Appendix A4-1

Aquatic Effects Monitoring Program – Targeted Study: Second Portage Lake TSS Effects Assessment Study, Meadowbank Gold Project, June 2009

Aquatic Effects Monitoring Program – Targeted Study: Second Portage Lake TSS Effects Assessment Study Meadowbank Gold Project

Prepared for:

Agnico-Eagle Mines Ltd.

Meadowbank Division 375 - 555 Burrard Street Two Bentall Centre Vancouver, BC V7X 1M8

June 2009

Azimuth Consulting Group Inc.

218-2902 West Broadway Vancouver, BC V6K 2G8

Project No. AEM-08-01.2

TABLE OF CONTENTS

TΑ	BLE OF (CONTENTS	i
LIS	T OF TA	BLES	ii
		GURES	
		PENDICES	
AC	KNOWLE	EDGEMENTS	vi
PR	OFESSIO	DNAL LIABILITY STATEMENT	vii
		3	
EX	ECUTIVE	SUMMARY	ES-1
1.	INTR	ODUCTION	1
 2.		OY STRATEGY	
	2.1.	Review of TSS Effects to Aquatic Life	
	2.2.	Assessment Strategy	
3.		HODS	
•	3.1.	EAS Program Overview and Study Design	
	3.2.	Limnology and Water Quality	
	3.3.	Field Effects Measurements	
		Sediment Traps	
		Primary Production	
		Secondary Production – Pelagic	
		Secondary Production - Benthic	
		Food web characterization	
	3.4.	Laboratory Effects Measurements	
	3.5.	Statistical Analyses	
4.	RESU	JLTS	20
	4.1.	Limnology and Water Quality	20
	4.2.	Field Effects Measurements	22
	4.2.1.	Sediment Traps	22
	4.2.2.	Primary Production	24
	4.2.3.	Secondary Production – Pelagic	24
	4.2.4.	Secondary Production – Benthic	25
	4.2.5.	Food Web Characterization	26
	4.3.	Laboratory Effects Measurements	28
5.	SUMI	MARY AND CONCLUSIONS	62
6	RFFF	RENCES	67

LIST OF TABLES

Table 2-1. Effects of chronic exposure to less-sensitive life history stages from chronic exposure to low TSS concentrations4
Table 2-2. Potential effects to sensitive life stages during chronic exposure to low TSS concentrations5
Table 2-3. Second Portage Lake TSS Effects Assessment Study - Program Overview8
Table 3-1. EAS station locations and sampling summary18
Table 4-1. QA/QC data for EAS water parameters, Second & Third Portage Lakes, September 200829
Table 4-2. Conventional water chemistry and total & dissolved metals (mg/L) for EAS, Second & Third Portage Lakes, September 200832
Table 4-3. Sediment deposition rates and estimated accumulation for EAS sediment traps, Second Portage Lake, 200835
Table 4-4. Sediment chemistry results for EAS sediment traps in Second Portage Lake, 200836
Table 4-5. EAS statistical analyses results for primary productivity and zooplankton biomass, 200837
Table 4-6. QA/QC data for phytoplankton at EAS stations, Second & Third Portage Lakes, September 200838
Table 4-7. Biomass (mg/m³) and diversity of major phytoplankton groups at EAS stations, Second & Third Portage Lakes, September 200840
Table 4-8. Density (cells/L) of major phytoplankton groups at EAS stations, Second & Third Portage Lakes, September 200842
Table 4-9. Relative abundance of zooplankton taxa at EAS stations in Second and Third Portage Lakes, 200844
Table 4-10. Statistical analyses results for the AEMP benthic invertebrate data set45

LIST OF FIGURES

Figure 1-1. General site map highlighting 2008 dike construction areas and adjacent receiving environments2
Figure 2-1. Fish Concentration-Response Data for Long-Term (> 24hr) Exposure to TSS, Excluding Data Points for Eggs/Larvae9
Figure 2-2. Fish Concentration-Response Data for Long-Term (> 24hr) Exposure to TSS10
Figure 3-1. Water quality/limnology stations and field effects areas19
Figure 4-1. Temperature (°C) and dissolved oxygen (mg/L) profiles, Second and Third Portage Lakes, September 13-14, 200846
Figure 4-2. Temperature (°C) and dissolved oxygen (mg/L) profiles, Second and Third Portage Lakes, September 24-25, 200847
Figure 4-3. EAS sediment trap chemistry results for key metals compared to AEMP surface sediment (top 1 cm) chemistry and CCME guidelines.
Figure 4-4. Mean total chlorophyll-a concentration (ug/L) in EAS study, Second and Third Portage Lakes, 200849
Figure 4-5. Seasonal chlorophyll-a concentrations (mg/m³) in AEMP monitoring, Second Portage, Tehek and Third Portage Lakes (east and south basins), 2006-200850
Figure 4-6. Phytoplankton mean total biomass (mg/m³) in EAS study, Second and Third Portage Lakes, 200851
Figure 4-7. Phytoplankton biomass (mg/m³) by major taxa group in EAS study, Second and Third Portage Lakes, 200852
Figure 4-8. Seasonal phytoplankton biomass (mg/m3) by major taxa group in AEMP monitoring, Second Portage, Tehek and Third Portage Lakes (east and south basins), 2006 – 200853
Figure 4-9. Zooplankton mean total biomass (mg/m³ ww) in EAS study, Second and Third Portage Lakes, 200854
Figure 4-10. Benthic invertebrate mean abundance (# / m²) by major taxa groups for AEMP monitoring, Second Portage, Tehek and Third
Portage Lakes 55

group for A	enthic invertebrate mean richness (# taxa) by major taxa AEMP monitoring, Second Portage, Tehek and Third Portage56
Figure 4-12. To plot. 57	otal benthos abundance (In; Var1): Station – Year interaction
Figure 4-13. To 58	otal benthos richness (Var1): Station – Year interaction plot.
invertebra	ffect size and estimated 95% confidence intervals for benthic te total abundance BACI effect (i.e., Stationtype*Yeartype) at ortage Lake station from AEMP (2006-2008) data59
invertebra	ffect size and estimated 80% confidence intervals for benthic te total abundance BACI effect (i.e., Stationtype*Yeartype) at ortage Lake station from AEMP (2006-2008) data60
•	lean (±SD) benthos, zooplankton and fish δ15N (‰) and δ13C plots for Second and Third Portage Lakes, 200861

LIST OF APPENDICES

Appendix A: Chemistry Analyses Reports

Appendix B: Toxicity Testing Report

Appendix C: Phytoplankton Taxa List

Appendix D: Zooplankton Biomass Data

Appendix E: Stable Isotopes Analysis Data.

ACKNOWLEDGEMENTS

Azimuth would like to thank AEM for their continued support of this program and for facilitating our work by providing logistical assistance and help whenever needed. Key personnel conducting this project were as follows:

- Gary Mann, Randy Baker and Ryan Hill (Azimuth) Gary, Randy and Ryan provided overall management of EAS monitoring at Meadowbank in 2008. Gary was primary author of this report, with review by Randy Baker.
- Maggie McConnell (Azimuth) Maggie assisted with data compilation, analysis, interpretation, and report writing.
- James Aiken, Alix Cameron, Katarzyna Dyszy, Sue Hertam, Duane Hudd, Joel Lawrence, Kim Mandzy, Yhana Michaluk, Joe Mota, and Natalia Waldner (North/South) – The North/South team provided invaluable support in the field as monitoring crew leaders.
- Joe Arnasungaaq, Norman Arnasungaaq, Gabriel Joedee, Anthyme Kakjuk, Terrance Niego, Joshua Nukik Robert Oolamik, William Scottie, Justin Toolooktuk, Paul Tuluqtuq, Lynn Ookowt., and Clarence Tiktalaaq (Azimuth, Baker Lake) – The Baker Lake team participated as monitoring technicians; their dedication and hard work was appreciated.
- Molly Brewis and Jaz Pannu (Azimuth) provided data compilation and entry support on site and participated in several field surveys.

PROFESSIONAL LIABILITY STATEMENT

This report has been prepared by Azimuth Consulting Group Inc. (Azimuth), for the use of Agnico-Eagle Mines Ltd. (AEM), who has been party to the development of the scope of work for this project and understands its limitations. The extent to which previous investigations were relied on is detailed in the report.

In providing this report and performing the services in preparation of this report Azimuth accepts no responsibility in respect of the site described in this report or for any business decisions relating to the site, including decisions in respect of the management, purchase, sale or investment in the site.

This report and the assessments and recommendations contained in it are intended for the sole and exclusive use of AEM.

Any use of, reliance on, or decision made by a third party based on this report, or the services performed by Azimuth in preparation of this report is expressly prohibited, without prior written authorization from Azimuth. Without such prior written authorization, Azimuth accepts no liability or responsibility for any loss, damage, or liability of any kind that may be suffered or incurred by any third party as a result of that third party's use of, reliance on, or any decision made based on this report or the services performed by Azimuth in preparation of this report.

This report is intended to provide environmental information to support the Aquatic Effects Management Program (AEMP) for AEM's Meadowbank Project. The AEMP monitoring scope and design was developed in consideration of a specific project development plan. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the proposed development may necessitate modification of the AEMP and may potentially reduce the utility of this baseline data.

The findings contained in this report are based, in part, upon information provided by others. In preparing this report, Azimuth has assumed that the data or other information provided by others is factual and accurate. If any of the information is inaccurate, site conditions change, new information is discovered, and/or unexpected conditions are encountered in future work, then modifications by Azimuth to the findings, conclusions and recommendations of this report may be necessary.

In addition, the conclusions and recommendations of this report are based upon applicable legislation existing at the time the report was drafted. Changes to legislation, such as an alteration in acceptable limits of contamination, may alter conclusions and recommendations.

ACRONYMS

2PL-EAS-1 – EAS station (exposure)

2PL-EAS-2 – EAS station (exposure)

2PL-EAS-3 – EAS station (exposure)

2PL-EAS-DT – EAS station (reference)

3PL-EAS – EAS station (reference)

AEM – Agnico-Eagle Mines Ltd.

AEMP – Aquatic Effects Management Program

ANOVA – Analysis of Variance

ANOVA – Analysis of variance

AWPAR - All Weather Private Access Road

BACI – Before-after-control-impact

CCME – Canadian Council of Ministers of the Environment

CPUE – catch per unit effort

DQO – Data Quality Objective

EAS – Effects Assessment Study

ED – East Dike

EEM – Environmental Effects Monitoring

GPS – Global Positioning System

HVH – High value habitat

INUG – Inuggugayualik Lake

ISQG – Interim Sediment Quality Guidelines

KW – Kruskal Wallis

MDL - Method Detection Limit

MMER – Metal Mining Effluent Regulations

PEL – Probable Effect Level

QA/QC – Quality Assurance / Quality Control

QA/QC – Quality assurance/quality control

RPD – Relative Percent Difference

SIA – Stable isotopes analysis

SIE – severity of ill effects

SOP – Standard Operating Procedure

SP – Second Portage Lake

SQG – Sediment Quality Guidelines

TE – Tehek Lake

TKN - Total Kjeldahl Nitrogen

TPE – Third Portage Lake – East Basin

TPN – Third Portage Lake – North Basin

TPS – Third Portage Lake – South Basin

TSS – Total suspended solids

UTM – Universal Transverse Mercator

WAL – Wally Lake

WCD – Western Channel Dike

EXECUTIVE SUMMARY

Azimuth Consulting Group Inc. (Azimuth) conducted water quality monitoring during dike construction activities at the Meadowbank Gold Project on behalf of Agnico-Eagle Mines Ltd. (AEM) in 2008. As per requirements of the Nunavut Water Board A Licence (2AM-MEA081) for the project, monitoring followed the framework presented in the *Water Quality Monitoring and Management Plan for Dike Construction and Dewatering at the Meadowbank Mine* (AEM, 2008a). AEM constructed two dikes in 2008, the East Dike and the Western Channel Dike; this report documents receiving environment water quality monitoring results for both. Due to the elevated total suspended solids (TSS) in Second Portage Lake related to East Dike construction (see below), a study (Second Portage Lake – TSS Effects Assessment Study) was conducted to determine the ecological significance of the situation.

Second Portage Lake – TSS Effects Assessment Study (EAS)

As discussed above, East Dike construction activities resulted in widespread increases in TSS in Second Portage Lake, which also extended, but to a much lesser degree, into Tehek Lake. On behalf of AEM, Azimuth developed a study to assess the ecological significance of the situation.

TSS can directly or indirectly affect the entire range of organisms in the aquatic environment, so the study addressed a broad array of ecosystem elements. The design premise was based on comparisons between two reference areas (Drilltrail Arm in Second Portage Lake and the East Basin of Third Portage Lake; TSS concentrations were typical of background conditions at both areas) and three exposure areas (three areas within Second Portage Lake exposed to elevated TSS concentrations). The laboratory toxicity testing was conducted using water from Second Portage Lake collected from near the East Dike (i.e., in the exposure area); exposure water treatments were compared to experimental controls to determine potential effects. Sampling was conducted in two events: September 13/14 and 24/25. Key results were as follows:

- Water Quality and Limnology While water quality generally improved between late
 August peaks in TSS and September monitoring, there was still a substantial gradient in
 exposure between the three exposure areas and the two reference areas. It is also
 important to note that effects of TSS are not likely to be instantaneous and that the study
 was designed to assess chronic exposure. Consequently, despite the lower TSS
 concentrations, it is unlikely that the study would have missed any important chronic
 TSS-related effects.
 - Construction monitoring characterized a strong gradient in estimated TSS concentrations between the exposure (~10 mg/L for the first event and ~6 mg/L for the second event) and reference (~0.2 to 0.6 mg/L) areas during both monitoring periods. This was confirmed during EAS sampling by much lower Secchi depth readings at exposure areas, indicating reduced water clarity relative to the reference areas. This gradient was less pronounced, but still present, during the September 24/25 sampling event.

- Nutrient concentrations were generally higher at the exposure stations, but ammonia, nitrite, and nitrate were still well below CCME water quality guidelines.
- Vertical temperature and oxygen profile results showed no significant differences between areas.
- Metals were primarily bound to particulates; dissolved metals were very low and typically below detection limits.
- Primary Productivity Reduced water clarity limits light penetration, which can lower primary productivity. Two measures of primary productivity were assessed: chlorophyll-α and phytoplankton biomass. While there were no differences between areas for chlorophyll-α during either sampling event, phytoplankton biomass was significantly depressed in the exposure area relative to the reference area during both events. The difference between areas during the second event was much less pronounced, which is consistent with the weaker exposure gradient at that time (i.e., due to the overall improvement in water quality in Second Portage Lake). This recovery would be expected to continue to track water clarity improvements and not be of long-term significance.
- Zooplankton –Herbivorous zooplankton rely on phytoplankton as their primary food resource. Elevated TSS can affect zooplankton directly, by reducing feeding efficiency, or indirectly by reducing food supply (e.g., the reduced phytoplankton biomass that was observed at the exposure stations). Elevated TSS could also indirectly benefit zooplankton by making it harder for their predators to see them. Potential effects of TSS on zooplankton were assessed using both field (direct measurements of zooplankton biomass to integrate both direct and indirect effects) and laboratory (acute and chronic toxicity testing to assess direct effects) measures. Although phytoplankton biomass was lower in the exposure area, we could not detect significant differences in zooplankton biomass between the exposure and reference areas. No adverse effects were observed in either toxicity test.
- Benthic Invertebrates –Sediment inputs and depositional rates in the Meadowbank study lakes are typically extremely low. Accelerated inputs associated with construction activity may affect benthic invertebrates through smothering. This was identified in the monitoring plan for the East Dike (AEM, 2008a), which committed to assessing potential effects of increased sedimentation on the benthic community in 2009 and 2010. In the interim, however, there are two lines of evidence that are available: (1) benthic community data collected in Second Portage, Tehek and Third Portage lakes in late August as part of routine AEMP monitoring, and (2) sediment trap data for Second Portage Lake (see Fish for more details).
 - There were no statistically significant adverse effects to benthic community total abundance (density) or total richness identified at Second Portage or Tehek stations in 2008 relative to other stations and years. Notwithstanding, Second Portage Lake did show a marginal trend of reduced benthos abundance, but the

- result was inconclusive, likely due to naturally variable temporal and spatial patterns among stations and years.
- Sediment trap results indicate a deposition thickness of between approximately 1 and 2 mm for much of Second Portage Lake, which could have been responsible for the observed marginal trend in benthos abundance (i.e., through physical smothering).
- Chromium and zinc were significantly elevated in the sediment trap samples, which may have also contributed to the benthos abundance results. The response pattern (i.e., possible reduction in abundance, but not to diversity), however, is more consistent with physical effects.
- TSS concentrations in both Second Portage and Tehek lakes decreased substantially in the month following the AEMP sampling event. In the absence of further disturbance, the expectation would be that the noted effects would be short term in nature and the community should recover completely. The EAS and AEMP benthic community sampling in 2009 will help determine whether the community is recovering and, if so, at what rate.
- The planned 2009 and 2010 benthic community studies will provide some insight into the long-term significance of the deposition of construction-related sediments.
- Fish Prolonged increases in TSS concentrations can affect fish directly (e.g., by clogging gills or by smothering eggs) or indirectly (e.g., by reducing prey abundance or by making prey harder to see). A combination of laboratory (toxicity tests using a range of life stages) and field (sediment traps and stable isotopes [to map the food web]) measures were used to help determine potential impacts to fish.
 - No adverse effects were observed for larval and juvenile trout. The larval test was conducted using live zooplankton as a food resource. The lack of growth or survival effects suggests that active feeding was not impaired by the reduced water clarity. Test results for larval and juvenile trout suggest that direct effects to these life stages are unlikely; this would also apply to adults. Two tests were conducted using trout embryos: one where test water was renewed each day (renewal) and the other where it was not (static). This renewal/static combination was used to provide insights into whether any observed effects were due to chemical or physical effects. No effects were observed in the renewal test. However, impaired development was observed in the static test, suggesting that physical settling of sediments could affect developing embryos.
 - Sediment traps were deployed prior to East Dike construction at a number of high-value habitats in Second Portage Lake and retrieved in late September. Results indicate that between 1 and 2 mm of sediment settled during that time. Video surveys will be conducted on these areas (and similar areas outside the influence of elevated TSS) in 2009.

Stable isotope analysis was used to assess the Second Portage Lake food web by measuring ratios of carbon and nitrogen isotopes in organisms (e.g., benthic invertebrates, zooplankton and fish) to discern "who is eating who" in the lake. For the EAS study, this information provides insights into the relative importance of the pelagic (phytoplankton to zooplankton to fish) and benthic (algae/detritus to invertebrates to fish) pathways in the food web. Stable isotope signatures in muscle tissue of fish indicate that both are actually important. Arctic char preferentially exploit pelagic food sources (i.e., zooplankton), while round whitefish target benthic food sources. Lake trout, the dominant species in the lake, feeds on both these fish species (in addition to other lake trout) in approximately equal proportions. This is understandable given the nutrient-driven productivity limitations characteristic of ultra-oligotrophic lakes.

From an ecological perspective, the EAS results point to settled sediment, rather than suspended sediment, as the primary outstanding concern. Apart from the depression of phytoplankton productivity, which showed substantial recovery between sampling events, there were no ecologically-significant effects observed related to TSS in the water column. Settled or settling sediment, however, was identified as a potential concern for benthic invertebrates (a possible, but inconclusive, reduction in abundance in SP; no effects to diversity in SP or to either abundance or diversity in TE) and fish (possible smothering of eggs in spawning areas based on toxicity test results). EAS work in 2009 (and 2010 for benthos) will target reducing uncertainty as to whether settled sediment remains an ecological concern in Second Portage Lake; key study components include (see Azimuth, 2008a for more details):

- Benthic community analysis the EAS study design will include more extensive sampling in Second Portage Lake and Tehek Lake. Similar to the field effects measurements taken for other endpoints in 2008, the 2009 benthos results will be used to determine whether there are any differences between exposure and reference areas. If there are effects, then the survey will be repeated in 2010 to determine whether the community is recovering and if so, at what rate (the AEMP data for 2009 and 2010 will also be used as needed to further our understanding of the situation).
- High-value habitat assessment an underwater video survey will be conducted to
 compare and contrast settled sediment patterns in high-value habitat areas exposed to
 elevated TSS concentrations to those beyond the zone of influence. While not specifically
 a component of the EAS for 2009, sediment traps will again be deployed in 2009 to
 support construction-related monitoring for the Bay-Goose dike; some of these traps will
 be deployed in Second Portage Lake at areas relevant to the EAS.
- Surface sediment coring the sediment coring program conducted in 2008 prior to dike construction will be repeated at four (TPL-E, SPL, TE and INUG) locations to verify the results of the sediment trap chemistry sampling conducted in 2008 (i.e., to determine whether sediment chemistry in the top 1 cm was changed by the high chromium and zinc measured in the sediment trap sediment).

1. INTRODUCTION

Azimuth Consulting Group Inc. (Azimuth) conducted environmental monitoring of inwater dike construction activities at the Meadowbank Gold Project on behalf of Agnico-Eagle Mines Ltd. (AEM) in 2008. As per the requirements of the Nunavut Water Board A Licence (2AM-MEA081) for the project, monitoring followed the framework presented in the *Water Quality Monitoring and Management Plan for Dike Construction and Dewatering at the Meadowbank Mine* (AEM, 2008a).

As described in detail elsewhere (Azimuth, 2009a), East Dike construction activities resulted in widespread increases in total suspended solids (TSS) in Second Portage Lake, which also extended, to a much lesser degree, to Tehek Lake. In response to this situation, Azimuth, on behalf of AEM, developed a strategy in early September (Azimuth, 2008a) to evaluate the potential for adverse ecological effects related to chronic exposure to elevated TSS concentrations (the TSS Effects Assessment Study, or TSS EAS). This report describes the results of study components conducted in 2008; additional components are to be conducted in 2009 and will be reported next year.

A general overview of the site related to dike construction in 2008 is presented in **Figure 1-1**. The figure includes some of the naming conventions used in this report and shows local hydrology among the lakes.

The remainder of this report is organized into the following sections:

- **Section 2 (Study Strategy)** summarizes the potential effects of TSS and presents an overview of the study strategy.
- Section 3 (Methods) describes the methods used to collect data.
- **Section 4 (Results)** presents and discusses the results for each study component.
- Section 5 (Summary and Conclusions) summarizes key aspects of the EAS, presents the main conclusions of the report, and discusses recommendations to address key outstanding uncertainties.
- Section 6 (References) lists the references cited in the report.

Lake Third Portage Lake North Basin East Basin Tehek Lake

Figure 1-1. General site map highlighting 2008 dike construction areas and adjacent receiving environments.

Notes: WCD = Western Channel Dike; ED = East Dike; blue arrows represent lake drainage directions.

2. STUDY STRATEGY

The following sections are taken from Azimuth (2008a) and present key information on potential adverse effects of TSS (Section 2.1) and an overview of the strategy adopted for the TSS EAS study (Section 2.2).

2.1. Review of TSS Effects to Aquatic Life

The Meadowbank Gold Project Water Quality Monitoring and Management Plan for Dike Construction and Dewatering (July 2008) contained a review of the potential effects of total suspended solids (TSS) and turbidity on fish and fish habitat. These include smothering (e.g., of fish eggs or benthic invertebrates), decreased productivity (i.e., due to reduced light), reduced feeding (i.e., due to limited visibility), and gill clogging/abrasion. Effects are influenced by exposure and duration, as well as the size and shape of suspended particles. Overall, the most sensitive group appears to be salmonids (e.g., lake trout, Arctic char and whitefish), with their early life stages the most at risk.

Given the duration of elevated TSS concentrations in Second Portage Lake (i.e., see **Section 2.3**), this discussion of potential effects focuses only on long-term exposures and includes both less-sensitive and sensitive salmonid life history stages. A detailed analysis of the data used to derive the Meadowbank TSS triggers was presented in AEM (2008). The underlying data set, comprised of more than 300 data sets, was compiled from Caux et al. (1997) and was the basis for deriving the CCME TSS guidelines. Relevant results for chronic (i.e., long-term) exposures are discussed below. Response is estimated using a scale of 0 to 14 to indicate the "severity of ill effects" (SIE). SIE scores of 1 to 3 are behavioural responses such as alarm reaction, abandonment of cover or avoidance response. SIE scores from 4 to 8/9 indicate increasingly severe sub-lethal effects. SIE scores of 10 to 14 indicate mortality, ranging from 0 to 20% (for SIE score =10) to >80% (SIE score = 14).

Less-sensitive Life History Stages (non-spawning habitat; spawning habitat prior to September)

After excluding data for short exposures, high TSS (>100 mg/L) and those specific to eggs or larvae, 28 data points remained (**Figure 2-1**). There are limited data at low TSS concentrations, with the first five shown in **Table 2-1**.

Table 2-1. Effects of chronic exposure to less-sensitive life history stages from chronic exposure to low TSS concentrations.

Species	Life Stage	TSS (mg/L)	Exposure Duration (days)	SIE Score	Response
Smelt	Adult	4	7	7	Increased vulnerability to predation
Lake Trout	Adult	4	7	3	Fish avoided turbid areas
Brook Trout	Adult	5	7	3	Fish more active and less dependent on cover
Chinook Salmon	Juv	6	60	9	Growth rate reduced
Brook Trout	Fry	12	245	9	Growth rates declined

None of the measured responses indicate mortality. At slightly higher TSS concentrations (18 mg/L) reduced abundance has been observed (SIE = 10, 30 day exposure for adult brown trout and rainbow trout). Mortality is first observed at 22 mg/L, but that data point involved a full year (365 days) of exposure and applies to a warmwater fish species. Beyond that, the next study showing mortality occurs at a TSS concentration of 90 mg/L (<20% mortality of rainbow trout under-yearlings exposed for 19 days). These data suggest that direct mortality may be quite unlikely at TSS concentrations < 20 mg/L. Nevertheless, reduced growth, which is observed at lower TSS concentrations, can be a significant sub-lethal effect.

A key consideration in the potential for adverse effects is whether juveniles and adults would be able to swim to avoid turbid waters. Given the 2008 situation, the only major refuge area left would be the arm that receives the outflow from Drilltrail Lake, where the constant inflow of clear water into a constricted arm is maintaining clear water. Apart from this area, fish would have experienced TSS concentrations in the range of 10 to 20 mg/L TSS concentrations for several weeks.

Sensitive Life History Stages (spawning habitat starting in September)

The data set from above was expanded to include those points associated with early life history stages, resulting in the 38 cases shown in **Figure 2-2**. It is important to note that the concentration-response curve in this case appears to be quite flat except at very low TSS concentrations – the mean SIE score for the data points shown in **Figure 2-2** is 9.4, while the mean SIE score for the remaining data points (>100 mg/L TSS) is only slightly higher at 10.1. However, the SIE scale is not really linear, because direct measures of mortality apply only to SIE scores of 10 to 14.

Clearly there are variable, sometimes significant effects (e.g., mortality, SIE = 10 or more) that result from long-term exposure to TSS concentrations above around 15 mg/L. However, effects at concentrations of 12 mg/L or lower warrant a more detailed analysis. There are six data points where TSS concentrations are equal to or less than 12 mg/L; five were reported in **Table 2-1**, and one case targeting egg mortality that is presented in **Table 2-2**.

Table 2-2. Potential effects to sensitive life stages during chronic exposure to low TSS concentrations.

Species	Life Stage		Exposure Duration (days)	SIE Score	Response
Rainbow Trout	Egg	7	48	11	Mortality rate 40%

Among the cases in **Tables 2-1 and 2-2**, the most significant study and one that drives existing federal guidance, is the study showing 40% mortality of rainbow trout eggs at a TSS concentration of 7 mg/L. We used this study to set the chronic (7-day) trigger for the management plan. While the lack of multiple studies corroborating this particular doseresponse point increases the uncertainty, the magnitude of response alone warrants taking it seriously.

2.2. Assessment Strategy

Given that suspended sediments can directly or indirectly affect the entire range of organisms in the aquatic environment, the strategy developed for this study addressed a broad array of concerns. Details of the strategy are presented in **Table 2-3**; study design and sampling locations are described in **Section 3.1**; the following is an overview:

- Water Quality and Limnology The most obvious effect of sediment inputs into clear lakes is a noticeable reduction in water clarity and reduced light penetration. There are other possible effects, however, which can be equally significant. These include introduction of metals and nutrients, or other changes to normal conditions (e.g., oxygen reductions or increased temperature). The program detailed in Table 2-3 includes a comprehensive list of components to quantify these issues.
- Field Effects Measurements Directly measuring key aspects of target aquatic receptors in the field is the best approach to determining the ecological significance of elevated TSS in Second Portage Lake. The components detailed in **Table 2-3** range from the base of the food chain to fish. Water-clarity related changes in productivity would be seen in the phytoplankton and likely zooplankton. Sediment deposition onto high-value habitat areas will be explored with sediment traps (placed in advance of dike construction) and follow-up video surveys in 2009. Direct assessment of fish populations (through CPUE comparisons between years) will not be conducted in 2009 unless the laboratory effects testing shows adverse results for fish. Stable isotope analysis (SIA) will be used to empirically document the predominant energy flow paths in Second Portage Lake. This technique works on the principle "you are what you eat", with isotopic ratios of carbon and nitrogen in fish reflective of their predominant diets. This information will be useful to determine the relative importance of any reduced productivity observed in the water column (pelagic) or bottom (benthic) food chains.
- Laboratory Effects Measurements Taking site water into the laboratory provides a unique opportunity to conduct a suite of tests on sensitive life history stages under controlled conditions. These tests will provide insights into how turbid water and/or settled sediment may affect zooplankton and fish survival, feeding and growth. The fish tests will target key developmental stages and will be modified from standard methods to increase realism. For example, the trout embryo test will be conducted two ways: with renewal of overlying water as per the protocol and with no renewal (to minimize disruption of particle settlement). The trout swim-up larvae test will be conducted using zooplankton for feeding,

rather than the standard "trout chow". As per their value to quantify the toxicity of contaminants, these tests will provide valuable information on the physical effects of suspended sediments. All the tests will be run across a series of dilutions (field sampling for water will target the highest areas of turbidity outside the turbidity barriers), allowing the results to be extrapolated to a range of TSS concentrations.

Together, these study components should provide a good weight-of-evidence regarding the potential for the elevated TSS concentrations to cause significant ecological effects in Second Portage Lake.

V	Vater Quality and Limnology			
Component	Rationale	Sampling Design		
TSS	Collect more data to ensure site-specific model with turbidity is representative.	Select stations to cover range of prevailing conditions (two events); Drilltrail Arm as reference area.		
Metals (total/dissolved)	Assess whether metals are elevated and in bioavailable form.	As for TSS.		
Nutrients and Conventionals	Assess whether nutrient levels are elevated from blasting residues and characterize basic water quality.	As for TSS.		
Secchi Depth	Common indicator of water clarity.	As for TSS.		
pH/Conductivity	Assess basic water quality.	As for TSS.		
Dissolved oxygen	Assess oxygen levels in lake.	Depth profiles at key stations for broad coverage (two events).		
Temperature	Assess mixing vs stratification.	As for dissolved oxygen.		
	Field Effects Measurements			
Component	Rationale	Sampling Design		
Primary Production Chlorophyll-a Phytoplankton biomass/taxonomy	Turbid water can affect primary productivity by reducing the quantity and quality of light penetrating into the lake.	Three "impact" areas and two reference (Drilltrail Arm and Third Portage Lake) areas (each with 5 reps).		
Secondary Production - Pelagic • Zooplankton biomass/taxonomy	Reductions in primary productivity may affect zooplankton, which rely on phytoplankton for food.	As above, but 1 rep for taxonomy.		
Secondary Production - Benthic • Benthic community	Eventual deposition of suspended sediments may result in effects to the benthic community.	Monitoring will occur in 2009/10 and target deep turbid basins and reference areas (5 reps/area); latter would include Drilltrail Arm and Third Portage Lake areas too. Final locations pending temporal analysis of monitoring data to ice out.		
Fish				
Fish population (CPUE) - compare 2009 data with past years (likely 2002, but possibly 2008 fishout data) to determine any population-scale impacts.	Prolonged exposure to turbid water may affect fish. These components will provide insight into the long-	Conducted only if laboratory studies show likely direct effects. Gillnetting in 2009 (short sets); compare to previous years.		
High value habitat (sedimentation) - sediment trap data (2008) and video habitat surveys (2009) surveys will be used to assess the status of key areas.	term consequences of the elevated TSS in Second Portage Lake. The food chain component will show the relative importance of pelagic-based and benthic-based energy flow paths to help interpret the significance for fish of any effects to zooplankton or	Analyze trap data in 2008; compare 2009 video survey results between areas with high and low TSS.		
Food chain (stable isotopes) - comparison of N and C isotopes in fish, zooplankton and benthic invertebrates provides insights into the relative importance of the pelagic and benthic food webs. This will help put any observed effects to zooplankton or the benthic community into perspective.		Characterize food webs by taking 30 fish/key species (use fishout fish), 10 each of zooplankton and benthos samples (5 in Second Portage and 5 in Third Portage).		
	oratory Effects Measurements			
Component	Rationale	Sampling Design		
Zooplankton • Lethal - Daphnia magna 48-hr LC50 • Sublethal - Ceriodaphnia dubia 7-day growth/survival/repro	While current conditions are unlikely to cause lethal responses in zooplankton, they might result in sublethal effects.	Samples will be collected targeting the highest TSS concentrations observed in the field; laboratory dilutions will be used to test a range		

Component	Rationale	Sampling Design
Zooplankton ■ Lethal - Daphnia magna 48-hr LC50 ■ Sublethal - Ceriodaphnia dubia 7-day growth/survival/repro	While current conditions are unlikely to cause lethal responses in zooplankton, they might result in sublethal effects.	Samples will be collected targeting the highest TSS concentrations observed in the field; laboratory dilutions will be used to test a range of concentrations in order to broadly extrapolate the results to the lake in general. Only one round of sampling will occur unless conditions worsen over the next several weeks.
Fish Lethal - Rainbow trout 96-hr LC50 Sublethal - Rainbow trout embryo 7-day (w/out renewal) Sublethal - Rainbow trout embryo 7-day (with renewal) Sublethal - Rainbow trout swim-up larvae 7-day surv/growth	While current conditions are unlikely to cause lethal responses in trout, they might result in sublethal effects to sensitive life history stages. The 7-day larval test will be conducted using live zooplankton as food to take reduced visibility into consideration. The embryo development test will be conducted with/without renewal of overlying water to allow settlement to occur in the non-renewal test.	As above.

Figure 2-1: Fish Concentration-Response Data for Long-Term (> 24hr) Exposure to TSS,
Excluding Data Points for Eggs/Larvae
(source: Caux et al. 1997; data for TSS concentrations > 100 mg/L not shown)

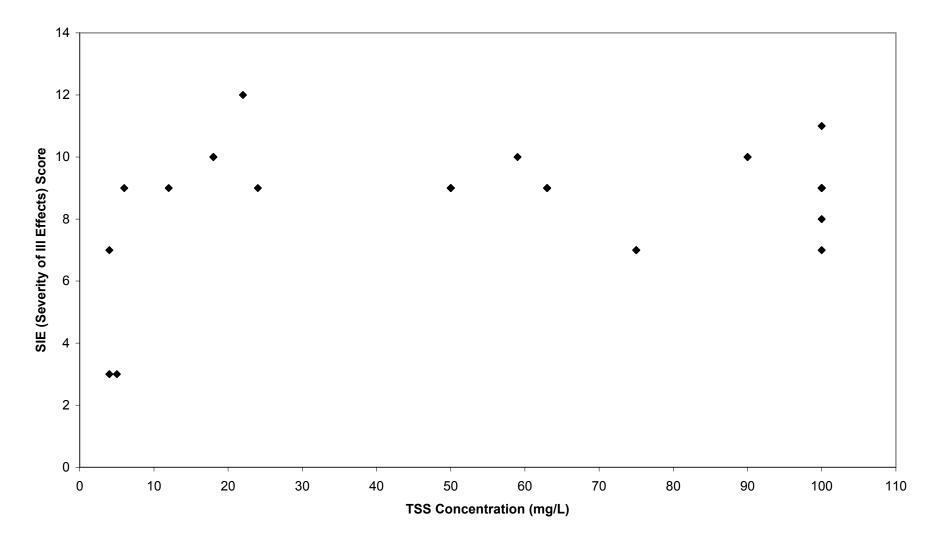
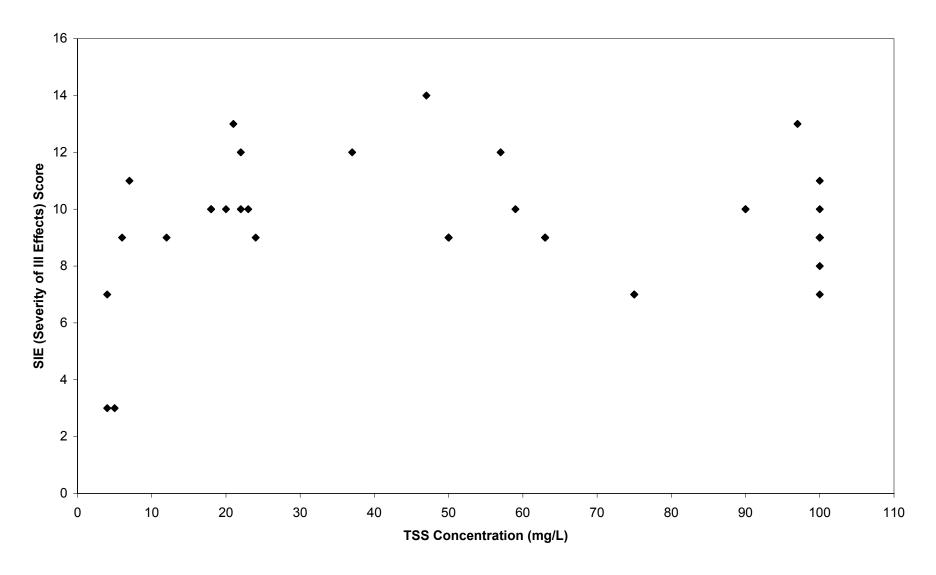



Figure 2-2: Fish Concentration-Response Data for Long-Term (> 24hr) Exposure to TSS (source: Caux et al. 1997; data for TSS concentrations > 100 mg/L not shown)

3. METHODS

3.1. EAS Program Overview and Study Design

Field sampling in 2008 can be categorized into 3 broad groups: (1) general limnology and water quality sampling, (2) biological sampling (primary & secondary production and fish) for field effects measurements, and (3) water sampling for laboratory effects measurements.

The study design used a multiple reference/multiple impact approach as follows (**Figure 3-1**):

- Reference Stations two stations were selected, 2PL-EAS-DT and 3PL-EAS. Station 2PL-EAS-DT is located in the "drilltrail arm" portion of southeast Second Portage Lake, which receives flows from the Wally Lake drainage; this arm had consistently low TSS (i.e., background concentrations) throughout 2008 (see Azimuth, 2009a for more details). Station 3PL-EAS was situated upstream of 2008 dike construction activities in the east basin of Third Portage Lake.
- Exposure Stations three stations were selected in southeast Second Portage Lake. Given the extensive mixing documented in the dike construction monitoring report (Azimuth, 2009a), exposure to elevated TSS concentrations would have been much higher at all exposure stations relative to the reference areas. In addition, there was a slight west-to-east gradient in TSS concentrations from the East Dike to the outlet to Tehek Lake. Consequently, stations 2PL-EAS-1 and 2PL-EAS-2 were considered near-field stations and 2PL-EAS-3 was a far-field station. This distinction was used to test whether there were differences in various parameters between exposure stations.

General limnology and water sampling, and chlorophyll-a and phytoplankton collections (primary production) were conducted during two time periods: September 13–14 and September 24–25. Sediment traps were set in late July to assess sedimentation rates as a result of East Dike construction; they were retrieved in September. Zooplankton (secondary production) was collected only during one sampling event (September 13–15). Benthos sampling (secondary production) was not planned 2008; however, follow-up monitoring of the benthic community will be conducted in 2009 (note that AEMP benthos sampling was conducted in late August and does provide some insights relative to the TSS situation. Zooplankton, benthos and fish tissues were collected for isotope analysis in order to characterize the food web. Water was also collected on September 10, 2008 for toxicity testing (using zooplankton and fish); the sample was collected from the location showing the highest TSS concentrations in Second Portage Lake.

A summary of samples collected for this study, including GPS locations, is provided in **Table 3-1**.

3.2. Limnology and Water Quality

Vertical temperature ($^{\circ}$ C), oxygen (mg/L) and conductivity (μ S/cm) depth profiles were acquired using the YSI Model 85 temperature – oxygen meter. Profiles were acquired from each station at both sampling events to track changes in oxygen and temperature profiles. Secchi depth (m) was measured prior to collection of water samples.

Water samples were collected from 1 m depth from all sampling stations at both sampling events. Sampling, handling and analysis and QA/QC procedures were the same as those outlined in the *Aquatic Effects Management Program – Receiving Environment Monitoring 2008* (Azimuth, 2009b).

Water chemistry parameters included conventional parameters (hardness, conductivity, pH and total dissolved and suspended solids), anions (alkalinity, chloride and sulfate), nutrients (ammonia, nitrate, nitrite, total Kjeldahl nitrogen, orthophosphate and total phosphate), organic parameters (chlorophyll-*a*, dissolved and total organic carbon) and total and dissolved metals. Details on analyses provided in **Appendix A**.

3.3. Field Effects Measurements

3.3.1. Sediment Traps

Six sediment traps were set in Second Portage Lake prior to starting construction of the East Dike. The trap locations were selected in areas of high value habitat to help provide insight into the long term consequences of elevated TSS to fish habitat in Second Portage Lake.

Sediment traps were set on July 28, 2008 throughout Second Portage Lake at depths ranging from 3 to 8 m (**Figure 3-1**). Each installation consisted of four PVC sediment traps (i.e., four replicates), positioned vertically, open-end up, in a grid formation on a small metal frame. Each trap had the following dimensions: 7.2 cm inner diameter opening, 40.2 cm long. Traps were deployed in the open water by looping sideline to all corners of the platform, gathering the line into a single loop and slowly lowering the trap to the lake bottom while keeping it level. Each trap was marked with a buoy at the surface and labeled HVH-1 through HVH-6. Sediment traps HVH-1, -4, and -5 were left to accumulate sediment for the duration of dike construction and were removed during September 18-25 (50-57 days exposure time). HVH-2 was accidentally knocked over during routine turbidity monitoring in late August and thus only had 28 days of accumulation time. Both HVH-3 and -6 could not be retrieved successfully.

Sediment traps were retrieved on calm days by slowly pulling the line when the boat is directly above the buoy to keep the trap vertical. Once removed from the lake, each pipe was capped, removed from the platform and left to settle for at least one day. Overlying water was decanted from each pipe and all the sediment (and any remaining water) was collected in 1-L containers, labeled and shipped in coolers to ALS for analysis.

At the lab, wet sediment from the 4 reps was combined for each station and poured through 45-µm filter paper. Sediment was then dried at 60°C for 8 hours and dry weights were recorded. Sedimentation rates were calculated and thickness of accumulation for each station. Sediment from two stations (HVH-2 and HVH-5; the other two samples were sent to Golder to further their engineering assessment of sediment management during dike construction) was analyzed for pH, total organic carbon (TOC) and total metals concentrations (mg/kg). Sediment metals concentrations were compared to sediment quality guideline (SQG) concentrations developed by the CCME (2002). There are two levels of SQGs: Interim Sediment Quality Guidelines (ISQG) and Probably Effects Level (PEL) concentrations.

3.3.2. Primary Production

Chlorophyll-a and phytoplankton samples were also collected during both sampling events. Five replicates of each were collected from all stations and sampling events.

Chlorophyll-a samples were prepared by vacuum filtering 1 L of water through an ashless filter paper on the screen of a hand-held vacuum pump. The filter is then removed with tweezers, preserved and wrapped in tinfoil and frozen for shipping to ALS laboratory Vancouver.

Phytoplankton are microscopic, unicellular plant species that are suspended in the water column and, as primary producers, comprise the base of the food web. There are six major groups of phytoplankton present in lakes: cyanophytes (blue green algae), chlorophytes (green algae), chrysophytes (golden-brown algae), diatoms, cryptophytes and dinoflagellates. Seasonal production of phytoplankton can vary widely depending upon water temperature, nutrient concentration, time of year, water clarity and amount of sunlight and predation by zooplankton. Estimates of phytoplankton biomass (mg/m³) are useful as gross indicators of lake productivity.

Unfiltered water (125 mL) was collected at the surface from each sampling station during both sampling events. The procedures for collecting the phytoplankton samples are also outlined in detail in the SOP for Water and Phytoplankton Sampling (AEM, 2009).

Samples were preserved in the field with a small amount of Lugol's solution and later transported to Winnipeg, MB for taxonomic identification and analysis by Plankton R Us Inc. For the analysis, 10-mL aliquots of preserved sample were gravity settled for 24

hours. Counts were performed on an inverted microscope at magnifications of 125X, 400X, and 1200X with phase contrast illumination. Cell counts were performed using the Ütermohl technique as modified by Nauwerck (1963). Cell counts were converted to wet weight biomass (mg/m³) by estimating cell volume. Estimates of cell volume for each species were obtained by measurements of up to 50 cells of an individual species and applying the geometric formula best fitted to the shape of the cell (Vollenweider, 1968; Rott, 1981). A specific gravity of 1 was assumed for cellular mass. All biomass (mg/m³) and density (cells/L) estimates are summed by major taxa, per station and sampling event.

3.3.3. Secondary Production - Pelagic

Zooplankton were collected using a 70-µm nitex mesh net with a 30-cm diameter mouth opening and total length of 2.2 m. Five replicate samples were collected (composite of two vertical tows) at each station for biomass analyses and one sample was collected (composite of 2 or 4 vertical tows) at each station for taxonomic identification. Tow depths ranged from 6-10 m to the surface, depending on the station, but were consistent within stations. After collection, all samples were placed into uniquely labeled plastic Whirl-Pac bags and were preserved in a 10% buffered formalin solution. All bags were sealed tight to prevent leakage and were sent to North-South Consultants, Winnipeg, MB. Zooplankton samples for biomass were filtered through a pre-dried 45 µm filter, wet weighed and then dried in an oven at 60°C until completely dry. Samples were weighed dry to determine moisture content and dry weight. Dry biomass (mg/m³) was determined by standardizing the dry sample weight against the volume of water filtered by the net during each vertical tow, which differed by depth according to each station.

3.3.4. Secondary Production - Benthic

As mentioned in the overview, benthos sampling was not conducted in 2008 but is planned for 2009. However, regular monitoring of the benthic community has been conducted on a yearly basis for the AEMP at stations in Second and Third Portages Lakes and Tehek Lake; the 2006, 2007 and 2008 results were used to provide some initial information on the potential short-term effects of elevated TSS on the benthic community. As per the dike construction monitoring plan (AEM, 2008), more detailed benthic invertebrate sampling to determine longer-term implications of elevated TSS will be conducted in 2009 and 2010.

3.3.5. Food web characterization

Zooplankton, benthos and fish tissues were collected for isotope analysis in order to characterize the food web. Zooplankton was collected as for biomass and taxonomy

analyses, during the same period and from the same stations (5 samples total) in September, 2008 (see **Section 3.3.3**).

Benthic invertebrates were also sampled from all stations during September 13-16, 2008. Benthos were collected using a Petite Ponar grab (0.023 m²) and a 500-µm sieve. One sample from each station in Second Portage Lake and 5 replicate samples (about 100 m apart) from the station in Third Portage Lake were collected (for a total of 9 samples). Each sample consisted of at least 5 mg of invertebrate tissue. Sampling depths ranged from about 6–12 m. Fish muscle tissue (about 5 g/sample) was also sampled from 90 fish collected during the fish-out program (30 samples from each of Arctic char, Lake trout, and Round whitefish).

Zooplankton, benthic invertebrate and fish tissue samples were frozen and sent to the Stable Isotopes in Nature Laboratory (SINLAB) at UNB in Fredericton, NB for carbon and nitrogen isotope analysis.

3.4. Laboratory Effects Measurements

Water was collected in collapsible plastic carboys on September 10, 2008 in an area of high TSS in Second Portage Lake and shipped to Nautilus Environmental (Burnaby, BC) for toxicity testing.

Acute toxicity tests were conducted on zooplankton (48-hr *Daphnia magna* survival) and fish (96-hr Rainbow trout survival). Chronic toxicity tests were also conducted on zooplankton (7-d *Ceriodaphnia dubia* survival and reproduction) and fish (7-d Rainbow trout embryo development and larva survival & growth). Both the embryonic and larval tests on trout were conducted on concentrations of 100 %, 50 %, 25 %, 12.5 %, 6.25 % and laboratory control of the test water. The embryonic development test was performed both with daily renewal of the test water and without renewal, the latter providing a "worst case" scenario for settling of suspended particulate matter on the embryos.

Rainbow trout also underwent chronic toxicity testing for embryo development in water treated with chitosan but only at concentrations of 100% and laboratory control. For further details on laboratory conditions and QA/QC see the attached laboratory report (**Appendix B**).

3.5. Statistical Analyses

All statistical analyses were conducted using R software v. 2.8.1.

The study design for EAS sampling was essentially a control-impact (CI) design that tests for differences between reference (control) and exposure (impact) areas (see **Section 3.1**) (Wiens and Parker, 1995). The following process was used:

- Data transformation ANOVA assumptions of normality and homogeneity of variance were tested for each parameter using formal (Shapiro-Wilk test and Bartlett's test, respectively) and informal (e.g., QQ plots) methods. Those not meeting the assumptions were transformed (log10) and retested. ANOVA was used to test those parameters that met the assumptions; the non-parametric Kruskal-Wallis test was used for those parameters that failed the ANOVA assumptions.
- ANOVA/Kruskal Wallis (KW) tests These tests were conducted to determine whether there were statistical differences between any of the five sampling areas. The KW test was conducted using ranked data in ANOVA. If no significant differences were detected, the analysis was stopped for that parameter with a conclusion of no adverse TSS-related effect. Where such differences were detected, a priori contrasts were conducted.
- A priori contrasts contrasts were used to specifically test the hypothesis
 regarding potential differences between reference and exposure areas. A second
 contrast was conducted to test for differences within the exposure area: the two
 exposure stations closest to the East dike construction area were compared to the
 one furthest away.
- Effect sizes and confidence intervals effect sizes for each contrast were reported along with the 95% confidence intervals of the effect size (all back transformed).
 Effect sizes and confidence intervals for ranked parameters were estimated by rerunning the ANOVA with the original data, so they should be used as a guide only.

The AEMP benthos data set contained both temporal (2006 to 2008) and spatial (stations Second Portage [SP], Tehek [TE], Third Portage East [TPE] North [TPN] and South [TPS], and Inuggugayualik [INUG] lakes) data, allowing for a before-after-control-impact (BACI) design (e.g., Underwood, 1994). Given that the only stations possibly affected by the elevated TSS are SP and TE, they are considered the exposure (impact) stations and the rest are reference (control) stations. Years 2006 and 2007 are the "before" years and 2008 the "after" year. The analysis focused on total density and total richness and was conducted as follows:

- Data transformations total density was log10 transformed and total richness was not transformed.
- *BACI coding* dummy variables were used to identify station types (reference vs. exposure) and year types (before vs. after).
- Two-Way ANOVA and Mixed Effects Model the test of interest in this two-way ANOVA is whether the interaction between the before-after variable (Yeartype)

and the control-impact variable (Stationtype) (i.e., Yeartype*Stationtype) is significant. Since Year and Station are random effects, a mixed effects model was used to conduct the analysis. The first step was to conduct the ANOVA using lm, then examine the residuals, with particular emphasis on detecting patterns related to either Year or Station to aid in setting the random effects parameters in the mixed model.

• Mixed Effects Models - A series of mixed models were run using the lme function in the lmer package, each with a slightly different random effects component. AIC values, a measure of model fit, were used to determine the best model (lowest score shows best fit). Model residuals were again tested, with emphasis on detecting patterns (e.g., related to Station or Year) and checking normality (e.g., with QQ plots).

Further information on methods used can be found in:

- Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, New Jersey.
- Dalgaard, P. 2008. Introductory Statistics with R. Springer, New York.
- Venables, W.N., and B.D. Ripley. 2002. Modern Applied Statistics with S. Springer, New York.
- Pinheiro, J.C., and D.M. Bates. 2000. Mixed-Effects Models in S and S-PLUS. Springer, New York.

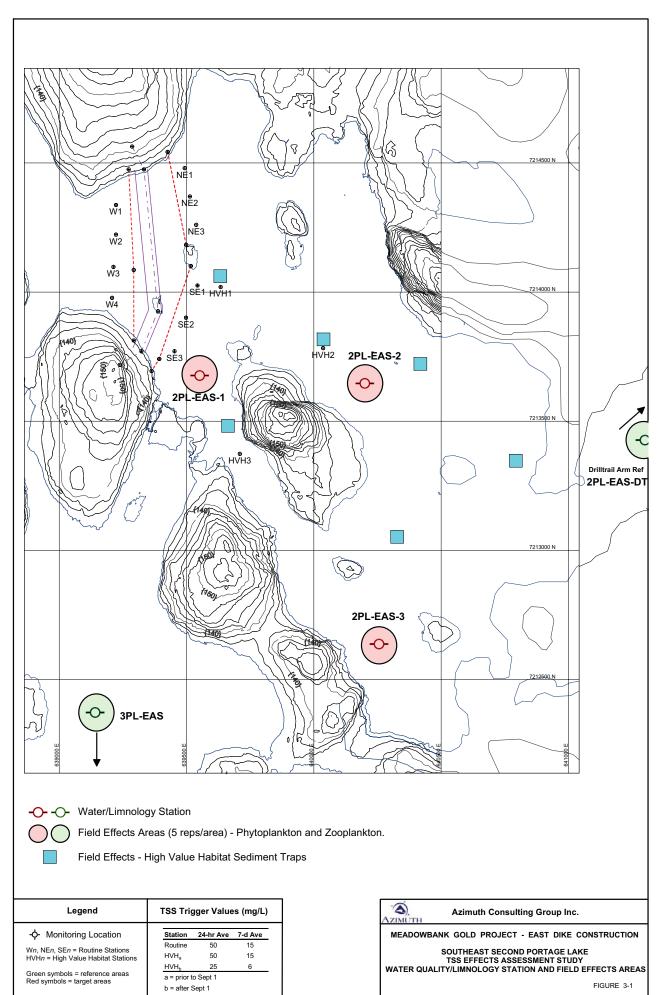


Table 3-1. EAS station locations and sampling summary.

Station	Event Date	Easting	Northing	Limnology	Water Quality	Phytoplankton Biomass	Chlorophyll-a	Zooplankton Biomass/Tax	Benthos Stable Isotopes	Zooplankton Stable Isotopes	Toxicity Testing
2PL-EAS-1	Sept 13-15	14W 639513	7213696	Х	Х	Х	х	х	Х	х	х
2PL-EAS-2	Sept 13-15	14W 640274	7213659	Х	Χ	Х	Χ	X	Х	Χ	
2PL-EAS-3	Sept 13-15	14W 640197	7212666	Х	Χ	Χ	Χ	X	Х	Χ	
2PL-EAS-DT	Sept 13-15	14W 641270	7213562	Х	Χ	Х	Χ	X	Χ	Χ	
3PL-EAS	Sept 13-15	14W 638700	7211350	Х	Χ	Х	Χ	X	Χ	Χ	
2PL-EAS-1	Sept 24-25	14W 639513	7213696	Х	х	Х	Х				
2PL-EAS-2	Sept 24-25	14W 640274	7213659	Х	Х	Х	Х				
2PL-EAS-3	Sept 24-25	14W 640197	7212666	Х	Х	Х	Χ				
2PL-EAS-DT	Sept 24-25	14W 641270	7213562	Х	Χ	Х	Х				
3PL-EAS	Sept 24-25	14W 638700	7211350	Х	Χ	х	X				

Notes: UTM coordinates in NAD83.

4. RESULTS

4.1. Limnology and Water Quality

QA/QC results for water sampling are shown in **Table 4-1** (raw data provide in **Appendix A**). Results are as follows:

- *Field Duplicates* results show that the only two parameters having high RPD values were also associated with samples near or at the method detection limit (MDL).
- *Travel Blanks* results show a single detection of calcium in one sample; source unknown. This should not affect interpretation of the results.
- Equipment Blanks results show a single detection of cadmium. This appears to be anomalous as cadmium was generally less than detection limits in all samples (see below for actual results).

Overall, the QA/QC results confirm that the data quality objectives were met.

Limnological and water quality results from the EAS program are described below.

Vertical temperature and oxygen profiles measured from the 4 stations in Second Portage Lake and the one station in Third Portage Lake showed little difference (**Figures 4-1 and 4-2**) both among stations and sampling events. Temperature and dissolved oxygen profiles of all stations were isothermal with little evidence of stratification.

Water temperature at all stations ranged from about 4–6 °C for the first sampling event (September 13-14, 2008) and from about 1.5–3 °C for the second event (September 24-25, 2008). Dissolved oxygen ranged from 12–13 mg/L (mid Sept.) and from about 13–15 mg/L (late Sept.), indicating high saturation throughout the water column.

Secchi depth (m) in Second Portage Lake was low (1 m) for the three exposure monitoring stations, but much higher (4.5–6.5 m) for the two references stations (2PL-EAS-DT and 3PL-EAS) during both sampling events.

Results for chemical and physical analyses are presented in **Table 4-2** (raw data presented in **Appendix A**). The pH of surface waters was circum-neutral (6.8–7.3). Conductivity was lowest in Third Portage (14.4–16.4 μ S/cm) and somewhat higher, but very similar, among Second Portage Lake stations (24.4–28.0 μ S/cm).

TSS results for surface waters from these two sampling events did not match those of the long-term turbidity-based field monitoring. The latter showed a consistent improvement in water clarity from late August through September. The EAS sampling results showed that TSS concentrations were low (<3.0 mg/L) for all stations during the first sampling

event, but showed increases for some stations in the second sampling event (2PL-EAS-2 and –3 increased to 53 mg/L and 16 mg/L, respectively). These results may be reflective of small-scale, short-term variability in conditions, but are not consistent with a much more robust body of empirical data. Consequently, for the purposes of characterizing the prevailing exposure gradient between the exposure and reference monitoring stations, we have more confidence in the dike construction monitoring data set for the following reasons:

- Water quality during construction of the East and Western Channel dikes was conducted daily, covering a fairly large spatial area. Given the temporal and spatial coverage, this data set provides a better characterization of Second Portage Lake than two single event samples.
- The chronic effects targeted by this study are best assessed in consideration of longer term conditions. Consequently, the 7-day average TSS concentrations for southeast Second Portage Lake during the first event (September 13/14) ranged from 9.2 to 11.4 mg/L (Azimuth, 2009a). For the second sampling event (September 24/25), the 7-day average TSS concentrations ranged from 5.6 to 6.3 mg/L. TSS concentrations for both reference areas during both events should be less than 1 mg/L.

Total dissolved solids (TDS) in surface waters was only low (<10 mg/L) at 3PL-EAS during both sampling events. TDS at 2PL-EAS-1 and -2 decreased between the two sampling events (16 down to 13mg/L and 20 down to 16 mg/L, respectively). In contrast TDS at 2PL-EAS-3 and -DT increased from mid to late September (14 up to 16mg/L and 12 up to 20 mg/L, respectively).

Nitrogen and phosphate at all stations were low, generally close to laboratory detection limits, and did not differ appreciably among stations or sampling events but were usually lower at the 2 reference stations (2PL-EAS-DT and 3PL-EAS). Total Kjeldahl Nitrogen (TKN) increased about 1.5 fold at all 2PL stations and about 4 fold at the 3PL station, from the first to the second sampling event.

Dissolved organic carbon concentration was fairly constant among 2PL stations (1.7–2.1 mg/L) in September. Results from 3PL however were anomalous. On September 14 (8.5 mg/L) and September 25 (125 mg/L) DOC was quite elevated, despite low TOC concentrations on the same dates (1.4 mg/L and 2.1 mg/L respectively). DOC concentrations in Third Portage Lake during 2006 and 2007 AEMP monitoring (Azimuth, 2008b and 2008c) never exceeded 1.85 mg/L and were less than 2.3 mg/L during all prior water sampling events back to 1997 (BAEAR, 2005). In 2008, DOC concentrations at all 3PL AEMP stations were less than 1.9 mg/L except on one occasion (6.9 mg/L; although TOC was 1.3 mg/L). These data suggest that both 2008 EAS DOC samples and one AEMP sample were inadvertently contaminated in the field, probably during the filtration

process. Re-runs of these samples by the laboratory confirmed that this was not a lab issue. We suspect that magnesium carbonate, a preservative used for chlorophyll α samples, may have been added to the filter paper prior to (rather than after) filtration, which was likely the cause of elevated DOC in some samples. Furthermore, because TOC concentrations were always low (there were analyzed from a separate sample bottle), this confirms that this was a contamination issue and not a real result. Field filtration protocols have been changed to ensure that this does not happen again.

Of the 29 metals for which concentration data were measured, 24 are consistently near or below method detection limits (MDLs). Concentrations of total aluminum, chromium, copper, iron and lead exceeded CCME (2007) guideline concentrations for the protection of aquatic life at the three exposure monitoring stations in 2PL, but not for the two reference stations. Concentrations of each of these five metals were fairly similar among the exposure stations and both sampling events. Dissolved metals concentrations were much lower than total metals concentrations for all stations, which suggests that the observed metals are in particulate form. None of the dissolved metals concentrations exceeded CCME guidelines.

4.2. Field Effects Measurements

4.2.1. Sediment Traps

Results for sediment deposition rates and estimated deposition thickness are presented in **Table 4-3**. Not surprisingly, the two traps closest to the East Dike construction zone, HVH-1 and -2, had the highest deposition rates (approximately 1.2 to 1.3 g wet/day); this deposition rate led to nearly 2 mm of accumulated sediment over the entire period (note that accumulation at HVH-2 was approximately half that amount as it required resetting mid period). Predicted deposition rates and accumulation at the stations further from the construction zone (HVH-4 and -5) were approximately half those found at the two nearer stations. High value habitat areas in southeast Second Portage Lake will be examined more closely using underwater video in 2009 to assess this situation.

While the primary goal of the sediment traps was to quantify deposition rates and accumulation in relation to dike construction, sediment from two of the traps (HVH-2 and HVH-5) were submitted for chemistry analyses (the other two samples were sent to Golder Associates to further their engineering assessment of sediment containment during dike construction). These results are presented in **Table 4-4**. Total organic carbon content was 2.4 % and 1.8 % for HVH-2 and HVH-5, respectively. Arsenic, chromium, copper and zinc exceeded CCME ISQGs and chromium also exceeded the PEL, for the two high value habitat stations in Second Portage Lake.

Compared to sediment data collected from the Second Portage Lake (SP) station from AEMP monitoring (shown in **Figure 4-3** with Third Portage East [TPE] as well), a few differences are apparent. Although arsenic exceeds the ISQG at the HVH stations, concentrations are lower than at the SP station, which all exceed PELs. The opposite is true for a number of other metals: barium, chromium, nickel, vanadium and zinc concentrations at the HVH stations are greater than those measured at the SP AEMP station. The remaining metals concentrations are within range of those measured at the SP AEMP station.

It should be noted that the sediment trap bases in contact with bottom substrate were rusting significantly when retrieved. It is possible that rust particles were resuspended into the traps, but it would be unlikely for this to account for the observed results for the following reasons:

- In addition to iron and carbon, the primary constituents of regular steel typically include manganese, phosphorus, sulfur, and silicon. High strength and stainless steels also contain nickel and chromium. The angle iron used for the trap support structure is assumed to be regular steel, although this cannot be verified.
- Trap design had the PVC trap mouths higher than the base supports.
- Water sampling showed elevated metals (aluminum, chromium, copper, iron, and lead exceeded CCME guidelines) associated with particulates in the water column.
- Assuming that water column particulates had the same chemistry as the trap
 sediments, at 10 mg/L TSS (i.e., approximate concentrations expected during the
 first sampling event) neither arsenic nor zinc concentrations would be expected to
 exceed CCME water quality guidelines. However, chromium and aluminum
 would be expected to exceed. These results are consistent with the observed
 pattern.

Thus, while there is uncertainty as to the degree to which the trap base rust influenced the observed results, the sediment trap chemistry results warrant a follow up investigation in 2009 to verify the situation. Prior to the onset of construction in 2008, a detailed coring study was conducted to characterize the spatial variability of metals in surface sediments at each of the AEMP stations. We propose to repeat this study in 2009 at the two stations potentially affected by elevated TSS (i.e., Second Portage Lake [SP] and Tehek Lake [TE]) and two unaffected areas (Inuggugayualik Lake [INUG] and Third Portage South [TPS]).

We also plan on expanding the sediment trap program in 2009 to better characterize conditions during construction of the Bay-Goose Dike in Third Portage Lake. Sediment

trap bases will be redesigned and constructed of different material. This should improve our overall understanding of sediment dynamics in the project lakes.

4.2.2. Primary Production

Chlorophyll-a sampling results are presented in **Table 4-2**. Concentrations at all stations were generally low and similar among stations and sampling events, ranging from 0.474– $0.692~\mu g/L$ (mean for 5 reps/station) (**Figure 4-4**). Despite the elevated TSS and associated water turbidity, there were no significant differences in chlorophyll-a concentrations between exposure and reference stations for either sampling event (**Table 4-5**).

Interestingly, chlorophyll-a does not appear to follow the same seasonal trends as phytoplankton biomass (see below); the same is true historically in Second and Third Portage Lakes (see **Figure 4-5**, which shows AEMP sampling results for chlorophyll-a).

QA/QC results for phytoplankton sampling are shown in **Table 4-6**. While the density and biomass results for major taxa groups were somewhat variable, particularly when the values were low, total density and biomass values were highly reproducible. Overall, these results are suitable for addressing whether elevated TSS in Second Portage Lake caused depressed primary productivity.

Phytoplankton data are reported on the basis of biomass and density (**Tables 4-7 and 4-8**; detailed taxa listing for both events is provided in **Appendix C**). While both can be useful in characterizing the community, biomass is more ecologically relevant for assessing potential TSS impacts to productivity. Biomass results are shown in **Figure 4-6**. The differences observed between exposure and reference stations were statistically significant for both sampling events, although the effect size was substantially lower for the second event (**Table 4-5**); there were no significant differences between near-field and far-field stations within the exposure area. The main reason for the change was a depression in chrysophyte biomass at the exposure stations (**Figure 4-7**). Historically, chrysophytes have always been the dominant species by biomass in Second and Third Portage Lakes, regardless of season (see **Figure 4-8**, which shows AEMP sampling results for phytoplankton biomass). This figure shows that the depression in biomass in Second Portage Lake was picked up by routine AEMP receiving environment monitoring.

4.2.3. Secondary Production - Pelagic

Zooplankton biomass results are shown in **Figure 4-9**; raw data are shown in **Table 3-1** (tow information) and **Appendix D** (lab results). Mean biomass ranged from slightly less than 25 mg/m³ ww (2PL-EAS-DT) to just over 75 mg/m³ ww (2PL-EAS-2). There was

no evidence of depressed biomass at exposure stations relative to reference stations (**Table 4-5**).

Zooplankton community composition results are presented in **Table 4-9**. The community was dominated by copepods (~85 %), fairly evenly split between Cyclopoida (mostly *Cyclops scutifer*) and Calanoida (mostly *Diaptomus*). The remainder of the community was primarily cladocerans (~15 %), represented mostly by *Bosmina longirostris*.

4.2.4. Secondary Production - Benthic

The dike construction monitoring plan (AEM, 2008) specified that benthic invertebrate community sampling would be conducted in 2009 and 2010 if elevated TSS was observed in Second Portage Lake. This detailed study has been planned for the upcoming field season.

While the more detailed EAS study is forthcoming, there are some data available now to provide some insights. Benthic invertebrates were included in routine AEMP receiving environment monitoring in late August 2008. Given the established TSS exposure gradient (i.e., elevated TSS concentrations in Second Portage Lake and extending to a lesser degree into Tehek Lake) in August 2008, the AEMP data provides an opportunity to assess the potential effects of elevated TSS (and related increases in deposition rates) on the benthic community.

A "Beyond BACI¹" approach (e.g., Underwood, 1994) was used to assess whether there were any apparent adverse effects to the total benthos abundance or richness associated with the elevated TSS in Second Portage Lake and Tehek Lake in 2008 (**Figures 4-10** and 4-11). Interaction plots showing the independent and combined influences of "Station" and "Year" on abundance (log transformed) and richness (untransformed) are shown in **Figures 4-12 and 4-13**. The results are summarized in **Table 4-10**. There were no statistically significant (p<0.05) adverse effects to benthic community total abundance (density) or total richness identified at Second Portage or Tehek stations in 2008 relative to other stations and years.

Benthic invertebrate total abundance in Second Portage Lake did show a marginal effect trend (i.e., not statistically significant, but a fairly large effect size). The observed effect size and estimated 95% confidence interval are shown in **Figure 4-14**. The asymmetry of confidence intervals is due to back-transforming model estimates (i.e., model used natural log transformed abundance). BACI models essentially test whether the effect size is different from 0; while the effect size is substantial, the broad confidence interval (due to

¹ BACI stands for "before-after-control-impact", a statistical design developed to detect environmental impacts by accounting for natural temporal and spatial variability.

25

naturally variable temporal and spatial patterns among stations and years) includes 0, so the test is not significant. For comparative purposes, the effect size and 80% confidence interval are shown in **Figure 4-15**; in this case the confidence interval does not include zero (i.e., we are 80% certain that there is an adverse effect at SP in 2008).

The Second Portage Lake results are fairly typical of a physical disturbance, where abundance shows a larger (i.e., marginal trend of reduced abundance) effect compared to richness (i.e., no effect). Conceptually, physical impacts often behave like a lawn mower, which reduces abundance without having much impact on diversity (i.e., most species are affected similarly). While elevated TSS did extend into Tehek Lake, no significant changes to benthos abundance or richness were detected.

4.2.5. Food Web Characterization

Aquatic food webs have traditionally been determined by examining the gut contents of fish, which essentially represent a brief "snap-shot" in time of their diet (e.g., typically on the order of days). Advances in stable isotope analysis (SIA) over the past two decades have resulted in a powerful time-integrated tool for determining trophic position (i.e., where an organism fits into the food web) that is literally based on the premise that "you are what you eat". SIA targets the stable isotopes (same number of protons, but different number of neutrons and thus mass; stable in that they do not decay like radioactive isotopes) of particular elements (e.g., C, N and others). Studies have shown that consumers experience the preferential loss of the lighter isotope during metabolic processes (e.g., excretion or respiration), resulting in varying degrees of heavy isotope enrichment relative to their diet. This trophic fractionation is the underlying mechanism that results in different patterns of stable isotope ratios in nature. Identifying these patterns provides valuable insights into the trophic structure of the system of interest.

The stable isotopes of nitrogen and carbon have been used to complement one another in the characterization of food webs over a broad range of systems. Nitrogen isotopes have been used extensively as a fairly robust means of distinguishing between and quantifying the trophic positions of consumers in aquatic systems (e.g., Peterson and Fry, 1987; Bilby et al., 1996; Vander Zanden et al., 1999; Harvey and Kitchell, 2000; Leggett et al., 2000; Vander Zanden and Rasmussen, 2001; Vander Zanden et al., 2003; Herwig et al, 2004). Carbon isotopes have been used to trace the flow of energy through food webs and are particularly valuable in identifying dietary preferences of consumers (e.g., Rounick and Winterbourn, 1986; Peterson and Fry, 1987; France, 1995*a* and 1995*b*; Hecky and Hesslein, 1995; Herwig et al., 2004; da Silva et al., 2005). Together, stable nitrogen and carbon isotopes provide strong insights into trophic structure and feeding preferences, which are essential component of lake ecology.

The derivation of stable isotope values is presented in the accompanying text box. Studies have shown that $\delta^{15}N$ is about 3.4‰ and $\delta^{13}C$ between 0-1‰ higher in consumers

relative to their diet for a range of taxa (Minagawa and Wada, 1984; Peterson and Fry, 1987; Vander Zanden and Rasmussen, 2001). That being said, there can be considerable variability in both $\delta^{15}N$ and $\delta^{13}C$ that needs to be taken into account in the interpretation of results.

For nitrogen isotopes, while the relative difference in $\delta^{15}N$ between consumers and their diet is fairly constant, the absolute $\delta^{15}N$ values

How Stable Isotope Values Are Calculated.

Isotopic fractionation (i.e., the preferential use of certain isotopes during biological processes like photosynthesis, excretion or respiration) results in enrichment (positive values) or depletion (negative values) of the isotopic ratio relative to internationally-used standard material (i.e., atmospheric nitrogen or PeeDee Belemnite carbon). The difference, represented by $\delta^{15}N$ or $\delta^{13}C$ (in parts per thousand, ‰; or per "mil"), is calculated using the following equation:

$$\delta^{15} N$$
 or $\delta^{13} C$ % = ([$R_{sample} / R_{standard}$]-1) x 1000 Eq.1 where $R = {}^{15} N; {}^{14} N$ or ${}^{13} C; {}^{12} C$.

of both consumers and dietary items can vary considerably within and among lakes (e.g., Kling et al., 1992; Kline et al., 1998). Vander Zanden et al. (2000) looked at within and among population variation in trophic position and found that 78% of the total variation was due to lake-to-lake differences. While the trophic structure of lakes (e.g., presence/absence of pelagic forage fish [e.g., whitefish] and/or presence of a large zooplankton predator [e.g., mysids]) will clearly affect δ^{15} N values (and thus trophic position) among top predator consumers, significant variability in δ^{15} N values has been shown at the base of the food web (Cabana and Rasmussen, 1996; Vander Zanden and Rasmussen, 1999; Vander Zanden and Rasmussen, 2001). This variability is observed both within lakes (i.e., among specific habitats in a lake) and among lakes (i.e., due to variability in N sources), with serious implications for accurate characterization of trophic position of higher level consumers.

Carbon isotopic ratios show an even greater variability, particularly among primary producers. Most terrestrial plants typically have $\delta^{13}C$ values around -28 ppt, with others differing primarily as a result of distinct fractionation patterns among photosynthetic pathways. Aquatic plants routinely have a much higher range of $\delta^{13}C$ values due to variability in isotopic ratios of the dissolved inorganic carbon pool, physical factors limiting the rate of carbon diffusion through the boundary layer around plant tissue and other reasons (Rounick and Winterbourn, 1986). The boundary layer/diffusion factor is thought to be responsible for the significant differences observed in $\delta^{13}C$ values between pelagic (depleted) and benthic (enriched) algae. These diverse carbon signatures, coupled with the subsequent low degree of fractionation by consumers, provide a means of identifying feeding preferences of primary consumers.

The SIA results are shown in **Figure 4-16**; raw data are provided in **Appendix E**. As discussed above, the pelagic and benthic food webs (as represented by either zooplankton or benthos) are distinct due to expected differences in δ^{13} C. Moving up the food chain (i.e., to higher levels of δ^{15} N), one can see that Arctic char rely more exclusively on the pelagic food chain and round whitefish on the benthic food chain, particularly for younger aged fish. Lake trout are generally at the top of the food chain and appear, based on their δ^{13} C values, to utilize both energy paths (i.e., pelagic and benthic). This is not surprising in an ultra oligotrophic lake, where nutrient-driven productivity limitations constrain populations.

4.3. Laboratory Effects Measurements

Detailed results are provided in **Appendix B**. Key results were as follows:

- *Acute effects to zooplankton* no adverse effects were observed in the 48-hr *Daphnia magna* survival test.
- Acute effects to fish no effects were observed in the 96-hr rainbow trout survival test.
- *Chronic effects to zooplankton* no adverse effects were observed for survival or reproduction in the 7-day test with *Ceriodaphnia dubia*.
- *Chronic effects to fish* Tests were conducted on two developmental stages:
 - Embryo stage Two² tests were conducted using trout embryos: one where test water was renewed each day (renewal) and one without renewal (static). This test combination was used to provide insights into whether any observed effects were due to chemical or physical effects. No effects were observed in either renewal test. However, impaired development was observed in the static test (despite water quality parameters remaining acceptable throughout the test), suggesting that physical settling of sediments could possibly affect developing embryos.
 - Larval stage The larval test was conducted using live zooplankton as a
 food resource. No adverse effects were detected in the 7-day survival and
 growth test. The lack of growth or survival effects suggests that neither
 direct (e.g., impairment of gill functioning) or indirect (e.g., active feeding
 was not impaired by the reduced water clarity) effects would be expected
 in the field.

² A third test was conducted to assess the potential effects of using chitosan to speed up settlement of suspended sediments. The results showed no apparent adverse effects related to chitosan use.

28

- mare : - : g-a g a mana j a : mare	purumeters, Second & Third Portuge Lukes, September 2000.														
	Seco	nd Portage La	ake	Seco	nd Portage La	ıke	Variou	s Basins / Dep	ths	Variou	s Basins / Dept	hs	Travel	Blanks	Equipment Blank
	2PL-EAS-DT	Field Dup	RPD	2PL-EAS-2	Field Dup	RPD	Original	Laboratory	RPD	Original	Laboratory	RPD	14-Sep-08	22-Sep-08	14-Sep-08
	13-Sep-08	13-Sep-08	(%)	24-Sep-08	24-Sep-08	(%)	September R1	Duplicate	(%)	September R2	Duplicate	(%)	14-3ep-00	22-3ep-00	14-Зер-00
CONVENTIONAL PARAMETERS															
Physical Tests															
Conductivity (µS/cm)	26.2	26.2	0	25.6	-	-	-	-	-	-	-	-	<2.0	<2.0	<2.0
Hardness (mg/L)	10.9	10.7	1.9	10.4	11.5	-10	-	-	-	-	-	-	-	1.24	<0.70
pH	7.22	7.22	0	7.27	-	-	-	-	-	-	-	-	5.57	5.54	5.49
Total Suspended Solids (mg/L)	<3.0	<3.0	0	52.8	-	-	-	-	-	-	-	-	<3.0	<3.0	<3.0
Total Dissolved Solids (mg/L)	12	14	-15	16	-	-	-	-	-	-	-	-	<10	<10	<10
Anions & Nutrients (mg/L)															
Alkalinity - Bicarbonate (as CaCO ₃)	8.1	7.4	9.0	8.3	-	-	-	-	-	-	-	-	<2.0	<2.0	<2.0
Alkalinity - Carbonate (as CaCO ₃)	<2.0	<2.0	0	<2.0	-	-	-	-	-	-	-	-	<2.0	<2.0	<2.0
Alkalinity - Hydroxide (as CaCO ₃)	<2.0	<2.0	0	<2.0	-	-	-	-	-	-	-	-	<2.0	<2.0	<2.0
Alkalinity - Total (as CaCO ₃)	8.1	7.4	9.0	8.3	-	-	-	-	-	-	-	-	<2.0	<2.0	<2.0
Ammonia (as N)	0.027	0.024	12	<0.020	<0.020	0	-	-	-	-	-	-	<0.020	<0.020	<0.020
Chloride	<0.50	<0.50	0	0.54	-	-	< 0.50	<0.50	0	0.54	0.55	-1.8	<0.50	<0.50	<0.50
Nitrate (as N)	<0.0050	<0.0050	0	0.0302	-	-	< 0.0050	< 0.0050	0	-	-	-	<0.0050	<0.0050	<0.0050
Nitrite (as N)	<0.0010	<0.0010	0	0.0017	-	-	<0.0010	<0.0010	0	0.0017	0.0015	13	<0.0010	<0.0010	<0.0010
Total Kjeldahl Nitrogen	0.091	0.087	4.5	0.13	0.15	-13	-	-	-	-	-	-	< 0.050	<0.050	< 0.050
Ortho Phosphate (as P)	< 0.0010	<0.0010	0	<0.0010	-	-	-	-	-	-	-	-	< 0.0010	< 0.0010	<0.0010
Total Phosphate (as P)	0.0025	0.0035	-33	0.0096	-	-	-	-	-	-	-	-	<0.0020	<0.0020	<0.0020
Sulfate (SO ₄)	2.42	2.40	8.0	2.49	-	-	1.08	1.09	-0.9	2.49	2.48	0.4	<0.50	<0.50	<0.50
ORGANIC / INORGANIC CARBON															
Dissolved Organic Carbon (mg/L)	1.80	1.88	-4.3	2.14	1.76	19	-	-	-	1.76	1.80	-2.2	-	-	-
Total Organic Carbon (mg/L)	1.74	1.70	2.3	1.73	1.52	13	-	-	-	1.52	1.54	-1.3	< 0.50	< 0.50	<0.50

L687296 L688731

L687296

Table 4-1: QA/QC data for water parameters, Second Third Portage Lakes, September 2008.

	Seco	nd Portage La	ke	Seco	nd Portage La	ike	Variou	s Basins / Dep	ths	Variou	s Basins / Dep	ths	Travel	Blanks	Equipment Blank
	2PL-EAS-DT	Field Dup	RPD	2PL-EAS-2	Field Dup	RPD	Original	Laboratory	RPD	Original	Laboratory	RPD	14-Sep-08	22-Sep-08	14-Sep-08
	13-Sep-08	13-Sep-08	(%)	24-Sep-08	24-Sep-08	(%)	September R1	Duplicate	(%)	September R2	Duplicate	(%)	14-3ep-00	22-3ep-00	14-Зер-00
TOTAL METALS (mg/L)															
Aluminum	0.0146	0.0176	-19	0.278	0.315	-12	0.388	0.386	0.5	0.268	0.258	3.8	-	<0.0050	< 0.0050
Antimony	<0.00050	<0.00050	0	< 0.00050	<0.00050	0	< 0.00050	< 0.00050	0	< 0.00050	< 0.00050	0	-	<0.00050	< 0.00050
Arsenic	<0.00050	<0.00050	0	< 0.00050	<0.00050	0	< 0.00050	< 0.00050	0	< 0.00050	< 0.00050	0	-	<0.00050	< 0.00050
Barium	<0.020	<0.020	0	<0.020	<0.020	0	< 0.020	< 0.020	0	<0.020	<0.020	0	-	<0.020	<0.020
Beryllium	<0.0010	<0.0010	0	< 0.0010	<0.0010	0	<0.0010	<0.0010	0	<0.0010	<0.0010	0	-	<0.0010	<0.0010
Boron	<0.10	<0.10	0	<0.10	<0.10	0	<0.10	<0.10	0	<0.10	<0.10	0	-	<0.10	<0.10
Cadmium	<0.000017	<0.000017	0	< 0.000017	< 0.000017	0	< 0.000017	<0.000010	-	< 0.000017	0.000014	19	-	<0.000017	0.000037
Calcium	2.80	2.81	-0.4	2.85	2.80	1.8	2.64	2.72	-3.0	2.77	2.86	-3.2	-	0.500	<0.10
Chromium	<0.0010	<0.0010	0	0.0011	0.0012	-8.7	0.0013	0.0013	0	0.0011	0.0010	9.5	-	<0.0010	<0.0010
Cobalt	<0.00030	<0.00030	0	<0.00030	<0.00030	0	< 0.00030	<0.00030	0	< 0.00030	<0.00030	0	-	<0.00030	< 0.00030
Copper	<0.0010	<0.0010	0	0.0020	0.0021	-4.9	0.0017	0.0017	0	0.0019	0.0017	11	-	<0.0010	<0.0010
Iron	<0.030	< 0.030	0	0.393	0.429	-8.8	0.492	0.502	-2.0	0.367	0.367	0	-	<0.030	< 0.030
Lead	<0.00050	< 0.00050	0	0.00086	0.00079	8.5	0.00248	0.00255	-2.8	0.00691	0.00707	-2.3	-	<0.00050	< 0.00050
Lithium	<0.0050	<0.0050	0	< 0.0050	<0.0050	0	< 0.0050	< 0.0050	0	< 0.0050	<0.0050	0	-	< 0.0050	< 0.0050
Magnesium	0.92	0.93	-1.1	0.93	0.94	-1.1	0.95	0.97	-2.1	0.92	0.94	-2.2	-	<0.10	<0.10
Manganese	0.00087	0.00086	1.2	0.00832	0.00852	-2.4	0.00890	0.00887	0.3	0.00777	0.00783	-0.8	-	<0.00030	<0.00030
Mercury	<0.000020	<0.000020	0	<0.000020	<0.000020	0	<0.000020	<0.000020	0	< 0.000020	<0.000020	0	-	<0.000020	<0.000020
Molybdenum	<0.0010	<0.0010	0	< 0.0010	<0.0010	0	<0.0010	< 0.0010	0	< 0.0010	<0.0010	0	-	<0.0010	<0.0010
Nickel	<0.0010	<0.0010	0	0.0010	0.0011	-9.5	0.0012	0.0013	-8.0	0.001	0.001	0	-	<0.0010	<0.0010
Potassium	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	-	<2.0	<2.0
Selenium	<0.0010	<0.0010	0	< 0.0010	<0.0010	0	<0.0010	< 0.0010	0	< 0.0010	<0.0010	0	-	<0.0010	<0.0010
Silver	<0.000020	<0.000020	0	<0.000020	<0.000020	0	<0.000020	<0.000020	0	< 0.000020	<0.000020	0	-	<0.000020	<0.000020
Sodium	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	-	<2.0	<2.0
Thallium	<0.00020	<0.00020	0	<0.00020	<0.00020	0	<0.00020	<0.00020	0	<0.00020	<0.00020	0	-	<0.00020	<0.00020
Tin	<0.00050	<0.00050	0	<0.00050	<0.00050	0	< 0.00050	< 0.00050	0	< 0.00050	<0.00050	0	-	<0.00050	<0.00050
Titanium	<0.010	<0.010	0	0.014	0.014	0	0.019	0.019	0	0.013	0.013	0	-	<0.010	< 0.010
Uranium	<0.00020	<0.00020	0	< 0.00020	<0.00020	0	0.00023	0.00023	0	0.00020	<0.00020	0	-	<0.00020	<0.00020
Vanadium	<0.0010	<0.0010	0	< 0.0010	<0.0010	0	<0.0010	<0.0010	0	<0.0010	<0.0010	0	-	<0.0010	<0.0010
Zinc	< 0.0050	< 0.0050	0	0.0054	0.0054	0	< 0.0050	< 0.0050	0	0.0063	0.0054	15	-	<0.0050	< 0.0050

Azimuth Consulting Group Inc.

Table 4-1: QA/QC data for water parameters, Second Third Portage Lakes, September 2008.

Seco	nd Portage La	ike	Seco	nd Portage La	ake	Variou	s Basins / Dep	ths	Variou	s Basins / Dep	ths	Travel	Blanks	Equipment Blank
2PL-EAS-DT	Field Dup	RPD	2PL-EAS-2	Field Dup	RPD	Original	Laboratory	RPD	Original	Laboratory	RPD	14 Con 09	22 Can 09	14-Sep-08
13-Sep-08	13-Sep-08	(%)	24-Sep-08	24-Sep-08	(%)	September R1	Duplicate	(%)	September R2	Duplicate	(%)	14-3ep-06	22-3ep-06	14-Sep-06
< 0.0050	<0.0050	0	0.021	0.024	-13	-	-	-	-	-	-	-	-	-
< 0.00050	<0.00050	0	< 0.00050	<0.00050	0	-	-	-	-	-	-	-	-	-
< 0.00050	< 0.00050	0	< 0.00050	< 0.00050	0	-	-	-	-	-	-	-	-	-
<0.020	<0.020	0	<0.020	<0.020	0	-	-	-	-	-	-	-	-	-
<0.0010	<0.0010	0	< 0.0010	<0.0010	0	-	-	-	-	-	-	-	-	-
<0.10	<0.10	0	<0.10	<0.10	0	-	-	-	-	-	-	-	-	-
< 0.000017	0.000059	-111	< 0.000017	< 0.000017	0	-	-	-	-	-	-	-	-	-
2.81	2.76	1.8	2.82	3.13	-10	_	-	-	-	-	-	_	-	-
<0.0010	<0.0010	0	< 0.0010	<0.0010	0	-	-	-	-	-	-	-	-	-
< 0.00030	< 0.00030	0	< 0.00030	< 0.00030	0	-	-	-	-	-	-	-	-	-
<0.0010	<0.0010	0	< 0.0010	<0.0010	0	_	-	-	-	-	-	_	-	-
< 0.030	< 0.030	0	< 0.030	< 0.030	0	_	-	-	-	-	-	_	-	-
< 0.00050	< 0.00050	0	< 0.00050	< 0.00050	0	_	-	-	-	-	-	_	-	-
< 0.0050	<0.0050	0	< 0.0050	< 0.0050	0	-	-	-	-	-	-	-	-	-
0.94	0.92	2.2	0.83	0.90	-8.1	_	-	-	-	-	-	_	-	-
0.00041	0.00042	-2.4	0.00045	0.00058	-25	_	-	-	-	-	-	_	-	-
<0.000020	<0.000020	0	<0.000020	<0.000020	0	-	-	-	-	-	-	-	-	-
<0.0010	<0.0010		<0.0010	<0.0010		-	-	-	-	-	-	-	-	-
<0.0010	<0.0010	0	<0.0010	<0.0010		-	-	_	_	-	_	_	-	_
<2.0	<2.0	0	<2.0	<2.0	0	-	-	-	-	-	-	-	-	-
<0.0010	<0.0010	0	<0.0010	<0.0010	0	-	-	-	-	-	-	-	-	-
<0.000020	<0.000020	0	<0.000020	<0.000020	0	-	-	_	_	-	_	_	-	_
<2.0	<2.0	0	<2.0	<2.0	0	-	-	-	-	-	-	-	-	-
<0.00020	<0.00020	0	<0.00020	<0.00020	0	-	-	-	-	-	-	-	-	-
<0.00050	<0.00050	0	<0.00050	<0.00050	0	_	_	_	-	_	_	_	-	_
<0.010	<0.010	0	<0.010	<0.010	0	_	_	_	-	_	_	_	-	_
<0.00020	<0.00020	0	<0.00020	<0.00020		-	-	_	_	-	_	_	-	_
						_	_	_	_	_	_	_	_	_
<0.0050	<0.0050	0	<0.0050	0.0102	-68	l -	_	_	_	_	_	_	_	_
	2PL-EAS-DT 13-Sep-08 <0.0050 <0.00050 <0.00050 <0.00050 <0.0000 <0.0010 <0.0001 <0.00010 <0.00030 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.000000 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000020 <0.000020 <0.000050 <0.000020 <0.0000020 <0.00000000000000	2PL-EAS-DT Field Dup 13-Sep-08 13-Sep-08 <0.0050	13-Sep-08 13-Sep-08 (%)	2PL-EAS-DT Field Dup RPD 2PL-EAS-2 13-Sep-08 13-Sep-08 (%) 24-Sep-08 <0.0050	2PL-EAS-DT Field Dup 13-Sep-08 RPD (%) 2PL-EAS-2 Field Dup 24-Sep-08 24-Sep	2PL-EAS-DT Field Dup 13-Sep-08 RPD 13-Sep-08 2PL-EAS-2 1-Field Dup 24-Sep-08 RPD 24-Sep-08 24-Sep-08 RPD 24-Sep-08	2PL-EAS-DT Field Dup RPD 2PL-EAS-2 Field Dup RPD September R1	Page	Page	2PL-EAS-DT Field Dup 13-Sep-08 13-Sep-08 (%) 24-Sep-08 24-Sep-08 (%) September R1 September R1 September R2 RPD (%) September R2 RPD (%) September R2 RPD September R2 RPD (%) September R2 RPD RPD (%) September R2 RPD	2PL-EAS-DT Field Dup RPD 2PL-EAS-2 Field Dup RPD 24-Sep-08 (%) September R1 Duplicate (%) September R1 Duplicate (%) September R2 Dup		2PLEAS.DT Field Dup RPD 2PLEAS.2 Field Dup RPD 24-Sep.08 (%) 24-Sep.08 (%) September R1 Duplicate RPD September R2 PPD Septe	

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) x 100.

Shaded RPDs exceed 25% (lab duplicates) or 50% (field duplicates).

Shaded travel and equipment blanks exceed laboratory method detection limits.

Azimuth Consulting Group Inc. Page 3 of 3

Table 4-2: Conventional water chemistry and total & dissolved metals (mg/L), Second & Third Portage Lakes, September 2008.

Basin					Second Po	rtage Lake				Third Por	tage Lake
Station		2PL-l	EAS-1	2PL-l	EAS-2	2PL-E	EAS-3	2PL-E	AS-DT	3PL	-EAS
Depth	CCME (2007)	1m	1m	1m	1m	1m	1m	1m	1m	2m	1m
Date	Guideline ¹	13-Sep-08	24-Sep-08	13-Sep-08	24-Sep-08	13-Sep-08	24-Sep-08	13-Sep-08	24-Sep-08	14-Sep-08	25-Sep-08
CONVENTIONAL PARAMETERS											
Physical Tests											
Conductivity (µS/cm)	NG	28.0	24.4	26.0	25.6	25.3	25.2	26.2	26.3	14.4	16.4
Hardness as CaCO ₃ (mg/L)	NG	11.9	9.98	10.8	10.4	10.3	10.4	10.9	10.9	5.10	5.09
pH	6.5 - 9.0	7.28	7.27	7.23	7.27	7.24	7.23	7.22	7.20	6.81	6.79
Total Suspended Solids (mg/L)	NG	<3.0	3.3	<3.0	53	<3.0	16	<3.0	3.8	<3.0	<3.0
Total Dissolved Solids (mg/L)	NG	16	13	20	16	14	16	12	20	<10	<10
Anions & Nutrients (mg/L)											
Alkalinity - Bicarbonate (as CaCO ₃)	NG	8.8	7.8	8.1	8.3	8.1	7.7	8.1	8.1	4.3	4.2
Alkalinity - Carbonate (as CaCO ₃)	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Alkalinity - Hydroxide (as CaCO ₃)	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Alkalinity - Total (as CaCO ₃)	NG	8.8	7.8	8.1	8.3	8.1	7.7	8.1	8.1	4.3	4.2
Ammonia (as N) ²	25.9 @ pH6.5; 8.24 @ pH7.0; 2.61 @ pH7.5	<0.020	0.022	<0.020	<0.020	<0.020	<0.020	0.027	<0.020	<0.020	<0.020
Chloride	NG	< 0.50	<0.50	< 0.50	0.54	<0.50	0.52	< 0.50	<0.50	<0.50	0.88
Nitrate (as N)	2.9	0.037	0.027	0.029	0.030	0.033	0.031	< 0.0050	<0.0050	<0.0050	<0.0050
Nitrite (as N)	0.06	0.0012	0.0014	<0.0010	0.0017	<0.0010	0.0018	< 0.0010	<0.0010	<0.0010	<0.0010
Total Kjeldahl Nitrogen	NG	0.0900	0.128	0.0800	0.132	0.0930	0.142	0.0910	0.127	0.0630	0.261
Ortho Phosphate (as P)	NG	0.0011	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Total Phosphate (as P)	NG	0.0094	0.0064	0.0073	0.0096	0.0077	0.0086	0.0025	0.0049	<0.0020	0.0048
Sulfate (SO ₄)	NG	1.98	2.39	2.02	2.49	1.87	2.45	2.42	2.96	1.08	1.49
ORGANIC / INORGANIC CARBON (mg/L	.)										
Dissolved Organic Carbon	NG	1.84	2.00	1.86	2.14	1.95	1.69	1.80	1.87	8.46	125
Total Organic Carbon	NG	1.45	1.48	1.51	1.73	1.59	1.65	1.74	1.93	1.41	2.10
PLANT PIGMENTS											
Chlorophyll a - standardized (µg/L)	Rep 1	0.582	0.652	0.403	0.671	0.474	0.420	0.608	0.396	0.622	0.161
Chlorophyll a - standardized (µg/L)	Rep 2	0.660	0.746	0.592	0.460	0.589	0.552	0.585	0.502	0.571	0.606
Chlorophyll a - standardized (µg/L)	Rep 3	0.653	0.712	0.363	0.401	0.666	0.506	0.540	0.488	0.564	0.406
Chlorophyll a - standardized (µg/L)	Rep 4	0.524	0.656	0.641	0.516	0.604	0.568	0.621	0.480	0.471	0.620
Chlorophyll a - standardized (µg/L)	Rep 5	0.502	NA	0.544	0.495	0.658	0.635	0.652	0.519	0.444	0.576

Table 4-2: Conventional water chemistry and total & dissolved metals (mg/L), Second & Third Portage Lakes, September 2008.

Basin					Second Po	ortage Lake				Third Por	tage Lake
Station		2PL-l	EAS-1	2PL-l	EAS-2	2PL-F	EAS-3	2PL-E	AS-DT	3PL	-EAS
Depth	CCME (2007)	1m	1m	1m	1m	1m	1m	1m	1m	2m	1m
Date	Guideline ¹	13-Sep-08	24-Sep-08	13-Sep-08	24-Sep-08	13-Sep-08	24-Sep-08	13-Sep-08	24-Sep-08	14-Sep-08	25-Sep-08
TOTAL METALS (mg/L)											
Aluminum ³	0.005 @pH<6.5 0.100 @ pH≥6.5	0.355	0.254	0.417	0.278	0.388	0.268	0.0146	0.0515	0.012	0.0396
Antimony	NG	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Arsenic	0.0050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Barium	NG	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Beryllium	NG	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Boron	NG	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cadmium ⁴	0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017
Calcium	NG	3.03	2.66	2.81	2.85	2.64	2.77	2.80	2.91	1.14	1.26
Chromium ⁵	0.0010	0.0011	<0.0010	0.0014	0.0011	0.0013	0.0011	<0.0010	<0.0010	<0.0010	<0.0010
Cobalt	NG	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Copper*	0.0020	0.0018	0.0014	0.0018	0.0020	0.0017	0.0019	<0.0010	0.0010	<0.0010	<0.0010
Iron	0.30	0.437	0.337	0.533	0.393	0.492	0.367	<0.030	0.0850	<0.030	0.0700
Lead*	0.0010	0.00118	<0.00050	0.00125	0.000860	0.00248	0.00691	<0.00050	0.00096	<0.00050	<0.00050
Lithium	NG	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
Magnesium	NG	0.98	0.89	1.0	0.93	0.95	0.92	0.92	0.94	0.53	0.55
Manganese	NG	0.00941	0.00656	0.00868	0.00832	0.00890	0.00777	0.00087	0.00205	0.00084	0.00229
Mercury	0.000026	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Molybdenum	0.073	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Nickel*	0.025	0.0013	<0.0010	0.0013	0.0010	0.0012	0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Potassium	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Selenium	0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Silver	0.00010	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Sodium	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Thallium	0.00080	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Tin	NG	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Titanium	NG	0.015	0.012	0.019	0.014	0.019	0.013	<0.010	<0.010	<0.010	<0.010
Uranium	NG	0.00027	<0.00020	0.00024	<0.00020	0.00023	0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Vanadium	NG	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010
Zinc	0.030	<0.0050	<0.0050	< 0.0050	0.0054	<0.0050	0.0063	< 0.0050	< 0.0050	<0.0050	< 0.0050

Table 4-2: Conventional water chemistry and total & dissolved metals (mg/L), Second & Third Portage Lakes, September 2008.

DISSOLVED METALS (mg/L) ⁶ Aluminum³ 0.005 @pH<6.5 0.100 @ pH≥6.5 0.0796 0.0208 0.0134 Antimony NG <0.00050 <0.00050 <0.00050 <0.00050 Arsenic 0.0050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 Barium NG <0.020 <0.020 <0.020 <0.020 Beryllium NG <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 Boron NG <0.10 <0.00017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.00010 <0.0010 <0.00000 Calcium NG 3.07 <0.68 <0.0000 <0.00000 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 Chromium⁵ 0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.00010 <0.00030 <0.00030 <0.00030 <0.00030 Copper⁴ 0.0020 <0.0010 <0.0010 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 Lithium NG <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 Magnesium NG <0.0016 <0.0016 <0.00048 <0.00043 <0.00043 <0.00043 <0.00043 <0.00043 <0.00043 <0.00043 <0.00043 <0.00043 <0.00043 <0.00043 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.00044 <0.	AS-2 2P 1m 1m 24-Sep-08 13-Sep-0 0.0211 0.0285 <0.00050 <0.00050 <0.00050 <0.00050 <0.0000 <0.0010 <0.10 <0.10 <0.00017 2.82 2.73 <0.0010 <0.0010 <0.00003 <0.00030 <0.00030 <0.0003 <0.00030 <0.0001 <0.0000 <0.0000 <0.0000 <0.0003 <0.0003 <0.0003 <0.0003 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.	0.0128 0 <0.00050 0 <0.00050 <0.020 0 <0.0010 <0.10 17 <0.000017 2.80 0 <0.0010 0 <0.00030 0 <0.0010	2PL-E 1m 13-Sep-08 <0.0050 <0.00050 <0.00050 <0.00050 <0.0010 <0.010 <0.00017 2.81 <0.0010 <0.00030 <0.0010	AS-DT 1m 24-Sep-08 0.0082 <0.00050 <0.00050 <0.0000 <0.10 <0.0010 <0.000017 2.89 <0.00010 <0.00030 <0.0010	Third Por 3PL- 2m 14-Sep-08 <0.0050 <0.00050 <0.00050 <0.0000 <0.0010 <0.000017 1.17 <0.0010 <0.00030	
Date Guideline¹ 13-Sep-08 24-Sep-08 13-Sep-08 2 DISSOLVED METALS (mg/L)² 0.005 @pH<6.5 0.100 @ pH≥6.5 0.0796 0.0208 0.0134 Aluminum³ 0.005 @pH≥6.5 0.00050 <0.00050 <0.00050 <0.00050 Antimony NG <0.00050 <0.00050 <0.00050 Arsenic 0.0050 <0.0020 <0.0200 <0.0020 Barium NG <0.0010 <0.0010 <0.0010 Beryllium NG <0.0010 <0.0010 <0.0010 Boron NG <0.10 <0.10 <0.010 Cadmium⁴ 0.000017 <0.000017 <0.000017 <0.000017 <0.000017 Calcium NG 3.07 2.68 2.81 Chromium⁵ 0.0010 <0.0010 <0.0010 <0.0010 Cobalt NG <0.00030 <0.00030 <0.00030 Copper⁴ 0.0020 <0.0010 <0.0010 <0.0010 Lead⁴ 0.0010 <0.0050 <0.0	24-Sep-08 13-Sep-0 0.0211 0.0285 <0.00050 <0.00056 <0.00050 <0.00056 <0.020 <0.020 <0.010 <0.0010 <0.10 <0.10 <0.000017 <0.00001 2.82 2.73 <0.0010 <0.0010 <0.00030 <0.00030 <0.0010 <0.0010	0.0128 0.0128 0.00050 0.00050 0.00050 0.00010 0.00010 0.00017 2.80 0.00010 0.00030 0.00010	13-Sep-08 <0.0050 <0.00050 <0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 2.81 <0.0010 <0.00030	0.0082 <0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.00017 2.89 <0.0010 <0.00030	<0.0050 <0.0050 <0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 1.17 <0.0010 <0.00030	25-Sep-08 <0.0050 <0.00050 <0.00050 <0.0005 <0.020 <0.0010 <0.10 <0.000017 1.18 <0.0010
DISSOLVED METALS (mg/L) ⁶ 0.005 @pH<6.5 0.100 @ pH≥6.5	0.0211 0.0285 <0.00050 <0.00056 <0.00050 <0.00056 <0.020 <0.0010 <0.10 <0.10 <0.00017 <0.00001 2.82 2.73 <0.0010 <0.0010 <0.0000 <0.0010 <0.0000 <0.0010 <0.000017 <0.00001 <0.000017 <0.00001 <0.00001 <0.0010 <0.00001 <0.0010 <0.00000 <0.00000 <0.00000 <0.00000 <0.00010 <0.0010	0.0128 0 <0.00050 0 <0.00050 <0.020 0 <0.0010 <0.10 17 <0.000017 2.80 0 <0.0010 0 <0.00030 0 <0.0010	<0.0050 <0.00050 <0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 2.81 <0.0010 <0.00030	0.0082 <0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 2.89 <0.0010 <0.00030	<0.0050 <0.00050 <0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 1.17 <0.0010 <0.00030	<0.0050 <0.00050 <0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 1.18 <0.0010
Aluminum³ 0.005 @pH<6.5 0.100 @ pH≥6.5	 <0.00050 <0.00050 <0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.00017 <0.000017 <0.000017 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.0010 <0.00003 <0.0010 <0.0010 <0.0010 	0 <0.00050 0 <0.00050 0 <0.00050 0 <0.020 0 <0.0010 <0.10 17 <0.000017 2.80 0 <0.0010 0 <0.00030 0 <0.0010	<0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 2.81 <0.0010 <0.00030	<0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 2.89 <0.0010 <0.00030	<0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 1.17 <0.0010 <0.00030	<0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 1.18 <0.0010
Aluminum	 <0.00050 <0.00050 <0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.00017 <0.000017 <0.000017 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.0010 <0.00003 <0.0010 <0.0010 <0.0010 	0 <0.00050 0 <0.00050 0 <0.00050 0 <0.020 0 <0.0010 <0.10 17 <0.000017 2.80 0 <0.0010 0 <0.00030 0 <0.0010	<0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 2.81 <0.0010 <0.00030	<0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 2.89 <0.0010 <0.00030	<0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 1.17 <0.0010 <0.00030	<0.00050 <0.00050 <0.020 <0.0010 <0.10 <0.000017 1.18 <0.0010
Arsenic 0.0050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.0000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.0000000 <0.000000 <0.000000 <0	<0.00050 <0.00050 <0.020 <0.020 <0.0010 <0.0010 <0.10 <0.10 <0.000017 <0.00001 2.82 2.73 <0.0010 <0.0010 <0.00030 <0.00030 <0.0010 <0.0010	0 <0.00050 <0.020 0 <0.0010 <0.10 17 <0.000017 2.80 0 <0.0010 0 <0.00030 0 <0.0010	<0.00050 <0.020 <0.0010 <0.10 <0.000017 2.81 <0.0010 <0.00030	<0.00050 <0.020 <0.0010 <0.10 <0.00017 2.89 <0.0010 <0.00030	<0.00050 <0.020 <0.0010 <0.10 <0.000017 1.17 <0.0010 <0.00030	<0.00050 <0.020 <0.0010 <0.10 <0.000017 1.18 <0.0010
Barium NG <0.020 <0.020 <0.020 Beryllium NG <0.0010	 <0.020 <0.020 <0.0010 <0.10 <0.00017 <0.000017 <0.00001 <0.00001 <0.00001 <0.0010 <0.00030 <0.0010 <0.0010 <0.0010 	 <0.020 <0.0010 <0.10 <0.00017 2.80 <0.0010 <0.0010 <0.00030 <0.0010 	<0.020 <0.0010 <0.10 <0.000017 2.81 <0.0010 <0.00030	<0.020 <0.0010 <0.10 <0.000017 2.89 <0.0010 <0.00030	<0.020 <0.0010 <0.10 <0.000017 1.17 <0.0010 <0.00030	<0.020 <0.0010 <0.10 <0.000017 1.18 <0.0010
Beryllium NG <0.0010 <0.0010 <0.0010 Boron NG <0.10	<0.0010 <0.0010 <0.10 <0.10 <0.000017 <0.00001 2.82 2.73 <0.0010 <0.0010 <0.00030 <0.0003 <0.0010 <0.0010	0 <0.0010 <0.10 17 <0.000017 2.80 0 <0.0010 0 <0.00030 0 <0.0010	<0.0010 <0.10 <0.000017 2.81 <0.0010 <0.00030	<0.0010 <0.10 <0.000017 2.89 <0.0010 <0.00030	<0.0010 <0.10 <0.000017 1.17 <0.0010 <0.00030	<0.0010 <0.10 <0.000017 1.18 <0.0010
Boron NG <0.10 <0.10 <0.10 Cadmium ⁴ 0.000017 <0.000017	 <0.10 <0.000017 <0.000017 2.82 <0.0010 <0.0010 <0.00030 <0.0010 <0.0010 <0.0010 	<0.10 17 <0.000017 2.80 0 <0.0010 0 <0.00030 0 <0.0010	<0.10 <0.000017 2.81 <0.0010 <0.00030	<0.10 <0.000017 2.89 <0.0010 <0.00030	<0.10 <0.000017 1.17 <0.0010 <0.00030	<0.10 <0.000017 1.18 <0.0010
Cadmium ⁴ 0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.000017 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00030 <0.00030 <0.00030 <0.00030 <0.00010 <0.0010 <0.0010 <0.0010 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	<0.000017 <0.00001 2.82 2.73 <0.0010 <0.0010 <0.00030 <0.00030 <0.0010 <0.0010	2.80 2.000010 0 <0.0010 0 <0.00030 0 <0.0010	<0.000017 2.81 <0.0010 <0.00030	<0.000017 2.89 <0.0010 <0.00030	<0.000017 1.17 <0.0010 <0.00030	<0.000017 1.18 <0.0010
Calcium NG 3.07 2.68 2.81 Chromium ⁵ 0.0010 <0.0010	2.82 2.73 <0.0010 <0.0010 <0.00030 <0.00030 <0.0010 <0.0010	2.80 0 <0.0010 0 <0.00030 0 <0.0010	2.81 <0.0010 <0.00030	2.89 <0.0010 <0.00030	1.17 <0.0010 <0.00030	1.18 <0.0010
Chromium ⁵ 0.0010 <0.0010 <0.0010 <0.0010 <0.0010 Cobalt NG <0.00030	<0.0010 <0.0010 <0.00030 <0.00030 <0.0010 <0.0010	0 <0.0010 0 <0.00030 0 <0.0010	<0.0010 <0.00030	<0.0010 <0.00030	<0.0010 <0.00030	<0.0010
Cobalt NG <0.00030 <0.00030 <0.00030 Copper* 0.0020 <0.0010	<0.00030 <0.00030 <0.0010 <0.0010	0 <0.00030 0 <0.0010	<0.00030	<0.00030	<0.00030	
Copper* 0.0020 <0.0010 0.0010 <0.0010 Iron 0.30 0.073 <0.030	<0.0010 <0.0010	0.0010				<0.00030
Iron 0.30 0.073 <0.030 <0.030 Lead* 0.0010 <0.0050			<0.0010	<0.0010	-0.0040	
Lead* 0.0010 <0.0050 <0.00050 <0.00050 Lithium NG <0.0050	<0.030 <0.030	< 0.030		-0.0010	<0.0010	<0.0010
Lithium NG <0.0050 <0.0050 <0.0050 Magnesium NG 1.0 0.8 0.91 Manganese NG 0.0016 0.00048 0.00043 Mercury 0.00026 <0.000020		0.000	< 0.030	<0.030	<0.030	<0.030
Magnesium NG 1.0 0.8 0.91 Manganese NG 0.0016 0.00048 0.00043 Mercury 0.00026 <0.000020	<0.00050 <0.00050	0 <0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Manganese NG 0.0016 0.00048 0.00043 Mercury 0.00026 <0.000020	<0.0050 <0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Mercury 0.000026 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00	0.83 0.85	0.83	0.94	0.90	0.53	0.52
Molybdenum 0.073 <0.0010 <0.0010 <0.0010 Nickel* 0.025 <0.0010	0.00045 0.00081	1 0.00041	0.00041	0.00048	0.00031	0.0003
Nickel* 0.025 <0.0010 <0.0010 <0.0010	<0.000020 <0.00002	20 <0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	<0.0010 <0.0010	0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Potassium NG <2.0 <2.0 <2.0	<0.0010 <0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010
	<2.0 <2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Selenium 0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010	0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Silver 0.00010 <0.00020 <0.00020 <0.000020 <	<0.000020 <0.00002	20 <0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Sodium NG <2.0 <2.0 <2.0	<2.0 <2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Thallium 0.00080 <0.00020 <0.00020 <0.00020	<0.00020 <0.00020	0 <0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Tin NG <0.00050 <0.00050 <0.00050	<0.00050 <0.00050	0 <0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Titanium NG <0.010 <0.010 <0.010	<0.010 <0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Uranium NG <0.00020 <0.00020 <0.00020	<0.00020 <0.00020	0 <0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Vanadium NG <0.0010 <0.0010 <0.0010	<0.0010 <0.0010	0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Zinc 0.030 <0.0050 <0.0050 <0.0050	<0.0050 <0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050

NG = no guideline.

Shaded concentrations exceed the CCME guideline.

¹CCME (Canadian Council of Ministers of the Environment) Canadian Water Quality Guidelines for the Protection of Aquatic Life, 1999, updated December 2007.

²Ammonia guidelines are for 10°C.

³Aluminum guideline is pH dependent.

⁴Interim cadmium guideline.

⁵Chromium guideline is for Cr VI, which yields the most conservative guideline.

⁶Guidelines have not yet been made for "Dissolved Metals," thus were screened against CCME guidelines for "Total Metals."

^{*}Copper, lead and nickel guidelines are hardness dependent; minimum hardness was selected to yield the most conservative guideline.

Table 4-3. Sediment deposition rates and estimated accumulation for EAS sediment traps, Second Portage Lake, 2008.

				Sedime	nt Trap		
	Units	HVH-1	HVH-2	HVH-3	HVH-4	HVH-5	HVH-6
Easting ¹	UTM	639641	640043	640214	640333	639716	640427
Northing	UTM	7214019	7213782	7213767	7213713	7213372	7213078
		26-Jul-	25-Aug-	26-Jul-	26-Jul-	26-Jul-	26-Jul-
Set date		08	08	80	08	08	80
Retrieval date ²		18-Sep-	22-Sep-	NΙΔ	22-Sep- 08	25-Sep-	NΙΛ
Remeval date		80	80	NA	06	80	NA
Trap contents (dry) Trap contents	(g dw)	9.3	5.6		5.04	5.62	
(wet) ³	(g ww)	58	35		32	35	
Set length	(days) (g	50	28		54	57	
Deposition Rate	ww/d)	1.2	1.3		0.58	0.62	
Accumulation ⁴	(cm)	0.179	0.108		0.097	0.108	

- 1. NAD83 zone 14W
- 2. NA = not retrieved successfully
- 3. Assumes 84% moisture content
- 4. Assumes mean material density of 2 g/cm³ (Telford et al., 1996)

Table 4-4. Sediment chemistry results for EAS sediment traps in Second Portage Lake, 2008.

Lake & Basin	Sediment Qua	lity Guidelines	Second Portage Lake	Second Portage Lake		
Station ID	(CCME	2002) ¹	SP-ST-2 (R1-R4)	SP-ST-5 (R1-R4)		
Date	ISQG	PEL	22-Sep-08	24-Sep-08		
CONVENTIONAL PARAMETERS						
Physical & Organic Parameters						
pH	NG	NG	6.21	6.27		
Total Organic Carbon (% dw)	NG	NG	2.4	1.8		
TOTAL METALS (mg/kg dw)						
Aluminum	NG	NG	42200	43100		
Antimony	NG	NG	<10	<10		
Arsenic	5.9	17	16.7	16.4		
Barium	NG	NG	234	233		
Beryllium	NG	NG	1.65	1.76		
Cadmium	0.60	3.5	0.51	<0.50		
Chromium	37.3	90.0	175	194		
Cobalt	NG	NG	25.5	27.9		
Copper	35.7	197	87.6	101		
Lead	35.0	91.3	<30	<30		
Mercury	0.170	0.486	0.0303	0.0242		
Molybdenum	NG	NG	<4.0	<4.0		
Nickel	NG	NG	109	113		
Selenium	NG	NG	<2.0	<2.0		
Silver	NG	NG	<2.0	<2.0		
Thallium	NG	NG	<1.0	<1.0		
Tin	NG	NG	<5.0	<5.0		
Vanadium	NG	NG	70.5	76.5		
Zinc	123	315	235	272		

NG = no guideline.

ISQG = Interim freshwater Sediment Quality Guideline, PEI = Probably Effects Level.

Shaded concentrations = or > ISQG.

Boxed concentration also > PEL.

¹ CCME (Canadian Council of Ministers of the Environment) Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, 1999, updated in 2002.

Table 4-5. EAS statistical analyses results for primary productivity and zooplankton biomass, 2008.

		/	Zooplankton		
	(mg	iomass /m³)		/m³)	Biomass (mg/m³)
	Sept 13/14	Sept 24/25	Sept 13/14	Sept 24/25	Sept 13/14
Data Transformation ¹	log10	log10	log10	Rank	Rand
Normal?	Yes	Yes	Yes	No	Yes
Homogeneity of Variance?	Yes	Yes	Yes	NA	No
ANOVA/Kruskal-Wallis?	ANOVA	ANOVA	ANOVA	K-W	K-W
Significant Differences?	Yes	Yes	No	Yes	Yes
p-value	<0.001	<0.001	0.272	0.007	<0.001
Contrasts ²					
Reference vs. Exposure					
Significant Difference?	Yes	Yes	No	No	No
p-value	<0.001	< 0.001	0.82	0.06	0.74
Reference Mean ³	191	135	0.564	0.450	32.7
Exposure Mean ³	73	101	0.555	0.562	43.9
Effect Size ³	-117.9	-34.0	-0.009	0.112	11.2
95% Upper CI of Effect Size ³	-141.0	-53.4	-0.087	-0.018	-8.9
Within Exposure (NF vs FF)					
Significant Difference?	No	No	No	No	No
p-value	0.9	0.82	0.27	0.34	0.91
Near-Field Mean ³	73	100	0.537	0.577	43.8
Far-Field Mean ³	74	103	0.594	0.530	44.3
Effect Size ³	0.9	2.3	0.057	-0.046	0.5
95% Upper CI of Effect Size ³	-16.9	-24.4	-0.167	-0.153	-35.6

- 1. Normality examined visually (e.g., residuals in QQ Plots) and tested using Shapiro-Wilk test (p>0.05 assumed normal). Homogeneity of variance tested using Bartlett's test (p>0.05 assumed homogenous). Data were ranked for non-parametric Kruskal-Wallis
- 2. Contrasts were used to test specific comparisons of interest based on *a priori* hypotheses. The "Within Exposure" contrast looks at whether there are difference in key variables between the two stations closest to the dike and the one further away.
- 3. Values reported in original units (i.e., back transformed; means for log10-transformed variables are geometric means; means, effect sizes and effect size confidence interval for rank-transformed variables based on log10 data (see Methods for details).

Table 4-6: QA/QC data for phytoplankton at EAS stations, Second & Third Portage Lakes, September 2008

		Second F	ortage Lake	e - EAS-1	Second P	ortage Lake	- EAS-3	Third Portage Lake - EAS			
		REP #5	Lab	RPD	REP #4	Lab	RPD	REP #3	Lab	RPD	
		########	Duplicate	(%)	13-Sep-08	Duplicate	(%)	14-Sep-08	Duplicate	(%)	
Phytoplankton Density	(cells/	L)									
Cyanophyte		0	0	0	0	0	0	0	200	-200	
Chlorophyte		58272	79424	-31	144280	237472	-49	129712	143880	-10	
Euglenophyte		0	0	0	0	0	0	0	0	0	
Chrysophyte		539800	575520	-6.4	495896	459976	7.5	1660304	1624984	2.2	
Diatom		46704	32136	37	54088	77440	-36	224504	239072	-6.3	
Cryptophyte		171432	141696	19	132912	110560	18	66456	59072	12	
Dinoflagellate		200	1000	-133	7984	1200	148	16768	8984	60	
	Total	816408	829776	-1.6	835160	886648	-6.0	2097744	2076192	1.0	
Mea	n RPD			-16			13			-20	
Phytoplankton Biomas	ss (mg/r	n³)									
Cyanophyte		0	0	0	0	0	0	0	0.240	-200	
Chlorophyte		4.76	3.77	23	3.37	4.19	-22	3.26	4.38	-29	
Euglenophyte		0	0	0	0	0	0	0	0	0	
Chrysophyte		42.1	39.6	6.3	38.2	39.9	-4.2	120	123	-2.4	
Diatom		5.27	5.33	-1.0	6.58	11.2	-52	14.5	16.5	-13	
Cryptophyte		21.0	18.1	15	16.0	12.9	22	11.5	4.42	89	
Dinoflagellate		0.328	10.3	-188	3.48	5.44	-44	20.6	10.6	65	
	Total	73.5	77.0	-4.7	67.6	73.6	-8.5	170	159	6.6	
Mea	n RPD			-21			-14			-13	
# Species		26	29	-11	28	27	3.6	36	38	-5.4	
Simpsons Diversity		0.82	0.84	-2.1	0.89	0.90	-0.8	0.89	0.90	-0.8	

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) \times 100.

Shaded RPDs exceed 25% (lab duplicates).

Table 4-6 QA/QC data for phytoplankton at EAS stations, Second & Third Portage Lakes, September 2008.

	Second F	ortage Lake	- EAS-2	Second Po	ortage Lake	- EAS-DT	Third P	ortage Lake	e - EAS
	REP #3	Lab	RPD	REP #2	Lab	RPD	REP #5	Lab	RPD
	24-Sep-08	Duplicate	(%)	24-Sep-08	Duplicate	(%)	########	Duplicate	(%)
Phytoplankton Density (cells/									
Cyanophyte	0	0	0	14368	14368	0	79824	14968	137
Chlorophyte	187584	151864	21	101176	258824	-88	403304	366584	9.5
Euglenophyte	0	0	0	0	0	0	0	0	0
Chrysophyte	934520	1013744	-8.1	836944	736968	13	1013744	1172392	-15
Diatom	100592	106176	-5.4	38936	89024	-78	166832	175216	-4.9
Cryptophyte	128728	109376	16	74840	61272	20	61072	75240	-21
Dinoflagellate	800	7984	-164	7184	14768	-69	8984	1600	140
Total	1352224	1389144	-2.7	1073448	1175224	-9.1	1733760	1806000	-4.1
Mean RPD			-20			-29			35
Phytoplankton Biomass (mg/r									
Cyanophyte	0	0	0	1.08	1.08	0	2.73	1.22	77
Chlorophyte	4.74	4.71	0.5	4.43	6.64	-40	9.73	7.64	24
Euglenophyte	0	0	0	0	0	0	0	0	0
Chrysophyte	62.3	52.1	18	55.3	55.7	-0.8	93.6	102	-8.7
Diatom	10.1	9.74	3.8	11.2	15.0	-29	8.83	10.4	-16
Cryptophyte	21.2	23.0	-8.0	8.79	9.26	-5.2	7.52	8.56	-13
Dinoflagellate	5.41	7.58	-33	2.41	5.19	-73	6.31	5.41	15
Total	104	97.1	6.7	83.2	92.9	-11	129	135	-5.0
Mean RPD			-2.7			-21			11
# Species	37	37	0	37	37	0	42	41	2.4
Simpsons Diversity	0.89	0.88	0.4	0.85	0.89	-4.5	0.93	0.93	0.2

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) \times 100.

Shaded RPDs exceed 25% (lab duplicates).

Table 4-7: Biomass (mg/m ³) and diversity of major phytoplankton groups at EAS stations, Second & Third Portage Lakes, September 2008.

Station	Date		Phytoplankton Biomass (mg/m³) Cyanophyte ChlorophyteEuglenophyteChrysophyte Diatom CryptophyteDinoflagellate Total								
Station	Date	Cyanophyte	Chlorophyte	Euglenophyte	Chrysophyte	Diatom	Cryptophyte	ophyte Dinoflagellate		– # Species	Diversity
Second Pol	rtage Lake EAS-1										
Rep 1	13-Sep-08	0	5.45	0	34.7	3.26	20.0	0.422	63.8	30	0.86
Rep 2		0.181	2.19	0	43.0	8.11	23.8	5.33	82.6	31	0.88
Rep 3		0	2.78	0	16.1	5.26	21.7	0.328	46.2	28	0.84
Rep 4		1.44	1.39	0	20.7	4.21	23.1	2.43	53.3	25	0.86
Rep 5		0	4.76	0	42.1	5.27	21.0	0.328	73.5	26	0.82
Rep 1	24-Sep-08	1.32	7.32	0	61.7	17.2	15.6	16.7	120	37	0.89
Rep 2	•	0.0644	2.51	0	60.4	12.9	10.5	9.47	95.8	38	0.90
Rep 3		0.443	7.14	0.192	69.4	14.8	21.4	5.19	119	41	0.91
Rep 4		0	6.49	0	46.0	12.7	18.8	3.42	87.4	40	0.89
Rep 5		0	7.34	0	77.4	10.8	17.2	0	113	36	0.92
2PL-	EAS-2										
Rep 1	13-Sep-08	0	2.71	0	36.4	5.66	34.9	9.00	88.6	30	0.86
Rep 2	·	0	3.06	0	39.5	10.2	24.5	6.51	83.7	37	0.86
Rep 3		0	4.92	0	44.1	6.57	19.9	8.54	84.0	33	0.86
Rep 4		0	4.41	0	49.3	9.19	28.4	0	91.3	27	0.84
Rep 5		0	7.37	0	31.4	5.22	24.8	11.0	79.8	34	0.90
Rep 1	24-Sep-08	0	4.58	0	56.1	8.86	17.9	2.10	89.6	36	0.82
Rep 2	·	0	3.97	0	53.5	8.36	20.2	0.328	86.3	36	0.88
Rep 3		0	4.74	0	62.3	10.1	21.2	5.41	104	37	0.89
Rep 4		0	3.43	0	51.2	9.83	20.0	6.18	90.6	32	0.88
Rep 5		1.18	5.43	0	60.9	8.65	27.8	0.328	104	35	0.91
2PL-	EAS-3										
Rep 1	13-Sep-08	0	3.89	0	26.0	10.1	15.2	4.81	60.0	35	0.91
Rep 2		0	1.40	0	39.1	9.29	22.4	12.6	84.7	28	0.86
Rep 3		0	3.22	0	42.7	15.6	18.8	6.50	86.9	29	0.90
Rep 4		0	3.37	0	38.2	6.58	16.0	3.48	67.6	28	0.89
Rep 5		0	5.06	0	36.7	8.06	20.0	4.51	74.3	35	0.90
Rep 1	24-Sep-08	1.02	2.40	0	61.9	13.0	35.6	11.6	126	43	0.90
Rep 2	•	1.38	3.59	0	58.3	14.7	16.3	7.52	102	45	0.91
Rep 3		0	6.88	0	51.4	13.4	24.7	0.429	96.8	42	0.88
Rep 4		0	6.98	0	52.8	21.1	28.5	0	109	36	0.88
Rep 5		0	3.67	0	41.3	14.1	19.6	4.99	83.7	35	0.90

Station	Date	Phytoplankton Biomass (mg/m³)								– # Species	Simpsons
Otation		Cyanophyte	Chlorophyte	Euglenophyte	Chrysophyte	Diatom	Cryptophyte	Dinoflagellate	Total	# Opecies	Diversity
Second Por	tage Lake (c	ontinued)									
2PL-E	AS-DT										
Rep 1	13-Sep-08	0	7.53	0	162	19.3	13.5	14.5	217	41	0.87
Rep 2		0.716	4.57	0	122	9.77	12.9	9.10	159	39	0.88
Rep 3		0.184	5.20	0	120	13.6	13.4	12.7	165	41	0.86
Rep 4		0.718	11.6	0	140	16.7	10.6	11.6	191	40	0.86
Rep 5		0	7.41	0	119	15.1	13.2	14.3	169	42	0.88
Rep 1	24-Sep-08	0.964	10.2	0	115	22.3	15.1	0	164	39	0.88
Rep 2		1.08	4.43	0	55.3	11.2	8.79	2.41	83.2	37	0.85
Rep 3		0.539	2.93	0	80.7	13.1	6.96	10.2	114	38	0.88
Rep 4		0.539	5.61	0	75.5	15.0	12.2	9.25	118	41	0.84
Rep 5		3.23	3.51	0	85.6	10.2	4.43	8.50	115	38	0.85
Third Portag	ge Lake										
3PL	-EAS										
Rep 1	14-Sep-08	0	9.90	0	154	18.1	10.3	31.5	224	40	0.91
Rep 2		0.480	3.87	0	160	16.8	9.00	33.5	224	39	0.89
Rep 3		0	3.26	0	120	14.5	11.5	20.6	170	36	0.89
Rep 4		0.539	11.3	0	170	9.73	8.48	20.6	221	42	0.91
Rep 5		0.988	5.90	0.407	141	11.9	10.6	18.1	189	40	0.89
Rep 1	25-Sep-08	1.67	8.64	0	120	18.5	5.66	8.38	163	43	0.93
Rep 2		1.74	7.32	0	117	16.8	7.18	12.8	163	41	0.91
Rep 3		32.2	8.68	0	90.2	12.6	12.8	15.7	172	41	0.92
Rep 4		1.78	4.83	0	107	19.3	10.9	17.7	162	43	0.91
Rep 5		2.73	9.73	0	93.6	8.83	7.52	6.31	129	42	0.93
Relative Bio	mass (%)	0.959	4.51	0.0101	63.0	10.0	14.3	7.17	NA	NA	NA

Table 4-8: Density (cells/L) of major phytoplankton groups at EAS stations, Second & Third Portage Lakes, September 2008.

Station	Date	Phytoplankton Density (cells/L)								
Station		Cyanophyte	Chlorophyte E	uglenophy	teChrysophyte	Diatom	Cryptophyte	Dinoflagellate	Total	
	ortage Lake -EAS-1									
Rep 1	13-Sep-08	0	330864	0	503480	25352	202352	400	1062448	
Rep 2		14368	122128	0	590288	69056	140712	1200	937752	
Rep 3		0	151664	0	511264	67256	167448	200	897832	
Rep 4		7184	165232	0	417272	67456	193384	800	851328	
Rep 5		0	58272	0	539800	46704	171432	200	816408	
Rep 1	24-Sep-08	79224	374168	0	1099752	165248	75056	43904	1837352	
Rep 2		200	201352	0	741752	74056	70056	14768	1102184	
Rep 3		400	295144	200	833944	97608	133328	14768	1375392	
Rep 4		0	246656	0	813592	45720	143896	1200	1251064	
Rep 5		0	338448	0	763104	36936	89424	0	1227912	
2PL	-EAS-2									
Rep 1	13-Sep-08	0	79024	0	468360	55088	282792	21952	907216	
Rep 2		0	64856	0	668912	69856	183216	7784	994624	
Rep 3		0	204552	0	626608	48504	122944	22352	1024960	
Rep 4		0	51088	0	755520	21768	203968	0	1032344	
Rep 5		0	309312	0	410088	25552	200368	14968	960288	
Rep 1	24-Sep-08	0	144280	0	970040	81640	86424	600	1282984	
Rep 2		0	130112	0	934520	77840	95408	200	1238080	
Rep 3		0	187584	0	934520	100592	128728	800	1352224	
Rep 4		0	115744	0	776472	80040	109176	7784	1089216	
Rep 5		7184	323480	0	776872	71856	173032	200	1352624	
2PL	-EAS-3									
Rep 1	13-Sep-08	0	195568	0	503280	69256	106176	14368	888648	
Rep 2	•	0	43904	0	669112	40720	171232	23352	948320	
Rep 3		0	244256	0	711216	53504	95808	21552	1126336	
Rep 4		0	144280	0	495896	54088	132912	7984	835160	
Rep 5		0	202352	0	568136	71856	164248	7984	1014576	
Rep 1	24-Sep-08	7184	86808	0	776472	75656	156080	21952	1124152	
Rep 2	•	86208	86808	0	826760	127544	58488	7784	1193592	
Rep 3		0	180200	0	812192	104192	119760	200	1216544	
Rep 4		0	158048	0	841128	42336	172832	0	1214344	
Rep 5		0	194168	0	806208	88624	76056	7384	1172440	

Station	Date			Ph	ytoplankton D	ensity (ce	lls/L)		
Station	Date	Cyanophyte	Chlorophyte	Euglenophyte	Chrysophyte	Diatom	Cryptophytel	Dinoflagellate	Total
Second P	ortage Lake	(continued)							
2PL-l	EAS-DT								
Rep 1	13-Sep-08	0	201952	0	2036272	89424	81040	14968	2423656
Rep 2		7384	151264	0	1461752	57488	104976	28936	1811800
Rep 3		200	108360	0	1442400	78640	85424	22152	1737176
Rep 4		7184	297744	0	1801000	66872	42320	15768	2230888
Rep 5		0	89208	0	1346208	79240	93008	22352	1630016
Rep 1	24-Sep-08	6400	274192	0	1354592	150696	114360	0	1900240
Rep 2	-	14368	101176	0	836944	38936	74840	7184	1073448
Rep 3		7184	122528	0	1080400	85624	53488	14968	1364192
Rep 4		7184	136496	0	1094568	33552	91208	14768	1377776
Rep 5		43104	173216	0	1052464	33952	18568	14968	1336272
Third Port	tage Lake								
	L-EAS								
Rep 1	14-Sep-08	0	204152	0	1662504	274192	62472	46904	2250224
Rep 2	-	400	136896	0	1669688	274592	27352	32936	2141864
Rep 3		0	129712	0	1660304	224504	66456	16768	2097744
Rep 4		7184	187384	0	1825736	245056	82824	52088	2400272
Rep 5		7984	100776	200	1553944	159048	118144	16368	1956464
Rep 1	25-Sep-08	21752	352816	0	1560328	270408	45904	2400	2253608
Rep 2		22152	237672	0	1489088	255640	47504	9784	2061840
Rep 3		600	346032	0	1295320	167632	106576	8784	1924944
Rep 4		14968	173416	0	1510840	282376	84024	31136	2096760
Rep 5		79824	403304	0	1013744	166832	61072	8984	1733760
Relative A	bundance (°	0.632	13.2	0.000562	70.1	7.16	8.00	0.912	NA

Table 4-9: Relative abundance of zooplankton taxa at EAS stations in Second and Third Portage Lakes, 2008.

Таха	Station							
Taxa	2PL-EAS-1	2PL-EAS-2	2PL-EAS-3	2PL-EAS-DT	3PL-EAS			
DIPTERA								
Unidentified Chironomidae larv	0%	0%	0%	0.11%	0%			
CLADOCERA								
Daphniidae								
Daphnia longiremis Sars	0%	0.62%	0%	0.22%	0.34%			
Daphnia middendorffiana Fischer	1.7%	3.8%	3.4%	0.22%	0.67%			
Bosminidae								
Bosmina longirostris (O.F. Muller)	16%	14%	10%	9.9%	14%			
Chydoridae								
Chydorus	0.29%	0.31%	0.42%	0.32%	0%			
COPEPODA								
Calanoida								
Unidentified Calanoida	0.29%	0.23%	0.84%	0.43%	0.34%			
Diaptomidae								
Diaptomus ashlandi Marsh	0.86%	0.93%	8.4%	3.9%	0.34%			
Diaptomus minutus Lilljeborg	6.6%	6.5%	8.4%	13%	0.67%			
Diaptomus sicilis S.A. Forbes	6.7%	9.6%	7.7%	8.6%	14%			
Unidentified <i>Diaptomus</i> females*	21%	22%	28%	24%	35%			
Temoridae								
Heterocope septentrionalis Juday and Muttkowsk	0%	0%	0%	1.7%	1.3%			
Cyclopoida								
Unidentified Cyclopoida	11%	4.3%	6.7%	9.5%	1.7%			
Cyclopidae								
Acanthocyclops vernalis Fisher	0.57%	1.2%	0.42%	1.7%	0.67%			
Cyclops scutifer Sars	36%	37%	26%	26%	30%			
Harpacticoida								
Unidentified Harpacticoida	0.072%	0%	0%	0%	0%			
Total Number of Taxa	9	9	8	11	9			

Relative abundance: calculated as [(ind. taxa zooplabkton abundance) / sum(station zooplankton abundance)] * 100.

^{*} Taxa are not included in taxa richness counts.

Table 4-10. Statistical analyses results for the AEMP benthic invertebrate data set.

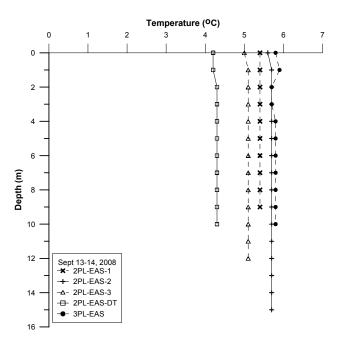
		Model		Target	
Station	Parameter	Fixed Effects	Random Effects	Effect	B*C Trend Interpretation
SP	Total Abundance	B + C + B*C	Yr, Stn	B*C	Negligible, p = 0.27
			Stn/Yr	B*C	Marginal, p = 0.11
SP	Total Richness	B + C + B*C	Yr, Stn	B*C	Negligible, p = 0.45
TE	Total Abundance	B + C + B*C	Yr, Stn	B*C	Negligible, p = 0.68
			Stn/Yr	B*C	Negligible, p = 0.50
TE	Total Richness	B + C + B*C	Yr, Stn	B*C	Negligible, p = 0.51

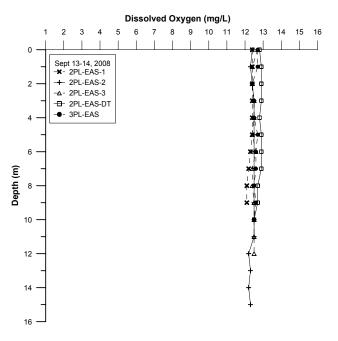
Notes: Station: SP = Second Portage; TE = Tehek

Fixed Effects: B = Before - After; C = Control - Impact; * = interaction

Random Effects: Stn = Station; Yr = Year; "/" = nested

Trends:


Strong (p<0.001)


Moderate (0.001<p<0.05) Marginal (0.05<p<0.2)

Negligible (p>0.2)

Figure 4-1. Temperature (°C) and dissolved oxygen (mg/L) profiles, Second and Third Portage Lakes, September 13-14, 2008.

Figure 4-2. Temperature (°C) and dissolved oxygen (mg/L) profiles, Second and Third Portage Lakes, September 24-25, 2008.

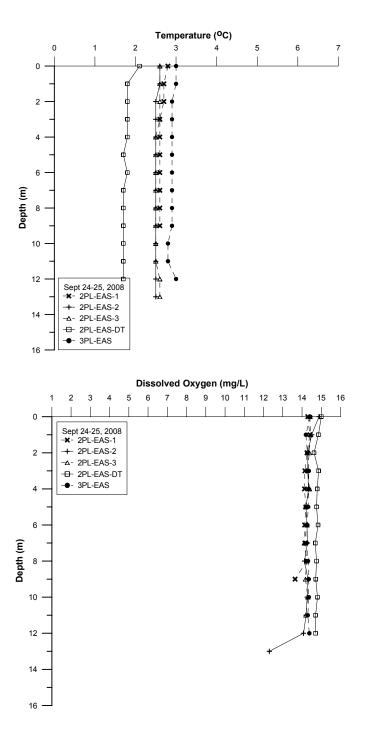
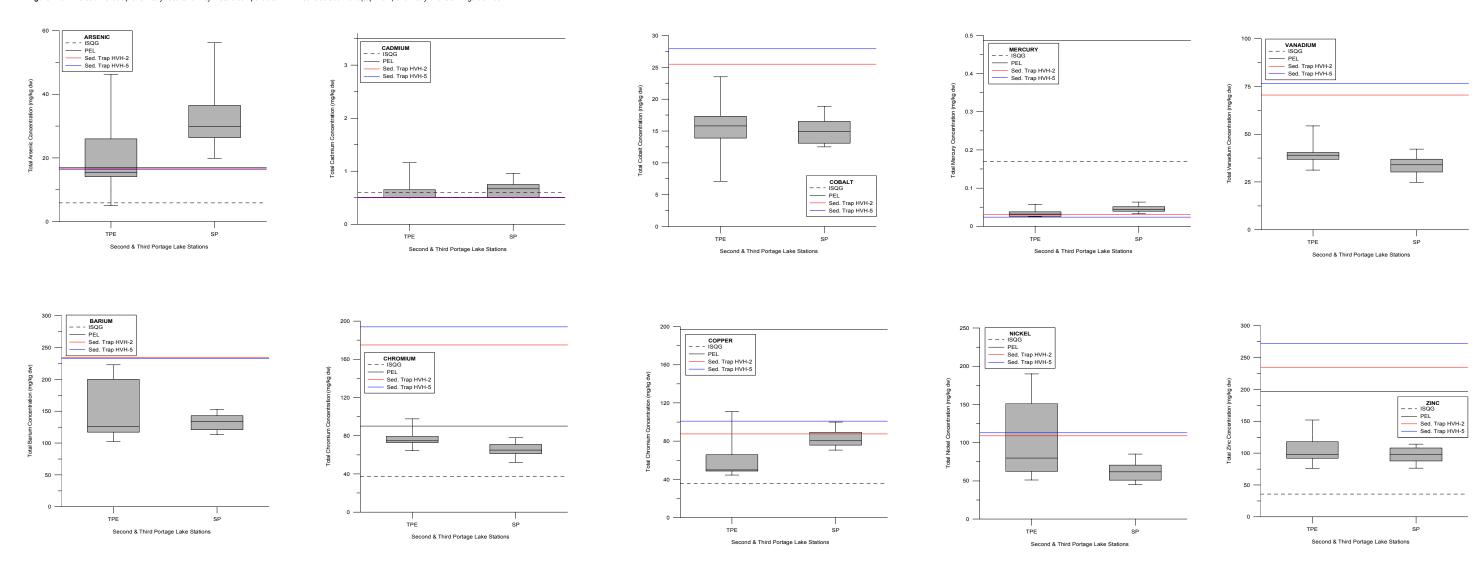
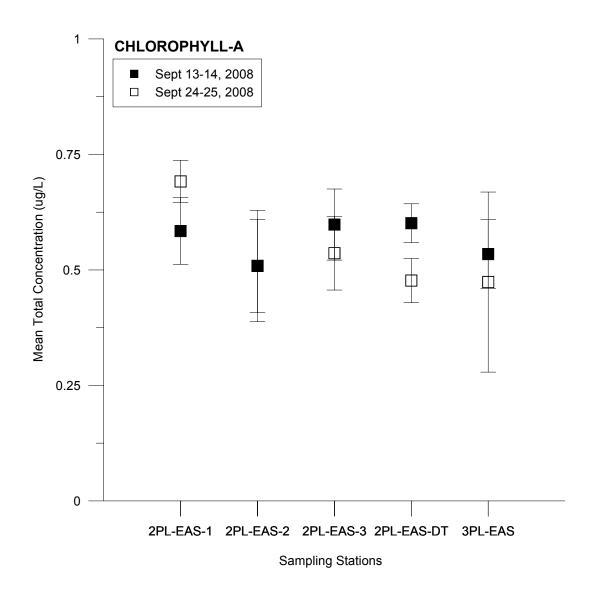




Figure 4-3. EAS sediment trap chemistry results for key metals compared to AEMP surface sediment (top 1 cm) chemistry and CCME guidelines.

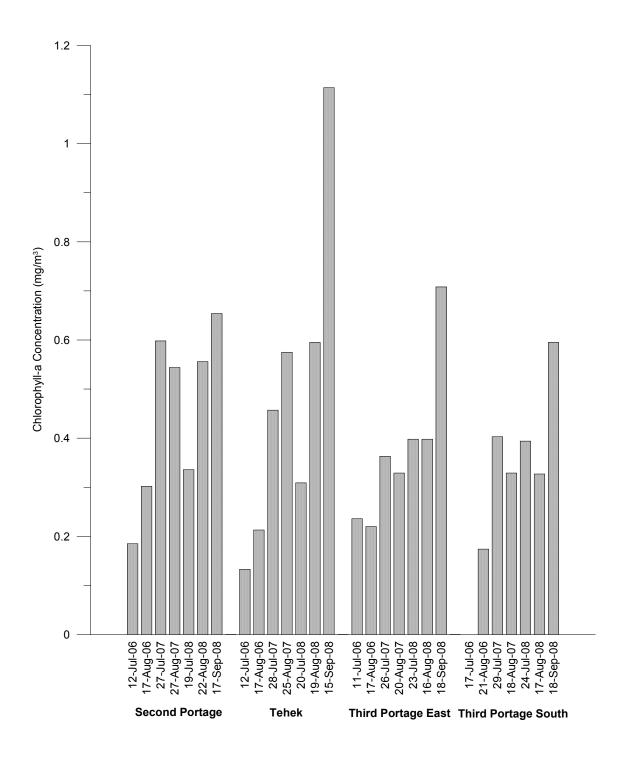


Figure 4-4. Mean total chlorophyll-a concentration (ug/L) in EAS study, Second and Third Portage Lakes, 2008.

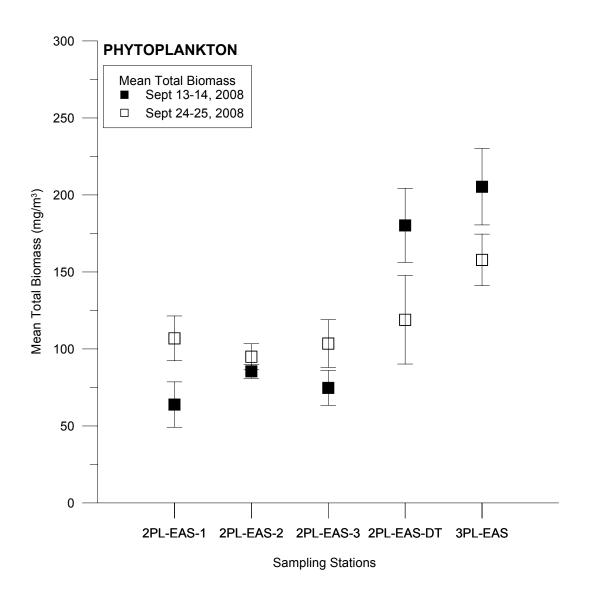


Figure 4-5. Seasonal chlorophyll-a concentrations (mg/m³) in AEMP monitoring, Second Portage, Tehek and Third Portage Lakes (east and south basins), 2006-2008.

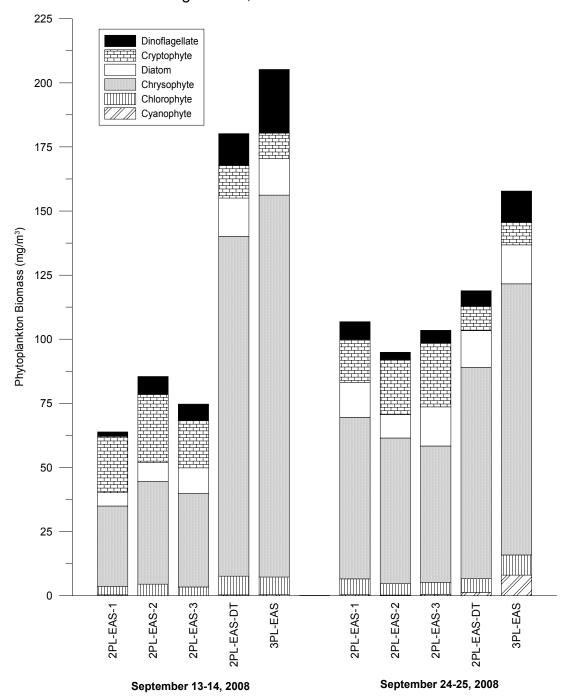


Figure 4-6. Phytoplankton mean total biomass (mg/m^3) in EAS study, Second and Third Portage Lakes, 2008.

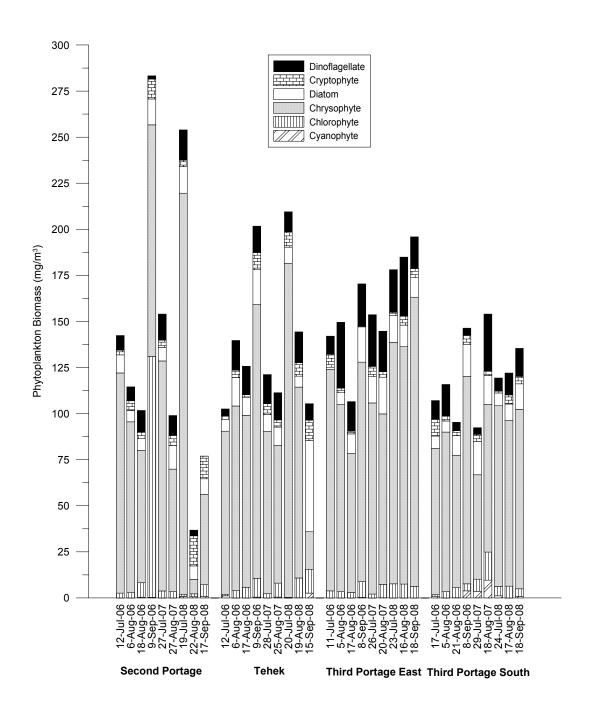


Figure 4-7. Phytoplankton biomass (mg/m³) by major taxa group in EAS study, Second and Third Portage Lakes, 2008.

Figure 4-8. Seasonal phytoplankton biomass (mg/m3) by major taxa group in AEMP monitoring, Second Portage, Tehek and Third Portage Lakes (east and south basins), 2006 – 2008.

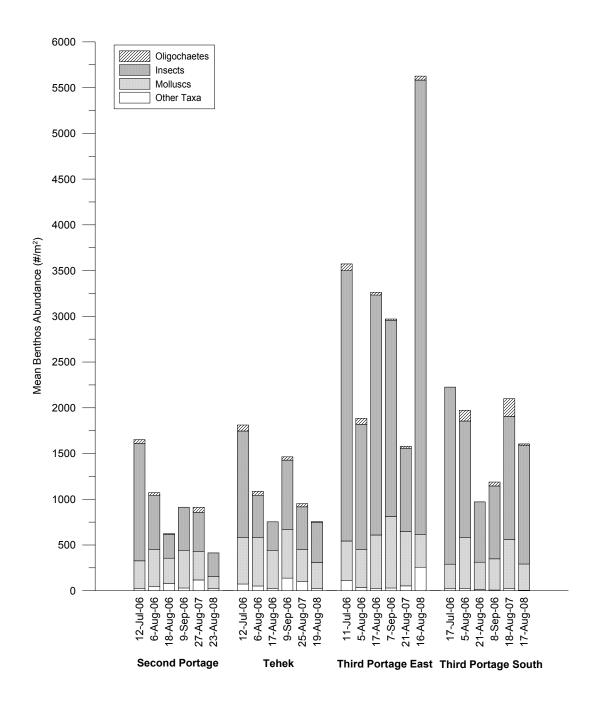


Figure 4-9. Zooplankton mean total biomass (mg/m³ ww) in EAS study, Second and Third Portage Lakes, 2008.

Figure 4-10. Benthic invertebrate mean abundance (# / m²) by major taxa groups for AEMP monitoring, Second Portage, Tehek and Third Portage Lakes.

Figure 4-11. Benthic invertebrate mean richness (# taxa) by major taxa group for AEMP monitoring, Second Portage, Tehek and Third Portage Lakes.

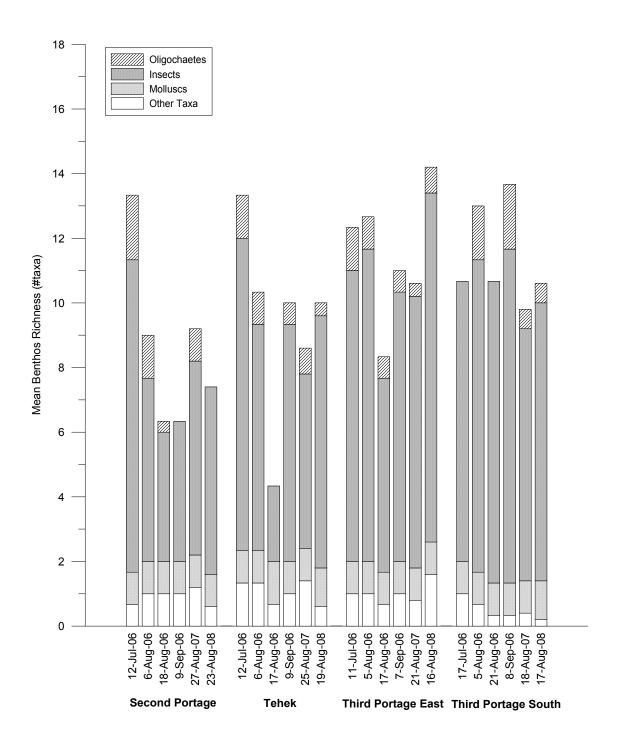
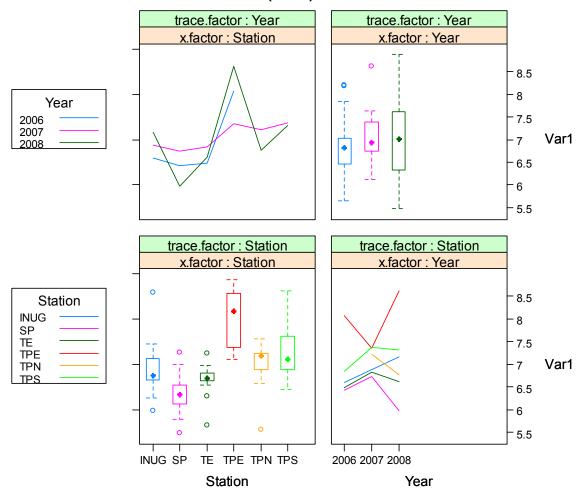
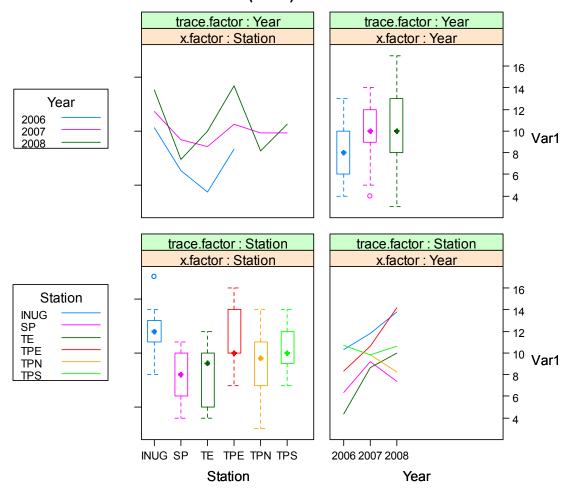
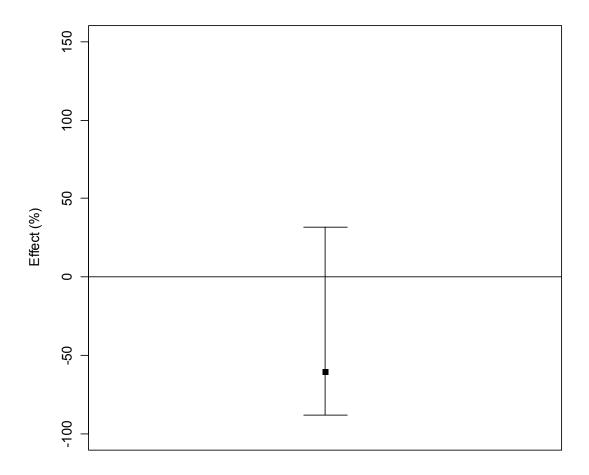


Figure 4-12. Total benthos abundance (In; Var1): Station – Year interaction plot.

Ln Total Benthos Abundance (Var1): Station - Year Interaction Plot


Figure 4-13. Total benthos richness (Var1): Station – Year interaction plot.

Total Benthos Richness (Var1): Station - Year Interaction Plot

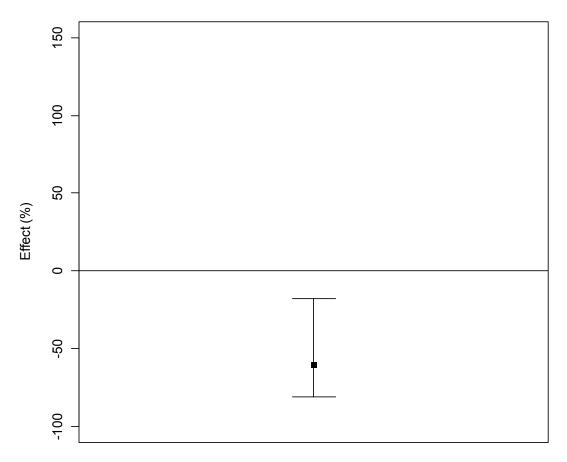


Figure 4-14. Effect size and estimated 95% confidence intervals for benthic invertebrate total abundance BACI effect (i.e., Stationtype*Yeartype) at Second Portage Lake station from AEMP (2006-2008) data.

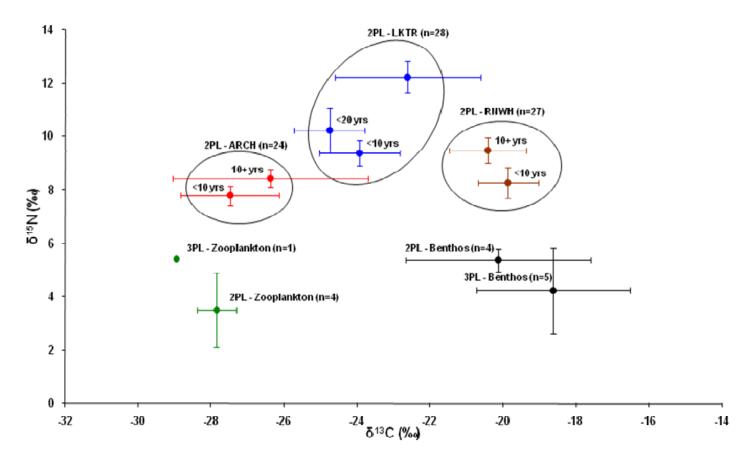


Figure 4-15. Effect size and estimated 80% confidence intervals for benthic invertebrate total abundance BACI effect (i.e., Stationtype*Yeartype) at Second Portage Lake station from AEMP (2006-2008) data.

Figure 4-16. Mean (\pm SD) benthos, zooplankton and fish δ 15N (%) and δ 13C (%) value plots for Second and Third Portage Lakes, 2008.

Note: 2PL=Second Portage Lake; 3PL=Third Portage Lake; ARCH=arctic char; LKTR=lake trout; RNWH=round whitefish.

5. SUMMARY AND CONCLUSIONS

This study was conducted to address concerns regarding the potential impacts of elevated TSS concentrations from dike construction on the ecology of Second Portage. Elevated TSS concentrations can directly or indirectly affect the entire range of organisms in the aquatic environment, so the study addressed a broad array of ecosystem elements. The design premise was based on comparisons between two reference areas (Drilltrail Arm in Second Portage Lake and the East Basin of Third Portage Lake; TSS concentrations were typical of background conditions at both areas) and three exposure areas (three areas within Second Portage Lake exposed to elevated TSS concentrations). The laboratory toxicity testing was conducted using water from Second Portage Lake collected from near the East Dike (i.e., in the exposure area); exposure water treatments were compared to experimental controls to determine potential effects. Sampling was conducted in two events: September 13/14 and 24/25. Key results were as follows:

- Water Quality and Limnology While water quality generally improved between late August peaks in TSS and September monitoring, there was still a substantial gradient in exposure between the three exposure areas and the two reference areas. It is also important to note that effects of TSS are not likely to be instantaneous and that the study was designed to assess chronic exposure. Consequently, despite the lower TSS concentrations, it is unlikely that the study would have missed any important chronic TSS-related effects.
 - Construction monitoring characterized a strong gradient in estimated TSS concentrations between the exposure (~10 mg/L for the first event and ~6 mg/L for the second event) and reference (~0.2 to 0.6 mg/L) areas during both monitoring periods. This was confirmed during EAS sampling by much lower Secchi depth readings at exposure areas, indicating reduced water clarity relative to the reference areas. This gradient was less pronounced, but still present, during the September 24/25 sampling event.
 - Nutrient concentrations were generally higher at the exposure stations, but ammonia, nitrite, and nitrate were still well below CCME water quality guidelines.
 - Vertical temperature and oxygen profile results showed no significant differences between areas.
 - Metals were primarily bound to particulates; dissolved metals were very low and typically below detection limits.

- *Primary Productivity* Reduced water clarity limits light penetration, which can lower primary productivity. Two measures of primary productivity were assessed: chlorophyll-α and phytoplankton biomass. While there were no differences between areas for chlorophyll-α during either sampling event, phytoplankton biomass was significantly depressed in the exposure area relative to the reference area during both events. The difference between areas during the second event was much less pronounced, which is consistent with the weaker exposure gradient at that time (i.e., due to the overall improvement in water quality in Second Portage Lake). This recovery would be expected to continue to track water clarity improvements and not be of long-term significance.
- Zooplankton —Herbivorous zooplankton rely on phytoplankton as their primary food resource. Elevated TSS can affect zooplankton directly, by reducing feeding efficiency, or indirectly by reducing food supply (e.g., the reduced phytoplankton biomass that was observed at the exposure stations). Elevated TSS could also indirectly benefit zooplankton by making it harder for their predators to see them. Potential effects of TSS on zooplankton were assessed using both field (direct measurements of zooplankton biomass to integrate both direct and indirect effects) and laboratory (acute and chronic toxicity testing to assess direct effects) measures. Although phytoplankton biomass was lower in the exposure area, we could not detect significant differences in zooplankton biomass between the exposure and reference areas. No adverse effects were observed in either toxicity test.
- Benthic Invertebrates –Sediment inputs and depositional rates in the Meadowbank study lakes are typically extremely low. Accelerated inputs associated with construction activity may affect benthic invertebrates through smothering. This was identified in the monitoring plan for the East Dike (AEM, 2008a), which committed to assessing potential effects of increased sedimentation on the benthic community in 2009 and 2010. In the interim, however, there are two lines of evidence that are available: (1) benthic community data collected in Second Portage, Tehek and Third Portage lakes in late August as part of routine AEMP monitoring, and (2) sediment trap data for Second Portage Lake (see Fish for more details).
 - There were no statistically significant adverse effects to benthic community total abundance (density) or total richness identified at Second Portage or Tehek stations in 2008 relative to other stations and years. Notwithstanding, Second Portage Lake did show a marginal trend of reduced benthos abundance, but the result was inconclusive, likely due to naturally variable temporal and spatial patterns among stations and years.

- Sediment trap results indicate a deposition thickness of between approximately 1 and 2 mm for much of Second Portage Lake, which could have been responsible for the observed marginal trend in benthos abundance (i.e., through physical smothering).
- Chromium and zinc were significantly elevated in the sediment trap samples, which may have also contributed to the benthos abundance results. The response pattern (i.e., possible reduction in abundance, but not to diversity), however, is more consistent with physical effects.
- TSS concentrations in both Second Portage and Tehek lakes decreased substantially in the month following the AEMP sampling event. In the absence of further disturbance, the expectation would be that the noted effects would be short term in nature and the community should recover completely. The EAS and AEMP benthic community sampling in 2009 will help determine whether the community is recovering and, if so, at what rate.
- The planned 2009 and 2010 benthic community studies will provide some insight into the long-term significance of the deposition of construction-related sediments.
- Fish Prolonged increases in TSS concentrations can affect fish directly (e.g., by clogging gills or by smothering eggs) or indirectly (e.g., by reducing prey abundance or by making prey harder to see). A combination of laboratory (toxicity tests using a range of life stages) and field (sediment traps and stable isotopes [to map the food web]) measures were used to help determine potential impacts to fish.
 - No adverse effects were observed for larval and juvenile trout. The larval test was conducted using live zooplankton as a food resource. The lack of growth or survival effects suggests that active feeding was not impaired by the reduced water clarity. Test results for larval and juvenile trout suggest that direct effects to these life stages are unlikely; this would also apply to adults. Two tests were conducted using trout embryos: one where test water was renewed each day (renewal) and the other where it was not (static). This renewal/static combination was used to provide insights into whether any observed effects were due to chemical or physical effects. No effects were observed in the renewal test. However, impaired development was observed in the static test, suggesting that physical settling of sediments could affect developing embryos.
 - Sediment traps were deployed prior to East Dike construction at a number of high-value habitats in Second Portage Lake and retrieved in late September. Results indicate that between 1 and 2 mm of sediment settled

- during that time. Video surveys will be conducted on these areas (and similar areas outside the influence of elevated TSS) in 2009.
- o Stable isotope analysis was used to assess the Second Portage Lake food web by measuring ratios of carbon and nitrogen isotopes in organisms (e.g., benthic invertebrates, zooplankton and fish) to discern "who is eating who" in the lake. For the EAS study, this information provides insights into the relative importance of the pelagic (phytoplankton to zooplankton to fish) and benthic (algae/detritus to invertebrates to fish) pathways in the food web. Stable isotope signatures in muscle tissue of fish indicate that both are actually important. Arctic char preferentially exploit pelagic food sources (i.e., zooplankton), while round whitefish target benthic food sources. Lake trout, the dominant species in the lake, feeds on both these fish species (in addition to other lake trout) in approximately equal proportions. This is understandable given the nutrient-driven productivity limitations characteristic of ultra-oligotrophic lakes.

From an ecological perspective, the EAS results point to settled sediment, rather than suspended sediment, as the primary outstanding concern. Apart from the depression of phytoplankton productivity, which showed substantial recovery between sampling events, there were no ecologically-significant effects observed related to TSS in the water column. Settled or settling sediment, however, was identified as a potential concern for benthic invertebrates (a marginal, but inconclusive, trend was observed in SP, but not TE) and fish (possible smothering of eggs in spawning areas based on toxicity test results). EAS work in 2009 (and 2010 for benthos) will target reducing uncertainty as to whether settled sediment remains an ecological concern in Second Portage Lake; key study components include (see Azimuth, 2008a for more details):

- Benthic community analysis the EAS study design will include more extensive sampling in Second Portage Lake and Tehek Lake. Similar to the field effects measurements taken for other endpoints in 2008, the 2009 benthos results will be used to determine whether there are any differences between exposure and reference areas. If there are effects, then the survey will be repeated in 2010 to determine whether the community is recovering and if so, at what rate (the AEMP data for 2009 and 2010 will also be used as needed to further our understanding of the situation).
- *High-value habitat assessment* an underwater video survey will be conducted to compare and contrast settled sediment patterns in high-value habitat areas exposed to elevated TSS concentrations to those beyond the zone of influence. While not specifically a component of the EAS for 2009, sediment traps will

again be deployed in 2009 to support construction-related monitoring for the Bay-Goose dike; some of these traps will be deployed in Second Portage Lake at areas relevant to the EAS.

• Surface sediment coring - the sediment coring program conducted in 2008 prior to dike construction will be repeated at four (TPL-E, SPL, TE and INUG) locations to verify the results of the sediment trap chemistry sampling conducted in 2008 (i.e., to determine whether sediment chemistry in the top 1 cm was changed by the high chromium and zinc measured in the sediment trap sediment).

6. REFERENCES

- AEM (Agnico-Eagle Mines Ltd.). 2009. Aquatic Environment Management Program, March 2009.
- AEM. 2008. Water quality monitoring and management plan for dike construction and dewatering at the Meadowbank Mine. Revised Final. July 2008.
- Azimuth Consulting Group (Azimuth). 2009a. Aquatic Effects Monitoring Program Targeted Study: Dike Construction Monitoring 2008, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc. Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2009
- Azimuth. 2009b. Aquatic Effects Monitoring Program: Receiving Environment Monitoring 2008, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc. Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2009.
- Azimuth. 2008a. Effects Assessment Strategy for Elevated TSS in Second Portage Lake. Technical memorandum prepared by Azimuth Consulting Group Inc. Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. 8 September 2008.
- Azimuth. 2008b. Aquatic Effects Management Program Monitoring Meadowbank Gold Project, 2007. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2008.
- Azimuth. 2008c. Aquatic Effects Management Program Monitoring Meadowbank Gold Project, 2006. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2008.
- BAER (Baseline Aquatic Ecosystem Report). 2005. A report prepared by Azimuth Consulting Group, Vancouver for Cumberland Resources Ltd. October, 2005.
- BC Ministry of Environment, Lands and Parks. 1998 (updated 2001). Ambient water quality guidelines for turbidity, suspended and benthic sediments.
- Bilby, R.E., B.R. Fransen and P.A. Bisson. 1996. Incorporation of nitrogen and carbon from spawning coho salmon into the trophic system of small streams: evidence from stable isotopes. CJFAS 53:164-173.
- Birtwell, I. 1999. The effects of sediment on fish and their habitat. Canadian Stock Assessment Secretariat Research Document 99/139, DFO, 34p.

- Cabana, G. and J.B. Rasmussen. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences USA 93:10844-10847.
- Caux, P.Y., D.R.J. Moore, and D. MacDonald. 1997. Ambient water quality guidelines for turbidity, suspended and benthic sediments technical appendix. Prepared for BC Ministry of Environment, Lands and Parks.
- CCME. 1999 (updated 2002). Canadian Water Quality Guidelines for the Protection of Aquatic Life Total Particulate Matter.
- da Silva, D.S., M. Lucotte, M. Roulet, H. Poirier, D. Mergler, E.O. Santos and M. Crossa. 2005. Trophic structure and bioaccumulation of mercury in fish of three natural lakes of the Brazilian Amazon. Water, Air, & Soil Pollution 165:77-94.
- Dalgaard, P. 2008. Introductory Statistics with R. Springer, New York.
- DFO. 2000. Effects of sediment on fish and their habitat. Habitat Status Report 2000/01 E, DFO Pacific Region, January 2000, 9p)
- France, R.L. 1995a. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124:307-312.
- France, R.L. 1995b. Differentiation between littoral and pelagic foodwebs in lakes using stable carbon isotopes. Limnology and Oceanography 40:1310-1313.
- France, R.L. 1995c. Carbon isotopic variability in the composite pelagic foodweb of four oligotrophic lakes: feeding diversity or metabolic fractionation? Journal of Plankton Research 17:1993-1997.
- Harvey, C.J. and J.F. Kitchell. 2000. A stable isotope evaluation of the structure and spatial heterogeneity of a Lake Superior food web. CJFAS 57:1395-1403.
- Hecky, R.E. and R.H. Hesslein. 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14:631-653.
- Herwig, B.R., D.A. Soluk, J.M. Dettmers and D.H. Wahl. 2004. Trophic structure and energy flow in backwater lakes of two large floodplain rivers assessed using stable isotopes. CJFAS 61:12-22.
- Kline, T.C., W.J. Wilson and J.J. Goering. 1998. Natural isotope indicators of fish migration at Prudhoe Bay, Alaska. CJFAS 55:1494-1502.
- Kling, G.W., B. Fry and W.J. O'Brien. 1992. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73:561-566.

- Leggett, M.F., O. Johannsson, R. Hesslein, D.G. Dixon, W.D. Taylor and M.R. Servos. 2000. Influence of inorganic nitrogen cycling on the d¹⁵N of Lake Ontario biota. CJFAS 57:1489-1496.
- Lloyd, D.S., J.P. Koenings and J.D. LaPerriere. 1987. Effects of turbidity in fresh waters of Alaska. North American Journal of Fisheries Management 7:18-33.
- Minagawa, M. and E. Wada. 1984. Stepwise enrichment of ¹⁵N along food chains: further evidence and the relation between d¹⁵N and animal age. Geochimica et Cosmochimica Acta 48:1135-1140.
- MMER (Metal mining effluent regulations). 2002. Schedule 4 Authorized limits of deleterious substances.
- Peterson, B.J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18:293-320.
- Pinheiro, J.C., and D.M. Bates. 2000. Mixed-Effects Models in S and S-PLUS. Springer, New York.
- Rounick, J.S. and M.J. Winterbourn. 1986. Stable carbon isotopes and carbon flow in ecosystems. Bioscience 36(3):171-177.
- Telford, W.M, L. P. Geldart, Robert E. Sheriff. 1990. Applied Geophysics. Cambridge University Press. ISBN 0521339383, 9780521339384. 770 pp.
- Underwood, A.J. 1994. On beyond BACI: Sampling designs that might reliably detect environmental disturbances. Ecological Applications. 4:3-15.
- Vander Zanden, M.J. and J.B. Rasmussen. 1999. Primary consumer d¹³C and d¹⁵N and the trophic position of aquatic consumers. Ecology 80(4):1395-1404.
- Vander Zanden, M.J. and J.B. Rasmussen. 2001. Variations in d¹⁵N and d¹³C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46:2061-2066.
- Vander Zanden, M.J., B.J. Shuter, N.P. Lester, and J.B. Rasmussen. 2000. Within- and among-population variation in the trophic position of a pelagic predator, lake trout (*Salvelinus namaycush*). CJFAS 57:725-731.
- Vander Zanden, M.J., J.M. Casselman and J.B. Rasmussen. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464-467.
- Vander Zanden, M.J., S. Chandra, B.C. Allen, J.E. Reuter and C.R. Goldman. 2003. Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California-Nevada) basin. Ecosystems 6:274-288.

Venables, W.N., and B.D. Ripley. 2002. Modern Applied Statistics with S. Springer, New York.

Wiens, J.A. and K.R. Parker. 1995. Analyzing the effects of accidental environmental impacts: approaches and assumptions. Ecological Applications. 5:1069-1083.

Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, New Jersey.

APPENDICES

APPENDIX A CHEMISTRY ANALYSES REPORTS

Environmental Division

Certificate of Analysis

AZIMUTH CONSULTING GROUP INC.

ATTN: RANDY BAKER

Reported On: 28-OCT-08 11:38 AM 218 - 2902 WEST BROADWAY

Revision: 1

VANCOUVER BC V6K 2G8

Lab Work Order #: L687296 Date Received: 24-SEP-08

Project P.O. #:

Job Reference: EAS

Legal Site Desc: **CofC Numbers:**

Other Information:

Comments: For some of the submitted water samples, the measured concentration of specific dissolved parameters is greater than the

corresponding total parameters concentration. The explanation for these findings is one or a combination of the following:

- laboratory method variability;

- field sampling method variability;

- bias introduced during general handling, storage, transportation and/or analysis of the sample;

- field sample grab bias - where separate grab samples are processed to produce total and dissolved samples;

- field sample split bias - where total and dissolved parameters samples are produced from the same grab sample.

For further clarification on any of the above information, please contact your ALS account manager.

Please note: equipment blank results were confirmed by re-analysis.

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

yn Mho

	Sample ID Description	L687296-1	L687296-2	L687296-3	L687296-4	L687296-5
	Sampled Date Sampled Time Client ID	13-SEP-08 2PL-EAS-1	13-SEP-08 2PL-EAS-1	13-SEP-08 2PL-EAS-2	13-SEP-08 2PL-EAS-2	13-SEP-08 2PL-EAS-3
Grouping	Analyte		REP1		REP1	
WATER						
Physical Tests	Conductivity (uS/cm)	28.0		26.0		25.3
,	Hardness (as CaCO3) (mg/L)	11.9		10.8		10.3
	pH (pH)	7.28		7.23		7.24
	Total Suspended Solids (mg/L)	<3.0		<3.0		<3.0
	Total Dissolved Solids (mg/L)	16		20		14
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	8.8		8.1		8.1
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0		<2.0		<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0		<2.0		<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	8.8		8.1		8.1
	Ammonia as N (mg/L)	<0.020		<0.020		<0.020
	Chloride (CI) (mg/L)	<0.50		<0.50		<0.50
	Nitrate (as N) (mg/L)	0.0368		0.0293		0.0329
	Nitrite (as N) (mg/L)	0.0012		<0.0010		<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.090		0.080		0.093
	Ortho Phosphate as P (mg/L)	0.0011		<0.0010		<0.0010
	Total Phosphate as P (mg/L)	0.0094		0.0073		0.0077
	Sulfate (SO4) (mg/L)	1.98		2.02		1.87
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.84		1.86		1.95
	Total Organic Carbon (mg/L)	1.45		1.51		1.59
Total Metals	Aluminum (AI)-Total (mg/L)	0.355		0.417		0.388
	Antimony (Sb)-Total (mg/L)	<0.00050		<0.00050		<0.00050
	Arsenic (As)-Total (mg/L)	<0.00050		<0.00050		<0.00050
	Barium (Ba)-Total (mg/L)	<0.020		<0.020		<0.020
	Beryllium (Be)-Total (mg/L)	<0.0010		<0.0010		<0.0010
	Boron (B)-Total (mg/L)	<0.10		<0.10		<0.10
	Cadmium (Cd)-Total (mg/L)	<0.000017		<0.000017		<0.000017
	Calcium (Ca)-Total (mg/L)	3.03		2.81		2.64
	Chromium (Cr)-Total (mg/L)	0.0011		0.0014		0.0013
	Cobalt (Co)-Total (mg/L)	<0.00030		<0.00030		<0.00030
	Copper (Cu)-Total (mg/L)	0.0018		0.0018		0.0017
	Iron (Fe)-Total (mg/L)	0.437		0.533		0.492
	Lead (Pb)-Total (mg/L)	0.00118		0.00125		0.00248
	Lithium (Li)-Total (mg/L)	<0.0050		<0.0050		<0.0050
	Magnesium (Mg)-Total (mg/L)	0.98		1.01		0.95
	Manganese (Mn)-Total (mg/L)	0.00941		0.00868		0.00890
	Mercury (Hg)-Total (mg/L)	<0.000020		<0.000020		<0.000020
	Molybdenum (Mo)-Total (mg/L)	<0.0010		<0.0010		<0.0010
	Nickel (Ni)-Total (mg/L)	0.0013		0.0013		0.0012

Description Sampled Date					L687296-10
Sampled Time	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08	01-AUG-08
Client ID Analyte	2PL-EAS-3 REP1	2PL-EAS-DT	2PL-EAS-DT REP1	2PL-EAS-DUP	TRAVEL BLANK AE08FISHOUT
,,					
Conductivity (uS/cm)		26.2		26.2	<2.0
, , ,					\2.0
, , , , , ,					5.57
					<3.0
					<10
					<2.0
		<2.0		<2.0	<2.0
Alkalinity, Hydroxide (as CaCO3) (mg/L)		<2.0		<2.0	<2.0
Alkalinity, Total (as CaCO3) (mg/L)		8.1		7.4	<2.0
Ammonia as N (mg/L)		0.027		0.024	<0.020
Chloride (CI) (mg/L)		<0.50		<0.50	<0.50
Nitrate (as N) (mg/L)		<0.0050		<0.0050	<0.0050
Nitrite (as N) (mg/L)		<0.0010		<0.0010	<0.0010
Total Kjeldahl Nitrogen (mg/L)		0.091		0.087	<0.050
Ortho Phosphate as P (mg/L)		<0.0010		<0.0010	<0.0010
Total Phosphate as P (mg/L)		0.0025		0.0035	<0.0020
Sulfate (SO4) (mg/L)		2.42		2.40	<0.50
Dissolved Organic Carbon (mg/L)		1.80		1.88	
Total Organic Carbon (mg/L)		1.74		1.70	<0.50
Aluminum (Al)-Total (mg/L)		0.0146		0.0176	
Antimony (Sb)-Total (mg/L)		<0.00050		<0.00050	
Arsenic (As)-Total (mg/L)		<0.00050		<0.00050	
Barium (Ba)-Total (mg/L)		<0.020		<0.020	
Beryllium (Be)-Total (mg/L)		<0.0010		<0.0010	
Boron (B)-Total (mg/L)		<0.10		<0.10	
Cadmium (Cd)-Total (mg/L)		<0.00017		<0.000017	
Calcium (Ca)-Total (mg/L)		2.80		2.81	
Chromium (Cr)-Total (mg/L)		<0.0010		<0.0010	
Cobalt (Co)-Total (mg/L)		<0.00030		<0.00030	
Copper (Cu)-Total (mg/L)		<0.0010		<0.0010	
Iron (Fe)-Total (mg/L)		<0.030		<0.030	
Lead (Pb)-Total (mg/L)		<0.00050		<0.00050	
Lithium (Li)-Total (mg/L)		<0.0050		<0.0050	
Magnesium (Mg)-Total (mg/L)		0.92		0.93	
	Alkalinity, Total (as CaCO3) (mg/L) Ammonia as N (mg/L) Chloride (Cl) (mg/L) Nitrate (as N) (mg/L) Nitrite (as N) (mg/L) Total Kjeldahl Nitrogen (mg/L) Ortho Phosphate as P (mg/L) Sulfate (SO4) (mg/L) Dissolved Organic Carbon (mg/L) Aluminum (Al)-Total (mg/L) Antimony (Sb)-Total (mg/L) Barium (Ba)-Total (mg/L) Beryllium (Be)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Calcium (Ca)-Total (mg/L) Cobalt (Co)-Total (mg/L) Copper (Cu)-Total (mg/L) Lead (Pb)-Total (mg/L) Lithium (Li)-Total (mg/L)	Hardness (as CaCO3) (mg/L) pH (pH) Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Hydroxide (as CaCO3) (mg/L) Alkalinity, Total (as CaCO3) (mg/L) Alkalinity, Total (as CaCO3) (mg/L) Ammonia as N (mg/L) Chloride (Cl) (mg/L) Nitrate (as N) (mg/L) Total Kjeldahl Nitrogen (mg/L) Ortho Phosphate as P (mg/L) Total Phosphate as P (mg/L) Sulfate (SO4) (mg/L) Dissolved Organic Carbon (mg/L) Aluminum (Al)-Total (mg/L) Antimony (Sb)-Total (mg/L) Barium (Ba)-Total (mg/L) Beryllium (Be)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Calcium (Ca)-Total (mg/L) Cobalt (Co)-Total (mg/L) Lopper (Cu)-Total (mg/L) Lead (Pb)-Total (mg/L) Lithium (Li)-Total (mg/L) Magnesium (Mg)-Total (mg/L) Manganese (Mn)-Total (mg/L) Molybdenum (Mo)-Total (mg/L)	Hardness (as CaCO3) (mg/L) pH (pH) 7.22 Total Suspended Solids (mg/L) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L) Alkalinity, Total (as CaCO3) (mg/L) Almonia as N (mg/L) Amonia as N (mg/L) Nitrate (as N) (mg/L) Nitrite (as N) (mg/L) Ortho Phosphate as P (mg/L) Ortho Phosphate as P (mg/L) Ortho Phosphate as P (mg/L) Sulfate (SO4) (mg/L) Dissolved Organic Carbon (mg/L) Aluminum (Al)-Total (mg/L) Arsenic (As)-Total (mg/L) Beryllium (Be)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Cobalt (Co)-Total (mg/L) Cobalt (Co)-Total (mg/L) Lead (Pb)-Total (mg/L) Lead (Pb)-Total (mg/L) Lead (Pb)-Total (mg/L) Manganese (Mn)-Total (mg/L) Manganese (Mn)-Total (mg/L) Mercury (Hg)-Total (mg/L) Molybdenum (Mo)-Total (mg/L) Molybdenum (Moly-Total (mg/L) Molybdenum (Moly-Total (mg/L) Molybdenum (Molybdenum (Molybdenum (Molybdenum (Molybdenum (Molybdenum (Molybdenum (Molybdenum (Molybdenum (Moly	Hardness (as CaCO3) (mg/L)	Hardness (as CaCO3) (mg/L)

	Sample ID Description	L687296-11	L687296-12	L687296-13	L687296-14	L687296-15
	Sampled Date Sampled Time Client ID	14-SEP-08 EQUIPMENT	13-SEP-08 3PL-EAS	14-SEP-08 3PL-EAS REP1	14-SEP-08 3PL-EAS-500	13-SEP-08 2PL-EAS-1
Grouping	Analyte	BLANK	SFL-EAS	SFL-EAS REFT	3FL-EA3-500	REP2
WATER	•					
Physical Tests	Conductivity (uS/cm)	<2.0	14.4			
i ilysicai resis	Hardness (as CaCO3) (mg/L)	<0.70	5.10			
	pH (pH)	5.49	6.81			
	Total Suspended Solids (mg/L)	<3.0	<3.0			
1	Total Dissolved Solids (mg/L)	<10	<10			
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	<2.0	4.3			
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0			
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0			
	Alkalinity, Total (as CaCO3) (mg/L)	<2.0	4.3			
	Ammonia as N (mg/L)	<0.020	<0.020			
	Chloride (CI) (mg/L)	<0.50	<0.50			
	Nitrate (as N) (mg/L)	<0.0050	<0.0050			
	Nitrite (as N) (mg/L)	<0.0010	<0.0010			
	Total Kjeldahl Nitrogen (mg/L)	<0.050	0.063			
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010			
	Total Phosphate as P (mg/L)	<0.0020	<0.0020			
	Sulfate (SO4) (mg/L)	<0.50	1.08			
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)		8.46			
	Total Organic Carbon (mg/L)	<0.50	1.41			
Total Metals	Aluminum (Al)-Total (mg/L)	<0.0050	0.0120			
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050			
	Arsenic (As)-Total (mg/L)	<0.00050	<0.00050			
	Barium (Ba)-Total (mg/L)	<0.020	<0.020			
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010			
	Boron (B)-Total (mg/L)	<0.10	<0.10			
	Cadmium (Cd)-Total (mg/L)	0.000037	<0.000017			
	Calcium (Ca)-Total (mg/L)	<0.10	1.14			
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0010			
	Cobalt (Co)-Total (mg/L)	<0.00030	<0.00030			
	Copper (Cu)-Total (mg/L)	<0.0010	<0.0010			
	Iron (Fe)-Total (mg/L)	<0.030	<0.030			
	Lead (Pb)-Total (mg/L)	<0.00050	<0.00050			
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050			
	Magnesium (Mg)-Total (mg/L)	<0.10	0.53			
	Manganese (Mn)-Total (mg/L)	<0.00030	0.00084			
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020			
	Molybdenum (Mo)-Total (mg/L)	<0.0010	<0.0010			
	Nickel (Ni)-Total (mg/L)	<0.0010	<0.0010			

	Sample ID Description	L687296-16	L687296-17	L687296-18	L687296-19	L687296-20
	Sampled Date Sampled Time	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08
Na	Client ID	2PL-EAS-1 REP3	2PL-EAS-1 REP4	2PL-EAS-1 REP5	2PL-EAS-2 REP2	2PL-EAS-2 REP3
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)					
	Hardness (as CaCO3) (mg/L)					
	pH (pH)					
	Total Suspended Solids (mg/L)					
	Total Dissolved Solids (mg/L)					
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)					
	Alkalinity, Carbonate (as CaCO3) (mg/L)					
	Alkalinity, Hydroxide (as CaCO3) (mg/L)					
	Alkalinity, Total (as CaCO3) (mg/L)					
	Ammonia as N (mg/L)					
	Chloride (CI) (mg/L)					
	Nitrate (as N) (mg/L)					
	Nitrite (as N) (mg/L)					
	Total Kjeldahl Nitrogen (mg/L)					
	Ortho Phosphate as P (mg/L)					
	Total Phosphate as P (mg/L)					
	Sulfate (SO4) (mg/L)					
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)					
	Total Organic Carbon (mg/L)					
Total Metals	Aluminum (AI)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					

	Sample ID Description	L687296-21	L687296-22	L687296-23	L687296-24	L687296-25
	Sampled Date Sampled Time	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08
Prouning	Client ID	2PL-EAS-2 REP4	2PL-EAS-2 REP5	2PL-EAS-3 REP2	2PL-EAS-3 REP3	2PL-EAS-3 REP4
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)					
	Hardness (as CaCO3) (mg/L)					
	pH (pH)					
	Total Suspended Solids (mg/L)					
	Total Dissolved Solids (mg/L)					
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)					
	Alkalinity, Carbonate (as CaCO3) (mg/L)					
	Alkalinity, Hydroxide (as CaCO3) (mg/L)					
	Alkalinity, Total (as CaCO3) (mg/L)					
	Ammonia as N (mg/L)					
	Chloride (CI) (mg/L)					
	Nitrate (as N) (mg/L)					
	Nitrite (as N) (mg/L)					
	Total Kjeldahl Nitrogen (mg/L)					
	Ortho Phosphate as P (mg/L)					
	Total Phosphate as P (mg/L)					
	Sulfate (SO4) (mg/L)					
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)					
	Total Organic Carbon (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					

	Sample ID Description	L687296-26	L687296-27	L687296-28	L687296-29	L687296-30
	Sampled Date Sampled Time Client ID	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08
Grouping	Analyte	2PL-EAS-3 REP5	2PL-EAS-DT REP2	2PL-EAS-DT REP3	2PL-EAS-DT REP4	2PL-EAS-DT REP5
WATER	,					
Physical Tests	Conductivity (uS/cm)					
i ilysicai rests	Hardness (as CaCO3) (mg/L)					
	pH (pH)					
	Total Suspended Solids (mg/L)					
	Total Dissolved Solids (mg/L)					
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)					
Nutrients	Alkallinty, Dicarbonate (as GaGGS) (Hig/L)					
	Alkalinity, Carbonate (as CaCO3) (mg/L)					
	Alkalinity, Hydroxide (as CaCO3) (mg/L)					
	Alkalinity, Total (as CaCO3) (mg/L)					
	Ammonia as N (mg/L)					
	Chloride (CI) (mg/L)					
	Nitrate (as N) (mg/L)					
	Nitrite (as N) (mg/L)					
	Total Kjeldahl Nitrogen (mg/L)					
	Ortho Phosphate as P (mg/L)					
	Total Phosphate as P (mg/L)					
	Sulfate (SO4) (mg/L)					
Organic /	Dissolved Organic Carbon (mg/L)					
Inorganic Carbon	Total Organic Carbon (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)					
Total Wetais	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					
	NICKEI (NI)-10tal (HIG/L)					

	Sample ID	L687296-31	L687296-32	L687296-33	
	Description Sampled Date	44.055.00	44.050.00	44.050.00	
	Sampled Date Sampled Time	14-SEP-08	14-SEP-08	14-SEP-08	
	Client ID	3PL-EAS REP2	3PL-EAS REP3	3PL-EAS REP4	
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)				
	Hardness (as CaCO3) (mg/L)				
	pH (pH)				
	Total Suspended Solids (mg/L)				
	Total Dissolved Solids (mg/L)				
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)				
	Alkalinity, Carbonate (as CaCO3) (mg/L)				
	Alkalinity, Hydroxide (as CaCO3) (mg/L)				
	Alkalinity, Total (as CaCO3) (mg/L)				
	Ammonia as N (mg/L)				
	Chloride (CI) (mg/L)				
	Nitrate (as N) (mg/L)				
	Nitrite (as N) (mg/L)				
	Total Kjeldahl Nitrogen (mg/L)				
	Ortho Phosphate as P (mg/L)				
	Total Phosphate as P (mg/L)				
	Sulfate (SO4) (mg/L)				
Organic /	Dissolved Organic Carbon (mg/L)				
Inorganic Carbon	Total Organic Carbon (mg/L)				
Total Metals	Aluminum (Al)-Total (mg/L)				
	Antimony (Sb)-Total (mg/L)				
	Arsenic (As)-Total (mg/L)				
	Barium (Ba)-Total (mg/L)				
	Beryllium (Be)-Total (mg/L)				
	Boron (B)-Total (mg/L)				
	Cadmium (Cd)-Total (mg/L)				
	Calcium (Ca)-Total (mg/L)				
	Chromium (Cr)-Total (mg/L)				
	Cobalt (Co)-Total (mg/L)				
	Copper (Cu)-Total (mg/L)				
	Iron (Fe)-Total (mg/L)				
	Lead (Pb)-Total (mg/L)				
	Lithium (Li)-Total (mg/L)				
	Magnesium (Mg)-Total (mg/L)				
	Manganese (Mn)-Total (mg/L)				
	Mercury (Hg)-Total (mg/L)				
	Molybdenum (Mo)-Total (mg/L)				
	Nickel (Ni)-Total (mg/L)				

	Sample ID Description Sampled Date	L687296-1 13-SEP-08	L687296-2 13-SEP-08	L687296-3 13-SEP-08	L687296-4 13-SEP-08	L687296-5 13-SEP-08
	Sampled Time				2DL EAC 2	
Grouping	Client ID Analyte	2PL-EAS-1	2PL-EAS-1 REP1	2PL-EAS-2	2PL-EAS-2 REP1	2PL-EAS-3
WATER						
Total Metals	Detection (V) Total (mg/l)	<2.0		-2.0		-2.0
Total Metals	Potassium (K)-Total (mg/L)			<2.0		<2.0
	Selenium (Se)-Total (mg/L)	<0.0010		<0.0010		<0.0010
	Silver (Ag)-Total (mg/L)	<0.000020		<0.000020		<0.000020
	Sodium (Na)-Total (mg/L)	<2.0		<2.0		<2.0
	Thallium (TI)-Total (mg/L)	<0.00020		<0.00020		<0.00020
	Tin (Sn)-Total (mg/L)	<0.00050		<0.00050		<0.00050
	Titanium (Ti)-Total (mg/L)	0.015		0.019		0.019
	Uranium (U)-Total (mg/L)	0.00027		0.00024		0.00023
	Vanadium (V)-Total (mg/L)	<0.0010		<0.0010		<0.0010
	Zinc (Zn)-Total (mg/L)	<0.0050		<0.0050		<0.0050
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0796		0.0134		0.0285
	Antimony (Sb)-Dissolved (mg/L)	<0.00050		<0.00050		<0.00050
	Arsenic (As)-Dissolved (mg/L)	<0.00050		<0.00050		<0.00050
	Barium (Ba)-Dissolved (mg/L)	<0.020		<0.020		<0.020
	Beryllium (Be)-Dissolved (mg/L)	<0.0010		<0.0010		<0.0010
	Boron (B)-Dissolved (mg/L)	<0.10		<0.10		<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017		<0.000017		<0.000017
	Calcium (Ca)-Dissolved (mg/L)	3.07		2.81		2.73
	Chromium (Cr)-Dissolved (mg/L)	<0.0010		<0.0010		<0.0010
	Cobalt (Co)-Dissolved (mg/L)	<0.00030		<0.00030		<0.00030
	Copper (Cu)-Dissolved (mg/L)	<0.0010		<0.0010		<0.0010
	Iron (Fe)-Dissolved (mg/L)	0.073		<0.030		<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050		<0.00050		<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.0050		<0.0050		<0.0050
	Magnesium (Mg)-Dissolved (mg/L)	1.02		0.91		0.85
	Manganese (Mn)-Dissolved (mg/L)	0.00159		0.00043		0.00081
	Mercury (Hg)-Dissolved (mg/L)	<0.000020		<0.000020		<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010		<0.0010		<0.0010
	Nickel (Ni)-Dissolved (mg/L)	<0.0010		<0.0010		<0.0010
	Potassium (K)-Dissolved (mg/L)	<2.0		<2.0		<2.0
	Selenium (Se)-Dissolved (mg/L)	<0.0010		<0.0010		<0.0010
	Silver (Ag)-Dissolved (mg/L)	<0.0010		<0.0000		<0.00020
	Sodium (Na)-Dissolved (mg/L)	<2.0		<2.0		<2.0
	Thallium (TI)-Dissolved (mg/L)					
	()	<0.00020		<0.00020		<0.00020
	Tin (Sn)-Dissolved (mg/L)	<0.00050		<0.00050		<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.010		<0.010		<0.010
	Uranium (U)-Dissolved (mg/L)	<0.00020		<0.00020		<0.00020
	Vanadium (V)-Dissolved (mg/L)	<0.0010		<0.0010		<0.0010
	Zinc (Zn)-Dissolved (mg/L)	<0.0050		<0.0050		<0.0050

	Sample ID Description	L687296-6	L687296-7	L687296-8	L687296-9	L687296-10
	Sampled Date Sampled Time	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08	01-AUG-08
Grouping	Client ID Analyte	2PL-EAS-3 REP1	2PL-EAS-DT	2PL-EAS-DT REP1	2PL-EAS-DUP	TRAVEL BLANK AE08FISHOUT
	Allalyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)		<2.0		<2.0	
	Selenium (Se)-Total (mg/L)		<0.0010		<0.0010	
	Silver (Ag)-Total (mg/L)		<0.000020		<0.000020	
	Sodium (Na)-Total (mg/L)		<2.0		<2.0	
	Thallium (TI)-Total (mg/L)		<0.00020		<0.00020	
	Tin (Sn)-Total (mg/L)		<0.00050		<0.00050	
	Titanium (Ti)-Total (mg/L)		<0.010		<0.010	
	Uranium (U)-Total (mg/L)		<0.00020		<0.00020	
	Vanadium (V)-Total (mg/L)		<0.0010		<0.0010	
	Zinc (Zn)-Total (mg/L)		<0.0050		<0.0050	
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)		<0.0050		<0.0050	
	Antimony (Sb)-Dissolved (mg/L)		<0.00050		<0.00050	
	Arsenic (As)-Dissolved (mg/L)		<0.00050		<0.00050	
	Barium (Ba)-Dissolved (mg/L)		<0.020		<0.020	
	Beryllium (Be)-Dissolved (mg/L)		<0.0010		<0.0010	
	Boron (B)-Dissolved (mg/L)		<0.10		<0.10	
	Cadmium (Cd)-Dissolved (mg/L)		<0.00017		0.000059	
	Calcium (Ca)-Dissolved (mg/L)		2.81		2.76	
	Chromium (Cr)-Dissolved (mg/L)		<0.0010		<0.0010	
	Cobalt (Co)-Dissolved (mg/L)		<0.00030		<0.00030	
	Copper (Cu)-Dissolved (mg/L)		<0.0010		<0.0010	
	Iron (Fe)-Dissolved (mg/L)		<0.030		<0.030	
	Lead (Pb)-Dissolved (mg/L)		<0.00050		<0.00050	
	Lithium (Li)-Dissolved (mg/L)		<0.0050		<0.0050	
	Magnesium (Mg)-Dissolved (mg/L)		0.94		0.92	
	Manganese (Mn)-Dissolved (mg/L)		0.00041		0.00042	
	Mercury (Hg)-Dissolved (mg/L)		<0.00041		<0.00042	
	Molybdenum (Mo)-Dissolved (mg/L)		<0.00020		<0.00020	
	Nickel (Ni)-Dissolved (mg/L)		<0.0010		<0.0010	
	Potassium (K)-Dissolved (mg/L)		<0.0010		<0.0010	
	Selenium (Se)-Dissolved (mg/L)		<0.0010		<0.0010	
	Silver (Ag)-Dissolved (mg/L)		<0.000020		<0.000020	
	Sodium (Na)-Dissolved (mg/L)		<2.0		<2.0	
	Thallium (TI)-Dissolved (mg/L)		<0.00020		<0.00020	
	Tin (Sn)-Dissolved (mg/L)		<0.00050		<0.00050	
	Titanium (Ti)-Dissolved (mg/L)		<0.010		<0.010	
	Uranium (U)-Dissolved (mg/L)		<0.00020		<0.00020	
	Vanadium (V)-Dissolved (mg/L)		<0.0010		<0.0010	
	Zinc (Zn)-Dissolved (mg/L)		<0.0050		<0.0050	

	Sample ID Description	L687296-11	L687296-12	L687296-13	L687296-14	L687296-15
	Sampled Date Sampled Time	14-SEP-08	13-SEP-08	14-SEP-08	14-SEP-08	13-SEP-08
Grouping	Client ID Analyte	EQUIPMENT BLANK	3PL-EAS	3PL-EAS REP1	3PL-EAS-500	2PL-EAS-1 REP2
	Allalyte					
WATER						
Total Metals	Potassium (K)-Total (mg/L)	<2.0	<2.0			
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010			
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000020			
	Sodium (Na)-Total (mg/L)	<2.0	<2.0			
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020			
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050			
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010			
	Uranium (U)-Total (mg/L)	<0.00020	<0.00020			
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010			
	Zinc (Zn)-Total (mg/L)	<0.0050	<0.0050			
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)		<0.0050			
	Antimony (Sb)-Dissolved (mg/L)		<0.00050			
	Arsenic (As)-Dissolved (mg/L)		<0.00050			
	Barium (Ba)-Dissolved (mg/L)		<0.020			
	Beryllium (Be)-Dissolved (mg/L)		<0.0010			
	Boron (B)-Dissolved (mg/L)		<0.10			
	Cadmium (Cd)-Dissolved (mg/L)		<0.000017			
	Calcium (Ca)-Dissolved (mg/L)		1.17			
	Chromium (Cr)-Dissolved (mg/L)		<0.0010			
	Cobalt (Co)-Dissolved (mg/L)		<0.00030			
	Copper (Cu)-Dissolved (mg/L)		<0.0010			
	Iron (Fe)-Dissolved (mg/L)		<0.030			
	Lead (Pb)-Dissolved (mg/L)		<0.00050			
	Lithium (Li)-Dissolved (mg/L)		<0.0050			
	Magnesium (Mg)-Dissolved (mg/L)		0.53			
	Manganese (Mn)-Dissolved (mg/L)		0.00031			
	Mercury (Hg)-Dissolved (mg/L)		<0.000020			
	Molybdenum (Mo)-Dissolved (mg/L)		<0.0010			
	Nickel (Ni)-Dissolved (mg/L)		<0.0010			
	Potassium (K)-Dissolved (mg/L)		<2.0			
	Selenium (Se)-Dissolved (mg/L)		<0.0010			
	Silver (Ag)-Dissolved (mg/L)		<0.000020			
	Sodium (Na)-Dissolved (mg/L)		<2.0			
	Thallium (TI)-Dissolved (mg/L)		<0.00020			
	Tin (Sn)-Dissolved (mg/L)		<0.00020			
	Titanium (Ti)-Dissolved (mg/L)		<0.010			
	Uranium (U)-Dissolved (mg/L)		<0.0020			
	Vanadium (V)-Dissolved (mg/L)		<0.00020			
	Zinc (Zn)-Dissolved (mg/L)		<0.0050			

	Sample ID Description	L687296-16	L687296-17	L687296-18	L687296-19	L687296-20
	Sampled Date Sampled Time	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08
Grouping	Client ID Analyte	2PL-EAS-1 REP3	2PL-EAS-1 REP4	2PL-EAS-1 REP5	2PL-EAS-2 REP2	2PL-EAS-2 REP3
WATER	Allalyte					
Total Metals	Potassium (K)-Total (mg/L)					
Total Wetais	, , , , ,					
	Selenium (Se)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L) Thallium (Tl)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)					
	Antimony (Sb)-Dissolved (mg/L)					
	Arsenic (As)-Dissolved (mg/L)					
	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Mercury (Hg)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

Description Sampled Date Sampled Time Client ID Analyte Potassium (K)-Total (mg/L)	13-SEP-08 2PL-EAS-2 REP4	13-SEP-08 2PL-EAS-2 REP5	13-SEP-08 2PL-EAS-3 REP2	13-SEP-08 2PL-EAS-3	13-SEP-08
Analyte Potassium (K)-Total (mg/L)					201 540 0
Potassium (K)-Total (mg/L)		I	_	REP3	2PL-EAS-3 REP4
, , , , ,					
, , , , ,					
Selenium (Se)-Total (mg/L)					
Silver (Ag)-Total (mg/L)					
, , , , ,					
Zinc (Zn)-Total (mg/L)					
Aluminum (Al)-Dissolved (mg/L)					
Antimony (Sb)-Dissolved (mg/L)					
Arsenic (As)-Dissolved (mg/L)					
Barium (Ba)-Dissolved (mg/L)					
Beryllium (Be)-Dissolved (mg/L)					
Boron (B)-Dissolved (mg/L)					
Cadmium (Cd)-Dissolved (mg/L)					
Calcium (Ca)-Dissolved (mg/L)					
Chromium (Cr)-Dissolved (mg/L)					
Cobalt (Co)-Dissolved (mg/L)					
Copper (Cu)-Dissolved (mg/L)					
Iron (Fe)-Dissolved (mg/L)					
Lead (Pb)-Dissolved (mg/L)					
Lithium (Li)-Dissolved (mg/L)					
Magnesium (Mg)-Dissolved (mg/L)					
Manganese (Mn)-Dissolved (mg/L)					
, , , ,					
. , , , , , , , , , , , , , , , , , , ,					
	Antimony (Sb)-Dissolved (mg/L) Arsenic (As)-Dissolved (mg/L) Barium (Ba)-Dissolved (mg/L) Beryllium (Be)-Dissolved (mg/L) Boron (B)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Calcium (Ca)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Cobalt (Co)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L)	Thallium (TI)-Total (mg/L) Titn (Sn)-Total (mg/L) Titanium (Ti)-Total (mg/L) Uranium (U)-Total (mg/L) Zinc (Zn)-Total (mg/L) Aluminum (Al)-Dissolved (mg/L) Aluminum (Al)-Dissolved (mg/L) Arsenic (As)-Dissolved (mg/L) Barium (Ba)-Dissolved (mg/L) Beryllium (Be)-Dissolved (mg/L) Boron (B)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Calcium (Ca)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Cobalt (Co)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Magnese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Thallium (TI)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	Thallium (TI)-Total (mg/L) Titanium (Ti)-Total (mg/L) Uranium (U)-Total (mg/L) Vanadium (V)-Total (mg/L) Zinc (Zn)-Total (mg/L) Aluminum (Al)-Dissolved (mg/L) Aluminum (Al)-Dissolved (mg/L) Antimony (Sb)-Dissolved (mg/L) Barium (Ba)-Dissolved (mg/L) Beryllium (Be)-Dissolved (mg/L) Boron (B)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Calcium (Ca)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Cobalt (Co)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Mercury (Hg)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Thallium (Ti)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Uranium (U)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	Thallium (TI)-Total (mg/L) Tin (Sn)-Total (mg/L) Titanium (Ti)-Total (mg/L) Uranium (U)-Total (mg/L) Zinc (Zn)-Total (mg/L) Alumium (Al)-Dissolved (mg/L) Antimony (Sb)-Dissolved (mg/L) Arsenic (As)-Dissolved (mg/L) Barium (Ba)-Dissolved (mg/L) Beryllium (Be)-Dissolved (mg/L) Boron (B)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Calcium (Ca)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Cobalt (Co)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Mercury (Hg)-Dissolved (mg/L) Mickel (Ni)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	Thallium (Ti)-Total (mg/L) Tit (Sn)-Total (mg/L) Uranium (U)-Total (mg/L) Vanadium (V)-Total (mg/L) Zinc (Zn)-Total (mg/L) Aluminum (Al)-Dissolved (mg/L) Aluminum (Al)-Dissolved (mg/L) Antimony (Sb)-Dissolved (mg/L) Barium (Ba)-Dissolved (mg/L) Beryllium (Ba)-Dissolved (mg/L) Beryllium (Ba)-Dissolved (mg/L) Beryllium (Ba)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Calcium (Ca)-Dissolved (mg/L) Calcium (Ca)-Dissolved (mg/L) Cobalt (Co)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nolkel (Ni)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Titalium (Ti)-Dissolved (mg/L) Titalium (Ti)-Dissolved (mg/L) Titalium (U)-Dissolved (mg/L) Uranium (U)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)

	Sample ID Description	L687296-26	L687296-27	L687296-28	L687296-29	L687296-30
	Sampled Date Sampled Time	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08
Grouping	Client ID Analyte	2PL-EAS-3 REP5	2PL-EAS-DT REP2	2PL-EAS-DT REP3	2PL-EAS-DT REP4	2PL-EAS-DT REP5
	Allalyte					
WATER	Detection (IV) Total (mm/l)					
Total Metals	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)					
	Antimony (Sb)-Dissolved (mg/L)					
	Arsenic (As)-Dissolved (mg/L)					
	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Mercury (Hg)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

	Sample ID Description	L687296-31	L687296-32	L687296-33	
	Sampled Date	14-SEP-08	14-SEP-08	14-SEP-08	
	Sampled Time	001 540 0500	001 540 0500	001 540 0504	
Grouping	Client ID Analyte	3PL-EAS REP2	3PL-EAS REP3	3PL-EAS REP4	
	raidiyte				
WATER					
Total Metals	Potassium (K)-Total (mg/L)				
	Selenium (Se)-Total (mg/L)				
	Silver (Ag)-Total (mg/L)				
	Sodium (Na)-Total (mg/L)				
	Thallium (TI)-Total (mg/L)				
	Tin (Sn)-Total (mg/L)				
	Titanium (Ti)-Total (mg/L)				
	Uranium (U)-Total (mg/L)				
	Vanadium (V)-Total (mg/L)				
	Zinc (Zn)-Total (mg/L)				
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)				
	Antimony (Sb)-Dissolved (mg/L)				
	Arsenic (As)-Dissolved (mg/L)				
	Barium (Ba)-Dissolved (mg/L)				
	Beryllium (Be)-Dissolved (mg/L)				
	Boron (B)-Dissolved (mg/L)				
	Cadmium (Cd)-Dissolved (mg/L)				
	Calcium (Ca)-Dissolved (mg/L)				
	Chromium (Cr)-Dissolved (mg/L)				
	Cobalt (Co)-Dissolved (mg/L)				
	Copper (Cu)-Dissolved (mg/L)				
	Iron (Fe)-Dissolved (mg/L)				
	Lead (Pb)-Dissolved (mg/L)				
	Lithium (Li)-Dissolved (mg/L)				
	Magnesium (Mg)-Dissolved (mg/L)				
	Manganese (Mn)-Dissolved (mg/L)				
	Mercury (Hg)-Dissolved (mg/L)				
	Molybdenum (Mo)-Dissolved (mg/L)				
	Nickel (Ni)-Dissolved (mg/L)				
	Potassium (K)-Dissolved (mg/L)				
	Selenium (Se)-Dissolved (mg/L)				
	Silver (Ag)-Dissolved (mg/L)				
	Sodium (Na)-Dissolved (mg/L)				
	Thallium (TI)-Dissolved (mg/L)				
	Tin (Sn)-Dissolved (mg/L)				
	Titanium (Ti)-Dissolved (mg/L)				
	Uranium (U)-Dissolved (mg/L)				
	· · · · · · · · · · · · · · · · · · ·				
	Vanadium (V)-Dissolved (mg/L)				
	Zinc (Zn)-Dissolved (mg/L)				

		Sample ID Description Sampled Date	L687296-1	L687296-2	L687296-3	L687296-4	L687296-5
	Sampled Time	Sampled Time	13-SEP-08	13-SEP-08	13-SEP-08	13-SEP-08	
	Analista	Client ID	2PL-EAS-1	2PL-EAS-1 REP1	2PL-EAS-2	2PL-EAS-2 REP1	2PL-EAS-3
rouping	Analyte						
WATER	Chlaranhidla ()						
Plant Pigments	Chlorophyll a (ug) Chlorophyll a (ug/L)			0.500		0.403	
	Criioropriyii a (ug/L)			0.582		0.403	

		Sample ID Description Sampled Date Sampled Time Client ID	L687296-6 13-SEP-08 2PL-EAS-3	L687296-7 13-SEP-08 2PL-EAS-DT	L687296-8 13-SEP-08 2PL-EAS-DT	L687296-9 13-SEP-08 2PL-EAS-DUP	L687296-10 01-AUG-08 TRAVEL BLANK
Grouping	Analyte	0.111111	REP1		REP1		AE08FISHOUT
WATER							
Plant Pigments	Chlorophyll a (ug)						
-	Chlorophyll a (ug/L)		0.474		0.608		

		Sample ID Description Sampled Date	L687296-11 14-SEP-08	L687296-12 13-SEP-08	L687296-13 14-SEP-08	L687296-14 14-SEP-08	L687296-15 13-SEP-08
		Sampled Time Client ID	EQUIPMENT BLANK	3PL-EAS	3PL-EAS REP1	3PL-EAS-500	2PL-EAS-1 REP2
Grouping	Analyte		22				
WATER							
Plant Pigments	Chlorophyll a (ug)						
	Chlorophyll a (ug/L)				0.622	0.444	0.660

		Sample ID Description Sampled Date	L687296-16 13-SEP-08	L687296-17 13-SEP-08	L687296-18 13-SEP-08	L687296-19 13-SEP-08	L687296-20 13-SEP-08
		Sampled Time Client ID	2PL-EAS-1	2PL-EAS-1	2PL-EAS-1	2PL-EAS-2	2PL-EAS-2
Grouping	Analyte	Olicit ib	REP3	REP4	REP5	REP2	REP3
WATER							
Plant Pigments	Chlorophyll a (ug)				0.251		
	Chlorophyll a (ug/L)		0.653	0.524		0.592	0.363

		Sample ID L687296-21 L687296-22 Description Sampled Date 13-SEP-08 13-SEP-08	L687296-22	L687296-23 13-SEP-08	L687296-24 13-SEP-08	L687296-25 13-SEP-08	
		Sampled Time					
rouping	Analyte	Client ID	2PL-EAS-2 REP4	2PL-EAS-2 REP5	2PL-EAS-3 REP2	2PL-EAS-3 REP3	2PL-EAS-3 REP4
WATER	, ,						
Plant Pigments	Chlorophyll a (ug)						
	Chlorophyll a (ug/L)		0.641	0.544	0.589	0.666	0.604
	, , , , , ,						

		Sample ID Description Sampled Date Sampled Time Client ID	L687296-26 13-SEP-08 2PL-EAS-3 REP5	L687296-27 13-SEP-08 2PL-EAS-DT REP2	L687296-28 13-SEP-08 2PL-EAS-DT REP3	L687296-29 13-SEP-08 2PL-EAS-DT REP4	L687296-30 13-SEP-08 2PL-EAS-DT REP5
Grouping	Analyte						
WATER							
Plant Pigments	Chlorophyll a (ug)						
	Chlorophyll a (ug/L)		0.658	0.585	0.540	0.621	0.652

L63726-32 L68726-32 L68726-33 L687				I	I	I	1	I
Sampled Date Sampled Time Client ID Analyte WATER Plant Pigments Chlorophyll a (ug) 14-SEP-08 14-SEP-08 14-SEP-08 3PL-EAS REP2 3PL-EAS REP2 3PL-EAS REP3 3PL-EAS REP3 3PL-EAS REP3 3PL-EAS REP4			Description					
WATER Plant Pigments Chlorophyll a (ug)			Sampled Time					
WATER Plant Pigments Chlorophyll a (ug)	C	Avaluta	Client ID	3PL-EAS REP2	3PL-EAS REP3	3PL-EAS REP4		
Plant Pigments Chlorophyll a (ug)		Analyte						
Chlorophynia (ligit.) U.S./1 U.S./1 U.S./1 U.S./1 U.S./1 U.S./1	Plant Pigments			0.574	0.504	0.474		
		Chiorophyli a (ug/L)		0.571	0.564	0.471		

Additional Comments for Sample Listed: Samplenum Matrix Report Remarks Sample Comments Methods Listed (if applicable): **ALS Test Code** Matrix **Test Description** Analytical Method Reference(Based On) ALK-SCR-VA Water Alkalinity by colour or titration EPA 310.2 OR APHA 2320 This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method. OR This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values. ANIONS-CL-IC-VA Water Chloride by Ion Chromatography APHA 4110 "Determination of Anions by IC This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. ANIONS-NO2-IC-VA Water APHA 4110 "Determination of Anions by IC Nitrite by Ion Chromatography This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. ANIONS-NO3-IC-VA Water Nitrate by Ion Chromatography APHA 4110 "Determination of Anions by IC This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. ANIONS-SO4-IC-VA Water Sulfate by Ion Chromatography APHA 4110 "Determination of Anions by IC This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. **CARBONS-DOC-VA** Water Dissolved organic carbon by combustion APHA 5310 "TOTAL ORGANIC CARBON (TOC)" This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis. **CARBONS-TOC-VA** Water Total organic carbon by combustion APHA 5310 "TOTAL ORGANIC CARBON (TOC)" This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". CHLOROA-VA Water Chlorophyll a by Fluorometer APHA 10200 H. "Chlorophyll" and EPA 445 Chlorophyll and Pheopigments by Fluorometry analysis is carried out using procedures adapted from APHA Method 10200 H. "Chlorophyll" and USEPA Method 445. The sample is filtered using either a glass fiber filter or a 0.45 micron Membrane filter. The pigments are extracted from the filter with 90% aqueuos acetone. For chlorophyll a analysis the extract is read using a fluorometer. For pheopigments the extract is first acidified then read. This method is not subject to interferences from chlorophyll b. **EC-PCT-VA** Water Conductivity (Automated) APHA 2510 Auto. Conduc. This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode. Water HARDNESS-CALC-VA Hardness **APHA 2340B**

Water

Diss. Mercury in Water by CVAFS (CCME)

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

FPA 3005A/245 7

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

HG-TOT-CCME-CVAFS- Water

Total Mercury in Water by CVAFS (CCME)

EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-DIS-CCME-ICP-VA Water

Diss. Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-CCME-MS-VA Water

Diss. Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-CCME-ICP-VA Water

Total Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-SIE-VA

Water

Ammonia by SIE

APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

PH-MAN-VA

Water

pH by Manual Meter

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA

Water

Dissolved ortho Phosphate by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Water

Total Phosphate P by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

TDS-VA

Water

Total Dissolved Solids by Gravimetric

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TKN-SIE-VA

Water

Total Kieldahl Nitrogen by SIE

APHA 4500-Norg (TKN)

This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by sample digestion at 367 celcius with analysis using an ammonia selective electrode.

TSS-VA

Water

Total Suspended Solids by Gravimetric

APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS Environmental excellence in analytical testing

1988 Triumph Street, **Vancouver**, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 L687796

#2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430

www.alsenviro.com

	CHAI	N OF CUS	TODY /	ANALY	TIC	AL	RE	EQI	JE	ST	FC	R	V								PAGE 1 OF 1
	SEND REPO	ORT TO:			S	END	INVO	ICE T	O: (c	omple	ete if	differe	ent fro	m Re	port 1	o at I	eft)	Requ	ire co	py of	Report? Yes No
COMPA	ANY: Azimuth Consulting Group Inc.	-				IPANY										1	CONT		$\overline{}$		
ADDRE					ADD	RESS	:												F	P.O. #	
CITY:	Vancouver PROV: BC	POSTAL CODE	: V6K 2G8		CITY	' :					F	PROV:		POS	TAL C	ODE:				TEL	
CONTA	CT: R. Baker, M. McConnell	TELEPHONE	:		ANA	LYSI	SRE	QUES	STED):											**Conventionals
_	CT NAME#: EAS	SAMPLER	: DH, KM, JP, M	IB		(*(es.)		1000											conductivity, hardness,
ALSE C	NUOTE #: ALSEQ-07-622	ALSE CONTACT			1	w/ H ₂ SO4)	<u> </u>	ā.		ਿੰਡ		w/ MgCO ₃)					l				pH, TSS, TDS, nutrients(nitrate, nitrite,
	REPORT FORMAT:		VOICE FORMA		1	₹	Ĭ	pa		w/ HCI)		β									total phosphate,
● Har		Hardcopy	○ Fax #:		4	es.		ige	_				4					M		i. Parlin	orthophosphate),
∪ E-n	nail Specify file type: Excel & pdf	E-mail (pdf fo	ormat)		:	<u>5</u>	§ §	S	HCI)	a d		Sec									sulphate, chloride,
	Address:	E-mail Address:			als	ă	9	leta	w/ I	00 12 12		9									alkalinity(bicarbonate,
Rus	sh (Surcharges May Apply) Specify Due Date	a·	Tim		Conventionals	TKN, Ammonia (pres.	Total Metals (pres. w/ HNO ₃)	Dissolved Metals (filtered & pres	res.	DOC (filtered & pres.		Chlorophyll-a (pres.									carbonate, hydroxide).
			COLLECTED	1	∮ §	₹	₹	S S	d) :	(E)		go									NOTES (sample specific
	SAMPLE IDENTIFICATION	YY-MM-DD	Time	MATRIX	ပ်	ž	Tota	Diss	TOC	Ø		ਤੁੰ									comments, due dates, etc.)
L	2PL-EAS-1	08-09-13	(40) 5	water	х	×	х	X	X	X						ă.				Tyr.	6 containers
<u> </u>	2PL-EAS-1	08-09-13		filter								х									5 containers (500ml filt.)
	2PL-EAS-2	08-09-13		water	×	х	x	X	X	X								Crrys L	i	- 1	6 containers
	2PL-EAS-2	08-09-13		water								х									5 containers (500ml filt.)
L	2PL-EAS-3	08-09-13		filter	×	х	×	х	X	х							i i				6 containers
S -	2PL-EAS-3	08-09-13		filter								х									5 containers (500ml filt.)
ğ	2PL-EAS-DT	08-09-13		water	х	х	x	x	х	х											6 containers
FOR LAB USE	2PL-EAS-DT	08-09-13		filter								х									5 containers (500ml filt.)
8 L	2PL-EAS-DUP	08-09-13		water	х	Х	×	X	х	X											6 containers
품	Travel Blank (AE-08-Fishout)	08-08-01		water	х	х			х												3 containers
<u>"</u> _	EQUIPMENT BLANK	08-09-14		water	x	×	x		X												4 containers
L	3PL-EAS	08-09-13		water	х	х	х	х	х	×											6 containers
	3PL-EAS	08-09-14	A	filter							4	х		1. 1. 1.							4 containers (1L filt.)
	3PL-EAS-500	08-09-14		filter								х									1 container (500ml filt.)
<u> </u>														III.							
					_											D 534		<u></u>	H17		L
AME:	RELINQUISH Maggie McConnell		Sept.20 2008		NAM	E.	Γ			_				KE		D BY					X9/24
F:	Azimuth Consulting Group Inc.	TIME	. Серп.20 2000		OF:	<u>-</u> .	 						•			TIME:				<u> </u>	3)11
AME:	Mayer Il Yannel	DATE			NAM	E :						_			\vdash	DATE:					
F:	_ 1/1/1/20	TIME			OF:		ALS I	Enviro	nment	tal						TIME:					
	nstructions / Comments (billing details, QC reporti	ng, etc.):	<i>′</i>				÷						,								
F	OR LAB USE ONLY Cooler Seal Intac	? YesNo_	N/A S	ample Temper	ature:	7	οС	Fro	zen?	Yes_	N	0	C	ooling	Met	hod?	Icepa	icks_	/lo	e	None

Environmental Division

Certificate of Analysis

AZIMUTH CONSULTING GROUP INC.

ATTN: RANDY BAKER

218 - 2902 WEST BROADWAY

VANCOUVER BC V6K 2G8

Reported On: 28-OCT-08 11:36 AM

Lab Work Order #:

L691075

Date Received: 03-OCT-08

Project P.O. #:

Job Reference: EAS

Legal Site Desc: CofC Numbers:

Other Information:

Comments:

Bryan Mark Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

	Sample ID Description Sampled Date Sampled Time	L691075-1 24-SEP-08 08:35	L691075-2 24-SEP-08 08:35	L691075-3 24-SEP-08 08:35	L691075-4 24-SEP-08 08:35	L691075-5 24-SEP-08 08:35
	Client ID	2PL-EAS-1-R2	2PL-EAS-1-R2 REP 1	2PL-EAS-1-R2 REP 2	2PL-EAS-1-R2 REP 3	2PL-EAS-1-R2 REP 4
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	24.4				
	Hardness (as CaCO3) (mg/L)	9.98				
	pH (pH)	7.27				
	Total Suspended Solids (mg/L)	3.3				
	Total Dissolved Solids (mg/L)	13				
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	7.8				
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0				
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0				
	Alkalinity, Total (as CaCO3) (mg/L)	7.8				
	Ammonia as N (mg/L)	0.022				
	Chloride (CI) (mg/L)	<0.50				
	Nitrate (as N) (mg/L)	0.0267				
	Nitrite (as N) (mg/L)	0.0014				
	Total Kjeldahl Nitrogen (mg/L)	0.128				
	Ortho Phosphate as P (mg/L)	<0.0010				
	Total Phosphate as P (mg/L)	0.0064				
	Sulfate (SO4) (mg/L)	2.39				
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	2.00				
	Total Organic Carbon (mg/L)	1.48				
Total Metals	Aluminum (Al)-Total (mg/L)	0.254				
	Antimony (Sb)-Total (mg/L)	<0.00050				
	Arsenic (As)-Total (mg/L)	<0.00050				
	Barium (Ba)-Total (mg/L)	<0.020				
	Beryllium (Be)-Total (mg/L)	<0.0010				
	Boron (B)-Total (mg/L)	<0.10				
	Cadmium (Cd)-Total (mg/L)	<0.000017				
	Calcium (Ca)-Total (mg/L)	2.66				
	Chromium (Cr)-Total (mg/L)	<0.0010				
	Cobalt (Co)-Total (mg/L)	<0.00030				
	Copper (Cu)-Total (mg/L)	0.0014				
	Iron (Fe)-Total (mg/L)	0.337				
	Lead (Pb)-Total (mg/L)	<0.00050				
	Lithium (Li)-Total (mg/L)	<0.0050				
	Magnesium (Mg)-Total (mg/L)	0.89				
	Manganese (Mn)-Total (mg/L)	0.00656				
	Mercury (Hg)-Total (mg/L)	<0.000020				
	Molybdenum (Mo)-Total (mg/L)	<0.0010				
	Nickel (Ni)-Total (mg/L)	<0.0010				

	Sample ID Description Sampled Date Sampled Time	L691075-6 24-SEP-08 11:40	L691075-7 24-SEP-08 11:40	L691075-8 24-SEP-08 11:40	L691075-9 24-SEP-08 11:40	L691075-10 24-SEP-08 11:40
2	Client ID	2PL-EAS-2-R2	2PL-EAS-2-R2 REP 1	2PL-EAS-2-R2 REP 2	2PL-EAS-2-R2 REP 3	2PL-EAS-2-R2 REP 4
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	25.6				
	Hardness (as CaCO3) (mg/L)	10.4				
	pH (pH)	7.27				
	Total Suspended Solids (mg/L)	52.8				
	Total Dissolved Solids (mg/L)	16				
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	8.3				
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0				
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0				
	Alkalinity, Total (as CaCO3) (mg/L)	8.3				
	Ammonia as N (mg/L)	<0.020				
	Chloride (CI) (mg/L)	0.54				
	Nitrate (as N) (mg/L)	0.0302				
	Nitrite (as N) (mg/L)	0.0017				
	Total Kjeldahl Nitrogen (mg/L)	0.132				
	Ortho Phosphate as P (mg/L)	<0.0010				
	Total Phosphate as P (mg/L)	0.0096				
	Sulfate (SO4) (mg/L)	2.49				
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	2.14				
	Total Organic Carbon (mg/L)	1.73				
Total Metals	Aluminum (Al)-Total (mg/L)	0.278				
	Antimony (Sb)-Total (mg/L)	<0.00050				
	Arsenic (As)-Total (mg/L)	<0.00050				
	Barium (Ba)-Total (mg/L)	<0.020				
	Beryllium (Be)-Total (mg/L)	<0.0010				
	Boron (B)-Total (mg/L)	<0.10				
	Cadmium (Cd)-Total (mg/L)	<0.000017				
	Calcium (Ca)-Total (mg/L)	2.85				
	Chromium (Cr)-Total (mg/L)	0.0011				
	Cobalt (Co)-Total (mg/L)	<0.00030				
	Copper (Cu)-Total (mg/L)	0.0020				
	Iron (Fe)-Total (mg/L)	0.393				
	Lead (Pb)-Total (mg/L)	0.00086				
	Lithium (Li)-Total (mg/L)	<0.0050				
	Magnesium (Mg)-Total (mg/L)	0.93				
	Manganese (Mn)-Total (mg/L)	0.00832				
	Mercury (Hg)-Total (mg/L)	<0.000020				
	Molybdenum (Mo)-Total (mg/L)	<0.0010				
	Nickel (Ni)-Total (mg/L)	0.0010				

	Sample ID Description	L691075-11	L691075-12	L691075-13	L691075-14	L691075-15
	Sampled Date	24-SEP-08	24-SEP-08	24-SEP-08	24-SEP-08	24-SEP-08
	Sampled Time Client ID	11:40	09:30	09:30	09:30	09:30
Grouping	Analyte	2PL-EAS-2-R2 REP 5	2PL-EAS-3-R2	2PL-EAS-3-R2 REP 1	2PL-EAS-3-R2 REP 2	2PL-EAS-3-R2 REP 3
WATER	•					
Physical Tests	Conductivity (uS/cm)		25.2			
,	Hardness (as CaCO3) (mg/L)		10.4			
	pH (pH)		7.23			
	Total Suspended Solids (mg/L)		16.3			
	Total Dissolved Solids (mg/L)		16			
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)		7.7			
Nutrients	Alkalinity, Carbonate (as CaCO3) (mg/L)		<2.0			
	Alkalinity, Hydroxide (as CaCO3) (mg/L)					
	Alkalinity, Total (as CaCO3) (mg/L)		<2.0 7.7			
	Ammonia as N (mg/L)		<0.020			
	Chloride (Cl) (mg/L)		0.52			
	Nitrate (as N) (mg/L)		0.0311			
	, , , , , ,					
	Nitrite (as N) (mg/L) Total Kjeldahl Nitrogen (mg/L)		0.0018 0.142			
	Ortho Phosphate as P (mg/L)		<0.0010			
			0.0086			
	Total Phosphate as P (mg/L)					
Organia /	Sulfate (SO4) (mg/L)		2.45			
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)		1.69			
	Total Organic Carbon (mg/L)		1.65			
Total Metals	Aluminum (AI)-Total (mg/L)		0.268			
	Antimony (Sb)-Total (mg/L)		<0.00050			
	Arsenic (As)-Total (mg/L)		<0.00050			
	Barium (Ba)-Total (mg/L)		<0.020			
	Beryllium (Be)-Total (mg/L)		<0.0010			
	Boron (B)-Total (mg/L)		<0.10			
	Cadmium (Cd)-Total (mg/L)		<0.000017			
	Calcium (Ca)-Total (mg/L)		2.77			
	Chromium (Cr)-Total (mg/L)		0.0011			
	Cobalt (Co)-Total (mg/L)		<0.00030			
	Copper (Cu)-Total (mg/L)		0.0019			
	Iron (Fe)-Total (mg/L)		0.367			
	Lead (Pb)-Total (mg/L)		0.00691			
	Lithium (Li)-Total (mg/L)		<0.0050			
	Magnesium (Mg)-Total (mg/L)		0.92			
	Manganese (Mn)-Total (mg/L)		0.00777			
	Mercury (Hg)-Total (mg/L)		<0.000020			
	Molybdenum (Mo)-Total (mg/L)		<0.0010			
	Nickel (Ni)-Total (mg/L)		0.0010			

	Sample ID Description Sampled Date Sampled Time Client ID	L691075-16 24-SEP-08 09:30 2PL-EAS-3-R2	L691075-17 24-SEP-08 09:30 2PL-EAS-3-R2	L691075-18 24-SEP-08 10:55 2PL-EAS-DT-R2	L691075-19 24-SEP-08 10:55 2PL-EAS-DT-R2	L691075-20 24-SEP-08 10:55 2PL-EAS-DT-R2
Grouping	Analyte	REP 4	REP 5		REP 1	REP 2
WATER						
Physical Tests	Conductivity (uS/cm)			26.3		
ye.cu cece	Hardness (as CaCO3) (mg/L)			10.9		
	pH (pH)			7.20		
	Total Suspended Solids (mg/L)			3.8		
	Total Dissolved Solids (mg/L)			20		
Anions and	Alkalinity, Bicarbonate (as CaCO3) (mg/L)			8.1		
Nutrients	Alkalinity, Carbonate (as CaCO3) (mg/L)			<2.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)			<2.0		
	Alkalinity, Total (as CaCO3) (mg/L)			8.1		
	Ammonia as N (mg/L)			<0.020		
	Chloride (CI) (mg/L)			<0.50		
	Nitrate (as N) (mg/L)			<0.0050		
	Nitrite (as N) (mg/L)			<0.0010		
	Total Kjeldahl Nitrogen (mg/L)			0.127		
	Ortho Phosphate as P (mg/L)			<0.0010		
	Total Phosphate as P (mg/L)			0.0049		
	Sulfate (SO4) (mg/L)			2.96		
Organic /	Dissolved Organic Carbon (mg/L)			1.87		
Inorganic Carbon						
	Total Organic Carbon (mg/L)			1.93		
Total Metals	Aluminum (Al)-Total (mg/L)			0.0515		
	Antimony (Sb)-Total (mg/L)			<0.00050		
	Arsenic (As)-Total (mg/L)			<0.00050		
	Barium (Ba)-Total (mg/L)			<0.020		
	Beryllium (Be)-Total (mg/L)			<0.0010		
	Boron (B)-Total (mg/L)			<0.10		
	Cadmium (Cd)-Total (mg/L)			<0.000017		
	Calcium (Ca)-Total (mg/L)			2.91		
	Chromium (Cr)-Total (mg/L)			<0.0010		
	Cobalt (Co)-Total (mg/L)			<0.00030		
	Copper (Cu)-Total (mg/L)			0.0010		
	Iron (Fe)-Total (mg/L)			0.085		
	Lead (Pb)-Total (mg/L)			0.00096		
	Lithium (Li)-Total (mg/L)			<0.0050		
	Magnesium (Mg)-Total (mg/L)			0.94		
	Manganese (Mn)-Total (mg/L)			0.00205		
	Mercury (Hg)-Total (mg/L)			<0.000020		
	Molybdenum (Mo)-Total (mg/L)			<0.0010		
	Nickel (Ni)-Total (mg/L)			<0.0010		

	Sample ID Description Sampled Date Sampled Time	L691075-21 24-SEP-08 10:55	L691075-22 24-SEP-08 10:55	L691075-23 24-SEP-08 10:55	L691075-24 24-SEP-08 14:30	L691075-25 24-SEP-08 14:30
Crawning	Client ID	2PL-EAS-DT-R2 REP 3	2PL-EAS-DT-R2 REP 4	2PL-EAS-DT-R2 REP 5	EAS-DUP-R2	3PL-EAS-R2
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)					16.4
	Hardness (as CaCO3) (mg/L)				11.5	5.09
	pH (pH)					6.79
	Total Suspended Solids (mg/L)					<3.0
	Total Dissolved Solids (mg/L)					<10
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)					4.2
	Alkalinity, Carbonate (as CaCO3) (mg/L)					<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)					<2.0
	Alkalinity, Total (as CaCO3) (mg/L)					4.2
	Ammonia as N (mg/L)				<0.020	<0.020
	Chloride (CI) (mg/L)					0.88
	Nitrate (as N) (mg/L)					<0.0050
	Nitrite (as N) (mg/L)					<0.0010
	Total Kjeldahl Nitrogen (mg/L)				0.150	0.261
	Ortho Phosphate as P (mg/L)					<0.0010
	Total Phosphate as P (mg/L)					0.0048
	Sulfate (SO4) (mg/L)					1.49
Organic /	Dissolved Organic Carbon (mg/L)				1.76	125
Inorganic Carbon	Total Organia Carbon (mg/l)				4.50	2.10
Total Metals	Total Organic Carbon (mg/L) Aluminum (Al)-Total (mg/L)				1.52 0.315	0.0396
Total Wetais	Antimony (Sb)-Total (mg/L)				<0.00050	<0.0050
	Arsenic (As)-Total (mg/L)				<0.00050	<0.00050
					<0.000	
	Barium (Ba)-Total (mg/L) Beryllium (Be)-Total (mg/L)				<0.020	<0.020 <0.0010
	Boron (B)-Total (mg/L)				<0.10	<0.10
	Cadmium (Cd)-Total (mg/L)				<0.00017	<0.00017
	Calcium (Ca)-Total (mg/L)				2.80	1.26
	Chromium (Cr)-Total (mg/L)				0.0012	<0.0010
	Cobalt (Co)-Total (mg/L)				<0.00030	<0.00030
	Copper (Cu)-Total (mg/L)				0.0021	<0.00030
	Iron (Fe)-Total (mg/L)				0.0021	0.0010
	Lead (Pb)-Total (mg/L)				0.00079	<0.00050
	Lithium (Li)-Total (mg/L)				<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/L)				0.94	0.55
	Manganese (Mn)-Total (mg/L)				0.94	0.00229
	Mercury (Hg)-Total (mg/L)				<0.00052	<0.00229
	Molybdenum (Mo)-Total (mg/L)				<0.000020	<0.00020
	Nickel (Ni)-Total (mg/L)				0.0010	<0.0010
	THONG (TH) TOTAL (ITIG/L)				0.0011	<u> </u>

	Sample ID Description	L691075-26	L691075-27	L691075-28	L691075-29	L691075-30
	Sampled Date Sampled Time	24-SEP-08 14:30	24-SEP-08 14:30	24-SEP-08 14:30	24-SEP-08 14:30	24-SEP-08 14:30
	Client ID	3PL-EAS-R2 REP 1	3PL-EAS-R2 REP 2	3PL-EAS-R2 REP 3	3PL-EAS-R2 REP 4	3PL-EAS-R2 REP 5
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)					
	Hardness (as CaCO3) (mg/L)					
	pH (pH)					
	Total Suspended Solids (mg/L)					
	Total Dissolved Solids (mg/L)					
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)					
	Alkalinity, Carbonate (as CaCO3) (mg/L)					
	Alkalinity, Hydroxide (as CaCO3) (mg/L)					
	Alkalinity, Total (as CaCO3) (mg/L)					
	Ammonia as N (mg/L)					
	Chloride (CI) (mg/L)					
	Nitrate (as N) (mg/L)					
	Nitrite (as N) (mg/L)					
	Total Kjeldahl Nitrogen (mg/L)					
	Ortho Phosphate as P (mg/L)					
	Total Phosphate as P (mg/L)					
	Sulfate (SO4) (mg/L)					
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)					
	Total Organic Carbon (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Mercury (Hg)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					

	Sample ID Description	L691075-1	L691075-2	L691075-3	L691075-4	L691075-5
	Sampled Date	24-SEP-08	24-SEP-08	24-SEP-08	24-SEP-08	24-SEP-08
	Sampled Time	08:35	08:35	08:35	08:35	08:35
Grouping	Client ID Analyte	2PL-EAS-1-R2	2PL-EAS-1-R2 REP 1	2PL-EAS-1-R2 REP 2	2PL-EAS-1-R2 REP 3	2PL-EAS-1-R2 REP 4
WATER	7 and yes					
Total Metals	Potassium (K)-Total (mg/L)	<2.0				
Total Wetais	Selenium (Se)-Total (mg/L)	<0.0010				
	Silver (Ag)-Total (mg/L)	<0.00000				
	Sodium (Na)-Total (mg/L)	<2.0				
	Thallium (TI)-Total (mg/L)	<0.00020				
	Tin (Sn)-Total (mg/L)	<0.00050				
	Titanium (Ti)-Total (mg/L)	0.012				
	Uranium (U)-Total (mg/L)	<0.00020				
	Vanadium (V)-Total (mg/L)	<0.0010				
Discoular d M. C.	Zinc (Zn)-Total (mg/L)	<0.0050				
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0208				
	Antimony (Sb)-Dissolved (mg/L)	<0.00050				
	Arsenic (As)-Dissolved (mg/L)	<0.00050				
	Barium (Ba)-Dissolved (mg/L)	<0.020				
	Beryllium (Be)-Dissolved (mg/L)	<0.0010				
	Boron (B)-Dissolved (mg/L)	<0.10				
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017				
	Calcium (Ca)-Dissolved (mg/L)	2.68				
	Chromium (Cr)-Dissolved (mg/L)	<0.0010				
	Cobalt (Co)-Dissolved (mg/L)	<0.00030				
	Copper (Cu)-Dissolved (mg/L)	0.0010				
	Iron (Fe)-Dissolved (mg/L)	<0.030				
	Lead (Pb)-Dissolved (mg/L)	<0.00050				
	Lithium (Li)-Dissolved (mg/L)	<0.0050				
	Magnesium (Mg)-Dissolved (mg/L)	0.80				
	Manganese (Mn)-Dissolved (mg/L)	0.00048				
	Mercury (Hg)-Dissolved (mg/L)	<0.000020				
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010				
	Nickel (Ni)-Dissolved (mg/L)	<0.0010				
	Potassium (K)-Dissolved (mg/L)	<2.0				
	Selenium (Se)-Dissolved (mg/L)	<0.0010				
	Silver (Ag)-Dissolved (mg/L)	<0.000020				
	Sodium (Na)-Dissolved (mg/L)	<2.0				
	Thallium (TI)-Dissolved (mg/L)	<0.00020				
	Tin (Sn)-Dissolved (mg/L)	<0.00050				
	Titanium (Ti)-Dissolved (mg/L)	<0.010				
	Uranium (U)-Dissolved (mg/L)	<0.00020				
	Vanadium (V)-Dissolved (mg/L)	<0.0010				
	Zinc (Zn)-Dissolved (mg/L)	<0.0050				

	Sample ID Description	L691075-6	L691075-7	L691075-8	L691075-9	L691075-10
	Sampled Date	24-SEP-08	24-SEP-08	24-SEP-08	24-SEP-08	24-SEP-08
	Sampled Time	11:40	11:40	11:40	11:40	11:40
Grouping	Client ID Analyte	2PL-EAS-2-R2	2PL-EAS-2-R2 REP 1	2PL-EAS-2-R2 REP 2	2PL-EAS-2-R2 REP 3	2PL-EAS-2-R2 REP 4
WATER	Analyte					
Total Metals	Potassium (K)-Total (mg/L)	<2.0				
Total Wetais	, , , , ,					
	Selenium (Se)-Total (mg/L) Silver (Ag)-Total (mg/L)	<0.0010 <0.000020				
	Sodium (Na)-Total (mg/L)	<2.0				
	Thallium (TI)-Total (mg/L)	<0.00020				
	Tin (Sn)-Total (mg/L)	<0.00050				
	Titanium (Ti)-Total (mg/L)	0.014				
	Uranium (U)-Total (mg/L)	<0.00020				
	Vanadium (V)-Total (mg/L)	<0.0010				
Diagahaad Marel	Zinc (Zn)-Total (mg/L)	0.0054				
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0211				
	Antimony (Sb)-Dissolved (mg/L)	<0.00050				
	Arsenic (As)-Dissolved (mg/L)	<0.00050				
	Barium (Ba)-Dissolved (mg/L)	<0.020				
	Beryllium (Be)-Dissolved (mg/L)	<0.0010				
	Boron (B)-Dissolved (mg/L)	<0.10				
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017				
	Calcium (Ca)-Dissolved (mg/L)	2.82				
	Chromium (Cr)-Dissolved (mg/L)	<0.0010				
	Cobalt (Co)-Dissolved (mg/L)	<0.00030				
	Copper (Cu)-Dissolved (mg/L)	<0.0010				
	Iron (Fe)-Dissolved (mg/L)	<0.030				
	Lead (Pb)-Dissolved (mg/L)	<0.00050				
	Lithium (Li)-Dissolved (mg/L)	<0.0050				
	Magnesium (Mg)-Dissolved (mg/L)	0.83				
	Manganese (Mn)-Dissolved (mg/L)	0.00045				
	Mercury (Hg)-Dissolved (mg/L)	<0.000020				
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010				
	Nickel (Ni)-Dissolved (mg/L)	<0.0010				
	Potassium (K)-Dissolved (mg/L)	<2.0				
	Selenium (Se)-Dissolved (mg/L)	<0.0010				
	Silver (Ag)-Dissolved (mg/L)	<0.000020				
	Sodium (Na)-Dissolved (mg/L)	<2.0				
	Thallium (TI)-Dissolved (mg/L)	<0.00020				
	Tin (Sn)-Dissolved (mg/L)	<0.00050				
	Titanium (Ti)-Dissolved (mg/L)	<0.010				
	Uranium (U)-Dissolved (mg/L)	<0.00020				
	Vanadium (V)-Dissolved (mg/L)	<0.0010				
	Zinc (Zn)-Dissolved (mg/L)	<0.0050				

	Sample ID Description	L691075-11	L691075-12	L691075-13	L691075-14	L691075-15
	Sampled Date	24-SEP-08	24-SEP-08	24-SEP-08	24-SEP-08	24-SEP-08
	Sampled Time Client ID	11:40	09:30	09:30	09:30	09:30
Grouping	Analyte	2PL-EAS-2-R2 REP 5	2PL-EAS-3-R2	2PL-EAS-3-R2 REP 1	2PL-EAS-3-R2 REP 2	2PL-EAS-3-R2 REP 3
WATER						
Total Metals	Potassium (K)-Total (mg/L)		<2.0			
	Selenium (Se)-Total (mg/L)		<0.0010			
	Silver (Ag)-Total (mg/L)		<0.00020			
	Sodium (Na)-Total (mg/L)		<2.0			
	Thallium (TI)-Total (mg/L)		<0.00020			
	Tin (Sn)-Total (mg/L)		<0.00050			
	Titanium (Ti)-Total (mg/L)		0.013			
	Uranium (U)-Total (mg/L)		0.00020			
	Vanadium (V)-Total (mg/L)		<0.0010			
	Zinc (Zn)-Total (mg/L)		0.0063			
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)		0.0128			
	Antimony (Sb)-Dissolved (mg/L)		<0.00050			
	Arsenic (As)-Dissolved (mg/L)		<0.00050			
	Barium (Ba)-Dissolved (mg/L)		<0.020			
	Beryllium (Be)-Dissolved (mg/L)		<0.0010			
	Boron (B)-Dissolved (mg/L)		<0.10			
	Cadmium (Cd)-Dissolved (mg/L)		<0.000017			
	Calcium (Ca)-Dissolved (mg/L)		2.80			
	Chromium (Cr)-Dissolved (mg/L)		<0.0010			
	Cobalt (Co)-Dissolved (mg/L)		<0.00030			
	Copper (Cu)-Dissolved (mg/L)		<0.0010			
	Iron (Fe)-Dissolved (mg/L)		<0.030			
	Lead (Pb)-Dissolved (mg/L)		<0.00050			
	Lithium (Li)-Dissolved (mg/L)		<0.0050			
	Magnesium (Mg)-Dissolved (mg/L)		0.83			
	Manganese (Mn)-Dissolved (mg/L)		0.00041			
	Mercury (Hg)-Dissolved (mg/L)		<0.000020			
	Molybdenum (Mo)-Dissolved (mg/L)		<0.0010			
	Nickel (Ni)-Dissolved (mg/L)		<0.0010			
	Potassium (K)-Dissolved (mg/L)		<2.0			
	Selenium (Se)-Dissolved (mg/L)		<0.0010			
	Silver (Ag)-Dissolved (mg/L)		<0.000020			
	Sodium (Na)-Dissolved (mg/L)		<2.0			
	Thallium (TI)-Dissolved (mg/L)		<0.00020			
	Tin (Sn)-Dissolved (mg/L)		<0.00050			
	Titanium (Ti)-Dissolved (mg/L)		<0.010			
	Uranium (U)-Dissolved (mg/L)		<0.00020			
	Vanadium (V)-Dissolved (mg/L)		<0.0010			
	Zinc (Zn)-Dissolved (mg/L)		<0.0050			

	Sample ID Description	L691075-16	L691075-17	L691075-18	L691075-19	L691075-20
	Sampled Date Sampled Time Client ID	24-SEP-08 09:30 2PL-EAS-3-R2	24-SEP-08 09:30 2PL-EAS-3-R2	24-SEP-08 10:55 2PL-EAS-DT-R2	24-SEP-08 10:55 2PL-EAS-DT-R2	24-SEP-08 10:55 2PL-EAS-DT-R2
Grouping	Analyte	REP 4	REP 5	ZPL-EAS-DI-RZ	REP 1	REP 2
WATER						
Total Metals	Potassium (K)-Total (mg/L)			<2.0		
	Selenium (Se)-Total (mg/L)			<0.0010		
	Silver (Ag)-Total (mg/L)			<0.000020		
	Sodium (Na)-Total (mg/L)			<2.0		
	Thallium (TI)-Total (mg/L)			<0.00020		
	Tin (Sn)-Total (mg/L)			<0.00050		
	Titanium (Ti)-Total (mg/L)			<0.010		
	Uranium (U)-Total (mg/L)			<0.00020		
	Vanadium (V)-Total (mg/L)			<0.0010		
	Zinc (Zn)-Total (mg/L)			<0.0050		
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)			0.0082		
Dissolved incluis	Antimony (Sb)-Dissolved (mg/L)			<0.00050		
	Arsenic (As)-Dissolved (mg/L)			<0.00050		
	Barium (Ba)-Dissolved (mg/L)			<0.020		
	Beryllium (Be)-Dissolved (mg/L)			<0.0010		
	Boron (B)-Dissolved (mg/L)			<0.10		
	Cadmium (Cd)-Dissolved (mg/L)			<0.00017		
	Calcium (Ca)-Dissolved (mg/L)			2.89		
	Chromium (Cr)-Dissolved (mg/L)			<0.0010		
	Cobalt (Co)-Dissolved (mg/L)			<0.0000		
	Copper (Cu)-Dissolved (mg/L)			<0.0010		
	Iron (Fe)-Dissolved (mg/L)			<0.030		
	Lead (Pb)-Dissolved (mg/L)			<0.00050		
	Lithium (Li)-Dissolved (mg/L)			<0.0050		
	Magnesium (Mg)-Dissolved (mg/L)			0.90		
	Manganese (Mn)-Dissolved (mg/L)			0.90		
	Mercury (Hg)-Dissolved (mg/L)			<0.00048		
	Molybdenum (Mo)-Dissolved (mg/L)			<0.000020		
	Nickel (Ni)-Dissolved (mg/L)			<0.0010		
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)			<2.0 <0.0010		
	Silver (Ag)-Dissolved (mg/L)			<0.0010		
	Solver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L)			<0.000020		
	, , , , , , , , , , , , , , , , , , , ,					
	Thallium (TI)-Dissolved (mg/L)			<0.00020		
	Tin (Sn)-Dissolved (mg/L)			<0.00050		
	Titanium (Ti)-Dissolved (mg/L)			<0.010		
	Uranium (U)-Dissolved (mg/L)			<0.00020		
	Vanadium (V)-Dissolved (mg/L)			<0.0010		
	Zinc (Zn)-Dissolved (mg/L)			<0.0050		

	Sample ID Description	L691075-21	L691075-22	L691075-23	L691075-24	L691075-25
	Sampled Date	24-SEP-08	24-SEP-08	24-SEP-08	24-SEP-08	24-SEP-08
	Sampled Time Client ID	10:55	10:55	10:55	14:30	14:30
Grouping	Analyte	2PL-EAS-DT-R2 REP 3	2PL-EAS-DT-R2 REP 4	2PL-EAS-DT-R2 REP 5	EAS-DUP-R2	3PL-EAS-R2
WATER	•					
Total Metals	Potassium (K)-Total (mg/L)				<2.0	<2.0
	Selenium (Se)-Total (mg/L)				<0.0010	<0.0010
	Silver (Ag)-Total (mg/L)				<0.000020	<0.000020
	Sodium (Na)-Total (mg/L)				<2.0	<2.0
	Thallium (TI)-Total (mg/L)				<0.00020	<0.00020
	Tin (Sn)-Total (mg/L)				<0.00050	<0.00050
	Titanium (Ti)-Total (mg/L)				0.014	<0.010
	Uranium (U)-Total (mg/L)				<0.00020	<0.00020
	Vanadium (V)-Total (mg/L)				<0.0010	<0.0010
	Zinc (Zn)-Total (mg/L)				0.0054	<0.0050
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	•			0.0240	<0.0050
	Antimony (Sb)-Dissolved (mg/L)				<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)				<0.00050	<0.00050
	Barium (Ba)-Dissolved (mg/L)				<0.020	<0.020
	Beryllium (Be)-Dissolved (mg/L)				<0.0010	<0.0010
	Boron (B)-Dissolved (mg/L)				<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)				<0.000017	<0.000017
	Calcium (Ca)-Dissolved (mg/L)				3.13	1.18
	Chromium (Cr)-Dissolved (mg/L)				<0.0010	<0.0010
	Cobalt (Co)-Dissolved (mg/L)				<0.00030	<0.00030
	Copper (Cu)-Dissolved (mg/L)				<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)				<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)				<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)				<0.0050	<0.0050
	Magnesium (Mg)-Dissolved (mg/L)				0.90	0.52
	Manganese (Mn)-Dissolved (mg/L)				0.00058	0.00030
	Mercury (Hg)-Dissolved (mg/L)				<0.000020	<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)				<0.0010	<0.0010
	Nickel (Ni)-Dissolved (mg/L)				<0.0010	<0.0010
	Potassium (K)-Dissolved (mg/L)				<2.0	<2.0
	Selenium (Se)-Dissolved (mg/L)				<0.0010	<0.0010
	Silver (Ag)-Dissolved (mg/L)				<0.000020	<0.000020
	Sodium (Na)-Dissolved (mg/L)				<2.0	<2.0
	Thallium (TI)-Dissolved (mg/L)				<0.00020	<0.00020
	Tin (Sn)-Dissolved (mg/L)				<0.00020	<0.00020
	Tit (Str)-bissolved (mg/L) Titanium (Ti)-Dissolved (mg/L)				<0.000	<0.00050
	Uranium (U)-Dissolved (mg/L)				<0.010	<0.010
	Vanadium (V)-Dissolved (mg/L)				<0.00020	<0.00020
	, , , , , , , , , , , , , , , , , , , ,					
	Zinc (Zn)-Dissolved (mg/L)				0.0102	<0.0050

	Sample ID Description	L691075-26	L691075-27	L691075-28	L691075-29	L691075-30
	Sampled Date Sampled Time	24-SEP-08 14:30	24-SEP-08 14:30	24-SEP-08 14:30	24-SEP-08 14:30	24-SEP-08 14:30
	Client ID	3PL-EAS-R2	3PL-EAS-R2	3PL-EAS-R2	3PL-EAS-R2	3PL-EAS-R2
Grouping	Analyte	REP 1	REP 2	REP 3	REP 4	REP 5
WATER						
Total Metals	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)					
	Antimony (Sb)-Dissolved (mg/L)					
	Arsenic (As)-Dissolved (mg/L)					
	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Mercury (Hg)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

		Sample ID Description Sampled Date Sampled Time Client ID	L691075-1 24-SEP-08 08:35 2PL-EAS-1-R2	L691075-2 24-SEP-08 08:35 2PL-EAS-1-R2	L691075-3 24-SEP-08 08:35 2PL-EAS-1-R2	L691075-4 24-SEP-08 08:35 2PL-EAS-1-R2	24-SEP-08 08:35 2PL-EAS-1-R2
Grouping	Analyte			2PL-EAS-1-R2 REP 1	REP 2	REP 3	REP 4
WATER							
Plant Pigments	Chlorophyll a (ug)			0.326	0.373	0.356	
	Chlorophyll a (ug/L)						0.656

		Sample ID Description Sampled Date Sampled Time Client ID	L691075-6 24-SEP-08 11:40 2PL-EAS-2-R2	L691075-7 24-SEP-08 11:40 2PL-EAS-2-R2 REP 1	L691075-8 24-SEP-08 11:40 2PL-EAS-2-R2 REP 2	L691075-9 24-SEP-08 11:40 2PL-EAS-2-R2 REP 3	L691075-10 24-SEP-08 11:40 2PL-EAS-2-R2 REP 4
Grouping	Analyte			IXEI I	INCI Z	INEI 3	INEI 4
WATER							
Plant Pigments	Chlorophyll a (ug)						0.258
	Chlorophyll a (ug/L)			0.671	0.460	0.401	

		Sample ID Description Sampled Date Sampled Time Client ID	L691075-11 24-SEP-08 11:40 2PL-EAS-2-R2	L691075-12 24-SEP-08 09:30 2PL-EAS-3-R2	L691075-13 24-SEP-08 09:30 2PL-EAS-3-R2	L691075-14 24-SEP-08 09:30 2PL-EAS-3-R2	L691075-15 24-SEP-08 09:30 2PL-EAS-3-R2
Frouping	Analyte		REP 5		REP 1	REP 2	REP 3
WATER							
Plant Pigments	Chlorophyll a (ug)				0.210	0.276	0.253
	Chlorophyll a (ug/L)		0.495				

		Sample ID Description Sampled Date Sampled Time Client ID	L691075-16 24-SEP-08 09:30 2PL-EAS-3-R2 REP 4	L691075-17 24-SEP-08 09:30 2PL-EAS-3-R2 REP 5	L691075-18 24-SEP-08 10:55 2PL-EAS-DT-R2	L691075-19 24-SEP-08 10:55 2PL-EAS-DT-R2 REP 1	L691075-20 24-SEP-08 10:55 2PL-EAS-DT-R2 REP 2
Grouping	Analyte		IXE. I	INE! O		IXEI I	112.2
WATER							
Plant Pigments	Chlorophyll a (ug)						0.251
	Chlorophyll a (ug/L)		0.568	0.635		0.396	

		Sample ID Description Sampled Date Sampled Time Client ID	L691075-21 24-SEP-08 10:55 2PL-EAS-DT-R2	L691075-22 24-SEP-08 10:55 2PL-EAS-DT-R2	L691075-23 24-SEP-08 10:55 2PL-EAS-DT-R2	L691075-24 24-SEP-08 14:30 EAS-DUP-R2	L691075-25 24-SEP-08 14:30 3PL-EAS-R2
Grouping	Analyte		REP 3	REP 4	REP 5		
WATER							
Plant Pigments	Chlorophyll a (ug)		0.244	0.240			
	Chlorophyll a (ug/L)				0.519		

		Sample ID Description Sampled Date Sampled Time Client ID	L691075-26 24-SEP-08 14:30 3PL-EAS-R2	L691075-27 24-SEP-08 14:30 3PL-EAS-R2	24-SEP-08 14:30 3PL-EAS-R2	24-SEP-08 14:30 3PL-EAS-R2	24-SEP-08 14:30 3PL-EAS-R2
rouping	Analyte		REP 1	REP 2	REP 3	REP 4	REP 5
WATER							
Plant Pigments	Chlorophyll a (ug)		0.0804	0.303	0.203	0.310	0.288
	Chlorophyll a (ug/L)						

L691075 CONTD.... PAGE 20 of 22 28-OCT-08 11:33

Reference Information

Additional Comments for Sample Listed: Matrix Report Remarks Sample Comments Samplenum Methods Listed (if applicable): **ALS Test Code** Matrix **Test Description** Analytical Method Reference(Based On) ALK-SCR-VA Water Alkalinity by colour or titration EPA 310.2 OR APHA 2320 This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method. OR This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values. ANIONS-CL-IC-VA Water Chloride by Ion Chromatography APHA 4110 "Determination of Anions by IC This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. ANIONS-NO2-IC-VA Water APHA 4110 "Determination of Anions by IC Nitrite by Ion Chromatography This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. ANIONS-NO3-IC-VA Water Nitrate by Ion Chromatography APHA 4110 "Determination of Anions by IC This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. ANIONS-SO4-IC-VA Water Sulfate by Ion Chromatography APHA 4110 "Determination of Anions by IC This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. **CARBONS-DOC-VA** Water Dissolved organic carbon by combustion APHA 5310 "TOTAL ORGANIC CARBON (TOC)" This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis. **CARBONS-TOC-VA** Water Total organic carbon by combustion APHA 5310 "TOTAL ORGANIC CARBON (TOC)" This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". CHLOROA-VA Water Chlorophyll a by Fluorometer APHA 10200 H. "Chlorophyll" and EPA 445 Chlorophyll and Pheopigments by Fluorometry analysis is carried out using procedures adapted from APHA Method 10200 H. "Chlorophyll" and USEPA Method 445. The sample is filtered using either a glass fiber filter or a 0.45 micron Membrane filter. The pigments are extracted from the filter with 90% aqueuos acetone. For chlorophyll a analysis the extract is read using a fluorometer. For pheopigments the extract is first acidified then read. This method is not subject to interferences from chlorophyll b. **EC-PCT-VA** Water Conductivity (Automated) APHA 2510 Auto. Conduc. This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode. Water HARDNESS-CALC-VA Hardness **APHA 2340B** Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

HG-TOT-CCME-CVAFS- Water

Total Mercury in Water by CVAFS (CCME)

EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

MET-DIS-CCME-ICP-VA Water

Diss. Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-CCME-MS-VA Water

Diss. Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-CCME-ICP-VA Water

Total Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-SIE-VA

Water

Ammonia by SIE

APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

PH-MAN-VA

Water

pH by Manual Meter

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA

Water

Dissolved ortho Phosphate by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Water

Total Phosphate P by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

TDS-VA

Water

Total Dissolved Solids by Gravimetric

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TKN-SIE-VA

Water

Total Kjeldahl Nitrogen by SIE

APHA 4500-Norg (TKN)

This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by sample digestion at 367 celcius with analysis using an ammonia selective electrode.

TSS-VA

Water

Total Suspended Solids by Gravimetric

APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

169/PFS

1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700

#2-21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430

www.alsenviro.com

SEND INVOICE TO: (complete if different from Report To at left) Require copy of Report? 2 Yes No PAGE 1 **ISTODY / ANALYTICAL REQUEST FORM** Rush Processing Required ALS A Short Holding Time

	1												┞		ŀ		l		Γ
COMPAN	COMPANY: Azimuth Consulting Group Inc.				COMPANY	<u>:</u>							-	CONTACT	Ş		ŀ		T
ADDRESS:	218-2902 West Broadway				ADDRESS:	ï								-		# .0.	*		Т
CITY:	Vancouver PROV: BC	POSTAL CODE: V6K 2G8			CITY:					PROV:		POST.	POSTAL CODE:	iii		۳	TEL:		
CONTACT	CONTACT: R. Baker, M. McConnell	TELEPHONE	604-730	730-1220	ANALYSIS		REQUESTED	ED:									ţ Į	**Conventionals:	
PROJECT	PROJECT NAME/#: EAS	SAMPLER	SAMPLER: DATE TO THE TABLE TA/KI	-3A/KD		(v)	(.se	17. 1	nc pri :	(*							8 8	conductivity, hardness,	SS,
ALSE QUOTE #:	OTE #: ALSEQ-07-622	ALSE CONTACT: Natasha Marcovic-Mirovic	Natasha Marcov	ic-Mirovic	<i>J</i> o		11		· (IC	OO				·248)			5 2	pn, 133, 103, putrients(nitrate nitrite	<u>q</u>
	REPORT FORMAT:	N	INVOICE FORMAT:		-1.0)H /	βM	**********						2 5	total phosphate	<u> </u>
Hardcopy	opy O Fax #:	Hardcopy	○ Fax #:				330		M 'S	/M		J.		Ser 5	ilden.	ridi	<u>ह</u>	orthophosphate),	
O E-mai	O E-mail Specify file type: Excel & pdf	O E-mail (pdf format)	nat)				i di	Æ:	bre	.291		Ť			4 4 40		DS.	sulphate, chloride,	
E-mail Address:	ddress:	E-mail Address:			ies:		ij	720	8 t	d) E			24	4.3			<u>₩</u>	alkalinity(bicarbonate,	o ·
Routir) 				919	HIYU		Ē		Mo Z	73497		8	carbonate, hydroxide)	<u></u>
C Rush (Rush (Surcharges May Apply)		Time:				18		111)	do			33		7	turla			
	SAMPLE IDENTIFICATION	DATE / TIME COLLECTE YY-MM-DD Time	OLLECTED	MATRIX	Conve	TKN, Total	ossiQ	OOT	DOC	Chlon	- 3000000000000000000000000000000000000	Ě				<u> </u>	- 8	NOTES (sample specific comments, due dates, etc.)	آو آون
	2PL-EAS-1-R2	08-09-24	8:35	water	× ×	×	×	V	×								9	6 containers	
	2PL-EAS-1-R2 (pls report 4 reps separately)	08-09-24	8:35	filter						×							4	4 whirl pacs	
	ZPL-EAS-2-R2	08-09-24	11:40	water	×	×	×	×	×								9	6 containers	52
	2PL-EAS-2-R2 (pls report 5 reps separately)	08-09-24	11:40	filter						×							5 w	5 whirl pacs	
	2PL-EAS-3-R2	08-09-24	9:30	water	×	×	×	×	×							9	9	6 containers	
۲.	2PL-EAS-3-R2 (pls report 5 reps separately)	08-09-24	9:30	filter						×							5.	5 whirl pacs	
INO	2PL-EAS-DT-R2	08-09-24	10:55	water	×	×	×	×	×	1						9	9 9	6 containers	
380	2PL-EAS-DT-R2 (pls report 5 reps separately)	08-09-24	10:55	filter						×							5.	5 whirl pacs	
8A	EAS-DUP-R2	08-09-24		water	x	×	×	×									5 0	5 containers	¥.V
א ר	3PL-EAS-R2	08-09-25	14:30	water	×	×	×	×	×								9 0	6 containers	
)4	3PL-EAS-R2 (pls report 5 reps separately)	08-09-25	14:30	filter						×	-	AT.					S Z	5 whirl pacs	. / . >
									\dashv				-	4		_	\dashv		
							375 275											F. S.	£.
	RELINQUISHED BY:				\mid	-	1	ł	┨	1		RECE	RECEIVED BY	<u>ا</u> پ		\mathbf{I}	┨		Γ
NAME:	Ryan Hill	DATE	DATE: 26-Sep-08		NAME:	Ľ	32					H	DATE:	100 E	12	Ø			
OF:	Azimuth Consulting Group Inc.	TIME	12:00		ë.	4						\dashv	TIME	≈	27				
NAME		DATE			NAME:	_			1			\dashv	DATE	úi					
OF:		TIME			OF:	ALS	ALS Environmental	mental					TIME	úi					
Special Ins	Special Instructions / Comments (billing details, QC reporting, etc.):																		
F	FOR LAB USE ONLY Cooler Seal Intact? Yes No N/A	 {	Sample Temperature: 12°C	Je: [2 °C	Frozen? Yes	? Yes	운 	\setminus_{\parallel}	Sooji	ng Met	hod?	cepac	Cooling Method? Icepacks / Tce		None	1			

Environmental Division

Certificate of Analysis

AZIMUTH CONSULTING GROUP INC.

ATTN: RANDY BAKER

Reported On: 27-MAR-09 06:15 PM 218 - 2902 WEST BROADWAY

Revision: 1

VANCOUVER BC V6K 2G8

Lab Work Order #: L691229 Date Received: 03-OCT-08

Project P.O. #:

Job Reference: MEADOWBANK EAST DIKE MONITORING

Legal Site Desc: **CofC Numbers:**

Other Information:

Comments:

The sediment samples reported in the following data tables have been received as water samples with a sediment layer at the bottom. Each sample was submitted in 4 x 1L plastic bottle. The following steps were taken to get dry sediment samples:

- Water from each bottle of a sample was decanted through 45 micron filter paper.
- The remaining sediment on the bottom of the bottle was transferred into drying dish.
- Bottle was rinsed with di-ionized water and rinsing was passed through the filter.
- Sediment from the filter paper has been scrapped into the same drying dish as the sediment from the bottom of the bottle.
- Sediment was dried at the temperature of 60C for 8 hours.
- Dry weight of each sample was recorded.

ALS Sample ID Client Sample ID Weight (g)

L691229-1 SP-ST-1-180908 (R1-R4) 9.30

L691229-2 SP-ST-2-180908 (R1-R4) 5.60 L691229-3 SP-ST-4-180908 (R1-R4) 5.04

L691229-4 SP-ST-5-180908 (R1-R4) 5.62

NOTE: Samples L691229-2 and L691229-3 were sent to Golder Associates Ltd. on November 26, 2008 as per client request.

Please note that this revision, 1, of the report replaces and supersedes all previous revisions. Total Aluminum results have been added to all sediment samples reported in the following data tables. All other data remains unchanged.

MATASHA MARKOVIC-MIROVIC

Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

		Sample ID Description Sampled Date	L691229-2 22-SEP-08	L691229-4 24-SEP-08	
		Sampled Time			
		Client ID	SP-ST-2-220908 (R1-R4)	SP-ST-5-240908 (R1-R4)	
Grouping	Analyte				
SOIL					
Physical Tests	pH (pH)		6.21	6.27	
Organic /	Total Organic Carbon (%)		2.4	1.8	
Inorganic Carbon Metals	Aluminum (Al) (mg/kg)		42200	43100	
Wetais	Antimony (Sb) (mg/kg)		<10	<10	
	Arsenic (As) (mg/kg)		16.7	16.4	
	Barium (Ba) (mg/kg)		234	233	
	Beryllium (Be) (mg/kg)		1.65	1.76	
	Cadmium (Cd) (mg/kg)		0.51	<0.50	
	Chromium (Cr) (mg/kg)		175	194	
	Cobalt (Co) (mg/kg)		25.5	27.9	
	Copper (Cu) (mg/kg)		87.6	101	
	Lead (Pb) (mg/kg)		<30	<30	
	Mercury (Hg) (mg/kg)		0.0303	0.0242	
	Molybdenum (Mo) (mg/kg)		<4.0	<4.0	
	Nickel (Ni) (mg/kg)		109	113	
	Selenium (Se) (mg/kg)		<2.0	<2.0	
	Silver (Ag) (mg/kg)		<2.0	<2.0	
	Thallium (TI) (mg/kg)		<1.0	<1.0	
	Tin (Sn) (mg/kg)		<5.0	<5.0	
	Vanadium (V) (mg/kg)		70.5	76.5	
	Zinc (Zn) (mg/kg)		235	272	

Additional Comments for Sample Listed:

Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if	applicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

C-TOT-ORG-LECO-SK Soil Organic Carbon by combustion method SSSA (1996) p. 973

Total Organic Carbon (C-TOT-ORG-LECO-SK, C-TOT-ORG-SK)

Total C and inorganic C are determined on separate samples. The total C is determined by combustion and thermal conductivity detection, while inorganic C is determined by weight lass after addition of hydrochloric acid. Organic C is calculated by the difference between these two determinations.

Reference for Total C:

Nelson, D.W. and Sommers, L.E. 1996. Total Carbon, organic carbon and organic matter. P. 961-1010 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

Reference for Inorganic C:

Loeppert, R.H. and Suarez, D.L. 1996. Gravimetric Method for Loss of Carbon Dioxide. P. 455-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

HG-CCME-CVAFS-VA Soil CVAFS Hg in Soil (CCME) CCME

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 7000 series).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-CSR-FULL-ICP-VA Soil Metals in S

Metals in Soil by ICPOES (CSR SALM)

BCMELP CSR SALM METHOD 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

PH-1:2-VA Soil CSR pH by 1:2 Water Leach

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (10 mesh /2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

TL-CSR-MS-VA Soil ICPMS TI in Soil by CSR SALM

BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	, in the second	Analytical Method Reference(Based On)
				nternationally accepted methodologies. Il analysis for that test. Refer to the list below:
Laboratory Definition Coo	de La	ooratory Location	Laboratory Definition Code	Laboratory Location
SK	SA	S LABORATORY GROUP - SKATOON, SASKATCHEWAN, NADA	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS Environmental exting

1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 #2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430

www.alsenviro.com

COMPANY Parmet Containing Clock Processing Contained Containing Clock Processing Contained Containing Clock Processing Clock Processin	COMPANY: Azi ADDRESS: 216 CITY: Va CONTACT: Ra	OF IS INC.					VOICE TO: (como	late if different from	Ponort To at L		10000	/ Yes
NOTE Control PROV DEC	COMPANY: AZI ADDRESS: 216 CITY: Va CONTACT: Ra	0				SEND II	VOICE 10. (comp	ete il mileieur il oil	Veboic 10 at	!	a sepone]
Various State Parcy Exemple Parcy Pa	ADDRESS: 218 CITY: Va CONTACT: Ra	imuth Consulting Group Inc.				COMPANY		-		CONTACT	-	
Vancous PROV BCC PROSTAL CODE PROSTAL COD	CITY: Var	8-2902 West Broadway				ADDRESS:				P.O	#:	
The Control Base Ba	CONTACT: Ra	PROV:	POSTAL CODE:	V6K 2G8		CITY:			OSTAL CODE:	IT	EL:	
CT NAME Meabouch and East Dike Monitoring ALS CONTACT Name and interconcernic East Dike Monitoring ALS CONTACT Name and interconcernic East Dike Monitoring ALS CONTACT Name and interconcernic ALS		ındy Baker, Gary Mann		604-321-4180		ANALYSIS	REQUESTED:					
According to the Part of Par	PROJECT NAM	AE/#: Meadowbank East Dike Monitoring		RB, RH							Speci	al Handli
National Program National Pr	ALSE QUOTE #	Job	ALS CONTACT:	Natasha Marcov	ic-Mirovic						Need	ed (water
Application Park #1 Application Appl		REPORT FORMAT:	ANI INA	OICE FORMAT:		3 t	19				Ouc/vo	ration/co
Activities Continue Continu	Hardcopy	○ Fax #:	Hardcopy	○ Fax		oths	ite :				Cvap	A Coo
Abouting a constrained between the part of the page	O E-mail Spe		O E-mail (pdf for	mat)		sidi	sidt				Natae	ly). See
SP-ST1-L180906-R2 SP-ST1-L180906-R2 SP-ST1-L200908-R3 SP-S	E-mail Addres	.ss:	E-mail Address:			op)	op)				שמממ	odina pelol
SP-ST1-180908-R1 Specify Due Date Specify Due	Routine Tur					əzi	tals				301d	6 IIIna
SP-ST-1-18090B-R1	O Rush (Surch		ioi (Time:		s ək	Mei			į		
SP-ST-1-180908-R1 Sed-Soil X X X X X X X X X	MILITARY INC.	SAMPLE IDENTIFICATION	삗	COLLECTED	YISTAM	oiħi	let					
SP-ST-1-180900R-R1 08-09-16 sed/soil x x x x x x x x x			YY-MM-DD	Time		ed.	οT					
SP-ST-1-1809008-R3 08-09-18 sed/soil x x x x x x x x x	ISI/	P-ST-1-180908-R1	08-09-18		sed./soil	×					1 contai	ner
SP-ST-1-180909-R-3 O6-09-16 Sed/soil X A A A A A A A A A	S.	P-ST-1-180908-R2	08-09-18		sed./soil						1 contai	ner
SP-ST-1-180309-R4 08-09-18 sed.fsoil x x x x x x x x x	S .	P-ST-1-180908-R3	08-09-18		sed./soil						1 contai	ner
SP-ST-2-220908-R1 08-09-22 sed./soil x x x x x x x x x	SF	P-ST-1-180908-R4	08-09-18		sed./soil	×					1 contai	iner
SP-ST-2-220908-R2 Sed-Jsoil X X X X X X X X X	IS /	P-ST-2-220908-R1	08-09-22		sed./soil	×					1 contai	ner
SP-ST-2-22090-R3 Sed-Jsoil X Sed-Jsoil Sed-Jsoil	づけ	P-ST-2-220908-R2	08-09-22		sed./soil						1 contai	iner
SP-ST-2-20908-R4 08-09-22 Sed./soil x x x x x x x x x		P-ST-2-220908-R3	08-09-22		sed./soil						1 contai	iner
SP-ST4-22909R-R1 08-09-22 sed./soil x <t< td=""><td></td><td>P-ST-2-220908-R4</td><td>08-09-22</td><td></td><td>sed./soil</td><td>×</td><td></td><td></td><td></td><td></td><td>1 contai</td><td>iner</td></t<>		P-ST-2-220908-R4	08-09-22		sed./soil	×					1 contai	iner
SP-ST4-220908-R2 Sed./Soil X X X X X X X X X		P-ST-4-220908-R1	08-09-22		sed./soil	×					1 contai	iner
SP-ST-4-220908-R3 08-09-22 sed./soil x Sed./soil x	~	P-ST-4-220908-R2	08-09-22		sed./soil		,				1 contai	iner
SP-ST-4-220908-R4 08-09-24 sed./soil x x x x x x x x x		P-ST-4-220908-R3	08-09-22		sed./soil		,				1 contai	iner
SP-ST-5-240908-R1 08-09-24 Sed./soil X X X X X X X X X	St	P-ST-4-220908-R4	08-09-22		sed./soil	×					1 contai	iner
SP-ST-5-240908-R3 08-09-24 sed./soil x	IS / St	P-ST-5-240908-R1	08-09-24		sed./soil	×					1 contai	iner
SP-ST-5-240908-R3 08-09-24 sed./soil x Sed./soil x RECEIVED BY: CLINQUISHED BY: Ryan Hill Azimuth Consulting Group Inc. TIME: 12:00 OF: ALS Environmental TIME: ITME: 12:00 NAME: ALS Environmental TIME: ITME: ITTME: ITTTME: ITTTME: ITTTME: ITTTME: ITTTME: ITTTTME: ITTTME: ITT	ls St	P-ST-5-240908-R2	08-09-24		sed./soil		>				1 contai	iner
SP-ST-5-240908-R4 RELINQUISHED BY: RECEIVED BY: RECE	S	P-ST-5-240908-R3	08-09-24		sed./soil		,				1 contai	iner
Ryan Hill DATE: 29-Sep-08 NAME: CIA DATE: CC+3.08 CC-1.30 CC-	SI	P-ST-5-240908-R4	08-09-24		sed./soil	×					1 contai	iner
Ryan Hill DATE: 29-Sep-08 NAME: 7 CI DATE: 0ct 3/8 Azimuth Consulting Group Inc. TIME: 12:00 OF: 3 NAME: 3 TIME: 14:19 DATE: DATE: TIME: 10:00 DATE: 3 ALS Environmental DATE: 3 DATE: 3 Instructions / Comments (billing details, QC reporting, etc.): 3 Special Handling Needed (water evaporation/compositing). See Natasha before proceeding TIME: 3		RELINQUISHED B	3Y:						RECEIVED BY	120		
Azimuth Consulting Group Inc. DATE: DATE: DATE: TIME: 12:00 NAME: ALS Environmental Instructions / Comments (billing details, QC reporting, etc.): Special Handling Needed (water evaporation/compositing): See Natasi		an Hill	DATE:	29-Sep-08		NAME:	201		DATE	308	***	
DATE: NAME: ALS Environmental Instructions / Comments (billing details, QC reporting, etc.): Special Handling Needed (water evaporation/compositing). See Natasi		imuth Consulting Group Inc.	TIME	12:00		OF:			TIME			
cial Instructions / Comments (billing details, QC reporting, etc.): TIME: Special Handling Needed (water evaporation/compositing). See Natast	NAME:		DATE:			NAME			DATE			
Special Handling Needed (water evaporation/compositing). See Natasi	OF:		TIME:				ALS Environmental		TIME			
	Special Instructi	ions / Comments (billing details, QC reporting, etc.):	/	Special Handling	Needed (water	er evaporation	/compositing). See N	latasha before proce	eding			

ALS Environmentat
excellence in analytical testing

1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 #2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430

www.alsenviro.com

	SEND REPORT TO:	10:		SEN	SEND INVOICE TO: (complete if different from Report To at left)	ete if different from Repo	ort To at left) Require copy of Report?	Γ	✓ Yes No
COMPAN	COMPANY: Azimuth Consulting Group Inc.			COMPANY	NY:		Ιz		
ADDRESS:	S: 218-2902 West Broadway			ADDRESS	SS.		P.O.	#.0	
СП.	Vancouver PROV: BC	POSTAL CODE: V6K 2G8	V6K 2G8	CITY:		PROV: POSTA	POSTAL CODE:	TEL:	
CONTACT	T: Randy Baker, Gary Mann	TELEPHONE	TELEPHONE: 604-321-4180	ANALY	ANALYSIS REQUESTED:				
PROJECT	PROJECT NAME# Meadowbank East Dike Monitoring	SAMPLER: RB, RH	RB, RH					Specie	Special Handling
ALSE QUOTE #:	OTE #: Job AEM-08-01.2	ALS CONTACT:	ALS CONTACT: Natasha Marcovic-Mirovic	rovic				Nood	Noodod (water
	REPORT FORMAT:	N	INVOICE FORMAT:					ואפבתב	u (water
Hardcopy	copy O Fax #:	Hardcopy	○ Fax #:	ļue	4) afte			evapo	evaporation/comp
O E-mail	ecify file t	O E-mail (pdf format)	mat)	emib	의 아이 아이에 아이에			OSITING Notes	ositing). see
E-mail Address:		E-mail Address:		əs	op)			INALAS	la pelore
Routir	Routine Turn Around			lo Jr	sls g			proceeding	guipa
O Rush	O Rush (Surcharges May Apply)	te:	Time:	lgie	itied				
	CANADI E IDENTIFICATION	DATE / TIME COLLECTED	_		npo 1 le				
	SAMPLE IDENTIFICATION	YY-MIA DD	Time	MATRIA	100			(
	SP-ST-1-180908-R1	08-09-18	pes	x lios/res		100 L	ひくれるの	3	
-	SP-ST-1-180908-R2	08-09-18	sed	sed./soil x) } ⊢		>	
	SP-ST-1-180908-R3	08-09-18	pes	sed./soil x	× ×				
	SP-ST-1-180908-R4	08-09-18	pes				,		
	/ SP-ST-2-220908-R1	08-09-22	pes	sed./soil x			75/5-		
7	SP-ST-2-220908-R2	08-09-22	sed	sed./soil x					
NO	SP-ST-2-220908-R3	08-09-22	pes	x lios/.bas	× ×				
∃s∩	SP-ST-2-220908-R4	08-09-22	sed	sed./soil x			4	JAR DAN	BAMPLE
BA	SP-ST-4-220908-R1	08-09-22	pes	sed./soil x		()	Junos Gul Ju	3	
1 AC	SP-ST-4-220908-R2	08-09-22	sed	sed./soil x		ナスのみ	-19 cons.	44	> 5
) 	SP-ST-4-220908-R3	08-09-22	pes	sed./soil x	<	SP-51-1	180-081	TOP	
	\ SP-ST-4-220908-R4	08-09-22	pes	sed./soil x		7 -	2010721		
	SP-ST-5-240908-R1	08-09-24	pes	sed./soil x		2	2		
7	SP-ST-5-240908-R2	08-09-24	sed	x lios/ pas		min	- Chara		
	SP-ST-5-240908-R3	08-09-24	pes	x lios/soil x	<	7	- 2000 Z	IIDM	101
	SP-ST-5-240908-R4	08-09-24	sed					1 container	her
	RELINQUISHED BY	512				RECE	RECEIVED BY: 21/		
NAME	Ryan Hill		DATE: 29-Sep-08	NAME	120		Oct 3,08	**	
OF:	Azimuth Consulting Group Inc.	TIME: 12:00	12:00	OF:			TIME: 14:19		
NAME		DATE:		NAME			DATE		
OF:		TIME:		OF	ALS Environmental		TIME		
Special In	Special Instructions / Comments (billing details, QC reporting, etc.):	1	Special Handling Nee	ded (water evapon	Needed (water evaporation/compositing). See Natasha before proceeding	stasha before proceeding			

APPENDIX B TOXICITY TESTING REPORT

Toxicity testing for the Meadowbank Project

TSS and Chitosan Evaluations

Report date: January 9, 2009

Submitted to:

Azimuth Consultants

Vancouver, BC

8664 Commerce Court Burnaby, BC V5A 4N7

TABLE OF CONTENTS

		Pa	ge
TABI	E O	F CONTENTS	ī
11101			
1.0	INT	RODUCTION	1
2.0	MET	THODS	1
	2.1	Sample Collection and Transport	1
	2.2	Acute toxicity tests using rainbow trout and <i>Daphnia magna</i>	
	2.3	Chronic toxicity tests using Ceriodaphnia dubia	
	2.4	Chronic toxicity tests using rainbow trout	
		2.4.1 Embryo development	
		2.4.2 Larval survival and growth	
3.0	RES	ULTS	
4.0	QA/	'QC	9
5.0	REF	ERENCES	10
		A LOTE OF TARNES	
		LIST OF TABLES	
Table	e 1.	Summary of test conditions: acute tests using rainbow trout and Daphnia magna	2
Table	2.	Summary of test conditions: 7-d Ceriodaphnia dubia test.	2
Table	e 3.	Summary of test conditions: rainbow trout embryo development test	4
Table	e 4.	Summary of test conditions: rainbow trout embryo development test of chitosan	1
Table	5	treated sampleSummary of test conditions: rainbow trout larval survival and growth test	
Table		Results of acute toxicity tests, presented as percent survival.	
Table		Results of chronic toxicity tests using <i>Ceriodaphnia dubia</i>	
Table		Results of rainbow trout embryo development tests presented as percent	
		normally developed embryos.	8
Table	9.	Results of rainbow trout embryo development tests to evaluate the effect of	
		chitosan treatment.	
Table		Results of rainbow trout larval survival and growth tests	
Table	211.	Results of reference toxicant tests.	10

TABLE OF CONTENTS

Page

LIST OF APPENDICES

APPENDIX A - Acute Toxicity Test Results

APPENDIX B - Ceriodaphnia dubia test results

APPENDIX C – Rainbow trout embryo development test results

APPENDIX D - Rainbow trout larval survival and growth test results

1.0 INTRODUCTION

Toxicity testing was conducted on water collected by Azimuth Consultants from the Meadowbank Site. The testing program was designed to evaluate whether total suspended solids (TSS) present in the water might result in adverse effects on aquatic organisms. Toxicity tests included acute tests using rainbow trout and *Daphnia magna*, as well as chronic toxicity tests using *Ceriodaphnia dubia* (survival and reproduction) and rainbow trout (embryo development and larval survival and growth tests).

In addition, the effect of chitosan treatment was tested using the rainbow trout embryo development test. The purpose of this evaluation was to demonstrate whether chitosan-facilitated precipitation of suspended solids might result in adverse effects on developing salmonid embryos.

2.0 METHODS

2.1 Sample Collection and Transport

The sample was collected in plastic collapsible carboys by Azimuth, packed in coolers, and transported to Nautilus Environmental by commercial courier.

Upon arrival at the laboratory, the coolers were opened, samples inspected and the contents verified against information provided on the chain of custody form. Receipt temperature was measured in the samples and recorded on the COC form and in a bound logbook. The sample was stored at 4°C in the dark until used for testing. A subset of the coolers were then delivered by commercial courier to the Nautilus Environmental laboratory in Tacoma, WA, where the chronic toxicity tests with rainbow trout were conducted. These tests could not be conducted in the Burnaby laboratory at this time because of a lack of availability of organisms of the appropriate age.

2.2 Acute toxicity tests using rainbow trout and Daphnia magna

Acute toxicity tests using rainbow trout and *Daphnia magna* were conducted following Environment Canada (2000a and b) procedures, as summarized in Table 1.

Table 1. Summary of test conditions: acute tests using rainbow trout and *Daphnia magna*.

Test species	Rainbow trout	Daphnia magna	
Test type	96 hr static 48 hr static		
Endpoints	Survival Survival		
Organism source	Fraser Valley Trout Hatchery	ey Trout Hatchery In-house culture	
Organism age	Fry - 0.3 - 0.5 g	< 24 hr old	
Feeding	None	None	
Test chamber	15-L glass aquaria	300 mL glass	
Test volume	10 L	200 mL	
Test temperature	$15 \pm 1^{\circ}$ C $20 \pm 2^{\circ}$ C		
Control water	Dechlorinated municipal tapwater	Moderately hard synthetic water,	
Organisms/replicate	10 10		
Number of replicates	1	1	
Photoperiod	16 hours light/8 hours dark	16 hours light/8 hours dark	
Aeration	Continuous	None	
Acceptability criterion for	≥90% survival ≥90% survival		
controls			

2.3 Chronic toxicity tests using Ceriodaphnia dubia

The sample was tested for chronic toxicity using *C. dubia* according to procedures summarized in Table 2, which are based on procedures from Environment Canada (2007).

 Table 2.
 Summary of test conditions: 7-d Ceriodaphnia dubia test.

Test type	Static renewal (daily)		
Endpoints	Survival and reproduction		
Organism source	In-house culture		
Organism age	<24 hr old neonates produced within 12 hr		
Feeding	Selenastrum capricornutum and dYCT		
Test chamber	Glass test tube		
Test volume	15 mL		
Test temperature	25 ± 1°C		
Control water	Moderately hard synthetic water, diluted to the		
	hardness of the sample		
Number of organisms/replicate	1		
Number of replicates	10		
Photoperiod	16 hours light/8 hours dark		
Aeration	None		
Test acceptability criterion for controls	≥80% survival; ≥15 young per surviving control		

2.4 Chronic toxicity tests using rainbow trout

2.4.1 Embryo development

Rainbow trout embryo toxicity tests were conducted using rainbow trout gametes according to procedures presented by Environment Canada (1998) with modifications from Canaria et al. (1999), as summarized in Table 3. This test involved a seven-day exposure of recently fertilized eggs to the test solutions. Embryonic development was the endpoint evaluated for this test. One test was performed with daily renewal and a second test was performed concurrently without renewals. The purpose of the test conducted without renewals was to provide a "worst-case" for settling of suspended particulate during the exposure period, since renewing the solutions would tend to rinse suspended solids from the eggs on the bottom of the container.

A subsequent test was conducted on the sample following treatment with 0.5 mg/L chitosan acetate (ChitoVan, produced by Cascade EcoSolutions, WA) to evaluate whether chitosan-enhanced settling of particulate matter on embryos would cause toxicity. This test was only conducted on full-strength sample, and was performed in tall and narrow containers to maximize the accumulation of particulate on the eggs. Four treatments were evaluated: control, untreated sample, chitosan-treated control water and chitosan-treated sample. Test methods for this test are summarized in Table 4.

2.4.2 Larval survival and growth

A toxicity test evaluating survival and growth was also conducted using larval rainbow trout. This test is based on a Draft USEPA procedure, and was conducted in order to test whether feeding might be impaired by the presence of TSS. Test methods for this test are summarized in Table 5.

Table 3. Summary of test conditions: rainbow trout embryo development test.

Test type	Static renewal (daily), or static
Test endpoints	Normal embryonic development
Test organism source	Trout Lodge; Sumner, WA
Test organism age	Within 30 minutes of fertilization
Test duration	7 days
Feeding	None
Test chamber	1-L plastic beaker
Test solution volume	500 mL
Test temperature	14 ± 1°C
Dilution water	Moderately hard synthetic water
Test concentrations (% sample)	100, 50, 25, 12.5, 6.25, laboratory control
Number of organisms/chamber	30
Number of replicates	4
Photoperiod	24-hr dark; low intensity light used during solution renewals
Aeration	Continuous gentle aeration
Test protocol	Environment Canada (1998); modifications from Canaria et al.
	(1999)
Test acceptability criterion for controls	≥70% normally developed (viable) embryos

Table 4. Summary of test conditions: rainbow trout embryo development test of chitosan treated sample.

Test type	Static
Test endpoints	Normal embryonic development
Test organism source	Trout Lodge; Sumner, WA
Test organism age	Within 30 minutes of fertilization
Test duration	7 days
Feeding	None
Test chamber	2-L graduated cylinders
Test solution volume	2 L
Test temperature	14 ± 1°C
Dilution water	Moderately hard synthetic water
Test concentrations (% sample)	100% and control
Number of organisms/chamber	30
Number of replicates	4
Photoperiod	24-hr dark; low intensity light used during solution renewals
Aeration	Continuous gentle aeration
Test protocol	Environment Canada (1998); modifications from Canaria et al.
	(1999)
Test acceptability criterion for controls	≥70% normally developed (viable) embryos

Table 5. Summary of test conditions: rainbow trout larval survival and growth test.

Test type Static renewal (daily)
Test endpoints Survival and growth

Test organism source Thomas Fish Company; Anderson, California Test organism age 15 days post hatch, 2 days post swim up

Test duration 7 days

Feeding Artemia nauplii twice daily

Test chamber 1-L plastic beaker

Test solution volume 500 mLTest temperature $15 \pm 1^{\circ}\text{C}$

Dilution water Moderately hard synthetic water
Test concentrations (% sample) 100, 50, 25, 12.5, 6.25, laboratory control

Number of organisms/chamber 5 Number of replicates 4

Photoperiod 16 hours light/8 hours dark

Aeration None

Test protocol USEPA draft SOP Test acceptability criterion for controls $\geq 90\%$ survival

3.0 RESULTS

No adverse effects were observed in acute toxicity tests with either rainbow trout or *Daphnia magna* (Table 6). Similarly, no adverse effects were observed in the chronic toxicity test using *Ceriodaphnia dubia* (Table 7).

Results of rainbow trout embryo development tests conducted under static renewal and static conditions are provided in Table 8. No adverse effects were observed in the test conducted with daily solution renewal; however, significant impairment of embryonic development was observed in the 25% and 100% sample when tested without renewal, although there was no significant effect in the 50% sample. An EC25 was not calculated for this sample because of the variable nature of the response; however, this test clearly indicated the presence of an adverse effect, converse to the findings of the test conducted with daily renewal.

Results of rainbow trout embryo tests conducted on chitosan-treated sample are provided in Table 9. There was no evidence of increased toxicity associated with chitosan treatment. Data for one replicate of the chitosan-treated sample was excluded from analysis; there was no survival in this replicate, compared to 67, 67 and 83% survival in the other three replicates, suggesting that this replicate was an outlier caused by a testing artifact, likely fungal growth. Even if the data from this replicate are included, the rate of survival in the chitosan-treated sample was not significantly lower than the untreated sample.

Results of the larval survival and growth test conducted using rainbow trout are provided in Table 10. No adverse effects were observed in this test, indicating that the amount of TSS present in the sample did not affect the ability of the fry to locate and capture prey.

Table 6. Results of acute toxicity tests, presented as percent survival.

Percent sample	Rainbow trout	Daphnia magna
Control	100	100
6.25	100	100
12.5	100	100
25	100	100
50	100	100
100	100	100
LC50	>100%	>100%

 Table 7.
 Results of chronic toxicity tests using Ceriodaphnia dubia.

Percent sample	Survival	Reproduction
	(%)	(mean ± SD)
Control	100	15.0 ± 5.5
1.56	100	15.8 ± 6.1
3.12	100	16.8 ± 3.0
6.25	100	16.2 ± 3.6
12.5	100	15.5 ± 5.4
25	100	13.8 ± 2.9
50	100	13.6 ± 3.9
100	100	13.1 ± 5.3
LC50	>100%	
IC25		>100%

Table 8. Results of rainbow trout embryo development tests presented as percent normally developed embryos.

Percent sample	Static renewal (daily)	Static
	(mean ± SD)	$(mean \pm SD)$
Control	92.5 ± 6.9	95.8 ± 3.2
6.25	93.3 ± 7.2	91.7 ± 3.3
12.5	90.8 ± 5.7	90.0 ± 9.0
25	95.8 ± 6.3	65.0 ± 17.7
50	97.5 ± 1.7	81.7 ± 16.9
100	99.2 ± 1.7	68.3 ± 16.0
EC25	>100%	See text

Shading indicates significant difference relative to the control.

Table 9. Results of rainbow trout embryo development tests to evaluate the effect of chitosan treatment.

Treatment	Normally developed		
	(mean ± SD)		
Control	78.3 ± 11.1		
Chitosan-treated control	78.3 ± 7.9		
Sample	63.3 ± 7.7		
Chitosan-treated sample	72.2 ± 9.6 *		

^{*} Data from one replicate excluded. See text.

Table 10. Results of rainbow trout larval survival and growth tests.

Percent sample	Survival	Dry weight
	(%)	(mg)
Control	95.0 ± 10.0	28.5 ± 0.9
6.25	100 ± 0.0	26.6 ± 2.8
12.5	95.0 ± 10.0	26.3 ± 3.7
25	100 ± 0.0	26.0 ± 1.1
50	85.0 ± 19.1	27.0 ± 2.7
100	100 ± 0.0	26.0 ± 2.0
EC25	>100%	>100

Shading indicates significant difference relative to the control.

4.0 QA/QC

The rainbow trout embryo tests conducted in this program deviated from methods specified in Environment Canada (1998) in terms of sample volume. Volume was reduced to 500 mL because of the significant volume required for this test and the long distance required for transportation. In addition, use of this smaller volume has been shown to be an effective and sensitive alternative (Canaria et al. 1999). Sample holding time was exceeded for these tests as a result of the significant shipping time and the available schedule for obtaining test organisms; however, since the primary concern in this sample was TSS, this deviation is not expected to have affected the outcome of the tests, because TSS would not degrade, volatilize or otherwise dissipate in the sample. The samples were thoroughly mixed prior to preparation of the test solutions to re-suspend any suspended particulate that might have settled during transport.

The tests each met control acceptability criteria and water quality parameters remained within the acceptable ranges, with the exception of minor deviation in temperature on day 3 of the trout embryo test conducted with renewals, and dissolved oxygen on day 4 of the larval survival and growth test. These minor water quality deviations are not expected to have adversely affected the results of the tests.

Reference toxicant tests conducted in conjunction with this testing program fell within the acceptable range in all cases, indicating that the health and sensitivity of the test organisms was appropriate. Results for these tests are provided in Table 11.

Table 11. Results of reference toxicant tests.

Test	Date	Result	Acceptable Range	CV (%)
	initiated			
Rainbow trout acute	Sept 2/08	4.6 mg/L SDS	3.3 – 7.5	19.6
Daphnia magna acute	Sept 3/08	3.9 mg/L NaCl	3.2 - 5.2	12.2
Ceriodaphnia dubia survival and reproduction	Sept 11/08	1.0 mg/L NaCl	0.6 – 1.6	21.0
Trout embryo survival & development	Sept 15/08	2.8 mg/L SDS	1.1 - 9.1	39.6
Trout embryo survival & development	Sept 24/08	1.7 mg/L SDS	1.0 - 9.1	40.1
Larval trout survival & growth	Sept 17/08	49.5 μg/L Cu	36.0 - 84.7	20.2

5.0 REFERENCES

Canaria, E.C., Elphick, J.R. and Bailey, H.C. 1999. A simplified procedure for conducting small scale short-term embryo toxicity tests with salmonids. Environ. Toxicol. 14:301-307.

Environment Canada. 2007. Biological test method: test of reproduction and survival using the cladoceran *Ceriodaphnia dubia*. Environmental Protection Series. Report EPS 1/RM/21, Second Edition. Environment Canada, Science and Technology Branch, Ottawa, ON.

Environment Canada. 2000a. Biological test method: reference method for determining acute lethality of effluents to rainbow trout. Report EPS 1/RM/13, Second Edition. Environment Canada, Science and Technology Branch, Ottawa, ON.

Environment Canada. 2000b. Biological test method: reference method for determining acute lethality of effluents to *Daphnia magna*. Report EPS 1/RM/14, Second Edition. Environment Canada, Science and Technology Branch, Ottawa, ON.

Environment Canada. 1998. Biological Test Method: Toxicity Tests Using Early Life Stages of Salmonid Fish (Rainbow Trout). Second Edition. EPS/1/RM/28, July 1998.

APPENDIX A - Acute Toxicity Test Results

Rainbow Trout Summary Sheet

Client:	Azimuth	Star	t Date/Time: <u> °</u>	ot 15/08 @ 1620h
Work Order No.:	08934		est Species: <u>Onc</u>	orhynchus mykiss
Sample Information:		•		
Sample ID: Sample Date: Date Received: Sample Volume: Other:	APL-EAS CAPT: 10/08 CAPT: 19/108 6 K 30L			•
Dilution Water:	- ,			
Type: Hardness (mg/L CaCO ₃) Alkalinity (mg/L CaCO ₃)	3): <u>`</u>	O HUNICIPAL TAP (03)	<u>ter</u>	
Test Organism Inform	ation:			
Batch No.: Source: Test Volume/No. Fish: Loading Density: Mean Length ± SD (mm Mean Weight ± SD (g)	10, 0, 1): 35 :	Trout Form /104 41	Range	
SDS Reference Toxica	int Results:			
Reference Toxicant ID: Stock Solution ID: Date Initiated: 96-h LC50 (95% CL):	0 	75.36 8503 25. 2/08 3. (3.4 - 5.5)		,
Reference Toxicant Mea	_	5,4 ± 2.1		- -
Test Results:	me 96-b	LC50 is cotimate	<u>1</u> @ 71009.	(vlv)
Reviewed by:	Jet		Date reviewed	10 De 2008

- 02%		#	# Survivors	ors Ors	·	-	Ē	emper	Temperature (°C)	ပ်	<u> </u>)issol	ved O	Dissolved Oxygen (mg/L)	(mg/l		I	F.	<u> </u>		Cond (µS	Conductivity (µS/cm)
	1 2	4	24	48	7.5	96	0	74	48 7	72	96	0	24	48 7	72 96	0	24	48	72	96	0	96
) e y e g			Q	0)	0/	91	15,4	187	45	-	181	G \ \ \ \	2) 1	0/00	.6 CO.) £ 0	j 6 '	0 40	4.0	0.4 0.4 0.4 0.4 0.4 0.4 0.0 10.0 10.0 10	25	41
22			6	Ö	01	3	15.4	481	いとり	<u>ت</u>	1.0	2,0,0	2) 0.4	6.0	<i>C)</i> 0.	1. t a	7.5	, 4.0	0.4	4.	12-24 6.4 0.5 0.5 0.5 0.5 0.5 0.01 0.01 0.01 0.01	74%
5.2)			б	0	2	٥	15.4 1	14.8	4 75	₹	- 63	o.٥/د	0 4	0.0	0)0.	160	7).6	24.1	0.5	E 10- C - ta - to 6 0 - to 018.01 0.01 0 016.01 8.41 4.51 8.41 8.41 4.51	化校	140
77	_		6	<u>0</u>	٥	3	5.3	1486	7.7 15	7	3	0.0	0 0 0	3	ن در	14	100	فر	77.0	9.3 148(47 15,4 14,8 10.0 10.0 10.0 10.0 17.1 170 18.4 18.4 18.6 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	34	40
20			9	٥	3	0	5.0	14.81.6	4215	<i>51</i> b.	<u>_</u>	61.0	.g (t.	<u>ي</u> د د	ا اچ	te	63	99	6.3	6.3 16.3 18.4 18.4 18.9 10.0 18.9 18.9 1.1 1.9 1.9 1.0.2	35	se e
CO)	<u> </u>		2	0	9	5	<u>+</u>	136	- 45	1/13	3.	0.1 0.1	9. 8.	6		1 +	56.7	ار ا	3	14.114814746711.00 18.9 19.9 19.9 17.3 16.7 15.3 16.8 16.9 16.8	28	27
			_						<u> </u>							 						
								<u> </u>											-			
Initials			M	なな	adocted fict	->	ゴ	THE	7	17	45	(C)	001	Z)	スダ	五	N N	別	172	ग्न अभिजाय वर्षाताहर गर्म अपित अपित अपित अपित	717	27.7
Sample Description/Comments:	ion/Cor	ıment			5	5/19/5	1414	ploudy	P. Par													
Fish Description at 96?	at 96?		FIEM SDOCCH	SQ.	ğ	4	ر ا		,					{			}				.	

30 min WQ

Adjustment

Initia! WQ

Parameters

Temp °C

Undiluted Sample WQ

080

Date Received/Time:

RBT Batch #:

W.O.#

Date Setup/Time: Sample Setup By: +

Cond. (µS/cm)

D.O. (mg/L)

2 문 문 문

D.O. meter: pH meter: Cond. Meter:

Aeration rate adjusted to 6.5 ± 1 mL/min/L? (Y/N):

Total Pre-aeration Time (mins):

701/c1

Number Fish/Volume:

Azinyl

Client/Project#:

Sample I.D.

7-d % Mortality:

96-Hour Rainbow Trout Toxicity Test Data Sheet

O

9

Date Reviewed:

Reviewed by:

Other Observations:

Rainbow trout (Oncorhynchus mykiss) length and weight sheet

Client:

Sample ID

		•	•
·		Length (mm)	Weight (g)
	1	30	0.54
	2	33	0.33
	3	37	0.48
	4	31	0.30
	5	38	0.51
	6 .	34	0.33
	7	39	0.52
	8	32	0,33
	9	35	0.44
	10	32	0.32
·			
	Total	360	4.10
	Mean	<u> 35</u>	G. 0.41
	Std. Dev.	3	0.10
	Low	31	<u>030</u>
	High	39	0.54

Daphnia magna Summary Sheet

Client: Work Order No.:		Start Date/Time: Test Species:	
Work Orger No.:			
		Set up by:	HULD
Sample Informatio	n;		
Sample ID:	apl-eas		
Sample Date:	sept. 10/06 @ 1630h		
Date Received:	3004: 15108		•
Sample Volume:	bx aOL		
• .			·
Test Organism Info	ormation:	,	
Broodstock No.:		O8330@	
Age of young (Day 0)): 	= 2 Righ (
•	prood in previous 7 d:	<i>2</i> 5	
Mortality (%) in prev		0	
Days to first brood:		9	
NaOl Bafarana Tan	ol- and Page No.		
NaCl Reference To	xicam results;		
Reference Toxicant	ID: Dm 37		
Stock Solution ID:	Orna		
Date Initiated:	Sept 3		
48-h LC50 (95% CL)	3,9'(=	5,2-4.9) g/ L Nach	•
Reference Toxicant	 -	4.2 ± 1.0 g/L Nach	<u> </u>
Reference Toxicant	CV (%):	122	
•		•	
	e		
·			
Test Results:	-100% SURVIVAL @ -		retirated cutul
	The 48-h LCS	1001. (VIV)	
Reviewed by:	SIL	Date reviewe	ed: 10 Dec 7008

Freshwater Acute 48 Hour Toxicity Test Data Sheet

Clienf: Sample ID: Work Order No.:) 2 imu PL - E O\$ 2	AS 35		<u>-</u>	- -	No. (Organi	sms/v st Org	Time: olume: anism: up by:	10/2 	200mL Igna	- <u>/</u> —	PR	17501
DO meter:		DO-1		_		pН	meter:		<u>р</u> Н-1		_ (Condu	ctivity	meter:	<u>C-1</u>	
Concentration	Rep		lumbe Orga		No. Immobilized	Те	mperat (°C)	ure	Disso	olved o	xygen)		рН			uctivity S/cm)
7	l veb	<u> </u>	24	48	48	0	24	48	0	24	48	0	24	48	0	48
Control	Α	10	10	10	0		20.0		129		9.0	80			362	370
CEAN ARC	В			-							V					
	c											9 (4)		aler est		W. Pres
-	D	,					592 15	4								200
6.25	Α	10	15	10	D	21.2	20.0	19.7	90		9.0	دي		20	345	353
	В				-		1	(3)	27000							
	C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													S dece	
	D						67.1	HEROSE.					100			
125	Α	10	13	10	0	17.8	20.0	19.7	ગ ્રે ગ		9.0	٦٦	i Allian	8.0	328	333
	В								100						9-90. ₂₀₀	
	С					745.6EP4					200	15	i ili ili			
	۵											10.10		7.0		te de la
25	Α	12	10	10	୍ଦ	15,3	19.9	19.7	91	5 46	9.0	51	h 1	81	300	296
	В				h		10.00		See	grafficer	-6	100				
	C											5000				
	D															
50	Α	10	(G	10	<u>o</u> _	188	19.9	19.7	9,1		9.1	ફુઉ		9,8	265	280
	_B															
	С															
	D		<u></u>					765 383			190 274	75 7.9				
103	A	15	12	10		183	19.9	1917	3.1		9.1	75 7.9		8-9	96	
	B		<u> </u>	L					8							
	С		<u> </u>					i de dife	d	146			90		Granda ili	
	D							180	AT ROS						A. Vir di	
Technician Init	tials	<u>_</u> _	w	511	<u> </u>	<i>f</i> **	^	111	r		JLT	N		JL		プレブ
ı						1		1								
	Hardn				Alkalinity*					I WQ		djustme		-	Adjusted \	<u>VQ</u>
Conc.			*(mg/L :	as CaCo			Temp (20.7 9.1	<u> </u>		100 to			18.3	
Control (MHW)		00	_	<u></u>	<u> </u>		DO (mg	<u>;/L)</u>						 	7.9	
Highest conc.	<u>O</u>	<u></u> 3>		1,0	28		pH Oand (-C/a>	دم 3/		7/4	(1)	<u>ی</u>	-	87	_
							Cond (io/cm)	3/			<u></u>		<u></u>		
Sample Descripti	on:				lear	- 1.	ship	eller	7	8/44	5 =	reque				
Comments:	صا	d	0	8220,		,	ø (•	•		ng. 4	t yn	7, 32	
Reviewed by:		A	. 7	Te,	<u>, </u>		Dat	e revi	ewed:	<u> </u>	Ja	ME	hy	9,2	2009	

Nautilus Environmental

Version 1.1 Issued October 9, 2007

Datasheet
Alkalinity
Hardness and

Client:

O M

										•
			Alkalinity					Hardness		5
Sample ID	Sample Date	Sample Volume (mt.)	(mL) 0.02N HCL/H ₂ SO ₄ used to pH 4.5	(mL) 0.02N (mL) of 0.02N HCL/H ₂ SO ₄ used Total Alkalinity to pH 4.2 (mg/LCaCO ₃)	Total Alkalinity (mg/LCaCO ₃)	Sample Volume (mL)		Volume of 0.01M Total EDTA Used Hardness (mt.) (mg/L CaCC	Total Hardness (mg/L.CaCO ₃) Technician	Technician
2PL-EBS	Schilles	50.0	9.0	£'0	01	<u> </u>	\$0.0	0.5	اه	BRL
Lateral Land	Sight	@'QS	1.5	97	2.8	\ <u>`</u>	55.5	13	35	Ą
P	•									
			,							
							····			
		-								

	-									
								-		
							-			
									•	
										4
		Notes: 5	Sept is							
Reviewed by:		A	90		Date Reviewed:	wed:	1,5	- Andari	7 9,200	05
			*		ı					

Version 1.0 Issued June 26, 2006

APPENDIX B – Ceriodaphnia dubia test results

Ceriodaphnia dubia Summary Sheet

Client:	Azimoth	Start Date/Time:	Scot. 12108 @ 1740h
Work Order No.:	08233	Set up by:	
Sample Information	1:		
Sample ID:	APL-FAS		
Sample Date:	<u>scot. 10/08</u>		
Date Received:	Scpt. 12100		
Sample Volume:	6xaol		
Test Organism Info	rmation:		
Broodstock No.:	·	090908	
Age of young (Day 0		<u> < 24h (w/ lah)</u>	<u> </u>
	st 3 broods of previous 7 d		
Mortality (%) in previ			
Avg. No. of young in	previous prood:	9	
NaCl Reference To	xicant Results:		
Reference Toxicant	ID: c034		
Stock Solution ID:	<u>08 Na 02</u>		
Date Initiated:	Sept. 11 CB		
7-d LC50 (95% CL):	2.1(1.7-3.0	olgic Naci	
7-d IC50 (95% CL):	1.010,9-1.)gil Nacl	
		5.11 4501	ov. 27
	Toxicant Mean ± 2 SD:	1.5 ± 080/L NOCI	CV (%).
7-d IC50 Reference	Toxicant Mean ± 2 SD:	1.1 ± 0.5g/L Nac1_	CV (%): <u>31</u>
Test Results:		Survival	Reproduction
	NOEC %(v/v)	100	<u> </u>
	LOEC %(v/v)	>100 <u> </u>	C015'
	LC50 %(v/v) (95% CL)	Φ Ις	CARL LANGE TO THE PARTY OF THE
	IC25 %(v/v) (95% CL)		>100
	IC50 %(v/v) (95% CL)	THE PARTY OF THE P	>100
Reviewed by:	A. Tere,	Date revie	ewed: January 9,200

February 12, 2008; Ver. 1.2

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client:			Azmo	fa			Sta	rt Date	& Time:	•	5	st121.	Sre1	764
Sample ID:		ລໍເ	PL-EA	ි		_		Sto	p Date:	:	300		38 C 1	
Work Order #:			0XJ3	<u>.</u>		_		Test S	pecies:	Ceriod	aphnia			
% (VIV)						_								
control	·						ם	ays				-		
Concentration	0		1.		2		3		4		5			7
	init	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	246	2516	247	24.9	251	20.2	Caraman Caraman	25,5	रक्ष	25.5	25.1	254		,
DO (mg/L)	29	75	3-3	724	7.9	7.6	8,0	17	84	7.7	8.1	7-7-		
pH	8:1	5-1	<i>s</i> -3	8.1	8.2	7.9	6.0	78	82	7.7	79	76		
Cond. (µS/cm)	200		w	7	04	ac		200	>	31	1	2-3	4/	
Initials	Ā		~	(a)	Car	OKL	.DXL	<u></u>	_	OKr	OKL	4		
***************************************	8				10			1	 - -			7.	*	
1.6							D	ays						
Concentration	0		1		2		3		4		5		6	7
0011001111011	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.7	25.4		24.4	251	25.2	**************	255	25(25.5	26,1	25\6		
DO (mg/L)	8-2	406	52	24	79	7.5	79	77	8-2	7.7	8,1	4)		
pH	g: 1	F.i	62	8.0	8.1	7.9	8,1	7.8	درع	7.7	7,9	76	1	
Cond. (µS/cm)	205		107 107	7	25	30		+	اد	2	•	195		
Initials	0.	~		11/1/	Ch	OKL	DKL	· · · ·		DKE	DKL	V		
Irilliais	Ø	<i>P</i>	A	90		1) 1.3	vice		<u> </u>	1 .4	10000	/		
12,5														
	_	Ι	1	Γ	2	<u> </u>	3	ays	4	Γ.	 5		 6	-
Concentration	0 init.	old	new	5 541 APACE CONT. TWO COM.	new	old	new	old		old	1242238533243864444	\$4,000 content of 0.000		7
T (00)		The state of the s	**************************************	old .	26 - I				new. ะกไ	-	new	old 25 6	new	final
Temperature (°C)	82	25%	24.4	749	<u> </u>	36.3	7.9	25		35.5				
DO (mg/L)	-	() () () () ()	FI		7-8 8.0	7.5	L	70	52	7.6	811	76		
pH	186	<u> </u>	' '	80	80		8.1	18	80	7.7	7.9			
Cond. (µS/cm)		1	19		EW .	183	OKT	LS	<u>سم</u> ستر . ا	19		122		
Initials	A	M	(AL)	(Ju)	ev	DKL	UPO	<u> </u>	<u> </u>	DKL	0،دب	<u>^</u>		
1-0														
IDO	_		_	1				ıys					- -	
Concentration	0	000,073,710,000,000,000	1		2		3		4		5		3	7
	init	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	25,3	1476		74.9	25.1	a5.2	<u>გ</u> ე. I	2545	14 3	25.5		250		$-\!\!/-\!\!\!/$
DO (mg/L)	3،3	75	82	71	TY			77	5,1	7.7	8/1	71		-
pH	£,3	ጉሩ	77	72	<u>ም</u> 4	7.83	7.4	76	16	7.3	<u> 7, 3</u>	<u>ጉ′S</u>		
Cond. (µS/cm)	31		31	37		<u>3</u> 4		4	52	_	5	27	_/_	
<u>Initials</u>	_^	/ -	^_	bu	Car	orci	DXL	N	<i>></i> ~	DKL	DKL	Λ-	/	
			Ar //	. (0)					1					_
		itrol	roc					Market Street		Analys	ts:	₩WO'E	okt ; ec	<u>c </u>
Hardness*) ১ ১১	15	ວ ວ						Davide		312		
Alkalinity* * mg/L as CaCO3	\ \ \{\chi_{\chi}\}		1 1		-				 		ed by:			
myre as Gacos									L	Date rev	ieweu:	_10 Y	ec 20	oğ
Sample Description:			1	harthe	Ron	-p1.1	H 1)						
			7	70		11154	0	1700	,,					
Comments:			•							-				

Chronic Freshwater Toxicity Test C. dubia Reproduction Data

Client:			•	4	インとって	¥												Sta	t Dat	Start Date & Time:	je:		<i>□</i>	1	12/58	4	0	4	~	
Sample ID:			95	<u> </u>	r L												,	Sto	p Date	Stop Date & Time:	j je] !	3	6	100	9	1800	١٧٥	1
Work Order:		}	ð	585	Ŋ,										9	,0	`	_	0)	Set up by:	ا خذ					£		}		
Dave Concentration:	iflon:			Lution	1				Conc	Concentration	tlon:				9		7		9	once	Concentration	ء ا				n	4			_
A B	ם د	ш	¥	O	Ξ		3	Init		В	ပ	۵	ш	u.	g	I	-	-	뺼	4	63			ııı	1 D		-]	Init	_
- 7	7		7	1	,	7	4	ţ	<u>لا</u>	2)	1		7	V	7	7	2	(\ <u></u>		7	1	7	1	\	7	1	(
2345678910<	2	>	7	7	7		,	W.	,2	1	7	2	7	1	7	7	7	1	W.	2	7	7	7	7	7	7	1	3	B	
۵ /	7	7	7	7	7	7		젊	7	7	7	7	Z	7	2	×	7	7		7	7	2	2	2	7	7		1	3	_
4 7	ځ >	64	9		ť		W	₹	ş	1	3	3	e	3	<u>ۍ</u>	17	7	٠. ح		N	W		7	_	2	3	V	3	એ	_
ء بر	× 4/		Ú	17	∞	مح		ż	'>	o	†	8	5	ഓ	0	-	6			ę		1	1	0	-	ک [4	A	3	
	^	5-	SA SA	∵	و.	+	P	£	6	+	ď	40	و	1	و.		7	J	₹	ъ т -	5	•	د	Ś	7	(t	1	~	3	
			野	_									-	•	·		'	_				 I			<u> </u>	ļ	 	ļ		1
8	_						4								-	_	-		 	-	<u> </u>		<u> </u>	ļ	}	<u> </u>	<u> </u>	 	ļ_	_
Total (6 13	9 0	1+	3	4	œ	<u>ē</u>	2	3		1+	80	ã	ā	Ē	<u>o</u>	O	ā	8	ž	8	8	2	+	14 16	5	1	1	23	경	
Concentration:	ıtion:			9	5				Con	Concentrations	1	-			Ž,					19540	Concentration			100	1					_
Cays	F	1	-	6	=	-	-	:	-			(3	:	-	-	-		- Tali	۔ ، اخ	ŀ	:ŀ	-	-	-	ļ		
4	י ב כ	ц	-	5	I	-	3	ını T	٩		υ,	۵	ш,	·	U	<u>-</u>	_	-3 -3	풀	A	m	ပ	۵	<u>—</u>	ш	Ξ ©	_	7	핕	
> -	>	<u> </u>		>	1	1	7	£	>			7	7	7	7	7	7	2	L	7	7		7	1		7		<u> </u>	≺	
7	7	7	>	7	1	7	7	1	7	7	7	7	/	7	1	7	1	7	R	1	2	7	7	7	7	7	7	7	N.	- 16
% 7 7	7	7	7	7	(>		3	7	/	`	2	/	7	1	7	2	<u>a</u>	3	7	7	7	7	7	3	(7		Ž	Ļ
\ \ \	ě	100	7		/	در	7	3	7	٧V	7	7	W	>	€\	<u>۱</u>	€~ 6~,	<u>ک</u>		/	3	<u>ب</u> ک	5	3	-	\ \	N	\	•	_
5 4 5	0	e	∞	मे	7	ھ	ד	व	×	<u>a1</u>	9	st	5	3	ی	=	α		7	1 0		2	4	-	{—	┢	T	10	3	_
5 9	4		dy.	6	4	4	ئ	£		+	4	\uparrow	>	2	S	7		9	₹	1	4			4	9	4	∤ ∤	14	4	_
7				\downarrow					_												<u> </u>			<u> </u>		-			<u>.</u>	1
-	_	_		-					_															-	 		 	_		_
Total 12 년	21 18	11	R	8	_	وِ	건	35	2	Ē	7	<u>0</u> 0	€	3	<u>@</u>	ĬŢ.	00	و	28	7	<u>∞</u>	0	12	14 01	112	1,7	9	2	લુ	_
Concentration:	ition:				8				Con	Concentration:	tion:			1	365				1	once	Concentration.	١								
A B	a o	ш	ш	G	x	-	٦	init		œ	O	٥	Щ	L	O	I	-	-	ı.	4	6	C	-	ш		C.	-	-	2	-\
7	7	7	7	7	,	7		4		1		1	1	1	7	1	7		4		├~	ļ			+		-	· \	\setminus	
7	7	7	7	7	7	7	7	18	2	1	,		7	7	2	7	X	7	R	 			-		-		7		<u> </u>	Ţ
> >	7	7	7	7	7	7	7	3	(_	7	7	7	7	7	7	7		7	र्षे						-			1	<u> </u>	_
	1	ו ((m)	1	1		W.	દ્રે	ε	1	'n	n	<i></i>	3		7			4									'	L	_
9	4	-+	ره	#	2	૭	(C)	કે	ik.	w	e	و	7	0	1	S		0	į		-			1		<u> </u>				_
0 20	+-	N	>	4	4	de	4	Ę	٥	٥	+	٥	1	١٨	6	סנ		_ [€				\rightarrow					_	_	_
7		_		\perp		_	1	_			_				}		-		_		\neg	\rightarrow								_
ď	,		!				<u> </u> ,	_	\dashv			_					_	\exists		7	1	<u>\</u>		_	\neg			_		j
Total 14 16	7	5	ιC	হ	2	4	E S	3	<u>00</u>	<u> </u>	<u>9</u>	Ţ	9	ĭΤ	$\vec{\omega}$	<u>v</u>	9	ュ	त्रू त	7		\dashv		-	\dashv	\dashv				
Notes: X = mortality.	ality																													

Sample Description: Comments:

The

Reviewed by:

Version 2.0 Issued January 23, 2008

Date reviewed: [0 Dec.

Report Date:

17 Oct-08 14:06 (p 1 of 2)

Link/Link Code:

14-2052-0640/wo08233

Ceriodaphni	ia 7-d Survival a	nd Rep	oduction Test		_				N	lautilus En	vironmenta
Analysis No Analyzed:	: 17-1721-8357 17 Oct-08 14:0	05 ————	•	eproduction onparametri	c-Control vs	Treatments		TIS Version		1.5.0	
Sample No: Sample Date Receive Date Sample Age	e: 10 Sep-08 16:: e:	30 	Material: In	84007989 dustrial Efflu PL-EAS	ent			ent: Az oject:	imuth	-	
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca Not Run	rlo	NOEL 7	LOEL	TOEL #Error	TU 1	PMSD 32.69%	<u> </u>
	One Rank Test										 -
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision	(5%)			
Negative Cor	ntrol 1.56		126	74	4	0.9990		ificant Effect			
	3.12		107	74	4	0.9091		ificant Effect			
	6.25		108	74	4	0.9234	-	ificant Effect			
	12.5		113	74	5	0.9708	Non-Sign	ificant Effect	:		
	25		86.5	74	3	0.2954	Non-Sign	ificant Effect			
	50		82	74	2	0.1735	_	ificant Effe c t			
	100		87	74	5 	0.3111	Non-Sign	ificant Effect	<u> </u>		
ANOVA Tabl	e										
Source	Sum Sq	uares	Mean Square	DF	F Stat	P-Value	Decision	(5%)			
Between	125.75		17.96428	7	0.8508	0.5494	Non-Sign	ificant Effect			
Error	1520.2		21.11389	72			_				
Total	1645.95		39.07817	79							
ANOVA Assı	mptions		 _								
Attribute_	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Bartlett E	quality	of Variance	9.672	18.48	0.2079	Equal Va	riances	_		_
Distribution	Shapiro-\	Wilk No	mality	0.8312		0.0000	Non-nom	nal Distribution	on		
Reproductio	n Summary										•
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	10	15	12.87	17.13	0	19	1.039	5.497	36.65%	0.0%
1.56		10	15.8	13.45	18.15	0	19	1.144	6.052	38.3%	-5.33%
3.12		10	16.8	15.63	17.97	13	23	0.569	3.011	17.92%	-12.0%
6.25		10	16.2	14.81	17.59	11	21 .	0.6773	3.584	22.12%	-8.0%
12.5		10	15.5	13.42	17.58	2	21	1.013	5.359	34.58%	-3.33%
25		10	13.8	12.69	14.91	10	18	0.5404	2.86	20.72%	8.0%
50		10	13.6	12.09	15.11	5	17	0.7357	3.893	28.63%	9.33%
100	<u> </u>	10	13.1	11.04	15.16	0	18	1.002	5.301	40.47%	12.67%
Rank Transfe	ormed Summary			 _	-	 _					
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr		43.05	35.3	50.8	2	71.5	3.779	20	46.45%	0.0%
1.56	-	10	53.45	43.32	63.58	2	71.5	4.937	26.13	48.88%	-24.16%
3.12	•	10	47	39.06	54.94	20.5	80	3.867	20.46	43.54%	-9.18%
6.25		10	45.2	34.73	55.67	9.5	78.5	5.103	27	59.73%	-4.99%
12.5		10	47	37.28	56.72	4	78.5	4.737	25.06	53.33%	-9.18%
25		10	28.5	20.19	36.81	8	62.5	4.052	21.44	75.23%	33.8%
~~					35.57		49.5	3.053	16.16	55.15%	31.94%
50		10	29.3	23.03	33.37	5	49.0	3.033	10.10	30.1070	01.0470

Report Date:

17 Oct-08 14:06 (p 2 of 2)

Link/Link Code:

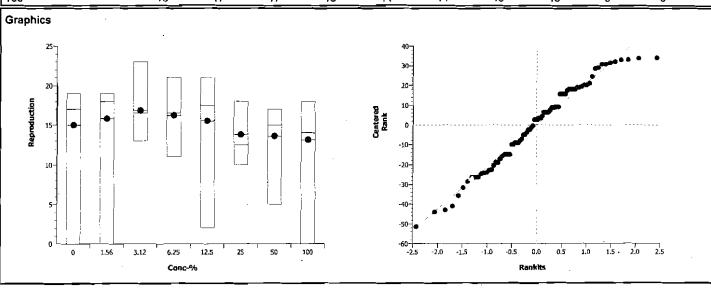
14-2052-0640/wo08233

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

Analyzed:

Analysis No: 17-1721-8357 17 Oct-08 14:05 Endpoint: Reproduction Analysis:


Nonparametric-Control vs Treatments

CETIS Version:

CETISv1.5.0

Cificial Results: Yes

Reproducti	ion Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 8	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Contr	19	18	17	17	17	17	16	16	13	0
1.56		19	19	19	19	18	18	18	17	11	0
3.12		23	20	18	17	17	16	16	14	14	13
6.25	•	21	20	20	18	17	16	14	13	12	11
12.5		21	19	18	18	18	17	16	13	13	2
25		18	18	17	14	13	12	12	12	12	10
50		17	17	16	16	15	15	14	12	9	5
100		18	17	17 ·	16	14	14	13	13	9	0

Report Date: 17 Oct-08 14:06 (p 1 of 2)

Link/Link Code:

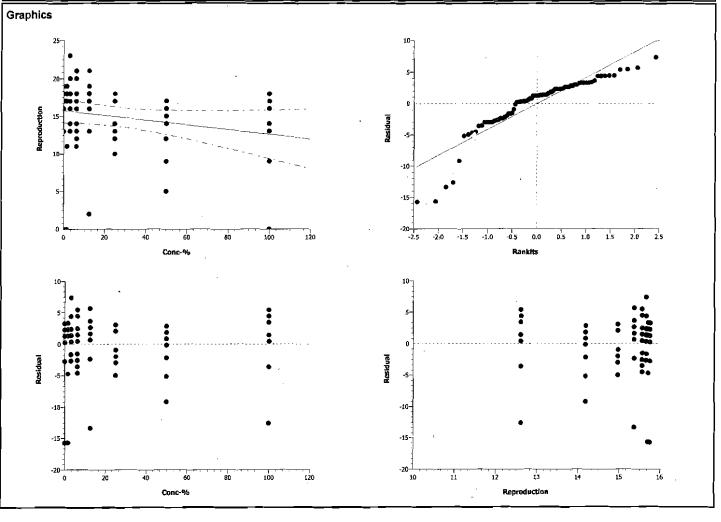
14-2052-0640/wo08233

		<u> </u>						LINK C	oue.	14-2032-0040/W008233
Ceriodaphi	nia 7-d Survival a	nd Reprodu	iction Tes	t						Nautilus Environmental
Analysis No	a: 05-7781-7386	En-	dpoint: F	teproduction			CET	IS Version:	CETIS	v1.5.0
Analyzed:	17 Oct-08 14:		•	Ionlinear Regi	ression			cial Results:		
<u> </u>			<u> </u>							
Sample No	: 09-3400-7989	Co	de: 9	34007989			Clie	nt: Azim	nuth	
Sample Dat	te: 10 Sep-08 16	30 M a	terial: Ir	ndustrial Efflue	ent		Proj	ect:		
Receive Da	te:	So	urce: 2	PL-EAS						
Sample Age	e: 49h	Sta	tion:				<u> </u>			
Non-Linear	Regression Opti	ons								
Model Fund	tion				X Trans	sform Y Tra	ansform V	Veighting Fu	nction	PTBS Function
2P Linear [Y	'≂A+BX]		- 		None	None	• <u> </u>	lormal [W=1]		Off [Y*=Y]
Regression	Summary	-	-			-	 :			
iters Lo	og LL AICc	Adj R2	Optimi	ze FStat	Critical	P-Value	Decision	n(1%)		
1 -1	58.9 321.9	0.0383	Yes	0.3364	3.063	0.9155	Non-Sigr	nificant Lack	of Fit	<u> </u>
Point Estim	ates									
% Effect	Conc-% 95%	LCL 95%	6 UCL							
10	50.11 8.84	4 91.3	38							
15	75.17 15.0	7 135	.3							
20	100 2 17.8	g 182	À .	/						
25	12/5.3 19/3	5 23/1	.2 >1	00/						
40	200.4 21.2	5 / 879	.7							
50	250.6 / 21.7	3 /479	.4							
Regression	Parameters						<u>-</u> -			<u></u>
Parameter	Estimate	Std Error	95% LC	L '95% UCL	t Stat	P-Value	Decision	(5%)		į.
Α	15.75	0.6468	14.47	17.04	24.36	0.0000	Significan	t Parameter	_	
В	-0.03144	0.01584	-0.06298	0.000104	-1.984	0.0507	Non-Signi	ficant Param	eter	
ANOVA Tab	 le		 -							
Source	Sum Squ	ares Mea	an Square	DF	F Stat	P-Value	Decision((1%)		
Model	83.13332	83.	13332	1	4.149	0.0450	Non-Signi	ficant		
Lack of Fit	42.61668	7,10	0278	6 .	0.3364	0.9155	Non-Signi	ficant		
Pure Error	1520.2	21.1	11389	72						
Residual	1562.817	20.0	03611	78			•			ĺ
Residual Ar	alysis									 -
Attribute	Method			Test Stat	Critical	P-Value	Decision(1%)		ļ
Variances	Mod Leve	ne Equality	of Variance		2.898	0.9955	Equal Var	_		
Distribution		Vilk Normali		0.8422		0.0000	Non-norm	al Distribution	n	
Reproduction	on Summary	<u> </u>			Ca	culated Var	iate			
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Negative Control	10	15	0	19	1.021	5.497	36.65%	0.0%	- , — ——
1.56		10	15.8	0	19	1.124	6.052	38.3%	-5.33%	ĺ
3.12		10	16.8	13	23	0.5591	3.011	17.92%	-12.0%	
6.25		10	16.2	11	21	0.6655	3.584	22 12%	-8.0%	
12.5		10	15.5	2	21	0.9952	5.359	34.58%	-3.33%	
25		10	13.8	10	18	0.531	2.86	20.72%	8.0%	
50		10	13.6	5	17	0.7229	3.893	28.63%	9.33%	
100		10	13.1	0	18	0.9844	5.301	40.47%	12.67%	

Report Date:

17 Oct-08 14:06 (p 2 of 2) 14-2052-0640/wo08233

Link/Link Code:


Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

Analysis No: 05-7781-7386 Endpoint: Reproduction CETIS Version: CETISv1.5.0

Analyzed: 17 Oct-08 14:05 Analysis: Nonlinear Regression Official Results: Yes

Reproduc	tion Detail							_			
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Control	17	18	19	17	0	16	13	16	17	17
1.56	*	11	17	18	19	19	18	19	0	19	18
3.12		20	18	14	16	14	16	13	17	17	23
6.25		13	14	21	18	17	20	20	11	16	12
12.5		2	19	21	18	13	13	18	17	18	16
25		12	18	13	12	10	14	12	17	18	12
50		17	. 16	17	12	9	5	16	15	14	15
100		18	14	16	17	9	17	13	13	0	14

Report Date:

17 Oct-08 11:42 (p 1 of 2)

Link/Link Code:

14-2052-0640/wo08233

Ceriodaphnia 7-d Survival and Reproduction Test Nautilus Environmental Endpoint: 6d Survival Rate 03-9766-0072 CETIS Version: **CETISv1.5.0** Analysis No: 15 Oct-08 16:08 STP 2x2 Contingency Tables Analyzed: Analysis: Official Results: Yes 09-3400-7989 934007989 Client: Sample No: Code: Azimuth Sample Date: 10 Sep-08 16:30 Industrial Effluent Project: Material: Receive Date: Source: 2PL-EAS Sample Age: Station: **Data Transform** Zeta Monte Carlo NOEL LOEL TOEL ΤU **PMSD** Alt Hyp N/A Untransformed C > T Not Run 100 7100 #Error 1 Fisher Exact/Bonferroni-Holm Test Control P-Value Decision(0.05) Conc-% Test Stat Negative Control 1.56 0.7632 1.0000 Non-Significant Effect 3.12 1.0000 1.0000 Non-Significant Effect 1.0000 6.25 1.0000 Non-Significant Effect 12.5 1.0000 Non-Significant Effect 0.7632 25 1.0000 1.0000 Non-Significant Effect 1.0000 Non-Significant Effect 50 1.0000 1.0000 Non-Significant Effect 100 0.7632 **Data Summary Control Type** No-Resp Conc-% Resp Total 0 Negative Contr 1 10 1.56 1 10 3.12 10 0 10 6.25 10 0 10 12.5 9 1 10 25 ٥ 10 10 50 10 ٥ 10 100 9 1 10 6d Survival Rate Detail Conc-% Control Type Rep 5 Rep 8 Rep 9 Rep 10 Rep 1 Rep 2 Rep 3 Rep 4 Rep 6 Rep 7 Negative Contr 1 1 1 0 1 1 1 1 1 1 0 1.56 1 0 1 1 1 1 1 1 3.12 1 1 1 1 1 1 1 1 1 6.25 1 1 1 1 1 1 12.5 1 1 1 1 1 0 1 25 1 50 1 1 1 1 1 1 1 1

Analyst:_____QA: 4

0

1

1

1

1

1

100

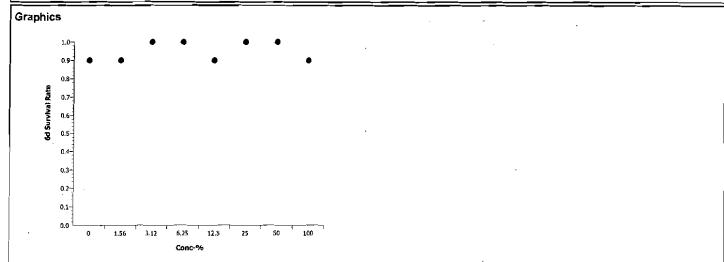
Report Date:

17 Oct-08 11:42 (p 2 of 2)

Link/Link Code:

14-2052-0640/wo08233

Ceriodaphnia 7-d Survival and Reproduction Test


Analysis No: 03-9766-0072 Endpoint: 6d Survival Rate
Analyzed: 15 Oct-08 16:08 Analysis: STP 2x2 Contingency Tables

Graphics

Nautilus Environmental

CETIS Version: CETISv1.5.0

Official Results: Yes

Analyst:_____QA:____

APPENDIX C – Rainbow trout embryo development test results

2PL-EAS

Nautilus Environmental Initial and Final Chemistries Washington Laboratory Seven Day Chronic Freshwater Bioassay Start Date & Time: Client: Azimutta Mine Sample ID. Stop Date & Time: OPL-EAS 0909-7024 Test Species: ONcorhynchus Mykiss Test No: Log-In#: Days Conc. or (%) CON init. final init. final init. final init. final init. final 8.02 pΗ 7.58 7.85 7.8 7.90 7.58 9.4 DO (mg/l) 8.9 239 Cond. (µmhos-cm) 15.0 14.6 15.0 Temperature (°C) Days 2 5 6 0 6.25 final final final init. init. final final final init. 7.85 pН 7.877.62 7.109 7.82 7.8 8.01 7.91 7.67 9.6 9.4 9,9 DO (mg/l) 9.2 10.0 9.4 9.7 8.9 236 234 Cond. (µmhos-cm) 231 39. Temperature (°C) 15.0 14.9 14.0 14.5 14.6 Days 5 6 12.5 init. final final final init. final init. final final init. final 7.80 7.72 <u>8.00</u> pН 7.82 7.86 7.84 7.63 7.61 9.6 DO (mg/l) 9.5 10.4 9.2 9.4 9.3 Cond. (µmhos-cm) 212 219 Temperature (°C) 15.0 14.4 Days 0 2 25 final final init. final init. final init. final init. final init. final init. 7.70 pН 7.79 7.63 7.86 7.81 7.95 7.82 7.71 7.64 99 188 8.60 10. DO (mg/l) 9.3 9.8 Cond. (µmhos-cm) 192 195 188 Temperature (°C) 14.5 Days 5 0 2 3 50 final init. final init. final init. final init. final init. final init. 7.78 pН 7.69 DO (mg/l) 9.2 9.6 7.8 10.5 10.0 Cond. (µmhos-cm) 143 134 141 14.6 Temperature (°C) 14.5 Days

Dilution Water Batch #: MHSW 045

final

6.99

9.2

14.4

init.

15.0

init.

9.8

final

9.2

7.13 7.60

init.

9.3

25

final

init.

<u>7.52</u>

9.8

final

init.

final

(m)

15.0

100

pН

DO (mg/l)

Cond. (µmhos-cm)

Temperature (°C)

Tech. Initials

QA Check:	125	

final

init.

7.32

final

7.44

10.0

Sample Description:								
Animal Source:	Trout Loa	lae			9/15/08			
Comments:	Day Initial +	temps high in	chemistry	cups but	dicution	water temps	Within	range, 2
		out of range				,		

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424 Raw Data Sheet Rainbow Trout (Oncorhynchus mykiss) Trout Embryo Test

Client Name:	Azimuth Mine	Test No.:	0809- T024
Sample ID:	2PL-EAS		

Embryos/Container

	1			Days							# Normal	# Abnormal	Mean %
Conc.	Cont.	Rep.	0	1	2	3	4	5	6	7			Viable
CON	201	1	30	30	30	30	30	30	30	30	26	4	
	202	2	30	30	30	30	36	30	30	30	26	4	
	203	3	30	30	30	30	30	30	30	30	30	0	
	204	4	30	30	30	30	30	30	30	30	29	1	
6.25	205	1	30	<i>3</i> 0	30	30	30	30	30	30	29	1	
	206	2	30	30	30	30	3D	30	30	30	<u> 30</u>	0	
	207	3	30	30	30	30	29	29	03 7A	29	28	1	
1	20%	4	30	30	30	30	30	30	30	30	25	5	
12.5	209	1	30	30	<i>3</i> 0	30	30	30	30	30	<u> 29</u>		
	210	2	30	30	30	30	30	29	29	29	27	2	_
	211	3	30	30	30	30	30	30	30	30	2%	Z	
	212	4	30	36	30	30	30	30	30	30	25	5	
25	213	1	30_	30	30	30	30	30	30	36	26	4	
	214	2	30	30	36	30	30	30	30	30	30	0	
	215	3	30	30	30	30	30	30	30	30	29	1	
	216	4	30	30	30	30	30	30	30	30	30	0	
50	217	1	30	36	30	30	3D	30	30	30	29	1	
	218	2	30	30	30	30	30	30	30	30	29		
	219	3	30	30	30	30	30	30	30	30	30	0	
	220	4	30	30	30	30	30	30	30	30	29		
100	221	1	30	30	30	30	30	30	30	30	30	0	
,,,,,	222	2	30	30	30	30	30	30	30	30	30	0	
	223	3	30	30	30	30	30	30	30	M25830	30	0	
	224	4	30	30	30	30	30	30	30	29	29	0	
		1	- Tolerance										
		2											
,		3											
		4											
Accessed to the second		1											
		2											
		3											
		4											
Tech Initia	ale		ИИ	MM	(M)	9t-	2/2	W,	70	MM	MM	MM	

QA Check:	<u> </u>	
Comments:		
	.·	

2PL-EAS No Renewals

Nautilus Environmental **Washington Laboratory**

Sample ID. Test No:

Client:

0809-7025

Log-In#:

Daily Chemistries

Seven Day Freshwater Bioassay 1700

Start Date & Time: 9/15/08

Stop Date & Time: 9/22/08 1630 **Test Species:**

Oncorhynchus mykiss

Conc. or (%)	Days										
CON	0	1	2	3	4	5	6	7			
рН	7.90	7.45	7.77	7.82	7.71	7.66	7.71	7.84			
DO (mg/l)	8.4	9.5	7.8	9.6	8.9	9.4	10.2	9.8			
Cond. (µmhos-cm)	255	262	257	252	255	254	257	254			
Temperature (°C)	15.0	15.0	15.0	14.8	14.5	14.7	14.95	14.3			
				Da	·						
6.25	0	1	2	3	4	5	6	7			
pH	7.87	7.57	7.86	4.85	7.90	7.84	7.78	7.86			
DO (mg/l)	8.5	9.5	7.60	10.1	8.5	9.3	9.8	10.0			
Cond. (µmhos-cm)	241	239	2300	236	235	237	239	236			
Temperature (°C)	15.0	15.0	14.7	14.7	14.4	14.8	14.9	14.2			
					ıys						
12.5	0	1	2	3	4	5	6	7			
рН	7.84	7.66	7.91	7.87	7.92	7.89	7.87	7.86			
DO (mg/l)	8.5	9.6	7.10	10.0	8.5	9.7.	9.60	10.0			
Cond. (µmhos-cm)	227	225	221	224	224	224	227	224			
Temperature (°C)	15.0	15.0	14.5	14.7	14.5	14.7	14.9	14.0			
	Days										
					, *						
25	0	1	2	Da 3	ays 4	5	6	7			
25 pH	0 7.79	1 7.68	2 7.88		, *	7.86	7.84	7 7.86			
	-			3 7.84 10.0	4 7.90 8.6	7.86 9.7		7.86			
рН	7.79	7.68	7.88 7.60 196	3 7.84 10.0 197	4 7.90 8.6 200	7.86 9.7 198	7.84	7.86 10.1 198			
pH DO (mg/l)	7.79	7.68	7.88 7.6	3 7.84 10.0 197 14.6	4 7.90 8.6 200 14.6	7.86 9.7	7.84	7.86			
pH DO (mg/l) Cond. (µmhos-cm)	7.79 8.6 199 15.0	7.68 9.4 199 15.0	7.88 7.6 196 14.4	3 7.84 10.0 197 14.6	4 7.90 8.6 200 14.6 ays	7.86 9.7 198 14.7	7.84 9.7 200 14.9	7.86 10.1 198 14.1			
pH DO (mg/l) Cond. (µmhos-cm)	7.79 8.6 199	7.68 9.4 199	7.88 7.60 196	3 7.84 10.0 197 14.6	4 7.90 8.6 200 14.6	7.86 9.7 198	7.84	7.86 10.1 198			
pH DO (mg/l) Cond. (µmhos-cm) Temperature (°C)	7:79 8.6 199 15.0	7.68 9.4 199 15.0	7.88 7.60 1960 14.4 2 7.83	3 7.84 10.0 197 14.6 D:	4 7.90 8.6 200 14.6 ays	7:86 9:7 198 14:7 5 7:81	7.84 9.7 200 14.9 6 7.81	7.86 10.1 198 14.1 7			
pH DO (mg/l) Cond. (μmhos-cm) Temperature (°C)	7.79 8.6 199 15.0	7.68 9.4 199 15.0 1 7.65 9.4	7.88 7.60 1960 14.4 2 7.83 7.7	3 7.84 10.0 197 14.6 Di 3 7.76	4 7.90 8.6 200 14.6 ays 4 7.79 8.4	7.86 9.7 198 14.7	7.84 9.7 200 14.9 6 7.81 9.7	7.86 10.1 198 14.1 7 7.85			
pH DO (mg/l) Cond. (µmhos-cm) Temperature (°C) SO pH	7.79 8.6 199 15.0 0 7.77	7.68 9.4 199 15.0	7.88 7.60 1960 14.4 2 7.83	3 7.84 10.0 197 14.6 Di 3 7.70 10.0	4 7.90 8.6 200 14.6 ays 4 7.79	7:86 9:7 198 14:7 5 7:81	7.84 9.7 200 14.9 6 7.81 9.7	7.86 10.1 198 14.1 7 7.85 10.1 143			
pH DO (mg/l) Cond. (μmhos-cm) Temperature (°C)	7.79 8.6 199 15.0 0 7.77 8.8	7.68 9.4 199 15.0 1 7.65 9.4	7.88 7.60 1960 14.4 2 7.83 7.7	3 7.84 10.0 197 14.6 D: 3 7.76 10.0 141 14.6	4 7.90 8.6 200 14.6 ays 4 7.79 8.4 144	7:86 9:7 198 14:7 5 7:81	7.84 9.7 200 14.9 6 7.81 9.7	7.86 10.1 198 14.1 7 7.85			
pH DO (mg/l) Cond. (μmhos-cm) Temperature (°C) SO pH DO (mg/l) Cond. (μmhos-cm)	7:79 8.6 199 15.0 0 7:77 8.8 143 15.0	7.68 9.4 199 15.0 1 7.65 9.4 144 15.6	7.88 7.60 1960 14.4 2 7.83 7.7 142 14.5	3 7.84 10.0 197 14.6 Di 3 7.76 10.0 141 14.6	4 7.90 8.6 200 14.6 ays 4 7.79 8.4 144 14.7	7.86 9.7 198 14.7 5 7.81 9.5 144 14.9	7.84 9.7 200 14.9 6 7.81 9.7 144 14.8	7.86 10.1 198 14.1 7 7.85 10.1 14.3 14.0			
pH DO (mg/l) Cond. (μmhos-cm) Temperature (°C) SO pH DO (mg/l) Cond. (μmhos-cm)	7:79 8.6 199 15.0 0 7:77 8.8 143	7.68 9.4 199 15.0 1 7.65 9.4 144	7.88 7.60 196 14.4 2 7.83 7.7 142	3 7.84 10.0 197 14.6 D: 3 7.76 10.0 141 14.6	4 7.90 8.6 200 14.6 ays 4 7.79 8.4 144 144 14.7 ays	7:86 9:7 198 14:7 5 7:81 9:5 144 14:9	7.84 9.7 200 14.9 6 7.81 9.7 144 14.8	7.86 10.1 198 14.1 7 7.85 10.1 143			
pH DO (mg/l) Cond. (µmhos-cm) Temperature (°C) 50 pH DO (mg/l) Cond. (µmhos-cm) Temperature (°C)	7:79 8.6 199 15.0 0 7:77 8.8 143 15.0	7.68 9.4 199 15.0 1 7.65 9.4 144 15.6	7.88 7.60 1960 14.4 2 7.83 7.7 142 14.5	3 7.84 10.0 197 14.6 Di 3 7.76 10.0 141 14.6	4 7.90 8.60 200 14.60 ays 4 7.79 8.4 144 14.7 ays 4 7.42	7.86 9.7 198 14.7 5 7.81 9.5 144 14.9	7.84 9.7 200 14.9 6 7.81 9.7 144 14.8	7.86 10.1 198 14.1 7 7.85 10.1 143 14.0 7 7.50			
pH DO (mg/l) Cond. (μmhos-cm) Temperature (°C)	7:79 8.6 199 15.0 0 7:77 8.8 143 15.0	7.68 9.4 199 15.0 1 7.65 9.4 144 15.0	7.88 7.60 1960 14.4 2 7.83 7.7 142 14.5	3 7.84 10.0 197 14.6 D: 3 7.70 10.0 141 14.6 D: 3	4 7.90 8.60 200 14.60 ays 4 7.79 8.4 144 14.7 ays 4 7.42 8.4	7:86 9:7 198 14:7 5 7:81 9:5 144 14:9	7.84 9.7 200 14.9 6 7.81 9.7 144 14.8 6 7.43	7.86 10.1 198 14.1 7 7.85 10.1 14.3 14.0 7 7.50 10.1			
pH DO (mg/l) Cond. (µmhos-cm) Temperature (°C) \$0 pH DO (mg/l) Cond. (µmhos-cm) Temperature (°C)	7.79 8.6 199 15.0 0 7.77 8.8 143 15.0	7.68 9.4 199 15.0 1 7.65 9.4 144 15.0	7.88 7.60 1960 14.4 2 7.83 7.7 142 14.5	3 7.84 10.0 197 14.6 Di 3 7.70 10.0 141 14.6 Di 3 7.60	4 7.90 8.60 200 14.60 ays 4 7.79 8.4 144 14.7 ays 4 7.42 8.4 34	7.86 9.7 198 14.7 5 7.81 9.5 144 14.9 5 7.36 9.5 33	7.84 9.7 200 14.9 6 7.81 9.7 144 14.8 6 7.43 9.7 33	7.86 10:1 198 14:1 7 7.85 10:1 14:3 14:0 7 7.50 10:1 34			
pH DO (mg/l) Cond. (µmhos-cm) Temperature (°C) \$0 pH DO (mg/l) Cond. (µmhos-cm) Temperature (°C) \$0 pH DO (mg/l)	7:79 8.6 199 15.0 0 7:77 8.8 143 15.0 0 7:29 9.1	7.68 9.4 199 15.0 1 7.65 9.4 144 15.0	7.88 7.60 1960 14.4 2 7.83 7.7 142 14.5	3 7.84 10.0 197 14.6 D: 3 7.70 10.0 141 14.6 D: 3	4 7.90 8.60 200 14.60 ays 4 7.79 8.4 144 14.7 ays 4 7.42 8.4	7:86 9:7 198 14:7 5 7:81 9:5 144 14:9	7.84 9.7 200 14.9 6 7.81 9.7 144 14.8 6 7.43	7.86 10.1 198 14.1 7 7.85 10.1 14.3 14.0 7 7.50 10.1			

Dilution	Water	Batch	#:	MHSW	045

QA Check: 115

Animal Source:

Comments:

* Test was Not revenue

Date Received: 9/5/00Date of Hatch:

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424 Raw Data Sheet Rainbow Trout (Oncorhynchus mykiss) Trout Embryo Test

Client Name:	Azimuth Mine	Test No.: _	0809-T025	
Sample ID:	2PL-EAS			

Embryos/Container

			<u> </u>			Da Da	# Normal	# Abnormal	Mean %				
Conc.	Cont.	Rep.	0	1	2	3	4	5	6	7			Viable
CON	301	1	30	30	30	30	30	30	30	30	30	0	
	302	2	30	36	30	30	30	30	30	30	29	ı	
······································	303	3	30	30	30	30	30	30	30	30	28	2	
,	304	4	30	30	30	30	30	30	30	30	28	2	
6.25	305	1	30	30	30	30	30	30	30	30	28	2	
	306	2	30	30	30	30	30	30	30	29	29	0	
	307	3	30	30	30	30	30	30	30	30	27	3	
	30%	4	30	36	30	30	30	30	30	30	27	3	
12.5	309	1	30	30	30	30	30	30	30	30	29		
	316	2	20	30	30	30	30	30	30	36	23	7	
	31/	3	30	30	30	30	30	30	30	30	2,8	7	
	312	4	30	30	30	30	30	30	30	30	28	2	
25	313	1	30	30	30	30	30	30	30	30	19	11	
	314	2	30	30	30	30	30	30	30	30	2.0	10	
	315	3	30	30	30	30	30	30	30	30	13	17	
	316	4	30	36	30	30	30	30	30	30	26	4	
50	317	1	30	30	30	30	30	30	30	30	28	2.	
	318	2	30	30	30	30	30	30	30	30	27	3	
	319	3	30	30	30	30	3/0	20	30	29	17	/3	
	320	4	30	30	30	30	30	30	30	30	26	4	
100	321	1	30	30	30	30	30	30	30	80	18	12	
100	322	2	80	30	30	30	30	30	30	30	15	15	
	323	3	30	30	30	30	30	30	30	30	24	6	
	324	4	30	30	30	30	30	30	30	30	25	5	
		1	- Andrewson and the Control of the C										
······································	<u> </u>	2											
		3											
-,,,,,,		4		1									
		1											
		2											
		3											
		4											
ech Initi:	als		THI	Щ	(P)	(N)	(M)	(M)	M	MM	MM	MM	

QA Check:	165
Comments:	

2PL-EAS w/Chitosan

Nautilus Environmental **Washington Laboratory**

Client: Sample ID.

Test No:

0809-T051

Log-In#:

Daily Chemistries

Seven Day Freshwater Bioassay

Start Date & Time: 9/24/08 1530

Stop Date & Time: 10/1 /05/1400

Test Species: Oncorhynchus mykiss

Conc. or 🥨				Da	ys			
CON	0	1	2	3	4	5	6	7
pH _{se}	7.68	7.59	7,89	וריב	7,94	8.03	7.106	7.88
DO (mg/l)	89	9.1	9,7	10.3	10.2	9.8	9,2	10.0
Cond. (µmhos-cm)	25%	261	265	2115	254	272	274	263
Temperature (°C)	14.5	14.6	14,9	14.8	14.8	15.0	14.8	14.8
chitosow		an'		Da	<u> </u>			
CON	0	1	2	3	4	5	6	7
pH	7.69	7.74	7.94	7,81	7.94	8.04	7,88	7.92
DO (mg/l)	8.9	9.6	9.8	9.8	10.2	9.60	9.1	9.4
Cond. (µmhos-cm)	258	256	263	254	257	260	259	261
Temperature (°C)	14.5	14.4	14.6	14.3	14.9	14.8	14.7	14.8
	٧٠			Da			·	r
100	0	1	2	3	4	5	6	7
pH	7.20	7.23	7.60	7,51	7,70	8.04	7.41	7.29
DO (mg/l)	9.4	9.7	9.8	9.8	10.2	9.60	9,0	9.3
Cond. (µmhos-cm)	25	34	34	33	34	34	35	29
Temperature (°C)	14.5	14.2	14.3	14.1	14.8	14.8	14.8	14.8
chitosow		7	1,	Da	ıys			·
100	0	(¹⁰ de 1	2	3	4	5	6	7
рН	7.20	7.06	7.34	7.38	7.41	7.51	7.23	7.25
DO (mg/l)	9.4	9.5	10.0	9.10	10.2	9.6	8,7	9.1
Cond. (µmhos-cm)	25	33	27	26	26	29	28	27
Temperature (°C)	14.5	14.5	14.8	14.4	14.9	15.0	15.0	14.9
		1 1 May	rate.		ıys			
gre to	<i>beta</i> 0	1	2	3	4	5	6	7
pН								
pH DO (mg/l)			# - 1 / v					
	*						~ .	
DO (mg/l)	*						~.	
DO (mg/l) Cond. (μmhos-cm)				~~·····	ays		S	
DO (mg/l) Cond. (μmhos-cm)	0	1	2	Da 3	ays 4	5	6	7
DO (mg/l) Cond. (μmhos-cm)	0	1		~~·····		5	6	7
DO (mg/l) Cond. (µmhos-cm) Temperature (°C)	0	1		~~·····		5	6	7
DO (mg/l) Cond. (µmhos-cm) Temperature (°C) pH DO (mg/l) Cond. (µmhos-cm)	0	1		~~·····		5	6	7
DO (mg/l) Cond. (µmhos-cm) Temperature (°C) pH DO (mg/l)	0 	1		~~·····		5	6	7

Dilution	Water	Batch #	: 04	X	MHSW
----------	-------	---------	------	---	------

QA Check: 165	- 1
---------------	-----

Sample Description:	٠	a k			
Animal Source:	Trout Lodge	Date Received:	9/24	Date of Hatch:	Sample College Spine Spi
Comments:		*			

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424

Raw Data Sheet Rainbow Trout (Oncorhynchus mykiss)
Trout Embryo Test

Test No.: 089 - TOSI

Client Name:	Azimuth	
Sample ID:	ZPL-EAS	:

					#	Embryos/Con	
				ay	# Normal	# Abnormal	Mean %
Conc.	Cont.	Rep.	0	7			Viable
CON	501	1	30	30	19		
	502	2	30	30	26	4	
	503	3	30	ZK	23	5	
	504	4	30	30	26	4	
CON	505	1	30	28	25	3	_
chitosow	506	2	30	30	25	5	
	507	3	30	29	20	9	
	50%	4	30	29	24	5	
100	509	1	30	28	21	7	
	510	2	30	ZØ	17	1112 11	_
	511	3	30	29	17	12	
	512	4	30	29	21	×	
100	513	1	30	0	***************************************		
chitosan	514	2	30	24	20-H-C	13te 4.	
- Milker	515	3	30	26	25+q.m	l	
	516	4	30	ec 26 2	5 20	5	
		1					
		2					
		3				. 4	
		4					
		1					
		2					
		3		,			
		4				*	
		1					
		2					
		3					40
		4					
		1			-		
		2				•	
		3					
		4				_ š	
Tech Initia	als		MM	ММ	CC	CC	1 X

QA Check:	<u> 105 </u>				
Comments:					
Comments:					

APPENDIX D	- Rainbow trou	t larval survi	val and growt	h test results

CETIS Summary Report

Report Date:

20 Oct-08 10:47 (p 1 of 1)

Link/Link Code: 06-5229-9644/0809-T040

Chronic Larva	al Fish Survival	and G	rowth Test						Nauti	lus Enviro	nmental WA
Test Run No: Start Date: Ending Date: Duration:	07-4327-5293 17 Sep-08 13: 24 Sep-08 11:4 6d 22h		Test Type: Protocol: Species: Source:	Growth-Surviv EPA/600/R-99 Oncorhynchus Thomas Fish	9/064 (2000) s mykiss			uent: M ne:	leghan Murph lod-Hard Syn	-	er
-	19-2860-6003 10 Sep-08 14:3 15 Sep-08 13:1 6d 23h (6.5 °C	15	Code: Material: Source: Station:	08-279 Receiving Wa Azimuth	ter		Clie Pro	ent: A oject:	zimuth		
Comparison S	Summary							0)		TO PERSON WATER PROPERTY.	
Analysis No	Endpoint			NOEL	LOEL	TOEL	PMSD	Method			
08-9684-4248 06-1347-5056	7d Survival Ra Mean Dry Weig				> 100 > 100	N/A N/A	17.0% 14.4%		any-One Ranl s Multiple Co		est
7d Survival R	ate Summary	The state of the s		W. W							
Conc-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Dilution Water	4	0.95	0.913	0.987	0.8	1	0.0183	0.1	10.5%	0.0%
6.25		4	1	1	1	1	1	0	0	0.0%	-5.26%
12.5		4	0.95	0.913	0.987	8.0	1	0.0183	0.1	10.5%	0.0%
25		4	1	1	1	1	1	0	0	0.0%	-5.26%
50		4	0.85	0.778	0.922	0.6	1	0.035	0.191	22.5%	10.5%
100		4	1	1	1	1	1	0	0	0.0%	-5.26%
Mean Dry Wei	ight-mg Summa	ıry					***************************************				
Conc-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Dilution Water	4	28.5	28.1	28.8	27.3	29.5	0.168	0.919	3.23%	0.0%
6.25		4	26.6	25.6	27.7	22.7	29.4	0.518	2.84	10.7%	6.44%
12.5		4	26.3	24.9	27.7	23.9	31.8	0.677	3.71	14.1%	7.62%
25		4	26	25.6	26.4	25.4	27.7	0.198	1.09	4.17%	8.57%
50		4	27	26	28	23.1	29.3	0.492	2.69	9.98%	5.21%
100		4	26	25.2	26.7	23.1	27.5	0.361	1.98	7.61%	8.85%
7d Survival R	ate Detail	TO THE STATE OF TH	7007-7000-00-00-00-00-00-00-00-00-00-00-							And the second s	Migrael Address of the Park of the Control of the C
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
Ö	Dilution Water	1	0.8	1	1						
6.25		1	1	1	1						
12.5		0.8	1	1	1						
25		1	1	1	1						
50		0.6	1	1	0.8						
100		1	1	1	1						
Mean Dry Wei	ight-mg Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Dilution Water	27.3	29.5	28.4	28.7						7/-1/
6.25		27.2	22.7	27.3	29.4						
12.5		31.8	24.8	24.7	23.9						
25		25.5	27.7	25.5	25.4						
50		29.3	28.2	23.1	27.4						
100		27.5	26.1	23.1	27.1						

Analyst: M QA

Initial and Final Chemistries Nautilus Environmental Seven Day Chronic Freshwater Bioassay **Washington Laboratory** 9/17/08 1315 Start Date & Time: 9/24/08 [[Stop Date & Time: Client: -EAS Orenhyrchea M Sample ID. Test Species: 0809-T040 Test No: 08.279 98-278 BP Log-In#: Days 3 ti 2 final 0 init. Conc. or 🕼 final init. final init. final init. final 7.67 final init. 905 init. 7.85 COL 7,30 7.59 7.24 7.85 8.6 281 7.53 7.74 7.85 7.49 10.1 \$ 6 10.0 248 236 260 148 149 149 pΗ 9. 5.5 9.0 6.9 8.3 9.4 9.4 249 DO (mg/l) 262 5.3 249 968 236 14.8 250 247 14.614. Cond. (µmhos-cm) 14.8 14.7 Temperature (°C) 14.7 Days final 0 final final init. final init. final init. final 808 init. 6.25 7.85 7.70 7.41 7.26 7.85 7.47 8.3 264 7.81 9.3 pΗ 7.2 10.0 6.7 231 8.6 234 55 9.3 <u>7.6</u> 49 236 247 23 DO (mg/l) 240 14.8 Cond. (µmhos-cm) 14.6 14.8 14.8 144 Temperature (°C) Days 6 final init. 0 final final init. final final init. init. final init. final 8.09 7.76 init. 7.83 12.5 7,29 7.78 7.20 7.89 7.2 7.44 7.82 8.5 252 8,8 7.88 pΗ 9.4 10.2 7.3 5.5 236 8.4 <u>7.6</u> 8.7 DO (mg/l) <u> 233</u> Cond. (µmhos-cm) 6 14.4 15.0 14.5 14.4 148 Temperature (°C) Days 2 final 0 init. final init. final init. final init. final final init. init. final 7.77 7.13 7.36 7.80 7.83 7.39 рĤ 8.3 5.2 9.1 188 9.1 74 DO (mg/l)<u> 203</u> 210 **20** a Cond. (µmhos-cm) 4.8 Temperature (°C) Days 6 3 0 init. | final final final init. final init. final init. init. final final 50 7.69 7.75 7.09 7.55 7.24 7.70 7,20 7.75 pН 9,4 5.9 4.2 139 9.1 10.2 6.3 144 9,2 7.0 DO (mg/l) 170 1410 156 138 Cond. (µmhos-cm) 14.(14.4 15.0 14.6 Temperature (°C) Days 6 0 init. final final final final init. init. final final init. 100 final init. init. 7.19 8.8 7.62 6.69 7.42 7.85 6.83 6.88 7.33

Dilution Water Batch #: MHSW 046

6.6 32

14.4

7.28

9.5 23

pН

DO (mg/l)

Cond. (µmhos-cm)

Temperature (°C) Tech. Initials

QA Check:	165
-----------	-----

14.

9.6

24

38

14.5 14.

Sample Description:			A 1. 81
Animal Source:	Thomas Fish Co	Date Received: 9/16/08	Date of Hatch: 9/1/08
Comments:	Thist alration initiated or		Swin up, 9/15/18
	* See Corrective Action Form 08-019.	(3) 30	1
	+) see corrective Action Form 08.	-021	

8,3

23

14.2

6.6

40

14.7

9.9

23

14.2

58* 10.5 40 25

15.0

10.3

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424 Raw Data Sheet Rainbow Trout (Oncorhynchus mykiss) Larval Survival

Client Name:	Aganile	Test No.: 0809-T040
Sample ID:	ZPL-EAS	

						Da					Mean %
Conc.	Cont.	Rep.	0	1	2	3	4	5	6	7	Survival
CON	8	1	5	\$	<u>ร</u> ร	5	5	5	_5	5	
*	22	2			S	_5_	5	_5_	 	質	989
	18	3	S	5	5	5	5	_5_	5	5	
	10	4	5		5 5 5 5 5	5	5	5	5	5	
6.25	17	1	S	\$	5	55	5	_5_	5	<i>5</i>	
	7	2	5	<u>S</u> <u>S</u>	5		5	5_	5	5	
	13	3	<u>s</u>	<u> </u>	5	55555	5	5	5	<u>5</u>	
	9	4		2		5	5	5	5	15	
12.5	16	1	5 5	<u>5</u> 5	\$ \$ \$	5	5	5	5555	4	-
	446	2	5	_5_	5	5	5	5	2	5	
	5	3	5	5	5	5	5	_5_	<u>></u>	15	
	15	4	5	5	5	5	5	5	2	5	
25	M	1	5	5000	5 5	5	5	5	5	5	
	2.[2	5	5	5	15	5	5	5	<u> 5</u>	
	20	3	5	5	5	5	5	5	5	15	
	[1]	4	5 5 5 5		5	555	5	5 5 5		555555	
50	1	1	5	<u>E</u>	5	15	5		4	3	_
	4	2	5_	5	5	5	5	_5_	5	5	and the same
	3	3	5	S	5		5	5	555	15	
	23	4	5	5	5 5	5555	5	5	5	4	
100	2	1	<u>5</u>	2000	5	15	5 5 5	5_	5	5 5 5	
	14	2		5	5	15	5	5	5	15	
	12	3	5	S	5	15	5	5	15	15	
	24	4	5	5	S	5	5	5	8		
occupation of the contract of		1									- 1
		2									4
		3						 			
		4				سبب					
THE REAL PROPERTY.		1		i c							
		2						_			_
		3					_				
		4						-			
Tech Init	ials		Et	8t	ध	K) (N)	BF	20	St	

Feeding Tech:	0 1815 2 815 3 845 4 840 5 815 6 815 1(00) 1600 1530 1700 1530 1715 1618 9		ad.
Comments:	1615	QA Check:	16

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424 Raw Data Sheet Fish Weights Seven Day Chronic Bioassay

Client:	Aginuth	Test No: <u>0909-7040</u>
Sample ID:	ZPL-EAS	Species: O. mykiss

	cont	rep	pan wt.	pan + fish	fish wt.	#	avg. per fish	avg. per conc.
Conc.	#	#	(gm)	(gm)	(mg)	fish	(mg)	(mg)
CON	g	1	6.53744	0.669c640		5		
0.674020	22	2	0,57920	0.69739		4		
	18	3	0.52714	0.66907		5		
	10	4	0.58101	0.72431		5		
6.25	17	1	0.52920	0.66511	4.14h	5 5		
	7	2	0.55210	0.66551		5		
	13	3	0.58480	0.72117				
	9	4	0.52800	0.67516	Park Wall	5	The state of the s	
12.5	16	1	0.60485	<u>0.73222</u>		4		and the second of the second o
	6	2	0.54585	0.66966		5		
	5	3	0,54440	0.66776		5		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Mostor estayasto ya ku je ilikasil zakazaka ilikasil si esta ilikasil si	15	4		0.73587		5		
25	19	1	0.59878	0.72637		<u>5</u>		
	21	2	0.53390			15		
	20	3	0.52571			5		
	1/	4	0.59177			5		
50		1	0.50664			<u>3</u> 5		
	4_	2		0.75048		5		
	3	3		0.73225		5 4		
	23	4		0.64653				
100	2	1		0.72399		5		
	14	2		0.71518		5 5		
-046	12	3	0.59790		(5)	12	10 April 1989	
	24	4	0.58658			5		
INITIAL	1	1	0.61264	0.000		5		
	a	2	0.60988	0.66024		5		
437	3_	3	0.54784	0.61934		5		
Annual Comment of Madestrone and Manhall Comment	H	4	0.60016	0.66035		5		
Tech	ınician	Initials:	BP	et .	1			

Date/Time in:
Date/Time out:

 9/24/08
 1/45
 Oven temp. (°C): 63.0

 9/26/08
 945
 Oven temp. (°C): 63.0

QA Check: 165

APPENDIX C PHYTOPLANKTON TAXA LISTS

			2P	L-EAS-	1			21	PL-EAS	-2			2	PL-EAS	-3			2P	L-EAS-	DΤ			3	BPL-EAS	S	
				3-Sep-08					3-Sep-0					13-Sep-0					3-Sep-0					4-Sep-0		
	Species & Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
	Cyanophyte																									
1008	Aphanocapsa	_	-	-	+	-	-	-	-	-	-	_	-	_	_	-	-	-	-	-	-	-	-	-	-	-
	Aphanothece	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	+	-	-	-	-	+	+
	Rhabdogloea lineare Schmidle and Lauterborn	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Planktolyngbya limnetica	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
	Cylindrospermum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-	-	-	-	-	-	-
	Snowella	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	+
	011																									
	Chlorophyte																									
	Pyramidomonas tetrarhynchus Schmarda	-	-	-	-	-	-	-	-	-	-		+		-	-	+	+	-		-			+		-
	Chlamydomonas Sphaerocystis schroeteri Chodat	Ţ		7	-	-		-	-	-			-	-	-	-	-	-	-	Τ.	-		- 7	-	-	-
	Oocystis lacustris Chodat	-	-	-	-	-	Ι	_	_	-	Ī	Ι.	-	-	-	-		_	-	I	-	-	I	-	-	_
	Chodatella	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
	Dictyosphaerium simplex Sukja	_	_	-	_	_	-	-	_	-	_	_	_	_	1	_	-	-	-	-	-	-	-	_	-	-
	Monoraphidium komarkovae (Nyg.) Komarkova-Legnerov	. +	-	-	<u> </u>	-	-	-	-	-	-	_	_	T .	-	-	-	-	-	-	-	_	-	<u>+</u>	-	-
	Monoraphidium contortum (Thur.) Komarkova-Legnerova			_		-	_	-		_	-	_				_			_		1			•		
	Monoraphidium minutum (Nag.) Komarkova-Legnerova		_	_	_	_	_	+	_	_	_	_	_	_	_	_	_	_	+	_	+	_	_	_	+	_
	Crucigenia quadrata Morr.	_	_	+	+	_	_	-	+	_	+	+	_	_	_	+	+	+	_	_	_	_	_	_	-	_
	Crucigeniella rectangularis (Nag.) Komarek	_	_	_	_	_	_	-	-	_	+	_	_	+	-	_	_	_	_	_	_	_	-	_	_	_
	Elakatothrix gelatinosa Willen	_	-	-	-	+	+	+	-	-	-	+	+	+	_	+	-	-	-	+	-	+	+	+	+	-
	Cosmarium	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	+	-	-	-	-
2183	Euastrum sinuosum Lenorm.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-
2186	Xanthidium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-
2187	Staurodesmus extensus (Andersson) Teiling	-	-	+	-	-	-	-	-	-	+	-	-	-	-	-	+	-	+	+	+	+	+	-	-	+
2199	Spondylosium planum (Wolle) W. and G.S. West	-	-	-	-	-	-	-	-	+	-	-	-	+	-	+	-	-	-	-	-	-	-	-	+	+
2202	Scourfieldia cordiformis Takeda	-	-	-	-	-	-	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
2205	Mougeotia	-	-	-	-	-	-	-	-	-	-	+	-	-	-	+	-	-	-	-	-	+	+	-	+	+
2206	Botryococcus braunii Kutzing	+	-	+	-	+	-	-	+	+	+	+	+	-	+	+	-	+	+	+	+	+	-	-	+	-
2215	Tetraedron caudatum (Corda) Hansgrig	+	-	-	-	-	-	+	-	-	+	+	-	-	+	+	+	+	+	+	+	+	-	+	+	-
2217	Collodictyon	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	+	-
	Ankistrodesmus spiralis Lemmermann	-	+	-	-	+	+	+	+	+	+	+	-	+	-	+	-	-	-	+	+	-	-	-	-	-
2247	Oocystis gigas Archer	-	-	+	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Euglenophyte																									
3305	Trachelomonas volvocina Ehrenberg	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	+
	Chrysophyte																									
	Small chrysophyceae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	Large chrysophyceae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	Chrysochromulina parva Lackey	+	+		+	+	+	+	-	-	-	+		+	+	+	+	+	+	+	+	+	+	+	+	+
	Chrysococcus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	Chrysostephanospaera globulifera Scherffel		-	-	-	-		-	+	-	+	-	-	-	-	-			-	+				+	+	-
	Kephyrion boreale Skuja	+	-	-		-	+	-	+	-	-				-	-	+	+	-		+	+	+	+	+	+
	Kephyrion Spinifiromonas sirratus		_	_	_	-	-		-	-	-	-	-	т		-	Ŧ ±	∓	T	Ŧ	Ŧ ±	T	∓			Ŧ
	Mallomonas caudata Ivanov	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	_	-	-	-
	Mallomonas crassisquama (Asmund) Fott	-	+	+	+	+	-	+	+	+	-		+		+	+	+	+	+	+	-	+	+	+	+	-
	Dinobryon borgei Lemmermann	+	+	+		·	+	·	·	·	+		·	+	·	+	·	+	+	·	+	+	+	+	+	+
	Dinobryon mucronutom Nygaard	+	-	+	-	+		+	·	+	+		+	+		+	+	+	+	+	+	+			+	+
	Dinobryon bavaricum Imhof	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	+	_	_	_	+	_	_	+	+	+
	Dinobryon sertularia Ehrenberg	+	+	_	+	_	+	+	+	_	+	_	+	+	+	+	_	_	+	+	+	+	+	+	+	+
	Dinobryon sociale Ehrenberg	+	+	+	+	_	+	+	+	+	+	_	+	+	-	+	+	+	+	+	+	+	+	+	+	+
	Chrysolkos skuja (Nauwerck) Willen	+	+	-	+	-	-	+	+	+	-	+	+	+	-	-	+	+	+	+	+	+	+	+	+	+
	Uroglena volvox Ehrenberg	-	-	-	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	Bitrichia chodatii (Reverdin) Chodat	-	+	-	-	+	+	-	-	-	-	-	-	-	-	+	-	+	+		+	+	+	+	+	+
	Chrysochromulina laurentiana Kling	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	Stichogloea	-	-	-	-	-	+	+	-	-	-	+	-	+	-	-	+	-	+	+	+	-	+	+	+	+
	Bicoeca lacustris Clark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-
4416	Bicoeca ainikkiae Jarnefelt	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Salpingoeca frequentissima (Zach.) Lemmermann	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	-	-	+	-
4425	Mallomonas hamata Asmund	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	+	-	-	-	-	-	-
	Pteridomonas	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	+	-	-	+	-	-	-	-
	Stelexomonas dichotoma Lackey	-	+	+	+	+	+	+	-	+	+	+	-	-	-	+	-	-	-	-	-	-	-	-	-	-
4444	Dinobryon pediforme (Lemmermann) Steineche	-	-	+	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

		2	PL-EAS	S-1			2	PL-EAS	S-2			2	PL-EAS	-3			21	L-EAS	-DT				3PL-EA	s	
		1	3-Sep-	08				13-Sep-	08			1	13-Sep-0	08			1	3-Sep-	08				14-Sep-	08	
Species & Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Diatom																									
5507 Cyclotella stelligera Cleve and Grunow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
5511 Rhizosolenia eriense H.L. Smith	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	-	+	-	+	+	+	+	+	+
5513 Tabellaria fenestrata (Lyngbye) Kutzing	-	-	+	-	+	-	+	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-
5514 Tabellaria flocculsa (Roth) Kutzing	+	+	-	-	-	-	-	+	+	+	+	+	+	+	+	+	+	+	+	-	-	-	+	-	+
5518 Synedra acus Kutzing	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
5523 Synedra ulna (Nitzsch) Ehrenberg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-
5546 Gyrosigma	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	+	+	+	-	-	-	+	-
5551 Cyclotella michiganiana Skvortzow	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+
5702 Achnanthes minutissima Kutzing	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
5720 Cyclotella bodanica Eulenst.	-	+	-	-	-	-	+	+	-	-	-	-	-	-	-	+	-	+	+	+	-	-	-	-	-
5733 Eunotia pectinalis (Kutzing) Rabenhorst	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	+	+	-	-	-	-	-	-	-	-
Cryptophyte																									
6554 Rhodomonas minuta Skuja	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
6558 Cryptomonas erosa Ehrenberg	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
6559 Cryptomonas ovata Ehrenberg	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-	-	-
6562 Cryptomonas reflexa (Marsson) Skuja	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
6565 Cryptomonas rostratiformis Skuja	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+
6568 Katablepharis ovalis Skuja	+	+	+	-	-	-	+	+	-	+	-	-	-	-	+	+	+	+	-	+	+	+	+	+	+
Dinoflagellate																									
7631 Gymnodinium helveticum Penard	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	+	-	-
7632 Gymnodinium	-	+	-	+	-	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
7635 Peridinium willei Huitfeldt-Kaas	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	+	-	+	-	+	-	+	-	-	-
7639 Peridinium pusillum (Penard) Lemmermann	+	+	+	+	+	+	-	+	-	+	-	+	-	+	+	+	+	+	+	+	+	+	+	+	+
7641 Peridinium aciculiferum Lemmermann	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-	-	-

			PL-EAS					L-EA					PL-EAS					L-EAS					BPL-EA		
	=		24-Sep-0					4-Sep-			_		4-Sep-			_		4-Sep-0			=		5-Sep-(
Species & Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Cyanophyte																									
1012 Aphanothece	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	+	+	+	+	-	+	+
1026 Merismopedia tenuissima Lemmermann	+	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	+
1045 Anabaena lemmermannii Usacev			+	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-				-	
1054 Planktolyngbya limnetica	+	+		-	-	-	-	-	-	+	+	-	-	-	-	+	-	-	-	-	+	+	+	+	+
1085 Rivularia 1088 Anabaena solitaria Klebs	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-
1122 Phormidium autumnale Agardh	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-
Chlorophyte																									
2100 Pyramidomonas tetrarhynchus Schmarda	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	+	-	+	+
2105 Chlamydomonas	+	+	+	-	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
2112 Sphaerocystis schroeteri Chodat	-	-	-	-	+	+	+	-	-	-	-	-	-	+	-	+	-	-	-	+	-	-	-	-	-
2114 Pediastrum boryanum (Turp.) Menegh.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-
2120 Oocystis submarina v. variabilis Skuja	+	-	-	-	-	+	+	-	-	-	-	-	+	+	-	-	-	-	-	-	+	-	+	-	+
2121 Oocystis lacustris Chodat	+	+	+	+	+	-	-	-	+	+	-	-	-	-	-	-	+	+	-	-	-	-	-	-	-
2133 Scenedesmus brevispina (G.M Smith) Chodat	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2137 Dictyosphaerium simplex Sukja	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+
2138 Monoraphidium komarkovae (Nyg.) Komarkova-Legnerov	/e -	-	+	+	-	+	+	+	-	+	-	-	-	-	-	+	-	-	-	-	+	+	+	+	+
2143 Monoraphidium minutum (Nag.) Komarkova-Legnerova	-	-	-	-	-	-	-	-	-	-	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-
2145 Crucigenia quadrata Morr.	+	+	-	-	+	+	-	-	-	+	-	-	-	-	+	-	-	-	-	+	-	-	-	-	-
2146 Crucigeniella rectangularis (Nag.) Komarek	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2167 Elakatothrix gelatinosa Willen	-	+	-	+	-	+	+	+	+	+	-	+	+	-	-	-	-	-	-	-	+	+	+	+	+
2178 Cosmarium	+	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-
2186 Xanthidium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-
2187 Staurodesmus extensus (Andersson) Teiling	+	+	+	-	-	-	+	+	-	-	-	+	+	-	-	+	-	+	-	-	+	-	+	-	+
2193 Staurodesmus paradoxum Meyen	-	-	-	-	+	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-
2195 Staurodesmus bullardii G.M. Smith	-	-	+	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2199 Spondylosium planum (Wolle) W. and G.S. West	-	-	-	+	-	-	-	-	-	-	-	+	+	-	-	-	-	-	-	-	+	+	+	+	+
2205 Mougeotia	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-
2206 Botryococcus braunii Kutzing	-	-	+	+	+	-	+	+	+	+	+	-	+	-	-	+	+	+	-	+	+	+	+	+	+
2215 Tetraedron caudatum (Corda) Hansgrig	-	-	-	+	+	+	-	+	-	+	+	-	+	+	+	+	-	-	+	+	-	-	-	-	-
2226 Ulothrix 2235 Ankistrodesmus spiralis Lemmermann		-		+		-	-			-			-		-	-					-		-	-	-
	-	-	т.	-	т.	-	-	-	-	-	-	т.	-	-	-	-	-	-	т.	т.	т.	-	-	-	-
Euglenophyte 3309 Astasia	_	_	+	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chrysophyte																									
4351 Small chrysophyceae								- 7		7		7	+					- 7		7		- 7			
4352 Large chrysophyceae 4355 Chrysochromulina parva Lackey	Ţ	T.	T.	T .	Ţ.	_ T	Ţ.	Ţ	Ţ	Ĭ	Τ.	Ţ.	_ T		T.		- T	Ţ.	- T	Ţ.	Τ.		T .	Ī	Ī
	_ T	T .	T .	T .	T .	_ T	_ T		Ţ	T	T .	T		T	T	_ T			_ T	Ţ	_ T			<u> </u>	Ĭ
4357 Chrysococcus 4358 Chrysostephanospaera globulifera Scherffel	T .	_	Ť	-	Ţ.	T .	T .		T .	1	-	Ţ.	- T	_	-	_	-	-	-	T .	-	-	-	-	Ţ.
4361 Kephyrion boreale Skuja	-	-	·	_	•		_	1	1	i	-	1	÷	-	_	_		_	_		1	1	_	_	- 1
4362 Kephyrion	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4363 Spinifiromonas sirratus	+	+		+	+		+	+	+			+		+	+	+	+	+	+	+	+	+	+	+	+
4364 Mallomonas caudata Ivanov	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	+	_	_	_	_	_	_	+	_
4367 Mallomonas duerrschmidtiae Siver, Hamer and Kling	_	_	-	_	+	_	_	+	_	_	_	_	_	_	_	_	_	-	_	-	-	-	_	_	_
4368 Mallomonas crassisquama (Asmund) Fott	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	+	+	-	_	-	+	+	+	+	_
4370 Mallomonas akrokomos Asmund and Kristiansen	+	_	-	_	_	+	_	_	_	_	_	-	_	_	_	+	+	_	-	-	_	_	-	_	_
4378 Dinobryon borgei Lemmermann	_	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	-	+	+	+	+	+
4381 Dinobryon mucronutom Nygaard	+	_	-	_	_	_	_	_	+	_	+	+	+	_	+	_	+	+	+	+	+	+	_	_	_
4383 Dinobryon bavaricum Imhof	-	-	-	-	-	-	-	_	-	-	+	-	-	-	-	-	-	_	-	-	-	_	-	_	-
4388 Dinobryon sertularia Ehrenberg	_	_	+	_	_	_	_	_	-	_	+	-	_	_	_	_	_	-	-	-	_	-	_	_	_
4390 Dinobryon sociale Ehrenberg	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4396 Chrysolkos skuja (Nauwerck) Willen	+	+	+	+	+	+	+	_	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4400 Ochromonas	-	-	-	-	-	-	-	_	-	-	-	+	-	-	-	_	-	_	-	-	-	_	-	_	-
4401 Uroglena volvox Ehrenberg	-	-	-	-	-	-	-	-	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4411 Bitrichia chodatii (Reverdin) Chodat	-	+	-	+	-	+	-	+	-	-	+	-	-	-	+	+	-	-	-	-	+	+	+	+	+
4413 Chrysochromulina laurentiana Kling	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+
4414 Stichogloea	+	+	+	+	-	-	+	_	-	-	+	+	-	+	-	+	-	+	+	+	+	+	+	+	+
4418 Salpingoeca frequentissima (Zach.) Lemmermann	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4425 Mallomonas hamata Asmund	-	+	-	+	+	-	+	-	-	+	+	-	-	-	-	-	-	+	+	+	-	-	-	-	-
4436 Dinobryon attenatum Hill	-	-	-	+	+	-	-	_	-	-	-	+	-	+	-	-	-	-	-	-	-	-	-	+	-
4437 Pteridomonas	-	-	-	-	+	+	-	-	-	-	+	-	-	-	-	+	+	-	+	+	+	+	+	+	+
4440 Stelexomonas dichotoma Lackey	-	-	+	-	-	+	+	+	+	+	+	+	+	+	+	-	-	-	+	+	-	-	-	-	+
,																									

		2	PL-EAS	S-1			2	PL-EAS	S-2			2	PL-EAS	3-3			2F	L-EAS	-DT				3PL-EA	ıs	
		2	4-Sep-	08			2	24-Sep-	08			2	24-Sep-0	08			2	4-Sep-	08			2	25-Sep-	08	
Species & Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Diatom																									
5507 Cyclotella stelligera Cleve and Grunow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
5511 Rhizosolenia eriense H.L. Smith	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	-	+	+	+	+	+
5513 Tabellaria fenestrata (Lyngbye) Kutzing	-	-	-	-	-	-	-	-	-	-	+	+	+	-	-	+	-	-	+	+	-	-	-	-	-
5514 Tabellaria flocculsa (Roth) Kutzing	+	+	-	+	-	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	-	-
5515 Fragilaria crotonensis Kitton	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	-	-	-	-	-	-	-	-	-
5518 Synedra acus Kutzing	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
5524 Asterionella formosa Hassall	-	+	-	-	-	-	-	-	-	+	+	+	-	+	+	+	+	-	+	-	-	+	-	-	-
5546 Gyrosigma	+	-	+	-	+	-	-	-	-	-	+	+	+	+	+	+	+	+	+	+	-	-	-	-	-
5551 Cyclotella michiganiana Skvortzow	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
5702 Achnanthes minutissima Kutzing	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5720 Cyclotella bodanica Eulenst.	-	+	+	+	+	-	-	-	-	-	+	+	+	+	+	+	+	+	+	+	-	-	-	-	-
5733 Eunotia pectinalis (Kutzing) Rabenhorst	-	-	-	-	-	-	+	-	-	-	-	-	+	-	-	-	-	-	+	-	-	-	-	-	-
Cryptophyte																									
6554 Rhodomonas minuta Skuja	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
6557 Cryptomonas pusilla Bachmann	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6558 Cryptomonas erosa Ehrenberg	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
6559 Cryptomonas ovata Ehrenberg	+	+	+	+	+	+	-	+	-	-	+	+	+	+	+	-	-	-	-	-	-	-	-	-	-
6562 Cryptomonas reflexa (Marsson) Skuja	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
6565 Cryptomonas rostratiformis Skuja	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
6568 Katablepharis ovalis Skuja		+		+		-	+	+	-	-	-	+	+	+	-	+	+	+	+	+	+	+	+	+	+
Dinoflagellate																									
7631 Gymnodinium helveticum Penard	-	+	-	_	_	_	_	_	_	_	+	_	-	_	_	_	_	_	_	-	_	-	_	_	_
7632 Gymnodinium	+	+	+	+	-	+	-	-	+	-	+	+	-	-	+	-	+	+	+	+	+	+	+	+	+
7635 Peridinium willei Huitfeldt-Kaas	-	-	_	-	-	-	-	+	-	-	-	-	-	-	-	-	-	+	+	-	-	-	+	-	-
7639 Peridinium pusillum (Penard) Lemmermann	+	+	+	+	-	+	+	+	+	+	+	+	+	-	-	-	-	+	+	+	+	+	+	+	+
7641 Peridinium aciculiferum Lemmermann	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	+	-

APPENDIX D ZOOPLANKTON BIOMASS DATA

Type of Analysis: Zoopl BIOMASS mg/m³ Project Number: AE-08-01 EAS

Sampling Dates: July 20, August 18, and September 10, 2008

Water Body: Various - See below

Biomass Tec Kasia Dyszy (NSC) Mesh Size: 63 microns

Data Entry: Kasia Dyszy (NSC) Stacy Hnatiuk (NSC) QA/QC:

Sample Number	Date	No. of samples	Dish ID	Dish Wt (g)	Dish + Wet Wt	Wet Wt (g)	Dish + Dry Wt (g)	Dry Wt (g)
2PL-EAS-1	14-Sep-08	1	D1	0.819	0.919	0.100	0.825	0.006
2PL-EAS-1	14-Sep-08	1	D2	0.809	0.974	0.165	0.816	0.007
2PL-EAS-1	14-Sep-08	1	D3	0.827	0.91	0.083	0.833	0.006
2PL-EAS-1	14-Sep-08	1	D4	0.802	0.952	0.150	0.813	0.011
2PL-EAS-1	14-Sep-08	1	D5	0.791	0.88	0.089	0.797	0.006
2PL-EAS-2	14-Sep-08	1	E1	0.798	0.912	0.114	0.805	0.007
2PL-EAS-2	14-Sep-08	1	E2	0.796	0.96	0.164	0.804	0.008
2PL-EAS-2	14-Sep-08	1	E3	0.821	1.273	0.452	0.839	0.018
2PL-EAS-2	14-Sep-08	1	E4	0.822	0.994	0.172	0.831	0.009
2PL-EAS-2	14-Sep-08	1	E5	0.821	1.012	0.191	0.829	0.008
2PL-EAS-3	15-Sep-08	1	F1	0.818	0.95	0.132	0.824	0.006
2PL-EAS-3	15-Sep-08	1	F2	0.812	1.19	0.378	0.843	0.031
2PL-EAS-3	15-Sep-08	1	F3	0.813	0.943	0.130	0.822	0.009
2PL-EAS-3	15-Sep-08	1	F4	0.805	0.955	0.150	0.812	0.007
2PL-EAS-3	15-Sep-08	1	F5	0.801	0.899	0.098	0.808	0.007
2PL-EAS-DT	14-Sep-08	1	G1	0.810	0.93	0.120	0.818	0.008
2PL-EAS-DT	14-Sep-08	1	G2	0.831	0.866	0.035	0.834	0.003
2PL-EAS-DT	14-Sep-08	1	G3	0.829	0.871	0.042	0.832	0.003
2PL-EAS-DT	14-Sep-08	1	G4	0.820	0.929	0.109	0.826	0.006
2PL-EAS-DT	14-Sep-08	1	G5	0.819	0.906	0.087	0.821	0.002
3PL-EAS	13-Sep-08	1	H1	0.812	1.047	0.235	0.825	0.013
3PL-EAS	13-Sep-08	1	H2	0.818	1.044	0.226	0.829	0.011
3PL-EAS	13-Sep-08	1	H3	0.797	1.02	0.223	0.808	0.011
3PL-EAS	13-Sep-08	1	H4	0.798	1.004	0.206	0.808	0.010
3PL-EAS	13-Sep-08	1	H5	0.809	1.011	0.202	0.819	0.010
	TOTAL	25						

Water Body: Second and Third Portage Lakes

Mesh Size: 63 microns

Location	2PL-EAS-DT	2PL-EAS-1	2PL-EAS-2	2PL-EAS-3	3PL-EAS
Date	14-Sep-08	14-Sep-08	14-Sep-08	15-Sep-08	13-Sep-08
Taxon		_		_	
Acanthocyclops vernalis Fisher	16	8	64	4	16
Cyclops scutifer Sars	244	496	1920	248	728
Diaptomus ashlandi Marsh	36	12	48	80	8
Diaptomus minutus Lilljeborg	124	92	336	80	16
Diaptomus sicilis S.A. Forbes	80	94	496	73	338
Heterocope septentrionalis Juday and Muttkowski	16	0	0	0	32
Harpacticoida (unid)	0	1	0	0	0
Diaptomus spp. (unid. Females)	220	288	1120	264	840
Calanoida copepodite	4	4	12	8	8
Cyclopoid copepodite	88	152	224	64	40
Zooplankton Site Totals	828	1147	4220	821	2026
Richness	6	6	5	5	6
Bosmina longirostris (O.F. Muller)	92	220	720	96	338
Chydorus sp.	3	4	16	4	0
Daphnia longiremis Sars	2	0	32	0	8
Daphnia middendorffiana Fischer	2	24	198	32	16
Zooplankton Site Totals	99	248	966	132	362
Richness	4	3	4	3	3
Chironomidae larva (unid)	1	0	0	0	0
Zooplankton Site Totals	1	0	0	0	0
Richness	1	0	0	0	0

APPENDIX E STABLE ISOTOPES ANALYSIS DATA

Zooplankton ISOTOPE, Second & Third Portage Lakes, September 2008.

Station	Date —	Isot	opes	
Station	Date —	δ ¹³ C (‰)	δ ¹⁵ N (‰)	
Second Portage	e Lake			
2PL-EAS-1	14-Sep-08	-27.87	1.48	
2PL-EAS-2	14-Sep-08	-28.39	3.99	
2PL-EAS-3	15-Sep-08	-28.03	3.95	
2PL-EAS-DT	14-Sep-08	-27.10	4.66	
	Mean	-27.85	3.52	
	SD	0.54	1.40	
Third Portage L	.ake			
3PL-EAS	13-Sep-08	-28.95	5.41	

Benthic invertebrate Isotope Results, Second & Third Portage Lakes, September 2008.

Station	Date —	Isot	opes
Station	Date —	δ ¹³ C (‰)	δ ¹⁵ N (‰)
Second Portage	e Lake		
2PL-EAS-1	15-Sep-08	-20.89	5.80
2PL-EAS-2	15-Sep-08	-19.62	5.25
2PL-EAS-3	15-Sep-08	-16.97	4.79
2PL-EAS-DT	15-Sep-08	-23.04	5.65
	Mean	-20.13	5.37
	SD	2.54	0.45
Third Portage L	.ake		
3PL-EAS-1	13-Sep-08	-20.51	5.41
3PL-EAS-2	13-Sep-08	-21.13	5.88
3PL-EAS-3	14-Sep-08	-17.71	2.62
3PL-EAS-4	14-Sep-08	-16.23	4.91
3PL-EAS-5	14-Sep-08	-17.53	2.40
	Mean	-18.62	4.25
	SD	2.10	1.62

Fish Isotope Results, Second & Third Portage Lakes, September 2008.

Figh Chasins 9 ID	ID ^~-	Class	Isotopes	
Fish Species &	םו Age	Class —	δ ¹³ C (‰)	δ ¹⁵ N (‰)
Arctic Char				
ARCH 997-PN	1-9		-28.18	8.13
GN-1002AM #			-27.01	7.32
GN-1002AM #			-28.32	8.10
GN-1002AM #			-27.94	8.20
GN-1002AM #			-27.64	8.43
GN-1002AM #			-27.64	8.33
GN-1011AM #			-28.32	8.32
GN-1011AM #			-27.26	7.51
GN-1011AM #			-27.35	8.01
GN-1011AM #			-27.61	7.66
GN-1012AM #			-26.73	8.38
GN-1014AM #			-20.73 -23.41	8.60
GN-1014AM #			-23.41 -27.39	8.57
GN-2001AM #			-27.39 -28.87	6.57 7.83
GN-2001AM #			-20.67 -27.85	8.24
GN-2002AM # GN-2007 #1	14		-27.80	6.2 4 7.48
GN-2007 #1	٠ <u>۵</u>		-27.28	7.48 7.49
GN-2011AM #			-27.28 -28.43	7.49
GN-2015AM #			-26.43 -27.49	7.83 7.83
GN-2020AM #			-27.49 -27.88	7.63 7.47
GN-2022AM #			-24.50	9.09
				8.04
GN-995PM #6			-26.32	7.96
GN-997AM #5			-26.97 -29.14	
GN-997PM #8				8.06
GN-997PM #9	1	Mean —	-19.44	9.01
n 25		SD	-27.07 2.006	8.07 0.464
Lates Turnet		-		
Lake Trout	14		20.06	12.2
GN-1002AM #			-20.96	9.17
GN-1002AM #			-24.17 21.60	• • • • • • • • • • • • • • • • • • • •
GN-1002AM # GN-1002AM #			-21.69 -20.36	11.5 11.1
				12.2
GN-1002AM #			-23.37	
GN-1004AM #			-22.56	8.89
GN-1005AM #			-24.91	9.55
GN-1005AM #			-24.17	10.0
GN-1005AM #			-25.45	8.87
GN-1005AM #			-23.32	9.81
GN-1007AM #			-24.20	10.4
GN-1007AM #			-23.23	9.26
GN-1009AM #			-24.76	10.3
GN-1009AM #			-24.90	10.6
GN-1009AM #			-23.28	9.54
GN-1009AM #			-23.44 -26.31	9.17 9.08
GN-1009AM #				

GN-1009AM #9		-25.26	11.7
GN-1010AM #7		-22.22	13.0
GN-1022AM #29		-24.42	11.5
GN-1026AM #7		-20.47	12.8
GN-1031AM #12		-23.44	12.4
GN-1031AM #13		-23.79	12.3
GN-1037AM #12		-24.17	12.9
GN-2001AM #11		-25.36	10.8
GN-2003AM #10		-25.25	10.7
GN-2012AM #8		-20.38	13.1
GN-2018AM #10		-26.15	11.4
GN-2025AM #10		-24.27	12.2
GN-2031AM #8		-19.99	12.2
GN-4017 #12		-23.15	13.5
n <u>31</u>	Mean	-23.53	11.0
	SD	1.739	1.44
Dannal Milaitafiala			
Round Whitefish		40.40	0.74
GN-1002AM #4		-19.40	9.74
GN-1002AM #5		-20.57	9.80
GN-1004AM #3		-18.51	7.89
GN-1005AM #1		-19.21	8.39
GN-1005AM #12		-20.26	8.22
GN-1008AM #7		-19.84	8.61
GN-1009AM #23		-19.51	8.58
GN-1011AM #18		-19.83	8.42
GN-1014AM #2		-20.11	9.86
GN-1025AM #7		-19.28	8.20
GN-1031AM #7		-19.34	9.42
GN-2001AM #24		-19.54	9.14
GN-2007AM #2		-20.77	9.03
GN-2007AM #3		-19.00	8.83
GN-2007AM #30		-18.70	9.19
GN-2009AM #4		-19.69	8.81
GN-2015AM #12		-21.03	9.89
GN-2021AM #8		-19.50	7.57
GN-2022 #3		-20.65	7.59
GN-2022AM #2		-21.50	7.19
GN-2025AM #8		-21.06	7.89
GN-2029AM #12		-20.93	9.49
GN-3001AM #11		-22.36	10.1
GN-3010 #7		-20.69	9.59
GN-3012 #1		-21.90	9.62
GN-995AM #10		-20.14	8.64
RNWH 2001-AM-25	_	-19.55	8.47
n 27	Mean	-20.11	8.82
	SD	0.9606	0.805