

2016 MINE WASTE ROCK AND TAILINGS MANAGEMENT REPORT & PLAN UPDATE

NOVEMBER 2016

EXECUTIVE SUMMARY

Agnico Eagle Mines Ltd. Meadowbank Division (AEM) is operating the Meadowbank Gold Mine (the Mine), located on Inuit-owned surface lands in the Kivalliq region approximately 70 km north of the Hamlet of Baker Lake, Nunavut. The Mine is subject to the terms and conditions of both the Project Certificate issued in accordance with the Nunavut Land Claims Agreement Article 12.5.12 on December 30, 2006, and the Nunavut Water Board Water License No. 2AM-MEA1525 issued on July 23, 2015. This report presents an updated 2017 version of the Mine Waste Rock and Tailings Management Plan.

The necessity of this particular mine waste rock and tailings management plan update follows the Water Licence 2AM_MEA1525 Modification Request initiated by AEM regarding the modification of the tailings management strategy which includes the deposition of tailings inside the Goose and Portage Pits. This modification to the plan is part of the mitigation plan developed regarding the situation of the Central Dike Seepage and the recommendation of the Meadowbank Dike Review Board (MDRB).

The principal additions to this update are:

- A tailings deposition plan including:
 - Earlier closure of the South Cell TSF;
 - Disposal of the Meadowbank tailings inside Goose Pit;
 - o Disposal of the potential Whale Tail Pit tailings inside Portage Pit;
- The tailings deposition parameters used for the model following the results of the 2016 bathymetries analysis and consolidation analysis performed by SNC-Lavalin;
- Tailings Storage Facility thermal monitoring plan;
- Tailings Storage Facility closure plan.

No change was done on the last version of the sections 3 to 6 for this update of the Mine Waste Rock and Tailings Management Plan. These sections are covering topic related to the mine waste rock management. The Life of Mine (LOM) used for this updated is the same one that was presented within the 2016 Annual Report. The sections 3 to 6 will be updated in March 2018 within the submission of the 2017 Annual Report.

November 2017

The Mine consists of several gold-bearing deposits: Vault, Portage and Goose Island. A series of dewatering dikes are required to isolate the mining activities from neighbouring lakes. The dikes were constructed using quarried materials or using materials produced during mining.

Waste rock from the Portage and Goose Island Pits is currently being stored in the Portage Rock Storage Facility (Portage RSF), and in the Portage Pit as infill. Pit infill is only carried out in areas where mining is completed, and, as such, contributes to the overall fish habitat compensation approved by Fisheries and Oceans Canada (DFO). The Portage RSF was constructed to minimize the disturbed area and will be capped with a 4m layer of non-acid-generating rock to constrain the active layer within relatively inert materials. In fact, this 4m capping has been completed around the perimeter of the Portage RSF and is considered part of progressive reclamation. This control strategy is designed to minimize the onset of oxidation and the subsequent generation of acid rock drainage through freeze control of the waste rock as a result of permafrost encapsulation and capping with an insulating convective layer of NAG rock. The waste rock below the capping layer is expected to freeze, resulting in low rates of acid rock drainage (ARD) in the long term. Thermistors currently installed in the Portage RSF indicate that freezing is occurring.

The Vault Pit mining operation commenced in 2014. Waste rock from the Vault Pit mining operation is currently being stored in the Vault Waste Rock Storage Facility (Vault RSF). Mining of the Vault Phaser Pit and BBPhaser Pit beginning was initiated in 2017. Planned waste rock from the Vault, Phaser and BBPhaser Pits is and will be stored in the existing Vault RSF. Geochemical predictions indicate that a capping layer will not be required over this area as the majority of waste rock is considered NAG. To date, through the ARD testing program, it has been determined that approximately 87% of the waste rock generated is NAG. As a precaution, PAG waste rock is placed in the middle of the Vault RSF; this material will be covered with at least 4m of NAG to minimize any generation of ARD. An adaptive management plan includes monitoring of water quality during operations to confirm modelling predictions and to allow adjustments to the closure plan as required. The waste rock is expected to eventually freeze.

The actual Tailings Storage Facility (TSF) is delineated by a series of dikes built around and across the basin of the dewatered northwest arm of Second Portage Lake. These dikes were raised according to the tailings storage requirement determine after each LOM update. AEM is now planning increasing the capacity of the overall tailings storage facility by proceeding to tailings in-pit disposal inside the Goose and Portage Pits. The actual TSF is divided into the North and South Cells. From 2010 to 2015 tailings were placed in the North Cell. The North Cell of the TSF is delineated by the Stormwater Dike (separates North and South Cells), Saddle Dams 1 and 2 and perimeter rockfill road structures. Tailings deposition commenced in the South Cell in 2014 and will continue until 2018 when mine operations are scheduled to cease (North Cell deposition was completed in summer 2015). The

South Cell is delineated by the Central Dike and Saddle Dams 3, 4 and 5. The division of the TSF into cells allows tailings management in comparatively smaller areas with shorter beach lengths that reduce the amount of water that is trapped and permanently stored as ice. Operation in cells also allows progressive closure and cover trials to begin in the North Cell (2014-2016) while tailings deposition continues in the South Cell. Tailings disposal inside the South Cell TSF is planned to stop in March 2018. In-pit disposal will then resume inside Goose Pit until to completion of the Meadowbank LOM planned in 2018Q3. This management plan is also presenting the future needs in tailings disposal for the Whale Tail Pit project. AEM is now planning storing tailings produce from the ore process for the Whale Tail pit inside the Portage Pit. However, all studies and designs were based on a full-capacity scenario where all pits were filled by tailings up to 8m below the 3rd Portage Lake water level elevation. This maximum capacity approach was used to develop a tailings storage facility that will be able to afford future storage needs related to reasonably foreseeable future development.

Tailings are placed sub-aerially and sub-aquaeously as slurry and water from the pond is reclaimed during operation. The current tailings deposition strategy is to build beaches against the faces of the perimeter dikes to push the pond away, and ultimately produce a tailings surface that directs drainage towards the western abutment of the Stormwater Dike. Following mine operations, a minimum 2-m thick cover of NAG rockfill will be placed over the tailings as an insulating convective layer to confine the active layer within relatively inert materials. The final thickness of the rockfill cover layer will be confirmed in the final design based on thermal monitoring to be completed during operations. The control strategy to minimize water infiltration into the TSF and the migration of constituents out of the facility includes freeze control of the tailings through permafrost encapsulation. Capping commenced in the northeast area of the North Cell TSF in 2015 and continued in 2016. Further capping of the North Cell is planned in 2017. In-pit disposal tailings will be placed sub-aqueously. SNC-Lavalin evaluated that the minimal water cover required at closure was 8m is order to avoid any resuspension of tailings. AEM is currently planning with the LOM used for this management plan to keep a minimal 20m water cover during the operation phase and around 75m at closure. If water quality meets all closure criteria including CCME guidelines and site specific criteria, the Goose dike will then be breached.

A Thermal Monitoring Plan (TMP) was developed to observe the freezeback of the TSF and RSFs in order to comply with the Nunavut Water Board (NWB) Water License 2AM-MEA1525. The license requires a TMP to monitor temperatures of the TSF and RSFs during, and after, mining operations.

All infrastructures needed for mine operations, closure and reclamation, including mine waste management areas, will be re-contoured and/or surface treated during closure, according to site specific conditions, to minimize windblown dust and erosion from surface runoff.

DOCUMENT CONTROL

Version	Date (YM)	Section	Page	Revision
1	2009/10	All	All	Original Plan
2	2013/04	All	All	Comprehensive update to Original Plan
3	2014/03	All	All	Comprehensive update to Original Plan
		Section 1, 2, 3, 4, 5, 6		Updated with the actual Life of Mine (LOM) for operations ending in Q3 2017
4	2015/03	Section 7		Updated according to the tailings deposition plan and water balance for the actual Life of Mine (LOM) for operations ending in Q3 2017
		Section 8		Updated according to additional instruments installed and future monitoring plan
		Section 9		Updated according to additional monitoring plan for final closure design
5	2016/03	All	All	Comprehensive update to Original Plan
6	2017/03	All	All	Comprehensive update to Original Plan
7	2017/11	All	All	Revision of the 2016 Waste Rock and Tailings Management Plan according to Water Licence Modification Request related to inpit disposal

michel.groleau@ Digitally signed by michel.groleau@agnicoeagle.com ON: on-michel.groleau@agnicoeagle.com Date: 2018.02.22.20.09.24.0600

Prepared By:

Engineering Department

Approved by:

Engineering and Environmental Departments

November 2017 4

TABLE OF CONTENTS

SECT	ION 1 • I	NTRODUCTION	13
SECT	ION 2 • I	BACKGROUND INFORMATION	17
2.1	Mining (Operation Description	17
	2.1.1	Site Conditions	18
	2.1.2	Climate	18
	2.1.3	Faults	19
	2.1.4	Permafrost	19
	2.1.4.1	Second Portage Lake Talik	20
	2.1.4.2	Vault Lake Talik	21
	2.1.4.3	Impact of Global Warming on Site Conditions	21
SECT	ION 3 • I	MINE DEVELOPMENT PLAN	28
3.1	Mine Wa	aste Production Sequence	28
3.2	Mine De	velopment Sequence (2017 – 2018)	41
		CONTROL STRATEGIES FOR ACID ROCK DRAINAGE IN COLD	40
IXEGI	0140		
SECT	ION 5 • 0	OVERBURDEN MATERIALS	52
5.1	Lake Bot	tom Sediments	52
5.2	Till		53
SECT	ION 6 • I	MINE WASTE ROCK	54
6.1	Waste R	ock Properties	54

6.2	Waste R	ock Facility Management	55
6.3	Waste R	ock Storage Dimensions	57
6.4	Portage	Rock Storage Facility Expanded Area	57
SEC	TION 7 •	TAILINGS MANAGEMENT	59
7.1	TAilings	deposition strategy	60
	7.1.1	Period 1: Portage/Vault tailings deposition in South Cell TSF and Goose Pit	62
	7.1.2	Period 2: Whale Tail tailings deposition in Goose Pit	63
	7.1.3	Period 3: Pit Closure at the end of operations	66
	7.1.4	Period 4: Monitoring period	66
	7.1.5	Period 5: Post closure	66
7.2	Tailings	Properties	66
7.3	Tailings	reclamation	68
7.4	Tailings	Freezeback and Seepage	71
	7.4.1	Monitoring of Tailings Freezeback	73
	7.4.2	Monitoring of Tailings Seepage	74
	7.4.3	Requirements for Sumps and Seepage Pump Back	75
7.5	Tailings	Deposition Planning	76
7.6	Tailings	Storage Facility Capacity	80
SEC	TION 8 •	THERMAL MONITORING PLAN	86
8.1	Instrum	ent Location	87
	8.1.1	Operations	89
	8.1.1.1	TSF North Cell	89
	8.1.1.2	TSF South Cell	90
	8.1.1.3	Portage RSF	91

	8.1.1.4	Vault RSF	91
	8.1.1.5	Goose Pit TSF	91
	8.1.1.6	Portage Pit TSF	91
	8.1.2	Closure	92
8.2	Instrume	ent Specifications	92
SECT	ION 9 • I	MONITORING AND CLOSURE	108
SECT	ION 10	• REFERENCES	113
ΔΡΡΕ	NDIX A:	2016 UPDATED TAILINGS DEPOSITION PLAN	116

LIST OF TABLES

Table 2.1: Estimated Average Monthly Climate Data – Meadowbank Site	18
Table 2.2: Summary of Reported Climate Change Rates Used in Northern Projects Engin	_
Table 3.1: Meadowbank Mined Tonnages for 2009	29
Table 3.2: Meadowbank Mined Tonnages for 2010	30
Table 3.3: Meadowbank Mined Tonnages for 2011	31
Table 3.4: Meadowbank Mined Tonnages for 2012	32
Table 3.5: Meadowbank Mined Tonnages for 2013	33
Table 3.6: Meadowbank Mined Tonnages for 2014	34
Table 3.7: Meadowbank Mined Tonnages for 2015	35
Table 3.8: Meadowbank Mined Tonnages for 2016	36
Table 3.9: Projected Meadowbank Mined Tonnages (2017 – 2018)	37
Table 3.10: Portage PAG Destinations & Tonnages (2017 – 2018)	38
Table 3.11: Portage NAG Destinations & Tonnages (2017 – 2018)	39
Table 3.12: NAG Stockpile for mine closure requirement, Destinations & Tonnages (201 2019)	
Table 3.13: Mine Development Sequence	42
Table 4.1: Acid Mine Drainage Control Strategies of the Arctic	50
Table 5.1: Estimate of Lake Bottom Sediment Volumes	53
Table 6.1: Quantities of Waste Rock by Destination	54
Table 6.2: Details of Rock Storage Facilities	57
Table 7.1: Relevant Data for Tailings Storage Facility	67

Table 7.2: 2017 Processed Tailings Volume and Associated Properties	68
Table 7.3: Measured parameters used for South Cell modelling	82
Table 7.4: South Cell tailings deposition modelling parameters	83
Table 7.5: Average Height Increase of Tailings Surface Elevation for Various Amounts of Ice Entrapment based on Golder, 2008b	84
Table 8.1: Thermistor Specifications	92
Table 8.2: Existing and Proposed Thermistor Installation Details	93

LIST OF FIGURES

Figure 2-1: Permafrost Map of Canada	20
Figure 2-2: General Site Plan	23
Figure 2-3: Thermistors and Section Location Plan (note that some of the instruments presented on this figure are not in use anymore)	24
Figure 2-4: Baseline Thermal Condition below Second Portage Arm	25
Figure 2-5: Inferred Locations of Faults	26
Figure 2-6: Baseline Permafrost and Groundwater Conditions	27
Figure 3-1: Current Status (EOY 2016) for Portage Pit, Vault Pit & Dumps	43
Figure 3-2: Current Status (EOY 2016) Capping Portage Rock Storage Facility with NAG	44
Figure 3-3: Development Sequence Year 1 (2017)	45
Figure 3-4: Development Sequence Year 2 (2018)	46
Figure 3-5: Development Sequence Year 3 (2019)	47
Figure 3-6: Conceptual Mining Sequence (Life of Mine)	48
Figure 6-1: Waste Rock Expansion Area	58
Figure 7.1: South Cell Internal Structure	63
Figure 7.2: Profile View of Portage Pit A, Pit E and Central Dump	65
Figure 7.3: Profile View of Portage Pit A, Pit E and Central Dump	66
Figure 7-4: Tailing Storage Facility Main Components	78
Figure 7-5: North Cell and South Cell Tailings Storage Facility Stage Storage Volume Curve	79
Figure 7-6: North Cell and South Cell Tailings Storage Facility Stage Storage Volume Curve	80
Figure 7-7: Tailings Storage as a Function of Ice Content	85

Figure 8-1: Planned and Installed Thermistor Location (red are installed, black are planned	88
Figure 9-1: Site Post Closure Concept	. 110
Figure 9-2: Portage Tailings and Rock Storage Closure Design Concept Cross Section	. 111
Figure 9-3: Vault Rock Storage Closure Design Concept Cross Section	. 112

November 2017

MEADOWBANK MINE LOCATION MAP

SECTION 1 • INTRODUCTION

During operations and according to the 2016 Life of Mine calculation, the mine will generate a total of approximately 211.8 Mt of mine waste rock & till and 29.9 Mt of tailings (placed in TSF with in situ density) from the following deposits:

- Portage
- Goose (mining ceased in early 2015); and
- Vault (which includes Phaser Pit and the BBPhaser Pit).

Tailings are stored within the Tailings Storage Facilities (TSF - North and South Cells). The TSF includes dikes/dams built; and to be built, and is located within the basin of the former north-west arm of Second Portage Lake (2PL) which has been dewatered to allow mining in the Portage Pit. The TSF was separated by the Stormwater Dike to form a North and South Cell. From 2010 until November 2014, and again in June – September 2015, tailings were deposited into the North Cell. The South Cell (former Portage Attenuation Pond) is now operating and receiving tailings. A series of Saddle Dams (1 and 2) were constructed around the North Cell TSF to ensure that the tailings are impounded onsite. From November 2014 to June 2015, and November 2015 - 2018 tailings will be deposited in the South Cell. South Cell containment is accomplished by the construction of the Central Dike which is now completed at elevation 143masl. This elevation was evaluated sufficient to store tailings produced following the latest revision of Meadowbank LOM. The addition of the tailings produced by the mining of the potential Whale Tail Pit leads AEM to review the final South Cell TSF final elevation to 150m and to plan the construction a 4 m upstream raise structure over the North Cell TSF to store the additional 8.3M tonne of tailings forecasted to be produced. The detail of this plan was presented in the Mine Waste Rock and Tailings Management Plan - Whale Tail Pit Addendum. This addendum was part of the document submitted with the Whale Tail Pit Project proposal.

Over the summer 2017, AEM assessed that the deposition of tailings inside Goose and Portage Pits was a feasible mitigation measure regarding the current situation observed with the Central Dike seepage. In 2016, following the recommendation of the Meadowbank Dike review Board (MDRB, 2016), AEM evaluated different alternatives for disposing tailings in Meadowbank Mine by performing a Multiple Account Analysis (SNC, 2016) with the support of SNC-Lavalin. In-Pit disposal was designated as the best deposition technic and prefeasibility engineering study was completed in September 2017. AEM is requesting the inclusion of this practice to the NWB through this license modification request as a mitigation measure to continue the operation of the Meadowbank mine under the safest conditions.

The in-pit disposal prefeasibility study was done assuming a full capacity scenario where Portage Pit A, Portage Pit E and Goose Pit were filled up to a maximum tailings elevation of 125.6 masl and covered by 8m thick water layer at closure. Through this mandate SNC-Lavalin issued the following technical notes:

- Field Investigation Scope of Work (SNC, 2017a)
- Hydrogelogical Field Investigation Factual Report (SNC, 2017b)
- Thermal Modeling Memorandum (SNC, 2017c)
- Hydrogeological Modelling Technical Note (SNC, 2017d)
- Consolidation Memorandum (SNC, 2017e)
- Pit Walls Stability Memorandum (SNC, 2017f)
- Groundwater Monitoring Program (SNC, 2017g)

This waste management plan is presenting a scenario where the pits are partially filled with tailings as the tailings produced by the completion of the actual Meadowbank Life of Mine (LOM) and the potential Whale Tail Pit LOM are not sufficient to fill the pits. However the different strategies developed through the prefeasibility study are meticulously integrated in this management plan.

At the present time, tailings are placed subaqueously as slurry in the South Cell and water from the pond is reclaimed by the mill. The tailings deposition strategy is to build beaches against the face of the Central Dike such that the water/drainage is directed towards the west end of the cell. Thermal modelling indicates that the tailings will freeze in the long term, and that the talik that currently exists below 2PL Arm will freeze before any seepage from the TSF reaches the groundwater below the permafrost. Thermistor monitoring results to date indicate that this is occurring in the North Cell, therefore the potential for groundwater contamination to occur as a result of seepage from the TSF is considered low. The hydrogeological impact of the addition of tailings inside Goose and Portage Pits was evaluated in 2017 by SNC-Lavalin through the hydrogeological modelling technical note (SNC, 2017d) and the seepage risk from the extended TSF is still considered low.

Tailings are potentially acid generating (PAG); therefore a minimum 2m thick cover of non-potentially acid generating (NAG) rock-fill will be placed over the tailings to physically isolate the tailings and to confine the active layer within relatively inert materials. A 2-m capping cover over the closed North Cell TSF has been initiated in 2015 and continued following a determined geometry. Cover trials have been initiated in the North Cell (in 2014) to determine the required cover thickness to physically isolate the tailings and to confine the active layer. Some capping over the North Cell was completed in 2015. Further capping was completed in the winters of 2016 and planned in 2017-2018. The control strategy to minimize water infiltration into the TSF and the migration of constituents out of the facility includes freeze control of the tailings through permafrost

encapsulation. The tailings stored in the Portage and Goose pits will remain unfrozen but completely saturated as a minimal 8m water cover is planned at closure. Acid generation risk will be mitigated with this long term storage technic.

The tailings in-pit disposal deposition strategy is similar than what is currently done in Meadowbank TSF. The main difference is related to the water management as the tailings will be placed subaqueously at all time. AEM is planning keeping a 20m water cover over the tailings beach during the operation phase. Different water transfers will be required during the operation phase to maintain this water cover. AEM is planning discharging tailings in Goose Pit from April to September 2018 and continue in-pit tailings deposition in Portage Pit A and E depending on the Whale Tail Pit project approval. The closure strategy differs in between the actual Meadowbank TSF and the future in-pit disposal TSF. Instead of promoting freeze back of the tailings, AEM is planning reflooding the pits and keeping a minimal 8m water cover over the tailings beach. This water cover will be sufficient to avoid resuspension of tailings by any erosion process and will guarantee that tailings will remain permanently saturated. Once water quality meets all closure criteria including CCME guidelines and site specific criteria, the Goose dike will then be breached.

Waste rock from the Portage and Goose (mining ceased in Goose Pit early 2015) open pits is stored in two areas. The first being an area to the north of 2PL Arm and to the west of the Vault Haul Road, designated as the Portage Rock Storage Facility (Portage RSF). The second storage location is within the mined out portions of Goose Pit and Portage Pit (Pits B, C, D, and E); which will ultimately be flooded. This deposition forms part of AEM's fisheries habitat compensation approved by the Fisheries and Oceans Canada (DFO). Waste rock from the Vault, Phaser and BBPhaser Pits will be stored in an area to the west of the pit, designated as the Vault Rock Storage Facility (Vault RSF). There is also a possibility of storing waste from the Phaser and BBPhaser Pits inside Phaser Pit as an in pit dumping location (see Figure 2-2).

The Portage RSF has been progressively capped around the perimeter with a 4m layer of NAG rock to constrain the active layer within relatively inert materials. So far, 80% of the Portage RSF has been capped. The final capping (top portion) will be completed upon mine closure to the same specification. All capping will be graded to promote runoff from the facility. The PAG waste rock is expected to freeze resulting in low rates of acid rock drainage (ARD) generation in the long term. To date, thermistor readings taken from within the Portage RSF indicate freezeback is occurring as predicted. Additional monitoring instruments were installed in 2015 within the RSF to verify the performance of capping and assess the thermal behavior of the RSF.

The Vault RSF will be graded at closure to encourage runoff and to provide a final shape consistent with the surrounding topography. The water seepage from the Vault RSF area is expected to be of

suitable quality to allow discharge to the environment without treatment (Golder, 2007c), and capping of this facility is therefore not proposed. It has been determined to date through testing in accordance with the Meadowbank Acid Rock Drainage (ARD) Plan, that approximately 87% of the waste rock generated at Vault is NAG material. PAG rock is placed in the middle of the Vault RSF to ensure that it is capped with NAG material. Freezeback is expected to occur in the long term similar to the Portage RSF. An adaptive management plan will include monitoring of water quality during operations and closure to confirm modelling predictions, and to allow adjustments to the closure plan as required. A plan for the management of contact and diverted water is presented in this document.

Generally contact water from the Portage RSF will be directed toward the North and South Cell TSF, and non-contact water will be diverted by a ditching system to prevent contact with mine related activities. Contact water from the Vault RSF is directed to the Vault Pit and subsequently pumped to the Vault Attenuation Pond.

SECTION 2 • BACKGROUND INFORMATION

2.1 MINING OPERATION DESCRIPTION

The Meadowbank Gold Mine consists of several gold-bearing deposits within reasonably close proximity to one another. The three main deposits are: Vault (including Phaser), Portage (South, Center and North Portage deposits), and Goose.

The South Portage deposit is located on a peninsula, and extends northward under Second Portage Lake (2PL) and southward under Third Portage Lake (3PL). The North Portage deposit is located on the northern shore of 2PL. The South, Center and North Portage deposits will be mined from a single pit, termed the Portage Pit, which will extend approximately 2 km in a north-south direction. The Goose deposit lies approximately 1 km to the south of the Portage deposit, and beneath 3PL. Mining was completed in the Goose Pit in early 2015. The Vault deposit is located adjacent to Vault Lake, approximately 6 km north of the Portage deposits. The Phaser and (potential) BBPhaser Pits are located within the footprint of Phaser Lake. A series of dewatering dikes (East, West Channel, Bay-Goose, South Camp and Vault) were required to isolate the mining activities from the lakes. Additional dikes (Central Dike, Stormwater Dike and Saddle Dams) were required to manage tailings within the dewatered 2PL Arm. East Dike, West Channel, Bay-Goose, South Camp and Stormwater Dikes, Saddle Dam 1 and Saddle Dam 2 were all constructed between 2008 and 2013. Central Dike, Saddle 3, 4 and 5 were constructed between 2012 and 2016. The dikes and dams were and will be constructed primarily using materials produced on site.

Mining is a truck-and-shovel open pit operation. The current mining plan indicates that approximately 5.0 Mt of ore will be mined over a nominal remaining mine life of approximately 1.75 years, ending in September 2018.

2.1.1 Site Conditions

The site layout is illustrated in Figure 2-2.

2.1.2 Climate

The Meadowbank region is located within a low Arctic Eco climate described as one of the coldest and driest regions of Canada. Arctic winter conditions occur from October through May, with temperatures ranging from +5°C to -40°C. Summer temperatures range from -5°C to +25°C with isolated rainfall increasing through September (Table 2.1).

Table 2.1: Estimated Average Monthly Climate Data – Meadowbank Site

Month	Max. Air Temp. (°C)	Min. Air Temp. (°C)	Rainfall (mm)	Snowfall (mm)	Total Precip. (mm)	Lake Evap. (mm)	Min. Relative Humidity (%)	Max. Relative Humidity (%)	Wind Speed (km/h)	Soil Temp. (°C)
January	-29.1	-35.5	0	11.2	11.2	0	67.1	75.9	16.3	-25.5
February	-27.8	-35.2	0	10.5	10.5	0	66.6	76.5	16.0	-28.1
March	-22.3	-30.5	0.1	14.6	14.6	0	68.4	81.4	16.9	-24.9
April	-13.3	-22.5	2.3	16.7	19.0	0	71.3	90.1	17.3	-18.1
May	-3.1	-9.9	9.8	11.3	21.1	0	75.7	97.2	18.9	-8.0
June	7.6	0.0	14.5	3.9	18.4	8.8	62.6	97.2	16.4	2.0
July	16.8	7.2	36.7	0.0	36.7	99.2	47.5	94.3	15.1	10.5
August	13.3	6.4	45.5	0.9	46.4	100.4	59.2	97.7	18.4	9.3
September	5.7	0.9	30.1	8.8	38.9	39.5	70.8	98.6	19.3	3.6
October	-5.0	-10.6	3.5	30.3	33.8	0.1	83.1	97.4	21.4	-2.8
November	-14.8	-22.0	0	23.6	23.6	0	80.6	91.1	17.9	-11.7
December	-23.3	-29.9	0	15.0	15.0	0	73.3	82.7	17.7	-19.9

Note: Data from Baker Lake A station is available from 1946 to 2011. During this period, the data quality is good, with the exception of years 1946 to 1949, and 1993 which were removed from the compilation.

The long-term mean annual air temperature for Meadowbank is estimated to be approximately 11.1°C. Air temperatures at the Meadowbank area are, on average, about 0.6°C cooler than Baker Lake air temperatures, and extreme temperatures tend to be larger in magnitude. This climatic difference is thought to be the effect of a moderating maritime influence at Baker Lake.

The prevailing winds at Meadowbank for both the winter and summer months are from the northwest. A maximum daily wind gust of 93 km/h was recorded on September 1, 2009. Light to moderate snowfall is accompanied by variable winds up to 70 km/h, creating large, deep drifts and occasional whiteout conditions. Skies tend to be more overcast in winter than in summer.

Table 2.1 presents monthly rainfall, snowfall and total precipitation values for the mine site. August is the wettest month, with a total precipitation of 43.4 mm, and February is the driest month, with a total precipitation of 6.1 mm. During an average year the total precipitation is 249.6 mm, split between 147.5 mm of rainfall and 102.1 mm of snowfall precipitation.

2.1.3 Faults

As indicated on Figure 2-5, two main faults are inferred in the Portage deposit area. The Second Portage fault trends to the northwest and is expected underneath the Central Dike and TSF, roughly parallel to the orientation of the Second Portage Lake. Analysis conducted during the design of the Central Dike showed little seepage potential. Seepage from the Central Dike has been observed since 2014. For additional information, refer to the 2016 Water Management Plan, in the appendix of the 2016 Annual Report.

2.1.4 Permafrost

The Meadowbank Gold Mine is located in the area of continuous permafrost, as shown on Figure 2-2: General Site Plan

. Lake ice thicknesses of between 1.5 m and 2.5 m have been encountered during geotechnical investigations in mid to late spring as well as a result of sampling campaigns undertaken by the Environment Department. Taliks (areas of permanently unfrozen ground) are expected where water depth is greater than about 2 to 2.5 m. Based on thermal studies and measurements of ground temperatures (Golder, 2003), the depth of permafrost at site is estimated to be in the order of 450 to 550 m, depending on proximity to lakes. The depth of the active layer ranges based on depth of overburden, vegetation and organics, proximity to lakes, and aspect is about 1 to 1.5 m.

Based on ground conductivity surveys and compilation of regional data, the ground ice content is expected to be low. Locally on land, ice lenses and ice wedges are present, as indicated by ground

conductivity, and by permafrost features such as frost mounds. These areas of local ground ice are generally associated with low-lying areas of poor drainage.

A thermal monitoring plan, which meets the requirement of the Water Licence, is presented in Section 8 of this document.

2.1.4.1 Second Portage Lake Talik

Thermistors have been installed in numerous boreholes in previous years (see Figure 2.3 for locations); the inferred thermal regime beneath the 2PL Arm, based on measurements from these instruments, is shown in Figure 2-4. A talik exists below 2PL Arm, and is expected to extend to the base of the permafrost (Figure 2-6).

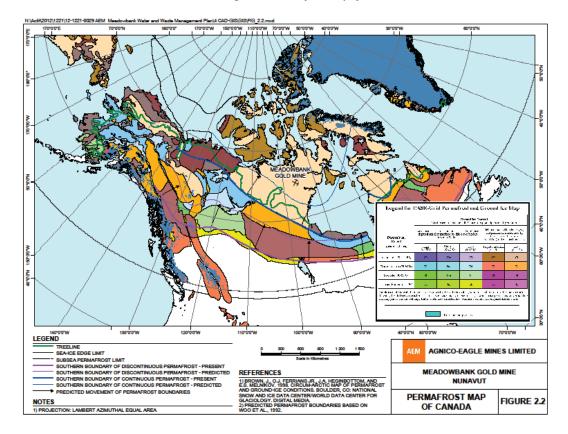


Figure 2-1: Permafrost Map of Canada

2.1.4.2 Vault Lake Talik

Due to the size of Vault Lake, the underlying talik is expected to be closed or confined within the permafrost. This means it does not extend to the deep groundwater flow regime, because the size and depth of the lake is not sufficient for an open talik to develop. Much of the lake is less than 2 m in depth; consequently it freezes to the bottom during winter.

2.1.4.3 Impact of Global Warming on Site Conditions

A report titled "Implications of Global Warming and the Precautionary Principle in Northern Mine Design and Closure" (BGC, 2003) was prepared for Indian and Northern Affairs Canada, and provides guidance relevant to mine design in Nunavut.

This report suggests that globally the average temperature may increase by about 2°C by 2100 due to global warming. However, the report also states that the increase may be double the global average for sites located at 50°N, and may be 3.5 times greater for sites located at 80°N. In a more recent study, the Intergovernmental Panel on Climate Change (IPCC, 2007) projected the maximum average air temperature to increase by 6.4°C by 2100 for a site located at 65°N latitude.

Table 2.2 presents a summary of reported climate change predictions used on a number of northern projects that have been reported in the engineering and scientific literature.

Table 2.2: Summary of Reported Climate Change Rates Used in Northern Projects Engineering Studies

Reference	Increase in MAAT by Year 2100 (°C)	Notes
Hayley (2004)	4.7	Used in design studies for the Inuvik Regional Health Center. Reported as increase of 0.47°C per decade.
Hayley and Cathro (1996)	5.0	Used for Raglan Dam analyses.
Diavik	3.2	Used for the Processed Kimberlite Containment Facility Design
Burn (2003)	6.0	For use in the Western Arctic for pipeline design projects. Reported as increase of 1.75 °C over a 29 year period

Based on A report titled "Implications of Global Warming and the Precautionary Principle in Northern Mine Design and Closure" (BGC, 2003) was prepared for Indian and Northern Affairs Canada, and provides guidance relevant to mine design in Nunavut.

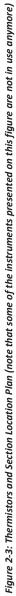
This report suggests that globally the average temperature may increase by about 2°C by 2100 due to global warming. However, the report also states that the increase may be double the global average for sites located at 50°N, and may be 3.5 times greater for sites located at 80°N. In a more recent study, the Intergovernmental Panel on Climate Change (IPCC, 2007) projected the maximum average air temperature to increase by 6.4°C by 2100 for a site located at 65°N latitude.

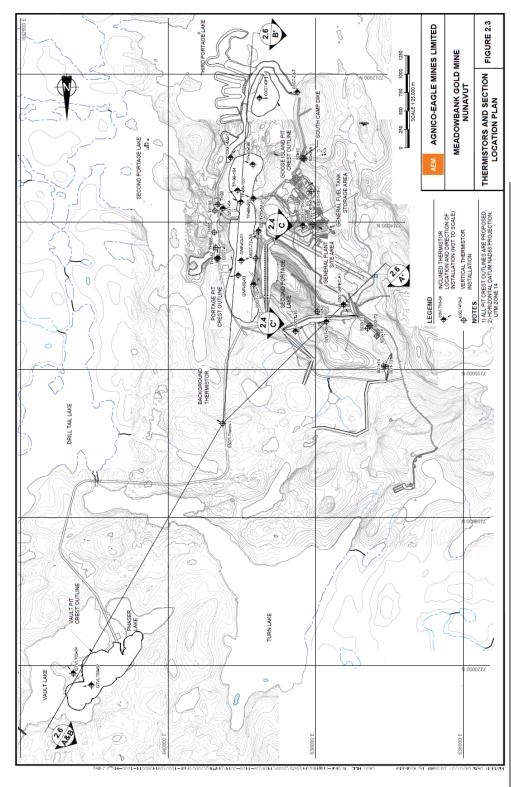
Table 2.2 presents a summary of reported climate change predictions used on a number of northern projects that have been reported in the engineering and scientific literature.

Table 2.2, a climate warming trend of 6.4°C over 100 years is considered to be a conservative upper estimate of the climate change rate for the mine area and is consistent with predicted and recommended climate change trends for projects in the north.

By the middle of the 21st century, the effect of temperature change is predicted to reduce near-surface permafrost by 12% to 15% once equilibrium conditions become established under the new temperatures. The predicted increase in active layer thickness of 15% to 30% will reach equilibrium relatively faster (NRC, 2004).

Studies indicate that the boundaries of discontinuous and continuous permafrost are expected to move northward due to global warming (Woo et al., 1992) (Figure 2-2: General Site Plan


. Predictions based on a warming of 4°C to 5°C over the next 50 years (NRC, 2004) (approximately double the rate predicted above) suggests that the Meadowbank site would remain within the zone of continuous permafrost, but the active layer thickness would be expected to increase, and the total thickness of permafrost may slowly reduce in time.



PHASER PIT VAULT ROAD ACTIVE PIT COMPLETED PIT ROCK STORAGE FACILITY (PAG) ROCK STORAGE FACILITY (NAG) AREA IN RECLAIMATION DIKE / SADDLE DAM ACTIVE AREA OF CAPPED TAILINGS AGNICO EAGLE

Figure 2-2: General Site Plan

November 2017

s Ν Second Portage Arm 150 100 100 Frozen 50-50 0 -50 -50 ELEVATION (m ASL) -100 -100 Unfrozen (Talik) -150 -150 -200 -200 -250 -250 -300 -300 Frozen -350 -350 -450 -400 100 250 300 -350 -300 -250 -200 -150 -100 -50 50 150 200 350 DISTANCE (m) AGNICO-EAGLE MINES LIMITED CROSS SECTION C-C' 2.3 MEADOWBANK GOLD MINE SCALE IN METRES NUNAVUT LEGEND BASELINE THERMAL — ? — Inferred Permafrost Boundary **CONDITION BELOW** FIGURE 2.4 SECOND PORTAGE ARM

Figure 2-4: Baseline Thermal Condition below Second Portage Arm

TINILIE

TOTAL SECTION

TOTAL SECTIO

Figure 2-5: Inferred Locations of Faults

Permafrost

Permaf

Figure 2-6: Baseline Permafrost and Groundwater Conditions

SECTION 3 • MINE DEVELOPMENT PLAN

3.1 MINE WASTE PRODUCTION SEQUENCE

The current mine plan (2017 to 2018) indicates that an approximate further 6.3 Mt of ore will be processed over a nominal remaining mine life of 1.75 years, including ore from pits and stockpiles. During this time, approximately 18.6 Mt of mine waste rock will be produced. At the end of the mine life, an approximate total of 29.9 Mt of tailings will be placed in the TSF, based on in situ tailings density.

The 2009, 2010, 2011, 2012, 2013, 2014, 2015, and 2016 material balances are presented in Table 3.1, Table 3.2, Table 3.3, Table 3.4, Table 3.5, Table 3.6, Table 3.7, and Table 3.8, respectively, with predicted remaining material balance presented in Table 3.9. This balance indicates the distribution of the following categories of materials by rock type:

- Mine rock for construction;
- Mine rock for dike construction;
- Mine rock for capping; and
- Mine rock to RSFs and Portage Pit fill.

Table 3.10, Table 3.11, and Table 3.12 show the material destination distribution for Portage and Goose Pits, as well as material taken from NAG stockpiles.

NAG classified waste rock produced by pre-stripping and generic mining activities will be used for construction of the remaining mine infrastructure and dikes at the site, as has been the practice to date. Based on current material balance calculations, sufficient quantities of suitable rock fill and till borrow materials will be available for capping activities and closure/reclamation projects. The general mine development sequence is described in Section 3.2.

Table 3.1: Meadowbank Mined Tonnages for 2009

	No	orth Portage		S	outh Portage		Total
		(Tonnes)			(Tonnes)		(Tonnes)
	Rock	Ore	Waste	Rock	Ore	Waste	-
January	160,294	-	-	-	-	-	-
February	103,323	-	-	-	-	-	-
March	256,972	-	280	-	-	-	-
April	388,725	12,733	1,306	-	-	-	-
May	516,829	-	-	-	-	-	-
June	531,933	729	-	-	-	-	-
July	584,364	5,910	6,820	-	-	-	-
August	741,518	-	-	-	-	-	-
September	528,191	9,618	4,445	-	-	-	-
October	640,295	42,452	250	19,778	-	2,548	-
November	378,005	33,247	3,167	601,807	94,848	4,061	-
December	322,641	6,307	-	341,547	339,991		-
TOTAL	**5,153,090	***110,996	*16,268	**963,132	***434,839	*6,609	6,684,934
*Total Waste F	Rock Transferred to	Waste Dump					22,877
**Total Rock U	Ised for Constructi	on Purposes (road	d, dikes, etc.)				6,116,222
***Total Ore							545,834

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

Table 3.2: Meadowbank Mined Tonnages for 2010

					(tonnes)					Ore
					Waste Rock	ck Ck				Will Mill
	Ore	Dikes	Roads	Crushers	Waste Dump ¹	Landfill	Stockpiles	Other	Total	(tonnes)
January	97,446	223,842	190,281	156,162	173,736	1		1	744,021	
February	43,979	281,368	46,654	123,727	359,649	-	32,298	1,295	844,991	47,745
March	75,333	503,299	107,635	1	197,125	23,540	-	1	831,599	163,399
April	116,940	258,416	63,100	171,451	428,814	-	1	6,196	776,726	176,857
Мау	136,444	258,481	10,019	148,576	672,724	-		50,073	1,139,873	177,610
June	152,606	534,039	24,748	126,155	401,748	1	-	12,632	1,099,322	215,389
July	236,768	471,106	176,169	127,379	237,095	1	-	1	1,011,749	193,422
August	225,467	493,626	506,385	168,085	115,930	-	-	1	1,284,026	215,559
September	272,675	503,624	606,044	161,673	214,866	5,621	-	1	1,491,828	227,502
October	232,888	235,924	595,322	56,337	461,627	53,522	1	1	1,402,832	198,394
November	247,401	3,813	104,087	8,991	963,805	-	-	1	1,080,596	218,260
December	323,641	1	299,167	8,991	1,118,767	1	-	1	1,426,925	214,400
TOTAL	2,161,588	3,767,538	2,729,611	1,257,527	5,345,886	82,683	32,298	70,196	13,285,739	2,048,537

1. Waste Rock disposed at the waste dump includes overburden stripped for exploitation of Portage Pit

November 2017

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

Table 3.3: Meadowbank Mined Tonnages for 2011

					Portage Pit					Ore
					(tounes)					Processed in
	Ore				Waste Rock	~				Mill (tonnes)
		Dikes	Roads	Crushers	Waste Dump ¹	Landfill	Stockpiles	Other	Total	
January	231,025	1	113,259	32,096	1,109,543	1	1	2,544	1,262,442	193,748
February	133,165	-	25,308	51,280	766,807	-	1	404	843,798	213,313
March	86,161	-	21,288	33,271	662,028	-	1	1,044	717,631	221,615
	235,303	-	77,596	85,064	1,497,859	-	1	11,504	1,672,024	223,041
	207,399	1	64,171	137,980	1,448,630	-	1	49,069	1,699,851	186,811
	326,108	8,744	291,067	176,248	1,592,345	1	1	26,615	2,095,019	257,401
	340,966	54,927	99,513	74,750	1,869,449	-	1	19,140	2,117,779	284,295
August	326,808	122,696	4,674	117,745	1,484,613	-	1	2,384	1,732,111	275,766
September	412,783	333,829	27,199	148,545	1,724,305	1	1	22,884	2,256,762	306,020
October	389,418	22,085	136,862	53,614	1,791,385	1	1	162,725	2,166,671	306,756
November	321,180	12,725	29,518	83,943	1,972,577	-	1	110,214	2,208,976	214,868
December	334,768	164,399	55,516	52,137	1,913,103	1	-	53,454	2,238,609	294,088
	3,345,084	719,404	945,971	1,051,671	17,832,645	1	1	461,981	21,011,673	2,977,722

1. Waste Rock disposed at the waste dump includes overburden stripped for exploitation of Portage Pit

November 2017

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

Table 3.4: Meadowbank Mined Tonnages for 2012

1. Waste Rock disposed at the waste dump includes overburden stripped for exploitation of Portage Pit & Goose Pit

November 2017

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

Table 3.5: Meadowbank Mined Tonnages for 2013

				Portage F	Portage Pit, Goose Pit & Vault Pit (tonnes)	ault Pit				Ore Processed in
	Ç				Waste Rock	ck				Mill (+onge)
)	Dikes	Roads	Crushers	Waste Dump ¹	Landfill	Stockpiles	Other	Total	(5)
January	184,536	-	14,052	531	2,486,541	1	1	222	2,501,346	320,729
February	196,802	-	61,036	8,913	2,495,018	-	1	-	2,564,967	329,709
March	311,380	1,520	58,325	393	2,691,265	-	1	294	2,751,797	368,323
April	271,823	317,845	79,530	77,730	2,071,408	-	1	82,810	2,629,323	309,458
Мау	336,532	269,930	51,645	1	2,299,765	-	1	29,650	2,650,990	363,625
June	249,724	397,170	252,710	153,310	1,443,285	-	1	494,975	2,741,450	355,498
July	330,024	54,525	16,010	111,360	2,234,897	-	1	340,655	2,757,447	368,058
August	316,136	1	92,460	145,385	2,824,875	-	1	125	3,062,845	321,294
September	307,532	1	61,465	5,940	2,774,724	-	1	98,255	2,940,384	357,595
October	353,697	1	33,470	1	2,504,101	-	1	188,000	2,725,571	377,118
November	282,046	1	35,365	1	2,637,689	-	1	-	2,673,054	300,779
December	299,298	-	18,490	-	2,073,386	-		125	2,092,001	370,655
TOTAL	3,439,530	1,040,990	774,558	503,562	28,536,954	0	0	1,235,111	32,091,175	4,142,841

1. Waste Rock disposed at the waste dump includes overburden stripped for exploitation of Portage Pit & Goose Pit

November 2017

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

Table 3.6: Meadowbank Mined Tonnages for 2014

				Portage F	Portage Pit, Goose Pit & Vault Pit (tonnes)	ult Pit				Ore Processed in
<u> </u>	Ore				Waste Rock	ck				Mill (tonnes)
		Dikes	Roads	Crushers	Waste Dump ¹	Landfill	Stockpiles	Other	Total	
January	223,588	-			1,731,954	1	1	28,475	2,187,943	364,275
February	291,542	-	-	1	1,032,536	-	-	5,554	1,876,728	314,877
March	400,472	-	246	1	1,768,995	-	-	7,891	2,681,239	303,462
April	314,088	49,640	-	980'86	1,792,686	-	-	21,683	2,598,780	355,557
Мау	239,028	40,939	-	40,939	1,435,491	-		332,704	2,673,027	339,395
June	337,659	123,348	-	123,348	1,852,273			348,606	2,573,438	356,065
	347,514	470,324	-	470,365	1,052,263		-	810,414	2,650,362	361,983
August	333,746	284,388	1	284,389	1,117,766	-	-	728,531	2,602,482	341,168
September	307,532	-	1	1	1,473,602	-	-	397,963	2,431,958	354,171
October	360,860	451	1	1	1,534,790	-	-	33,932	2,214,199	308,014
November	324,971	-	1	1	1,565,615	1	-	52,065	2,265,457	349,780
December	350,972	-	-	1	1,441,827		1	5,447	1,960,172	369,259
TOTAL	3,987,859	696,093	246	98'086	17,799,797	0	0	2,778,266	28,715,785	4,118,006

1. Waste Rock disposed at the waste dump includes overburden stripped for exploitation of Portage Pit, Goose Pit, & Vault Pit

November 2017

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

Table 3.7: Meadowbank Mined Tonnages for 2015

				Portage	Portage Pit, Goose Pit & Vault Pit (tonnes)	ault Pit				Ore Processed
	Ore				Waste Rock	ock				in Mill (tonnes)
		Dikes	Roads	Crushers	Waste Dump ¹	Landfill	Stockpiles	Other	Total	(5)
January	386,670	240	105,275	240	1,210,880	1	382,115	328,000	2,413,420	363,485
February	319,494	-	3,836	2,894	1,340,755	-	376,732	220,739	2,264,450	304,126
March	413,718	-	164,531	15,439	1,535,819	-	79,336	246,948	2,455,791	322,865
April	326,603	1	45,986	19,698	1,701,286	-	38,059	941,986	3,073,618	301,220
Мау	421,329	7,743	87,127	1,155	1,550,668	-	417,637	914,675	3,400,334	358,783
June	300,844	15,732	19,602	19,438	1,654,038	-	476,220	522,338	3,008,212	359,079
July	383,427	282,843	96,679	68,334	1,447,386	-	549,248	308,208	3,136,125	353,824
August	293,046	234,032	24,069	45,617	2,149,965	-	460,273	129,812	3,336,814	361,766
September	298,214	102,009	54,488	25,549	2,675,549	-	230,741	136,669	3,523,219	280,235
October	361,340	31,103	137,850	1	2,839,411	-	156,915	-	3,526,619	354,968
November	350,347	783	11,090	1	2,438,493	-	184,551	43,385	3,028,649	358,507
December	289,204	-	84,473	7,331	2,651,063	1	1	-	3,032,071	313,994
TOTAL	4,144,236	674,485	835,006	205,695	23,195,313	1	3,351,827	3,792,760	36,199,322	4,032,852

1. Waste Rock disposed at the waste dump includes overburden stripped for exploitation of Portage Pit, Goose Pit, & Vault Pit

November 2017

MEADOWBANK GOLD MINE

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

Table 3.8: Meadowbank Mined Tonnages for 2016

				Port	Portage Pit & Vault Pit (tonnes)					Ore Processed
	Š				Waste Rock	ck				tonnes)
	e D	Dikes	Roads	Crushers	Waste Dump ¹	Landfill	Stockpiles	Other	Total	
January	292,365	17,453	155,335	45,232	2,353,611	0	43,056	21	2,614,708	346,009
February	234,713	108,151	476,263	23,721	1,814,074	0	50,523	27	2,472,760	300,954
March	244,497	51,826	67,814	116,657	2,345,902	0	18,217	112	2,600,527	298,552
April	260,323	31,133	98,223	43,404	2,491,605	0	45,545	130	2,710,040	330,863
Мау	327,610	128,385	21,503	3,734	2,522,759	0	57,936	36,009	2,770,327	351,932
June	311,403	68,802	94,678	19,090	2,640,740	0	86,615	122	2,910,047	310,702
July	398,530	49,347	520	38,145	2,571,022	0	107,503	28	2,766,566	356,517
August	410,800	14,305	273,580	170,705	2,120,975	0	103,675	129	2,683,369	325,639
September	377,414	79,939	23,053	169,733	2,099,627	0	95,243	27	2,467,621	279,249
October	364,792		117,665	335	1,994,464	0	6,456	17	2,118,937	339,157
November	438,954	6,741	8,294	16,164	1,834,572	0	17,275	1,036	1,884,082	326,841
December	370,247	17,092	346	17,786	1,544,266	0	23,590	165	1,603,246	348,687
TOTAL	4,031,648	573,175	1,337,274	664,707	26,333,617	0	655,634	37,823	29,602,230	3,915,102

1. Waste Rock disposed at the waste dump includes overburden stripped for exploitation of Portage Pit & Vault Pit

November 2017

36

Table 3.9: Projected Meadowbank Mined Tonnages (2017 – 2018)

		2017	2018	
	Total Waste Rock (t)	2,935,523	169,392	3,104,915
Portage Pit	NAG (~ %)	24%	27%	25%
	PAG (~ %)	76%	73%	75%
	Till (t)	0	0	0
	Ore (t)	934,257	98,622	1,032,879
Vault Pit	Total Waste Rock (t)	11,796,948	1,464,113	13,261,061
	NAG (~ %)	100%	100%	100%
	PAG (~ %)	<1%	<1%	<1%
	Till (t)	0	0	0
	Ore (t)	2,725,495	983,366	3,708,861
	Total Waste Rock (t)	1,340,389	941,121	2,281,510
Dhasan Dit	NAG (~ %)	100%	100%	100%
Phaser Pit	PAG (~ %)	<1%	<1%	<1%
	Till (t)	621,950	0	621,950
	Ore (t)	105,039	167,817	272,855

Note: Difference between pit mill feed and total mill feed is due to stockpiled material to be processed.

Table 3.10: Portage PAG Destinations & Tonnages (2017 – 2018)

	2017	2018	
Portage Rock Storage	1,448,566	121,973	1,570,539
Facility (PAG Dump)	54%	61%	55%
Portage Pit Fill	866,578	0	866,578
	33%	0%	30%
Central Dike	0	0	0
	0%	0%	0%
Stockpile Marginal Material	343,626	78,045	421,671
	13%	39%	15%
All PAG Destinations	2,658,770	200,018	2,858,788
All PAG Destinations	100%	100%	100%

Note: PAG material from Vault is not shown as all said material will be sent to the Vault RSF. To prevent acid mine drainage potential, the relatively small expected volume of PAG material from Vault and Phaser Pits will be capped with NAG waste rock as dumping proceeds. However, Vault marginal and sub-marginal materials have been included in the "Stockpile Marginal Material" category.

Table 3.11: Portage NAG Destinations & Tonnages (2017 – 2018)

2017	2018	
0	0	0
0%	0%	0%
0	0	0
0%	0%	0%
0	0	0
0%	0%	0%
0	0	0
0%	0%	0%
0	0	0
0%	0%	0%
244,286	47,419	291,705
39%	100%	44%
376,093	0	376,093
61%	0%	56%
620,379	47,419	667,798
100%	100%	100%
	0 0% 0 0% 0 0% 0 0% 0 0% 244,286 39% 376,093 61% 620,379	0 0 0% 0% 0 0 0% 0% 0 0 0% 0% 0 0 0 0 0 0 0 0 0 0% 244,286 47,419 39% 100% 376,093 0 61% 0% 620,379 47,419

Note: The NAG rehandling stockpiles: the Goose NAG dump, the Central dump NAG stockpiles, and the Portage NAG stockpile will also be used for NAG rehandling at closure. NAG material from Vault (and Phaser) is not shown as all said material will be sent to the Vault RSF.

Table 3.12: NAG Stockpile for mine closure requirement, Destinations & Tonnages (2017 – 2019)

	2017	2018	2019	
Capping Portage Rock Storage	0	1,157,318	0	1,157,318
Facility (PAG Dump) with NAG	0%	12%	0%	7%
Councing TCF (No who Coll)	1,253,814	3,893,819	2,973,625	8,121,258
Capping TSF (North Cell)	67%	39%	56%	47%
Conning TSE (South Coll)	0	2,880,737	2,364,450	5,245,187
Capping TSF (South Cell)	0%	29%	44%	30%
Central Dike	0	0	0	0
Central Dike	0%	0%	0%	0%
Saddle Dams	0	0	0	0
	0%	0%	0%	0%
Primary Crusher NAG capping	0	465,234	0	465,234
Primary Crusher NAG capping	0%	5%	0%	3%
Goose Rock Garden/Finger Dikes	0	256,945	0	256,945
(fish habitat compensation)	0%	3%	0%	1%
Starmustar Dika Canning	0	350,064	0	350,064
Stormwater Dike Capping	0%	3%	0%	2%
Canning Marginal Duma	0	642,600	0	642,600
Capping Marginal Dump	0%	6%	0%	4%
NAC Stockpilos	620,379	376,093	0	996,472
NAG Stockpiles	33%	4%	0%	6%
All Dawtons NAC to be Starting to	1,874,193	10,022,810	5,338,075	17,235,078
All Portage NAG to be Stockpiled	100%	100%	100%	100%

3.2 MINE DEVELOPMENT SEQUENCE (2017 – 2018)

The general sequence of mine development over the operating life is listed in Table 3.13 and illustrated in Figure 3-1, Figure 3-2,

Figure 3-3, Figure 3-4, and Figure 3-5. A conceptual sequence of pit development over the life of mine is illustrated in Figure 3-6.

Table 3.13: Mine Development Sequence

Fig. No.	Year	ltems
Figure 3-3 , Figure 3-4 ,Figure 3-5	2017-2019	 Continue TSF deposition at the South Cell until mill closure towards end 2018. South Cell Reclaim Pond pumped to Process Plant for use as make-up water during operations. Advance and complete mining of North and South Portage, and Vault Pits. Anticipated mining of Phaser and (potential) BBPhaser Pits in 2017, provided that permitting is approved. Vault Pit waters directed to Vault Attenuation Pond during operations. Anticipated completion of phase 1 and phase 2 of North Cell TSF capping during 2017-2020. Initiate final closure plans including capping of crusher pad and reclamation of temporary NAG stockpiles. Goose inflows, freshet, possible Bay-Goose dike seepage in flow used for natural Goose reflooding. Commence flooding of Portage and Vault Pits in 2018. Runoff from Vault RSF is directed to Vault Attenuation Pond. Monitor water quality within Vault Attenuation Pond, decanting excess to Wally Lake through Vault WTP (if required). To date the WTP has not been required as Vault Attenuation Pond meets MMER and Water License discharge criteria. Runoff from Portage Rock Storage Facility and Landfill directed to South Cell Reclaim Pond. Seepage collected at ST-16 (PRSF) is pumped to North Cell TSF, transfer to South Cell. Plant site and airstrip runoff to be directed to Stormwater Management Pond before discharge of excess to TSF. Reclaim Pond water may be treated, if necessary (2018 only), and will be transferred to Portage Pit to assist with re-flooding late in 2018 (see Water Management Plan). Monitor water quality within flooded pits, treating in-situ, if required. Continue construction of finger dikes for fish habitat (preliminary placement of waste rock on ice at specified locations in Third Portage Lake).
Figure 9-1	Closure	 Completion of TSF capping. Completion of capping of Portage RSF. Dismantling of buildings and Mill. Construction of fish habitat structures (Finger Dikes/Goose Rock Garden/re-grading of pit fill surface). Environmental and water quality monitoring. Breach dewatering dikes once pit lake water quality meets CCME criteria for the Protection of Aquatic Life or site specific criteria – anticipated 2029.

PHASER PIT VAULT ROAD RTAGE RSF NAG ACTIVE PIT TH CEKE TAILINGS COMPLETED PIT ROCK STORAGE FACILITY (PAG) ROCK STORAGE FACILITY (NAG) AREA IN RECLAIMATION DIKE / SADDLE DAM ACTIVE AREA OF CAPPED TAILINGS AGNICO EAGLE

Figure 3-1: Current Status (EOY 2016) for Portage Pit, Vault Pit & Dumps

Current Elevation: 5230

MARCINGES

MARCINGE

Figure 3-2: Current Status (EOY 2016) Capping Portage Rock Storage Facility with NAG

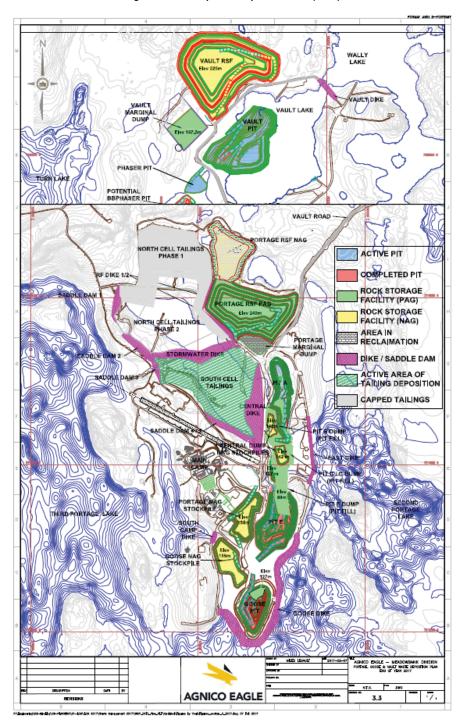


Figure 3-3: Development Sequence Year 1 (2017)

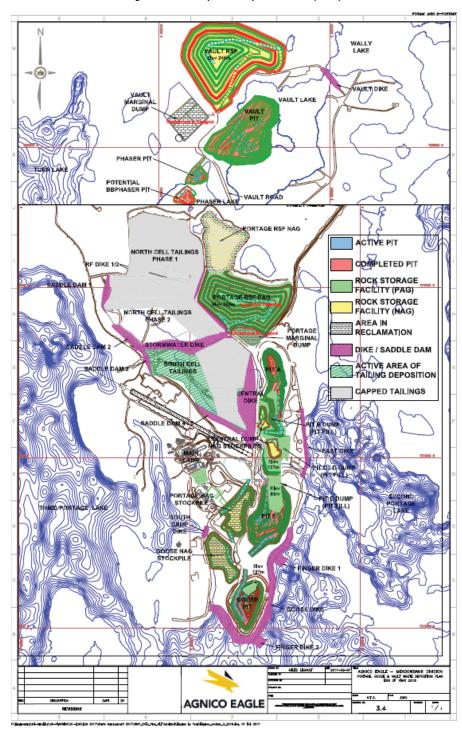


Figure 3-4: Development Sequence Year 2 (2018)

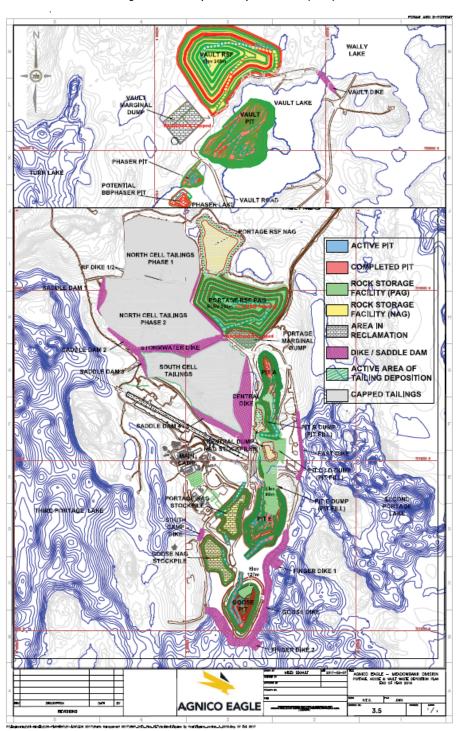
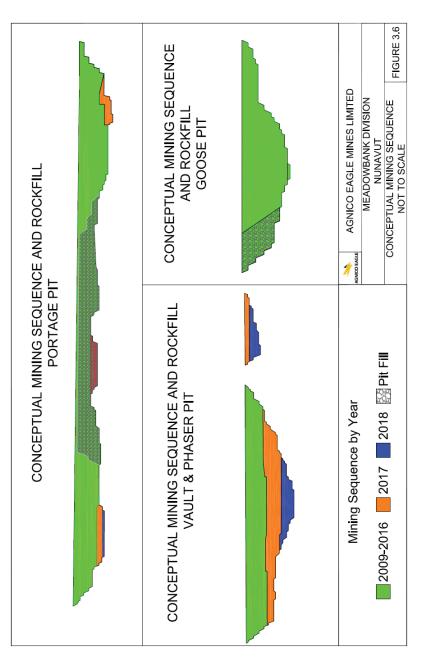



Figure 3-5: Development Sequence Year 3 (2019)

Figure 3-6: Conceptual Mining Sequence (Life of Mine)

November 2017

48

SECTION 4 • CONTROL STRATEGIES FOR ACID ROCK DRAINAGE IN COLD REGIONS

The generation of metal leachate in acidic drainage is a concern for mining projects. In evaluating the potential control strategies for the disposal of the mine waste at the Meadowbank Gold Mine, consideration was given to control strategies that are effective in cold regions. A discussion of the alternative control strategies considered for the Meadowbank Gold Mine is summarized below.

Common control strategies for the prevention or reduction of acid mine drainage in cold regions are:

- 1. Control of acid generating reactions;
- 2. Control of migration of contaminants; and
- 3. Collection and treatment.

In assessing the overall control strategies for the Meadowbank Gold Mine, emphasis has been placed on methods that satisfy (1) and (2) in the above list, which then has an impact on (3) by potentially reducing the requirements for these activities. Table 4.1 presents various acid mine drainage control strategies.

The Meadowbank Gold Mine is located within the zone of continuous permafrost, and has a mean annual air temperature of about -11.1°C. Based on thermal data collected from the site since 1996, the mine area is underlain by permafrost to depths between 450 and 550 m. In developing the Mine Waste Management Plan, freeze control and climate control strategies have been adopted.

Freeze control strategies rely on the immobilization of pore fluids to control acid mine drainage reactions, and the potential migration of contaminated pore water outside of the storage facility. The climate conditions at the Meadowbank Gold Mine site are amenable to freeze control strategies, and hence should be taken advantage of. In addition to immobilization of pore fluids, permafrost can reduce the hydraulic conductivity of materials by several orders of magnitude. Consequently, freeze control strategies are effective methods for reducing the migration of contaminants through materials.

According to Dawson and Morin (1996), freeze control strategies can only be effective if sufficient quantities of non-potential acid generating (NAG) waste rock are available for use as a cover and insulation protection. Based on the production forecast schedule for the Meadowbank Gold Mine, there will be sufficient NAG rock available to provide cover over the Portage RSF and TSF.

Table 4.1: Acid Mine Drainage Control Strategies of the Arctic

Strategy	Tailings	Waste Rock
Freeze Controlled	Total or perimeter freezing options can be considered. Can freeze up to 15 m annually if freezing in thin layers. Freezing rate decreased proportionately with depth. Process chemicals could cause high unfrozen water content.	Requires considerable volumes of non-acid waste rock for insulation protection. Better understanding of air and water transport through waste rock required for reliable design.
Climate Controlled	May not be a reliable strategy for saturated tailings.	Requires control of convective air flow through waste rock, infiltration control with modest measures and temperature controls. Better understanding of waste rock air, water, and heat transport for reliable design.
Engineered Cover	Special consideration for freeze-thaw effects. Availability and cost of cover materials are major impediments.	
Subaqueous Disposal	Special considerations for winter ice conditions and pipeline freeze-up.	Very difficult to dispose of waste rock beneath winter ice.
Collection and Treatment	Costly to maintain at remote locations Long term maintenance cost.	
Segregation and Blending	Tailings are normally geochemically homogeneous.	May be very effective. Research and development on-going.

Reference: (MEND 1.61.2, 1996)

Climate control strategies rely on cold temperatures to reduce the rate at which oxidation occurs. The low net precipitation in permafrost regions limits infiltration of water into waste rock and tailings disposal areas. Consequently, the climate of the Meadowbank Gold Mine area will act as a natural control to reduce the production of acid mine drainage and metal leachate. Climate control strategies are best applied to materials placed at a low moisture content to reduce the need for additional controls on seepage and infiltration. This strategy is considered to be effective for waste rock, but not tailings. Therefore, the arid climate at the Meadowbank Gold Mine is also suited for climate control strategies for use with the RSFs.

Research activities have been undertaken since 2014 in collaboration with the Research Institute Mines and Environment (RIME) to optimize the control strategies to be used in Meadowbank Gold Mine for the RSF's and the TSF's. Thermistors are installed in the Portage RSF and TSF North Cell to monitor thermal behavior. NAG capping trial pads were constructed in 2014 and 2015 in the TSF North Cell to determine the effectiveness of different cover thicknesses and designs over tailings.

Additional instruments have been installed within the RSF in 2015 and within the TSF in 2016. Additional instrumentation is planned to be installed in the RSF and TSF during the remaining period of operation.

SECTION 5 • OVERBURDEN MATERIALS

5.1 LAKE BOTTOM SEDIMENTS

The lakebed consisted of soft, fine-grained sedimentary deposits, referred to as lake bottom sediments that are underlain by till or other soil materials, and then bedrock. The thickness of lake bottom sediments was variable and ranged from a few centimeters up to 10 metres or more, as suggested by geophysical surveys and information obtained from various drilling programs and construction activities.

The sediments present underneath the footprint of the Stormwater Dike and the coffer dam (constructed within the upstream limit of the Central Dike footprint) were removed prior to the construction. The sediments at the bottom of the core of the dewatering dikes were removed during the excavation of their main and center trenches. A portion of the sediments present in the footprint of Portage Pits were removed as part of pre-stripping activities.

The remaining sediment present in the footprint of Portage Pit and the sediments of Goose Pit were removed as part of pre-stripping activities. The sediments present underneath the footprint of Central Dike were removed prior to construction; good quality material can be used for construction stages.

The sediment removed for the Dewatering Dikes, TSF Dikes, Goose Pit, the Portage Pits were sent to Portage RSF or within designated areas in the mine footprint. As for sediment that may need to be removed from the remaining Central Dike and Saddles Dam's footprint if rise at elevation 150m; an estimated range of potential volumes has been provided in Table 5.1. These estimates are based on investigation results. These sediments will be disposed of within the TSF but outside the footprint of the Central Dike or other areas to be determined.

Table 5.1: Estimate of Lake Bottom Sediment Volumes

Construction Year	Estimated Volumes Excavated (m ³)
2011	107,771
2012	207,500
2013	31,500
2014	104,698
2015	83,277
2016	49,254
Total Excavated	584,000
Remaining volume (including Central Dike	
and SD 3-4-5 raise at El. 150m) (m ³)	131,920
Total including material excavated and	
remaining (m ³)	715,920

5.2 TILL

The remainder of the overburden materials on site consists of well graded till or till-like materials with alluvial deposits of silt and sand intermixed. The till and till-like materials is generally described as a silty sand/gravel. It contains cobble and boulder-sized particles with an average of 30 to 40% silt and clay sized particles. Some of the till or till-like material has been and will continue to be used in the construction if further raise of TSF perimeter dikes/dams are required; with the balance placed in the RSFs. Till placed in the RSFs will be mixed with the waste rock. The average till thicknesses throughout the Mine area varies based on location and may be from zero to upwards of 18 m.

SECTION 6 • MINE WASTE ROCK

Waste rock from the open pit mines, not used for site development purposes, has been and will be trucked to one of the two Waste Rock Storage Facilities (RSFs) until the end of mine operations. From 2017 to 2018, approximately 36% of the PAG waste rock generated from the Portage and pits (mining ceased at Goose Pit in early 2015) will be placed within the mined out areas of Portage and Goose Pits. This PAG material will become submerged as the pit is flooded (subaqueous disposal) and is considered as fish habitat compensation in accordance with AEM's DFO authorization. Any material not able to be placed within the Portage and Goose Pits as pit fill will be trucked to the Portage RSF.

Due to the distance between the Portage mining area and the Vault mining area, two separate waste rock storage facilities are required. Waste rock from the Portage and Goose Pits is stored in a storage facility located near to these pits (Portage RSF or Mined out areas of Portage and Goose Pits), while waste rock from the Vault, Phaser and (potential) BBPhaser Pits will be stored in a separate storage facility adjacent to the Vault Pit (Vault RSF).

6.1 WASTE ROCK PROPERTIES

The quantities of waste rock excavated between 2009 and 2016 are summarized in Table 3.1, Table 3.2, Table 3.3, Table 3.4, Table 3.5, Table 3.6, Table 3.7, and Table 3.8, respectively. The quantities of waste rock to be excavated in the open pits from 2017 to 2018 are summarized in Table 3.9. The estimated quantities to be stored in each of the RSFs and other destinations are summarized in Table 6.1.

Table 6.1: Quantities of Waste Rock by Destination

Destinations (RSF and others)	Rock Type	Quantity*
Portage RSF	Waste Rock (about 19% of NAG)	73.5 Mt**
Portage Pit Filling	Waste Rock (about 100% of PAG)	14.7 Mt
Construction	Waste Rock (NAG)	25.0 Mt
Tailings Capping	Waste Rock (100% of NAG)	16.8 Mt
Rock Garden	Waste Rock (about 100% of PAG)	0.3 Mt
Goose NAG Dump	Waste Rock (100% of NAG)	4.5 Mt
Vault RSF	Waste Rock (about 95% of NAG and 5% PAG)	60.0 Mt

 $^{{}^{*}}$ The quantities have been adjusted as the loose density assumption changed from 2.15 to 2.04.

** The maximum quantity of PAG is realized at the end of mine life. The maximum quantity of NAG is realized at the end of 2018 (before the start of reclamation). The figure reported here reflects the maximum quantity at any one time which is reached at the end of 2016. Quantities also include NAG capping.

6.2 WASTE ROCK FACILITY MANAGEMENT

As stated, waste rock will be deposited at the applicable RSF as well as within the Portage Pit and in the Goose Pit. The waste types that report to the RSFs show variable ARD potentials, some of which require control measures. Based on the results of thermal modelling, it is expected that the material within the RSFs will freeze within two years of placement (BGC, 2004). As stated previously the perimeter of the Portage RSF has been capped with 4m of NAG and the top will be covered in the same manner at closure.

Waste rock deposition plans for the Portage and Vault RSF's are shown on

Figure 3-3, Figure 3-4, and Figure 3-5. Placement of waste rock within the Portage RSF commenced closest to the Portage Pit and has progressed westward over the entire footprint, then upward to further benches during the development of the mine. Placement of waste rock within the Vault RSF has commenced closest to the Vault Pit and will generally proceed in a northward direction, rising upward as pit development progresses.

As noted previously a further ARD control measure, the Portage RSF will be capped with a minimum of 4-m thick cover of NAG rock. This capping is continually ongoing around the perimeter as parts of the RSF reach their limits. To date, approximately 80% of the Portage RSF has been covered. The final top capping will be completed at closure. The depth of cover was selected based on thermistor data and thermal modelling which indicates the depth of thaw (active layer depth) to be on the order of 1.5 m. The cover material would be coarse to allow the development of convective cooling during winter, and insulation through trapped air within voids during summer. Given the high evaporation rate and low annual average precipitation at the site, the average annual precipitation infiltration into the pile is expected to be low. Additional instrumentation was installed within the RSF in 2015 and further study analysis and thermal modelling will be performed to assess the performance of the RSF NAG capping and to understand the thermal behavior of the RSF. It is possible that additional capping will be required to accomplish effective encapsulation and thus the prevention of the potential thawing of ARD material. Details of the Portage RSF will be presented in the Final Closure and Reclamation Plan.

Most of the waste rock (approximately 84%) from the Vault deposit is NAG and water quality modeling concluded that the Vault RSF is not expected to require capping. As a precautionary measure, any PAG material encountered at Vault is and will be placed in the middle and be capped with NAG waste rock as dumping proceeds.

As for the Phaser and (potential) BBPhaser Pits, the total quantity of waste rock is projected to be 6.3 MT which would all be contained within the Vault RSF as it is currently designed. The waste rock from these small pits is similar to Vault Pit waste rock – primarily NAG.

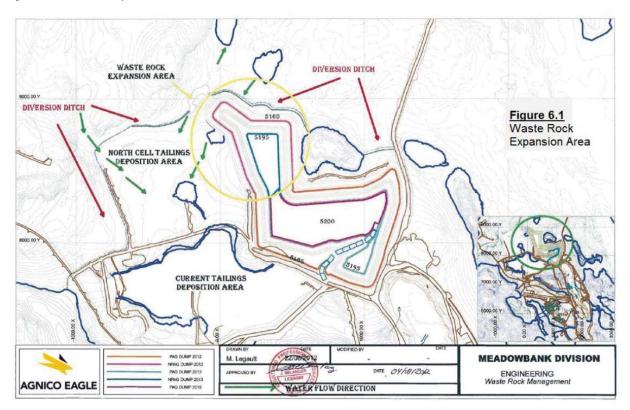
6.3 WASTE ROCK STORAGE DIMENSIONS

Table 6.2 summarizes the overall (final) physical dimensions and aspects of the Portage and Vault RSFs.

Table 6.2: Details of Rock Storage Facilities

Descriptors	Portage Rock Storage Facility	Vault Rock Storage Facility
Approximate storage volume	39.3 Mm ³	29.1 Mm ³
Approximate final crest elevation	254 m	246 m
Approximate final height	100 m	80 m
Maximum elevation of adjacent topography	192 m	190 m
Approximate footprint area	80.8 ha	61.0 ha

6.4 PORTAGE ROCK STORAGE FACILITY EXPANDED AREA


In 2012, AEM decided to revise the Portage rock storage facility (RSF) footprint which resulted in a temporary expansion from the original area of the Waste Storage Facility from 63 ha to 80.8 ha (Figure 6-1). The expansion was necessary due to the absence of sufficient area within the RSF for the storage of NAG material. The deposition of waste rock within the RSF must be completed according to strict engineering stability principles. NAG could not be stored in the storage area design previous to 2012 as the upward progress of deposition, combined with the volume of NAG generated on a day-to-day basis, would have resulted in a large volume of NAG to be covered with PAG material as and when it was produced. Reclamation of NAG for construction/capping projects then becomes difficult. The NAG material is valuable as it is used for onsite construction materials and will be required at closure for capping purposes.

The current RSF design volume is similar to the original 2009 design; the deposition pattern has however changed to allow for the separate, temporary NAG material storage area discussed above. The expansion is still within the original mine footprint and all runoff is directed to the TSF or the South Cell. The diversion ditch system further prevents any watershed freshet from reaching the RSF mitigating any potential contamination. In 2015, 2 collection ponds were constructed (WEP 1 and WEP 2) to collect any contact water runoff from the NAG extension. Since then, they were directed to the ST-16 sump and pumped back to the North Cell TSF (See Water Management Plan in appendix of the 2016 Annual Report).

This design change was considered a minor revision and the 2012 Waste Rock Management Plan references this. Reclamation activities during closure will return the area affected by the temporary NAG expansion to as near original conditions as possible.

Figure 6-1: Waste Rock Expansion Area

SECTION 7 • TAILINGS MANAGEMENT

Tailings are the processed material by-product of the gold recovery process. Tailings are processed through a cyanide destruction circuit, then pumped to the Tailings Distribution Box, and then deposited in the Tailings Storage Facilities – North and South Cells (TSF).

The TSF is divided by the Stormwater Dike into the North and South Cells. The North Cell is currently delimited by the Saddle Dams 1 and 2 as well as two rockfill road structures (RF1 and RF2). All those structures of the North Cell are presently at final El.150m. Tailings deposition ceased in 2015 to maximum elevation 149.5masl. The pond will be maintained at a maximum of El.148m (to allow a 2 meter freeboard of water) until emptied for capping completion. During that time, a pumping station located on the North Cell reclaim road is and will continue to be used to complete the required transfers of excess run off accumulation from the North to the South Cell.

The South Cell is currently delineated by the Central Dike which has been completed to its final height at El.143m. The Central Dike embankment was completed to El.115m in 2012 and, to El.120m in 2013, to El. 132m in 2014, to El. 137m in 2015 and was completed to El. 143m in 2016. A liner (LLDPE) was installed on the upstream surface to El.143. This dike is at its final elevation considering the actual Meadowbank LOM.

Tailings deposition began in February 2010, in the North Cell, and was switched to the South Cell (former Portage Attenuation pond) on November 22nd 2014 and continued to July 1st, 2015. During that time, the first phase of North Cell capping occurred. Deposition switched back in the North Cell during summer 2015 to finalize the beach profile for closure. Deposition was switched back to the South Cell on October 28th, 2015. Currently the reclaim pond is located in the South Cell and this water is recycled to the mill as process water.

The Whale Tail Pit project is planning the future deposition of 8.3M tonnes of tailings in the North and South Cell TSF following the reception of the project certificate. As presented in the Mine Waste Rock and Tailings Management Plan – Whale Tail Pit Addendum (AEM, 2016), AEM was planning raising the South Cell impoundment to final elevation 150m and building an incline internal structure surrounding the North Cell TSF starting at elevation 150 to 154 masl.

This management plan is reviewing the global strategy related to tailings management of the Meadowbank project and is including an update of the Whale Tail Pit project tailings management plan. These modifications to the management plan are done in accordance with the recommendations of the Meadowbank Dike Review Board (MDRB, 2016) related to the situation of the Central Dike Seepage.

The Alert Level of the Central Dike was raised from yellow to orange in July 2017 following the observations presented below.

- A sudden rise in turbidity was observed at sampling station ST-S-5;
- An orange precipitate settled at the bottom of the Central Dike Downstream Pond;
- A 1,080 m³ depression was observed in the tailings beach located in front of SD4.

In addition to these observations, the seepage flow was not following the one forecasted in the Central Dike seepage model reviewed in 2017 (Golder, 2017). An increase of 45% of the Central Dike seepage flow was measured year to date in between data collected in 2016 and 2017 instead of the forecasted slow flow decrease.

AEM initiated an action plan to address the situation after presenting the situation to the MDRB. Given the concern with the under-seepage at Central Dike, the Board concluded that the preferred option for operations would be in-pit disposal in the mined out Portage and Goose Pits. The Board also agreed to the reduction in water volume inside the South Cell TSF in order to reduce the hydraulic gradient toward Central Dike downstream pond and consequently the seepage flow rate.

Moving forward with these recommendations, AEM evaluated the potential of including the in-pit disposal as early than April 2018 to store Meadowbank Mine tailings inside Goose Pit from April to September 2018 and initiate closure of the South Cell TSF by dewatering the reclaim pond in summer 2018. This change to the plan will promote freeze back of the South Cell TSF and will reduce and stop the Central Dike seepage. Finally, following the reception of the Whale Tail Project Certificate, AEM is now planning storing the 8.3M tonnes of Whale Tail Pit tailings inside the Portage Pit. This section of the Mine Waste Rock and Tailings Management Plan is presenting the detail of this modification.

7.1 TAILINGS DEPOSITION STRATEGY

Due to the arid climate and permafrost environment, tailings are disposed of in a manner that encourages total freezing as a control strategy. Given the length of time that water at the site is ice covered, sub aqueous disposal is preferred. The objective is to allow the tailings to be frozen in layers in order to maximize the total frozen thickness. It is anticipated that the tailings will eventually become encapsulated by permafrost; thus limiting oxygen diffusion and water infiltration into the tailings, seepage from the tailings, and the generation of acid mine drainage.

The TSF was designed in two cells in order to allow tailings management in smaller areas with shorter beach lengths reducing the amount of water that is trapped and permanently stored as ice. Operation in cells also allows progressive closure, cover trials, and cover construction. Cover trials

were performed in the North Cell in 2014, with North Cell cover construction occurring in 2015-2016 and more construction to come in the upcoming years. Cover trials and cover construction were ongoing while tailings deposition continued in the South Cell.

Tailings deposition started in the North Cell (2010) and was done from the perimeter dikes and rockfill structures. The primary objective was to build tailings beaches to keep the pond away from the dikes and rockfill structures; especially prior to the freezing period to protect the liner against ice build-up, and to prevent or limit any seepage out of the TSF. This deposition strategy also facilitated the reclaim pond management that ensured an adequate supply for re-use in the mill.

Once deposition switched to the South Cell in November 2014, Stormwater Dike became an internal dike; dividing the North Cell from the South Cell. Any seepage from the Stormwater Dike (none evident to date) is expected to flow to the South Cell.

The tailings deposition plan in the South Cell has resulted in the development of a tailings beach starting on the upstream slope of the Central Dike and progressively advancing northwest, away from the Central Dike and Portage Pit. This will force potential seepage pathways away from Central Dike and its foundation materials. Despite this a seepage has developed and was first observed in 2014. AEM is managing the seepage by pumping the water accumulating at the downstream toe of Central Dike back to the South Cell. AEM has continued to build the beach in this area in 2016. As mentioned, Central Dike seepage situation evolved during summer 2017 and mitigation plan has been developed by AEM. Additional details on Central Dike seepage are available in the Water Management Plan in the appendix to the 2016 Annual Report.

The in-pit deposition consists of the deposition of tailings into Goose Pit, Portage Pit A and Pit E following the approval of this modification request. The approval of the modification request will trigger the end of the deposition of tailings in the North and South Cell TSF. The deposition strategy considered for this management plan is divided into the following distinct periods:

Period 1: Portage/Vault tailings deposition in South Cell TSF and in Goose Pit

Period 2: Whale Tail tailings deposition in Portage Pit

• Period 3: Pit Closure at the end of operations

Period 4: Monitoring period

• Period 5: Post closure

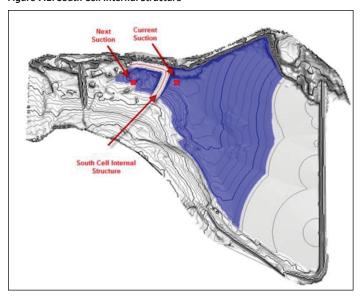
Period 2 relies on the submission of the Whale Tail Project Certificate by NIRB and on the approval of the current modification request. In the event AEM does not move forward with the Whale Tail Project, Period 3 will be triggered after the completion of Period 1. Water management global strategy of each period will be presented in the following sections.

7.1.1 Period 1: Portage/Vault tailings deposition in South Cell TSF and Goose Pit

Based on the experience acquired during the closure of the North Cell TSF, AEM developed an internal operation guideline related to the minimal water volume required to operate a TSF in Meadowbank. High turbidity levels were observed in the reclaim water when the North Cell TSF water volume – volume of unfrozen water – was below 250,000 m³. This situation was observed two times in November 2014 and in October 2015. Back then, these situations lead AEM to switch deposition of tailings from the North Cell TSF to the South Cell TSF in order to continue the operation of the process plant.

When the alarm level of the Central Dike was raised to orange in July 2017, AEM completed water balance sensitivity analyses to evaluate the potential operation of the TSF with a lower water volume over the next year. AEM evaluated that a transfer of 300,000 m³ would balance the operational risks related to the seepage situation and the operation of the South Cell TSF over the 2017-2018 winter with a lower water volume.

The sensitivity analyses showed that the total water volume of the South Cell TSF will decrease around $540,000 \text{ m}^3$ in April 2018 and more than 60% of this volume will be frozen leading to a free water volume of $210,000 \text{ m}^3$. AEM will need to operate the South Cell TSF below the $250,000 \text{ m}^3$ free water volume limit.


AEM established a mitigation plan to reduce the impact of this low free water volume in the South Cell TSF. This action plan is consisting of the:

- Construction of the South Cell Internal Structure during the fall 2017 to prevent tailings beach to reach the reclaim pump during winter 2018;
- Evaluation of the possibility to initiate tailings deposition in Goose Pit in April 2018.

The South Cell Internal Structure layout is presented on the figure 3.1. This permeable rockfill internal structure in front of the reclaim pump suction will block the migration of tailings toward the reclaim pump area and allow the water to reach the pumping area. Similar structures were built in 2014 in the North Cell TSF and proved their effectiveness.

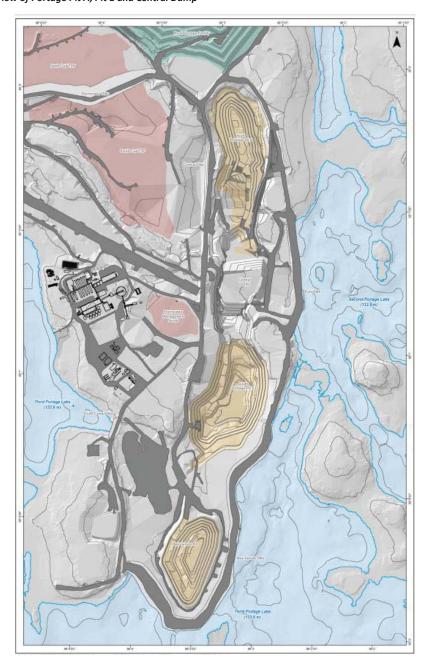
Figure 7.1: South Cell Internal Structure

In the circumstance where the South Cell Internal Structure is not efficient to secure the deposition of tailings in the South Cell TSF, AEM will need to discharge tailings in another storage area. AEM identified the Goose Pit as the best available location.

In order to reflect this strategy, this water management plan presents tailings deposition inside the South Cell TSF until the end of March 2018 and tailings deposition in the Goose Pit from April 2018 to September 2018. During that period of time, 1.5M tonnes of tailings will be stored in the Goose Pit and the water volume inside the Goose pit will vary from 1.5Mm³ to 2.6Mm³. AEM plans on operating the mill during that period of time by consuming 100% of freshwater. This 2.6Mm³ will be transferred to Portage Pit E during the Period 2 and used during the deposition of the Whale Tail pit tailings in the Portage Pit E. This transfer will reduce the freshwater required at that time. However, if AEM needs to initiate the closure process of Meadowbank mine in 2018, the water contained inside the Goose Pit will be treated prior to resuming Goose Pit reflooding. Treatment objectives will be to meet CCME or other site specific criteria prior to complete the breaching of the Goose Dike.

7.1.2 Period 2: Whale Tail tailings deposition in Goose Pit

According to Whale Tail Pit project presented to the NIRB and NWB previously in 2016 and 2017, AEM was planning the raise of the actual Meadowbank TSF capacity to store the additional 8,279,144 tonnes of tailings produced during the mining of the Whale Tail Pit ore. The geotechnical infrastructures of the South Cell were planned to be raised from elevation 145 to 150m and an upstream dike was planned to be built above the North Cell TSF tailings up to elevation 154m.


Following the evaluation of the Central Dike operational risk related to the seepage event and the recommendation of the MDRB, AEM now plans to store the additional tailings inside the Portage Pit.

This new tailings management approach is a modification to the Whale Tail Pit Tailings Management Meadowbank Tailings Storage Facility Management Plan Addendum (AEM, 2016) presented within the submission documents of the Whale Tail and Haul Road project and will be only applicable upon the reception of the project certificate.

AEM is planning to alternate deposition of tailings in between Portage Pit A and Portage Pit E during Period 2. The Portage Pit is divided in two basins by the Portage Pit Central Dump as presented on the figures 3.2 and 3.3. The water balance assumed that the Portage Central Dump is permeable and allows water to travel freely through the rockfill. AEM assumed that the waste rock contained inside this dump has a 30% void ratio, and these voids will be filled by water during the deposition of tailings. The Portage Central Dump voids must be filled at the same rate then the Portage Pit A and E in order to keep constant water cover over the tailings beach and achieve the deposition of tailings properly. AEM is planning on using 7.5Mm³ fresh water from 3rd Portage Lake (3PL) to achieve this objective during the operation. Flooding of Goose Pit will also be initiated with a 2Mm³ water transfer from 3PL planned in 2020. Prior to executing this specific transfer, water quality forecasts of the Goose Pit will be evaluated to determine treatment requirements prior to the water transfer.

Figure 7.2: Profile View of Portage Pit A, Pit E and Central Dump

Elev. (masl) 150 Portage Pit A Central Dump Portage Pit E 130 120 110 100 20 Central Dump Surface Elevation Portage Pit A and Pit E Surface Elevation 1 200 1 400 1 600 1 000

Figure 7.3: Profile View of Portage Pit A, Pit E and Central Dump

7.1.3 Period 3: Pit Closure at the end of operations

The in-pit deposition activities are planned to cease in January 2022. Flooding of the Goose and Portage Pits will be resumed during the summer 2020 with the transfer of 24.6Mm³ of water from 2020 to 2027. Water quality forecasts for the pit water will be evaluated prior to initiating the flooding process and treatment requirements evaluated and executed, if required at that time. Section 3.2 is presenting additional details of the flooding activities and Section 4 is presenting the findings of the water quality forecast completed for the in-pit deposition scenario.

7.1.4 Period 4: Monitoring period

Natural flooding of the Goose and Portage Pits will continue from 2027 to 2031. During these four years, AEM will evaluate water quality of the pits prior to Goose Dike breaching in 2031.

7.1.5 Period 5: Post closure

Monitoring of the water quality within the pits will be done according to the approved closure plan.

7.2 TAILINGS PROPERTIES

Properties of the tailings relevant to the design of the TSF are presented in Table 7.1. The table 7.1 is presenting the data related to the Meadowbank LOM and the potential changed related to the approval of the Whale Tail Pit project. Mine design life will change if Whale Tail Project certificate is

delivered. Note that the assumed tailings in situ density in in-pit disposal future TSF was evaluated at 1 t/m³ according to the one dimensional (1D) geotechnical modelling carried out by SNC-Lavalin to assess the tailings consolidation in the short and long term as tailings are being deposited in the Portage Pit E (SNC, 2017e).

Table 7.1: Relevant Data for Tailings Storage Facility

Property	Value	
Mine design life	1.75 yrs	
Extension potential of the mine design life	2.58 yrs	
Mill production (solids) Approx. 10,950 tpd (1)		
In-pit disposal mill production (solids)	Approx. 9,000 tpd	
Total rock processed (including In pit Reserves) 29.9 Mt (2)		
Additionnal rock processed (Whale Tail Pit Reserves)	8.3 Mt	
Goose Pit (In pit Reserves)	0 Mt	
Vault and Phaser Pits (In pit Reserves)	4.0 Mt	
Vault Pit (Ore mined)	7.2 Mt	
Portage and Goose Pits (Ore mined) 17.6 Mt		
Portage Pit (In pit Reserves) 1.1 Mt		
Average specific gravity for ore	3.1 t/m ³	
Assumed Porosity	30%	
Assumed in situ density in TSF (yearly average)	1.43 t/m ^{3 (3)}	
Assumed in situ density in in-pit TSF (yearly average)	1.00 t/m ³	
Volume of tailings in TSF, NC & SC at the end of 2016	14.17 and 5.16 Mm ³	

⁽¹⁾ Through 2017 only, expected to drop around 9,000tpd during 2018's operating months

Processed tailings slurry volumes, pumped from the Mill to the TSF, and associated properties for 2017 are presented in Table 7.2. The complete data for 2017 will be submitted within the 2017 Annual report.

⁽²⁾ Total processed ore quantities differ from total mined ore quantities summarized in section 3 due to changes in cut off grades, resulting in conversion of waste tonnes to ore tonnes in stockpiles

⁽³⁾ Measured annual average of 2016 in the South Cell, varies through time because of ice entrapment

Table 7.2: 2017 Processed Tailings Volume and Associated Properties

	Total Tailings Slurry (tonnes)	Density of Tailings (% solid)	Density of Slurry (tonnes / m³)	Tailings Placed in TSI (m³)
January	331,887	52.5%	1.30	255,298
February	314,269	53.2%	1.30	241,745
March	279,684	49.9%	1.20	233,070
April	328,392	54.1%	1.20	273,660
May	344,962	53.6%	1.40	246,401
June	322,937	53.0%	1.50	215,291
July	336,222	53.2%	1.50	224,148
August	326,409	52.5%	1.46	223,568
September	275,754	50.1%	1.50	183,836
TOTAL				2,097,018

7.3 TAILINGS RECLAMATION

The design of the cover for the North Cell and South Cell has been developed in 2015 and 2016. The design is still in progress and the final design will be presented in the Final Closure and Reclamation Plan. The ultimate goals for reclamation of the TSF are to mitigate long-term environmental effects to the aquatic receiving environment and to establish a landform similar to that of the natural surrounding area. Conceptual cover system designs previously modelled (Golder, 2008) and presented in the interim closure plan (Golder, 2014) rely on aggradation of the tailings material into the surrounding permafrost to limit the production of Acid Mine Drainage (AMD) and the movement of contaminants through surface and groundwater. The construction of a cover system consisting of non-acid generating granular material (NAG) over the tailings material ensures that the active layer (material going through freeze-thaw cycles, overlying permafrost) remains within the benign material. The objectives of the cover system are to maintain the tailings material below 0°C under most conditions and to maintain saturation above 85%.

To achieve the goals and criteria for the reclaimed TSF, the final design prepared will consist of a landform that promotes water shedding from all surfaces covered by an engineered cover system. The final design for the engineered cover system is a layer of compacted NAG waste rock

(soapstone) with a minimum thickness of 2.0 m. The design was developed as a result of soil-plant-atmospheric (S-P-A) modelling, as well as thermal and seepage modelling. The nominal cover thickness over most of the landform is well over the minimum, and up to 8.0 m in the thicker portions. This thickness variation is required to obtain the designed landform. Cover material is used to build up the landform because the tailings material displays a low angle of deposition and its frozen state makes it difficult to re-handle economically. Tailings material, beneath the minimum 2.0 m thick cover, appears to remain frozen for all years (excluding the warmest years) from the 100-year database, accounting for climate change. The unfrozen tailings are segregated in the upper 0.5 m of the TSF and remain above 85% saturation, thus reducing the risk of oxidation until the material freezes back into the permafrost over time.

The final landform consists of two watersheds in the North Cell, each one having its own outlet, and one landform for the South Cell. Around half of the North Cell area discharges through a first outlet in a sump and ditch at the North leading to 3PL. The second outlet discharges via a spillway to the lower South Cell cover. From this point, this water is mixed with the South Cell watershed going through a sump and ditch system in such a way that water is drained from both covers, in line with closure requirements. Design objectives are to minimize cover material volumes and tailings excavation by taking advantage of the tailings surface and balancing the required excavation and cover system material volumes. Several scenarios were prepared on both the North Cell and South Cell to minimize rockfill volumes and the most optimal ones were chosen.

Facility minimum slope angle for the cover surface is 1%. Water is moved off the cover using a surface water management system consisting of grading the plateau areas towards engineered surface runoff drainage channels. The runoff drains have a minimum slope of 0.5%.

The surface water management plan for the reclaimed TSF is to minimize erosion, thus reducing suspended sediment loading to the receiving environment, and to safely convey runoff water in the event of a storm event coupled with spring snowmelt. To achieve this, the surface water management system will be constructed using riprap-lined drainage channels and riprap-lined aprons at the outlet of each catchment. It should be noted that run off water will be directed to the South Cell or to the Portage Pit until it meets criteria for direct discharge to Third Portage Lake. This is discussed in the 2016 Water Management Plan.

Once the North Cell and South Cell TSF reclaim ponds will be dewatered, the migration of seep water into the talik beneath the North Arm of Second Portage Lake can only occur by diffusion. Diffusive transport is calculated to require more than 1×10^6 years for 1% of the initial constituent concentration to reach the deep regional groundwater system. The rate of advance of the freezing front into the talik beneath the 2PL is therefore expected to exceed the rate of advance of diffusive

transport, eventually encapsulating any constituents. Thermistors within the North Cell indicate the tailings are freezing progressively.

During operations, the cells (North or South) into which tailings are be deposited will initially (early operation) be a local groundwater discharge area as the water level in the tailings will be below Second Portage Lake. As the Portage Pit is excavated however, it may become a regional hydraulic sink in the area. Any seepage into the talik beneath the tailings area could be directed towards the Portage Pit where it will be captured during the open pit operations and redirected back to the TSF. Groundwater monitoring is conducted to confirm or determine if the tailings management strategy is working. Details on groundwater monitoring are available in the Groundwater Monitoring Report in appendix of the 2016 Annual Report.

The reclamation plan for the in-pit disposal scenario is to complete reflooding of the Portage and Goose pit once mining activity are completed. As tailings being discharged into the mined out pits, tailings undergo a sedimentation and consolidation process. The 1D consolidation modelling results suggest that the average in-situ tailings dry density is about 1.03 ton/m³ to 1.11 ton/m³, compared to the initial dry density of 0.86 ton/m³ at start of the disposal.

The modelling results also suggest of no further consolidation taking place in the tailings after the deposition has ended. Insignificant consolidation rate was observed in the first year after closure and the consolidation process seems to be stabilized in the years after.

The assessment of the long term impact of the in-pit tailings deposition on the ground thermal regime was carried out via 2D thermal modelling for Portage Pit E. The modelling results indicate that for the Base Case/Case 1 with taliks below the pit, the extent of the talik underneath the pit will expand after in-pit tailings deposition. While the areas outside of the pit, which used to be below the lake, will continue experiencing freeze back until reaching a thermal equilibrium. For Case 2 which was assumed with permafrost condition and without an existing talik below the pit (as could be the case in the northern part of Portage Pit E), an open talik would be expected to form underneath the pit. The depth of the talik is estimated to be approximately 40 m at 100 years after in-pit tailings deposition.

A 3D numerical hydrogeological and contaminant transport modelling (SNC, 2017d) was conducted to assess the migration of contaminant tailings. The modelling were carried out for three (3) main periods of in-pit tailings deposition with a constant source concentration: (1) Goose Pit is filled with tailings, (2) Goose Pit and Portage Pit A are filled with tailings, and (3) during the post-closure period when all three pits are filled with tailings and the regional groundwater flow regime has been re-

established. At post-closure, a fourth simulation was carried out to assess the contaminant migration considering reclaim water treatment at the pit source.

The modelling results indicate that two years after the end of tailings deposition at Goose pit, an estimate of 10% of the initial concentration would reach the plume front width of 50 m and that this migration is mainly controlled by Portage Pit E that is still under dewatering operations. In the second period of in-pit tailings deposition when both Goose Pit and Portage Pit A are filled with tailings, the modelling results suggest that the contaminant plume migrates from Portage Pit A toward the Central Dike downstream pond where it contains the Central Dike's seepage. After two years, 10% of the initial contaminant concentration has migrated over 90 m from the source. At post-closure when all three pits are filled with tailings, the contaminant plume originating from Portage Pit A will only reach the East Dike and Second Portage Lake about 200 m down gradient after more than 2500 years. At the same time, 10% of the initial contaminant concentration at Goose Pit reaches a distance of 150 m to the northeast in the direction of Third Portage Lake. The fourth simulation, considering reclaim water treatment at the pit source, suggests that the plume will reach East Dike at a slower rate, e.g. after 5000 years compared to 2500 years for scenario 3. In summary, there is more chance for contaminant migration towards lakes to occur after the end of in-pit tailings deposition, rather than during deposition because groundwater regional flow will be re-establish and no longer diverted to the pit as water is pump out of the pits during mining and during the in-pit tailings deposition. The contaminant migration distances and travel times are considered low and further modelling simulations considering contaminant degradation and retardation processes will reduce those values. AEM is planning treating reclaim water at closure in order to mitigate any contamination risk. If water quality meets all closure criteria including CCME guidelines and site specific criteria, the Goose dike will then be breached. Detail about the flooding strategy can be found in the 2016 Water Management Plan Update.

The proposed reclamation plan, which will be finalized and presented in the Final Closure and Reclamation plan, for the TSF is designed to be essentially maintenance free over the long term. During the post-closure period, the tailings are predicted to freeze with time, resulting in permafrost encapsulation.

7.4 TAILINGS FREEZEBACK AND SEEPAGE

The primary purpose of placing a cover system on the North Cell TSF is to mitigate long-term environmental effects due to runoff, seepage, erosion, or direct contact with the waste. From the determined closure objectives, design criteria for the closure of the North Cell of the TSF were developed. Design criteria specific to the cover system design include:

Tailings Material Temperature

- The tailings material placed within the North Cell should be entirely frozen after a period of 10 years following completion of the capping (frozen defined as tailings temperature <0°C).
- The freezing front should continue at depth into the lake bed sediments and the bedrock underlying the North Cell, thus eliminating the talik currently in place. The time required for this phenomenon to take place will be determined from modelling and is to be corroborated by monitoring of ground temperatures following closure.
- The tailings are to remain frozen for a period of over 150 years following closure, taking into
 account the agreed-upon climate change scenario. This will be based on modelling and
 monitoring of ground temperatures following closure of the facility.
- Ground temperature monitoring should be conducted for a minimum of ten years following
 closure of the TSF and data compared to the modelled scenario. Model parameters are to
 be adjusted based on monitoring data and future ground temperature predictions refined.
- For 90% of the TSF surface area, the active layer shall remain within the constructed NAG cover system and the underlying tailings material shall remain frozen for a warm year event with a return period of 1 in 100 years, accounting for the climate change scenario.
- In areas where the active layer extends into the tailings material, the thawed layer should be limited to the upper 30 cm of the tailings mass and saturation of the tailings should remain above 85% to limit oxidation of the tailings.

Tailings Material Saturation

• As an additional method to reduce tailings reactivity, the degree of saturation within the tailings mass should remain above 85%. This will reduce the tailings reactivity should part of the upper region of the tailings mass thaw during a warm year event.

Modeling of tailings freezeback and contaminant transport was carried in 2015 to estimate the performance of the permafrost encapsulation cover system design. Numerical models were carried out in both one and two-dimensions. The 2D numerical model utilized a cross section profile of the entire North and South TSF, as well as the eventual pit lake, in order to accurately estimate the subsurface thermal and flow regimes. To develop reasonable lower boundary conditions for the 2D models, deep 1D models were completed first.

Tailings dispose in Goose and Portage Pit will remain unfrozen as a minimal 8m thick water cover is planned at closure. On the other hand, this water cover will guarantee that tailings be completely saturated.

Additional modelling work will be completed as part of the TSF final cover design in the next years. AEM is planning installing new thermistors over the North Cell to increase data collection and update the model in the upcoming years. Results of the modelling and the cover design will be provided in the Final Closure and Reclamation plan for Meadowbank site.

7.4.1 Monitoring of Tailings Freezeback

During the development and mining of the deposits, an adaptive management plan has been implemented with respect to monitoring of the TSF. The Thermal Monitoring Plan (TMP) is presented in detail in Section 8 of this document.

The monitoring program for the TSF will provide the data required to validate the predictions of freezeback within the tailings and support the cover design. If it is determined by monitoring during operations that the tailings are freezing at lower rates than predicted, then mitigation procedures would be implemented. AEM has implemented the Thermal Monitoring Program. Results to date indicate that the Tailings in the North Cell are freezing. No instruments are installed for now directly in the tailings in the South Cell; installation is planned during the remaining period of operation.

During the operational phase, a number of test pads have been developed to assess various cover designs, and to determine the most appropriate design for the actual site conditions. Such an approach has been used previously at northern mines such as Nanisivik. Four test pads have been constructed on the TSF North Cell since 2014, in collaboration with the Research Institute on Mines and the Environment (RIME).

Once capping on the tailings with NAG will be completed, a specific monitoring program will be implemented. The objectives of the TSF North and South Cell cover systems and landforms are to ensure long-term landform stability, encourage TSF freeze-back into the surrounding permafrost, and maintain either subzero temperature or a high degree of saturation (>85%) in the tailings at all times. The purpose of the performance monitoring system is to ensure that these objectives are met. The objectives of the TSF cover system performance monitoring program will be:

• To monitor the temperature profile through both the tailings and the cover system to verify that the tailings beneath the cover system remain below freezing for most of the year and to verify that the tailings and talk are freezing into the surrounding permafrost;

- To monitor the water content of the tailings below the cover system and understand the basic water content response at the base of the cover; and
- To monitor settlement, consolidation, sediment loss and progression of erosion features on the landform.

As indicated before, the tailings will also be covered with a minimum 2-m thickness of NAG rockfill, which will provide an alternative and preventive strategy for the management of the TSF in the event that permafrost develops more slowly than predicted.

7.4.2 Monitoring of Tailings Seepage

Following dewatering of 2PL Arm and during investigations and construction of the TSF perimeter dikes several investigative procedures are used to identify the location and hydraulic properties of faults that are inferred to be present beneath the North Arm of 2PL including mapping of exposed bedrock, and packer testing in boreholes.

The results of the investigations are used to locate monitoring wells and thermistors that are and will be installed within the dikes, and between the Central Dike and crest of the Portage Pit. Thermal data is monitored to evaluate seepage from the TSF and freezeback of the TSF, and of the Central Dike, Saddle Dam and Rockfill perimeter containment foundations. In addition visual inspections are performed regularly and an annual geotechnical inspection is undertaken by a third party engineering consultant.

- If monitoring indicates flow rates and water qualities of concern, then mitigation measures
 would be undertaken. Collection of any seep water will be required for pumping it back to the
 TSF's. The potential mitigation action would be dependent on observed flow rates and water
 quality data;
- If, during monitoring, it is found that the freezeback of the dike and tailings deposit are occurring at a rate less than predicted, then enhancement by artificial freezing methods (i.e. thermosyphons) may be considered.

Additional monitoring wells and thermistors will be added around the Portage and Goose Pit to monitor any seepage from the pit once tailings will be disposed inside them. The 2016 Groundwater Monitoring Plan was updated accordingly to the Groundwater Contaminant Transport Model (SNC, 2017d) and present location of the planned groundwater well. During summer 2017, four

thermistors were installed in the sensitive area in order to gather background data prior to resume in-pit deposition in April 2018.

Refer to the 2016 Water Management Plan and Report for details on the Central Dike seepage and to the Tailings Storage Facilities OMS Plan for seepage monitoring and mitigation actions, both included in the 2016 Annual Report.

7.4.3 Requirements for Sumps and Seepage Pump Back

Seepage collection systems are planned downstream of the TSF dikes, saddle dams and rockfill structures as a contingency against seepage. Seepage collection systems consist of trenches and sumps located immediately downstream of the TSF dikes (and Waste Rock Storage facilities). Seepage reporting to the sumps is to be pumped back over the dike into the TSF. Seepage pump back rates will be monitored and recorded as a measure of dike or rockfill performance. The seepage collection system has been constructed where required during operations. Additional structures could be constructed in operations or at closure if required as contingency against seepage.

In 2013 seepage was detected in a sump location on the North side of the Portage RSF (PAG). It was later determined that the source was the North Cell TSF reclaim water that had ponded against the rockfill structure adjacent to the Portage RSF. This water migrated under the Portage RSF and discharged to the sump location. Corrective measures (installation of a till plug, increased pumping, the installation of 4 additional thermistors to assist in monitoring freezeback in the RSF, installation of filter material and geotextile installation along the rockfill structures RF1 and RF2) were undertaken to prevent migration of contaminants to Lake NP-2 (2013, 2014). A report, including recommendations, was prepared by Golder (Jan, 2014). The Freshet Action Plan includes water quality sampling, monitoring and continued pumping of this seepage area. This Plan is updated yearly and included in the appendix of the 2016 Water Management Plan. AEM has implemented the Golder recommendations to control the seepage at the RSF.

In November 2014 upon the start of the South Cell deposition and water reclaiming, an unpredicted rise in piezometers levels downstream of Central Dike was observed. This rise was recorded as having the same rate of rise as the South Cell reclaim pond thus indicating a possible seepage beneath the Central Dike structure through the dense till foundation layer and fractured bedrock. Golder was advised and issued a revision of the seepage model of their design. The chain of events, investigations results and action plan is detailed in the 2016 Water Management Plan and Report. AEM will continue thorough monitoring of the situation and implement corrective measures if needed. This area is included as a sampling location in accordance with the Water License (STS-5). The seepage is contained on site and excess volumes are pumped back to the South Cell TSF.

7.5 TAILINGS DEPOSITION PLANNING

The main components of the TSF are illustrated in Figure 7-4 and the general operation of the TSF facilities will follow the sequence laid out in the Tailings deposition plan presented in the Appendix 1. The estimated storage capacity of the tailings storage facilities, Reclaim Pond, and total basin capacity are shown on Figure 7-5. The figure 7-3 is presenting the storage capacity of Portage and Goose pits.

As mentioned above, the general operational management strategy for the TSF involved discharging tailings into the North Cell of the TSF to a maximum elevation of 149.5m. The North Cell is filled up to its final capacity as the final tailings deposition was completed in October 2015. The reclaim system was put in place in the South Cell in October 2014. While the South Cell is in operation, the North Cell will be allowed to freeze, and progressive reclamation and NAG capping was initiated in winter 2015 and continued in 2016. Water is transferred from the North Cell to the South Cell in summer to maintain required freeboard. The tailings are capped with rockfill placed first in the northern sector of North Cell and working towards Stormwater Dike. The North portion on the North Cell was capped in 2015 and a 30m strip was placed in front of RF1 and RF2 in 2016. North Cell capping activities continued in 2017 and an overview of the situation will be presented in 2017 Annual Report. After mining is completed and the operation of the South Tailings Cell is completed, capping of the South Cell will commence.

An updated operational detailed deposition plan is completed and available in Appendix 1 of this report. The strategy of the deposition planning process is as follows:

- Define a deposition sequence based on proposed dike alignments with sufficient capacity to store the life of mine tailings plus a contingency while maintaining the required setback from the Portage Pit;
- Define a deposition sequence that reduce the operational risk related to the deposition of tailings in the South Cell TSF and to the Central Dike seepage by initiating tailings in-pit disposal inside Goose Pit and Portage Pit;
- Define a deposition sequence that allows the cells to be partitioned (Stormwater Dike) to facilitate the lake dewatering sequence, construction of the Central Dike, and to allow a portion of the TSF to be operated as an attenuation pond for at least 3 years and to diminish ice entrapment negative effects. This has been completed as the Central Dike is constructed to elevation 143m, which is final for the current Life of Mine.
- Define a deposition sequence that maintains a reclaim pond with sufficient depth for efficient operation of the reclaim pumping system.

- Define a deposition sequence that maintains beaches on the upstream faces of perimeter dikes, Stormwater Dike, Central dike, all associated Saddle Dams and peripheral rock fill structures;
- Define a deposition sequence to operate in cells to reduce beach length to more efficiently operate in cold conditions to minimize ice entrapment;
- Define a deposition sequence that maintain a minimal 8m water cover above the in-pit disposal tailings beach;
- Define a deposition sequence that promote process water reclamation in a different pit that were tailings are discharge in order to increase reclaim water quality;
- Define the staged construction schedule for the dikes so that adequate freeboard (2.0m) is maintained within the impoundment and that the deposition sequence does not interfere with the dike's construction;
- Define a deposition sequence that creates a tailings surface that will require the minimum earthworks during closure and if possible will allow covering of some portion of the tailings surface during operations;
- Define a deposition and water transfer sequence that creates a tailings surface that will require
 the minimum earthworks during closure and if possible will allow covering of some portion of
 the tailings surface during operations;
- Define a deposition sequence that promotes freezing of the tailings during the operating period;
 and
- Define a deposition sequence that can close certain areas of the TSF faster in order to promote rockfill capping during operation.

PORTAGE VAULT ROAD RSF NAG NORTH ČELL PORTAGE RSF PAG CENTRA EAST DIKE SE PORTAGE POR CENTRAL DUMP MAIN CAMP SWM POND IRD PORTAGE LAKE PORTAGE NAG PORTAGE LEGEND CAPPED TAILINGS SOUTH TAILINGS BEACH CAMP DIKE RECLAIM WATER RSF PAG RSF NPAG DIKE / SADDLE DAM ACTIVE PIT FLOODING PIT GOOSE DIKE AGNICO EAGLE

Figure 7-4: Tailing Storage Facility Main Components

As mentioned above, the general operational management strategy for the TSF involves discharging tailings into the North Cell of the TSF to a maximum elevation of 149.5m. Now that the North Cell is filled up to its final capacity, a reclaim system was put in place in the South Cell in 2014 to continue depositions within the strategy outlined above. While the South Cell is in operation, the North Cell will be allowed to freeze, and progressive reclamation and capping has commenced. The North portion of the North Cell was capped in 2015. In 2016, capping continued all along RF1 and RF2 for 40m wide. The 2015 and 2016 capping merged together during winter 2017. Extensive capping activities are planned in 2018 as well.

In April 2018, AEM is planning initiating in-pit disposal inside Goose Pit and stop the operation of the South Cell TSF. Closure of the South Cell will be initiated earlier and AEM is expecting a significant reduction of the Central Dike Seepage rate. Deposition in Goose pit will stop once Meadowbank LOM will be completed in September 2018. AEM is planning initiating deposition of Whale Tail Pit tailings in the Portage Pit in 2019 once the project certificate will issue. The deposition will move from Portage Pit A to Pit E to reduce the freshwater consumption required during the operation and ease operation. Pit will be flooded at closure and Goose Dike breached if water quality meets all closure criteria including CCME guidelines and site specific criteria.

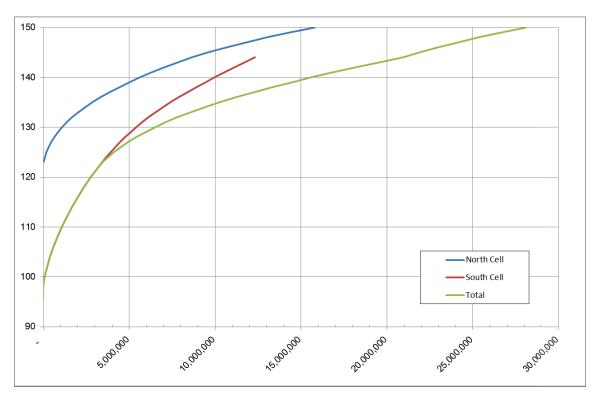
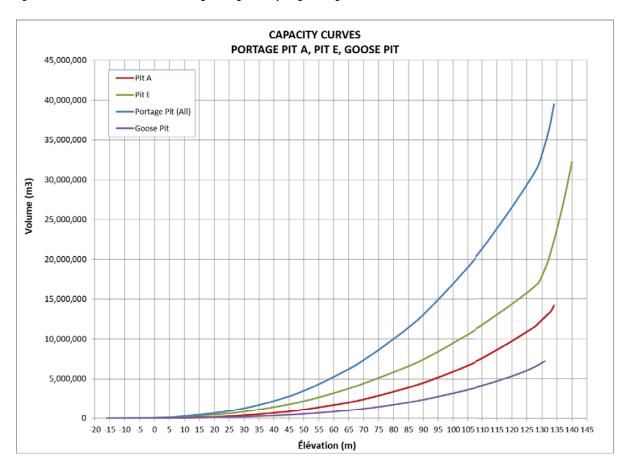



Figure 7-5: North Cell and South Cell Tailings Storage Facility Stage Storage Volume Curve

Figure 7-6: North Cell and South Cell Tailings Storage Facility Stage Storage Volume Curve

7.6 TAILINGS STORAGE FACILITY CAPACITY

As mill processing rates and tailings characteristics are liable to fluctuate over the life of the mine, the design of the TSF and tailings deposition plan will continue to evolve based on changes in design parameters including mill process rates, tailings beach slopes, ice entrapment, and tailings in-situ densities. As such, a preliminary deposition plan was done in 2009 to provide guidelines for operation of the facility and to schedule the construction of the TSF perimeter dikes. The preliminary deposition plan was initially updated each year to include data collected from the previous year's deposition within the TSF. Since 2013 AEM has assigned dedicated engineers, who regularly review/update the deposition plan incorporating any new and relevant information and changes to mine and operational planning.

The TSF was designed to have sufficient capacity to store the expected tailings volume over the life of mine (Golder, 2008b). In that same study, a sensitivity analysis was conducted to evaluate the impact of possible ice entrapment on the final elevation of the TSF. AEM continues to assess impacts of dynamic parameters (ice thickness, beach angles & dry density) of the model with sensibility analysis that are compared to actual results. It is well known to AEM that ice has been trapped in the tailings as a result of tailings transport water freezing before it reaches the Reclaim Pond. The results are summarized in Table 7.5. The original design included an assumption of a 20% tailings bulking factor due to ice entrapment. AEM has since determined that this assumption was less than information gathered on site through field observations, as explained below.

AEM performs bi-annually a bathymetric analysis to re-assess summer and winter parameters. The last official analysis was done in September 2017 to further validate the key variables which influence the Water Balance as well as the deposition plan. These results will be presented in the 2017 Annual Report. Mainly, those key variables are the tailings dry density (influenced by ice entrapment) and the sub-aerial and sub-aqueous beach angles. Furthermore, a dynamic model was established with parameters influenced in accordance with the real time conditions (i.e. seasonal temperature variation) instead of working with year round estimated average and this allows AEM to better reflect the actual site conditions. More specifically, final closure parameters with longer beaches were measured at the end of NC operations and the set of parameters linked to a cell start up were measured at the early life of the SC. In-between values during operations were chosen respective to those available sets of parameters to better depict the effect of longer beaches in the Deposition Plan forecast for both dry density and ice entrapment. This is applied from October 2017 as seen in Table 7.4.

The 2017 bathymetry was compared to the previous bathymetries realized yearly from 2014. The findings revealed that deposition in the South Cell during 2017 behaved similarly to 2016 due to a comparable beach geometry. However, beach angles have shown to be slightly shallower than in 2016 which are consistent with field observations. Average tailings dry density measured was of 1.30t/m³ in 2017 instead of the modelled 1.48t/m³ used for the same period in the model and based on 2016 bathymetric results. This difference can be explained by the longer sub-aerial tailings beach observed in the South Cell during the last year compare to 2016 which lead to an increase in ice entrapment. The analysis of the water balance leads to a revised ice-entrapment of 40% instead of the 36% measured in 2016. Beach angles measured in the South Cell were also a bit shallower at 0.73% sub-aerial beach slope instead of the 0.88% of the previous year and2.95% sub-aqueous slope instead of 3.03%. Table 7.3 below shows the evolution of the measured parameters used for modelling the South Cell. Note that measured parameters on a given year are applied to the next year's forecast until bathymetric analysis become available. Furthermore, as stated before, towards

the end of the cell life, parameters are expected to be similar to the North Cell due to the similar geometry at this point and aerial tailings deposition.

Table 7.3: Measured parameters used for South Cell modelling

	Tailings Dry Density (t/m³)	Sub-aerial beaches (%)	Sub-Aqueous beaches (%)
2014 (*same as NC)	1.28*	0.45*	4.00
2015	1.45	1.10	3.60
2016	1.48	0.88	3.03
2017	1.30	0.73	2.95

To evaluate the capacity of the pits for tailings storage, a one dimensional (1D) geotechnical modelling was carried out by SNC-Lavalin to assess the tailings consolidation in the short and long term as tailings are being deposited in the Portage Pit E (SNC, 2017e). The 1D model was built using the expected tailings production as provided by AEM and the tailings storage volumes developed for Portage Pit E and translated to Pit A and Goose. The model was set up using the existing data obtained from the project site and data from the gold tailings mine with similar properties. Based on the consolidation laboratory testing data obtained from the gold mine with similar tailings properties, the 1D consolidation modelling shows that during in-pit filling the average solid content ranges from 61.2% to 63.7 % with the equivalent tailings dry density ranging from 1.03 tonne/m³ to 1.11 tonne/m³. The water balance presented in this Water Management Plan assumed that tailings, after consolidation, will have a 67% water content during the in-pit deposition process in Goose and Portage Pits. This parameter is considered conservative as it is triggering higher consumption of freshwater during the operation. Regarding the tailings beach angles used for the in-pit deposition period, AEM assumed a flat geometry at this point. This deposition plan is including a minimal water cover of 20m over the tailings beach during the operation. This high water cover mitigates any operational risk related to formation steep beach slop inside the pit. Table 7.4 presents the parameters used for the tailings deposition plan.

Table 7.4: South Cell tailings deposition modelling parameters

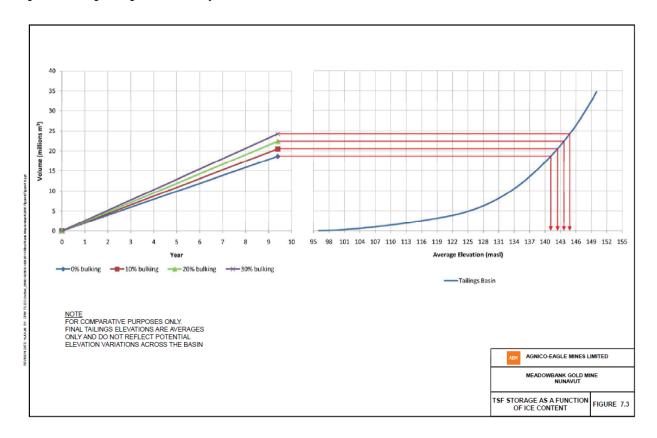
			Para	meters		
Month	Ice Thickness (m)	Ice Ratio (%)	Tailings Dry Density (%)	Ice entrapment (%)	Sub aerial beach angle (%)	Sub aqueous beach angle (%)
17-Jan	1.1	19%	1.30	43%	0.88%	3.03%
17-Feb	1.3	26%	1.30	43%	0.88%	3.03%
17-Mar	1.6	35%	1.20	43%	0.88%	3.03%
17-Apr	1.7	47%	1.20	43%	0.88%	3.03%
17-May	0	0%	1.40	35%	0.88%	3.03%
17-Jun	0	0%	1.50	26%	0.88%	3.03%
17-Jul	0	0%	1.50	32%	0.88%	3.03%
17-Aug	0	0%	1.46	32%	0.88%	3.03%
17-Sep	0	0%	1.50	32%	0.88%	3.03%
17-Oct	0.2	5%	1.32	40%	0.73%	2.95%
17-Nov	0.5	14%	1.18	46%	0.73%	2.95%
17-Dec	0.8	26%	1.18	46%	0.73%	2.95%
18-Jan	1.1	35%	1.18	46%	0.73%	2.95%
18-Feb	1.3	43%	1.18	46%	0.73%	2.95%
18-Mar	1.6	52%	1.18	46%	0.73%	2.95%
18-Apr	1.7	67%	1.00	67%	0.00%	0.00%
18-May	0	0%	1.00	67%	0.00%	0.00%
18-Jun	0	0%	1.00	67%	0.00%	0.00%
18-Jul	0	0%	1.00	67%	0.00%	0.00%
18-Aug	0	0%	1.00	67%	0.00%	0.00%
18-Sep	0	0%	1.00	67%	0.00%	0.00%
2019	0	0%	1.00	67%	0.00%	0.00%
2020	0	0%	1.00	67%	0.00%	0.00%
2021	0	0%	1.00	67%	0.00%	0.00%
2022	0	0%	1.00	67%	0.00%	0.00%

In addition to the contingency related to density, the design of the dikes allows for staging crest elevations without major re-design. The TSF dikes are raised by the downstream method, and the alignments of the dikes were selected to allow additional rising to occur above 150 masl, should additional ore bodies be identified.

The key variables that will influence the performance of the facility are the following:

- Tailings beach slope;
- Reclaim pond volume;
- In-situ dry density;
- · Seepages; and
- Ice content.

Regular monitoring of the TSF, such as bathymetry and topography surveys, is to be conducted through the life of the TSF to adjust model parameters and deposition strategy. This ensures proper planning of the raisings/dikes construction and water availability in the TSF pond. It will also help in the evaluation of ice entrapment throughout the life of the TSF and verification of model parameters and deposition strategy within the updated deposition plan.


Table 7.5: Average Height Increase of Tailings Surface Elevation for Various Amounts of Ice Entrapment based on Golder, 2008b

Proportion of Entrapped Ice (%)	Average Height Increase of Final Tailings Surface Elevation* (m)
0	-
10	1.4
20	2.5
30	3.7

^{*}Based on initial ore reserves.

Figure 7-7: Tailings Storage as a Function of Ice Content

SECTION 8 • THERMAL MONITORING PLAN

To observe the freezeback of the Tailing Storage Facility (TSF) perimeter impoundment dikes and rockfill structures as well as the Rockfill Storage Facilities (RSF's), a series of subsurface thermistors have been installed at strategic, prescribed locations.

The thermistors have been installed in boreholes drilled around and in the perimeter of the RSF/TSF. The purposes of the TSF thermistors are to monitor the talik temperatures underneath the TSF as freezing progresses and to monitor the freezing of the tailings. The purpose of the thermistors in the RSF is to monitor the RSF temperature as freezing progresses. Finally, the purpose of the perimeter thermistors is to monitor the temperature of the perimeter structures which include the containment structures (i.e. saddle dams) as freezing progresses. See Figure 8-1 for the specific locations of those thermistors.

The thermistors are monitored regularly and this will continue throughout the operational period as well as during closure and post closure. The results are used to evaluate the predicted thermal response of the facilities with the actual thermal response. This will allow adjustments to the tailings deposition plan, the Waste Rock deposition and the final Closure Plan to attempt to influence the rate at which the TSF and RSF freeze.

At this time the thermistors indicate that freezeback is occurring within the North Cell TSF and in the Portage RSF structures. The thermistors installed on the perimeter structures of the TSF/RSF show that the foundation and the dikes remain frozen on yearly basis.

These installations will continue to take place as the TSF is filled with tailings. Initially, some of the installations may be 'sacrificial' or temporary; in other words installations may be used to collect data over a short period and then may be destroyed or inaccessible as deposition progresses. The rationale behind installing such thermistors is to monitor the thermal conditions within and beneath the TSF from a very early stage in the life of the facility. As the TSF reaches final elevation, thermistors will be installed from the final tailings surface, and directly into the underlying bedrock. These will likely be on the order of 50 m to 75 m in length (potentially deeper) with nodes placed at intervals to monitor temperatures within the tailings and within the bedrock.

Thermistors installed to monitor thermal behavior around the Goose and Portage Pits are 200m long and target ground temperature below the pit bottom elevation. Installation of these thermistors was done during the summer 2017. They are located in the critical area identified by SNC-Lavalin in the Hydrogeological Modelling Technical Note (SNC, 2017d) and the Thermal Modelling Memorandum (SNC, 2017c).

The locations of the thermistors are based on tailings deposition plans. For waste rock, the phasing and locations are based on the deposition plan described in Section 6 of this document. Future deposition plans will be taken into account prior to scheduling future installations, and if necessary thermistor specifications and locations should be modified as necessary.

A research project is ongoing at Meadowbank in collaboration with the RIME (Research Institute of Mine and Environment). Construction of test pads for cover trials in the TSF and installation of instruments for monitoring within the TSF and the RSF is part of the research project. The monitoring results are used for cover design, cover performance assessment for both the TSF's and RSF's, and to ensure the expected criteria for closure will be met and maintained.

In 2016, AEM installed 2 new thermistors within the North Cell tailings impoundment and 6 new thermistors in the perimeter dikes, as shown on Figure 8-1 for thermistor locations.

Another 3 thermistors and 2 piezometers are planned to be installed in the Stormwater Dike area in January 2017 and 8 additional thermistors to be installed in the Tailings Storage Facility in February 2017.

8.1 INSTRUMENT LOCATION

Installed and planned future locations of thermistors are presented on Figure 8-1.

Figure 8-1: Planned and Installed Thermistor Location (red are installed, black are planned

8.1.1 Operations

During the operational life of Meadowbank, monitoring of the TSF can be divided into four phases:

- 2010 to 2015 in the North Cell;
- 2015 to 2018 in the South Cell;
- 2018 to 2019 in the Goose Pit;
- 2019 to 2022 in the Portage Pit.

The Portage RSF will operate from 2009 to 2018. The Vault RSF will operate from 2014 to 2018.

The following describes the requirement for thermistors at each storage facilities.

8.1.1.1 TSF North Cell

- Several thermistors have already been installed as part Stormwater Dike (SWD) construction in between 2009 and 2010. Data collected from these structures form part of the TMP. These instruments were damaged in 2016 and were replaced during winter 2017.
- SD2-T1; Installed in 2012 down to the till plug, at the upstream toe of SD2.
- T121-1(RF1); Installed in 2012 along the perimeter of RF1 (upstream). This will provide a leading indicator of seepage through RF1 towards the Portage RSF. It will also monitor thermal regime of the upper 40 m into the overlying soils and bedrock.
- T73-6 (RF1-2); Installed in 2012 along the perimeter of RF1 (upstream). This will also provide a leading indicator of seepage through RF1 towards the Portage RSF.
- RF1-3: Installed in 2013 along the upstream slope of the RF1. The purpose of the thermistor is to monitor the temperature of the tailings sitting on the slope of the RF1.
- T122-1 (RF-2); Installed in 2012 along the perimeter of RF2 (upstream). This will provide a leading indicator of seepage through RF2 towards the Portage RSF. It will also monitor thermal regime of the upper 40 m into the overlying soils and bedrock.
- T90-2 (SD-1); Installed in 2012 in tailings near the Saddle Dam 1.

- NC-T1 & NC-T2; installed as part of the TSF North Cell in 2016 as part of the cover trials. It will monitor the active cover layer, the tailings, below the lakebed into the talik. It will replace SD2-1 and SWD-1 which were installed in the tailings in 2014 but broken since.
- NC-17-01 to NC-17-08; installed as part of the TSF North Cell in 2017 as part of the cover trials. It will monitor the active cover layer, the tailings, below the lakebed into the talik. These thermistors extend the monitoring to a larger scale than the NC-T1 and NC-T2 installed in 2016.
- NWR-1 and NWR-2; Thermistors installed along the diversions ditch, at northwest of the North tailings cell, in 2014. The purpose of those thermistors is to monitor the temperature around the TSF and it will also provide a leading indicator of potential seepage.
- SD6-1; Installed in 2014 in a low point at the northeast of the north cell. This will provide a leading indicator of potential seepage towards the Portage RSF.
- TSF-NC-T3; Proposed to be installed as part of the TSF North Cell in 2015 as part of the cover trials. It will monitor the active cover layer, the tailings, and about 50 m below the lakebed into the Talik.

8.1.1.2 TSF South Cell

- T147-1; this 57 m depth thermistor was installed in 2012 in the Stormwater Dike foundation
 as part of the monitoring of the tailings and talik freeze back. It replaced T147-2 which was
 installed in 2010. In 2017, 2 new thermistors and 2 piezometers will be installed within the
 Stormwater Dike foundation to monitor the thermal behavior of a thawed area in the dike
 foundation that was causing instabilities and the freeze back of the talik.
- CD-T1 through CD-T6; The Central Dike will be fully instrumented after its construction in 2018. In 2013 AEM installed 9 thermistors at Central Dike: 750 P1, 650 P1, 580 P1, 545 P1, 650 P2, 545 P2, 875 P3, 650 P3, and 465 P3). CD-US-1 was installed in the upstream Central dike slope in 2014 to monitor the temperature of the tailings. New thermistors were installed on Central Dike in 2015: 595 P1, 810 P1, 825 P1 and 850 P1. In 2016, CD-US-2 was installed; this thermistor acts as the continuation of CD-US-1 on the upstream slope.
- SD3-T2, T3, T4 and T5: these thermistors were installed in 2016 to monitor the thermal regime of the foundation of the Saddle Dam 3, once the first construction phase was completed.

- SD4-T2 and T4; these thermistors were installed in 2016 to monitor the thermal behavior of the foundation of Saddle Dam 4.
- SD5-T1, T2, T3, T4; these thermistors are proposed as instrumentation for Saddle Dam 5.
- TSF-S-T1; Location and specifications to be reviewed in conjunction with South Cell cover design, installation scheduled in 2018. This would monitor a cross-section of the South Cell, including the active layer through the cover and tailings, about 50 m depth of tailings, and 40 m into the talik.
- Following the Central Dike seepage situation observed during the summer 2017, seven new
 holes were instrumented in the downstream area as the 580-P1R, 700-P1, 800-P2, 800-P3,
 875-P2, 975-P3, 1050-P3. Piezometers and thermistors were installed in each of these holes.

8.1.1.3 Portage RSF

- RSF-1 and RSF 3 to 6; Installed in 2013 inside the perimeter of the RSF. The purpose of those thermistors is to monitor the freezeback of the RSF and validate the cover thickness.
- RSF-T3; RSF 7 to 16 were installed in 2015 inside the perimeter of the RSF. The purpose of these thermistors is to monitor the freezeback of the RSF and validate the cover thickness.
- Additional instruments could be installed during operations as part of cover performance assessment.

8.1.1.4 Vault RSF

 Instrumentation is currently planned within Vault RSF as it is expected to behave similarly to Portage RSF.

8.1.1.5 Goose Pit TSF

• IPD-17-06 & IPD-17-07 were installed to gather thermal and piezometric background data prior to initiate tailings deposition inside Goose Pit vicinity.

8.1.1.6 Portage Pit TSF

• IPD-17-01 & IPD-17-02 were installed to gather thermal and piezometric background data prior to initiate tailings deposition inside Portage Pit vicinity.

8.1.2 Closure

Final cover details for the TSF's will be subject to results obtained from the site trials previously discussed as well as from data provided from the Thermal Monitoring Program. The different thermistors installed will serve to monitor the performance of the covers on the Portage RSF, the TSF North Cell and the TSF South Cell, respectively. Monitoring of TSF and RSF freezeback in the post-closure phase is a requirement of the Water Licence.

8.2 INSTRUMENT SPECIFICATIONS

Each thermistor to be installed as part of the TMP must comply with the general specifications presented in Table 8.1. Table 8.2 provides details concerning the installations.

Table 8.1: Thermistor Specifications

Items	Specifications
Accuracy	1 degree Celsius
Thermistor temperature range	-40 to 40 degree Celsius
Method of cable termination	Amphenol connector and DAS direct connection
Cable termination enclosures	Weatherproof Animal resistant
Readout and data logger	Manual and DAS

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

Table 8.2: Existing and Proposed Thermistor Installation Details

Name	Northing	Easting	Year Installed (I) or Planned (P)	Purpose	Notes	Special Environmental Conditions	Top - Bot Elevation	Depth/ Length	Lead	Nodes							NOE	NODE DEPTHS (m)	s (m)						
SD1-T2 (90-1)	7215956	637052	2009 (I)	Stage 1 Rockfill and foundation	Installed to 10m below bedrock, 2m spacing	Tailings	140 -110	30		16	0 2	4	9	∞	10	12	ŧ	2 m spac	2 m spacing to 30 m						
SD1-T4 (115-1)	7215949	637084	2009 (I)	Stage 1 U/S toe and foundation	Installed to 10m below bedrock, 2m spacing	Tailings	134- 119	15		16	0 1	7	ю	4	īυ	9	ŧ	1 m spac	1 m spacing to 16 m						
SD1-T1 (120-1)	7215978	637014	2010 (I)	Stage 1 & 2 U/S 3:1 slope	Installed to bedrock, at U/S toe of SD1	Tailings	149 -133	16		16	0 2	en en	4	ſΩ	9	7	∞	6	10	11 1	12	13	14	15	16
SD1-T3 (2m-1)	7215949	637084	2010 (I)	Stage 2 Rockfill and foundation	Installed to 10m below bedrock, 2m spacing	Tailings	148 -118	40		16	2 4	9	∞	10	12	14	16	18	20	22 2	24	26	58	30	32
SD2-T2 (40M)	7215399	637267	2010 (1)	Stage 1 Rockfill and foundation	Installed to 10m below bedrock, 2m spacing.	Tailings	148-118	30		16	2 4	9	∞	10	12	14	16	18	20	22 2	24	26	58	30	32
SD2-T3 (1m)	7215439	637301	2010 (I)	Stage 2 Rockfill and	Installed to 10m below bedrock, 2m	Tailings	144-129	15		16	0 1	1 2	ю	4	2	9	7	∞	6	10 1	11	12	13	14	15

March 2015

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

	_					
		23	61	61	09	16.5
		21	56	26	20	14.5
		19	51	51	40	12.5
		17	46	46	35	10.5
		15	41	41	31	8.5
		13	36	36	27	6.5
(m) sı		11	31	31	25	4.5
NODE DEPTHS (m)		o	26	26	23	2.5
N		7	21	21	21	0.5
		9	16	16	19	0
		ſΩ	14	14	17	0
		4	12	12	15	0
		m	10	10	13	0
		2	∞	∞	11	0
		Ħ	9	φ	6	0
es		0	4	4		0
Nodes		16	16	16	16	16
Lead						
Depth/ Length		23	62	62	09	16.5
Top - Bot Elevation		144-121	119.15	119.15	150-90	149.5-133
Special Environmental Conditions		Tailings	Tailings	Tailings	PAG Rock	PAG Rock
Notes	spacing	Installed to 10m below bedrock, 2m spacing	Installed part of G/W monitoring Well investigation	To replace T147-2	Installed on RF1 crest	Installed on RF1 crest
Purpose	foundation	Stage 1 U/S toe and foundation	Monitor Talik beneath 2PL	Monitor Talik beneath 2PL	Monitor potential seepage through RF1 and foundation to RSF.	Monitor potential seepage through RF2 and
Year Installed (I) or Planned (P)		2010(1)	2010 (1)	2012(I)	2012 (I)	2012(I)
Easting		637175	626289	637964	638268	638277
Northing		7215542	7215212	7215204	7215643	7215621
Name		SD2-T4 (73-4)	T147-2	T147-1 (Stormwater Dike1)	T121-1 (RF1- 1)	T73-6 (RF1-2)

March 2015

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

		1				
		59.4	12			
		49.4	11			
		44.45	10			
		39.4	6		52	52
		34.4	∞	Installed on slope and in till plug	46	46
		29.4	7		40	40
rHS (m)		24.4	9	2 m spacing to 30 m	34	34
NODE DEPTHS (m)		21.4	ιν		28	28
ž		19.4	4	12	25	25
		17.4 18.4	m	10	22	22
			2	∞	19	19
		16.4	Ħ	9	16	16
		15.4	0	4	13	13
		1 14.4	0	2	10	10
		4 13.4	0	0	7	7
es		12.4	0		4	4
Nodes		16	16	16	13	13
Lead						
Depth/ Length		09	12	30	52	52
Top - Bot Elevation		150-90	143-131	148-145	115-63	115-63
Special Environmental Conditions		PAG Rock	Tailings	Tailings	PAG-NAG Rock	PAG-NAG Rock
Notes		Installed on RF2 crest	Former TSF- N-T2 Bead#4 = broken	Installed to till plug, at U/S toe of SD2		
Purpose	foundation to RSF.	Monitor potential seepage through RF2 and foundation to RSF.	Monitor Talik beneath 2PL	Stage 2 U/S 3:1 slope	1) Water flow 2) Freeze back rates	1) Water flow 2) Freeze
Year Installed (I) or Planned (P)		2012 (I)	2012 (I)	2012 (I)	2013 (1)	2013 (I)
Easting		638096	637113.5	637300	638679.8	638677.8
Northing		7216032	7216002	7215439	7214539.4	7214639.7
Name		T122-1 (RF-2)	T90-2 (SD1)	SD2-T1	750 P1	650 P1

March 2015

			52		E	25	g	3	2	CTO	7	1/
			46		4	49	C	3	ü		į	8
			40		Ş	9	Ĺ	÷	0,00	7.	Š	ñ.
	NODE DEPTHS (m)		34			34	5	‡	70		£	c c
	оре рер		28		o c	87	ņ	3	27.0		1	,
	Ż		25		ř	57	ő	3	20		-	1
			22			77	20		200		L	ç,
			19		ç	ET .	5	2	3,00		,	35
			16		94	TP	- 1	ì	100		۶	67
			13		Ę	T3	5		4		۲	70
			10		Ę	9	=	:	50		:	3
			7		1	`	o		Ç		ç	07
	S		4			4	и		7		1	
	Nodes		13			FT T	,	7	5	7	,	CT
	Length											
;	Depth/ Length		52		ε	75	Q.	n n	7	;	ř	1,
	Top - Bot Elevation		115-63		7 7 7	50-CTT	7-01		2,0	10.0.311	, , ,	15-271
Special	Environmental Conditions		PAG-NAG Rock			PAG-INAG ROCK	100 a 0 k N 0 k a		750 a 0 k N 0 k a			TAG-IVAG KOCK
	Notes											
	Purpose	back rates	1) Water flow	2) Freeze back rates	1) Water flow	2) Freeze back rates	1) Water flow	2) Freeze back rates	1) Water flow	2) Freeze back rates	1) Water flow	2) Freeze back rates
Year	(I) or Planned (P)		2013 (I)		17 6700	2013 (1)	2013 (I)		2013 (I)		17 000	(1) STOZ
	Easting		638681.5		0 000000	0.0000000000000000000000000000000000000	638754.2	N	630753 1	T	7 1000	0.1.2000 0.1.2000
	Northing		7214711.5		4 3454	/214/45.4	0 3637177	6:000	3 3474165	0.047474	0 800	/214404.0
	Name		580 P1		74 T D 2	343 P.I	650 B2	000	54E D2	N	20 170	6/5 F3

March 2015

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

	ш
	딩
11	Ā
A	0
7	€
	9
	-

					23.5
					21.5
					19.5
	58.5	87		49.7	17.5
	52.5	81		39.7	15.5
	46.5	75		29.7	13.5
HS (m)	40.5	69		19.7	11.5
NODE DEPTHS (m)	34.5	63		5.6	9.5
Q N	28.5	57		3.7	7.5
	22.5	51		2.7	6.5
	19.5	48		2.2	5.5
	16.5	45		1.7	4.5
	13.5	42		1.2	3.5
	10.5	39		0.7	2.5
	7.5	36		0.2	1.5
	4.5	33		0	0.5
Nodes	13	13	11	13	16/29
Lead					
Depth/ Length	58.5	87	4.3	20	46
Top - Bot Elevation	109.5-51	138-51	148.36-	172.8-123.10	173.99-128.5
F #			# 17	172	173
Special Environmental Conditions	PAG-NAG Rock	PAG-NAG Rock	PAG Rock	PAG Rock	PAG Rock
			- on		
Notes			Installed on RF1 slope		
Purpose	1) Water flow 2) Freeze back rates	1) Water flow 2) Freeze back rates	Monitor potential seepage through RF1 and foundation to RSF.	1) Potential Seepage from TSF through RF1 2) Freeze back of rockfill	Potential Seepage from TSF through RF1
Year Installed (I) or Planned (P)	2013 (1)	2013 (I)	2013(1)	2013(1)	2013 (1)
Easting	638831.6	638852.3	638126	638129	638370
200		9			
Northing	7214675.1	7214841.6	7215740	7215831	7215689
Name	650 P3	465 P3	RF1-3 (RF1-3)	RSF1	RSF-3 (73-1 &

March 2015

UPDATED MINE WASTE ROCK AND TAILINGS MANAGEMENT PLAN

		35.5 40.5 50.5				15.5 17.5 19.5
	45.5	30.5	79.5	50.5	62.5	13.5
	43.5	25.5	77.5	40.5	60.5	11.5
	41.5	20.5	76.5	30.5	58.5	10.5
HS (m)	40.5	15.5	75.5	20.5	56.5	9.5
NODE DEPTHS (m)	39.5	12.5	74.5	10.5	55.5	5.5
N N	38.5	10.5	73.5	4.5	54.5	7.5
	5 37.5	ο. Li	70.5 72.5	3.5	5 53.5	6.5
	5 35.5	7.5		ю	5 52.5	5.5
	29.5 33.5	5.9	.5 68.5	2.5	.5 51.5	4.5
	27.5 29	4.5 5.5	64.5 66.5	1.5 2	7.5 49.5	2.5 3.5
	25.5 2	3.5 4	62.5 6		45.5 47.5	1.5 2.
	RSF3:	2.5	RSF4: 60.5	RSF2: 0.5 1	<u>RSF5:</u> 43.5	169 : 0.5 1
Nodes	13/29	16/29	13/29	13/26	13/26	16/29
Lead Length						
Depth/ Length		79		62		70
Top - Bot Elevation		210.21-131		193.02-131		197.79-127.8
Special Environmental Conditions	PAG Rock	PAG Rock	PAG Rock	PAG Rock	PAG Rock	PAG Rock
Notes						
Purpose	2) Freeze back of rockfill	Potential Seepage from TSF through RF1	2) Freeze back of rockfill	Potential Seepage from TSF through RF1	1) Potential Seepage from TSF through RF1 2) Freeze back of rockfill	
Year Installed (I) or Planned (P)		2013 (1)		2013 (1)		2013 (1)
Easting		638675		938630		638845
Northing		7215892		7216014		7215647
Name	RSF3)	RSF-4	(248 & RSF4)	RSF-5	RSF5)	RSF-6 (169 & RSF6)

March 2015

	4
1	EAG
1	8
1	AGN

NODE DEPTHS (m)	40 50 52 54 56 58 60 62 64 66 68 70	1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9 5.4	1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9	1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2	1.7 2.7 3.7 4.7 5.7 6.7 7.7 8.7 9.7	1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3	1.6 2.6 3.6 4.6 5.6 6.6 7.6 8.6 9.6
	<u>RSF6:</u> 30						
		0.9	6.0	0.7	0.7	0.8	9.0
Nodes	13/29	10	10	10	10	10	10
Lead							
Depth/ Length		4.5	6	4.5	6	4.5	6
Top - Bot Elevation		172.5-168	172.9-163.9	170.6-166.1	171.1-162.1	192.3-187.8	192.9-183.9
Special Environmental Conditions	PAG Rock	PAG Rock	PAG Rock	PAG Rock	PAG Rock	PAG Rock	PAG Rock
Notes							
Purpose	back of rockfill	Monitor Temperature of the RSF					
Year Installed (I) or Planned (P)		2015 (I)					
Easting		638153	638156	638290	638293	639071	639066
Northing		7216039	7216038	7215707	7215711	7215787	7215791
Name		RSF-7	RSF-8	RSF-9	RSF-10	RSF-11	RSF-12

March 2015

Name	Northing	Easting	Year Installed (I) or Planned (P)	Purpose	Notes	Special Environmental Conditions	Top - Bot Elevation	Depth/ Length	Lead Length	Nodes								NO	DE DEPT	HS (m)				
RSF-13	7215943	638916	2015 (I)	Monitor Temperature of the RSF		PAG Rock	190.8-186.3	4.5		10	0.9	1.4	1.9	2.4	2.9	3.4	3.9	4.4	4.9	5.4				
RSF-14	7215939	638917	2015 (I)	Monitor Temperature of the RSF		PAG Rock	190.9-181.9	9		10	0.9	1.9	2.9	3.9	4.9	5.9	6.9	7.9	8.9	9.9				
RSF-15	7216038	638612	2015 (I)	Monitor Temperature of the RSF		PAG Rock	191.4-186.9	4.5		10	0.7	1.2	1.7	2.2	2.7	3.2	3.7	4.2	4.7	5.2				
RSF-16	7216033	638610	2015 (I)	Monitor Temperature of the RSF		PAG Rock	191.6-182.6	9		10	0.8	1.8	2.8	3.8	4.8	5.8	6.8	7.8	8.8	9.8				
SWD-1	7215482	638006	2014 (I)	Monitor Talik beneath TSF	Broken	Tailings	147-117	30		13	0	1	2	3	4	6	8	10	14	18	22	26	30	
SD2-1	7215577	637350	2014 (I)	Monitor Talik beneath TSF	Broken Fixed summer 2016	Tailings	147-129	18		13	0	1	2	3	4	5	6	8	10	12	14	16	18	
NWR1	7216384	637298	2014 (I)	Monitor Temperature around TSF	The beads #6 and 8 to 13 do not work.	Diversion ditches	151.5-157.5	7		13	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	6	7	

Name	Northing	Easting	Year Installed (I) or Planned (P)	Purpose	Notes	Special Environmental Conditions	Top - Bot Elevation	Depth/ Length	Lead Length	Nodes								NOD	E DEPTH	dS (m)						
NWR2	7216710	637275	2014 (I)	Monitor Temperature around TSF	The beads #1 and 5 to 13 do not work.	Diversion ditches	151-158	7		13	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	6	7			
SD6-1	7216710	638131	2014 (I)	Monitor Temperature around TSF (low point)	The beads #9, 10, 11, 12 and 13 do not work.	PAG-NAG Rock	150.5-157.5	7		13	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	6	7			
CD-US-1 (122.5)	7214639	638626	2014 (I)	Upstream slope (Tailing)	Installed on Central Dike slope	Tailings	126.4-111.1	15/52.5	70	16	0	3.5	7	10.5	14	17.5	21	24.5	28	31.5	35	38.5	42	45.5	49	52.5
595 P1	7214699	638697	2015 (I)	Monitor the Central Dike Seepage		RF/Till/Bedrock	114.5-69.5	45		16	0	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45
810 P1	7214478	638659	2015 (I)	Monitor the Central Dike Seepage		RF/Till/Bedrock	135-75	60		16	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60
825 P1	7214464	638660	2015 (I)	Monitor the Central Dike Seepage		RF/Till/Bedrock	131-71	60		16	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60
850 P1	7214440	638660	2015 (I)	Monitor the Central Dike Seepage		RF/Bedrock	133-73	60		16	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60

Name	Northing	Easting	Year Installed (I) or Planned (P)	Purpose	Notes	Special Environmental Conditions	Top - Bot Elevation	Depth/ Length	Lead Length	Nodes								NOD	DE DEPTH	IS (m)						
CD-US-2 (67.5)	7214649	638626	2016 (I)		Installed on Central Dike slope	Tailings	137-127	52.5	15	16	0	3.5	7	10.5	14	17.5	21	24.5	28	31.5	35	38.5	42	45.5	49	52.5
NC-T1	7215849	637562	2015 (I)	Monitor Talik beneath TSF		Tailings	147-85	65	300	13	1	4	7	10	13	16	19	22	25	28	31	36	41	46	51	61
NC-T2	7215562	637969	2015 (I)	Monitor Talik beneath TSF		Tailings	148-88	60	200	13	0	3	6	9	12	15	18	21	24	27	30	35	40	45	50	60
SD3-T1	7215196	637480	2018 (P)	11/5 3.1	Install to bedrock, at U/S toe of SD3	RF/Till/Bedrock	145	~45		16	1	2	3	4	4.5	5	6	6.5	7	7.5	8	10	12	13	15	17
SD3-T2	7215190	637520	2016 (I)	Stage 1	Installed to 10m below bedrock, 2m spacing	RF/Till/Bedrock	139-111	18		16	1	2	3	4	4.5	5	6	6.5	7	7.5	8	10	12	13	15	17
SD3-T3	7215180	637487	2016 (I)	Stage 2	Installed to 10m below bedrock, 2m spacing	RF/Till/Bedrock	137-121	18.3		16	1	2	3	4	4.5	5	6	6.5	7	7.5	8	10	12	13	15	17
SD3-T4	7215200	637556	2016 (I)	Stage 1 U/S	Installed to 10m below bedrock, 2m spacing	RF/Till/Bedrock	138-122	18		16	1	2	3	4	5	5.5	6	6.5	7	7.5	8	8.5	10	12	14	16


Name	Northing	Easting	Year Installed (I) or Planned (P)	Purpose	Notes	Special Environmental Conditions	Top - Bot Elevation	Depth/ Length	Lead Length	Nodes								NOD	E DEPTH	IS (m)						
SD3-T5	7215130	637575	2016 (I)	Stage 1 U/S toe and foundation	Installed to 10m below bedrock, 2m spacing	RF/Till/Bedrock	138-122	18		16	1	2	3	4	4.5	5	6	6.5	7	7.5	8	10	12	13	15	17
SD4-T4	7214502	638269	2016 (I)	Stage 1 U/S toe and foundation	Installed to 6m below bedrock, 2m spacing	RF/Till/Bedrock	139	12		16	1	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	8	9	10	11
SWD-01-T1	7215368.00	637992.60	2017 (P)	Monitor tailings/talik freezeback	Installed to 6m below bedrock, 2m spacing	RF/Till/Bedrock	149	31.25		16	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
SWD-02-T2	7215233.00	638072.90	2017 (P)	Monitor foundation temperature	Installed to 6m below bedrock, 2m spacing	RF/Till/Bedrock	133	75		16	0	2	4	6	8	10	15	20	25	30	35	40	45	50	55	60
SWD-03-T3	7215219.00	638018.70	2017 (P)	Monitor foundation temperature	Installed to 6m below bedrock, 2m spacing	RF/Till/Bedrock	133	25.30		16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
NC-17-01	7215784.9	637292.71	2017 (I)	Monitor Talik beneath TSF	Installed to 6m below bedrock, 2m spacing	Tailing/Bedrock	148.1/107	41.1	2 & 4	16	1	3	5	7	9	11	13	15	17	19	21	23	25	29	33	37
NC-17-02	7215821.2	637391.68	2017 (I)	Monitor Talik	Installed to 6m below	Tailing/Bedrock	147.6/93.6	54	1, 2, 3 & 4	16	1	2	3	4	6	8	11	14	17	20	23	26	31	36	41	46

Name	Northing	Easting	Year Installed (I) or Planned (P)	Purpose	Notes	Special Environmental Conditions	Top - Bot Elevation	Depth/ Length	Lead Length	Nodes								NOD	E DEPTH	IS (m)						
				beneath TSF	bedrock, 2m spacing																					
NC-17-03	7215913.1	637776.23	2017 (I)	Monitor Talik beneath TSF	Installed to 6m below bedrock, 2m spacing	Tailing/Bedrock	147.6/93.6	54	1, 2, 3 & 4	16	1	2	3	4	6	8	11	14	17	20	23	26	31	36	41	46
NC-17-04	7216037.1	637901.41	2017 (I)	Monitor Talik beneath TSF	Installed to 6m below bedrock, 2m spacing	Tailing/Bedrock	148.5/17.58	40.9	2 & 4	16	1	3	5	7	9	11	13	15	17	19	21	23	25	29	33	37
NC-17-05	7215434	637602	2017 (I)	Monitor Talik beneath TSF	Installed to 6m below bedrock, 2m spacing	Tailing/Bedrock	148/106.9	41.1	2 & 4	16	1	3	5	7	9	11	13	15	17	19	21	23	25	29	33	37
NC-17-06	7215615.4	637389.05	2017 (I)	Monitor Talik beneath TSF	Installed to 6m below bedrock, 2m spacing	Tailing/Bedrock	147.8/106.3	41.5	2 & 4	16	1	3	5	7	9	11	13	15	17	19	21	23	25	29	33	37
NC-17-07	7215596	637349.92	2017 (I)	Monitor Talik beneath TSF	Installed to 6m below bedrock, 2m spacing	Tailing/Bedrock	147.9/107	40.9	2 & 4	16	1	3	5	7	9	11	13	15	17	19	21	23	25	29	33	37
NC-17-08	7215805.3	637693.09	2017 (I)	Monitor Talik beneath TSF	Installed to 6m below bedrock, 2m	Tailing/Bedrock	146.5/92.5	54	3 & 4	16	1	4	7	10	13	16	19	22	25	28	30	32	36	40	44	48

Name	Northing	Easting	Year Installed (I) or Planned (P)	Purpose	Notes	Special Environmental Conditions	Top - Bot Elevation	Depth/ Length	Lead Length	Nodes								NOI	DE DEPTH	IS (m)						
					spacing																					
CD-T1	7215089.51	638657.24	2018 (P)	U/S – Freeze back of tailings		Tailings	150-110			21	0	5	10	15	20	25	30		100							
CD-T2	7215089.51	638673.51	2018 (P)	Rockfill and foundation		PAG-NAG Rock	150-86			32	0	2	4	6	8	10	12		62							
CD-T3	7214689.51	638657.24	2018 (P)	U/S – Freeze back of tailings		Tailings	150-110			21	0	5	10	15	20	25	30		100							
CD-T4	7214689.51	638673.51	2018 (P)	Rockfill and foundation		PAG-NAG Rock	150-86			32	0	2	4	6	8	10	12		62							
CD-T5	7214439.51	638657.24	2018 (P)	U/S – Freeze back of tailings		Tailings	150-110			21	0	5	10	15	20	25	30		100							
CD-T6	7214439.51	638673.51	2018 (P)	Rockfill and foundation		PAG-NAG Rock	150-86			32	0	2	4	6	8	10	12		62							
SC-T1	7214755	638435	2018 (P)	1) Monitor freeze back of cover and tailings 2) Monitor talik	Installed on tailings cover. Location TBD, node locations to be reviewed upon cover design.	Tailings	150-60	90		16	0	1	1	2	2	2.5	3	5	10	20	35	50	55	60	75	90

Name	Northing	Easting	Year Installed (I) or Planned (P)	Purpose N	Notes	Special Environmental Conditions	Top - Bot Elevation	Depth/ Length	Lead Length	Nodes								NOE	DE DEPTH	S (m)						
580-P1R	7214719.6	638708.35	2017 (I)	Monitor the Central Dike Seepage		Rockfill/Till/Bedrock	120.6/65.6	55	3 & 5	16	0.0	3.0	6.0	9.0	12.0	15.0	18.0	21.0	24.0	27.0	30.0	35.0	40.0	45.0	50.0	55.0
700-P1	7214590.6	638713.09	2017 (I)	Monitor the Central Dike Seepage		Rockfill/Till/Bedrock	119.65/62.98	56.67	3 & 5	16	1.2	4.2	7.2	10.2	13.2	16.2	19.2	22.2	25.2	28.2	31.2	36.2	41.2	46.2	51.2	56.2
800-P2	7214484.8	638711.24	2017 (I)	Monitor the Central Dike Seepage		Rockfill/Till/Bedrock	120/70	50	1,2 &5	16	-0.5	1.5	2.5	3.5	4.5	7.5	10.5	13.5	16.5	19.5	24.5	29.5	34.5	39.5	44.5	49.5
800-P3	7208048.9	636462.4	2017 (I)	Monitor the Central Dike Seepage + TSF Thermal Beavior		Rockfill/Till/Bedrock	124.95/62.95	62	3 & 5	16	64.0	59.0	54.0	49.0	44.0	39.0	34.0	29.0	25.0	21.0	17.0	14.0	11.0	8.0	5.0	2.0
875-P2	7214417.2	638748.17	2017 (I)	Monitor the Central Dike Seepage		Rockfill/Till/Bedrock	120.16/63.08	57.02	3 & 5	16	0.1	3.1	6.1	9.1	12.1	15.1	18.1	21.1	24.1	28.1	32.1	37.1	42.1	47.1	52.1	57.1
975-P3	7214315.5	638805.92	2017 (I)	Monitor the Central Dike Seepage + TSF Thermal Beavior		Rockfill/Bedrock	131.53/6449	67.04	3,4 & 5	16	0.0	3.0	6.0	10.0	14.0	18.0	22.0	27.0	32.0	37.0	42.0	47.0	52.0	57.0	62.0	67.0
1050-P3	7214234.6	638797.74	2017 (I)	Monitor the Central Dike Seepage + TSF Thermal		Rockfill/Bedrock	135.37/66.32	69.05	4 & 5	16	0.1	4.1	8.1	12.1	16.1	20.1	24.1	29.1	34.1	39.1	44.1	49.1	54.1	59.1	64.1	69.1

AGNICO EAGLE

Name	Northing	Easting	Year Installed (I) or Planned (P)	Purpose	Notes	Special Environmental Conditions	Top - Bot Elevation	Depth/ Length	Lead Length	Nodes								NOE	DE DEPTH	S (m)				
				Beavior																				
IPD-17-01	7214260.2	639229.87	2017 (I)	Portage Pit TSF Thermal Beavior		Rockfill/Bedrock	129.935/- 60.065	190	10 & 20	13	10.0	20.0	30.0	40.0	50.0	60.0	70.0	90.0	110.0	130.0	150.0	170.0	190.0	
IPD-17-02	7208676.9	640117.24	2017 (I)	Portage Pit TSF Thermal Beavior		Rockfill/Bedrock	130.66/- 53.63	184.3	9.66/19.31	13	10.4	20.1	29.8	39.4	49.1	58.7	68.4	87.7	107.0	126.3	145.7	165.0	184.3	
IPD-17-06	7212147.3	638503.35	2017 (I)	Goose Pit TSF Thermal Beavior		Rockfill/Bedrock	130.855/ - 52.762	183.617	9.65 / 19.31	13	9.8	19.4	29.1	38.7	48.4	58.1	67.7	87.0	106.3	125.7	145.0	164.3	183.6	
IPD-17-07	7208652.3	640691.38	2017 (I)	Goose Pit TSF Thermal Beavior		Rockfill/Bedrock	134/-56	190	10 & 20	13	10.0	20.0	30.0	40.0	50.0	60.0	70.0	90.0	110.0	130.0	150.0	170.0	190.0	

SECTION 9 • MONITORING AND CLOSURE

of AEM's 2013 Annual Report. disturbance, stabilize disturbed land surfaces and permafrost against erosion, and return the appropriate mine closure techniques that comply with accepted protocols and standards. Mine closure and reclamation will utilize currently accepted management practices and Reclamation Plan was prepared by Golder in January, 2014. The document was included as part land to post-mining uses for traditional pursuits (MMC, 2007a). An updated Interim Closure and Closure will be based on project design and operation to minimize the area of surface

center of the pile during operation. to be covered, as the waste rock is mainly NAG, and the PAG waste rock is encapsulated in the waste rock storages for Portage and Vault and the North Cell TSF will be progressively closed The post-closure general concept for the Meadowbank site is illustrated in Figure 9-1. Mine covered with NAG material during operations. For Vault, the waste rock storage is not expected cover of NAG rock placed over PAG waste rock piles. The majority of the Portage RSF is currently during mine operations. For the Portage waste rock storage, the current plan considers a 4m

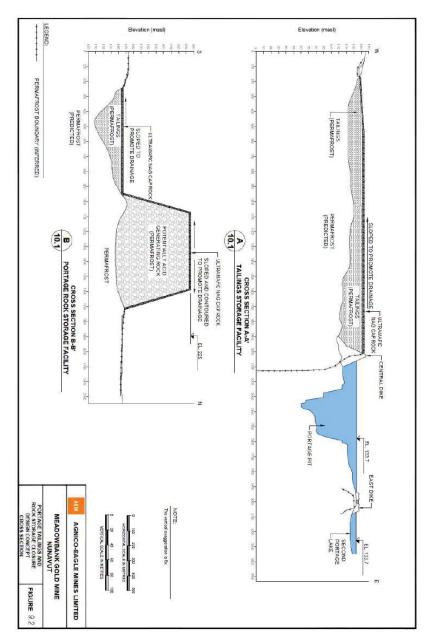
where required to direct drainage respectively to the TSF (see Figure 9-2) and towards Vault Pit the Vault waste rock storage. The surfaces of the Portage and Vault RSFs will be contoured NAG cover. Additional monitoring instruments were installed at the end of 2015, and additional geotechnical instruments are in place to assess the RSF freezeback and the performance of the field trials will support the work on the TSF cover design. For the rock storage facility in Portage, thicknesses and designs. Additional monitoring instruments are planned to be installed on the Additional trials tests and studies on the TSF NAG capping are in progress and in-situ trials are in initiated in 2015 and 2016. A research project for the TSF cover is in progress at Meadowbank will be monitored at closure. design work of the TSF North Cell completed. The runoff water from the Vault and Portage RSFs (see Figure 9-3). Note that Section A in Figure 9-2 is conceptual and does not represent the instrument are also planned to be installed in the next years. Instruments will also be installed in TSF cover and tailings in 2017 and later on during operations. The results of the instruments and place since 2014 in the North Cell TSF to determine the effectiveness of different cover As explained in section 7.3 of the report, the design of the tailings cover for the TSF has been in collaboration with the Research Institute Mines and Environment (RIME).

early closure process of the South Cell TSF. In-Pit deposal will be initiated at the same time in The South Cell Reclaim Pond will be transfer during summer 2018 to the Goose Pit to initiate

Management Plan Update. Pits. Details of reclaim water transfers for pit flooding are available in the 2016 Water Portage Pit will be treated, if necessary, prior to complete flooding of the Portage and Goose will occur in Portage Pit. Once milling has been completed, the remaining reclaim water in the Portage Pit and closure process of the Goose Pit will be initiated. From 2019 to 2022, deposition Goose Pit. Once deposition in Goose Pit will be completed, reclaim water will be transfer in

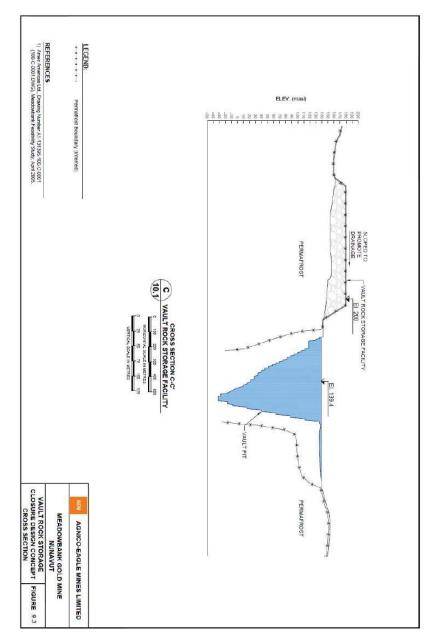
accordance with the Water License. natural vegetation and wildlife habitat. A Final Reclamation and Closure Plan will be issued in erosion from surface runoff, avoid acid rock drainage and to enhance the re-establishment of and/or surface treated according to site specific conditions to minimize windblown dust and All infrastructure associated with these waste management facilities will be re-contoured

March 2017 109


Figure 9-1: Site Post Closure Concept

Third Portag Lake AEM → Non-Contact Water Diversion ►Drainage Direction Turn Lake (1) Ö NOISIVID MEADOWBANK Site Post Closure Concept

110


Figure 9-2: Portage Tailings and Rock Storage Closure Design Concept Cross Section

March 2017 111

Figure 9-3: Vault Rock Storage Closure Design Concept Cross Section

SECTION 10 · REFERENCES

- AEM, 2013. Meadowbank Gold Project, Mine Waste Management Plan. October 2013
- AMEC, 2003. Baseline Hydrology Study, AMEC Earth and Environmental, December 2003 with January 2004 errata
- AMEC, 2005a. Meadowbank Gold Project Hydrologic Monitoring 2004 Draft Data Report. February 2005
- AMEC, 2005b. Meadowbank Gold Project Feasibility Study Report. June 2005.
- Engineering Incorporated, (BGC) 2003. Implications of Global Warming and the Precautionary Principle in Northern Mine Design and Closure. 2003.
- Engineering Incorporated, (BGC) 2004. Meadowbank Gold Project Preliminary Geothermal and Slope Stability Modelling of Rock Storage Facilities. March 31, 2004
- Brown, J.O., Ferrians Jr., J, Heginbottom, J.A., and Melinkov, E.S., 1998. Circum-Arctic Map of Permafrost and Ground-Digital Media. Ice Conditions. Boulder, Colorado: National Snow and Ice Data Centre/World Data Center for Glaciology.
- Burn, C. R. 2003. Thermal modeling, Meadowbank Gold Project.
- Dawson and Morin, 1996. Mine Effluent Neutral Drainage (MEND), 1.61.2: Acid Mine Drainage in Permafrost Regions: Issues, Control Strategies and Research Requirements, 1996.
- Golder Associate Ltd (Golder) 2012. Tailings Deposition Plan Update 2012, Meadowbank Project, Doc 1344, issued in
- Golder Associate Ltd (Golder) 2011a. Tailings Deposition Plan, Meadowbank Project, Doc 1272, to be issued in July
- Golder Associate Ltd (Golder) 2011b. 2011 Central Dike Geotechnical Investigation, Tailings Storage Facility, Meadowbank Project, Doc 1268, May 17, 2011
- Golder Associate Ltd (Golder) 2011c. Tailings Deposition Plan Update, Tailings Storage Facility, Meadowbank Project Doc. 1253, March 2011
- Golder Associate Ltd (Golder) 2011d. Preliminary Results Tailings Deposition Plan Spigot Scenario, Tailings Storage Facility, Meadowbank Project, Doc 1261, March 31, 2011
- Golder Associates Ltd. (Golder), 2008a. Coupled Thermal/Seepage and Contaminant Transport Modeling For The Tailings Facility, Meadowbank Gold Project. August 1, 2008

- Golder Associates Ltd. (Golder), 2008b. Report on Tailings Storage Facility Dike Design, Meadowbank Gold Project. December 17, 2008.
- Golder Associates Ltd. (Golder), 2008c. Letter: Bay-Goose Dike and South Camp Dike Designs, Meadowbank Gold Project. December 2008
- Golder Associates Ltd. (Golder), 2008d. Report on East Dike Design, Meadowbank Gold Project. October 2008
- Golder Associates Ltd. (Golder), 2007a. Detailed Design of Central Dike, Meadowbank Gold Project. March 16, 2007.
- Golder Associates Ltd. (Golder), 2007b. Mitigative Measures for Potential Seepage from Tailings Facility. August, 2007
- Golder Associates Ltd. (Golder), 2007c. Water Quality Predictions, Meadowbank Gold Project, Nunavut. August, 2007.
- Golder Associates Ltd. (Golder), 2006. Report on Winter 2006 Second Portage Central Dike Geotechnical Drilling, Hydrogeological, and Televiewer Investigation, Meadowbank Gold Project, Nunavut. July, 2006
- Golder Associates Ltd. (Golder), 2003. Report on Permafrost Thermal Regime Baseline Studies, Meadowbank Project.
- Hayley, D. W. 2004. Climate Change An Adaptation Challenge for Northern Engineers. The PEGG. January 2004, p.21
- Hayley, D.W. and Cathro D.C. 1996. Working with Permafrost when Planning an Arctic Mine. CIM Edmonton 96, April 28 - May 2, 1996, Edmonton, Alberta.
- IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007: The Physical Science Basis
- Meadowbank Mining Corporation (MMC), 2007a. Meadowbank Gold Project Preliminary Closure and Reclamation Plan. August, 2007
- 1.61.2, 1996. Requirements. July. Acid Mine Drainage in Permafrost Regions: Issues, Control Strategies and Research
- NRC (Natural Resources Canada), 2004. National Annual Temperature Scenario: 2050. The Atlas of Canada. Natural http://atlas.gc.ca/site/english/maps/climatechange/scenarios/nationalannualtemp2050/ On-line map. Accessed July Available:
- Woo, M.-K., A. G. Lewkowicz, and W. R. Rouse, 1992. Response of the Canadian Permafrost Environment to Climatic Change. 1992
- 2016 Waste Management Plan documents: P:\Engineering\04-MineEng\06-PLANNING\01-LOM\LOM 2017\Waste
- $2016 \ Budget \ Mine Sched \ file: P: \ logineering \ 04-Mine Eng \ 06-PLANNING \ 09-MINE SCHED \ BUD 2016_V3G.mine Sched \ 100-Mine Sched \$

114

 $Supporting \ Budget \ files \ location: P:\ Engineering \ O4-Mine Eng \ O6-PLANNING \ O2-BUDGET \ 2016 \ Budget \ Official \ Version \ Annual \ A$

Meadowbank Dike review Board, (MDRB), 2016. Report No 19 - Meadowbank Mine Dike Review Board - Meeting September 19-22, 2016, October 7th, 2016.

SNC-Lavalin, (SNC), 2016. Multiple Accounts Analysis for the Tailings Facility Extension Project, September 21st, 2016

SNC-Lavalin, (SNC), 2017a. Hydrogeological Field Investigation Program Scope of Work, June 22nd, 2017

November 16th, 2017). SNC-Lavalin, (SNC), 2017b. Hydrogeological Field Investigation, East Road & Goose In-Pit Tailings Deposition,

SNC-Lavalin, (SNC), 2017c. 2D Ground Thermal Modeling – In-Pit Tailings Deposition Prefeasibility Study, September

SNC-Lavalin, (SNC), 2017d. Hydrogeological Modelling for In-Pit Deposition ofg Tailings, November 30th, 2017

SNC-Lavalin, (SNC), 2017e. In-Pit Tailings Deposition Water Balance and Water Quality Forecast, September 12th,

SNC-Lavalin, (SNC), 2017f. 1D Tailings Consolidation Modeling Assessment – Tailings Storage Facility Extension, Portage in-Pit Disposition Prefeasibility Study, August 22nd, 2017.

Extension, Portage/Goose in-Pit Deposition Prefeasibility Study, September 29th, 2017. SNC-Lavalin, (SNC), 2017g. Pit Slope Stability Assessment During In-pit Tailings Deposition – Tailings Storage Facility

SNC-Lavalin, (SNC), 2017h. Groundwater Monitoring Program, November 15th, 2017

Agnico Eagle Mines, (AEM), 2016. Mine Waste Rock and Tailings Management Plan – Whale Tail Pit Addendum, April,

Golder Associates Ltd. (Golder), 2017, Central Dike Seepage and Performance Assessment Update, Meadowbank Gold Project. June 2017.

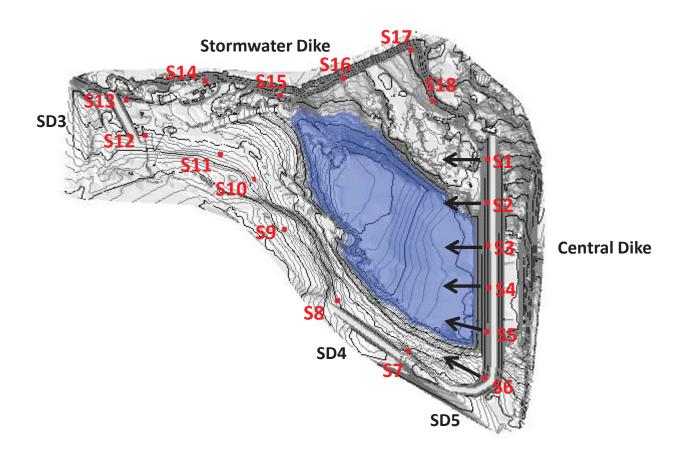
March 2017

APPENDIX A: 2016 UPDATED TAILINGS DEPOSITION PLAN

March 2017 116

MEADOWBANK

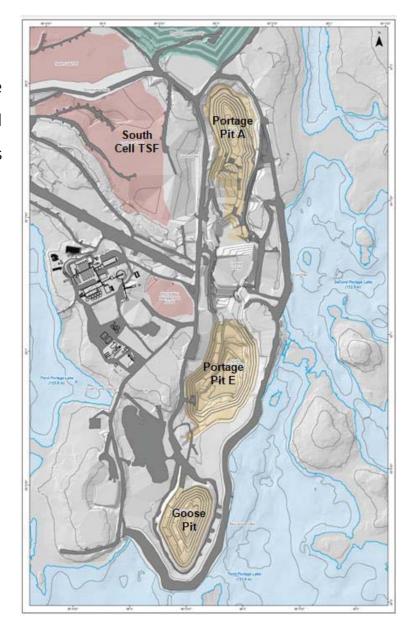
INTEGRATED TAILINGS DEPOSITION PLAN NOVEMBER 2017


Introduction

- The tailings deposition plan for the Meadowbank Mine site is regularly reviewed and updated by AEM to incorporate changes to mine and operational planning as well as changes in design parameters;
- This specific deposition plan presents the inclusion of the in-pit disposal inside Goose and Portage Pits
 until the end of Meadowbank Life of Mine and also include the storage of the potential tailings
 produced by the mining of the Whale Tail Pit;
- The design parameters considered in the deposition plan include mill process rates, tailings beach slopes, ice entrapment, and tailings in-situ densities;
- The following slides will present the parameters used in the deposition plan;

2016 updated deposition strategy

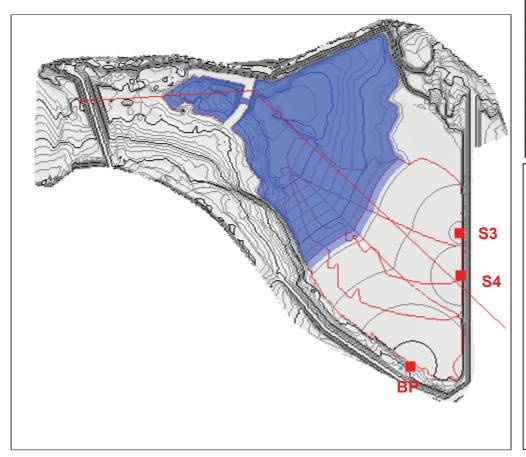
South Cell TSF


The figure below on depicts the geometry of the South Cell before resuming the deposition in October 2015. All structures (Central Dike, SD3, 4 & 5 and Stormwater Dike) will be at elevation 143masl. Most of the deposition will occur from the Central Dike in order to reclaim water from the west end of the TSF.

2016 updated deposition strategy

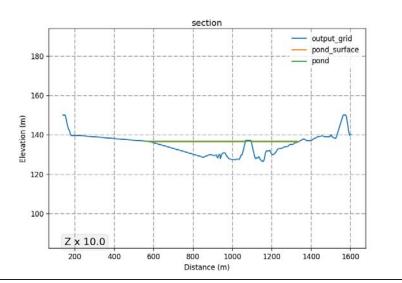
Portage and Goose Pit TSF

The figure below on depicts the geometry of the Portage and Goose Pits TSF before resuming the deposition in April 2018. A flat beach geometry assumption was used for this deposition plan.

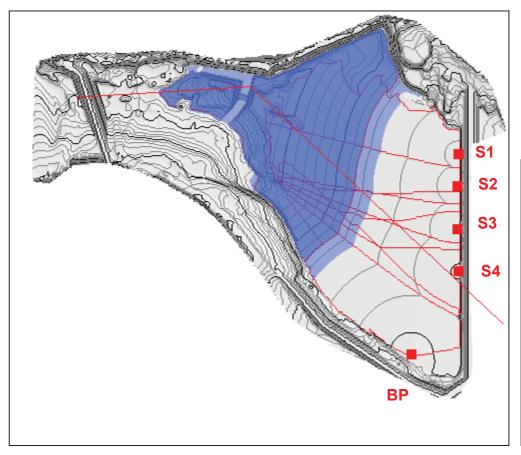

2016 updated model parameters

AEM observed a higher tailings dry density than expected in the South Cell since the beginning of the deposition. Following the analysis of the parameters completed this fall, adjustment on the tailings dry density in time was done. This updated model represents the evolution of this parameter in function of the tailings pond configuration. In-pit disposal parameters are based on literature and recommendation of the designer

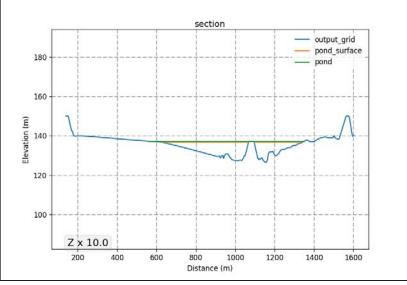
	Ice		Parameters 17		Parameters 18	Goose and	Portage Pits
Month	Thickness (m)	Tailings Dry Density (t/m³)	Ice entrapment (%)	Tailings Dry Density (t/m³)	Ice entrapment (%)	Tailings Dry Density (t/m³)	Ice entrapment (%)
January	1.1	1.30	43%	1.18	46%	1.00	67%
February	1.3	1.30	43%	1.18	46%	1.00	67%
March	1.5	1.20	43%	1.18	46%	1.00	67%
Q1	1.5	1.27	43%	1.18	46%	1.00	67%
April	1.7	1.20	43%	-	-	1.00	67%
May	0	1.40	35%	-	-	1.00	67%
June	0	1.50	26%	-	-	1.00	67%
Q2	0	1.37	35%	-	-	1.00	67%
July	0	1.50	32%	-	-	1.00	67%
August	0	1.46	32%	-	-	1.00	67%
September	0	1.50	32%	-	-	1.00	67%
Q3	0	1.47	32%	-	-	1.00	67%
October	0.2	1.32	40%	-	-	1.00	67%
November	0.5	1.18	46%	-	-	1.00	67%
December	0.8	1.18	46%	-	-	1.00	67%
Q4	0.8	1.23	44%	-	-	1.00	67%
Average	-	1.34	39%	-	-	1.00	67%


South Cell TSF deposition plan October 2017

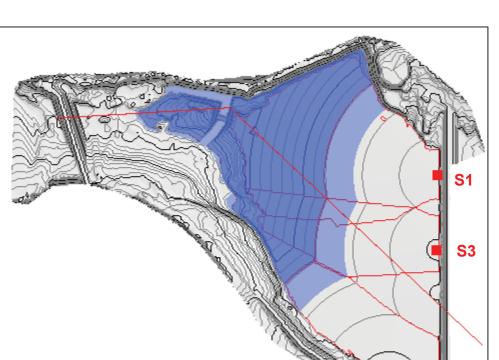
Duration	Deposition Point	Tonnes	Elevation (m)
8	S3	86,570	139.303
7	S4	84,771	139.806
16	BP	176,514	140.659


MODEL INPUT		
Pond Volume (m3)	1,037,556	
Ice thickness (m)	0.20	
Tonnes (t)	348,657	

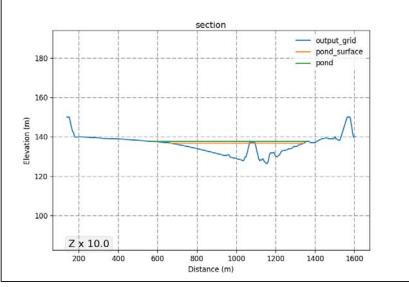
MODEL OUTPUT		
Total water volume (m³)	1,037,556	
Free water volume (m³)	985,678	
Ice volume (m³)	52,165	
Pond elevation (m)	136.878	
Free water elevation (m)	136.672	
Pond bottom elevation (m)	126.934	
Ice ratio (%)	5%	
Ice entrampment (%)	32%	
Transfer (m³)	0	


South Cell TSF deposition plan November 2017

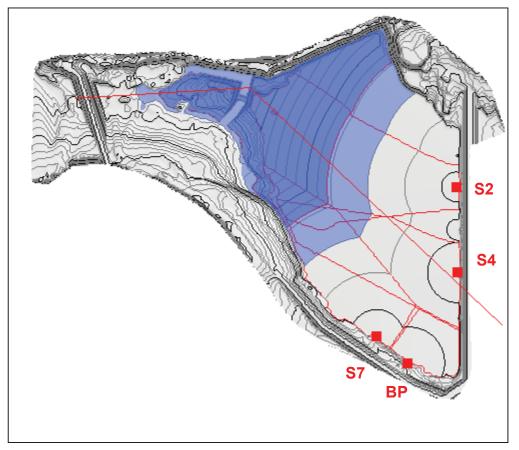
Duration	Deposition Point	Tonnes	Elevation (m)
20	S1	225,577	139.368
5	S2	56,394	139.545
2	S3	22,558	139.774
2	S4	22,558	140.203
1	ВР	11,279	140.591


MODEL INPUT		
Pond Volume (m3)	944,737	
Ice thickness (m)	0.50	
Tonnes (t)	337,410	

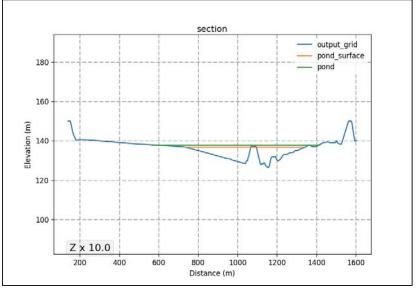
MODEL OUTPUT		
Total water volume (m³)	944,737	
Free water volume (m³)	812,474	
Ice volume (m³)	116,959	
Pond elevation (m)	137.270	
Free water elevation (m)	136.770	
Pond bottom elevation (m)	126.934	
Ice ratio (%)	14%	
Ice entrampment (%)	40%	
Transfer (m³)	0	


South Cell TSF deposition plan December 2017

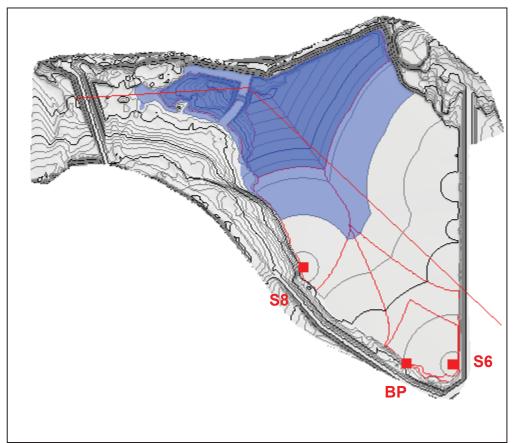
Duration	Deposition Point	Tonnes	Elevation (m)
25	S1	281,246	140.034
5	S3	56,249	140.286
1	ВР	11,250	140.834


MODEL INPUT		
Pond Volume (m3)	849,219	
Ice thickness (m)	0.80	
Tonnes (t)	348,410	

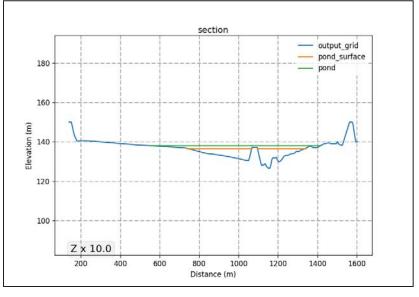
MODEL OUTPUT		
Total water volume (m³)	849,219	
Free water volume (m³)	628,422	
Ice volume (m³)	286,121	
Pond elevation (m)	137.759	
Free water elevation (m)	136.966	
Pond bottom elevation (m)	127.751	
Ice ratio (%)	26%	
Ice entrampment (%)	46%	
Transfer (m³)	0	


South Cell TSF deposition plan January 2018

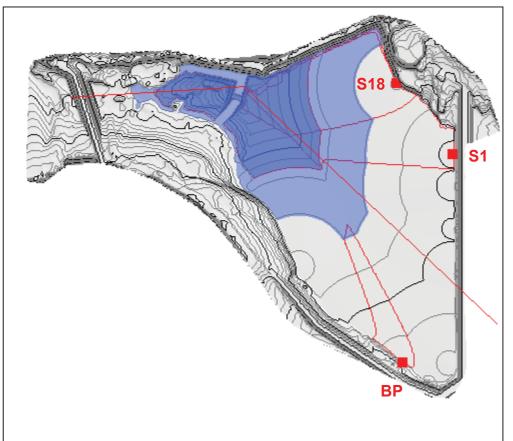
Duration	Deposition Point	Tonnes	Elevation (m)
13.5	S2	121,573	140.4
6	S4	54,033	140.812
11	S7	99,060	140.727
0.5	ВР	4,503	140.96


MODEL INPUT		
Pond Volume (m3)	775,747	
Ice thickness (m)	1.10	
Tonnes (t)	279,000	

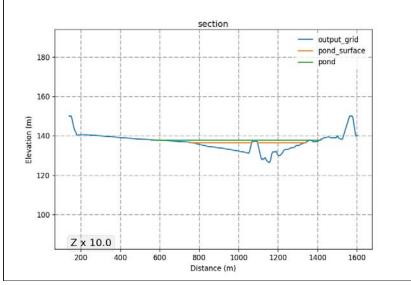
MODEL OUTPUT		
Total water volume (m³)	775,747	
Free water volume (m³)	504,236	
Ice volume (m³)	244,732	
Pond elevation (m)	138.005	
Free water elevation (m)	136.900	
Pond bottom elevation (m)	128.351	
Ice ratio (%)	35%	
Ice entrampment (%)	46%	
Transfer (m³)	0	


South Cell TSF deposition plan February 2018

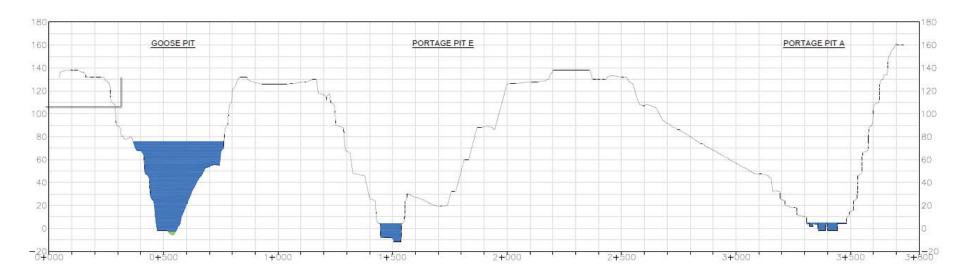
Duration	Deposition Point	Tonnes	Elevation (m)
20	S8	180,004	139.417
7.5	S6	67,502	142.334
0.5	ВР	4,500	141.094


MODEL INPUT		
Pond Volume (m3)	636,752	
Ice thickness (m)	1.30	
Tonnes (t)	252,000	

MODEL OUTPUT		
Total water volume (m³)	636,752	
Free water volume (m³)	404,776	
Ice volume (m³)	272,986	
Pond elevation (m)	138.003	
Free water elevation (m)	136.700	
Pond bottom elevation (m)	129.260	
Ice ratio (%)	43%	
Ice entrampment (%)	46%	
Transfer (m³)	0	

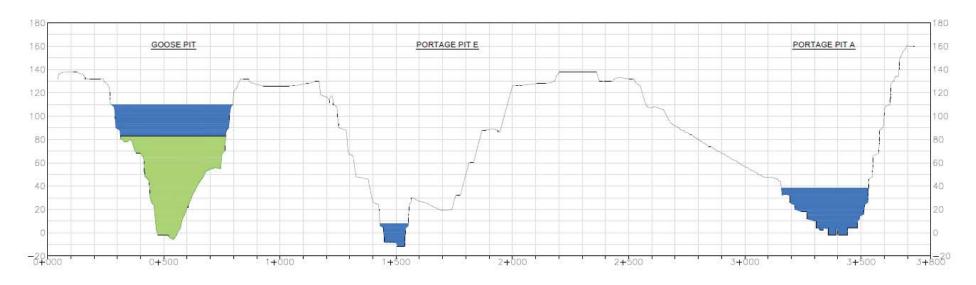

South Cell TSF deposition plan March 2018

Duration	Deposition Point	Tonnes	Elevation (m)
14.5	S1	130,973	140.365
16	S18	144,522	139.161
0.5	BP	4,516	141.726


MODEL INPUT		
Pond Volume (m3)	436,752	
Ice thickness (m)	1.60	
Tonnes (t)	279,000	

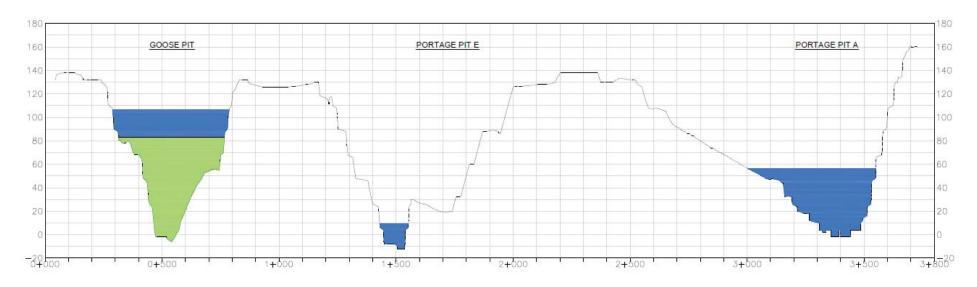
MODEL OUTPUT		
Total water volume (m³)	436,752	
Free water volume (m³)	305,641	
Ice volume (m³)	207,828	
Pond elevation (m)	138.049	
Free water elevation (m)	136.743	
Pond bottom elevation (m)	130.558	
Ice ratio (%)	48%	
Ice entrampment (%)	46%	
Transfer (m³)	0	

Goose and Portage Pits TSF deposition plan March 2018


Month before start of deposition in Goose Pit

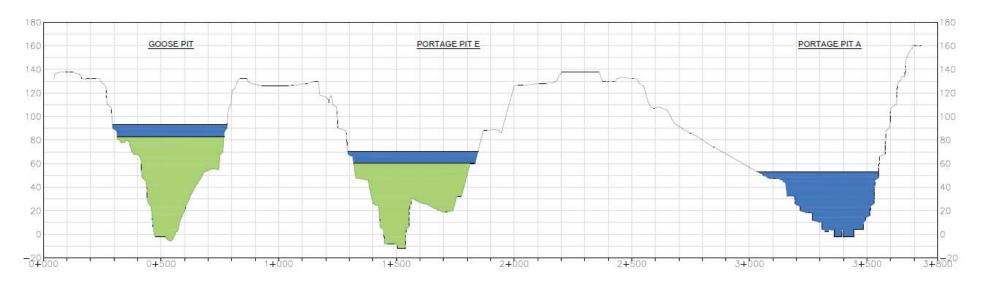
Model Output	Goose Pit	Portage Pit E	Portage Pit A
Water elevation (masl)	-3	-13	-3
Water volume (m³)	1,515,159	82,881	18,193
Tailings elevation (masl)	75.96	4.47	5.15
Tonnes (t)	0	0	0
Cumulative tonnes (t)	0	0	0

Goose and Portage Pits TSF deposition plan September 2018


End of deposition in Goose Pit

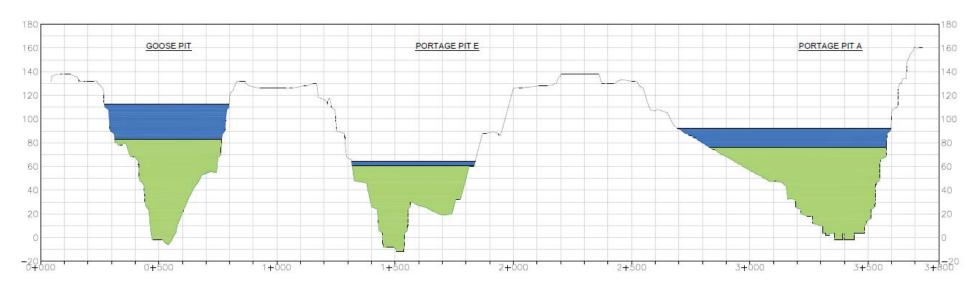
Model Output	Goose Pit	Portage Pit E	Portage Pit A
Water elevation (masl)	82.75	-13	-3
Water volume (m³)	2,610,408	155,294	611,757
Tailings elevation (masl)	109.94	7.57	38.08
Tonnes (t)	1,494,251	0	0
Cumulative tonnes (t)	1,494,251	0	0

Goose and Portage Pits TSF deposition plan June 2019


Month before start of deposition in Portage Pit E

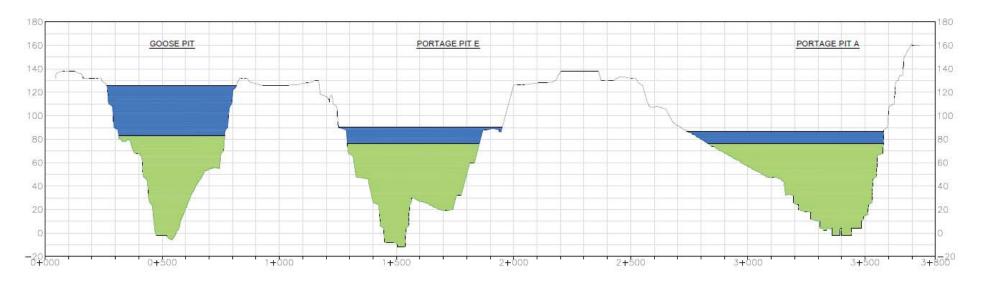
Model Output	Goose Pit	Portage Pit E	Portage Pit A
Water elevation (masl)	82.75	-13	-3
Water volume (m³)	2,283,156	197,696	1,522,269
Tailings elevation (masl)	106.5	9.3	56.22
Tonnes (t)	1,494,251	0	0
Cumulative tonnes (t)	1,494,251	0	0

Goose and Portage Pits TSF deposition plan June 2020


End of deposition in Portage Pit E

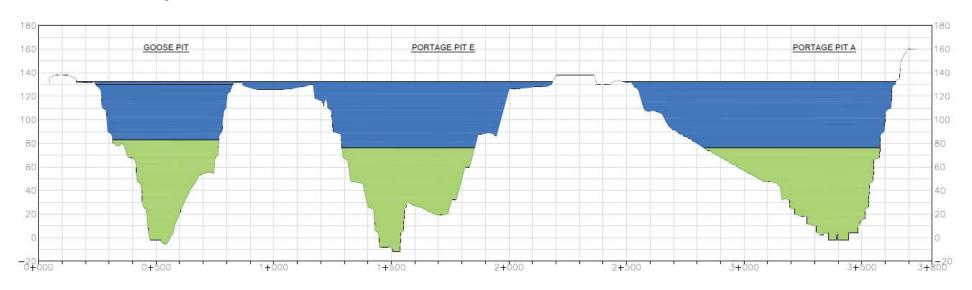
Model Output	Goose Pit	Portage Pit E	Portage Pit A
Water elevation (masl)	82.75	60.63	-3
Water volume (m³)	1,127,691	1,603,299	1,329,661
Tailings elevation (masl)	93.04	70.57	53.23
Tonnes (t)	1,494,251	3,285,000	0
Cumulative tonnes (t)	1,494,251	3,285,000	0

Goose and Portage Pits TSF deposition plan May 2021


End of deposition in Portage Pit A

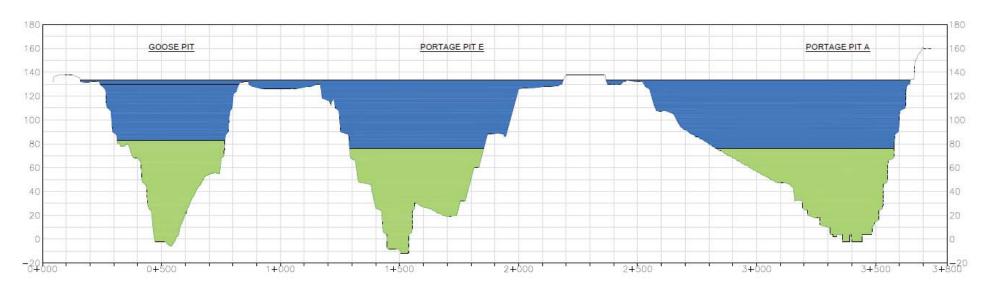
Model Output	Goose Pit	Portage Pit E	Portage Pit A
Water elevation (masl)	82.75	60.63	76.23
Water volume (m³)	2,935,040	771,092	5,233,048
Tailings elevation (masl)	112.94	64.63	92.44
Tonnes (t)	1,494,251	3,285,000	3,011,250
Cumulative tonnes (t)	1,494,251	3,285,000	3,011,250

Goose and Portage Pits TSF deposition plan January 2022


End of deposition in Portage Pit E and End of Deposition

Model Output	Goose Pit	Portage Pit E	Portage Pit A
Water elevation (masl)	82.75	76.05	76.23
Water volume (m³)	4,673,337	3,035,588	4,433,349
Tailings elevation (masl)	125.96	90.43	86.8
Tonnes (t)	1,494,251	5,267,894	3,011,250
Cumulative tonnes (t)	1,494,251	5,267,894	3,011,250

Goose and Portage Pits TSF deposition plan December 2026


End of Pit Reflooding

Model Output	Goose Pit	Portage Pit E	Portage Pit A
Water elevation (masl)	82.75	76.05	76.23
Water volume (m³)	5,456,873	17,056,881	14,389,980
Tailings elevation (masl)	129.93	132.57	132.61
Tonnes (t)	1,494,251	5,267,894	3,011,250
Cumulative tonnes (t)	1,494,251	5,267,894	3,011,250

Goose and Portage Pits TSF deposition plan December 2031

End of Monitoring Period

Model Output	Goose Pit	Portage Pit E	Portage Pit A
Water elevation (masl)	82.75	76.05	76.23
Water volume (m³)	5,456,873	18,403,427	14,984,757
Tailings elevation (masl)	129.93	133.6	133.6
Tonnes (t)	1,494,251	5,267,894	3,011,250
Cumulative tonnes (t)	1,494,251	5,267,894	3,011,250

Conclusions

- In March 2018, free water volume observed in the South Cell TSF is below 250,000m³.
- South Cell Internal Structure seems to perform well by blocking the tailings beach to reach the reclaim barge located near SD3. This structure really secure operation of the South Cell during the winter 2018.
- After completion of the deposition in the South Cell TSF in March 2018, AEM estimated 3.25Mm³ of residual storage capacity in this pond.
- After completion of the Whale Tail Phase 1 LOM, the pits still have a combine residual capacity of 29,9M tonnes of tailings for future project.