Appendix C5

Report: Aquatic Effects Management Program – Receiving Environment Monitoring 2008, Meadowbank Golder Project

Aquatic Effects Management Program – Receiving Environment Monitoring 2008

Meadowbank Gold Project

Prepared for:

Agnico-Eagle Mines Ltd.

Meadowbank Division 375 - 555 Burrard Street Two Bentall Centre Vancouver, BC V7X 1M8

March 2009

Azimuth Consulting Group Inc.

218-2902 West Broadway Vancouver, BC V6K 2G8

Project No. AEM-08-01

TABLE OF CONTENTS

TΑ	BLE OF (CONTENTS	i
LIS	T OF TA	BLES	iii
LIS	T OF FIG	GURES	ν
		PPENDICES	
		EDGEMENTS	
PR	OFESSIO	ONAL LIABILITY STATEMENT	ix
		S	
EX	ECUTIVE	SUMMARY	1
1.		ODUCTION	
	1.1.	Background	
	1.2.	Environmental Setting	
	1.3.	Objectives and Approach	
		. Core Monitoring Program	
		. Targeted Monitoring Studies	
	1.4.	Meadowbank Gold Project Development	
2.		HODS	
	2.1.	2008 AEMP Program Overview	
	2.2.	General Limnology	
	2.3.	Water Chemistry	
	2.4.	Sediment Chemistry	
		Bulk Grab Sampling Program	
		. Target Sediment Coring	
	2.5.	Phytoplankton	
	2.6.	Periphyton	
	2.7.	Benthic Invertebrates	
_	2.8.	Quality Assurance / Quality Control	
3.		JLTS AND DISCUSSION	
	3.1.	QA/QC	_
	3.2.	Limnology and Water Chemistry	
		Meadowbank Study Lakes	
		. Baker Lake	
	3.3.	Sediment Chemistry	
		Bulk Grab Sampling Program	
		.1. Meadowbank Study Lakes	
		.2. Baker Lake	
		Target Sediment Coring	
	3.3.2.	.1. Meadowbank Study Lakes	60

5.	REFE	RENCES	96
4.		//ARY	
	3.6.2.	Baker Lake	85
		Meadowbank Study Lakes	
		Benthic Invertebrates	
		Periphyton	
	3.4.2.	Baker Lake	70
	3.4.1.	Meadowbank Study Lakes	69
	3.4.	Phytoplankton	69
	3.3.2.2	2. Baker Lake	61

LIST OF TABLES

Table 2-1: AEMP core monitoring components conducted in 2008	.24
Table 2-2: AEMP sampling location coordinates (GPS, UTM, NAD83), Meadowbank study lakes & Baker Lake, July, August and September 2008. 26	-
Table 3-1: QA/QC data for 2008 water parameters, Meadowbank study lakes & Baker Lake, July, August and September 2008	.31
Table 3-2: QA/QC data for 2008 sediment parameters, Meadowbank study lakes & Baker Lake, August 2008	-
Table 3-3: QA/QC data for 2008 sediment core parameters, Meadowbank study lakes & Baker Lake, July and August 2008	
Table 3-4: QA/QC data for phytoplankton, Meadowbank study lakes & Baker Lake, July, August and September 2008	.37
Table 3-5: QA/QC data for periphyton, Meadowbank study lakes, August 2008. 39	
Table 3-6: Percent recovery of benthic invertebrate samples, Meadowbar study lakes & Baker Lake, August 2008	
Table 3-7: Conventional water chemistry and total metals (mg/L), Meadowbank study lakes & Baker Lake, July, August and September 2008. 45	r
Table 3-8: Conventional sediment chemistry, PAHs and total metals (mg/kg), Meadowbank study lakes & Baker Lake, August 2008	.63
Table 3-9: Sediment core chemistry and total metals (mg/kg), Meadowba study lakes & Baker Lake, July and August 2008	
Table 3-10: Seasonal density (cells/L) of major phytoplankton groups, Meadowbank study lakes & Baker Lake, July, August and September 2008. 72	•
Table 3-11: Seasonal biomass (mg/m³) and diversity of major phytoplankton groups, Meadowbank study lakes & Baker Lake, July, August and September 2008	
Table 3-12: Density (cells/cm²) of major periphyton groups, Meadowbank study lakes, August 2008	
Table 3-13: Biomass (μg/cm²) and diversity of major periphyton groups, Meadowbank study lakes, August 2008	.80

Benthic invertebrate total abundance (#/m²), Meadowbank akes & Baker Lake, August 200887
Benthic invertebrate total richness (#taxa), Meadowbank study Baker Lake, August 200889
ANOVA (or Kruskal-Wallis) results testing differences among itions, Meadowbank study lakes & Baker Lake, August 200891

LIST OF FIGURES

Figure 1-1: Study lakes monitoring areas, 200810
Figure 1-2: Portage Lakes monitoring areas and sampling stations, 2008.11
Figure 1-3: Vault Lakes monitoring areas and sampling stations, 2008 12
Figure 1-4: Baker Lake sampling stations, 200813
Figure 3-1: Temperature (°C) and dissolved oxygen (mg/L) profiles for Third Portage Lake– North Basin, July, August and September 200848
Figure 3-2: Temperature (°C) and dissolved oxygen (mg/L) profiles for Third Portage Lake– East Basin, July, August and September 200849
Figure 3-3: Temperature (°C) and dissolved oxygen (mg/L) profiles for Second Portage Lake, July, August and September 200850
Figure 3-4: Temperature (°C) and dissolved oxygen (mg/L) profiles for Wally Lake, July and August 200851
Figure 3-5: Temperature (°C) and dissolved oxygen (mg/L) profiles for Tehek Lake, July and August 200852
Figure 3-6: Temperature (°C) and dissolved oxygen (mg/L) profiles for Third Portage Lake– South Basin, July, August and September 2008. 53
Figure 3-7: Temperature (°C) and dissolved oxygen (mg/L) profiles for Inuggugayualik Lake, July and August 200854
Figure 3-8: Temperature (°C) and dissolved oxygen (mg/L) profiles for Baker Lake – Barge Dock, July, August and September 200855
Figure 3-9: Temperature (°C) and dissolved oxygen (mg/L) profiles for Baker Lake – Proposed Jetty, July, August and September 200856
Figure 3-10: Temperature (°C) and dissolved oxygen (mg/L) profiles for Baker Lake– Akilahaarjuk Point, July, August and September 2008 57
Figure 3-11: Median (& range) concentration values of arsenic, cadmium, chromium, and copper in sediment cores from Meadowbank study lakes, August 200868
Figure 3-12: Seasonal biomass (mg/m³) of major phytoplankton groups, Meadowbank study lakes & Baker Lake, July, August and September 2008. 74

Figure 3-13: Phytoplankton mean total biomass (mg/m³), +/- 1 standard deviation, Meadowbank study lakes & Baker Lake, July, August and September 2008	.75
Figure 3-14: Mean biomass (µg/cm²) of major periphyton groups, Meadowbank study lakes, August 2008	.81
Figure 3-15: Periphyton mean total biomass (µg/cm²), +/- 1 standard deviation, Meadowbank study lakes, August 2008	.82
Figure 3-16: Mean relative biomass (ug/cm²) of major periphyton groups, Meadowbank study lakes, August 2008	.83
Figure 3-17: Benthic invertebrate mean abundance and richness (total ar individual taxa groups), Meadowbank study lakes & Baker Lake, August 2008	nd .92

LIST OF APPENDICES

- Appendix A: AEMP Sediment Coring Terms of Reference Memo.
- **Appendix B**: Presence (+) / absence (-) matrix of phytoplankton species in Meadowbank study lakes and Baker Lake, 2008.
- **Appendix C**: Presence (+) / absence (-) matrix of periphyton species in Meadowbank study lakes, 2008.
- **Appendix D**: Benthic invertebrate raw data, Meadowbank study lakes and Baker Lake, 2008.
- Appendix E: Explosives Lake Assessment Memo, 2008.
- **Appendix F**: Raw Data and Laboratory Reports, 2008.

ACKNOWLEDGEMENTS

Azimuth would like to thank AEM for their continued support of this program and for facilitating our work by providing logistical assistance and help whenever needed. Key personnel conducting this project were as follows:

- Gary Mann (Azimuth) Gary was responsible for overall management of this project. He also provided oversight and logistical support for the field crew, and reviewed the AEMP report.
- Maggie McConnell (Azimuth) Maggie was responsible for implementing the AEMP field monitoring program in 2008. In addition to participating in all sampling trips, Maggie conducted most of the data analysis, interpretation, and report writing.
- Randy Baker (Azimuth) Randy provided oversight and logistical support for the field crew and conducted the technical review of the AEMP report.
- Ryan Hill (Azimuth) Ryan provided oversight and logistical support to the field crew.
- Ralph Turner (Azimuth) Ralph was responsible for implementing the sediment core sampling, as part of the AEMP field monitoring in 2008. In addition to leading the sediment sampling, Ralph participated in both the July and August sampling trips.
- William Scottie (Baker Lake) William assisted Maggie and Ralph in conducting the spring, summer and fall water, sediment and benthic sampling components. His Petite Ponar grab sampler and periphyton scrubber handling skills cannot go without specific mention.

PROFESSIONAL LIABILITY STATEMENT

This report has been prepared by Azimuth Consulting Group Inc. (Azimuth), for the use of Agnico-Eagle Mines Ltd. (AEM), who has been party to the development of the scope of work for this project and understands its limitations. The extent to which previous investigations were relied on is detailed in the report.

In providing this report and performing the services in preparation of this report Azimuth accepts no responsibility in respect of the site described in this report or for any business decisions relating to the site, including decisions in respect of the management, purchase, sale or investment in the site.

This report and the assessments and recommendations contained in it are intended for the sole and exclusive use of AEM.

Any use of, reliance on, or decision made by a third party based on this report, or the services performed by Azimuth in preparation of this report is expressly prohibited, without prior written authorization from Azimuth. Without such prior written authorization, Azimuth accepts no liability or responsibility for any loss, damage, or liability of any kind that may be suffered or incurred by any third party as a result of that third party's use of, reliance on, or any decision made based on this report or the services performed by Azimuth in preparation of this report.

This report is intended to provide environmental information to support the Aquatic Effects Management Program (AEMP) for AEM's Meadowbank Project. The AEMP monitoring scope and design was developed in consideration of a specific project development plan. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the proposed development may necessitate modification of the AEMP and may potentially reduce the utility of this baseline data.

The findings contained in this report are based, in part, upon information provided by others. In preparing this report, Azimuth has assumed that the data or other information provided by others is factual and accurate. If any of the information is inaccurate, site conditions change, new information is discovered, and/or unexpected conditions are encountered in future work, then modifications by Azimuth to the findings, conclusions and recommendations of this report may be necessary.

In addition, the conclusions and recommendations of this report are based upon applicable legislation existing at the time the report was drafted. Changes to legislation, such as an alteration in acceptable limits of contamination, may alter conclusions and recommendations.

This report is time-sensitive and pertains to a specific site and a specific scope of work. It is not applicable to any other site, development or remediation other than that to which it specifically refers. Any change in the site, remediation or proposed development may necessitate a supplementary investigation and assessment.

This report is subject to copyright. Reproduction or publication of this report, in whole or in part, without Azimuth's prior written authorization, is not permitted.

ACRONYMS

AEMP – Aquatic Effects Management Program

ANOVA – Analysis of Variance

AWPAR – All Weather Private Access Road

BBD - Baker Lake - barge dock

BPJ – Baker Lake – proposed jetty

BAP – Baker Lake – Akilahaarjuk Point

DFO – Department of Fisheries and Oceans

DLs – Detection limits

DQO – Data Quality Objective

EAS – Effects Assessment Strategy

EEM – Environmental Effects Monitoring

EIA – Environmental Impact Assessment

GPS – Global Positioning System

INUG – Inuggugayualik Lake

ISQG – Interim Sediment Quality Guidelines

MDL – Method detection limit

MMER – Metal Mining Effluent Regulations

PAHs – Polycyclic Aromatic Hydrocarbons

PEL - Probable Effect Level

QA/QC – Quality Assurance / Quality Control

RPD – Relative percent difference

SOP – Standard Operating Procedure

SQG – Sediment Quality Guidelines

SP – Second Portage Lake

TE – Tehek Lake

TPE, TPN, TPS – Third Portage Lake – East, North, and South Basins

UTM – Universal Transverse Mercator

WAL – Wally Lake

EXECUTIVE SUMMARY

Overview

This Aquatic Effects Management Program (AEMP) for the Meadowbank Gold Project describes the strategy, methodology and results of aquatic monitoring activities during the 2008 open-water season of the Meadowbank study lakes and, for the first time, at Baker Lake.

Monitoring Strategy and General Study Design

At its core, the AEMP was designed to address key issues identified in the Meadowbank EIA (i.e., mining-related activities with the potential to affect water quality, fish habitat and fish populations). The core program is tailored based on our understanding of mine construction, operation and infrastructure (e.g., dikes, effluents, stream crossings, roads, etc.) and has been developed to detect mine-related impacts at temporal and spatial scales that are ecologically relevant. The core program initially focused solely on the project lakes, but was expanded to Baker Lake in 2008 to ensure that monitoring was also in place to track project-related activities in that area. The 2008 program consisted of 10 stations, each categorized into one of the three main types of stations described below:

- Near-field (NF) areas Stations are situated in close proximity to the
 development, in particular near dikes and effluent sources. They are the first line
 of defense or early-warning locations for introductions of stressors into the
 receiving environment. NF stations are Third Portage North (TPN), Third Portage
 East (TPE), Second Portage (SP), and Wally Lake (WAL) for the Meadowbank
 study lakes and Baker Barge Dock (BBD) and the Baker Proposed Jetty (BPJ) for
 Baker Lake.
- Far-field (FF) area The intent of this station is to monitor downstream of project infrastructure to provide insights into the spatial extent of any effects observed at the near-field stations. Given the natural drainage of the entire Meadowbank project area, the Tehek Lake (TE) station is a key location to assess whether or not contaminants are detectable downstream of the entire mine development.
- Reference (Ref) areas Reference stations are sufficiently removed from the mine that they are presumed to be unaffected by any infrastructure (roads, dikes, runways) and point sources (aerial and aquatic) associated with mine development. Internal (Third Portage South [TPS]) and external (Inuggugayualik Lake [INUG]) reference areas were chosen for the purposes of making comparisons with the Meadowbank study lakes (BAER, 2005); For Baker Lake,

an internal reference area was added several kilometers to the east of the hamlet along the north shore of the lake at Baker Akilahaarjuk Point (BAP).

In addition to the core AEMP program, the following targeted monitoring studies were conducted in 2008:

- Surface sediment coring this study is reported along with the core AEMP study in this document. It was undertaken to characterize the baseline spatial variability in metals concentrations in surface sediments (top 1 cm only) prior to the onset of in-water construction activities.
- "Explosives" lake assessment this study, appended to this report, was conducted to collect basic information regarding the morphology, limnology and fisheries status of this lake, located next to the new location of the explosives plant.
- *Dike construction monitoring* A detailed monitoring and management program for dike construction was developed as part of the Nunavut Water Board (NWB) A License process. The program was implemented for the construction of the East Dike and Western Channel Dike during open water 2008. Monitoring program results are documented in a separate report (Azimuth, 2009).
- Total suspended solids (TSS) effects assessment strategy (EAS) In response to elevated TSS concentrations related to construction of the East Dike, the TSS EAS was implemented to determine the ecological significance of the situation. This study is documented along with dike construction monitoring (Azimuth, 2009).

Meadowbank Gold Project – Development Status

Construction phase of the Meadowbank Gold Project officially started in June 2008, upon receipt of the NWB A Water License (2AM-MEA0815). The DFO *Fisheries Act* Authorization (NU-03-0191) for the project was issued on July 30, 2008 and construction of the East Dike started that day. Major in-water construction activities for 2008 included the East Dike and installation of the Western Channel Dike, located between Third Portage Lake and Second Portage Lake. The closest AEMP stations to these activities were the Second Portage Lake station (SP) and Tehek Lake (TE), further downstream.

Meadowbank Study Lakes

- Limnology results show that the lakes are generally cold, clear, isothermal, well mixed, and well oxygenated. These results are consistent among stations and seasons for 2008 and similar to historical data.
- Water chemistry results show that the lakes are circum-neutral with low conductivity, hardness and ions. Total and dissolved solids concentrations are

very low and typically below detection limits. Nitrogen, carbon and phosphorus were also low, close to laboratory detection limits and did not differ appreciably within or among lakes and seasons. Total metals in water were consistently low among study lakes and seasons, with only four of 28 metals consistently above detection limits and none exceeding CCME guidelines. These results are generally consistent with previous years and confirm their status as ultraoligotrophic lakes.

- Construction of the East Dike did result in the introduction of suspended sediments into Second Portage Lake in August and September 2008. This resulted in elevated concentrations of total suspended solids (TSS), certain nutrients and some metals (aluminum, chromium and iron exceeded CCME guidelines) in Second Portage Lake. These conditions extended to Tehek Lake in the fall sampling period, but to a lesser degree. The extent and ecological significance of the sediment introductions is assessed in greater detail in the dike construction monitoring report (Azimuth, 2009).
- Sediment chemistry results showed naturally elevated metals (primarily arsenic, cadmium, copper, chromium, and zinc, which typically exceeded CCME guidelines) at many locations. A target coring study was conducted during the spring (i.e., prior to any in-water construction activities) to improve the characterization of within-station spatial variability of metals concentrations for baseline conditions. The study focused on only the top 1 cm of sediment and will be used to help monitor whether mining activities are changing sediment quality over time. Interestingly, detectable oil & grease concentrations were found at a number of stations, including the reference areas; these results are thought to be related to natural conditions rather than hydrocarbon contamination and will be explored further in 2009.
- Primary productivity was uniformly low, as indicated by low phytoplankton biomass and low chlorophyll-α, as expected for these ultra-oligotrophic systems. Phytoplankton biomass was depressed in Second Portage Lake during summer and to a lesser degree in the fall, likely associated with the construction-related TSS introductions. This is discussed further in the dike construction monitoring report (Azimuth, 2009).
- Periphyton biomass, as expected and consistent with previous years, was quite variable among and within stations in 2008. There were some apparent patterns, with lower biomass at stations with deeper, colder water (e.g., Third Portage Lake). Several years of baseline periphyton data are available with which to compare periphyton growth on habitat compensation features. Further periphyton sampling at the AEMP stations is not needed.

Benthic community samples were dominated by chironomid larvae in 2008, consistent with previous years. Total abundance and richness were depressed in Second Portage Lake in August 2008, likely due to construction-related sediment inputs. The extent of sediment-related impacts to benthic community did not appear to significantly affect the Tehek Lake station. This is discussed further in the dike construction monitoring report (Azimuth, 2009).

Baker Lake

- Limnology results suggest some influence of marine water at the Baker Lake stations, with fairly widespread elevated conductivity, hardness and ions relative to the Meadowbank study lakes. However, inputs from the Thelon River, which is more similar to water from the Meadowbank study lakes, seem to prevail under certain conditions (e.g., strong southerly winds). Despite some vertical differences in salinity, oxygen and temperature profiles show unstratified conditions.
- Water chemistry results show 23 of 28 metals below detection limits and all below CCME guidelines.
- Sediment chemistry showed lower metals concentrations than the Meadowbank study lakes, with only arsenic exceeding CCME guidelines. The higher arsenic concentrations were found primarily at the proposed jetty location, with each of the 15 sediment core samples exceeding CCME guidelines.
- Primary productivity was slightly higher at the Baker Lake stations relative to the Meadowbank study lakes, with the highest phytoplankton biomass found at the proposed jetty station.

Benthic community samples in Baker Lake were dominated by chironomid larvae. Total abundance and diversity at Baker Lake stations were generally higher than the Meadowbank study lakes, despite having sandier substrate.

1. INTRODUCTION

1.1. Background

The Meadowbank Gold Project is situated approximately 75 km north of the hamlet of Baker Lake, Nunavut. The Aquatic Effects Management Program (AEMP; BAER, 2005) was developed to address issues identified during the environmental impact assessment (EIA) process that could potentially impact the aquatic receiving environments surrounding the development. To this end, the AEMP describes the general monitoring strategy designed to detect these impacts and support the development of appropriate mitigation measures, as necessary. The core monitoring strategy was implemented for two complete annual cycles (2006 and 2007; Azimuth, 2008*a*, *b*) in advance of starting construction on the Meadowbank Gold Project, augmenting the existing baseline environmental data set. This AEMP monitoring report documents the strategy, methods and results of aquatic receiving environment monitoring activities undertaken during the 2008 open-water season, which is the first season where significant construction activities have been conducted (see **Section 1.4** for an overview).

1.2. Environmental Setting

Understanding the environmental setting of the project lakes is integral to understanding the design of the AEMP. The Meadowbank project lakes are situated in the barrenground central Arctic region of Nunavut within an area of continuous permafrost. These are headwater ultra-oligotrophic/oligotrophic (nutrient poor and unproductive) lakes, situated on the watershed boundary that separates two main drainages—the Arctic and Hudson Bay drainages. Only a few hundred meters to the north of Second and Third Portage lakes is the divide between water that flows north to the Arctic Ocean (via the Meadowbank and Back River system) or to Chesterfield Inlet and Hudson Bay (via the Quoich River system).

The landscape consists of rolling hills and relief with low-growing vegetative cover and poor soil development. Numerous lakes are interspersed among boulder fields, eskers and bedrock outcrops, with indistinct and complex drainages. The main lakes in the Meadowbank project area (**Figure 1-1**) include: Third Portage Lake (TP), Second Portage Lake (SP), Tehek Lake (TE), and the Vault Lake system – Vault, Wally (WAL) and Drilltrail lakes. As is common of headwater lakes, all of the project lakes have small drainage areas relative to the surface area of the lakes themselves. Local inflow from surrounding terrain is the predominant influence on water movement within the system. Small channels connect the project area lakes, although there is little flow between lakes during most of the year. The ice-free season on these lakes is very short, with ice break-

up in late-June to mid-July and ice-up beginning in late September or early October. Maximum ice thickness is at least 2 m by March/April.

Overall, the Meadowbank project lakes support healthy communities of plankton, benthos and fish that are typical of oligotrophic Arctic lakes (BAER, 2005). Biological productivity of the lakes is limited by nutrient availability, cold water and a short growing season.

1.3. Objectives and Approach

The overall objective of the AEMP is to ensure that the aquatic environment and its resources are protected by considering all aspects of mine operations with the potential to adversely affect the aquatic environment. The AEMP takes an integrated, ecosystem-based approach that links mitigation and monitoring of physical/chemical effects on key ecological receptors in the receiving environment.

At its core, the AEMP was designed to address key issues identified in the Meadowbank EIA (i.e., mining-related activities with the potential to affect water quality, fish habitat and fish populations). Monitoring results are intended to inform the adaptive management process, supporting the early identification of potential problems and development of mitigation options to address them. Consistent with the principles of adaptive management, the AEMP will be subject to periodic review to refine the program to improve its effectiveness as our understanding of key issues evolves over time. The Meadowbank AEMP has two primary components, which are described below.

1.3.1. Core Monitoring Program

The core program consists of a general strategy to monitor water and sediment quality, phytoplankton, periphyton, and benthic invertebrates. The core program is tailored based on our understanding of mine construction, operation and infrastructure (e.g., dikes, effluents, stream crossings, roads, etc.) and has been developed to detect mine-related impacts at temporal and spatial scales that are ecologically relevant. The core program initially focused solely on the project lakes, but was expanded to Baker Lake in 2008 to ensure that monitoring was also in place to track project-related activities in that area. The study design is based on a control-impact approach but has also incorporated the concept of gradients in exposure. To this end, the 2008 program consisted of 10 stations (see **Figures 1-1 through 1-4**), each categorized into one of the three main types of stations described below:

• Near-field (NF) areas – Stations are situated in close proximity to the development, in particular near dikes and effluent sources (**Figure 1-1**; **Figure 1-4**). These stations provide the first line of defense or early-warning locations for introductions of stressors into the receiving environment. For the project lakes area, these stations

include: Third Portage North (TPN), Third Portage East (TPE), Second Portage (SP) and Wally Lake (WAL). For Baker Lake, there are two NF stations, one targeting the hamlet's barge landing area (Baker Barge Dock [BBD]) and the other AEM's fuel storage facility (Baker Proposed Jetty [BPJ]).

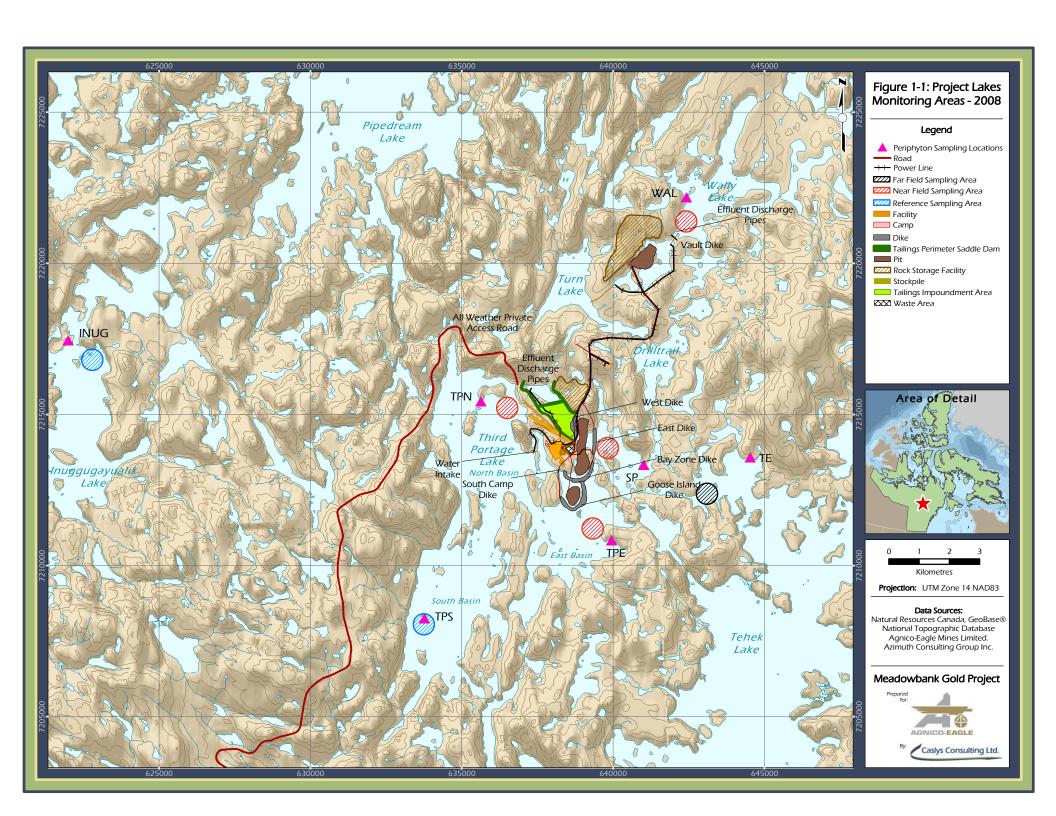
- Far-field (FF) area The intent of this station is to monitor downstream of project infrastructure to provide insights into the spatial extent of any effects observed at the near-field stations. The Tehek Lake (TE) station is a key location that will ultimately determine whether or not contaminants are detectable downstream of the entire mine development (Figure 1-2). Lake waters from Second and Third Portage Lakes and the Vault Lakes (Vault, Wally, Drilltrail) meet at the southern end of Second Portage Lake and discharge via a single channel into Tehek Lake (Figure 1-3). Monitoring the water and sediment quality and the health of the benthic invertebrate community in the basin adjoining the discharge point from Second Portage Lake will help determine if any effects identified at NF stations are extending into Tehek Lake.
- Reference (Ref) areas By definition, reference stations are sufficiently removed from the mine that they are presumed to be unaffected by any infrastructure (roads, dikes, runways) and point sources (aerial and aquatic) associated with mine development. Internal (Third Portage South [TPS]) and external (Inuggugayualik Lake [INUG]) reference areas were chosen for the purposes of making comparisons with the project lakes (BAER, 2005). Monitoring of reference areas is important because it is necessary to distinguish between possible mine-related changes in water quality or ecological parameters and natural changes, unrelated to the mine. The internal reference area (at the extreme headwaters of Third Portage Lake) is far removed from the mine, upstream of the development area and is removed from the prevailing wind direction. The external reference area (Inuggugayualik Lake) is situated about 16 km west of the mine site (Figure 1-1). Inuggugayualik Lake is a headwater lake of the Meadowbank River system that flows north to the Arctic Ocean. Despite the different drainage basin, Inuggugayualik Lake satisfies the requirements of an external reference lake from a physical/chemical perspective because it is at the same latitude, has similar geology, relief and climate, does not have any significant inflows and has similar limnological parameters, water chemistry and aquatic biological community structure to the project lakes (BAER, 2005). For Baker Lake, an internal reference area was added several kilometers to the east of the hamlet along the north shore of the lake (Baker Akilahaarjuk Point [BAP]).

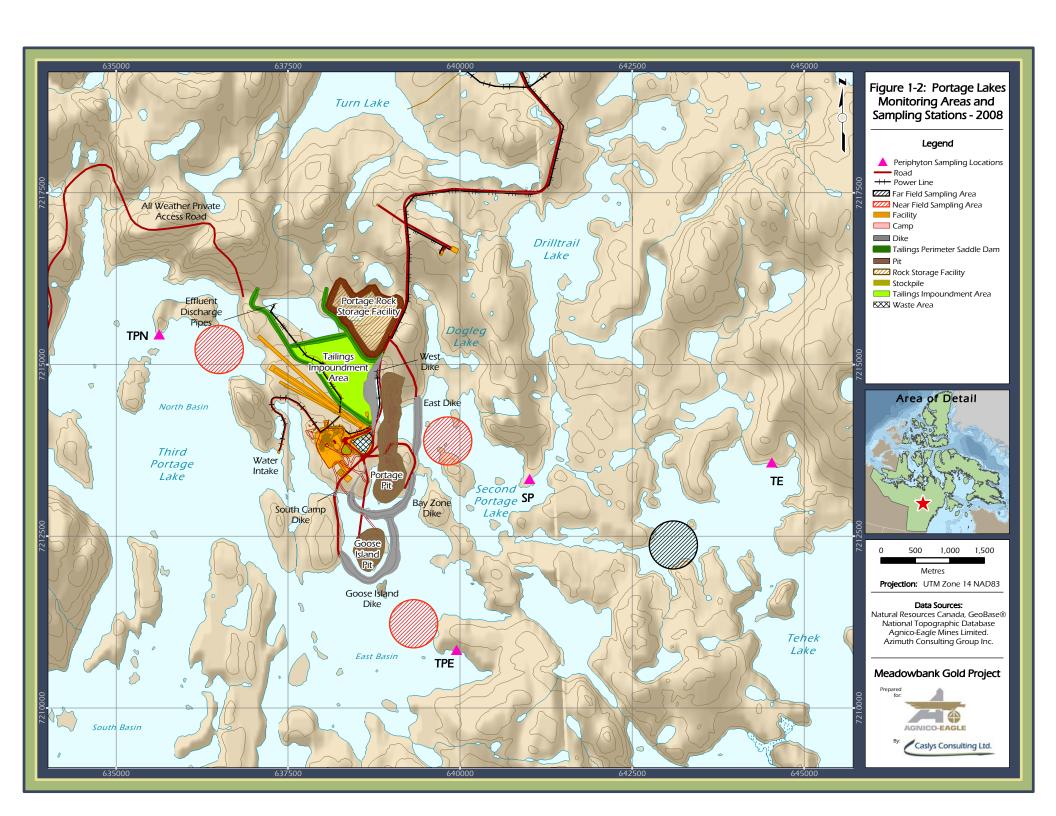
Thus, the core monitoring program design not only allows for the detection of impacts, but also should provide an indication of the extent (both spatially and temporally) of any adverse effects.

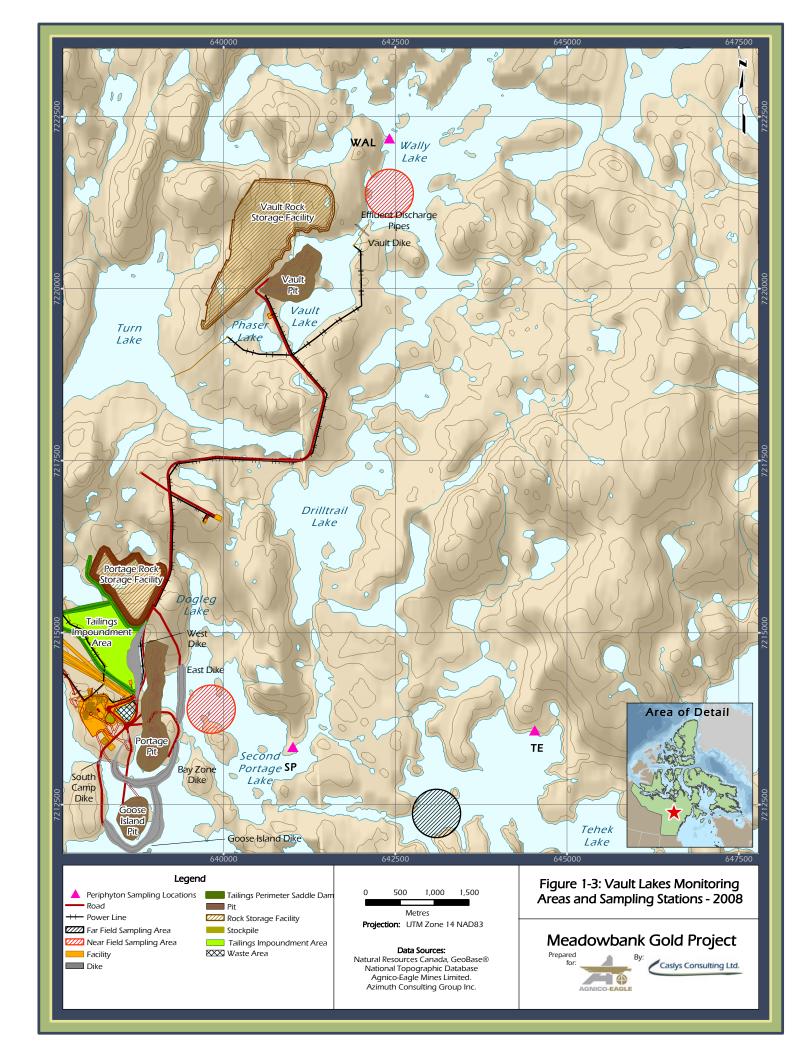
1.3.2. Targeted Monitoring Studies

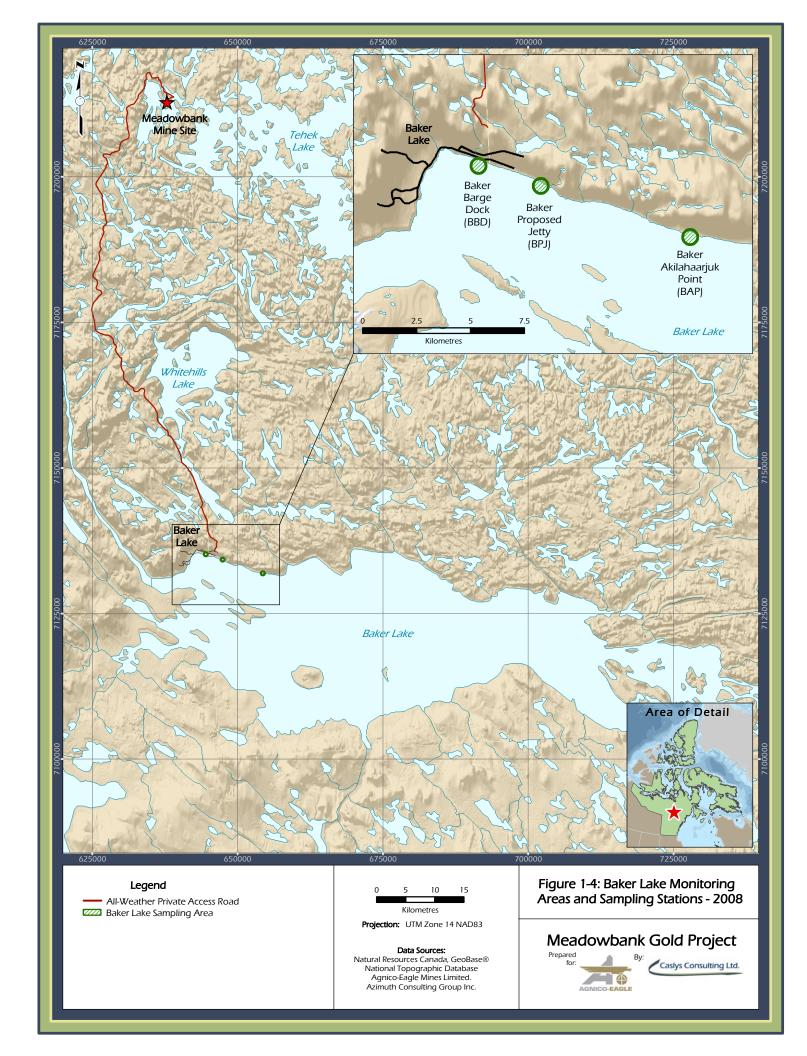
Targeted studies are specific studies that typically have narrower temporal or spatial bounds or are designed to address specific questions related to particular components of mine development during construction or operation. These are integrated with, and complementary to, the core monitoring design. The following target monitoring studies were conducted in 2008:

- Surface sediment coring The sediment sampling collection (i.e., the Petite Ponar grab) and processing (i.e., compositing of sediments from three separate grabs) methods used in the core monitoring program were designed to broadly characterize conditions within a station. Recognizing that early open water in 2008 would be the last time any additional baseline data could be collected, a study was designed to characterize the spatial variability of surface sediments (i.e., top 1-cm only) at each AEMP monitoring station. Coring was selected as the best sampling method and 15 replicate samples were collected broadly across each station. All sampling was conducted prior to the onset of major construction activities. This study is reported within this document. Ultimately, the results will be used to support the refinement of the AEMP program.
- "Explosives" Lake assessment The revised location for the Meadowbank explosives plant is situated adjacent to an unnamed lake that had not been assessed during baseline environmental studies. Consequently, key information gaps existed as to its status as fish habitat and as to its basic morphology. A study was undertaken to characterize the lake and to provide answers to some basic questions related to using the lake as a water source. The study is document in **Appendix E** of this report.
- Dike construction monitoring A detailed monitoring and management program
 for dike construction was developed as part of the Nunavut Water Board (NWB)
 A License process. The program was implemented for the construction of the East
 Dike and Western Channel Dike during open water 2008. Monitoring program
 results are documented in a separate report (Azimuth, 2009).
- Total suspended solids (TSS) effects assessment strategy (EAS) In response to elevated TSS concentrations related to construction of the East Dike, the TSS EAS was implemented to determine the ecological significance of the situation. This study is documented along with dike construction monitoring (Azimuth, 2009).


1.4. Meadowbank Gold Project Development


The construction phase of the Meadowbank Gold Project officially started in June 2008, upon receipt of the NWB A Water License (2AM-MEA0815) for the project. The Fisheries and Oceans Canada (DFO) *Fisheries Act* Authorization (NU-03-0191) for the project was issued on July 30, 2008, thus allowing the start of in-water construction activities, which started that same day. Major in-water construction activities for 2008 included the East Dike (located in Second Portage Lake) and the Western Channel Dike (located between Third Portage Lake and Second Portage Lake); the closest AEMP station to these activities was the Second Portage Lake station (SP).


While a significant amount of construction activities were conducted across the site, those conducted adjacent to, or particularly within, aquatic receiving environments were of greatest interest due to their higher potential to introduce sediments or other contaminants. As discussed previously, targeted studies were developed to closely monitor in-water construction activities (i.e., dike construction). Notwithstanding, the AEMP program was also designed provide insights into the potential adverse effects of these activities. Consequently, the studies should be viewed as complementary, rather than independent.


While the onset of construction activities signaled the end of the baseline (i.e., predevelopment) phase for certain AEMP stations, it is important to note that no activities were undertaken in the immediate vicinity of several NF stations (i.e., Wally Lake [WAL] and Third Portage Lake [TPN and TPE]). The 2008 monitoring results for these stations, consequently, can still provide insights into how they vary naturally. Furthermore, certain 2008 events were conducted prior to the onset of in-water construction activities. For example, the surface sediment coring program was conducted in Second Portage Lake before any activities started on the East Dike. Thus, the spatial and temporal mosaic of development activities needs to be considered when discussing the 2008 AEMP monitoring results.

2. METHODS

2.1. 2008 AEMP Program Overview

Field sampling in 2008 was conducted during three time periods; spring (July 19–28), summer (August 16–29) and fall (September 17–21). Sample collection for all AEMP core monitoring components are shown for each season in **Table 2-1**, while Global Positioning System (GPS) Universal Transverse Mercator (UTM) coordinates (in NAD 83) for the sampling stations are shown in **Table 2-2**.

General limnology, water and phytoplankton samples were collected in the spring, summer and fall (WAL and INUG could not be accessed due to helicopter limitations and TE had limited access), while sediment, benthos and periphyton (not for Baker Lake) sampling was conducted in summer only. Phytoplankton was not collected in week 1 of August as was planned in 2007 (Azimuth, 2008*a*) because sampling for week 3 of July had just been completed as it extended into week 4.

2.2. General Limnology

Vertical temperature ($^{\circ}$ C), oxygen (mg/L) and conductivity (μ S/cm) depth profiles were acquired using the YSI Model 85 temperature – oxygen meter. Profiles were acquired from each station at each sampling event to track changes in oxygen and temperature profiles. Secchi depth (m) was measured prior to collection of water and sediment samples.

2.3. Water Chemistry

Water samples were collected from all sampling stations in spring and summer and from most stations in the fall (as described above, WAL and INUG could not be accessed due to helicopter limitations and TE had limited access). In addition, three additional samples were collected in the north basin of Third Portage Lake (TPN) in the fall to provide some insights into within-station spatial variability. Water was collected from 4 m depth by pumping lake water using weighted flexible (food-grade silicone) tubing and a diaphragm pump connected to a 12 volt battery. The procedures for collecting the water samples are outlined in detail in the Standard Operating Procedure (SOP) for Water and Phytoplankton Sampling (AEM, 2009).

ALS Environmental (Vancouver, BC) provided all of the sampling containers and appropriate preservatives. All samples were stored in the dark and kept on ice

immediately following collection and during transport to the laboratory. A completed chain-of-custody form accompanied the samples during transport.

Water samples were analyzed for conventional parameters (hardness, conductivity, pH and total dissolved and suspended solids), anions (alkalinity, chloride and sulfate), nutrients (ammonia, nitrate, nitrite, total Kjeldahl nitrogen, orthophosphate and total phosphate), organic parameters (chlorophyll-*a*, dissolved and total organic carbon, oil and grease) and total metals.

Water chemistry concentrations were tabulated and compared against each other, and, when available, the federal Canadian Council of Ministers of the Environment (CCME, 2007) water quality guidelines for the protection of aquatic life. These guidelines are intended to provide a conservative level of protection to freshwater aquatic life from anthropogenic contaminants or other physical changes (suspended solids, temperature).

2.4. Sediment Chemistry

2.4.1. Bulk Grab Sampling Program

Sediment was collected in the summer (August) using proven sample collection and handling techniques (Environment Canada, 1984). The procedures for collecting the sediment samples are outlined in detail in the SOP for Benthos and Sediment Sampling (AEM, 2009). Sediment (top 3–5 cm) was collected from all stations using a Petite Ponar grab (sampling area of 0.023 m²). Three grab samples were composited from each station to reduce the influence of within-station spatial heterogeneity¹. Sediment chemistry grabs were collected after benthic invertebrate sampling to avoid possible disturbance of biota.

Only those grab samples that met the following acceptability criteria were retained for analysis: did not contain large foreign objects; adequate penetration depth (i.e., 10–15 cm); not overfilled (sediment surface not touching the top of sampler); did not leak (there was overlying water present and no visible leaks); and was undisturbed (sediment surface was relatively flat). Grabs that did not satisfy these conditions were discarded.

Sampling jars were placed in a cooler with ice packs and transported to ALS Environmental (Vancouver, BC) for analysis. A completed chain-of-custody form accompanied the samples during transport. Sediment samples were analyzed for pH, total organic carbon, moisture content, particle size (% gravel, sand, silt and clay), oil and grease, PAHs (polycyclic aromatic hydrocarbons) and total metals concentrations.

¹ Within-station spatial variability was directly assessed in the targeted sediment coring study reported herein.

-

Sediment metals concentrations were compared to sediment quality guideline (SQG) concentrations developed by the CCME (2002) for the protection of aquatic life. There are two levels of SQGs: Interim Sediment Quality Guidelines (ISQG) and Probable Effects Level (PEL) concentrations. ISQGs are conservative values that represent the concentration below which adverse effects are unexpected. The PEL is less conservative and represents a concentration above which adverse effects may be observed, based on laboratory studies. It is important to realize that background metals concentrations in sediments routinely exceed both ISQG and PEL concentrations, especially in mineralized areas and that this does not mean that adverse effects should be expected. All of the measured sediment chemistry concentrations from the study lakes were tabulated and compared against each other and, when available, the SQGs.

2.4.2. Target Sediment Coring

The early open water in 2008 is the last time that additional baseline data to characterize the spatial variability of surface sediments (i.e., top 1-cm only) at each AEMP monitoring station could be acquired. Coring was selected as the best sampling method and 15 replicate samples were collected broadly across each AEMP station, prior to starting any in-water construction activities. The objective of this coring program was to characterize spatial variability of surface (<1 cm) sediment chemistry at each station. These results will provide a more comprehensive characterization of baseline conditions and provide a better data set against which to compare future sediment chemistry monitoring results.

Collection of surface sediment cores was conducted in July (Meadowbank study lakes) and August (Baker Lake stations) from all stations using a hand-operated corer (barrel diameter of 7 cm). Fifteen independent cores plus one field duplicate were collected from each station. Cores were collected over a wide area (at least 25-50 m between cores) within the bounds of each sampling station (**Figures 1-1 and 1-4**). Core samples were analyzed for pH, total organic carbon and total metals concentrations.

Only those core samples that met the following acceptability criteria were retained for analysis: corer was deployed and remained perpendicular to the bottom; corer did not hit hard, impenetrable substrate; and the core sediment sample was undisturbed (did not mix or fall out of bottom while being pulled to the surface). Cores that did not satisfy these conditions were discarded. The procedures for collecting the sediment cores are outlined in the AEMP sediment coring terms of reference memo in **Appendix A**. Only the top 1 cm was retained for analysis.

Once collected, these sediments were stored, transported, analyzed (for total metals, pH and total organic carbon only), and tabulated in a similar manner to the bulk grab sediment samples (see **Section 2.4.1**).

2.5. Phytoplankton

Phytoplankton are microscopic, unicellular plant species that are suspended in the water column and, as primary producers, comprise the base of the food web. There are six major groups of phytoplankton present in lakes: cyanophytes (blue green algae), chlorophytes (green algae), chrysophytes (golden-brown algae), diatoms, cryptophytes and dinoflagellates. Seasonal production of phytoplankton can vary widely depending upon water temperature, nutrient concentration, time of year, water clarity and amount of sunlight and predation by zooplankton. Estimates of phytoplankton biomass (mg/m³) are useful as gross indicators of lake productivity.

Unfiltered water (125 mL) was collected at the surface² from each sampling station during the spring and summer of 2008, and from a subset of stations in the fall. The procedures for collecting the phytoplankton samples are outlined in detail in the SOP for Water and Phytoplankton Sampling (AEM, 2009).

Samples were preserved in the field with a small amount (approx. 1 ml) of Lugol's solution and later transported to Winnipeg, MB for taxonomic identification and analysis by Plankton R Us Inc. For the analysis, 10-mL aliquots of preserved sample were gravity settled for 24 hours. Counts were performed on an inverted microscope at magnifications of 125X, 400X, and 1200X with phase contrast illumination. Cell counts were performed using the Ütermohl technique as modified by Nauwerck (1963). Cell counts were converted to wet weight biomass (mg/m³) by estimating cell volume. Estimates of cell volume for each species were obtained by measurements of up to 50 cells of an individual species and applying the geometric formula best fitted to the shape of the cell (Vollenweider, 1968; Rott, 1981). A specific gravity of 1 was assumed for cellular mass. All biomass (mg/m³) and density (cells/L) estimates are summed by major taxa, per station and sampling event.

Simpson's diversity index was calculated for each station to quantify phytoplankton species diversity among stations and sampling events (Washington, 1984). Simpson's diversity (D) is calculated as follows:

$$D = 1 - \Sigma S (p_i)^2$$

where: S is the total number of taxa/station; pi is the relative proportion of the *ith* taxa at each station (based on relative abundance). The number of species occurring per sample was calculated to measure the species richness among stations and sampling events.

² Although water was collected at 4 m depth for water chemistry, surface water was sampled for phytoplankton analyses.

2.6. Periphyton

Periphyton are unicellular and colonial aquatic algae species attached to and coating rocks and other hard substrates beneath the water surface. Periphyton provide an important food source for certain benthic invertebrate species and form the base of the food web, together with phytoplankton and benthic algae. Periphyton are most abundant between the surface and several meters water depth, and typically increase in biomass during the course of the open water season, reaching maximum abundance during late summer, and decline during late fall and winter, as the sun disappears.

Species composition and biomass of periphyton are indirect indicators of lake productivity, reflecting nutrient concentrations in the lake, and are sometimes indicators of the presence of contaminants. Because some periphyton species are sensitive to the presence of metals, reductions in periphyton communities over time can indicate the presence of dissolved metals in the water column.

Sampling stations were located near the basin-based chemistry and benthos stations. However, due to specific site requirements for periphyton (see below) there were differences in proximity to the basin-based stations. Sampling locations are illustrated in **Figures 1-1 to 1-3**; UTM coordinates for each sample are presented in **Table 2-2**. Five replicate samples were collected per sampling station. Stations were chosen according to the following criteria: a sufficient number of large, flat rocks, in no more than 0.5 m depth water; flat rock surface facing up as much as possible, if not, with only a small slope; and rocks with uniform algal coverage, not uniformly dense or sparse.

Periphyton were semi-quantitatively sampled with a specially designed algae scrubber. The procedures for collecting the samples are outlined in detail in the SOP for Periphyton Sampling (AEM, 2009). Periphyton samples were preserved in the field with a small amount of Lugol's solution and sent to Plankton R Us Inc. (Winnipeg, MB) for taxonomic identification and analysis.

Photo: Algae scrubber used to remove periphyton from rocks. Three rocks were sampled per replicate; five replicates conducted per station.

In the laboratory, each periphyton sample was well mixed and 2-mL sub-samples of suspension were sonicated for 10–20 seconds using a Sonifer Cell Disruptor (model w140) and gravity settled for 24 h in an Ütermohl chamber (Findlay et al., 1999). Counts were performed on an inverted microscope at magnifications of 125X, 400X, and 1200X with phase contrast illumination. Cells were identified, counted and measured from random fields until 100 cells of the dominant species were found. Cell counts were converted to wet weight biomass (mg/m^2) by approximating cell volume. Estimates of cell volume for each species were obtained by measurements of up to 50 cells of an individual species and applying the geometric formula best fitted to the shape of the cell (Vollenweider, 1968; Rott, 1981). Data were reported in terms of abundance (number of cells/cm²) and biomass ($\mu g/cm^2$).

Simpson's diversity index was calculated for each station to quantify periphyton species diversity among stations and replicate samples (Washington, 1984). Simpson's diversity (D) is calculated as follows:

$$D = 1 - \Sigma S (p_i)^2$$

where: S is the total number of taxa/station; pi is the relative proportion of the *ith* taxa at each station (based on relative abundance). The number of species occurring per sample was calculated to measure the species richness among stations and replicate samples.

2.7. Benthic Invertebrates

Benthic invertebrates are small animals that live in or on bottom sediments. The most commonly encountered organisms include the aquatic larval stages (i.e., resembling worms) of insects, especially chironomids (i.e., midge larvae). Other common organisms are oligochaete worms, small bivalve clams and amphipods (i.e., crustaceans). Benthic invertebrates form a very important food source for all juvenile fish, especially lake trout, arctic char and lake whitefish.

Benthic invertebrates were collected from each sampling station in the summer (August) of 2008, using a Petite Ponar grab (0.023 m²) and a 500-µm sieve. Sampling locations are illustrated in **Figures 1-1 to 1-3**; UTM coordinates for each sample are presented in **Table 2-2**. Five replicate samples were collected per station. Two independent grabs per station were composited to form a single sample to reduce sampling variation within stations and to increase the surface area sampled. Depths ranged from 6.7 to 13.4 m.

Only those grab samples that met the following acceptability criteria were retained for analysis: did not contain large foreign objects; adequate penetration depth (i.e., 10–15 cm); not overfilled (sediment surface not touching the top of sampler); did not leak (there was overlying water present and no visible leaks); and was undisturbed (sediment surface was relatively flat). Grabs that did not satisfy these conditions were discarded.

The procedures for collecting the benthic invertebrate samples are outlined in detail in the SOP for Benthos and Sediment Sampling (AEM, 2009).

Benthos samples were preserved in the field with a 10% buffered formalin solution and sent to Zaranko Environmental Assessment Services (ZEAS) (Nobleton, ON) for taxonomic identification and analysis.

Upon arrival at ZEAS, samples were immediately logged and inspected to ensure adequate preservation to a minimum level of 10% buffered formalin and checked for correct labeling. Benthos samples were sorted at a magnification of between 7 and 10 times with the use of a stereomicroscope. To expedite sorting prior to processing, all samples were stained with a protein dye that is absorbed by aquatic organisms but not by organic material, such as detritus and algae.

Prior to sorting, samples were washed free of formalin in a 500-µm sieve. In samples containing sand, gravel, or rocks, elutriation techniques were used to separate the lighter benthic macroinvertebrates and associated debris from the heavier sand, gravel and rocks. Elutriation techniques effectively removed almost all organisms except some heavy-bodied organisms such as molluscs and caddisflies with rock cases. As such, the remaining sand and gravel fraction was closely inspected. After elutriation, the remaining debris and benthic macroinvertebrates were washed through a series of two sieves, (i.e., 3.36-mm and 500-µm

respectively). The screening of material through a series of sieves is used to facilitate sorting. This procedure separates macroinvertebrates and detritus into a set of size-based fractions that can be sorted under a more constant magnification.

Benthos were enumerated and sorted into major taxonomic groups, (i.e., order and family), placed in glass bottles and re-preserved in 80% ethanol for more detailed taxonomic analysis by senior staff. Each bottle was labeled internally with the survey name, date, station and replicate number.

Abundance of organisms/m² was determined from the total number of organisms enumerated (see **Section 3.6**). Nematodes and ostracods were not reported, nor were they included in abundance and richness calculations because they are too small to be reliably retained on a 500-µm sieve.

The following endpoints were used for assessing benthic community structure, based on sensitivity, objectivity, ease of interpretation and cost-effectiveness:

- Taxa richness (i.e., corresponds to the number of species or taxa per sample and provides a measure of diversity).
- Total abundance (i.e., number of organisms per m²).
- Abundance and richness of all major taxa (e.g., insects, molluscs, worms).

Statistical analyses were used to explore spatial differences (i.e., to test for "lake effect," which looks for differences among lakes and/or basins) in total abundance and richness, and in abundance and richness of all major taxa groups. Differences among lake stations are investigated independently using ANOVA (or Kruskal-Wallis tests where data are not normally distributed). Where significant differences exist, post-hoc testing (Tukey's HSD [honestly significant difference] multiple comparisons) was used to determine where differences existed.

2.8. Quality Assurance / Quality Control

The objective of quality assurance and quality control (QA/QC) is to assure that the chemical and biological data collected are representative of the material or populations being sampled, are of known quality, are properly documented, and are scientifically defensible. Data quality was assured throughout the collection and analysis of samples using specified standardized procedures, by the employment of laboratories that have been certified for all applicable methods, and by staffing the program with experienced technicians.

Laboratory QA/QC – Data Quality Objectives (DQOs) are numerically definable measures of analytical precision and completeness. Analytical precision is a measurement of the variability associated with duplicate analyses of the same sample in the laboratory.

Completeness for this study is defined as the percentage of valid analytical results. Results that were made uncertain due to missed hold times, improper calibration, contamination of analytical blanks, or poor calibration verification results were deemed invalid.

Duplicate results were assessed using the relative percent difference (RPD) between measurements. The equation used to calculate a RPD is:

$$RPD = \frac{(A-B)}{((A+B)/2)} \times 100$$

where: A = analytical result; B = duplicate result.

The laboratory DQOs for this project were:

- Analytical Precision = 25% RPD for concentrations that exceed 10x the method detection limit (MDL).
- Completeness = 95% valid data obtained.

RPD values may be either positive or negative, and ideally should provide a mix of the two, clustered around zero. Consistently positive or negative values may indicate a bias. Large variations in RPD values are often observed between duplicate samples when the concentrations of analytes are very low and approaching the detection limit. The reason for this is apparent if one considers duplicate samples with concentrations of an analyte of 0.0005 and 0.0007 mg/L. In absolute terms, the concentration difference between the two is only 0.0002 mg/L, a very tiny amount; however, the RPD value is 33.3%. This may sometimes lead to a belief that the level of precision is less than it actually is.

Field QA/QC: Water Sampling – Field QA/QC standards during water sampling were maintained for every sample. The standard QA/QC procedures included thoroughly flushing the flexible tubing and pump to prevent cross-contamination between stations and thoroughly rinsing the sample containers with site water prior to sample collection.

A field duplicate at one of station per sampling event was collected to assess sampling variability and sample homogeneity; a RPD of 50% for concentrations that exceed 10x the MDL is considered acceptable.

Field QA/QC: Sediment Sampling – Field QA/QC during sediment sampling was careful to avoid cross-contamination between sampling areas by rinsing and cleaning the Petite Ponar grab, buckets, stainless steel compositing bowls and spoons between stations. This entailed rinsing the equipment with site water to remove sediment and organic material, scrubbing with phosphate-free cleaning detergent, and again rinsing with site water. An ashless filter was swiped over the pre-cleaned bowl and Ponar at one location to assess the cleaning procedures.

A field duplicate at one station was collected to assess sampling variability and sample homogeneity; a RPD of 50% for concentrations that exceed 10x the MDL is considered acceptable.

Field and Laboratory QA/QC: Biota Sampling – Standard procedures were used to collect biota samples. All sampling gear was thoroughly rinsed between sampling stations to ensure that there was no inadvertent introduction of biota from one station to another.

A field duplicate was collected for phytoplankton at one sampling station per sampling event to assess sampling variability and sample homogeneity. A RPD of 50% for density and biomass concentrations is considered acceptable. As a measure of QA/QC on the enumeration method replicate counts were preformed on ~10% (3) of the samples. Replicate samples were chosen at random and processed at different times from the original analysis to reduce biased.

Field replicates were collected for periphyton and benthos to determine natural variability and heterogeneity. Also, laboratory replicate counts (density and biomass) for periphyton were performed on $\sim 10\%$ of all samples and were chosen at random. Data quality objectives (DQO) for replicates should be within $\pm 25\%$ of the first count (i.e., the RPD).

ZEAS incorporates the following set of QA/QC procedures in all benthic projects undertaken by the company to ensure the generation of high quality and reliable data:

- Samples were logged upon arrival, inspected, and enumerated;
- Samples were checked for proper preservation;
- Samples were stained to facilitate sorting;
- Taxonomic identifications were based on the most updated and widely used keys;
- 10% of the samples were re-sorted, documenting 90% recovery;
- Precision and accuracy estimates were calculated;
- A voucher was compiled;
- Sorted sediments and debris are re-preserved in 10% formalin and are retained for up to three months. For samples subject to subsampling, sorted and unsorted fractions were represerved separately.

Data quality objectives (DQO) for replicate counts should be within \pm 20% of the first count (i.e., the RPD). Field replicate RPD values less than 50% are usually indicative that sampling bias is not excessive and that the resident biota population has been sampled representatively.

Table 2-1: AEMP core monitoring components conducted in 2008.

Project Lake	UTM (NA	D 83)	Station	SEASON	SPR	ING			SUM	MER			FALL	
rojeci Lake			_ ID	Month_	Jι				Aug				Septemb	
	Easting	Northing		Week	1 2	3	4	1	2	3	4	1	2	3
						Limno				Limno				Limno
	14W 0638558	7211292				Water				Water				Water
			TPE		Ice					Sed				
			#		····	Phyto				Phyto				Phyto
	14W 0639934	7210849								Peri				
						Coring				Benthos				
						Limno				Limno				Limno
Third Portage	14W 0636503	7215322				Water				Water				Water
ort			≥							Sed				
Б Б			TPN		Ice	Phyto				Phyto				Phyto
直	14W 0635635	7215462								Peri				
_						Coring				Benthos				
						Limno				Limno				Limno
	14W 0633840	7208079				Water				Water				Water
	1444 0000040	1200010	S			water				Sed				Water
			TPS		Ice	Phyto				Phyto				Phyto
	14W 0633774	7208286				,				Peri				,
						Coring				Benthos				
				· · · · · · · · · · · · · · · · · · ·										
Second Portage	14W 0639832	7213979				Limno				Limno Water				Limno Water
ort	1444 0039632	1213919	_			Water				Sed				water
Β			SP		Ice	Phyto				Phyto				Phyto
Sor	14W 0641016	7213346				1 Hyto				Peri				1 11910
Se		72.00.0				Coring				Benthos				
· 				88										
	4514/ 0000404	7004040				Limno				Limno				
<u>></u>	15W 0360424	7221343	J			Water				Water				
Wally			WAL		Ice	Phyto				Sed Phyto				
>	15W 0360521	7222047	_			Phyto				Peri				
	1300 0300321	1222041				Coring				Benthos				
 				88		comig				Benthoo				
						Limno				Limno				Limno
×	15W 0360061	7212182				Water				Water				Water
Tehek			7E		Ice					Sed				
ř						Phyto				Phyto				Phyto
	15W 0361837	7213265				0				Peri				
						Coring				Benthos				
≝						Limno				Limno				
/ua	14W 0622843	7216842	4-			Water				Water				
īga)			INUG		Ice					Sed				
ngg			≤			Phyto				Phyto				
Inuggugayualik	14W 0621980	7217467								Peri				
						Coring				Benthos				

Table 2-1 con't: AEMP core monitoring components conducted in 2008.

۰ تر	UTM (NA	D 02\	01-11	SEASON		SPRI	NG			SUM	IMER			FALL	
Project Lake	O HW (NA	D 63)	Station ID	Month		July	,			Aug	gust			Septembe	er ¹
	Easting	Northing		Week	1	2	3	4	1	2	3	4	1	2	3
								Limno				Limno			Limno
	14W 0644467	7135221						Water				Water			Water
			BBD		lce							Sed			
			В					Phyto				Phyto			Phyto
												Benthos			
												Coring			
								Limno				Limno			Limno
ake	15W 0357188	7134092						Water				Water			Water
ŗ			ВРЈ		lce							Sed			
Baker Lake			В					Phyto				Phyto			Phyto
Ã												Benthos			
												Coring			
								Limno				Limno			Limno
	15W 0363884	7131039						Water				Water			Water
			ВАР		lce							Sed			
			B)					Phyto				Phyto			Phyto
												Benthos			
												Coring			

Limno: 1 profile; parameters includes vertical temperature (°C), oxygen (mg/L) and conductivity (µS/cm) depth profiles; same approximate sampling location as water.

Water: 1 sample; analysis includes conventional parameters (hardness, conductivity, pH, total dissolved & suspended solids), anions (alkalinity, chloride, sulfate), nutrients (ammonia, nitrate, nitrite, total kjeldahl nitrogen, orthophosphate, total phosphate), organics (total & dissolved organic carbon, chlorophyll-a, oil & grease) and total metals. Sed: 1 sample (3 grab composite); analysis includes pH, total organic carbon (TOC), moisture content, particle size, PAHs, oil & grease, and total metals concentrations;

same approximate sampling location as water. Phyto: 1 sample; analysis includes identification of species, biomass (mg/m³) and density (cells/L) for each major taxa from a 125ml sample; week 1 August was not sampled

as planned in 2007 because weeks 3 & 4 July had just been completed; same approximate sampling location as water. Peri: 5 replicate samples (3 composites/rep); analysis includes identification of species, abundance (cells/crn) and biomass (μg/cm²) for each major taxa;

station location differs from rest of components; periphyton was not collected at Baker Lake stations.

Benthos: 5 replicate samples (2 grabs/sample); analysis includes identification of species, abundance (#/m²) and richness (# taxa) (total & for each major taxa group); same approximate sampling location as water.

Coring: 15 replicate samples; analysis includes pH, TOC, and total metals; sediment coring was a targeted study and is not part of the core AEMP monitoring program. ¹Week 3 September sampling in Wally and Inuggugayualik Lakes was not possible because the helicopter was no longer available.

Table 2-2: AEMP sampling location coordinates (GPS, UTM, NAD83), Meadowbank study lakes, July, August and September 2008.

Station	Station	Water &	Phytoplankton ((monthly)		Sedin	nent (August)		P	eriphyton (Augu	st)		Bentl	nos (August)	
ID ¹	Type ²	Date	Easting	Northing	Grab #	Depth (m)	Easting	Northing	Replicate #	Easting	Northing	Replicate #	Depth (m)	Easting	Northing
TPN	NF	July	14W 0636503	7215322	1	7.8	14W 0637010	7215235	1	14W 0635635	7215462	1	7.8	14W 0637010	7215235
		August	14W 0636603	7215297	2	9.2	14W 0636953	7215174	2	14W 0635630	7215444	2	9.2	14W 0636953	7215174
TPN-1		September	14W 0636786	7215133	3	8.4	14W 0636977	7215034	3	14W 0635632	7215424	3	8.4	14W 0636977	7215034
TPN-2		September	14W 0637022	7215097					4	14W 0635624	7215419	4	8.4	14W 0636995	7214917
TPN-3		September	14W 0637050	7214814					5	14W 0635610	7215443	5	7.8	14W 0636989	7214850
TPN-4		September	14W 0636509	7214757											
TPE	NF	July	14W 0638558	7211292	1	10.4	14W 0638754	7211349	1	14W 0639934	7210849	1	8.7	14W 0638643	7211327
		August	14W 0638738	7211300	2	10.1	14W 0638770	7211337	2	14W 0639948	7210846	2	7.8	14W 0638643	7211221
		September	14W 0638731	7211288	3	7.7	14W 0638803	7211381	3	14W 0639972	7210840	3	11.5	14W 0638820	7211258
									4	14W 0639988	7210834	4	11.2	14W 0638905	7211443
									5	14W 0640020	7210835	5	8.9	14W 0638753	7211357
SP	NF	July	14W 0639832	7213979	1	9.9	14W 0639885	7213836	1	14W 0641016	7213346	1	9.9	14W 0639885	7213836
		August	14W 0639869	7213961	2	7.0	14W 0640093	7213968	2	14W 0641008	7213340	2	7.0	14W 0640093	7213968
		September	14W 0639955	7213825	3	13.2	14W 0639945	7213828	3	14W 0641006	7213322	3	13.2	14W 0639945	7213828
									4	14W 0641007	7213314	4	7.8	14W 0640087	7213992
									5	14W 0641044	7213385	5	10.1	14W 0640131	7214121
WAL	NF	July	15W 0360424	7221343	1	7.3	15W 0360882	7220815	1	15W 0360521	7222047	1	7.3	15W 0360882	7220815
		August	15W 0360411	7221329	2	8.0	15W 0360906	7220762	2	15W 0360538	7222043	2	8.0	15W 0360906	7220762
					3	6.7	15W 0360959	7220749	3	15W 0360547	7222043	3	6.7	15W 0360959	7220749
									4	15W 0360560	7222041	4	8.9	15W 0360937	7220658
									5	15W 0360570	7222046	5	10.7	15W 0360964	7220533
TE	FF	July	15W 0360061	7212182	1	7.5	15W 0360045	7212230	1	15W 0361837	7213265	1	7.5	15W 0360045	7212230
		August	15W 0360051	7212224	2	9.4	15W 0360077	7212218	2	15W 0361826	7213278	2	9.4	15W 0360077	7212218
					3	11.7	15W 0360141	7212244	3	15W 0361789	7213292	3	11.7	15W 0360141	7212244
									4	15W 0361768	7213296	4	13.1	15W 0360180	7212281
									5	15W 0361756	7213295	5	12.6	15W 0360248	7212276
TPS	Int. Ref	July	14W 0633840	7208079	1	9.7	14W 0633616	7208076	1	14W 0633774	7208286	1	9.1	14W 0633583	7207979
		August	14W 0633586	7207981	2	11.7	14W 0633560	7208124	2	14W 0633766	7208270	2	9.7	14W 0633616	7208076
		September	14W 0633628	7207981	3	9.9	14W 0633542	7208189	3	14W 0633758	7208253	3	11.7	14W 0633560	7208124
									4	14W 0633752	7208221	4	9.9	14W 0633542	7208189
									5	14W 0633739	7208196	5	10.0	14W 0633598	7208049
INUG	Ext. Ref	July	14W 0622843	7216842	1	8.1	14W 0622876	7216843	1	14W 0621980	7217467	1	8.1	14W 0622876	7216843
		August	14W 0622876	7216843	2	8.7	14W 0622771	7216749	2	14W 0621996	7217454	2	8.7	14W 0622771	7216749
					3	9.8	14W 0622617	7216704	3	14W 0622000	7217443	3	9.8	14W 0622617	7216704
									4	14W 0622000	7217435	4	12.6	14W 0622579	7216434
									5	14W 0622006	7217429	5	8.0	14W 0622505	7216560

Table 2-2 con't: AEMP sampling location coordinates (GPS, UTM, NAD83), Baker Lake, July, August and September 2008.

Station	Station	Water &	Phytoplankton (monthly)		Sedim	nent (August)		Per	riphyton (Augi	ust)		Benth	ios (August)	
ID ¹	Type ²	Date	Easting	Northing	Grab #	Depth (m)	Easting	Northing	Replicate #	Easting	Northing	Replicate #	Depth (m)	Easting	Northing
BBD	NF	July	14W 0644467	7135221	1	9.5	14W 0644508	7135305	1	NA	NA	1	9.5	14W 0644508	7135305
		August	14W 0644447	7135161	2	13.0	14W 0644468	7135202	2	NA	NA	2	13.0	14W 0644468	7135202
		September	14W 0644521	7135276	3	11.2	14W 0644402	7135312	3	NA	NA	3	11.2	14W 0644402	7135312
									4	NA	NA	4	11.6	14W 0644616	7135224
									5	NA	NA	5	13.0	14W 0644734	7135144
BPJ	NF	July	15W 0357188	7134092	1	13.4	15W 0357109	7134123	1	NA	NA	1	13.4	15W 0357109	7134123
		August	15W 0357109	7134123	2	11.3	15W 0357063	7134184	2	NA	NA	2	11.3	15W 0357063	7134184
		September	15W 0357143	7134136	3	8.4	15W 0357012	7134233	3	NA	NA	3	8.4	15W 0357012	7134233
									4	NA	NA	4	8.0	15W 0357323	7134076
									5	NA	NA	5	8.4	15W 0357451	7133993
BAP	Int. Ref	July	15W 0363884	7131039	1	11.4	15W 0363856	7131191	1	NA	NA	1	11.4	15W 0363856	7131191
		August	15W 0363856	7131191	2	9.5	15W 0363813	7131210	2	NA	NA	2	9.5	15W 0363813	7131210
		September	15W 0363908	7131207	3	10.6	15W 0363727	7131191	3	NA	NA	3	10.6	15W 0363727	7131191
									4	NA	NA	4	11.0	15W 0363866	7131194
									5	NA	NA	5	12.1	15W 0364078	7131074

¹ Station IDs are as follows: TPN, TPE, TPS = Third Portage North, East, and South basins; SP = Second Portage; WAL = Wally; TE = Tehek; INUG = Inuggugayualik; BBD = Baker Barge Dock; BPJ = Baker Proposed Jetty; BAP = Baker Akilahaarjuk Point.

² Station types are as follows: NF = near-field; FF = far-field; Int. Ref = internal reference; Ext. Ref. = external reference.

3. RESULTS AND DISCUSSION

3.1. QA/QC

QA/QC procedures consisted of a combination of careful field collection and sample handling, the collection of field duplicate samples and the analysis of laboratory replicates and standard reference materials. Results of the QA/QC analyses are presented in **Tables 3-1 to 3-6** for water and sediment chemistry, phytoplankton, periphyton and benthos, respectively.

ALS Environmental is an analytical laboratory accredited by the Canadian Association of Environmental Analytical Laboratories. This accreditation ensures that laboratories achieve and demonstrate the highest levels of technical and management excellence for their services. Laboratory QA/QC procedures performed on the water and sediment samples met all of the laboratory's internal data quality objectives for precision and completeness defined for this project.

Duplicate water samples were collected from random stations once during each of the July, August and September sampling events. The results of the RPD analysis (for conventional parameters, anions and nutrients, organic parameters and total metals) are presented in **Table 3-1**. Firstly, the measured concentrations in the field duplicate samples showed a high level of consistency with the original samples and none of the parameters exceeded the DQO (i.e., RPD < 50%). Secondly, internal QA/QC was performed by the laboratory on randomly chosen samples. In one case the DQO for the laboratory duplicate exceeded 25%; the concentration of iron was at the detection limit (MDL) in the original sample but was detected slightly above this MDL in the laboratory duplicate. However, the concentration measured was much less than 10 times the MDL. Thirdly, the measured concentrations in travel and equipment blanks were also consistently below detection limits for each of the three sampling events, with the exception of two parameters. Concentrations of ammonia for the final travel blank and DOC for the second equipment blank were narrowly in exceedence of their MDLs but were again much less than 10 times the MDL. No parameter measured in a travel blank should exceed detection. This was discussed with the laboratory and the reason for this exceedance could not be identified as there did not appear to be contamination of any other samples. Notwithstanding this, all of the measured concentrations met the QA/QC data quality objectives for the project.

Similar consistency was accomplished for the field sediment sample duplicates (**Table 3-2**). None of the RPD values exceeded the DQO for field duplicate samples. Several of RPDs for PAHs exceeded 25% but in all cases concentrations measured were less than 10 times the MDL. Also, recovery of surrogate standards for PAH analysis was quite high

(87-109%). The QA/QC filter swipe was analyzed for total metals. Many of the measured concentrations were below the laboratory MDL, and the others were considerably lower than measured concentrations in the sediment samples (**Table 3-2**). Consequently, the sediment sampling equipment cleaning procedures were successful; no significant cross contamination of the equipment occurred between sampling stations.

One sediment core sample was collected in duplicate at each coring station, except for the Baker Lake Barge dock station due to poor weather conditions. The results of the RPD analysis (for pH, total organic carbon and total metals) are presented in **Table 3-3.** Only one of the RPD values for concentration of arsenic (at the Inuggugayualik Lake station) exceeded 50%. All of the laboratory duplicates met the DQO (RPD < 25%).

The phytoplankton field duplicates evaluated sampling variability and sample homogeneity of phytoplankton density (cells/L) and biomass (mg/m³) in Wally Lake, Inuggugayualik Lake, and Second Portage Lake in July, August, and September, respectively. Within taxa variability was moderately high. For example, dinoflagellates in SP in September had a RPD of 200% for both density and biomass because dinoflagellates were present in the duplicate sample but not the original (**Table 3-4**). Other density RPDs ranged from -173% to +174%, and biomass RPDs from -87.7% to +161%. Because very small volumes of water are examined for phytoplankton density and biomass, and because abundance of cells is extremely high, this magnitude of difference is to be expected for phytoplankton samples. Overall RPDs for total density and total biomass for all three duplicate samples were low, however, and well within the data quality objective. RPD values were also less than 25% for number of species and Simpson's diversity (**Table 3-4**).

The phytoplankton laboratory duplicates evaluated the variability of the enumeration method on phytoplankton density and biomass in Tehek Lake, Inuggugayualik Lake, and Baker Lake Barge dock. Similar to field duplicates, laboratory duplicates showed moderately high within taxa variability but overall RPDs on total density and total biomass for all three duplicate samples were again low and met the DQO.

Five field replicates were collected at each periphyton sampling station to determine natural variability and heterogeneity. The field replicate data was used to statistically compare the results from each of the sampling stations. Internal QA/QC was also performed at the laboratory when the periphyton samples were being identified and counted. Laboratory duplicates were conducted on 10% of periphyton samples (i.e., 3 duplicates for each of density and biomass analyses) (**Table 3-5**). In two cases within taxa variability was moderately high: chlorophytes in TE had RPDs of -120% and -85.7% and in WAL had RPDs of 66.7% and 96.9% for density and biomass, respectively (**Table 3-5**). Other density RPDs ranged from -25.0% to +22.2%, and biomass RPDs from -28.8% to +22.2%.

Laboratory replicate counts were performed on 10% of all samples for benthos. Replicate samples were chosen at random and processed at different times from the original analysis to reduce bias. Of the re-sorted samples, 2/197 (1.0%), 5/201 (2.5%), 5/272 (1.8%), 17/389 (4.4%), 27/370 (7.3%) and 0/136 (0%) of organisms were missed (**Table 3-6**), with an overall omission rate of less than 3%. These results suggest that the vast majority of animals observed in benthic samples by the taxonomist were recovered. A reference collection of benthic taxa has been compiled.

Table 3-1: QA/QC data for 2008 water parameters, Meadowbank study lakes & Baker Lake, July, August and September 2008.

		Wally Lake			gugayualik L			ke - Akilahaarj			Various Lakes	
	WAL 22-Jul-08	Field Dup 22-Jul-08	RPD (%)	INUG 20-Aug-08	Field Dup 20-Aug-08	RPD (%)	BAP 21-Sep-08	Field Dup 21-Sep-08	RPD (%)	Original July	Laboratory Duplicate	RPD (%)
	22 001 00	22 001 00	(70)	20 / tag 00	20 / lug 00	(70)	21 ocp 00	21 OCP 00	(70)	oury		(70)
CONVENTIONAL PARAMETERS												
Physical Tests	05.0	00.4	0.77	44.0	44.0		504	500	0.00			
Conductivity (µS/cm)	25.9	26.1	-0.77	14.0	14.2	-1.4	581	586 50.4	-0.86	-	-	-
Hardness (mg/L)	11.3	11.2	0.89	4.97	5.00	-0.60	60.6	59.1	2.5	-	-	-
pH	7.31	7.30	0.14	6.74	6.71	0.45	7.11	7.13	-0.28	-	-	-
Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L)	<3.0 17	<3.0 13	0 27	<3.0 <10	<3.0 13	0 -26	<3.0 302	<3.0 303	0 -0.33	- <10	- <10	0
Anions & Nutrients (mg/L)												
Alkalinity - Bicarbonate (as CaCO ₃)	8.9	8.1	9.4	4.3	3.8	12	9.2	8.8	4.4	-	-	-
Alkalinity - Carbonate (as CaCO ₃)	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	-	-	-
Alkalinity - Hydroxide (as CaCO ₃)	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	-	-	-
Alkalinity - Total (as CaCO ₃)	8.9	8.1	9.4	4.3	3.8	12	9.2	8.8	4.4	-	-	-
Ammonia (as N)	0.020	0.021	-4.9	0.030	<0.020	40	<0.020	<0.020	0	0.045	0.047	-4.3
Chloride	<0.50	<0.50	0	0.690	0.680	1.5	151	150	0.66	216	216	0
Nitrate (as N)	< 0.0050	< 0.0050	0	< 0.0050	< 0.0050	0	0.0286	0.0286	0	0.0637	0.0626	1.7
Nitrite (as N)	<0.0010	<0.0010	0	<0.0010	<0.0010	0	0.0010	<0.0010	0	<0.0010	<0.0010	0
Total Kjeldahl Nitrogen	0.124	0.145	-16	0.0980	0.0670	38	0.135	0.156	-14	< 0.050	<0.050	0
Ortho Phosphate (as P)	0.0013	< 0.0010	26	< 0.0010	< 0.0010	0	<0.0010	<0.0010	0	0.0010	<0.0010	0
Total Phosphate (as P)	0.0037	0.0030	21	0.0027	0.0035	-26	0.0075	0.0070	6.9	-	-	_
Sulfate (SO ₄)	2.27	2.26	0.44	0.960	0.880	8.7	21.9	21.9	0	30.5	30.5	0
ORGANIC / INORGANIC CARBON												
Dissolved Organic Carbon (mg/L)	2.34	2.09	11	2.48	1.93	25	3.44	3.4	1.2	-	-	_
Total Organic Carbon (mg/L)	1.84	1.93	-4.8	1.80	1.84	-2.2	3.18	3.18	0	-	-	-
AGGREGATE ORGANICS (mg/L)												
Oil and Grease	<5.0	<5.0	0	<5.0	<5.0	0	<5.0	<5.0	0	-	-	-
PLANT PIGMENTS												
Chlorophyll a (µg)	0.557	0.585	-4.9	0.616	0.632	-2.6	0.965	0.938	2.8	-	-	-
TOTAL METALS (mg/L)												
Aluminum	<0.0050	<0.0050	0	0.0060	0.0077	-25	0.0074	0.0055	29	-	-	-
Antimony	< 0.00050	< 0.00050	0	<0.00050	< 0.00050	0	<0.00050	< 0.00050	0	-	-	-
Arsenic	< 0.00050	< 0.00050	0	<0.00050	< 0.00050	0	<0.00070	<0.00060	15	-	-	-
Barium	<0.020	<0.020	0	<0.020	<0.020	0	<0.020	<0.020	0	-	_	-
Beryllium	<0.0010	<0.0010	0	<0.0010	<0.0010	0	<0.0010	<0.0010	0	-	_	-
Boron	<0.10	<0.10	0	<0.10	<0.10	0	<0.10	<0.10	0	-	-	_
Cadmium	<0.000017	<0.000017	0	<0.000017	<0.000017	0	<0.000017	< 0.000017	0	-	-	_
Calcium	3.07	3.04	0.98	0.990	0.990	0	6.15	5.52	11	-	-	-
Chromium	<0.0010	<0.0010	0	<0.0010	<0.0010	0	<0.0010	<0.0010	0	-	-	_
Cobalt	<0.00030	<0.00030	0	<0.00030	<0.00030	0	<0.00030	<0.00030	0	_	_	-
Copper	<0.0010	<0.0010	0	<0.0010	<0.0010	0	<0.0010	<0.0010	0	-	-	_
Iron	<0.030	<0.030	0	< 0.030	<0.030	0	<0.030	<0.030	0	_	_	-
Lead	<0.00050	<0.00050	0	<0.00050	<0.00050	0	<0.00050	<0.00050	0	_	_	-
Lithium	<0.0050	<0.0050	0	<0.0050	<0.0050	0	<0.0050	<0.0050	0	_	_	_
Magnesium	0.87	0.87	0	0.61	0.62	-1.6	11	11	0	_	_	_
Manganese	0.00102	0.00101	0.99	0.00193	0.00201	-4.1	0.00241	0.00182	28	_	_	_
Mercury	<0.000020	<0.000020	0	<0.000020	<0.000020	0	<0.000020	<0.000020	0	<0.000020	<0.000020	0
Molybdenum	<0.0010	<0.0010	0	< 0.0010	<0.0010	0	< 0.0010	<0.0010	0	-0.000020	-	_
Nickel	<0.0010	<0.0010	0	<0.0010	<0.0010	0	<0.0010	<0.0010	0	_	_	_
Potassium	<2.0	<2.0	0	<2.0	<2.0	0	3.6	3.6	0	_	_	_
Selenium	<0.0010	<0.0010	0	<0.0010	<0.0010	0	<0.0030	<0.0030	0	-	_ _	_
Silver	<0.00010	<0.00010	0	<0.00000	<0.00010	0	<0.00000	<0.0000	0	_	_	_
Sodium	<2.0	<2.0	0	<2.0	<2.0	0	83.8	85.5	-2.0	-	_	_
	<0.00020	<0.00020		<0.00020	<0.00020		<0.00020	<0.00020	-2.0 0	-	_	-
Thallium	<0.00020	<0.00020	0	<0.00020		0	<0.00020		0	-	-	-
Tin Titonium	<0.00050		0	<0.00050	<0.00050 <0.010	0	<0.00050	<0.00050	0	-	-	-
Titanium		<0.010	0			0		<0.010		-	-	-
Uranium	<0.00020 <0.0010	<0.00020 <0.0010	0	<0.00020 <0.0010	<0.00020 <0.0010	0	<0.00020 <0.0010	<0.00020 <0.0010	0 0	-	-	-
Vanadium			0			0				-	-	-
Zinc	<0.0050	<0.0050	0	<0.0050	<0.0050	0	<0.0050	<0.0050	0	-	-	-

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) x 100.

Shaded RPDs exceed 25% (lab duplicates) or 50% (field duplicates).

Shaded travel and equipment blanks exceed laboratory method detection limits.

Table 3-1 con't: QA/QC data for 2008 water parameters, Meadowbank study lakes & Baker Lake, July, August and September 2008.

		Various Lakes			Various Lakes			Travel Blanks		E	quipment Blan	ks
	Original August	Laboratory Duplicate	RPD (%)	Original September	Laboratory Duplicate	RPD (%)	27-Jul-08	22-Aug-08	18-Sep-08	25-Jul-08	22-Aug-08	12-Sep-08
CONVENTIONAL DADAMETERS	August		(70)	Осртстве		(70)						
CONVENTIONAL PARAMETERS												
Physical Tests	12.0	12.0	0				<2.0	~ 2.0	-2.0	<2.0	-2.0	<2.0
Conductivity (µS/cm)	13.9	13.9	0	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Hardness (mg/L)	-	-	-	-	-	-	<0.70	<0.70	<0.70	<0.70	<0.70	<0.50
pH	-	-	-	6.79	6.79	0	5.54	5.76	5.37	5.62	5.74	5.36
Total Suspended Solids (mg/L)	10.7	11.7	-8.9	<3.0	<3.0	0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Total Dissolved Solids (mg/L)	21	25	-17	15	13	14	<10	<10	<10	<10	<10	<10
Anions & Nutrients (mg/L)												
Alkalinity - Bicarbonate (as CaCO ₃)	-	-	-	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Alkalinity - Carbonate (as CaCO ₃)	-	-	-	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Alkalinity - Hydroxide (as CaCO ₃)	-	-	-	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Alkalinity - Total (as CaCO ₃)	-	-	-	3.8	4.3	-12	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Ammonia (as N)	< 0.020	<0.020	0	<0.020	<0.020	0	<0.020	-	0.026	<0.020	<0.020	<0.020
Chloride	<0.50	<0.50	0	< 0.50	<0.50	0	<0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50
Nitrate (as N)	< 0.0050	< 0.0050	0	< 0.0050	< 0.0050	0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Nitrite (as N)	<0.0010	<0.0010	0	<0.0010	<0.0010	0	< 0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010
Total Kjeldahl Nitrogen	-	-	_	-	-	_	< 0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050
Ortho Phosphate (as P)	<0.0010	<0.0010	0	<0.0010	<0.0010	0	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Total Phosphate (as P)	0.0032	0.0036	-12	0.0064	0.0064	0	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Sulfate (SO ₄)	2.64	2.68	-1.5	1.22	1.21	0.82	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	2.04	2.00	-1.5	1.22	1.21	0.02	٠٠.٥٥	40.00	40.00	40.00	40.00	-0.50
ORGANIC / INORGANIC CARBON	0.40										0.70	
Dissolved Organic Carbon (mg/L)	2.48	2.55	-2.8	1.50	1.46	2.7	-	-	-	<0.50	0.76	-
Total Organic Carbon (mg/L)	1.80	1.79	0.56	1.32	1.34	-1.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
AGGREGATE ORGANICS (mg/L)												
Oil and Grease	-	-	-	-	-	-	-	-	-	<5.0	-	-
PLANT PIGMENTS												
Chlorophyll a (µg)	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL METALS (mg/L)												
Aluminum	_	_	_	0.0142	0.0134	5.8	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	_
Antimony	_	_	_	<0.00050	<0.00050	0	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	_
Arsenic	_	_	_	<0.00050	<0.00050	0	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	_
	_	_	_	<0.020	<0.020	0	<0.020	<0.020	<0.020	<0.020	<0.020	_
Barium	-	-	-				<0.020	<0.020	<0.020	<0.020	<0.020	_
Beryllium	-	-	-	<0.0010	<0.0010	0						-
Boron	-	-		<0.10	<0.10	0	<0.10	<0.10	<0.10	<0.10	<0.10	-
Cadmium	-	-	-	<0.000017	<0.000010	-	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	-
Calcium	-	-	-	1.30	1.23	5.5	<0.10	<0.10	<0.10	<0.10	<0.10	-
Chromium	-	-	-	<0.0010	<0.0010	0	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	-
Cobalt	-	-	-	<0.00030	<0.00030	0	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	-
Copper	-	-	-	<0.0010	<0.0010	0	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	-
Iron	-	-	-	<0.030	0.055	-59	<0.030	<0.030	<0.030	<0.030	<0.030	-
Lead	-	-	-	<0.00050	<0.00050	0	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-
Lithium	-	-	-	<0.0050	<0.0050	0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-
Magnesium	-	-	-	0.57	0.55	3.6	<0.10	<0.10	<0.10	<0.10	<0.10	-
Manganese	-	-	-	0.00102	0.00092	10	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	-
Mercury	<0.000020	<0.000020	0	< 0.0010	< 0.0010	0	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	-
Molybdenum	-	-	-	<0.0010	<0.0010	0	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	-
Nickel	-	-	-	<2.0	<2.0	0	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	-
Potassium	-	-	-	<0.0010	<0.0010	0	<2.0	<2.0	<2.0	<2.0	<2.0	-
Selenium	-	-	-	<0.000020	<0.000020	0	< 0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	-
Silver	-	-	-	<2.0	<2.0	0	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	-
Sodium	-	-	-	<0.00020	<0.00020	0	<2.0	<2.0	<2.0	<2.0	<2.0	-
Thallium	_	_	-	<0.00050	<0.00050	0	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	-
Tin	_	_	-	<0.010	<0.010	0	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-
Titanium	_	_	_	<0.00020	<0.00020	0	<0.010	<0.010	<0.010	<0.010	<0.010	_
Uranium	_	_	_	<0.0010	<0.0010	0	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	_
Vanadium	_	_	_	<0.0010	<0.0010	0	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	_
Zinc	_	_	_	<0.000020	<0.00000	0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-
				-0.000020	-0.000020	U	2.0000	0.0000	3.0000	2.0000	5.5500	

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) x 100.

Shaded RPDs exceed 25% (lab duplicates) or 50% (field duplicates).

Shaded travel and equipment blanks exceed laboratory method detection limits.

Table 3-2: QA/QC data for 2008 sediment parameters, Meadowbank study lakes & Baker Lake, August 2008.

	Third Por	tage Lake - Noi	th Basin		Various Lakes		TPN	TPS	TPE	TPN	SP	TE	WAL	INUG	BBD	BPJ	BAP
Analytes	TPN	Field Dup	RPD	Original	Laboratory	RPD	QA/QC FILTER		Paca	vory of	Surro	aata S	tandard	de for E	DAHe ('0/ ₋ \	
	18-Aug-08	18-Aug-08	(%)	August	Duplicate	(%)	18-Aug-08		Neco	very or	Julio	gate 5	tanuar	JS 101 1	Al IS (,70)	
CONVENTIONAL PARAMETERS																	
Physical & Organic Parameters																	
Moisture (%)	82.3	83.0	-0.8	_	-	_	-										
pH	6.13	6.11	0.3	6.94	6.84	1.5	-										
Total Organic Carbon (% dw)	3.1	3.0	3.3	5.0	5.0	0	-										
Particle Size																	
% Gravel (>2mm)	<1	<1	0	-	-	-	-										
% Sand (2.00mm - 0.063mm)	20	18	11	-	-	_	-										
% Silt (0.063mm - 4µm)	62	62	0	-	-	-	-										
% Clay (<4µm)	18	20	-11	-	-	-	-										
AGGREGATE ORGANICS (mg/kg)																	
Oil and Grease	3170	2870	9.9	2870	3310	-14	-										
POLYCYCLIC AROMATIC HYDROCAF	RBONS																
Acenaphthene (mg/kg)	<0.092	<0.092	0	<0.13	<0.040	-	-										
Acenaphthylene (mg/kg)	<0.12	<0.12	0	<0.16	<0.050	-	-										
Anthracene (mg/kg)	<0.12	<0.12	0	<0.16	<0.050	-	-										
Benz(a)anthracene (mg/kg)	<0.12	<0.12	0	<0.16	0.10	42	-										
Benzo(a)pyrene (mg/kg)	<0.12	<0.12	0	<0.16	0.089	57	-										
Benzo(b)fluoranthene (mg/kg)	<0.12	<0.12	0	<0.16	0.086	60	-										
Benzo(g,h,i)perylene (mg/kg)	<0.12	<0.12	0	<0.16	<0.050	-	-										
Benzo(k)fluoranthene (mg/kg)	<0.12	<0.12	0	<0.16	<0.050	-	-										
Chrysene (mg/kg)	<0.12	<0.12	0	<0.16	0.096	50	-										
Dibenz(a,h)anthracene (mg/kg)	<0.12	<0.12	0	<0.16	<0.050	-	-										
Fluoranthene (mg/kg)	<0.12	<0.12	0	<0.16	0.14	13	-										
Fluorene (mg/kg)	<0.12	<0.12	0	<0.16	<0.050	-	-										
Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.12	<0.12	0	<0.16	0.059	92	-										
2-Methylnaphthalene (mg/kg)	<0.12	<0.12	0	<0.16	<0.050	-	-										
Naphthalene (mg/kg)	<0.12	<0.12	0	<0.16	<0.050	-	-										
Phenanthrene (mg/kg)	<0.12	<0.12	0	<0.80	<0.50	-	-										
Pyrene (mg/kg)	<0.12	<0.12	0	<0.16	0.22	-30	-										
d10-Acenaphthene (%)	-	-	-	-		-	-	95	93	93	93	92	92	91	94	94	98
d12-Chrysene (%)	-	-	-	-	-	-	-	109	104	109	95	105	103	106	88	87	91
d8-Naphthalene (%)	-	-	-	-	-	-	-	97	95	94	99	95	95	93	90	92	93
d10-Phenanthrene (%)	-	-	-	_	-	-	_	100	95	96	105	95	96	94	94	93	97

Table 3-2 con't: QA/QC data for 2008 sediment parameters, Meadowbank study lakes & Baker Lake, August 2008.

	Third Por	tage Lake - Noi	th Basin		Various Lakes		TPN	TPS	TPE	TPN	SP	TE	WAL	NUG B	BD BP	J BAP
Analytes	TPN	Field Dup	RPD	Original	Laboratory	RPD	QA/QC FILTER		D				4	. f D A I	11- (0/)	
	18-Aug-08	18-Aug-08	(%)	August	Duplicate	(%)	18-Aug-08		Reco	very or	Surro	gate S	tandard	for PAI	HS (%)	
TOTAL METALS (mg/kg dw)							TOTAL METALS (µg)									
Aluminum	-	-	-	-	-	-	<20									
Antimony	<10	<10	0	<10	<10	0	<10									
Arsenic	20.8	17.3	18	5.40	<5.0	7.7	<10									
Barium	70.0	76.9	-9.4	64.2	66.7	-3.8	2.46									
Beryllium	1.01	1.06	-4.8	<0.50	< 0.50	0	<0.30									
Bismuth	-	-	-	-	-	-	<10									
Cadmium	<0.50	<0.50	0	<0.50	< 0.50	0	<0.50									
Calcium	=	-	-	-	-	-	31.5									
Chromium	105	108	-2.8	13.6	13.7	-0.7	7.24									
Cobalt	16.5	16.1	2.5	4.40	4.30	2.3	<0.50									
Copper	40.2	41.8	-3.9	7.30	7.20	1.4	1.07									
Iron	-	-	-	-	-	-	52									
Lead	<30	<30	0	<30	<30	0	<3.0									
Lithium	=	-	-	-	-	-	<0.50									
Magnesium	=	-	-	-	-	-	10.1									
Manganese	=	-	-	-	-	-	1.53									
Mercury	0.0142	0.0128	10	<0.0050	< 0.0050	0	-									
Molybdenum	<4.0	<4.0	0	<4.0	<4.0	0	<2.0									
Nickel	60.7	66.7	-9.4	8.40	8.10	3.6	3.90									
Phosphorus	=	-	-	-	-	-	<20									
Potassium	=	-	-	=	-	-	<100									
Selenium	<2.0	<2.0	0	<2.0	<2.0	0	<10									
Silver	<2.0	<2.0	0	<2.0	<2.0	0	<0.50									
Sodium	-	-	-	-	-	-	120									
Strontium	-	-	-	-	-	-	<0.30									
Thallium	<1.0	<1.0	0	<1.0	<1.0	0	<10									
Tin	<5.0	<5.0	0	<5.0	<5.0	0	<2.0									
Titanium	-	-	-	-	-	-	<0.50									
Vanadium	28.8	29.8	-3.4	16.5	16.6	-0.6	<2.0									
Zinc	69.6	73.9	-6.0	26.1	27.5	-5.2	0.900									

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) x 100.

Shaded RPDs exceed 25% (lab duplicates) or 50% (field duplicates).

Table 3-3: QA/QC data for 2008 sediment core parameters, Meadowbank study lakes & Baker Lake, July and August 2008.

	Third Port	age Lake - So	uth Basin	Third Por	tage Lake - Ea	ast Basin	Third Port	age Lake - No	rth Basin	Sec	ond Portage L	ake	-	Tehek Lake		·	Wally Lake	
Analytes	TPS-SC-08	Field Dup	RPD	TPE-SC-05	Field Dup	RPD	TPN-SC-11	Field Dup	RPD	SP-SC-10	Field Dup	RPD	TE-SC-08	Field Dup	RPD	WAL-SC-05	Field Dup	RPD
	24-Jul-08	24-Jul-08	(%)	23-Jul-08	23-Jul-08	(%)	24-Jul-08	24-Jul-08	(%)	19-Jul-08	19-Jul-08	(%)	20-Jul-08	20-Jul-08	(%)	22-Jul-08	22-Jul-08	(%)
CONVENTIONAL PARAMETERS																		
Physical & Organic Parameters																		
pH	5.82	5.84	-0.3	5.89	6.03	-2.3	5.87	5.87	0	6.20	6.15	0.8	5.89	5.90	-0.2	7.14	6.99	2.1
Total Organic Carbon (% dw)	5.0	4.6	8.3	4.7	5.1	-8.2	4.5	4.5	0	5.4	5.4	0	4.2	4.2	0	8.3	9.9	-18
TOTAL METALS (mg/kg dw)																		
Antimony	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Arsenic	36.4	27.2	29	15.9	11.6	31	21.2	22.8	-7.3	26.7	30.8	-14	45.0	47.8	-6.0	19.8	20.7	-4.4
Barium	124	122	1.6	126	109	14	87.1	96.0	-9.7	119	134	-12	132	136	-3.0	90.0	63.7	34
Beryllium	1.5	1.6	-4.5	1.8	1.7	4.6	1.3	1.4	-8.4	1.9	2.1	-9.9	1.9	1.9	-2.1	1.2	0.99	18
Cadmium	0.92	0.76	19	< 0.50	< 0.50	0	< 0.50	<0.50	0	< 0.50	0.67	29	0.87	0.83	4.7	0.54	< 0.50	7.7
Chromium	100	108	-7.7	75.1	72.2	3.9	109	118	-7.9	65.0	76.3	-16	44.3	45.7	-3.1	44.5	35.3	23
Cobalt	49.7	32.3	42	15.8	14.0	12	18.7	19.6	-4.7	14.0	15.9	-13	14.8	15.5	-4.6	7.80	6.00	26
Copper	77.8	77.3	0.6	49.8	46.1	7.7	60.8	65.3	-7.1	80.4	91.0	-12	63.8	64.6	-1.2	109	81.0	29
Lead	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	31	<30	3.3
Mercury	0.0560	0.0406	32	0.0251	0.0248	1.2	0.0285	0.0284	0.4	0.0452	0.0516	-13	0.0356	0.0388	-8.6	0.0570	0.0534	6.5
Molybdenum	7.1	5.4	27	4.4	4.3	2.3	4.1	4.5	-9.3	5.3	6.1	-14	11.1	11.3	-1.8	<4.0	<4.0	0
Nickel	137	120	13	88.2	61.1	36	73.8	89.1	-19	50.4	57.1	-12	52.7	54.0	-2.4	41.7	32.7	24
Selenium	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<3.0	<3.0	0	<2.0	<2.0	0
Silver	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0
Thallium	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0
Tin	<5.0	<5.0	0	<5.0	<5.0	0	<5.0	<5.0	0	<5.0	<5.0	0	<5.0	<5.0	0	<5.0	<5.0	0
Vanadium	39.8	41.9	-5.1	36.8	35.1	4.7	34.4	37.5	-8.6	33.7	38.4	-13	25.9	26.4	-1.9	22.8	20.8	9.2
Zinc	104	102	1.9	101	92.7	8.6	78.1	84.0	-7.3	97.8	110	-12	82.8	85.8	-3.6	89.3	65.6	31

 $RPD = Relative \ Percent \ Difference \ (\%) = ((original - duplicate) \ / \ (original + duplicate) \ / \ x \ 100.$ Shaded RPDs exceed 25% (lab duplicates) or 50% (field duplicates).

Table 3-3 con't: QA/QC data for 2008 sediment core parameters, Meadowbank study lakes & Baker Lake, July and August 2008.

	Inug	gugayualik La	ike	Baker L	ake - Propose	d Jetty	Baker Lal	ce - Akilahaarj	uk Point		Various Lakes			Various Lakes	
Analytes	INUG-SC-07	Field Dup	RPD	BPJ-SC-06	Field Dup	RPD	BAP-SC-12	Field Dup	RPD	Original	Laboratory	RPD	Original	Laboratory	RPD
	25-Jul-08	25-Jul-08	(%)	28-Aug-08	28-Aug-08	(%)	25-Aug-08	25-Aug-08	(%)	July/August	Duplicate	(%)	July/August	Duplicate	(%)
CONVENTIONAL PARAMETERS															
Physical & Organic Parameters															
pH	5.96	5.95	0.2	6.48	6.50	-0.3	6.83	6.73	1.5	6.50	6.60	-1.5	6.74	6.71	0.4
Total Organic Carbon (% dw)	4.6	7.1	-43	1.3	1.2	8.0	0.30	0.30	0	3.4	3.5	-2.9	6.0	6.0	0
TOTAL METALS (mg/kg dw)															
Antimony	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Arsenic	49.7	18.9	90	15.9	10.4	42	<5.0	<5.0	0	10.4	11.3	-8.3	<5.0	<5.0	0
Barium	95.8	100	-4.3	202	187	7.7	213	255	-18	187	194	-3.7	385	386	-0.3
Beryllium	1.2	1.4	-10	0.53	<0.50	5.8	<0.50	<0.50	0	< 0.50	0.51	0	<0.50	< 0.50	0
Cadmium	< 0.50	<0.50	0	< 0.50	<0.50	0	<0.50	<0.50	0	< 0.50	< 0.50	0	<0.50	< 0.50	0
Chromium	79.8	94.3	-17	24.8	23.5	5.4	18.8	17.2	8.9	23.5	24.2	-2.9	16.2	15.3	5.7
Cobalt	16.7	17.9	-6.9	10.3	9.70	6.0	4.50	4.20	6.9	9.70	9.80	-1.0	4.80	4.80	0
Copper	40.3	46.1	-13	12.1	11.2	7.7	4.80	4.30	11	11.2	11.7	-4.4	5.30	5.50	-3.7
Lead	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
Mercury	0.0530	0.0414	25	0.0244	0.0175	33	0.0055	0.0062	-12	0.0175	0.0176	-0.6	0.0062	0.0064	-3.2
Molybdenum	6.5	5.0	26	<4.0	<4.0	0	<4.0	<4.0	0	<4.0	<4.0	0	<4.0	<4.0	0
Nickel	71.1	66.8	6.2	16.4	15.7	4.4	11.2	9.20	20	15.7	15.9	-1.3	9.60	9.40	2.1
Selenium	<2.0	<2.0	0	<4.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0
Silver	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0
Thallium	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0
Tin	<5.0	<5.0	0	<5.0	<5.0	0	<5.0	<5.0	0	<5.0	<5.0	0	<5.0	<5.0	0
Vanadium	32.7	35.8	-9.1	27.9	26.7	4.4	17.7	17.8	-0.6	26.7	27.5	-3.0	20.6	20.7	-0.5
Zinc	71.3	76.4	-6.9	47.7	46.5	2.5	23.6	21.4	9.8	46.5	47.5	-2.1	24.3	24.3	0

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) \times 100.

Shaded RPDs exceed 25% (lab duplicates) or 50% (field duplicates).

Table 3-4: QA/QC data for phytoplankton, Meadowbank study lakes & Baker Lake, July, August and September 2008.

		Wally Lake	•	Inug	gugayualik l	_ake	Seco	nd Portage I	_ake
	WAL	Field	RPD	INUG	Field	RPD	SP	Field	RPD
	22-Jul-08	Duplicate	(%)	20-Aug-08	Duplicate	(%)	17-Sep-08	Duplicate	(%)
Phytoplankton Density (cells/L)								
Cyanophyte	7784	14368	-59	7384	102776	-173	400	800	-67
Chlorophyte	79224	66456	18	162248	382952	-81	252640	352416	-33
Chrysophyte	2473296	2099328	16	1964432	1243632	45	899000	819576	9
Diatom	205152	236488	-14	37720	67256	-56	45120	35136	25
Cryptophyte	161248	76040	72	114944	152064	-28	128128	178416	-33
Dinoflagellate	22952	1600	174	14768	1400	165	0	7384	-200
Tota	2949656	2494280	17	2301496	1950080	17	1325288	1393728	-5.0
Mean RPL			34			-21			-50
Phytoplankton Biomass	(mg/m³)								
Cyanophyte	1.03	1.44	-33	0.938	2.40	-88	0.840	0.0905	161
Chlorophyte	4.30	4.10	4.9	12.0	11.0	8.2	6.34	5.13	21
Chrysophyte	172	164	4.7	147	125	17	49.0	77.0	-44
Diatom	15.2	17.0	-11	2.88	4.85	-51	8.43	10.4	-21
Cryptophyte	10.9	12.8	-16	4.74	8.57	-58	12.3	15.6	-24
Dinoflagellate	13.2	5.11	89	5.67	13.4	-81	0	4.22	-200
Tota	216	204	5.8	173	165	5.0	76.9	113	-38
Mean RPL)		6.3			-42			-18
# Species	38	42	-10	45	43	4.5	41	36	13
Simpsons Diversity	0.89	0.87	2.6	0.84	0.93	-9.8	0.92	0.92	-0.22

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) \times 100.

Shaded RPDs exceed 50% (field duplicates) or 25% (lab duplicates).

Table 3-4 con't: QA/QC data for phytoplankton, Meadowbank study lakes & Baker Lake, July, August and September 2008.

		Tehek Lake		Inug	gugayualik La	ake	Bak	er Barge Do	ck
•	TE	Lab	RPD	INUG	Lab	RPD	BBD	Lab	RPD
	20-Jul-08	Duplicate	(%)	20-Aug-08	Duplicate	(%)	21-Sep-08	Duplicate	(%)
Phytoplankton Density (ce	ells/L)								
Cyanophyte	0	29136	-200	7384	8384	-13	400	600	-40
Chlorophyte	14368	43904	-101	162248	219320	-30	280576	237872	16
Chrysophyte	2186336	2013520	8.2	1964432	2035272	-3.5	1121104	1185760	-5.6
Diatom	89608	76040	16	37720	17168	75	60920	65720	-7.6
Cryptophyte	58672	58872	-0.34	114944	107760	6.5	490912	504880	-2.8
Dinoflagellate	15968	600	186	14768	14568	1.4	9184	8584	6.8
Total	2364952	2222072	6.2	2301496	2402472	-4.3	1963096	2003416	-2.0
Mean RPD			-15			6.1			-5.5
Phytoplankton Biomass (r	ng/m³)								
Cyanophyte	0	0.560	-200	0.938	2.04	-74	0.840	1.26	-40
Chlorophyte	0.313	2.12	-148	12.0	10.4	14	16.5	5.80	96
Chrysophyte	181	162	11	147	137	7.2	50.5	52.1	-3.0
Diatom	8.78	8.34	5.1	2.88	3.12	-7.9	11.5	17.4	-41
Cryptophyte	8.39	7.55	10	4.74	4.50	5.2	49.8	51.9	-4.2
Dinoflagellate	10.8	1.59	149	5.67	5.24	7.9	9.97	8.86	12
Total	210	182	14	173	162	6.6	139	137	1.3
Mean RPD			-29			-8.0			3.3
# Species	36	39	-8.0	45	42	6.9	39	42	-7.4
Simpsons Diversity	0.87	0.88	-1.2	0.84	0.84	0.49	0.88	0.87	0.66

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) x 100.

Shaded RPDs exceed 50% (field duplicates) or 25% (lab duplicates).

Table 3-5: QA/QC data for periphyton, Meadowbank study lakes, August 2008.

		Second Portage Lake				Tehek Lake		Wally Lake			
		SP-1 24-Aug-08	Lab Duplicate	RPD (%)	TE-3 19-Aug-08	Lab Duplicate	RPD (%)	WAL-1 21-Aug-08	Lab Duplicate	RPD (%)	
Periphyton Density (cells	s/cm²)										
Cyanophyte	•	768016	721361	6.3	551146	643431	-15	857738	886449	-3.3	
Chlorophyte		17944	14355	22	2564	10254	-120	14355	7178	67	
Chrysophyte		0	0	0	0	0	0	0	0	0	
Diatom		240454	244043	-1.5	248657	276855	-11	251220	322997	-25	
Dinoflagellate		0	0	0	0	0	0	0	0	0	
	Total	1026414	979759	4.7	802367	930540	-15	1123313	1216624	-8.0	
Меа	an RPD			<i>5.4</i>			-29			7.7	
Periphyton Biomass (µg/	cm²)										
Cyanophyte	,	307	305	0.62	54.4	72.7	-29	212	180	17	
Chlorophyte		36.1	28.9	22	3.60	9.00	-86	21.6	7.50	97	
Chrysophyte		0	0	0	0	0	0	0	0	0	
Diatom		378	403	-6.4	299	346	-15	116	144	-22	
Dinoflagellate		0	0	0	0	0	0	0	0	0	
-	Total	720	736	-2.2	357	428	-18	349	331	5.4	
Меа	an RPD			3.3			-26			18	
# Species		16	16	0	15	15	0	18	16	12	
Simpsons Diversity		0.76	0.79	-3.9	0.76	0.77	-1.3	0.78	0.75	3.9	

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) x 100.

Shaded RPDs exceed 25% (lab duplicates).

Table 3-6: Percent recovery of benthic invertebrate samples, Meadowbank study lakes & Baker Lake, August 2008.

Station	Number of Organisms Recovered	Number of Organisms in Re-sort	Percent Recovery		
BAP-3	195	197	99.0%		
BBD-2	196	201	97.5%		
INUG-4	267	272	98.2%		
TPE-1	372	389	95.6%		
TPE-4	343	370	92.7%		
TPS-1	136	136	100%		
		Average % Recovery	97.2%		

All fifty samples were sorted in their entirety.

3.2. Limnology and Water Chemistry

3.2.1. Meadowbank Study Lakes

Vertical temperature and dissolved oxygen profiles of all lakes and seasons were isothermal with little evidence of stratification (**Figures 3-1 to 3-7**). Generally, water temperatures at Meadowbank increased through the spring and summer open water season, followed by cooling in the fall. Given the frequency of wind events at Meadowbank, none of the lakes are ever stratified by more than two or three degrees for more than a few days (BAER, 2005). Dissolved oxygen concentrations were always high, related to temperature changes, and were nearly always completely saturated.

Maximum water temperature varied among lakes and was related to water depth and volume of water in the basin being measured. For example, water temperatures at Meadowbank were lowest in the large, deep south basin of Third Portage Lake (**Figure 3-6**) in the spring (5.0–7.0°C) and barely exceeded 10.5°C as a maximum. Water temperatures were warmest in Wally Lake, reaching almost 15.0°C in this lake in spring (**Figure 3-4**).

Conventional water quality parameters were generally similar among the Meadowbank study lakes (**Table 3-7**) and typical of ultra-oligotrophic/oligotrophic lakes (Welch et al., 1989) in this region of the Arctic.

The pH of surface waters was circum-neutral (6.5–7.3). Conductivity was lowest in Third Portage (13.6–14.1 μS/cm) and Inuggugayualik lakes (14.0 μS/cm) and somewhat higher in Second Portage (21.4–23.8 µS/cm), Tehek (17.6–18.7 µS/cm) and Wally (25.9–27.4 μS/cm) lakes. Total suspended (TSS) and dissolved solids (TDS) in surface waters were consistently low (<3.0 mg/L and <10 mg/L, respectively) in all lakes which is consistent with previous work (BAER, 2005). The one exception to this pattern occurred in Second Portage Lake in the summer (11 mg/L and 21 mg/L, respectively) and fall (3.6 mg/L and 13 mg/L, respectively) sampling programs. These elevated suspended and dissolved concentrations of solids in Second Portage Lake are a direct result of introductions of suspended sediment due to construction of the East Dike that began on 30 July, and despite installation of silt curtains, released sediments to the lake. These suspended and dissolved solids became dispersed by wind and were eventually transported out of Second Portage Lake and into Tehek Lake (TSS was measured at 3.1 mg/L in the fall sampling period). Although this is marginally above the detection limit, the actual background TSS concentration in the study lakes is more likely to be on the order of <0.5 mg/L, so this represents a measurable increase. More details on the extent and magnitude of elevated TSS in Second Portage and Tehek Lakes, as well as the ecological

significance of the sediment inputs, are discussed within the dike construction monitoring report (Azimuth, 2009).

Nutrient concentrations (nitrogen, phosphorus) in the Meadowbank study lakes were low, generally close to laboratory detection limits and did not differ appreciably within or among lakes and seasons. Ammonia concentrations exceeded detection limits (less than 2 times) periodically and in different lakes and different seasons but were generally low. Except for Third Portage North in spring (6.95 mg/L), dissolved organic carbon ranged from 1.45–2.48 mg/L in the Meadowbank lakes.

Oil and grease in water was not detected from all locations in all seasons.

Chlorophyll- α concentrations in the study lakes were usually low, ranging from 0.309–1.11 µg/L which are typical of ultra-oligotrophic/oligotrophic lakes. Chlorophyll- α increased over the season. Low productivity is primarily a reflection of low nutrient levels in the project lakes, as well as cold water temperature, short growing season and other inorganic nutrients that are in very low concentration in the project lakes. There were no meaningful differences in chlorophyll- α concentrations among lakes; concentrations tended to be somewhat higher in September than in July and August. There did not appear to be a reduction in chlorophyll- α concentration in Second Portage Lake related to increased TSS from construction of the East Dike (see Azimuth, 2009 for more details).

Total metals concentrations measured in 2008 from surface waters in the spring, summer, and fall were consistently low among the project lakes (**Table 3-7**). Of the 28 metals for which concentration data were measured, 24 are consistently below detection limits (DLs). No metal for which there are CCME (2007) guideline concentrations for the protection of aquatic life exceeded thresholds. The concentrations of common salts (calcium, magnesium, manganese and potassium) exceeded DLs but were always low in concentration with no trend or pattern over time or between lakes. Results from 2008 were consistent to monitoring results from previous years (Azimuth, 2008*a*, *b*; BAER, 2005).

The exception to this pattern was related to the elevated TSS event in Second Portage Lake in summer/fall as a result of sediment release from construction of the East Dike. Chromium, copper and iron concentrations exceeded DLs and in some cases exceeded the CCME (2007) guideline for protection of aquatic life (**Table 3-7**). Concentrations for these metals peaked in August and were lower in September, as did TSS concentrations. Aluminum in water also increased and had a similar pattern as these three metals. Aluminum, chromium, copper and iron also increased in Tehek Lake, but to a lesser degree and only in September because of the time delay between sediment release in Second Portage Lake in July/August and sediment transport to Tehek Lake by September. Total concentrations of other metals were not affected by the TSS event. It is

important to note that dissolved metals concentrations were much lower than total metals concentrations in Second Portage Lake (as measured for the effects assessment strategy as part of East Dike construction monitoring) which suggests that the metals are in particulate form. Implications of the TSS event on water quality and potential impacts to aquatic resources are discussed in the dike construction monitoring report (Azimuth, 2009).

Limnological data, conventional water quality parameters, chlorophyll- α and nutrient concentrations indicate that the Meadowbank study lakes are ultra-oligotrophic (i.e., clear, nutrient poor) with very low productivity. Lake waters are neutral pH, soft (i.e., low hardness), and well mixed throughout the open water season with high oxygen concentration, and low turbidity which is consistent with previous work and with the remote, pristine nature of these headwater lakes. Because the study lakes are situated in the uppermost reaches of the Quioch River system, they do not receive inputs from upstream lakes or streams that might carry suspended and dissolved solids and/or nutrients into the study lakes.

3.2.2. Baker Lake

Vertical temperature and dissolved oxygen profiles of all stations and seasons were isothermal with little evidence of stratification (**Figures 3-8 to 3-10**). Water temperatures were cooler in the spring than in the fall in Baker Lake, but still warmest in summer.

Water samples from Baker Lake were analyzed for the same parameters as samples from the Meadowbank lakes (**Table 3-7**). Conventional water chemistry parameters from Baker Lake were clearly different from the Meadowbank study lakes. These differences are explored below.

Conductivity in Baker Lake ranged from $25.2-802~\mu$ S/cm near surface, with some vertical stratification in conductivity with a maximum over 1,000 μ S/cm. While total suspended solids in surface waters were consistently low (<3.0 mg/L) at all stations, total dissolved solids (13–434 mg/L), chloride (1.5–216 mg/L) and sulfate (0.68–30.5 mg/L) varied substantially and were very closely related to conductivity patterns in these surface waters. Explanations for the high conductivity measurements and the substantial differences in conductivity between sampling seasons in Baker Lake will be explored more fully in 2009. The varying conductivity values are likely related to wind speed and direction and inflow from the Thelon River, just east of Baker Lake. Because the sampling stations are situated relatively close to shore, low conductivity water from the Thelon River can move west along shore displacing the naturally high-conductivity water, depending on wind conditions. Conductivity profiles in the field also revealed vertical differences with 2 times higher conductivity at depth relative to surface. Elevated conductivity (>1,000 μ S/cm) at depth suggests a possible association with marine water

from Chesterfield Inlet and Hudson Bay which may affect limnological profiles. Furthermore, differences in conductivity (laboratory measured from discrete depth) may be influenced by vertical mixing and a reflection of the conductivity of water collected for this analysis at 4 m depth.

Nutrient concentrations (nitrogen, phosphorus) were low, generally close to laboratory detection limits and did not differ appreciably within the lake and among seasons; ammonia was slightly higher for all stations in the spring. As discussed above, anions, chloride, and sulfate concentrations varied among stations and seasons, and were related to hardness and conductivity. Dissolved and total organic carbon did not vary much among stations or seasons, ranging from 3.28–3.54 mg/L and 2.92–3.28 mg/L, respectively. Oil and grease concentrations in water were consistently below DLs at all stations.

Chlorophyll- α concentrations in Baker Lake were low, ranging from 0.436–1.76 µg/L which is typical of oligotrophic lakes. Chlorophyll- α concentrations increased over the season and peaked in summer.

Of the 28 metals analyzed in water 23 were consistently below detection limits at all stations and over seasons and were well below CCME (2007) guidelines for the protection of aquatic life. Only the common salts calcium, magnesium, manganese, potassium and sodium (**Table 3-7**) exceeded DLs and again, were related to conductivity/hardness in surface waters, which could be described as slightly brackish. Only aluminum from the Barge Dock area exceeded the CCME (2007) guideline concentration in August and may have been related to shipping activity in the dock area. Concentrations were less than these guidelines in September for this location and for all other locations and seasons.

Table 3-7: Conventional water chemistry and total metals (mg/L), Meadowbank study lakes, July, August and September 2008.

Lake & Basin		Third Portage Lake												
Station ID	COME (2007)	South				East			North TPN					
Date	CCME (2007) Guideline ¹	24-Jul-08	TPS 17-Aug-08	18-Sep-08	23-Jul-08	TPE 16-Aug-08	18-Sep-08	24-Jul-08	17-Aug-08	18-Sep-08	18-Sep-08	18-Sep-08	18-Sep-08	
CONVENTIONAL PARAMETERS														
Physical Tests														
Conductivity (µS/cm)	NG	14.1	14.1	13.6	13.8	13.9	16.4	13.6	14.0	13.6	13.6	13.5	13.5	
Hardness (mg/L)	NG	5.07	5.01	5.07	4.99	4.96	5.57	4.89	4.98	5.10	5.08	5.11	5.12	
pH	6.5 - 9.0	6.47	6.47	6.83	6.52	6.55	6.75	6.52	6.61	6.81	6.79	6.83	6.77	
Total Suspended Solids (mg/L)	NG	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	3.1	<3.0	
Total Dissolved Solids (mg/L)	NG	<10	15	<10	<10	13	15	<10	14	<10	<10	<10	<10	
Anions & Nutrients (mg/L)														
Alkalinity - Bicarbonate (as CaCO ₃)	NG	3.4	4.2	3.9	3.8	5.0	3.8	4.0	3.9	3.7	3.7	3.8	4.0	
Alkalinity - Carbonate (as CaCO ₃)	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Alkalinity - Hydroxide (as CaCO ₃)	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Alkalinity - Total (as CaCO ₃)	NG	3.4	4.2	3.9	3.8	5.0	3.8	4.0	3.9	3.7	3.7	3.8	4.0	
3, 111 (1111113)	25.9 @ pH6.5;													
Ammonia (as N) ²	8.24 @ pH7.0; 2.61 @ pH7.5	0.064	<0.020	<0.020	0.046	<0.020	<0.020	0.028	0.023	<0.020	<0.020	<0.020	<0.020	
Chloride	NG	<0.50	0.510	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	
Nitrate (as N)	2.9	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
Nitrite (as N)	0.06	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Total Kjeldahl Nitrogen	NG	0.081	0.099	<0.050	0.081	0.093	0.069	0.084	0.081	0.055	0.066	0.087	0.053	
Ortho Phosphate (as P)	NG	<0.001	<0.0010	<0.0010	0.0010	<0.0010	<0.003	<0.004	<0.001	<0.0010	<0.0010	<0.001	<0.0010	
Total Phosphate (as P)	NG	0.0020	0.0022	<0.0010	<0.0010	<0.0010	<0.0010	0.0021	0.0024	0.0042	<0.0010	<0.0010	0.0022	
' ' '		1.23	1.53	1.22	1.17	1.62	1.22	1.17	1.43	1.21	1.20	1.22	1.22	
Sulfate (SO ₄)	NG	1.23	1.55	1.22	1.17	1.02	1.22	1.17	1.43	1.21	1.20	1.22	1.22	
ORGANIC / INORGANIC CARBON														
Dissolved Organic Carbon (mg/L)	NG	1.51	1.90	1.64	1.54	1.94	1.75	6.95	1.92	1.50	1.50	1.45	1.47	
Total Organic Carbon (mg/L)	NG	1.41	1.33	1.35	1.31	1.35	1.44	1.30	1.31	1.36	1.32	1.33	1.36	
AGGREGATE ORGANICS (mg/L) Oil and Grease	NG	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
DI ANT DICMENTS														
PLANT PIGMENTS Chlorophyll a - standardized (µg/L)	NG	0.394	0.327	0.595	0.398	0.398	0.708	0.363	0.337	0.573	0.526	0.495	0.515	
TOTAL METALS (mg/L)														
Aluminum ³	0.005 @pH<6.5 0.100 @ pH≥6.5	<0.0050	<0.0050	0.0097	0.0083	0.0074	0.014	<0.0050	<0.0050	0.0081	0.0083	0.0070	0.0079	
Antimony	NG	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Arsenic	0.0050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Barium	NG	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
Beryllium	NG	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Boron	NG	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Cadmium ⁴	0.000017	<0.00017	<0.00017	<0.00017	<0.00017	<0.00017	<0.00017	<0.00017	<0.00017	<0.00017	<0.00017	<0.00017	<0.00017	
Calcium	0.000017 NG	1.19	1.15	1.15	1.18	1.14	1.30	1.16	1.14	1.17	1.15	1.16	1.16	
Chromium ⁵		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
	0.0010	<0.0010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00030	<0.0010	<0.00030	<0.00030	<0.0010	
Cobalt	NG													
Copper*	0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Iron	0.300	0.031	<0.030	<0.030	<0.030	< 0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	
Lead*	0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Lithium	NG	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
Magnesium	NG	0.51	0.52	0.54	0.49	0.51	0.57	0.49	0.52	0.53	0.53	0.54	0.54	
Manganese	NG	0.000590	0.000640	0.000780	0.000900	0.000970	0.00102	0.000610	0.000610	0.000730	0.000690	0.000670	0.000660	
Mercury	0.000026	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	
Molybdenum	0.073	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Nickel*	0.025	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Potassium	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Selenium	0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Silver	0.00010	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	
Sodium	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Thallium	0.00080	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	
Tin	NG	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Titanium	NG	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	
Uranium	NG	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	
Vanadium	NG	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Zinc	0.030	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	

Shaded concentrations exceed the CCME guideline.

¹CCME (Canadian Council of Ministers of the Environment) Canadian Water Quality Guidelines for the Protection of Aquatic Life, 1999, updated December 2007.

 $^{^2\!}Ammonia$ guidelines are for 10 °C.

³Aluminum guideline is pH dependent.

⁴Interim cadmium guideline.

⁵Chromium guideline is for Cr VI, which yields the most conservative guideline.

^{*}Copper, lead and nickel guidelines are hardness dependent; minimum hardness was selected to yield the most conservative guideline.

Table 3-7 con't: Conventional water chemistry and total metals (mg/L), Meadowbank study lakes, July, August and September 2008.

Lake & Basin		Sec	ond Portage	Lake		Tehek Lake		Wally	Lake	Inuggugayualik Lake		
Station ID Date	CCME (2007) Guideline ¹	19-Jul-08	SP 22-Aug-08	17-Sep-08	20-Jul-08	TE 19-Aug-08	15-Sep-08	W 22-Jul-08	AL 21-Aug-08	IN 25-Jul-08	UG 20-Aug-08	
CONVENTIONAL PARAMETERS												
Physical Tests												
Conductivity (µS/cm)	NG	21.4	23.8	25.5	17.6	18.7	23.4	25.9	27.4	14.0	14.0	
Hardness (mg/L)	NG	8.79	11.8	10.8	6.84	7.24	9.85	11.3	11.7	5.01	4.97	
рН	6.5 - 9.0	7.18	7.24	7.15	6.51	6.76	7.11	7.31	7.31	6.53	6.74	
Total Suspended Solids (mg/L)	NG	<3.0	11	3.6	<3.0	<3.0	3.1	<3.0	<3.0	<3.0	<3.0	
Total Dissolved Solids (mg/L)	NG	10	21	13	<10	13	10	17	15	<10	<10	
Anions & Nutrients (mg/L)												
Alkalinity - Bicarbonate (as CaCO ₃)	NG	6.8	6.6	7.9	5.5	5.0	7.3	8.9	9.2	4.6	4.3	
Alkalinity - Carbonate (as CaCO ₃)	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Alkalinity - Hydroxide (as CaCO ₃)	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Alkalinity - Total (as CaCO ₃)	NG	6.8	6.6	7.9	5.5	5.0	7.3	8.9	9.2	4.6	4.3	
	25.9 @ pH6.5;											
Ammonia (as N) ²	8.24 @ pH7.0; 2.61 @ pH7.5	0.045	<0.020	<0.020	0.052	<0.020	<0.020	0.020	0.021	0.058	0.030	
Chloride	NG	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	0.600	0.690	
Nitrate (as N)	2.9	<0.0050	0.080	0.029	<0.0050	<0.0050	0.021	<0.0050	<0.0050	<0.0050	<0.0050	
Nitrite (as N)	0.06	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Total Kjeldahl Nitrogen	NG	0.14	0.093	0.10	0.097	0.090	0.089	0.12	0.10	0.16	0.098	
Ortho Phosphate (as P)	NG	<0.0010	<0.0010	<0.0010	0.0010	<0.0010	<0.0010	0.0013	<0.0010	<0.0010	<0.0010	
Total Phosphate (as P)	NG	0.0022	0.015	0.0064	0.0022	0.0030	0.0056	0.0037	0.0025	0.0021	0.0027	
Sulfate (SO ₄)	NG	2.08	2.49	2.14	1.72	2.01	1.95	2.27	2.64	0.700	0.960	
ORGANIC / INORGANIC CARBON												
Dissolved Organic Carbon (mg/L)	NG	1.72	1.75	2.01	1.65	1.74	1.90	2.34	2.06	2.05	2.48	
Total Organic Carbon (mg/L)	NG	1.56	1.43	1.61	1.44	1.44	1.64	1.84	1.86	1.82	1.80	
AGGREGATE ORGANICS (mg/L) Oil and Grease	NG	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
PLANT PIGMENTS												
Chlorophyll a - standardized (µg/L)	NG	0.336	0.556	0.654	0.309	0.595	1.11	0.557	0.659	0.506	0.616	
TOTAL METALS (mg/L)												
Aluminum ³	0.005 @pH<6.5 0.100 @ pH≥6.5	0.0064	1.2	0.34	0.0085	0.061	0.39	<0.0050	0.0053	0.0068	0.0060	
Antimony	NG	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Arsenic	0.0050	<0.00050	0.00054	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Barium	NG	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
Beryllium	NG	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Boron	NG	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Cadmium ⁴	0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	
Calcium	NG	2.31	2.68	2.7	1.74	1.80	2.41	3.07	3.14	1.02	0.990	
Chromium ⁵	0.0010	<0.0010	0.0039	0.0011	<0.0010	<0.0010	0.0013	<0.0010	<0.0010	<0.0010	<0.0010	
Cobalt	NG	<0.00030	0.00065	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	
Copper*	0.0020	<0.0010	0.0031	0.0017	<0.0010	<0.0010	0.0016	<0.0010	<0.0010	<0.0010	<0.0010	
Iron	0.300	<0.030	1.3	0.37	<0.030	0.092	0.43	<0.030	<0.030	<0.030	<0.030	
Lead*	0.0010	<0.00050	0.00087	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Lithium	NG	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
Magnesium	NG	0.73	1.2	0.99	0.61	0.67	0.93	0.87	0.93	0.60	0.61	
Manganese	NG	0.00113	0.0242	0.00757	0.00119	0.00257	0.00801	0.00102	0.00136	0.00181	0.00193	
Mercury	0.000026	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	
Molybdenum	0.073	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Nickel*	0.025	<0.0010	0.0027	0.0010	<0.0010	<0.0010	0.0011	<0.0010	<0.0010	<0.0010	<0.0010	
Potassium	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Selenium	0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Silver	0.00010	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	
Sodium	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Thallium	0.00080	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	
Tin	NG	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Titanium	NG	<0.010	0.049	0.013	<0.010	<0.010	0.016	<0.010	<0.010	<0.010	<0.010	
Uranium	NG	<0.00020	0.00056	0.00022	<0.00020	<0.00020	0.00025	<0.00020	<0.00020	<0.00020	<0.00020	
Vanadium	NG	<0.0010	0.0019	< 0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Zinc	0.030	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	

NG = no guideline.

Shaded concentrations exceed the CCME guideline.

¹CCME (Canadian Council of Ministers of the Environment) Canadian Water Quality Guidelines for the Protection of Aquatic Life, 1999, updated December 2007. ²Ammonia guidelines are for 10 °C.

³Aluminum guideline is pH dependent.

⁴Interim cadmium guideline.

⁵Chromium guideline is for Cr VI, which yields the most conservative guideline.

^{*}Copper, lead and nickel guidelines are hardness dependent; minimum hardness was selected to yield the most conservative guideline.

Table 3-7 con't: Conventional water chemistry and total metals (mg/L), Baker Lake, July, August and September 2008.

Lake & Basin		Barge Dock				Baker Lake Proposed Jet	ty	Akilahaarjuk Point			
Station ID Date	CCME (2007) Guideline ¹	27-Jul-08	BBD 28-Aug-08	21-Sep-08	27-Jul-08	BPJ 28-Aug-08	21-Sep-08	28-Jul-08	BAP 25-Aug-08	21-Sep-08	
CONVENTIONAL PARAMETERS Physical Tests											
Conductivity (µS/cm)	NG	802	25.2	660	426	135	624	266	323	581	
Hardness (mg/L)	NG	80.8	16.8	67.7	51.7	18.7	64.5	31.8	33.3	60.6	
pH	6.5 - 9.0	7.20	7.83	7.09	7.22	7.74	7.13	7.23	7.64	7.11	
Total Suspended Solids (mg/L)	0.5 - 9.0 NG	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	
Total Dissolved Solids (mg/L)	NG	434	13	345	222	71	329	135	177	302	
Anions & Nutrients (mg/L)											
Alkalinity - Bicarbonate (as CaCO ₃)	NG	9.1	8.2	5.8	8.8	8.1	9.3	9.1	8.0	9.2	
Alkalinity - Carbonate (as CaCO ₃)	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Alkalinity - Hydroxide (as CaCO ₃)	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Alkalinity - Total (as CaCO ₃)	NG	9.1	8.2	5.8	8.8	8.1	9.3	9.1	8.0	9.2	
Aintaining Total (as GaGG3)	25.9 @ pH6.5;	0.1	0.2	0.0	0.0	0.1	0.0	0.1	0.0	0.2	
Ammonia (as N) ²	8.24 @ pH7.0; 2.61 @ pH7.5	0.029	<0.020	<0.020	0.045	0.024	<0.020	0.022	0.021	<0.020	
Chloride	NG	216	1.50	173	110	30.7	163	65.4	81.4	151	
Nitrate (as N)	2.9	0.064	0.0082	0.036	0.039	0.0083	0.033	0.025	0.015	0.029	
Nitrite (as N)	0.06	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	
Total Kjeldahl Nitrogen	NG	0.13	0.27	0.14	0.14	0.24	0.14	0.18	0.19	0.14	
Ortho Phosphate (as P)	NG	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Total Phosphate (as P)	NG	0.0055	0.0068	0.0072	0.0058	0.0093	0.0075	0.050	0.0032	0.0075	
Sulfate (SO ₄)	NG	30.5	0.680	25.2	15.5	4.60	23.8	9.37	11.7	21.9	
ORGANIC / INORGANIC CARBON											
Dissolved Organic Carbon (mg/L)	NG	3.54	3.54	3.48	3.28	3.42	3.29	3.39	3.40	3.44	
Total Organic Carbon (mg/L)	NG	3.04	3.28	3.11	3.15	3.16	3.13	3.16	2.92	3.18	
AGGREGATE ORGANICS (mg/L) Oil and Grease	NG	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
PLANT PIGMENTS											
Chlorophyll a - standardized (µg/L)	NG	0.436	1.34	0.938	0.802	1.76	0.847	0.931	1.04	0.965	
TOTAL METALS (mg/L)				I							
Aluminum ³	0.005 @pH<6.5 0.100 @ pH≥6.5	<0.010	0.14	0.0053	0.0065	0.035	<0.0050	0.0094	0.0057	0.0074	
Antimony	NG	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Arsenic	0.0050	<0.0010	<0.00050	<0.00070	<0.00050	<0.00050	<0.00060	<0.00050	<0.00050	<0.00070	
Barium	NG	<0.020	<0.060	<0.020	<0.020	<0.060	<0.020	<0.020	<0.060	<0.020	
Beryllium	NG	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Boron	NG	<0.10	<0.30	<0.10	<0.10	< 0.30	<0.10	<0.10	< 0.30	<0.10	
Cadmium ⁴	0.000017	<0.000034	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	< 0.00001	
Calcium	NG	7.02	4.95	6.13	5.02	2.90	5.89	3.79	3.75	6.15	
Chromium ⁵	0.0010	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Cobalt	NG	<0.00060	<0.00030	< 0.00030	<0.00030	<0.00030	< 0.00030	< 0.00030	<0.00030	< 0.00030	
Copper*	0.0020	<0.0020	<0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Iron	0.300	<0.030	<0.090	<0.030	<0.030	< 0.090	< 0.030	< 0.030	<0.090	< 0.030	
Lead*	0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Lithium	NG	<0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	
Magnesium	NG	15	1.1	13	9.5	2.8	12	5.4	5.8	11	
Manganese	NG	0.00467	0.01040	0.00266	0.00328	0.00507	0.00209	0.00279	0.00169	0.00241	
Mercury	0.000026	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.00002	
Molybdenum	0.073	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Nickel*	0.025	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Potassium	NG	4.8	<6.0	4.1	3.0	<6.0	3.9	<2.0	<6.0	3.6	
Selenium	0.0010	<0.0040	<0.0010	<0.0030	<0.0020	<0.0010	<0.0030	<0.0010	<0.0010	<0.0030	
Silver	0.00010	<0.00040	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.00002	
Sodium	NG	112	<6.0	98.5	66.4	15.8	94.4	34.7	42.2	83.8	
Thallium	0.00080	<0.00040	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0002	
Tin	0.00080 NG	<0.00040	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0002	
Titanium	NG	<0.010	<0.030	<0.000	<0.010	<0.0000	<0.000	<0.010	<0.030	<0.000	
Uranium	NG NG	<0.0040	<0.00020	<0.010	<0.0020	<0.000	<0.010	<0.010	<0.00020	<0.0002	
Vanadium	NG	<0.00040	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	
Zinc	0.030	<0.0020	<0.0150	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
2010	0.030	-0.0000	-0.0100	-0.0000	-0.0000	-0.0100	-0.0000	-0.0000	-0.0100	-0.0000	

NG = no guideline

Shaded concentrations exceed the CCME guideline.

¹CCME (Canadian Council of Ministers of the Environment) Canadian Water Quality Guidelines for the Protection of Aquatic Life, 1999, updated December 2007.

²Ammonia guidelines are for 10 °C. ³Aluminum guideline is pH dependent.

⁴Interim cadmium guideline.

⁵Chromium guideline is for Cr VI, which yields the most conservative guideline.

^{*}Copper, lead and nickel guidelines are hardness dependent; minimum hardness was selected to yield the most conservative guideline.

Figure 3-1: Temperature (°C) and dissolved oxygen (mg/L) profiles for Third Portage Lake–North Basin, July, August and September 2008.

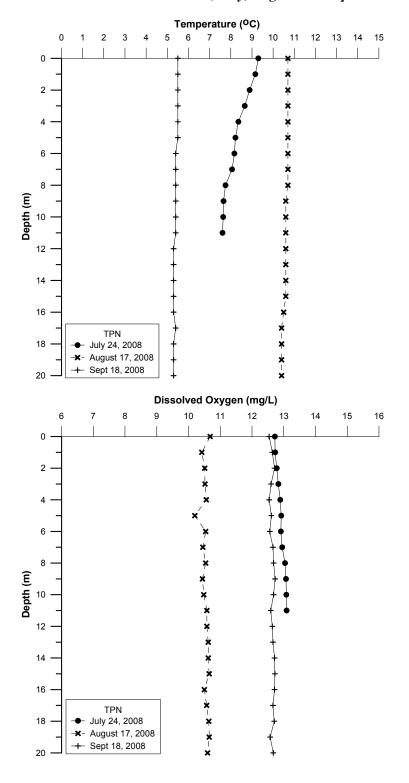


Figure 3-2: Temperature (°C) and dissolved oxygen (mg/L) profiles for Third Portage Lake—East Basin, July, August and September 2008.

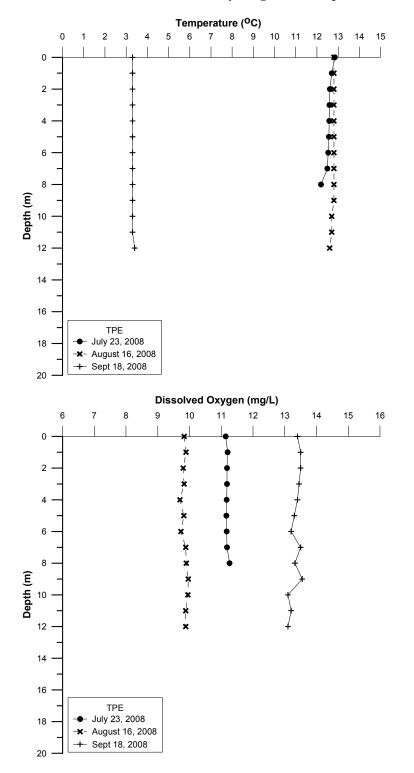


Figure 3-3: Temperature (°C) and dissolved oxygen (mg/L) profiles for Second Portage Lake, July, August and September 2008.

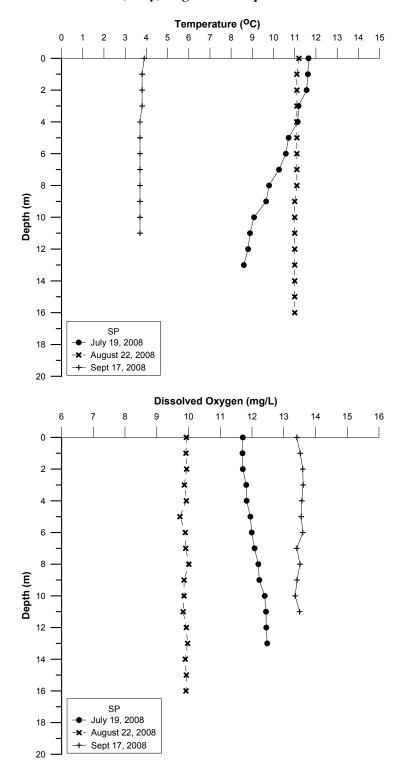


Figure 3-4: Temperature (°C) and dissolved oxygen (mg/L) profiles for Wally Lake, July and August 2008.

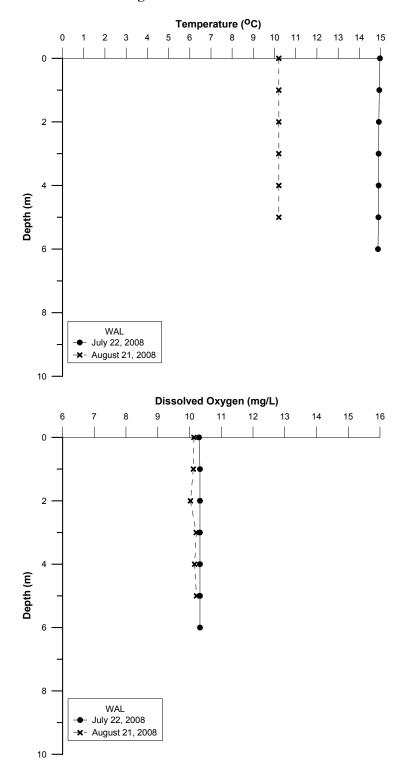


Figure 3-5: Temperature (°C) and dissolved oxygen (mg/L) profiles for Tehek Lake, July and August 2008.

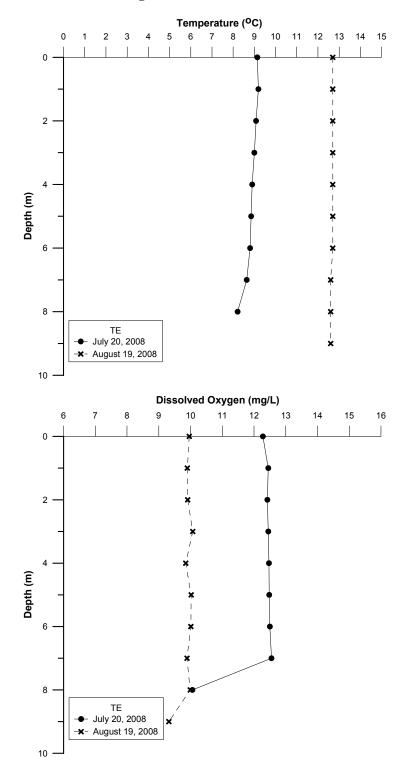


Figure 3-6: Temperature (°C) and dissolved oxygen (mg/L) profiles for Third Portage Lake—South Basin, July, August and September 2008.

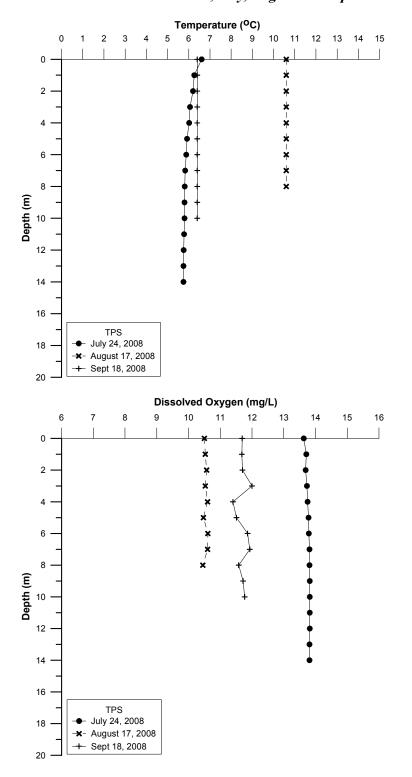


Figure 3-7: Temperature (°C) and dissolved oxygen (mg/L) profiles for Inuggugayualik Lake, July and August 2008.

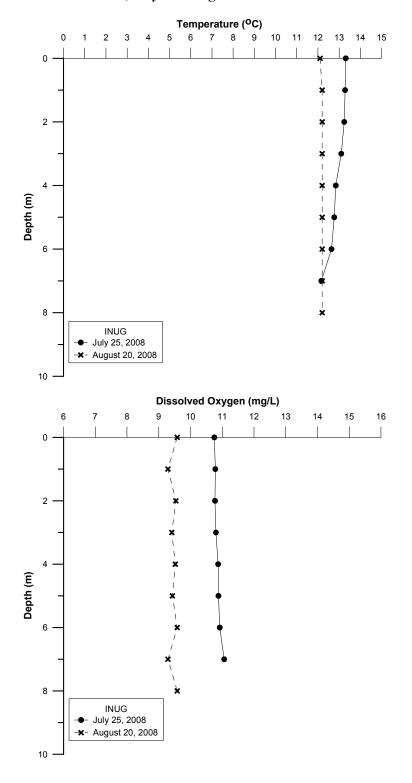


Figure 3-8: Temperature (°C) and dissolved oxygen (mg/L) profiles for Baker Lake – Barge Dock, July, August and September 2008.

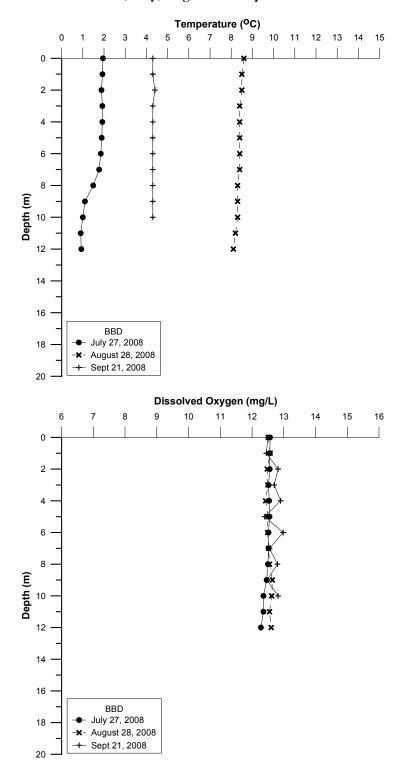


Figure 3-9: Temperature (°C) and dissolved oxygen (mg/L) profiles for Baker Lake – Proposed Jetty, July, August and September 2008.

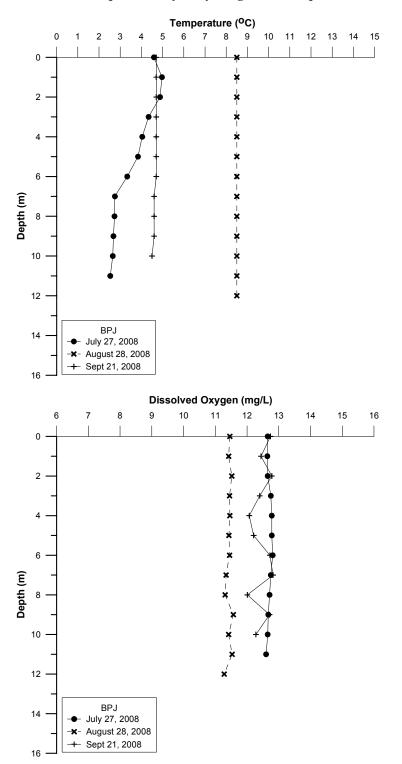
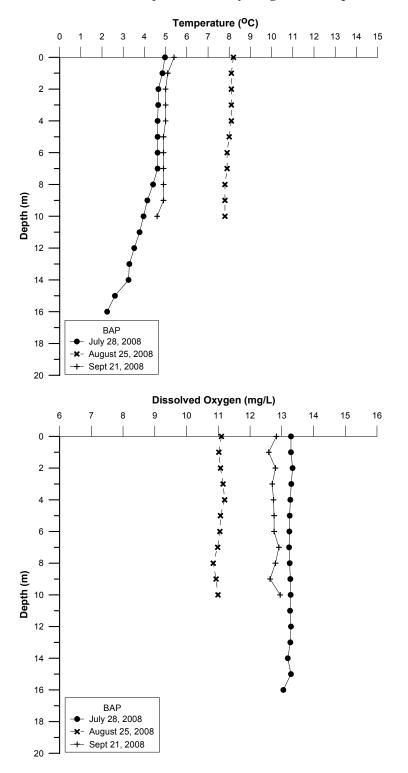



Figure 3-10: Temperature (°C) and dissolved oxygen (mg/L) profiles for Baker Lake-Akilahaarjuk Point, July, August and September 2008.

3.3. Sediment Chemistry

3.3.1. Bulk Grab Sampling Program

3.3.1.1. Meadowbank Study Lakes

Total metals concentrations (mg/kg dry weight), PAHs, oil and grease, pH, moisture content, total organic carbon and particle size were measured in sediment from each sampling station during summer sampling only (**Table 3-8**). Because the study lakes are headwater lakes, there are no stream sources of sediments; therefore sedimentation rates in the lakes are likely extremely low. Previous sampling episodes of sediment chemistry from different locations within the project lakes bear this out (BAER, 2005), as there is very little variability within or among project lakes.

Sediment was acquired from all stations at depths ranging from 6.7–13.2 m. To ensure consistency and provide relevant information for benthic communities, the sediment was sampled from the same depths/locations as the benthos samples. For this reason, and partly because of the similar geochemistry of the lakes, sediment grain size was consistent among lakes and was dominated by fine sediments (80–98% silt/clay).

Total organic carbon concentrations ranged from 3.1–5.0% dry weight over the study lakes, which is reasonably high for an oligotrophic system and illustrates the likely small amount of inorganic input into the lakes and low sedimentation rate. These values are consistent with total organic carbon concentrations measured in previous years (Azimuth, 2008a, b; BAER, 2005).

Sediment metals concentrations measured in each of the study lakes were compared against federal (CCME, 2002) ISQG and PEL sediment quality guidelines (**Table 3-8**) for those metals for which there are SQG guidelines. Note that exceedences of these guideline values does not necessarily imply that adverse effects have occurred or are expect to occur. These values are relatively conservative and do not reflect site-specific conditions, regional geochemistry or adaptations by benthic organisms to regional characteristics.

Arsenic, chromium and copper exceeded ISQGs in all Meadowbank study lakes in 2008 which was consistent with results from all previous years at all locations (BAER, 2005; Azimuth, 2008a, b). Arsenic exceeded the PEL in all lakes, while chromium exceeded the PEL in two of the basins (north and south) of Third Portage Lake and the ISQG at all other locations. Zinc slightly exceeded the ISQG (123 mg/kg) in Second Portage and Wally Lakes (125 mg/kg) in 2008, but fell within the typical range for this metal from previous years (BAER, 2005). Baseline concentrations of zinc hover around the ISQG

and will occasionally exceed the conservative guideline concentration at some locations, but not in any consistent pattern (Azimuth, 2008*a*, *b*; BAER, 2005).

The range in concentration of metals among stations and lakes was relatively small for most metals, usually less than 2 times the average concentration. An exception to this trend was arsenic. Within the project lakes arsenic ranged from 19–50 mg/kg; at the reference station Inuggugayualik Lake arsenic was 145 mg/kg. This trend was also observed in 2007 sediment data for project lakes (20–87 mg/kg) and in Inuggugayualik Lake (164 mg/kg) (Azimuth, 2008a). This range of concentrations is consistent with data collected since 1997, notwithstanding some differences between years. For example, in 2007 arsenic in TPN sediments was 87.7 mg/kg but was only 26.2 mg/kg in 2006 (Azimuth, 2008a, b). This illustrates the spatial heterogeneity that can sometimes exist within lakes, particularly close to heavily mineralized geology. It is partly for this reason that the targeted core study was conducted, i.e., to better understand and define the natural spatial variability in sediment metals concentrations within each station (see Section 3.3.2 below). Given the low sedimentation rates in the lakes and the naturally elevated mineralogy of the local geology, which is typical for mining locations, these background levels are not unexpected.

Polycyclic aromatic hydrocarbons (PAHs) and oil & grease were measured in sediment in 2008 for the first time as part of the AEMP. These parameters have been measured in order to establish a baseline prior to mine development. Concentrations of all PAHs were below detection limits in sediment for all stations (Table 3-8). However, oil & grease concentrations exceeded the DL of 500 mg/kg in all Third Portage Lake stations including the internal reference (TPS), as well as in Wally, Tehek and the external reference lake (INUG). This result was unexpected and is not likely due to hydrocarbons considering that PAHs were non-detectable at all locations, including TPE where the highest concentration of oil and grease was measured (5,070 mg/kg). Results of oil & grease analyses were discussed with the laboratory. From these relatively high oil and grease concentrations (approx. 2–5 g/kg or 0.2–0.5%), that were found even at reference areas which are far removed from any anthropogenic activity, we conclude that some other factor(s) is responsible for the inconsistency. The laboratory has suggested that other organics, such as plant material, may have confounded the results. However, we have not observed emergent vegetation in benthic samples. It is highly unlikely that these are real results (i.e., indicative of actual hydrocarbon contamination), especially when the PAHs were not detectable and there were no visible (i.e., sheen) or olfactory (i.e., smell) signs of contamination observed during sample collection. This issue will be explored further in 2009 with support from the laboratory.

3.3.1.2. Baker Lake

Baker Lake sediments were analyzed for the same parameters as were Meadowbank study sediments (**Table 3-8**). Sediment was acquired from the three stations at depths ranging from 8.4–13.4 m. Sediment grain size was consistent among Baker Lake stations and was generally dominated by sand (~50% sand at BBD and BAP). Total organic carbon concentrations were low and ranged from 0.4–0.9% dry weight.

Sediment metals concentrations measured in each of the study lakes were compared against federal (CCME, 2002) ISQG and PEL sediment quality guidelines (**Table 3-8**) for those metals for which there are SQG guidelines. Arsenic was the only metal that exceeded CCME guideline concentrations and only at the proposed jetty location (BPJ). None of the other metals that exceeded guidelines from the study lakes were exceeded in Baker Lake; this may be in part due to larger grain size material (e.g., sand rather than clay). The range in metals concentration among stations was relatively small, usually less than 2 times the average concentration.

Interestingly, despite the much higher levels of local fuel usage (e.g., barges, ships, boats, and snowmobiles), PAHs and oil & grease concentrations were below detection limits in sediment at all stations (**Table 3-8**).

3.3.2. Target Sediment Coring

3.3.2.1. Meadowbank Study Lakes

Total metals concentrations (mg/kg dry weight), pH, and total organic carbon were measured in surface sediment from the top 1 cm of each core from each sampling station during the spring sampling event (**Table 3-9**). This is the first time sediment cores have been collected as part of the AEMP monitoring program. This component was added to characterize the spatial variability of sediment chemistry within AEMP sampling stations covering a variety of depths within the basin being sampled.

Sediment was acquired at depths ranging from 4.5–17.5 m, depending on the sampling location, but targeted fine sediments. Total organic carbon concentrations typically fell within the 4–6% range and are a reflection of the very slow sedimentation rates in the project lakes. TOC was also fairly consistent within and among stations, although shallower lakes such as Wally Lake tended to have slightly higher TOC concentrations (e.g., three of the cores from this lake had TOC from 10–14%).

Arsenic, cadmium (except reference lake, INUG), chromium and copper concentrations exceeded at least the ISQG guideline in all study lakes from nearly all core samples (**Table 3-9**), which is consistent with results of bulk sediment collections in 2008 and

historic data (BAER, 2005). For example mean chromium concentrations in the bulk sediment samples over all study lakes ranged from about 60-110 mg/kg, by contrast mean concentrations in sediment cores ranged from about 50-100 mg/kg. To better illustrate and characterize the variability in results within stations for these four metals, box and whisker plots were made depicting mean values, upper and lower quartile values and the range in concentrations relative to ISQG or PEL threshold concentrations (Figure 3-11). Although variability in arsenic was relatively low within and among lakes (except for one high sample in TPS), arsenic exceeded the PEL at all stations. The ISQG for cadmium (0.6 mg/kg) is just above the DL (0.5 mg/kg). Where there were exceedences of the DL (about 1/3 of samples), cadmium exceeded the ISQG (up to 1.2 mg/kg) but was well below the PEL (3.5 mg/kg). Because most concentrations were at or below the DL, there was very little difference in mean and maximum concentrations of cadmium within and between lakes. Mean chromium concentrations were more variable between lakes, with TP and INUG tending to be higher than SP, TE and WAL, with concentrations of most core samples falling between the ISQG and the PEL. Mean copper concentrations in core samples were also fairly similar between lakes, ranging between 45 mg/kg and 79 mg/kg, except for Wally Lake (higher), with nearly all values exceeding the ISQG and none exceeding the PEL.

The data confirm that for those metals exceeding at least the ISQG (arsenic, cadmium, copper, chromium) concentrations are relatively similar across a wide area and are due to background mineralization of the study area. Other metals such as lead (WAL only) and zinc (WAL and TPE only) exceeded the ISQG from only a few of core samples. Further exploration and characterization of surface (<1 cm) sediment metals concentration will be provided in the AEMP design review that is currently in preparation and will be used to guide future monitoring decisions (e.g., sampling location and intensity).

3.3.2.2. Baker Lake

Sediment core sample were collected from Baker Lake sediments during summer and analyzed for TOC, grain size and metals, as per Meadowbank samples (**Table 3-9**). Sediment was acquired at depths ranging from 6.7–13.5 m. Total organic carbon concentrations were low and ranged between 0.1 and 1.6% dry weight. This is due to the sandy grain size and distance from organic inputs from tributary streams.

Arsenic was the only metal to consistently exceed the ISQG for all cores at the proposed jetty location and for three of 15 cores from the reference location (BAP) (**Table 3-9**). Although no other ISQG values were exceeded, concentrations of most other detectable metals (e.g., chromium, cobalt, copper, nickel, and zinc) were higher at the proposed jetty location than both the barge dock area and Akilahaarjuk Point, the reference area. Given the relatively low level of project-related activities at the proposed jetty location

compared to the Baker Barge Dock, these data suggest naturally higher metals concentrations at the proposed jetty location than the other two stations surveyed from Baker Lake.

Table 3-8: Conventional sediment chemistry, PAHs and total metals (mg/kg), Meadowbank study lakes & Baker Lake, August 2008.

Lake & Basin			Th	ird Portage L	ake	Second	Tehek Lake	Wally Lake	Inuggugayualik		Baker Lake	•
Lake & Dasiii			South	East	North	Portage Lake	Tellek Lake	vvally Lake	Lake	Barge Dock	Proposed Jetty	Akilahaarjuk Point
Station ID	Sediment Qua	lity Guidelines 2002) ¹	TPS	TPE	TPN	SP	TE	WAL	INUG	BBD	BPJ	BAP
Date	ISQG	PEL	17-Aug-08	16-Aug-08	18-Aug-08	23-Aug-08	19-Aug-08	21-Aug-08	20-Aug-08	29-Aug-08	28-Aug-08	25-Aug-08
CONVENTIONAL PARAMETERS												
Physical & Organic Parameters												
Moisture (%)	NG	NG	85.6	87.7	82.3	84.2	83.6	84.7	82.7	35.6	63.3	37.5
pH	NG	NG	6.04	6.20	6.13	6.28	6.03	6.34	5.98	6.94	6.49	6.73
Total Organic Carbon (% dw)	NG	NG	4.5	5.0	3.1	3.7	3.7	4.9	4.2	0.40	0.90	0.40
Particle Size												
% Gravel (>2mm)	NG	NG	<1	<1	<1	<1	<1	<1	<1	<1	<1	3
% Sand (2.00mm - 0.063mm)	NG	NG	7.0	3.0	20	5.0	5.0	10	9.0	52	10	56
% Silt (0.063mm - 4μm)	NG	NG	65	62	62	72	70	64	67	44	80	38
% Clay (<4μm)	NG	NG	28	36	18	23	25	27	25	3.0	9.0	4.0
AGGREGATE ORGANICS (mg/kg	a)											
Oil and Grease	NG	NG	3250	5070	3170	<500	1590	2880	2380	<500	<500	<500
POLYCYCLIC AROMATIC HYDR	OCARBONS											
Acenaphthene (mg/kg)	0.00671	0.0889	<0.10	<0.13	<0.092	<0.040	< 0.092	<0.040	<0.086	<0.040	<0.040	< 0.040
Acenaphthylene (mg/kg)	0.00587	-0.128	<0.13	<0.16	<0.12	<0.050	<0.12	<0.050	<0.11	< 0.050	< 0.050	< 0.050
Anthracene (mg/kg)	0.0469	0.245	<0.13	<0.16	<0.12	<0.050	<0.12	<0.050	<0.11	< 0.050	<0.050	< 0.050
Benz(a)anthracene (mg/kg)	0.0317	0.385	<0.13	<0.16	<0.12	<0.050	<0.12	<0.050	<0.11	< 0.050	<0.050	< 0.050
Benzo(a)pyrene (mg/kg)	0.0319	0.782	<0.13	<0.16	<0.12	<0.050	<0.12	<0.050	<0.11	< 0.050	< 0.050	< 0.050
Benzo(b)fluoranthene (mg/kg)	NG	NG	<0.13	<0.16	<0.12	<0.050	<0.12	<0.050	<0.11	< 0.050	< 0.050	< 0.050
Benzo(g,h,i)perylene (mg/kg)	NG	NG	<0.13	<0.16	<0.12	<0.050	<0.12	<0.050	<0.11	< 0.050	<0.050	< 0.050
Benzo(k)fluoranthene (mg/kg)	NG	NG	<0.13	<0.16	<0.12	< 0.050	<0.12	< 0.050	<0.11	< 0.050	< 0.050	< 0.050
Chrysene (mg/kg)	0.0571	0.862	<0.13	<0.16	<0.12	<0.050	<0.12	<0.050	<0.11	< 0.050	< 0.050	<0.050
Dibenz(a,h)anthracene (mg/kg)	0.00622	0.135	<0.13	<0.16	<0.12	<0.050	<0.12	<0.050	<0.11	< 0.050	<0.050	< 0.050
Fluoranthene (mg/kg)	0.111	2.355	<0.13	<0.16	<0.12	<0.050	<0.12	< 0.050	<0.11	< 0.050	<0.050	< 0.050
Fluorene (mg/kg)	0.0212	0.144	<0.13	<0.16	<0.12	<0.050	<0.12	< 0.050	<0.11	< 0.050	<0.050	< 0.050
ndeno(1,2,3-c,d)pyrene (mg/kg)	NG	NG	<0.13	<0.16	<0.12	<0.050	<0.12	< 0.050	<0.11	< 0.050	<0.050	< 0.050
2-Methylnaphthalene (mg/kg)	0.0202	0.201	<0.13	<0.16	<0.12	<0.050	<0.12	< 0.050	<0.11	< 0.050	<0.050	< 0.050
Naphthalene (mg/kg)	0.0346	0.391	<0.13	<0.16	<0.12	< 0.050	< 0.12	< 0.050	<0.11	< 0.050	< 0.050	< 0.050
Phenanthrene (mg/kg)	0.0419	0.515	<0.13	<0.80	<0.12	< 0.050	<0.12	< 0.50	<0.11	< 0.050	< 0.050	< 0.050
Pyrene (mg/kg)	0.0530	0.8750	< 0.13	<0.16	<0.12	<0.050	<0.12	< 0.050	<0.11	< 0.050	< 0.050	< 0.050

Table 3-8 con't: Conventional sediment chemistry, PAHs and total metals (mg/kg), Meadowbank study lakes & Baker Lake, August 2008.

			Th	ird Portage L	ako	Second			Inuggugayualik		Baker Lake	
Lake & Basin			South	East	North	Portage Lake	Tehek Lake	Wally Lake	Lake	Barge Dock	Proposed Jetty	Akilahaarjuk Point
Station ID		lity Guidelines 2002) ¹	TPS	TPE	TPN	SP	TE	WAL	INUG	BBD	BPJ	BAP
Date	ISQG	PEL	17-Aug-08	16-Aug-08	18-Aug-08	23-Aug-08	19-Aug-08	21-Aug-08	20-Aug-08	29-Aug-08	28-Aug-08	25-Aug-08
TOTAL METALS (mg/kg dw)												
Antimony	NG	NG	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Arsenic	5.9	17.0	26.4	25.5	20.8	29.2	19.1	50.2	145	5.40	25.0	<5.0
Barium	NG	NG	118	143	70.0	136	125	132	98.3	64.2	160	308
Beryllium	NG	NG	1.65	1.77	1.01	2.25	2.21	1.99	1.03	<0.50	<0.50	<0.50
Cadmium	0.6	3.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chromium	37.3	90.0	111	76.8	105	85.9	57.3	61.2	87.9	13.6	24.1	17.0
Cobalt	NG	NG	23.4	17.9	16.5	16.5	12.4	11.1	15.2	4.40	8.10	4.60
Copper	35.7	197	78.9	54.2	40.2	95.7	68.2	149	38.3	7.30	11.3	4.80
Lead	35.0	91.3	<30	<30	<30	<30	<30	34	<30	<30	<30	<30
Mercury	0.17	0.486	0.0271	0.0253	0.0142	0.0372	0.0287	0.0360	0.0329	<0.0050	0.0172	0.00580
Molybdenum	NG	NG	5.4	5.9	<4.0	7.1	6.2	8.6	10	<4.0	<4.0	<4.0
Nickel	NG	NG	99.1	78.7	60.7	59.8	44.2	58.0	60.2	8.40	14.0	7.90
Selenium	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Silver	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Thallium	NG	NG	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tin	NG	NG	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vanadium	NG	NG	40.8	35.7	28.8	45.6	37.6	36.4	32.3	16.5	27.0	25.2
Zinc	123	315	114	104	69.6	125	113	125	64.7	26.1	45.2	22.5

Notes:

NG = no guideline.

¹CCME (Canadian Council of Ministers of the Environment) Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, 1999, updated in 2002.

ISQG = Interim freshwater Sediment Quality Guideline, PEL = Probable Effect Level.

Shaded concentrations = or > ISQG.

Boxed concentrations also > PEL.

Table 3-9: Sediment core chemistry and total metals (mg/kg), Meadowbank study lakes & Baker Lake, July and August 2008.

				CONVENTIO	NAL PARAMETERS								1	TOTAL ME	TALS (mg/k	g dw)							
Lake & Basir	n Station ID	Date	Depth (m)	рН	Total Organic Carbon (% dw)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Tin	Vanadium	Zinc
	Sediment Q	uality Guidelines	ISQG	NG	NG	NG	5.9	NG	NG	0.6	37.3	NG	35.7	35.0	0.170	NG	NG	NG	NG	NG	NG	NG	123
	(CCI	/IE 2002) ¹	PEL	NG	NG	NG	17	NG	NG	3.5	90.0	NG	197	91.3	0.486	NG	NG	NG	NG	NG	NG	NG	315
	TPS-SC-0	1 24-Jul-08	11.8	5.99	5.0	<10	70.5	114	1.65	0.66	96.7	50.4	81.0	32	0.0511	11	115	<2.0	<2.0	<1.0	<5.0	40.8	104
	TPS-SC-0	24-Jul-08	10.5	6.05	5.0	<10	40.4	124	1.65	0.72	102	35.6	72.4	<30	0.0367	7.1	116	<2.0	<2.0	<1.0	<5.0	41.4	104
	TPS-SC-0	3 24-Jul-08	10.2	5.36	6.0	<10	56.2	108	1.35	<0.50	76.6	26.0	59.7	<30	0.0386	6.5	91.2	<2.0	<2.0	<1.0	<5.0	36.1	90.1
	TPS-SC-0	4 24-Jul-08	14.1	5.95	6.0	<10	118	149	1.28	0.83	72.3	52.7	62.1	<30	0.0426	13	155	<6.0	<2.0	<1.0	<5.0	35.5	85.6
	TPS-SC-0	5 24-Jul-08	12.5	5.94	5.4	<10	42.0	152	1.48	0.87	89.3	68.7	75.9	<30	0.0468	7.2	162	<4.0	<2.0	<1.0	<5.0	38.2	106
	TPS-SC-0	6 24-Jul-08	14.4	5.82	4.1	<10	80.7	110	1.70	0.65	95.6	32.5	79.7	<30	0.0334	9.8	102	<2.0	<2.0	<1.0	<5.0	41.2	91.0
£	TPS-SC-0	7 24-Jul-08	10.5	5.99	5.2	<10	76.7	95.0	1.38	<0.50	82.7	61.2	71.0	<30	0.0401	9.6	88.7	<2.0	<2.0	<1.0	<5.0	36.5	85.1
jo	TPS-SC-0	3 24-Jul-08	14.0	5.82	5.0	<10	36.4	124	1.52	0.92	100	49.7	77.8	<30	0.0560	7.1	137	<2.0	<2.0	<1.0	<5.0	39.8	104
0)	TPS-SC-0	9 24-Jul-08	12.3	5.78	5.5	<10	42.3	95.5	1.32	0.61	88.2	31.6	63.6	<30	0.0444	7.9	88.4	<2.0	<2.0	<1.0	<5.0	36.6	83.5
	TPS-SC-1	24-Jul-08	11.1	5.36	4.8	<10	120	109	1.54	<0.50	100	21.6	80.2	<30	0.0389	9.9	85.7	<2.0	<2.0	<1.0	<5.0	40.7	94.1
	TPS-SC-1	1 24-Jul-08	11.3	5.85	6.1	<10	105	100	1.19	<0.50	66.1	28.8	59.8	<30	0.0448	10	77.6	<2.0	<2.0	<1.0	<5.0	32.5	73.9
	TPS-SC-1		12.6	5.73	5.5	<10	23.5	114	1.67	<0.50	107	12.6	85.4	31	0.0443	7.0	68.6	<4.0	<2.0	<1.0	<5.0	40.3	102
	TPS-SC-1		13.7	5.76	5.4	<10	24.4	120	1.35	0.52	95.1	48.1	68.5	<30	0.0440	5.0	111	<2.0	<2.0	<1.0	<5.0	38.0	87.7
	TPS-SC-1		11.8	5.85	5.5	<20	420	148	1.20	1.0	72.0	37.6	71.8	<60	0.0370	30	122	<4.0	<4.0	<1.0	<10	19.4	77.0
	TPS-SC-1		11.7	5.86	4.3	<10	24.7	105	1.59	<0.50	114	21.8	76.9	<30	0.0276	5.9	71.4	<4.0	<2.0	<1.0	<5.0	41.3	89.0
	TPE-SC-0		8.4	6.02	6.6	<10	<5.0	125	1.38	<0.50	74.6	7.10	44.5	<30	0.0322	<4.0	51.3	<4.0	<2.0	<1.0	<5.0	31.2	76.1
	TPE-SC-0		6.8	5.52	4.5	<10	14.0	142	1.82	<0.50	75.9	15.4	47.6	<30	0.0314	5.5	62.5	<2.0	<2.0	<1.0	<5.0	37.3	97.8
	TPE-SC-0		8.3	5.97	4.1	<10	12.6	132	1.85	<0.50	80.2	13.1	48.6	<30	0.0251	5.3	75.6	<2.0	<2.0	<1.0	<5.0	39.1	100
	TPE-SC-0		10.6	5.97	4.9	<10	14.1	117	1.70	<0.50	72.8	13.9	49.0	<30	0.0288	4.7	79.9	<2.0	<2.0	<1.0	<5.0	35.9	97.3
ě	TPE-SC-0		8.0	5.89	4.7	<10	15.9	126	1.79	<0.50	75.1	15.8	49.8	<30	0.0251	4.4	88.2	<2.0	<2.0	<1.0	<5.0	36.8	101
La	TPE-SC-0		10.0	5.97	4.7	<10	14.1	115	1.78	<0.50	74.7	14.4	49.0	<30	0.0261	5.1	64.4	<2.0	<2.0	<1.0	<5.0	36.6	94.5
Portage East	TPE-SC-0		10.8	6.22	4.0	<10	17.4	102	1.71	<0.50	74.1	12.6	49.3	<30	0.0257	5.7	51.2	<2.0	<2.0	<1.0	<5.0	37.0	86.2
ort Ea	TPE-SC-0		9.7	6.01	4.9	<10	15.4	113	1.74	<0.50	73.4	16.9	47.1	<30	0.0376	5.7	54.5	<2.0	<2.0	<1.0	<5.0	37.1	89.2
5	TPE-SC-0		12.5	5.47	3.5	<10	14.6	200	1.84	1.1	76.9	17.3	65.7	<30	0.0337	7.6	162	<2.0	<2.0	<1.0	<5.0	40.4	126
Third	TPE-SC-1		12.8	5.85	4.3	<10	26.7	122	1.78	<0.50	72.2	16.2	55.7	<30	0.0392	8.2	73.6	<2.0	<2.0	<1.0	<5.0	39.0	92.1
•	TPE-SC-1		17.1	5.46	3.2	<10	46.3	150	3.18	<0.50	97.6	17.3	111	<30	0.0318	16	81.5	<2.0	<2.0	<1.0	<5.0	54.3	152
	TPE-SC-1		15.0	5.78	3.6	<10	14.6	215	1.88	1.2	80.9	19.7	75.8	<30	0.0392	7.0	190	<4.0	<2.0	<1.0	<5.0	42.7	145
	TPE-SC-1		17.0	5.50	3.9	<10	26.0	223	1.81	0.90	69.2	17.0	74.8	<30	0.0576	9.7	165	<4.0	<2.0	<1.0	<5.0	40.7	118
	TPE-SC-1		12.0	5.96	3.9	<10	27.9	206	1.62	0.65	64.3	23.5	58.1	<30	0.0330	7.8	151	<12	<2.0	<1.0	<5.0	39.2	97.8
	TPE-SC-1		14.7	5.91	6.0	<10	17.3	122	1.88	<0.50	79.6	15.5	61.7	<30	0.0378	5.1	82.9	<4.0	<2.0	<1.0	<5.0	39.0	104
	TPN-SC-0		10.9	5.80	5.6	<20	62.0	115	<1.0	<1.0	74.2	54.0	60.2	<60	0.0332	11	118	<4.0	<4.0	<1.0	<10	16.2	59.4
	TPN-SC-0		11.4	5.83	4.8	<10	30.0	93.6	1.44	0.51	106	21.3	65.6	<30	0.0287	5.5	82.4	<2.0	<2.0	<1.0	<5.0	34.9	83.2
	TPN-SC-0		14.4	5.85	5.3	<10	54.9	123	1.05	<0.50	79.4	32.8	60.7	<30	0.0425	6.7	96.7	<2.0	<2.0	<1.0	<5.0	30.5	74.3
	TPN-SC-0		9.3	5.83	5.4	<10	27.2	100	1.48	0.96	106	23.4	56.9	<30	0.0271	4.5	130	<2.0	<2.0	<1.0	< 5.0	34.7	92.0
	TPN-SC-0		12.9	5.82	4.8	<10	53.5	138	1.16	0.86	82.8	44.8	64.5	<30	0.0362	7.3	184	<4.0	<2.0	<1.0	<5.0	32.7	91.4
	TPN-SC-0		17.5	5.84	3.6	<10	22.5	102	1.63	<0.50	136	18.7	83.3	<30	0.0198	5.0	71.1	<2.0	<2.0	<1.0	< 5.0	43.8	92.7
₽	TPN-SC-0		11.9	5.89	4.0	<10	21.4	84.8	1.33	<0.50	115	17.3	57.5	<30	0.0215	<4.0	63.4	<2.0	<2.0	<1.0	<5.0	35.1	79.8
Š	TPN-SC-0		11.0	5.88	2.7	<10	20.2	83.7	1.26	<0.50	116	13.8	56.6	<30	0.0194	<4.0	60.3	<2.0	<2.0	<1.0	<5.0	35.7	78.5
	TPN-SC-0		14.0	5.94	0.7	<10	6.50	27.8	< 0.50	< 0.50	41.5	11.6	15.3	<30	0.0074	<4.0	28.1	<2.0	<2.0	<1.0	< 5.0	14.9	30.5
	TPN-SC-1		14.5	5.93	3.2	<10	23.0	97.2	1.48	<0.50	129	16.5	67.4	<30	0.0210	4.4	63.2	<2.0	<2.0	<1.0	<5.0	41.3	84.8
	TPN-SC-1		14.6	5.87	4.5	<10	21.2	87.1	1.25	< 0.50	109	18.7	60.8	<30	0.0285	4.1	73.8	<2.0	<2.0	<1.0	<5.0	34.4	78.1
	TPN-SC-1		14.7	5.86	4.9	<10	31.5	111	1.20	0.54	102	30.0	61.4	<30	0.0355	5.5	106	<4.0	<2.0	<1.0	<5.0	34.6	83.6
	TPN-SC-1		15.0	5.86	4.5	<10	20.7 31.4	87.6	1.30	<0.50	115	16.9 27.3	61.8	<30	0.0287	<4.0	66.1 85.5	<2.0	<2.0	<1.0	<5.0	35.6	77.8 79.1
	TPN-SC-1		14.5	5.95	4.8	<10		101	1.18	<0.50	108		61.8	<30	0.0291	5.6		<2.0	<2.0	<1.0	<5.0	35.0	
	TPN-SC-1	5 24-Jul-08	14.9	5.82	5.6	<10	37.6	80.1	1.22	<0.50	107	18.5	61.5	<30	0.0380	5.6	71.9	<4.0	<2.0	<1.0	<5.0	35.8	74.9

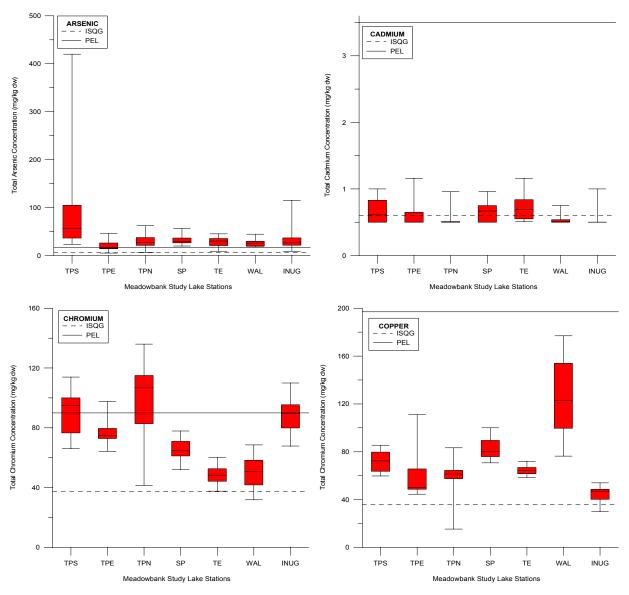
Table 3-9 con't: Sediment core chemistry and total metals (mg/kg), Meadowbank study lakes & Baker Lake, July and August 2008.

	Station ID Sediment Quali	19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08	ISQG PEL 11.7 14.0 11.4 12.7 9.3 9.6 11.2 10.9	pH NG NG 6.12 6.04 5.91 6.10 6.08 6.24	Total Organic Carbon (% dw) NG NG 4.2 4.1 5.2 3.9 4.6	NG NG <10 <10 <10 <10	5.9 17 31.6 28.2 30.5	NG NG 139 142	Beryllium NG NG 2.26	0.6 3.5	37.3 90.0	Cobalt	Copper 35.7	Lead 35.0	Mercury 0.170	Molybdenum NG	Nickel NG	Selenium NG	Silver	Thallium NG	Tin NG	Vanadium NG	Zinc
Portage Lake	SP-SC-01 SP-SC-02 SP-SC-02 SP-SC-03 SP-SC-04 SP-SC-05 SP-SC-06 SP-SC-07 SP-SC-08 SP-SC-09 SP-SC-10 SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08	PEL 11.7 14.0 11.4 12.7 9.3 9.6 11.2	NG 6.12 6.04 5.91 6.10 6.08 6.24	NG 4.2 4.1 5.2 3.9	NG <10 <10 <10	17 31.6 28.2	NG 139	NG 2.26	3.5			35.7	35.0	0.170	NG	NG	NG	NG	NG	NG	NG	
Second Portage Lake	SP-SC-01 SP-SC-02 SP-SC-03 SP-SC-04 SP-SC-05 SP-SC-06 SP-SC-07 SP-SC-08 SP-SC-09 SP-SC-10 SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08	11.7 14.0 11.4 12.7 9.3 9.6 11.2	6.12 6.04 5.91 6.10 6.08 6.24	4.2 4.1 5.2 3.9	<10 <10 <10	31.6 28.2	139	2.26		90.0		107	04.2	0.406	NO	NO						123
Second Portage Lake	SP-SC-02 SP-SC-03 SP-SC-04 SP-SC-05 SP-SC-06 SP-SC-07 SP-SC-08 SP-SC-09 SP-SC-10 SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08	14.0 11.4 12.7 9.3 9.6 11.2	6.04 5.91 6.10 6.08 6.24	4.1 5.2 3.9	<10 <10	28.2			0.64	77.9	NG 16.0	197 98.2	91.3 <30	0.486	NG 5.9	NG 53.2	NG <2.0	NG <2.0	NG <1.0	NG <5.0	NG 39.6	315 108
Second Portage Lake	SP-SC-04 SP-SC-05 SP-SC-06 SP-SC-07 SP-SC-08 SP-SC-09 SP-SC-10 SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08	12.7 9.3 9.6 11.2	6.10 6.08 6.24	3.9		30.5		1.96	0.67	69.6	16.4	89.4	<30	0.0397	6.1	68.0	<2.0	<2.0	<1.0	<5.0	36.2	101
Second Portage Lake	SP-SC-05 SP-SC-06 SP-SC-07 SP-SC-08 SP-SC-09 SP-SC-10 SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08	9.3 9.6 11.2	6.08 6.24		<10		125	1.72	0.61	55.2	12.6	75.9	<30	0.0515	6.9	61.9	<4.0	<2.0	<1.0	<5.0	29.9	87.8
Second Portage Lake	SP-SC-06 SP-SC-07 SP-SC-08 SP-SC-09 SP-SC-10 SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08	9.6 11.2	6.24	4.6		36.5	153	2.26	0.67	76.5	18.3	100	<30	0.0420	9.1	66.7	<2.0	<2.0	<1.0	<5.0	42.2	114
Second Portage L	SP-SC-07 SP-SC-08 SP-SC-09 SP-SC-10 SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08	11.2			<10	53.7	148	1.71	0.96	52.0	18.9	72.9	<30	0.0445	11	70.6	<3.0	<2.0	<1.0	<5.0	24.9	76.5
Second Portac	SP-SC-08 SP-SC-09 SP-SC-10 SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08 19-Jul-08 19-Jul-08 19-Jul-08			5.6	<10	40.8	134	1.71	0.68	53.7	17.5	70.7	<30	0.0450	7.4	64.3	<4.0	<2.0	<1.0	<5.0	27.8	83.8
Second Po	SP-SC-09 SP-SC-10 SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08 19-Jul-08 19-Jul-08	10.9	6.24	4.5	<10	25.3	118	1.81	<0.50	62.0	13.1	72.2	<30	0.0376	5.1	47.9 95.1	<2.0	<2.0	<1.0	<5.0	33.9	91.4
Зесоис -	SP-SC-10 SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08 19-Jul-08	10.9	6.06 6.19	4.6 5.1	<10 <10	19.9 26.4	132 113	2.08 1.82	0.76 <0.50	70.9 62.4	14.7 12.9	86.9 76.5	<30 <30	0.0411 0.0374	4.2 5.1	85.1 45.2	<2.0 <2.0	<2.0 <2.0	<1.0 <1.0	<5.0 <5.0	36.9 32.8	114 92.7
	SP-SC-11 SP-SC-12 SP-SC-13 SP-SC-14	19-Jul-08	12.3	6.20	5.4	<10	26.7	119	1.93	<0.50	65.0	14.0	80.4	<30	0.0452	5.3	50.4	<2.0	<2.0	<1.0	<5.0	33.7	97.8
	SP-SC-13 SP-SC-14		11.5	6.08	5.1	<10	27.6	121	1.97	0.50	68.1	13.7	82.1	<30	0.0443	5.5	50.9	<2.0	<2.0	<1.0	<5.0	35.2	102
	SP-SC-14	19-Jul-08	12.2	5.91	4.9	<10	23.4	121	1.82	0.59	64.2	12.5	79.8	<30	0.0442	4.8	51.8	<2.0	<2.0	<1.0	<5.0	34.0	97.2
		19-Jul-08	13.0	5.92	5.5	<10	56.2	137	1.82	0.77	61.2	14.9	79.8	<30	0.0633	9.9	54.0	<2.0	<2.0	<1.0	<5.0	30.2	83.0
		19-Jul-08	12.5	5.88	5.7	<10	29.8	149	2.07	0.69	69.5	16.5	89.1	<30	0.0606	6.5	76.5	<2.0	<2.0	<1.0	<5.0	36.8	110
	SP-SC-15	19-Jul-08	13.0	6.02	5.0	<10	31.8	143	2.07	0.75	72.0	16.3	92.4	<30	0.0522	6.3	75.1	<3.0	<2.0	<1.0	<5.0	37.0	106
	TE-SC-01	20-Jul-08	9.2	6.08	3.2	<10	21.3	135	2.36	0.53	60.3	13.7	72.0	<30	0.0269	6.1	46.8	<2.0	<2.0	<1.0	<5.0	38.3	107
	TE-SC-02 TE-SC-03	20-Jul-08 20-Jul-08	8.2 10.9	5.94 5.94	3.6 4.3	<10 <10	30.2 33.4	120 133	1.99 1.98	0.66 0.84	49.8 48.2	12.6 14.7	64.4 66.8	<30 <30	0.0355 0.0422	9.1 8.9	42.9 50.6	<3.0 <2.0	<2.0 <2.0	<1.0 <1.0	<5.0 <5.0	31.4 29.3	89.9 86.8
	TE-SC-03	20-Jul-08 20-Jul-08	10.9	5.98	4.4	<10	35.6	138	1.90	0.84	45.8	16.6	63.5	<30	0.0422	6.9 11	48.7	<5.0	<2.0 <2.0	<1.0	<5.0	26.0	84.1
	TE-SC-05	20-Jul-08	10.9	5.94	3.9	<10	28.4	147	2.01	0.61	50.1	13.6	66.2	<30	0.0385	8.1	54.9	<10	<2.0	<1.0	<5.0	31.6	95.1
_	TE-SC-06	20-Jul-08	13.5	5.67	6.4	<10	8.80	164	2.07	0.78	53.1	8.40	67.7	<30	0.0593	<4.0	50.6	<2.0	<2.0	<1.0	<5.0	32.8	109
ake	TE-SC-07	20-Jul-08	7.5	6.03	4.6	<10	20.9	135	2.31	0.52	56.1	12.4	68.6	<30	0.0338	5.9	50.4	<2.0	<2.0	<1.0	<5.0	36.0	108
ek L	TE-SC-08	20-Jul-08	8.4	5.89	4.2	<10	45.0	132	1.87	0.87	44.3	14.8	63.8	<30	0.0356	11	52.7	<3.0	<2.0	<1.0	<5.0	25.9	82.8
듈	TE-SC-09	20-Jul-08	10.6	5.85	2.9	<10	30.9	130	1.98	0.69	52.6	13.2	66.3	<30	0.0293	8.7	39.8	<2.0	<2.0	<1.0	<5.0	30.7	86.1
	TE-SC-10	20-Jul-08	11.6	5.81	3.2	<10	11.3	114	1.89	0.61	48.1	9.10	64.6	<30	0.0312	4.4	41.4	<2.0	<2.0	<1.0	<5.0	31.7	92.6
	TE-SC-11	20-Jul-08	11.3	6.01	3.6	<10	43.7	88.8	1.67	0.72	40.6	12.2	59.3	<30	0.0081	11	33.2	<3.0	<2.0	<1.0	<5.0	23.0	70.2
	TE-SC-12 TE-SC-13	20-Jul-08	9.1	5.90 5.76	4.1 3.4	<10 <10	34.6 19.1	112 109	1.54 1.97	1.2 0.55	37.6 49.8	13.6	58.5	<30 <30	0.0368 0.0297	12 5.8	43.8 40.1	<2.0	<2.0 <2.0	<1.0 <1.0	<5.0	17.3	66.3 94.6
	TE-SC-14	20-Jul-08 20-Jul-08	7.8 10.0	6.03	4.8	<10	36.6	159	1.70	1.0	38.1	11.7 20.0	61.5 61.6	<30	0.0297	9.6	65.1	<2.0 <4.0	<2.0 <2.0	<1.0	<5.0 <5.0	31.5 22.0	94.0 81.5
	TE-SC-15	20-Jul-08	9.6	5.93	3.5	<10	21.7	124	1.91	0.51	48.4	14.3	63.9	<30	0.0331	6.3	42.6	<2.0	<2.0	<1.0	<5.0	32.0	91.8
	WAL-SC-01	22-Jul-08	5.2	6.36	7.3	<10	26.5	110	1.41	0.65	52.7	9.60	123	35	0.0640	4.9	52.8	<2.0	<2.0	<1.0	<5.0	27.3	107
	WAL-SC-02	22-Jul-08	4.5	6.28	4.6	<10	17.8	81.7	1.06	<0.50	41.9	6.50	83.6	<30	0.0297	<4.0	36.8	<2.0	<2.0	<1.0	<5.0	21.8	75.7
	WAL-SC-03	22-Jul-08	6.4	6.54	10	<10	22.6	78.5	1.06	0.53	41.8	7.50	99.6	<30	0.0684	4.0	39.4	<2.0	<2.0	<1.0	<5.0	21.2	82.6
	WAL-SC-04	22-Jul-08	5.5	6.42	5.7	<10	17.9	74.2	0.96	<0.50	53.5	7.40	87.1	<30	0.0386	<4.0	41.6	<2.0	<2.0	<1.0	<5.0	20.7	75.5
	WAL-SC-05	22-Jul-08	5.4	7.14	8.3	<10	19.8	90.0	1.18	0.54	44.5	7.80	109	31	0.0570	<4.0	41.7	<2.0	<2.0	<1.0	<5.0	22.8	89.3
Φ	WAL-SC-06 WAL-SC-07	22-Jul-08 23-Jul-08	6.2	6.47 6.54	12 6.6	<10 <10	24.2	80.0 130	1.03 1.77	0.51 <0.50	41.1 58.3	8.00 8.00	103 153	<30 32	0.0752 0.0471	4.6 9.4	41.1 49.7	<2.0 <2.0	<2.0 <2.0	<1.0 <1.0	<5.0 <5.0	20.4 32.4	83.1 104
ت	WAL-SC-07 WAL-SC-08	23-Jul-08	6.7 6.8	6.53	6.3	<10	25.7	140	1.77	0.51	58.4	8.50	160	33	0.0471	9.4	55.2	<3.0	<2.0	<1.0	<5.0	32.5	104
=	WAL-SC-09	23-Jul-08	7.5	6.38	8.9	<10	44.5	117	1.67	0.75	50.9	8.90	154	36	0.0728	10	53.6	<2.0	<2.0	<1.0	<5.0	29.4	115
	WAL-SC-10	23-Jul-08	9.2	6.88	2.1	<10	31.9	133	2.02	0.51	68.6	12.1	143	36	0.0319	7.6	66.0	<2.0	<2.0	<1.0	<5.0	37.6	130
	WAL-SC-11	23-Jul-08	8.0	6.49	6.3	<10	19.0	127	1.64	0.58	56.8	8.20	164	33	0.0569	6.4	51.0	<2.0	<2.0	<1.0	<5.0	31.6	104
	WAL-SC-12	23-Jul-08	9.6	6.04	5.7	<10	23.8	77.1	1.05	<0.50	31.9	5.80	76.3	<30	0.0637	4.8	29.6	<2.0	<2.0	<1.0	<5.0	21.0	68.8
	WAL-SC-13	23-Jul-08	9.2	6.08	13	<10	29.8	102	1.39	0.50	44.2	8.10	133	32	0.0958	7.8	47.5	<2.0	<2.0	<1.0	<5.0	26.8	99.3
	WAL-SC-14	23-Jul-08	8.0	5.84	14	<10	38.7	90.8	1.29	<0.50	41.0	7.20	117	<30	0.0861	8.4	45.0	<4.0	<2.0	<1.0	<5.0	25.5	95.7
	WAL-SC-15	23-Jul-08	7.5	6.32	8.7	<10	29.1	137	1.89	<0.50	59.0	8.60	177.0	41	0.0806	11	55.3	<4.0	<2.0	<1.0	<5.0	35.5	121.0
	INUG-SC-01 INUG-SC-02	25-Jul-08 25-Jul-08	7.4 6.5	5.80 5.93	4.5 4.9	<10 <10	25.4 21.5	122 104	1.44 1.39	<0.50 <0.50	95.4 94.8	10.7 15.2	49.9 46.9	<30 <30	0.0336 0.0336	4.9 5.1	72.3 75.7	<2.0 <2.0	<2.0 <2.0	<1.0 <1.0	<5.0 <5.0	35.8 36.6	78.6 79.1
	INUG-SC-02	25-Jul-08 25-Jul-08	6.5 7.6	6.01	4.9	<10	23.4	118	1.39	<0.50	72.0	20.6	40.9	<30 <30	0.0336	5.1	82.5	<2.0	<2.0	<1.0	<5.0 <5.0	33.1	67.1
	INUG-SC-03	25-Jul-08	8.1	6.07	4.5	<20	60.0	107	1.10	<1.0	85.1	18.8	48.7	<60	0.0344	<8.0	70.0	<4.0	<4.0	<1.0	<10	23.6	58.8
	INUG-SC-05	25-Jul-08	8.4	5.80	5.1	<10	9.70	133	1.41	<0.50	99.4	10.4	48.5	<30	0.0515	<4.0	74.7	<2.0	<2.0	<1.0	<5.0	35.6	83.0
	INUG-SC-06	25-Jul-08	6.9	5.85	4.3	<10	11.1	122	1.62	<0.50	110	12.2	54.0	<30	0.0360	4.1	80.8	<2.0	<2.0	<1.0	<5.0	40.7	92.5
<u>~</u>	INUG-SC-07	25-Jul-08	11.5	5.96	4.6	<10	49.7	95.8	1.22	<0.50	79.8	16.7	40.3	<30	0.0530	6.5	71.1	<2.0	<2.0	<1.0	<5.0	32.7	71.3
<u>~</u>	INUG-SC-08	25-Jul-08	10.4	5.95	4.3	<20	115.0	110	1.10	<1.0	83.9	20.9	48.2	<60	0.0410	11	71.0	<4.0	<4.0	<1.0	<10	23.7	58.4
<u> </u>	INUG-SC-09	25-Jul-08	9.8	6.15	2.7	<10	8.80	74.5	1.00	<0.50	79.9	10.4	30.1	<30	0.0193	<4.0	49.7	<2.0	<2.0	<1.0	<5.0	28.1	59.6
=	INUG-SC-10	25-Jul-08	7.9	5.98	2.7	<10	26.3	117	1.16	<0.50	67.8	25.0	40.9	<30	0.0440	5.8	98.6	<2.0	<2.0	<1.0	<5.0	32.9	67.0
	INUG-SC-11	25-Jul-08	12.3	5.98	3.6	<10	36.7	171	1.39	<0.50	86.1	47.2	44.5 36.4	<30	0.0586	7.2	78.2	<6.0	<2.0	<1.0	<5.0	37.4 31.0	81.1
	INUG-SC-12 INUG-SC-13	25-Jul-08 25-Jul-08	12.5 7.7	6.06 5.98	3.6 5.0	<10 <10	<5.0 31.7	114 108	1.26 1.39	<0.50 <0.50	91.0 91.0	9.20 12.7	36.4 47.6	<30 <30	0.0313 0.0414	<4.0 4.9	74.0 71.0	<2.0 <2.0	<2.0 <2.0	<1.0 <1.0	<5.0 <5.0	31.9 35.3	76.3 76.6
	INUG-SC-13	25-Jul-08 25-Jul-08	7.7 6.4	5.98 5.54	5.0	<10	26.5	108	1.39	<0.50	96.4	16.1	49.9	<30 <30	0.0414	4.9 5.6	90.1	<4.0	<2.0 <2.0	<1.0 <1.0	<5.0 <5.0	35.3 37.5	91.0
		25-Jul-08	8.7	5.97	5.1	<10	29.6	99.5	1.45	<0.50	89.6	13.4	47.0	<30	0.0359	7.2	64.1	<2.0	<2.0	<1.0	<5.0	37.3	71.4

Table 3-9 con't: Sediment core chemistry and total metals (mg/kg), Meadowbank study lakes & Baker Lake, July and August 2008.

					CONVENTIO	NAL PARAMETERS								Т	OTAL ME	TALS (mg/k	g dw)							
Lake & Bas	in St	tation ID	Date	Depth (m)	pН	Total Organic Carbon (% dw)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Tin	Vanadium	Zinc
	Sedi	iment Qualit	ty Guidelines	ISQG	NG	NG	NG	5.9	NG	NG	0.6	37.3	NG	35.7	35.0	0.170	NG	NG	NG	NG	NG	NG	NG	123
		(CCME 2	2002) ¹	PEL	NG	NG	NG	17	NG	NG	3.5	90.0	NG	197	91.3	0.486	NG	NG	NG	NG	NG	NG	NG	315
·	BB	BD-SC-01	29-Aug-08	9.5	6.46	0.10	<10	<5.0	25.9	<0.50	<0.50	7.6	2.70	2.80	<30	<0.0050	<4.0	<5.0	<2.0	<2.0	<1.0	<5.0	8.90	15.8
\		BD-SC-02	29-Aug-08	13.0	6.16	0.50	<10	<5.0	84.2	<0.50	<0.50	14.6	4.30	7.70	<30	0.0074	<4.0	9.00	<2.0	<2.0	<1.0	<5.0	17.2	29.0
۵	BB	BD-SC-03	29-Aug-08	11.2	6.33	0.70	<10	5.60	80.7	<0.50	<0.50	13.2	4.90	7.50	<30	0.0061	<4.0	8.40	<2.0	<2.0	<1.0	<5.0	17.4	26.9
9	ВВ	BD-SC-04	29-Aug-08	11.6	6.35	0.40	<10	<5.0	60.2	<0.50	<0.50	11.6	3.90	5.50	<30	0.0053	<4.0	7.50	<2.0	<2.0	<1.0	<5.0	14.5	23.5
Ba	BB	BD-SC-05	29-Aug-08	13.0	5.49	0.80	<10	<5.0	100	<0.50	<0.50	19.6	5.60	10.4	<30	0.0109	<4.0	11.8	<2.0	<2.0	<1.0	<5.0	21.6	36.9
	BB	BD-SC-06	29-Aug-08	12.5	5.89	0.70	<10	8.00	100	<0.50	<0.50	16.6	5.30	9.10	<30	0.0081	<4.0	9.60	<2.0	<2.0	<1.0	<5.0	19.9	30.8
	BF	PJ-SC-01	28-Aug-08	13.4	6.11	1.4	<10	65.7	214	<0.50	<0.50	24.1	8.80	12.2	<30	0.0203	<4.0	12.9	<2.0	<2.0	<1.0	<5.0	26.9	44.7
	BF	PJ-SC-02	28-Aug-08	11.3	5.99	1.2	<10	58.1	242	<0.50	<0.50	23.4	10.4	11.4	<30	0.0173	4.1	13.9	<2.0	<2.0	<1.0	<5.0	26.5	44.4
	BF	PJ-SC-03	28-Aug-08	8.4	6.30	0.70	<10	18.3	142	0.51	<0.50	24.4	8.50	10.8	<30	0.0166	<4.0	14.4	<2.0	<2.0	<1.0	<5.0	27.3	47.2
	BF	PJ-SC-04	28-Aug-08	8.0	6.46	1.0	<10	12.4	150	<0.50	<0.50	22.0	8.40	10.2	<30	0.0135	<4.0	14.3	<2.0	<2.0	<1.0	<5.0	24.9	44.2
	BF	PJ-SC-05	28-Aug-08	8.4	6.45	1.4	<10	22.2	168	0.56	<0.50	23.1	11.7	10.8	<30	0.0191	<4.0	15.4	<2.0	<2.0	<1.0	<5.0	26.9	46.7
≩	BF	PJ-SC-06	28-Aug-08	11.3	6.48	1.3	<10	15.9	202	0.53	<0.50	24.8	10.3	12.1	<30	0.0244	<4.0	16.4	<4.0	<2.0	<1.0	<5.0	27.9	47.7
Je.	BF	PJ-SC-07	28-Aug-08	10.1	6.60	1.6	<10	10.4	186	0.54	<0.50	25.6	10.0	12.1	<30	0.0191	<4.0	17.0	<2.0	<2.0	<1.0	<5.0	28.8	49.6
sed	BF	PJ-SC-08	28-Aug-08	9.8	6.50	1.3	<10	20.6	205	0.51	<0.50	25.1	10.1	12.8	<30	0.0191	<4.0	16.2	<4.0	<2.0	<1.0	<5.0	27.2	47.6
90	- BF	PJ-SC-09	28-Aug-08	9.4	6.49	1.1	<10	18.0	160	0.51	<0.50	24.7	9.40	11.5	<30	0.0158	<4.0	16.2	<2.0	<2.0	<1.0	<5.0	27.9	47.9
P.	BF	PJ-SC-10	28-Aug-08	8.9	6.49	1.3	<10	44.3	233	0.52	<0.50	24.6	10.3	11.8	<30	0.0190	<4.0	15.5	<4.0	<2.0	<1.0	<5.0	27.8	47.8
ě	BF	PJ-SC-11	28-Aug-08	8.9	6.40	1.1	<10	49.5	196	<0.50	<0.50	20.9	12.0	10.5	<30	0.0151	5.5	12.5	<2.0	<2.0	<1.0	<5.0	25.0	42.0
ŗ	BF	PJ-SC-12	28-Aug-08	9.2	6.54	0.30	<10	19.5	83.6	<0.50	<0.50	13.2	4.90	5.30	<30	0.0052	<4.0	8.00	<2.0	<2.0	<1.0	<5.0	18.9	25.5
ķ	BF	PJ-SC-13	28-Aug-08	6.7	6.45	0.30	<10	6.70	119	<0.50	<0.50	17.2	4.80	6.60	<30	<0.0050	<4.0	9.70	<2.0	<2.0	<1.0	<5.0	27.9	28.7
B	BF	PJ-SC-14	28-Aug-08	8.2	6.64	1.0	<10	9.70	115	<0.50	<0.50	23.9	8.40	10.2	<30	0.0166	<4.0	15.0	<2.0	<2.0	<1.0	<5.0	26.6	45.4
	BF	PJ-SC-15	28-Aug-08	10.3	6.53	1.2	<10	38.4	179	< 0.50	<0.50	23.8	9.20	12.1	<30	0.0189	<4.0	15.1	<2.0	<2.0	<1.0	<5.0	26.2	46.5
	BA	AP-SC-01	25-Aug-08	11.0	6.72	0.50	<10	<5.0	270	< 0.50	<0.50	15.9	4.60	5.40	<30	0.0069	<4.0	9.40	<2.0	<2.0	<1.0	<5.0	20.5	25.3
	BA	AP-SC-02	25-Aug-08	9.5	6.61	0.40	<10	<5.0	269	< 0.50	<0.50	16.8	4.80	5.80	<30	0.0055	<4.0	8.30	<2.0	<2.0	<1.0	<5.0	25.3	24.1
	BA	AP-SC-03	25-Aug-08	10.6	6.64	0.40	<10	<5.0	187	< 0.50	<0.50	15.5	4.10	4.50	<30	0.0063	<4.0	7.30	<2.0	<2.0	<1.0	<5.0	23.7	20.9
	BA	AP-SC-04	25-Aug-08	11.0	6.61	0.40	<10	<5.0	334	< 0.50	<0.50	14.8	4.30	4.90	<30	0.0059	<4.0	8.30	<2.0	<2.0	<1.0	<5.0	19.6	22.7
	ВА	AP-SC-05	25-Aug-08	12.1	6.53	0.50	<10	<5.0	277	<0.50	<0.50	17.3	5.50	6.80	<30	0.0092	<4.0	9.80	<2.0	<2.0	<1.0	<5.0	22.1	27.6
ë	BA	AP-SC-06	25-Aug-08	12.5	6.44	0.90	<10	9.10	327	0.53	<0.50	23.9	6.70	10.0	<30	0.0154	<4.0	12.9	<2.0	<2.0	<1.0	<5.0	30.0	38.4
Ā	BA	AP-SC-07	25-Aug-08	12.1	6.50	0.60	<10	8.00	341	<0.50	<0.50	18.1	5.50	6.40	<30	0.0090	<4.0	10.1	<2.0	<2.0	<1.0	<5.0	23.0	29.4
arj:	ВА	AP-SC-08	25-Aug-08	11.2	6.74	0.40	<10	<5.0	385	<0.50	<0.50	16.2	4.80	5.30	<30	0.0062	<4.0	9.60	<2.0	<2.0	<1.0	<5.0	20.6	24.3
aha	ВА	AP-SC-09	25-Aug-08	12.6	6.55	0.60	<10	5.90	313	<0.50	<0.50	16.6	5.70	6.20	<30	0.0095	<4.0	10.4	<2.0	<2.0	<1.0	<5.0	21.4	27.8
Ž.	ВА	AP-SC-10	25-Aug-08	13.5	6.56	0.50	<10	<5.0	121	<0.50	<0.50	16.7	5.20	6.50	<30	0.0094	<4.0	9.80	<2.0	<2.0	<1.0	<5.0	20.1	27.8
•	BA	AP-SC-11	25-Aug-08	10.2	6.83	0.40	<10	<5.0	185	<0.50	<0.50	13.9	3.70	3.60	<30	<0.0050	<4.0	7.80	<2.0	<2.0	<1.0	<5.0	15.9	18.4
	ВА	AP-SC-12	25-Aug-08	12.7	6.83	0.30	<10	<5.0	213	<0.50	<0.50	18.8	4.50	4.80	<30	0.0055	<4.0	11.2	<2.0	<2.0	<1.0	<5.0	17.7	23.6
	ВА	AP-SC-13	25-Aug-08	10.9	6.85	0.40	<10	<5.0	312	<0.50	<0.50	17.7	4.30	5.20	<30	0.0053	<4.0	9.60	<2.0	<2.0	<1.0	<5.0	21.1	20.6
	ВА	AP-SC-14	25-Aug-08	13.0	6.70	0.50	<10	<5.0	290	<0.50	<0.50	17.4	4.60	5.10	<30	0.0082	<4.0	8.90	<2.0	<2.0	<1.0	<5.0	20.7	24.0
	ВА	AP-SC-15	25-Aug-08	12.7	6.78	0.30	<10	<5.0	281	<0.50	<0.50	16.0	3.90	4.30	<30	<0.0050	<4.0	9.30	<2.0	<2.0	<1.0	<5.0	16.3	20.4

NG = no guideline.


¹CCME (Canadian Council of Ministers of the Environment) Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, 1999, updated in 2002.

ISQG = Interim freshwater Sediment Quality Guideline, PEL = Probable Effect Level.

Shaded concentrations = or > ISQG.

Boxed concentrations also > PEL.

Figure 3-11: Median (& range) concentration values of arsenic, cadmium, chromium, and copper in sediment cores from Meadowbank study lakes, August 2008.

Notes:

TPE,TPN,TPS=Third Portage Lake - East, North, South basins; SP=Second Portage Lake; TE=Tehek Lake; WAL=Wally Lake; INUG=Inuggugayualik Lake.

Boxes show the lower quartile, median, and upper quartile concentration values for each station; whiskers show the minimum and maximum concentration values for each station.

3.4. Phytoplankton

3.4.1. Meadowbank Study Lakes

At least 100 phytoplankton species were identified from the Meadowbank study lakes, represented by six major taxa: 11 cyanophytes (blue green algae), 29 chlorophytes (green algae), 34 chrysophytes (golden-brown algae), 15 diatoms, 6 cryptophytes and 5 dinoflagellates (**Appendix B**).

Density (**Table 3-10**) and biomass (**Table 3-11**) based results for major taxa groups show fairly similar results among stations during the open water season. Biomass-based community assemblage results across stations are shown in **Figure 3-12**. The phytoplankton assemblages were dominated by chrysophytes, with smaller populations of the other five major groups.

The dominant chrysophytes for the Meadowbank lakes were: *Dinobryon bavaricum* Imhof, *Chrysochromulina laurentiana* Kling, *Chrysochromulina parva* Lackey, *Chrysolkos skuja* (Nauwerck) Willen, *Uroglena volvox* Ehrenberg, and *Kephyrion*.

Dominating species for the other groups were: *Chlamydomonas* for chlorophytes, *Aphanothece* for cyanophytes, *Cyclotella stelligera* Cleve and Grunow for diatoms, *Rhodomonas minuta* Skuja for cryptophytes, and *Gymnodinium* for dinoflagellates.

Chrysophytes are small, usually unicellular, and are very numerous in lake water; by virtue of their very large numbers, they frequently comprise the greatest biomass as a group. Density of chrysophytes was high, comprising 76% of the total phytoplankton density (cells/L) with cyanophytes having the next highest density at only 8.3% (**Table 3-10**). Compositionally, the study lakes in 2008 had comparable assemblages to those documented from the same stations in 2006 and 2007 (Azimuth, 2008*a*, *b*). A chart of the phytoplankton species presence/absence at each sampling station in 2008, by season, is presented in **Appendix B**.

Phytoplankton biomass (mg/m³) is generally a more important metric ecologically than density, as this represents the amount (by weight) of food available to fish. Trends in biomass were similar to density, with chrysophytes dominating biomass at 77% (**Table 3-11**). Diatoms and dinoflagellates were the next most important groups (see also **Figures 3-12 and 3-13**).

Phytoplankton biomass among the seven sampling areas ranged from approximately 100 mg/m³ to 281 mg/m³ (Inuggugayualik Lake in late July). Mean biomass (**Figure 3-13**) was comparable among Meadowbank study lakes except for Second Portage Lake (SP) in summer and fall. Biomass at SP was relatively low in August and September (37 mg/m³ and 77 mg/m³, respectively) which is likely due to reduced light penetration as a result of

elevated TSS concentrations (**Table 3-7**) in the lake from sediment release during the East Dike construction. The slightly elevated TSS concentration in Tehek Lake were not likely high enough to limit light penetration sufficiently to cause a decline in phytoplankton biomass (**Figures 3-12 and 3-13**). The decline in phytoplankton biomass in Second Portage Lake was not however necessarily reflected in chlorophyll-α concentrations. Implications of reduced phytoplankton biomass in Second Portage Lake are discussed more fully in the dike construction monitoring report (Azimuth, 2009).

One hundred species were identified for the seven study sites in July, August and September 2008, averaging 37 species per station (**Table 3-11 and Appendix B**). The range in species richness was very similar to the biomass results per station and season, where the lowest richness was seen for Second Portage Lake in August (17) and the highest was for Inuggugayualik Lake in August (45). Reduced richness in Second Portage Lake is related to lower abundance and biomass results due to elevated TSS in Second Portage from East Dike construction (Azimuth, 2009).

Species diversity was relatively stable among the seven study sites, with a Simpson's diversity index averaging 0.81 (**Table 3-11**). Most stations had similar species diversity but the north basin of Third Portage Lake in July and Second Portage Lake in August were particularly low. With the exception of Tehek Lake, species diversity was highest in September. The estimates of diversity and richness in 2008 were similar to those observed in 2006 and 2007 (Azimuth, 2008*a*, *b*).

3.4.2. Baker Lake

At least 86 phytoplankton species were identified in Baker Lake, represented by six major taxa: 8 cyanophytes (blue green algae), 25 chlorophytes (green algae), 29 chrysophytes (golden-brown algae), 14 diatoms, 6 cryptophytes and 4 dinoflagellates (**Appendix B**).

Density (**Table 3-10**) and biomass-(**Table 3-11**) based results for major taxa groups showed fairly similar results among stations during the open water season. Biomass-based community assemblage results across stations are shown in **Figure 3-12**. The phytoplankton assemblages were dominated by chrysophytes, with smaller populations of the other five major groups.

The dominant chrysophytes for Baker Lake were: *Chrysochromulina parva* Lackey, *Uroglena volvox* Ehrenberg, and *Chrysococcus*. Dominating species for the other groups were: *Chlamydomonas* for chlorophytes, *Merismopedia tenuissima* Lemmermann for cyanophytes, *Cyclotella stelligera* Cleve and Grunow, *Synedra acus* Kutzing, and *Asterionella formosa* Hassall for diatoms, *Rhodomonas minuta* Skuja and *Cryptomonas erosa* Ehrenberg for cryptophytes, and *Gymnodinium* for dinoflagellates.

Chrysophytes comprised 67% of the total phytoplankton density (cells/L) with chlorophytes having the next highest density at only 16% (**Table 3-10**). A chart of the phytoplankton species presence/absence at each of the three sampling station in 2008, by season, is presented in **Appendix B**.

Trends in biomass were similar to density, with chrysophytes dominating biomass at 66% (**Table 3-11**). Diatoms and cryptophytes were the next most important groups (see also **Figures 3-12 and 3-13**). The three sampling stations had phytoplankton biomass ranging from 139 mg/m³ (for Baker Lake at the barge dock station in September) to 361 mg/m³ (for Baker Lake at the proposed jetty station in late July).

Eighty-six species were identified for the three study sites in July, August and September 2008, averaging 39 species per station (**Table 3-11 and Appendix B**). The range in species richness was very similar to the biomass results per station and season, where the lowest richness was seen for Baker Lake at the barge dock station in July (32) and the highest was for Baker Lake at the proposed jetty station in August (50).

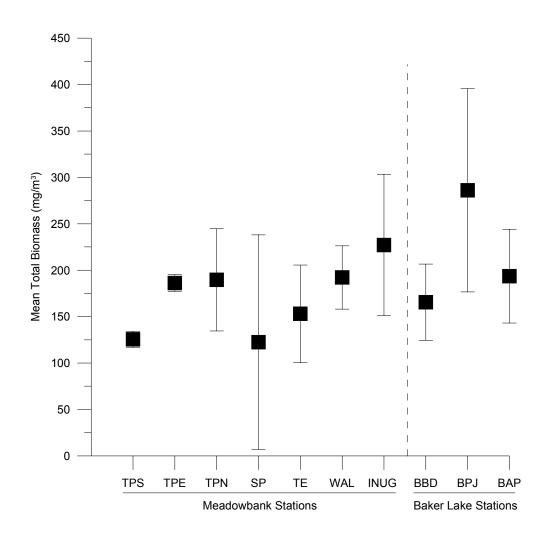
Species diversity was relatively stable among the three stations, with a Simpson's diversity index averaging 0.88 (**Table 3-11**). Species diversity was highest in August for all stations on Baker Lake.

Table 3-10: Seasonal density (cells/L) of major phytoplankton groups, Meadowbank study lakes & Baker Lake, July, August and September 2008.

Station	Data			Phytoplan	kton Dens	sity (cells/L)		
Station	Date	Cyanophyte	Chlorophyte	Chrysophyte	Diatom	Cryptophyte	Dinoflagellate	Total
Third Port	age Lake							
TPS	24-Jul-08	64656	51704	1159424	123928	14768	15768	1430248
TPS	17-Aug-08	0	88008	1257800	110160	65856	23352	1545176
TPS	18-Sep-08	16168	94992	1553144	154064	50888	22552	1891808
TPE	23-Jul-08	0	68656	1839704	160848	36320	24352	2129880
TPE	16-Aug-08	0	161048	1727760	176416	66056	30152	2161432
TPE	18-Sep-08	0	201552	1847488	152064	25152	11384	2237640
TPN	24-Jul-08	14384	32336	2134448	130512	43704	2400	2357784
TPN	17-Aug-08	7184	60272	1933696	183000	79424	58672	2322248
TPN	18-Sep-08	32336	181800	1544960	117744	44104	1400	1922344
Second Po	ortage Lake							
SP	19-Jul-08	14768	35920	2658680	105976	72640	3600	2891584
SP	22-Aug-08	3139408	115544	193968	10584	120344	200	3580048
SP	17-Sep-08	400	252640	899000	45120	128128	0	1325288
Tehek Lak	e							
TE	20-Jul-08	0	14368	2186336	89608	58672	15968	2364952
TE	19-Aug-08	21552	216320	1394296	66656	95392	29536	1823752
TE	15-Sep-08	15784	128528	416672	74536	91208	400	727128
Wally Lake	,							
WAL	22-Jul-08	7784	79224	2473296	205152	161248	22952	2949656
WAL	21-Aug-08	93792	259424	2105312	67256	116944	14968	2657696
Inuggugay	ualik Lake							
INUG	25-Jul-08	7184	231888	2356368	132512	36920	7384	2772256
INUG	20-Aug-08	7384	162248	1964432	37720	114944	14768	2301496
MEADOWI	BANK LAKES	3						
Relative A	bundance (%) 8.3	5.9	76	5.2	3.4	0.72	NA
Baker Lak	e							
BBD	27-Jul-08	0	136496	955872	153896	95992	2800	1345056
BBD	28-Aug-08	0	920152	1916144	112272	95392	200	3044160
BBD	21-Sep-08	400	280576	1121104	60920	490912	9184	1963096
BPJ	27-Jul-08	28736	143880	2043656	298008	172232	16968	2703480
BPJ	28-Aug-08	7184	697648	2769456	118472	182800	2400	3777960
BPJ	21-Sep-08	188784	517248	1027512	81888	418072	8784	2242288
BAP	28-Jul-08	0	172416	1454168	360248	144896	400	2132128
BAP	25-Aug-08	800	245056	2022304	134760	153064	14968	2570952
BAP	21-Sep-08	0	374568	1350992	100040	232688	800	2059088
BAKER LA	KE							
	bundance (%) 1.0	16	67	6.5	9.1	0.26	NA

Table 3-11: Seasonal biomass (mg/m ³) and diversity of major phytoplankton groups, Meadowbank study lakes & Baker Lake, July, August and September 2008.

Ctation	Data			Phytoplank	ton Bioma	ass (mg/m³)			# Chasica	Simpsons
Station	Date	Cyanophyte	Chlorophyte	Chrysophyte	Diatom		Dinoflagellate	Total	— # Species	Diversity
Third Portag	ge Lake									
TPS	24-Jul-08	1.13	5.10	98.0	6.96	0.976	7.11	119	33	0.85
TPS	17-Aug-08	0	6.39	90.0	8.84	4.94	11.9	122	39	0.84
TPS	18-Sep-08	0.792	4.14	97.3	13.9	4.04	15.2	135	39	0.86
TPE	23-Jul-08	0	7.63	131	14.6	1.82	23.1	178	36	0.86
TPE	16-Aug-08	0	7.51	129	11.7	5.13	31.8	185	41	0.86
TPE	18-Sep-08	0	6.19	157	10.6	4.95	17.2	196	38	0.87
TPN	24-Jul-08	2.03	1.61	218	9.91	2.55	16.6	251	37	0.64
TPN	17-Aug-08	1.79	4.73	119	13.6	4.27	31.1	174	34	0.86
TPN	18-Sep-08	3.48	8.47	113	10.5	3.10	5.75	144	38	0.85
Second Por	tage Lake									
SP	19-Jul-08	0.850	1.13	218	14.4	3.51	16.4	254	34	0.77
SP	22-Aug-08	0.628	1.58	7.81	7.35	16.3	3.12	36.8	17	0.23
SP	17-Sep-08	0.840	6.34	49.0	8.43	12.3	0	76.9	41	0.92
Tehek Lake										
TE	20-Jul-08	0	0.313	181	8.78	8.39	10.8	210	36	0.87
TE	19-Aug-08	0.121	10.7	104	5.90	7.35	16.7	144	37	0.90
TE	15-Sep-08	2.57	12.9	20.4	49.5	11.0	8.98	105	36	0.83
Wally Lake										
WAL	22-Jul-08	1.03	4.30	172	15.2	10.9	13.2	216	38	0.89
WAL	21-Aug-08	3.73	9.04	133	4.83	10.1	7.12	168	41	0.89
Inuggugayu	alik Lake									
INUG	25-Jul-08	0.718	5.90	258	7.80	2.87	5.77	281	37	0.83
INUG	20-Aug-08	0.938	12.0	147	2.88	4.74	5.67	173	45	0.84
MEADOWB	ANK LAKES									
Relative Bio	mass (%)	0.65	3.7	77	7.1	3.8	7.8	NA	NA	NA
Baker Lake										
BBD	27-Jul-08	0	4.70	92.6	28.0	7.10	12.2	145	32	0.87
BBD	28-Aug-08	0	15.7	164	26.0	6.37	0.429	213	42	0.91
BBD	21-Sep-08	0.840	16.5	50.5	11.5	49.8	9.97	139	39	0.88
BPJ	27-Jul-08	0.460	5.66	253	48.5	19.9	33.0	361	39	0.89
BPJ	28-Aug-08	3.17	14.5	251	35.6	12.7	20.3	337	50	0.88
BPJ	21-Sep-08	3.27	13.9	76.1	17.6	34.8	14.7	160	37	0.90
BAP	28-Jul-08	0	6.2	115	52.0	22.5	2.92	199	34	0.83
BAP	25-Aug-08	0.617	12.0	182	24.6	14.5	7.35	241	41	0.89
BAP	21-Sep-08	0	16.2	83	18.1	17.2	5.85	141	37	0.87
BAKER LAP	(E									
Relative Bio	mass (%)	0.43	5.4	66	14	9.6	5.5	NA	NA	NA


study lakes & Baker Lake, July, August and September 2008. 375 Dinoflagellate Cryptophyte 350 Diatom Chrysophyte 325 Chlorophyte Cyanophyte 300 275 250 Phytoplankton Biomass (mg/m³) 225 200 175 150 125 100 75 50 25 WAL 22-Jul-08 WAL 21-Aug-08 TPE 23-Jul-08 TPE 16-Aug-08 TPE 18-Sep-08 INUG 25-Jul-08 INUG 20-Aug-08 BPJ 27-Jul-08 BPJ 28-Aug-08 BPJ 21-Sep-08 BAP 28-Jul-08 BAP 25-Aug-08 BAP 21-Sep-08 TPS 24-Jul-08 TPS 17-Aug-08 TPS 18-Sep-08 TPN 24-Jul-08 TPN 17-Aug-08 TPN 18-Sep-08 SP 19-Jul-08 SP 22-Aug-08 SP 17-Sep-08 TE 20-Jul-08 TE 19-Aug-08 TE 15-Sep-08 BBD 27-Jul-08 BBD 28-Aug-08 BBD 21-Sep-08 **Baker Lake Stations** Meadowbank Stations

Stations & Sampling Dates

Figure 3-12: Seasonal biomass (mg/m³) of major phytoplankton groups, Meadowbank study lakes & Baker Lake, July, August and September 2008.

Figure 3-13: Phytoplankton mean total biomass (mg/m³), +/- 1 standard deviation, Meadowbank study lakes & Baker Lake, July, August and September 2008.

3.5. Periphyton

Periphyton density (cells/cm²) and biomass (ug/cm²) was measured from samples collected in mid to late August 2008, near the height of the growing season. It should be noted that apparent periphyton biomass was highly variable based on field observations and that variability will be naturally higher due to selection by the sampler and the small surface area sampled. Periphyton density is subject to great natural variability due to differences in sun exposure and aspect (i.e., angle towards the sun), nutrient availability, water depth and clarity, and grazing by invertebrates and fish. Although we tried to select rocks with similar characteristics (e.g., depths, aspects and coverage by periphyton), this was achieved to varying degrees at each station. Furthermore, while "flat", "smooth" rocks were targeted, it was impossible to achieve total uniformity within and among stations. Indeed, these challenges are often raised as reasons not to use periphyton in long-term monitoring programs. Periphyton is being monitored in the AEMP to help assess whether the planned dike habitat areas (e.g., dike faces and finger dikes), included as habitat compensation, are functioning as intended. Because of the large natural variation, it is very difficult to discern between natural changes, sampling bias and real effects. Consequently, while results are presented in absolute terms of density or biomass, the relative composition of the periphyton community is probably the most robust metric to characterize the 2008 results and for interpreting future dike habitat studies.

A total of 67 periphyton species were identified in the study lakes, represented by 5 major taxonomic groups. The community was dominated/co-dominated by cyanophytes (*Lyngbya mucicola* Lemmermann, *Petalonema alatum* Berk, *Rivularia dura* Roth and *Gloeothece*), diatoms (*Achnanthes minutissima* Kutzing, *Tabellaria flocculosa* (Roth) Kutzing, *Cymbella microcephala* Grunow, *Cymbella silesiaca* Bleisch, *Nitzschia palea* (Kutzing) W. Smith, and *Anomoenies vitrea* Ross), and chlorophytes (*Mougeotia*, and *Bulbochaete*) (**Figure 3-14**). A matrix of the periphyton species presence/absence at each sampling station is presented in **Appendix** C.

As expected, total periphyton density was quite variable and ranged from 141,401 cells/cm² in the south basin of Third Portage Lake to 1.23 million cells/cm² in Second Portage Lake (**Table 3-12**). Cyanophytes comprised 79% of the total periphyton density in the study lakes, with diatoms having the next highest density at only 17% (**Table 3-12**). While biomass (μ g/cm²) is a more ecologically important metric than density, it is subject to the limitations described above. Trends in biomass were similar to density, with cyanophytes and diatoms dominating biomass at 62% and 27%, respectively (**Table 3-13**, **Figure 3-14**). Total biomass per sample was less variable than density and ranged from 137 to 842 μ g/cm². Mean biomass per station ranged from 216 μ g/cm² in the south basin of Third Portage Lake (TPS) to 546 μ g/cm² in Second Portage Lake (SP). Note that TPS is a colder and thus more nutrient poor station than the others, which may explain

why periphyton biomass was lower here as compared to stations within the same lake and among the other lakes. Also, within station variability was often just as wide as among station variability both for density and for biomass (**Figure 3-15**).

Periphyton species composition based on mean relative biomass is shown in **Figure 3-16**. Gross periphyton community structure was relatively similar within and among lakes, with cyanophytes dominating at all stations. Diatoms were the next most dominant overall, followed by chlorophytes. Dinoflagellates represented a low percentage of biomass at all stations.

Periphyton species richness ranged from 10 to 20 species per sample, with an average of 15 (**Table 3-13**). Species diversity was also variable, with a Simpson's diversity index ranging from 0.54 to 0.83, with an average of 0.72 (**Table 3-13**).

Although periphyton species richness and diversity varied widely among stations and lakes, this is not uncommon. Several factors influence these metrics. The most obvious are nutrients, light and temperature. However, species competition by highly adaptable species may also dictate the community structure. The study lakes were dominated by a filamentous cyanophyte complex (*Lyngbya mucicola, Petalonema alatum* and *Rivularia dura*) embedded with loosely attached diatoms (*Tabellaria flocculsa* and *Cymbella microcephala* and *C. silesiaca*) or chlorophytes (*Mougeotia*). In most cases, one or two species dominated, contributing a majority of the biomass and limiting the contribution of less competitive species. This is not uncommon in harsh Arctic environments. A brief description of each of these periphyton species follows.

- *Lyngbya* is one of the most common cyanophytes genera, found in periphyton and metaphyton assemblages in a variety of freshwater environments (Anagnostidis and Komárek, 1988). This species was present at all of the sampling stations in 2008 and often dominated or co-dominated the assemblage.
- *Petalonema* and *Rivularia* were present in all of the 35 individual samples. These are species that prefer submerged habitats on calcareous substrata within the splash zone (water surface to 0.7 m), forming large attached colonies that are capable of fixing atmospheric nitrogen. Bergmann and Welch (1990) documented 16% of the annual nitrogen budget of a small lake, in the Saqvaqjuac region, was via nitrogen fixation by the natural periphyton community. In addition, these species have been documented to occur in extreme environments such as coastal lakes in the eastern Arctic (Komarek et al., 2002) and Antarctica (Vincent, 2000).
- The diatoms *Tabellaria* and *Cyclotella* are cosmopolitan genera that have been documented in northern temperate lakes (Findlay et al., 1999), Arctic lakes (Welch et al., 1989) as well as in several paleolimnological studies covering areas of the Arctic (Lim et al., 2001; Michelutti et al., 2003). Ecologically, *Tabellaria* prefers lakes and ponds that are oligo-mesotrophic, attached to rocks in shallow water (Patrick and

Reimer, 1966). However, it does occur in planktonic (free swimming) form. *Cyclotella bodanica* is widely distributed, and generally occurs in oligotrophic lakes with a preference towards circum-neutral environments (pH >7.1). It has been observed in lakes in Alaska, northwestern Ontario, and Shell Lake near Inuvik (Kling and Håkansson, 1988).

Mougeotia (a chlorophyte) is a true benthic genus with numerous species. This
organism has a wide ecological distribution, occurring in extreme conditions such as
low pH, excessive nutrients and arctic lakes with shortened growing seasons. These
species occur in a broad spectrum of lake trophic levels from oligotrophic to
eutrophic (Prescott, 1962).

Based on the results from 2008, the study lakes appear to have a diverse periphyton assemblage, dominated by species that have been reported to occur or dominate other lakes in the region.

The primary use of these data will be to provide a gross characterization of periphyton community structure to support evaluating periphyton community development on dike faces, finger dikes and other habitat compensation features. Several years of baseline periphyton data are available with which to compare periphyton growth on habitat compensation features. Further periphyton sampling at the AEMP stations is not needed.

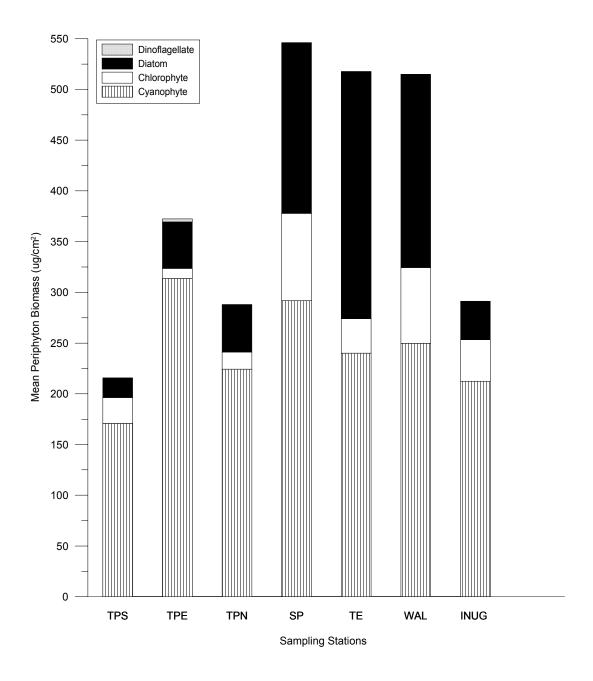
Table 3-12: Density of cell (cells/cm²) of major periphyton groups, Meadowbank study lakes, August 2008.

Station	Dete		Pe	riphyton Densi	ty (cells/cn	n ²)	
Station	Date	Cyanophyte	Chlorophyte	Chrysophyte	Diatom	Dinoflagellate	Total
Third Portage L	Lake						
TPS-1	17-Aug-08	412719	33895	0	83740	0	530354
TPS-2	17-Aug-08	290276	11611	0	28500	0	330386
TPS-3	17-Aug-08	111888	7389	2111	25333	0	146721
TPS-4	17-Aug-08	119150	0	0	22251	0	141401
TPS-5	17-Aug-08	264180	8972	0	12960	0	286112
TPE-1	18-Aug-08	309539	8972	0	112152	2243	432906
TPE-2	18-Aug-08	256604	3589	0	55627	0	315820
TPE-3	18-Aug-08	574218	9969	0	25920	0	610106
TPE-4	18-Aug-08	450851	0	0	51590	0	502441
TPE-5	18-Aug-08	469115	7690	0	53833	2564	533202
TPN-1	18-Aug-08	215332	4486	0	44861	0	264679
TPN-2	18-Aug-08	433227	0	15381	53833	0	502440
TPN-3	18-Aug-08	360880	7975	0	65796	0	434651
TPN-4	18-Aug-08	378625	10767	0	80749	0	470141
TPN-5	18-Aug-08	334213	17944	0	53833	0	405990
Second Portag	e Lake						
SP-1	24-Aug-08	768016	17944	0	240454	0	1026414
SP-2	24-Aug-08	690856	107666	0	210846	0	1009367
SP-3	24-Aug-08	540893	33325	20508	53833	0	648558
SP-4	24-Aug-08	1015647	35889	0	175854	0	1227390
SP-5	24-Aug-08	570629	64600	0	168676	0	803905
Tehek Lake							
TE-1	19-Aug-08	328381	16150	0	186621	0	531151
TE-2	19-Aug-08	616835	2243	0	224304	0	843382
TE-3	19-Aug-08	551146	2564	0	248657	0	802367
TE-4	19-Aug-08	957029	38879	0	149536	0	1145445
TE-5	19-Aug-08	233276	34393	0	106170	0	373840
Wally Lake							
WAL-1	21-Aug-08	857738	14355	0	251220	0	1123313
WAL-2	21-Aug-08	796727	43066	0	233276	0	1073069
WAL-3	21-Aug-08	517821	46143	0	253784	0	817748
WAL-4	21-Aug-08	746483	28711	0	211743	0	986937
WAL-5	21-Aug-08	837401	23926	0	176452	0	1037779
Inuggugayualil							
INUG-1	20-Aug-08	613097	23926	0	119629	0	756651
INUG-2	20-Aug-08	517122	4894	0	37520	0	559536
INUG-3	20-Aug-08	575849	29363	0	22838	0	628051
INUG-4	20-Aug-08	654967	22430	0	31403	0	708800
INUG-5	20-Aug-08	600137	29907	0	45858	0	675902
Relative Abund	lance (%)	79	3.3	0.17	17	0.021	NA

Table 3-13: Biomass (µg/cm²) and diversity of major periphyton groups, Meadowbank study lakes, August 2008.

Otation	Data		Pe	riphyton Biom	ass (µg/cr	n²)		# 0	Simpsons
Station	Date	Cyanophyte		Chrysophyte	Diatom	, Dinoflagellate	Total	- # Species	Diversity
Third Portag	e Lake								
TPS-1	17-Aug-08	180	70.7	0	43.1	0	294	14	0.77
TPS-2	17-Aug-08	179	34.0	0	8.80	0	222	15	0.80
TPS-3	17-Aug-08	171	3.60	0.500	20.9	0	196	16	0.77
TPS-4	17-Aug-08	125	0	0	11.7	0	137	13	0.83
TPS-5	17-Aug-08	199	18.9	0	12.1	0	230	15	0.70
0 0	Station Mean	171	25.4	0	19.3	0	216	15	0.77
TPE-1	18-Aug-08	146	21.8	0	79.8	6.80	255	18	0.64
TPE-2	18-Aug-08	159	6.70	0	53.8	0	220	16	0.60
TPE-3	18-Aug-08	302	12.6	0	24.4	0	339	16	0.63
TPE-4	18-Aug-08	441	0	0	46.1	0	487	10	0.71
TPE-5	18-Aug-08	520	8.50	0	25.4	7.80	562	15	0.66
176-5	Station Mean	314	9.92	0	45.9	2.92	372	15	0.65
TDN 4				-					
TPN-1	18-Aug-08	215	9.50	0	14.5	0	239	12	0.72
TPN-2	18-Aug-08	285	0	4	39.4	0	328	13	0.59
TPN-3	18-Aug-08	286	14.4	0	82.2	0	383	14	0.72
TPN-4	18-Aug-08	186	30.4	0	43.0	0	259	13	0.75
TPN-5	18-Aug-08	150	29.8	0	54.8	0	235	12	0.54
	Station Mean	224	16.8	0.700	46.8	0	289	13	0.66
Second Port	age Lake								
SP-1	24-Aug-08	307	36.1	0	378	0	720	16	0.76
SP-2	24-Aug-08	435	167	0	148	0	751	15	0.74
SP-3	24-Aug-08	411	21.6	1.00	26.4	0	460	14	0.74
SP-4	24-Aug-08	149	86.6	0	86.6	0	322	17	0.74
SP-5	24-Aug-08	157	119	0	203	0	479	14	0.73
	Station Mean	292	86.2	0	168	0	546	15	0.74
Tehek Lake									
TE-1	19-Aug-08	222	32.5	0	243	0	497	17	0.79
TE-2	19-Aug-08	93.9	11.3	0	292	0	397	17	0.75
TE-3	19-Aug-08	54.4	3.60	0	299	0	357	15	0.76
TE-4	19-Aug-08	599	70.0	0	174	0	842	13	0.76
TE-5	19-Aug-08	232	52.2	0	211	0	495	16	0.75
12-3	Station Mean	240	33.9	<u> </u>	244	0	518	16	0.76
Wally Lake									
WAL-1	21-Aug-08	212	21.6	0	116	0	349	18	0.78
WAL-2	21-Aug-08	91.8	97.0	0	309	0	498	20	0.75
WAL-2	21-Aug-08	104	99.4	0	187	0	391	20	0.79
WAL-3	21-Aug-08 21-Aug-08	403			149		624	20 15	0.79
			72.2	0		0			
WAL-5	21-Aug-08 Station Mean	439 250	82.7 74.6	0 0	192 190	0 0	713 515	16 18	0.76 0.77
•				•		J	0.0		V.,,
Inuggugayua INUG-1	alik Lake 20-Aug-08	228	56.9	0	69.4	0	354	16	0.69
INUG-1 INUG-2	20-Aug-08 20-Aug-08	298	16.1	0	41.6	0	35 4 356	16	0.69
	_								
INUG-3	20-Aug-08	162	52.7	0	13.8	0	229	17	0.66
INUG-4	20-Aug-08	249	10.4	0	19.8	0	279	13	0.68
INUG-5	20-Aug-08 Station Mean	125 212	68.5 40.9	0 0	44.9 37.9	0 0	239 291	17 16	0.69 0.68
Dalatin Di									
Relative Bior	mass (%)	62	10	0.04	27	0.11	NA	NA	NA

Figure 3-14: Mean biomass (µg/cm²) of major periphyton groups, Meadowbank study lakes, August 2008.



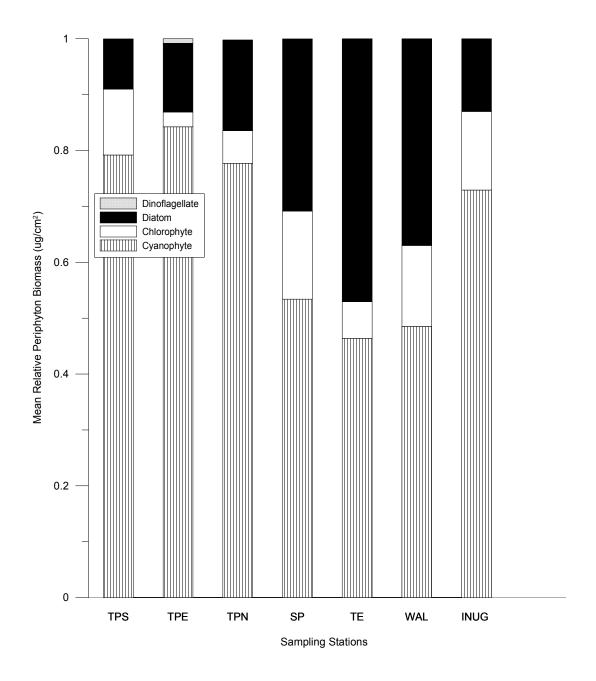


Figure 3-15: Periphyton mean total biomass (µg/cm²), +/- 1 standard deviation, Meadowbank study lakes, August 2008.

Figure 3-16: Mean relative biomass (ug/cm²) of major periphyton groups, Meadowbank study lakes, August 2008.

3.6. Benthic Invertebrates

Benthic invertebrates (collectively referred to as "benthos") are small animals that live on or in the bottom sediments and are an important food source for most fish species, especially young-of-the-year and juvenile lake trout, round whitefish, and arctic char (Machniak, 1975; Scott and Crossman, 1979). This section gives a general description of observations made on abundance and richness of all major taxa (e.g., insects, molluscs, worms). The abundance of roundworms (Nematoda) and seed shrimp (Ostracoda) is reported but is not included in statistical comparisons of total number of genera or abundance. Because of their small size they are not consistently retained on a 500- μ m sieve, thus their presence would be confounding if they were used to quantitatively compare abundance estimates among stations. Summarized data are in **Tables 3-14 and 3-15** and raw data are in **Appendix D**.

3.6.1. Meadowbank Study Lakes

A total of 36 taxa were identified and enumerated in the benthic invertebrate samples collected from the seven stations (**Appendix D**). Insects, almost exclusively chironomids, dominated number of organisms enumerated and number of taxa identified at all stations (**Tables 3-14 and 3-15**). Clearly, chironomid larvae (F. Chironomidae) were the dominant taxonomic group over all stations with 80% of all taxa identified consisting of chironomids within five subfamilies (**Appendix D**). Six genera of chironomids dominated richness.

The most abundant chironomid genus was *Paratanytarsus* (SF. Chironominae); however, this chironomid was only found in large numbers in the east basin of Third Portage Lake. *Heterotrissocladius* (SF. Orthocladiinae) was fairly abundant throughout all the study lakes except for Wally Lake, which had only one these organisms. *Micropsectra* (SF. Chironominae) was abundant in Third Portage (east and south basins only) and Inuggugayualik Lakes, but rarely in the other lakes.

In addition to chironomid larvae, *Cyclocalyx/Neopisidium*, genera of the family Sphaeriidae (fingernail clams), were also abundant in the study lakes. Oligochaete worms were also reasonably abundant in the lake sediments; generally, at least one oligochaete genus was present at all stations except for Second Portage Lake (**Appendix D**).

Abundance of organisms (#/m²) was relatively similar among lakes (757 organisms/m² from Tehek Lake to 1900 organisms/m² from Inuggugayualik Lake) except for unusually low abundance in Second Portage Lake (413 organisms/m²) and unusually high abundance from Third Portage East basin (5626 organisms/m²) (**Table 3-14**). Benthic invertebrate abundance can be patchy, depending on the specific location of sampling. For example, in 2007, abundance ranged from 913–2100 organisms/m² over all lakes

except Wally Lake, which was much higher (4700 organisms/m²). Abundance in Second Portage Lake in 2007 (913 organisms/m²) was more than double 2008 abundance (413 organisms/m²), perhaps because of sedimentation due to construction of the East Dike. Sampling of benthos in August occurred during the most intense construction activity and it is possible density and richness (**Tables 3-14** and **3-15**) were reduced. Effects of the sedimentation event on the benthic invertebrate community of Second Portage Lake will be investigated further as part of the EAS (Azimuth, 2009).

This section explores the spatial difference (i.e., test for "lake effect," which looks for differences among lakes and/or basins) on total abundance and richness, and abundance and richness of all major taxa groups. Differences among lake stations that were normally (or log-normally) distributed were investigated independently using ANOVA. Where significant differences exist, post-hoc testing (Tukey's HSD [honestly significant difference] multiple comparisons) was used to determine which lake stations were different from one another. Kruskal-Wallis, the non-parametric test was used in a few cases instead of an ANOVA where lake station data were not normally (or log-normally) distributed.

The statistical results from these tests for all variables (total abundance, abundance of each of four major taxa groups, total richness, and richness of each of four major taxa groups) are presented and plotted in **Table 3-16** and **Figure 3-17**.

Abundance and richness of organisms (total and individual taxa groups) were similar for the most part among Meadowbank lake stations, except for the east basin of Third Portage (TPE) and Second Portage (SP) Lakes (**Figure 3-17**). Where significant differences existed, the TPE station had greater abundance and richness than at least one other lake station, but usually greater than all stations and SP often had the lowest abundance and richness (**Table 3-16**). This effect was apparent in terms of richness and abundance without a statistical analysis, and may have been due to East Dike construction. To put these results in context, abundance at the SP station in late August of 2006, 2007 and 2008 was 623, 913 and 413 organisms/m², respectively. This will be explored further in the dike construction monitoring report (Azimuth, 2009).

3.6.2. Baker Lake

A total of 32 taxa were identified and enumerated in the benthic invertebrate samples collected from the three stations (**Appendix D**). Similar to Meadowbank lake stations, insects were dominant in terms of numbers of organisms enumerated and taxa identified at all three lake stations (**Tables 3-14** and **3-15**). Again, chironomid larvae (F. Chironomidae) were the dominant taxonomic group with about 89% of all taxa identified consisting of chironomids within five subfamilies (**Appendix D**).

Some differences were found among the Baker Lake stations. The most abundant chironomid genus was *Stictochironomus* (SF. Chironominae) which was found in high numbers at the barge dock (BBD) and the proposed jetty (BPJ) but rarely at the Akilahaarjuk point station (BAP). Similar to Meadowbank, *Heterotrissocladius* (SF. Orthocladiinae) was quite abundant in all Baker Lake stations.

In addition to chironomid larvae, *Cyclocalyx/Neopisidium*, genera of the family Sphaeriidae (fingernail clams), were also abundant in Baker Lake. Oligochaete worms were also reasonably abundant in the lake sediments; generally, at least one oligochaete genus was present at all stations (**Appendix D**).

As for Meadowbank lakes, this next section explores the spatial difference on total abundance and richness, and abundance and richness of all major taxa groups. Differences among lake stations that were normally (or log-normally) distributed were investigated independently using ANOVA. Where significant differences exist, post-hoc testing (Tukey's HSD [honestly significant difference] multiple comparisons) was used to determine which lake stations were different from one another. Kruskal-Wallis, the non-parametric test was used in a few cases instead of an ANOVA where lake station data were not normally (or log-normally) distributed. The statistical results from these tests for all variables are presented and plotted in **Table 3-16** and **Figure 3-17**.

Abundance and richness of organisms (total and individual taxa groups) were visually similar for the most part among the Baker Lake stations (**Figure 3-17**). Accordingly, no significant differences were found among lake stations for all parameters, with the exception of oligochaete abundance (**Table 3-16**).

Total abundance of organisms ranged from 3,300 organisms/m² (mean for BAP) to 6,300 organisms/m² (mean for BBD). These abundances are several times higher than mean abundances in Meadowbank project lakes, Meadowbank lakes despite larger grain size and lower total organic carbon content of the sediment in Baker Lake. Mean total richness ranged from 11–16 taxa (**Figure 3-17**) at Baker Lake stations.

Table 3-14: Benthic invertebrate total abundance (#/m ²), Meadowbank study lakes, August 2008.

Station Depth (m) Total Abundance (#/m²) Third Portage Lake TPS-1 17-Aug-08 9.1 22 1935 87 TPS-2 17-Aug-08 9.7 22 478 196 TPS-3 17-Aug-08 9.9 0 1130 413 TPS-4 17-Aug-08 9.9 0 1130 413 TPS-5 17-Aug-08 10.0 0 1304 370 Station Mean 17 1296 287 TPE-5 16-Aug-08 8.7 109 5370 239 TPE-1 16-Aug-08 7.8 0 4652 565 TPE-3 16-Aug-08 11.2 22 4065 87 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 TPN-1 18-Aug-08 7.8 0 1326 65	0 0 0 22 0 4 304 0 130	2043 696 2043 1565 1674 1604
TPS-1 17-Aug-08 9.1 22 1935 87 TPS-2 17-Aug-08 9.7 22 478 196 TPS-3 17-Aug-08 11.7 43 1630 370 TPS-4 17-Aug-08 9.9 0 1130 413 TPS-5 17-Aug-08 10.0 0 1304 370 Station Mean 17 1296 287 TPE-1 16-Aug-08 8.7 109 5370 239 TPE-2 16-Aug-08 7.8 0 4652 565 TPE-3 16-Aug-08 11.5 0 6326 696 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean 43 4970 357 TPN-1 18-Aug-08 7.8 0 1326 65 TPN-3 18-Aug-08 8.4 22	0 0 22 0 4 304 0	696 2043 1565 1674 1604
TPS-1 17-Aug-08 9.1 22 1935 87 TPS-2 17-Aug-08 9.7 22 478 196 TPS-3 17-Aug-08 11.7 43 1630 370 TPS-4 17-Aug-08 9.9 0 1130 413 TPS-5 17-Aug-08 10.0 0 1304 370 Station Mean TPE-1 16-Aug-08 8.7 109 5370 239 TPE-2 16-Aug-08 7.8 0 4652 565 TPE-3 16-Aug-08 11.5 0 6326 696 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 8.4 22 1022 261 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 <t< td=""><td>0 0 22 0 4 304 0</td><td>696 2043 1565 1674 1604</td></t<>	0 0 22 0 4 304 0	696 2043 1565 1674 1604
TPS-2 17-Aug-08 9.7 22 478 196 TPS-3 17-Aug-08 11.7 43 1630 370 TPS-4 17-Aug-08 9.9 0 1130 413 TPS-5 17-Aug-08 10.0 0 1304 370 Station Mean TPE-1 16-Aug-08 8.7 109 5370 239 TPE-2 16-Aug-08 7.8 0 4652 565 TPE-3 16-Aug-08 11.5 0 6326 696 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 7.8 0 174 87 TPN-5 18-Aug-08 7.8	0 0 22 0 4 304 0	696 2043 1565 1674 1604
TPS-3 17-Aug-08 11.7 43 1630 370 TPS-4 17-Aug-08 9.9 0 1130 413 TPS-5 17-Aug-08 10.0 0 1304 370 Station Mean 17 1296 287 TPE-1 16-Aug-08 8.7 109 5370 239 TPE-2 16-Aug-08 7.8 0 4652 565 TPE-3 16-Aug-08 11.5 0 6326 696 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean 43 4970 357 TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 8.4 22 1022 261 TPN-3 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 <td>0 22 0 4 304 0</td> <td>2043 1565 1674 1604</td>	0 22 0 4 304 0	2043 1565 1674 1604
TPS-4 17-Aug-08 9.9 0 1130 413 TPS-5 17-Aug-08 10.0 0 1304 370 Station Mean 17 1296 287 TPE-1 16-Aug-08 8.7 109 5370 239 TPE-2 16-Aug-08 7.8 0 4652 565 TPE-3 16-Aug-08 11.5 0 6326 696 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean 43 4970 357 TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 8.4 22 1022 261 TPN-3 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean 4 887 122 S	22 0 4 304 0	1565 1674 1604
TPS-5 17-Aug-08 10.0 0 1304 370 TPE-1 16-Aug-08 8.7 109 5370 239 TPE-2 16-Aug-08 7.8 0 4652 565 TPE-3 16-Aug-08 11.5 0 6326 696 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean 43 4970 357 TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Second Portage Lake SP-1 23-Aug-08 7.0 0 304 130 SP-2 <td>0 4 304 0</td> <td>1674 1604</td>	0 4 304 0	1674 1604
Station Mean 17 1296 287 TPE-1 16-Aug-08 8.7 109 5370 239 TPE-2 16-Aug-08 7.8 0 4652 565 TPE-3 16-Aug-08 11.5 0 6326 696 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean 43 4970 357 TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 7.8 0 1261 130 Station Mean 4 887 122 Second Portage Lake SP-1 23-Aug-08 7.0 0 304 130 SP-2 23-Aug-08 7.0 0	4 304 0	1604
TPE-2 16-Aug-08 7.8 0 4652 565 TPE-3 16-Aug-08 11.5 0 6326 696 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean 43 4970 357 TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean 4 887 122 Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 7.8 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	0	
TPE-2 16-Aug-08 7.8 0 4652 565 TPE-3 16-Aug-08 11.5 0 6326 696 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean 43 4970 357 TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean Station Mean 4 887 122 Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 7.8 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	0	6022
TPE-3 16-Aug-08 11.5 0 6326 696 TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean 4 887 122 Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 7.8 0 326 196 SP-4 23-Aug-08 7.8 0 326 130		5217
TPE-4 16-Aug-08 11.2 22 4065 87 TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 7.8 0 326 196 SP-4 23-Aug-08 7.8 0 326 130		
TPE-5 16-Aug-08 8.9 87 4435 196 Station Mean 43 4970 357 TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean 4 887 122 Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130		7152
Station Mean 43 4970 357 TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean 4 887 122 Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	304	4478
TPN-1 18-Aug-08 7.8 0 1326 65 TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	543	5261
TPN-2 18-Aug-08 9.2 0 652 65 TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	257	5626
TPN-3 18-Aug-08 8.4 22 1022 261 TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean 4 887 122 Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	0	1391
TPN-4 18-Aug-08 8.4 0 174 87 TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean 4 887 122 Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	0	717
TPN-5 18-Aug-08 7.8 0 1261 130 Station Mean 4 887 122 Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	22	1326
Station Mean 4 887 122 Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	0	261
Second Portage Lake SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	0	1391
SP-1 23-Aug-08 9.9 0 130 109 SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	4	1017
SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130		
SP-2 23-Aug-08 7.0 0 304 130 SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	0	239
SP-3 23-Aug-08 13.2 0 326 196 SP-4 23-Aug-08 7.8 0 326 130	43	478
SP-4 23-Aug-08 7.8 0 326 130	43	565
	0	457
5. 5 =0 / tag 50 10.1 0 100 100	22	326
Station Mean 0 257 135	22	413
Tehek Lake		
TE-1 19-Aug-08 7.5 0 500 283	22	804
TE-2 19-Aug-08 9.4 22 413 500	43	978
TE-3 19-Aug-08 11.7 0 261 283	0	543
TE-4 19-Aug-08 13.1 22 457 174	43	696
TE-5 19-Aug-08 12.6 0 565 196	0	761
Station Mean 9 439 287	22	757
Wally Lake WAL-1 21-Aug-08 7.3 22 326 217	22	587
WAL-1 21-Aug-00 7.5 22 320 217 WAL-2 21-Aug-08 8.0 0 370 217	0	587
WAL-2 21-Aug-00 6.0 0 370 217 WAL-3 21-Aug-08 6.7 0 848 304	22	1174
WAL-3 21-Aug-08 8.9 0 196 370	0	565
WAL-5 21-Aug-08 10.7 22 1848 978	43	2891
Station Mean 9 717 417	17	1161
		, , , , , , , , , , , , , , , , , , ,
Inuggugayualik Lake INUG-1 20-Aug-08 8.1 0 500 326	22	848
<u> </u>		040 1696
	65 43	
INUG-3 20-Aug-08 9.8 22 1022 152	43	1239
INUG-4 20-Aug-08 12.6 43 4565 652		
INUG-5 20-Aug-08 8.0 0 239 130	65 33	5326
Station Mean 22 1517 317	65 22 43	391 1900

Table 3-14 con't: Benthic invertebrate total abundance (#/m ²), Baker Lake, August 2008.

Station	Date	Depth (m)	7	Total Abund	lance (#/m²)		Total
Station	Date	Deptii (iii)	Oligochaetes	Insects	Molluscs	Other Taxa	Total
Baker Lake							
BBD-1	29-Aug-08	9.5	130	696	0	0	826
BBD-2	29-Aug-08	13.0	391	3674	152	0	4217
BBD-3	29-Aug-08	11.2	326	9000	543	65	9935
BBD-4	29-Aug-08	11.6	109	6587	22	0	6717
BBD-5	29-Aug-08	13.0	326	7609	1848	22	9804
		Station Mean	257	5513	513	17	6300
BPJ-1	28-Aug-08	13.4	0	1652	22	43	1717
BPJ-2	28-Aug-08	11.3	0	935	43	22	1000
BPJ-3	28-Aug-08	8.4	0	1891	0	0	1891
BPJ-4	28-Aug-08	8.0	43	5891	609	261	6804
BPJ-5	28-Aug-08	8.4	43	5391	522	478	6435
	•	Station Mean	17	3152	239	161	3570
BAP-1	25-Aug-08	11.4	43	5043	152	87	5326
BAP-2	25-Aug-08	9.5	0	1761	109	87	1957
BAP-3	25-Aug-08	10.6	65	3239	22	109	3435
BAP-4	25-Aug-08	11.0	0	2630	109	109	2848
BAP-5	25-Aug-08	12.1	0	2826	65	43	2935
		Station Mean	22	3100	91	87	3300

Table 3-15: Benthic invertebrate total richness (#taxa), Meadowbank study lakes, August 2008.

04-4!	Dete		Total Rich	ness (#taxa)		T-4-1
Station	Date	Oligochaetes	Insects	Molluscs	Other Taxa	Total
Third Port	age Lake					
TPS-1	17-Aug-08	1	11	1	0	13
TPS-2	17-Aug-08	1	7	2	0	10
TPS-3	17-Aug-08	1	8	1	0	10
TPS-4	17-Aug-08	0	9	1	1	11
TPS-5	17-Aug-08	0	8	1	0	9
11 0 0	Station Mean	1	9	1	0	11
TDE 4	40.4 . 00	4	40	4		40
TPE-1	16-Aug-08	1	13	1	1	16
TPE-2	16-Aug-08	0	9	1	0	10
TPE-3	16-Aug-08	0	11	1	2	14
TPE-4	16-Aug-08	1	11	1	3	16
TPE-5	16-Aug-08	2	10	1	2	15
	Station Mean	1	11	1	2	14
TPN-1	18-Aug-08	0	7	1	0	8
TPN-2	18-Aug-08	0	9	1	0	10
TPN-3	18-Aug-08	1	8	1	1	11
TPN-4	18-Aug-08	0	2	1	0	3
TPN-5	18-Aug-08	Ö	8	1	0	9
	Station Mean	0	7	1	0	8
Second De	outona laka					
	ortage Lake	0	4	4	0	_
SP-1	23-Aug-08	0	4	1	0	5
SP-2	23-Aug-08	0	6	1	1	8
SP-3	23-Aug-08	0	9	1	1	11
SP-4	23-Aug-08	0	6	1	0	7
SP-5	23-Aug-08 Station Mean	0	<u>4</u>	<u>1</u>	1 1	6 7
		v	Ū	•	•	•
Tehek Lak	-					
TE-1	19-Aug-08	0	9	2	1	12
TE-2	19-Aug-08	1	8	1	1	11
TE-3	19-Aug-08	0	7	1	0	8
TE-4	19-Aug-08	1	7	1	1	10
TE-5	19-Aug-08	0	8	1	0	9
	Station Mean	0	8	1	1	10
Wally Lake	9					
WAL-1	21-Aug-08	1	6	3	1	11
WAL-2	21-Aug-08	0	6	1	0	7
WAL-3	21-Aug-08	0	4	1	1	6
WAL-4	21-Aug-08	Ö	3	2	0	5
WAL-5	21-Aug-08	0	9	3	1	13
***	Station Mean	0	6	2	1	8
		Ŭ	v	~	•	Ū
	rualik Lake	•	4.4	^	,	, ,
INUG-1	20-Aug-08	0	11	2	1	14
INUG-2	20-Aug-08	1	9	1	2	13
INUG-3	20-Aug-08	1	12	2	2	17
INUG-4	20-Aug-08	1	12	3	1	17
INUG-5	20-Aug-08	0	6	1	1	8
	Station Mean	1	10	2	1	14

Table 3-15 con't: Benthic invertebrate total richness (#taxa), Baker Lake, August 2008.

Station	Date	Total Richness (#taxa)							
Station	Date	Oligochaetes	Insects	Molluscs	Other Taxa	Total			
Baker Lak	re								
BBD-1	29-Aug-08	1	9	0	0	10			
BBD-2	29-Aug-08	2	7	1	0	10			
BBD-3	29-Aug-08	2	9	2	1	14			
BBD-4	29-Aug-08	1	8	1	0	10			
BBD-5	29-Aug-08	1	9	2	1	13			
	Station Mean	1	8	1	0	11			
BPJ-1	28-Aug-08	0	7	1	1	9			
BPJ-2	28-Aug-08	0	6	1	1	8			
BPJ-3	28-Aug-08	0	9	0	0	9			
BPJ-4	28-Aug-08	2	16	1	2	21			
BPJ-5	28-Aug-08	1	15	1	2	19			
	Station Mean	1	11	1	1	13			
BAP-1	25-Aug-08	1	16	1	1	19			
BAP-2	25-Aug-08	0	14	1	1	16			
BAP-3	25-Aug-08	2	14	1	1	18			
BAP-4	25-Aug-08	0	11	1	1	13			
BAP-5	25-Aug-08	0	11	1	1	13			
	Station Mean	1	13	1	1	16			

Table 3-16: ANOVA (or Kruskal-Wallis) results testing differences among lake stations, Meadowbank study lakes & Baker Lake, August 2008.

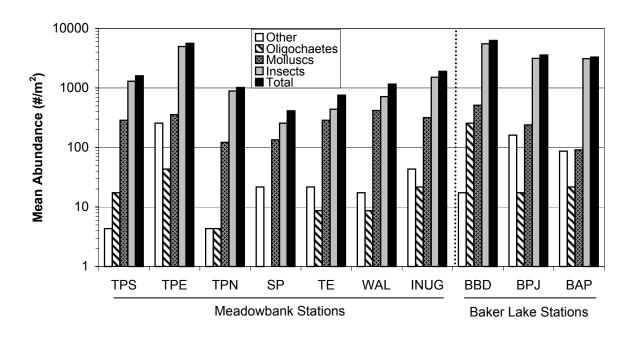
MEADOWBANK LAKES

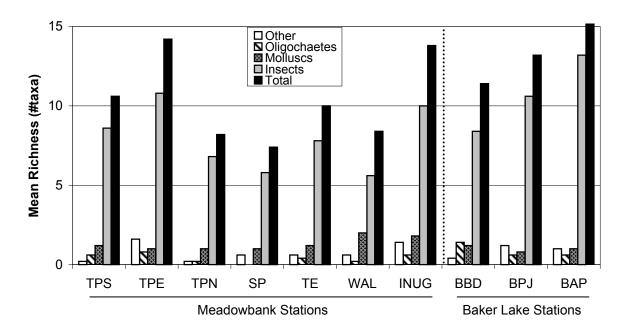
Dependent Variable	N	Lake Effect			
Dependent variable		S or NS ¹	p-value	Result ²	
(Log) Total Abundance	35	S	<0.001	TPE>All; INUG,TPS>SP	
(Log) Oligochaete Abundance*	14	NS	0.368		
(Log) Insect Abundance	35	S	<0.001	TPE>All; INUG,TPS>SP	
(Log) Mollusc Abundance	35	S	0.034	WAL>TPN	
(Log) Other Taxa Abundance*	20	NS	0.064		
Total Richness	35	S	0.001	TPE>SP,TPN,WAL; INUG>SP,TPN	
Oligochaete Richness*	35	NS	0.267		
Insect Richness	35	S	0.002	TPE, INUG>SP,WAL	
Mollusc Richness*	35	NS	0.050		
Other Taxa Richness*	35	S	0.031	NA	

BAKER LAKE

Dependent Variable	N	Lake Effect			
Dependent Variable		S or NS ¹	p-value		Result ²
(Log) Total Abundance	15	NS	0.547		
(Log) Oligochaete Abundance*	9	S	0.041	NA	
(Log) Insect Abundance	15	NS	0.593		
(Log) Mollusc Abundance*	13	NS	0.529		
(Log) Other Taxa Abundance*	11	NS	0.423		
Total Richness	15	NS	0.273		
Oligochaete Richness	15	NS	0.227		
Insect Richness	15	NS	0.075		
Mollusc Richness*	15	NS	0.497		
Other Taxa Richness*	15	NS	0.119		

Notes:


¹ S = significant, NS = nonsignificant.


² TPE,TPN,TPS = Third Portage Lake - East, North, South basins; SP = Second Portage Lake; TE = Tehek Lake; WAL = Wally Lake; INUG = Inuggugayualik Lake; BBD,BPJ,BAP = Baker Lake - Barge Dock, Proposed Jetty, Akilahaarjuk Point; All = all lakes.

^{*} Indicates non-normal data; Kruskal-Wallis test was used instead of ANOVA; no post-hoc tests were used (NA = not available).

Figure 3-17: Benthic invertebrate mean abundance and richness (total and individual taxa groups)

Meadowbank study lakes & Baker Lake, August 2008.

Notes:

TPE,TPN,TPS=Third Portage Lake - East, North, South basins; SP=Second Portage Lake; INUG=Inuggugayualik Lake; TE=Tehek Lake; WAL=Wally Lake; BBD,BPJ,BAP=Baker Lake - Barge Dock, Proposed Jetty, Akilahaarjuk Point.

4. SUMMARY

AEMP receiving environment monitoring focused on two main areas in 2008: Meadowbank study lakes (as in past years) and Baker Lake (new for 2008). With the onset of construction activities starting in late July after successful completion of the permitting process, this year marked the transition between the baseline phase and the construction phase. It should be noted that in-water construction activities were limited to the East Dike and the Western Channel Dike, so the results for most AEMP stations still reflect baseline conditions. Key results for 2008 for each of the two monitoring areas are listed below.

Meadowbank Study Lakes

- Limnology results show that the lakes are generally cold, clear, isothermal, well mixed, and well oxygenated. These results are consistent among stations and seasons for 2008 and similar to historical data.
- Water chemistry results show that the lakes are circum-neutral with low conductivity, hardness and ions. Total and dissolved solids concentrations are very low and typically below detection limits. Nitrogen, carbon and phosphorus were also low, close to laboratory detection limits and did not differ appreciably within or among lakes and seasons. Total metals in water were consistently low among study lakes and seasons, with only four of 28 metals consistently above detection limits and none exceeding CCME guidelines. These results are generally consistent with previous years and confirm their status as ultra-oligotrophic lakes.
- Construction of the East Dike did result in the introduction of suspended sediments into Second Portage Lake in August and September 2008. This resulted in elevated concentrations of total suspended solids (TSS), certain nutrients and some metals (aluminum, chromium and iron exceeded CCME guidelines) in Second Portage Lake. These conditions extended to Tehek Lake in the fall sampling period, but to a lesser degree. The extent and ecological significance of the sediment introductions is assessed in greater detail in the dike construction monitoring report (Azimuth, 2009).
- Sediment chemistry results showed naturally elevated metals (primarily arsenic, cadmium, copper, chromium, and zinc, which typically exceeded CCME guidelines) at many locations. A target coring study was conducted during the spring (i.e., prior to any in-water construction activities) to improve the characterization of within-station spatial variability of metals concentrations for

baseline conditions. The study focused on only the top 1 cm of sediment and will be used to help monitor whether mining activities are changing sediment quality over time. Interestingly, detectable oil & grease concentrations were found at a number of stations, including the reference areas; these results are thought to be related to natural conditions rather than hydrocarbon contamination and will be explored further in 2009.

- Primary productivity was uniformly low, as indicated by low phytoplankton biomass and low chlorophyll-α, as expected for these ultra-oligotrophic systems. Phytoplankton biomass was depressed in Second Portage Lake during summer and to a lesser degree in the fall, likely associated with the construction-related TSS introductions. This is discussed further in the dike construction monitoring report (Azimuth, 2009).
- Periphyton biomass, as expected and consistent with previous years, was quite variable among and within stations in 2008. There were some apparent patterns, with lower biomass at stations with deeper, colder water (e.g., Third Portage Lake). Several years of baseline periphyton data are available with which to compare periphyton growth on habitat compensation features. Further periphyton sampling at the AEMP stations is not needed.
- Benthic community samples were dominated by chironomid larvae in 2008, consistent with previous years. Total abundance and richness were depressed in Second Portage Lake in August 2008, likely due to construction-related sediment inputs. The extent of sediment-related impacts to benthic community did not appear to significantly affect the Tehek Lake station. This is discussed further in the dike construction monitoring report (Azimuth, 2009).

Baker Lake

- Limnology results suggest some influence of marine water at the Baker Lake stations, with fairly widespread elevated conductivity, hardness and ions relative to the Meadowbank study lakes. However, inputs from the Thelon River, which is more similar to water from the Meadowbank study lakes, seem to prevail under certain conditions (e.g., strong southerly winds). Despite some vertical differences in salinity, oxygen and temperature profiles show unstratified conditions.
- Water chemistry results show 23 of 28 metals below detection limits and all below CCME guidelines.
- Sediment chemistry showed lower metals concentrations than the Meadowbank study lakes, with only arsenic exceeding CCME guidelines. The higher arsenic

concentrations were found primarily at the proposed jetty location, with each of the 15 sediment core samples exceeding CCME guidelines.

- Primary productivity was slightly higher at the Baker Lake stations relative to the Meadowbank study lakes, with the highest phytoplankton biomass found at the proposed jetty station.
- Benthic community samples in Baker Lake were dominated by chironomid larvae. Total abundance and diversity at Baker Lake stations were generally higher than the Meadowbank study lakes, despite having sandier substrate.

5. REFERENCES

- AEM (Agnico-Eagle Mines Ltd.). 2009. Aquatic Environment Management Program, March 2009.
- Anagnostidis, K. and J. Komárek. 1988. Modern approaches to the classification system of cyanophytes. 3. Oscillatoriales. Archiv. fur Hydrobiologie/Algological Studies. 50/53: 327-472.
- Azimuth. 2009. Aquatic Effects Monitoring Program Targeted Study: Dike Construction Monitoring, Meadowbank Gold Project, 2008. Report prepared by Azimuth Consulting Group Inc. Vancouver BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2009.
- Azimuth. 2008a. Aquatic Effects Management Program Monitoring Meadowbank Gold Project, 2007. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2008.
- Azimuth. 2008b. Aquatic Effects Management Program Monitoring Meadowbank Gold Project, 2006. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2008.
- BAER (Baseline Aquatic Ecosystem Report). 2005. A report prepared by Azimuth Consulting Group, Vancouver for Cumberland Resources Ltd. October, 2005.
- Bergmann, M.A., and H.E. Welch. 1990. Nitrogen fixation by epilithic periphyton in small Arctic lakes in response to experimental nitrogen and phosphorus fertilization. Canadian Journal of Fisheries and Aquatic Sciences. 47: 1545-1550.
- CCME (Canadian Council of Ministers of the Environment) 2007. Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, 1999, updated December 2007.
- CCME (Canadian Council of Ministers of the Environment) 2002. Canadian Sediment Quality Guidelines for the Protection of Freshwater Aquatic Life, 1999, updated 2002.
- Environment Canada. 1984. Guidance document on collection and preparation of sediments for physicochemical characterization and biological testing. Environmental Protection Series. Report EPS 1/RM/29.
- Findlay, D.L., Kasian, S.E.M., Turner, M.T., and M.P. Stainton. 1999. Responses of phytoplankton and epilithon during acidification and early recovery. Freshwater Biology. 42: 159-175.

- Kling, H.J., and H. Håkansson. 1988. A light and electron microscope study of *Cyclotella* species (Bacillariophyceae) from central and northern Canadian lakes. Diatom Research. 3: 55-82.
- Komárek, J., Kling, H., and J. Komarkova. 2002. Filamentous cyanobacteria [Wehr, J.D. and R.G. Sheath. editors.]. In Freshwater Algae of North America. Ecology and classification. Academic Press. U.S. 918 P.
- Lim, D.S.S., Kwan, C., and M.S.V. Douglas. 2001. Periphytic diatoms assemblages from Bathurst Island, Nunavut, Canadian high Arctic: an examination of community relationships and habitat preference. J. Phycology. 37: 379-392.
- Machniak, K., 1975. The effects of hydroelectric development on the biology of northern fishes (reproduction and population dynamics) IV. Lake trout *Salvelinus namaycush* (Walabum). A literature review and bibliography. Fisheries and Marine Services Division Technical Report No. 530. 52 p.
- Michelutti, N., Holtham, A.J., Douglas, M.S.V., and J.P. Smol. 2003. Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. J. Phycology. 39: 465-480.
- Nauwerck, A. 1963. Die Beziehungen zwischen Zooplankton und Phytoplankton in See Erken. Symbolae Botanicae Upsaliensis, 17: 1-163.
- Patrick, R. and C.W. Reimer. 1966. The diatoms of the United States, 1. Academy of Natural Sciences Monograph No. 13. 688 p.
- Prescott, G.W. 1962. Algae of the Western Great Lakes Area. Wm. C. Brown Company Publishers. U.S. 977 p.
- Rott, E. 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrobiologia, 43: 43-62.
- Scott, W.B. and E.J. Crossman. 1979. Freshwater fishes of Canada. Bulletin 184. Fisheries Research Board of Canada. 966 p.
- Vincent, W.F. 2000. Cyanobacterial dominance in the polar Regions. *In* Whtthon, B. & M. Potts, Ecology of the Cyanobacteria: their diversity in space and time. Dordrecht: Kluwer Academin Press. 321-340.
- Vollenweider, R.A. 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical Report, Organization for Economic Cooperation and Development, Paris, 27: 1-182.

Washington, H.G. 1984. Review: diversity, biotic and similarity indices. A review with special relevance to aquatic ecosystems. Water Res. 186: 652-694.

Welch, H.E., J.A. Legault, and H.J. Kling. 1989. Phytoplankton, nutrients, and primary production in fertilized and natural lakes at Saqvaqjuac, N.W.T. Can. J. Fish. Aquat. Sci. 46: 90-107.

APPENDICES

APPENDIX A

AEMP SEDIMENT CORING TERMS OF REFERENCE MEMO

Technical Memorandum

Date: June 2, 2008

To: Rachel Gould (AEM)

cc: Ralph Turner, Maggie McConnell

From: Randy Baker and Gary Mann

RE: Meadowbank Gold Project: AEMP Sediment Coring Terms of Reference

This technical memorandum lays out the terms of reference for 2008 sediment coring as an addendum to the Aquatic Effects Monitoring Program (AEMP).

Objective:

The main objectives for 2008 are:

- 1. Characterization of spatial variability in sediment chemistry Previous sediment sampling of the Meadowbank project lakes was conducted to characterize baseline conditions within discrete areas of the near-field, far-field and reference AEMP stations. Prior to moving forward to the construction and operation phases of the project, a more intensive sampling approach is required this year to provide the necessary data to characterize spatial variability within the area. This information will help determine the needs of future sampling events (e.g., sample size needed to detect specified effect size with known statistical power) to allow detection of potential mine-related changes to surface sediment chemistry.
- 2. Define very near-surface chemistry Coring, unlike traditional tools such as a Petit Ponar, allows for precise and small depth ranges to be sampled. The corer will be used to sample the top 1.0 cm of sediment to define near-surface chemistry.

Sediment Coring Program:

Surface (top 1 cm) sediment chemistry at all AEMP stations (i.e., 7 stations in project lakes and three (3) new Baker Lake stations) will be characterized using sediment cores. Note that this complements, rather than replaces, the grab samples (top 3 to 4 cm) collected synoptically with benthic community samples in late August. This is in addition to the traditional composite sample using the petite Ponar grab. Fifteen (15) independent cores are to be collected from each of the ten (10) stations. Cores will be collected within the bounds of each sampling area. The intent is to collect cores over a wide area, covering a variety of depths within the basin being sampled. The protocol for collecting sediment cores is as follows:

- Conduct the limnology, water and benthic sampling program prior to core sampling.
 Consideration can be given to identifying core sample locations prior to field
 collections.
- 2. Anchor the boat at least 25 m away from where sediment/benthos collections were made. If conditions are windy, anchor the boat. If calm, anchoring is not necessary. Survey the area to be sampled with the sonar to determine bottom type.
- 3. Deploy the corer from the boat and try to ensure that the core barrel is perpendicular with the surface before penetration. Depending on results, the corer can free-fall from 1 m above the surface. Avoid sampling over steep gradient slopes or over coarse grain substrate.
- 4. Raise the core to just below the water surface and cap prior to bringing above the water to ensure sediment is not lost out the bottom.
- 5. Check to make sure that the surface of the core is intact and is not mixed or disturbed and that the overlying water is clear. Record water depth and UTM location (NAD 83) of all successful core samples.
- 6. Process the core on the boat. Decant overlying water and collect only the top 1 cm of sediment.
- 7. Place the entire 1 cm slice into a 125 mL or 250 mL glass jar. Discard the remaining core sample.
- 8. Label the jars as per AEMP protocol (e.g., TE-x) but with a suffix indicating a core sample (e.g., TE-SC-01 to TE-SC-15).
- 9. Fill in the data sheet and record any observations about the core sample such as presence of varves, distinct changes in color, grain size, or any other unusual features.
- 10. Repeat the procedure above by re-positioning the boat and anchoring (if necessary) at a different location, at least 25 m away from other core collection locations. Repeat again until all 15 core samples have been collected, randomly covering the general sampling area.
- 11. All core samples are to be analysed for total metals, grain size and total organic carbon. Fill in COCs as necessary.
- 12. Hold on ice or in the refrigerator until shipping to ALS, Winnipeg.

Randy Baker and/or Gary Mann will be at Meadowbank Camp to help with any questions that may arise during implementation of this program.

APPENDIX B

PRESENCE (+) / ABSENCE (-) MATRIX OF PHYTOPLANKTON SPECIES IN MEADOWBANK STUDY LAKES AND BAKER LAKE, 2008

	Third Port	-	South Basin	Third Port	-	East Basin	Third Port	age Lake - N	lorth Basin	Seco	nd Portage	Lake		y Lake
		TPS			TPE			TPN			SP			/AL
Species & Code	24-Jul-08	17-Aug-08	18-Sep-08	23-Jul-08	16-Aug-08	18-Sep-08	24-Jul-08	17-Aug-08	18-Sep-08	19-Jul-08	22-Aug-08	17-Sep-08	22-Jul-08	21-Aug-08
Cyanophyte														
1008 Aphanocapsa	-	-	-	-	-	-	-	-	-	+	-	-	-	+
1012 Aphanothece	+	-	-	-	-	-	-	-	+	-	-	-	+	+
1014 Chroococcus limneticus Lemmermann	+	-	-	-	-	-	-	-	-	+	-	-	-	-
1024 Woronichinia naegelianum (Unger) Elenk.	-	-	-	-	-	-	-	-	-	-	-	+	-	-
1026 Merismopedia tenuissima Lemmermann	-	_	_	-	_	_	_	_	-	_	-	_	_	_
1030 Synechococcus	-	_	_	-	_	_	_	_	-	_	+	_	_	_
1033 Rhabdogloea lineare Schmidle and Lauterborn	_	_	+	_	_	_	_	_	_	_	_	_	_	_
1044 Anabaena planctonica Brunnthaler	-	_	_	-	_	_	_	_	-	_	-	_	_	_
1054 Planktolyngbya limnetica	_	_	+	_	_	_	+	_	+	_	_	_	+	_
1062 Small blue greens	_	_	_	_	_	_	_	_	_	_	_	_	_	+
1073 Snowella		_	_		_	_	_	_	_	_		_	_	+
1077 Pseudoanabaena	_	_	_	_		_	_	+	_	_	_	_	_	
1088 Anabaena solitaria Klebs		_	_		_	_	+		_	_		_	_	_
1000 Allabacila Solitaria Nebs														
Chlorophyte														
2100 Pyramidomonas tetrarhynchus Schmarda	-	+	-	-	-	+	-	+	-	-	-	-	-	-
2101 Carteria	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2105 Chlamydomonas	+	+	+	+	-	+	+	-	+	+	-	+	+	+
2107 Chlorogonium maximum Skuja	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2112 Sphaerocystis schroeteri Chodat	-	-	-	-	-	-	-	-	-	-	-	-	-	+
2121 Oocystis lacustris Chodat	-	+	-	-	+	+	-	-	+	-	-	+	-	+
2127 Tetraedron minimum (Brunow) Hansgrig	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2132 Scenedesmus denticulatus Lagerhiem	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2133 Scenedesmus brevispina (G.M Smith) Chodat	-	-	-	-	-	-	-	-	-	-	-	+	-	-
2137 Dictyosphaerium simplex Sukja	-	-	-	-	-	+	-	-	-	-	-	+	-	-
2138 Monoraphidium komarkovae (Nyg.) Komarkova-Legnero	+	-	-	-	-	-	-	-	-	-	-	+	+	-
2141 Monoraphidium contortum (Thur.) Komarkova-Legnerov		_	-	-	_	-	-	_	-	-	-	_	_	-
2143 Monoraphidium minutum (Nag.) Komarkova-Legnerova	+	_	-	-	+	-	+	_	-	-	-	_	_	-
2145 Crucigenia quadrata Morr.	_	-	-	_	_	-	_	_	_	_	+	+	_	+
2157 Kichnerella lunaris (Kirchn.) Moeb.	-	_	_	+	_	_	_	_	-	_	-	_	_	_
2164 Quadrigula closterioides (Bohl.) Printz	_	-	-	_	_	-	_	_	_	_	_	_	_	_
2167 Elakatothrix gelatinosa Willen	_	+	+	+	+	+	_	+	+	+	_	_	+	+
2178 Cosmarium	+	+	_	_	+	_	_	_	+	_	_	_	_	_
2183 Euastrum sinuosum Lenorm.	_	_	+	_	_	_	_	_	_	_	_	_	_	_
2185 Micrasterias	_	_	-	_	_	_	_	_	_	_	_	+	_	_
2186 Xanthidium	_	_	_	_	_	+	_	+	+	_	_	_	_	_
2187 Staurodesmus extensus (Andersson) Teiling	+	+	+	+	+	+	+	+	+	_	_	+	_	_
2193 Staurodesmus paradoxum Meyen	-	-	_	-	-	_	-	-	_	_	_	-	_	_
2196 Staurodesmus	-	-	+	-	-	-	-	-	_	-	-	_	-	-
2199 Spondylosium planum (Wolle) W. and G.S. West	-	-		+	+	+	+	-	+	+	-	_	+	_
2202 Scourfieldia cordiformis Takeda	-	-	_					-			-	-		-
2204 Ankrya judai (G.M. Smith) Fott	_	_	_	_	_	_	_	_	_	_	_	_	_	_
			-	-	+	-			_	-	+	_	_	
2205 Mougeotia 2206 Botryococcus braunii Kutzing	_	_	_		·	-	-	_	_	-	·	_	_	_
2206 Botryococcus braunii Kutzing 2215 Tetraedron caudatum (Corda) Hansgrig	т	т		т	т	-	-	т	. T	-	т	±	т	±
	-	-		-	-	-	-	-	-	-	-		-	
2216 Zygnema	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2217 Collodictyon	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2222 Treubaria	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2235 Ankistrodesmus spiralis Lemmermann	+	+	-	+	-	+	+	+	+	+	-	-	-	+
2247 Oocystis gigas Archer	-	+	-	-	+	-	-	-	-	-	-	-	-	+

Appendix B: Presence (+) / absence (-) matrix of phytoplankton species in Meadowbank study lakes and Baker Lake, 2008.

	Third Porta	age Lake - S	outh Basin	Third Port		East Basin	Third Porta		Iorth Basin	Seco	nd Portage	Lake	Wally	Lake
		TPS			TPE			TPN			SP		W	AL
Species & Code	24-Jul-08	17-Aug-08	18-Sep-08	23-Jul-08	16-Aug-08	18-Sep-08	24-Jul-08	17-Aug-08	18-Sep-08	19-Jul-08	22-Aug-08	17-Sep-08	22-Jul-08	21-Aug-08
Chrysophyte														
4351 Small chrysophyceae	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4352 Large chrysophyceae	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4355 Chrysochromulina parva Lackey	+	+	+	+	+	+	+	+	+	+	-	+	+	+
4357 Chrysococcus	+	+	+	+	-	+	+	+	+	+	-	+	+	+
4358 Chrysostephanospaera globulifera Scherffel	+	-	-	-	+	+	-	-	+	+	-	-	-	+
4361 Kephyrion boreale Skuja	+	+	+	-	-	+	-	-	-	-	-	+	-	+
4362 Kephyrion	+	+	+	+	+	+	+	+	+	+	-	+	+	+
4363 Spinifiromonas sirratus*	-	-	+	+	+	+	+	+	-	+	-	+	+	+
4364 Mallomonas caudata Ivanov	-	-	-	-	-	-	-	-	-	-	-	+	-	-
4367 Mallomonas duerrschmidtiae Siver, Hamer and Kling	-	-	-	+	+	-	-	-	-	-	-	-	-	-
4368 Mallomonas crassisquama (Asmund) Fott	-	-	-	-	+	-	-	+	+	-	-	+	+	+
4370 Mallomonas akrokomos Asmund and Kristiansen	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4372 Mallomonas tonsurata Teiling and Krieger	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4375 Synura sphagnicola Korschikow	-	-	-	-	-	-	+	-	-	-	-	-	-	-
4378 Dinobryon borgei Lemmermann	-	+	+	-	+	+	+	+	+	+	-	-	+	+
4380 Dinobryon suecicum Lemmermann	-	-	-	-	-	-	-	-	-	-	-	+	-	-
4381 Dinobryon mucronutom Nygaard	+	+	+	+	+	+	-	+	+	+	-	-	+	+
4383 Dinobryon bavaricum Imhof	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4384 Dinobryon bavaricum v vanhoeffenii (Bachmann) Kriege	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4387 Dinobryon cylindricum Imhof	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4388 Dinobryon sertularia Ehrenberg	+	-	-	+	+	-	+	-	-	+	-	+	+	-
4390 Dinobryon sociale Ehrenberg	-	+	+	-	+	+	-	+	-	-	-	+	-	-
4393 Dinobryon	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4396 Chrysolkos skuja (Nauwerck) Willen	+	+	+	+	+	+	+	+	+	+	-	+	+	+
4400 Ochromonas	-	-	+	-	-	-	-	-	-	-	-	-	-	-
4401 Uroglena volvox Ehrenberg	+	+	+	+	+	+	+	+	+	+	-	+	+	+
4403 Chrysosphaerella longispina Lauterborn	-	-	-	+	-	-	-	-	-	-	-	-	+	-
4411 Bitrichia chodatii (Reverdin) Chodat	-	-	+	+	+	+	-	+	-	+	-	-	+	-
4413 Chrysochromulina laurentiana Kling	+	+	+	+	+	+	+	+	+	+	-	+	+	+
4414 Stichogloea	+	+	+	-	+	+	+	-	+	-	-	+	+	+
4418 Salpingoeca frequentissima (Zach.) Lemmermann	+	+	+	+	-	-	+	+	+	-	-	+	+	+
4425 Mallomonas hamata Asmund	-	-	-	-	-	-	-	-	-	+	-	-	-	-
4436 Dinobryon attenatum Hill	-	-	-	-	+	-	+	+	-	+	-	-	-	-
4437 Pteridomonas	-	+	-	+	-	+	+	+	+	-	-	-	+	-
4440 Stelexomonas dichotoma Lackey	-	-	-	-	-	-	-	-	-	-	-	+	-	-
4444 Dinobryon pediforme (Lemmermann) Steineche	-	-	-	-	+	-	-	-	-	-	-	-	-	-

Appendix B: Presence (+) / absence (-) matrix of phytoplankton species in Meadowbank study lakes and Baker Lake, 2008.

	Third Porta	age Lake - S	South Basin	Third Por	tage Lake -	East Basin	Third Porta	age Lake - N	lorth Basin	Seco	nd Portage	Lake	Wally	y Lake
		TPS			TPE			TPN			SP		W	/AL
Species & Code	24-Jul-08	17-Aug-08	18-Sep-08	23-Jul-08	16-Aug-08	18-Sep-08	24-Jul-08	17-Aug-08	18-Sep-08	19-Jul-08	22-Aug-08	17-Sep-08	22-Jul-08	21-Aug-08
Diatom														
5507 Cyclotella stelligera Cleve and Grunow	+	+	+	+	+	+	+	+	+	+	+	+	+	+
5511 Rhizosolenia eriense H.L. Smith	+	+	+	+	+	+	+	+	+	+	-	+	+	+
5513 Tabellaria fenestrata (Lyngbye) Kutzing	-	-	-	-	-	-	+	+	-	-	-	+	-	-
5514 Tabellaria flocculsa (Roth) Kutzing	-	+	+	+	+	-	+	-	+	-	+	+	+	-
5515 Fragilaria crotonensis Kitton	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5518 Synedra acus Kutzing	+	-	+	+	+	+	+	-	+	+	+	+	+	+
5523 Synedra ulna (Nitzsch) Ehrenberg	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5524 Asterionella formosa Hassall	-	+	-	+	-	-	-	-	-	+	-	-	-	-
5530 Stephanodiscus niagarae Ehrenberg	-	-	-	-	-	-	-	-	-	-	+	-	-	-
5540 Aulacoseira italica v subarctica (O. Muller) Simonsen	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5546 Gyrosigma	-	+	+	-	-	+	-	-	-	-	-	-	-	-
5547 Frustulia rhomboides (Ehrenberg) de Toni	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5551 Cyclotella michiganiana Skvortzow	+	+	-	-	+	-	+	+	-	-	+	-	+	+
5733 Eunotia pectinalis (Kutzing) Rabenhorst	-	-	-	+	-	-	-	-	-	-	-	+	-	-
5768 Nitzschia linearis W. Smith	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5873 Gomphonema minutum	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5881 Diatoma elongatum Agardh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5908 Diatoma tenuis Agardh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5916 Fragilaria capucina Grunow	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cryptophyte														
6554 Rhodomonas minuta Skuja	+	+	+	+	+	-	+	+	+	+	+	+	+	+
6558 Cryptomonas erosa Ehrenberg	+	+	+	+	+	+	+	-	+	+	+	+	+	+
6559 Cryptomonas ovata Ehrenberg	-	+	-	-	+	-	-	-	-	-	-	-	-	+
6562 Cryptomonas reflexa (Marsson) Skuja	-	+	-	+	-	+	+	-	+	+	+	+	+	+
6565 Cryptomonas rostratiformis Skuja	-	+	+	-	+	+	-	+	+	-	+	+	+	-
6568 Katablepharis ovalis Skuja	+	+	+	+	+	+	+	+	+	+	-	+	+	+
Dinoflagellate														
7631 Gymnodinium helveticum Penard	-	-	+	-	-	+	+	-	-	+	_	-	-	-
7632 Gymnodinium	+	+	+	+	+	+	+	+	+	+	+	-	+	+
7635 Peridinium willei Huitfeldt-Kaas	-	-	-	_	-	-	-	-	-	-	-	-	-	-
7639 Peridinium pusillum (Penard) Lemmermann	+	+	+	+	+	+	+	+	+	+	-	-	+	+
7641 Peridinium aciculiferum Lemmermann	_	_	_	_	_	_	_	_	_	_	_	_	_	_

		Tehek Lake	•	Inuggugay	ualik Lake	Baker	Lake - Barç	ge Dock	Baker La	ake - Propo	sed Jetty	Baker Lak	e - Akilaha	arjuk Point
		TE		INU			BBD			BPJ			BAP	
Species & Code	20-Jul-08	19-Aug-08	15-Sep-08	25-Jul-08	20-Aug-08	27-Jul-08	28-Aug-08	21-Sep-08	27-Jul-08	28-Aug-08	21-Sep-08	28-Jul-08	25-Aug-08	21-Sep-08
Cyanophyte														
1008 Aphanocapsa	_	_	+	-	-	_	_	-	-	_	-	-	_	_
1012 Aphanothece	_	_	_	+	+	_	_	-	-	_	+	-	_	_
1014 Chroococcus limneticus Lemmermann	_	_	_	-	-	_	_	-	-	_	-	-	_	_
1024 Woronichinia naegelianum (Unger) Elenk.	_	_	_	-	-	_	_	+	-	_	-	-	_	_
1026 Merismopedia tenuissima Lemmermann	_	_	_	_	_	_	_	_	+	_	+	_	_	_
1030 Synechococcus	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1033 Rhabdogloea lineare Schmidle and Lauterborn	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1044 Anabaena planctonica Brunnthaler	_	_	_	_	_	_	_	_	_	_	_	_	+	_
1054 Planktolyngbya limnetica	_	_	+	_	_	_	_	_	_	_	+	_	_	_
1062 Small blue greens	_	+		_	_	_	_	_	_	_		_		_
1073 Snowella	_		_	_	+	_	_	_	_	_	_	_	+	_
1077 Pseudoanabaena	_	_	_	_		_	_	_	_	+	_	_		
1088 Anabaena solitaria Klebs	_	_	+	_	_	_	_	_	_		+	_		
1000 Ariabaeria Solitaria Riebs	_	-		-	-	_	-	-	-	-	'	-	-	-
Chlorophyte														
2100 Pyramidomonas tetrarhynchus Schmarda	-	+	-	+	+	-	-	-	-	-	-	-	-	+
2101 Carteria	-	-	-	-	-	-	+	-	-	-	-	-	+	-
2105 Chlamydomonas	-	-	+	+	+	+	+	+	+	+	+	-	+	+
2107 Chlorogonium maximum Skuja	-	-	+	-	-	-	-	-	-	-	-	-	-	-
2112 Sphaerocystis schroeteri Chodat	-	-	-	-	-	-	-	-	-	+	-	-	-	-
2121 Oocystis lacustris Chodat	-	+	+	+	+	-	+	+	-	-	+	-	+	+
2127 Tetraedron minimum (Brunow) Hansgrig	-	-	-	-	-	-	-	+	-	-	-	-	-	-
2132 Scenedesmus denticulatus Lagerhiem	-	-	-	+	-	+	-	-	-	-	-	-	-	-
2133 Scenedesmus brevispina (G.M Smith) Chodat	_	-	-	-	-	_	+	+	+	+	+	-	+	+
2137 Dictyosphaerium simplex Sukja	_	-	+	-	-	_	+	-	+	-	-	+	-	-
2138 Monoraphidium komarkovae (Nyg.) Komarkova-Legnero	-	-	-	-	-	-	+	-	-	+	-	-	+	+
2141 Monoraphidium contortum (Thur.) Komarkova-Legnerova		-	-	-	-	-	-	_	-	-	+	-	-	-
2143 Monoraphidium minutum (Nag.) Komarkova-Legnerova	-	-	-	-	-	-	-	_	-	+	-	+	-	-
2145 Crucigenia quadrata Morr.	_	_	+	-	_	_	+	_	_	+	_	+	_	_
2157 Kichnerella lunaris (Kirchn.) Moeb.	_	_	_	-	-	_	_	-	-	_	-	-	_	_
2164 Quadrigula closterioides (Bohl.) Printz	_	_	_	+	_	_	_	_	_	_	_	_	_	_
2167 Elakatothrix gelatinosa Willen	_	+	_	+	+	+	+	_	_	+	_	_	_	_
2178 Cosmarium	_	_	+	_	+	_	_	+	+	_	_	_	+	+
2183 Euastrum sinuosum Lenorm.	_	_	+	_	_	_	_	_	_	_	_	_	_	_
2185 Micrasterias	_	_	-	-	-	_	_	_	_	-	_	-	_	_
2186 Xanthidium	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2187 Staurodesmus extensus (Andersson) Teiling	_	_	+	+	+	_	+	_	_	+	_	_	_	+
2193 Staurodesmus paradoxum Meyen	_	+		_	+	_	-	_	_	+	_	_	_	_
2196 Staurodesmus	_	-	_	_	-	_	_	_	_	-	_	_	_	_
2199 Spondylosium planum (Wolle) W. and G.S. West	+	+	+	+	_	_	-	-	-	+	-	-	-	-
2202 Scourfieldia cordiformis Takeda					-	_	-	-	-		-	-	-	+
2204 Ankrya judai (G.M. Smith) Fott	_	_	_	_	+	+	_	_	_	+	+	_	_	
	-	+	-	-	·			_	-			-		
2205 Mougeotia 2206 Botryococcus braunii Kutzing	-		ż	-	- 1	-	-		-		-	-	_	-
	-	+	т	-	-	-	_	т	-	T	_	-	т	-
2215 Tetraedron caudatum (Corda) Hansgrig	-	т	- .r	-	-	-	т	-	-	т	т	-	-	-
2216 Zygnema	-	-	+	-	-	-	-	-	-	-	-	-	-	-
2217 Collodictyon	-	-	-	-	-	-	-	+	-	-	-	-	-	-
2222 Treubaria	-	-					-	-		-	-	-	-	+
2235 Ankistrodesmus spiralis Lemmermann	-	-	+	+	+	+	+	+	+	+	+	-	+	-
2247 Oocystis gigas Archer	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Appendix B: Presence (+) / absence (-) matrix of phytoplankton species in Meadowbank study lakes and Baker Lake, 2008.

		Tehek Lake)	Inugguga	yualik Lake	Baker	Lake - Barg	je Dock	Baker La	ake - Propos	sed Jetty	Baker Lak	e - Akilaha	arjuk Point
		TE		IN	UG		BBD			BPJ			BAP	
Species & Code	20-Jul-08	19-Aug-08	15-Sep-08	25-Jul-08	20-Aug-08	27-Jul-08	28-Aug-08	21-Sep-08	27-Jul-08	28-Aug-08	21-Sep-08	28-Jul-08	25-Aug-08	21-Sep-08
Chrysophyte														
4351 Small chrysophyceae	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4352 Large chrysophyceae	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4355 Chrysochromulina parva Lackey	+	+	-	+	+	+	+	+	+	+	+	+	+	+
4357 Chrysococcus	+	+	-	+	+	+	+	+	+	+	+	+	+	+
4358 Chrysostephanospaera globulifera Scherffel	+	-	-	-	-	-	-	-	-	-	+	+	-	-
4361 Kephyrion boreale Skuja	+	+	-	-	+	-	-	-	-	-	-	-	-	-
4362 Kephyrion	+	+	-	+	+	-	+	+	+	+	-	+	+	+
4363 Spinifiromonas sirratus*	-	+	-	+	+	-	+	+	+	+	-	-	+	-
4364 Mallomonas caudata Ivanov	-	-	-	-	-	-	+	-	-	-	+	+	-	+
4367 Mallomonas duerrschmidtiae Siver, Hamer and Kling	+	-	-	-	-	-	-	+	-	-	-	-	-	-
4368 Mallomonas crassisquama (Asmund) Fott	-	-	-	-	+	-	+	-	-	-	-	-	-	-
4370 Mallomonas akrokomos Asmund and Kristiansen	+	-	-	-	+	-	-	-	+	-	-	-	-	-
4372 Mallomonas tonsurata Teiling and Krieger	-	-	-	-	-	+	-	-	+	+	-	+	-	-
4375 Synura sphagnicola Korschikow	+	-	-	-	-	+	+	+	+	-	-	+	-	+
4378 Dinobryon borgei Lemmermann	+	+	+	+	+	+	+	-	+	+	-	+	+	-
4380 Dinobryon suecicum Lemmermann	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4381 Dinobryon mucronutom Nygaard	+	+	-	+	-	+	-	-	-	+	-	-	-	-
4383 Dinobryon bavaricum Imhof	+	+	-	+	+	+	+	-	+	+	+	+	+	+
4384 Dinobryon bavaricum v vanhoeffenii (Bachmann) Kriege	-	-	-	-	+	-	-	-	-	-	-	-	-	-
4387 Dinobryon cylindricum Imhof	-	-	-	+	-	-	-	-	-	-	-	-	-	-
4388 Dinobryon sertularia Ehrenberg	+	-	+	+	+	+	+	-	+	+	-	+	+	+
4390 Dinobryon sociale Ehrenberg	-	+	-	-	-	-	+	-	-	+	-	-	+	-
4393 Dinobryon	-	-	-	-	-	-	-	-	+	-	-	-	-	-
4396 Chrysolkos skuja (Nauwerck) Willen	+	+	-	+	+	+	+	+	-	+	-	+	+	+
4400 Ochromonas	-	-	-	-	-	+	-	+	-	+	+	+	+	+
4401 Uroglena volvox Ehrenberg	+	+	-	+	+	+	+	+	+	+	+	+	+	+
4403 Chrysosphaerella longispina Lauterborn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4411 Bitrichia chodatii (Reverdin) Chodat	+	+	+	+	+	-	+	-	+	-	-	-	-	-
4413 Chrysochromulina laurentiana Kling	+	+	+	+	+	-	+	+	+	+	+	-	+	+
4414 Stichogloea	+	-	-	+	+	-	-	+	-	-	-	-	+	-
4418 Salpingoeca frequentissima (Zach.) Lemmermann	+	+	+	+	+	+	+	+	+	+	+	+	-	+
4425 Mallomonas hamata Asmund	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4436 Dinobryon attenatum Hill	-	-	+	-	-	+	-	-	+	-	-	+	-	-
4437 Pteridomonas	+	-	-	+	+	-	-	-	-	+	-	-	+	-
4440 Stelexomonas dichotoma Lackey	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4444 Dinobryon pediforme (Lemmermann) Steineche	-	-	-	-	+	-	-	+	-	-	-	-	+	-

Appendix B: Presence (+) / absence (-) matrix of phytoplankton species in Meadowbank study lakes and Baker Lake, 2008.

		Tehek Lake)	Inugguga	yualik Lake	Baker	Lake - Barg	e Dock	Baker La	ake - Propo	sed Jetty	Baker Lak	e - Akilaha	arjuk Point
		TE		IN	IUG		BBD			BPJ			BAP	
Species & Code	20-Jul-08	19-Aug-08	15-Sep-08	25-Jul-08	20-Aug-08	27-Jul-08	28-Aug-08	21-Sep-08	27-Jul-08	28-Aug-08	21-Sep-08	28-Jul-08	25-Aug-08	21-Sep-08
Diatom														
5507 Cyclotella stelligera Cleve and Grunow	+	+	+	+	+	+	+	+	+	+	+	+	+	+
5511 Rhizosolenia eriense H.L. Smith	+	+	+	-	-	+	+	-	+	+	-	+	+	+
5513 Tabellaria fenestrata (Lyngbye) Kutzing	-	-	+	-	+	-	-	+	+	+	+	+	-	+
5514 Tabellaria flocculsa (Roth) Kutzing	+	+	+	+	-	-	+	+	+	+	+	-	+	-
5515 Fragilaria crotonensis Kitton	-	-	-	-	-	-	+	+	-	+	+	-	+	+
5518 Synedra acus Kutzing	+	+	+	+	+	+	+	+	+	+	+	+	+	+
5523 Synedra ulna (Nitzsch) Ehrenberg	-	-	+	-	-	-	-	-	-	-	-	-	-	-
5524 Asterionella formosa Hassall	-	-	-	-	-	+	+	+	+	+	+	+	+	+
5530 Stephanodiscus niagarae Ehrenberg	-	-	-	-	-	-	-	-	-	+	-	-	-	-
5540 Aulacoseira italica v subarctica (O. Muller) Simonsen	-	-	-	-	-	+	+	+	+	+	+	+	-	+
5546 Gyrosigma	-	-	-	-	-	-	-	+	-	-	-	-	-	-
5547 Frustulia rhomboides (Ehrenberg) de Toni	-	-	-	-	+	-	-	-	-	-	-	-	-	-
5551 Cyclotella michiganiana Skvortzow	-	+	-	+	+	+	+	-	+	+	-	-	+	-
5733 Eunotia pectinalis (Kutzing) Rabenhorst	+	-	+	-	-	-	-	-	-	-	-	-	-	-
5768 Nitzschia linearis W. Smith	-	-	-	-	+	-	-	-	-	-	-	-	-	-
5873 Gomphonema minutum	-	-	-	-	-	-	-	-	-	-	+	-	-	-
5881 Diatoma elongatum Agardh	-	-	+	-	-	-	-	-	-	-	-	-	-	-
5908 Diatoma tenuis Agardh	-	-	-	-	-	-	-	+	-	-	-	-	-	+
5916 Fragilaria capucina Grunow	-	-	-	-	+	+	-	-	+	-	-	-	-	-
Cryptophyte														
6554 Rhodomonas minuta Skuja	+	+	+	+	+	+	+	+	+	+	+	+	+	+
6558 Cryptomonas erosa Ehrenberg	+	+	+	+	-	+	+	+	+	+	+	+	+	+
6559 Cryptomonas ovata Ehrenberg	+	-	-	-	-	-	-	-	+	-	-	+	+	+
6562 Cryptomonas reflexa (Marsson) Skuja	+	+	-	+	-	-	+	-	-	-	+	+	-	-
6565 Cryptomonas rostratiformis Skuja	+	+	+	-	-	-	-	-	-	+	-	+	+	+
6568 Katablepharis ovalis Skuja	+	+	-	+	+	+	+	+	+	+	+	+	+	-
Dinoflagellate														
7631 Gymnodinium helveticum Penard	-	-	-	-	-	-	-	-	-	+	-	-	-	-
7632 Gymnodinium	+	+	-	+	+	+	-	+	+	+	+	+	+	+
7635 Peridinium willei Huitfeldt-Kaas	-	+	+	-	-	-	-	-	-	-	-	-	-	-
7639 Peridinium pusillum (Penard) Lemmermann	+	+	-	-	+	+	+	+	-	+	+	-	+	+
7641 Peridinium aciculiferum Lemmermann	+	-	-	-	-	-	-	+	+	-	+	+	-	-

APPENDIX C

PRESENCE (+) / ABSENCE (-) MATRIX OF PERIPHYTON SPECIES IN MEADOWBANK STUDY LAKES, 2008

Appendix C: Presence (+) / absence (-) matrix of periphyton species in Meadowbank study lakes, 2008.

		TI	hird Portage La	ke	Second Portage	Tehek	Wally	Inuggugayualik
	Species & Code	South Basin	East Basin	North Basin	Lake	Lake	Lake	Lake
	Cyanophyte							
1014	Chroococcus limneticus Lemmermann	-	-	-	+	-	+	+
1033	Rhabdogloea lineare Schmidle and Lauterborn	-	-	-	-	-	+	+
1070	Anabaenopsis	+	+	-	-	+	+	+
1073	Snowella	-	+	-	-	-	+	-
1077	Pseudoanabaena	+	+	-	+	+	-	+
1081	Nostoc	-	-	-	+	-	-	+
1084	Gloeocapsa punctata	-	-	-	+	-	-	-
1088	Anabaena solitaria Klebs	-	-	-	-	+	-	-
1102	Gloeothece	+	+	+	+	+	+	+
1117	Merismopedia punctata Meyen	-	+	-	-	-	-	-
1119	Stigonema	+	+	+	-	+	-	+
1124	Petalonema alatum Berk	+	+	+	+	+	+	+
1134	Pseudoanabaena galeata	-	-	-	+	-	-	-
1136	Lyngbya mucicola Lemmermann	+	+	+	+	+	+	+
1220	Rivularia dura Roth	+	+	+	+	+	+	+
	Chlorophyte							
2178	Cosmarium	+	+	-	-	+	-	+
2182	Euastrum	-	-	-	-	-	+	-
2191	Staurodesmus cuspidatus (Brebisson and Ralfs) Teiling	-	-	-	-	+	-	-
2199	Spondylosium planum (Wolle) W. and G.S. West	+	-	-	+	-	-	-
2205	Mougeotia	+	+	+	+	+	+	+
2216	Zygnema	-	-	+	+	+	+	+
2226	Ulothrix	+	+	+	+	-	-	+
2231	Bulbochaete	+	+	-	+	+	+	+
2235	Ankistrodesmus spiralis Lemmermann	-	-	-	-	-	-	+
2247	Oocystis gigas Archer	-	-	+	+	-	-	+
	Chrysophyte							
4383	Dinobryon bavaricum Imhof	+	-	+	-	-	-	-
4414	Stichogloea	-	-	-	+	-	-	-

Appendix C: Presence (+) / absence (-) matrix of periphyton species in Meadowbank study lakes, 2008.

Diatom 5507 Cyclotella stelligera Clevi 5513 Tabellaria fenestrata (Lyr 5514 Tabellaria flocculsa (Rott 5516 Fragilaria construens (Eh 5518 Synedra acus Kutzing 5540 Aulacoseira italica v suba 5546 Gyrosigma 5547 Frustulia rhomboides (Eh 5551 Cyclotella michiganiana S 5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenbe 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory		T	hird Portage La	ke	Second Portage	Tehek	Wally	Inuggugayualik
5507 Cyclotella stelligera Clevi 5513 Tabellaria fenestrata (Lyt 5514 Tabellaria flocculsa (Rott 5516 Fragilaria construens (Eh 5518 Synedra acus Kutzing 5540 Aulacoseira italica v suba 5546 Gyrosigma 5547 Frustulia rhomboides (Eh 5551 Cyclotella michiganiana S 5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzir 5734 Eunotia lunaris (Ehrenber 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenber 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (C 5836 Cymbella silesiaca Bleist 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5807 Diatoma tenuis Agardh	Species & Code	South Basin	East Basin	North Basin	Lake	Lake	Lake	Lake
5507 Cyclotella stelligera Clevi 5513 Tabellaria fenestrata (Lyt 5514 Tabellaria flocculsa (Rott 5516 Fragilaria construens (Eh 5518 Synedra acus Kutzing 5540 Aulacoseira italica v suba 5546 Gyrosigma 5547 Frustulia rhomboides (Eh 5551 Cyclotella michiganiana S 5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenber 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenber 5792 Neidium iridis (Ehrenber 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (Cymbella silesiaca Bleist 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	- : .							
5513 Tabellaria fenestrata (Lyr. 5514 Tabellaria flocculsa (Rott. 5516 Fragilaria construens (Eh. 5518 Synedra acus Kutzing. 5540 Aulacoseira italica v suba. 5546 Gyrosigma. 5547 Frustulia rhomboides (Eh. 5551 Cyclotella michiganiana S. 5702 Achnanthes minutissima. 5726 Eucocconeis. 5728 Epithemia argus Kutzing. 5734 Eunotia lunaris (Ehrenbe. 5751 Navicula incerta Grunow. 5767 Nitzschia fonticola Gruno. 5778 Stauroneis anceps Ehrer. 5792 Neidium iridis (Ehrenberg. 5794 Pinnularia flexuosa Cleve. 5805 Cocconies. 5821 Eunotia exigua (Brebisso. 5825 Fragilaria pinata Ehrenbe. 5826 Cymbella gracilis (Rabho. 5836 Cymbella microcephala (Cymbella microcephala (Cymbella silesiaca Bleist. 5854 Pinnularia borealis Ehren. 5860 Diatoma vulgare Bory. 5865 Cymbella prostata (Berke. 5866 Surirella ovata Kutzing. 5871 Cymbella lapponica. 5873 Gomphonema minutum. 5874 Nitzschia palea (Kutzing. 5881 Diatoma elongatum Agar. 5882 Anomoenies vitrea Ross. 5884 Gomphonema angustum. 5887 Navicula pupula Kutzing. 5887 Navicula pupula Kutzing.								
5514 Tabellaria flocculsa (Rott 5516 Fragilaria construens (Eh 5518 Synedra acus Kutzing 5540 Aulacoseira italica v suba 5546 Gyrosigma 5547 Frustulia rhomboides (Eh 5551 Cyclotella michiganiana S 5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenbe 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (Cymbella microcephala (Cymbella silesiaca Bleist 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5887 Navicula pupula Kutzing	· · · · · ·	+	-	+	+	+	+	+
5516 Fragilaria construens (Eh 5518 Synedra acus Kutzing 5540 Aulacoseira italica v suba 5546 Gyrosigma 5547 Frustulia rhomboides (Eh 5551 Cyclotella michiganiana s 5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenbe 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (5836 Cymbella microcephala (5836 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	, , , , ,	<u>-</u>	+	+	+	+	+	+
5518 Synedra acus Kutzing 5540 Aulacoseira italica v suba 5546 Gyrosigma 5547 Frustulia rhomboides (Eh 5551 Cyclotella michiganiana S 5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenbe 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenber 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		+	+	+	+	+	+	+
5540 Aulacoseira italica v suba 5546 Gyrosigma 5547 Frustulia rhomboides (Eh 5551 Cyclotella michiganiana S 5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenber 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenber 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenber 5834 Cymbella microcephala (Cymbella microcephala (Cymbella silesiaca Bleist 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		-	-	+	+	-	-	-
5546 Gyrosigma 5547 Frustulia rhomboides (Eh 5551 Cyclotella michiganiana S 5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenbet 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenbet 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbet 5826 Cymbella gracilis (Rabbo 5836 Cymbella silesiaca Bleist 5836 Cymbella silesiaca Bleist 5856 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berket 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		-	+	+	+	-	+	+
5547 Frustulia rhomboides (Eh 5551 Cyclotella michiganiana S 5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenbee 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenber 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabbo 5834 Cymbella silesiaca Bleiso 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	, , ,	+	-	-	-	-	-	-
5551 Cyclotella michiganiana S 5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenbet 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenbet 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbet 5834 Cymbella gracilis (Rabhot 5836 Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berket 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		+	-	-	+	-	-	+
5702 Achnanthes minutissima 5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenber 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenber 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenber 5826 Cymbella gracilis (Rabho 5836 Cymbella microcephala Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	-	+	+	+	-	+
5726 Eucocconeis 5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenbei 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbei 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (Cymbella microcephala (Cymbella prostata Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berkei 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		+	+	+	+	-	-	+
5728 Epithemia argus Kutzing 5733 Eunotia pectinalis (Kutzin 5734 Eunotia lunaris (Ehrenbe 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabbo 5834 Cymbella gracilis (Rabbo 5836 Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	702 Achnanthes minutissima Kutzing	+	+	+	+	+	+	+
5733 Eunotia pectinalis (Kutzir 5734 Eunotia lunaris (Ehrenbe 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (5836 Cymbella silesiaca Bleiso 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	'26 Eucocconeis	-	+	-	-	-	+	+
5734 Eunotia lunaris (Ehrenbe 5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (Compella Silesiaca Bleiso 5836 Cymbella silesiaca Bleiso 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	'28 <i>Epithemia argus</i> Kutzing	-	-	-	+	-	+	-
5751 Navicula incerta Grunow 5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (5836 Cymbella silesiaca Bleiso 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	733 Eunotia pectinalis (Kutzing) Rabenhorst	-	+	-	+	+	-	+
5767 Nitzschia fonticola Gruno 5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (5836 Cymbella silesiaca Bleiso 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	734 Eunotia lunaris (Ehrenberg) Grunow	-	-	+	-	-	+	-
5778 Stauroneis anceps Ehrer 5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (5836 Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	751 Navicula incerta Grunow	-	-	-	-	-	+	+
5792 Neidium iridis (Ehrenberg 5794 Pinnularia flexuosa Cleve 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenberg 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (Sasa Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	767 Nitzschia fonticola Grunow	-	+	-	-	+	+	+
5794 Pinnularia flexuosa Clevel 5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (5836 Cymbella silesiaca Bleiso 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	778 Stauroneis anceps Ehrenberg	-	-	-	-	+	-	-
5805 Cocconies 5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (5836 Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	792 Neidium iridis (Ehrenberg) Cleve	+	+	-	-	+	+	-
5821 Eunotia exigua (Brebisso 5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (5836 Cymbella silesiaca Bleiso 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	794 Pinnularia flexuosa Cleve	-	-	-	-	+	-	-
5825 Fragilaria pinata Ehrenbe 5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (5836 Cymbella silesiaca Bleiso 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	305 Cocconies	-	-	-	-	-	-	+
5826 Cymbella gracilis (Rabho 5834 Cymbella microcephala (5836 Cymbella microcephala (5836 Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	321 Eunotia exigua (Brebisson) Grunow	-	+	+	-	+	-	-
5834 Cymbella microcephala C 5836 Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	325 Fragilaria pinata Ehrenberg	-	+	-	-	+	-	-
5834 Cymbella microcephala C 5836 Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		-	-	-	+	_	-	-
5836 Cymbella silesiaca Bleisc 5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		+	+	+	+	+	+	+
5854 Pinnularia borealis Ehren 5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	•	+	+	+	+	+	+	+
5860 Diatoma vulgare Bory 5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	•	_	_	_	+	_	_	_
5865 Cymbella prostata (Berke 5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		_	_	_	_	+	+	+
5866 Surirella ovata Kutzing 5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		_	_	+	+	+	+	<u>-</u>
5870 Navicula radiosa Kutzing 5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		_	_	_	+	_	_	_
5871 Cymbella lapponica 5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	•	+	_	+	+	+	+	+
5873 Gomphonema minutum 5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh			+		· <u>-</u>	_	+	+
5874 Nitzschia palea (Kutzing) 5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		+		+	_	_	+	
5881 Diatoma elongatum Agar 5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh	•	· +	+	+	+	+	+	+
5882 Anomoenies vitrea Ross 5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		•		•	'	+	•	'
5884 Gomphonema angustum 5887 Navicula pupula Kutzing 5908 Diatoma tenuis Agardh		+	+	+	+	+	+	+
5887 <i>Navicula pupula</i> Kutzing 5908 <i>Diatoma tenuis</i> Agardh		т	т		+	т	+	т
5908 Diatoma tenuis Agardh		-	+	+	т	-	+	-
•		+	+	+	-	-	+	-
5916 Fragilaria capucina Grund	•	+	-	-	-	-	-	-
	16 Fragilaria capucina Grunow	+	-	-	-	-	+	+
Dinoflagellate	Dinoflagellate							
•	•	_	+	_	_	_	_	_

APPENDIX D

BENTHIC INVERTEBRATE RAW DATA, MEADOWBANK STUDY LAKES AND BAKER LAKE, 2008

Appendix D: Benthic invertebrate raw data (total number of organisms in two 0.023m² grabs), Meadowbank study lakes and Baker Lake, 2008.

Station			TPS	5				TPE					TPN					SP					TE		
Replicate	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
ROUNDWORMS																									
P. Nemata	4	3	3	5	1	11	5	31	20	17	3	3	-	1	-	5	3	5	1	4	5	2	2	1	1
<u>FLATWORMS</u>																									
P. Platyhelminthes																									
Cl. Turbellaria																									
indeterminate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ANNELIDS																									
P. Annelida																									
WORMS																									
Cl. Oligochaeta																									
F. Enchytraeidae	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Naididae																									
Nais communis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nais	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Tubificidae																									
Limnodrilus hoffmeisteri	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rhyacodrilus coccineus	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rhyacodrilus sodalis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
immatures with hair chaetae	-	-	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
immatures without hair chaetae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Lumbriculidae																									
Lumbriculus	-	1	1	-	-	4	-	-	1	1	-	-	1	-	-	-	-	-	-	-	-	1	-	1	-
ARTHROPODS																									
P. Arthropoda																									
MITES																									
Cl. Arachnida																									
O. Acarina	-	-	-	1	-	14	-	3	12	10	-	-	1	-	-	-	2	2	-	-	1	2	-	2	-
HARPACTICOIDS																									
O. Harpacticoida	-	-	-	-	-	-	-	3	1	15	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
SEED SHRIMPS																									
Cl. Ostracoda	38	30	17	33	16	101	88	161	144	83	17	8	3	-	5	7	4	9	5	-	-	2	1	1	6
TADPOLE SHRIMP																									
O. Notostraca																									
Lepidurus arcticus	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Appendix D: Benthic invertebrate raw data (total number of organisms in two 0.023m² grabs), Meadowbank study lakes and Baker Lake, 2008.

Station			TPS	;				TPE					TPN					SP					ΤE		
Replicate	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
INSECTS																									
Cl. Insecta																									
CADDISFLIES																									
O. Trichoptera																									
F. Limnephilidae																									
Grensia praeterita	-	-	-	-	1	1	-	1	-	-	2	5	2	-	-	1	-	-	-	-	-	-	1	3	-
pupae .	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-
immature	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TRUE FLIES																									
O. Diptera																									
MIDGES																									
F. Chironomidae																									
chironomid pupae	3	-	-	1	-	-	-	2	1	_	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-
S.F. Chironominae																									
Chironomus	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-
Cladotanytarsus	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-
Constempellina	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Corynocera	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	1	-
Micropsectra	19	_	5	4	3	29	46	13	31	29	-	_	1	-	7	_	_	1	1	_	_	_	_	_	-
Paratanytarsus	9	1	-	2	-	148	114	211	83	97	-	-	-	-	3	-	-	-	-	-	-	-	1	8	1
Polypedilum	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-
Sergentia	-	-	-	-	-	1	-	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stempellinella	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	1	-	-	-	_	-
Stictochironomus	-	2	4	7	2	5	-	3	18	15	-	-	-	-	1	-	8	2	3	5	2	1	2	-	1
Tanytarsus	-	3	1	_	-	8	_	-	-	-	-	_	_	-	_	_	_	_	_	_	1	2	_	_	4
S.F. Diamesinae																									
Protanypus	-	-	2	1	-	-	-	-	1	_	1	1	1	-	-	1	1	1	-	_	1	-	1	1	3
Pseudodiamesa	3	6	13	3	5	_	_	-	-	-	-	1	_	-	-	_	_	_	-	_	-	_	-	_	-
S.F. Orthocladiinae																									
Abiskomyia	1	-	4	_	-	3	6	3	1	3	-	-	-	-	1	-	1	1	_	_	1	_	_	_	-
Corynoneura	-	-	-	_	-	_	-	-	-	-	-	_	-	-	-	_	-	-	-	_	-	_	-	_	-
Cricotopus	-	_	-	_	_	3	1	1	3	_	_	_	_	_	-	_	_	_	_	_	_	_	-	_	-
Heterotrissocladius	31	4	45	27	44	19	21	25	5	22	34	13	35	7	32	2	1	2	2	-	4	8	4	1	5
Hydrobaenus	1	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_

Appendix D: Benthic invertebrate raw data (total number of organisms in two 0.023m² grabs), Meadowbank study lakes and Baker Lake, 2008.

Station			TPS	;				TPE					TPN	l				SP					TE		
Replicate	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Mesocricotopus	6	_	1	_	1	_	_	_	_	_	3	1	_	_	_	_	_	_	_	2	_	_	_	_	2
Paracladius [']	-	-	-	-	-	-	-	1	_	_	-	-	-	-	-	_	-	-	2	-	-	-	-	-	-
Parakiefferiella	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
Psectrocladius	1	-	_	3	-	6	7	11	7	7	4	1	_	_	2	_	_	_	_	-	-	1	_	_	_
Zalutschia	1	-	-	-	-	-	_	-	_	3	-	-	1	-	-	_	2	4	3	-	-	1	-	3	-
indeterminate	-	-	-	-	-	-	-	2	4	_	-	-	-	-	-	_	_	-	-	-	-	-	-	-	-
S.F. Prodiamesinae																									
Monodiamesa	-	-	_	_	-	2	1	-	-	1	-	1	1	1	-	_	_	1	_	-	3	1	_	_	2
S.F. Tanypodinae																									
Ablabesmyia	-	-	-	-	-	-	_	-	_	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
Procladius	1	3	_	2	2	12	11	6	22	22	2	2	3	_	3	2	_	1	4	1	9	4	1	4	8
Thienemannimyia complex	13	3	-	2	2	10	7	12	7	5	15	5	2	-	9	-	-	-	-	-	1	-	-	-	-
indeterminate	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
F. Empididae																									
Chelifera/Neoplasta	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	2	-	-
MOLLUSCS																									
P. Mollusca																									
CLAMS																									
Cl. Bivalvia																									
F. Sphaeriidae																									
Cyclocalyx/Neopisidium	4	8	17	19	17	11	26	32	4	9	3	3	12	4	6	5	6	9	6	5	12	23	13	8	9
Cyclocalyx	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
Sphaerium nitidum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL NUMBER OF ORGANISMS ¹	94	32	94	72	77	277	240	329	206	242	64	33	61	12	64	11	22	26	21	15	37	45	25	32	35
TOTAL NUMBER OF TAXA ²	13	10	10	11	9	16	10	14	16	15	8	10	11	3	9	5	8	11	7	6	12	11	8	10	9

Notes:

¹ Number of organisms totals exclude nematodes & ostracods.

² Number of taxa totals exclude nematodes & ostracods, immatures & pupae (Tubificidae, Limnephilidae, Chironomidae), and indeterminates (Orthocladiinae, Tanypodinae).

Appendix D: Benthic invertebrate raw data (total number of organisms in two 0.023m² grabs), Meadowbank study lakes and Baker Lake, 2008.

Station			WA	L				NUG					BBD					BPJ					BAP		
Replicate	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
ROUNDWORMS																									
P. Nemata	3	4	1	1	5	3	5	6	8	2	4	5	10	5	9	4	2	10	26	30	18	19	34	-	13
<u>FLATWORMS</u>																									
P. Platyhelminthes																									
Cl. Turbellaria																									
indeterminate	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ANNELIDS																									
P. Annelida																									
WORMS																									
Cl. Oligochaeta																									
F. Enchytraeidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	1	-	-
F. Naididae																									
Nais communis	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	2	_	-	-	-	-
Nais	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
F. Tubificidae																									
Limnodrilus hoffmeisteri	-	-	-	-	-	_	-	-	-	-	-	4	3	-	-	-	-	-	-	-	_	-	-	-	-
Rhyacodrilus coccineus	-	-	-	-	-	_	2	1	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
Rhyacodrilus sodalis	-	-	-	-	-	-	-	-	-	-	6	8	11	5	15	-	-	-	-	-	2	-	2	-	-
immatures with hair chaetae	-	-	-	-	1	_	-	-	1	-	-	5	1	-	-	-	-	-	-	-	_	-	-	-	-
immatures without hair chaetae	-	-	-	-	-	_	-	-	-	-	-	1	-	-	-	-	-	-	-	-	_	-	-	-	-
F. Lumbriculidae																									
Lumbriculus	1	_	_	_	-	_	_	_	1	_	-	-	-	-	-	-	_	_	_	_	_	-	_	_	-
ARTHROPODS																									
P. Arthropoda																									
MITES																									
Cl. Arachnida																									
O. Acarina	1		1		2	1	2	1	3	4						2	4		q	9	4	4	_	5	2
HARPACTICOIDS	1	-	'	-	2	1	2	'	3	- 1	-	-	-	-	-	2	,	-	9	9	4	4	5	5	2
													2		4				3	13					
O. Harpacticoida SEED SHRIMPS	-	-	-	-	-	-	-	-	-	-	-	-	3	-	'	-	-	-	3	13	-	-	-	-	-
	6	3	2	4	_	3	2	4	10	3		2	20	4	26	0	4	6	20	20	20	10	_	0	_
Cl. Ostracoda TADPOLE SHRIMP	6	3	2	4	5	3	3	4	19	3	-	2	29	7	36	9	4	ь	39	39	29	13	5	8	5
O. Notostraca																									
Lepidurus arcticus		-	-	-	-	-	1		-	-	-		-	-	-	-			-	-	-		-	-	

Appendix D: Benthic invertebrate raw data (total number of organisms in two 0.023m² grabs), Meadowbank study lakes and Baker Lake, 2008.

Station			WA	L			I	NUG					BBD					BPJ					BAP		
Replicate	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
INSECTS																									
Cl. Insecta																									
CADDISFLIES																									
O. Trichoptera																									
F. Limnephilidae																									
Grensia praeterita	1	-	-	-	-	_	_	-	_	-	-	-	-	-	_	-	_	-	1	-	_	-	4	-	-
pupae ,	-	_	_	_	-	_	-	_	_	_	-	-	-	-	-	-	_	-	_	-	_	_	_	-	_
immature	-	_	_	_	-	_	-	_	_	_	-	-	-	-	-	-	_	-	_	2	_	_	_	-	_
TRUE FLIES																									
O. Diptera																									
MIDGES																									
F. Chironomidae																									
chironomid pupae	_	_	_	_	-	_	_	-	1	_	-	-	2	1	3	-	_	-	2	-	1	1	-	-	-
S.F. Chironominae																									
Chironomus	_	_	_	_	2	_	_	-	_	_	-	-	-	_	-	-	_	-	-	-	_	_	-	-	_
Cladotanytarsus	_	_	_	_	1	_	_	-	_	_	-	-	-	_	-	-	_	-	-	-	_	_	-	-	_
Constempellina	_	-	-	-	-	_	-	-	_	-	-	-	-	-	2	-	_	-	2	2	3	2	11	2	2
Corynocera	1	_	_	_	37	_	_	3	48	_	-	-	-	-	-	-	_	-	_	-	_	_	_	-	_
Micropsectra	-	_	_	_	4	1	4	3	21	_	-	2	7	-	6	1	_	-	6	41	25	7	8	4	3
Paratanytarsus	-	_	6	1	1	_	7	6	21	_	1	-	-	-	2	-	_	1	15	22	7	10	15	5	2
Polypedilum	-	_	_	_	-	_	-	_	_	_	-	-	-	9	-	-	_	-	_	-	_	_	_	-	_
Sergentia	_	-	-	-	1	_	_	-	25	-	4	5	7	-	21	-	_	-	-	-	_	-	_	-	-
Stempellinella	_	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	_	-	-	-	1	-	_	-	-
Stictochironomus	8	5	25	-	-	1	3	6	22	2	14	151	334	259	213	56	29	67	89	55	1	-	-	-	-
Tanytarsus	_	1	-	-	37	_	2	6	28	1	-	3	16	2	8	2	-	1	7	-	3	1	8	2	6
S.F. Diamesinae																									
Protanypus	-	_	_	_	-	_	-	1	1	_	-	2	3	1	-	-	1	1	7	6	2	4	4	-	1
Pseudodiamesa	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	1	_	2	1	_	9	2	3	3	3
S.F. Orthocladiinae																									
Abiskomyia	_	_	-	_	_	1	2	3	5	3	_	2	2	5	2	3	2	1	7	4	3	2	3	2	3
Corynoneura	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-	2	_	-	_	_	_
Cricotopus	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Heterotrissocladius	_	_	-	_	1	13	22	10	24	1	3	4	33	19	91	12	9	6	109	67	164	41	80	97	104
Hvdrobaenus	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Appendix D: Benthic invertebrate raw data (total number of organisms in two 0.023m² grabs), Meadowbank study lakes and Baker Lake, 2008.

Station			WA	L			I	NUG					BBD					BPJ					BAP		
Replicate	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Mesocricotopus	-	-	-	_	-	1	_	-	-	-	-	-	-	-	-	-	1	-	1	-	5	4	4	3	4
Paracladius .	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	2	2	3	1	1	-
Parakiefferiella	-	-	-	-	-	1	-	1	-	-	4	-	-	-	-	-	-	-	15	12	3	1	3	-	1
Psectrocladius	2	2	3	2	1	1	-	-	-	-	1	-	-	-	-	-	_	-	-	-	_	-	-	-	-
Zalutschia	-	-	-	-	-	-	8	1	-	1	2	-	-	-	-	-	-	-	-	10	_	-	-	-	-
indeterminate	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	_	-	-	2	_	-	-	-	-
S.F. Prodiamesinae																									
Monodiamesa	1	4	-	6	-	1	2	1	3	3	2	-	9	3	2	1	_	7	2	6	1	1	_	-	_
S.F. Tanypodinae																									
Ablabesmyia	-	-	-	_	-	1	_	-	-	-	_	-	-	-	-	-	_	-	_	-	_	_	_	-	_
Procladius	2	4	5	_	-	1	8	6	9	-	_	-	1	4	-	-	1	1	5	8	1	1	4	1	1
Thienemannimyia complex	-	1	-	_	-	_	_	-	2	-	1	-	-	-	-	-	_	-	1	6	_	1	_	-	_
indeterminate	-	-	-	_	-	_	_	-	-	-	_	-	-	-	-	-	_	-	_	-	_	_	_	-	_
F. Empididae																									
Chelifera/Neoplasta	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	-	1	1	-
MOLLUSCS																									
P. Mollusca																									
CLAMS																									
Cl. Bivalvia																									
F. Sphaeriidae																									
Cyclocalyx/Neopisidium	8	10	-	14	13	13	15	6	16	6	-	7	20	-	81	1	2	-	28	24	7	5	1	5	3
Cyclocalyx	1	-	14	3	31	2	-	1	10	-	-	-	5	1	4	-	-	-	-	-	-	-	-	-	-
Sphaerium nitidum	1	-	-	-	1	-	-	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL NUMBER OF ORGANISMS ¹	27	27	54	26	133	39	78	57	245	18	38	194	457	309	451	79	46	87	313	296	245	90	158	131	135
TOTAL NUMBER OF TAXA ²	11	7	6	5	13	14	13	17	17	8	10	10	14	10	13	9	8	9	21	19	19	16	18	13	13

Notes:

¹ Number of organisms totals exclude nematodes & ostracods.

² Number of taxa totals exclude nematodes & ostracods, immatures & pupae (Tubificidae, Limnephilidae, Chironomidae), and indeterminates (Orthocladiinae, Tanypodinae).

APPENDIX E EXPLOSIVES LAKE ASSESSMENT MEMO, 2008

Technical Memorandum

Date: 10 October 2008

To: Meadowbank AEMP Monitoring Report 2008

Cc:

From: Gary Mann

RE: Meadowbank AEMP Targeted Study: "Explosives Lake" Fish Status

Assessment Results

Background and Summary

The location of the explosives plant for Agnico Eagle Mines Ltd's (AEM) Meadowbank Gold Project was moved northwest of the mine site in early 2008 (**Figure 1**; **Photo 1**). The new location is adjacent to a small, unnamed lake (herein referred to as "Explosives Lake") from which water will be sourced for operation of the explosives plant. This targeted study, implemented on 22 July 2008, was developed to address key information gaps regarding the lake and will be included as an appendix of the 2008 Aquatic Effects Monitoring Program (AEMP). The lake was found to contain lake trout and sufficient overwintering habitat to support the population year round. Planned water use was shown to have a negligible impact to lake hydrology.

Objectives

The main objectives of this targeted AEMP study were to:

- Describe local hydrology Provide a general understanding of water flow paths in this part of the site.
- Characterize bathymetry/hydrology No information on depth features or bathymetry (max depth, mean depth) of Explosives Lake exists and whether it is deep enough to provide sufficient overwintering habitat to sustain a fish population. AEM plans to withdraw up to 200 m³ of water per month. Outlet discharge rates were estimated to determine the approximate influence of this withdrawal on water volume and on daily discharge.
- Fish presence/connectivity Adequate bathymetry and presence of fish will confirm overwintering
 potential and verify the issue of fish habitat from DFO's perspective. The presence/absence of fish was
 determined by setting gill nets in the lake. Connectivity with the much larger Turn Lake was evaluated by
 assessing the streams to the lake.

Local Hydrology

As seen in **Figure 1**, Explosives Lake receives water from a small headwater lake to the northwest. Explosives Lake drains via a stream at the northeast end into a small lake (see **Photos 2 - 4**), which drains into Turn Lake (i.e., part of the Second Portage Lake drainage system via Drilltrail Lake).

Bathymetry/Hydrology Results

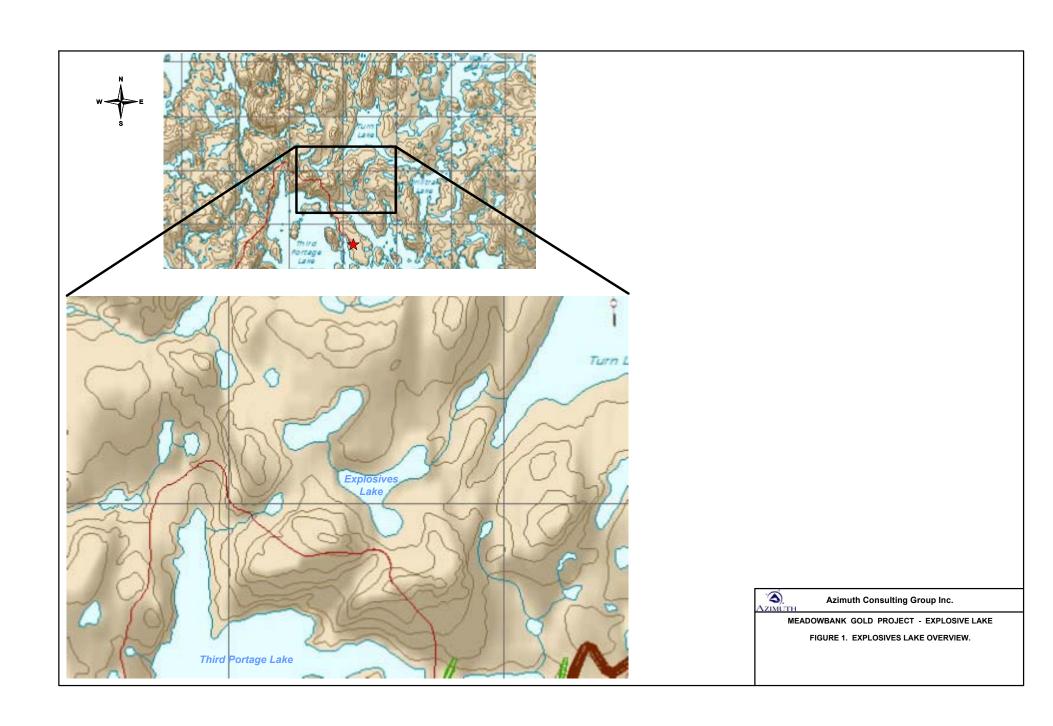
The bathymetric survey was conducted using a Garmin GPSMAP 76 GPS and a Hawkeye Digital Sonar. Survey locations are shown in **Figure 2**. Surfer was used to create a 3-D grid of the lake (based on kriging), bathymetric contours, and surface/volume estimates. The results for bathymetry are shown in **Figure 3**. Lake surface area and volume were estimated at approximately 25 ha and 0.6 Mm³, respectively. Mean depth, therefore, would be about 2.4m.

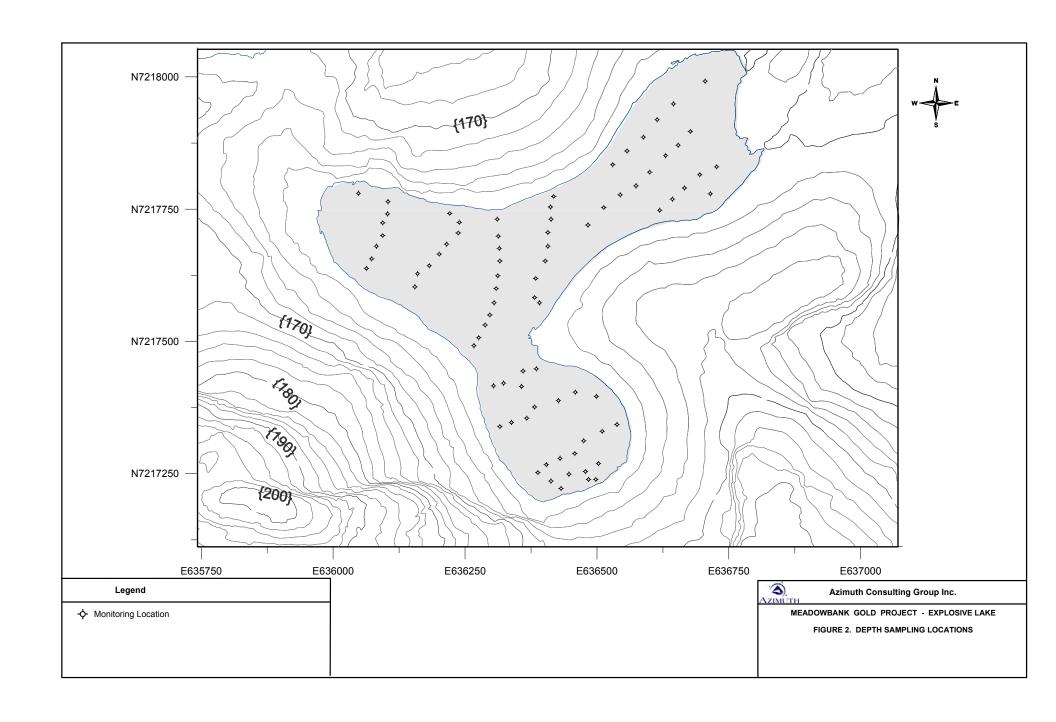
Discharge estimates were obtained by combining the rough cross-sectional area of the four small (20 to 25-cm wide) channels and approximated velocities. The resulting estimate was 15 to 20 L/s, or approximately 39,000 to 53,000 m³/month. It is important to note that this estimate was made well past freshet.

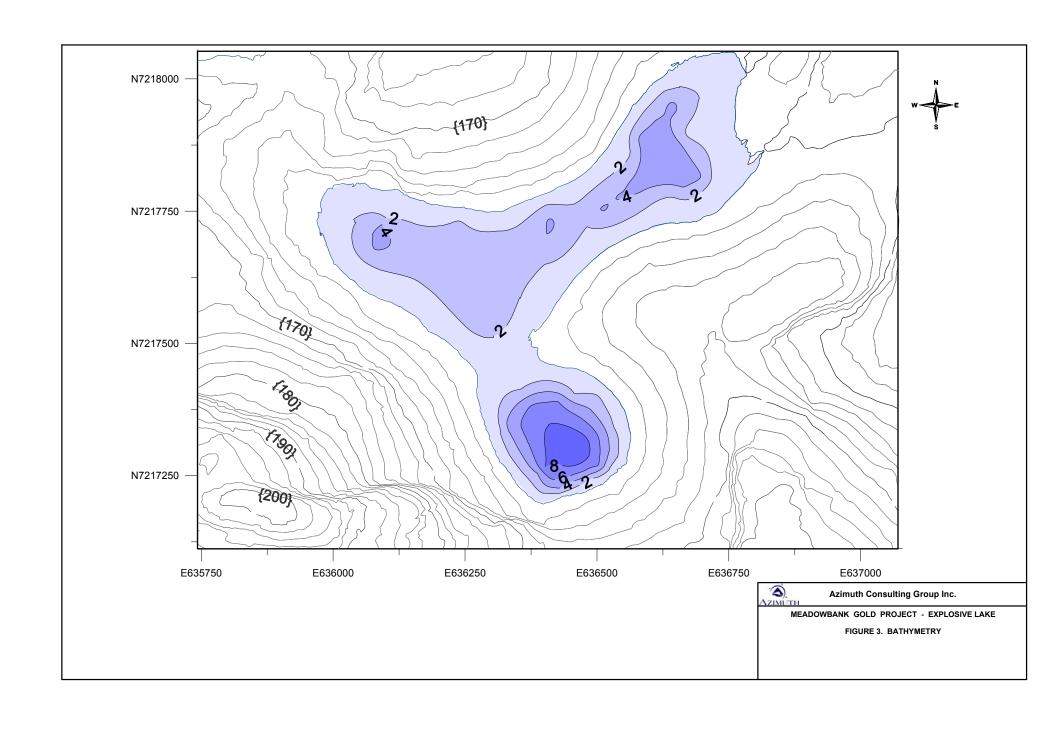
Planned Water Use by AEM

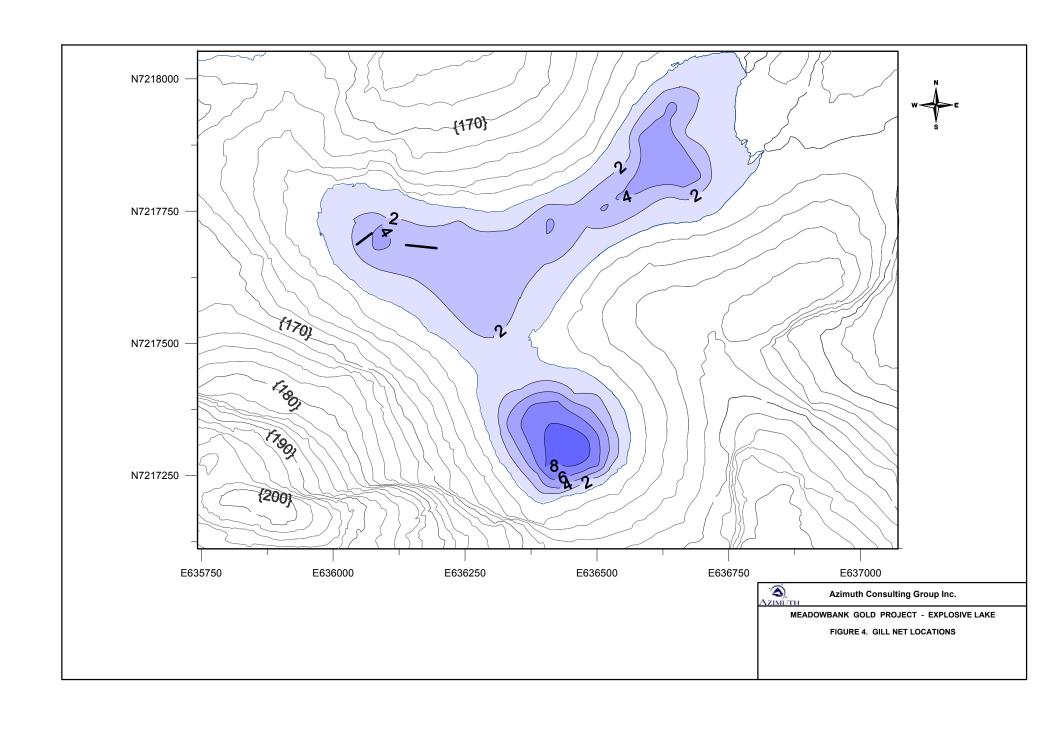
AEM's planned monthly water use for the explosive plant is 200 m³. Removing this small amount of water would lower the lake by less than 0.1 cm; it represents 0.51% of estimated monthly discharge volume and 0.03% of the total lake volume. Consequently, the planned water use would have a negligible impact on lake hydrology.

Fish Presence/Absence and Habitat Suitability


The presence/absence of fish was evaluated by setting two 50-m long gill nets in the lake (**Figure 4**). Both small mesh (38 mm [1.5"]) and short set duration were employed to minimize harm to fish. Four lake trout were caught (**Table 1**; **Photo 5**). Based on the bathymetry, there is clearly suitable habitat for overwintering in Explosives Lake.


Net ID	Species	Length
E001	LKTR	213
E002	LKTR	263
E002	LKTR	238
F002	IKTR	255


Table 1. Gill net catch results for Explosives Lake.


Lake Connectivity

As discussed previously, Explosives Lake discharges to an unnamed lake to the NE that discharges to Turn Lake. There are two outlet paths from Explosives Lake: the N flow path is likely only active during freshet conditions and appears to be dominated by terrestrial vegetation; the S flow path is the primary discharge point. It starts with a boulder field (**Photo 2**) and a diffuse, saturated grassy area that are unlikely passable by fish. It then continues in four small channels (**Photos 3 and 4**) over a fairly steep gradient to the next small lake; no fish were observed in these channels during our survey. Overall, connectivity appears low (possibly during freshet) to nil (most likely).

Explosives Lake Photos

Photo 1. Explosives Lake overview showing drainage to Turn Lake (looking from south) .

Photo 2. South outlet path looking upstream to boulder field; unlikely passable by fish.

Photo 3. South flow path, looking downstream to channel starting after grassy area.

 $\mbox{\bf Photo}~\mbox{\bf 4.}~$ One of the south flow path channels looking upstream to grassy.

Photo 5. Lake trout caught in Explosives Lake

APPENDIX F

LABORATORY REPORTS, 2008

- 1. Water and Sediment Cores Chemistry Data for Meadowbank lakes July 2008
- 2. Water Chemistry Data for Baker Lake July 2008
- **3.** Water and Sediment Chemistry Data for Meadowbank lakes August 2008
- **4.** Water, Sediment and Sediment Cores Chemistry Data for Baker Lake August 2008
- **5.** Water Chemistry Data for Meadowbank lakes and Baker Lake September 2008

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

Certificate of Analysis

AZIMUTH CONSULTING GROUP INC.

ATTN: RANDY BAKER

Reported On: 22-AUG-08 03:49 PM 218 - 2902 WEST BROADWAY

Revision: 1

VANCOUVER BC V6K 2G8

Lab Work Order #: L664196 Date Received: 01-AUG-08

Project P.O. #:

Job Reference: MEADOW BANK

Legal Site Desc:

CofC Numbers: C098382, C098383, C098384, C098385, C098386, C098387, C098388, C098389, C098390, C098391,

C098395, C098396, C098409, C098410, C098411

Other Information:

Comments: Please note that due to the insufficient sample volumes, Particle Size Analysis was not performed on the sediment samples.

> NATASHA MARKOVIC-MIROVIC Account Manager

latase Morkovic-L

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS LABORATORY GROUP ANALYTICAL REPORT

		Sample ID Description	L664196-1	L664196-2	L664196-3	L664196-4	L664196-5
		ampled Time	19-JUL-08	19-JUL-08	19-JUL-08	19-JUL-08	19-JUL-08
		Client ID	SP-SC-01	SP-SC-02	SP-SC-03	SP-SC-04	SP-SC-05
Brouping	Analyte						
SOIL							
Physical Tests	pH (pH)		6.12	6.04	5.91	6.10	6.08
Organic / Inorganic Carbon	Total Organic Carbon (%)		4.2	4.1	5.2	3.9	4.6
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		31.6	28.2	30.5	36.5	53.7
	Barium (Ba) (mg/kg)		139	142	125	153	148
	Beryllium (Be) (mg/kg)		2.26	1.96	1.72	2.26	1.71
	Cadmium (Cd) (mg/kg)		0.64	0.67	0.61	0.67	0.96
	Chromium (Cr) (mg/kg)		77.9	69.6	55.2	76.5	52.0
	Cobalt (Co) (mg/kg)		16.0	16.4	12.6	18.3	18.9
	Copper (Cu) (mg/kg)		98.2	89.4	75.9	100	72.9
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0330	0.0397	0.0515	0.0420	0.0445
	Molybdenum (Mo) (mg/kg)		5.9	6.1	6.9	9.1	11.0
	Nickel (Ni) (mg/kg)		53.2	68.0	61.9	66.7	70.6
	Selenium (Se) (mg/kg)		<2.0	<2.0	<4.0	<2.0	<3.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		39.6	36.2	29.9	42.2	24.9
	Zinc (Zn) (mg/kg)		108	101	87.8	114	76.5

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date	ı	L664196-7 19-JUL-08	L664196-8 19-JUL-08	L664196-9 19-JUL-08	L664196-10 19-JUL-08
	Sampled Time	•	19-JUL-00	19-JUL-00	19-JUL-06	19-301-06
	Client ID	SP-SC-06	SP-SC-07	SP-SC-08	SP-SC-09	SP-SC-10
rouping	Analyte					
SOIL						
Physical Tests	pH (pH)	6.24	6.24	6.06	6.19	6.20
Organic / norganic Carbon	Total Organic Carbon (%)	5.6	4.5	4.6	5.1	5.4
Metals	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	40.8	25.3	19.9	26.4	26.7
	Barium (Ba) (mg/kg)	134	118	132	113	119
	Beryllium (Be) (mg/kg)	1.71	1.81	2.08	1.82	1.93
	Cadmium (Cd) (mg/kg)	0.68	<0.50	0.76	<0.50	<0.50
	Chromium (Cr) (mg/kg)	53.7	62.0	70.9	62.4	65.0
	Cobalt (Co) (mg/kg)	17.5	13.1	14.7	12.9	14.0
	Copper (Cu) (mg/kg)	70.7	72.2	86.9	76.5	80.4
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0450	0.0376	0.0411	0.0374	0.0452
	Molybdenum (Mo) (mg/kg)	7.4	5.1	4.2	5.1	5.3
	Nickel (Ni) (mg/kg)	64.3	47.9	85.1	45.2	50.4
	Selenium (Se) (mg/kg)	<4.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)	27.8	33.9	36.9	32.8	33.7
	Zinc (Zn) (mg/kg)	83.8	91.4	114	92.7	97.8

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-11	L664196-12	L664196-13	L664196-14	L664196-15
		Sampled Date Sampled Time	19-JUL-08	19-JUL-08	19-JUL-08	19-JUL-08	19-JUL-08
		Client ID	SP-SC-11	SP-SC-12	SP-SC-13	SP-SC-14	SP-SC-15
Grouping	Analyte						
SOIL							
Physical Tests	рН (рН)		6.08	5.91	5.92	5.88	6.02
Organic / Inorganic Carbon	Total Organic Carbon (%)		5.1	4.9	5.5	5.7	5.0
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		27.6	23.4	56.2	29.8	31.8
	Barium (Ba) (mg/kg)		121	121	137	149	143
	Beryllium (Be) (mg/kg)		1.97	1.82	1.82	2.07	2.07
	Cadmium (Cd) (mg/kg)		0.50	0.59	0.77	0.69	0.75
	Chromium (Cr) (mg/kg)		68.1	64.2	61.2	69.5	72.0
	Cobalt (Co) (mg/kg)		13.7	12.5	14.9	16.5	16.3
	Copper (Cu) (mg/kg)		82.1	79.8	79.8	89.1	92.4
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0443	0.0442	0.0633	0.0606	0.0522
	Molybdenum (Mo) (mg/kg)		5.5	4.8	9.9	6.5	6.3
	Nickel (Ni) (mg/kg)		50.9	51.8	54.0	76.5	75.1
	Selenium (Se) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<3.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		35.2	34.0	30.2	36.8	37.0
	Zinc (Zn) (mg/kg)		102	97.2	83.0	110	106

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-16	L664196-17	L664196-18	L664196-19	L664196-20
		Sampled Date Sampled Time	19-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08
		Client ID	SP-SC-DUP	TE-SC-01	TE-SC-02	TE-SC-03	TE-SC-04
rouping	Analyte						
SOIL							
Physical Tests	pH (pH)		6.15	6.08	5.94	5.94	5.98
Organic / Inorganic Carbon	Total Organic Carbon (%)		5.4	3.2	3.6	4.3	4.4
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		30.8	21.3	30.2	33.4	35.6
	Barium (Ba) (mg/kg)		134	135	120	133	138
	Beryllium (Be) (mg/kg)		2.13	2.36	1.99	1.98	1.90
	Cadmium (Cd) (mg/kg)		0.67	0.53	0.66	0.84	0.81
	Chromium (Cr) (mg/kg)		76.3	60.3	49.8	48.2	45.8
	Cobalt (Co) (mg/kg)		15.9	13.7	12.6	14.7	16.6
	Copper (Cu) (mg/kg)		91.0	72.0	64.4	66.8	63.5
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0516	0.0269	0.0355	0.0422	0.0397
	Molybdenum (Mo) (mg/kg)		6.1	6.1	9.1	8.9	10.5
	Nickel (Ni) (mg/kg)		57.1	46.8	42.9	50.6	48.7
	Selenium (Se) (mg/kg)		<2.0	<2.0	<3.0	<2.0	<5.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		38.4	38.3	31.4	29.3	26.0
	Zinc (Zn) (mg/kg)		110	107	89.9	86.8	84.1
	() (3 3)			-			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-21	L664196-22	L664196-23	L664196-24	L664196-25
		Sampled Date Sampled Time	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08
		Client ID	TE-SC-05	TE-SC-06	TE-SC-07	TE-SC-08	TE-SC-09
rouping	Analyte						
OIL							
Physical Tests	pH (pH)		5.94	5.67	6.03	5.89	5.85
Organic / norganic Carbon	Total Organic Carbon (%)		3.9	6.4	4.6	4.2	2.9
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		28.4	8.8	20.9	45.0	30.9
	Barium (Ba) (mg/kg)		147	164	135	132	130
	Beryllium (Be) (mg/kg)		2.01	2.07	2.31	1.87	1.98
	Cadmium (Cd) (mg/kg)		0.61	0.78	0.52	0.87	0.69
	Chromium (Cr) (mg/kg)		50.1	53.1	56.1	44.3	52.6
	Cobalt (Co) (mg/kg)		13.6	8.4	12.4	14.8	13.2
	Copper (Cu) (mg/kg)		66.2	67.7	68.6	63.8	66.3
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0385	0.0593	0.0338	0.0356	0.0293
	Molybdenum (Mo) (mg/kg)		8.1	<4.0	5.9	11.1	8.7
	Nickel (Ni) (mg/kg)		54.9	50.6	50.4	52.7	39.8
	Selenium (Se) (mg/kg)		<10	<2.0	<2.0	<3.0	<2.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		31.6	32.8	36.0	25.9	30.7
	Zinc (Zn) (mg/kg)		95.1	109	108	82.8	86.1
	. , , , ,						

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-26	L664196-27	L664196-28	L664196-29	L664196-30
		Sampled Date Sampled Time	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08
		Client ID	TE-SC-10	TE-SC-11	TE-SC-12	TE-SC-13	TE-SC-14
Grouping	Analyte						
SOIL							
Physical Tests	pH (pH)		5.81	6.01	5.90	5.76	6.03
Organic / Inorganic Carbon	Total Organic Carbon (%)		3.2	3.6	4.1	3.4	4.8
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		11.3	43.7	34.6	19.1	36.6
	Barium (Ba) (mg/kg)		114	88.8	112	109	159
	Beryllium (Be) (mg/kg)		1.89	1.67	1.54	1.97	1.70
	Cadmium (Cd) (mg/kg)		0.61	0.72	1.16	0.55	1.01
	Chromium (Cr) (mg/kg)		48.1	40.6	37.6	49.8	38.1
	Cobalt (Co) (mg/kg)		9.1	12.2	13.6	11.7	20.0
	Copper (Cu) (mg/kg)		64.6	59.3	58.5	61.5	61.6
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0312	0.0081	0.0368	0.0297	0.0458
	Molybdenum (Mo) (mg/kg)		4.4	11.2	12.0	5.8	9.6
	Nickel (Ni) (mg/kg)		41.4	33.2	43.8	40.1	65.1
	Selenium (Se) (mg/kg)		<2.0	<3.0	<2.0	<2.0	<4.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		31.7	23.0	17.3	31.5	22.0
	Zinc (Zn) (mg/kg)		92.6	70.2	66.3	94.6	81.5
			32.0	70.2		34.0	01.3

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-31	L664196-32	L664196-33	L664196-34	L664196-35
		Sampled Date Sampled Time	20-JUL-08	20-JUL-08	22-JUL-08	22-JUL-08	22-JUL-08
		Client ID	TE-SC-15	TE-SC-DUP	WAL-SC-01	WAL-SC-02	WAL-SC-03
Grouping	Analyte						
SOIL							
Physical Tests	pH (pH)		5.93	5.90	6.36	6.28	6.54
Organic / Inorganic Carbon	Total Organic Carbon (%)		3.5	4.2	7.3	4.6	10.0
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		21.7	47.8	26.5	17.8	22.6
	Barium (Ba) (mg/kg)		124	136	110	81.7	78.5
	Beryllium (Be) (mg/kg)		1.91	1.91	1.41	1.06	1.06
	Cadmium (Cd) (mg/kg)		0.51	0.83	0.65	<0.50	0.53
	Chromium (Cr) (mg/kg)		48.4	45.7	52.7	41.9	41.8
	Cobalt (Co) (mg/kg)		14.3	15.5	9.6	6.5	7.5
	Copper (Cu) (mg/kg)		63.9	64.6	123	83.6	99.6
	Lead (Pb) (mg/kg)		<30	<30	35	<30	<30
	Mercury (Hg) (mg/kg)		0.0331	0.0388	0.0640	0.0297	0.0684
	Molybdenum (Mo) (mg/kg)		6.3	11.3	4.9	<4.0	4.0
	Nickel (Ni) (mg/kg)		42.6	54.0	52.8	36.8	39.4
	Selenium (Se) (mg/kg)		<2.0	<3.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		32.0	26.4	27.3	21.8	21.2
	Zinc (Zn) (mg/kg)		91.8	85.8	107	75.7	82.6

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-36	L664196-37	L664196-38	L664196-39	L664196-40
		Sampled Date Sampled Time	22-JUL-08	22-JUL-08	22-JUL-08	23-JUL-08	23-JUL-08
		Client ID	WAL-SC-04	WAL-SC-05	WAL-SC-06	WAL-SC-07	WAL-SC-08
rouping	Analyte						
SOIL							
Physical Tests	pH (pH)		6.42	7.14	6.47	6.54	6.53
Organic / Inorganic Carbon	Total Organic Carbon (%)		5.7	8.3	11.7	6.6	6.3
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		17.9	19.8	24.2	29.1	25.7
	Barium (Ba) (mg/kg)		74.2	90.0	80.0	130	140
	Beryllium (Be) (mg/kg)		0.96	1.18	1.03	1.77	1.83
	Cadmium (Cd) (mg/kg)		<0.50	0.54	0.51	<0.50	0.51
	Chromium (Cr) (mg/kg)		53.5	44.5	41.1	58.3	58.4
	Cobalt (Co) (mg/kg)		7.4	7.8	8.0	8.0	8.5
	Copper (Cu) (mg/kg)		87.1	109	103	153	160
	Lead (Pb) (mg/kg)		<30	31	<30	32	33
	Mercury (Hg) (mg/kg)		0.0386	0.0570	0.0752	0.0471	0.0490
	Molybdenum (Mo) (mg/kg)		<4.0	<4.0	4.6	9.4	9.1
	Nickel (Ni) (mg/kg)		41.6	41.7	41.1	49.7	55.2
	Selenium (Se) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<3.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		20.7	22.8	20.4	32.4	32.5
	Zinc (Zn) (mg/kg)		75.5	89.3	83.1	104	106

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-41	L664196-42	L664196-43	L664196-44	L664196-45
		Sampled Date Sampled Time	23-JUL-08	23-JUL-08	23-JUL-08	23-JUL-08	23-JUL-08
		Client ID	WAL-SC-09	WAL-SC-10	WAL-SC-11	WAL-SC-12	WAL-SC-13
rouping /	Analyte						
SOIL							
Physical Tests p	oH (pH)		6.38	6.88	6.49	6.04	6.08
Organic / Inorganic Carbon	Total Organic Carbon (%)		8.9	2.1	6.3	5.7	12.8
Metals /	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
/	Arsenic (As) (mg/kg)		44.5	31.9	19.0	23.8	29.8
E	Barium (Ba) (mg/kg)		117	133	127	77.1	102
E	Beryllium (Be) (mg/kg)		1.67	2.02	1.64	1.05	1.39
(Cadmium (Cd) (mg/kg)		0.75	0.51	0.58	<0.50	0.50
(Chromium (Cr) (mg/kg)		50.9	68.6	56.8	31.9	44.2
(Cobalt (Co) (mg/kg)		8.9	12.1	8.2	5.8	8.1
	Copper (Cu) (mg/kg)		154	143	164	76.3	133
ı	Lead (Pb) (mg/kg)		36	36	33	<30	32
ı	Mercury (Hg) (mg/kg)		0.0728	0.0319	0.0569	0.0637	0.0958
1	Molybdenum (Mo) (mg/kg)		10.0	7.6	6.4	4.8	7.8
1	Nickel (Ni) (mg/kg)		53.6	66.0	51.0	29.6	47.5
(Selenium (Se) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		29.4	37.6	31.6	21.0	26.8
	Zinc (Zn) (mg/kg)		115	130	104	68.8	99.3
				130	104	00.0	39.3

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-46	L664196-47	L664196-48	L664196-49	L664196-50
		Sampled Date Sampled Time	23-JUL-08	23-JUL-08	22-JUL-08	23-JUL-08	23-JUL-08
		Client ID	WAL-SC-14	WAL-SC-15	WAL-SC-DUP	TPE-SC-01	TPE-SC-02
Grouping	Analyte						
SOIL							
Physical Tests	pH (pH)		5.84	6.32	6.99	6.02	5.52
Organic / Inorganic Carbon	Total Organic Carbon (%)		13.6	8.7	9.9	6.6	4.5
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		38.7	29.1	20.7	<5.0	14.0
	Barium (Ba) (mg/kg)		90.8	137	63.7	125	142
	Beryllium (Be) (mg/kg)		1.29	1.89	0.99	1.38	1.82
	Cadmium (Cd) (mg/kg)		<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)		41.0	59.0	35.3	74.6	75.9
	Cobalt (Co) (mg/kg)		7.2	8.6	6.0	7.1	15.4
	Copper (Cu) (mg/kg)		117	177	81.0	44.5	47.6
	Lead (Pb) (mg/kg)		<30	41	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0861	0.0806	0.0534	0.0322	0.0314
	Molybdenum (Mo) (mg/kg)		8.4	10.7	<4.0	<4.0	5.5
	Nickel (Ni) (mg/kg)		45.0	55.3	32.7	51.3	62.5
	Selenium (Se) (mg/kg)		<4.0	<4.0	<2.0	<4.0	<2.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		25.5	35.5	20.8	31.2	37.3
	Zinc (Zn) (mg/kg)		95.7	121	65.6	76.1	97.8
	Zinc (Zn) (mg/kg)		95.7	121	65.6	76.1	97.8

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-51	L664196-52	L664196-53	L664196-54	L664196-55
		Sampled Date Sampled Time	23-JUL-08	23-JUL-08	23-JUL-08	23-JUL-08	23-JUL-08
		Client ID	TPE-SC-03	TPE-SC-04	TPE-SC-05	TPE-SC-06	TPE-SC-07
rouping	Analyte						
SOIL							
Physical Tests	pH (pH)		5.97	5.97	5.89	5.97	6.22
Organic / Inorganic Carbon	Total Organic Carbon (%)		4.1	4.9	4.7	4.7	4.0
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		12.6	14.1	15.9	14.1	17.4
	Barium (Ba) (mg/kg)		132	117	126	115	102
	Beryllium (Be) (mg/kg)		1.85	1.70	1.79	1.78	1.71
	Cadmium (Cd) (mg/kg)		<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)		80.2	72.8	75.1	74.7	74.1
	Cobalt (Co) (mg/kg)		13.1	13.9	15.8	14.4	12.6
	Copper (Cu) (mg/kg)		48.6	49.0	49.8	49.0	49.3
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0251	0.0288	0.0251	0.0261	0.0257
	Molybdenum (Mo) (mg/kg)		5.3	4.7	4.4	5.1	5.7
	Nickel (Ni) (mg/kg)		75.6	79.9	88.2	64.4	51.2
	Selenium (Se) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		39.1	35.9	36.8	36.6	37.0
	Zinc (Zn) (mg/kg)		100	97.3	101	94.5	86.2

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-56	L664196-57	L664196-58	L664196-59	L664196-60
		Sampled Date Sampled Time	23-JUL-08	23-JUL-08	23-JUL-08	23-JUL-08	23-JUL-08
		Client ID	TPE-SC-08	TPE-SC-09	TPE-SC-10	TPE-SC-11	TPE-SC-12
Grouping	Analyte						
SOIL							
Physical Tests	pH (pH)		6.01	5.47	5.85	5.46	5.78
Organic / Inorganic Carbon	Total Organic Carbon (%)		4.9	3.5	4.3	3.2	3.6
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		15.4	14.6	26.7	46.3	14.6
	Barium (Ba) (mg/kg)		113	200	122	150	215
	Beryllium (Be) (mg/kg)		1.74	1.84	1.78	3.18	1.88
	Cadmium (Cd) (mg/kg)		<0.50	1.05	<0.50	<0.50	1.16
	Chromium (Cr) (mg/kg)		73.4	76.9	72.2	97.6	80.9
	Cobalt (Co) (mg/kg)		16.9	17.3	16.2	17.3	19.7
	Copper (Cu) (mg/kg)		47.1	65.7	55.7	111	75.8
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0376	0.0337	0.0392	0.0318	0.0392
	Molybdenum (Mo) (mg/kg)		5.7	7.6	8.2	15.6	7.0
	Nickel (Ni) (mg/kg)		54.5	162	73.6	81.5	190
	Selenium (Se) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<4.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		37.1	40.4	39.0	54.3	42.7
	Zinc (Zn) (mg/kg)		89.2	126	92.1	152	145

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-61	L664196-62	L664196-63	L664196-64	L664196-65
		Sampled Date Sampled Time	23-JUL-08	23-JUL-08	23-JUL-08	23-JUL-08	24-JUL-08
		Client ID	TPE-SC-13	TPE-SC-14	TPE-SC-15	TPE-SC-DUP	TPS-SC-01
rouping	Analyte						
SOIL							
Physical Tests	pH (pH)		5.50	5.96	5.91	6.03	5.99
Organic / norganic Carbon	Total Organic Carbon (%)		3.9	3.9	6.0	5.1	5.0
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		26.0	27.9	17.3	11.6	70.5
	Barium (Ba) (mg/kg)		223	206	122	109	114
	Beryllium (Be) (mg/kg)		1.81	1.62	1.88	1.71	1.65
	Cadmium (Cd) (mg/kg)		0.90	0.65	<0.50	<0.50	0.66
	Chromium (Cr) (mg/kg)		69.2	64.3	79.6	72.2	96.7
	Cobalt (Co) (mg/kg)		17.0	23.5	15.5	14.0	50.4
	Copper (Cu) (mg/kg)		74.8	58.1	61.7	46.1	81.0
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	32
	Mercury (Hg) (mg/kg)		0.0576	0.0330	0.0378	0.0248	0.0511
	Molybdenum (Mo) (mg/kg)		9.7	7.8	5.1	4.3	11.0
	Nickel (Ni) (mg/kg)		165	151	82.9	61.1	115
	Selenium (Se) (mg/kg)		<4.0	<12	<4.0	<2.0	<2.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		40.7	39.2	39.0	35.1	40.8
	Zinc (Zn) (mg/kg)		118	97.8	104	92.7	104
	(

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-66	L664196-67	L664196-68	L664196-69	L664196-70
		Sampled Date Sampled Time	24-JUL-08	24-JUL-08	24-JUL-08	24-JUL-08	24-JUL-08
		Client ID	TPS-SC-02	TPS-SC-03	TPS-SC-04	TPS-SC-05	TPS-SC-06
Grouping	Analyte						
SOIL							
Physical Tests	рН (рН)		6.05	5.36	5.95	5.94	5.82
Organic / Inorganic Carbon	Total Organic Carbon (%)		5.0	6.0	6.0	5.4	4.1
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		40.4	56.2	118	42.0	80.7
	Barium (Ba) (mg/kg)		124	108	149	152	110
	Beryllium (Be) (mg/kg)		1.65	1.35	1.28	1.48	1.70
	Cadmium (Cd) (mg/kg)		0.72	<0.50	0.83	0.87	0.65
	Chromium (Cr) (mg/kg)		102	76.6	72.3	89.3	95.6
	Cobalt (Co) (mg/kg)		35.6	26.0	52.7	68.7	32.5
	Copper (Cu) (mg/kg)		72.4	59.7	62.1	75.9	79.7
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0367	0.0386	0.0426	0.0468	0.0334
	Molybdenum (Mo) (mg/kg)		7.1	6.5	13.0	7.2	9.8
	Nickel (Ni) (mg/kg)		116	91.2	155	162	102
	Selenium (Se) (mg/kg)		<2.0	<2.0	<6.0	<4.0	<2.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		41.4	36.1	35.5	38.2	41.2
	Zinc (Zn) (mg/kg)		104	90.1	85.6	106	91.0

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-71	L664196-72	L664196-73	L664196-74	L664196-75
		Sampled Date Sampled Time	24-JUL-08	24-JUL-08	24-JUL-08	24-JUL-08	24-JUL-08
		Client ID	TPS-SC-07	TPS-SC-08	TPS-SC-09	TPS-SC-10	TPS-SC-11
Grouping	Analyte						
SOIL							
Physical Tests	рН (рН)		5.99	5.82	5.78	5.36	5.85
Organic / Inorganic Carbon	Total Organic Carbon (%)		5.2	5.0	5.5	4.8	6.1
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		76.7	36.4	42.3	120	105
	Barium (Ba) (mg/kg)		95.0	124	95.5	109	100
	Beryllium (Be) (mg/kg)		1.38	1.52	1.32	1.54	1.19
	Cadmium (Cd) (mg/kg)		<0.50	0.92	0.61	<0.50	<0.50
	Chromium (Cr) (mg/kg)		82.7	100	88.2	100	66.1
	Cobalt (Co) (mg/kg)		61.2	49.7	31.6	21.6	28.8
	Copper (Cu) (mg/kg)		71.0	77.8	63.6	80.2	59.8
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0401	0.0560	0.0444	0.0389	0.0448
	Molybdenum (Mo) (mg/kg)		9.6	7.1	7.9	9.9	10.3
	Nickel (Ni) (mg/kg)		88.7	137	88.4	85.7	77.6
	Selenium (Se) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		36.5	39.8	36.6	40.7	32.5
	Zinc (Zn) (mg/kg)		85.1	104	83.5	94.1	73.9

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-76	L664196-77	L664196-78	L664196-79	L664196-80
		Sampled Date Sampled Time	24-JUL-08	24-JUL-08	24-JUL-08	24-JUL-08	24-JUL-08
		Client ID	TPS-SC-12	TPS-SC-13	TPS-SC-14	TPS-SC-15	TPS-SC-DUF
rouping	Analyte						
SOIL							
Physical Tests	pH (pH)		5.73	5.76	5.85	5.86	5.84
Organic / norganic Carbon	Total Organic Carbon (%)		5.5	5.4	5.5	4.3	4.6
Metals	Antimony (Sb) (mg/kg)		<10	<10	<20	<10	<10
	Arsenic (As) (mg/kg)		23.5	24.4	420	24.7	27.2
	Barium (Ba) (mg/kg)		114	120	148	105	122
	Beryllium (Be) (mg/kg)		1.67	1.35	1.2	1.59	1.59
	Cadmium (Cd) (mg/kg)		<0.50	0.52	1.0	<0.50	0.76
	Chromium (Cr) (mg/kg)		107	95.1	72.0	114	108
	Cobalt (Co) (mg/kg)		12.6	48.1	37.6	21.8	32.3
	Copper (Cu) (mg/kg)		85.4	68.5	71.8	76.9	77.3
	Lead (Pb) (mg/kg)		31	<30	<60	<30	<30
	Mercury (Hg) (mg/kg)		0.0443	0.0440	0.0370	0.0276	0.0406
	Molybdenum (Mo) (mg/kg)		7.0	5.0	29.6	5.9	5.4
	Nickel (Ni) (mg/kg)		68.6	111	122	71.4	120
	Selenium (Se) (mg/kg)		<4.0	<2.0	<4.0	<4.0	<2.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<4.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<10	<5.0	<5.0
	Vanadium (V) (mg/kg)		40.3	38.0	19.4	41.3	41.9
	Zinc (Zn) (mg/kg)		102	87.7	77.0	89.0	102

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-81	L664196-82	L664196-83	L664196-84	L664196-85
		Sampled Date Sampled Time	24-JUL-08	24-JUL-08	24-JUL-08	24-JUL-08	24-JUL-08
		Client ID	TPN-SC-01	TPN-SC-02	TPN-SC-03	TPN-SC-04	TPN-SC-05
Grouping	Analyte						
SOIL							
Physical Tests	рН (рН)		5.80	5.83	5.85	5.83	5.82
Organic / Inorganic Carbon	Total Organic Carbon (%)		5.6	4.8	5.3	5.4	4.8
Metals	Antimony (Sb) (mg/kg)		<20	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		62	30.0	54.9	27.2	53.5
	Barium (Ba) (mg/kg)		115	93.6	123	100	138
	Beryllium (Be) (mg/kg)		<1.0	1.44	1.05	1.48	1.16
	Cadmium (Cd) (mg/kg)		<1.0	0.51	<0.50	0.96	0.86
	Chromium (Cr) (mg/kg)		74.2	106	79.4	106	82.8
	Cobalt (Co) (mg/kg)		54.0	21.3	32.8	23.4	44.8
	Copper (Cu) (mg/kg)		60.2	65.6	60.7	56.9	64.5
	Lead (Pb) (mg/kg)		<60	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0332	0.0287	0.0425	0.0271	0.0362
Mo	Molybdenum (Mo) (mg/kg)		11.3	5.5	6.7	4.5	7.3
	Nickel (Ni) (mg/kg)		118	82.4	96.7	130	184
	Selenium (Se) (mg/kg)		<4.0	<2.0	<2.0	<2.0	<4.0
	Silver (Ag) (mg/kg)		<4.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<10	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		16.2	34.9	30.5	34.7	32.7
	Zinc (Zn) (mg/kg)		59.4	83.2	74.3	92.0	91.4

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-86	L664196-87	L664196-88	L664196-89	L664196-90
		Sampled Date Sampled Time	24-JUL-08	24-JUL-08	24-JUL-08	24-JUL-08	24-JUL-08
		Client ID	TPN-SC-06	TPN-SC-07	TPN-SC-08	TPN-SC-09	TPN-SC-10
rouping	Analyte						
OIL							
Physical Tests	pH (pH)		5.84	5.89	5.88	5.94	5.93
Organic / norganic Carbon	Total Organic Carbon (%)		3.6	4.0	2.7	0.7	3.2
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		22.5	21.4	20.2	6.5	23.0
	Barium (Ba) (mg/kg)		102	84.8	83.7	27.8	97.2
	Beryllium (Be) (mg/kg)		1.63	1.33	1.26	<0.50	1.48
	Cadmium (Cd) (mg/kg)		<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)		136	115	116	41.5	129
	Cobalt (Co) (mg/kg)		18.7	17.3	13.8	11.6	16.5
	Copper (Cu) (mg/kg)		83.3	57.5	56.6	15.3	67.4
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0198	0.0215	0.0194	0.0074	0.0210
	Molybdenum (Mo) (mg/kg)		5.0	<4.0	<4.0	<4.0	4.4
	Nickel (Ni) (mg/kg)		71.1	63.4	60.3	28.1	63.2
	Selenium (Se) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		43.8	35.1	35.7	14.9	41.3
	Zinc (Zn) (mg/kg)		92.7	79.8	78.5	30.5	84.8

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

FOIL Physical Tests Organic / norganic Carbon Metals	Sampled Sampled Clief Analyte PH (pH) Total Organic Carbon (%) Antimony (Sb) (mg/kg) Arsenic (As) (mg/kg)		24-JUL-08 TPN-SC-12 5.86 4.9	24-JUL-08 TPN-SC-13 5.86	24-JUL-08 TPN-SC-14	24-JUL-08 TPN-SC-15
Physical Tests Organic / norganic Carbon	pH (pH) Total Organic Carbon (%) Antimony (Sb) (mg/kg)	5.87	5.86		TPN-SC-14	TPN-SC-15
Physical Tests Organic / norganic Carbon	pH (pH) Total Organic Carbon (%) Antimony (Sb) (mg/kg)	4.5		5.86		
Physical Tests Organic / norganic Carbon	Total Organic Carbon (%) Antimony (Sb) (mg/kg)	4.5		5.86		
Organic / norganic Carbon	Total Organic Carbon (%) Antimony (Sb) (mg/kg)	4.5		5.86		1
norganic Carbon	Antimony (Sb) (mg/kg)		4.9		5.95	5.82
Metals		-10	-	4.5	4.8	5.6
	Arconic (Ac) (ma/ka)		<10	<10	<10	<10
	Arsenic (As) (mg/kg)	21.2	31.5	20.7	31.4	37.6
	Barium (Ba) (mg/kg)	87.1	111	87.6	101	80.1
	Beryllium (Be) (mg/kg)	1.25	1.20	1.30	1.18	1.22
	Cadmium (Cd) (mg/kg)	<0.50	0.54	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)	109	102	115	108	107
	Cobalt (Co) (mg/kg)	18.7	30.0	16.9	27.3	18.5
	Copper (Cu) (mg/kg)	60.8	61.4	61.8	61.8	61.5
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0285	0.0355	0.0287	0.0291	0.0380
	Molybdenum (Mo) (mg/kg)	4.1	5.5	<4.0	5.6	5.6
	Nickel (Ni) (mg/kg)	73.8	106	66.1	85.5	71.9
	Selenium (Se) (mg/kg)	<2.0	<4.0	<2.0	<2.0	<4.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)	34.4	34.6	35.6	35.0	35.8
	Zinc (Zn) (mg/kg)	78.1	83.6	77.8	79.1	74.9

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description	L664196-96	L664196-97	L664196-98	L664196-99	L664196-100
		Sampled Date Sampled Time	24-JUL-08	25-JUL-08	25-JUL-08	25-JUL-08	25-JUL-08
		Client ID	TPN-SC-DUP	INUG-SC-01	INUG-SC-02	INUG-SC-03	INUG-SC-04
rouping	Analyte						
SOIL							
Physical Tests	pH (pH)		5.87	5.80	5.93	6.01	6.07
Organic / norganic Carbon	Total Organic Carbon (%)		4.5	4.5	4.9	4.8	4.5
Metals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<20
	Arsenic (As) (mg/kg)		22.8	25.4	21.5	23.4	60
	Barium (Ba) (mg/kg)		96.0	122	104	118	107
	Beryllium (Be) (mg/kg)		1.36	1.44	1.39	1.19	1.1
	Cadmium (Cd) (mg/kg)		<0.50	<0.50	<0.50	<0.50	<1.0
	Chromium (Cr) (mg/kg)		118	95.4	94.8	72.0	85.1
	Cobalt (Co) (mg/kg)		19.6	10.7	15.2	20.6	18.8
	Copper (Cu) (mg/kg)		65.3	49.9	46.9	40.2	48.7
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<60
	Mercury (Hg) (mg/kg)		0.0284	0.0336	0.0336	0.0402	0.0344
	Molybdenum (Mo) (mg/kg)		4.5	4.9	5.1	5.9	<8.0
	Nickel (Ni) (mg/kg)		89.1	72.3	75.7	82.5	70
	Selenium (Se) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<4.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<4.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<10
	Vanadium (V) (mg/kg)		37.5	35.8	36.6	33.1	23.6
	Zinc (Zn) (mg/kg)		84.0	78.6	79.1	67.1	58.8

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	1	L664196-102	L664196-103	L664196-104	L664196-105
	Sampled Date Sampled Time		25-JUL-08	25-JUL-08	25-JUL-08	25-JUL-08
	Client ID		INUG-SC-06	INUG-SC-07	INUG-SC-08	INUG-SC-09
rouping	Analyte					
SOIL						
Physical Tests	pH (pH)	5.80	5.85	5.96	5.95	6.15
Organic / Inorganic Carbon	Total Organic Carbon (%)	5.1	4.3	4.6	4.3	2.7
Metals	Antimony (Sb) (mg/kg)	<10	<10	<10	<20	<10
	Arsenic (As) (mg/kg)	9.7	11.1	49.7	115	8.8
	Barium (Ba) (mg/kg)	133	122	95.8	110	74.5
	Beryllium (Be) (mg/kg)	1.41	1.62	1.22	1.1	1.00
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<1.0	<0.50
	Chromium (Cr) (mg/kg)	99.4	110	79.8	83.9	79.9
	Cobalt (Co) (mg/kg)	10.4	12.2	16.7	20.9	10.4
	Copper (Cu) (mg/kg)	48.5	54.0	40.3	48.2	30.1
	Lead (Pb) (mg/kg)	<30	<30	<30	<60	<30
	Mercury (Hg) (mg/kg)	0.0515	0.0360	0.0530	0.0410	0.0193
	Molybdenum (Mo) (mg/kg)	<4.0	4.1	6.5	10.6	<4.0
	Nickel (Ni) (mg/kg)	74.7	80.8	71.1	71	49.7
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<4.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<4.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<10	<5.0
	Vanadium (V) (mg/kg)	35.6	40.7	32.7	23.7	28.1
	Zinc (Zn) (mg/kg)	83.0	92.5	71.3	58.4	59.6

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

		Sample ID Description Sampled Date	L664196-106	L664196-107	L664196-108	L664196-109	L664196-110
		Sampled Time	25-JUL-08	25-JUL-08	25-JUL-08	25-JUL-08	25-JUL-08
		Client ID	INUG-SC-10	INUG-SC-11	INUG-SC-12	INUG-SC-13	INUG-SC-14
rouping	Analyte						
SOIL							
Physical Tests	рН (рН)		5.98	5.98	6.06	5.98	5.54
Organic / Inorganic Carbon	Total Organic Carbon (%)		2.7	3.6	3.6	5.0	5.0
Vietals	Antimony (Sb) (mg/kg)		<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)		26.3	36.7	<5.0	31.7	26.5
	Barium (Ba) (mg/kg)		117	171	114	108	115
	Beryllium (Be) (mg/kg)		1.16	1.39	1.26	1.39	1.51
	Cadmium (Cd) (mg/kg)		<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)		67.8	86.1	91.0	91.0	96.4
	Cobalt (Co) (mg/kg)		25.0	47.2	9.2	12.7	16.1
	Copper (Cu) (mg/kg)		40.9	44.5	36.4	47.6	49.9
	Lead (Pb) (mg/kg)		<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)		0.0440	0.0586	0.0313	0.0414	0.0462
	Molybdenum (Mo) (mg/kg)		5.8	7.2	<4.0	4.9	5.6
	Nickel (Ni) (mg/kg)		98.6	78.2	74.0	71.0	90.1
	Selenium (Se) (mg/kg)		<2.0	<6.0	<2.0	<2.0	<4.0
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)		32.9	37.4	31.9	35.3	37.5
	Zinc (Zn) (mg/kg)		67.0	81.1	76.3	76.6	91.0

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample II Descriptio	n	L664196-112		
	Sampled Date Sampled Times		25-JUL-08		
	Client I		INUG-SC-DUP		
rouping	Analyte				
SOIL					
Physical Tests	pH (pH)	5.97	5.95		
Organic / Inorganic Carbon	Total Organic Carbon (%)	5.1	7.1		
Metals	Antimony (Sb) (mg/kg)	<10	<10		
	Arsenic (As) (mg/kg)	29.6	18.9		
	Barium (Ba) (mg/kg)	99.5	100		
	Beryllium (Be) (mg/kg)	1.45	1.35		
	Cadmium (Cd) (mg/kg)	<0.50	<0.50		
	Chromium (Cr) (mg/kg)	89.6	94.3		
	Cobalt (Co) (mg/kg)	13.4	17.9		
	Copper (Cu) (mg/kg)	47.0	46.1		
	Lead (Pb) (mg/kg)	<30	<30		
	Mercury (Hg) (mg/kg)	0.0359	0.0414		
	Molybdenum (Mo) (mg/kg)	7.2	5.0		
	Nickel (Ni) (mg/kg)	64.1	66.8		
	Selenium (Se) (mg/kg)	<2.0	<2.0		
	Silver (Ag) (mg/kg)	<2.0	<2.0		
	Thallium (TI) (mg/kg)	<1.0	<1.0		
	Tin (Sn) (mg/kg)	<5.0	<5.0		
	Vanadium (V) (mg/kg)	37.3	35.8		
	Zinc (Zn) (mg/kg)	71.4	76.4		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L664196-113	L664196-114	L664196-115	L664196-116	L664196-117
	Description Sampled Date Sampled Time	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08
	Client ID	2PL-SB-WQ-1M	2PL-SB-WQ-7M	2PL-NB-WQ-1M	2PL-NB-WQ-7M	2PL-MB-WQ-1M
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	20.0	20.0	20.1	20.1	20.5
	Hardness (as CaCO3) (mg/L)	7.89	7.85	7.98	8.01	7.87
	pH (pH)	7.10	7.13	7.15	7.14	7.13
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	<10	<10	13	<10	14
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	5.9	5.5	6.0	5.7	5.4
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	5.9	5.5	6.0	5.7	5.4
	Ammonia as N (mg/L)	0.030	<0.020	0.040	0.039	0.033
	Chloride (CI) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.089	0.065	0.084	0.079	0.068
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	0.0011
	Total Phosphate as P (mg/L)	0.0046	0.0035	0.0021	0.0026	0.0031
	Sulfate (SO4) (mg/L)	1.83	1.83	1.84	1.84	1.86
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.64	1.61	1.68	1.66	1.64
	Total Organic Carbon (mg/L)	1.62	1.55	1.57	1.55	1.47
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	L664196-118	L664196-119	L664196-120	L664196-121	L664196-122
	Sampled Date	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08
	Sampled Time Client ID	2PL-MB-WQ-7M	2PL-SB-WQ-1M	2PL-SB-WQ-7M	2PL-NB-WQ-1M	2PL-NB-WQ-7M
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	20.1				
,	Hardness (as CaCO3) (mg/L)	7.94				
	pH (pH)	7.14				
	Total Suspended Solids (mg/L)	<3.0				
	Total Dissolved Solids (mg/L)	<10				
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	6.4				
Nutrients						
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0				
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0				
	Alkalinity, Total (as CaCO3) (mg/L)	6.4				
	Ammonia as N (mg/L)	0.059				
	Chloride (CI) (mg/L)	<0.50				
	Nitrate (as N) (mg/L)	<0.0050				
	Nitrite (as N) (mg/L)	<0.0010				
	Total Kjeldahl Nitrogen (mg/L)	0.065				
	Ortho Phosphate as P (mg/L)	<0.0010				
	Total Phosphate as P (mg/L)	0.0024				
	Sulfate (SO4) (mg/L)	1.86				
Organic /	Dissolved Organic Carbon (mg/L)	1.59				
Inorganic Carbon	Total Organic Carbon (mg/L)	1.50				
Total Metals	Aluminum (Al)-Total (mg/L)	- 1.50				
Total Metals	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description Sampled Date Sampled Time	L664196-123 20-JUL-08	L664196-124 20-JUL-08	L664196-125 19-JUL-08	L664196-126 20-JUL-08	L664196-127 22-JUL-08
	Client ID	2PL-MB-WQ-1M	2PL-MB-WQ-7M	SP	TE	WAL
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	•		21.4	17.6	25.9
	Hardness (as CaCO3) (mg/L)			8.79	6.84	11.3
	pH (pH)			7.18	6.51	7.31
	Total Suspended Solids (mg/L)			<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)			10	<10	17
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)			6.8	5.5	8.9
	Alkalinity, Carbonate (as CaCO3) (mg/L)			<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)			<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)			6.8	5.5	8.9
	Ammonia as N (mg/L)			0.045	0.052	0.020
	Chloride (CI) (mg/L)			<0.50	<0.50	<0.50
	Nitrate (as N) (mg/L)			<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)			<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)			0.137	0.097	0.124
	Ortho Phosphate as P (mg/L)			<0.0010	0.0010	0.0013
	Total Phosphate as P (mg/L)			0.0022	0.0022	0.0037
	Sulfate (SO4) (mg/L)			2.08	1.72	2.27
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)			1.72	1.65	2.34
	Total Organic Carbon (mg/L)			1.56	1.44	1.84
Total Metals	Aluminum (Al)-Total (mg/L)			0.0064	0.0085	<0.0050
	Antimony (Sb)-Total (mg/L)			<0.00050	<0.00050	<0.00050
	Arsenic (As)-Total (mg/L)			<0.00050	<0.00050	<0.00050
	Barium (Ba)-Total (mg/L)			<0.020	<0.020	<0.020
	Beryllium (Be)-Total (mg/L)			<0.0010	<0.0010	<0.0010
	Boron (B)-Total (mg/L)			<0.10	<0.10	<0.10
	Cadmium (Cd)-Total (mg/L)			<0.000017	<0.000017	<0.000017
	Calcium (Ca)-Total (mg/L)			2.31	1.74	3.07
	Chromium (Cr)-Total (mg/L)			<0.0010	<0.0010	<0.0010
	Cobalt (Co)-Total (mg/L)			<0.00030	<0.00030	<0.00030
	Copper (Cu)-Total (mg/L)			<0.0010	<0.0010	<0.0010
	Iron (Fe)-Total (mg/L)			<0.030	<0.030	<0.030
	Lead (Pb)-Total (mg/L)			<0.00050	<0.00050	<0.00050
	Lithium (Li)-Total (mg/L)			<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/L)			0.73	0.61	0.87
	Manganese (Mn)-Total (mg/L)			0.00113	0.00119	0.00102
	Mercury (Hg)-Total (mg/L)			<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Total (mg/L)			<0.0010	<0.0010	<0.0010
	Nickel (Ni)-Total (mg/L)			<0.0010	<0.0010	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	L664196-128	L664196-129	L664196-130	L664196-131	L664196-132
	Sampled Date Sampled Time Client ID	23-JUL-08 TPE	24-JUL-08 TPS	24-JUL-08 TPN	25-JUL-08 INUG	DUP
Grouping	Analyte		1173	IFIN	INOG	DOF
WATER	,					
Physical Tests	Conductivity (uS/cm)	13.8	14.1	13.6	14.0	26.1
Thysical Tests	Hardness (as CaCO3) (mg/L)	4.99	5.07	4.89	5.01	11.2
	pH (pH)	6.52	6.47	6.52	6.53	7.30
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	<10	<10	<10	<10	13
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	3.8	3.4	4.0	4.6	8.1
Nutrients	Alkalinity, bloarbonate (as GaGGG) (mg/L)	3.0	3.4	4.0	4.0	0.1
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	3.8	3.4	4.0	4.6	8.1
	Ammonia as N (mg/L)	0.046	0.064	0.028	0.058	0.021
	Chloride (CI) (mg/L)	<0.50	<0.50	<0.50	0.60	<0.50
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.081	0.081	0.084	0.156	0.145
	Ortho Phosphate as P (mg/L)	0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Phosphate as P (mg/L)	<0.0020	0.0020	0.0021	0.0021	0.0030
	Sulfate (SO4) (mg/L)	1.17	1.23	1.17	0.70	2.26
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.54	1.51	6.95	2.05	2.09
	Total Organic Carbon (mg/L)	1.31	1.41	1.30	1.82	1.93
Total Metals	Aluminum (AI)-Total (mg/L)	0.0083	<0.0050	<0.0050	0.0068	<0.0050
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Barium (Ba)-Total (mg/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Total (mg/L)	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017
	Calcium (Ca)-Total (mg/L)	1.18	1.19	1.16	1.02	3.04
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Cobalt (Co)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Copper (Cu)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Total (mg/L)	<0.030	0.031	<0.030	<0.030	<0.030
	Lead (Pb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/L)	0.49	0.51	0.49	0.60	0.87
	Manganese (Mn)-Total (mg/L)	0.00090	0.00059	0.00061	0.00181	0.00101
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Nickel (Ni)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	L664196-133	L664196-134	L664196-135	L664196-136	L664196-137
	Sampled Date	25-JUL-08	19-JUL-08	20-JUL-08	22-JUL-08	23-JUL-08
	Sampled Time Client ID	EQBLK	SP	TE	WAL	TPE
Grouping	Analyte	LWDLIN	Oi Oi	12	VV/\L	
WATER	·					
Physical Tests	Conductivity (uS/cm)	<2.0				
i ilysicai Tests	Hardness (as CaCO3) (mg/L)	<0.70				
	pH (pH)	5.62				
	Total Suspended Solids (mg/L)	<3.0				
	Total Dissolved Solids (mg/L)	<10				
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	<2.0				
Nutrients	Alkalinty, blearbonate (as GaGGS) (Hig/L)	\2.0				
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0				
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0				
	Alkalinity, Total (as CaCO3) (mg/L)	<2.0				
	Ammonia as N (mg/L)	<0.020				
	Chloride (CI) (mg/L)	<0.50				
	Nitrate (as N) (mg/L)	<0.0050				
	Nitrite (as N) (mg/L)	<0.0010				
	Total Kjeldahl Nitrogen (mg/L)	<0.050				
	Ortho Phosphate as P (mg/L)	<0.0010				
	Total Phosphate as P (mg/L)	<0.0020				
	Sulfate (SO4) (mg/L)	<0.50				
Organic /	Dissolved Organic Carbon (mg/L)	<0.50				
Inorganic Carbon		0.50				
T-1-1 B#-1-1-	Total Organic Carbon (mg/L)	<0.50				
Total Metals	Aluminum (Al)-Total (mg/L)	<0.0050				
	Antimony (Sb)-Total (mg/L)	<0.00050				
	Arsenic (As)-Total (mg/L)	<0.00050				
	Barium (Ba)-Total (mg/L)	<0.020				
	Beryllium (Be)-Total (mg/L)	<0.0010				
	Boron (B)-Total (mg/L)	<0.10				
	Cadmium (Cd)-Total (mg/L)	<0.000017				
	Calcium (Ca)-Total (mg/L)	<0.10				
	Chromium (Cr)-Total (mg/L)	<0.0010				
	Cobalt (Co)-Total (mg/L)	<0.00030				
	Copper (Cu)-Total (mg/L)	<0.0010				
	Iron (Fe)-Total (mg/L)	<0.030				
	Lead (Pb)-Total (mg/L)	<0.00050				
	Lithium (Li)-Total (mg/L)	<0.0050				
	Magnesium (Mg)-Total (mg/L)	<0.10				
	Manganese (Mn)-Total (mg/L)	<0.00030				
	Mercury (Hg)-Total (mg/L)	<0.000020				
	Molybdenum (Mo)-Total (mg/L)	<0.0010				
	Nickel (Ni)-Total (mg/L)	<0.0010				

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description Sampled Date	L664196-138 24-JUL-08	L664196-139 24-JUL-08	L664196-140 25-JUL-08	L664196-141	
	Sampled Time Client ID	TPS	TPN	INUG	DUP	
Grouping	Analyte	110			501	
WATER						
Physical Tests	Conductivity (uS/cm)					
·,o.ca. · co.c	Hardness (as CaCO3) (mg/L)					
	pH (pH)					
	Total Suspended Solids (mg/L)					
	Total Dissolved Solids (mg/L)					
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)					
Nutrients						
	Alkalinity, Carbonate (as CaCO3) (mg/L)					
	Alkalinity, Hydroxide (as CaCO3) (mg/L)					
	Alkalinity, Total (as CaCO3) (mg/L)					
	Ammonia as N (mg/L)					
	Chloride (CI) (mg/L)					
	Nitrate (as N) (mg/L)					
	Nitrite (as N) (mg/L)					
	Total Kjeldahl Nitrogen (mg/L)					
	Ortho Phosphate as P (mg/L)					
	Total Phosphate as P (mg/L)					
	Sulfate (SO4) (mg/L)					
Organic /	Dissolved Organic Carbon (mg/L)					
Inorganic Carbon	Total Organic Carbon (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)					
Total Wetais	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L) Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	L664196-113	L664196-114	L664196-115	L664196-116	L664196-117
	Sampled Date	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08
	Sampled Time Client ID	2PL-SB-WQ-1M	2PL-SB-WQ-7M	2PL-NB-WQ-1M	2PL-NB-WQ-7M	2PL-MB-WQ-1M
Grouping	Analyte	21 2 05 WQ 1W	21 2 05 11 0 11	Zi Zi NB WQ IIII	Zi Zi No Wa iii	Zi Zi ilib i v Q i ii
WATER						
Total Metals	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Calcium (Ca)-Dissolved (mg/L)	2.00	2.00	2.06	2.07	2.02
	Magnesium (Mg)-Dissolved (mg/L)	0.71	0.69	0.69	0.69	0.69
Aggregate Organics	Oil and Grease (mg/L)					
Plant Pigments	Chlorophyll a (ug)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	L664196-118	L664196-119	L664196-120	L664196-121	L664196-122
	Sampled Date	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08	20-JUL-08
	Sampled Time Client ID	ODL MD WO 7M	001 00 140 414	0DL 0D W0 7M	ODL ND WO 4M	ODL ND WO 7N
Grouping	Analyte	2PL-MB-WQ-7M	2PL-SB-WQ-1M	2PL-SB-WQ-7M	2PL-NB-WQ-1M	2PL-NB-WQ-7N
WATER	,					
Total Metals	Potassium (K)-Total (mg/L)	•				
	Selenium (Se)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Calcium (Ca)-Dissolved (mg/L)	2.05				
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	0.68				
Aggregate	Oil and Grease (mg/L)	. 0.00				
Organics Plant Pigments	Chlorophyll a (ug)	-	0.366	0.417	0.394	0.337

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	L664196-123	L664196-124	L664196-125	L664196-126	L664196-127
	Sampled Date Sampled Time	20-JUL-08	20-JUL-08	19-JUL-08	20-JUL-08	22-JUL-08
	Client ID	2PL-MB-WQ-1M	2PL-MB-WQ-7M	SP	TE	WAL
Grouping	Analyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)	•		<2.0	<2.0	<2.0
	Selenium (Se)-Total (mg/L)			<0.0010	<0.0010	<0.0010
	Silver (Ag)-Total (mg/L)			<0.000020	<0.000020	<0.000020
	Sodium (Na)-Total (mg/L)			<2.0	<2.0	<2.0
	Thallium (TI)-Total (mg/L)			<0.00020	<0.00020	<0.00020
	Tin (Sn)-Total (mg/L)			<0.00050	<0.00050	<0.00050
	Titanium (Ti)-Total (mg/L)			<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)			<0.00020	<0.00020	<0.00020
	Vanadium (V)-Total (mg/L)			<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Total (mg/L)			<0.0050	<0.0050	<0.0050
Dissolved Metals	Calcium (Ca)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
Aggregate Organics	Oil and Grease (mg/L)			<5.0	<5.0	<5.0
Plant Pigments	Chlorophyll a (ug)	0.420	0.366			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	L664196-128	L664196-129	L664196-130	L664196-131	L664196-132
	Sampled Date Sampled Time	23-JUL-08	24-JUL-08	24-JUL-08	25-JUL-08	
	Client ID	TPE	TPS	TPN	INUG	DUP
rouping	Analyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)	· <2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Dissolved Metals	Calcium (Ca)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
Aggregate Organics	Oil and Grease (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
Plant Pigments	Chlorophyll a (ug)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	L664196-133	L664196-134	L664196-135	L664196-136	L664196-137
	Sampled Date	25-JUL-08	19-JUL-08	20-JUL-08	22-JUL-08	23-JUL-08
	Sampled Time Client ID	EQBLK	SP	TE	WAL	TPE
Frouping	Analyte		_			
WATER						
Total Metals	Potassium (K)-Total (mg/L)	<2.0				
	Selenium (Se)-Total (mg/L)	<0.0010				
	Silver (Ag)-Total (mg/L)	<0.000020				
	Sodium (Na)-Total (mg/L)	<2.0				
	Thallium (TI)-Total (mg/L)	<0.00020				
	Tin (Sn)-Total (mg/L)	<0.00050				
	Titanium (Ti)-Total (mg/L)	<0.010				
	Uranium (U)-Total (mg/L)	<0.00020				
	Vanadium (V)-Total (mg/L)	<0.0010				
	Zinc (Zn)-Total (mg/L)	<0.0050				
Dissolved Metals	Calcium (Ca)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
Aggregate Organics	Oil and Grease (mg/L)	<5.0				
Plant Pigments	Chlorophyll a (ug)		0.336	0.309	0.557	0.398

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description Sampled Date	L664196-138 24-JUL-08	L664196-139 24-JUL-08	L664196-140 25-JUL-08	L664196-141
	Sampled Time				
	Client ID	TPS	TPN	INUG	DUP
rouping	Analyte				
WATER					
Total Metals	Potassium (K)-Total (mg/L)				
	Selenium (Se)-Total (mg/L)				
	Silver (Ag)-Total (mg/L)				
	Sodium (Na)-Total (mg/L)				
	Thallium (TI)-Total (mg/L)				
	Tin (Sn)-Total (mg/L)				
	Titanium (Ti)-Total (mg/L)				
	Uranium (U)-Total (mg/L)				
	Vanadium (V)-Total (mg/L)				
	Zinc (Zn)-Total (mg/L)				
Dissolved Metals	Calcium (Ca)-Dissolved (mg/L)				
	Magnesium (Mg)-Dissolved (mg/L)				
Aggregate Organics	Oil and Grease (mg/L)				
Plant Pigments	Chlorophyll a (ug)	0.394	0.363	0.506	0.585

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L664196 CONTD.... PAGE 37 of 40 22-AUG-08 15:44

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

ALK-SCR-VA Water Alkalinity by colour or titration

EPA 310.2 OR APHA 2320

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

OR

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ANIONS-CL-IC-VA Water Chloride by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

ANIONS-NO2-IC-VA

Water

Nitrite by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

ANIONS-NO3-IC-VA

Water

Nitrate by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

ANIONS-SO4-IC-VA

Water

Sulfate by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

C-TOT-ORG-LECO-SK

Soil

Organic Carbon by combustion method

SSSA (1996) p. 973

Total Organic Carbon (C-TOT-ORG-LECO-SK, C-TOT-ORG-SK)

Total C and inorganic C are determined on separate samples. The total C is determined by combustion and thermal conductivity detection, while inorganic C is determined by weight lass after addition of hydrochloric acid. Organic C is calculated by the difference between these two determinations.

Reference for Total C:

Nelson, D.W. and Sommers, L.E. 1996. Total Carbon, organic carbon and organic matter. P. 961-1010 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

Reference for Inorganic C:

Loeppert, R.H. and Suarez, D.L. 1996. Gravimetric Method for Loss of Carbon Dioxide. P. 455-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

CARBONS-DOC-VA

Water

Dissolved organic carbon by combustion

APHA 5310 "TOTAL ORGANIC CARBON (TOC)"

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis.

CARBONS-TOC-VA

Water

Total organic carbon by combustion

APHA 5310 "TOTAL ORGANIC CARBON (TOC)"

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)".

CHLOROA-VA

Water

Chlorophyll a by Fluorometer

APHA 10200 H. "Chlorophyll" and EPA 445

Chlorophyll and Pheopigments by Fluorometry analysis is carried out using procedures adapted from APHA Method 10200 H. "Chlorophyll" and USEPA Method 445. The sample is filtered using either a glass fiber filter or a 0.45 micron Membrane filter. The pigments are extracted from the filter with 90% aqueuos acetone. For chlorophyll a analysis the extract is read using a fluorometer. For pheopigments the extract is first acidified then read. This method is not subject to interferences from chlorophyll b.

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

EC-PCT-VA Water Conductivity (Automated) APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity

electrode.

HARDNESS-CALC-VA Water Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-CCME-CVAFS-VA Soil CVAFS Hg in Soil (CCME) CCME

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 7000 series).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

HG-TOT-CCME-CVAFS- Water Total Mercury in Water by CVAFS (CCME) EPA 245.7

VA
This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the
American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United
States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to
reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-CSR-FULL-ICP-VA Soil Metals in Soil by ICPOES (CSR SALM) BCMELP CSR SALM METHOD 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-DIS-ICP-VA Water Dissolved Metals in Water by ICPOES EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-ICP-VA Water Total Metals in Water by ICPOES (CCME) EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water Total Metals in Water by ICPMS (CCME) EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

NH3-SIE-VA Water Ammonia by SIE APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)".

Ammonia is determined using an ammonia selective electrode.

OGG-SF-VA Water Oil & Grease by Gravimetric BCMOE GRAVIMETRIC

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3510 & 9071, published by the United States Environmental Protection Agency (EPA), "Standard Methods for the Examination of Water and Wastewater", 20th ed., Method 5520, published by the American Public Health Association, and "BC Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials," 5th ed., published by the B.C. Ministry of Environment, Lands & Parks, 1994. The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to determine Oil and Grease.

PH-1:2-VA Soil CSR pH by 1:2 Water Leach BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (10 mesh /2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PH-MAN-VA Water pH by Manual Meter APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA Water Dissolved ortho Phosphate by Color APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA Water Total Phosphate P by Color APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

TDS-VA Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TKN-SIE-VA Water Total Kjeldahl Nitrogen by SIE APHA 4500-Norg (TKN)

This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by sample digestion at 367 celcius with analysis using an ammonia selective electrode.

TL-CSR-MS-VA Soil ICPMS TI in Soil by CSR SALM BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

mobile in the environment.

TSS-VA Water Solids by Gravimetric

APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
SK	ALS LABORATORY GROUP - SASKATOON, SASKATCHEWAN, CANADA	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS Laboratory Group analytical CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

www.alsenviro.com

CANADA TOLL FREE 1-800-668-9878

 $\cos \# C098409$

Environmental Division

יסו ואסרואס.	INE ON	REPORT FORMAT / DISTRIBUTION		SERVICE REQUESTED	JESTED		:	
COMPANY: DZIIMITH (BOSILLHO)	STANDARD	tD OTHER		X REGULAR SER	SERVICE (DEFAULT)			
	Y LOG C	EXCEL X CUSTOM	FAX	RUSH SERVICE (2-3 DAYS)	≣ (2-3 DAYS)			
ADDRESS: 219-3902 W. ArooMyaw		EMAIL 1: FLAKER POTIMY HAYOU	os oran	PRIORITY SER	PRIORITY SERVICE (1 DAY or ASAP)	(
1 BC		EMAIL 2: mm Connoll @ 92; mutha bar	tha have. Ca	EMERGENCY 8	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS	EEKEND) - C	ONTACT	ALS
B-68E-4911:XY-08E7-08E-491-1801-18	1158		1 0		ANALYSIS REQUEST	UEST		
کِ	INDICATE BOTTLES:	3OTTLES: FILTERED / PRESERVED (F/P)	$(F/P) \qquad \qquad \rightarrow \ \ \rightarrow \ \ \rightarrow \ \ \rightarrow \ \rightarrow \ \ \rightarrow \ \rightarrow \ \rightarrow \ \rightarrow \ \rightarrow \ \rightarrow \ \ \rightarrow \ \ \rightarrow \ $					
COMPANY:	CLIENT /	CLIENT / PROJECT INFORMATION:		. ,				
CONTACT:	JOB #:			2) @				
ADDRESS:	PO /AFE:			2 E				
	Legal Site	Legal Site Description:		? S		-	ં	
PHONE: FAX:	QUOTE #:	ALSE007-623	~6	V			sn	
Lab Work Order # L664196		SAMPLER (Initials):	ER MLM &	2000 D			ОПЯ	
Sample SAMPLE IDENTIFICATION (This description will appear on the report)	ATION on the report)	DATE TIME	SAMPLE TYPE	01 01			AZAH	HIGHI
SP-5C-01		July, 19/08	Sectional	メイス			7	7
SP - Sc - 02				× ×		-	_	,
SP - SC -03				X X Y				
40-25-ds				X X Y				
50-25-d5				XXX				
10-25-ds					:			
fo-35-85				XXX			-	
80-25-dS				XXX			_	
SP - SC-08				$\times \times \times$				
01 - 25 - 05		<u> </u>	\	XXX			<u>></u>	<u>→</u>
GUIDELINES / REGULATIONS	SNC		SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS	TIONS / HAZAR	DOUS DETAILS			
					-	es.		
Failure to complete all portions of γ By the use of this form the user acknowledges and agrees	Failure to complete all portions of e user acknowledges and agrees	f this form may with the Terms		Please fill in this form <i>LEGIBLY</i> as specified on the reverse page	n <i>LEGIBLY.</i> verse page of the	white rep	ort cop	٧.
RELIMINATION DATE & J	IME:	BY:	DATE & TIME: 13:15 Ang 1/09	S. TEMPERATURE	SAMPLE CONDITION (lab use only) SAMPLES RECEIVED IN GOOD CONDITION ? YES / NO	lab use only I GOOD COND) ITION? YE	ON /S
RELINQUISHED BY: DATE & TIME	TIME: RECEIVED BY:	BY:	DATE & TIME:	341 181/0	(If no provide details)			

ALS Laboratory Group
ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM CANADA TOLL FREE 1-800-668-9878

coc#6098411

Environmental Division (ALS)	www.alsenviro.com	
REPORT TO:	REPORT FORMAT / DISTRIBUTION	SERVICE REQUESTED
COMPANY: / OO.	STANDARDOTHER	REGULAR SERVICE (DEFAULT)
CONTACT:	PDF EXCEL CUSTOM FAX	RUSH SERVICE (2-3 DAYS)
ADDRESS: 0.0	EMAIL 1:	PRIORITY SERVICE (1 DAY or ASAP)
/ Ond	EMAIL 2:	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS
PHONE:		ANALYSIS REQUEST
INVOICE TO: SAME AS REPORT? YES / NO	INDICATE BOTTLES: FILTERED / PRESERVED (F/P) $ ightarrow ightarr$	
COMPANY:	CLIENT / PROJECT INFORMATION:	
CONTACT:	JOB #:	
ADDRESS:	PO /AFE:	
	Legal Site Description:	NIM
PHONE: FAX:	QUOTE#:	ATN
Lab Work Order # L664196	SAMPLER (Initials):	
Sample SAMPLE IDENTIFICATION	Г	1HE
(This description will appear on the report)		AH
3P-SC-11	1 Tech 19/08 Sedimen	
SP-50-12	7	
SP-SC-13		XXX
11-25-d5		
SP-SC-15		X X X
90-3c-DUP	<u> </u>	
TEX SC-01	1 1/20/08	
TE-SC-03		
75- 80-03		
40-25-34	<i>→</i>	> -> X X X X
GUIDELINES / REGULATIONS	SPECIAL INSTRI	SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS
Failure to complete all portions of	this forn	n may delay analysis. Please fill in this form <i>LEGIBLY.</i> Terms and Conditions as specified on the reverse page of the white report copy
里		SAMPLE CONDITION (lab use only)
RELINQUISHED BY: DATE & TIME:	RECEIVED BY: DATE TIME:	TEMPERATURE SAMPLES RECEIVED IN GOOD CONDITION ? YES / NO $ 2/ 2/ 4 $ 9 (If no provide details)
		<u>J</u>

GENF14.00

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

ALS Laboratory Group analytical Chemistry & Testing Services

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

CANADA TOLL FREE 1-800-668-9878

www.alsenviro.com

Page 3 of 15

coc# C098410

Environmental Division

EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS IGHLY CONTAMINATED? By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. **SUOGRAZAH** ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS REGULAR SERVICE (DEFAULT) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED SAMPLE TYPE Schemen FAX INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials): CUSTOM CLIENT / PROJECT INFORMATION: REPORT FORMAT / DISTRIBUTION OTHER 9 DATE Legal Site Description: EXCEL STANDARD QUOTE #: EMAIL 1: EMAIL 2: PO /AFE: JOB #: PDF (This description will appear on the report) SAMPLE IDENTIFICATION **GUIDELINES / REGULATIONS** SAME AS REPORT ? YES / NO 40-Sc -06 SC - OX- SC-05 FAX: FAX Lab Work Order# (lab use only) **NVOICE TO:** REPORT TO: COMPANY: COMPANY: CONTACT: CONTACT: ADDRESS: ADDRESS: PHONE: PHONE Sample

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

RECEIVED BY:

DATE & TIME:

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

GENF14.00

SAMPLES RECEIVED IN GOOD CONDITION? YES / NO

(If no provide details)

TEMPERATURE

DATE & TIME: 13:15

400/Jag

ALS Laboratory Group ANALTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

CANADA TOLL FREE 1-800-668-9878

www.alsenviro.com

3	
of	
7	
-	
age	
ш.	

coc#0038332

Environmental Division

REPORT TO:	REPORT FORMAT / DISTRIBUTION	SERVICE REQUESTED
	STANDARDOTHER	REGULAR SERVICE (DEFAULT)
CONTACT:	PDF EXCEL CUSTOM FAX	RUSH SERVICE (2-3 DAYS)
ADDRESS: $O \alpha$	EMAIL 1:	PRIORITY SERVICE (1 DAY or ASAP)
	EMAIL 2:	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS
PHONE: FAX:		ANALYSIS REQUEST
INVOICE TO: SAME AS REPORT? YES / NO	INDICATE BOTTLES: FILTERED / PRESERVED (F/P) $\rightarrow \rightarrow \rightarrow \rightarrow$	
COMPANY:	CLIENT / PROJECT INFORMATION:	5
CONTACT:	JOB#:	DS
ADDRESS:	PO /AFE:	∃TA
	Legal Site Description:	NIM
PHONE: FAX:	QUOTE #:	SU
Lab Work Order # : L664196	SAMPLER (Initials):	V CO
Sample SAMPLE IDENTIFICATION # (This description will appear on the report)	DATE	AZAH HIGHL
TE-SC-15	Tubu 20/08 Sediment	
7E-SC-DUP		
MAL- SC-01	Julu22/08	
WAL- 5C- 62		
WAL- SC- 03		
WAL - SC- 04		
MAL - SC-05		
90 - 25 - 7HM		
WBL - SC - 07	July 23/08	
10 m pr - Sc - 08	→ • • • • • • • • • • • • • • • • • •	<u> </u>
GUIDELINES / REGULATIONS	SPECIAL INSTRUC	SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS
Failure to complete all portions of A By the use of this form the user acknowledges and agrees	e all portions of this form may delay analysis. Pleas ges and agrees with the Terms and Conditions as sp	Failure to complete all portions of this form may delay analysis. Please fill in this form <i>LEGIBLY.</i> Ney the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy.

RECEIVED BY:

SAMPLES RECEIVED IN GOOD CONDITION ? YES / NO (if no provide details)

SAMPLE CONDITION (lab use only)

ALS Laboratory Group
ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM CANADA TOLL FREE 1-800-668-9878

www.alsenviro.com

EQUEST FORM COC# 0098396

Page 5 of 15

ANALYTICAL CHEMISTRY & TESTING SERVI Environmental Division

EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS **HIGHLY CONTAMINATED?** By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. **SUOGRAZAH** SAMPLE CONDITION (lab use only ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS REGULAR SERVICE (DEFAULT) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED SAMPLE TYPE DATE & TIME: (3'. 15 Sedimon 1 FAX INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials): CUSTOM **CLIENT / PROJECT INFORMATION:** REPORT FORMAT / DISTRIBUTION OTHER $\mathcal{E}_{\mathcal{E}}$ 76 La 33 108 DATE Legal Site Description: EXCEL STANDARD RECEIVED BY QUOTE #: PO /AFE: EMAIL 1: EMAIL 2: JOB#: PDF (This description will appear on the report) SAMPLE IDENTIFICATION **GUIDELINES / REGULATIONS** DUP SAME AS REPORT ? YES / NO B arphiSC - 09 SC - 10 0 SC -り上をめ FAX: WAL るる 7 # \M 14X タマ 74/7 745 ab Work Order# (lab use only) INVOICE TO: REPORT TO: COMPANY: COMPANY: CONTACT: ADDRESS: CONTACT: ADDRESS: PHONE: PHONE Sample

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

RECEIVED BY:

00//

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

GENF14.00

SAMPLES RECEIVED IN GOOD CONDITION? YES / NO

(If no provide details)

TEMPERATURE

Ana 1/08

ALS Laboratory Group analytical CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM **CANADA TOLL FREE 1-800-668-9878**

coc#C098382

_	
0	ı
·-	1
S	1
	ı
_	ı
	ı
-	B
Ω	ı
_	ı
Œ	
'n	1
-	1
⊆	ı
ā	ı
=	
Ε	
	1
_	1
_	•
റ	1
	1
_	ı
-	п
>	п
_	
⊆	•
	ı
ш	1

Environmental Division (ALS)	www.alsenviro.com	
REPORT TO:	REPORT FORMAT / DISTRIBUTION	SERVICE REQUESTED
COMPANY: C 10,	STANDARD OTHER	REGULAR SERVICE (DEFAULT)
CONTACT:	PDF EXCEL CUSTOM FAX	RUSH SERVICE (2-3 DAYS)
ADDRESS:	EMAIL 1:	PRIORITY SERVICE (1 DAY or ASAP)
	EMAIL 2:	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS
PHONE:		ANALYSIS REQUEST
INVOICE TO: SAME AS REPORT? YES / NO	INDICATE BOTTLES: FILTERED / PRESERVED (F/P) \rightarrow \rightarrow	
COMPANY:	CLIENT / PROJECT INFORMATION:	
CONTACT:	JOB#:	
ADDRESS:	PO /AFE:	at Al
	Legal Site Description:	NIM
PHONE: FAX:	QUOTE #:	ΔTΝ
Lab Work Order # L664 196	SAMPLER (Initials):	~a(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SAMPLE IDENTIFICATION		7 N S
(This d	ort) DAIE TIME SAMPLE IYPE) Д
7PE-SC-03	Jun 33/08 Sedinary	$\# \pounds \chi \chi \chi \chi \chi \chi \chi \chi \chi $
SC-		
SCV		
1		
1251		
70E-SC-08		
7PE-SC-09		
70E-SC-10		
TPE-SC-11		
TPE-SC-12	A	X X X
GUIDELINES / REGULATIONS	SPECIAL INSTRU	SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS
Failure to complete all portions of	te all portions of this form may delay analysis. Plea	Please fill in this form <i>LEGIBLY.</i>
ythe use of this form the		pecified on the
RELYQUISHED 8Y: DATE & TIME:	RECEIVED BY: DATE & TIME: \(\infty \)	SA TEMPERATURE
DATE & TIME	RECEIVED BY: DATE &	

RECEIVED BY:

ALS Laboratory Group
ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

Environmental Division

CANADA TOLL FREE 1-800-668-9878

www.alsenviro.com

EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS **HIGHLY CONTAMINATED?** By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. **SUOGRAZAH** ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS REGULAR SERVICE (DEFAULT) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED SAMPLE TYPE rdinont 1 FAX INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials): CUSTOM **CLIENT / PROJECT INFORMATION:** REPORT FORMAT / DISTRIBUTION OTHER OB ્રે DATE into 24, Legal Site Description: EXCEL STANDARD QUOTE #: EMAIL 1: EMAIL 2: PO /AFE: JOB #: PDF This description will appear on the report) SAMPLE IDENTIFICATION **GUIDELINES / REGULATIONS** SAME AS REPORT ? YES / NO とで一大くと クカロ 0/0 S 0 0 FAX: ₹ PST ab Work Order# 9 (lab use only) INVOICE TO: REPORT TO: COMPANY: COMPANY: CONTACT: ADDRESS: CONTACT: ADDRESS: PHONE: PHONE Sample

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

GENF14.00

SAMPLES RECEIVED IN GOOD CONDITION ? YES / NO (If no provide details)

12 TEMPERATURE

DATE & TIME: (S'. L

DATE & TIME

RECEIVED BY:

JATE & ≸IME: 友

(ELINQUISHED BY:

00

RECEIVED BY:

SAMPLE CONDITION (lab use only)

ALS Laboratory Group analytical Chemistry & TESTING SERVICES

Environmental Division

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM **CANADA TOLL FREE 1-800-668-9878**

www.alsenviro.com

coc#0098384

REPORT TO:	REPORT FORMAT / DISTRIBUTION	SERVICE REQUESTED
COMPANY: (10)	STANDARD OTHER	REGULAR SERVICE (DEFAULT)
CONTACT:	PDF EXCEL CUSTOM FAX	RUSH SERVICE (2-3 DAYS)
ADDRESS:	EMAIL 1:	PRIORITY SERVICE (1 DAY or ASAP)
	EMAIL 2:	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS
PHONE: PAX:		ANALYSIS REQUEST
INVOICE TO: SAME AS REPORT? YES / NO	INDICATE BOTTLES: FILTERED / PRESERVED (F/P) $\rightarrow \rightarrow \rightarrow \rightarrow$	
COMPANY:	CLIENT / PROJECT INFORMATION:	
CONTACT:	JOB #:	S C
ADDRESS:	PO /AFE:	
	Legal Site Description:	NIM
PHONE: FAX:	QUOTE#:	ATN
Lab Work Order # 1 OF HIGG	SAMPLER (Initials):	300 A3
Sample Sample IDENTIFICATION		THE OF
# (This description will appear on the report)	-	JIH V
TO8-30-07	July 24/08 Sediment	
705-SC-08		
60 -JS-SQL		
785-50-10		
7PS-SC-11		
7PS-SC-12		
78-50-13		X X X X X X X X X X
41-33-501		
7PS- SC- 15		
7PS- SC- DUP		<u> </u>
GUIDELINES / REGULATIONS	SPECIAL INSTRU	SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS
Failure to complete	Failure to complete all portions of this form may delay analysis. Plea	Please fill in this form <i>LEGIBLY.</i>
By the use of this form the user acknowledg	ges and agrees with the Terms and Conditions as signerally the second of	By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. A /
76/11/20	J.	TEMPERATURE
Т	RECEIVED BY: DATE & TIME:	14/3/40 (If no provide details)

GENF14.00

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

ALS Laboratory Group AND/TICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

CANADA TOLL FREE 1-800-668-9878

1 of 15

coc#0098385

SAMPLES RECEIVED IN GOOD CONDITION? YES / NO EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. **SUOGRAZAH** SAMPLE CONDITION (lab use only ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS (If no provide details) REGULAR SERVICE (DEFAULT) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED **EMPERATURE** SAMPLE TYPE DATE & TIME: (3'.15 Letimen 4141/08 FĀ www.alsenviro.com INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials): REPORT FORMAT / DISTRIBUTION CUSTOM CLIENT / PROJECT INFORMATION: OTHER 80/ten DATE Legal Site Description: EXCEL STANDARD QUOTE #: EMAIL 1: EMAIL 2: PO /AFE: JOB #: POF (This description will appear on the report) DATE & FINE: SAMPLE IDENTIFICATION **GUIDELINES / REGULATIONS** SAME AS REPORT? YES / NO なり Sc - 03 -PN- SC-02 7PN-SC-0 FAX: **Environmental Division** ab Work Order (lab use only) **NVOICE TO:** REPORT TO: COMPANY: COMPANY: CONTACT: ADDRESS: CONTACT: ADDRESS: PHONE PHONE Sample

HIGHLY CONTAMINATED?

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

RECEIVED BY:

DATE & TIME

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

GENF14.00

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM **CANADA TOLL FREE 1-800-668-9878**

www.alsenviro.com

SAMPLES RECEIVED IN GOOD CONDITION? YES / NO EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS IGHLY CONTAMINATED? By the use of this form the user acknowledges and agrees with the Tarms and Conditions as specified on the reverse page of the white report copy. ? SUOGRAZAH ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS (If no provide details) REGULAR SERVICE (DEFAULT) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED 500 SAMPLE TYPE DATE & TIME: 13 ! 18 Sodinor 1 ATE& TIME: 4001/ FAX INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials): CUSTOM CLIENT / PROJECT INFORMATION: REPORT FORMAT / DISTRIBUTION 80/AB 0 DATE 25/ Legal Site Description: EXCEL RECEIVED BY ECEIVED BY: STANDARD QUOTE #: PO /AFE: EMAIL 2: EMAIL 1: JOB #: PDF (This description will appear on the report) 901 SAMPLE IDENTIFICATION **GUIDELINES / REGULATIONS** DILP SAME AS REPORT YES / NO 3 03 \mathcal{Q} 35 IF 150 SCI FX: **Environmental Division** TON-アンス PAL چ ح G S _ab Work Order# (lab use only) INVOICE TO: REPORT TO: COMPANY: COMPANY: CONTACT: CONTACT: ADDRESS: ADDRESS: PHONE: PHONE Sample

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

GENF14.00

ALS Laboratory (
ANALYTICAL CHEMISTRY & TESTING SERVIC

Environmental Division

DY / ANALYTICAL REQUEST FORM

www.alsenviro.com

coc#0098387 LL FREE 1-800-668-9878

Page # of 15

CHAIN OF CUSTOR		CANADA TO
	SES	

REPORT TO:	REPORT FORMAT / DISTRIBUTION		SERVICE REQUESTED	ESTED	
COMPANY:	STANDARD OTHER	-	REGULAR SER	REGULAR SERVICE (DEFAULT)	
CONTACT:	PDF EXCEL CUSTOM	FAX	RUSH SERVICE (2-3 DAYS)	: (2-3 DAYS)	
ADDRESS:	EMAIL 1:		PRIORITY SER	PRIORITY SERVICE (1 DAY or ASAP)	
	EMAIL 2:		EMERGENCY S	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS	- CONTACT ALS
PHONE:				ANALYSIS REQUEST	
INVOICE TO: SAME AS BEPORT? YES / NO	INDICATE BOTTLES: FILTERED / PRESERVED (F/P)	ED (F/P) → → →			
COMPANY:	CLIENT / PROJECT INFORMATION:		57		
CONTACT:	JOB #:				
ADDRESS:	PO /AFE:		2!		
	Legal Site Description:		ر الا		/IM/
PHONE: FAX:	QUOTE #:		\(\frac{1}{3}\)		ΑTИ
Lab Work Order# (fab use only)	SAMPLER (Initials):	oler als):	0C 0C		00 Y
Sample SAMPLE IDENTIFICATION # (This description will appear on the report)	ort) DATE TIME	ME SAMPLE TYPE	9 エ		AZAH JHƏIH
1KIUG-50-05	July 35/08	Scarment			ココス
90-35 -30171			<u> </u>		
FO -35 - 37NI			X X X		
١			X X X		
10-78-84			X X X		
1NK6- SC -10			XXX		
1NW6-SC-11			У У Х Х		
11116-50-13			× × ×		
1NVB- 5C- 13			× ×		
1KING- 5C-14	→	→	XXX		
GUIDELINES / REGULATIONS		SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS	TIONS / HAZAR	DOUS DETAILS	
				**	
Failure to complete all portions or By the use of this form the user acknowledges and agrees	e all portions of this form may delay analysis. ges and agrees with the Terms and Conditions	delay analysis. Pleas and Conditions as sp	Please fill in this form <i>LEGIBLY</i> as specified on the reverse pag	this form may delay analysis. Please fill in this form <i>LEGIBLY.</i> white report copy with the Terms and Conditions as specified on the reverse page of the white report copy	eport copy.
REVINDAISHED BY: DATE & TIME:	RECEIVED BY:	DATE & TIME: 13:15 Augl/08	S/ ,_TEMPERATURE	SAMPLE CONDITION (Iab use only) SAMPLES RECEIVED IN GOOD CONDITION? YES / NO	nly) INDITION? YES / NO
RELINQUÍSHED BY: DATE & TIME:	RECEIVED BY:	DATE & TIME:	341/814,	(If no provide details)	

ALS Laboratory Group
ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM CANADA TOLL FREE 1-800-668-9878

Page 12 of 15

coc#0098388

UMBER OF CONTAINERS 1 士 SAMPLES RECEIVED IN GOOD CONDITION? YES / NO * Conventionals & nitrate, rutrite, total phosphate, or thophospiak, bicachonale, (a) hangle, hydroxide, anductivity, hardness, subject chloride, pH, TSS, TDS EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS **!IGHLY CONTAMINATED ?** By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. **INZARDOUS?** SAMPLE CONDITION (lab use only) ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL MSTRUCTIONS / HAZARDOUS DETAILS (If no provide details) REGULAR SERVICE (DEFAULT) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED TEMPERATURE SAMPLE TYPE Sediment DATE & TIME: (3), (5) Sediment Water FAX www.alsenviro.com INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials) CUSTOM CLIENT / PROJECT INFORMATION: REPORT FORMAT / DISTRIBUTION 10 30/08 <u>ر</u> مح arbanate. DATE Legal Site Description: EXCEL RECEIVED BY: RECEIVED BY: STANDARD QUOTE #: EMAIL 2: EMAIL 1: PO /AFE: JOB #: PDF (This description will appear on the report) 43 43 43 ٤ ح SAMPLE IDENTIFICATION **GUIDELINES / REGULATIONS** ATE & TIME: SAME AS REPORT ? YES / NO 1 M B - W B **Environmental Division** 7 ab Work Order# 2 ā ã (lab use only) ELINQUISHED BY **INVOICE TO:** REPORT TO: COMPANY: COMPANY: CONTACT: ADDRESS: CONTACT: ADDRESS: PHONE: PHONE: Sample

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

ALS Laboratory Group analytical CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM CANADA TOLL FREE 1-800-668-9878

coc#**CO**88388

Page 13 of 15

ANALYTICAL CHEMISTRY & TESTING SERVICES
ENVIRONMENTAL DIVISION

Environmental Division (ALS)	www.alsenviro.com	2
REPORT TO:	REPORT FORMAT / DISTRIBUTION	SERVICE REQUESTED
COMPANY:	STANDARDOTHER	REGULAR SERVICE (DEFAULT)
CONTACT: 0 00	PDF EXCEL CUSTOM FAX	RUSH SERVICE (2-3 DAYS)
ADDRESS:	EMAIL 1:	PRIORITY SERVICE (1 DAY or ASAP)
	EMAIL 2:	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS
PHONE:		ANALYSIS REQUEST
INVOICE TO: SAME AS REPORT? YES / NO	INDICATE BOTTLES: FILTERED / PRESERVED (F/P) $\rightarrow \rightarrow \rightarrow$	
COMPANY:	CLIENT / PROJECT INFORMATION:	(60,
CONTACT:	JOB#:	ED S
ADDRESS:	PO /AFE:	
	Legal Site Description:	NIM
PHONE: FAX:	QUOTE #:	ΔTΝ
Lab Work Order# LeeA I GG	SAMPLER (Initials):	KDO KOO
Sample SAMPLE IDENTIFICATION	DATE TIME SAMPLE TYPE	7/Y
# (This description will appear on the report)		ДН ДН
mg 3 PL - SB - WB-1 m	July 20/08 Filter	
>- 0M-85-7d		1 1 1 1 1 1 1 1 1 1
3 8 C - N8 - 100 - 1 m		1 X
5-9M-9N-718)
3 PL - MB-WO-1		X
271 - MB-WG-7	→	
GUIDELINES / REGULATIONS	SPECIAL INSTRU	SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS
Failure to complete all portions of this form By the use of this form the user acknowledges and agrees with the	n may Terms	delay analysis. Please fill in this form <i>LEGIBLY.</i> and Conditions as specified on the reverse page of the white report copy.
RELIKATION DATE TIME:	1	SAMPLE CONDITION (Iab use only) TEMPERATURE SAMPLES RECEIVED IN GOOD CONDITION? YES! NO
& TIME:	RECEIVED BY: DATE & TIME:	

GENF14.00

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM **CANADA TOLL FREE 1-800-668-9878**

REPORT TO:

COMPANY: CONTACT: ADDRESS: INVOICE TO:

PHONE:

COMPANY:

CONTACT: ADDRESS:

PHONE:

Sample

EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS IGHLY CONTAMINATED? **SUOGRAZAH** ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS REGULAR SERVICE (DEFAULT) RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED SAMPLE TYPE † † Wate FAX www.alsenviro.com INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials) CUSTOM **CLIENT / PROJECT INFORMATION:** REPORT FORMAT / DISTRIBUTION OTHER <u>ග</u> 3 8 0% *∞* E \ \ ' ' 0 July251 DATE 33 Tulk 20. かって Legal Site Description: 23 Teely 19 EXCEL STANDARD QUOTE #: PO /AFE: EMAIL 2: EMAIL 1 JOB#: PDF (This description will appear on the report) SAMPLE IDENTIFICATION SAME AS REPORT ? YES / NO FAX **Environmental Division** 耳の兄人 いコスト 十中十 ママト 7 PS NOT ab Work Order# (lab use only)

SAMPLES RECEIVED IN GOOD CONDITION? YES / NO SAMPLE CONDITION (lab use only) (If no provide details) TEMPERATURE DATE & TIME: (3; L Ng1/08 RECEIVED BY: ECEIVED BY 28 t1972

By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy.

Failure to complete all portions of this form may delay analysis. Please fill in this form 'LEGIBL'Y.

Parbonate, hydroxide, conductivity, hardness, Sulphate, chloride, of

k Convertionals sutrate, nitrite, total phosphate, orthopiosph

GUIDELINES / REGULATIONS

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

GENF14.00

sicarbonale,

755.

551

ALS Laboratory Group analytical Chemistry & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM **CANADA TOLL FREE 1-800-668-9878**

Page 15 of 15

coc#0098391

Environmental Division

www.alsenviro.com

UNMBER OF CONTAINERS SAMPLES RECEIVED IN GOOD CONDITION? YES / NO EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS **HIGHLY CONTAMINATED?** By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. **SUOGRAZAH** SAMPLE CONDITION (lab use only) ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS (If no provide details) REGULAR SERVICE (DEFAULT) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED SAMPLE TYPE 上げる DATE & TIME Augi FAX INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials): CUSTOM CLIENT / PROJECT INFORMATION: REPORT FORMAT / DISTRIBUTION OTHER OS 8 \mathcal{Z} 8 Ø \mathscr{S} 8 DATE 20 Legal Site Description: EXCEL RECEIVED BY: STANDARD ECEIVED BY QUOTE #: EMAIL 1: EMAIL 2: PO /AFE: JOB #: PDF (This description will appear on the report) 00/ SAMPLE IDENTIFICATION **GUIDELINES / REGULATIONS** 797 ATE & TIME SAME AS REPORT ? YES / NO FÄ 2 2 2 ノウト トゥア となる 125 Lab Work Order# (lab use only) INVOICE TO: REPORT TO: COMPANY: COMPANY: CONTACT CONTACT: ADDRESS: ADDRESS: PHONE: PHONE: Sample

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

GENF14.00

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

Environmental Division

Certificate of Analysis

AZIMUTH CONSULTING GROUP INC.

ATTN: RANDY BAKER

Reported On: 22-AUG-08 12:40 PM 218 - 2902 WEST BROADWAY

VANCOUVER BC V6K 2G8

Lab Work Order #: L664191 Date Received: 01-AUG-08

Project P.O. #:

Job Reference: MEADOW BANK

Legal Site Desc:

CofC Numbers: C098449

Other Information:

Comments: For some of the submitted water samples, the measured concentration of

specific dissolved parameters is greater than the corresponding total parameters concentration. The explanation for these findings is one or a

combination of the following:

- laboratory method variability;

- analytical bias introduced during sample filtration;

- analytical bias introduced during general handling, storage,

transportation and/or analysis of the sample;
- sample grab bias - where separate grab samples are processed to

produce total and dissolved samples;

- sample split bias - where total and dissolved parameters samples are

produced from the same grab sample.

MATASHA MARKOVIC-MIROVIC

Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

	Sample ID Description	L664191-1	L664191-2	L664191-3	L664191-4	L664191-5
	Sampled Date Sampled Time	27-JUL-08	27-JUL-08	28-JUL-08	27-JUL-08	27-JUL-08
Grouping	Client ID Analyte	BBD	BPJ	BAP	BBD	BPJ
	Allalyte					
WATER						
Physical Tests	Conductivity (uS/cm)	802	426	266		
	Hardness (as CaCO3) (mg/L)	80.8	51.7	31.8		
	pH (pH)	7.20	7.22	7.23		
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0		
	Total Dissolved Solids (mg/L)	434	222	135		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	9.1	8.8	9.1		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0		
	Alkalinity, Total (as CaCO3) (mg/L)	9.1	8.8	9.1		
	Ammonia as N (mg/L)	0.029	0.045	0.022		
	Chloride (CI) (mg/L)	216	110	65.4		
	Nitrate (as N) (mg/L)	0.0637	0.0385	0.0253		
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010		
	Total Kjeldahl Nitrogen (mg/L)	0.134	0.137	0.184		
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010		
	Total Phosphate as P (mg/L)	0.0055	0.0058	0.050		
	Sulfate (SO4) (mg/L)	30.5	15.5	9.37		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	3.54	3.28	3.39		
	Total Organic Carbon (mg/L)	3.04	3.15	3.16		
Total Metals	Aluminum (AI)-Total (mg/L)	<0.010	0.0065	0.0094		
	Antimony (Sb)-Total (mg/L)	<0.0010	<0.00050	<0.00050		
	Arsenic (As)-Total (mg/L)	<0.0010	<0.00050	<0.00050		
	Barium (Ba)-Total (mg/L)	<0.020	<0.020	<0.020		
	Beryllium (Be)-Total (mg/L)	<0.0020	<0.0010	<0.0010		
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10		
	Cadmium (Cd)-Total (mg/L)	<0.000034	<0.000017	<0.000017		
	Calcium (Ca)-Total (mg/L)	7.02	5.02	3.79		
	Chromium (Cr)-Total (mg/L)	<0.0020	<0.0010	<0.0010		
	Cobalt (Co)-Total (mg/L)	<0.00060	<0.00030	<0.00030		
	Copper (Cu)-Total (mg/L)	<0.0020	<0.0010	<0.0010		
	Iron (Fe)-Total (mg/L)	<0.030	<0.030	<0.030		
	Lead (Pb)-Total (mg/L)	<0.0010	<0.00050	<0.00050		
	Lithium (Li)-Total (mg/L)	<0.010	<0.0050	<0.0050		
	Magnesium (Mg)-Total (mg/L)	15.4	9.52	5.43		
	Manganese (Mn)-Total (mg/L)	0.00467	0.00328	0.00279		
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020	<0.000020		
	Molybdenum (Mo)-Total (mg/L)	<0.0020	<0.0010	<0.0010		
	Nickel (Ni)-Total (mg/L)	<0.0020	<0.0010	<0.0010		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	L664191-6	L664191-7	L664191-8	
	Sampled Date Sampled Time	28-JUL-08	04-JUL-08	08-JUL-08	
Grouping	Client ID Analyte	BAP	AZIMUTH-AE- 08(TRAVEL	AZIMUTH- FISHOUT(TRAV	
	Analyte		BLK)	EL BLK)	
WATER					
Physical Tests	Conductivity (uS/cm)		<2.0	<2.0	
	Hardness (as CaCO3) (mg/L)		<0.70		
	pH (pH)		5.54	5.63	
	Total Suspended Solids (mg/L)		<3.0	<3.0	
	Total Dissolved Solids (mg/L)		<10	<10	
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)		<2.0	<2.0	
	Alkalinity, Carbonate (as CaCO3) (mg/L)		<2.0	<2.0	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)		<2.0	<2.0	
	Alkalinity, Total (as CaCO3) (mg/L)		<2.0	<2.0	
	Ammonia as N (mg/L)		<0.020	0.054	
	Chloride (CI) (mg/L)		<0.50	<0.50	
	Nitrate (as N) (mg/L)		<0.0050	<0.0050	
	Nitrite (as N) (mg/L)		<0.0010	<0.0010	
	Total Kjeldahl Nitrogen (mg/L)		<0.050	0.055	
	Ortho Phosphate as P (mg/L)		<0.0010	<0.0010	
	Total Phosphate as P (mg/L)		<0.0020	<0.0020	
	Sulfate (SO4) (mg/L)		<0.50	<0.50	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)				
	Total Organic Carbon (mg/L)		<0.50	<0.50	
Total Metals	Aluminum (Al)-Total (mg/L)		<0.0050		
	Antimony (Sb)-Total (mg/L)		<0.00050		
	Arsenic (As)-Total (mg/L)		<0.00050		
	Barium (Ba)-Total (mg/L)		<0.020		
	Beryllium (Be)-Total (mg/L)		<0.0010		
	Boron (B)-Total (mg/L)		<0.10		
	Cadmium (Cd)-Total (mg/L)		<0.000017		
	Calcium (Ca)-Total (mg/L)		<0.10		
	Chromium (Cr)-Total (mg/L)		<0.0010		
	Cobalt (Co)-Total (mg/L)		<0.00030		
	Copper (Cu)-Total (mg/L)		<0.0010		
	Iron (Fe)-Total (mg/L)		<0.030		
	Lead (Pb)-Total (mg/L)		<0.00050		
	Lithium (Li)-Total (mg/L)		<0.0050		
	Magnesium (Mg)-Total (mg/L)		<0.10		
	Manganese (Mn)-Total (mg/L)		<0.00030		
	Mercury (Hg)-Total (mg/L)		<0.000020		
	Molybdenum (Mo)-Total (mg/L)		<0.0010		
	Nickel (Ni)-Total (mg/L)		<0.0010		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID		L664191-2	L664191-3	L664191-4	L664191-5
	Sampled Dat Sampled Tim	27-JUL-08	27-JUL-08	28-JUL-08	27-JUL-08	27-JUL-08
	Client II		BPJ	BAP	BBD	BPJ
Grouping	Analyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)	4.8	3.0	<2.0		
	Selenium (Se)-Total (mg/L)	<0.0040	<0.0020	<0.0010		
	Silver (Ag)-Total (mg/L)	<0.000040	<0.000020	<0.000020		
	Sodium (Na)-Total (mg/L)	112	66.4	34.7		
	Thallium (TI)-Total (mg/L)	<0.00040	<0.00020	<0.00020		
	Tin (Sn)-Total (mg/L)	<0.0010	<0.00050	<0.00050		
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010		
	Uranium (U)-Total (mg/L)	<0.00040	<0.00020	<0.00020		
	Vanadium (V)-Total (mg/L)	<0.0020	<0.0010	<0.0010		
	Zinc (Zn)-Total (mg/L)	<0.0050	<0.0050	<0.0050		
Aggregate Organics	Oil and Grease (mg/L)	<5.0	<5.0	<5.0		
Plant Pigments	Chlorophyll a (ug)				0.436	0.802

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L664191-6	L664191-7	L664191-8	
	Description				
	Sampled Date Sampled Time	28-JUL-08	04-JUL-08	08-JUL-08	
Grouping	Client ID Analyte	ВАР	AZIMUTH-AE- 08(TRAVEL	AZIMUTH- FISHOUT(TRAV	
WATER	,. .		BLK)	EL BLK)	
Total Metals	Potassium (K)-Total (mg/L)		<2.0		
Total Wetais					
	Selenium (Se)-Total (mg/L) Silver (Ag)-Total (mg/L)		<0.0010		
	Sodium (Na)-Total (mg/L)		<0.000020		
			<2.0		
	Thallium (TI)-Total (mg/L)		<0.00020		
	Tin (Sn)-Total (mg/L)		<0.00050		
	Titanium (Ti)-Total (mg/L)		<0.010		
	Uranium (U)-Total (mg/L)		<0.00020		
	Vanadium (V)-Total (mg/L)		<0.0010		
Aggregate	Zinc (Zn)-Total (mg/L) Oil and Grease (mg/L)		<0.0050		
Organics	Oil and Grease (mg/L)				
Plant Pigments	Chlorophyll a (ug)	0.931			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L664191 CONTD.... PAGE 6 of 8 22-AUG-08 12:35

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

ALK-SCR-VA Water Alkalinity by colour or titration

EPA 310.2 OR APHA 2320

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

OR

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ANIONS-CL-IC-VA

Water

Chloride by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

ANIONS-NO2-IC-VA

Water

Nitrite by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

ANIONS-NO3-IC-VA

Water

Nitrate by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

ANIONS-SO4-IC-VA

Water

Sulfate by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

CARBONS-DOC-VA

Water

Dissolved organic carbon by combustion

APHA 5310 "TOTAL ORGANIC CARBON (TOC)"

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis.

CARBONS-TOC-VA

Water

Total organic carbon by combustion

APHA 5310 "TOTAL ORGANIC CARBON (TOC)"

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)".

CHLOROA-VA

Water

Chlorophyll a by Fluorometer

APHA 10200 H. "Chlorophyll" and EPA 445

Chlorophyll and Pheopigments by Fluorometry analysis is carried out using procedures adapted from APHA Method 10200 H. "Chlorophyll" and USEPA Method 445. The sample is filtered using either a glass fiber filter or a 0.45 micron Membrane filter. The pigments are extracted from the filter with 90% aqueuos acetone. For chlorophyll a analysis the extract is read using a fluorometer. For pheopigments the extract is first acidified then read. This method is not subject to interferences from chlorophyll b.

EC-PCT-VA

Water

Conductivity (Automated)

APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA

Water

Hardness

APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-TOT-CCME-CVAFS- Water

Total Mercury in Water by CVAFS (CCME)

EPA 245.7

VA
This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

MET-TOT-CCME-ICP-VA Water

Total Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-SIE-VA

Water

Ammonia by SIE

APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

OGG-SF-VA

Water

Oil & Grease by Gravimetric

BCMOE GRAVIMETRIC

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3510 & 9071, published by the United States Environmental Protection Agency (EPA), "Standard Methods for the Examination of Water and Wastewater", 20th ed., Method 5520, published by the American Public Health Association, and "BC Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials," 5th ed., published by the B.C. Ministry of Environment, Lands & Parks, 1994. The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to determine Oil and Grease.

PH-MAN-VA

Water

pH by Manual Meter

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA

Water

Dissolved ortho Phosphate by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Water

Total Phosphate P by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

TDS-VA

Water

Total Dissolved Solids by Gravimetric

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TKN-SIE-VA

Water

Total Kjeldahl Nitrogen by SIE

APHA 4500-Norg (TKN)

This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by sample digestion at 367 celcius with analysis using an ammonia selective electrode.

Reference Information

Methods Listed (if applicable):

ALS Test Code	ALS Test Code Matrix Test Description		Analytical Method Reference(Based On)
TSS-VA	Water	Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Short Holding Time

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

CANADA TOLL FREE 1-800-668-9878

coc#C098449 Page ____ of ___

www.alsenviro.com

ET NOONSHED BY	May SHED BY	Ву											STOCK S	Sample #	(lab use only)	PHONE:		ADDRESS:	CONTACT:	COMPANY:	INVOICE TO:	PHONE (Vanouver	ADDRESS	CONTACT	COMPAN	lich.
HED BY/C	ELED BY:	the use of this		GUIDELI		AZimusu	Azimul	BAP	BPJ	880	BAP	BPJ	BBD	(This descr	#		ir g	<i>w</i>		i.s		d1-730-122	wer BC	ADDRESS: 218-2902 W.	CONTACT: Randy Bo	Lnw124 x	rush i locessing Kequileu
DATE 8-7 IME: (me Phys Time:	Failure to complete all portions of this form may delay analysis. By the use of this form the user acknowledges and agrees with the Terms and Conditions		GUIDELINES / REGULATIONS	1000 1000 1000 1000 1000 1000 1000 100	AZIMULAN-FISHOUT HOWELLONG	Azimuth-AE-OB(thevel blk			a	4			SAMPLE IDENTIFICATION This description will appear on the report)	664191	FAX			· · · · · · · · · · · · · · · · · · ·	(SAME AS REPORT ? YES NO	PHONE (104-730-132) GFAX: (104-739-851)		2 W. Broadwary	Baker	COMPANY: DZIMUTH CONSUCTING	Vedalled
RECEIVED BY:	RECEIVED BY:	dges and	4	1	1144	P1K)	P(K)		7				Service .	oort)		QUOTE #:	Legal Site	PO /AFE:	JOB #:	CLIENT /	INDICATE		EMAIL 2:	EMAIL 1:	PDF X	STANDARD	REPORT
BY:	BY:	Failure to complete all portions of this form may delay analysis. e user acknowledges and agrees with the Terms and Condition	* Convente & Marche			July 8 1/08	Suly 4 108	Tuby 28/08	12/08	Lu,27/08	July 28/08	Tuly 27/08	July 27 108	DATE		ALSEGA7	Legal Site Description:	20	The second	CLIENT / PROJECT INFORMATION:	INDICATE BOTTLES: FILTERED / PRESERVED (F/P)		EMAIL 2: man commella of investigation	EMAIL 1: rbaker @921 muthacoup.	EXCEL X CUS	NDOTHER	REPORT FORMAT / DISTRIBUTION
	K	erms and	A S	S			1	Figure			7			TIME	SAMPLER (Initials):	-1.33			- MA	TION:	RESERVED (F/F		ASMAN 20	nechan	CUSTOM	FR	ION
DATE'S TIME:	Avalyob		8	LINS		WATER	WATER	+		Falter	←		Water	SAMPLE TYPE	MLM &		N. 1.1100		1 2 do 1 d) → → ·	-	6) .000,5	6.60	FAX		
\ \ \	2	Please till in this form LEGIBLY. as specified on the reverse page of the white report copy.	オンナ	TRUCTIONS	26	×	×	5		i del-	X	×	X		ve	nt	ior	201	es	*	Ì					X	
200	TEMPERATURE	ed or	2 5	0 -	10.75m						>	7	X	014	-Gra	pas	et	H	zSc	4)	9		EMERGENCY SERVICE	PRIORITY SERVICE (1 DAY or ASAP)	RUSH SERVICE (2-3 DAYS)	REGULAR SERVICE (DEFAULT)	SERVI
10	TURE	the	3	AZA		×	X				X	X	XX	マスノ	A, U	m	non	14	Hz	504	B	No.	GENC'	SE ALI	SERVI	AR S	ה את
	SA	rever	hardness	HAZARDOUS		×	×				X	X	X	Tota	al M	let	act	1	'NC]3)	10		Y SER	RVICE	CE (2-	RVIC	SERVICE REQUESTED
(If no provide details)	SAMPLES RECEIVED	se pa	5,5	S	7		11			77	X	X	X	Do		- 1	10	1)			SER	ANA	VICE (€ (1 D/	3 DAY	E (DEF	EU
le detail	RECEIV	ige of	12	DETAILS		h I	-	X	X	×				Chla	roph	لار	1-0	, (-mg	(O3)	0	ANALYSIS REQUES	<1 DAY	Y or A	S)	AULT)	
s)	ON (Ia	fthe	rate	AILS				S.			la de la constitución de la cons											REQU	//WEI	SAP)			
	N GOOD CONDI	white	Che	8																	/	EST	EKENE	5	-60		
	ONDIT	repo																			\backslash)) - CO				
	MPLE CONDITION (lab use only) SAMPLES RECEIVED IN GOOD CONDITION? YES / NO	rt co	194	bicarbonate		7	2	Z	<	7	2	Z	Z	HAZA	RDO	US	?						(<1 DAY / WEEKEND) - CONTACT ALS				
	YES / I	oy.	-527	3		7.	2	Z	Z	Z	2	Z	۲_	HIGHL	Y CO	NTA	MIN	IATE	D?	14			TALS				
190	ō		ZAT	8		W	十	-		-	7	7	4	NUMB	BER O	FC	ТИС	AINI	ERS							2	43

Environmental Division

Certificate of Analysis

AZIMUTH CONSULTING GROUP INC.

ATTN: RANDY BAKER

Reported On: 08-OCT-08 04:16 PM 218 - 2902 WEST BROADWAY

Revision: 1

VANCOUVER BC V6K 2G8

Lab Work Order #: L678867 Date Received: 05-SEP-08

Project P.O. #:

Job Reference: **AEMP**

Legal Site Desc:

CofC Numbers: C065416, C098458, C098459

Other Information:

Comments: ADDITIONAL 29-SEP-08 16:15 Please note the addition of sillicate and total metals analysis to sample 7.

> The detection limits for some metals have been increased due to high levels of metals in the samples or interferences encountered during analysis.

> The detection limits for some Polycyclic Aromatic Hydrocarbons (PAH) results have been increased for the samples reported due to interferences encountered during analysis.

For some of the submitted water samples, the measured concentration of specific dissolved parameters is greater than the corresponding total parameters concentration (DOC > TOC). The explanation for these findings is one or a combination of the following:

- laboratory method variability;
- field sampling method variability;
- bias introduced during general handling, storage, transportation and/or analysis of the sample;
- field sample grab bias where separate grab samples are processed to produce total and dissolved samples;
- field sample split bias where total and dissolved parameters samples are produced from the same grab sample.

For further clarification on any of the above information, please contact your ALS account manager.

yn Mho

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

		<u> </u>	<u> </u>		
	Sample ID Description Sampled Date Sampled Time Client ID				
Grouping	Analyte				
FILTER					
Metals	Aluminum (Al)-Total (ug)	- <20			
	Antimony (Sb)-Total (ug)	<10			
	Arsenic (As)-Total (ug)	<10			
	Barium (Ba)-Total (ug)	2.46			
	Beryllium (Be)-Total (ug)	<0.30			
	Bismuth (Bi)-Total (ug)	<10			
	Cadmium (Cd)-Total (ug)	<0.50			
	Calcium (Ca)-Total (ug)	31.5			
	Chromium (Cr)-Total (ug)	7.24			
	Cobalt (Co)-Total (ug)	<0.50			
	Copper (Cu)-Total (ug)	1.07			
	Iron (Fe)-Total (ug)	52.0			
	Lead (Pb)-Total (ug)	<3.0			
	Lithium (Li)-Total (ug)	<0.50			
	Magnesium (Mg)-Total (ug)	10.1			
	Manganese (Mn)-Total (ug)	1.53			
	Molybdenum (Mo)-Total (ug)	<2.0			
	Nickel (Ni)-Total (ug)	3.9			
	Phosphorus (P)-Total (ug)	<20			
	Potassium (K)-Total (ug)	<100			
	Selenium (Se)-Total (ug)	<10			
	Silver (Ag)-Total (ug)	<0.50			
	Sodium (Na)-Total (ug)	120			
	Strontium (Sr)-Total (ug)	<0.30			
	Thallium (TI)-Total (ug)	<10			
	Tin (Sn)-Total (ug)	<2.0			
	Titanium (Ti)-Total (ug)	<0.50			
	Vanadium (V)-Total (ug)	<2.0			
	Zinc (Zn)-Total (ug)	0.90			

	Sample ID Description	L678867-20	L678867-21	L678867-22	L678867-23	L678867-24
	Sampled Date Sampled Time Client ID	16-AUG-08	17-AUG-08	18-AUG-08	19-AUG-08	20-AUG-08
Grouping	Analyte	TPE	TPS	TPN	TE	INUG
SOIL	, .,					
	0/ Mojeture (0/)	87.7	85.6	82.3	83.6	82.7
Physical Tests	% Moisture (%)					
Bardala Olar	pH (pH)	6.20	6.04	6.13	6.03	5.98
Particle Size	% Gravel (>2mm) (%)	<1	<1	<1	<1	<1
	% Sand (2.0mm - 0.063mm) (%)	3	7	20	5	9
	% Silt (0.063mm - 4um) (%)	62	65	62	70	67
	% Clay (<4um) (%)	36	28	18	25	25
Organic / Inorganic Carbon	Total Organic Carbon (%)	5.0	4.5	3.1	3.7	4.2
Metals	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	25.5	26.4	20.8	19.1	145
	Barium (Ba) (mg/kg)	143	118	70.0	125	98.3
	Beryllium (Be) (mg/kg)	1.77	1.65	1.01	2.21	1.03
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)	76.8	111	105	57.3	87.9
	Cobalt (Co) (mg/kg)	17.9	23.4	16.5	12.4	15.2
	Copper (Cu) (mg/kg)	54.2	78.9	40.2	68.2	38.3
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0253	0.0271	0.0142	0.0287	0.0329
	Molybdenum (Mo) (mg/kg)	5.9	5.4	<4.0	6.2	10.2
	Nickel (Ni) (mg/kg)	78.7	99.1	60.7	44.2	60.2
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)	35.7	40.8	28.8	37.6	32.3
	Zinc (Zn) (mg/kg)	104	114	69.6	113	64.7
Aggregate	Oil and Grease (mg/kg)	5070	3250	3170	1590	2380
Organics Polycyclic Aromatic	Acenaphthene (mg/kg)	<0.13	<0.10	<0.092	<0.092	<0.086
Hydrocarbons						
	Acenaphthylene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Anthracene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Benz(a)anthracene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Benzo(a)pyrene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Benzo(b)fluoranthene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Benzo(g,h,i)perylene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Benzo(k)fluoranthene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Chrysene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Dibenz(a,h)anthracene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Fluoranthene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11

	Sample ID Description Sampled Date Sampled Time Client ID	L678867-25 21-AUG-08 WAL	L678867-26		
Grouping	Analyte	*****	201		
SOIL	•				
Physical Tests	% Moisture (%)	84.7	83.0		
i ilysicai Tests	pH (pH)	6.34	6.11		
Particle Size	% Gravel (>2mm) (%)	<1	<1		
i ai ticle Size	% Sand (2.0mm - 0.063mm) (%)	10	18		
	% Silt (0.063mm - 4um) (%)	64	62		
	% Clay (<4um) (%)	27	20		
Organic /	Total Organic Carbon (%)	4.9	3.0		
Inorganic Carbon	Total Organic Carbon (70)	4.5	3.0		
Metals	Antimony (Sb) (mg/kg)	<10	<10		
	Arsenic (As) (mg/kg)	50.2	17.3		
	Barium (Ba) (mg/kg)	132	76.9		
	Beryllium (Be) (mg/kg)	1.99	1.06		
	Cadmium (Cd) (mg/kg)	<0.50	<0.50		
	Chromium (Cr) (mg/kg)	61.2	108		
	Cobalt (Co) (mg/kg)	11.1	16.1		
	Copper (Cu) (mg/kg)	149	41.8		
	Lead (Pb) (mg/kg)	34	<30		
	Mercury (Hg) (mg/kg)	0.0360	0.0128		
	Molybdenum (Mo) (mg/kg)	8.6	<4.0		
	Nickel (Ni) (mg/kg)	58.0	66.7		
	Selenium (Se) (mg/kg)	<2.0	<2.0		
	Silver (Ag) (mg/kg)	<2.0	<2.0		
	Thallium (TI) (mg/kg)	<1.0	<1.0		
	Tin (Sn) (mg/kg)	<5.0	<5.0		
	Vanadium (V) (mg/kg)	36.4	29.8		
	Zinc (Zn) (mg/kg)	125	73.9		
Aggregate	Oil and Grease (mg/kg)	2880	2870		
Organics Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.040	<0.092		
. iyai ooai bolla	Acenaphthylene (mg/kg)	<0.050	<0.12		
	Anthracene (mg/kg)	<0.050	<0.12		
	Benz(a)anthracene (mg/kg)	<0.050	<0.12		
	Benzo(a)pyrene (mg/kg)	<0.050	<0.12		
	Benzo(b)fluoranthene (mg/kg)	<0.050	<0.12		
	Benzo(g,h,i)perylene (mg/kg)	<0.050	<0.12		
	Benzo(k)fluoranthene (mg/kg)	<0.050	<0.12		
	Chrysene (mg/kg)	<0.050	<0.12		
	Dibenz(a,h)anthracene (mg/kg)	<0.050	<0.12		
	Fluoranthene (mg/kg)	<0.050	<0.12		

	Sample ID Description	L678867-20	L678867-21	L678867-22	L678867-23	L678867-24
	Sampled Date	16-AUG-08	17-AUG-08	18-AUG-08	19-AUG-08	20-AUG-08
	Sampled Time Client ID	TPE	TPS	TPN	TE	INUG
rouping	Analyte					
OIL						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	2-Methylnaphthalene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Naphthalene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Phenanthrene (mg/kg)	<0.80	<0.13	<0.12	<0.12	<0.11
	Pyrene (mg/kg)	<0.16	<0.13	<0.12	<0.12	<0.11
	Surrogate: d10-Acenaphthene (SS) (%)	93	95	93	92	91
	Surrogate: d12-Chrysene (SS) (%)	104	109	109	105	106
	Surrogate: d8-Naphthalene (SS) (%)	95	97	94	95	93
	Surrogate: d10-Phenanthrene (SS) (%)	95	100	96	95	94

	Sample ID Description	L678867-25	L678867-26		
	Sampled Date Sampled Time	21-AUG-08			
	Client ID	WAL	DUP		
Grouping	Analyte				
SOIL					
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)	<0.050	<0.12		
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050	<0.12		
	2-Methylnaphthalene (mg/kg)	<0.050	<0.12		
	Naphthalene (mg/kg)	<0.050	<0.12		
	Phenanthrene (mg/kg)	<0.50	<0.12		
	Pyrene (mg/kg)	<0.050	<0.12		
	Surrogate: d10-Acenaphthene (SS) (%)	92	89		
	Surrogate: d12-Chrysene (SS) (%)	103	99		
	Surrogate: d8-Naphthalene (SS) (%)	95	92		
	Surrogate: d10-Phenanthrene (SS) (%)	96	92		

	Sample ID Description	L678867-1	L678867-2	L678867-3	L678867-4	L678867-5
	Sampled Date Sampled Time Client ID	16-AUG-08	17-AUG-08	17-AUG-08	19-AUG-08	20-AUG-08
Grouping	Analyte	TPE	TPS	TPN	TE	INUG
WATER						
Physical Tests	Conductivity (uS/cm)	13.9	14.1	14.0	18.7	14.0
riiysicai iesis	Hardness (as CaCO3) (mg/L)	4.96	5.01	4.98	7.24	4.97
	pH (pH)	6.55	6.47	6.61	6.76	6.74
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	13	15	14	13	<3.0
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	5.0	4.2	3.9	5.0	4.3
Nutrients	Alkalility, bicarbonate (as CacCO) (Hig/L)	3.0	4.2	3.9	3.0	4.3
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	5.0	4.2	3.9	5.0	4.3
	Ammonia as N (mg/L)	<0.020	<0.020	0.023	<0.020	0.030
	Chloride (CI) (mg/L)	<0.50	0.51	<0.50	<0.50	0.69
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.093	0.099	0.081	0.090	0.098
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Phosphate as P (mg/L)	<0.0020	0.0022	0.0024	0.0030	0.0027
	Silicate (as SIO2) (mg/L)					
	Sulfate (SO4) (mg/L)	1.62	1.53	1.43	2.01	0.96
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.94	1.90	1.92	1.74	2.48
	Total Organic Carbon (mg/L)	1.35	1.33	1.31	1.44	1.80
Total Metals	Aluminum (Al)-Total (mg/L)	0.0074	<0.0050	<0.0050	0.0607	0.0060
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Barium (Ba)-Total (mg/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Total (mg/L)	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017
	Calcium (Ca)-Total (mg/L)	1.14	1.15	1.14	1.80	0.99
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Cobalt (Co)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Copper (Cu)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Total (mg/L)	<0.030	<0.030	<0.030	0.092	<0.030
	Lead (Pb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/L)	0.51	0.52	0.52	0.67	0.61
	Manganese (Mn)-Total (mg/L)	0.00097	0.00064	0.00061	0.00257	0.00193
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

	Sample ID Description	L678867-6	L678867-7	L678867-8	L678867-9	L678867-10
	Sampled Date Sampled Time	21-AUG-08	22-AUG-08		22-AUG-08	22-AUG-08
	Client ID	WAL	SP	DUP	EQBLK	SP-D
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	27.4	23.8	14.2	<2.0	
	Hardness (as CaCO3) (mg/L)	11.7	11.8	5.00		9.69
	pH (pH)	7.31	7.24	6.71	5.74	
	Total Suspended Solids (mg/L)	<3.0	10.7	<3.0	<3.0	
	Total Dissolved Solids (mg/L)	15	21	13	<10	
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	9.2	6.6	3.8	<2.0	
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Alkalinity, Total (as CaCO3) (mg/L)	9.2	6.6	3.8	<2.0	
	Ammonia as N (mg/L)	0.021	<0.020	<0.020	<0.020	
	Chloride (CI) (mg/L)	<0.50	<0.50	0.68	<0.50	
	Nitrate (as N) (mg/L)	<0.0050	0.0795	<0.0050	<0.0050	
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Total Kjeldahl Nitrogen (mg/L)	0.100	0.093	0.067	<0.050	
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Total Phosphate as P (mg/L)	0.0025	0.0154	0.0035	<0.0020	
	Silicate (as SIO2) (mg/L)		<1.0			
	Sulfate (SO4) (mg/L)	2.64	2.49	0.88	<0.50	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	2.06	1.75	1.93	0.76	
	Total Organic Carbon (mg/L)	1.86	1.43	1.84	<0.50	
Total Metals	Aluminum (AI)-Total (mg/L)	0.0053	1.17	0.0077		
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Arsenic (As)-Total (mg/L)	<0.00050	0.00054	<0.00050		
	Barium (Ba)-Total (mg/L)	<0.020	<0.020	<0.020		
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010		
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10		
	Cadmium (Cd)-Total (mg/L)	<0.000017	<0.000017	<0.000017		
	Calcium (Ca)-Total (mg/L)	3.14	2.68	0.99		
	Chromium (Cr)-Total (mg/L)	<0.0010	0.0039	<0.0010		
	Cobalt (Co)-Total (mg/L)	<0.00030	0.00065	<0.00030		
	Copper (Cu)-Total (mg/L)	<0.0010	0.0031	<0.0010		
	Iron (Fe)-Total (mg/L)	<0.030	1.31	<0.030		
	Lead (Pb)-Total (mg/L)	<0.00050	0.00087	<0.00050		
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050		
	Magnesium (Mg)-Total (mg/L)	0.93	1.24	0.62		
	Manganese (Mn)-Total (mg/L)	0.00136	0.0242	0.00201		
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020	<0.000020		
	Molybdenum (Mo)-Total (mg/L)	<0.0010	<0.0010	<0.0010		

	Sample ID Description	L678867-11	L678867-12	L678867-13	L678867-14	L678867-15
	Sampled Date Sampled Time	22-AUG-08	22-AUG-08	16-AUG-08	17-AUG-08	17-AUG-08
Grouping	Client ID Analyte	EQBLK-D	EQBLK-T	TPE	TPS	TPN
	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)					
	Hardness (as CaCO3) (mg/L)	<0.70	<0.70			
	pH (pH)					
	Total Suspended Solids (mg/L)					
	Total Dissolved Solids (mg/L)					
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)					
	Alkalinity, Carbonate (as CaCO3) (mg/L)					
	Alkalinity, Hydroxide (as CaCO3) (mg/L)					
	Alkalinity, Total (as CaCO3) (mg/L)					
	Ammonia as N (mg/L)					
	Chloride (CI) (mg/L)					
	Nitrate (as N) (mg/L)					
	Nitrite (as N) (mg/L)					
	Total Kjeldahl Nitrogen (mg/L)					
	Ortho Phosphate as P (mg/L)					
	Total Phosphate as P (mg/L)					
	Silicate (as SIO2) (mg/L)					
	Sulfate (SO4) (mg/L)					
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)					
	Total Organic Carbon (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)		<0.0050			
	Antimony (Sb)-Total (mg/L)		<0.00050			
	Arsenic (As)-Total (mg/L)		<0.00050			
	Barium (Ba)-Total (mg/L)		<0.020			
	Beryllium (Be)-Total (mg/L)		<0.0010			
	Boron (B)-Total (mg/L)		<0.10			
	Cadmium (Cd)-Total (mg/L)		<0.000017			
	Calcium (Ca)-Total (mg/L)		<0.10			
	Chromium (Cr)-Total (mg/L)		<0.0010			
	Cobalt (Co)-Total (mg/L)		<0.00030			
	Copper (Cu)-Total (mg/L)		<0.0010			
	Iron (Fe)-Total (mg/L)		<0.030			
	Lead (Pb)-Total (mg/L)		<0.00050			
	Lithium (Li)-Total (mg/L)		<0.0050			
	Magnesium (Mg)-Total (mg/L)		<0.10			
	Manganese (Mn)-Total (mg/L)		<0.00030			
	Mercury (Hg)-Total (mg/L)		<0.000020			
	Molybdenum (Mo)-Total (mg/L)		<0.0010			

	Sample ID Description	L678867-16	L678867-17	L678867-18	L678867-19	L678867-28
	Sampled Date Sampled Time	19-AUG-08	20-AUG-08	21-AUG-08	22-AUG-08	
	Client ID	TE	INUG	WAL	SP	DUP
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)					
	Hardness (as CaCO3) (mg/L)					
	pH (pH)					
	Total Suspended Solids (mg/L)					
	Total Dissolved Solids (mg/L)					
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)					
	Alkalinity, Carbonate (as CaCO3) (mg/L)					
	Alkalinity, Hydroxide (as CaCO3) (mg/L)					
	Alkalinity, Total (as CaCO3) (mg/L)					
	Ammonia as N (mg/L)					
	Chloride (CI) (mg/L)					
	Nitrate (as N) (mg/L)					
	Nitrite (as N) (mg/L)					
	Total Kjeldahl Nitrogen (mg/L)					
	Ortho Phosphate as P (mg/L)					
	Total Phosphate as P (mg/L)					
	Silicate (as SIO2) (mg/L)					
	Sulfate (SO4) (mg/L)					
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)					
	Total Organic Carbon (mg/L)					
Total Metals	Aluminum (AI)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					

	Sample ID Description Sampled Date	L678867-29		
	Sampled Time Client ID	TRAVEL BLANK		
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (uS/cm)	<2.0		
	Hardness (as CaCO3) (mg/L)	<0.70		
	pH (pH)	5.76		
	Total Suspended Solids (mg/L)	<3.0		
	Total Dissolved Solids (mg/L)	<10		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	<2.0		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0		
	Alkalinity, Total (as CaCO3) (mg/L)	<2.0		
	Ammonia as N (mg/L)			
	Chloride (CI) (mg/L)	<0.50		
	Nitrate (as N) (mg/L)	<0.0050		
	Nitrite (as N) (mg/L)	<0.0010		
	Total Kjeldahl Nitrogen (mg/L)	<0.050		
	Ortho Phosphate as P (mg/L)	<0.0010		
	Total Phosphate as P (mg/L)	<0.0020		
	Silicate (as SIO2) (mg/L)			
	Sulfate (SO4) (mg/L)	<0.50		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L) Total Organic Carbon (mg/L)	-0.50		
Total Metals	Aluminum (Al)-Total (mg/L)	<0.50 <0.0050		
Total Wetais	Antimony (Sb)-Total (mg/L)	<0.0050		
	Arsenic (As)-Total (mg/L)	<0.00050		
	Barium (Ba)-Total (mg/L)	<0.000		
	Beryllium (Be)-Total (mg/L)	<0.020		
	Boron (B)-Total (mg/L)	<0.10		
	Cadmium (Cd)-Total (mg/L)	<0.00017		
	Calcium (Ca)-Total (mg/L)	<0.10		
	Chromium (Cr)-Total (mg/L)	<0.0010		
	Cobalt (Co)-Total (mg/L)	<0.00030		
	Copper (Cu)-Total (mg/L)	<0.0010		
	Iron (Fe)-Total (mg/L)	<0.030		
	Lead (Pb)-Total (mg/L)	<0.00050		
	Lithium (Li)-Total (mg/L)	<0.0050		
	Magnesium (Mg)-Total (mg/L)	<0.10		
	Manganese (Mn)-Total (mg/L)	<0.00030		
	Mercury (Hg)-Total (mg/L)	<0.00000		
	Molybdenum (Mo)-Total (mg/L)	<0.0010		

	Sample ID Description	L678867-1	L678867-2	L678867-3	L678867-4	L678867-5
	Sampled Date Sampled Time	16-AUG-08	17-AUG-08	17-AUG-08	19-AUG-08	20-AUG-08
Grouping	Client ID Analyte	TPE	TPS	TPN	TE	INUG
	raidiyee					
WATER	Nichal (NI) Tatal (as all)	0.0040	0.0040	0.0040	0.0040	0.0040
Total Metals	Nickel (Ni)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)					
	Antimony (Sb)-Dissolved (mg/L)					
	Arsenic (As)-Dissolved (mg/L)					
	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Mercury (Hg)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					

	Sample ID	L678867-6	L678867-7	L678867-8	L678867-9	L678867-10
	Description Sampled Date Sampled Time	21-AUG-08	22-AUG-08		22-AUG-08	22-AUG-08
	Client ID	WAL	SP	DUP	EQBLK	SP-D
Grouping	Analyte					
WATER						
Total Metals	Nickel (Ni)-Total (mg/L)	<0.0010	0.0027	<0.0010		
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0		
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010		
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000020	<0.000020		
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	<2.0		
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020		
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Titanium (Ti)-Total (mg/L)	<0.010	0.049	<0.010		
	Uranium (U)-Total (mg/L)	<0.00020	0.00056	<0.00020		
	Vanadium (V)-Total (mg/L)	<0.0010	0.0019	<0.0010		
	Zinc (Zn)-Total (mg/L)	<0.0050	0.0050	<0.0050		
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)					0.0121
	Antimony (Sb)-Dissolved (mg/L)					<0.00050
	Arsenic (As)-Dissolved (mg/L)					<0.00050
	Barium (Ba)-Dissolved (mg/L)					<0.020
	Beryllium (Be)-Dissolved (mg/L)					<0.0010
	Boron (B)-Dissolved (mg/L)					<0.10
	Cadmium (Cd)-Dissolved (mg/L)					<0.000017
	Calcium (Ca)-Dissolved (mg/L)					2.59
	Chromium (Cr)-Dissolved (mg/L)					<0.0010
	Cobalt (Co)-Dissolved (mg/L)					<0.00030
	Copper (Cu)-Dissolved (mg/L)					<0.0010
	Iron (Fe)-Dissolved (mg/L)					<0.030
	Lead (Pb)-Dissolved (mg/L)					<0.00050
	Lithium (Li)-Dissolved (mg/L)					<0.0050
	Magnesium (Mg)-Dissolved (mg/L)					0.79
	Manganese (Mn)-Dissolved (mg/L)					0.00158
	Mercury (Hg)-Dissolved (mg/L)					<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)					<0.0010
	Nickel (Ni)-Dissolved (mg/L)					<0.0010
	Potassium (K)-Dissolved (mg/L)					<2.0
	Selenium (Se)-Dissolved (mg/L)					<0.0010
	Silver (Ag)-Dissolved (mg/L)					<0.000020
	Sodium (Na)-Dissolved (mg/L)					<2.0
	Thallium (TI)-Dissolved (mg/L)					<0.00020
	Tin (Sn)-Dissolved (mg/L)					<0.00050
	Titanium (Ti)-Dissolved (mg/L)					<0.010
	Uranium (U)-Dissolved (mg/L)					<0.00020
	Vanadium (V)-Dissolved (mg/L)					<0.0010

	Sample ID Description	L678867-11	L678867-12	L678867-13	L678867-14	L678867-15
	Sampled Date Sampled Time	22-AUG-08	22-AUG-08	16-AUG-08	17-AUG-08	17-AUG-08
	Client ID	EQBLK-D	EQBLK-T	TPE	TPS	TPN
Grouping	Analyte					
WATER						
Total Metals	Nickel (Ni)-Total (mg/L)		<0.0010			
	Potassium (K)-Total (mg/L)		<2.0			
	Selenium (Se)-Total (mg/L)		<0.0010			
	Silver (Ag)-Total (mg/L)		<0.000020			
	Sodium (Na)-Total (mg/L)		<2.0			
	Thallium (TI)-Total (mg/L)		<0.00020			
	Tin (Sn)-Total (mg/L)		<0.00050			
	Titanium (Ti)-Total (mg/L)		<0.010			
	Uranium (U)-Total (mg/L)		<0.00020			
	Vanadium (V)-Total (mg/L)		<0.0010			
	Zinc (Zn)-Total (mg/L)		<0.0050			
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	<0.0050				
	Antimony (Sb)-Dissolved (mg/L)	<0.00050				
	Arsenic (As)-Dissolved (mg/L)	<0.00050				
	Barium (Ba)-Dissolved (mg/L)	<0.020				
	Beryllium (Be)-Dissolved (mg/L)	<0.0010				
	Boron (B)-Dissolved (mg/L)	<0.10				
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017				
	Calcium (Ca)-Dissolved (mg/L)	<0.10				
	Chromium (Cr)-Dissolved (mg/L)	<0.0010				
	Cobalt (Co)-Dissolved (mg/L)	<0.00030				
	Copper (Cu)-Dissolved (mg/L)	<0.0010				
	Iron (Fe)-Dissolved (mg/L)	<0.030				
	Lead (Pb)-Dissolved (mg/L)	<0.00050				
	Lithium (Li)-Dissolved (mg/L)	<0.0050				
	Magnesium (Mg)-Dissolved (mg/L)	<0.10				
	Manganese (Mn)-Dissolved (mg/L)	<0.00030				
	Mercury (Hg)-Dissolved (mg/L)	<0.000020				
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010				
	Nickel (Ni)-Dissolved (mg/L)	<0.0010				
	Potassium (K)-Dissolved (mg/L)	<2.0				
	Selenium (Se)-Dissolved (mg/L)	<0.0010				
	Silver (Ag)-Dissolved (mg/L)	<0.000020				
	Sodium (Na)-Dissolved (mg/L)	<2.0				
	Thallium (TI)-Dissolved (mg/L)	<0.00020				
	Tin (Sn)-Dissolved (mg/L)	<0.00050				
	Titanium (Ti)-Dissolved (mg/L)	<0.010				
	Uranium (U)-Dissolved (mg/L)	<0.00020				
	Vanadium (V)-Dissolved (mg/L)	<0.0010				

	Sample ID Description Sampled Date	L678867-16 19-AUG-08	L678867-17 20-AUG-08	L678867-18 21-AUG-08	L678867-19 22-AUG-08	L678867-28
	Sampled Time				0.5	BUB
Grouping	Client ID Analyte	TE	INUG	WAL	SP	DUP
	raidiyte					
WATER	NI LIAN TALLA					
Total Metals	Nickel (Ni)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)					
	Antimony (Sb)-Dissolved (mg/L)					
	Arsenic (As)-Dissolved (mg/L)					
	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Mercury (Hg)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					

	Sample ID Description Sampled Date Sampled Time Client ID	L678867-29 TRAVEL BLANK		
Brouping	Analyte			
WATER				
Total Metals	Nickel (Ni)-Total (mg/L)	<0.0010		
	Potassium (K)-Total (mg/L)	<2.0		
	Selenium (Se)-Total (mg/L)	<0.0010		
	Silver (Ag)-Total (mg/L)	<0.000020		
	Sodium (Na)-Total (mg/L)	<2.0		
	Thallium (TI)-Total (mg/L)	<0.00020		
	Tin (Sn)-Total (mg/L)	<0.00050		
	Titanium (Ti)-Total (mg/L)	<0.010		
	Uranium (U)-Total (mg/L)	<0.00020		
	Vanadium (V)-Total (mg/L)	<0.0010		
	Zinc (Zn)-Total (mg/L)	<0.0050		
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	•		
	Antimony (Sb)-Dissolved (mg/L)			
	Arsenic (As)-Dissolved (mg/L)			
	Barium (Ba)-Dissolved (mg/L)			
	Beryllium (Be)-Dissolved (mg/L)			
	Boron (B)-Dissolved (mg/L)			
	Cadmium (Cd)-Dissolved (mg/L)			
	Calcium (Ca)-Dissolved (mg/L)			
	Chromium (Cr)-Dissolved (mg/L)			
	Cobalt (Co)-Dissolved (mg/L)			
	Copper (Cu)-Dissolved (mg/L)			
	Iron (Fe)-Dissolved (mg/L)			
	Lead (Pb)-Dissolved (mg/L)			
	Lithium (Li)-Dissolved (mg/L)			
	Magnesium (Mg)-Dissolved (mg/L)			
	Manganese (Mn)-Dissolved (mg/L)			
	Mercury (Hg)-Dissolved (mg/L)			
	Molybdenum (Mo)-Dissolved (mg/L)			
	Nickel (Ni)-Dissolved (mg/L)			
	Potassium (K)-Dissolved (mg/L)			
	Selenium (Se)-Dissolved (mg/L)			
	Silver (Ag)-Dissolved (mg/L)			
	Sodium (Na)-Dissolved (mg/L)			
	Thallium (TI)-Dissolved (mg/L)			
	Tin (Sn)-Dissolved (mg/L)			
	Titanium (Ti)-Dissolved (mg/L)			
	Uranium (U)-Dissolved (mg/L)			
	Vanadium (V)-Dissolved (mg/L)			

		Sample ID Description Sampled Date	L678867-1 16-AUG-08	L678867-2 17-AUG-08	L678867-3 17-AUG-08	L678867-4 19-AUG-08	L678867-5 20-AUG-08
		Sampled Time Client ID					
Grouping	Analyte	Ciletit ID	TPE	TPS	TPN	TE	INUG
WATER	•						
Dissolved Metals	Zinc (Zn)-Dissolved (mg/L)						
Aggregate Organics	Oil and Grease (mg/L)		<5.0	<5.0	<5.0	<5.0	<5.0
Aggregate Organics Plant Pigments	Oil and Grease (mg/L) Chlorophyll a (ug)		<5.0	<5.0	<5.0	<5.0	<5.0

		Sample ID Description Sampled Date Sampled Time	L678867-6 21-AUG-08	L678867-7 22-AUG-08	L678867-8	L678867-9 22-AUG-08	L678867-10 22-AUG-08
in	Analysis	Client ID	WAL	SP	DUP	EQBLK	SP-D
Grouping	Analyte						
WATER	7: (7) 5: 1 1 (1)						0.0050
Dissolved Metals	Zinc (Zn)-Dissolved (mg/L)		F 0	F 0	5.0	5.0	<0.0050
Aggregate Organics	Oil and Grease (mg/L)		<5.0	<5.0	<5.0	<5.0	
Organics Plant Pigments	Chlorophyll a (ug)						

		Sample ID Description Sampled Date	L678867-11 22-AUG-08	L678867-12 22-AUG-08	L678867-13 16-AUG-08	L678867-14 17-AUG-08	L678867-15 17-AUG-08
		Sampled Time					
Grouping	Analyte	Client ID	EQBLK-D	EQBLK-T	TPE	TPS	TPN
NATER	Analyte						
Dissolved Metals	Zinc (Zn)-Dissolved (mg/L)		<0.0050				
Aggregate Organics	Oil and Grease (mg/L)		<0.0000				
Plant Pigments	Chlorophyll a (ug)				0.398	0.327	0.337

		Sample ID Description Sampled Date	L678867-16 19-AUG-08	L678867-17 20-AUG-08	L678867-18 21-AUG-08	L678867-19 22-AUG-08	L678867-28
		Sampled Time Client ID	TE	INUG	WAL	SP	DUP
Frouping	Analyte						
WATER							
Dissolved Metals	Zinc (Zn)-Dissolved (mg/L)						
	Oil and Grease (mg/L)						
Aggregate Organics Plant Pigments	Chlorophyll a (ug)		0.595	0.616	0.659	0.139	0.632

		Sample ID Description	L678867-29		
		Sampled Date Sampled Time Client ID	TRAVEL BLANK		
Grouping	Analyte				
WATER					
Dissolved Metals	Zinc (Zn)-Dissolved (mg/L)				
Aggregate Organics	Oil and Grease (mg/L)				
Plant Pigments	Chlorophyll a (ug)				

Additional Comments for Sample Listed:

 Samplenum
 Matrix
 Report Remarks
 Sample Comments

 Methods Listed (if applicable):
 ALS Test Code
 Matrix
 Test Description
 Analytical Method Reference (Based On)

ALK-SCR-VA Water Alkalinity by colour or titration EPA 310.2 OR APHA 2320

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

OR

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ANIONS-CL-IC-VA Water Chloride by Ion Chromatography APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

ANIONS-NO2-IC-VA Water Nitrite by Ion Chromatography APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

ANIONS-NO3-IC-VA Water Nitrate by Ion Chromatography APHA Method 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

ANIONS-SO4-IC-VA Water Sulfate by Ion Chromatography APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

C-TOT-ORG-LECO-SK Soil Organic Carbon by combustion method SSSA (1996) p. 973

Total Organic Carbon (C-TOT-ORG-LECO-SK, C-TOT-ORG-SK)

Total C and inorganic C are determined on separate samples. The total C is determined by combustion and thermal conductivity detection, while inorganic C is determined by weight lass after addition of hydrochloric acid. Organic C is calculated by the difference between these two determinations.

Reference for Total C:

Nelson, D.W. and Sommers, L.E. 1996. Total Carbon, organic carbon and organic matter. P. 961-1010 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

Reference for Inorganic C:

Loeppert, R.H. and Suarez, D.L. 1996. Gravimetric Method for Loss of Carbon Dioxide. P. 455-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

CARBONS-DOC-VA Water Dissolved organic carbon by combustion APHA 5310 "TOTAL ORGANIC CARBON (TOC)"

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis.

CARBONS-TOC-VA Water Total organic carbon by combustion APHA 5310 "TOTAL ORGANIC CARBON (TOC)"

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)".

CHLOROA-VA Water Chlorophyll a by Fluorometer APHA 10200 H. "Chlorophyll" and EPA 445

Chlorophyll and Pheopigments by Fluorometry analysis is carried out using procedures adapted from APHA Method 10200 H. "Chlorophyll" and

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

USEPA Method 445. The sample is filtered using either a glass fiber filter or a 0.45 micron Membrane filter. The pigments are extracted from the filter with 90% aqueuos acetone. For chlorophyll a analysis the extract is read using a fluorometer. For pheopigments the extract is first acidified then read. This method is not subject to interferences from chlorophyll b.

EC-PCT-VA

Water

Conductivity (Automated)

APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA

Water

Hardness

APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-CCME-CVAFS-VA

Soil

CVAFS Hg in Soil (CCME)

CCME

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 7000 series).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

HG-DIS-CCME-CVAFS-

Water

Diss. Mercury in Water by CVAFS (CCME)

EPA 3005A/245.7

VA
This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

HG-TOT-CCME-CVAFS- Water

Total Mercury in Water by CVAFS (CCME)

EPA 245.7

VA
This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the
American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United
States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to
reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-AR-UG-ICP-VA

Filter

Metals in Filter/Swab by ICPOES

WCB 1051/OSHA ID-125G/EPA 6010B

This analysis is carried out using procedures adapted from WCB Methods 1051, published by the Workers' Compensation Board of British Columbia and/or OSHA Method ID-125G, published by the Occupational Safety and Health Administration, Salt Lake City, Utah. The procedure involves a hotplate or block digestion of the filter media or swab material, using a combination of nitric acid and hydrochloric acid. Instrumental analysis of the filter or swab extract is by inductively coupled plasma - optical emission spectrophotometry (EPA 6010B).

MET-CSR-FULL-ICP-VA Soil

Metals in Soil by ICPOES (CSR SALM)

BCMELP CSR SALM METHOD 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-CCME-MS-VA Water

Diss. Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-CCME-ICP-VA Water

Total Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MOISTURE-VA

Soil

Moisture content

ASTM METHOD D2794-00

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

MOISTURE-VA

Soil

ASTM METHOD D2794-00

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

NH3-SIE-VA

Water

Ammonia by SIE

APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

OG-TMB-VA

Soil

Oil & Grease in Soils by Tumbler

NATM1100 V03 CCME PHC F2-F4G

A subsample of the sediment/soil is extracted with 1:1 hexane:acetone using a rotary extraction apparatus. The extract is analyzed gravimetrically.

Accuracy target values for Reference Materials used in this method are derived from averages of long-term method performance, as certified values do not exist for the reported parameters.

OGG-SF-VA

Water

Oil & Grease by Gravimetric

BCMOE GRAVIMETRIC

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3510 & 9071, published by the United States Environmental Protection Agency (EPA), "Standard Methods for the Examination of Water and Wastewater", 20th ed., Method 5520, published by the American Public Health Association, and "BC Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials," 5th ed., published by the B.C. Ministry of Environment, Lands & Parks, 1994. The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to determine Oil and Grease.

PAH-TUMB-H/A-MS-VA

Soil

PAH by Tumbler HEX/ACE with GCMS

EPA METHODS 3570 & 8270.

Polycyclic Aromatic Hydrocarbons in Sediment/Soil

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation.

nom the sample matrix prevent accurate quantitation.

PH-1:2-VA Soil CSR pH by 1:2 Water Leach

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (10 mesh /2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PH-MAN-VA

Water

pH by Manual Meter

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA

Water

Dissolved ortho Phosphate by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Water

Total Phosphate P by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PSA-PIPET+GRAVEL-SK Soil

Particle size - Sieve and Pipette

FORESTRY CANADA (1991) P. 46-48 MOD

Particle size analysis involves the measurement of the proportions of the various primary soil particle sizes (ie. clay < 0.004 mm, silt 0.004-0.063 mm, sand 0.063-2.0 mm and gravel > 2.0 mm). In this method, the gravel and sand portions are determined by sieving, while the clay portion is determined by sedimentation using Stokes Law, which relates the radius of the particles to the velocity of the sedimentation in water. Silt is calculated as 100% - (sand% + clay%)

Pretreatment of the soil with Calgon (sodium hexametaphosphate) is used to ensure the complete dispersion of the primary soil particles. Additional pretreatment may be necessary to remove cementing materials such as CaCO3 and organic matter.

Reference

Y.P. Kalra, and D.G. Maynard, 1991. Methods Manual For Forest Soil and Plant Analysis, Northwest Region. Forestry Canada (modified sand, silt and clay size ranges)

SILICATE-COL-VA

Water

Silicate by Colourimetric analysis

APHA 4500-SIO2 D.

This analysis is carried out using procedures adapted from APHA Method 4500-SiO2 D. "Silica". Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method.

TDS-VA

Water

Total Dissolved Solids by Gravimetric

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TKN-SIE-VA

Water

Total Kjeldahl Nitrogen by SIE

APHA 4500-Norg (TKN)

This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by sample digestion at 367 celcius with analysis using an ammonia selective electrode.

Methods Listed (if applicable):

	•• •		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

TL-CSR-MS-VA Soil ICPMS TI in Soil by CSR SALM

BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma-mass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

TSS-VA Water Solids by Gravimetric APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
SK	ALS LABORATORY GROUP - SASKATOON, SASKATCHEWAN, CANADA	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

coc # C065416

RELINGUISHED WY	RELINQUISHED B	By th			- Section										Sample #	Lab Work Order # (lab use only)	PHONE:		ADDRESS:	CONTACT:	COMPANY:	INVOICE TO	PHONE OCH-730-120 FAX:	Vancauce	ADDRESS:	CONTACT: Pardy Toko	COMPANY:	REPORT TO:	Environn	ALS L
-		By the use of t		GUIDE	SP-D	EGBL	Dup	SP	WAL	DUNG	TE	TAN	TPS	TPE	(This des							SAME AS	-7301a	wer &	१६०-स्र	Endy 3	-mmz		Environmental Division	aboral
annel.	01	Failure to complete all portions of this form may delay analysis. of this form the user acknowledges and agrees with the Terms and Conditions		GUIDELINES / REGULATIONS		X	20 C C C C C C C C C C C C C C C C C C C							一年 一大学会	SAMPLE IDENTIFICATION (This description will appear on the report)	1678	FAX:			14		INVOICE TO: SAME AS REPORT ? YES NO	DO FAX:	RC, VIGK 268	ADDRESS: 218- 200 W. Road LE	akor	COMPANY: AZIMUTH BASE OFFICE		ision	ALS Laboratory Group
DATE & TIME:	DATE & TIME:	Failure to complete all portions of this form may delay analys re user acknowledges and agrees with the Terms and Condition		BULATION	Mary A	188		*120 CONT.						Opportunity and	appear on	上988	SAY.			-		YES MO		368	aduba.	c	ant Design		9	dho
	D III	complete nowledge		S	10 to	4		2			The Line				the report		0	-				_		200	1000				ST	>
ECEIVED B	RECEIVED BY	all porti	4.4	45	P	Þ	int.		D	6	7	7	_	9)		MOTE #:	egal Site I	PO /AFE:	JOB#: ↓	CLIENT / P	NDICATE BO		MAIL 2:13	MAIL 1:	PDF EXCEL	STANDARD	REPORT F		CHA
RECEIVED BY:		ons of thi grees wit	to will all of other	The state of the s	Aug वह 105	Doles, and	10	20/28 mg	Duo 311	Duc Sa		FI ONE	Pug 17	Dug.16/08	DATE		TO-OHSIA # BTOUD	Legal Site Description:		PEN-8	CLIENT / PROJECT INFORMATION:	INDICATE BOTTLES: FILTERED / PRESERVED (F/P)		EMAIL 2: Panne Connector azimiskaras	EMAIL 1: Daker Orzana theres. Co	EXCEL L		REPORT FORMAT / DISTRIBUTIO		CHAIN OF CUSTODY
1000	alex	s form n h the Tel	Sales O	200	8	00		108	OR.	20/08	8	108	7/08	80/08		100	1 1			0	FORMATIC	ERED / PRE		mesic	mark 20c	CUSTOM	OTHER	STRIBUTION	www.als	OF CUSTODY
		nay dėlay ms and	4-00-6	S										100	TIME	SAMPLER (Initials):	6a2				N:	SERVED (F/	fay.	azimi	- August	OM		M		2 6
DATE & TIME	DATE & TIME	/ analysis.	(Alimphospheta)	in the same of	4									Wat	SAMPLE	MY W	-			100 mg		P)		A	2.09	FAX				
F	2	Please fill in this form'LEGIBLY. つくよ からんのく as specified on the reverse page of the white report copy.	Supproste, Chi	INSTRUCTIONS / HAZARDOUS			95		100					ter	TYPE							+++		0.00						
TEM		e fill i	A 30	NOIL	-	X	X	X	X	X	X	X	X	×	Con	ver	tio	175	6	*	504)			E	PF	3	2	SE		
TEMPERATURE		n this	3.7	S/H/		X	<u>八</u> 入	X	X	R	K	X	<u>八</u> 永	X	TA	4,4	Ami	Y C	1	112	304)	7		MERGE	PRIORITY SERVICE (1 DAY or ASAP)	RUSH SERVICE (2-3 DAYS)	REGULAR SERVICE (DEFAULT)	SERVICE REQUESTED		
1 2	S	forn he re	long Col	ZAR	177	×	人	X	X	8	X	×	1	×	000	c (+	40	1)			Z.		NCY	Y SER	RVIC	R SEF	REQ		
SAME (If no	Jame	vers	PREK	DOU		8	K	3	X	×	X	×	X	X	Tox	20	M	1	es	+41	(£3)	A		SERVI	VICE	E (2-3	NICE	JESTE		200
provide	E CON	e pag	Ka I	O		X	Κ.	×	X	X	X	X	×	×	01	1 G	חרכ	95	++1	2504	()	A	ANAL	○E (<	(1 DA	DAYS	(DEF)	D		#
SAMPLES RECEIVE (If no provide details)	DITIO	ie of	Tall to	DETAILS		×	15	×		2	(3)				TS	5(1	دو	iest	عدة)_		7	Sis	1 DAY	Y or As	_	AULT)			. 30
SAMPLES RECEIVED IN GOOD CONDITION (If no provide details)	SAMPLE CONDITION (lab use only	the y	Bica:	S	×	100							-	3	Tota	e M	ote	0	HA	b 3)	9	ANALYSIS REQUEST	/ WEE	SAP)	\$1	13			coc#C065416
000 0	asu c	Tite C	S Car				100			1840	13	100				n - 16	200			100	7.9	/	3	KEND		7				်
ONDI	oniv)	te report o	क्टिं				- 19	100								-		SIL.				/)-00	10	35			9	D S
		T co	in the bicarbonets lawon of	2	-				-					7:	HAZA	ARDO	ยบร	?					y	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS	-	-	1 3	1		
(ES	1	oy.	Y DO	200	-			199						7	HIGH	LY CO	NTA	MIN	ATE	D?		B		TALS	,	-	- Chester			Ŝ.
Č	5	1	7		-	4	N	37	4	7	7	7	2	4	NUME	BER O	FC	TNO	AINE	ERS		N. C.		L					2	W

Environmental Division

ADDRESS:

COMPANY: REPORT TO:

CONTACT:

PDF_ STANDARD

EXCEL

FAX

REPORT FORMAT / DISTRIBUTION

SERVICE REQUESTED

REGULAR SERVICE (DEFAULT) RUSH SERVICE (2-3 DAYS)

PRIORITY SERVICE (1 DAY or ASAP)

OTHER CUSTOM

EMAIL 1

CHAIN OF CUSTODY! ANALYTICAL REQUEST FORM

COC #

- 196-
D
0
(9)
00
4.
UI
9
Paç
ige.
عع
e Cu
20

CANADA TOLL FREE 1-800-668-9878

www.alsenviro.com

RELINQUISHED Lab Work Order # By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. NEW YORK SP. TRE EQBLK -SA A EGBLK -田田 うりい (This description will appear on the report) **GUIDELINES / REGULATIONS** SAME AS REPORT ? YES / NO SAMPLE IDENTIFICATION 18879 U Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY 0 EMAIL 2: RECEIVED BY QUOTE #: Legal Site Description: PO /AFE CLIENT / PROJECT INFORMATION: INDICATE BOTTLES: FILTERED / PRESERVED (F/P) JOB # 08/09/05 Du. 19/08 ang 21 Aug. Zalus Aug. 16 Aug 33 = DATE SAMPLER TIME (Initials): SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS SAMPLE TYPE DATE & TIME: DATE & TIME: Filter **TEMPERATURE** EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS SAMPLE CONDITION (lab use only) SAMPLES RECEIVED IN GOOD CONDITION YES NO (If no provide details) **ANALYSIS REQUEST** HAZARDOUS ?

PHONE:

CONTACT:

COMPANY

ADDRESS:

INVOICE TO:

PHONE:

Sample

Environmental Division

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM **CANADA TOLL FREE 1-800-668-9878**

0
000
#
000
88
45
∞

ADDRESS: CONTACT: COMPANY: INVOICE TO: PHONE: REPORT TO: Sample PHONE ADDRESS: CONTACT: COMPANY: ELINQUISHED BY Lab Work Order # By the use of this form 1PS A MAJ TRY. ンれる ravel (This description will appear on the report) X CON SAME AS REPORT? YES / NO GUIDELINES / REGULATIONS SAMPLE IDENTIFICATION Mark AR-OB-ACTI FAX: FAX the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. 4988 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. DATE & TIME: STANDARD RECEIVED PO /AFE: JOB# PDF RECEIVED B INDICATE BOTTLES: FILTERED / PRESERVED (F/P) EMAIL 2: QUOTE # Legal Site Description: CLIENT / PROJECT INFORMATION: EMAIL 1: REPORT FORMAT / DISTRIBUTION * Conventionals - See Fage I for complete list Sal Aux-lie/03 EXCEL DATE 108 108 www.alsenviro.com OTHER CUSTOM 100 SAMPLER TIME Initial's) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS FAX DATE & TIME DATE & TIME SAMPLE TYPE Sediment riter Liller Natar TEMPERATURE REGULAR SERVICE (DEFAULT) SERVICE REQUESTED EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS PRIORITY SERVICE (1 DAY or ASAP) RUSH SERVICE (2-3 DAYS) Grease SAMPLE CONDITION (lab use only) (If no provide details) SAMPLES RECEIVED IN GOOD CONDITION (YES) NO ANALYSIS REQUEST ×

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

Certificate of Analysis

AZIMUTH CONSULTING GROUP INC.

ATTN: RANDY BAKER

218 - 2902 WEST BROADWAY

Reported On: 16-OCT-08 11:56 AM

Revision: 1

VANCOUVER BC V6K 2G8

Lab Work Order #: L678018 Date Received: 04-SEP-08

Project P.O. #:

Job Reference: **AEMP**

Legal Site Desc:

CofC Numbers: C098448, C098450, C098451, C098452, C098453, C098471

Other Information:

Comments: ADDITIONAL 29-SEP-08 16:08

Please note: due to limited sample volume received for soil samples, only metals analysis could be performed.

For some of the submitted water samples, the measured concentration of specific dissolved parameters is greater than the corresponding total parameters concentration. The explanation for these findings is one or a combination of the following:

- laboratory method variability;
- field sampling method variability;
- bias introduced during general handling, storage, transportation and/or analysis of the sample;
- field sample grab bias where separate grab samples are processed to produce total and dissolved samples;
 field sample split bias where separate grab samples are processed to produce total and dissolved samples;
 field sample split bias where total and dissolved parameters samples are produced from the same grab sample.

For further clarification on any of the above information, please contact your ALS account manager.

MATASHA MARKOVIC-MIROVIC

Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

	Sample ID Description	L678018-7	L678018-8	L678018-9	L678018-10	L678018-11
	Sampled Date Sampled Time	29-AUG-08	29-AUG-08	25-AUG-08	23-AUG-08	29-AUG-08
Grouping	Client ID Analyte	BBD	BPJ	BAP	SP	BBD-SC-01
	Analyte					
SOIL						
Physical Tests	% Moisture (%)	35.6	63.3	37.5	84.2	
	pH (pH)	6.94	6.49	6.73	6.28	6.46
Particle Size	% Gravel (>2mm) (%)	<1	<1	3	<1	
	% Sand (2.0mm - 0.063mm) (%)	52	10	56	5	
	% Silt (0.063mm - 4um) (%)	44	80	38	72	
	% Clay (<4um) (%)	3	9	4	23	
Organic / Inorganic Carbon	Total Organic Carbon (%)	0.4	0.9	0.4	3.7	0.1
Metals	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	5.4	25.0	<5.0	29.2	<5.0
1	Barium (Ba) (mg/kg)	64.2	160	308	136	25.9
	Beryllium (Be) (mg/kg)	<0.50	<0.50	<0.50	2.25	<0.50
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)	13.6	24.1	17.0	85.9	7.6
	Cobalt (Co) (mg/kg)	4.4	8.1	4.6	16.5	2.7
	Copper (Cu) (mg/kg)	7.3	11.3	4.8	95.7	2.8
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	<0.0050	0.0172	0.0058	0.0372	<0.0050
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	7.1	<4.0
	Nickel (Ni) (mg/kg)	8.4	14.0	7.9	59.8	<5.0
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)	16.5	27.0	25.2	45.6	8.9
	Zinc (Zn) (mg/kg)	26.1	45.2	22.5	125	15.8
Aggregate	Oil and Grease (mg/kg)	<500	<500	<500	<500	
Organics Polycyclic Aromatic	Acenaphthene (mg/kg)	<0.040	<0.040	<0.040	<0.040	
Hydrocarbons	A composition to a composition of the composition o	0.050	0.050	0.050	0.050	
	Action and a (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Benz(a)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Benzo(a)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Benzo(b)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Benzo(g,h,i)perylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Benzo(k)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Chrysene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Dibenz(a,h)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	

•	L678018-12	L678018-13	L678018-14	L678018-15	L678018-16
Sampled Date Sampled Time	29-AUG-08	29-AUG-08	29-AUG-08	29-AUG-08	29-AUG-08
Client ID	BBD-SC-02	BBD-SC-03	BBD-SC-04	BBD-SC-05	BBD-SC-06
Analyte					
% Moisture (%)					
рН (рН)	6.16	6.33	6.35	5.49	5.89
% Gravel (>2mm) (%)					
% Sand (2.0mm - 0.063mm) (%)					
% Silt (0.063mm - 4um) (%)					
% Clay (<4um) (%)					
Total Organic Carbon (%)	0.5	0.7	0.4	0.8	0.7
Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
Arsenic (As) (mg/kg)	<5.0	5.6	<5.0	<5.0	8.0
Barium (Ba) (mg/kg)	84.2	80.7	60.2	100	100
Beryllium (Be) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
Chromium (Cr) (mg/kg)	14.6	13.2	11.6	19.6	16.6
Cobalt (Co) (mg/kg)	4.3	4.9	3.9	5.6	5.3
Copper (Cu) (mg/kg)	7.7	7.5	5.5	10.4	9.1
Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
Mercury (Hg) (mg/kg)	0.0074	0.0061	0.0053	0.0109	0.0081
Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
Nickel (Ni) (mg/kg)	9.0	8.4	7.5	11.8	9.6
Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
Vanadium (V) (mg/kg)	17.2	17.4	14.5	21.6	19.9
Zinc (Zn) (mg/kg)	29.0	26.9	23.5	36.9	30.8
Oil and Grease (mg/kg)					
Acenaphthene (mg/kg)					
Acenaphthylene (mg/kg)					
, , , , ,					
Benz(a)anthracene (mg/kg)					
Benzo(a)pyrene (mg/kg)					
Benzo(b)fluoranthene (mg/kg)					
Benzo(g,h,i)perylene (mg/kg)					
Benzo(k)fluoranthene (mg/kg)					
Chrysene (mg/kg)					
	Sampled Time Client ID Analyte % Moisture (%) pH (pH) % Gravel (>2mm) (%) % Sand (2.0mm - 0.063mm) (%) % Silt (0.063mm - 4um) (%) % Clay (<4um) (%) Total Organic Carbon (%) Antimony (Sb) (mg/kg) Barium (Ba) (mg/kg) Beryllium (Be) (mg/kg) Cadmium (Cd) (mg/kg) Chromium (Cr) (mg/kg) Cobalt (Co) (mg/kg) Copper (Cu) (mg/kg) Lead (Pb) (mg/kg) Mercury (Hg) (mg/kg) Molybdenum (Mo) (mg/kg) Selenium (Se) (mg/kg) Silver (Ag) (mg/kg) Tin (Sn) (mg/kg) Tin (Sn) (mg/kg) Vanadium (V) (mg/kg) Zinc (Zn) (mg/kg) Oil and Grease (mg/kg) Benzo(a)pyrene (mg/kg) Benzo(b)fluoranthene (mg/kg) Benzo(b)fluoranthene (mg/kg) Benzo(k)fluoranthene (mg/kg) Benzo(k)fluoranthene (mg/kg) Benzo(k)fluoranthene (mg/kg) Benzo(k)fluoranthene (mg/kg) Benzo(k)fluoranthene (mg/kg) Benzo(k)fluoranthene (mg/kg)	Description Sampled Date Sampled Time Client ID	Description Sampled Date Sampled Time Client ID	Description Sampled Date Sampled Time Client ID	Description Sampled Date Sampled Date Sampled Time Client ID Sa

	Sample ID Description	L678018-17	L678018-18	L678018-19	L678018-20	L678018-21
	Sampled Date Sampled Time	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08
	Client ID	BPJ-SC-01	BPJ-SC-02	BPJ-SC-03	BPJ-SC-04	BPJ-SC-05
Grouping	Analyte					
SOIL						
Physical Tests	% Moisture (%)					
	pH (pH)	6.11	5.99	6.30	6.46	6.45
Particle Size	% Gravel (>2mm) (%)					
	% Sand (2.0mm - 0.063mm) (%)					
	% Silt (0.063mm - 4um) (%)					
	% Clay (<4um) (%)					
Organic / Inorganic Carbon	Total Organic Carbon (%)	1.4	1.2	0.7	1.0	1.4
Metals	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	65.7	58.1	18.3	12.4	22.2
	Barium (Ba) (mg/kg)	214	242	142	150	168
	Beryllium (Be) (mg/kg)	<0.50	<0.50	0.51	<0.50	0.56
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)	24.1	23.4	24.4	22.0	23.1
	Cobalt (Co) (mg/kg)	8.8	10.4	8.5	8.4	11.7
	Copper (Cu) (mg/kg)	12.2	11.4	10.8	10.2	10.8
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0203	0.0173	0.0166	0.0135	0.0191
	Molybdenum (Mo) (mg/kg)	<4.0	4.1	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	12.9	13.9	14.4	14.3	15.4
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (Tl) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)	26.9	26.5	27.3	24.9	26.9
	Zinc (Zn) (mg/kg)	44.7	44.4	47.2	44.2	46.7
Aggregate Organics	Oil and Grease (mg/kg)					
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)					
,	Acenaphthylene (mg/kg)					
	Anthracene (mg/kg)					
	Benz(a)anthracene (mg/kg)					
	Benzo(a)pyrene (mg/kg)					
	Benzo(b)fluoranthene (mg/kg)					
	Benzo(g,h,i)perylene (mg/kg)					
	Benzo(k)fluoranthene (mg/kg)					
	Chrysene (mg/kg)					
	Dibenz(a,h)anthracene (mg/kg)					
	Fluoranthene (mg/kg)					

	Sample ID Description	L678018-22	L678018-23	L678018-24	L678018-25	L678018-26
	Sampled Date Sampled Time	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08
	Client ID	BPJ-SC-06	BPJ-SC-07	BPJ-SC-08	BPJ-SC-09	BPJ-SC-10
Grouping	Analyte					
SOIL						
Physical Tests	% Moisture (%)					
	pH (pH)	6.48	6.60	6.50	6.49	6.49
Particle Size	% Gravel (>2mm) (%)					
	% Sand (2.0mm - 0.063mm) (%)					
	% Silt (0.063mm - 4um) (%)					
	% Clay (<4um) (%)					
Organic / Inorganic Carbon	Total Organic Carbon (%)	1.3	1.6	1.3	1.1	1.3
Metals	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	15.9	10.4	20.6	18.0	44.3
	Barium (Ba) (mg/kg)	202	186	205	160	233
	Beryllium (Be) (mg/kg)	0.53	0.54	0.51	0.51	0.52
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)	24.8	25.6	25.1	24.7	24.6
	Cobalt (Co) (mg/kg)	10.3	10.0	10.1	9.4	10.3
	Copper (Cu) (mg/kg)	12.1	12.1	12.8	11.5	11.8
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0244	0.0191	0.0191	0.0158	0.0190
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	16.4	17.0	16.2	16.2	15.5
	Selenium (Se) (mg/kg)	<4.0	<2.0	<4.0	<2.0	<4.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)	27.9	28.8	27.2	27.9	27.8
	Zinc (Zn) (mg/kg)	47.7	49.6	47.6	47.9	47.8
Aggregate Organics	Oil and Grease (mg/kg)					
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)					
,	Acenaphthylene (mg/kg)					
	Anthracene (mg/kg)					
	Benz(a)anthracene (mg/kg)					
	Benzo(a)pyrene (mg/kg)					
	Benzo(b)fluoranthene (mg/kg)					
	Benzo(g,h,i)perylene (mg/kg)					
	Benzo(k)fluoranthene (mg/kg)					
	Chrysene (mg/kg)					
	Dibenz(a,h)anthracene (mg/kg)					
	Fluoranthene (mg/kg)					

!					
Sample ID Description	L678018-27	L678018-28	L678018-29	L678018-30	L678018-31
Sampled Date Sampled Time	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08
Client ID	BPJ-SC-11	BPJ-SC-12	BPJ-SC-13	BPJ-SC-14	BPJ-SC-15
Analyte					
% Moisture (%)					
pH (pH)	6.40	6.54	6.45	6.64	6.53
% Gravel (>2mm) (%)					
% Sand (2.0mm - 0.063mm) (%)					
% Silt (0.063mm - 4um) (%)					
% Clay (<4um) (%)					
Total Organic Carbon (%)	1.1	0.3	0.3	1.0	1.2
Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
Arsenic (As) (mg/kg)	49.5	19.5	6.7	9.7	38.4
Barium (Ba) (mg/kg)	196	83.6	119	115	179
Beryllium (Be) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
Chromium (Cr) (mg/kg)	20.9	13.2	17.2	23.9	23.8
Cobalt (Co) (mg/kg)	12.0	4.9	4.8	8.4	9.2
Copper (Cu) (mg/kg)	10.5	5.3	6.6	10.2	12.1
Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
Mercury (Hg) (mg/kg)	0.0151	0.0052	<0.0050	0.0166	0.0189
Molybdenum (Mo) (mg/kg)	5.5	<4.0	<4.0	<4.0	<4.0
Nickel (Ni) (mg/kg)	12.5	8.0	9.7	15.0	15.1
Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
Vanadium (V) (mg/kg)	25.0	18.9	27.9	26.6	26.2
Zinc (Zn) (mg/kg)	42.0	25.5	28.7	45.4	46.5
Oil and Grease (mg/kg)					
Acenaphthene (mg/kg)					
Acenaphthylene (mg/kg)					
Anthracene (mg/kg)					
Benz(a)anthracene (mg/kg)					
Benzo(a)pyrene (mg/kg)					
Benzo(b)fluoranthene (mg/kg)					
Benzo(g,h,i)perylene (mg/kg)					
Benzo(k)fluoranthene (mg/kg)					
Chrysene (mg/kg)					
	Description Sampled Date Sampled Time Client ID Analyte % Moisture (%) pH (pH) % Gravel (>2mm) (%) % Sand (2.0mm - 0.063mm) (%) % Silt (0.063mm - 4um) (%) % Clay (<4um) (%) Total Organic Carbon (%) Antimony (Sb) (mg/kg) Barium (Ba) (mg/kg) Beryllium (Be) (mg/kg) Cadmium (Cd) (mg/kg) Cobalt (Co) (mg/kg) Copper (Cu) (mg/kg) Lead (Pb) (mg/kg) Molybdenum (Mo) (mg/kg) Nickel (Ni) (mg/kg) Selenium (Se) (mg/kg) Silver (Ag) (mg/kg) Tin (Sn) (mg/kg) Tin (Sn) (mg/kg) Vanadium (V) (mg/kg) Zinc (Zn) (mg/kg) Oil and Grease (mg/kg) Benzo(a)pyrene (mg/kg) Benzo(b)fluoranthene (mg/kg) Benzo(b)fluoranthene (mg/kg) Benzo(k)fluoranthene (mg/kg)	Description Sampled Date Sampled Time Client ID	Description Sampled Date Sampled Time Client ID	Description Sampled Date Sampled Time Client ID	Description Sampled Time Client ID Sampled Time Client ID Sampled Time Client ID Sampled Time Client ID Sampled Time Sa

	Sample ID Description	L678018-32	L678018-33	L678018-34	L678018-35	L678018-36
	Sampled Date Sampled Time	28-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08
	Client ID	BPJ-SC-DUP	BAP-SC-01	BAP-SC-02	BAP-SC-03	BAP-SC-04
Grouping	Analyte					
SOIL						
Physical Tests	% Moisture (%)					
	pH (pH)	6.50	6.72	6.61	6.64	6.61
Particle Size	% Gravel (>2mm) (%)					
	% Sand (2.0mm - 0.063mm) (%)					
	% Silt (0.063mm - 4um) (%)					
	% Clay (<4um) (%)					
Organic / Inorganic Carbon	Total Organic Carbon (%)	1.2	0.5	0.4	0.4	0.4
Metals	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	10.4	<5.0	<5.0	<5.0	<5.0
	Barium (Ba) (mg/kg)	187	270	269	187	334
	Beryllium (Be) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)	23.5	15.9	16.8	15.5	14.8
	Cobalt (Co) (mg/kg)	9.7	4.6	4.8	4.1	4.3
	Copper (Cu) (mg/kg)	11.2	5.4	5.8	4.5	4.9
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0175	0.0069	0.0055	0.0063	0.0059
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	15.7	9.4	8.3	7.3	8.3
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)	26.7	20.5	25.3	23.7	19.6
	Zinc (Zn) (mg/kg)	46.5	25.3	24.1	20.9	22.7
Aggregate	Oil and Grease (mg/kg)					
Organics Polycyclic Aromatic	Acenaphthene (mg/kg)					
Hydrocarbons	Acenaphthylene (mg/kg)					
	Anthracene (mg/kg)					
	Benz(a)anthracene (mg/kg)					
	Benzo(a)pyrene (mg/kg)					
	Benzo(b)fluoranthene (mg/kg)					
	Benzo(g,h,i)perylene (mg/kg)					
	Benzo(k)fluoranthene (mg/kg)					
	Chrysene (mg/kg)					
	Dibenz(a,h)anthracene (mg/kg)					
	Fluoranthene (mg/kg)					

•	L678018-37	L678018-38	L678018-39	L678018-40	L678018-41
Sampled Date	25-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08
Client ID	BAP-SC-05	BAP-SC-06	BAP-SC-07	BAP-SC-08	BAP-SC-09
Analyte					
% Moisture (%)					
pH (pH)	6.53	6.44	6.50	6.74	6.55
% Gravel (>2mm) (%)					
% Sand (2.0mm - 0.063mm) (%)					
% Silt (0.063mm - 4um) (%)					
% Clay (<4um) (%)					
Total Organic Carbon (%)	0.5	0.9	0.6	0.4	0.6
Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
Arsenic (As) (mg/kg)	<5.0	9.1	8.0	<5.0	5.9
Barium (Ba) (mg/kg)	277	327	341	385	313
Beryllium (Be) (mg/kg)	<0.50	0.53	<0.50	<0.50	<0.50
Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
Chromium (Cr) (mg/kg)	17.3	23.9	18.1	16.2	16.6
Cobalt (Co) (mg/kg)	5.5	6.7	5.5	4.8	5.7
Copper (Cu) (mg/kg)	6.8	10.0	6.4	5.3	6.2
Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
Mercury (Hg) (mg/kg)	0.0092	0.0154	0.0090	0.0062	0.0095
Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
Nickel (Ni) (mg/kg)	9.8	12.9	10.1	9.6	10.4
Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
Thallium (Tl) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
Vanadium (V) (mg/kg)	22.1	30.0	23.0	20.6	21.4
Zinc (Zn) (mg/kg)	27.6	38.4	29.4	24.3	27.8
Oil and Grease (mg/kg)					
Acenaphthene (mg/kg)					
Acenaphthylene (mg/kg)					
Anthracene (mg/kg)					
Benz(a)anthracene (mg/kg)					
Benzo(a)pyrene (mg/kg)					
Benzo(b)fluoranthene (mg/kg)					
Benzo(g,h,i)perylene (mg/kg)					
Benzo(k)fluoranthene (mg/kg)					
Chrysene (mg/kg)					
	Sampled Time Client ID Analyte % Moisture (%) pH (pH) % Gravel (>2mm) (%) % Sand (2.0mm - 0.063mm) (%) % Silt (0.063mm - 4um) (%) % Clay (<4um) (%) Total Organic Carbon (%) Antimony (Sb) (mg/kg) Barium (Ba) (mg/kg) Beryllium (Be) (mg/kg) Cadmium (Cd) (mg/kg) Chromium (Cr) (mg/kg) Copper (Cu) (mg/kg) Lead (Pb) (mg/kg) Mercury (Hg) (mg/kg) Molybdenum (Mo) (mg/kg) Selenium (Se) (mg/kg) Silver (Ag) (mg/kg) Tin (Sn) (mg/kg) Tin (Sn) (mg/kg) Oil and Grease (mg/kg) Acenaphthene (mg/kg) Acenaphthylene (mg/kg) Benzo(a)pyrene (mg/kg) Benzo(b)fluoranthene (mg/kg) Benzo(b)fluoranthene (mg/kg) Benzo(k)fluoranthene (mg/kg)	Description Sampled Date Sampled Time Client ID	Description Sampled Date Sampled Time Client ID	Description Sampled Time Client ID	Description Sampled Date Sampled Date Sampled Time Client ID

	OI- ID					
	Sample ID Description	L678018-42	L678018-43	L678018-44	L678018-45	L678018-46
	Sampled Date	25-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08
	Sampled Time Client ID	BAP-SC-10	BAP-SC-11	BAP-SC-12	BAP-SC-13	BAP-SC-14
Grouping	Analyte	D/11 00 10	D/11 00 11	B/11 00 12	B/11 00 10	B/11 00 14
SOIL						
Physical Tests	% Moisture (%)					
•	pH (pH)	6.56	6.83	6.83	6.85	6.70
Particle Size	% Gravel (>2mm) (%)					
	% Sand (2.0mm - 0.063mm) (%)					
	% Silt (0.063mm - 4um) (%)					
	% Clay (<4um) (%)					
Organic /	Total Organic Carbon (%)	0.5	0.4	0.3	0.4	0.5
Inorganic Carbon	Antimony (Sh) (mg/kg)	-10	-10	-10	-10	-10
Metals	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Barium (Ba) (mg/kg)	121	185	213	312	290
	Beryllium (Be) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)	16.7	13.9	18.8	17.7	17.4
	Cobalt (Co) (mg/kg)	5.2	3.7	4.5	4.3	4.6
	Copper (Cu) (mg/kg)	6.5	3.6	4.8	5.2	5.1
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0094	<0.0050	0.0055	0.0053	0.0082
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	9.8	7.8	11.2	9.6	8.9
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Vanadium (V) (mg/kg)	20.1	15.9	17.7	21.1	20.7
	Zinc (Zn) (mg/kg)	27.8	18.4	23.6	20.6	24.0
Aggregate Organics	Oil and Grease (mg/kg)					
Polycyclic Aromatic	Acenaphthene (mg/kg)					
Hydrocarbons	Acenaphthylene (mg/kg)					
	Anthracene (mg/kg)					
	Benz(a)anthracene (mg/kg)					
	Benzo(a)pyrene (mg/kg)					
	Benzo(b)fluoranthene (mg/kg)					
	Benzo(g,h,i)perylene (mg/kg)					
	Benzo(k)fluoranthene (mg/kg)					
	Chrysene (mg/kg)					
	Dibenz(a,h)anthracene (mg/kg)					
	Fluoranthene (mg/kg)					

	Sample ID	L678018-47	L678018-48
	Description Sampled Date Sampled Time	25-AUG-08	25-AUG-08
	Client ID	BAP-SC-15	BAP-SC-DUP
Grouping	Analyte		
SOIL			
Physical Tests	% Moisture (%)		
	pH (pH)	6.78	6.73
Particle Size	% Gravel (>2mm) (%)		
	% Sand (2.0mm - 0.063mm) (%)		
	% Silt (0.063mm - 4um) (%)		
	% Clay (<4um) (%)		
Organic / Inorganic Carbon	Total Organic Carbon (%)	0.3	0.3
Metals	Antimony (Sb) (mg/kg)	<10	<10
	Arsenic (As) (mg/kg)	<5.0	<5.0
	Barium (Ba) (mg/kg)	281	255
	Beryllium (Be) (mg/kg)	<0.50	<0.50
	Cadmium (Cd) (mg/kg)	<0.50	<0.50
	Chromium (Cr) (mg/kg)	16.0	17.2
	Cobalt (Co) (mg/kg)	3.9	4.2
	Copper (Cu) (mg/kg)	4.3	4.3
	Lead (Pb) (mg/kg)	<30	<30
	Mercury (Hg) (mg/kg)	<0.0050	0.0062
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0
	Nickel (Ni) (mg/kg)	9.3	9.2
	Selenium (Se) (mg/kg)	<2.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0
	Vanadium (V) (mg/kg)	16.3	17.8
	Zinc (Zn) (mg/kg)	20.4	21.4
Aggregate Organics	Oil and Grease (mg/kg)		
Polycyclic Aromatic	Acenaphthene (mg/kg)		
Hydrocarbons	Acenaphthylene (mg/kg)		
	Anthracene (mg/kg)		
	Benz(a)anthracene (mg/kg)		
	Benzo(a)pyrene (mg/kg)		
	Benzo(b)fluoranthene (mg/kg)		
	Benzo(g,h,i)perylene (mg/kg)		
	Benzo(k)fluoranthene (mg/kg)		
	Chrysene (mg/kg)		
	Dibenz(a,h)anthracene (mg/kg)		
	Fluoranthene (mg/kg)		

	Sample ID Description	L678018-7	L678018-8	L678018-9	L678018-10	L678018-11
	Sampled Date	29-AUG-08	29-AUG-08	25-AUG-08	23-AUG-08	29-AUG-08
	Client ID	Sampled Time Client ID BBD	BPJ	BAP	SP	BBD-SC-01
rouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	2-Methylnaphthalene (mg/kg)	< 0.050	<0.050	<0.050	<0.050	
	Naphthalene (mg/kg)	< 0.050	<0.050	<0.050	<0.050	
	Phenanthrene (mg/kg)	< 0.050	<0.050	<0.050	<0.050	
	Pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	
	Surrogate: d10-Acenaphthene (SS) (%)	94	94	98	93	
	Surrogate: d12-Chrysene (SS) (%)	88	87	91	95	
	Surrogate: d8-Naphthalene (SS) (%)	90	92	93	99	
	Surrogate: d10-Phenanthrene (SS) (%)	94	93	97	105	

	Sample ID Description	L678018-12	L678018-13	L678018-14	L678018-15	L678018-16
	Sampled Date Sampled Time	29-AUG-08	29-AUG-08	29-AUG-08	29-AUG-08	29-AUG-08
	Client ID	BBD-SC-02	BBD-SC-03	BBD-SC-04	BBD-SC-05	BBD-SC-06
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)					
,	Indeno(1,2,3-c,d)pyrene (mg/kg)					
	2-Methylnaphthalene (mg/kg)					
	Naphthalene (mg/kg)					
	Phenanthrene (mg/kg)					
	Pyrene (mg/kg)					
	Surrogate: d10-Acenaphthene (SS) (%)					
	Surrogate: d12-Chrysene (SS) (%)					
	Surrogate: d8-Naphthalene (SS) (%)					
	Surrogate: d10-Phenanthrene (SS) (%)					

	Sample ID Description	L678018-17	L678018-18	L678018-19	L678018-20	L678018-21
	Sampled Date	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08
	Sampled Time Client ID	BPJ-SC-01	BPJ-SC-02	BPJ-SC-03	BPJ-SC-04	BPJ-SC-05
rouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)					
•	Indeno(1,2,3-c,d)pyrene (mg/kg)					
	2-Methylnaphthalene (mg/kg)					
	Naphthalene (mg/kg)					
	Phenanthrene (mg/kg)					
	Pyrene (mg/kg)					
	Surrogate: d10-Acenaphthene (SS) (%)					
	Surrogate: d12-Chrysene (SS) (%)					
	Surrogate: d8-Naphthalene (SS) (%)					
	Surrogate: d10-Phenanthrene (SS) (%)					

	Sample ID Description	L678018-22	L678018-23	L678018-24	L678018-25	L678018-26
	Sampled Date	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08
	Sampled Time Client ID	BPJ-SC-06	BPJ-SC-07	BPJ-SC-08	BPJ-SC-09	BPJ-SC-10
rouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)					
•	Indeno(1,2,3-c,d)pyrene (mg/kg)					
	2-Methylnaphthalene (mg/kg)					
	Naphthalene (mg/kg)					
	Phenanthrene (mg/kg)					
	Pyrene (mg/kg)					
	Surrogate: d10-Acenaphthene (SS) (%)					
	Surrogate: d12-Chrysene (SS) (%)					
	Surrogate: d8-Naphthalene (SS) (%)					
	Surrogate: d10-Phenanthrene (SS) (%)					

	Sample ID Description	L678018-27	L678018-28	L678018-29	L678018-30	L678018-31
	Sampled Date	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08	28-AUG-08
	Sampled Time Client ID	BPJ-SC-11	BPJ-SC-12	BPJ-SC-13	BPJ-SC-14	BPJ-SC-15
rouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)					
•	Indeno(1,2,3-c,d)pyrene (mg/kg)					
	2-Methylnaphthalene (mg/kg)					
	Naphthalene (mg/kg)					
	Phenanthrene (mg/kg)					
	Pyrene (mg/kg)					
	Surrogate: d10-Acenaphthene (SS) (%)					
	Surrogate: d12-Chrysene (SS) (%)					
	Surrogate: d8-Naphthalene (SS) (%)					
	Surrogate: d10-Phenanthrene (SS) (%)					

	Sample ID Description	L678018-32	L678018-33	L678018-34	L678018-35	L678018-36
	Sampled Date Sampled Time	28-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08
· · · · · · · · · · · · · · · · · · ·	Client ID	BPJ-SC-DUP	BAP-SC-01	BAP-SC-02	BAP-SC-03	BAP-SC-04
rouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)					
	Indeno(1,2,3-c,d)pyrene (mg/kg)					
	2-Methylnaphthalene (mg/kg)					
	Naphthalene (mg/kg)					
	Phenanthrene (mg/kg)					
	Pyrene (mg/kg)					
	Surrogate: d10-Acenaphthene (SS) (%)					
	Surrogate: d12-Chrysene (SS) (%)					
	Surrogate: d8-Naphthalene (SS) (%)					
	Surrogate: d10-Phenanthrene (SS) (%)					

	Sample ID Description	L678018-37	L678018-38	L678018-39	L678018-40	L678018-41
	Sampled Date Sampled Time	25-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08
	Client ID	BAP-SC-05	BAP-SC-06	BAP-SC-07	BAP-SC-08	BAP-SC-09
rouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)					
,	Indeno(1,2,3-c,d)pyrene (mg/kg)					
	2-Methylnaphthalene (mg/kg)					
	Naphthalene (mg/kg)					
	Phenanthrene (mg/kg)					
	Pyrene (mg/kg)					
	Surrogate: d10-Acenaphthene (SS) (%)					
	Surrogate: d12-Chrysene (SS) (%)					
	Surrogate: d8-Naphthalene (SS) (%)					
	Surrogate: d10-Phenanthrene (SS) (%)					

	Sample ID Description	L678018-42	L678018-43	L678018-44	L678018-45	L678018-46
	Sampled Date Sampled Time	25-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08	25-AUG-08
	Client ID	BAP-SC-10	BAP-SC-11	BAP-SC-12	BAP-SC-13	BAP-SC-14
irouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)					
	Indeno(1,2,3-c,d)pyrene (mg/kg)					
	2-Methylnaphthalene (mg/kg)					
	Naphthalene (mg/kg)					
	Phenanthrene (mg/kg)					
	Pyrene (mg/kg)					
	Surrogate: d10-Acenaphthene (SS) (%)					
	Surrogate: d12-Chrysene (SS) (%)					
	Surrogate: d8-Naphthalene (SS) (%)					
	Surrogate: d10-Phenanthrene (SS) (%)					

	Sample ID Description	L678018-47	L678018-48		
	Sampled Date	25-AUG-08	25-AUG-08		
	Sampled Time Client ID	DAD 00 45	DAD OO DUD		
Grouping	Analyte	BAP-SC-15	BAP-SC-DUP		
SOIL	, and yet				
	Fluorono (malka)				
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/kg)				
	Indeno(1,2,3-c,d)pyrene (mg/kg)				
	2-Methylnaphthalene (mg/kg)				
	Naphthalene (mg/kg)				
	Phenanthrene (mg/kg)				
	Pyrene (mg/kg)				
	Surrogate: d10-Acenaphthene (SS) (%)				
	Surrogate: d12-Chrysene (SS) (%)				
	Surrogate: d8-Naphthalene (SS) (%)				
	Surrogate: d10-Phenanthrene (SS) (%)				

	Sample ID Description	L678018-1	L678018-2	L678018-3	L678018-4	L678018-5
	Sampled Date Sampled Time Client ID	28-AUG-08 BBD	28-AUG-08 BPJ	25-AUG-08 BAP	28-AUG-08 BBD	28-AUG-08 BPJ
Grouping	Analyte	שפט	BPJ	BAP	BBD	BPJ
WATER						
Physical Tests	Conductivity (uS/cm)	25.2	135	323		
i ilysicai resis	Hardness (as CaCO3) (mg/L)	16.8	18.7	33.3		
	pH (pH)	7.83	7.74	7.64		
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0		
	Total Dissolved Solids (mg/L)	13	71	177		
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	8.2	8.1	8.0		
Nutrients	a,, 2.0a.20a.0 (a0 0a0 00) (g.2)	0.2	0.1	0.0		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0		
	Alkalinity, Total (as CaCO3) (mg/L)	8.2	8.1	8.0		
	Ammonia as N (mg/L)	<0.020	0.024	0.021		
	Chloride (CI) (mg/L)	1.50	30.7	81.4		
	Nitrate (as N) (mg/L)	0.0082	0.0083	0.0147		
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010		
	Total Kjeldahl Nitrogen (mg/L)	0.268	0.239	0.187		
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010		
	Total Phosphate as P (mg/L)	0.0068	0.0093	0.0032		
	Sulfate (SO4) (mg/L)	0.68	4.60	11.7		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	3.54	3.42	3.40		
	Total Organic Carbon (mg/L)	3.28	3.16	2.92		
Total Metals	Aluminum (Al)-Total (mg/L)	0.140	0.0354	0.0057		
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Arsenic (As)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Barium (Ba)-Total (mg/L)	<0.060	<0.060	<0.060		
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010		
	Boron (B)-Total (mg/L)	<0.30	<0.30	<0.30		
	Cadmium (Cd)-Total (mg/L)	<0.000017	<0.000017	<0.000017		
	Calcium (Ca)-Total (mg/L)	4.95	2.90	3.75		
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0010	<0.0010		
	Cobalt (Co)-Total (mg/L)	<0.00030	<0.00030	<0.00030		
	Copper (Cu)-Total (mg/L)	<0.0010	<0.0010	<0.0010		
	Iron (Fe)-Total (mg/L)	<0.090	<0.090	<0.090		
	Lead (Pb)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050		
	Magnesium (Mg)-Total (mg/L)	1.07	2.79	5.81		
	Manganese (Mn)-Total (mg/L)	0.0104	0.00507	0.00169		
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020	<0.000020		
	Molybdenum (Mo)-Total (mg/L)	<0.0010	<0.0010	<0.0010		
	Nickel (Ni)-Total (mg/L)	<0.0010	<0.0010	<0.0010		

	Sample ID	L678018-6		
	Description Sampled Date	25-AUG-08		
	Sampled Time Client ID	BAP		
Grouping	Analyte	DAP		
WATER	•			
Physical Tests	Conductivity (uS/cm)			
Triyorour Footo	Hardness (as CaCO3) (mg/L)			
	pH (pH)			
	Total Suspended Solids (mg/L)			
	Total Dissolved Solids (mg/L)			
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)			
Nutrients	,a,, 2.15a.25a.6 (a.6 5a.6 5a) (g.2)			
	Alkalinity, Carbonate (as CaCO3) (mg/L)			
	Alkalinity, Hydroxide (as CaCO3) (mg/L)			
	Alkalinity, Total (as CaCO3) (mg/L)			
	Ammonia as N (mg/L)			
	Chloride (CI) (mg/L)			
	Nitrate (as N) (mg/L)			
	Nitrite (as N) (mg/L)			
	Total Kjeldahl Nitrogen (mg/L)			
	Ortho Phosphate as P (mg/L)			
	Total Phosphate as P (mg/L)			
	Sulfate (SO4) (mg/L)			
Organic /	Dissolved Organic Carbon (mg/L)			
Inorganic Carbon	Total Organic Carbon (mg/L)			
Total Metals	Aluminum (Al)-Total (mg/L)			
Total Motals	Antimony (Sb)-Total (mg/L)			
	Arsenic (As)-Total (mg/L)			
	Barium (Ba)-Total (mg/L)			
	Beryllium (Be)-Total (mg/L)			
	Boron (B)-Total (mg/L)			
	Cadmium (Cd)-Total (mg/L)			
	Calcium (Ca)-Total (mg/L)			
	Chromium (Cr)-Total (mg/L)			
	Cobalt (Co)-Total (mg/L)			
	Copper (Cu)-Total (mg/L)			
	Iron (Fe)-Total (mg/L)			
	Lead (Pb)-Total (mg/L)			
	Lithium (Li)-Total (mg/L)			
	Magnesium (Mg)-Total (mg/L)			
	Manganese (Mn)-Total (mg/L)			
	Mercury (Hg)-Total (mg/L)			
	Molybdenum (Mo)-Total (mg/L)			
	Nickel (Ni)-Total (mg/L)			

	Descr		L678018-2	L678018-3	L678018-4	L678018-5
	Sampled Sampled		28-AUG-08	25-AUG-08	28-AUG-08	28-AUG-08
		ent ID BBD	BPJ	BAP	BBD	BPJ
Frouping	Analyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)	<6.0	<6.0	<6.0		
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010		
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000020	<0.000020		
	Sodium (Na)-Total (mg/L)	<6.0	15.8	42.2		
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020		
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Titanium (Ti)-Total (mg/L)	<0.030	<0.030	<0.030		
	Uranium (U)-Total (mg/L)	<0.00020	<0.00020	<0.00020		
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010		
	Zinc (Zn)-Total (mg/L)	<0.015	<0.015	<0.015		
Aggregate Organics	Oil and Grease (mg/L)	<5.0	<5.0	<5.0		
Plant Pigments	Chlorophyll a (ug)				1.34	1.76

	Sample II Descriptio Sampled Dat Sampled Tim Client I	25-AUG-08		
Grouping	Analyte			
WATER				
Total Metals	Potassium (K)-Total (mg/L)			
	Selenium (Se)-Total (mg/L)			
	Silver (Ag)-Total (mg/L)			
	Sodium (Na)-Total (mg/L)			
	Thallium (TI)-Total (mg/L)			
	Tin (Sn)-Total (mg/L)			
	Titanium (Ti)-Total (mg/L)			
	Uranium (U)-Total (mg/L)			
	Vanadium (V)-Total (mg/L)			
A	Zinc (Zn)-Total (mg/L)	_		
Aggregate Organics	Oil and Grease (mg/L)			
Plant Pigments	Chlorophyll a (ug)	1.04		

Additional Comments for Sample Listed:

Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if	applicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

ALK-SCR-VA Water Alkalinity by colour or titration EPA 310.2 OR APHA 2320

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

OR

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ANIONS-CL-IC-VA

Water

Chloride by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

ANIONS-NO2-IC-VA

Water

Nitrite by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

ANIONS-NO3-IC-VA

Water

Nitrate by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

ANIONS-SO4-IC-VA

Water

Sulfate by Ion Chromatography

APHA 4110 "Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, nitrate, nitrite and sulphate.

C-TOT-ORG-LECO-SK

Soil

Organic Carbon by combustion method

SSSA (1996) p. 973

Total Organic Carbon (C-TOT-ORG-LECO-SK, C-TOT-ORG-SK)

Total C and inorganic C are determined on separate samples. The total C is determined by combustion and thermal conductivity detection, while inorganic C is determined by weight lass after addition of hydrochloric acid. Organic C is calculated by the difference between these two determinations.

Reference for Total C:

Nelson, D.W. and Sommers, L.E. 1996. Total Carbon, organic carbon and organic matter. P. 961-1010 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

Reference for Inorganic C:

Loeppert, R.H. and Suarez, D.L. 1996. Gravimetric Method for Loss of Carbon Dioxide. P. 455-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

CARBONS-DOC-VA

Water

Dissolved organic carbon by combustion

APHA 5310 "TOTAL ORGANIC CARBON (TOC)"

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis.

CARBONS-TOC-VA

Water

Total organic carbon by combustion

APHA 5310 "TOTAL ORGANIC CARBON (TOC)"

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)".

CHLOROA-VA

Water

Chlorophyll a by Fluorometer

APHA 10200 H. "Chlorophyll" and EPA 445

Chlorophyll and Pheopigments by Fluorometry analysis is carried out using procedures adapted from APHA Method 10200 H. "Chlorophyll" and

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

USEPA Method 445. The sample is filtered using either a glass fiber filter or a 0.45 micron Membrane filter. The pigments are extracted from the filter with 90% aqueuos acetone. For chlorophyll a analysis the extract is read using a fluorometer. For pheopigments the extract is first acidified then read. This method is not subject to interferences from chlorophyll b.

This method is not subject to interferences from chlorophyll b.

EC-PCT-VA Water Conductivity (Automated) APHA 2510 Auto. Conduct.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity

electrode.

HARDNESS-CALC-VA Water Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-CCME-CVAFS-VA Soil CVAFS Hg in Soil (CCME) CCME

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 7000 series).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

HG-TOT-CCME-CVAFS Water Total Mercury in Water by CVAFS (CCME) EPA 245.7

VA
This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the
American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United
States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to
reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-CSR-FULL-ICP-VA Soil Metals in Soil by ICPOES (CSR SALM) BCMELP CSR SALM METHOD 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-TOT-CCME-ICP-VA Water Total Metals in Water by ICPOES (CCME) EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water Total Metals in Water by ICPMS (CCME) EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MOISTURE-VA Soil Moisture content ASTM METHOD D2794-00

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

MOISTURE-VA Soil ASTM METHOD D2794-00

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

NH3-SIE-VA Water Ammonia by SIE APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)".

Ammonia is determined using an ammonia selective electrode.

OG-TMB-VA Soil Oil & Grease in Soils by Tumbler NATM1100 V03 CCME PHC F2-F4G

A subsample of the sediment/soil is extracted with 1:1 hexane:acetone using a rotary extraction apparatus. The extract is analyzed gravimetrically.

Accuracy target values for Reference Materials used in this method are derived from averages of long-term method performance, as certified values do not exist for the reported parameters.

OGG-SF-VA Water Oil & Grease by Gravimetric BCMOE GRAVIMETRIC

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3510 & 9071, published by the United States Environmental Protection Agency (EPA), "Standard Methods for the Examination of Water and Wastewater", 20th ed., Method 5520, published by the American Public Health Association, and "BC Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials," 5th ed., published by the B.C. Ministry of Environment, Lands & Parks, 1994. The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to determine Oil and Grease.

PAH-TUMB-H/A-MS-VA Soil PAH by Tumbler HEX/ACE with GCMS EPA METHODS 3570 & 8270.

Polycyclic Aromatic Hydrocarbons in Sediment/Soil

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation.

PH-1:2-VA Soil CSR pH by 1:2 Water Leach BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (10 mesh /2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA Water Dissolved ortho Phosphate by Color APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA Water Total Phosphate P by Color APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

Particle size analysis involves the measurement of the proportions of the various primary soil particle sizes (ie. clay < 0.004 mm, silt 0.004-0.063 mm, sand 0.063-2.0 mm and gravel > 2.0 mm). In this method, the gravel and sand portions are determined by sieving, while the clay portion is determined by sedimentation using Stokes Law, which relates the radius of the particles to the velocity of the sedimentation in water. Silt is calculated as 100% - (sand% + clay%)

Pretreatment of the soil with Calgon (sodium hexametaphosphate) is used to ensure the complete dispersion of the primary soil particles. Additional pretreatment may be necessary to remove cementing materials such as CaCO3 and organic matter.

Reference

Y.P. Kalra, and D.G. Maynard, 1991. Methods Manual For Forest Soil and Plant Analysis, Northwest Region. Forestry Canada (modified sand, silt and clay size ranges)

TDS-VA

Water

Total Dissolved Solids by Gravimetric

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TKN-SIE-VA

Water

Total Kjeldahl Nitrogen by SIE

APHA 4500-Norg (TKN)

This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by sample digestion at 367 celcius with analysis using an ammonia selective electrode.

TL-CSR-MS-VA

Soil

ICPMS TI in Soil by CSR SALM

BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasmamass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

TSS-VA

Water

Solids by Gravimetric

APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
SK	ALS LABORATORY GROUP - SASKATOON, SASKATCHEWAN, CANADA	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS Laboratory Group

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM CANADA TOLL FREE 1-800-668-9878

Page ___ of 6 coc#C098471

755, TDS, nutritudes (nutritle, total phospio te, methorbate), Bilolate, Chlaide a Kalinit Priaitmate, Outonate, budioide EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS REGULAR SERVICE (DEFAULT) × Failure to complete all portions of this form may detay analysis. Please fill in this form LECIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED × Z * Convertional: Unductivity, hadress, p.H. XX SAMPLE TYPE Sodinar EMAIL 2: MM (Connell @ azimuti goul.ca Filter Water EMAIL 1: rhaker (daz; muth group. Ca FAX QUOTE #: 145 ES - 07 - 623 www.alsenviro.com INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER (Initials): TIME PDF __ EXCEL __ CUSTOM CLIENT / PROJECT INFORMATION: REPORT FORMAT / DISTRIBUTION OTHER 00 0 DATE Dur. 23 JOB#: AEMP Legal Site Description: Aur. 28 STANDARD PO /AFE (This description will appear on the report) ADDRESS: 218 - 2902 N. Broadway ALS SAMPLE IDENTIFICATION GUIDELINES / REGULATIONS SAME AS REPORT ? (MES) NO COMPANY: AZITALIH GROLF 8108ts Pariouner, BC VINK FAX: PHONE: WOLL - 72-123 OF AX. CONTACT: PRINCE BEKEN Environmental Division **BBD BP** BBD BAP BAPP BRI BAP BRD BPI OV Lab Work Order # (lab use only) REPORT TO: NVOICE TO: COMPANY CONTACT ADDRESS: PHONE Sample

NUMBER OF CONTAINERS

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

ECEIVED BY

00

A41.271

ANS DEHEROOM

NAUSHED BY

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

SAMPLES RECEIVED IN GOOD CONDITION ? KESD NO

(If no provide details)

EMPERATURE

1845 SW DATE & TIME

SAMPLE CONDITION (lab use only)

ALS Laboratory Group
ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM

Page 2 of 6

Environmental Division

ALS

www.alsenviro.com

coc#0098448

CANADA TOLL FREE 1-800-668-9878

NUMBER OF CONTAINERS EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS HIGHLY CONTAMINATED? By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. SUOGHAZAH ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS REGULAR SERVICE (DEFAULT) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED JOI SAMPLE TYPE Sediment FAX INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials) CUSTOM CLIENT / PROJECT INFORMATION: REPORT FORMAT / DISTRIBUTION OTHER 108 DATE Legal Site Description: = = = EXCEL STANDARD QUOTE #: EMAIL 1: PO /AFE: EMAIL 2: JOB #: PDF This description will appear on the report) SAMPLE IDENTIFICATION GUIDELINES / REGULATIONS YES / NO 8 Sc-06 30-Sc-05 SAME AS REPORT? Sc-04 BBD-SC-03 BBD-5c-02 FAX: FAX: BBD-50-01 BBD-BR 0-BBD-RBD 380 - वहार 800 Lab Work Order # (lab use only) INVOICE TO: REPORT TO: COMPANY: COMPANY: CONTACT ADDRESS: CONTACT ADDRESS: PHONE PHONE Sample #

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

SAMPLES RECEIVED IN GOOD CONDITION ? (YES)/ NO

(if no provide details)

TEMPERATURE

DATE & TIME

RECEIVED BY

134 29/08

ATER

DATE & TIME:

UISHED BY

3

SAMPLE CONDITION (lab use only

ALS Laboratory Group

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM CANADA TOLL FREE 1-800-668-9878

Page 3 of 6

Environmental Division

www.alsenviro.com

coc#0098450

NUMBER OF CONTAINERS EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS HIGHLY CONTAMINATED? By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. > SUOGAASAH SAMPLE CONDITION (lab use only) ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS REGULAR SERVICE (DEFAULT) RUSH SERVICE (2-3 DAYS) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY SERVICE REQUESTED 201 SAMPLE TYPE Sedimond FAX INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials) CUSTOM CLIENT / PROJECT INFORMATION: REPORT FORMAT / DISTRIBUTION OTHER DATE Legal Site Description: EXCEL = STANDARD QUOTE #: PO /AFE: EMAIL 2: EMAIL 1: JOB #: PDF (This description will appear on the report) SAMPLE IDENTIFICATION GUIDELINES / REGULATIONS SAME AS REPORT ? YES / NO 400 Sc-03 なーの Sc-02 Sc-0 700 FAX: RPJ-RPJ-RRD 880 BBD BBB BPJ BPJ Lab Work Order # (lab use only) INVOICE TO: REPORT TO: COMPANY: COMPANY: CONTACT ADDRESS: ADDRESS: CONTACT PHONE: PHONE: Sample

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

ECEIVED BY

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

GENF14.00

SAMPLES RECEIVED IN GOOD CONDITION ? (ES) NO

(If no provide details)

TEMPERATURE

NATE & TIME

ALS Laboratory Group
ANALYTICAL CHEMISTRY & TESTING SERVICES

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM CANADA TOLL FREE 1-800-668-9878

Environmental Division

www.alsenviro.com

Page 4 of 6 coc#C098451

		W.G.Collandon						
REPORT TO:	REPORT FORMAT / DIST	/ DISTRIBUTION		SERVICE REQUESTED	UESTED			
COMPANY:	STANDARD	OTHER	9.	REGULAR SE	REGULAR SERVICE (DEFAULT)	()		- 6
CONTACT:	PDF EXCEL	CUSTOM FA	FAX	RUSH SERVIC	RUSH SERVICE (2-3 DAYS)			1 10
ADDRESS:	EMAIL 1:		Three	PRIORITY SE	PRIORITY SERVICE (1 DAY or ASAP)	ASAP)		N. C.
/ Rn X	EMAIL 2:	5 77	16	EMERGENCY	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS	Y / WEEKEND)	- CONTACT	ALS
PHONE:		4			ANALYSIS	ANALYSIS REQUEST		2
INVOICE TO: SAME AS REPORT? YES! NO	INDICATE BOTTLES: FILTER	FILTERED / PRESERVED (F/P)	† †	1			Z	
COMPANY:	CLIENT / PROJECT INFORMATION:	RMATION:			9.00			
CONTACT:	JOB #:	1	100	50				
ADDRESS:	PO /AFE:			20	\$\frac{1}{2}			
	Legal Site Description:		P. STIRKS	S	antuck Born Boto.	Age to Those	2	110
PHONE: FAX:	QUOTE #:		100	61			. sr	9,8
Lab Work Order# i		SAMPLER (Initials):	The state of	100 000		200	SDO	
Sample SAMPLE IDENTIFICATION # (This description will appear on the report)	TION DATE	STATE OF	SAMPLE TYPE)5 oL oL			IASAH	NOMBE HIGHT
BPJ-50-05	Mr.281	80	Sediment	YYY			2	7
8			· · · · · · · · · · · · · · · · · · ·	XXX				_
1				XXX	All Street Control of the Street			
RPJ-S0-08	=			イメイ				10
1	JI .			XXX	A COLUMN		2/8	
RPJ-SC-10	The Management of the Control	ACCOUNTS AND ACCOUNTS	W. C.	AXX	10 m			
Rp7 - Sc - 11	(14.1) (14.1) (14.1) (14.1) (14.1)	The States of	100	×××		AF4 - 3.2		
1	4	153-1-316		XXX	16.			
1- Sc-1				XXX				
BPJ- SC-14	Strain New York Charles		→	メメメ			>	\\\\\\
GUIDELINES / REGULATIONS	NS	SPE	SPECIAL INSTRUC	INSTRUCTIONS / HAZARDOUS	RDOUS DETAILS	ILS .		
Failure to complete all portions of this form the user acknowledges and agrees		this form may delay analysis. Please fill in this form LEGIBLY.	inalysis. Pleas	Please fill in this form <i>LEGIBLY</i>	m LEGIBLY.	of the white	dos trodo	
RELINGUISHED BY, A CONTRACTION			PATE & TIME		SAMPLE CONDITION	ION (lab use only	nly)	
RETINOUGHEDEN CHANCEL THE DATE OF THE THE	INUS RECEIVED BY:		A:25 ATE & TIME:	TEMPERATURE 2	SAMPLES RECEIVED IN GOOD CONDITION ? (ES) NO (if no provide details)	VED IN GOOD CC ils)	NDITION ?	NO NO
REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMA	NS AND SAMPLING INFORMATION	WEATE - RE	PORT COPY, PINK	WENTE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY	OW - CLIENT CO	γĄ	GENE	GENF14.00

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

Page S of 6

coc#0098452

ALS

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM CANADA TOLL FREE 1-800-668-9878

www.alsenviro.com

NUMBER OF CONTAINERS SAMPLES RECEIVED IN GOOD CONDITION XESY NO EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS HIGHLY CONTAMINATED? > By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. SUOGRAZAH SAMPLE CONDITION (lab use only) ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS (if no provide details) REGULAR SERVICE (DEFAULT) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED TEMPERATURE × C 04 of Metalos Sediment SAMPLE TYPE PATE & TIME DATE & TIME FAX INDICATE BOTTLES: FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials): CUSTOM CLIENT / PROJECT INFORMATION: REPORT FORMAT / DISTRIBUTION OTHER 00 DATE 1.251 M. 28 Legal Site Description: EXCEL = = > = -RECEIVED BY: H Puck. STANDARD RECEIVED BY QUOTE #: EMAIL 2: PO /AFE EMAIL 1: JOB #: PDF (This description will appear on the report) PATE & TIME, 3 SAMPLE IDENTIFICATION GUIDELINES / REGULATIONS SAME REPORT ? YES / NO 8PJ-Sc-DUP Sc-05 SC-03 SC - 04 Sc - 06 50-07 Sc-02 SC-08 0 BPJ-SC-15 FAX: BAP-SC-BAP-BAP-BAP-BAP-RAPI RAPI BAP-Lab Work Order # CURHED BY: **UISHED BY:** (lab use only) INVOICE TO: REPORT TO: COMPANY: COMPANY: ADDRESS: ADDRESS: CONTACT CONTACT PHONE PHONE Sample

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

ALS Laboratory Group

Page Le of 6

Environmental Division

coc#C098453

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM CANADA TOLL FREE 1-800-668-9878

NUMBER OF CONTAINERS SAMPLES RECEIVED IN GOOD CONDITION ? (ES) NO (If no provide details) EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS HIGHLY CONTAMINATED? By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse page of the white report copy. HAZARDOUS? SAMPLE CONDITION (lab use only ANALYSIS REQUEST PRIORITY SERVICE (1 DAY or ASAP) SPECIAL INSTRUCTIONS / HAZARDOUS DETAILS REGULAR SERVICE (DEFAULT) Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. RUSH SERVICE (2-3 DAYS) SERVICE REQUESTED TEMPERATURE メメ SAMPLE TYPE edymord SAEA3/188 ATE & TIME FAX www.alsenviro.com INDICATE BOTTLES; FILTERED / PRESERVED (F/P) SAMPLER TIME (Initials): REPORT FORMAT / DISTRIBUTION CUSTOM CLIENT / PROJECT INFORMATION: OTHER Aug 25/08 DATE Legal Site Description: = = = = EXCEL STANDARD ECEIVED B QUOTE #: PO /AFE: EMAIL 1: EMAIL 2: JOB #: PDF (This description will appear on the report) A. 29/08 SAMPLE IDENTIFICATION **GUIDELINES / REGULATIONS** SAME AS REPORT ? YES / NO Sc-Dup BAP- SC-15 RAP - SC-14 BAP-50-09 BAP-SC-10 BAP-SC-13 RAP - Sc - 11 BAP-SC-12 FAX: -AX: BAP Lab Work Order # (lab use only) INVOICE TO: REPORT TO COMPANY: COMPANY: ADDRESS: CONTACT CONTACT ADDRESS: PHONE: PHONE Sample

REFER TO BACK PAGE FOR REGIONAL LOCATIONS AND SAMPLING INFORMATION

WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY

Environmental Division

Certificate of Analysis

AZIMUTH CONSULTING GROUP INC.

ATTN: RANDY BAKER

218 - 2902 WEST BROADWAY

Revision: 2

Reported On: 28-OCT-08 11:48 AM

VANCOUVER BC V6K 2G8

Lab Work Order #: L687229 Date Received: 24-SEP-08

Project P.O. #:

Job Reference: **AEMP**

Legal Site Desc: **CofC Numbers:**

Other Information:

Comments: Please note: travel blank results were confirmed by re-analysis.

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

y Mho

	Sample ID Description	L687229-1	L687229-2	L687229-3	L687229-4	L687229-5
	Sampled Date Sampled Time	18-SEP-08	18-SEP-08	18-SEP-08	18-SEP-08	18-SEP-08
	Client ID	TPE	TPS	TPN-1	TPN-2	TPN-3
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	16.4	13.6	13.6	13.6	13.5
	Hardness (as CaCO3) (mg/L)	5.57	5.07	5.10	5.08	5.11
	pH (pH)	6.75	6.83	6.81	6.79	6.83
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	3.1
	Total Dissolved Solids (mg/L)	15	<10	<10	<10	<10
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	3.8	3.9	3.7	3.7	3.8
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	3.8	3.9	3.7	3.7	3.8
	Ammonia as N (mg/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Chloride (CI) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.069	<0.050	0.055	0.066	0.087
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Phosphate as P (mg/L)	<0.0020	<0.0020	0.0042	<0.0020	<0.0020
	Sulfate (SO4) (mg/L)	1.22	1.22	1.21	1.20	1.22
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.75	1.64	1.50	1.50	1.45
	Total Organic Carbon (mg/L)	1.44	1.35	1.36	1.32	1.33
Total Metals	Aluminum (Al)-Total (mg/L)	0.0142	0.0097	0.0081	0.0083	0.0070
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Barium (Ba)-Total (mg/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Total (mg/L)	<0.000017	<0.000017	<0.00017	<0.000017	<0.000017
	Calcium (Ca)-Total (mg/L) Chromium (Cr)-Total (mg/L)	1.30	1.15	1.17	1.15	1.16
	() (3)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Cobalt (Co)-Total (mg/L) Copper (Cu)-Total (mg/L)	<0.00030 <0.0010	<0.00030 <0.0010	<0.00030 <0.0010	<0.00030 <0.0010	<0.00030 <0.0010
	Iron (Fe)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	, , , , ,					
	Lead (Pb)-Total (mg/L)	<0.00050	<0.0050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/L)	0.57	0.54	0.53	0.53	0.54
	Manganese (Mn)-Total (mg/L)	0.00102	0.00078	0.00073	0.00069	0.00067
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Molybdenum (Mo)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Nickel (Ni)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

	Sample ID Description	L687229-6	L687229-7	L687229-8	L687229-9	L687229-10
	Sampled Date Sampled Time Client ID	18-SEP-08 TPN-4	17-SEP-08 SP	15-SEP-08 TE-SEPT	25-AUG-08	18-SEP-08
Grouping	Analyte	1711-4	Jr	TL-SEFT	TRAVEL BLANK	IFL
WATER	,					
Physical Tests	Conductivity (uS/cm)	13.5	25.5	23.4	<2.0	
i ilysicai resis	Hardness (as CaCO3) (mg/L)	5.12	10.8	9.85	<0.70	
	pH (pH)	6.77	7.15	7.11	5.37	
	Total Suspended Solids (mg/L)	<3.0	3.6	3.1	<3.0	
	Total Dissolved Solids (mg/L)	<10	13	10	<10	
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	4.0	7.9	7.3	<2.0	
Nutrients	Alkalimity, Dicarbonate (as GaGGG) (mg/L)	4.0	7.5	7.5	\2.0	
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Alkalinity, Total (as CaCO3) (mg/L)	4.0	7.9	7.3	<2.0	
	Ammonia as N (mg/L)	<0.020	<0.020	<0.020	0.026	
	Chloride (CI) (mg/L)	<0.50	<0.50	<0.50	<0.50	
	Nitrate (as N) (mg/L)	<0.0050	0.0289	0.0211	<0.0050	
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Total Kjeldahl Nitrogen (mg/L)	0.053	0.100	0.089	<0.050	
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Total Phosphate as P (mg/L)	0.0022	0.0064	0.0056	<0.0020	
	Sulfate (SO4) (mg/L)	1.22	2.14	1.95	<0.50	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.47	2.01	1.90		
g.	Total Organic Carbon (mg/L)	1.36	1.61	1.64	<0.50	
Total Metals	Aluminum (Al)-Total (mg/L)	0.0079	0.336	0.389	<0.0050	
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Arsenic (As)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Barium (Ba)-Total (mg/L)	<0.020	<0.020	<0.020	<0.020	
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	
	Cadmium (Cd)-Total (mg/L)	<0.00017	<0.00017	<0.000017	<0.00017	
	Calcium (Ca)-Total (mg/L)	1.16	2.70	2.41	<0.10	
	Chromium (Cr)-Total (mg/L)	<0.0010	0.0011	0.0013	<0.0010	
	Cobalt (Co)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	
	Copper (Cu)-Total (mg/L)	<0.0010	0.0017	0.0016	<0.0010	
	Iron (Fe)-Total (mg/L)	<0.030	0.369	0.430	<0.030	
	Lead (Pb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	Magnesium (Mg)-Total (mg/L)	0.54	0.99	0.93	<0.10	
	Manganese (Mn)-Total (mg/L)	0.00066	0.00757	0.00801	<0.00030	
	Mercury (Hg)-Total (mg/L)	<0.00000	<0.00020	<0.00001	<0.00030	
	Molybdenum (Mo)-Total (mg/L)	<0.00020	<0.0010	<0.0010	<0.00020	
	Nickel (Ni)-Total (mg/L)	<0.0010	0.0010	0.0011	<0.0010	

	Sample ID Description	L687229-11	L687229-12	L687229-13	L687229-14	L687229-15
	Sampled Date	18-SEP-08	18-SEP-08	18-SEP-08	18-SEP-08	18-SEP-08
	Sampled Time Client ID	TPS	TPN-1	TPN-2	TPN-3	TPN-4
Frouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)					
	Hardness (as CaCO3) (mg/L)					
	pH (pH)					
	Total Suspended Solids (mg/L)					
	Total Dissolved Solids (mg/L)					
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)					
	Alkalinity, Carbonate (as CaCO3) (mg/L)					
	Alkalinity, Hydroxide (as CaCO3) (mg/L)					
	Alkalinity, Total (as CaCO3) (mg/L)					
	Ammonia as N (mg/L)					
	Chloride (CI) (mg/L)					
	Nitrate (as N) (mg/L)					
	Nitrite (as N) (mg/L)					
	Total Kjeldahl Nitrogen (mg/L)					
	Ortho Phosphate as P (mg/L)					
	Total Phosphate as P (mg/L)					
	Sulfate (SO4) (mg/L)					
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)					
_	Total Organic Carbon (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					

	Sample ID Description Sampled Date Sampled Time	L687229-16 17-SEP-08	L687229-17 15-SEP-08		
	Client ID	SP	TE-SEPT		
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)				
	Hardness (as CaCO3) (mg/L)				
	pH (pH)				
	Total Suspended Solids (mg/L)				
	Total Dissolved Solids (mg/L)				
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)				
	Alkalinity, Carbonate (as CaCO3) (mg/L)				
	Alkalinity, Hydroxide (as CaCO3) (mg/L)				
	Alkalinity, Total (as CaCO3) (mg/L)				
	Ammonia as N (mg/L)				
	Chloride (CI) (mg/L)				
	Nitrate (as N) (mg/L)				
	Nitrite (as N) (mg/L)				
	Total Kjeldahl Nitrogen (mg/L)				
	Ortho Phosphate as P (mg/L)				
	Total Phosphate as P (mg/L)				
	Sulfate (SO4) (mg/L)				
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)				
	Total Organic Carbon (mg/L)				
Total Metals	Aluminum (Al)-Total (mg/L)				
	Antimony (Sb)-Total (mg/L)				
	Arsenic (As)-Total (mg/L)				
	Barium (Ba)-Total (mg/L)				
	Beryllium (Be)-Total (mg/L)				
	Boron (B)-Total (mg/L)				
	Cadmium (Cd)-Total (mg/L)				
	Calcium (Ca)-Total (mg/L)				
	Chromium (Cr)-Total (mg/L)				
	Cobalt (Co)-Total (mg/L)				
	Copper (Cu)-Total (mg/L)				
	Iron (Fe)-Total (mg/L)				
	Lead (Pb)-Total (mg/L)				
	Lithium (Li)-Total (mg/L) Magnesium (Mg)-Total (mg/L)				
	Manganese (Mn)-Total (mg/L)				
	Mercury (Hg)-Total (mg/L)				
	Molybdenum (Mo)-Total (mg/L)				
	Nickel (Ni)-Total (mg/L)				
	(· · · / · · · · · · · · · · · · · · ·				

	Sampl Descriț	otion	L687229-2	L687229-3	L687229-4	L687229-5
	Sampled Sampled		18-SEP-08	18-SEP-08	18-SEP-08	18-SEP-08
		nt ID TPE	TPS	TPN-1	TPN-2	TPN-3
Brouping	Analyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Aggregate Organics	Oil and Grease (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
Plant Pigments	Chlorophyll a (ug)					

	Sample I		L687229-7	L687229-8	L687229-9	L687229-10
	Descriptio Sampled Da Sampled Tin	18-SEP-08	17-SEP-08	15-SEP-08	25-AUG-08	18-SEP-08
Succession of	Client I	TPN-4	SP	TE-SEPT	TRAVEL BLANK	TPE
Grouping	Analyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Selenium (Se)-Total (mg/L) Silver (Ag)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010 <0.000020	
	Sodium (Na)-Total (mg/L)	<0.000020 <2.0	<0.000020 <2.0	<0.000020 <2.0	<2.0	
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00020	<0.00050	<0.00020	
	Titanium (Ti)-Total (mg/L)	<0.010	0.013	0.016	<0.010	
	Uranium (U)-Total (mg/L)	<0.00020	0.00022	0.00025	<0.0020	
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Zinc (Zn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
Aggregate Organics	Oil and Grease (mg/L)	<5.0	<5.0	<5.0		
Plant Pigments	Chlorophyll a (ug)					0.708

		Sample ID Description Sampled Date Sampled Time Client ID	L687229-11 18-SEP-08 TPS	L687229-12 18-SEP-08 TPN-1	L687229-13 18-SEP-08 TPN-2	L687229-14 18-SEP-08 TPN-3	L687229-15 18-SEP-08 TPN-4
Grouping	Analyte						
WATER							
Total Metals	Potassium (K)-Total (mg/L)						
	Selenium (Se)-Total (mg/L)						
	Silver (Ag)-Total (mg/L)						
	Sodium (Na)-Total (mg/L)						
	Thallium (TI)-Total (mg/L)						
	Tin (Sn)-Total (mg/L)						
	Titanium (Ti)-Total (mg/L)						
	Uranium (U)-Total (mg/L)						
	Vanadium (V)-Total (mg/L) Zinc (Zn)-Total (mg/L)						
Aggregate	Oil and Grease (mg/L)						
Organics Plant Pigments	Chlorophyll a (ug)		0.595	0.573	0.526	0.495	0.515

		Sample ID Description	L687229-16	L687229-17		
		Sampled Date	17-SEP-08	15-SEP-08		
		Sampled Time Client ID	SP	TE-SEPT		
Grouping	Analyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Aggregate Organics	Oil and Grease (mg/L)					
Plant Pigments	Chlorophyll a (ug)		0.327	0.557		

Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if app	licable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
LK-SCR-VA	Water	Alkalinity by colour or titration	EPA 310.2 OR APHA 2320
This analysis is carried or colourimetric method. OR	ut using prod	cedures adapted from EPA Method 310.2 "Alk	alinity". Total Alkalinity is determined using the methyl orange
This analysis is carried or			kalinity". Total alkalinity is determined by potentiometric titration to rom phenolphthalein alkalinity and total alkalinity values.
NIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An		etermination of Anions by Ion Chromatography" and EPA Method y determined by this method include: bromide, chloride, fluoride,
NIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An		etermination of Anions by Ion Chromatography" and EPA Method y determined by this method include: bromide, chloride, fluoride,
NIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An		etermination of Anions by Ion Chromatography" and EPA Method y determined by this method include: bromide, chloride, fluoride,
NIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An		etermination of Anions by Ion Chromatography" and EPA Method y determined by this method include: bromide, chloride, fluoride,
ARBONS-DOC-VA	Water	Dissolved organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)
		cedures adapted from APHA Method 5310 "To ough a 0.45 micron membrane filter prior to an	otal Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are nalysis.
ARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)
This analysis is carried or	ut using prod	cedures adapted from APHA Method 5310 "To	otal Organic Carbon (TOC)".
HLOROA-VA	Water	Chlorophyll a by Fluorometer	APHA 10200 H. "Chlorophyll" and EPA 445
USEPA Method 445. The with 90% aqueuos acetor	sample is f ne. For chlor	iltered using either a glass fiber filter or a 0.45	ures adapted from APHA Method 10200 H. "Chlorophyll" and micron Membrane filter. The pigments are extracted from the filter uorometer. For pheopigments the extract is first acidified then read.
C-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried or electrode.	ut using prod	cedures adapted from APHA Method 2510 "Co	onductivity". Conductivity is determined using a conductivity

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-CCME-ICP-VA Water

Total Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-SIE-VA

Water

Ammonia by SIE

APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

OGG-SF-VA

Water

Oil & Grease by Gravimetric

BCMOE GRAVIMETRIC

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3510 & 9071, published by the United States Environmental Protection Agency (EPA), "Standard Methods for the Examination of Water and Wastewater", 20th ed., Method 5520, published by the American Public Health Association, and "BC Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials," 5th ed., published by the B.C. Ministry of Environment, Lands & Parks, 1994. The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to determine Oil and Grease.

PH-MAN-VA

Water

pH by Manual Meter

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA

Water

Dissolved ortho Phosphate by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Water

Total Phosphate P by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

TDS-VA

Water

Total Dissolved Solids by Gravimetric

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference (Based On)

TKN-SIE-VA Water Total Kjeldahl Nitrogen by SIE APHA 4500-Norg (TKN)

This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by sample digestion at 367 celcius with analysis using an ammonia selective electrode.

TSS-VA Water Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended

Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

1988 Triumph Street, **Vancouver**, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 L687729

#2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430

www.alsenviro.com

		excellence in an					403-21								103-21	4-04	30					WWW.aisenviro.com
		CHAIN	I OF CUS	TODY /	ANALY	TIC	AL	RE	EQI	JE:	ST	FC	RN									PAGE 1 OF 2
L		SEND REPO	RT TO:			S	END	NVO	ICE T	O: (c	ompl	ete if o	differe	nt fro	m Re	port ¹	To at le	eft)	Requ	ire co	py of	Report? Yes No
COM	PANY:	Azimuth Consulting Group Inc.				COM	1PANY	′ :										CONT	ACT:			
ADD	RESS:	218-2902 West Broadway				ADD	RESS	:												F	P.O. #:	s
CITY		Vancouver PROV: BC	POSTAL CODE:	V6K 2G8		CITY	/ :		•			Р	ROV:		POS	TAL C	ODE:				TEL:	
CON	TACT:	R. Baker, M. McConnell	TELEPHONE:			ANA	LYSI	S RE	QUES	STED	:											**Conventionals:
PRO	JECT I	NAME/#: AEMP	SAMPLER:	MM, WS			3)									conductivity, hardness,
ALSE	QUO	TE #: ALSEQ-07-622	ALSE CONTACT:	Natasha Marco	vic-Mirovic	1	w/ H ₂ SO ₄)	<u>~</u>	3		€		w/ MgCO ₃)		:#3							pH, TSS, TDS, nutrients(nitrate, nitrite,
L		REPORT FORMAT:	IN\	OICE FORMAT	:]	Ŧ	HNO ₃)	H,SO4)		Ĭ	ľ	Νg									total phosphate,
	lardco _l		Hardcopy	○ Fax #:			3.	\ \ \	I ≩		3	1	*		7.				l Need		1	orthophosphate),
01	-mail	Specify file type: Excel & pdf	E-mail (pdf for	mat)		١.	J a	SS.	8	ਹਿੰ	ě		es Se		Cain					l		sulphate, chloride,
_	ail Ad		E-mail Address:] * <u>s</u>	.02	ğ	(bres.	× ×	9ŏ		9									alkalinity(bicarbonate,
		Turn Around.	-	_	-	Conventionals	Ammonia (pres.	Metals (pres.	Se	(pres. w/ HCI)	(filtered & pres. w/ HCI)		Chlorophyll-a (pres.						13.4			carbonate, hydroxide).
$ \mathcal{Q} $	ush (S	Surcharges May Apply) Specify Due Date	<u>. </u>	Time):	e I	Į₹	Β̈́	je j	(pre	€		현		100							<u> </u>
l		SAMPLE IDENTIFICATION	DATE / TIME		MATRIX	Ę	XX.	Total	Oil&Grease	TOC	200		뎔									NOTES (sample specific comments, due dates, etc.)
├ ─┰			YY-MM-DD	Time			F	Ě	0	Ĕ	Δ	J 100 11 1	ပ									
1 1		TPE	08-09-18		water	<u> </u>	l x	X	X	Х	Х		. 33									7 containers
1 }		TPS	08-09-18		water	Х	х	Х	Х	х	X	· · · · · · · · · · · · · · · · · · ·					1000 1.30		100000000000000000000000000000000000000			7 containers
l }		TPN-1	08-09-18		water	х	Х	х	Х	x	X			ì				_		an la	Ľ.	7 containers
ĺ	_	TPN-2	08-09-18		water	X	х	х	Х	х	Х								. K 197941		igspace	7 containers
1	_	TPN-3	08-09-18		water	х	х	х	х	×	X							il.	43			7 containers
긏.		TPN-4	08-09-18		water	х	х	х	х	х	х										丄	7 containers
l õ		SP	08-09-17		water	х	х	x	×	×	х										<u>L</u>	7 containers
85 E		TE - Sept	08-09-15		water	х	х	х	х	х	х										<u> </u>	7 container
PB		Travel Blank (AE-08 AEMP)	0 6-06 -25		water	×	х	×		×					77		37.2					4 containers
FOR LAB USE ONLY		TPE	08-09-18		filter								х									1 container (1L filt.)
<u>"</u> [TRS	08-09-18		filter		1 7		2 %				Х						2 2 3		F	1 container (1L filt.)
		TPN-1	08-09-18		filter								х									1 container (1L filt.)
		TPN-2	08-09-18		filter								х									1 container (1L filt.)
		TPN-3	08-09-18		filter								х									1 container (1L filt.)
Γ	_	TPN-4	08-09-18		filter								x									1 container (1L filt.)
[SP	08-09-17	<u>Line and an air an a</u>	filter								х									1 container (500ml filt.)
		RELINQUISHE	D BY:									•			REC	CEIVE	D BY	Н	70			
NAME	:	Maggie McConnell		Sept.20 2008		NAM	E:										DATE:		60	10°	य[2	<u> </u>
OF:		Azimuth Consulting Group Inc.	TIME:			OF:											TIME:			3.7	•	
NAME	:	Illy w MEnne	DATE:			NAM	E:										DATE:					<u> </u>
OF:		1621 00	TIME:		<u> </u>	OF:		ALS E	Enviro	nment	tal						TIME:					
opecia		uctions / Comments (billing details, QC reporting															_			_		
	FOR	LAB USE ONLY Cooler Seal Intact?	Yes No1	V/A Sa	mple Temper	ature:	<u>-</u> 3		Fro	zen?	Yes_	N	<u></u>	C	ooling	Met	thod?	Icepa	ack•_	lc	e	

1988 Triumph Street, **Vancouver**, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700

#2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430

www.alsenviro.com

			CHAIN	OF CUS	TODY /	ANALY	TIC	AL	RE	QI	JE	ST	FC	RN	1	_	_						PAGE	2	OF	2
			SEND REPO	RT TO:			S	END.	INVO	ICE T	O: (c	omple	ete if	differe	nt fro	m Re	port 1	Γο at I	eft)	Requ	uire co	py of I	Report?	√ Ye	es 🗌	No
сом	PANY:	Azimuth Consulting Grou	up Inc.					PANY									_	$\overline{}$		TACT						
		218-2902 West Broadwa					ADD	RESS	:												, ,	P.O. #:	Γ			
CITY	:	Vancouver	PROV: BC	POSTAL CODE:	V6K 2G8		CITY	<u>':</u>	Γ				F	PROV:		POS	TAL C	ODE				TEL:				_
CON	TACT:	R. Baker, M. McConnell	<u> </u>	TELEPHONE:			ANA	LYSI	S RE	QUES	STED	:											**Cor	venti	onals:	:
PRO.	JECT N	AME/#: AEMP		SAMPLER:	MM, WS			3	Π							1,2, 23		C . 11 1	Τ					uctivity		ness,
	QUO			ALSE CONTACT:	Natasha Marco	vic-Mirovic	1	တွ	3	3		£		ģ		2 3			1		-			SS, TI		. 14 . 14 .
	_	REPORT FORMA	iT:		VOICE FORMAT		1	Į Į	≥	၂ တွ		Ĭ	ŀ	Mg		1			1					nts(nit chospl		iitrite,
(O)	Hardcop	y		• Hardcopy	○ Fax #:		}	8	Į	Ŧ	[]	3		3			1						ortho			
0	E-mail	Specify file type:	Excel & pdf	E-mail (pdf fo	rmat)		Ι.	e d	si Si	S .	ਹਿੰ	Sec	ľ	es.					1		l			ate, ch),
E-n	nail Add	dress:		E-mail Address:			* s	ia	قِ	B.	Į	~		<u>.</u>		Page 1	ĺ		l					nity(bio		
-		Turn Around	Specify Due Date:		T :		Conventionals	Ammonia (pres. w/ H ₂ SO ₄)	Total Metals (pres. w/ HNO ₃)	Oil&Grease (pres. w/ H ₂ SO4)	TOC (pres. w/ HCI)	DOC (filtered & pres. w/ HCI)		Chlorophyll-a (pres. w/ MgCO ₃)			l						carbo	nate, l	nydrox	(ide).
\vdash	kusn (S	urcharges May Apply)	Specify Due Date.		Time	e: 	┨┋		Ž	8	٥	E,		0					1				L	FFC (
		SAMPLE IDEN	TIFICATION	DATE / TIME YY-MM-DD	Time	MATRIX	Į	X	Tota	Oii8	ĕ	ğ		5										TES (sa nents, di		
	_	TE-Sept.		08-09-15		filter								х							1		1 con	ainer (500ml (filt.)
il								1 -													1					
											1.23							We. 1								
			<u> </u>																							
									Z			- 7				* · '328								Ya.		
-																										
FOR LAB USE ONLY																			2.2							1
뽕								<u>L</u>																		
P																										
뒽																										
2												1					2								3 -	
1 [
																			31.	21						
\																				<u>L</u>						
			RELINQUISHE	ED BY:												REC	CEIVE	D BY	:	12	1					
NAM	E:	Maggie McConnell		DATE:	Sept.20 2008		NAM	E:										DATE:		31	1	08/	0912	24		
OF:		Azimuth Consulting Grou	ip lpe.	TIME:	ļ		OF:		<u> </u>									TIME:	L.							
NAM	E:	11/19/10 //	Maure.	DATE:			NAM	E:			_							DATE:	<u> </u>							
OF:	inl l	11/631	a dotoile OC	TIME:	ļ <u>.</u>		OF:	_	ALS I	Enviro	nment	al						TIME:	<u>L</u> _							
Spec		ructions / Comments (billing			-				00									h								
	FOR	LAB USE ONLY	Cooler Seal Intact?	? Yes No_ <i></i>	N/A Sa	mple Temper	ature:	1	_^C	Fro:	zen?	res_	N	<u>۷</u>	C	poling	Met	nod?	сера	acks <u>y</u>	10	е	None_			

Environmental Division

Certificate of Analysis

AZIMUTH CONSULTING GROUP INC.

ATTN: RANDY BAKER

218 - 2902 WEST BROADWAY Reported On: 28-OCT-08 11:50 AM

VANCOUVER BC V6K 2G8

Lab Work Order #: L688731 Date Received: 29-SEP-08

Project P.O. #:

Job Reference: AEMP

Legal Site Desc: CofC Numbers:

Other Information:

Comments: The detection limits for some metals have been increased due to high levels of metals in the samples or interferences encountered

during analysis.

Please note: the analysis for sample "Travel Blank" was confirmed by re-analysis. Our corresponding backup blank (kept in house) was analyzed and results were below calcium detection limit.

Bryan Mark

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

	Sample ID Description	L688731-1	L688731-2	L688731-3	L688731-4	L688731-5
	Sampled Date Sampled Time Client ID	21-SEP-08	21-SEP-08	21-SEP-08	21-SEP-08	21-SEP-08
Grouping	Analyte	BBD	BPJ	BAP	DUP	BBD
WATER						
Physical Tests	Conductivity (uS/cm)	660	624	581	586	
i ilysicai resis	Hardness (as CaCO3) (mg/L)	67.7	64.5	60.6	59.1	
	pH (pH)	7.09	7.13	7.11	7.13	
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	
	Total Dissolved Solids (mg/L)	345	329	302	303	
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	5.8	9.3	9.2	8.8	
Nutrients	All all my, Bloar Borlato (do Gaeco) (mg/L)	3.0	3.3	3.2	0.0	
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Alkalinity, Total (as CaCO3) (mg/L)	5.8	9.3	9.2	8.8	
	Ammonia as N (mg/L)	<0.020	<0.020	<0.020	<0.020	
	Chloride (CI) (mg/L)	173	163	151	150	
	Nitrate (as N) (mg/L)	0.0356	0.0328	0.0286	0.0286	
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	0.0010	<0.0010	
	Total Kjeldahl Nitrogen (mg/L)	0.138	0.142	0.135	0.156	
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Total Phosphate as P (mg/L)	0.0072	0.0075	0.0075	0.0070	
	Sulfate (SO4) (mg/L)	25.2	23.8	21.9	21.9	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	3.48	3.29	3.44	3.40	
	Total Organic Carbon (mg/L)	3.11	3.13	3.18	3.18	
Total Metals	Aluminum (Al)-Total (mg/L)	0.0053	<0.0050	0.0074	0.0055	
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Arsenic (As)-Total (mg/L)	<0.00070	<0.00060	<0.00070	<0.00060	
	Barium (Ba)-Total (mg/L)	<0.020	<0.020	<0.020	<0.020	
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	
	Cadmium (Cd)-Total (mg/L)	<0.000017	<0.000017	<0.000017	<0.000017	
	Calcium (Ca)-Total (mg/L)	6.13	5.89	6.15	5.52	
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Cobalt (Co)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	
	Copper (Cu)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Iron (Fe)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	
	Lead (Pb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	Magnesium (Mg)-Total (mg/L)	12.7	12.1	11.0	11.0	
	Manganese (Mn)-Total (mg/L)	0.00266	0.00209	0.00241	0.00182	
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	
ı	Molybdenum (Mo)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
ı	Nickel (Ni)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	

	Sample ID Description	L688731-6	L688731-7	L688731-8	L688731-9	
	Sampled Date Sampled Time	21-SEP-08	21-SEP-08	21-SEP-08	02-SEP-08	
	Client ID	BPJ	BAP	DUP	TRAVEL BLANK (AZIMUTH)	
Grouping	Analyte				(=,	
WATER						
Physical Tests	Conductivity (uS/cm)				<2.0	
	Hardness (as CaCO3) (mg/L)				1.24	
	pH (pH)				5.54	
	Total Suspended Solids (mg/L)				<3.0	
	Total Dissolved Solids (mg/L)				<10	
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)				<2.0	
	Alkalinity, Carbonate (as CaCO3) (mg/L)				<2.0	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)				<2.0	
	Alkalinity, Total (as CaCO3) (mg/L)				<2.0	
	Ammonia as N (mg/L)				<0.020	
	Chloride (CI) (mg/L)				<0.50	
	Nitrate (as N) (mg/L)				<0.0050	
	Nitrite (as N) (mg/L)				<0.0010	
	Total Kjeldahl Nitrogen (mg/L)				<0.050	
	Ortho Phosphate as P (mg/L)				<0.0010	
	Total Phosphate as P (mg/L)				<0.0020	
	Sulfate (SO4) (mg/L)				<0.50	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)					
	Total Organic Carbon (mg/L)				<0.50	
Total Metals	Aluminum (AI)-Total (mg/L)				<0.0050	
	Antimony (Sb)-Total (mg/L)				<0.00050	
	Arsenic (As)-Total (mg/L)				<0.00050	
	Barium (Ba)-Total (mg/L)				<0.020	
	Beryllium (Be)-Total (mg/L)				<0.0010	
	Boron (B)-Total (mg/L)				<0.10	
	Cadmium (Cd)-Total (mg/L)				<0.000017	
	Calcium (Ca)-Total (mg/L)				0.50	
	Chromium (Cr)-Total (mg/L)				<0.0010	
	Cobalt (Co)-Total (mg/L)				<0.00030	
	Copper (Cu)-Total (mg/L)				<0.0010	
	Iron (Fe)-Total (mg/L)				<0.030	
	Lead (Pb)-Total (mg/L)				<0.00050	
	Lithium (Li)-Total (mg/L)				<0.0050	
	Magnesium (Mg)-Total (mg/L)				<0.10	
	Manganese (Mn)-Total (mg/L)				<0.00030	
	Mercury (Hg)-Total (mg/L)				<0.000020	
	Molybdenum (Mo)-Total (mg/L)				<0.0010	
	Nickel (Ni)-Total (mg/L)				<0.0010	

	Sample ID Description		L688731-2	L688731-3	L688731-4	L688731-5
	Sampled Date Sampled Time		21-SEP-08	21-SEP-08	21-SEP-08	21-SEP-08
	Client ID		BPJ	BAP	DUP	BBD
Frouping	Analyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)	4.1	3.9	3.6	3.6	
	Selenium (Se)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	
	Sodium (Na)-Total (mg/L)	98.5	94.4	83.8	85.5	
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Uranium (U)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Zinc (Zn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
Aggregate Organics	Oil and Grease (mg/L)	<5.0	<5.0	<5.0	<5.0	
Plant Pigments	Chlorophyll a (ug)					0.938

		Sample ID Description Sampled Date	L688731-6 21-SEP-08	L688731-7 21-SEP-08	L688731-8 21-SEP-08	L688731-9 02-SEP-08
		Sampled Time Client ID	ВРЈ	BAP	DUP	TRAVEL BLANK
Brouping	Analyte					(AZIMUTH)
WATER						
Total Metals	Potassium (K)-Total (mg/L)					<2.0
	Selenium (Se)-Total (mg/L)					<0.0010
	Silver (Ag)-Total (mg/L)					<0.000020
	Sodium (Na)-Total (mg/L)					<2.0
	Thallium (TI)-Total (mg/L)					<0.00020
	Tin (Sn)-Total (mg/L)					<0.00050
	Titanium (Ti)-Total (mg/L)					<0.010
	Uranium (U)-Total (mg/L)					<0.00020
	Vanadium (V)-Total (mg/L)					<0.0010
	Zinc (Zn)-Total (mg/L)					<0.0050
Aggregate Organics	Oil and Grease (mg/L)					
Plant Pigments	Chlorophyll a (ug)		0.847	0.965	0.938	

Additional Comments for Sample Listed: Samplenum Matrix Report Remarks Sample Comments Methods Listed (if applicable): **ALS Test Code** Matrix **Test Description** Analytical Method Reference(Based On) ALK-SCR-VA Water Alkalinity by colour or titration EPA 310.2 OR APHA 2320 This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method. OR This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values. ANIONS-CL-IC-VA Water Chloride by Ion Chromatography APHA 4110 "Determination of Anions by IC This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. ANIONS-NO2-IC-VA Water APHA 4110 "Determination of Anions by IC Nitrite by Ion Chromatography This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. ANIONS-NO3-IC-VA Water Nitrate by Ion Chromatography APHA 4110 "Determination of Anions by IC This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. ANIONS-SO4-IC-VA Water Sulfate by Ion Chromatography APHA 4110 "Determination of Anions by IC This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. **CARBONS-DOC-VA** Water Dissolved organic carbon by combustion APHA 5310 "TOTAL ORGANIC CARBON (TOC)" This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis. **CARBONS-TOC-VA** Water Total organic carbon by combustion APHA 5310 "TOTAL ORGANIC CARBON (TOC)" This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". CHLOROA-VA Water Chlorophyll a by Fluorometer APHA 10200 H. "Chlorophyll" and EPA 445 Chlorophyll and Pheopigments by Fluorometry analysis is carried out using procedures adapted from APHA Method 10200 H. "Chlorophyll" and USEPA Method 445. The sample is filtered using either a glass fiber filter or a 0.45 micron Membrane filter. The pigments are extracted from the filter with 90% aqueuos acetone. For chlorophyll a analysis the extract is read using a fluorometer. For pheopigments the extract is first acidified then read. This method is not subject to interferences from chlorophyll b. **EC-PCT-VA** Water Conductivity (Automated) APHA 2510 Auto. Conduc. This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode. Water HARDNESS-CALC-VA Hardness **APHA 2340B** Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-TOT-CCME-ICP-VA Water

Total Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-SIE-VA

Water

Ammonia by SIE

APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

OGG-SF-VA

Water

Oil & Grease by Gravimetric

BCMOE GRAVIMETRIC

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3510 & 9071, published by the United States Environmental Protection Agency (EPA), "Standard Methods for the Examination of Water and Wastewater", 20th ed., Method 5520, published by the American Public Health Association, and "BC Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials," 5th ed., published by the B.C. Ministry of Environment, Lands & Parks, 1994. The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to determine Oil and Grease.

PH-MAN-VA

Water

pH by Manual Meter

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA

Water

Dissolved ortho Phosphate by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Water

Total Phosphate P by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

TDS-VA

Water

Total Dissolved Solids by Gravimetric

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
TKN-SIE-VA	Water	Total Kjeldahl Nitrogen by SIE	APHA 4500-Norg (TKN)
		cedures adapted from APHA Method 4500-Norg "Nitroç analysis using an ammonia selective electrode.	gen (Organic)". Total kjeldahl nitrogen is determined by
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
This analysis is carrie	d out using prod	cedures adapted from APHA Method 2540 "Solids". So	lids are determined gravimetrically. Total Suspended

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location	
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA			

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS ALS Environmental

ALS ALS Environmental

According to a problem t

#2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6
Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430

		1						IF			etc.):	Comments (billing details, QC reporting, etc.):	-	Special Instructions	Special	
	TIME:			ental	vironme	ALS Environmental	_	유			TIME:	,	111	111	OF:	
	DATE:						ļ'!!'	NAME			DATE:	"Jonnell	10 100 11/1	M	NAME:	
1.80	TIME:							유 : :			TIME	to Inc.	Azimuta Consulting Graup Inc	Azim	OF:	
18/109/29	DATE:						'''	NAME:	22/08	Supt	DATE:		Maggie McConnell	Magg	NAME:	
	RECEIVED BY:	R									BY:	RELINQUISHED BY:				
		540	П		H	Н	Ц							Н		
														+	Т	
					+	4								+	_	
			996		8	100									1	
				X		4									1	
					8										FOF	
4 containers					×	×	×	×	water		08-09-02	ıth)	Travel Blank (Azimuth)	Trav	LAB	
1 container (1L)			×		-	-			filter		١			DUP	USE	
1 container (/ L)			×						filter		"		0	BAP	ON	
1 container () (×		-		L		filter		11			BPJ	LY	
1 container (14)			×						filter		75		0	880		- 13
7 containers				×	×	×	×	×	water		١		0	DUP		8:
7 containers		8		×	×	×	×	×	water		B		0	BAP		1311
7 containers		-10		×	×	×	×	×	water		н	Section 1		BPJ		
7 containers				×	×	×	×	×	water		08-09-21			BBD		
NOTES (sample specific comments, due dates, etc.)		Cilio	Chlo	D. C.		all in	TKN,	Conv	MATRIX	Time	DATE / TIME COLLECTED YY-MM-DD Time	TIFICATION	SAMPLE IDENTIFICATION			
carbonate, hydroxide)		орпун	ophyll-	(pres. (filtere	Grease	Metals	Ammo	ention		Time:		Specify Due Date:	Rush (Surcharges May Apply)	Routine Turn AroundRush (Surcharges Ma	Rust	
alkalinity(bicarbonate		a (p	a Ir	F. (1)	_		nia	als *			E-mail Address:			E-mail Address:	E-mail	_
sulphate, chloride,		nes.)ree		_		(pre	**		nat)	○ E-mail (pdf format)	Excel & pdf (E-mail Specify file type:	ail Specify	OE-m	_
orthophosphate).		. W/	\A//				es. v	-110		○ Fax #:	Hardcopy	(○ Fax #:	сору	Hardcopy	_
total phosphate		ivig	Mai	/ H	₂ SC		v/ H			INVOICE FORMAT:	INV	Τ:	REPORT FORMAT		50	
pH, IOS, IOS,		CO	co	CI))4)		1 ₂ SC		ic-Mirovic	Natasha Marcovic-Mirovic	ALSE CONTACT:	A	ALSEQ-07-622	JOTE #:	ALSE QUOTE #:	
conductivity, hardness		3)	1)4)			MM, WS	SAMPLER: MM, WS		# AEMP	PROJECT NAME/#:	PROJEC	
**Conventionals:				D	REQUESTE	REQL	ANALYSIS	ANAL	-1220	64-730			R. Baker, M. McConnell		CONTACT:	_
TEL:	POSTAL CODE:		PROV:					CITY:		V6K 2G8	POSTAL CODE:	PROV: BC	ouver		CITY:	
P.O. #:							ESS	ADDRESS				y	218-2902 West Broadway		ADDRESS:	
	Z						ANY	COMPANY					Azimuth Consulting Group Inc		COMPANY	
Require copy of Report? Yes No	SEND INVOICE TO: (complete if different from Report To at left) Req	rent from R	te if diffe	comple	: OT :	VOICE	ND IN	SE			70:	SEND REPORT TO:				
PAGE 1 OF 1		3	FORM	ST	JUE	REQUE	2	IIC/	NALY-	CUSTODY / ANALYTICAL		CHAIN OF				
WWW.discitano.com	1 1 0 1 0 0	1 dX. 100 2	2-122-050	9	01 110	2	7.7	i di.	-	1	VIICAI TESIIIIY	excellence in analytical testing				