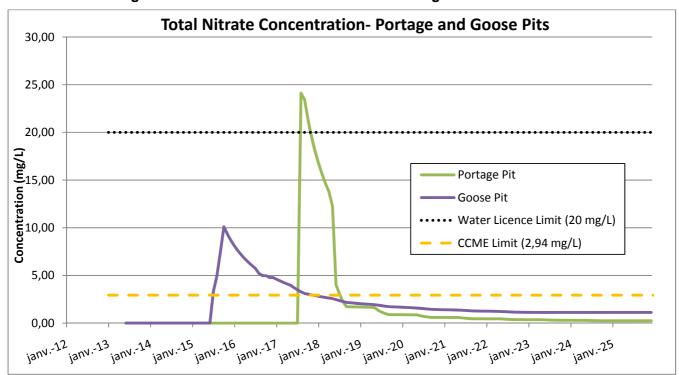



Figure 4-10: Nitrate Concentration in the Portage and Goose Pits

TECHNICAL NOTE	Review	ed by: A -l Nauven	
Water Quality Forecasting Update for 2013-2025	Rev.	Prepared by: G. Beaudoin-Lebeuf Reviewed by: AL. Nguyen Rev. Date Page 00 March 20 th , 2014 31	
610756-0000-40ER-0002	00	March 20 th , 2014	31

Figure 4-11: Chloride Concentration in the North and South Cells TSF Reclaim Pond

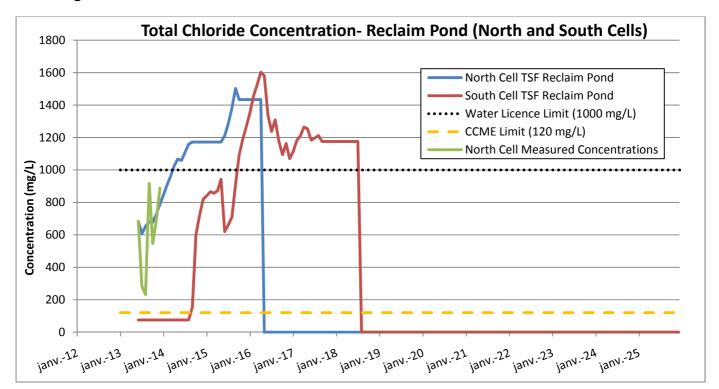
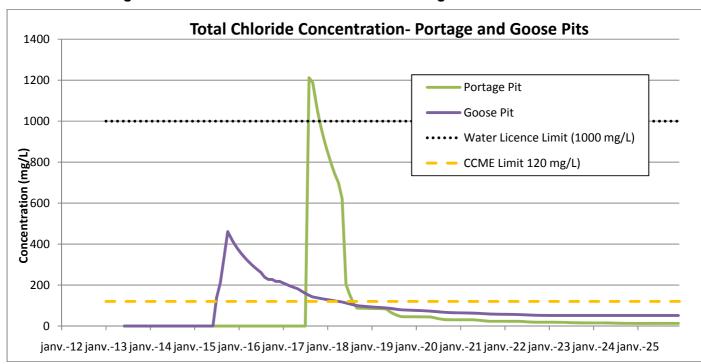



Figure 4-12: Chloride Concentration in the Portage and Goose Pits

TECHNICAL NOTE	Review	ed by: G. Beaudoin-Lebeuf ed by: AL. Nguyen	
Water Quality Forecasting Update for 2013-2025	Rev.	Date	-L. Nguyen Date Page
610756-0000-40ER-0002	00	March 20 th , 2014	32

5.0 CONCLUSION

Based on the water management plan 2013 developed by AEM, the objective of this Technical Note was to forecast the long term concentration of different contaminants in the North and South Cells TSF Reclaim Pond and in the Portage and Goose Pits from 2013 until closure in 2025. The water quality mass balance model was updated to forecast these long-term concentrations.

5.1 LIMITATIONS

It is important to understand the limitations of the mass balance model and of this Technical Note. The limitations are presented in section 3.3 and are briefly summarized here:

- In order to simplify the model, the mass balance model assumes the following:
 - Pond and pits are completely mixed systems;
 - No change in the water quality of the mill effluent;
 - A monthly time-step.
- The mass balance model is based on a limited set of water quality analysis results provided by AEM:
 - Water quality data provided for ST-21 is taken from samples collected at the surface of the North Cell TSF Reclaim Pond;
 - Limited water quality data available for the mill effluent;
 - Limited water quality data for some of the inflows and outflows of the Reclaim Pond.

5.2 RESULTS SUMMARY AND TREATMENT

Based on the results of the water quality mass balance presented in section 4.2, treatment may be required for the copper and ammonia. Treatment could be undertaken at the Reclaim Pond, or in the Portage and Goose Pits if the trends shown in the model reveal to be true in the field.

However, it is important to note that the water quality in the pits will be subject to CCME guidelines once the water level in the Goose and Portage pits are equal to the water level in Second Portage Lake. The dikes will only be breached once the water quality in the pits meets CCME guidelines.

Prepared by: G. Beaudoin-Lebeuf **TECHNICAL NOTE** Reviewed by: A.-L. Nguyen Water Quality Forecasting Update for 2013-2025 Rev. Date

Page March 20th, 2014 610756-0000-40ER-0002 00 33

A potential treatment option for the removal of copper prior to discharge in Portage and Goose Pit is caustic or lime precipitation. Also, to lower the concentration of ammonia in the pits, in-situ aeration can be implemented in Goose and Portage pits during the summer months. However, before such treatments are installed, an evaluation of improving the cyanide destruction at the mill should be undertaken, to ensure (1) that the efficiency of the cyanide destruction system is maximized; and (2) that a separate water treatment operation for copper and/or ammonia removal is necessary.

5.3 **RECOMMENDATIONS**

The water quality mass balance developed for this study is intended as an updated model (from SNC 2012 model) for the mass balance in the Portage Area. Therefore, in order to improve the accuracy of the model so that it can better forecast the concentration of certain parameters in the Reclaim Pond or Portage and Goose Pits, the following studies, tests and monitoring are recommended.

- 1. In addition to the current set of chemical analyses, regular (at least monthly) monitoring of all inflows and outflows of the North and South Cells TSF Reclaim Pond for cyanide, copper, iron, ammonia, nitrate, and chloride should be undertaken. In the future, the addition of total copper and iron, free CN in addition to other contaminants regulated by the CCME guidelines should be evaluated (such as Total Suspended Solids).
- 2. Regular analysis are also required of the mill effluent water discharged to the TSF in order to better monitor the changes in cyanide, copper, iron, ammonia, nitrate and chloride concentrations. Samples should be taken at least once a guarter.
- 3. Once transfer begins to the Portage and Goose Pits (2017 and 2015, respectively), regular (at least monthly) monitoring of all outflows of the TSF Reclaim Pond for cyanide, copper, iron, ammonia, nitrate, and chloride should be undertaken.
- 4. Sample and analyze the North and South Cell TSF Reclaim Pond at different depths and locations to determine if there is a concentration gradient in the Reclaim Pond.
- 5. Continued monitoring of the water in the South Cell TSF Reclaim Pond in 2015 on a regular basis to monitor the evolution of the parameters of concern listed in section 2.2.1. It is understood that this recommendation is required as per the water license.
- 6. In order to validate the assumption of a well mixed system in Portage and Goose pits, it is recommended to sample and analyze the water at different depths before, during and after the pit is filled with water from South Cell TSF and/or Third Portage Lake.
- 7. Once Portage and Goose pits are hydraulically connected, it is recommended to sample the water at different points in the pit area in order to evaluate the mixing

TECHNICAL NOTE	Review	ed by: G. Beaudoin-Lebeuf red by: AL. Nguyen	
Water Quality Forecasting Update for 2013-2025	Rev.	Date	Page
610756-0000-40ER-0002	00	March 20 th , 2014	34

efficiency over the entire area. The samples should be taken at different depths over the entire area of the flooded pits before and after the filling season.

- 8. For the Water Management Plan 2014, consider evaluating the volume of water in Portage and Goose pits once they are hydraulically connected.
- 9. Consider reviewing the volumes of water sent from South Cell TSF pond to Goose and Portage pit in order to achieve lower concentrations of copper and ammonia in Goose Pit.

TECHNICAL NOTE Water Quality Forecasting Update for 2013-2025 610756-0000-40ER-0002 Prepared by: G. Beaudoin-Lebeuf Reviewed by: A.-L. Nguyen Rev. Date Page 00 March 20th, 2014 35

REFERENCES

Botz, M. and Mudder, T. (2000). Modeling of Natural Cyanide Attenuation in Tailings Impoundments. *Mineral and Metallurgical Processing*, Vol. 17, No. 4, pp. 228-233. November 2000.

CCME . Water Quality Guidelines for the Protection of Aquatic Life. Canadian Environmental Quality Guidelines Summary Table. http://st-ts.ccme.ca/?chems=all&chapters=1. Accessed on February 28, 2013.

Nunavut Water Board License (2008). Water License No: 2AM-MEA0815. Agnico-Eagle Mines Ltd. June 2008.

SLI (2012). Water Management Plan 2012. Agnico-Eagle Mines. Document No. 610756-0000-40ER-0001, Rev. 02. March, 2013.

SLI (2012), Water Treatment and Mass Balance. Agnico-Eagle Mine. Document No. 610756-0000-40ER-0002, Rev. 01. March 2013.

AEM (2013). Water Management Plan 2013.

APPENDIX A WATER QUALITY ANALYSES

- 1. North Cell TSF Reclaim Pond (ST-21)
- 2. Attenuation Pond (future South Cell TSF Reclaim Pond) (ST-18)
- 3. Portage pit (ST-19)
- 4. Goose Pit (ST-20)
- 5. Mill Effluent for metal and cyanide (CN-WAD)
- 6. Additional tests requested for the mill effluent

NORTH CELL TSF RECLAIM POND (ST-21)

DATE	рН	Alkalinity	Turbidity	Hardness	Ammonia nitrogen (NH₃)	Nitrate (NO ₃)	Nitrite (NO ₂)	Chloride	Fluoride	Sulphate	TDS	Total Cyanide	CN-WAD	Dissolved Aluminum	Dissolved Arsenic	Dissolved Barium	Dissolved Cadmium	Dissolved Copper	Dissolved Iron	Dissolved Lead	Dissolved Manganese
	Units	mg CaCO ₃ /L	NTU	mg CaCO3/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2013-01-02 2013-01-05 2013-01-08	9.04	115	1.01	1607	5.2	12.9	0.27	1463	21.9	2960	4943	17.30	20.4 20.3 19.3	0.05	0.019	0.107	<0,005	17.17	1.60	<0,005	<0,005
2013-01-08 2013-01-11 2013-01-14 2013-01-19 2013-01-22 2013-01-30 2013-02-04	9.04	115	1.01	1607	3.2	12.3	0.27	1403	21.9	2900	4943	17.30	19.1 12.8 19.7 17.9 20.0 18.7	0.03	0.019	0.107	<0,003	17.17	1.00	50,005	10,005
2013-02-06 2013-02-10 2013-02-17 2013-02-23 2013-02-28 2013-03-04	9.42	134	36.70	2116	0	17.9	0.29	1582	0.33	3125	568	12.11	18.0 21.4 22.0 20.4 22.0	0.34	0.012	0.101	<0,005	18.55	1.10	<0,005	0.071
2013-03-05 2013-03-10 2013-03-19 2013-03-25 2013-03-31	9.14	142	21.90	1795	0	17.7	0.16	1572	0.23	2876	5354	25.19	15.2 8.4 7.9 10.0	0.02	0.010	0.144	<0,005	15.21	0.30	<0,005	0.009
2013-04-02 2013-04-06 2013-04-12 2013-04-16 2013-04-21 2013-04-27	8.90	113	43.30	1525	0	14.4	0.34	1092	0.38	2248	4242	36.25	9.6 32.8 17.0 18.7 16.5	0.08	0.011	0.096	<0,005	5.56	0.67	<0,005	<0,005
2013-05-07 2013-05-08 2013-05-12 2013-05-15 2013-05-19 2013-05-25 2013-05-31	9.00	105	8.80	1550	3.6	20.5	0.33	1287	0.33	2205	4476	18.95	17.1 19.7 16.8 19.7 16.9	0.06	0.015	0.088	0.001	9.51	0.67	<0,0003	<0,0005
2013-06-04 2013-06-08 2013-06-12 2013-06-16 2013-06-20 2013-06-27	8.85	77	17.37	891	46.2	13.7	0.06	683	0.07	1276	2954	16.77	19.1 6.01 5.21 3.64 2.0 0.0967	0.14	0.008	0.057	0.001	0.29	<0,01	<0,0003	0.0713
2013-07-04 2013-07-05 2013-07-12 2013-07-19 2013-07-25 2013-08-01 2013-08-11	8.28	127	9.25	641	17.7	12.0	0.31	283	0.26	1053	1992	0.09	0.156 0.0829 0.247 0.142 0.237 0.0829	0.15	0.014	0.051	0.000	0.39	<0,01	<0,0021	0.4214
2013-08-13 2013-08-14 2013-08-19 2013-08-26	7.72	154	5.65	751	33.5	11.3	0.90	232	1.1	1169		0.05	0.0765 0.133 0.242	0.14	0.016	0.061	0.001	0.42	0.01	0.0012	0.5621
2013-09-02 2013-09-06 2013-09-13 2013-09-23	8.00	143	20.10	759	32.3	13.5	1.10	917	0.16	1457	2020	0.99	0.355 0.501 0.499	0.20	0.025	0.067	0.001	1.78	0.38	0.0045	0.4087
2013-10-03 2013-10-09 2013-10-16 2013-10-22 2013-11-01	7.87	135	9.30	935	28.9	13.8	1.00	547	0.47	1954	1796	0.14	1.77 1.99 2.16 2.09 5.69	0.12	0.027	0.065	0.001	0.50	0.01	<0,0003	0.2476
2013-11-04 2013-11-09 2013-11-14 2013-11-29	7.92	123	9.21	878	38.8	16.2	0.85	691	0.45	1971	2233	2.55	4.74 3.34 4.85	0.04	0.023	0.073	0.001	6.28	0.01	<0,0003	0.2819
2013-12-02 2013-12-06 2013-12-14 2013-12-20	6.69	133	1.15	1122	43.7	18.7	0.94	888	0.41	1979	1866	3.99	4.78 4.33 9.27	0.10	0.016	0.081	0.001	2.34	0.01	<0,0003	0.1495

NORTH CELL TSF RECLAIM POND (ST-21)

DATE	Dissolved Mercury mg/L	Dissolved Molybdenum mg/L	Dissolved Nickel mg/L	Dissolved Selenium mg/L	Dissolved Silver mg/L	Dissolved Thallium mg/L	Dissolved Zinc mg/L	Antimony mg/L	Arsenic	Barium mg/L	Beryllium mg/L	Cadmium mg/L	Lead	Lithium mg/L	Manganese mg/L	Chromium mg/L	Copper mg/L	lron mg/L	Mercury mg/L	Molybdenum mg/l
2013-01-02	ilig/L	mg/L	mg/L	mg/L	ilig/L	mg/L	ilig/L	mg/L	mg/L	mg/L	mg/L	ilig/L	mg/L	mg/L	mg/L	mg/L	ilig/L	mg/L	mg/L	mg/L
2013-01-05 2013-01-08 2013-01-11	0.0002	0.492	0.056	0.023	<0,005	<0,01	0.005													
2013-01-14 2013-01-19 2013-01-22 2013-01-30 2013-02-04																				
2013-02-06 2013-02-10 2013-02-17 2013-02-23 2013-02-28	0.0003	0.481	0.032	0.026	0.0110	<0,01	0.569													
2013-02-28 2013-03-04 2013-03-05 2013-03-10 2013-03-19	<0,0001	0.469	0.041	0.037	0.0100	<0,01	<0,005													
2013-03-25 2013-03-31 2013-04-02 2013-04-06 2013-04-12	0.0002	0.332	0.026	0.019	<0,005	<0,01	0.015													
2013-04-16 2013-04-21 2013-04-27 2013-05-07 2013-05-08 2013-05-12	0.0002	0.418	0.697	0.029	0.008	<0,005	0.009													
2013-05-15 2013-05-19 2013-05-25 2013-05-31 2013-06-04 2013-06-08 2013-06-12 2013-06-16	<0,0001	0.247	0.088	0.008	0.004	<0,005	0.001													
2013-06-20 2013-06-27 2013-07-04 2013-07-05 2013-07-12 2013-07-19 2013-07-25 2013-08-01	<0,0001	0.170	0.096	0.010	<0,0002	<0,005	0.004	0.00135	0.0197	0.058	<0,0005	0.000415	0.004	<0,005	0.5	0.00065	0.63635	0.57	<0,00001	0.1985
2013-08-11 2013-08-13 2013-08-14 2013-08-19	0.0001	0.222	0.300	0.010	0.006	<0,005	0.004													
2013-08-26 2013-09-02 2013-09-06 2013-09-13	0.0001	0.309	0.602	0.009	0.014	<0,005	0.015													
2013-09-23 2013-10-03 2013-10-09 2013-10-16 2013-10-22	0.0001	0.398	0.583	0.011	0.011	<0,005	<0,001													
2013-11-01 2013-11-04 2013-11-09 2013-11-14	0.0005	0.507		0.024	0.046	<0,005	<0,001													
2013-11-29 2013-12-02 2013-12-06 2013-12-14 2013-12-20	0.0002	0.496	0.386	0.047	<0,0001	<0,005	0.002	0.0029	0.0175	0.0826	<0,0005	0.001	<0,0003	<0,005	0.1521	0.0013	5.931	0.15	0.00029	0.4997

NORTH CELL TSF RECLAIM POND (ST-21)

DATE	Nickel mg/L	Selenium mg/L	Strontium mg/L	Thallium mg/L	Tin mg/L	Titanium mg/L	Uranium mg/L	Vanadium mg/L	Zinc mg/L
2013-01-02	•	3	3	•	3	•	3	J	•
2013-01-05									
2013-01-08									
2013-01-11									
2013-01-14									
2013-01-19									
2013-01-22									
2013-01-30									
2013-02-04									
2013-02-06 2013-02-10									
2013-02-10									
2013-02-23									
2013-02-28									
2013-03-04									
2013-03-05									
2013-03-10									
2013-03-19									
2013-03-25									
2013-03-31									
2013-04-02									
2013-04-06									
2013-04-12 2013-04-16									
2013-04-10									
2013-04-27									
2013-05-07									
2013-05-08									
2013-05-12									
2013-05-15									
2013-05-19									
2013-05-25									
2013-05-31									
2013-06-04									
2013-06-08 2013-06-12									
2013-06-12									
2013-06-20									
2013-06-27									
2013-07-04	0.1168	0.012	0.804	0.275	<0,001	<0,005	0.009	<0,0005	0.0045
2013-07-05									
2013-07-12 2013-07-19									
2013-07-15									
2013-08-01									
2013-08-11									
2013-08-13 2013-08-14									
2013-08-19									
2013-08-26									
2013-09-02									
2013-09-06 2013-09-13									
2013-09-23									
2013-10-03									
2013-10-09									
2013-10-16 2013-10-22									
2013-10-22									
2013-11-04									
2013-11-09									
2013-11-14									
2013-11-29 2013-12-02	0.4075	0.047	1.23	<0,005	<0,001	0.345	0.019	<0,0005	0.002
2013-12-02	0.4010	0.047	1.20	~0,000	~0,00 i	0.040	0.010	~0,000	0.002
2013-12-14									
2013-12-20									

ATTENUATION POND, SOUTH CELL (ST-18)

DATE	рН	Alkalinity	Turbidity	Ammonia	Ammonia-Nitrogen (NH3-NH4)	Arsenic	Chloride	Copper	Dissolved Aluminum	Dissolved Arsenic	Dissolved Barium	Dissolved Cadmium	Dissolved Copper	Dissolved Iron
Units	Units	mg CaCO₃/L	NTU	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2013-06-04	6.75	80	17.32	0.18		0.003		0.0063						
2013-07-04	7.4	97	12.83	0.235	6.15	0.0029	60.1	0.03385	0.009	<0,0005	0.04535	<0,00002	0.0178	<0,01
2013-08-08	7.2	108	13.25	0.35	9.8	0.2403		0.0189						
2013-09-02	7.88	116	24.8	0.12	12.4	0.0133	91.3	0.0169	0.021	0.0064	0.061	80000.0	0.0045	0.01
2013-10-03	7.57	121	30.7	0.11		0.0163		0.0099						
DATE	Dissolved Lead	Dissolved Manganese	Dissolved Mercury	Dissolved Molybdenum	Dissolved Nickel	Dissolved Selenium	Dissolved Silver	Dissolved Thallium	Dissolved Zinc	Fluoride	Hardness	Lead	Nickel	Nitrate
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg/L	mg/L	mgN/L
2013-06-04	J	J	J	J	J	J	J	J	J	J	J	<0,0003	0.0371	J
2013-07-04	<0,0003	1.8265	0.0001	0.0154	0.04185	0.001	<0,0002	<0,005	<0,001	0.395	320	0.00245	0.0593	5.1
2013-08-08												0.0089	0.0056	
2013-09-02	<0,0003	2.44	<0,0001	0.0306	0.0822	0.002	<0,0001	<0,005	0.004	0.49	396	0.0003	0.0822	3.3
2013-10-03												<0,0003	0.0718	
DATE	Nitrite	Sulphate	TDS	Zinc	Conductivity	Total Cyanide								
Units	mgN/L	mg/L	mg/L	mg/L		mg/L								
2013-06-04			379	0.001	496	0.117								
2013-07-04	0.185	277.5	633.5	0.008	924	0.1725								
2013-08-08			779	0.007	1224	0.236								
2013-09-02	0.6	451	806	0.009	1420	0.193								
2013-10-03			814	<0,001	1472	0.039								

PORTAGE PIT (ST-19)

Date	рН	Alkalinity	Turbidity	Ammonia	Ammonia- Nitrogen	Arsenic	Copper	Lead	Nickel	TDS	Zinc
					(NH3-NH4)	_	_	_	_	_	
Units	Units	mg CaCO₃/L	NTU	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2013-01-16	7,61	112	61,6	0,41	7,1	0,0179	0,0059	<0,0003	0,0043	252	<0,001
2013-02-06	7,68	95	21,5	0,29	12,6	0,0367	0,0143	<0,0003	0,0032	238	0,116
2013-03-06	7,22	111	25,3	0,99	10,7	0,0107	0,0044	0,0097	0,0045	253	0,008
2013-04-03	7,02	55	2,1	<0,05	0,19	0,0011	0,0073	<0,0003	0,004	57	0,001
2013-05-07	7,17	73	5,48	<0,05	0,35	0,0191	0,0026	<0,0003	0,0024	116	0,011
2013-07-08	8,16	53	5,74	<0,05	0,71	0,0245	0,0012	0,0006	0,0063	103	<0,001
2013-08-14	7,54	50	5,76	<0,05	0,25	0,0493	0,0015	0,0006	0,0094	2	<0,001
2013-09-09	7	52	1,42	<0,01	0,13	0,0083	<0,0005	<0,0003	0,0011	54	0,004
2013-10-07	8	49	1,75	<0,01	0,11	0,0139	<0,0005	<0,0003	<0,0005	64	0,001

GOOSE PIT (ST-20)

Date	рН	Alkalinity	Turbidity	Ammonia	Ammonia- Nitrogen (NH3-NH4)	Arsenic	Copper	Lead	Nickel	TDS	Zinc
Units	Units	mg CaCO₃/L	NTU	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2013-01-16	7,74	141	29,7	0,7	13,7	0,0058	0,0005	0,0003	0,0085	329	<0,001
2013-02-06	6,94	130	26,9	0,1	3,9	0,0184	0,0092	<0,0003	0,0048	223	0,058
2013-03-06	7,49	125	45,7	0,14	1,5	0,0146	<0,0005	0,0057	0,0032	199	0,004
2013-05-07	7,49	108	33,8	0,16	4	0,0183	0,0048	0,0032	0,0135	202	<0,001
2013-06-11	7,53	100	109,5	0,32	9,5	0,0035	0,015	<0,0003	0,432	280	<0,001
2013-07-08	8,88	110	73,7	0,4	6,6	0,0054	0,0077	0,00065	0,041	422	0,0055
2013-08-13	7,47	140	84,1	0,6	11,5	0,0078	<0,0005	0,0033	0,0556		0,008
2013-09-09	7,57	176	42,1	0,23	13,9	0,0044	0,0041	<0,0003	0,0898	496	0,01
2013-10-07	8	138	28	0,01	6,5	0,0105	<0,0005	<0,0003	0,0692	366	0,003

		Final tails (360-SA-008) Solid Solution								
Date	Shift	Solid Au (g/t)	Au (mg/L)	Iron (mg/L)	Copper (mg/L)	CN-WAD (ppm)				
2013-01-01	NS	0.168	0.035	5.38	28.28	20.5				
2013-01-01	DS	0.107	0.02	6.83	16.43	21.2				
2013-01-02 2013-01-02	NS DS	0.138 0.080	0.01 0.025	7.17 8.87	32.44 33.15	21.4 38.3				
2013-01-02	NS	0.000	0.023	7.87	33.66	24.5				
2013-01-03	DS	0.130	0.02	7.79	31.72	20.1				
2013-01-04	NS	0.130	0.02	5.85	25.58	15.9				
2013-01-04 2013-01-05	DS NS	0.137 0.323	0.01 0.02	7.22 2.24	31.41 6.43	19.7 2.52				
2013-01-05	DS	0.137	0.02	1.22	3.81	1.48				
2013-01-06	NS	0.150	0.02	2.72	9.47	4.41				
2013-01-06	DS	0.117	0.02	1.04	3.94	1.44				
2013-01-07 2013-01-07	NS DS	0.127 0.133	0.015 0.015	1.04 0.86	3.33 4.24	1.29 1.63				
2013-01-07	NS	0.167	0.02	0.94	4.94	1.78				
2013-01-08	DS	0.107	0.01	0.84	4.08	1.4				
2013-01-09	NS	0.080	0.01	1.42	4.42	1.9				
2013-01-09 2013-01-10	DS NS	0.090 0.117	0.015 0.02	3.55 3.14	6.91 12.58	3.15 4.91				
2013-01-10	DS	0.170	0.01	2.79	13.11	4.32				
2013-01-11	NS	0.160	0.025	1.7	16.8	7.03				
2013-01-11	DS	0.235	0.02	2.37	18.52	9.75				
2013-01-12 2013-01-12	NS DS	0.267 0.230	0.015 0.02	3.21 2.77	20.97 19.68	9.95 11.5				
2013-01-12	NS	0.230	0.025	1.22	14.52	5.59				
2013-01-13	DS	0.183	0.02	1.58	14.25	9.33				
2013-01-14	NS	0.237	0.015	1.46	17.04	6.94				
2013-01-14 2013-01-15	DS NS	0.263 0.253	0.02 0.02	1.46 1.47	9.08 11.79	3.43 4.47				
2013-01-15	DS	0.233	0.02	1.4	14.78	5.33				
2013-01-16	NS	0.230	< 0.01	0.79	17.3	11.8				
2013-01-16	DS	0.213	0.025	1.17	23.25	8.81				
2013-01-17 2013-01-17	NS DS	0.173 0.227	0.015 0.035	0.94 0.93	16.64 19.73	13 10.1				
2013-01-17	NS	0.195	0.045	2.08	28.31	19.1				
2013-01-18	DS	0.285	0.01	3.76	35.18	25.7				
2013-01-19	NS	0.298	0.02	9.42	34.88	74.4				
2013-01-19 2013-01-20	DS NS			0 0	0 0	0 0				
2013-01-20	DS			0	0	Ö				
2013-01-21	NS			0	0	0				
2013-01-21	DS	0.417	0.09	0.84	3.67	1.68				
2013-01-22 2013-01-22	NS DS	0.223 0.163	0.035 0.025	0.79 1.17	9.6 15.4	5.23 7.79				
2013-01-23	NS	0.193	0.03	0.51	15.95	11.4				
2013-01-23	DS	0.230	0.025	0.61	16.26	8.09				
2013-01-24 2013-01-24	NS DS	0.200 0.247	0.04 0.02	0.58 0.33	9.43 1.38	7.99 0.345				
2013-01-24	NS	0.247	0.02	0.82	17.62	13.6				
2013-01-25	DS	0.193	0.035	4.84	47.84	42.9				
2013-01-26	NS	0.175	0.03	1.88	31	23.2				
2013-01-26 2013-01-27	DS NS	0.173 0.190	0.035 0.035	0.68 0.8	10.04 10.32	5.33 5.25				
2013-01-27	DS	0.230	0.06	0.64	10.28	3.6				
2013-01-28	NS	0.243	0.045	0.59	4.85	3.2				
2013-01-28	DS	0.267	0.03	0.76	3.12	1.8				
2013-01-29 2013-01-29	NS DS	0.240 0.310	0.035 0.025	0.57 1.02	1.65 2.43	1.14 0.95				
2013-01-23	NS	0.330	0.07	0.72	2.75	1.4				
2013-01-30	DS	0.393	0.04	0.78	2.37	0.992				
2013-01-31 2013-01-31	NS DS	0.398 0.327	0.045 0.05	0.77 0.74	5.52 9.23	1.73 2.35				
2013-01-31	NS	0.327	0.05	0.91	6.69	2.01				
2013-02-01	DS	0.245	0.03	1.58	23.06	12				
2013-02-02	NS	0.263	0.035	1.14	12.78	4.96				
2013-02-02 2013-02-03	DS NS	0.310 0.310	0.035 0.04	2.47 3.1	19.1 17.19	9.15 13.5				
2013-02-03	DS	0.310	0.01	0	0	0				
2013-02-04	NS	0.358	0.065	6.24	27.76	28.4				
2013-02-04	DS NS	0.270 0.230	0.03 0.04	9.68 7.12	45.29 39.65	37.1 38.5				
2013-02-05 2013-02-05	NS DS	0.230	0.04	7.12 2.96	39.65 32.15	38.5 31.7				
2013-02-06	NS	0.182	0.035	1.91	28.3	23.9				
2013-02-06	DS	0.205	0.045	1.47	30.02	30.9				
2013-02-07 2013-02-07	NS DS	0.178 0.178	0.04 0.02	1.3 13.74	34.53 49.05	32.4 55.1				
2013-02-07	NS	0.178	0.02	9.53	52.12	58.6				
2013-02-08	DS	0.160	0.03	9.54	35.93	30.6				
2013-02-09	NS	0.198	0.02	4.07	24.39	14.1				
2013-02-09 2013-02-10	DS NS	0.185 0.183	0.025 0.02	4.54 1.86	23.48 18.02	21.4 16.6				
2013-02-10	DS	0.200	0.045	2	16.08	7.09				

Debt			Final tails (360-SA-008)								
2013-02-11	Data	Ch:f4	Solid	A (m. a/l.)			CN MAD (nom)				
2013-02-11 DS											
2013-02-13 DS											
2013-02-13 DS 0.173 0.04 1.87 4.45 2.11 2013-02-14 NS 0.184 0.03 2.44 4.7 1.01 2013-02-15 NS 0.184 0.03 2.44 4.7 1.01 2013-02-15 NS 0.202 0.02 2.29 6.02 3.15 2013-02-16 NS 0.167 0.025 1.36 6.94 2.79 2013-02-16 NS 0.173 <0.01 2.2 9.09 5.21 2013-02-16 NS 0.173 <0.01 2.2 9.09 5.21 2013-02-16 NS 0.173 <0.01 2.1 3.6 6.94 2.79 2013-02-16 NS 0.173 <0.01 2.01 4.24 2.12 2.01 2013-02-17 NS 0.170 0.02 1.76 8.89 3.9 2013-02-17 DS 0.137 0.04 0.64 6.63 2.077 6.35 2013-02-17 DS 0.137 0.04 0.64 6.63 2.07 2013-02-18 NS 0.170 0.02 1.76 8.89 3.9 2013-02-18 NS 0.160 0.025 1.09 7.85 2.96 2013-02-19 NS 0.183 0.025 1.09 7.85 2.96 2013-02-19 NS 0.183 0.025 1.09 7.85 2.96 2013-02-19 NS 0.183 0.025 1.09 7.85 2.20 2013-02-19 NS 0.183 0.025 1.44 2.14 2.12 2.0 6.013-02-20 NS 0.183 0.025 1.45 2.14 2.14 2.06 2013-02-20 NS 0.177 0.035 1.16 10.66 5.29 2013-02-20 NS 0.177 0.035 1.45 2.14 2.14 2.06 2013-02-20 NS 0.177 0.05 1.85 2.96 2.22 2.24 18.93 15.5 2.26 2013-02-20 NS 0.177 0.05 1.05 1.05 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.1											
2013-02-14 NS 0.1684 0.03 0.44 4.7 1.01 2013-02-14 NS 0.1684 0.03 0.244 4.7 1.01 2013-02-15 NS 0.202 0.02 2.29 6.02 3.16 2013-02-15 NS 0.202 0.02 2.29 6.02 3.16 2013-02-15 NS 0.202 0.02 2.29 6.02 3.16 2013-02-16 NS 0.173 0.022 1.36 6.94 2.79 2013-02-16 NS 0.173 0.025 1.36 6.94 2.79 2013-02-17 NS 0.170 0.022 1.76 8.98 3.9 2013-02-17 NS 0.170 0.02 1.76 8.98 3.9 2013-02-17 DS 0.137 0.04 0.64 6.63 2.07 2013-02-18 NS 0.160 0.025 1.09 7.85 2.96 2013-02-19 NS 0.183 0.025 2.24 18.93 15.5 2013-02-19 NS 0.183 0.025 2.24 18.93 15.5 2013-02-19 DS 0.193 0.035 1.4 21.46 20.6 2013-02-19 DS 0.193 0.035 1.4 21.46 20.6 2013-02-20 NS 0.177 0.05 2.15 21.22 2.1 2013-02-21 NS 0.147 0.055 1.88 25 25.2 2013-02-22 NS 0.137 0.05 1.88 29.79 32.11 2013-02-23 NS 0.147 0.055 1.88 25 25.2 2013-02-24 NS 0.137 0.05 1.03 21.96 2.28 2013-02-24 NS 0.137 0.05 1.03 21.96 2.28 2013-02-23 NS 0.137 0.05 1.03 21.96 2.28 2013-02-24 NS 0.137 0.05 1.03 21.96 2.28 2013-02-24 NS 0.187 0.055 1.58 25 25.2 2013-02-22 NS 0.137 0.05 1.03 21.96 2.28 2013-02-23 NS 0.187 0.045 0.92 2.291 16.2 2013-02-24 NS 0.137 0.05 1.03 21.96 2.28 2013-02-24 NS 0.137 0.045 0.92 2.291 16.2 2013-02-24 NS 0.33 0.04 0.057 1.49 9.82 2013-02-24 NS 0.33 0.04 0.057 1.49 9.82 2013-02-24 NS 0.33 0.04 0.057 1.49 9.82 2013-02-24 NS 0.33 0.04 0.057 1.99 9.83 3.81 2013-02-24 NS 0.33 0.04 0.05 1.67 4.44 1.3 0.4 2013-02-24 NS 0.33 0.04 0.05 1.67 4.44 1.3 0.4 2013-02-24 NS 0.33 0.04 0.05 1.67 4.44 1.3 0.4 2013-02-24 NS 0.33 0.04 0.05 1.67 4.44 1.3 0.4 2013-02-24 NS 0.33 0.04 0.05 1.67 4.44 1.3 0.4 2013-02-24 NS 0.33 0.04 0.05 1.67 4.44 1.3 0.4 2013-02-24 NS 0.33 0.04 0.05 1.67 4.44 1.3 0.4 2013-02-24 NS 0.33 0.04 0.05 0.05 0.05 1.67 4.44 1.3 0.4 2013-02-24 NS 0.33 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05											
2013-02-24 NS											
2013-02-15 NS											
2013-02-15 DS											
2013-02-16 NS 0.173											
2013-02-16 DS											
2013-02-17 DS											
2013-02-18 NS 0.160 0.025 1.09 7.85 2.96 2013-02-19 NS 0.183 0.025 2.24 18.93 15.5 2013-02-19 NS 0.183 0.025 2.24 18.93 15.5 2013-02-20 NS 0.177 0.06 2.15 21.22 21 2013-02-20 NS 0.177 0.06 2.15 21.22 21 2013-02-21 NS 0.177 0.05 1.98 29.79 32.1 2013-02-21 NS 0.147 0.055 1.58 25 25.2 2013-02-21 NS 0.147 0.055 1.58 25 25.2 2013-02-22 NS 0.137 0.05 1.03 21.96 22.8 2013-02-22 NS 0.137 0.05 1.03 21.96 22.8 2013-02-23 NS 0.137 0.05 1.03 21.96 22.8 2013-02-24 NS 0.137 0.05 1.03 21.96 22.8 2013-02-25 NS 0.137 0.045 0.92 22.91 18.8 2013-02-26 NS 0.188 0.025 5.4 24.5 8.13 2013-02-24 NS 0.258 0.025 5.4 24.5 8.13 2013-02-25 NS 0.338 0.055 0.97 12.97 7.45 2013-02-26 NS 0.338 0.055 0.97 12.97 7.45 2013-02-26 NS 0.353 0.03 0.06 6.96 4.5 4.6 2013-02-27 NS 0.348 0.045 0.69 9.83 3.81 2013-02-28 NS 0.349 0.045 0.69 9.83 3.81 2013-02-28 NS 0.350 0.04 1.76 3.12 0.544 2013-02-28 NS 0.360 0.045 0.69 9.83 3.81 2013-02-28 NS 0.350 0.04 1.76 3.12 0.544 2013-02-28 NS 0.382 0.045 1.78 3.12 0.544 2013-02-28 NS 0.380 0.045 0.69 9.89 8.3 2013-02-28 NS 0.380 0.045 0.69 9.89 8.3 2013-02-28 NS 0.380 0.045 0.69 9.84 40.7 2013-02-28 NS 0.380 0.045 0.69 9.89 8.3 2013-03-03 NS 0.360 0.045 0.69 9.89 8.3 2013-03-03 NS 0.360 0.045 0.69 9.89 9.89 9.80 9.89 9.80 9.89 9.80 9.89 9.80 9.89 9.80 9.89 9.80 9.80											
2013-02-18 DS											
2013-02-19											
2013-02-20 NS 0.777 0.05 2.15 21.22 21 2013-02-20 DS 0.200 0.075 1.98 29.79 32.1 2013-02-21 NS 0.147 0.055 1.58 25 25.2 2013-02-21 DS 0.127 0.05 0.99 29.05 28 2013-02-22 NS 0.137 0.05 1.03 21.96 22.8 2013-02-22 DS 0.137 0.05 1.03 21.96 22.8 2013-02-22 DS 0.137 0.05 1.03 21.96 22.8 2013-02-23 DS 0.187 0.045 0.92 22.91 18.8 2013-02-23 DS 0.187 0.045 0.92 22.91 18.8 2013-02-23 DS 0.187 0.045 0.92 22.91 18.8 2013-02-23 DS 0.187 0.035 1.57 17.94 9.62 2013-02-23 DS 0.183 0.04 6.77 34.74 30.4 21.3 2013-02-24 NS 0.300 0.055 0.97 12.97 7.45 2013-02-25 NS 0.338 0.025 5.4 24.5 8.13 2013-02-25 NS 0.338 0.055 0.97 12.97 7.45 2013-02-26 NS 0.283 0.035 0.6 9.64 5.46 2013-02-27 NS 0.283 0.035 0.6 9.64 5.46 2013-02-27 NS 0.277 0.04 1.39 9.83 3.81 2013-02-27 DS 0.310 0.04 0.57 1.19 0.78 2013-02-28 NS 0.392 0.04 0.057 1.19 0.78 2013-02-28 NS 0.392 0.04 1.76 3.12 0.544 2013-02-28 DS 0.350 0.046 2.19 10.63 6.87 2013-02-28 DS 0.350 0.045 2.19 10.63 6.87 2013-02-03 NS 0.350 0.045 2.19 10.63 6.87 2013-02-03 NS 0.310 0.04 0.57 1.19 0.78 2013-02-03 NS 0.310 0.04 5.29 10.63 5.54 4.4 2013-03-03 NS 0.317 0.05 5.16 23.09 8.99 2013-03-03 NS 0.187 0.05 5.16 23.09 8.99 2013-03-03 NS 0.317 0.05 7.02 21.96 6.63 2013-03-04 NS 0.250 0.035 3.41 1.37 0.865 2013-03-04 NS 0.250 0.035 3.41 1.37 0.865 2013-03-04 NS 0.250 0.035 3.41 1.37 0.865 2013-03-04 NS 0.250 0.035 8.32 2.32 1.1 2013-03-06 NS 0.250 0.035 8.32 2.32 1.1 2013-03-06 NS 0.250 0.035 8.32 2.95 1.148 2013-03-14 NS 0.150 0.025 5.13 2.12 2.73 0.802 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.1											
2013-02-21 NS 0.147 0.055 1.58 25.252 2013-02-21 NS 0.127 0.05 0.99 29.05 28 2013-02-22 NS 0.137 0.05 0.99 29.05 28 2013-02-22 NS 0.137 0.05 0.99 29.05 28 2013-02-22 NS 0.137 0.06 0.99 29.05 28 2013-02-23 NS 0.187 0.035 1.57 17.94 9.62 2013-02-23 NS 0.187 0.036 1.57 17.94 9.62 2013-02-23 NS 0.187 0.036 1.57 17.94 9.62 2013-02-23 NS 0.187 0.036 1.57 17.94 9.62 2013-02-24 NS 0.288 0.025 5.4 24.5 8.13 2013-02-25 NS 0.300 0.05 1.57 13.2 7.28 2013-02-26 NS 0.338 0.055 0.97 12.97 7.45 2013-02-26 NS 0.338 0.055 0.97 12.97 7.45 2013-02-26 NS 0.283 0.035 0.6 9.64 5.46 2013-02-27 NS 0.277 0.04 1.39 9.83 3.81 2013-02-28 NS 0.382 0.045 0.62 14.33 8.64 2013-02-28 NS 0.382 0.046 0.62 14.33 8.64 2013-02-28 NS 0.382 0.04 1.76 3.12 0.544 2013-02-28 NS 0.382 0.04 1.76 3.12 0.544 2013-02-10 NS 0.350 0.046 2.19 10.63 6.87 2013-02-26 NS 0.350 0.046 2.19 10.63 6.87 2013-02-01 NS 0.233 0.04 6.82 35.54 44.4 2013-02-07 NS 0.050 0.055 5.16 23.09 8.65 2013-03-03 NS 0.167 0.03 2.45 4.16 2.5 2013-03-04 NS 0.210 0.03 3.58 1.41 1.37 0.865 2013-03-05 NS 0.163 0.05 6.13 2.96 0.713 2013-03-06 NS 0.182 0.03 2.45 4.16 2.5 2.09 2013-03-09 NS 0.330 0.04 12.92 2.566 1.84 2013-03-09 NS 0.330 0.03 10.57 3.89 1.63 2013-03-09 NS 0.330 0.03 10.57 3.89 1.63 2013-03-10 NS 0.280 0.035 1.15 1.98 0.38 2013-03-11 NS 0.160 0.02 1.03 2.85 1.44 2013-03-12 NS 0.160 0.02 1.03 2.85 1.44 2013-03-13 NS 0.167 0.026 4.42 1.28 1.2 2013-03-14 NS 0.221 0.03 10.57 3.89 1.63 2013-03-16 NS 0.180 0.036 1.185 40.47 40.2 2013-03-17 NS 0.030 0.05 1.85 1.99 1.14 2013-03-18 NS 0.160 0.02 1.03 2.85 1.34 2013-03-19 NS 0.160 0.02 1.03 2.85 1.34 2013-03-19 NS 0.160 0.02 1.03 2.85 1.34 2013-03-19 NS 0.160 0.02 1.03 3.87 1.00 1.33 2013-03-19 NS 0.160 0.02 1.33 3.85 1.12 2013-03-19 NS 0.117 0.02 3.55 0.044	2013-02-19	DS									
2013-02-21 NS 0.147 0.055 1.58 25 25.2 2013-02-22 NS 0.137 0.05 1.03 21.96 22.8 2013-02-22 DS 0.137 0.05 1.03 21.96 22.8 2013-02-23 NS 0.187 0.046 0.92 22.91 1.8 2013-02-24 NS 0.258 0.025 5.4 24.5 8.13 2013-02-24 NS 0.258 0.025 5.4 24.5 8.13 2013-02-25 NS 0.300 0.05 1.57 13.2 7.28 2013-02-26 DS 0.303 0.055 0.97 12.97 7.45 2013-02-26 NS 0.388 0.055 0.97 12.97 7.45 2013-02-27 NS 0.283 0.035 0.6 9.64 5.46 2013-02-27 NS 0.277 0.04 1.39 9.83 3.81 2013-02-28 NS 0.300 0.05 1.57 1.19 0.78 2013-02-28 NS 0.300 0.05 1.59 1.19 0.78 2013-02-28 NS 0.300 0.045 0.62 14.33 8.64 2013-02-27 DS 0.310 0.04 0.57 1.19 0.78 2013-02-28 NS 0.382 0.045 0.62 14.33 8.64 2013-02-29 NS 0.380 0.045 0.62 14.33 8.64 2013-02-20 DS 0.353 0.03 0.04 0.57 1.19 0.78 2013-02-28 NS 0.382 0.04 0.57 1.19 0.78 2013-02-29 NS 0.382 0.04 0.57 1.19 0.78 2013-02-29 NS 0.382 0.04 0.57 1.19 0.78 2013-02-30 NS 0.382 0.045 5.39 34.78 40.7 2013-03-01 NS 0.233 0.04 6.82 38.54 44 2013-03-01 DS 0.197 0.045 5.39 34.78 40.7 2013-03-03 NS 0.273 0.055 5.16 23.09 8.99 2013-03-03 NS 0.371 0.05 1.6 2.9 2.196 5.63 2013-03-03 NS 0.371 0.05 1.6 2.9 2.196 5.63 2013-03-04 NS 0.270 0.03 3.58 1.41 1.37 0.865 2013-03-04 NS 0.260 0.035 3.41 1.37 0.865 2013-03-05 NS 0.163 0.05 6.13 2.96 0.713 2013-03-06 NS 0.163 0.05 6.13 2.96 0.713 2013-03-07 NS 0.080 0.095 8.89 3.83 1.51 2013-03-07 NS 0.080 0.095 8.89 3.83 1.51 2013-03-07 NS 0.080 0.095 8.89 3.83 1.51 2013-03-07 NS 0.090 0.095 8.89 3.83 1.51 2013-03-07 NS 0.090 0.095 8.89 3.83 1.51 2013-03-07 NS 0.090 0.095 8.89 3.83 1.51 2013-03-01 NS 0.280 0.095 9.51 6.63 1.19 2013-03-01 NS 0.280 0.095 9.51 6.63 1.19 2013-03-01 NS 0.280 0.095 9.51 6.99 9.91 2013-03-01 NS 0.090 0.095 8.89 3.83 1.51 2013-03-07 NS 0.090 0.095 8.89 3.83 1.51 2013-03-07 NS 0.090 0.095 8.89 3.89 3.89 1.63 2013-03-09 NS 0.330 0.030 0.05 8.89 3.89 3.89 1.63 2013-03-01 NS 0.280 0.095 9.51 6.63 1.19 2013-03-01 NS 0.280 0.095 9.51 6.63 1.19 2013-03-01 NS 0.280 0.095 9.51 6.63 1.19 2013-03-01 NS 0.090 0.090 8.89 3.89 3.89 1.63 2013-03-01 NS 0.090 0.090 8.89 3.89 3.89 1.63 201											
2013-02-22											
2013-02-22 NS 0.137 0.05 1.03 21.96 22.8 2013-02-23 NS 0.187 0.045 0.92 22.91 16.8 2013-02-23 NS 0.187 0.035 1.57 17.94 9.62 2013-02-23 DS 0.193 0.04 6.77 34.74 30.4 2013-02-24 NS 0.258 0.025 5.4 24.5 8.13 2013-02-24 NS 0.300 0.05 1.57 13.2 7.28 2013-02-25 NS 0.338 0.055 0.97 12.97 7.45 2013-02-25 NS 0.338 0.055 0.97 12.97 7.45 2013-02-26 NS 0.283 0.035 0.6 9.64 5.46 2013-02-26 DS 0.348 0.045 0.62 14.33 8.64 2013-02-27 NS 0.277 0.04 1.39 9.83 3.81 2013-02-28 NS 0.382 0.041 1.76 3.12 0.544 2013-02-28 NS 0.382 0.04 1.76 3.12 0.544 2013-02-28 NS 0.382 0.04 1.76 3.12 0.544 2013-02-28 NS 0.382 0.04 1.76 3.12 0.544 2013-02-28 NS 0.395 0.045 2.19 10.63 6.87 2013-02-28 NS 0.233 0.04 6.82 35.54 44.4 2013-03-01 NS 0.233 0.05 0.045 5.39 34.78 40.7 2013-03-01 NS 0.233 0.05 0.54 4.9 2013-03-01 NS 0.233 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.											
2013-02-23											
2013-02-23											
2013-02-24											
2013-02-24 DS 0.300 0.05 1.57 13.2 7.28											
2013-02-25											
2013-02-26											
2013-02-26 DS 0.348 0.045 0.62 14.33 8.64											
2013-02-27 NS 0.277 0.04 1.39 9.83 3.81 2013-02-28 NS 0.382 0.04 1.76 3.12 0.544 2013-02-28 NS 0.382 0.04 1.76 3.12 0.544 2013-02-28 NS 0.380 0.045 2.19 10.63 6.87 2013-03-01 NS 0.233 0.04 6.82 35.54 4.4.4 2013-03-01 DS 0.197 0.045 5.39 34.78 40.7 2013-03-02 NS 0.243 0.05 4.9 28.16 24.2 2013-03-02 DS 0.273 0.055 5.16 23.09 8.99 2013-03-03 DS 0.260 0.035 3.41 1.37 0.865 2013-03-03 DS 0.260 0.035 3.41 1.37 0.865 2013-03-04 NS 0.210 0.03 3.58 1.41 1.35 2013-03-05 NS 0.163 0.05 6.13 2.96 0.713 2013-03-06 NS 0.163 0.05 6.13 2.96 0.713 2013-03-06 NS 0.182 0.03 7.08 1.59 1.48 2013-03-07 NS 0.300 0.055 8.89 3.83 1.5 2013-03-07 NS 0.300 0.055 8.89 3.83 1.5 2013-03-08 NS 0.280 0.04 12.92 2.56 1.84 2013-03-09 DS 0.280 0.04 12.92 2.56 1.84 2013-03-09 DS 0.280 0.04 12.92 2.56 1.84 2013-03-09 DS 0.280 0.04 12.92 2.56 1.84 2013-03-11 NS 0.267 0.03 10.57 3.89 1.63 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-13 DS 0.287 0.03 10.57 3.89 1.63 2013-03-14 NS 0.157 0.025 5.13 2.12 1.76 2013-03-15 NS 0.150 0.025 10.79 9.91 1.34 2013-03-16 NS 0.287 0.03 10.57 3.89 1.63 2013-03-17 NS 0.157 0.025 5.13 2.12 1.76 2013-03-18 NS 0.287 0.03 10.57 3.89 1.63 2013-03-19 NS 0.287 0.03 10.57 3.89 1.63 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-13 NS 0.287 0.03 10.57 3.89 1.63 2013-03-14 NS 0.157 0.025 5.13 2.12 1.76 2013-03-15 NS 0.160 0.025 5.13 2.12 1.76 2013-03-16 NS 0.260 0.044 3.55 5.748 1.06 2013-03-17 NS 0.160 0.025 5.13 2.12 1.76 2013-03											
2013-02-27 DS 0.310 0.04 0.57 1.19 0.78											
2013-03-01 NS	2013-02-27	DS									
2013-03-01											
2013-03-01 DS 0.197 0.045 5.39 34.78 40.7											
2013-03-02											
2013-03-03	2013-03-02	NS									
2013-03-03											
2013-03-04											
2013-03-04 DS											
2013-03-05 DS			0.167	0.03	2.45	4.16	2.5				
2013-03-06 NS 0.182 0.03 7.08 1.59 1.48 2013-03-06 DS 0.250 0.035 8.32 2.32 1.1 2013-03-07 NS 0.300 0.05 8.89 3.83 1.5 2013-03-07 DS 0.280 0.04 12.92 2.56 1.84 2013-03-08 NS 0.283 0.025 10.21 2.73 0.802 2013-03-09 NS 0.337 0.03 10.57 3.89 1.63 2013-03-09 NS 0.333 0.03 10.57 3.89 1.63 2013-03-10 NS 0.287 0.03 10.97 1.92 0.971 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-12 NS 0.193 0.035 9.51 6.63 1.16 2013-03-12 NS 0.137 0.025 10.79 9.91 1.34 2013-03-12 NS 0.157<											
2013-03-06 DS 0.250 0.035 8.32 2.32 1.1 2013-03-07 NS 0.300 0.05 8.89 3.83 1.5 2013-03-08 NS 0.280 0.04 12.92 2.56 1.84 2013-03-08 NS 0.283 0.025 10.21 2.73 0.802 2013-03-08 DS 0.337 0.03 10.57 3.89 1.63 2013-03-09 DS 0.333 0.03 8.93 2.96 1.16 2013-03-10 NS 0.287 0.03 10.97 1.92 0.971 2013-03-10 NS 0.287 0.03 10.97 1.92 0.971 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-12 NS 0.137 0.025 10.79 9.91 1.34 2013-03-13 NS 0.157											
2013-03-07 NS 0.300 0.05 8.89 3.83 1.5 2013-03-07 DS 0.280 0.04 12.92 2.56 1.84 2013-03-08 NS 0.283 0.025 10.21 2.73 0.802 2013-03-08 DS 0.337 0.03 10.57 3.89 1.63 2013-03-09 NS 0.333 0.03 10.57 3.89 1.63 2013-03-10 NS 0.287 0.03 10.97 1.92 0.971 2013-03-10 NS 0.287 0.03 10.59 1.67 1.12 2013-03-10 DS 0.153 0.03 10.59 1.67 1.12 2013-03-11 DS 0.193 0.035 9.51 6.63 1.16 2013-03-12 NS 0.137 0.025 10.79 9.91 1.34 2013-03-13 NS 0.157 0.025 5.13 2.12 1.76 2013-03-13 DS 0.20											
2013-03-08 NS 0.283 0.025 10.21 2.73 0.802 2013-03-08 DS 0.337 0.03 10.57 3.89 1.63 2013-03-09 NS 0.333 0.03 8.93 2.96 1.16 2013-03-10 NS 0.287 0.03 10.97 1.92 0.971 2013-03-10 DS 0.153 0.03 10.59 1.67 1.12 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-11 DS 0.193 0.035 9.51 6.63 1.16 2013-03-12 NS 0.137 0.025 10.79 9.91 1.34 2013-03-12 DS 0.150 0.025 5.13 2.12 1.76 2013-03-13 NS 0.157 0.025 4.42 1.28 1.2 2013-03-13 DS 0.203 0.03 5.72 3.06 1.33 2013-03-15 NS 0.160		NS	0.300	0.05							
2013-03-08 DS 0.337 0.03 10.57 3.89 1.63 2013-03-09 NS 0.333 0.03 8.93 2.96 1.16 2013-03-09 DS 0 0 0 0 2013-03-10 NS 0.287 0.03 10.97 1.92 0.971 2013-03-10 DS 0.153 0.03 10.59 1.67 1.12 2013-03-11 DS 0.160 0.02 10.3 2.655 0.888 2013-03-12 DS 0.193 0.035 9.51 6.63 1.16 2013-03-12 DS 0.150 0.025 10.79 9.91 1.34 2013-03-12 DS 0.150 0.025 5.13 2.12 1.76 2013-03-13 DS 0.150 0.025 4.42 1.28 1.2 2013-03-13 DS 0.157 0.025 4.42 1.28 1.2 2013-03-14 NS 0.172 0.03 <											
2013-03-09 NS 0.333 0.03 8.93 2.96 1.16 2013-03-09 DS 0 0 0 0 2013-03-10 NS 0.287 0.03 10.97 1.92 0.971 2013-03-10 DS 0.153 0.03 10.59 1.67 1.12 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-11 DS 0.193 0.035 9.51 6.63 1.16 2013-03-12 DS 0.150 0.025 5.13 2.12 1.76 2013-03-12 DS 0.150 0.025 5.13 2.12 1.76 2013-03-13 NS 0.157 0.025 4.42 1.28 1.2 2013-03-13 DS 0.203 0.03 5.72 3.06 1.33 2013-03-14 NS 0.170 0.025 7.22 2.25 2.6 2013-03-15 NS 0.160 0.02											
2013-03-10 NS 0.287 0.03 10.97 1.92 0.971 2013-03-10 DS 0.153 0.03 10.59 1.67 1.12 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-11 DS 0.193 0.035 9.51 6.63 1.16 2013-03-12 NS 0.137 0.025 10.79 9.91 1.34 2013-03-12 DS 0.150 0.025 5.13 2.12 1.76 2013-03-13 NS 0.157 0.025 4.42 1.28 1.2 2013-03-13 DS 0.203 0.03 5.72 3.06 1.33 2013-03-14 NS 0.172 0.03 6.72 3.58 1.34 2013-03-15 NS 0.160 0.02 8.66 11.38 4.37 2013-03-15 DS 0.260 0.01 7.87 14.08 10.1 2013-03-16 NS 0.210 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
2013-03-10 DS 0.153 0.03 10.59 1.67 1.12 2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-11 DS 0.193 0.035 9.51 6.63 1.16 2013-03-12 NS 0.137 0.025 10.79 9.91 1.34 2013-03-12 DS 0.150 0.025 5.13 2.12 1.76 2013-03-13 NS 0.157 0.025 5.13 2.12 1.76 2013-03-13 DS 0.203 0.03 5.72 3.06 1.33 2013-03-14 NS 0.172 0.03 6.72 3.58 1.34 2013-03-15 NS 0.160 0.025 7.22 2.25 2.6 2013-03-15 NS 0.160 0.02 8.66 11.38 4.37 2013-03-16 NS 0.260 0.01 7.87 14.08 10.1 2013-03-17 NS 0.217 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
2013-03-11 NS 0.160 0.02 10.3 2.65 0.888 2013-03-11 DS 0.193 0.035 9.51 6.63 1.16 2013-03-12 NS 0.137 0.025 10.79 9.91 1.34 2013-03-12 DS 0.150 0.025 5.13 2.12 1.76 2013-03-13 NS 0.157 0.025 4.42 1.28 1.2 2013-03-13 DS 0.203 0.03 5.72 3.06 1.33 2013-03-14 NS 0.172 0.03 6.72 3.58 1.34 2013-03-14 DS 0.170 0.025 7.22 2.25 2.6 2013-03-15 NS 0.160 0.02 8.66 11.38 4.37 2013-03-16 NS 0.260 0.01 7.87 14.08 10.1 2013-03-16 NS 0.207 0.015 3.2 7.11 2.69 2013-03-17 NS 0.217											
2013-03-11 DS 0.193 0.035 9.51 6.63 1.16 2013-03-12 NS 0.137 0.025 10.79 9.91 1.34 2013-03-12 DS 0.150 0.025 5.13 2.12 1.76 2013-03-13 NS 0.157 0.025 4.42 1.28 1.2 2013-03-13 DS 0.203 0.03 5.72 3.06 1.33 2013-03-14 NS 0.172 0.03 6.72 3.58 1.34 2013-03-14 DS 0.170 0.025 7.22 2.25 2.6 2013-03-15 NS 0.160 0.02 8.66 11.38 4.37 2013-03-15 DS 0.260 0.01 7.87 14.08 10.1 2013-03-16 NS 0.210 0.035 11.85 40.47 40.2 2013-03-17 NS 0.217 0.02 8.25 19.89 8.3 2013-03-18 NS 0.243 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
2013-03-12 DS 0.150 0.025 5.13 2.12 1.76 2013-03-13 NS 0.157 0.025 4.42 1.28 1.2 2013-03-13 DS 0.203 0.03 5.72 3.06 1.33 2013-03-14 NS 0.172 0.03 6.72 3.58 1.34 2013-03-14 DS 0.170 0.025 7.22 2.25 2.6 2013-03-15 NS 0.160 0.02 8.66 11.38 4.37 2013-03-15 DS 0.260 0.01 7.87 14.08 10.1 2013-03-16 NS 0.210 0.035 11.85 40.47 40.2 2013-03-16 DS 0.207 0.015 3.2 7.11 2.69 2013-03-17 NS 0.217 0.02 8.25 19.89 8.3 2013-03-18 NS 0.250 0.045 3.55 7.48 1.06 2013-03-18 NS 0.217	2013-03-11	DS	0.193	0.035	9.51	6.63	1.16				
2013-03-13 NS 0.157 0.025 4.42 1.28 1.2 2013-03-13 DS 0.203 0.03 5.72 3.06 1.33 2013-03-14 NS 0.172 0.03 6.72 3.58 1.34 2013-03-14 DS 0.170 0.025 7.22 2.25 2.6 2013-03-15 NS 0.160 0.02 8.66 11.38 4.37 2013-03-15 DS 0.260 0.01 7.87 14.08 10.1 2013-03-16 NS 0.210 0.035 11.85 40.47 40.2 2013-03-16 DS 0.207 0.015 3.2 7.11 2.69 2013-03-17 NS 0.217 0.02 8.25 19.89 8.3 2013-03-17 DS 0.250 0.045 3.55 7.48 1.06 2013-03-18 NS 0.243 0.02 3.36 0.85 0.247 2013-03-19 NS 0.227											
2013-03-13 DS 0.203 0.03 5.72 3.06 1.33 2013-03-14 NS 0.172 0.03 6.72 3.58 1.34 2013-03-14 DS 0.170 0.025 7.22 2.25 2.6 2013-03-15 NS 0.160 0.02 8.66 11.38 4.37 2013-03-15 DS 0.260 0.01 7.87 14.08 10.1 2013-03-16 NS 0.210 0.035 11.85 40.47 40.2 2013-03-16 DS 0.207 0.015 3.2 7.11 2.69 2013-03-16 DS 0.217 0.02 8.25 19.89 8.3 2013-03-17 NS 0.217 0.02 8.25 19.89 8.3 2013-03-18 NS 0.243 0.02 3.36 0.85 0.247 2013-03-18 NS 0.217 0.025 5.84 2.58 0.675 2013-03-19 NS 0.227 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
2013-03-14 NS 0.172 0.03 6.72 3.58 1.34 2013-03-14 DS 0.170 0.025 7.22 2.25 2.6 2013-03-15 NS 0.160 0.02 8.66 11.38 4.37 2013-03-15 DS 0.260 0.01 7.87 14.08 10.1 2013-03-16 NS 0.210 0.035 11.85 40.47 40.2 2013-03-16 DS 0.207 0.015 3.2 7.11 2.69 2013-03-17 NS 0.217 0.02 8.25 19.89 8.3 2013-03-17 DS 0.250 0.045 3.55 7.48 1.06 2013-03-18 NS 0.243 0.02 3.36 0.85 0.247 2013-03-18 DS 0.217 0.025 5.84 2.58 0.675 2013-03-19 NS 0.227 0.03 4.38 1.07 1.35 2013-03-20 NS 0.377 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
2013-03-15 NS 0.160 0.02 8.66 11.38 4.37 2013-03-15 DS 0.260 0.01 7.87 14.08 10.1 2013-03-16 NS 0.210 0.035 11.85 40.47 40.2 2013-03-16 DS 0.207 0.015 3.2 7.11 2.69 2013-03-17 NS 0.217 0.02 8.25 19.89 8.3 2013-03-17 DS 0.250 0.045 3.55 7.48 1.06 2013-03-18 NS 0.243 0.02 3.36 0.85 0.247 2013-03-18 DS 0.217 0.025 5.84 2.58 0.675 2013-03-19 NS 0.227 0.03 4.38 1.07 1.35 2013-03-19 DS 0.235 0.035 3.92 1.27 1.22 2013-03-20 NS 0.377 0.025 2.78 0.97 1.16 2013-03-21 NS 0.113<	2013-03-14	NS	0.172	0.03	6.72	3.58	1.34				
2013-03-15 DS 0.260 0.01 7.87 14.08 10.1 2013-03-16 NS 0.210 0.035 11.85 40.47 40.2 2013-03-16 DS 0.207 0.015 3.2 7.11 2.69 2013-03-17 NS 0.217 0.02 8.25 19.89 8.3 2013-03-17 DS 0.250 0.045 3.55 7.48 1.06 2013-03-18 NS 0.243 0.02 3.36 0.85 0.247 2013-03-18 DS 0.217 0.025 5.84 2.58 0.675 2013-03-19 NS 0.227 0.03 4.38 1.07 1.35 2013-03-19 DS 0.235 0.035 3.92 1.27 1.22 2013-03-20 NS 0.377 0.025 2.78 0.97 1.16 2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-21 DS 0.100 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
2013-03-16 NS 0.210 0.035 11.85 40.47 40.2 2013-03-16 DS 0.207 0.015 3.2 7.11 2.69 2013-03-17 NS 0.217 0.02 8.25 19.89 8.3 2013-03-17 DS 0.250 0.045 3.55 7.48 1.06 2013-03-18 NS 0.243 0.02 3.36 0.85 0.247 2013-03-18 DS 0.217 0.025 5.84 2.58 0.675 2013-03-19 NS 0.227 0.03 4.38 1.07 1.35 2013-03-19 DS 0.235 0.035 3.92 1.27 1.22 2013-03-20 NS 0.377 0.025 2.78 0.97 1.16 2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-22 NS 0.147 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
2013-03-16 DS 0.207 0.015 3.2 7.11 2.69 2013-03-17 NS 0.217 0.02 8.25 19.89 8.3 2013-03-17 DS 0.250 0.045 3.55 7.48 1.06 2013-03-18 NS 0.243 0.02 3.36 0.85 0.247 2013-03-18 DS 0.217 0.025 5.84 2.58 0.675 2013-03-19 NS 0.227 0.03 4.38 1.07 1.35 2013-03-19 DS 0.235 0.035 3.92 1.27 1.22 2013-03-20 NS 0.377 0.025 2.78 0.97 1.16 2013-03-20 DS 0.168 0.04 6.04 9.58 3.34 2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-21 DS 0.100 0.04 4.81 6.27 1.39 2013-03-22 NS 0.147											
2013-03-17 DS 0.250 0.045 3.55 7.48 1.06 2013-03-18 NS 0.243 0.02 3.36 0.85 0.247 2013-03-18 DS 0.217 0.025 5.84 2.58 0.675 2013-03-19 NS 0.227 0.03 4.38 1.07 1.35 2013-03-19 DS 0.235 0.035 3.92 1.27 1.22 2013-03-20 NS 0.377 0.025 2.78 0.97 1.16 2013-03-20 DS 0.168 0.04 6.04 9.58 3.34 2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-21 DS 0.100 0.04 4.81 6.27 1.39 2013-03-22 NS 0.147 0.03 3.87 5.06 2.35 2013-03-23 NS 0.120 0.02 3.51 1.88 0.38 2013-03-23 NS 0.117	2013-03-16	DS	0.207	0.015		7.11	2.69				
2013-03-18 NS 0.243 0.02 3.36 0.85 0.247 2013-03-18 DS 0.217 0.025 5.84 2.58 0.675 2013-03-19 NS 0.227 0.03 4.38 1.07 1.35 2013-03-19 DS 0.235 0.035 3.92 1.27 1.22 2013-03-20 NS 0.377 0.025 2.78 0.97 1.16 2013-03-20 DS 0.168 0.04 6.04 9.58 3.34 2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-21 DS 0.100 0.04 4.81 6.27 1.39 2013-03-22 NS 0.147 0.03 3.87 5.06 2.35 2013-03-23 NS 0.120 0.02 3.51 1.88 0.38 2013-03-23 NS 0.117 0.02 3.55 0.67 0.634											
2013-03-18 DS 0.217 0.025 5.84 2.58 0.675 2013-03-19 NS 0.227 0.03 4.38 1.07 1.35 2013-03-19 DS 0.235 0.035 3.92 1.27 1.22 2013-03-20 NS 0.377 0.025 2.78 0.97 1.16 2013-03-20 DS 0.168 0.04 6.04 9.58 3.34 2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-21 DS 0.100 0.04 4.81 6.27 1.39 2013-03-22 NS 0.147 0.03 3.87 5.06 2.35 2013-03-23 NS 0.120 0.02 3.51 1.88 0.38 2013-03-23 NS 0.117 0.02 3.55 0.67 0.634											
2013-03-19 NS 0.227 0.03 4.38 1.07 1.35 2013-03-19 DS 0.235 0.035 3.92 1.27 1.22 2013-03-20 NS 0.377 0.025 2.78 0.97 1.16 2013-03-20 DS 0.168 0.04 6.04 9.58 3.34 2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-21 DS 0.100 0.04 4.81 6.27 1.39 2013-03-22 NS 0.147 0.03 3.87 5.06 2.35 2013-03-22 DS 0.120 0.02 3.51 1.88 0.38 2013-03-23 NS 0.117 0.02 3.55 0.67 0.634											
2013-03-20 NS 0.377 0.025 2.78 0.97 1.16 2013-03-20 DS 0.168 0.04 6.04 9.58 3.34 2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-21 DS 0.100 0.04 4.81 6.27 1.39 2013-03-22 NS 0.147 0.03 3.87 5.06 2.35 2013-03-22 DS 0.120 0.02 3.51 1.88 0.38 2013-03-23 NS 0.117 0.02 3.55 0.67 0.634	2013-03-19	NS	0.227	0.03	4.38	1.07	1.35				
2013-03-20 DS 0.168 0.04 6.04 9.58 3.34 2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-21 DS 0.100 0.04 4.81 6.27 1.39 2013-03-22 NS 0.147 0.03 3.87 5.06 2.35 2013-03-22 DS 0.120 0.02 3.51 1.88 0.38 2013-03-23 NS 0.117 0.02 3.55 0.67 0.634											
2013-03-21 NS 0.113 0.025 3.3 3.65 1.82 2013-03-21 DS 0.100 0.04 4.81 6.27 1.39 2013-03-22 NS 0.147 0.03 3.87 5.06 2.35 2013-03-22 DS 0.120 0.02 3.51 1.88 0.38 2013-03-23 NS 0.117 0.02 3.55 0.67 0.634											
2013-03-21 DS 0.100 0.04 4.81 6.27 1.39 2013-03-22 NS 0.147 0.03 3.87 5.06 2.35 2013-03-22 DS 0.120 0.02 3.51 1.88 0.38 2013-03-23 NS 0.117 0.02 3.55 0.67 0.634											
2013-03-22 DS 0.120 0.02 3.51 1.88 0.38 2013-03-23 NS 0.117 0.02 3.55 0.67 0.634		DS	0.100	0.04	4.81	6.27	1.39				
2013-03-23 NS 0.117 0.02 3.55 0.67 0.634											
2010 00-20 DO 0.100 0.020 0.01 21.00 20.0	2013-03-23	DS	0.117	0.025	6.31	21.08	20.5				

		Final tails (360-SA-008) Solid Solution								
Date	Shift	Solid	Au (mg/L)		Olution Copper (mg/L)	CN-WAD (ppm)				
2013-03-24	NS	Au (g/t) 0.157	0.02	Iron (mg/L) 4.71	6.82	5.12				
2013-03-24	DS	0.193	0.04	8.86	23.49	17.7				
2013-03-25	NS	0.257	0.045	8.2	14.98	8.56				
2013-03-25	DS	0.190 0.217	0.05 0.05	10.87 9.74	20.98 19.34	21.4 10.4				
2013-03-26 2013-03-26	NS DS	0.217	0.05	9.74 9.42	19.34	10.4				
2013-03-27	NS	0.156	0.055	6.82	10.13	4.83				
2013-03-27	DS	0.130	0.03	6.22	4.09	1.43				
2013-03-28	NS	0.107	0.035	5.51	2.33	0.451				
2013-03-28	DS	0.167	0.04	6.64	8.31	2.69				
2013-03-29 2013-03-29	NS DS	0.158 0.203	0.02 0.02	5.82 5.93	1.91 2.01	1.07 0.38				
2013-03-29	NS	0.243	0.02	6	2.39	0.515				
2013-03-30	DS	0.178	0.02	5.84	2.64	0.571				
2013-03-31	NS	0.212	0.02	7.98	4.3	0.847				
2013-03-31	DS	0.183	0.03	13.05	21.02	19.1				
2013-04-01	NS	0.215 0.207	0.025 0.025	11.5 11.27	18.9 20.17	19.1 19.8				
2013-04-01 2013-04-02	DS NS	0.207	0.025	12.43	24.11	26.1				
2013-04-02	DS	0.247	0.03	11.75	24.15	20.1				
2013-04-03	NS	0.187	0.03	18.16	5.2	4.81				
2013-04-03	DS	0.270	0.02	5.88	15.91	8.44				
2013-04-04	NS	0.253	0.02	3.27	1.77	0.865				
2013-04-04 2013-04-05	DS NS	0.282	0.01 0.01	4.95 5.05	2.71 3.41	0.613 0.929				
2013-04-05 2013-04-05	NS DS	0.280 0.253	0.01	5.05 11.05	3.41 20.8	20.5				
2013-04-06	NS	0.277	0.02	18.43	39.63	53.9				
2013-04-06	DS	0.290	0.04	14.75	33.88	40.5				
2013-04-07	NS	0.283	0.03	11.78	21.1	17				
2013-04-07	DS	0.440	0.025	6.56	2.84	2.79				
2013-04-08 2013-04-08	NS DS	0.710 0.815	0.02 0.03	5.86 6.19	10.06 6.64	9.57 4.91				
2013-04-08	NS	0.815	0.03	7.52	8.22	4.98				
2013-04-09	DS	0.960	0.03	10.82	10.73	14.9				
2013-04-10	NS	0.897	0.05	10.41	11.9	14.3				
2013-04-10	DS	0.623	0.05	14.12	23.14	27.6				
2013-04-11 2013-04-11	NS DS	0.340 0.267	0.04 0.02	21.16 21.07	35.42 45.85	48.8 71.7				
2013-04-11	NS	0.267	0.02	22.28	41.63	59.5				
2013-04-12	DS	0.353	0.03	26.86	24.37	17.1				
2013-04-13	NS	0.647	0.035	25.9	10.55	7.05				
2013-04-13	DS	0.487	0.03	18.33	6.97	2.32				
2013-04-14	NS	0.567	0.02	21.01	8.34	9.31				
2013-04-14 2013-04-15	DS NS	0.677 0.608	0.025 0.015	12.61 10	14.29 16.41	11.7 15.9				
2013-04-15	DS	0.347	0.045	12.22	19.3	18.7				
2013-04-16	NS	0.177	0.035	16.1	37.88	63				
2013-04-16	DS	0.180	0.06	18.03	43.72	66.2				
2013-04-17	NS DS	0.143	0.045 0.04	7.61 3.12	25.83 15.84	22.2 11.5				
2013-04-17 2013-04-18	NS	0.177 0.173	0.04	3.12 4.27	18.43	15.4				
2013-04-18	DS	0.273	0.03	3.28	14.09	8.05				
2013-04-19	NS	0.297	0.03	3.84	13.75	7.67				
2013-04-19	DS	0.283	0.035	3.28	15.71	16				
2013-04-20	NS	0.207	0.03	2.65	15.69	16.6				
2013-04-20 2013-04-21	DS NS	0.200 0.167	0.03 0.04	1.65 1.41	16.4 17.08	10 15.2				
2013-04-21	DS	0.193	0.035	0.57	4.08	1.69				
2013-04-22	NS	0.170	0.04	0.62	4.54	1.69				
2013-04-22	DS	0.150	0.03	1.22	11.33	9.4				
2013-04-23	NS	0.147	0.02	1.31	10.54	7.54				
2013-04-23 2013-04-24	DS NS			0 0	0 0	0 0				
2013-04-24	DS			0	0	0				
2013-04-25	NS			0	0	0				
2013-04-25	DS			0	0	0				
2013-04-26	NS			0	0	0				
2013-04-26 2013-04-27	DS NS	3.190	0.055	0 4.92	0 36.11	0 35.9				
2013-04-27	DS	0.097	0.015	1.69	29.09	37.7				
2013-04-28	NS	0.117	0.03	4.89	35.16	38.7				
2013-04-28	DS	0.110	0.03	3.48	39.48	21.9				
2013-04-29	NS	0.097	0.02	3.35	26.6	19.6				
2013-04-29	DS	0.130 0.093	0.045 0.03	1.98	16.57	9.48 6.27				
2013-04-30 2013-04-30	NS DS	0.093	0.03 0.04	1.9 1.27	19.96 15.59	6.27 8.11				
2013-04-30	NS	0.103	0.02	2.55	25	16.5				
2013-05-01	DS	0.137	0.015	0.82	15.71	9.6				
2013-05-02	NS	0.113	0.055	1.76	16.13	9.54				
2013-05-02	DS	0.133	0.03	1.78	21.96	17.7				
2013-05-03 2013-05-03	NS DS	0.117 0.137	0.04 0.02	1.22 0.59	20.98 7.77	11.9 1.88				
2013-03-03	DO	0.137	0.02	0.58	1.11	1.00				

		Final tails (360-SA-008) Solid Solution								
Data	Ch:f4	Solid	A (m.a/l.)			CN WAD (nom)				
Date 2013-05-04	Shift NS	Au (g/t) 0.110	Au (mg/L) 0.03	1.04	Copper (mg/L) 3.55	CN-WAD (ppm) 0.484				
2013-05-04	DS	0.160	0.025	1.45	15.55	11.5				
2013-05-05	NS	0.143	0.03	9.78	57.75	98				
2013-05-05 2013-05-06	DS NS	0.130 0.123	0.035 0.03	5.24 6.27	42.98 45.41	64.7 66.5				
2013-05-06	DS	0.123	0.025	5.35	43.89	56.9				
2013-05-07	NS	0.137	0.04	6.3	45.1	70.6				
2013-05-07	DS	0.127	0.06	7.79	51.9	98.9				
2013-05-08 2013-05-08	NS DS	0.103 0.147	0.03 0.015	7.37 10.18	55.59 57.83	84 105				
2013-05-08	NS	0.147	0.015	8.93	42.77	81.3				
2013-05-09	DS	0.160	0.055	6.65	44.49	73.4				
2013-05-10	NS	0.162	0.01	1.35	7.35	5.7				
2013-05-10 2013-05-11	DS NS	0.127 0.163	0.03 0.035	2.89 0.64	21.76 4.51	7.29 0.741				
2013-05-11	DS	0.103	0.035	0.79	7.38	1.03				
2013-05-12	NS	0.123	0.03	0.87	4.17	0.444				
2013-05-12	DS	0.137	0.02	1.13	5.06	0.844				
2013-05-13 2013-05-13	NS DS	0.150 0.120	0.03 0.04	0.96 1.56	11.21 8.38	2.21 1.44				
2013-05-13	NS	0.120	0.04	1.17	5.85	0.72				
2013-05-14	DS	0.120	0.03	1.57	5.96	1.79				
2013-05-15	NS	0.113	0.05	2.59	15.48	8.89				
2013-05-15	DS NS	0.133	0.04 0.035	8.2 5.29	46.9 38.77	80.4 55.6				
2013-05-16 2013-05-16	NS DS	0.310 0.137	0.035	5.29 1.88	38.77 11.84	55.6 4.22				
2013-05-17	NS	0.173	0.045	1.81	1.75	0.338				
2013-05-17	DS	0.167	0.065	3.45	4.93	1.9				
2013-05-18	NS	0.193 0.168	0.06	4.53	14.11	7.92 3.98				
2013-05-18 2013-05-19	DS NS	0.160	0.055 0.04	4.5 4.04	10.23 9.29	5.98				
2013-05-19	DS	0.223	0.06	4.47	12.49	5.72				
2013-05-20	NS	0.160	0.05	4.83	13.47	6.35				
2013-05-20	DS	0.150	0.045 0.03	4.68 5.3	21.57 31.75	18.2 39.4				
2013-05-21 2013-05-21	NS DS	0.133 0.127	0.05	5.37	28.14	39.4 34.1				
2013-05-22	NS	0.103	0.05	3.51	25.25	31.8				
2013-05-22	DS	0.123	0.065	3.83	17.38	16.2				
2013-05-23	NS	0.140 0.180	0.055 0.055	3.47 3.71	20.19 21.16	19 18.3				
2013-05-23 2013-05-24	DS NS	0.160	0.055	3.94	24.21	26.2				
2013-05-24	DS	0.210	0.08	4.54	26.13	25.8				
2013-05-25	NS	0.197	0.08	5.03	26.06	28.9				
2013-05-25 2013-05-26	DS NS	0.303 0.277	0.07 0.05	18.71 4.33	21.22 22.76	17.5 20.3				
2013-05-26	DS	0.277	0.03	4.65	24.4	28.1				
2013-05-27	NS	0.170	0.035	3.82	24.03	23.3				
2013-05-27	DS	0.167	0.04	4.6	25.55	22.2				
2013-05-28 2013-05-28	NS DS	0.117 0.113	0.035 0.015	3.87 3.47	25.88 20.86	27.7 10				
2013-05-29	NS	0.123	0.02	2.82	18.86	9.2				
2013-05-29	DS	0.107	0.03	2.67	15.3	5.97				
2013-05-30	NS	0.113 0.140	0.03 0.025	2.62 3.67	16.94 39.37	9.9 56.5				
2013-05-30 2013-05-31	DS NS	0.140	0.025	2.28	25.39	25.4				
2013-05-31	DS	0.060	0.04	6.12	30.99	34.6				
2013-06-01	NS	0.097	0.095	2.62	28.7	27.2				
2013-06-01 2013-06-02	DS NS	0.107 0.097	0.055 0.04	2.2 2.47	19.78 26.69	21.9 16.3				
2013-06-02	DS	0.097	0.04	2.47	21.23	9.23				
2013-06-03	NS	0.127	0.06	3.24	24.57	25.3				
2013-06-03	DS	0.170	0.02	3.88	21.73	16.6				
2013-06-04 2013-06-04	NS DS	0.140 0.167	0.045 0.055	2.64 2.54	11.69 10.92	4.44 4.61				
2013-06-05	NS	0.136	0.065	22.53	33.02	31.8				
2013-06-05	DS	0.113	0.04	3.04	25.1	23.3				
2013-06-06	NS	0.080	0.065	13.36	25.38	19.9				
2013-06-06 2013-06-07	DS NS	0.120 0.087	0.035 0.04	0.84 0.85	6.08 4.55	1.26 0.883				
2013-06-07	DS	0.117	0.05	1.91	8.47	4.04				
2013-06-08	NS	0.113	0.065	0.85	10.96	3.94				
2013-06-08 2013-06-09	DS NS	0.123 0.115	0.04 0.05	0.76 0.79	6.92 4.1	1.76 0.602				
2013-06-09	NS DS	0.115	0.05	0.79 0.82	4.1 3.35	0.602				
2013-06-10	NS	0.207	0.04	3.15	15.58	8.81				
2013-06-10	DS	0.143	0.035	2.25	14.44	9.23				
2013-06-11 2013-06-11	NS DS	0.120 0.120	0.035 0.02	2.55 0.93	25.04 15.8	26.7 9.11				
2013-06-11	NS	0.120	0.02	0.93 3.47	30.31	9.11 27.2				
2013-06-12	DS	0.100	0.035	2.86	32.16	34.5				
2013-06-13	NS	0.097	0.025	3.39	31.39	31.4				
2013-06-13	DS	0.077	0.03	3.59	30.67	28.6				

		Final tails (360-SA-008)								
Data I	01.10	Solid	A (/l)		olution	ON WAD (*****)				
Date 2013-06-14	Shift NS	Au (g/t) 0.092	Au (mg/L) 0.04	Iron (mg/L) 2.69	27.83	CN-WAD (ppm) 22.4				
2013-06-14	DS	0.032	0.035	2.35	24.59	21.2				
2013-06-15	NS	0.287	0.025	2.42	19.06	8.77				
2013-06-15	DS NS	0.110 0.100	0.02 0.035	0.64 1.11	4.67 2.39	2.37 0.221				
2013-06-16 2013-06-16	DS	0.100	0.035	0.91	2.39 7.54	1.52				
2013-06-17	NS	0.107	0.03	0.95	1.11	0.229				
2013-06-17	DS	0.120	0.02	0.55	3.39	7.79				
2013-06-18	NS DS	0.120	0.025	0.49	3.23	0.272				
2013-06-18 2013-06-19	DS NS	0.100 0.110	0.045 0.045	0.79 0.79	2.75 0.67	0.221 0.621				
2013-06-19	DS	0.120	0.06	0.54	1.9	0.345				
2013-06-20	NS	0.100	0.04	1.3	4.72	0.712				
2013-06-20 2013-06-21	DS NS	0.103 0.100	0.045 0.02	1.71 1.92	0.92 0.84	1.14 0.507				
2013-06-21	DS	0.100	0.02	2.01	5.88	2.61				
2013-06-22	NS	0.090	0.02	1.15	4.61	0.684				
2013-06-22	DS	0.087	0.03	1.34	6.95	3.26				
2013-06-23	NS	0.123 0.183	0.03 0.045	1.09 1.61	3.36 2.86	0.465 0.387				
2013-06-23 2013-06-24	DS NS	0.163	0.045	1.46	0.87	0.38				
2013-06-24	DS	0.130	0.045	0.73	0.54	0.274				
2013-06-25	NS	0.083	0.01	1.78	1.47	0.592				
2013-06-25	DS	0.110	0.02	1.42	1.37	0.883				
2013-06-26 2013-06-26	NS DS	0.120 0.130	0.02 0.035	2.53 2.04	3.79 2.89	2.07 1.44				
2013-06-27	NS	0.150	0.035	2.53	2.16	0.42				
2013-06-27	DS	0.160	0.115	2.75	5.36	3.6				
2013-06-28 2013-06-28	NS DS	0.220 0.337	0.08 0.04	2.53 3	0.93 2.25	0.337 0.59				
2013-06-28	NS	0.337	0.04	3.11	2.48	1.16				
2013-06-29	DS	0.377	0.03	3.37	3.32	0.846				
2013-06-30	NS	0.325	0.025	3.19	3.64	1.35				
2013-06-30 2013-07-01	DS	0.177 0.133	0.025 0.045	3.5 3.68	5.73 6.84	4.62 5.04				
2013-07-01	NS DS	0.133	0.045	3.00	6.76	3.54				
2013-07-02	NS	0.103	0.015	3.04	5.61	4.47				
2013-07-02	DS	0.113	0.065	2.63	6.97	5.19				
2013-07-03 2013-07-03	NS DS	0.117 0.107	0.03 0.035	2.57 2.52	4.59 6.73	2.63 3.62				
2013-07-03	NS	0.107	0.055	2.93	16.73	18.8				
2013-07-04	DS	0.100	0.04	2.89	18.09	21.1				
2013-07-05	NS	0.283	0.045	2.76	6.63	4.06				
2013-07-05 2013-07-06	DS NS	0.417 0.574	0.03 0.035	2.39 2.98	1.74 9.16	0.611 10.1				
2013-07-06	DS	0.213	0.025	3.12	15.8	19.7				
2013-07-07	NS	0.187	0.05	3.72	22.16	34.3				
2013-07-07	DS	0.163	0.045	3.57 4.24	24.07 27.26	34.5				
2013-07-08 2013-07-08	NS DS	0.157 0.147	0.045 0.055	4.24 3.64	21.66	25.3 28				
2013-07-09	NS	0.155	0.035	3.64	20.38	35.8				
2013-07-09	DS	0.315	0.045	3.4	24.55	35.3				
2013-07-10 2013-07-10	NS DS	0.120 0.117	0.05 0.08	4.34 3.5	29.17 30.53	38.5 41.6				
2013-07-10	NS	0.117	0.05	3.64	27.54	39.9				
2013-07-11	DS	0.127	0.06	3.28	21.7	40.4				
2013-07-12	NS	0.133	0.065	4.54	24.21	41 25.6				
2013-07-12 2013-07-13	DS NS	0.130 0.140	0.06 0.05	3.38 3.1	21.26 21.8	25.6 19.8				
2013-07-13	DS	0.130	0.05	2.14	17.68	16.8				
2013-07-14	NS	0.117	0.055	1.47	17.59	13.3				
2013-07-14	DS NS	0.143	0.045 0.05	0.64 0.91	9.71 0.95	5.5 0.231				
2013-07-15 2013-07-15	NS DS	0.207 0.143	0.05 0.04	2.09	0.95 12.92	10				
2013-07-16	NS	0.162	0.065	1.48	14.13	8.43				
2013-07-16	DS	0.167	0.065	2.22	7.36	6.05				
2013-07-17 2013-07-17	NS DS	0.193 0.340	0.075 0.055	2.94 1.75	12.67 14.32	6.94 17.3				
2013-07-17	NS	0.340	0.055	6.49	32.46	45.9				
2013-07-18	DS	0.147	0.07	4.5	25.24	30.1				
2013-07-19	NS	0.143	0.03	3.64	21.43	26 1.60				
2013-07-19 2013-07-20	DS NS	0.175 0.203	0.04 0.05	2.25 2.23	2.05 1.8	1.69 0.925				
2013-07-20	DS	0.227	0.05	2.78	7.31	4.61				
2013-07-21	NS	0.127	0.04	2.9	5.64	2.45				
2013-07-21	DS NS	0.173 0.167	0.115 0.04	3.68 3.37	4.86 1.42	3.72 0.586				
2013-07-22 2013-07-22	NS DS	0.167	0.04 0.055	3.37 2.41	1.42	0.586 1.31				
2013-07-23	NS	0.150	0.035	2.55	4.62	1.52				
2013-07-23	DS	0.110	0.05	2.23	8.5	3.26				
2013-07-24	NS DS	0.093 0.137	0.04 0.045	1.84 1.84	3.8 4.21	1.06 1.4				
2013-07-24	DS	0.137	0.045	1.04	4.∠1	1.4				

		Final tails (360-SA-008) Solid Solution								
Date	Shift	Solid	Au (mg/L)		Copper (mg/L)	CN-WAD (ppm)				
2013-07-25	NS	Au (g/t) 0.120	0.04	Iron (mg/L) 1.27	1.16	0.42				
2013-07-25	DS	0.130	0.04	1.35	1.41	0.528				
2013-07-26 2013-07-26	NS DS	0.157 0.137	0.035 0.05	2.53 1.35	3.79 2.15	2.07 1.18				
2013-07-26	NS	0.137	0.03	2.73	9.18	4.92				
2013-07-27	DS	0.153	0.05	2.79	8.44	6.58				
2013-07-28	NS	0.213	0.135	3.1	6.57	5.03				
2013-07-28 2013-07-29	DS NS	0.210 0.127	0.11 0.07	3.14 3.94	6.5 9.9	4.18 8.35				
2013-07-29	DS	0.127	0.07	3.79	14.29	6.49				
2013-07-30	NS	0.150	0.055	4.09	13.51	11.3				
2013-07-30	DS	0.150	0.06	3.12	12.06	9.87				
2013-07-31 2013-07-31	NS DS	0.123 0.187	0.08 0.055	3.42 2.18	13.21 9.48	13.7 9.02				
2013-07-31	NS	0.107	0.050	2.72	11.85	14.3				
2013-08-01	DS	0.153	0.050	3.13	11.79	22.5				
2013-08-02	NS	0.087	0.065	3.76	11.75	24.9				
2013-08-02 2013-08-03	DS NS	0.203 0.167	0.075 0.065	3.81 4.84	7.98 6.1	16.8 10.3				
2013-08-03	DS	0.140	0.075	4.41	8.33	13.9				
2013-08-04	NS	0.140	0.050	4.06	9.95	11.5				
2013-08-04	DS	0.163	0.055	3.77	11.83	15.6				
2013-08-05 2013-08-05	NS DS	0.117 0.107	0.065 0.075	4.52 4.31	13.86 13.41	19.1 18				
2013-08-06	NS	0.113	0.070	5.21	17.98	27.1				
2013-08-06	DS	0.100	0.075	5.7	20.59	34.5				
2013-08-07	NS	0.133	0.060	4.76	16.1	23.3				
2013-08-07 2013-08-08	DS NS	0.207 0.217	0.065 0.060	5.18 4.07	18.64 12.53	22.6 7.67				
2013-08-08	DS	0.217	0.060	3.2	12.72	7.79				
2013-08-09	NS	0.140	0.055	3.48	21.04	25.8				
2013-08-09	DS	0.162	0.060	3.19	30.52	30				
2013-08-10 2013-08-10	NS DS			0 0	0 0	0 0				
2013-08-10	NS			0	0	0				
2013-08-11	DS			0	0	0				
2013-08-12	NS	0.153	0.055	6.54	11.08	15.4				
2013-08-12 2013-08-13	DS NS	0.100 0.130	0.040 0.040	3.17 2.99	2.81 14.14	1.01 16.1				
2013-08-13	DS	0.103	0.050	6.71	38.95	68.5				
2013-08-14	NS	0.130	0.045	4.51	31.89	46.8				
2013-08-14	DS	0.163	0.065	3.31	26.73	34.3				
2013-08-15 2013-08-15	NS DS	0.170 0.222	0.065 0.055	2.21 3.28	4.99 12.63	2.62 10.3				
2013-08-16	NS	0.217	0.055	2.36	5.7	4.95				
2013-08-16	DS	0.197	0.065	2.61	10.94	7.58				
2013-08-17 2013-08-17	NS DS	0.230 0.173	0.090 0.090	2.96 2.62	14.72 15.2	22 17.6				
2013-08-17	NS	0.173	0.080	2.5	13.82	17.3				
2013-08-18	DS	0.173	0.090	2.11	7.37	4.49				
2013-08-19	NS	0.203	0.065	2.09	14.24	17				
2013-08-19 2013-08-20	DS NS	0.180 0.203	0.090 0.050	2.6 1.92	18.94 15.12	22.1 15.2				
2013-08-20	DS	0.160	0.100	2.83	21.31	21.9				
2013-08-21	NS	0.277	0.060	1.82	19.03	18.9				
2013-08-21	DS	0.185 0.223	0.055	3.11 3.04	22.94	29.6 32.4				
2013-08-22 2013-08-22	NS DS	0.223	0.110 0.090	3.17	26.94 29.82	41				
2013-08-23	NS	0.263	0.090	2.79	26.56	35.1				
2013-08-23	DS	0.230	0.080	2.5	25.83	34.4				
2013-08-24 2013-08-24	NS DS	0.303 0.203	0.130 0.085	1.2 3	20.63 22.58	25.6 35.7				
2013-08-25	NS	0.203	0.085	2.2	18.59	27.1				
2013-08-25	DS	0.190	0.100	1.34	19.9	19.7				
2013-08-26	NS	0.300	0.110	1.85	16.46	27.1				
2013-08-26 2013-08-27	DS NS	0.190 0.343	0.170 0.165	3.82 3.96	28.51 25.55	44.1 35.4				
2013-08-27	DS	0.153	0.105	4.41	28.88	42.8				
2013-08-28	NS	0.223	0.175	4.9	27.67	45.4				
2013-08-28 2013-08-29	DS NS	0.130 0.157	0.290 0.080	5.97 6.27	38.77 43.23	70.3 83.1				
2013-08-29 2013-08-29	NS DS	0.157	0.080	6.27 7.07	43.23 45.81	93.4				
2013-08-30	NS	0.113	0.065	6.53	45.95	87.3				
2013-08-30	DS	0.242	0.125	5.44	36.7	60				
2013-08-31 2013-08-31	NS DS	0.143 0.147	0.085 0.085	3.06 2.52	23.13 18.8	29 24.2				
2013-08-31	NS	0.147	0.085	2.52 2.6	21.12	24.2 26.9				
2013-09-01	DS	0.208	0.090	1.45	22.38	22.2				
2013-09-02	NS	0.453	0.150	1.83	22.88	19.6				
2013-09-02 2013-09-03	DS NS	0.133 0.208	0.080 0.175	1.25 2.8	18.34 18.93	10.5 17.2				
2013-09-03	DS	0.163	0.100	2.61	10.25	5.16				

		Final tails (360-SA-008)								
Dete I	01:11	Solid	A (/1-)		olution	ON WAD (*****)				
Date 2013-09-04	Shift NS	Au (g/t) 0.187	Au (mg/L) 0.095	1ron (mg/L) 3.14	Copper (mg/L) 8.07	CN-WAD (ppm) 3.21				
2013-09-04	DS	0.327	0.110	3.03	7.92	3.43				
2013-09-05	NS	0.510	0.115	4.51	9.2	3.3				
2013-09-05	DS	0.393 0.358	0.075	3.25	7.79 6.59	3.54 2.71				
2013-09-06 2013-09-06	NS DS	0.336	0.095 0.085	3.82 3.66	6.59 7.94	3.34				
2013-09-07	NS	0.187	0.095	5.26	11.25	9.2				
2013-09-07	DS	0.290	0.090	4.76	6.11	4.15				
2013-09-08	NS	0.157	0.090	5.64	15.73	24.5				
2013-09-08 2013-09-09	DS NS	0.150 0.135	0.110 0.140	4.64 4.57	14.5 17.03	15.7 15.4				
2013-09-09	DS	0.133	0.140	4.25	18.91	24.4				
2013-09-10	NS	0.163	0.105	4.73	28.35	40.8				
2013-09-10	DS	0.407	0.100	4.4	26.22	40.3				
2013-09-11 2013-09-11	NS DS	0.207 0.797	0.085 0.035	2.39 1.63	19.33 13.61	17.7 10.5				
2013-09-11	NS	0.390	0.040	2.48	19.78	20.3				
2013-09-12	DS	0.233	0.055	2.67	18.04	17.9				
2013-09-13	NS	0.160	0.040	2.62	20.7	22.5				
2013-09-13	DS	0.187	0.025	2.43	22.74	25.7				
2013-09-14 2013-09-14	NS DS	0.190 0.167	0.040 0.020	3.73 2.73	31.97 26.47	39.3 32.4				
2013-09-14	NS	0.167	0.020	1.44	24.19	31.7				
2013-09-15	DS	0.253	0.100	14.05	34.4	17.3				
2013-09-16	NS	0.203	0.060	1.56	25.23	20.4				
2013-09-16 2013-09-17	DS NS	0.180 0.150	0.085 0.055	2.11 1.26	21.59 22.75	20.8 17.6				
2013-09-17	DS	0.150	0.035	0.67	13.43	8.09				
2013-09-18	NS	0.170	0.025	0.86	21.19	10.4				
2013-09-18	DS			0	0	0				
2013-09-19	NS DC	0.420	0.040	0	0	0				
2013-09-19 2013-09-20	DS NS	0.120 0.143	0.010 0.030	1.09 1.38	2.85 5.53	0.628 1.56				
2013-09-20	DS	0.142	0.010	1.93	13.21	5.46				
2013-09-21	NS	0.123	0.030	2.1	14.43	5.08				
2013-09-21	DS	0.080	0.015	2.39	19.71	17.6				
2013-09-22 2013-09-22	NS DS	0.077 0.113	0.020 0.030	4.02 4.09	27.95 26.11	29.5 24.2				
2013-09-22	NS	0.113	0.025	6.51	30.51	64.6				
2013-09-23	DS	0.093	0.020	4.82	29.13	38.8				
2013-09-24	NS	0.126	0.110	3.14	26.38	24.9				
2013-09-24	DS	0.107	0.030	4.02	27.62	45				
2013-09-25 2013-09-25	NS DS	0.073 0.113	0.015 0.030	2.2 3.4	20.06 26.78	22.4 40.2				
2013-09-26	NS	0.150	0.035	6.05	40.2	82.8				
2013-09-26	DS	0.133	0.080	6.4	35.33	89				
2013-09-27	NS	0.117	0.025	10.52	43.61	94.3				
2013-09-27 2013-09-28	DS NS	0.160 0.133	0.030 0.025	6.34 7.4	29.7 23.64	57.4 39.5				
2013-09-28	DS	0.163	0.020	8.55	22.54	47.2				
2013-09-29	NS	0.120	0.020	10.02	24.52	41.3				
2013-09-29	DS	0.147	0.040	7.87	26.26	20.2				
2013-09-30 2013-09-30	NS DS	0.180 0.173	0.025 0.030	10.39 8.6	23.89 30.03	17.4 34.2				
2013-10-01	NS	0.153	0.025	6.95	21.99	17.4				
2013-10-01	DS	0.150	0.045	7.16	23.82	32.8				
2013-10-02	NS DS	0.140	0.020	8.11 8.66	28.51 31.45	30.7				
2013-10-02 2013-10-03	DS NS	0.173 0.123	0.035 0.035	8.66 6.36	31.45 25.33	39.2 27				
2013-10-03	DS	0.123	0.033	7.17	21.29	16.7				
2013-10-04	NS	0.148	0.020	5.36	14.54	4.87				
2013-10-04	DS	0.140	0.035	5.48	18.99	8.51				
2013-10-05 2013-10-05	NS DS	0.133 0.153	0.035 0.020	4.02 1.1	21.7 9.99	9.4 3.72				
2013-10-06	NS	0.130	0.040	1.18	21.12	6.27				
2013-10-06	DS	0.150	0.030	0.69	17.72	8.68				
2013-10-07	NS	0.153	0.015	0.85	18.87	7.11				
2013-10-07 2013-10-08	DS NS	0.180 0.163	0.030 0.020	0.46 0.52	12.63 1.09	8 0.84				
2013-10-08	DS	0.163	0.020	1.37	14.21	9.02				
2013-10-09	NS	0.150	0.020	0.81	6.18	2.07				
2013-10-09	DS	0.117	0.010	0.9	5.58	6.05				
2013-10-10 2013-10-10	NS DS	0.120 0.173	0.020	3.57 3.54	30.4 33.12	33.6 40.5				
2013-10-10 2013-10-11	NS NS	0.173 0.140	0.065 0.020	3.54 3.97	33.12 37.06	40.5 35.1				
2013-10-11	DS	0.147	0.020	4.24	35.5	41.7				
2013-10-12	NS	0.160	0.020	3.53	26.66	17.6				
2013-10-12	DS	0.220	0.013	2.44	26.18	31.1				
2013-10-13 2013-10-13	NS DS	0.223 0.188	0.015 0.020	1.36 2.82	23.95 30.07	24.6 35.9				
2013-10-13	NS	0.188	<0.020	4.84	36.69	31.2				
2013-10-14	DS	0.223	0.040	4.77	34.65	42.5				

		Final tails (360-SA-008) Solid Solution								
Dete	Ch:ff	Solid	A (rea er/L.)			CN MAD (nom)				
Date 2013-10-15	Shift NS	Au (g/t) 0.223	Au (mg/L) 0.035	Iron (mg/L) 4.87	Copper (mg/L) 31.41	CN-WAD (ppm) 30.6				
2013-10-15	DS	0.200	0.030	7.96	36.92	32.3				
2013-10-16	NS	0.187	<0.01	5.67	27.96	21				
2013-10-16	DS	0.180	0.020	3.77	25.81	13.9				
2013-10-17 2013-10-17	NS DS	0.190 0.162	0.030 0.040	4.66 3.2	29.26 28.88	35.2 25.7				
2013-10-17	NS	0.102	0.025	4.76	31.27	43.2				
2013-10-18	DS	0.150	0.030	5.25	35.21	49.1				
2013-10-19	NS	0.147	0.015	3.92	29.94	43.2				
2013-10-19	DS	0.267	0.020	3.79	30.25	38.3				
2013-10-20 2013-10-20	NS DS	0.173 0.187	0.030 0.035	4.22 5.16	27.93 26.84	37 21.3				
2013-10-20	NS	0.167	0.035	4.36	22.48	21.3 26.4				
2013-10-21	DS	0.220	0.030	5.03	27.52	23.3				
2013-10-22	NS	0.190	0.030	5.81	34.35	0				
2013-10-22	DS	0.193	0.045	4.28	29.24	22.6				
2013-10-23	NS	0.203	0.030	3.91	23.24	26.3				
2013-10-23 2013-10-24	DS NS	0.232 0.167	0.020 0.020	4.66 4.9	22.57 27.65	19.8 29.7				
2013-10-24	DS	0.177	0.025	3.87	25.44	20.6				
2013-10-25	NS	0.147	0.020	4.32	34.91	41.6				
2013-10-25	DS	0.192	0.020	6.15	32.14	41				
2013-10-26	NS	0.137	0.025	2.25	26.45	17.5				
2013-10-26	DS NS	0.122	0.030	2.77 1.57	32.11 20.45	24.5 30.1				
2013-10-27 2013-10-27	NS DS	0.123 0.083	0.020 0.025	1.57 1.25	29.45 25.32	30.1 20.1				
2013-10-27	NS	0.100	0.010	1.87	25.57	28.9				
2013-10-28	DS	0.110	0.060	1.17	26.38	20				
2013-10-29	NS	0.190	0.030	3.68	31.31	34.1				
2013-10-29	DS	0.183	0.025	1.83	21.75	21.7				
2013-10-30 2013-10-30	NS DS	0.173 0.173	0.020 <0.01	1.37 3.81	15 20.13	8.17 20.3				
2013-10-30	NS	0.173	0.025	3.65	19.11	20.3				
2013-10-31	DS	0.217	0.025	5.85	30.63	38.3				
2013-11-01	NS	0.187	0.020	6.69	31.16	35.2				
2013-11-01	DS			0		0				
2013-11-02	NS			0		0				
2013-11-02 2013-11-03	DS NS			0 0		0 0				
2013-11-03	DS			0		0				
2013-11-04	NS			0		0				
2013-11-04	DS			0		0				
2013-11-05	NS	0.400	0.020	0	F 44	0				
2013-11-05 2013-11-06	DS NS	0.460 0.140	0.030 0.020	7.81 1.81	5.11 4.76	7.58 1.35				
2013-11-06	DS	0.167	0.010	1.83	4.68	1.56				
2013-11-07	NS	0.223	<0.01	2.02	10.38	4.57				
2013-11-07	DS	0.333	0.015	4.04	10.3	4.7				
2013-11-08	NS DS	0.440	0.025	6.16 3.98	9.29 12.49	4.87 18.7				
2013-11-08 2013-11-09	NS	0.467 0.492	0.080 0.030	3.96 3.94	11.64	6.05				
2013-11-09	DS	0.322	0.025	3.93	13.74	9.28				
2013-11-10	NS	0.283	0.025	7.04	26.38	34.1				
2013-11-10	DS	0.200	0.138	5.95	34.09	41.1				
2013-11-11	NS	0.167	0.060	6.01	32.45	38				
2013-11-11 2013-11-12	DS NS	0.180 0.187	0.020 0.020	4.56 3.56	26.26 31.59	39.6 32.8				
2013-11-12	DS	0.167	0.020	4.5	32.31	34.4				
2013-11-13	NS	0.097	0.010	3.45	31.12	35.5				
2013-11-13	DS	0.147	0.020	3.16	31.6	34				
2013-11-14	NS	0.133	0.015	1.31	20.63	23.3				
2013-11-14 2013-11-15	DS NS	0.170 0.204	0.025 0.010	0.31 1.04	8.72 17	4.19 9.15				
2013-11-15	NS DS	0.204	0.010	0.46	17 15.88	9.15 14.5				
2013-11-16	NS	0.204	0.015	0.75	16.91	8.81				
2013-11-16	DS	0.308	0.020	0.33	6.68	3.6				
2013-11-17	NS	0.322	0.025	1.49	10.39	7.41				
2013-11-17 2013-11-18	DS NS	0.473 0.403	0.025 0.020	2.24 1.81	18.28 17.13	10.5 10.5				
2013-11-18	NS DS	0.403	0.020	2.74	27.37	27.1				
2013-11-19	NS	0.210	0.020	3.22	29.65	35.6				
2013-11-19	DS	0.183	0.020	4.13	30.28	39.6				
2013-11-20	NS	0.137	0.020	3.53	30.9	40.3				
2013-11-20	DS	0.133	0.020	4.13	29.8	40				
2013-11-21 2013-11-21	NS DS	0.170 0.133	0.010	2.79 2.79	29.92 31.45	37.6 41.3				
2013-11-21	NS	0.133	0.105	3.68	28.6	34.5				
2013-11-22	DS	0.103	0.020	4.25	35.15	50.7				
2013-11-23	NS	0.097	0.020	1.67	10.41	5.21				
2013-11-23	DS	0.140	0.025	1	3.46	63				
2013-11-24	NS	0.150	0.020	1.92	4.77	1.35				
2013-11-24	DS	0.147	0.025	1.3	8.68	3.58				

Date Shift Au (gft) Au (mg/L) Iron (mg/L) Copper (mg/L) CN-WAD 2013-11-25 NS 0.143 0.020 1.23 4.03 1.68 2013-11-26 NS 0.250 0.010 1.04 6.9 4.15 2013-11-26 NS 0.173 0.010 1.01 9.77 8.22 2013-11-27 NS 0.177 0.025 0.83 10.31 6.35 2013-11-27 DS 0.153 0.035 1.07 13.4 6.66 2013-11-28 NS 0.133 0.020 0.67 13.43 8.88 2013-11-28 DS 0.133 0.020 0.67 13.43 8.88 2013-11-29 DS 0.180 0.030 0.51 18.07 15.6 2013-11-29 DS 0.343 0.020 0.53 7.35 5.00 2013-12-19 DS 0.0343 0.020 0.53 7.35 5.00 2013-12-01 <td< th=""><th>5</th></td<>	5
2013-11-25	5
2013-11-25 DS 0.250 0.010 1.04 6.9 4.15 2013-11-26 NS 0.173 0.010 1.01 9.77 8.22 2013-11-27 NS 0.177 0.025 0.83 10.31 6.36 2013-11-27 DS 0.153 0.035 1.07 13.4 6.66 2013-11-28 NS 0.130 0.020 0.67 13.43 8.86 2013-11-29 NS 0.133 0.025 0.6 13.8 9.4 2013-11-29 NS 0.180 0.030 0.51 18.07 15.8 2013-11-30 NS 0.180 0.030 0.51 18.07 15.8 2013-11-30 DS 0.093 0.020 0.41 10.88 6.1 2013-12-01 NS 0.110 0.020 0.53 7.35 5.06 2013-12-01 NS 0.193 0.025 0.48 10.67 6.6° 2013-12-01 DS 0.10	
2013-11-26 NS 0.173 0.010 1.01 9.77 8.23 2013-11-26 DS 0.187 0.055 0.56 12.13 6.63 2013-11-27 NS 0.177 0.025 0.83 10.31 6.33 2013-11-28 NS 0.130 0.020 0.67 13.43 8.85 2013-11-28 DS 0.133 0.025 0.6 13.8 9.44 2013-11-29 NS 0.180 0.030 0.51 18.07 15.8 2013-11-29 DS 0.343 0.020 0.41 10.88 6.1 2013-11-30 DS 0.140 0.020 0.53 7.35 5.06 2013-12-01 NS 0.110 0.020 0.53 7.35 5.06 2013-12-01 NS 0.190 0.020 0.57 8.64 4.99 2013-12-01 DS 0.103 0.030 1.22 16.41 16.6 2013-12-02 NS 0.	
2013-11-27 NS 0.177 0.025 0.83 10.31 6.33 2013-11-28 NS 0.153 0.035 1.07 13.4 6.66 2013-11-28 NS 0.130 0.020 0.67 13.43 8.85 2013-11-29 NS 0.180 0.030 0.51 18.07 15.6 2013-11-29 DS 0.180 0.030 0.51 18.07 15.8 2013-11-29 DS 0.343 0.020 0.41 10.88 6.1 2013-11-30 DS 0.093 0.025 0.48 10.67 6.6* 2013-12-01 DS 0.093 0.025 0.48 10.67 6.6* 2013-12-01 DS 0.190 0.020 0.57 8.64 4.99 2013-12-01 DS 0.103 0.030 1.22 16.41 16.6 2013-12-02 NS 0.127 0.075 3.05 32.91 39.0 2013-12-03 NS <t< th=""><th>3</th></t<>	3
2013-11-27 DS 0.153 0.035 1.07 13.4 6.68 2013-11-28 NS 0.130 0.020 0.67 13.43 8.88 2013-11-29 NS 0.180 0.030 0.51 18.07 15.8 2013-11-29 NS 0.180 0.030 0.51 18.07 15.8 2013-11-29 NS 0.180 0.030 0.51 18.07 15.8 2013-11-30 NS 0.110 0.020 0.53 7.35 5.06 2013-12-01 NS 0.019 0.020 0.53 7.35 5.06 2013-12-01 NS 0.093 0.025 0.48 10.67 6.6° 2013-12-01 NS 0.190 0.020 0.57 8.64 4.99 2013-12-01 DS 0.103 0.030 1.22 16.41 16.6 2013-12-02 DS 0.127 0.020 3.66 32.65 40.2 2013-12-03 DS <th< th=""><th></th></th<>	
2013-11-28 NS 0.130 0.020 0.67 13.43 8.88 2013-11-29 DS 0.133 0.025 0.6 13.8 9.48 2013-11-29 NS 0.180 0.030 0.51 18.07 15.8 2013-11-29 DS 0.343 0.020 0.41 10.88 6.1 2013-11-30 NS 0.110 0.020 0.53 7.35 5.00 2013-11-30 DS 0.093 0.025 0.48 10.67 6.6 2013-12-01 NS 0.190 0.020 0.57 8.64 4.93 2013-12-01 DS 0.103 0.030 1.22 16.41 16.6 2013-12-02 NS 0.127 0.020 3.66 32.65 40.2 2013-12-02 DS 0.127 0.075 3.05 32.91 39.6 2013-12-03 NS 0.213 0.020 3.67 38.07 47 2013-12-03 DS 0.1	
2013-11-28 DS 0.133 0.025 0.6 13.8 9.48 2013-11-29 NS 0.180 0.030 0.51 18.07 15.8 2013-11-29 DS 0.343 0.020 0.41 10.88 6.1 2013-11-30 NS 0.110 0.020 0.53 7.35 5.06 2013-11-30 DS 0.093 0.025 0.48 10.67 6.6° 2013-12-01 NS 0.190 0.020 0.57 8.64 4.99 2013-12-01 DS 0.103 0.030 1.22 16.41 16.6 2013-12-02 NS 0.127 0.020 3.66 32.65 40.2 2013-12-03 NS 0.127 0.025 3.05 32.91 39.6 2013-12-03 NS 0.127 0.020 3.87 38.07 47 2013-12-03 DS 0.150 0.050 2.61 32.08 39 2013-12-03 DS 0.15	
2013-11-29 NS 0.180 0.030 0.51 18.07 15.6 2013-11-29 DS 0.343 0.020 0.41 10.88 6.1 2013-11-30 NS 0.110 0.020 0.53 7.35 5.00 2013-12-01 NS 0.093 0.025 0.48 10.67 6.66 2013-12-01 NS 0.190 0.020 0.57 8.64 4.99 2013-12-01 DS 0.103 0.030 1.22 16.41 16.6 2013-12-02 NS 0.127 0.020 3.66 32.65 40.2 2013-12-02 DS 0.127 0.075 3.05 32.91 39.0 2013-12-03 NS 0.213 0.020 3.87 38.07 47 2013-12-04 NS 0.160 0.010 2.04 27.48 36 2013-12-04 DS 0.232 0.045 2.75 30.27 36.2 2013-12-05 NS 0.	
2013-11-29 DS 0.343 0.020 0.41 10.88 6.1 2013-11-30 NS 0.110 0.020 0.53 7.35 5.06 2013-11-30 DS 0.093 0.025 0.48 10.67 6.6* 2013-12-01 NS 0.190 0.020 0.57 8.64 4.99 2013-12-01 DS 0.103 0.030 1.22 16.41 16.6 2013-12-02 NS 0.127 0.020 3.66 32.65 40.2 2013-12-02 DS 0.127 0.075 3.05 32.91 39.6 2013-12-03 NS 0.213 0.020 3.87 38.07 47 2013-12-04 NS 0.160 0.050 2.61 32.08 39 2013-12-05 NS 0.426 0.035 1.68 27.66 34. 2013-12-05 NS 0.426 0.035 1.68 27.66 34. 2013-12-06 NS 0.16	
2013-11-30 DS 0.093 0.025 0.48 10.67 6.67 2013-12-01 NS 0.190 0.020 0.57 8.64 4.98 2013-12-02 DS 0.103 0.030 1.22 16.41 16.6 2013-12-02 NS 0.127 0.020 3.66 32.65 40.2 2013-12-03 NS 0.127 0.075 3.05 32.91 39.6 2013-12-03 NS 0.213 0.020 3.87 38.07 47 2013-12-03 DS 0.150 0.050 2.61 32.08 39 2013-12-04 NS 0.160 0.010 2.04 27.48 36 2013-12-05 NS 0.426 0.035 1.68 27.66 34. 2013-12-05 DS 0.167 0.025 2.48 26.63 33.8 2013-12-06 NS 0.210 0.025 1.63 27.9 35.8 2013-12-07 NS 0.16	
2013-12-01 NS 0.190 0.020 0.57 8.64 4.99 2013-12-01 DS 0.103 0.030 1.22 16.41 16.6 2013-12-02 NS 0.127 0.020 3.66 32.65 40.2 2013-12-03 NS 0.127 0.075 3.05 32.91 39.6 2013-12-03 NS 0.213 0.020 3.87 38.07 47 2013-12-03 DS 0.150 0.050 2.61 32.08 39 2013-12-04 NS 0.160 0.010 2.04 27.48 36 2013-12-04 DS 0.232 0.045 2.75 30.27 36.2 2013-12-05 NS 0.426 0.035 1.68 27.66 34. 2013-12-06 NS 0.210 0.025 2.48 26.63 33.8 2013-12-06 NS 0.210 0.025 1.63 27.9 35.8 2013-12-07 NS 0.16	
2013-12-01 DS 0.103 0.030 1.22 16.41 16.6 2013-12-02 NS 0.127 0.020 3.66 32.65 40.2 2013-12-03 NS 0.127 0.075 3.05 32.91 39.6 2013-12-03 NS 0.213 0.020 3.87 38.07 47 2013-12-03 DS 0.150 0.050 2.61 32.08 39 2013-12-04 NS 0.160 0.010 2.04 27.48 36 2013-12-04 DS 0.232 0.045 2.75 30.27 36.2 2013-12-05 NS 0.426 0.035 1.68 27.66 34. 2013-12-05 DS 0.167 0.025 2.48 26.63 33.8 2013-12-06 NS 0.210 0.025 1.63 27.9 35.6 2013-12-07 NS 0.163 0.025 1.43 26.01 30.5 2013-12-07 DS 0.1	
2013-12-02 NS 0.127 0.020 3.66 32.65 40.2 2013-12-02 DS 0.127 0.075 3.05 32.91 39.6 2013-12-03 NS 0.213 0.020 3.87 38.07 47 2013-12-03 DS 0.150 0.050 2.61 32.08 39 2013-12-04 NS 0.160 0.010 2.04 27.48 36 2013-12-04 DS 0.232 0.045 2.75 30.27 36.2 2013-12-05 NS 0.426 0.035 1.68 27.66 34.1 2013-12-05 DS 0.167 0.025 2.48 26.63 33.8 2013-12-06 NS 0.210 0.025 1.63 27.9 35.8 2013-12-07 NS 0.163 0.025 1.43 26.01 30.9 2013-12-07 DS 0.147 0.025 1.44 24.67 25.8 2013-12-08 NS 0.	
2013-12-02 DS 0.127 0.075 3.05 32.91 39.6 2013-12-03 NS 0.213 0.020 3.87 38.07 47 2013-12-03 DS 0.150 0.050 2.61 32.08 39 2013-12-04 NS 0.160 0.010 2.04 27.48 36 2013-12-04 DS 0.232 0.045 2.75 30.27 36.2 2013-12-05 NS 0.426 0.035 1.68 27.66 34.7 2013-12-05 DS 0.167 0.025 2.48 26.63 33.8 2013-12-06 NS 0.210 0.025 1.63 27.9 35.5 2013-12-06 DS 0.170 0.045 1.67 27.92 30 2013-12-07 NS 0.163 0.025 1.43 26.01 30.5 2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-08 DS 0.170	
2013-12-03 NS 0.213 0.020 3.87 38.07 47 2013-12-03 DS 0.150 0.050 2.61 32.08 39 2013-12-04 NS 0.160 0.010 2.04 27.48 36 2013-12-04 DS 0.232 0.045 2.75 30.27 36.2 2013-12-05 NS 0.426 0.035 1.68 27.66 34.3 2013-12-05 DS 0.167 0.025 2.48 26.63 33.8 2013-12-06 NS 0.210 0.025 1.63 27.9 35.5 2013-12-06 DS 0.170 0.045 1.67 27.92 30 2013-12-07 NS 0.163 0.025 1.43 26.01 30.5 2013-12-07 DS 0.147 0.025 1.46 24.67 25.6 2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-09 NS 0.170	
2013-12-03 DS 0.150 0.050 2.61 32.08 39 2013-12-04 NS 0.160 0.010 2.04 27.48 36 2013-12-04 DS 0.232 0.045 2.75 30.27 36.2 2013-12-05 NS 0.426 0.035 1.68 27.66 34.2 2013-12-05 DS 0.167 0.025 2.48 26.63 33.8 2013-12-06 NS 0.210 0.025 1.63 27.9 35.5 2013-12-06 DS 0.170 0.045 1.67 27.92 30 2013-12-07 NS 0.163 0.025 1.43 26.01 30.5 2013-12-07 DS 0.147 0.025 1.46 24.67 25.8 2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-09 NS 0.190 0.025 3.32 25.38 34.5 2013-12-10 NS 0.1	
2013-12-04 DS 0.232 0.045 2.75 30.27 36.2 2013-12-05 NS 0.426 0.035 1.68 27.66 34.7 2013-12-05 DS 0.167 0.025 2.48 26.63 33.8 2013-12-06 NS 0.210 0.025 1.63 27.9 35.8 2013-12-06 DS 0.170 0.045 1.67 27.92 30 2013-12-07 NS 0.163 0.025 1.43 26.01 30.8 2013-12-07 DS 0.147 0.025 1.46 24.67 25.8 2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-08 DS 0.170 0.060 1.03 14.62 10.3 2013-12-09 NS 0.190 0.025 3.32 25.38 34.5 2013-12-10 NS 0.197 0.060 3.34 28.81 43.3 2013-12-10 DS <th< th=""><th></th></th<>	
2013-12-05 NS 0.426 0.035 1.68 27.66 34.7 2013-12-05 DS 0.167 0.025 2.48 26.63 33.8 2013-12-06 NS 0.210 0.025 1.63 27.9 35.8 2013-12-06 DS 0.170 0.045 1.67 27.92 30 2013-12-07 NS 0.163 0.025 1.43 26.01 30.8 2013-12-07 DS 0.147 0.025 1.46 24.67 25.8 2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-08 DS 0.170 0.060 1.03 14.62 10.3 2013-12-09 NS 0.190 0.025 3.32 25.38 34.5 2013-12-09 DS 0.197 0.060 3.34 28.81 43.3 2013-12-10 NS 0.173 0.035 4.11 31.74 41.8 2013-12-11 NS <th< th=""><th></th></th<>	
2013-12-05 DS 0.167 0.025 2.48 26.63 33.8 2013-12-06 NS 0.210 0.025 1.63 27.9 35.8 2013-12-06 DS 0.170 0.045 1.67 27.92 30 2013-12-07 NS 0.163 0.025 1.43 26.01 30.8 2013-12-07 DS 0.147 0.025 1.46 24.67 25.8 2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-08 DS 0.170 0.060 1.03 14.62 10.3 2013-12-09 NS 0.190 0.025 3.32 25.38 34.5 2013-12-10 NS 0.197 0.060 3.34 28.81 43.3 2013-12-10 NS 0.173 0.035 4.11 31.74 41.8 2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-11 DS <th< th=""><th></th></th<>	
2013-12-06 NS 0.210 0.025 1.63 27.9 35.8 2013-12-06 DS 0.170 0.045 1.67 27.92 30 2013-12-07 NS 0.163 0.025 1.43 26.01 30.8 2013-12-07 DS 0.147 0.025 1.46 24.67 25.8 2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-08 DS 0.170 0.060 1.03 14.62 10.3 2013-12-09 NS 0.190 0.025 3.32 25.38 34.8 2013-12-09 DS 0.197 0.060 3.34 28.81 43.3 2013-12-10 NS 0.173 0.035 4.11 31.74 41.8 2013-12-10 DS 0.157 0.015 4.45 29.4 38.5 2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-12 NS	
2013-12-06 DS 0.170 0.045 1.67 27.92 30 2013-12-07 NS 0.163 0.025 1.43 26.01 30.5 2013-12-07 DS 0.147 0.025 1.46 24.67 25.8 2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-08 DS 0.170 0.060 1.03 14.62 10.3 2013-12-09 NS 0.190 0.025 3.32 25.38 34.5 2013-12-09 DS 0.197 0.060 3.34 28.81 43.3 2013-12-10 NS 0.173 0.035 4.11 31.74 41.8 2013-12-10 DS 0.157 0.015 4.45 29.4 38.5 2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-12 NS 0.157 0.030 0.7 4.84 3.87 2013-12-12 NS 0	
2013-12-07 NS 0.163 0.025 1.43 26.01 30.9 2013-12-07 DS 0.147 0.025 1.46 24.67 25.8 2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-08 DS 0.170 0.060 1.03 14.62 10.3 2013-12-09 NS 0.190 0.025 3.32 25.38 34.5 2013-12-09 DS 0.197 0.060 3.34 28.81 43.3 2013-12-10 NS 0.173 0.035 4.11 31.74 41.8 2013-12-10 DS 0.157 0.015 4.45 29.4 38.5 2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-11 DS 0.147 0.015 0.65 8.52 4.1 2013-12-12 NS 0.157 0.030 0.7 4.84 3.83 2013-12-12 DS 0	
2013-12-07 DS 0.147 0.025 1.46 24.67 25.8 2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-08 DS 0.170 0.060 1.03 14.62 10.3 2013-12-09 NS 0.190 0.025 3.32 25.38 34.5 2013-12-09 DS 0.197 0.060 3.34 28.81 43.3 2013-12-10 NS 0.173 0.035 4.11 31.74 41.8 2013-12-10 DS 0.157 0.015 4.45 29.4 38.5 2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-11 DS 0.147 0.015 0.65 8.52 4.1 2013-12-12 NS 0.157 0.030 0.7 4.84 3.83 2013-12-12 DS 0.173 0.020 0.36 0.93 1.8 2013-12-13 NS 0.2	
2013-12-08 NS 0.160 0.030 0.73 16.3 16.6 2013-12-08 DS 0.170 0.060 1.03 14.62 10.3 2013-12-09 NS 0.190 0.025 3.32 25.38 34.5 2013-12-09 DS 0.197 0.060 3.34 28.81 43.3 2013-12-10 NS 0.173 0.035 4.11 31.74 41.8 2013-12-10 DS 0.157 0.015 4.45 29.4 38.5 2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-11 DS 0.147 0.015 0.65 8.52 4.1 2013-12-12 NS 0.157 0.030 0.7 4.84 3.8° 2013-12-12 DS 0.173 0.020 0.36 0.93 1.8 2013-12-13 NS 0.267 0.015 0.54 6.42 3.3	
2013-12-09 NS 0.190 0.025 3.32 25.38 34.5 2013-12-09 DS 0.197 0.060 3.34 28.81 43.3 2013-12-10 NS 0.173 0.035 4.11 31.74 41.6 2013-12-10 DS 0.157 0.015 4.45 29.4 38.5 2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-11 DS 0.147 0.015 0.65 8.52 4.1 2013-12-12 NS 0.157 0.030 0.7 4.84 3.83 2013-12-12 DS 0.173 0.020 0.36 0.93 1.8 2013-12-13 NS 0.267 0.015 0.54 6.42 3.3	
2013-12-09 DS 0.197 0.060 3.34 28.81 43.3 2013-12-10 NS 0.173 0.035 4.11 31.74 41.8 2013-12-10 DS 0.157 0.015 4.45 29.4 38.5 2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-11 DS 0.147 0.015 0.65 8.52 4.1 2013-12-12 NS 0.157 0.030 0.7 4.84 3.87 2013-12-12 DS 0.173 0.020 0.36 0.93 1.8 2013-12-13 NS 0.267 0.015 0.54 6.42 3.3	3
2013-12-10 NS 0.173 0.035 4.11 31.74 41.8 2013-12-10 DS 0.157 0.015 4.45 29.4 38.5 2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-11 DS 0.147 0.015 0.65 8.52 4.1 2013-12-12 NS 0.157 0.030 0.7 4.84 3.8° 2013-12-12 DS 0.173 0.020 0.36 0.93 1.8 2013-12-13 NS 0.267 0.015 0.54 6.42 3.3	
2013-12-10 DS 0.157 0.015 4.45 29.4 38.5 2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-11 DS 0.147 0.015 0.65 8.52 4.1 2013-12-12 NS 0.157 0.030 0.7 4.84 3.8 2013-12-12 DS 0.173 0.020 0.36 0.93 1.8 2013-12-13 NS 0.267 0.015 0.54 6.42 3.3	
2013-12-11 NS 0.140 0.030 1.06 20.71 20.5 2013-12-11 DS 0.147 0.015 0.65 8.52 4.1 2013-12-12 NS 0.157 0.030 0.7 4.84 3.8° 2013-12-12 DS 0.173 0.020 0.36 0.93 1.8 2013-12-13 NS 0.267 0.015 0.54 6.42 3.3°	
2013-12-11 DS 0.147 0.015 0.65 8.52 4.1 2013-12-12 NS 0.157 0.030 0.7 4.84 3.87 2013-12-12 DS 0.173 0.020 0.36 0.93 1.8 2013-12-13 NS 0.267 0.015 0.54 6.42 3.3	
2013-12-12 NS 0.157 0.030 0.7 4.84 3.8° 2013-12-12 DS 0.173 0.020 0.36 0.93 1.8 2013-12-13 NS 0.267 0.015 0.54 6.42 3.3	
2013-12-12 DS 0.173 0.020 0.36 0.93 1.8 2013-12-13 NS 0.267 0.015 0.54 6.42 3.3	
2013-12-13 DS 0.137 0.020 0.99 5.09 3.33	3
2013-12-14 NS 0.127 0.030 0.75 8.13 4.07	
2013-12-14 DS 0.127 0.020 2.25 9.03 5.83 2013-12-15 NS 0.117 0.025 2.96 18.27 11.5	
2013-12-15 NS 0.117 0.025 2.96 18.27 11.5 2013-12-15 DS 0.107 0.010 3.32 20.27 15.8	
2013-12-16 NS 0.110 0.020 2.58 21.68 16.9	
2013-12-16 DS 0.110 0.020 2.87 18.58 10.5	
2013-12-17 NS 0.107 0.035 2.5 16.24 6.06	6
2013-12-17 DS 0.127 0.020 2.92 12.83 6.69	
2013-12-18 NS 0.175 0.020 3.08 16.89 9.32	
2013-12-18 DS 0.300 0.020 3.68 18.84 9.45 2013-12-19 NS 0.173 0.020 3.88 21.82 15.9	
2013-12-19 DS 0.173 0.020 3.66 21.62 13.8 2013-12-19 DS 0.193 0.045 4.94 19.59 10.8	
2013-12-13 DS 0.153 0.045 4.54 15.53 10.6 2013-12-20 NS 0.187 0.020 3.84 24.65 19.8	
2013-12-20 DS 0.158 0.020 3.23 13.37 8.09	
2013-12-21 NS 0.107 0.025 3.14 16.67 7.72	
2013-12-21 DS 0.120 0.010 4.46 17.23 15.9	
2013-12-22 NS 0.150 0.020 2.82 19.14 16.5 2013-12-22 DS 0.093 0.045 3.77 25.14 18	
2013-12-22 DS 0.093 0.045 3.77 25.14 18 2013-12-23 NS 0.137 0.030 3.42 24.58 18.7	
2013-12-23 DS 0.110 0.040 4 23.83 9.62	
2013-12-24 NS 0.123 0.025 3.3 20.36 16.3	
2013-12-24 DS 0.113 0.020 2.56 19.97 15.4	4
2013-12-25 NS 0.127 0.020 2.68 23.09 17.9	
2013-12-25 DS 0.130 0.035 5.18 33.93 38.6	
2013-12-26 NS 0.113 0.030 5.53 40.43 47.3 2013-12-26 DS 0.113 0.170 5.32 33.06 42.4	
2013-12-26 DS 0.113 0.170 5.32 53.06 42.2 2013-12-27 NS 0.163 0.040 7.18 45.23 90.8	
2013-12-27 DS 0.100 0.035 6.7 45.7 79.4	
2013-12-28 NS 0.123 0.020 5.4 40.86 44.	
2013-12-28 DS 0.093 0.035 5.64 42.1 46.2	
2013-12-29 NS 0.137 0.040 5.3 40.66 42.7	
2013-12-29 DS 0.137 0.160 3.6 30.78 30.4	
2013-12-30 NS 0.123 0.035 1.84 18.58 7.37	/
2013-12-30 DS 0.138 0.055 1.67 20.9 7.84 2013-12-31 NS 0.183 0.025 0.89 16.13 5.38	
2013-12-31 DS 0.200 0.045 2.08 12.29 5.12	4

MILL EFFLUENT (ADDITIONAL TESTS)

DATE	Alkalinity	Aluminium (Al)	Dissolved Aluminium (Al)	Antimony (Sb)	Dissolved Antimony (Sb)	Silver (Ag)	Dissolved Silver (Ag)	Arsenic (As)	Dissolved Arsenic (As)	Barium (Ba)	Dissolved Barium (Ba)	Beryllium (Be)	Dissolved Beryllium (Be)	Bismuth (Bi)	Boron (B)	Dissolved Boron (B)
	mg CaCO₃/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2013-11-11		1.29	•	0.0001	•	0.5847	•	0.2303	•	0.0895	•	<0.0005	•	<0.0005	0.52	_
2013-11-11		1.21		< 0.0001		0.0183		0.2129		0.0812		< 0.0005		<0.0005	0.44	
2014-01-29	91	0.22	0.16	<0.02	0.003	<0.01	0.002	<0.05	0.022	0.17	0.14	<0.002	<0.002		0.39	0.37
	Cadmium (Cd)	Dissolved Cadmium (Cd)	Calcium (Ca)	Chloride	Chrome (Cr)	Dissolved Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Dissolved Copper (Cu)	Cynanide WAD	Total Cyanide (CNt)	Hardness	Tin (Sn)	Dissolved Tin (Sn)	Iron (Fe)	Dissolved Iron (Fe)
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO₃/L	mg/L	mg/L	mg/L	mg/L
2013-11-11	0.01278		710	2247	0.0007		0.5794	9.189		176	181		<0.001		8.4	
2013-11-11	0.00956		640	2047	<0.0006		0.4891	5.002		159	165		<0.001		4.9	
2014-01-29	<0.01	<0.001		2129	<0.01	<0.005		25	7.8	0.898	18.80	1500	<0.05	<0.05	6.7	0.8
	Fluoride (F)	Lithium (Li)	Dissolved Lithium (Li)	Magnesium	Manganese (Mn)	Dissolved Manganese (Mn)	Mercury (Hg)	Dissolved Mercury (Hg)	Molybdenum (Mo)	Dissolved Molybdenum (Mo)	Ammonia (NH ₃) (ionized)	Ammonia (NH3-NH4)	Nickel (Ni)	Dissolved Nickel (Ni)	Nitrate (NO ₃)	Nitrite (NO2)
2013-11-11 2013-11-11	mg/L 0.36 0.36	mg/L	mg/L	mg/L 0.63 0.93	mg/L 0.0051 0.0038	mg/Ĺ	mg/L 0.00063 0.00052	mg/L	mg/L 0.6445 0.4291	mg/Ĺ	mg N/L		mg/L 6.695 3.491	mg/L	mg N/L	
2013-11-11	0.30	<0.1	<0.1	0.93	<0.01	<0.003	<0.00052	<0.0001	0.4291	0.75	11.8	71.5	0.06	<0.01	31.6	0.69
		Dissolved	Potassium	Selenium	Dissolved			Strontium	Dissolved			Dissolved	Tellurium		Dissolved	
	Lead (Pb)	Lead (Pb)	(K)	(Se)	Selenium (Se)	Silica (Si)	Sodium (Na)	(Sr)	Strontium (Sr)	Sulfate (SO ₄)	Thallium (TI)	thallium (TI)	(Te)	Titanium (Ti)	titanium (Ti)	Uranium (U)
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg SO₄/L	mg/L	mg/L		mg/L	mg/L	mg/L
2013-11-11	0.0005		114	0.048		4.3	877			1341			< 0.0005	0.95		<0.001
2013-11-11 2014-01-29	0.0007 <0.01	<0.001	103	0.037 0.19	0.17	4.0	809	2.5	2.3	1403 2565	<0.01	<0.01	<0.0005	0.85 <0.05	<0.05	<0.001 <0.02
2011 01 20	40.01	40.001		0.10	0.17			2.0	2.0	2000	40.01	10.01		10.00	10.00	10.02
2013-11-11 2013-11-11	Dissolved Uranium (U) mg/L	Vanadium (V) mg/L <0.0005 <0.0005	Dissolved Vanadium mg/L	Zinc (Zn) mg/L 0.266 0.116		Certificat V-31 Certificat V-31		before cyanide	e destruction							
2014-01-29	0.003	<0.01	<0.01	<0.02		Certificat V-32		final tailings								

www.snclavalin.com


Sustainable Mine Development Global Mining & Metallurgy SNC-LAVALIN Inc. 455 René-Lévesque Blvd. West Montreal, Quebec H2Z 1Z3 Canada

Tel.: (514) 393-1000 Fax: (514) 390-2765

APPENDIX E - 2013 INTEGRATED TAILINGS DEPOSITION PLAN

March 2014 63

TSF Historical Information

WINTER 2012/2013

- •During this period we ran into problems with our booster pump which prevented deposition at the northern deposition points of the North Cell (NC)
 - Deposition from the South put the reclaim barge in jeopardy by pushing the reclaim pond
 North and creating preferencial channels towards the barge
 - The decision was then taken to build an internal structure to act as a reclaim barge barrier from the southern tailings deposition
- •A water deficit in the cell also led to the reclaim barge pumping tailings (water with high level of suspended solids)
 - A diesel pump was subsequently used to pump reclaim water due to the shutdwon of the reclaim barge to prevent further damage
- •The June 2013 bathymetry showed that the reclaim pond had been pushed North leading to the analysis of a new reclaim barge location in the NC
 - From the analysis completed it was determined that the current location of the reclaim barge is
 optimal requiring two protective structures (North & South) to protect from the western and
 southern deposition points.

Milatinity of the little of th

North Cell TSF model guideline

GUIDELINE

- Avoiding ice accumulation on the dike liner;
- Prevent tailings beach to reach the reclaim barge;
- Reclaim water pond maximum elevation of 148m;
- A minimum of two days per month of discharge by the by-pass of the booster pump is assumed for maintenance activities;
- Tailings beach to reach elevation 150m;
- Limit as much as possible deposition at the north end of the tailings pond during winter to reduce risk of freezing pipe;
- Raise beach on RF1 and RF2 to prevent tailings water from seeping out of the North Cell;
- Raise beaches on all external structures such as the roads around the tailings pond to prevent reclaim water from seeping towards the diversion ditches.

South Cell TSF model guideline

GUIDELINE

- Avoiding ice accumulation on the Central Dike liner;
- Prevent tailings beach to reach the reclaim barge;
- A minimum of two days per month of discharge by the by-pass of the booster pump is assumed for maintenance activities;
- Modelization of phase 1 of this cell, closure of this cell to be determined.

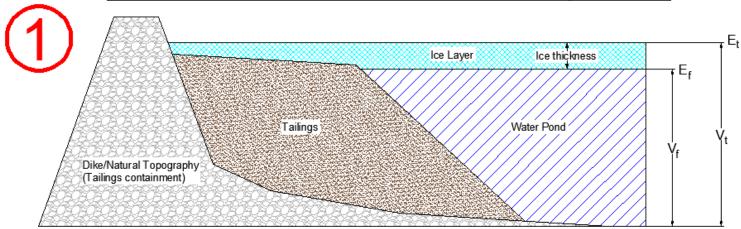
Model Parameters and assumptions

ASSUMPTIONS

- Deposition points will be moderately mobile in time (i.e. we can extend them on the tundra, and retract them as we deposit tailings throughout time);
- Ice formation in the reclaim pond during winter months follow the ice model table.
- Deposition points are added towards the end of life of the cell for closure purposes;

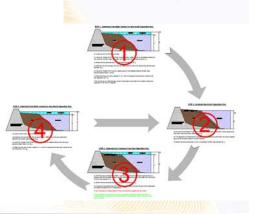
PARAMETERS

- The water balance used in this model assumes reclaim flow changes in function of season: summer 70 m³/h fresh water (FW) & 380m³/hr reclaim water (RW), and winter 90 m³/h FW & 360 m³/h RW;
- The model assumes a tailings dry density and a water balance that incorporates ice entrapment of 1.21t/m³ for both the North and South Cell;
- Sub aerial tailings slope set at 0.5% for both North and South Cell
- Sub aqueous tailings slope set at 2.3% for the North cell (obtained from summer 2013 bathymetric analysis) and 4% for the South Cell (taken from the 2012 Golder Deposition plan of the North Cell) as this value seems to better represent the start of a new cell.

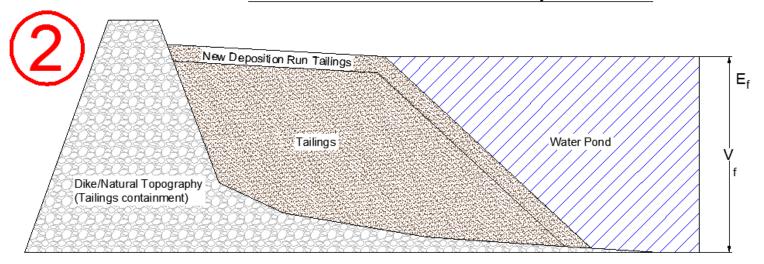

Ice Model		
Month	Ice thickness (m)	
January	1.1	
Febr uary	1.5	
March	1.8	
<mark>Ap</mark> ril	1.8	
May	1.1	
June	0	
July	0	
August	0	
September	0	
October	0	
November	0.3	
December	0.8	

TSF deposition plan schedule

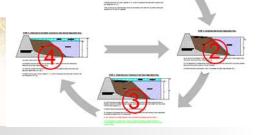
North and South Cell deposition phases

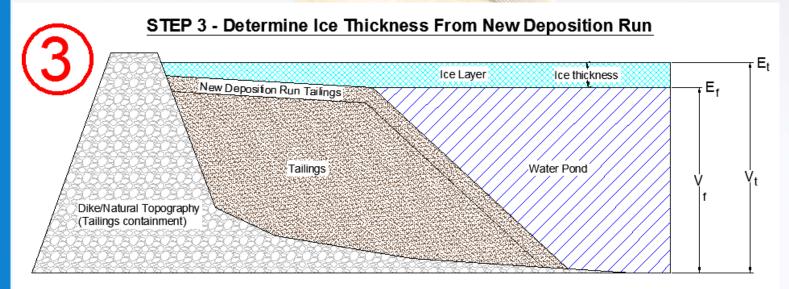

Period	Active Cell – Phase	Description
Current – September 2014	North Cell – Phase 1	- Bring the North Cell to the beginning of the winter 2014; the decreasing size and volume of the pond adversely affects the amount of free water due to ice formation, thus the North Cell cannot be closed off during the 2014/2015 winter.
October 2014 – June 2015	South Cell – Phase 1	- South Cell deposition during the winter months
July 2015 - November 2015	North Cell – Phase 2	- North Cell closure
December 2015 – End of mine life	South Cell - Phase 2	- South Cell deposition until end of mine life *Still on-going; therefore will not be presented*

STEP 1 - Determine Free Water Volume For New Month Deposition Run



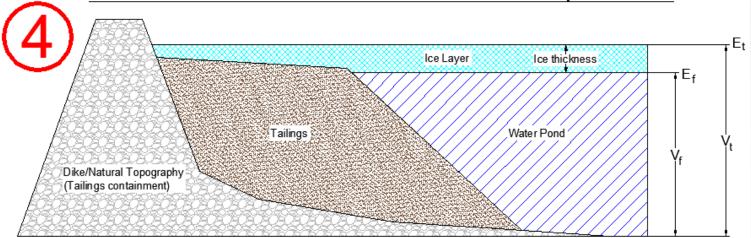
- (a) Load previous months output surface
- (b) Using the 'Create Pond From Fixed Volume' function, create a pond on the loaded surface with the volume of the total water (ice+water) from the current months water balance (V_t)
- (c) Determine the pond elevation this will be the ice elevation (E,
- (d) Substract the ice thickness (from the ice model chart) for the month, determining the free wat elevation (E_f)
- (e) Using the 'Create Pond' function, create a pond on the loaded surface at the free water elevation determined in 1-d (E_f).
- (f) Determine the pond volume created in 1-e, which will represent the free water volume for the new deposition run (V_f)


*This will only be an initial estimate, since the calculations are made from a surface missing the deposition of the month in question.

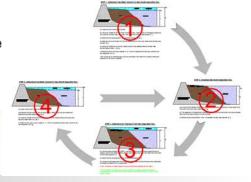


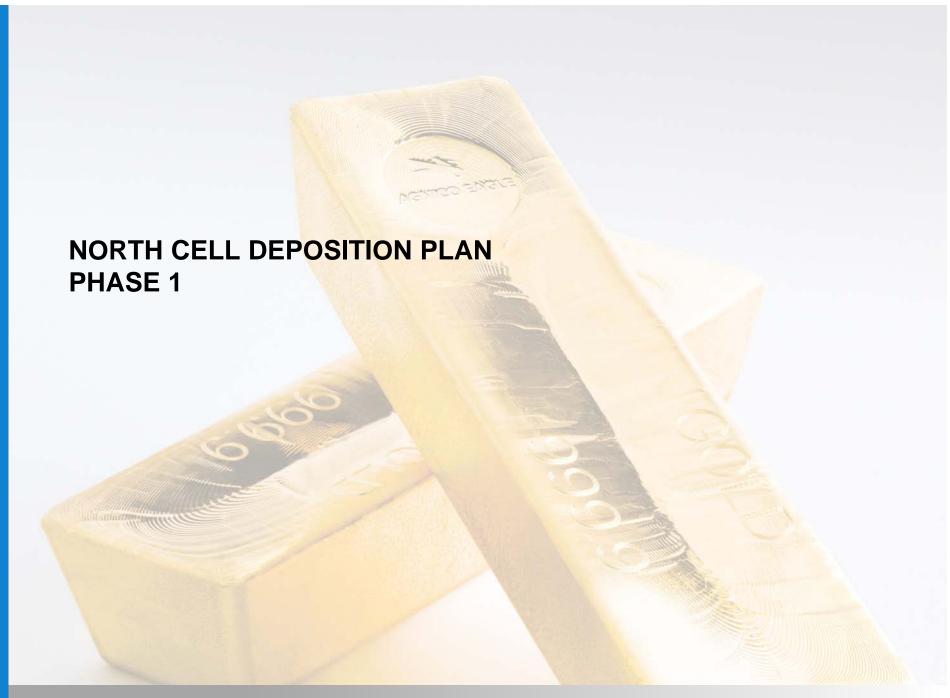
STEP 2 - Modelize New Month Deposition Run

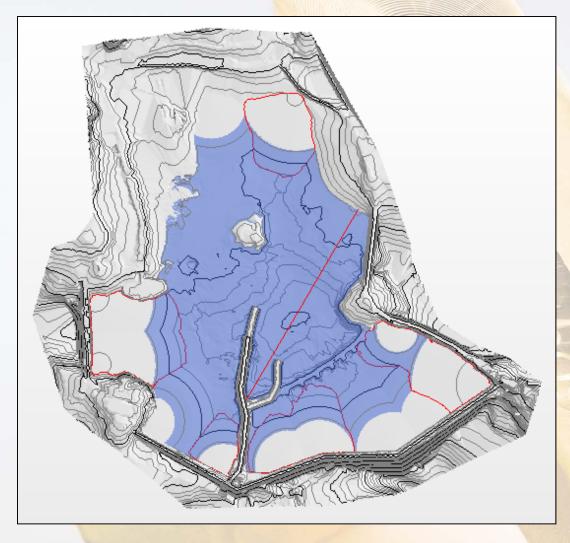
- (a) Using the 'Multi-Stream Fixed Pond Volume', run the model with the pond volume equal to the free water volume previously determined (V_f)
- (b) The deposition will therefore be completed by omitting the ice volume from the volume, thereby applying the sub-aerial slope for the ice thickness.
- (c) Determine the pond elevation which will represent the free water elevation (E,)


- (a) With the output surface from STEP 2, use the 'Create Pond From Fixed Volume' function to create a pond on the loaded surface with the volume of the total water (ice+water) from the current months water balance (V_t)
- (c) Determine the pond elevation this will be the ice elevation (E,
- (d) Compare the E_t determined and the E_f , this will represent the ice thickness of the modeliza completed and determine if it is acceptable.

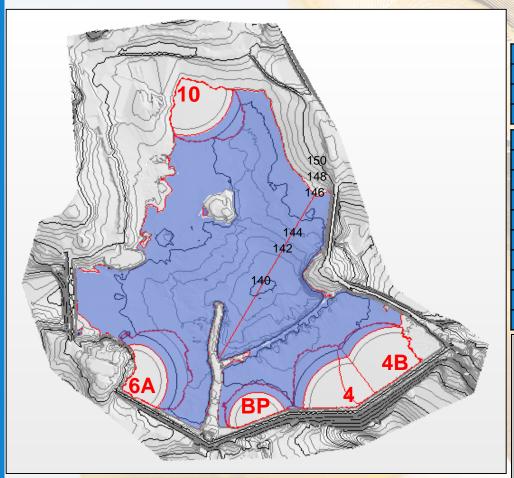
IF ICE THICKNESS VARIES MORE THAN 0.05 FROM ICE MODEL GO TO STEP 4


IF ICE THICKNESS VARIES LESS THAN 0.05 FROM ICE MODEL, MODELIZATION IS ACCEPTABLE; CONTINUE TO THE NEXT MONTH (restarting at STEP 1 with the current output surface)

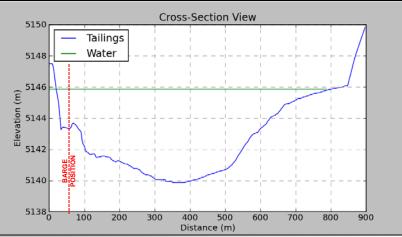



- (a) Using current month output surface from STEP 3
- (b) Substract the ice thickness from E_t determined in STEP 3 (from the ice model chart), determining the free water elevation (E_f)
- (c) Using the 'Create Pond' function, create a pond on the loaded surface at the free water elevation determined in 4-b (E_f).
- (d) Determine the pond volume created in 4-c, which will represent the free water volume for the new deposition run (V_f)
- (e) Repeat STEP 2 & 3

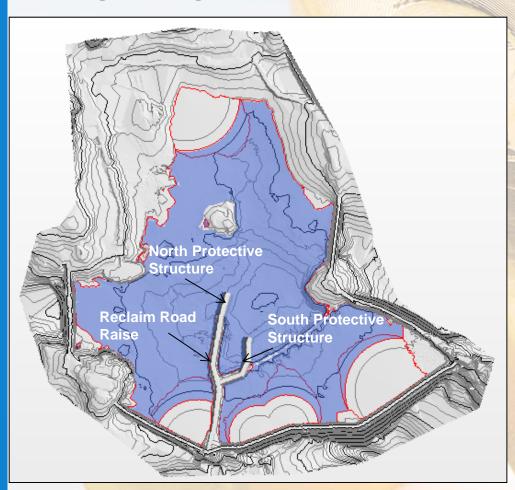
This usually requires 2-3 iterations to obtain an acceptable ice thickness


Section View Plot

A section view along the alignment shown on the diagram will be included for each month. This will show a section view plotted on an elevation graph to show the change in pond topography across the reclaim water barge area. Left limit of the chart represents the barge area and as you look to the right on the graph you are going towards deposition point 7 (North-eastern direction).


North Cell TSF deposition plan From 08/09/2013 to end of August 2013

Duration	Deposition Point	Tonnes
2	BP	20,981
6	4B	62,780
5	10	52,668
4	4	41,953
6	6A	63,234



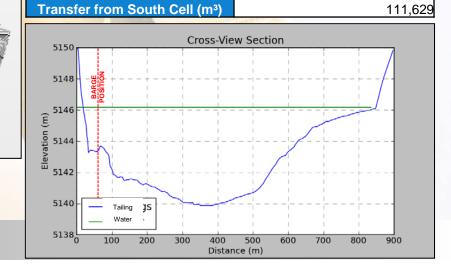
MODEL INPUT	
Water Balance Volume (m³)	1,487,509
Ice thickness (m)	0.00
Tonnes (t)	242,791

MODEL RESULTS		
Pond volume (m³)	1,486,244	
Pond depth (m)	6.215	
Pond elevation (m)	145.870	
Min pond ele (m)	139.655	
Ice thickness (m)	0	
Unfrozen water elevation (m)	145.870	
lce volume (m³)	0	
Ice ratio (%)	0	
Transfer from South Cell (m³)	82,395	

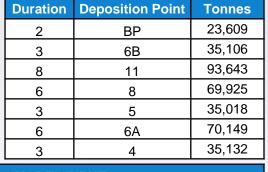
North Cell TSF deposition plan Beginning September 2013 – Structure Modifications

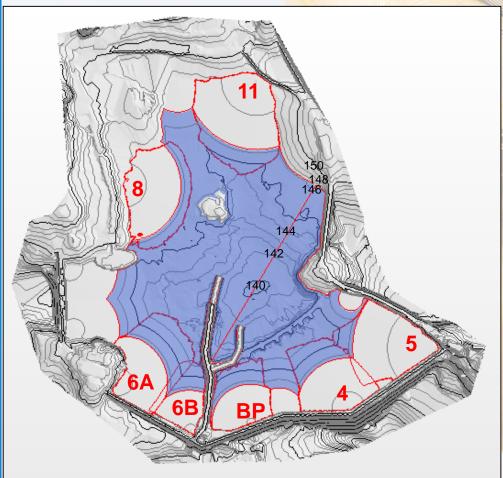
Structure	Elevation (m)	Volume (m³)
Reclaim Road Raise	150.0m	34,227
South Protective Structure	148.0m	21,740
North Protective Structure	148.0m	19,188

North Cell TSF deposition plan

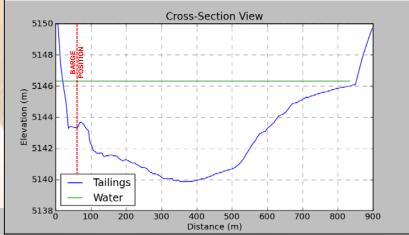


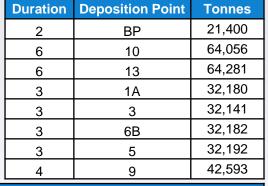
Duration	Deposition Point	Tonnes
2	BP	23,894
3	5B	35,846
6	1A	71,655
3	3	35,800
3	6B	35,861
6	11	71,574
4	1B	47 642
3	5	35701


1,439,747


Ice thickness (m)	0.00	
Tonnes (t)	357,540	
MODEL RESULTS		
Pond volume (m³)	1,521,792	
Pond depth (m)	6.526	
Pond elevation (m)	146.181	
Min pond ele (m)	139.655	
lce thickness (m)	0	
Unfrozen water elevation (m)	146.181	
Ice volume (m³)	0	
Ice ratio (%)	0	

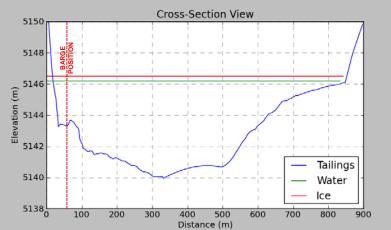
MODEL INPUT


North Cell TSF deposition plan October 2013



MODEL INPUT		
Water Balance Volume (m³)	1,445,174.00	
Ice thickness (m)	0.00	
Tonnes (t)	363,600	

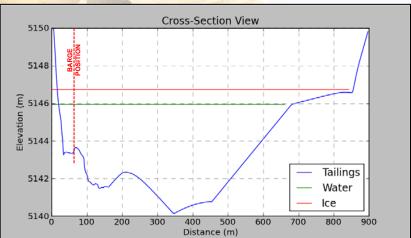
MODEL RESULTS		
Pond volume (m³)	1,442,985	
Pond depth (m)	6.658	
Pond elevation (m)	146.313	
Min pond ele (m)	139.655	
Ice thickness (m)	0	
Unfrozen water elevation (m)	146.313	
lce volume (m³)	0	
Ice ratio (%)	0	
Transfer from South Cell (m³)	137,629	

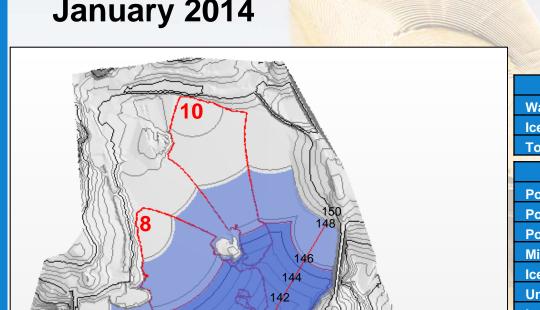

North Cell TSF deposition plan November 2013

9 150 144 144 140 13 5 6B BP 3

MODEL INPUT		
Water Balance Volume (m³)	1,461,120	
Ice thickness (m)	0.29	
Tonnes (t)	321,513	

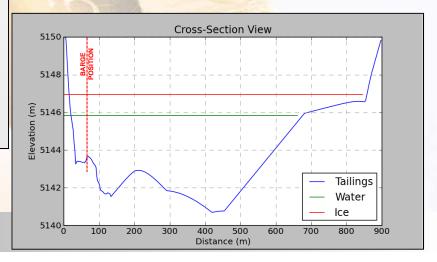
MODEL RESULTS	
Pond volume (m³)	1,461,120
Pond depth (m)	6.913
Pond elevation (m)	146.568
Min pond ele (m)	139.655
Ice thickness (m)	0.29
Unfrozen water elevation (m)	146.276
Ice volume (m³)	188,797
Ice ratio (%)	13%
Transfer to South Cell (m³)	0


North Cell TSF deposition plan December 2013


Duration	Deposition Point	Tonnes
2	BP	23,981
5	9	59,612
6	11	71,435
4	1C	47,667
6	7	71,365
4	6C	47,694
4	4	47,680

MODEL INPUT	
Water Balance Volume (m³)	1,313,414
Ice thickness (m)	0.80
Tonnes (t)	369,660

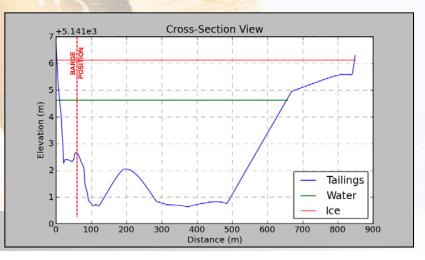
MODEL RESULTS		
Pond volume (m³)	1,313,414	
Pond depth (m)	6.869	
Pond elevation (m)	146.742	
Min pond ele (m)	139.876	
lce thickness (m)	0.79	
Unfrozen water elevation (m)	145.955	
Ice volume (m³)	449,169	
Ice ratio (%)	34%	
Transfer to South Cell (m³)	O	


North Cell TSF deposition plan January 2014

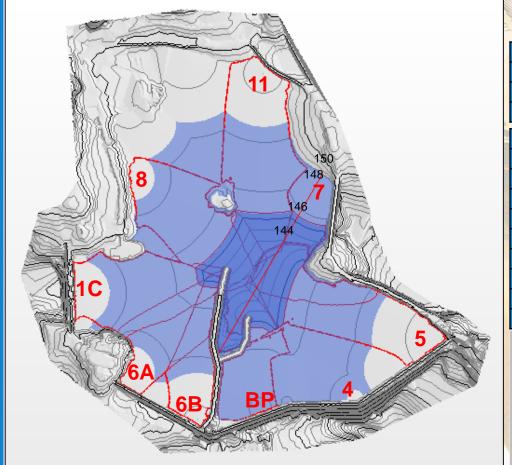
Duration	Deposition Point	Tonnes
2	BP	23,277
9	8	104,552
5	5	58,133
6	10	69,799
3	3	34,904
3	1B	34,869
3	6A	34,927

MODEL INPUT		
Water Balance Volume (m³)	1,246,454	
Ice thickness (m)	1.10	
Tonnes (t)	360,995	

MODEL R	MODEL RESULTS		
Pond volume (m³)	1,246,454		
Pond depth (m)	6.758		
Pond elevation (m)	146.946		
Min pond ele (m)	140.188		
Ice thickness (m)	1.11		
Unfrozen water elevation (m)	145.838		
lce volume (m³)	604,588		
Ice ratio (%)	49%		
Transfer to South Cell (m³)	0		

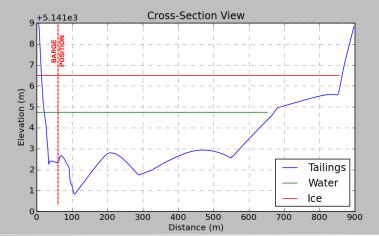

North Cell TSF deposition plan February 2014

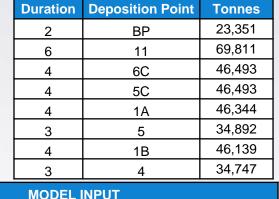
Duration	Deposition Point	Tonnes
2	BP	20,853
6	11	61,828
6	6C	61,962
6	5	61,684
3	14	30,925
3	3	30,753
2	1C	20,662

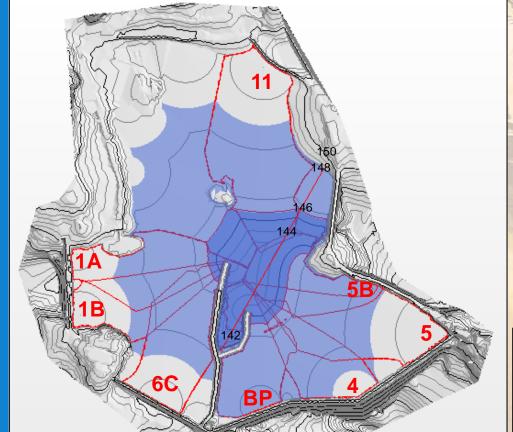

11 14 146 142 142 150 148 144 142 5
6C BP 4B

MODEL INPUT		
Water Balance Volume (m³)	1,185,974	
Ice thickness (m)	1.50	
Tonnes (t)	288,988	

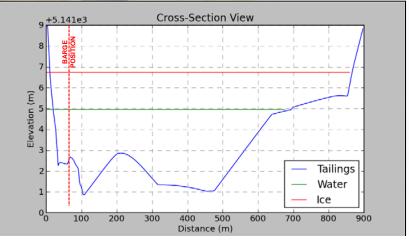
MODEL RESULTS	
Pond volume (m³)	1,185,974
Pond depth (m)	6.597
Pond elevation (m)	147.115
Min pond ele (m)	140.518
Ice thickness (m)	1.495
Unfrozen water elevation (m)	145.620
Ice volume (m³)	746,150
Ice ratio (%)	63%
Transfer to South Cell (m³)	0

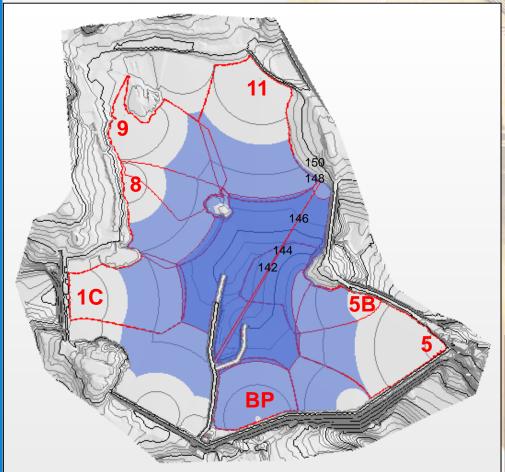

North Cell TSF deposition plan March 2014


Duration	Deposition Point	Tonnes
2	BP	23,682
4	1C	47,350
6	7	70,981
6	8	70,673
3	4	35,483
3	6A	35,653
4	5	47,387
3	6B	35,663

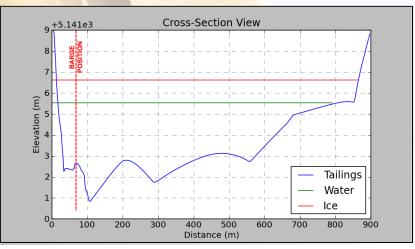

MODEL INPUT		
Water Balance Volume (m³)	1,119,014	
Ice thickness (m)	1.80	
Tonnes (t)	367,009	

MODEL RESULTS		
Pond volume (m³)	1,119,014	
Pond depth (m)	6.025	
Pond elevation (m)	147.333	
Min pond ele (m)	141.308	
Ice thickness (m)	1.78	
Unfrozen water elevation (m)	145.565	
lce volume (m³)	848,734	
Ice ratio (%)	76%	
Transfer to South Cell (m³)	0	

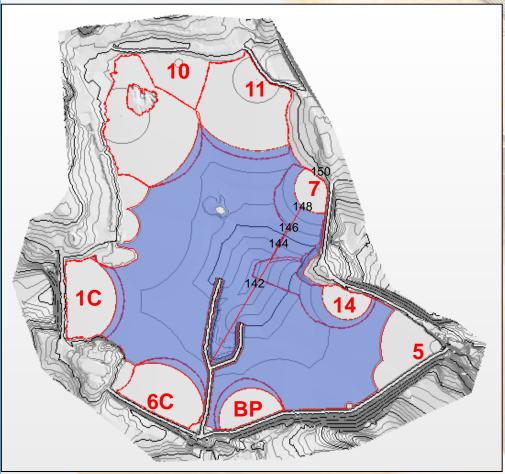

North Cell TSF deposition plan April 2014


MODEL INPUT		
Water Balance Volume (m³)	1,054,214	
Ice thickness (m)	1.80	
Tonnes (t)	348,990	

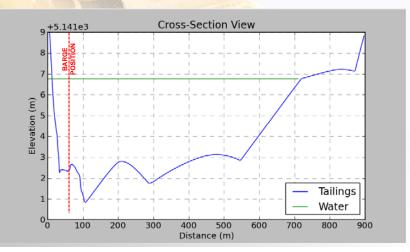
MODEL RESULTS		
Pond volume (m³)	1,054,214	
Pond depth (m)	5.973	
Pond elevation (m)	147.504	
Min pond ele (m)	141.531	
Ice thickness (m)	1.759	
Unfrozen water elevation (m)	145.745	
lce volume (m³)	813,980	
Ice ratio (%)	77%	
Transfer to South Cell (m³)	O	


North Cell TSF deposition plan May 2014

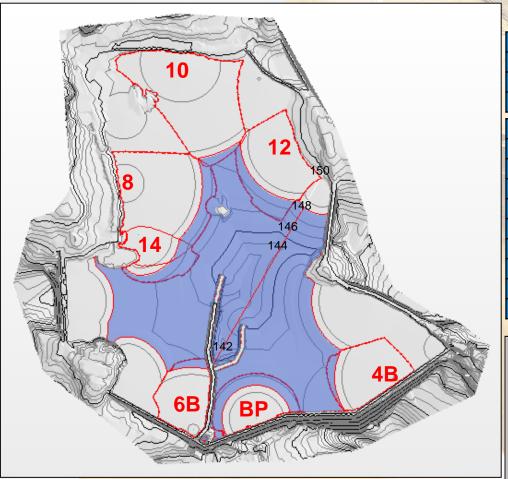
Duration	Deposition Point	Tonnes
2	BP	21,011
6	9	62,982
6	5	62,965
6	8	62,911
3	5B	31,527
3	1C	31,496
5	11	52,453


MODEL INPUT		
Water Balance Volume (m³)	1,188,048	
Ice thickness (m)	1.10	
Tonnes (t)	325,004	

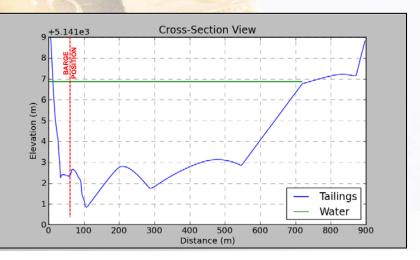
MODEL RESULTS		
Pond volume (m³)	1,185,840	
Pond depth (m)	5.525	
Pond elevation (m)	147.729	
Min pond ele (m)	141.163	
Ice thickness (m)	1.122	
Unfrozen water elevation (m)	145.953	
Ice volume (m³)	946,040	
Ice ratio (%)	75%	
Transfer to South Cell (m³)	0	


North Cell TSF deposition plan June 2014

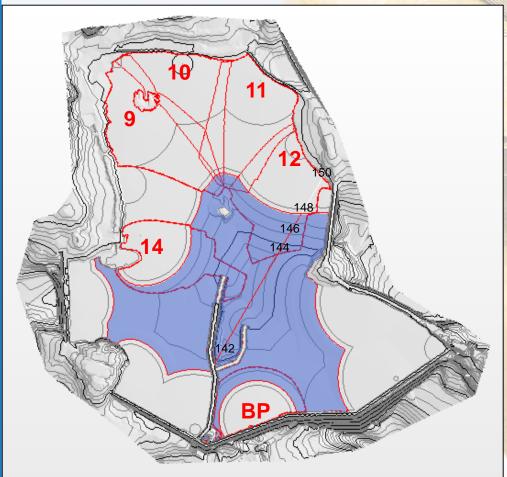
Duration	Deposition Point	Tonnes
2	BP	23,477
6	11	11,808
3	6A	35,365
6	12	70,440
6	8	70,768
6	7	70,871
1	9	70,881


MODEL INPUT		
Water Balance Volume (m³)	1,197,430	
Ice thickness (m)	o	
Tonnes (t)	354 234	

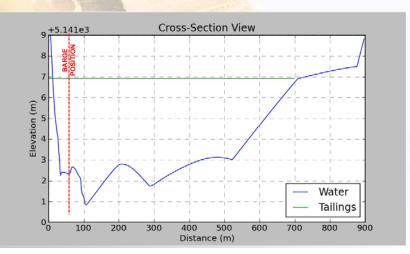
MODEL RESULTS	
Pond volume (m³)	1,195,479
Pond depth (m)	6.431
Pond elevation (m)	148.033
Min pond ele (m)	141.602
Ice thickness (m)	0
Unfrozen water elevation (m)	148.033
Ice volume (m³)	0
Ice ratio (%)	0
Transfer to South Cell (m³)	O


North Cell TSF deposition plan July 2014

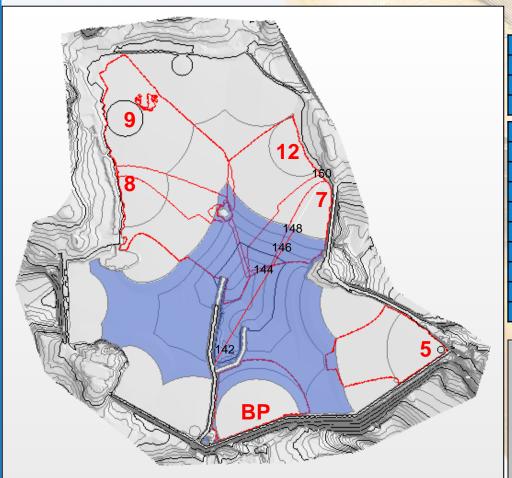
Duration	Deposition Point	Tonnes
2	BP	23,277
9	10	104,534
3	4B	34,850
6	8	69,832
3	6B	34,763
6	12	69,725
2	14	23,245


MODEL INPUT		
Water Balance Volume (m³)	1,197,430	
Ice thickness (m)	0	
Tonnes (t)	354,234	

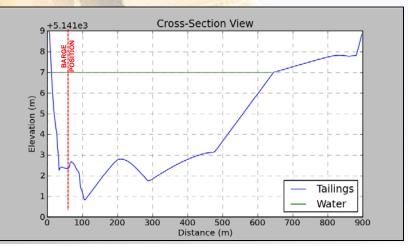
MODEL RESULTS	
Pond volume (m³)	911,888
Pond depth (m)	6.047
Pond elevation (m)	147.855
Min pond ele (m)	141.808
Ice thickness (m)	0
Unfrozen water elevation (m)	147.855
Ice volume (m³)	0
Ice ratio (%)	0
Transfer to South Cell (m³)	0


North Cell TSF deposition plan August 2014

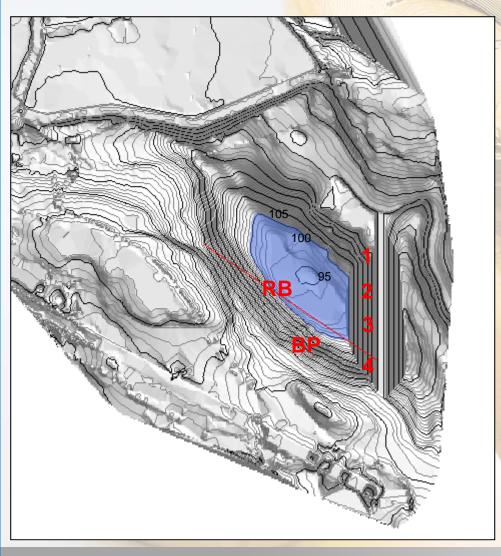
Duration	Deposition Point	Tonnes
2	BP	23,277
6	10	104,534
6	4B	34,850
6	8	69,832
3	6B	34,763
3	12	69,725
4	14	23,245


MODEL INPUT	
Water Balance Volume (m³)	1,197,430
Ice thickness (m)	o
Tonnes (t)	354,234

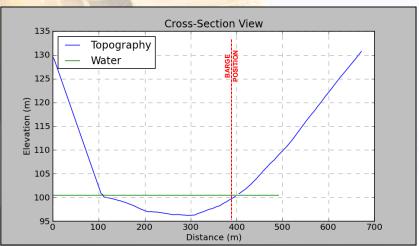
MODEL RESULTS	
Pond volume (m³)	911,888
Pond depth (m)	6.047
Pond elevation (m)	147.855
Min pond ele (m)	141.808
Ice thickness (m)	0
Unfrozen water elevation (m)	147.855
Ice volume (m³)	0
Ice ratio (%)	0
Transfer to South Cell (m³)	0


North Cell TSF deposition plan September 2014

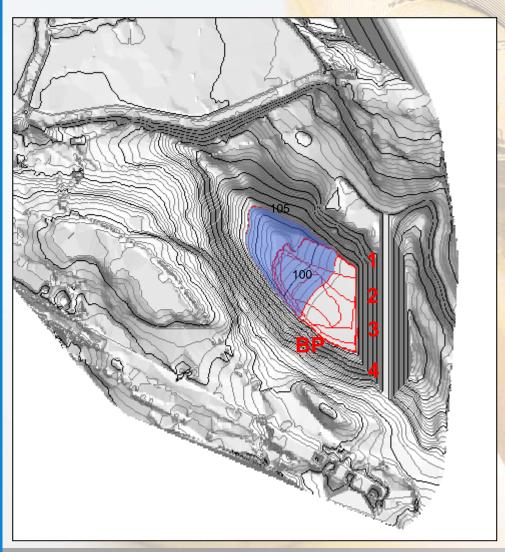
Duration	Deposition Point	Tonnes
2	BP	23,267
6	7	69,489
6	9	69,689
6	12	69,777
6	8	69,702
4	5	46,477


MODEL INPUT		
Water Balance Volume (m³)	818,773	
Ice thickness (m)	0.00	
Tonnes (t)	348,990	

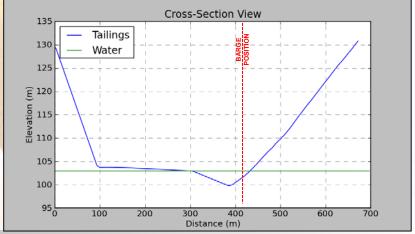
MODEL RESULTS	
Pond volume (m³)	770,252
Pond depth (m)	6.363
Pond elevation (m)	148.000
Min pond ele (m)	141.637
Ice thickness (m)	0
Unfrozen water elevation (m)	148.000
Ice volume (m³)	0
Ice ratio (%)	0
Transfer to South Cell (m³)	48,521



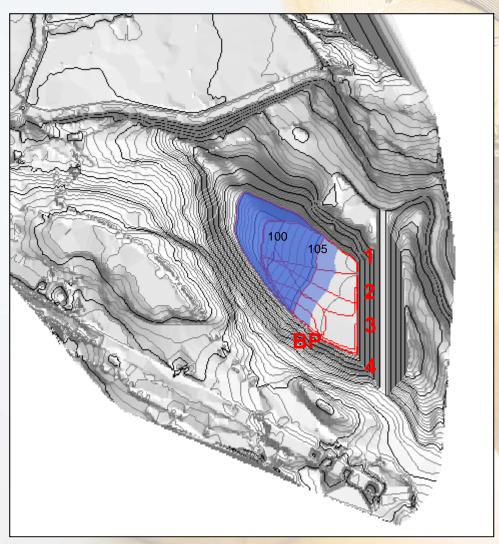
South Cell TSF deposition plan September 2014 (Start-up Status)


	SPECIFICATIONS	
Water Balance Vo	lume (m³)	262,528
Pond elevation (m	1)	100.500
Min pond ele (m)		94.000
Pond depth (m)		6.500

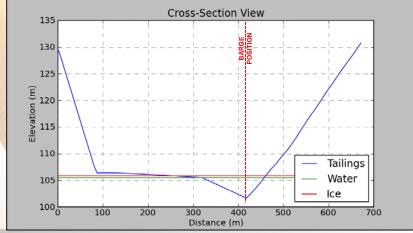
Below we have a section view along the alignment shown on the diagram which will be included for each month. Left limit of the chart represents the central dike and as you look to the right on the graph you are going towards the reclaim barge area.


South Cell TSF deposition plan October 2014

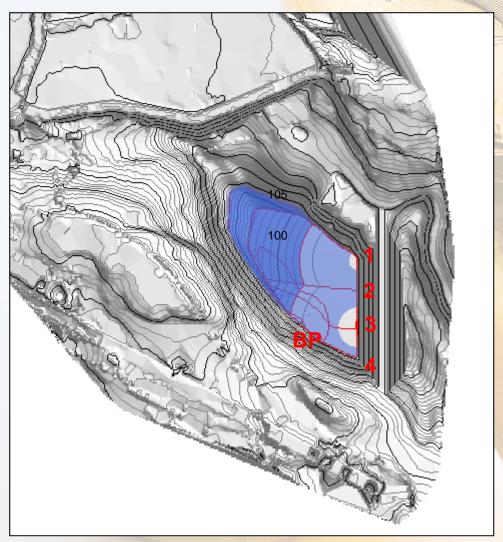
Duration	Deposition Point	Tonnes
2	BP	23,290
15	1	174,675
9	2	104,805
5	3	58,225


MODEL INPUT		
Water Balance Volume (m³)	190,255	
Ice thickness (m)	0.00	
Tonnes (t)	360,995	

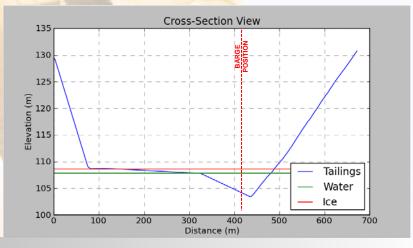
MODEL RESULTS	
Pond volume (m³)	191,123
Pond depth (m)	6.903
Pond elevation (m)	102.909
Min pond ele (m)	96.006
Ice thickness (m)	0
Unfrozen water elevation (m)	102.909
lce volume (m³)	0
Ice ratio (%)	0%
Transfer from South Cell (m³)	0


South Cell TSF deposition plan November 2014

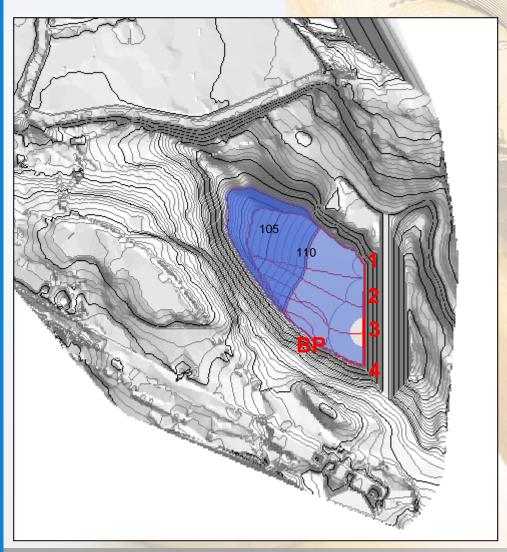
Duration	Deposition Point	Tonnes
3	BP	34,898
19	1	221,018
6	2	69,795
3	3	34,898


MODEL INPUT	
Water Balance Volume (m³)	235,021
Ice thickness (m)	0.30
Tonnes (t)	316,390

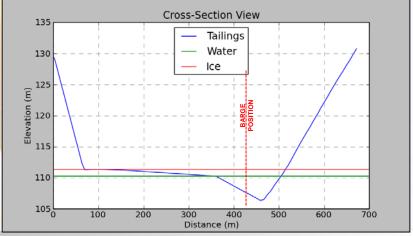
MODEL RESULTS	
Pond volume (m³)	235,021
Pond depth (m)	7.832
Pond elevation (m)	105.814
Min pond ele (m)	97.982
Ice thickness (m)	0.299
Unfrozen water elevation (m)	105.515
lce volume (m³)	22,340
Ice ratio (%)	10%
Transfer from South Cell (m³)	0


Duration	Deposition Point	Tonnes
3	BP	34,743
24	1	277,944
4	3	46,324

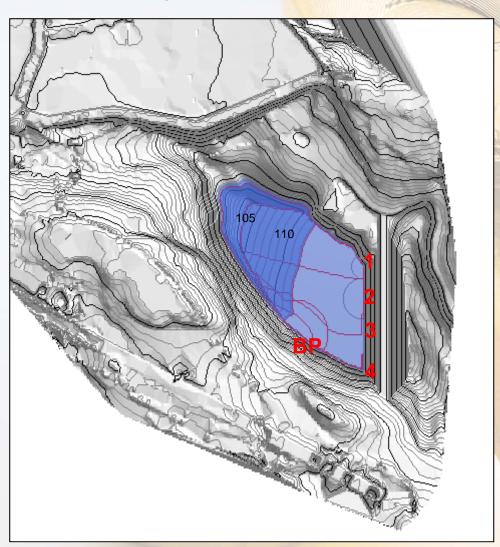
South Cell TSF deposition plan December 2014


108711	MODEL INPUT	
	Water Balance Volume (m³)	277,628
	Ice thickness (m)	0.8
	Tonnes (t)	359,011

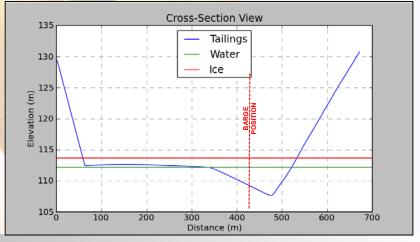
MODEL RESULTS	
Pond volume (m³)	277,628
Pond depth (m)	8.005
Pond elevation (m)	108.586
Min pond ele (m)	100.581
Ice thickness (m)	0.802
Unfrozen water elevation (m)	107.784
lce volume (m³)	74,408
Ice ratio (%)	27%
Transfer from South Cell (m³)	o


South Cell TSF deposition plan January 2015

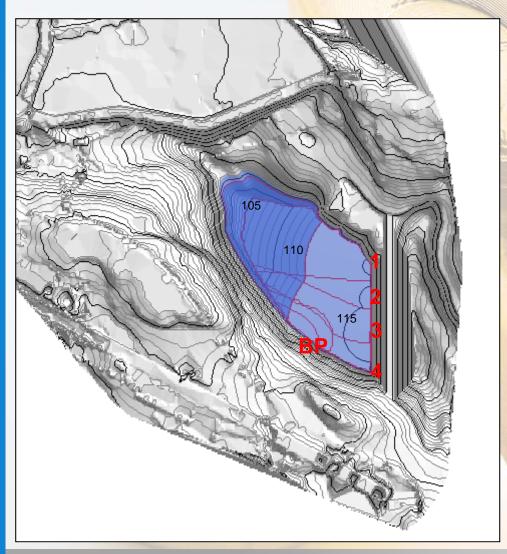
Duration	Deposition Point	Tonnes
2	BP	22,818
20	1	228,176
6	2	68,453
3	3	34,226


108711	MODEL INPUT	
	Water Balance Volume (m³)	381,243
	Ice thickness (m)	1.10
	Tonnes (t)	353,673

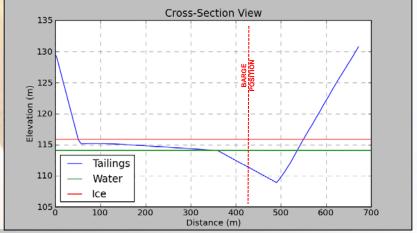
MODEL RESULTS	
Pond volume (m³)	381,243
Pond depth (m)	9.497
Pond elevation (m)	111.353
Min pond ele (m)	101.856
Ice thickness (m)	1.102
Unfrozen water elevation (m)	110.251
lce volume (m³)	123,504
Ice ratio (%)	32%
Transfer from South Cell (m³)	0


Duration	Deposition Point	Tonnes
2	BP	22,507
21	1	236,322
5	2	56,267

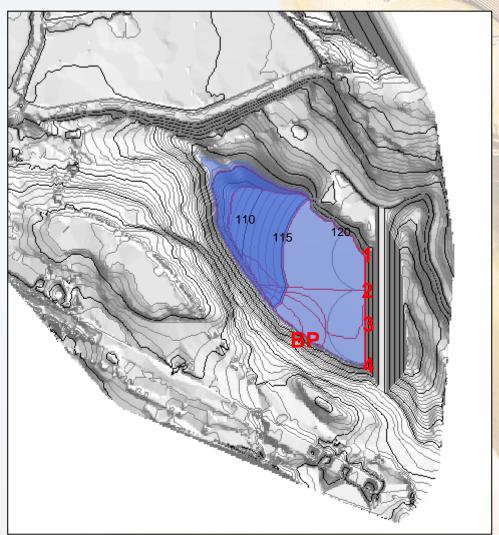
South Cell TSF deposition plan February 2015


108711	MODEL INPUT	
	Water Balance Volume (m³)	491,338
	Ice thickness (m)	1.50
	Tonnes (t)	315,096

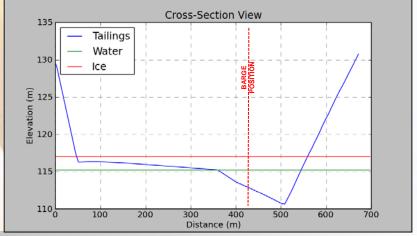
MODEL RESULTS	
Pond volume (m³)	491,338
Pond depth (m)	10.094
Pond elevation (m)	113.652
Min pond ele (m)	103.558
Ice thickness (m)	1.488
Unfrozen water elevation (m)	112.164
lce volume (m³)	208,342
Ice ratio (%)	42%
Transfer from South Cell (m³)	0


South Cell TSF deposition plan March 2015

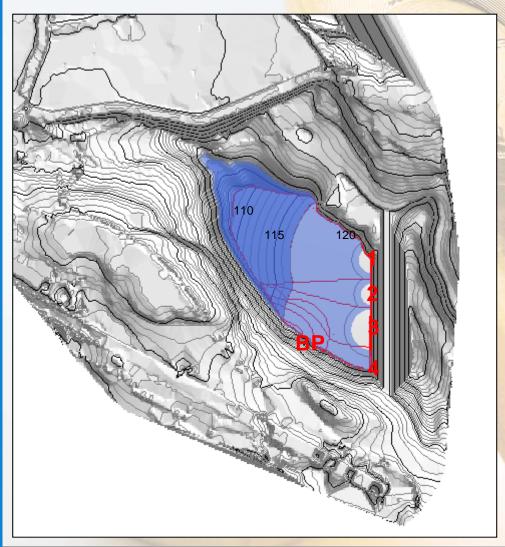
Duration	Deposition Point	Tonnes
2	BP	22,716
21	1	238,513
5	2	56,789
3	3	34,073


11/1/11	MODEL INPUT	
101	Water Balance Volume (m³)	594,953
7	Ice thickness (m)	1.80
	Tonnes (t)	352,091

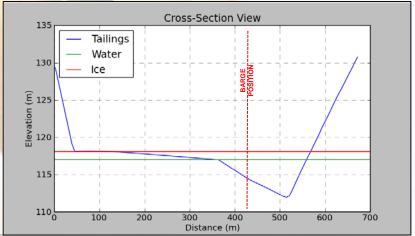
MODEL RESULTS		
Pond volume (m³)	594,953	
Pond depth (m)	10.955	
Pond elevation (m)	115.871	
Min pond ele (m)	104.916	
Ice thickness (m)	1.804	
Unfrozen water elevation (m)	114.067	
lce volume (m³)	271,133	
Ice ratio (%)	46%	
Transfer from South Cell (m³)	o	


Duration	Deposition Point	Tonnes
2	BP	22,688
25	1	283,597
3	3	34,032

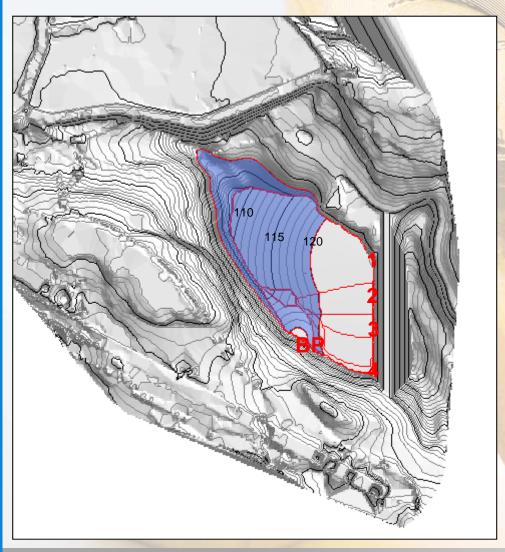
South Cell TSF deposition plan April 2015


well.	MODEL INPUT	
100	Water Balance Volume (m³)	530,153
1	Ice thickness (m)	1.80
	Tonnes (t)	340,316

MODEL RESULTS	
Pond volume (m³)	530,153
Pond depth (m)	10.031
Pond elevation (m)	117.001
Min pond ele (m)	106.970
Ice thickness (m)	1.797
Unfrozen water elevation (m)	115.204
lce volume (m³)	273,313
Ice ratio (%)	52%
Transfer from South Cell (m³)	О

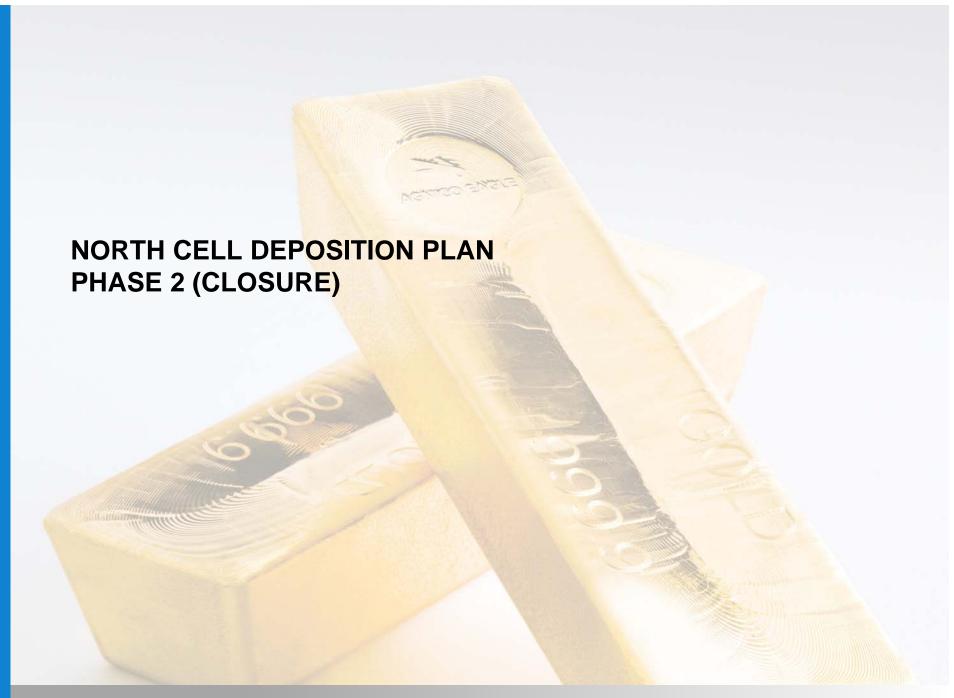

South Cell TSF deposition plan May 2015

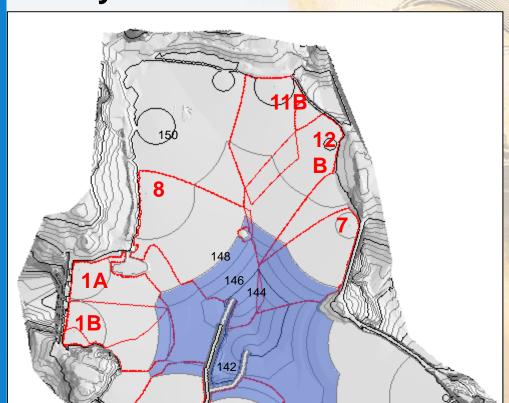
Duration	Deposition Point	Tonnes
2	BP	22,694
24	1	272,326
3	2	34,041
2	3	22,694


MODEL INPUT	
Water Balance Volume (m³)	463,193
Ice thickness (m)	1.10
Tonnes (t)	351,754

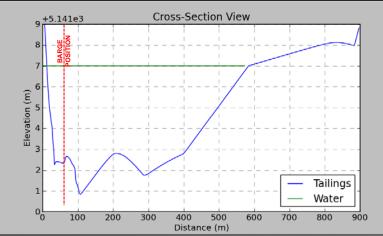
MODEL RESULTS	
Pond volume (m³)	463,193
Pond depth (m)	10.115
Pond elevation (m)	118.112
Min pond ele (m)	107.997
Ice thickness (m)	1.122
Unfrozen water elevation (m)	116.990
lce volume (m³)	155,907
Ice ratio (%)	34%
Transfer from South Cell (m³)	О

South Cell TSF deposition plan June 2015

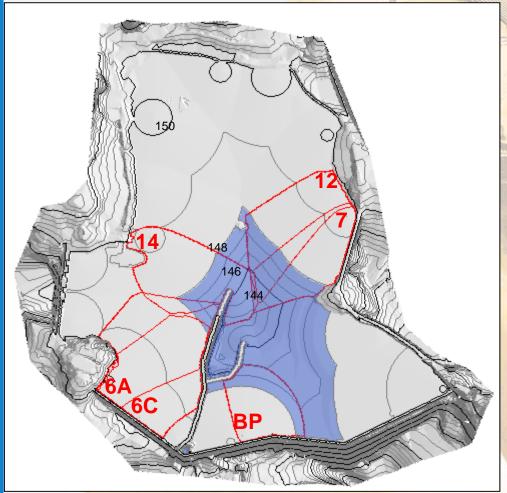

Duration	Deposition Point	Tonnes
2	BP	22,694
24	1	272,326
3	2	34,041
2	3	22,694


11/11/11	MODEL INPUT	
101	Water Balance Volume (m³)	623,819
	Ice thickness (m)	0.00
	Tonnes (t)	340,012

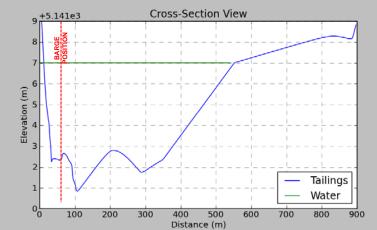
MODEL RESULTS	
Pond volume (m³)	623,782
Pond depth (m)	11.702
Pond elevation (m)	120.042
Min pond ele (m)	108.340
Ice thickness (m)	0.00
Unfrozen water elevation (m)	120.042
lce volume (m³)	0
Ice ratio (%)	0%
Transfer from South Cell (m³)	o


North Cell TSF deposition plan July 2015

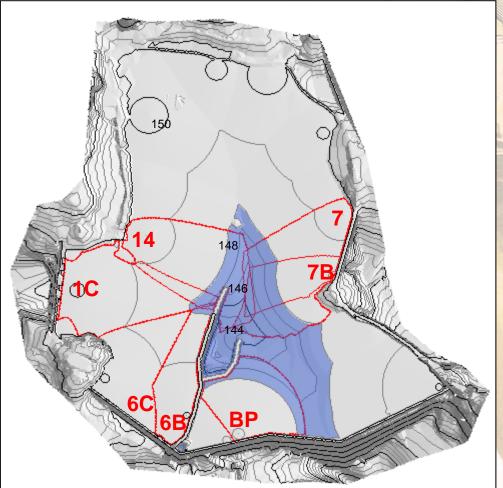
Duration	Deposition Point	Tonnes
2	BP	22,680
3	6B	34,020
3	11B	34,020
3	8	34,020
3	12B	34,020
6	1A	68,040
6	7	68,040
5	1B	56,700


MODEL INPUT	
Water Balance Volume (m³)	770,252
Ice thickness (m)	0
Tonnes (t)	351,540

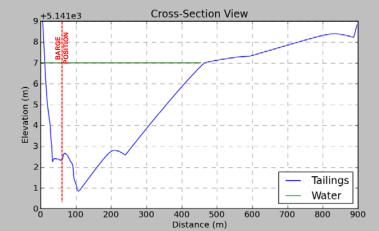
MODEL RESULTS	
Pond volume (m³)	660,740
Pond depth (m)	6.197
Pond elevation (m)	148.000
Min pond ele (m)	141.803
Ice thickness (m)	0
Unfrozen water elevation (m)	148.000
lce volume (m³)	0
Ice ratio (%)	0
Transfer to South Cell (m³)	109,512


North Cell TSF deposition plan August 2015

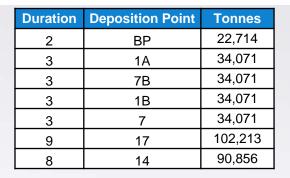
Duration	Deposition Point	Tonnes
2	BP	22,741
6	14	68,222
3	12	34,111
9	6C	102,333
3	7	34,111
8	6A	90,962

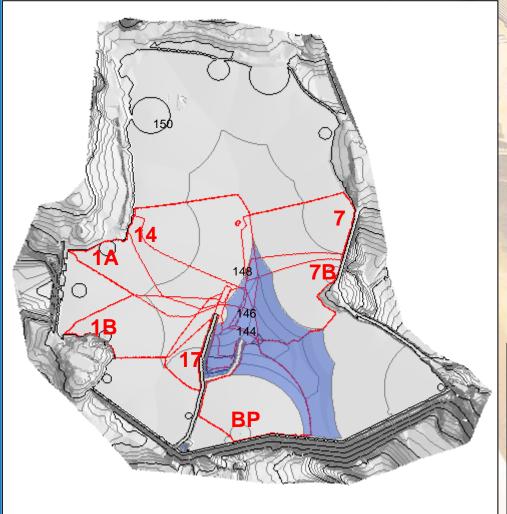

MODEL INPUT	
Water Balance Volume (m³)	595,065
Ice thickness (m)	o
Tonnes (t)	352,479

MODEL RESULTS	
Pond volume (m³)	514,805
Pond depth (m)	5.760
Pond elevation (m)	148.000
Min pond ele (m)	142.240
Ice thickness (m)	0
Unfrozen water elevation (m)	148.000
Ice volume (m³)	0
Ice ratio (%)	0
Transfer to South Cell (m³)	80,260

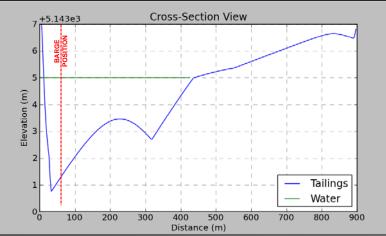

North Cell TSF deposition plan September 2015

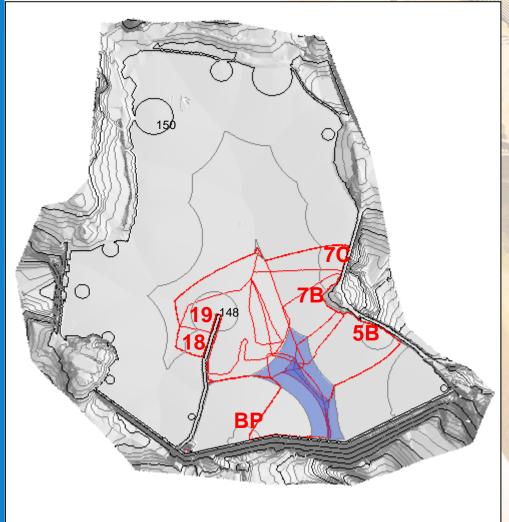
Duration	Deposition Point	Tonnes
2	BP	22,733
6	1C	68,199
3	7	34,100
7	14	79,566
9	7B	102,299
3	6B	34,100



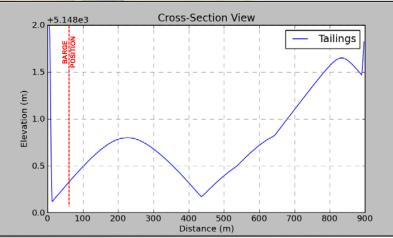

MODEL INPUT	
Water Balance Volume (m³)	478,127
Ice thickness (m)	О
Tonnes (t)	340,995

MODEL RESULTS	
Pond volume (m³)	354,289
Pond depth (m)	5.465
Pond elevation (m)	148.000
Min pond ele (m)	142.535
Ice thickness (m)	0
Unfrozen water elevation (m)	148.000
lce volume (m³)	0
Ice ratio (%)	0
Transfer to South Cell (m³)	123,838


North Cell TSF deposition plan October 2015


MODEL INPUT	
Water Balance Volume (m³)	478,127
Ice thickness (m)	0
Tonnes (t)	340,995

MODEL RESULTS	
Pond volume (m³)	194,962
Pond depth (m)	4.253
Pond elevation (m)	148.000
Min pond ele (m)	143.747
Ice thickness (m)	0
Unfrozen water elevation (m)	148.000
lce volume (m³)	0
Ice ratio (%)	0
Transfer to South Cell (m³)	77,487


North Cell TSF deposition plan November 2015

Duration	Deposition Point	Tonnes
2	BP	22,699
3	7C	34,049
9	18	102,146
3	7B	34,049
10	19	113,495
3	5B	34,049

MODEL INPUT	
Water Balance Volume (m³)	194,962
Ice thickness (m)	0.3
Tonnes (t)	340,485

MODEL RESULTS	
Pond volume (m³)	11,041
Pond depth (m)	0.836
Pond elevation (m)	148.000
Min pond ele (m)	147.164
Ice thickness (m)	0.300
Unfrozen water elevation (m)	147.700
lce volume (m³)	9,675
Ice ratio (%)	88%
Transfer to South Cell (m³)	183,921

North Cell TSF Final Closure

- As per the previous slide, the NC can no longer take tailings utilizing the current deposition points without pushing the pond North
- The NC will still have a certain capacity of tailings which could be explored and utilized during the final closure of the cell
 - An option would be to start capping from the North working our way South
 - A mobile deposition point could be used to fill the 'low' areas of the cell
 - Maintaining water reclaimation from the Stormwater dike (South portion of the cell)
 - Opportunity to store roughly 700,000t of production (2 months)
- This needs to be further investigated and scheduled with the waste management plan
- Some risks presents itself with this method such as:
 - Instability due to deposition activity near the capping
 - Low settlement of the tailings causing 'dirty' water to be pumped

