Appendix C4

Report: 2008 Groundwater Quality Monitoring Program, Meadowbank Mine

TECHNICAL MEMORANDUM

DATE January 14, 2008 **PROJECT No.** 08-1428-0008

Doc. No 801 Ver. 0

TO Stéphane Robert

Agnico-Eagle Mines Limited Meadowbank Division

CC Dan Walker

RE: 2008 GROUNDWATER QUALITY MONITORING PROGRAM

MEADOWBANK MINE

1.0 INTRODUCTION

This document provides a summary of the 2008 groundwater monitoring program carried out at the Meadowbank Mine site including a description of the new monitoring well installations, and presentation of water quality results from sampling conducted in 2008. Completion of the groundwater monitoring program is a condition of the Meadowbank Project Certificate No.004 issued by the Nunavut Impact Review Board (NIRB) in December 2006 and of the Water License No. 2AM-MEA0815 issued by the Nunavut Water Board (NWB) in June 09, 2008.

Table 2 of Schedule 1 of the Meadowbank Water License states that groundwater must be monitored annually for Group 3 chemical parameters which, per Table 1 of this Schedule, include: pH, turbidity, alkalinity, hardness, ammonia nitrogen, nitrate, nitrite, chloride, fluoride, sulphides, total dissolved solids (TDS), total and free cyanide for wells in the groundwater flow path of the tailing storage facility, and the following dissolved metals: aluminum, arsenic, barium, cadmium, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium and zinc.

1.1 Background

The proposed Goose Island and Portage open pits will be developed within a through talik (unfrozen ground that extend to the base of the permafrost) underneath Third Portage Lake. The proposed tailings storage facility in the basin of the North arm of Second Portage Lake is also over a through talik. Groundwater monitoring wells have been installed to characterize baseline groundwater quality in the talik, in each of the three main lithologies that will be removed by mining: Iron Formation (IF), Intermediate Volcanic (IV) and Ultramafic (UM) rock. The objective of the groundwater sampling program initiated in 2003 was two-fold:

- To measure the salinity of the deep groundwater to calibrate the pit groundwater inflow component of the site water quality model; and
- To benchmark pre-mining groundwater quality against which to measure the effects of mining on groundwater quality, if any.

To this end, groundwater flow and quality data has been collected from the Portage area since 2003 and have been used as input into the water quality model for the site (Golder, 2005; 2007; 2008). The Vault area

groundwater is not monitored because the talik present under Vault Lake does not extend through the permafrost.

Four monitoring wells were installed at the site in 2003, three of which developed internal damage after sampling and could no longer be operated (Golder, 2004a; 2004b). In 2006, the three defective monitoring wells were replaced but became inoperable in 2007. Maintenance and replacement of monitoring wells is a condition of the Meadowbank NIRB project certificate and Water Licence. A more robust monitoring well design was installed in 2008. The new wells are placed outside the maximum footprint of the open pits to allow continued monitoring throughout mine life. Figure 1 shows the locations of the groundwater monitoring wells at Meadowbank.

The monitoring wells installed prior to the 2008 program were designed to allow repeated sampling at each monitoring point, but with time, usage, and permafrost conditions, the equipment developed failures that rendered the wells inoperable. The objective of the new design was to maintain dry conditions in the well pipe and well annulus to avoid freeze-thaw pressures and to facilitate subsequent sampling events. The new design includes redundant systems to minimize repetitive freezing of the instrumentation and to facilitate accessibility of the monitoring wells throughout the mine life. Table 1 describes the borehole information for each operable well sampled in 2008.

Table 1: Monitoring Well Borehole Information

Monitoring Well ID	Screened Interval Lithology	Length of Borehole (m)	Inclination (degrees)	Screened Interval Depth Along Borehole (m)	Vertical Depth of Screened Interval (m)	Drilling and Well Installation Year
MW03-01	UM	200	-50	185-200	142-154	2003
MW08-02	IV	200	-60	170-200	147-173	2008
MW08-03	IV	200	-60	170-200	147-173	2008

Note: MW03-01, MW03-02, MW03-02, MW06-01, MW06-02 and MW06-03 are no longer operable.

Site climate only allows for drilling and sampling over a short window of time between June and September inclusively. Replacement of the monitoring well located south of the proposed tailing basin was planned for 2008 but was not carried out because of a change in the location, requiring the well be extended. This was not possible with the planned well design. No wells were installed in IF rock as it is reached from land on Goose Island, and this location was not accessible in summer 2008.

2.0 2008 MONITORING WELL INSTALLATIONS

2.1 Boreholes

The two boreholes drilled for the replacement monitoring wells MW08-02, and MW08-03 were drilled using standard PQ and HQ size coring method. Heated water from the Second Portage Lake was used as drilling fluid during drilling. The boreholes were drilled to 200m depth along a 60 degree angle. Each borehole was cased to 20 m past the anticipated base of the permafrost using HWT flush-joint casing. The geological information used to was based on the core recovered from each borehole. The first 170 meters of the MW08-02 borehole were drilled without core recovery; the screened interval core was collected to confirm the target lithology. The full length of MW08-03 borehole was logged. Agnico-Eagle geologists logged the core from both boreholes, the geological information is presented on Figures 2 and 3. The well locations in UTM coordinates are presented in Table 2.

08-1428-0008 Doc. No 801 Ver. 0 January 14, 2008

Table 2: New Monitoring Well Locations

2008 Monitoring Well ID	Collar Location	UTM Co	ordinates	Azimuth (from true north)	Dip	Borehole depth
		Easting	Northing			
MW08-02		639185.90	7213901.29	010	60	200 m
MW08-03		639282.24	7214483.46	200	60	200 m

2.2 Monitoring Well Instrumentation

Figure 2 and 3 provide installation details for the two monitoring wells installed in 2008. The wells were constructed with 1.5-inch diameter, schedule 40 stainless steel pipe and 18 m long 2-inch diameter stainless steel screen. The annulus between the casing and the monitoring well pipe was sealed at the base of the casing (169 m depth) with a pneumatic packer inflated with propylene glycol (a non-toxic and biodegradable liquid with low freezing point). This isolated the annular space between the borehole casing and the monitoring well pipe from the borehole interval below the permafrost. A small diameter double valve pump (DPV) driven by inert nitrogen gas was fixed to the outside of the riser pipe to allow removal of water from the well annulus above the packer to keep this area dry and minimize the potential for frost damage to the outside of the monitoring well pipe. A smaller diameter stainless steel pneumatic packer was installed inside of the monitoring well pipe immediately above the screen interval to prevent freezing of the inside of the monitoring well pipe throughout the permafrost. After sample collection, the inside packer is inflated and a portable DPV pump is used to evacuate water above this packer and keep the well pipe dry between the sampling events.

A heating cable was attached to the outside of the monitoring well pipe through the entire anticipated interval of permafrost. The heating cables prevent water from freezing during sampling, and constitute a back-up system to melt the ice inside the monitoring well in case of a packer failure.

2.3 Monitoring Well Development

Prior to sampling, each new well was purged using compressed air and flexible 5/8-inch (o.d.) high density polyethylene (HDPE) WaTerra® tubing to remove materials introduced into the wells during drilling and well installation. Groundwater was continually airlifted from the wells until the filed readings of electrical conductivity, total dissolved solids (TDS), and pH stabilized (values remaining within 10% for three consecutive readings). Field parameter readings and descriptions of water clarity and colour observed during well purging are included in groundwater sampling data sheets in Appendix I.

Well MW03-01

Because the 2003 monitoring wells did not include a packer seal above the screen interval the ice present in the annulus of the well and in the well pipe had to be thawed for purging and sampling. The heating cables of MW03-01 were energized with a diesel generator for 7 days to thaw water in the riser pipe and allow access to the screened interval for sampling. After the ice melted the melt water was purged to induce the flow of fresh groundwater from the rock formation. At the end of purging the water coming out of the well was clear and relatively free of sediment. The well pipe and equipment remained in good condition during this process. Approximately 2 standing well volumes (defined as the volume of standing water in the piezometer relative to the regional groundwater table) were purged from this well over 5 days prior to sampling (373 litres). The sampling pump intake point was positioned at 170 m depth, slightly above the screened interval.

Well MW08-02

Approximately 8 well volumes of water were purged from this monitoring well over 5 days prior to sampling. The sample pump intake point was positioned at 167 m depth, above the screened interval. At the end of purging, the water coming out of the well was clear and relatively free of sediment. During development and after

Agnico-Eagle Mines Limited Meadowbank Division

deployment of the casing packer, the heat cable (energized to keep the well water from freezing) melted the nylon lines that were part of the DVP pump system used to remove water from the well annulus above the casing packer. Consequently, the water between the casing and the monitoring well pipe could not be removed. The inside packer was therefore not inflated after sampling to allow groundwater to rise into the well pipe and equalize the freezing pressure on both sides of the well pipe wall. As a consequence, the follow up monitoring rounds will require activation of the heater cables to melt the ice in the well prior to sampling.

Well MW08-03

For the installation in monitoring well MW08-03 the lead tubings for the permanent DVP pump were changed from nylon to stainless steel. This design change allowed the evacuation of the water from the well annulus above the main casing packer as planned with the heat trace cables being energized. After this task was completed the well was purged to remove materials that were introduced into the well during drilling and to induce the flow of fresh groundwater from the rock formation. Approximately 13 monitoring well volumes (2180 litres) were purged from this monitoring well over 3 days period prior to sampling. The sample pump intake point was positioned at 167 meter depth, above the screened interval. At the end of purging the water coming out of the well was clear, relatively free of sediment, and the monitoring equipment remained in good condition.

3.0 GROUNDWATER SAMPLING

3.1 Groundwater Sampling Procedure

Groundwater samples were collected immediately after well purging using a Solinst® stainless steel Double Valve Pump (DVP) and $\frac{1}{4}$ " Low Density Polyethylene (LDPE) tubing. Compressed nitrogen gas was used to induce the groundwater movement through the sampler unit. Nitrogen gas is stable and avoids alteration of groundwater chemistry during sampling. Water sampling was carried out according to the guideline procedures described by the USEPA (2002). Indicator parameters (conductivity, pH, alkalinity and dissolved oxygen) were measured during the well development, purging, and sampling. Readings were recorded on groundwater sampling data sheets (Appendix I and Tables 2 and 3). Groundwater samples were collected in clean, laboratory-supplied containers. Where required, preservatives were added to the sample bottles prior to sample collection, to minimize chemical alteration during transport to the laboratory. Samples analyzed for dissolved metals were filtered through a 45 μ m inline filter and preserved on-site prior to shipping.

3.2 Laboratory Analyses

All groundwater samples were stored in coolers with ice packs and sealed before being shipped to Maxxam Analytics of Montreal, Québec for chemical analyses. Groundwater was analyzed for parameters stated in the Water License. Samples were collected under Chain-of-Custody (COC) procedures for shipping to Maxxam. A copy of the COC form and certificate of analysis are included in Appendix I.

3.3 Comparative Guidelines

Groundwater quality data is compared to Third Portage Effluent Discharge Limits stated in the Meadowbank Water License for illustrative purposes only. Constituent concentrations are defined for total rather than dissolved phases in the License.

3.4 Quality Assurance/Quality Control

Guideline procedures provided by the USEPA (2002) were followed to ensure that the samples collected from the wells were representative of water flowing through the targeted rock formations. These procedures included the following:

- measurement of field parameters at selected intervals until stable readings (within 10% of each other) were acquired;
- minimizing the exposure of the sampled water to the atmosphere;

08-1428-0008 Doc. No 801 Ver. 0 January 14, 2008

- using compressed, inert gas (nitrogen) to evacuate samples;
- conducting in-situ measurements of sensitive chemical parameters (pH, conductivity, dissolved oxygen, alkalinity, where applicable);
- keeping the samples refrigerated on ice from the time of collection until shipment to the laboratory; and
- shipping the samples to the laboratory in temperature-regulated coolers within the specified sample holding times.

Upon collection of each sample, standard chain of custody procedures were adhered to.

A duplicate (FD) sample was collected for each groundwater sample and one sample blank was collected. The relative percent difference (RPD) was calculated for the pair of FD samples, and evaluated for reproducibility or results. For results greater than or equal to five times the method detection limit (MDL), a water quality objective of 20% RPD or less was established as per USEPA recommended methods (USEPA, 1994). Where one or both results of the duplicate pair were less than 5 times the MDL, a margin of +/- MDL was considered acceptable.

4.0 RESULTS

4.1 Groundwater Chemistry

The results of the groundwater analyses collected during the 2003, 2004, 2006, 2007 and 2008 sampling events are presented in Tables 3 and 4 at the end of the text.

Since salinity of groundwater was of interest in predictive modelling of the quality of open pit inflows during operation, the concentration of salinity constituents measured are presented in Table 5.

Table 5: Concentration of Constituents that relate to Groundwater Salinity

Monitoring Well	Lithology	sample year	TDS** (mg/L)	Conductivity (uS/cm)	Chloride (mg/L)
MW03-01	UM	2003	793	1855	626
		2004	1335	2900	845
		2006	315*	460*	81*
		2007	389	588	126
		2008 ⁵	1100	3200	950
MW08-02	IV	2008	399	808**	160
MW08-03	IV	2008	215	490	3.3

Note: 1. * average value; **field measurement.

Well MW03-01

One groundwater sample and one duplicate were collected in September 2008. Table 5 shows that the concentration of salinity components in 2008 is higher than in 2007 and 2006 but of similar range than 2004 and 2003 values. Dissolved metals and metalloid concentrations at this location in 2008 do not differ appreciably from those reported in 2004 but are slightly higher than reported in 2006 and 2007, with some exceptions. In 2008, the sulphate concentration (6.0 mg/L) is the lowest concentration measured to date.

Wells MW08-02 and MW08-03

Groundwater was sampled from monitoring wells MW08-02 and MW08-03 in September 2008. Results are compared to each other and to those obtained to date at MW03-01 for illustrative purposes. Salinity components

at these locations are within the range of values measured at MW03-01 except for chloride which is much lower at MW08-03 in 2008. Sulphate is also lower in MW08-02 groundwater. Most parameter concentrations met Portage Effluent criteria at both locations, except for turbidity, TSS, and dissolved nitrate at MW08-03.

4.2 Quality Assurance/Quality Control

All groundwater samples were collected in duplicate in 2008. Both the sample and duplicate were analyzed for the same suite of parameters. Table 6 presents the Relative Percent Difference (RPD) calculated from each duplicated result, per the following:

RPD = <u>absolute [difference (concentration of a given parameter)]</u> x 100 [average (concentration of a given parameter)]

The large majority of analytical results have adequate repeatability, as the RPD values are generally less than the target level of 20% with few exceptions of higher RPD, including copper at all 3 wells; lead at MW08-03, sulphate at MW08-02; and alkalinity, turbidity, TSS and aluminum at MW03-01.

5.0 CONCLUSION

The 2008 groundwater monitoring program was conducted between mid-August and mid-September 2008. The start and duration of the program was dictated by the mine construction activities, the delivery of the monitoring well equipment to the project site and the demobilization of the dedicated drilling equipment out of the site in mid September (shipping requirements). This time period allowed for the successful installation and sampling of two replacement wells in 2008.

The turbidity and suspended solids present in groundwater at well MW08-03 most likely result from drilling where particles may have been introduced into the groundwater during sampling rather than being representative of formation water. The source of nitrates in groundwater from this well is not known. On site contamination is not considered likely since no nitrogen products were used during the drilling, development nor sampling.

The new design of the replacement monitoring wells is more robust, and includes redundant systems to minimize frost impact on the instrumentation. However, the actual performance of the wells under winter conditions is unknown at this time. Given this, together with the following:

- Modifications must be made to the current design to accommodate the new location;
- The high cost of the installation; and,
- Tailings will not be placed in the tailings basin in 2009 (therefore, no changes to baseline chemistry are anticipated in 2009).

It is therefore recommended that consideration be given to postponing the replacement of the well underneath the tailing basin until the performance of the individual components of the newly installed wells are evaluated to allow modifications to the design, if necessary and to evaluate if changes to the well design required by the new location are appropriate. The tailings basin well would be replaced in 2010.

GOLDER ASSOCIATES LTD.

Denis Vachon, B.Sc.

Mine Water Management Group

DV/VB/lw

Attachments: Tables 3, 4 and 6

Figures 1, 2; and 3

Appendix I

n:\active\2008\0_mining\08-1428-0008 meadowbank 2008\reports\2008 gwter quality\final\doc 801_011409 tm 2008 gwtr quality monitoring - ver 0.doc

Valérie Bertrand, M.A.Sc., P.Geol. (NU, NWT)

Associate, Geochemist

REFERENCES

Agnico-Eagle Mines Ltd. 2007. Groundwater Monitoring at the Meadowbank Project Site. Letter submitted to Nunavut Impact Review Board. August 17, 2007.

Canadian Council of Ministers of the Environment (CCME), 2006. Canadian Environmental Quality Guidelines for the Protection of Freshwater Aquatic Life.

Golder Associates Ltd. 2007. Report on Water Quality Predictions, Meadowbank Gold Project, Nunavut. August 2007.

Golder Associates Ltd., 2006. Meadowbank Gold Project – 2006 Baseline Groundwater Quality. December 4, 2006.

Golder Associates Ltd., 2005. Report on Mine Site Water Quality Predictions, Meadowbank Gold Project, Nunavut. October 2005.

Golder Associates Ltd., 2004a. Meadowbank Baseline Groundwater Quality. April 26, 2004.

Golder Associates Ltd., 2004b. Meadowbank 2004 Baseline Groundwater Quality. October 19, 2004.

USEPA, 1994. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC, February 1994.

USEPA, 2002. Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers. Ground water Forum Issue Paper. EPA 542-S-02-001

Groundwater Quality Results Agnico-Eagle Mines Ltd Meadowbank Division

						Ultramafic Rock	(Ire	on Formation Ro	ock	Intermediate	Intermediate Volcanic Rock		e Volcanic		Method
		Ī				Goose Island					Goose Island		North	Portage	Second Portag	e Arm (tailings al area)	Field Blank 2008	Detection
						MW03-01				MWC	03-02	MW06-06	MW	03-03	MW03-04	MW06-07	='	Limit
Laboratory sar Sa	nple number mpling date QA/QC	units	9755-2 07-Sep-03	9044-01 Aug-7-04	12393-01 Aug-8-06	12395-01 Aug-14-06	8581-01 Aug-17-07	F66745 15-Sep-08	F68109 15-Sep-08 FD	9756-03 28-Sep-03	9043-01 Jul 31-04	12567-01 24-Aug-06	9756-02 25-Sep-03	9045-01 Aug-9-04	9756-01 18-Sep-03	12568-01 30-Aug-06	F66751 39706	
FIELD-MEASURED PA	RAMETERS	;																
Temperature		°C	11.7	8	7.7	9.9	6.7	1.0	-	3.5	12	12.4	2.2	10.3	3.3	5	-	-
pН		s.u.	7.36	8.03	7.93	7.58	7.43	6.70	-	7.68	7.19	7.59	8.63	7.77	7.67	8	-	-
Conductivity		uS/cm	1855	2500	382	538	776	2100	-	660	1104	1306	350	627	370 - 450	440	-	-
Dissolved Oxygen		mg/L	2.0	2.0	8.6	4.8	3.8		-	0.8	7.0	1.2	1.0	1.5	-	8.0	-	-
Total Dissolved Solids		mg/L	793	1335	193	405	389	1100	-	-	-	650	-	-	-	220	-	-
LABORATORY PARA	METERS																	
pH		s.u.	7.24	7.46	-	7.36	6.78	7.9	7.8	7.04	7.25	7.33	7.83	7.96	-	7.54	-	-
Conductivity	0-000	uS/cm	-	2900	-	634	588	3200	3100	-	1270	1210	-	640		281	-	0.001
Total Alkalinity Dissolved Sulphate	CaCO3 SO4	mg/L	30 15.6	27.3 15.9	- 42.8	51 51.1	36.7 46.5	24 6.0	33 5.7	103 263	41.6 38.4	49.9 65.1	93.8 26.6	133 6.2	63.8	89 4	-	0.5
Hardness (Total)	304	mg/L mg/L	318	391	42.6 82	148	46.5 116	310	320	263 316	313	326	26.6 144	6.2 216	03.0	124	-	0.5
Total Suspended Solids	TSS	mg/L	-	13	-	4	2	5	7	310	96	16	-	1		11	_	
Turbidity	100	NTU	-	-	-	-	-	3.3	4.1	<u>-</u>	-	-	_	-	_	- ''	_	0.1
Dissolved Metals											L	L				I.	I	
Aluminum	Al	mg/L	0.051	0.005	0.3	< 0.005	< 0.005	0.0013	0.0068	0.47	0.019	< 0.005	0.018	0.006	0.72	0.04	<0.001	0.005
Arsenic	As	mg/L	<0.001	0.0038	0.0005	0.003	< 0.001	<0.0001	<0.0001	0.002	0.002	0.002	0.004	0.013	0.007	< 0.001	<0.001	0.0010
Barium	Ва	mg/L	0.12	0.3	0.025	0.051	0.048	0.25	0.25	0.023	0.086	0.018	0.018	0.048	0.03	0.086	0.0025	0.001
Cadmium	Cd	mg/L	0.00007	< 0.00004	< 0.00004	< 0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	0.00016	<0.0002	< 0.0002	0.00004	< 0.0002	< 0.0002	<0.0002	0.0002
Calcium	Ca	mg/L	65.6	94.2	17.6	33.7	24	73	75	63.1	73.5	87.1	26.3	47.1	15	31	-	0.05
Copper	Cu	mg/L	0.002	0.0004	0.0016	< 0.001	< 0.001	0.0015	0.0023	0.004	0.0014	0.001	< 0.001	0.0002	0.006	0.005	0.094	0.001
Iron	Fe	mg/L	< 0.05	0.08	0.84	0.2	< 0.05	<0.03	<0.03	1.91	0.05	<0.05	< 0.05	< 0.01	0.55	< 0.05	< 0.03	0.05
Lead	Pb	mg/L	<0.001	<0.0002	0.0014	< 0.001	< 0.001	0.00021	0.00020	0.001	< 0.0002	<0.001	<0.001	< 0.0002	0.006	< 0.001	0.0062	0.001
Magnesium	Mg	mg/L	23.4	35.1	7.76	16.1	11.4	31	32	32.1	30.2	24.0	17.1	22.4	3.81	6.83	-	0.05
Manganese	Mn	mg/L	0.06	0.381	0.286	0.980	0.700	0.43	0.44	0.96	0.492	0.006	0.1	0.130	0.049	0.032	-	0.001
Mercury	Hg	mg/L	-	<0.00002	<0.00002	< 0.00002	< 0.00002	<0.00001	<0.00001	<0.00002	< 0.02	<0.00002	<0.00002	< 0.02	<0.00002	< 0.00002	-	0.00002
Molybdenum	Мо	mg/L	<0.0005	0.0076	0.012	0.013	0.0079	0.0082	0.0078	0.018	0.014	0.0081	0.052	0.09	0.024	0.004	<0.0005	0.001
Nickel	Ni	mg/L	0.006	0.0026	0.0019	< 0.001	0.001	0.0015	0.0015	0.007	0.012	0.005	0.003	0.0018	0.003	0.002	0.0029	0.001
Potassium	K C-	mg/L	5.71	8.56	3.27	6.1	4.3	8.4	8.5	5.36	7.43	6.6	3.33	2.64	5.44	2.3	0.33	0.01
Selenium Silver	Se Ag	mg/L mg/L	<0.001 <0.0001	<0.0002 <0.00005	<0.0002 <0.00005	< 0.001 < 0.00025	< 0.001 < 0.00025	<0.001 <0.0001	<0.001 <0.0001	<0.001 <0.0001	< 0.0002 < 0.00005	<0.001 <0.00025	<0.001 <0.0001	< 0.0002 < 0.00005	<0.001 <0.0001	< 0.001 < 0.00025	<0.001 0.0001	0.001 0.0001
Thallium	Ag Ti	mg/L	<0.0001	<0.00005	<0.00005	< 0.00025	< 0.00025	<0.0001	<0.0001	<0.0001	< 0.00005	<0.00025	<0.0001	< 0.00005	<0.0001	< 0.00025	0.0001	0.0001
Zinc	Zn	mg/L	0.006	0.002	0.005	< 0.005	< 0.005	0.017	0.014	0.012	0.029	<0.005	<0.005	0.004	0.022	< 0.005	-	0.005
Dissolved Anions		9/ ⊏	2.300	5.30 <u>L</u>	3.300	1 0.000		0.017	5.511	5.512	0.020	10.000	10.000	0.501	3.322	- 0.000	1	0.000
Dissolved Anions Dissolved Fluoride	F	mg/L	< 0.05	0.12	0.16	0.16	0.18	<0.1	<0.1	0.35	0.6	0.55	0.46	0.38	0.34	0.2	_	0.05
Dissolved I Idonde Dissolved Chloride	Cl	mg/L	626	845	34.7	128	126	950	980	5.4	251	304	50.4	121	13.4	33.3	-	0.03
Nutrients		<u> </u>																
Total Nitrogen	N	mg/L					< 0.2	0.53	0.49								-	<0.02
Nitrate and Nitrite	NO3 + NO2	mg/L	< 0.01	< 0.01	< 0.01	-	-	<0.2	<0.4	< 0.05	< 0.05	-	0.15	< 0.05	< 0.05	-	-	0.01 / 0.05
Nitrate	NO3	mg/L	-	< 0.05	< 0.05	< 0.1	< 0.01	<0.02	<0.02	< 0.05	< 0.05	< 0.25	0.15	< 0.05	< 0.05	0.12	-	0.05
Ammonia Nitrogen	N	mg/L	0.38	-	0.21	-	0.14	-	-	0.19	0.07	-	0.08	-	-	-	-	0.01

Notes: Concentrations are mg/L unless otherwise noted. FD = Field Duplicate

Groundwater Quality Results Agnico-Eagle Mines Ltd Meadowbank Division

			Intermedia	te Volcanic		Method
			Second Porta	ige Lake Talik		Detection
		MWO	8-02	MWG	08-03	Limit
	ample number Sampling date QA/QC	F59984 08/09/2008	F59995 08/09/2008 FD	F66637 14/09/2008	F68088 14/09/2008 FD	
FIELD-MEASURED P.	ARAMETERS					=
Temperature (oC)		7.3	-	5.0	-	
pH (s.u.)		7.1	-	7.1	-	
Conductivity (uS/cm)		808	-	366	-	
Dissolved Oxygen (mg	/L)	9.9	-	10.3	-	
TDS (mg/L)	,	399	-	215	-	
LABORATORY PARA	METERS					=
TDS (mg/L)		500	520	-	-	-
pH (s.u.)		8.0	8.1	8.1	8.2	-
Conductivity (uS/cm)		-	-	490	480	0.001
Total Alkalinity CaCO3	(mg/L)	76	76	60	59	2
Dissolved Sulphate SC	04 (mg/L)	2.5	2.0	56	51	0.2
Hardness (Total) CaC(03 (mg/L)	240	230	180	180	1
Total Suspended Solid		-	-	56	54	2
Turbidity (NTU)	(0)	2.4	2.4	70	69	0.1
Dissolved Metals (mg	1/L)				•	•
Aluminum	Al	0.0046	0.00487	0.0046	0.0041	0.001
Arsenic	As	0.0035	0.0035	< 0.001	< 0.001	0.001
Barium	Ba	0.045	0.043	0.033	0.034	0.002
Cadmium	Cd	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0002
Calcium	Ca	50	48	46	46	1
Copper	Cu	0.00056	0.0011	0.003	0.0039	0.0005
Iron	Fe	< 0.03	< 0.03	< 0.03	< 0.03	0.03
Lead	Pb	< 0.0001	0.00027	0.00056	0.00027	0.0001
Magnesium	Mg	27	27	17	16	1
Manganese	Mn	0.030	0.031	0.32	0.32	0.0004
Mercury	Hg	< 0.00001	< 0.00001	<0.00001	<0.00001	0.00001
Molybdenum	Mo	0.026	0.025	0.14	0.14	0.0005
Nickel	Ni	0.019	0.019	<0.001	0.0017	0.001
Potassium	K	1.8	1.5	4.4	4.5	0.1
Selenium	Se	<0.001	<0.001	<0.001	<0.001	0.001
Silver	Ag	<0.001	<0.0001	<0.001	<0.0001	0.0001
Thallium	TI	<0.002	<0.002	<0.002	<0.002	0.002
Zinc	Zn	0.014	0.014	0.004	0.0035	0.001
Dissolved Anions (m	g/L)		· · · · · · · · · · · · · · · · · · ·			
Dissolved Fluoride	F F	0.2	0.2	0.3	0.3	0.1
Dissolved Chloride	CI	160	180	3.3	3.6	0.05
Nutrients (mg/L)					•	
Nitrate and Nitrite	NO3 + NO2	<0.1	<0.1	27	27	0.4
Dissolved Nitrate	NO3	-	-	26	26	0.4
Nitrite	NO2	<0.1	<0.1	1.1	1.2	0.02
Ammonia Nitrogen	N-NH3	<0.05	0.05	2.0	2.0	0.04

Notes: Concentrations are mg/L unless otherwise noted.

FD = Field duplicate

QA/QC of Groundwater Quality Results Agnico-Eagle Mines Ltd. Meadowbank Division

			Intermediat	te Volcanic			Intermedia	te Volcanic			Ultra	mafic	
			Second Po	rtage Lake			Second Po	rtage Lake			Goose	Island	
			MWO	8-02			MWC	08-03			MWC	3-01	
Laborato	ry sample number	F59984	F59995	Method		F66637	F68088	Method		F66745	F68109	Method	
	Sampling date QA/QC	08/09/2008	08/09/2008 FD	Detection Limit	RPD	14/09/2008	14/09/2008 FD	Detection Limit	RPD	15/09/2008	15/09/2008 FD	Detection Limit	RPD
LABORATORY PAR	RAMETERS												
TDS (mg/L)		500	520	10	3.9	-	-	-	-	-	-	-	-
pH (s.u.)		8.0	8.1	-	-	8.1	8.2	-	-	7.9	7.8	-	-
Conductivity (uS/cm)		-	-	-	-	0.49	0.48	0.001	2	3.2	3.1	0.001	3
Total Alkalinity CaCO	O3 (mg/L)	76	76	2	0	60	59	2	2	24	33	2	32
Bicarbonate Alkalinit	y HCO3 (mg/L)	76	76	2	0	-	-	-	-	-	-	-	-
Carbonate Alkalinity	CO3 (mg/L)	<2	<2	2		-	-	-	-	-	-	-	-
Dissolved Sulphate S	SO4 (mg/L)	2.5	2.0	0.1	22	56	51	0.2/0.5	9	6.0	5.7	0.1	5
Hardness (Total) Ca	CO3 (mg/L)	240	230	1	4	180	180	1	0	310	320	1	3
Turbidity (NTU)		2.4	2.4	0.1	0	70	69	0.1	1	3.3	4.1	0.1	22
Total Suspended So	lids (mg/L)	-	-	-	-	56	54	2	4	5	7	2	33
Total Metals (mg/L)													
Calcium	Ca	50	48	1	4	46	46	1	0	73	75	1	3
Magnesium	Mg	27	27	1	0	17	16	1	6	31	32	1	3
Dissolved Metals (r	ng/L)												
Aluminum	Al	0.0046	0.00487	0.001	6	0.0046	0.0041	0.001	11	0.0013	0.0068	0.001	136
Arsenic	As	0.0035	0.0035	0.001	0	< 0.001	< 0.001	0.001	-	< 0.0001	< 0.000	0.001	-
Barium	Ва	0.045	0.043	0.002	5	0.033	0.034	0.002	3	0.25	0.25	0.002	0
Cadmium	Cd	< 0.0002	< 0.0002	0.0002	-	< 0.0002	< 0.0002	0.0002	-	< 0.0002	< 0.0002	0.0002	-
Copper	Cu	0.00056	0.0011	0.0005	65	0.003	0.0039	0.0005	26	0.0015	0.0023	0.0005	42
Iron	Fe	< 0.03	< 0.03	0.03	-	< 0.03	< 0.03	0.03	-	< 0.03	< 0.03	0.03	-
Lead	Pb	< 0.0001	0.00027	0.0001	-	0.00056	0.00027	0.0001	70	0.00021	0.0002	0.0001	5
Manganese	Mn	0.030	0.031	0.0004	3	0.32	0.32	0.0004	0	0.43	0.44	0.0004	2
Mercury	Hg	< 0.00001	< 0.00001	0.00001	-	< 0.00001	< 0.00001	0.00001	-	<0.00001	< 0.00001	0.00001	-
Molybdenum	Mo	0.026	0.025	0.0005	4	0.14	0.14	0.0005	0	0.0082	0.0078	0.0005	5
Nickel	Ni	0.019	0.019	0.001	0	< 0.001	0.0017	0.001	-	0.0015	0.0015	0.001	0
Potassium	K	1.8	1.5	0.1	18	4.4	4.5	0.1	2	8.4	8.5	0.1	1
Selenium	Se	< 0.001	<0.001	0.001	-	<0.001	< 0.001	0.001	-	< 0.001	< 0.001	0.001	-
Silver	Ag	< 0.0001	<0.0001	0.0001	-	< 0.0001	< 0.0001	0.0001	-	< 0.0001	< 0.0001	0.0001	-
Thallium	TI	< 0.002	< 0.002	0.002	-	< 0.002	< 0.002	0.002	-	< 0.002	< 0.002	0.002	-
Zinc	Zn	0.014	0.014	0.001	0	0.0040	0.0035	0.001	13	0.017	0.014	0.001	19
Dissolved Anions (5 /												
Dissolved Fluoride ⁴	F	0.2	0.2	0.1	0	0.3	0.3	0.1	0	<0.1	<0.1	0.1	-
Dissolved Chloride	CI	160	180	1	12	3.3	3.6	0.05	9	950	980	5/10	3
Nutrients (mg/L)													
Total Nitrogen	N	-	-	-	-	-	-	-	-	0.53	0.49	0.02	8
Nitrate and Nitrite	NO3 + NO2	<0.1	<0.1	0.1	-	27	27	0.4	0	<0.2	< 0.4	0.2/0.4	-
Dissolved Nitrate ⁵	NO3	-	-	-	-	26	26	0.02	0	<0.02	< 0.02	0.02	-
	NO2	<0.1	<0.1	0.1	_	1.1	1.2	0.02	9	<0.2	<0.4	0.2/0.4	_
Nitrite													

Notes:

RPD value exceeds 20%

FD Field duplicate

RPD relative percent difference

OPERABLE WELL LOCATION

INOPERABLE WELL LOCATION

DESIGN

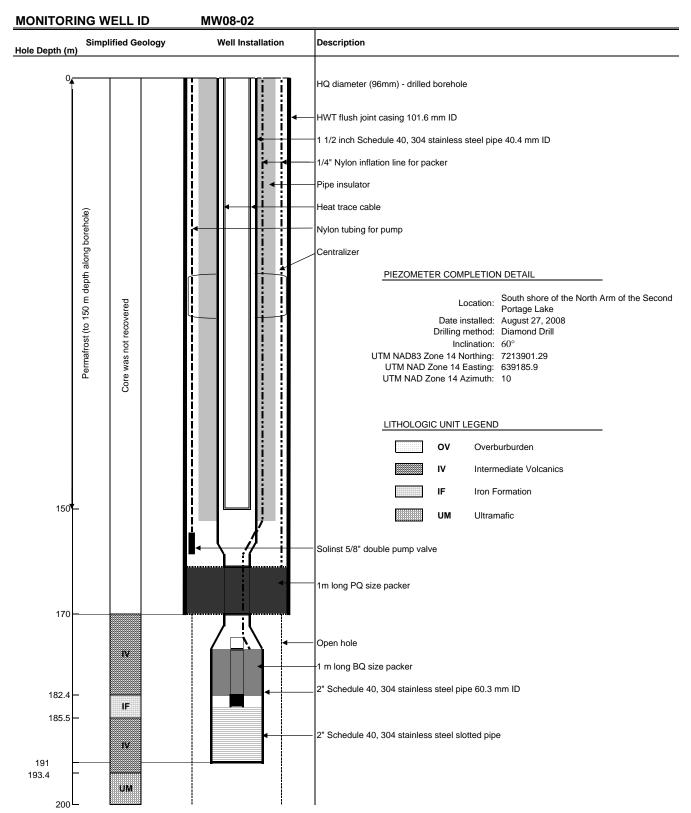
CADD

CHECK

REVIEW

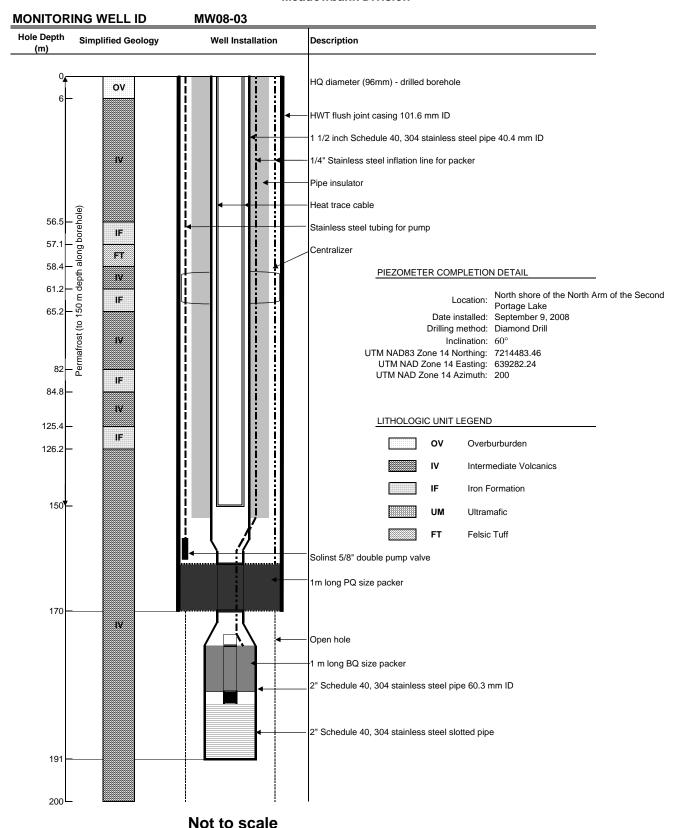
VJB

23MAY08


23MAY08

SCALE

AS SHOWN REV.


FIGURE 1

MW08-02 - Schematic Borehole Log and Monitoring Well Instrumentation Agnico-Eagle Mines Ltd Meadowbank Division

Not to scale

MW08-03 - Schematic Borehole Log and Monitoring Well Instrumentation Agnico-Eagle Mines Ltd Meadowbank Division

TECHNICAL MEMORANDUM

APPENDIX 1 FIELD SAMPLING SHEETS LABORATORY ANALYTICAL REPORTS

CONFIRMATION-RECEIPT OF SAMPLES FOR ANALYSIS

Maxxam Job # A841555

Client Project #: 08-1428-0008

Quote #: A80677

4 Samples Samples Received 2008/09/18

Client Confirmation 2008/09/18

Expected Report Delivery 2008/09/25 17:00

Report will be sent to: Invoice will be sent to:

Valérie Bertrand Ryan VanEngen

Agnico-Eagle Mines Ltd.

Kivalliq district **Baker Lake** X0C 0A0

Ph 8677934610-6728

rVanengen@agnico-eagle.com

vbertrand@golder.com

GOLDER ASSOCIATES

32 Steacie Dr. Kanata

Ph 613-592-9600 Fax 613-592-9601

K2K 2A9

We have received the following samples:

MW-08-03 Sampled 2008/09/14 COC# E762240 Matrix: GROUND WATER

Maxxam #: F66637

Ammonia Nitrogen

*Anions

Conductivity Fluoride

Hardness

Mercury by Cold Vapour AA

*Metals by ICP-MS

*Nitrate and/or Nitrite Holding time already past. pΗ Holding time already past.

Total Alkalinity (pH end point 4.5)

Total Suspended Solids

Turbidity

MW-03-01 Sampled 2008/09/15

Maxxam #: F66745 Ammonia Nitrogen

*Anions

Conductivity

Fluoride Hardness

Mercury by Cold Vapour AA

*Metals by ICP-MS

*Nitrate and/or Nitrite

Total Alkalinity (pH end point 4.5)

Total Suspended Solids

Turbidity

Holding time already past. Holding time already past.

PAGE: 2

MW-08-02 Sampled 2008/09/06

Maxxam #: F66747

Sample rec'd - no analysis requested

BLANC TERRAIN Sampled 2008/09/15

Maxxam #: F66751
*Metals by ICP-MS

Comments:

- An additionnal fee of 20\$ per sample could be charged for disposal of Hazardous samples. Client will be contacted before such hazardous charges are applied, and will be given option to pick up samples.
- Unless special storage arrangements are made, all samples will be discarded 30 days after their reception.
- Non-regular samples are flagged as (C) Composite by lab and (L) for Leachate.
- For revisions please contact your Project Management team at ph (514) 448-9001 or via email at ServiceTechniqueMontreal@maxxamanalytics.com.
- For revisions please contact your Maxxam Project Management team at Ph (514) 448-9001 or Fax (514) 448-9199. Your Project Manager is: LEILA SABOURI

Maxxam Job # A841555 PARAMETERS FOR ANALYSIS REQUESTED

The values listed below are RDL's and not results. Report Detection Limit (RDL) may be elevated if there are matrix interferences or limited sample amounts.

Maxxam # F66637, Sample IDN: MW-			
Maxxam # F66745, Sample IDN: MW-			
TOTAL ALKALINITY (PH END POINT	,		
Alkalinity Total (as CaCO3) pH 4.5	1 mg/L		
ANIONS	0.05/	0.16-1 (004)	0.4 //
Chloride (CI)	0.05 mg/L	Sulfates (SO4)	0.1 mg/L
CONDUCTIVITY	0.001 mmhoo/om		
Conductivity FLUORIDE	0.001 mmhos/cm		
Fluoride (F)	0.1 mg/L		
HARDNESS	0.1 mg/L		
Magnesium (Mg)	1 mg/L	Total Hardness (CaCO3)	1 mg/L
Calcium (Ca)	1 mg/L	Total Hardriess (CaCO3)	i ilig/L
MERCURY BY COLD VAPOUR AA	i ilig/L		
Mercury (Hg)			
TOTAL SUSPENDED SOLIDS			
Total suspended solids (TSS)	2 mg/L		
rotal suspended solids (100)	Z mg/L		
Maxxam # F66637, Sample IDN: MW-	08-03		
Maxxam # F66745, Sample IDN: MW-			
Maxxam # F66751, Sample IDN: BLAI			
METALS BY ICP-MS	-		
Aluminum (AI)	1 ug/L	Copper (Cu)	0.5 ug/L
+Iron (Fe)	30 ug/L	+Lead (Pb)	0.1 ug/L
Manganese (Mn)	0.4 ug/L	Molybdenum (Mo)	0.5 ug/L
Nickel (Ni)	1 ug/L	+Potassium (K)	100 ug/L
+Selenium (Se)	1 ug/L	Silver (Ag)	0.1 ug/L
+Arsenic (As)	1 ug/L	Thallium (TI)	2 ug/L
Zinc (Zn)	1 ug/L	Barium (Ba)	2 ug/L
Cadmium (Cd)	0.2 ug/L		
Maxxam # F66637, Sample IDN: MW-			
Maxxam # F66745, Sample IDN: MW-	03-01		
AMMONIA NITROGEN			
Nitrogen ammonia (N-NH3)	0.02 mg/L		
NITRATE AND/OR NITRITE			
Nitrates (N-NO3-)	0.02 mg/L	Nitrites (N-NO2-)	0.02 mg/L
+Nitrate (N) and Nitrite(N)	0.02 mg/L		
PH			
pH			
TURBIDITY	O 4 NITH		
Turbidity	0.1 NTU		

Sample Integrity Form

Invoice To:
Agnico-Eagle Mines Ltd.
ATTN: Ryan VanEngen
Kivalliq district
Baker Lake, NU
CANADA XOC 0A0

Client Contact: Valérie Bertrand Report To: GOLDER ASSOCIATES OTTAWA ATTN: Valérie Bertrand 32 Steacie Dr. Kanata, ON

Canada K2K 2A9

Maxxam Job #: A841555
Date Received: 2008/09/18
Your C.O.C. #: E762240
Your Project #: 08-1428-0008
Maxxam Project Manager: LEILA SABOURI
Quote #: A80677

x Samples received after hold time exceeded

Report Comments

Received Date:	2008/09/18	(Time): <u>15:00</u>	Ву:
Inspected Date:	2008/09/18	(Time):	Ву:
SIF Created Date:	2008/09/19	(Time): 11:10	By: GR

Maxxan	1	2690 Ave	otée de Liesse, Saint-Laur enue Dalton, Sainte-Foy (e Panet, Saguenay (Québ	Québec) (61P 3S4		Téléph	hone : (hone : (hone : (ww	(418) 6 (418) 5	58-578	4 1	Télécop Télécop Télécop Lcom	oieur : (418) 65	8-6594					-4MA-;		(462-99	926)			Heli	de	
Info. Facturation	In	fo. Rapp	oort (si différent d	le Factu	ration)	NI	n de	e cor	mma	ndo	3			83		HITT.			Dro	jet /	Cito			14.17	1			
Compagnie: Golder	, 0	ompagn	ie:			1201		118.13			-			000	0								-	1.17	0		•	-
del Dele	Tipe A	dresse :				No	o. de	e cot	tation	1:_				Calcador.	NO2+NO3				No.	de p	oroje	et : <u>C</u>	78-	.(५८	and spec 0	-	Tack of	Suf tall
Téléphone : 513-592-96				4				-	u		0-0		nee	100	2									1	B	و ا	3	2
		éléphone							П				16 ele.	5	NO ₃	120			1 8			MH	BHAA	500	7	8	All .	3
Telecopieur : 613-512-90	-		ur :			LOIL.		HAM	(Color.)			(12		Autr	Š			CN libra						88	The second	2	ع الح	7
Échantillonneur : Real C	- 54	chantillo	12.5		La Di Ala		lg.	BTEX	Phénois (Color.)		75	, Ni, Pb,	Hésol*	los-					Turhidité		ART. 11	INOR.	COLIF (Tet.)	EPA 83	0		7	+
Je déclare par la présente compren de Maxxam telles que décrites au ve	are et i erso du	présent	t formulaire.	et mod	antes		H & G Tot.				W-09)	d, Cr, Cu	ine - 13	Selenium-sol	Š	NHs P-Tot.	ctivite	CN-Ox					COLI		3	7	7	3
Identification de l'échantillon	Écha	ntillon	Prélèvement	à	nombre	ज्ञ		624	GC/MS)		génères	ourds (C	P politic	2594	5 -			1 .	020	RMD	T. 10	ole: ORG.	3	EPA 8095	cifier):	2	王	3
(point de prélèvement)	Ty Sol d'e	pe au Autre	(date / heure)	filtrer	de contenants	HP (CID-CSI)	H & G Min.	COV (EPA 624)	Phénols (GC/MS)	HAP	BPC (Congénères) (GC-MS)	Metaux Lourds (Cd, Cr, Cu, Ni, Pb, Zn)	Mětaux ICP politíque - 13 ělésol**	Mercure	-14	¥ D	D Hd	CN-Tot.	080	RDS	CUM ART. 10	Eau Potable :	COLIF (Fec.)	Explosif	Autre (spi	2	2	3
Mw-08-03	5		20080914		110								X	X		>						ms			X	X	X	4
Mw-03-01	5		20000915		11								X	X)									X	X	X,	X
My-08-0,2	4	5	2008 0906		15							-3	3	Non	V.										,,			
Blanc Javan	E)	2008091		1								X				,											
																							P.					
						Par I																F4.	É					
																											e e e e e e	
LÉGENDE: ** Métaux 13 éléments (Ag, *** Métaux 16 éléments (Al, :	As, Ba, Sb, Ag,	Cd, Co, As, Ba, C	Cr, Cu, Sn, Mn, M Cd, Cr, Co, Cu, Mr	lo, Ni, P ı, Mo, N	b, Zn), li, Pb, Se	e, Na	, Zn).	0																	-			
Types d'eau : S = Souterraine P = Po Sur = Surface E = Ea		DL = D C = Ca	échet liquide	Déla	iis : 🗌	24h		48h	h [72	h	R	égul	ier		ate:				C	ondi	tion	géné	erale	à la	réce	ption	1:
Normes/Réglement Applicables :	4000	J - Ja	(À remplir)	A mo	oins d'ê	tre cl	airer	ment	iden	itifié,	tout	écha	antille	on d'	eau r	eçu c	hez l	Maxx	am	M	We	6.81	2=	De.	tan	dow	e .	
Chaîne de responsabilité			190		ement s									A	H- ION CH-O	aun	- Aigo					*3		. 0	ALIA: N	7		
Déssaisi par :			Date : 17 9	197	Heure :	10	2N		Reçı	u par	:		P	W	M					Re	emar	rque	S: .	v a	100			
Déssaisi par :			Date :	-	Heure :		2		Reçi	u par	:				1					Remarques: Metaux voir avec Genevière Berthiaume								
Nombre de glacières :			Température de	e récep	tion :	10	0	11	9	11												nen			1, 0	ral	inie	e

Bordereau de transmission d'échantillons

Your Project #: 08-1428-0008 Your C.O.C. #: E762240

Attention: Valérie Bertrand
GOLDER ASSOCIATES
OTTAWA
32 Steacie Dr.
Kanata, ON
Canada K2K 2A9

Report Date: 2008/09/30 Report #: NM-250636

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A841555 Received: 2008/09/18, 15:00

Sample Matrix: GROUND WATER

Samples Received: 6

		Date	Date
Analyses	Quantity	Extracted	Analyzed Laboratory Method Analytical Method
Sample rec'd - no analysis requested	1	N/A	2008/09/18
Total Alkalinity (pH end point 4.5)	2	2008/09/19	2008/09/24 STL SOP-00038/6, STL Titrimetric
			SOP-00057/1
Total Alkalinity (pH end point 4.5)	2	2008/09/22	2008/09/19 STL SOP-00038/6, STL Titrimetric
			SOP-00057/1
Anions	2	2008/09/18	2008/09/19 STL SOP-00014/6 Ion Chromatography
Anions	2	2008/09/19	2008/09/20 STL SOP-00014/6 Ion Chromatography
Conductivity	2	2008/09/19	2008/09/22 STL SOP-00038/6; STL Conductivity
			SOP-00012/2
Conductivity	2	2008/09/23	2008/09/23 STL SOP-00038/6; STL Conductivity
			SOP-00012/2
Fluoride	4	2008/09/23	2008/09/24 STL SOP-00011/1, STL Ion Spec. Electrode
			SOP-00004/3
Hardness	4	2008/09/23	2008/09/24 STL SOP-00006/7 ICP
Mercury by Cold Vapour AA	3	2008/09/23	2008/09/23 STL SOP-00042/6 Cold Vapor AA
Mercury by Cold Vapour AA	1	2008/09/23	2008/09/24 STL SOP-00042/6 Cold Vapor AA
Total Suspended Solids	2	2008/09/19	2008/09/19 STL SOP-00015/3 Gravimetric
Total Suspended Solids	2	2008/09/22	2008/09/22 STL SOP-00015/3 Gravimetric
Metals by ICP-MS	5	2008/09/23	2008/09/25 STL SOP-00006/7 ICP-MS
Ammonia Nitrogen	4	2008/09/22	2008/09/22 STL SOP-00040/3 Colorimetry
Nitrate and/or Nitrite	2	2008/09/18	2008/09/22 STL SOP-00014/6 Ion chromatography
Nitrate and/or Nitrite	2	2008/09/19	2008/09/20 STL SOP-00014/6 Ion chromatography
pH	2	2008/09/18	2008/09/18 STL SOP-00016/6; STL pH meter
			SOP-00038/6,
pH	2	2008/09/19	2008/09/19 STL SOP-00016/6; STL pH meter
			SOP-00038/6,
Turbidity	2	N/A	2008/09/18 STL SOP-00022/4 Turbidimeter
Turbidity	2	N/A	2008/09/19 STL SOP-00022/4 Turbidimeter
•			

Page 1 of 11 2008/09/30 15:40

Your Project #: 08-1428-0008 Your C.O.C. #: E762240

Attention: Valérie Bertrand
GOLDER ASSOCIATES
OTTAWA
32 Steacie Dr.
Kanata, ON
Canada K2K 2A9

Report Date: 2008/09/30 Report #: NM-250636

CERTIFICATE OF ANALYSIS

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

LORENA DI BENEDETTO, B.Sc., Chemist, Project Manager Email: LORENA.DIBENEDETTO@maxxamanalytics.com Phone# (514) 448-9001 Ext:272

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

GOLDER ASSOCIATES Client Project #: 08-1428-0008

Sampler Initials: RC

METALS (GROUND WATER)

Maxxam ID		F66637	F66745	F66751	F68088		
Sampling Date		2008/09/14	2008/09/15	2008/09/15	2008/09/14		
COC Number		E762240	E762240	E762240	E762240		
	Units	MW-08-03	MW-03-01	BLANC TERRAIN	MW-08-03-DUP	RDL	QC Batch
METALS							
Mercury (Hg)	mg/L	<0.00001	<0.00001	N/A	<0.00001	0.00001	551993
Calcium (Ca)	mg/L	46	73	N/A	46	1	552088
Magnesium (Mg)	mg/L	17	31	N/A	16	1	552088
Total Hardness (CaCO3)	mg/L	180	310	N/A	180	1	552088
METALS ICP-MS							
Aluminum (Al)	ug/L	4.6	1.3	<1.0	4.1	1.0	552087
Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	552087
Arsenic (As)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	552087
Barium (Ba)	ug/L	33	250	2.5	34	2.0	552087
Cadmium (Cd)	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	552087
Copper (Cu)	ug/L	3.0	1.5	94	3.9	0.50	552087
Manganese (Mn)	ug/L	320	430	0.53	320	0.40	552087
Molybdenum (Mo)	ug/L	140	8.2	<0.50	140	0.50	552087
Nickel (Ni)	ug/L	<1.0	1.5	2.9	1.7	1.0	552087
Zinc (Zn)	ug/L	4.0	17	320	3.5	1.0	552087
Iron (Fe)	ug/L	<30	<30	<30	<30	30	552087
Potassium (K)	ug/L	4400	8400	330	4500	100	552087
Selenium (Se)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	552087
Lead (Pb)	ug/L	0.56	0.21	6.2	0.27	0.10	552087
Thallium (TI)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	552087

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

GOLDER ASSOCIATES Client Project #: 08-1428-0008

Sampler Initials: RC

METALS (GROUND WATER)

Maxxam ID		F68109		
Sampling Date		2008/09/15		
COC Number		E762240		
	Units	MW-03-01-DUP	RDL	QC Batch

METALS				
Mercury (Hg)	mg/L	<0.00001	0.00001	551993
Calcium (Ca)	mg/L	75	1	552088
Magnesium (Mg)	mg/L	32	1	552088
Total Hardness (CaCO3)	mg/L	320	1	552088
METALS ICP-MS				
Aluminum (Al)	ug/L	6.8	1.0	552087
Silver (Ag)	ug/L	<0.10	0.10	552087
Arsenic (As)	ug/L	<1.0	1.0	552087
Barium (Ba)	ug/L	250	2.0	552087
Cadmium (Cd)	ug/L	<0.20	0.20	552087
Copper (Cu)	ug/L	2.3	0.50	552087
Manganese (Mn)	ug/L	440	0.40	552087
Molybdenum (Mo)	ug/L	7.8	0.50	552087
Nickel (Ni)	ug/L	1.5	1.0	552087
Zinc (Zn)	ug/L	14	1.0	552087
Iron (Fe)	ug/L	<30	30	552087
Potassium (K)	ug/L	8500	100	552087
Selenium (Se)	ug/L	<1.0	1.0	552087
Lead (Pb)	ug/L	0.20	0.10	552087
Thallium (TI)	ug/L	<2.0	2.0	552087

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Ligne sans frais: 1-877-4MAXXAM (462-9926)

GOLDER ASSOCIATES Client Project #: 08-1428-0008

Sampler Initials: RC

CONVENTIONAL PARAMETERS (GROUND WATER)

Maxxam ID		F66637		F66745		
Sampling Date		2008/09/14		2008/09/15		
COC Number		E762240		E762240		
	Units	MW-08-03	RDL	MW-03-01	RDL	QC Batch

CONVENTIONALS								
Conductivity	mmhos/cm	0.49	0.001	3.2	0.001	550930		
Fluoride (F)	mg/L	0.3	0.1	<0.1	0.1	551937		
Nitrate (N) and Nitrite(N)	mg/L	27	0.4	<0.2	0.2	550843		
Nitrates (N-NO3-)	mg/L	26	0.4	<0.02	0.02	550843		
Nitrites (N-NO2-)	mg/L	1.1	0.02	<0.2	0.2	550843		
Nitrogen ammonia (N-NH3)	mg/L	2.0	0.04	0.53	0.02	551593		
рН	рН	8.1	N/A	7.9	N/A	550842		
Turbidity	NTU	70	0.1	3.3	0.1	550841		
Alkalinity Total (as CaCO3) pH 4.5	mg/L	60	2	24	2	550960		
Chloride (CI)	mg/L	3.3	0.05	950	5	550844		
Sulfates (SO4)	mg/L	56	0.2	6.0	0.1	550844		
Total suspended solids (TSS)	mg/L	56	2	5	2	551089		

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Ligne sans frais: 1-877-4MAXXAM (462-9926)

GOLDER ASSOCIATES Client Project #: 08-1428-0008

Sampler Initials: RC

CONVENTIONAL PARAMETERS (GROUND WATER)

Maxxam ID		F68088		F68109		
Sampling Date		2008/09/14		2008/09/15		
COC Number		E762240		E762240		
	Units	MW-08-03-DUP	RDL	MW-03-01-DUP	RDL	QC Batch

CONVENTIONALS						
Conductivity	mmhos/cm	0.48	0.001	3.1	0.001	551919
Fluoride (F)	mg/L	0.3	0.1	<0.1	0.1	551937
Nitrate (N) and Nitrite(N)	mg/L	27	0.4	<0.4	0.4	551384
Nitrates (N-NO3-)	mg/L	26	0.4	<0.02	0.02	551384
Nitrites (N-NO2-)	mg/L	1.2	0.02	<0.4	0.4	551384
Nitrogen ammonia (N-NH3)	mg/L	2.0	0.04	0.49	0.02	551593
рН	рН	8.2	N/A	7.8	N/A	551361
Turbidity	NTU	69	0.1	4.1	0.1	551423
Alkalinity Total (as CaCO3) pH 4.5	mg/L	59	2	33	2	551560
Chloride (CI)	mg/L	3.6	0.05	980	10	551276
Sulfates (SO4)	mg/L	51	0.5	5.7	0.1	551276
Total suspended solids (TSS)	mg/L	54	2	7	2	551513

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Ligne sans frais: 1-877-4MAXXAM (462-9926)

GOLDER ASSOCIATES Client Project #: 08-1428-0008

Sampler Initials: RC

GENERAL COMMENTS

Condition of sample(s) upon receipt: GOOD except for the following: Nitrate and/or Nitrite: Holding time already past.: F66637, F66745

pH: Holding time already past.: F66637, F66745 Turbidity: Holding time already past.: F66637, F66745

METALS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries. Please note that the results have been corrected for the blank.

CONVENTIONAL PARAMETERS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries. Please note that the results have been corrected for the blank. Reported detection limits are multiplied by dilution factors used for sample analysis.

This report supersedes all previous reports with the same Maxxam job number

Results relate only to the items tested.

GOLDER ASSOCIATES Attention: Valérie Bertrand Client Project #: 08-1428-0008

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: A841555

QA/QC			Date			
Batch	00 T	5	Analyzed		5	11.24
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units
550841 JM6	QC STANDARD	Turbidity	2008/09/18		105	%
	METHOD BLANK	Turbidity	2008/09/18	<0.1		NTU
550842 JM6	Calibration Check	рН	2008/09/18		101	%
	QC STANDARD	рН	2008/09/18		100	%
	SPIKE	рН	2008/09/18		101	%
550843 AK3	SPIKE	Nitrate (N) and Nitrite(N)	2008/09/22		98	%
		Nitrates (N-NO3-)	2008/09/22		96	%
		Nitrites (N-NO2-)	2008/09/22		100	%
	METHOD BLANK	Nitrate (N) and Nitrite(N)	2008/09/22	< 0.02		mg/L
		Nitrates (N-NO3-)	2008/09/22	< 0.02		mg/L
		Nitrites (N-NO2-)	2008/09/22	< 0.02		mg/L
550844 AK3	SPIKE	Chloride (CI)	2008/09/19		99	%
00001171110	OI IIIL	Sulfates (SO4)	2008/09/19		101	%
	METHOD BLANK	` ,	2008/09/19	< 0.05	101	mg/L
	METHOD BEANIX	Sulfates (SO4)	2008/09/19	<0.03		mg/L
550930 JL1	QC STANDARD	Conductivity	2008/09/19	\0.1	100	111g/L %
330930 JL1		•			99	%
	SPIKE	Conductivity	2008/09/22	0.004	99	
550000 ALCO	METHOD BLANK	Conductivity	2008/09/22	<0.001		mmhos/cn
550960 AK3	QC STANDARD	Alkalinity Total (as CaCO3) pH 4.5	2008/09/24		99	%
	SPIKE	Alkalinity Total (as CaCO3) pH 4.5	2008/09/24		93	%
	METHOD BLANK	, , , , , , ,	2008/09/24	<2		mg/L
551089 HM1	SPIKE	Total suspended solids (TSS)	2008/09/19		101	%
	SPIKE DUP	Total suspended solids (TSS)	2008/09/19		97	%
	METHOD BLANK	Total suspended solids (TSS)	2008/09/19	<2		mg/L
551276 AK3	SPIKE	Chloride (CI)	2008/09/20		95	%
		Sulfates (SO4)	2008/09/20		90	%
	METHOD BLANK	Chloride (CI)	2008/09/20	< 0.05		mg/L
		Sulfates (SO4)	2008/09/20	<0.1		mg/L
551361 JM6	Calibration Check	pH	2008/09/19		100	%
	QC STANDARD	pH	2008/09/19		100	%
	SPIKE	pH	2008/09/19		101	%
551384 AK3	SPIKE	Nitrate (N) and Nitrite(N)	2008/09/20		97	%
00100171110	OI IIIL	Nitrates (N-NO3-)	2008/09/20		95	%
		Nitrites (N-NO2-)	2008/09/20		98	%
	METHOD BLANK	Nitrate (N) and Nitrite(N)	2008/09/20	<0.02	90	mg/L
	METHOD BLAINK	` '	2008/09/20	<0.02		
		Nitrates (N-NO3-)				mg/L
554 400 V/Z	OO OTANDADD	Nitrites (N-NO2-)	2008/09/20	< 0.02	400	mg/L
551423 VZ	QC STANDARD	Turbidity	2008/09/19		102	%
	METHOD BLANK	Turbidity	2008/09/19	0.1, R	DL=0.1	NTU
551513 FSI	SPIKE	Total suspended solids (TSS)	2008/09/22		95	%
	SPIKE DUP	Total suspended solids (TSS)	2008/09/22		95	%
	METHOD BLANK	Total suspended solids (TSS)	2008/09/22	<2		mg/L
551560 AK3	QC STANDARD	Alkalinity Total (as CaCO3) pH 4.5	2008/09/19		99	%
	SPIKE	Alkalinity Total (as CaCO3) pH 4.5	2008/09/19		92	%
	METHOD BLANK	Alkalinity Total (as CaCO3) pH 4.5	2008/09/19	<2		mg/L
551593 DKH	QC STANDARD	Nitrogen ammonia (N-NH3)	2008/09/22		89	%
	SPIKE	Nitrogen ammonia (N-NH3)	2008/09/22		102	%
	METHOD BLANK	Nitrogen ammonia (N-NH3)	2008/09/22	< 0.02		mg/L
551919 AK3	QC STANDARD	Conductivity	2008/09/23		98	%
2310107110	SPIKE	Conductivity	2008/09/23		100	%
	METHOD BLANK	Conductivity	2008/09/23	< 0.001	100	mmhos/cr
551027 AV2		•		~ 0.00 i	100	
551937 AK3	QC STANDARD	Fluoride (F)	2008/09/24		102	%
	SPIKE	Fluoride (F)	2008/09/24	0.4	101	%
FE4000 14D :	METHOD BLANK	Fluoride (F)	2008/09/24	<0.1		mg/L
551993 MR4	QC STANDARD	Mercury (Hg)	2008/09/23		98	%

GOLDER ASSOCIATES Attention: Valérie Bertrand Client Project #: 08-1428-0008

P.O. #: Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: A841555

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units
551993 MR4	SPIKE	Mercury (Hg)	2008/09/23		104	%
	METHOD BLANK	Mercury (Hg)	2008/09/23	< 0.00001		mg/L
552087 MCL	SPIKE	Aluminum (Al)	2008/09/25		89	%
		Silver (Ag)	2008/09/25		45	%
		Arsenic (As)	2008/09/25		101	%
		Barium (Ba)	2008/09/25		99	%
		Cadmium (Cd)	2008/09/25		100	%
		Copper (Cu)	2008/09/25		101	%
		Manganese (Mn)	2008/09/25		99	%
		Molybdenum (Mo)	2008/09/25		97	%
		Nickel (Ni)	2008/09/25		102	%
		Zinc (Zn)	2008/09/25		103	%
		Iron (Fe)	2008/09/25		101	%
		Potassium (K)	2008/09/25		95	%
		Selenium (Se)	2008/09/25		101	%
		Lead (Pb)	2008/09/25		100	%
		Thallium (TI)	2008/09/25		99	%
	METHOD BLANK	Aluminum (Al)	2008/09/25	<1.0		ug/L
		Silver (Ag)	2008/09/25	< 0.10		ug/L
		Arsenic (As)	2008/09/25	<1.0		ug/L
		Barium (Ba)	2008/09/25	<2.0		ug/L
		Cadmium (Cd)	2008/09/25	< 0.20		ug/L
		Copper (Cu)	2008/09/25	1.9, R	DL=0.50	ug/L
		Manganese (Mn)	2008/09/25	< 0.40		ug/L
		Molybdenum (Mo)	2008/09/25	< 0.50		ug/L
		Nickel (Ni)	2008/09/25	<1.0		ug/L
		Zinc (Zn)	2008/09/25	<1.0		ug/L
		Iron (Fe)	2008/09/25	<30		ug/L
		Potassium (K)	2008/09/25	<100		ug/L
		Selenium (Se)	2008/09/25	<1.0		ug/L
		Lead (Pb)	2008/09/25	0.10, R	DL=0.10	ug/L
		Thallium (TI)	2008/09/25	<2.0		ug/L
552088 MCL	SPIKE	Calcium (Ca)	2008/09/24		95	%
		Magnesium (Mg)	2008/09/24		92	%
	METHOD BLANK	Calcium (Ca)	2008/09/24	<1		mg/L
		Magnesium (Mg)	2008/09/24	<1		mg/L
		Total Hardness (CaCO3)	2008/09/24	<1		mg/L

RDL = Reportable Detection Limit QC Standard = Quality Control Standard SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A841555

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Me for soul (Minuse Date Burber)

DELLA DADDILL DE CO.

DELIA BARBUL, B.Sc., Chemist, Analyst 2

Marie Claude & cunja Marie Claude Lauder 2003-110

MARIE-CLAUDE LAUZHER, B.Sc., Chemist, Analyst 2

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Maxxam Analytique In	889 Mor 2690 Ave	tée de Liesse, Saint-Laure enue Dalton, Sainte-Foy (C e Panet, Saguenay (Québe	luébec) G	1P 3S4	1	Téléph	one : (514) 44 418) 65 418) 54 w.maxx	8-5784 2-8071	T	élécop élécop	oieur :	(418) 6	448-919 658-659 542-869	19 14	Boro Ligne s Ligne s	ans fra	is : 1-8	77-4MA	-XXAN			P	age_	1	de	L
Info. Facturation Compagnie: Golder	Info. Rapp	Compagnie :					con	nmar ation	nde		COM		A. Potassi	The state of the s					Projet / Site :							19	
Adresse: Attention de: Valent Berlin Féléphone: Schantillonneur: Je déclare par la présente comprendre de Maxxam telles que décrites au verse l'échantillon (point de prélèvement)	Téléphone Telecopie Échantillo re et accepter so du présent Échantillon Type	de : ir : les conditions eformulaire. Prélèvement			HP (Co-Ca)	H&G Min. H&G Tot.	COV [EPA 624] STEX HAM	Phénois (GC/MS) Phénois (Color.)	НАР	BPC (Congénères) (GC-MS)	Métaux Lourds (Cd, Cr, Cu, Ni, Pb, Zn)	Mětaux ICP politique - 13 ělásol** 16 élá. eau***	Mercure S Sélénium-sol Autre La Selénium sol	F CI SO4 NO2 NO5 NO5-NO5-NO	NHs P-Tot.	pH X Conductivité X MES X	iHs) Soufre (S-7	CN-Ox. CN Libre	DBUS COT Inribidite COT	Apr to Apr 44	Applie ORG NOR THM	COLIF (Tet) RHAA	UCULI (IQL) BHAA	corners of columbitations	Taledite, durete	Willy Winte & Without	Majore, Flooring sulto
Mw-08-03 Mw-08-01 Mw-08-02 Blac Javan	5 5	20080919 20080915 20080915	-	16 15				n.	•			X	X			X	6,							X	X	×	\
	- R- 01 0		N. S		Di																						
lormes/Réglement Applicables : Chaîne de responsabilité	, Ag, As, Ba, C	d, Cr, Co, Cu, Mn échet liquide ptage (À remplir)	Déla A mo sera règle	i, Pb, Se is : pins d'êt considé ement si	24h re cl	airen	ité de	ident n-po e l'ea	table iu po	tout e et n	ne se	antill	on d	l'eau oumi	Date reçu s aux	chez	: Max ence	xam s du	μ	lwa	98°	2:	=7 <	e à la	1	eption	1:
léssaisi par : léssaisi par : lombre de glacières :		Date : \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	91	Heure : Heure : ion :	ige 1	Reçu 1 of Reçu	11	1.00.01				Remarques: Metaux voir avec 2008/09/30. Genevicue Berthiaune Domade de Valence															

CONFIRMATION-RECEIPT OF SAMPLES FOR ANALYSIS

Maxxam Job # A840232

Client Project #: PROJET GOLDER 08-1428-0008 3 Samples Samples Received 2008/09/11 Quote #: A80677 Client Confirmation 2008/09/11

Site Location: MEADOWBANK Expected Report Delivery 2008/09/18 17:00

Report will be sent to: Invoice will be sent to:

Valérie Bertrand Ryan VanEngen

GOLDER ASSOCIATES Agnico-Eagle Mines Ltd.

Kivalliq district 32 Steacie Dr. Kanata **Baker Lake** K2K 2A9 X0C 0A0

Ph 613-727-0510 Ph 8677934610-6728

Fax 613-727-0704 rVanengen@agnico-eagle.com

vbertrand@golder.com

We have received the following samples:

MW08-02 Sampled 2008/09/08 Matrix: SURFACE WATER

Maxxam #: F59984

Ammonia Nitrogen

*Anions

Conductivity **Disposal Charges**

Fluoride Hardness

Mercury by Cold Vapour AA

*Metals by ICP-MS *Nitrate and/or Nitrite

pН

*Total Alkalinity (pH end point 4.5)

Total Dissolved Solids

Turbidity

MW08-02 DUPLICATA Sampled 2008/09/08

Maxxam #: F59995

Ammonia Nitrogen

*Anions Conductivity

Disposal Charges

Fluoride Hardness

Mercury by Cold Vapour AA

*Metals by ICP-MS *Nitrate and/or Nitrite

*Total Alkalinity (pH end point 4.5)

Total Dissolved Solids

Arrived unpreserved, preserved upon reception at the laboratory.

Arrived unpreserved, preserved upon reception at the laboratory.

PAGE: 2

Turbidity

MW08-02 TRIPLICATA Maxxam #: F59996 Sampled 2008/09/08

Comments:

- An additionnal fee of 20\$ per sample could be charged for disposal of Hazardous samples. Client will be contacted before such hazardous charges are applied, and will be given option to pick up samples.
- Unless special storage arrangements are made, all samples will be discarded 30 days after their reception.
- Non-regular samples are flagged as (C) Composite by lab and (L) for Leachate.
- For revisions please contact your Project Management team at ph (514) 448-9001 or via email at ServiceTechniqueMontreal@maxxamanalytics.com.
- For revisions please contact your Maxxam Project Management team at Ph (514) 448-9001 or Fax (514) 448-9199. Your Project Manager is: GENEVIEVE BERTHIAUME Alternate Project Manager KARIMA DLIMI

Maxxam Job # A840232 PARAMETERS FOR ANALYSIS REQUESTED

The values listed below are RDL's and not results. Report Detection Limit (RDL) may be elevated if there are matrix interferences or limited sample amounts.

Maxxam # F59984, Sample IDN: MW0	8-02										
Maxxam # F59995, Sample IDN: MW08-02 DUPLICATA											
TOTAL ALKALINITY (PH END POINT	4.5)										
Alkalinity Total (as CaCO3) pH 4.5	1 mg/L	+Bicarbonates (HCO3 as CaCO3)	1 mg/L								
ANIONS											
Chloride (CI)	0.05 mg/L	Sulfates (SO4)	0.1 mg/L								
CONDUCTIVITY											
Conductivity	0.001 mmhos/cm										
FLUORIDE											
Fluoride (F)	0.1 mg/L										
HARDNESS											
Magnesium (Mg)	1 mg/L	Total Hardness (CaCO3)	1 mg/L								
Calcium (Ca)	1 mg/L										
MERCURY BY COLD VAPOUR AA											
Mercury (Hg)											
METALS BY ICP-MS											
Aluminum (Al)	1 ug/L	Copper (Cu)	0.5 ug/L								
+Iron (Fe)	30 ug/L	+Lead (Pb)	0.1 ug/L								
+Magnesium (Mg)	10 ug/L	Manganese (Mn)	0.4 ug/L								
Molybdenum (Mo)	0.5 ug/L	Nickel (Ni)	1 ug/L								
+Potassium (K)	100 ug/L	+Selenium (Se)	1 ug/L								
Silver (Ag)	0.1 ug/L	+Arsenic (As)	1 ug/L								
Thallium (TI)	2 ug/L	Zinc (Zn)	1 ug/L								
Barium (Ba)	2 ug/L	Cadmium (Cd)	0.2 ug/L								
+Calcium (Ca)	50 ug/L										
AMMONIA NITROGEN	_										
Nitrogen ammonia (N-NH3)	0.02 mg/L										
NITRATE AND/OR NITRITE											
Nitrites (N-NO2-)	0.02 mg/L	+Nitrate (N) and Nitrite(N)	0.02 mg/L								
PH											
pH											
TOTAL DISSOLVED SOLIDS											
Total Dissolved Solids	10 mg/L										
TURBIDITY	0.4.1.										
Turbidity	0.1 NTU										

Sample Integrity Form

Invoice To: Agnico-Eagle Mines Ltd. ATTN: Ryan VanEngen Kivalliq district Baker Lake, NU

CANADA X0C 0A0 Client Contact:

Valérie Bertrand

Report To: GOLDER ASSOCIATES OTTAWA

ATTN: Valérie Bertrand

32 Steacie Dr. Kanata, ON

Canada K2K 2A9

Maxxam Job #: A840232 Date Received: 2008/09/11

Your Project #: PROJET GOLDER 08-1428-0008
Maxxam Project Manager: GENEVIEVE BERTHIAUME

Quote #: A80677

No discrepancies noted.

Report Comments

Received Date:	2008/09/11	_(Time): <u>14:30</u>	By:	
Inspected Date:		_(Time):	Ву:	
SIF Created Date:	l	(Time): 00:00	Ву:	

Your Project #: PROJET GOLDER 08-1428-0008 Site: MEADOWBANK

Attention: Valérie Bertrand
GOLDER ASSOCIATES
OTTAWA
32 Steacie Dr.
Kanata, ON
Canada K2K 2A9

Report Date: 2008/09/22

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A840232 Received: 2008/09/11, 14:30

Sample Matrix: SURFACE WATER

Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Alkalinity (pH end point 4.5)	2	2008/09/16	2008/09/17	STL SOP-00038/5	Titrimetric
Anions	2	2008/09/13	2008/09/13	STL SOP-00014/5	Ion Chromatography
Disposal Charges	2	N/A	2008/09/11		
Fluoride	2	2008/09/15	2008/09/16	STL SOP-00011/1, STL	Ion Spec. Electrode
				SOP-00004/2	
Hardness	2	2008/09/16	2008/09/16	STL SOP-00006/7	ICP
Mercury by Cold Vapour AA	2	2008/09/16	2008/09/16	STL SOP-00042/6	Cold Vapor AA
Metals by ICP-MS	2	2008/09/16	2008/09/16	STL SOP-00006/7	ICP-MS
Metals by ICP-MS	2	2008/09/19	2008/09/19	STL SOP-00006/7	ICP-MS
Ammonia Nitrogen ()	2	2008/09/18	2008/09/16	QUE SOP-00126/1	Colorimetry
Nitrate and/or Nitrite	2	2008/09/13	2008/09/13	STL SOP-00014/5	Ion chromatography
pH	2	2008/09/12	2008/09/12	STL SOP-00016/5; STL	pH meter
				SOP-00038/5,	
Total Dissolved Solids	2	2008/09/12	2008/09/15	STL SOP-00050/1	Gravimetric
Turbidity	2	N/A	2008/09/12	STL SOP-00022/3	Turbidimeter

(1) This test was performed by Maxxam - Québec

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

GENEVIEVE BERTHIAUME, Technical Sales Rep Email: genevieve.berthiaume@maxxamanalytics.com Phone# (514) 448-9001

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Page 1 of 11 2008/09/22 14:25

Your Project #: PROJET GOLDER 08-1428-0008 Site: MEADOWBANK

Attention: Valérie Bertrand **GOLDER ASSOCIATES OTTAWA** 32 Steacie Dr. Kanata, ON K2K 2A9 Canada

Report Date: 2008/09/22

CERTIFICATE OF ANALYSIS -2-

For Service Group specific validation please refer to the Validation Signature Page

2008/09/22 14:25 Page 2 of 11

GOLDER ASSOCIATES

Client Project #: PROJET GOLDER 08-1428-0008

Project name: MEADOWBANK

Sampler Initials: SM

METALS (SURFACE WATER)

Maxxam ID		F59984		F59984	F59984		
Sampling Date		2008/09/08		2008/09/08	2008/09/08		
	Units	MW08-02	QC Batch	MW08-02	MW08-02	RDL	QC Batch
				REPEAT	REPEAT Lab-Dup		
	l	l					
METALS							
Mercury (Hg)	mg/L	<0.00001	549583	N/A	N/A	0.00001	549583
Calcium (Ca)	mg/L	50	549578	N/A	N/A	1	549578
Magnesium (Mg)	mg/L	27	549578	N/A	N/A	1	549578
Total Hardness (CaCO3)	mg/L	240	549578	N/A	N/A	1	549578
METALS ICP-MS							
Aluminum (Al)	ug/L	4.6	549577	N/A	N/A	1.0	549577
Silver (Ag)	ug/L	<0.10	549577	N/A	N/A	0.10	549577
Arsenic (As)	ug/L	3.5	549577	N/A	N/A	1.0	549577
Barium (Ba)	ug/L	45	549577	N/A	N/A	2.0	549577
Cadmium (Cd)	ug/L	<0.20	549577	N/A	N/A	0.20	549577
Copper (Cu)	ug/L	0.56	549577	N/A	N/A	0.50	549577
Manganese (Mn)	ug/L	230	549577	30	30	0.40	550971
Molybdenum (Mo)	ug/L	26	549577	N/A	N/A	0.50	N/A
Nickel (Ni)	ug/L	19	549577	N/A	N/A	1.0	N/A
Zinc (Zn)	ug/L	14	549577	N/A	N/A	1.0	N/A
Iron (Fe)	ug/L	<30	549577	N/A	N/A	30	N/A
Potassium (K)	ug/L	1800	549577	N/A	N/A	100	N/A
Selenium (Se)	ug/L	<1.0	549577	N/A	N/A	1.0	N/A
Lead (Pb)	ug/L	<0.10	549577	N/A	N/A	0.10	N/A
Thallium (TI)	ug/L	<2.0	549577	N/A	N/A	2.0	N/A
	•	•	-			•	•

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Ligne sans frais: 1-877-4MAXXAM (462-9926)

GOLDER ASSOCIATES

Client Project #: PROJET GOLDER 08-1428-0008

Project name: MEADOWBANK

Sampler Initials: SM

METALS (SURFACE WATER)

Maxxam ID Sampling Date	Units	F59995 2008/09/08 MW08-02 DUPLICATA	QC Batch	F59995 2008/09/08 MW08-02 DUPLICATA REPEAT	F59995 2008/09/08 MW08-02 DUPLICATA REPEAT Lab-Dup	RDL	QC Batch
METALS							
Mercury (Hg)	mg/L	<0.00001	549583	N/A	N/A	0.00001	549583

METALS							
Mercury (Hg)	mg/L	<0.00001	549583	N/A	N/A	0.00001	549583
Calcium (Ca)	mg/L	48	549578	N/A	N/A	1	549578
Magnesium (Mg)	mg/L	27	549578	N/A	N/A	1	549578
Total Hardness (CaCO3)	mg/L	230	549578	N/A	N/A	1	549578
METALS ICP-MS							
Aluminum (Al)	ug/L	4.8	549577	N/A	N/A	1.0	549577
Silver (Ag)	ug/L	<0.10	549577	N/A	N/A	0.10	549577
Arsenic (As)	ug/L	3.5	549577	N/A	N/A	1.0	549577
Barium (Ba)	ug/L	43	549577	N/A	N/A	2.0	549577
Cadmium (Cd)	ug/L	<0.20	549577	N/A	N/A	0.20	549577
Copper (Cu)	ug/L	1.1	549577	N/A	N/A	0.50	549577
Manganese (Mn)	ug/L	31	549577	30	30	0.40	550971
Molybdenum (Mo)	ug/L	25	549577	N/A	N/A	0.50	N/A
Nickel (Ni)	ug/L	19	549577	N/A	N/A	1.0	N/A
Zinc (Zn)	ug/L	14	549577	N/A	N/A	1.0	N/A
Iron (Fe)	ug/L	<30	549577	N/A	N/A	30	N/A
Potassium (K)	ug/L	1500	549577	N/A	N/A	100	N/A
Selenium (Se)	ug/L	<1.0	549577	N/A	N/A	1.0	N/A
Lead (Pb)	ug/L	0.27	549577	N/A	N/A	0.10	N/A
Thallium (TI)	ug/L	<2.0	549577	N/A	N/A	2.0	N/A

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID

GOLDER ASSOCIATES

Client Project #: PROJET GOLDER 08-1428-0008

Project name: MEADOWBANK

10

520

548734

Sampler Initials: SM

F59984

N/A

CONVENTIONAL PARAMETERS (SURFACE WATER)

F59984

Sampling Date		2008/09/08	2008/09/08	2008/09/08		
	Units	MW08-02	MW08-02	MW08-02	RDL	QC Batch
			Lab-Dup	DUPLICATA		
	1	1	<u> </u>	I		1
CONVENTIONALS						
Fluoride (F)	mg/L	0.2	N/A	0.2	0.1	549457
Nitrate (N) and Nitrite(N)	mg/L	<0.1	N/A	<0.1	0.1	549094
Nitrites (N-NO2-)	mg/L	<0.1	N/A	<0.1	0.1	549094
Nitrogen ammonia (N-NH3)	mg/L	<0.05	N/A	0.05	0.05	549804
рН	рН	8.0	N/A	8.1	N/A	548815
Turbidity	NTU	2.4	N/A	2.4	0.1	548798
Alkalinity Total (as CaCO3) pH 4.5	mg/L	76	77	76	2	549524
Bicarbonates (HCO3 as CaCO3)	mg/L	76	77	76	2	549524
Carbonate (CO3 as CaCO3)	mg/L	<2	<2	<2	2	549524
Chloride (CI)	mg/L	160	N/A	180	1	549095
Sulfates (SO4)	mg/L	2.5	N/A	2.0	0.1	549095

500

mg/L

N/A = Not Applicable

Total Dissolved Solids

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

GOLDER ASSOCIATES

Client Project #: PROJET GOLDER 08-1428-0008

Project name: MEADOWBANK

Sampler Initials: SM

GENERAL COMMENTS

Condition of sample(s) upon receipt: GOOD except for the following:

Mercury by Cold Vapour AA: Arrived unpreserved, preserved upon reception at the laboratory.: F59984, F59995

pH: Holding time already past.: F59984, F59995

METALS (SURFACE WATER)

Please note that the results have not been corrected for QC recoveries. Please note that the results have been corrected for the blank.

CONVENTIONAL PARAMETERS (SURFACE WATER)

Please note that the results have not been corrected for QC recoveries. Please note that the results have been corrected for the blank. Reported detection limits are multiplied by dilution factors used for sample analysis.

Results relate only to the items tested.

GOLDER ASSOCIATES Attention: Valérie Bertrand

Client Project #: PROJET GOLDER 08-1428-0008

P.O. #:

Project name: MEADOWBANK

Quality Assurance Report Maxxam Job Number: A840232

QA/QC			Date			
Batch		_	Analyzed		_	
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units
548734 HM1	SPIKE	Total Dissolved Solids	2008/09/15		101	%
	SPIKE DUP	Total Dissolved Solids	2008/09/15		101	%
	METHOD BLANK	Total Dissolved Solids	2008/09/15	<10		mg/L
548798 JM6	QC STANDARD	Turbidity	2008/09/12		102	%
	METHOD BLANK	Turbidity	2008/09/12	0.1, R	DL=0.1	NTU
548815 CN1	Calibration Check	рН	2008/09/12		101	%
	QC STANDARD	pH	2008/09/12		101	%
	SPIKE	pH	2008/09/12		101	%
549094 AK3	SPIKE	Nitrate (N) and Nitrite(N)	2008/09/13		102	%
		Nitrites (N-NO2-)	2008/09/13		100	%
	METHOD BLANK	Nitrate (N) and Nitrite(N)	2008/09/13	< 0.02		mg/L
		Nitrites (N-NO2-)	2008/09/13	< 0.02		mg/L
549095 AK3	SPIKE	Chloride (CI)	2008/09/13		101	%
0.0000710	0	Sulfates (SO4)	2008/09/13		102	%
	METHOD BLANK	, ,	2008/09/13	< 0.05		mg/L
	WETTIOD DETINA	Sulfates (SO4)	2008/09/13	<0.1		mg/L
549457 AK3	QC STANDARD	Fluoride (F)	2008/09/16	٧٥.١	95	g/L
049401 ANS	SPIKE	Fluoride (F)	2008/09/16		96 96	%
	METHOD BLANK	()	2008/09/16	<0.1	90	mg/L
549524 AK3	QC STANDARD	Alkalinity Total (as CaCO3) pH 4.5	2008/09/17	<0.1	102	111g/L %
549524 ANS	QC STANDARD					
		Bicarbonates (HCO3 as CaCO3)	2008/09/17		102	%
	CDIVE	Carbonate (CO3 as CaCO3)	2008/09/17		102	%
	SPIKE	Alkalinity Total (as CaCO3) pH 4.5	2008/09/17		91	%
		Bicarbonates (HCO3 as CaCO3)	2008/09/17		91	%
		Carbonate (CO3 as CaCO3)	2008/09/17	_	91	%
	METHOD BLANK	, , , , , , ,	2008/09/17	<2		mg/L
		Bicarbonates (HCO3 as CaCO3)	2008/09/17	<2		mg/L
		Carbonate (CO3 as CaCO3)	2008/09/17	<2		mg/L
549577 MCL	SPIKE	Aluminum (Al)	2008/09/16		99	%
		Silver (Ag)	2008/09/16		73	%
		Arsenic (As)	2008/09/16		104	%
		Barium (Ba)	2008/09/16		101	%
		Cadmium (Cd)	2008/09/16		105	%
		Copper (Cu)	2008/09/16		99	%
		Manganese (Mn)	2008/09/16		102	%
		Molybdenum (Mo)	2008/09/16		107	%
		Nickel (Ni)	2008/09/16		97	%
		Zinc (Zn)	2008/09/16		100	%
		Iron (Fe)	2008/09/16		101	%
		Potassium (K)	2008/09/16		102	%
		Selenium (Se)	2008/09/16		93	%
		Lead (Pb)	2008/09/16		98	%
		Thallium (TI)	2008/09/16		102	%
	METHOD BLANK	Aluminum (Al)	2008/09/16	<1.0		ug/L
		Silver (Ag)	2008/09/16		DL=0.10	ug/L
		Arsenic (As)	2008/09/16	<1.0	-	ug/L
		Barium (Ba)	2008/09/16	<2.0		ug/L
		Cadmium (Cd)	2008/09/16	<0.20		ug/L
		Copper (Cu)	2008/09/16		DL=0.50	ug/L
		Manganese (Mn)	2008/09/16	<0.40	J0.00	ug/L ug/L
		Molybdenum (Mo)	2008/09/16	< 0.40		ug/∟ ug/L
		Nickel (Ni)	2008/09/16	<0.50		ug/L ug/L
						_
		Zinc (Zn)	2008/09/16	<1.0		ug/L
		Iron (Fe)	2008/09/16	<30		ug/L
		Potassium (K)	2008/09/16	<100		ug/L

GOLDER ASSOCIATES Attention: Valérie Bertrand

Client Project #: PROJET GOLDER 08-1428-0008

P.O. #:

Project name: MEADOWBANK

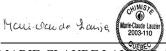
Quality Assurance Report (Continued)

Maxxam Job Number: A840232

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units
549577 MCL	METHOD BLANK	Selenium (Se)	2008/09/16	<1.0		ug/L
		Lead (Pb)	2008/09/16	0.15, R	DL=0.10	ug/L
		Thallium (TI)	2008/09/16	<2.0		ug/L
549578 MCL	SPIKE	Calcium (Ca)	2008/09/16		97	%
		Magnesium (Mg)	2008/09/16		96	%
	METHOD BLANK	Calcium (Ca)	2008/09/16	<1		mg/L
		Magnesium (Mg)	2008/09/16	<1		mg/L
		Total Hardness (CaCO3)	2008/09/16	<1		mg/L
549583 MR4	QC STANDARD	Mercury (Hg)	2008/09/16		95	%
	SPIKE	Mercury (Hg)	2008/09/16		100	%
	METHOD BLANK	Mercury (Hg)	2008/09/16	< 0.00001		mg/L
549804 JE	QC STANDARD	Nitrogen ammonia (N-NH3)	2008/09/16		99	%
	METHOD BLANK	Nitrogen ammonia (N-NH3)	2008/09/16	< 0.05		mg/L
550971 MCL	SPIKE	Manganese (Mn)	2008/09/19		96	%
	METHOD BLANK	Manganese (Mn)	2008/09/19	< 0.40		ug/L

RDL = Reportable Detection Limit
QC Standard = Quality Control Standard

SPIKE = Fortified sample


Validation Signature Page

Maxxam Job #: A840232

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

refoorson (Missis Brita 2003)

DELIA BARBUL, B.Sc., Chemist, Analyst 2

MARIE-CLAUDE LAUZHER, B.Sc., Chemist, Analyst 2

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

70.	190 famale					
ROV	190 Volone	Ph	cand 4s	+°C	105	oxy I
	Holling	7.21	705	12,0	346	4.96
	80 L	7.82	702	6,3	348	10,17
	120h	8.07	705	6,2	353	11.21
	140 L	8,09	718	6.9	359	10.95
	146 L	6.62	735	7.8	36le	9,95
Début	echaithlourage	7.05	808	7.3	399	-
Fin	échantillomose	7.36	758	5.2	351	-

L'échantillon a été prelevé en triplicata Méteux et Mercue filtré sur le ferrain.

SUJET

Projet

Réf. 08 1428 0008

Fait par: Real C Vérifié par: Palvick U

MW08-03 Date: 2008-09-12

Feuille

de

	7 101		: 1		
2008 09- 2	№ = 1,34				
Puze volume	b/ 1 - 3-1	cand 4s	t°c	TDS (1141)	DO(49/2
60 h	₹33	41	8.4	23	8,05
60h (20)	7.52	33	6,4	17	8.54
60h (180	5) 7.54	34	6.0	16	14.21
9.0 L (27	40) 7.52	39	5,4	19	14.12
Hotol 270L					
:					
134			•		
60 L	7.23	357	14.1	180	10.47
40L (10	7.51	360	8.8	179	11,63
60 h (i	(60) 7.67	371	6.0	188	11-78
60h (7	220) 7.72	380	6.1	185	11.71
50L (2	170) 7.81	375	6.3	185	10.82
boh C	330) 7.82	366	6.1	18(10,30
4. 4. 2.3. \					

SUJET Porg	MW-0803	
Projet Réf. 08-1428 0008	Fait par: R C Vérifié par: P U	Date: 7003 09-13 Feuille de

			· · · · · · · · · · · · · · · · · · ·
2028.07:[3]			
Purse(L) ph	cond 4s	TD9	(11m) Do Cus/i)
40 (80) 647 40 (120) 670 40 (120) 684 40 (160) 684 40 (200) 6.87 40 (200) 6.87 40 (200) 6.87 40 (200) 7.26 60 (320) 7.26 60 (320) 7.26 60 (560) 8.27 60 (690) 8.29 60 (870) - 60 (870) - 60 (930) 8.21 60 (930) 8.21 60 (930) 8.21 60 (930) - 60 (110) 8.0	435 442 441 445 445 452 475 508 545 550	8.4 215 2.9 218 2.6 221 6.6 221 6.0 221 6.0 221 6.0 221 6.0 240 5.9 250 4.1 275 4.1 275 4.1 275	11.0 10.27 9.40 9.40 10.12 11.87 10.94 11.67
total into these	·		·
40 (80) 745 50 (180) 7.61 50 (180) 7.61 50 (180) 7.57 60 (240) 7.03 60 (260) 6.95 60 (420) 7.10 60 (480) -	459 448 439 446 440 430	238 200 225 221 23 221 23 221 23 221 23 221 25 215 267 215	5,5 1 628 8,40 10,20 7,47 10,29 11,86 10,25
colubrated ports educatillariors on reference surfaces of references	MW-0803 deplicata- feltré son le ten	=D 21	80 Lines.

SWET POUR MI	W-03-01	
Projet 08-1428-6008	Fait par: Real C Vérifié par: Patrick U Revisé par:	Date: zックターリ Feuille de

		7 25		· .		
7008 es		2.5	, w			
Purge (Ng	cond(45)	t°c	TDS (PM) Do (us/i)
20		6.70	208	0.3	104	6.51
40 (60)	6.56	229	1.5	112	10.22
30 (90)	6.58	349	2.2	175	13.32
40 ((30)	6.60	422	2.0	212	15,20
8 (138)	694	414	1.7	207	14.78
total	1381.					
, 0,1(:			
700807=1	2	:				
	Dk (ear	660 auec glace)	262	0.3	13	16.20
	•					
7. 807	13	• .				
3	5	8.32	226	2,2	113	15,31
7.	xx (65)	8.09	441	2.(222	15,30
7	0 (95)	7.95	678	2.(349	15,09
Hotal	(95 L)		·		ta Pr	
			÷			
total	0,200	,0 d.	11 - nt	. 12	> 5e pt = 24	12 LANA
1010	You	Sh GO	Tr 20/1	au 13	se (1-	

SUJET PURCO A	lw-03.01 i	t enastilloruace
Projet Réf. 08-1418 003	Fait par: Réal Coutin	Date: Zcoes c 9 94' Feuille de
	Revisé par:	

200309-14 (Purge (L)	(Zh45)	cond (4s)	t°c.	TDS (Mu)	Do(us/li
50 50 (100)	7.44 7.22	399 1295	2.8 3.1	193 643	15.03
2 08 09 4					
30 total Jour	7.60	1029	4.2	515	14,15
Grand	total use	D03-01-D	373 (ilves	
2008-09-19 échant	llourage	nd(4s) +°0	- 10	s Do	(oug/c)
avant		820 l.0			
echartill	et Mercure non Pris dr	· duplicat	9		

SUJET Essai O	o Derweabilité	HW0803
Projet Réf. 08 - 1428 - 000 &	Fait par: Revisé par:	Date: 2008-09-6 Feuille de

[or essai	2° 05591, purge + 40 Litres
Purge de 730 Litres	
temps V cm)	temps y (m)
16406:24 5.38	16:15:56 7,22
1 28 4.66	16:16:00 6:40
33 4.03	03 5.85
36 3.76	06 5,31
45 3.35	10 4.80
\$ 50 3.05	1 14 4.27
16h07:03 2.86	23 3,60
10 2.82	32 3,18
17 2.80	40 3,02
28 2.78	16 2.95
1 1 46 2.76	\$ \$ 56 2.90
16h08 08 2.74	le: 17:07 2.85
46 2.72	16:17: 50 2.80
b b 59 2.70	[618:52 2.76
	[c:19:29 2,75