Summary of How the Concerns in Environment and Climate Change Canada's Final Written Submission to the Nunavut Water Board Regarding the Whale Tail Pit Project Were Addressed

ECCC#1:

North Wall Pushback of Whale Tail Pit

Summary of the issue:

The environmental risks and benefits of removing approximately half of the exposed north wall ultramafic material from the Whale Tail pit (i.e., a north wall pushback) had not been fully quantified or discussed.

ECCC Recommendation	Purpose of Recommendation	Resolution
ECCC recommended that the	Assess the potential risks and	The Proponent confirmed that
Proponent conduct an	benefits to the aquatic receiving	the north wall pushback would
alternatives analysis of the pit	environment from the north wall	be the preferred design over
design with and without the	pushback option.	base case and provided a revised
north wall pushback scenario.		sensitivity analyses on water
The alternatives analysis should		quality modelling on August 10,
consider the entire life of mine		2017 to Indigenous and
and through post-closure.		Northern Affairs Canada, Kivalliq
		Inuit Association and ECCC,
		which outlined the benefits of
		the north wall pushback. In
		addition, the Proponent
		provided a summary of the
		completed evaluations in their
		response to final written
		submissions.

ECCC#2:

Sensitivity Analyses on Water Quality Modeling

Summary of the issue:

The Proponent provided sensitivity analyses for a range of modeled conditions which highlight the potential for problems to arise if conditions are not as predicted (i.e. potential increase in arsenic and phosphorus loadings that could affect the receiving environment).

phosphorus loadings that could affect the receiving environment).				
ECCC Recommendation	Purpose of Recommendation	Resolution		
ECCC recommended that the	Ensure management plans will	In their response to final written		
Proponent submit detailed	include provisions to prevent,	submissions, the Proponent		
management plans to be	mitigate, monitor and address	agreed with ECCC's		
implemented for:	potential water quality issues.	recommendations and noted the		
 waste rock segregation 		management plans where		
and testing,		contingency measures would be		
 thermal monitoring of 		found. The Proponent also		
waste rock and		committed to updating the		
 seepage management 		models with monitoring data		
and monitoring.		obtained throughout the		
		construction and operation		
Plans should include a schedule		phases in order to validate		
for reporting of results and		predictions.		
periodic updating of predictions				
for the waste rock storage				
facility pond quality, along with				
proactive planning for optimal				
cover conditions. Contingency				
measures should be identified as				
appropriate.				
Monitoring results for receiving				
waters should be compared to				
model predictions and				
thresholds identified for				
management actions should				
trends indicate water quality				
objectives may be exceeded.				

ECCC#3:

waters.

Effluent Quality Criteria

ECCC Recommendation

Summary of the issue:

The effluent quality criteria for some parameters could be reduced to reflect achievable levels.

levels.

ECCC recommended the effluent quality criteria be set based on concentrations that are achievable and that minimize discharge levels to receiving waters. Effluent quality criteria

should be applicable to all mine-

related discharges to surface

This recommendation provided general guidance and also specifically addressed proposed effluent quality criteria for aluminum, iron, lead and zinc, which were subsequently reduced to reflect achievable

Purpose of Recommendation

ECCC also provided input through discussions with the Proponent to ensure the effluent quality criteria parameters and limits are appropriate.

Resolution

Through discussions with the Proponent via email, telephone, and in-person, effluent quality criteria were agreed upon by both parties. The email exchange occurred on August 24, 2017 when the Proponent had updated the effluent quality criteria for iron, lead, and zinc. ECCC indicated that in addition to these three parameters, effluent quality criteria should be developed for ammonia, total dissolved solids, cadmium, and mercury. The telephone discussion occurred on August 28, 2017 to discuss all effluent quality criteria and the in-person meeting occurred on September 25, 2017 in Baker Lake to finalize the effluent quality criteria for mercury.

ECCC#4:

Sludge Management

Summary of the issue:

The Proponent considered disposing of thickened sludge either within the waste rock storage facility or encapsulated within the attenuation pond.

ECCC recommendation ECCC recommended that sludge be disposed using methods that have been demonstrated to provide effective containment and isolation under Northern conditions. Therefore, ECCC recommended disposing of sludge into the Waste Rock Storage Facility or the Tailings Storage Facility at Meadowbank, rather than into the attenuation pond/Whale Tail Lake.

Purpose of Recommendation Prevent disposal of sludge in the attenuation pond because this site will ultimately become submerged within Whale Tail Lake upon re-flooding of the north basin. Disposal in the attenuation pond would result in sludge waste within the lakebed of Whale Tail Lake (North Basin) in perpetuity with no way to manage potential environmental effects, such as migration of contaminants from the sludge into Whale Tail Lake over time.

In the Proponent's final written submission, the Proponent agreed to dispose of the sludge into the Waste Rock Storage Facility rather than into the attenuation pond.

Resolution

ECCC#5:

Mercury Study

Summary of the issue:

The Arctic is an untested environment with respect to mercury modeling for impoundment.

ECCC Recommendation ECCC recommended conducting a separate study during the construction, operations, and closure of the flooded areas to address key uncertainties (Arctic environment, ice rafting, tundra soils, ice cover, interrupted discharge, cold water, slow fish growth, and shortened reservoir life) that were identified in the Azimuth report (February 2017), in order to inform mercury modeling for this Project. Adaptive management actions should be considered based on the results from this study.

Purpose of Recommendation Investigate key uncertainties (i.e. ice rafting, tundra soils, ice cover, interrupted discharge, cold water, slow fish growth and shortened reservoir life) to contribute to understanding mercury dynamics in a Northern impoundment scenario and to improve mercury predictions for fish, other aquatic biota, sediment, and water quality.

Resolution In their response to final written submissions, the Proponent agreed with ECCC's recommendation and proposed a term and condition to conduct a separate mercury monitoring program alongside the Core Receiving Environment Monitoring Program and the Fisheries and Offsetting Monitoring Plan, with results compared to model predictions. The Proponent also indicated (during the September 25, 2017 meeting) that it would include triggers and thresholds for total mercury and methylmercury within this monitoring program.

ECCC#6:

Sediment Core Analyses

Summary of the issue:

ECCC noted that sediment core analysis was limited to metals only and had asked the Proponent to conduct a full suite of testing. During the technical meeting, the Proponent indicated that there was insufficient material to conduct a full suite of testing.

ECCC Recommendation	Purpose of Recommendation	Resolution
ECCC recommended that a full	To allow comparisons with	On August 8, 2017 via email, the
suite of testing be conducted on	Ekman data and support	Proponent was able to confirm
sediment core samples.	interpretation of benthic data.	with ECCC that they have been
Recommended analyses		analysing their sediment grab
included pH, metals, particle		samples for a full suite of testing
size, Total Organic Carbon, Total		and indicated that they will
Phosphorus, and moisture		continue to do so. Sediment core
content.		samples will be collected in 2017
		(for analysis of moisture, metals
		and pH). This is also outlined in
		the Proponent's response to
		final written submissions.