

Appendix F4

2009 Groundwater Quality Monitoring Program Meadowbank Mine, October 29, 2009

TECHNICAL MEMORANDUM

DATE October 29, 2009 **PROJECT No.** 09-1428-0013

Doc. No 957

TO Stéphane Robert

Agnico-Eagle Mines Limited Meadowbank Division

CC Dan Walker

FROM Valérie Bertrand and Mike Dobr EMAIL vbertrand@golder.com

RE: 2009 GROUNDWATER QUALITY MONITORING PROGRAM

MEADOWBANK MINE

1.0 INTRODUCTION

This document provides a summary of the 2009 groundwater monitoring program carried out at the Meadowbank mine site and a summary of water quality results obtained in 2009.

Completion of the groundwater monitoring program is a condition of the Meadowbank Project Certificate No.004 issued by the Nunavut Impact Review Board (NIRB) in December 2006 and of the Water License No. 2AM-MEA0815 issued by the Nunavut Water Board (NWB) June 09, 2008. Table 2 of Schedule 1 of the Meadowbank Water Licence states that groundwater must be monitored annually for Group 3 chemical parameters which include, per Table 1 of this Schedule: pH, turbidity, alkalinity, hardness, ammonia nitrogen, nitrate, nitrite, chloride, fluoride, sulphides, total dissolved solids (TDS), total and free cyanide for wells in the groundwater flow path of the tailing storage facility, and the following dissolved metals: aluminum, arsenic, barium, cadmium, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium and zinc.

1.1 Background

The proposed Goose Island and Portage open pits will be developed within a through talik (unfrozen ground that extends to the base of the permafrost) underneath Third Portage Lake. The tailings storage facility located in the basin of the north arm of Second Portage Lake is also situated over a through talik. Groundwater monitoring wells have been installed to provide information on baseline groundwater quality in the taliks. The objective of the groundwater sampling program, initiated in 2003, is two-fold:

- To measure the salinity of the deep groundwater to calibrate the pit groundwater inflow component of the site water quality model; and
- To benchmark pre-mining groundwater quality against which to measure effects of mining on groundwater quality, if any.

Stéphane Robert

To this end, groundwater flow and quality data has been collected from the Portage area since 2003 and have been used as input into the water quality model for the site. Groundwater in the Vault area is not monitored because the talik present under Vault Lake is not anticipated to extend through the permafrost.

Four monitoring wells were installed at the site in 2003, three of which subsequently developed internal damage and could no longer be operated. In 2006, the three defective monitoring wells were replaced, but the replacement wells also became inoperable after the first round of sampling.

Maintenance and replacement of monitoring wells is a condition of the Meadowbank NIRB project certificate and Water Licence. To comply with this condition a more robust monitoring well design was developed and 2 of the inoperable wells were replaced in 2008 (MW08-02 and MW08-03). The installation of the third monitoring well was deferred until verification of the effectiveness of the 2008 designs. Figure 1 shows the locations of the groundwater monitoring wells at Meadowbank.

2.0 2009 GROUNDWATER MONITORING RESULTS

Field activities related to the 2009 groundwater monitoring program were carried out between August 19 and September 9, 2009. Borehole logs and monitoring well designs for these installations are presented in previous reports (Golder, 2004 and 2008).

2.1 Monitoring Well Development and Sample Collection

Prior to sampling, each well was purged by airlifting water out of the well using compressed air injected through a 5/8-inch diameter HDPE polyethylene tubing. Each well was purged of a minimum of 3 well volumes or until field-indicator chemical parameters stabilized (electrical conductivity, total dissolved solids (TDS), and pH). Stabilization was considered to have been achieved when field-indicator readings varied by less than approximately 10% for three consecutive readings. Field parameter readings measured during purging are included in groundwater sampling data sheets in Appendix 1.

Well MW03-01

An ice bridge was encountered in the well riser pipe of MW03-01 at 3.16 m below the top of casing (approximately 2.16m below ground). The three sections of heating cables attached to the PVC well riser pipe were energized with two generators (a gas and a diesel generator) over a period of 8 days to thaw the ice within the well. The thawing period was longer in 2009 than previous years (typically 4 to 6 days) because of periodic generator shut down due to fuel shortages and other generator issues. The well installation was in good condition.

Once the ice bridge was melted, the standing water was purged from the well to induce the flow of fresh groundwater from the rock formation. Over 3 standing well volumes¹ (560 litres) were purged from this well during a 9 day period prior to sampling. A record of the water quality indicator parameters is included in the sampling sheets provided in Appendix 1.

Given the very slow groundwater level recovery rate in MW03-01, the groundwater level was allowed to recover for 1.5 days prior to sampling. Groundwater sampling was carried out using a nitrogen-operated Solinst® stainless steel Double Valve Pump (DVP) attached to a ¼-inch low density polyethylene (LDPE) tubing. The

¹ One standing volume is defined as the volume of water in the well riser pipe and screen relative to the regional groundwater table.

sampling pump intake point was positioned at 149 m depth below ground surface, above the well screen interval. Water samples were collected in triplicate, in clean, laboratory-supplied bottles. Where required, preservatives were added to the sample bottles prior to sample collection, to minimize chemical alteration during transport to the laboratory. Samples analyzed for dissolved metals were filtered through a 45 μ m inline filter.

Well MW08-02

An ice bridge was present in well MW08-02 at 5.19m below the top of casing (approximately 4.2 m below ground level)². Heating cables fixed to the stainless steel riser pipe were energized with a diesel generator over a period of 7 days³. The heating cables remained energized during well development and sampling. After the ice bridge was melted the condition and performance of the individual well components was evaluated. The well components, (riser pipe and screen, heating cables, packers and packer inflating system) were in good working condition with no noticeable change in performance since installation in 2008.

Approximately 3.5 well volumes of water (685 litres) were purged from this monitoring well over 2 days. Water quality indicator parameters stabilized over this period. These data are included in the sampling sheets (Appendix 1). Groundwater samples were collected the following day using the same instrumentation as for MW03-01. The sample pump intake point was positioned above the screened interval at about 145 meter depth. Samples were collected in triplicate. After completion of sampling, the pneumatic valve located inside the riser pipe above the screened interval was inflated (BQ packer filled with glycol) to 400 psi and monitored for 3 days. The packer retained its pressure over this monitoring period. Complete removal of water in the riser pipe above the packer was not possible⁴. The heating cable was disconnected from the generator after the valve was activated. Five (5) days after disconnection of the heating cables, ice was measured in the riser pipe at 40.1 meters depth below top of casing. It is uncertain how the water enters the piezometer, but a packer bypass may have developed as a result of cold temperature-induced contraction of the packer.

Well MW08-03

Well MW08-03 was installed according to the 2008 design with a sealed well annulus, and a pneumatic valve inside the well riser pipe. Following the 2008 sampling campaign, water was removed from both the annular space between the casing and the riser pipe. Notwithstanding this, ice was present in the well at 48.7 m below top of casing (approximately 47.7 meters below ground surface) in 2009. The heating cable was energized with a diesel generator for 2 days to thaw the ice. Once the ice was melted, the pressure in the pneumatic valve (the packer) inside the riser pipe was measured at 260 psi, lower than the 2008 inflation pressure of 400psi. The packer was then deflated to allow purging and flow of formation water into the well. The heating cables remained energized until monitoring activity was completed.

The well was purged of 2.4 well volumes (390 litres) over 6 days. As purging progressed, the water recovery rate decreased to very low levels while chemical indicator parameters remained unstable (not representative of formation water). An obstruction developed at approximately 150 meters depth during development. This depth coincides with the lower extent of the heating cable and edge of the talik zone. The cause of the blockage is not

⁴ The light, HDPE purge line was sticking to the riser pipe as it was being pushed down into the increasingly empty riser pipe. The line could not reach the bottom of the open riser pipe above the packer.

² The polyethylene pipe installed in the annulus of the well to remove water from this space melted during purging in 2008. Consequently, to avoid breakage of the well pipe from differential freezing intervals, the packer inside the riser was left un-inflated to allow groundwater to rise to the same level as water in the annulus. This well had to be thawed prior to purging and sampling.

³ Includes generator shut down periods due to fuel shortages and mechanical or electrical issues.

known but is suspected to be an ice bridge that may have developed in response to a localized extension (deepening) of ground frost induced from circulation of cold air (colder than ground temperature) in the open well riser pipe.

2.2 Sample Shipping

Groundwater samples were collected in triplicate, with duplicate pairs of samples shipped to Maxxam Analytics of Montreal shortly after sampling. The third sample of each well was retained in refrigeration on site for possible future analysis. The samples sent to Montreal were shipped in coolers with ice packs along with chain-of-custody records.

2.3 Comparative Guidelines

Groundwater quality data is compared to Third Portage Effluent Discharge Limits stated in the Meadowbank Water Licence for illustrative purposes only. Constituent concentrations in the Licence are defined for total rather than dissolved phases, while groundwater quality data is for dissolved components.

2.4 Quality Assurance/Quality Control

Guideline procedures provided by the USEPA (2002) were followed during the sampling program to ensure that the samples collected from the wells were representative of water flowing through the targeted rock formations. These procedures included the following:

- measurement of field parameters at selected intervals until stable readings (within 10% of each other) were acquired;
- minimizing the exposure of the sampled water to the atmosphere;
- using compressed, inert gas (nitrogen) to lift water from the well for sampling;
- conducting in-situ measurements of sensitive chemical parameters (pH, conductivity, dissolved oxygen, alkalinity, where applicable);
- keeping the samples refrigerated from the time of collection until shipment to the laboratory; and
- shipping the samples to the laboratory in temperature-regulated coolers within the specified sample holding times.

Each groundwater sample was collected in triplicate. A duplicate pair of samples was shipped to the laboratory after collection, while one sample was retained in a refrigerator at site for possible future analysis. Analytical repeatability was tested by assessing the similarity between duplicate pairs of results. For each duplicate pairs of analysis where both results were higher than 5 times the method detection limit (MDL), the relative percent difference (RPD) was calculated as follows:

RPD = <u>absolute [difference (concentration of a given parameter)]</u> x 100 [average (concentration of a given parameter)]

Per USEPA recommended methods (USEPA, 1994), a maximum RPD of 20% was considered acceptable. Where one or both results of the duplicate pair were less than 5 times the MDL, a margin of +/- MDL was considered acceptable.

3.0 RESULTS

3.1 Groundwater Chemistry

The results of the groundwater analyses collected during the 2003, 2004, 2006, 2007 and 2008 sampling events are presented in Tables 1 and 2 at the end of the text. Analytical certificates from the laboratory are included in Appendix 1.

Since salinity of groundwater was of interest in predictive modelling of the quality of open pit inflows during operation, the concentration of salinity constituents measured are presented in Table 3.

Table 3: Concentration of Constituents that relate to Groundwater Salinity

Monitoring Well	Lithology	Sample Year	TDS** (mg/L)	Conductivity (uS/cm)	Chloride (mg/L)
MW03-01	UM	2003	793	1855	626
		2004	1335	2900	845
		2006	315*	460*	81*
		2007	389	588	126
		2008	1100	3200	950
		2009	1900 [*]	3350 [*]	970 [*]
MW08-02	IV	2008	510*	808**	160
		2009	520 [*]	705 [*]	160 [*]

Note: 1. * average value; **field measurement.

Well MW03-01

One groundwater sample and two duplicates were collected in 2009. Table 5 shows that the concentration of salinity components in 2009 is the highest since monitoring was initiated in 2003, but nonetheless, is of similar magnitude to 2008 and 2004 results. Similarly, concentrations of dissolved metals and metalloids (trace elements) are slightly higher but of the same magnitude than previous results at this location. All constituent concentrations are below Portage effluent quality criteria in the water licence.

Well MW08-02

One groundwater sample and two duplicates were collected in 2009. Salinity components and trace element concentrations are similar to those measured in 2008. All parameter concentrations met Portage effluent quality criteria.

Well MW08-03

This well could not be sampled in 2009 because of a deep blockage preventing access to formation groundwater.

3.2 Quality Assurance/Quality Control

Table 4 at the end of the text presents the Relative Percent Difference (RPD) or +/- MDL value calculated from each duplicated pair of results.

Half of duplicate pairs of analyses had one or both results below the method detection limit and consequently could not be assessed for repeatability. Of the remaining 34 duplicate pairs of results, 6 pairs of results exceeded 20% RPD: major elements in MW08-02 (calcium, magnesium, potassium, calcium and hardness) and turbidity in MW03-01. The MW08-02 sample marked *Field Duplicate* had major ion concentrations that were considerably different from the other 2009 result and from 2008 data. Trace components and major elements for the majority of the samples are considered adequately repeatable.

4.0 CONCLUSION

The groundwater monitoring program was conducted in August and September 2009. Monitoring wells MW03-01 and MW08-02 were successfully sampled. Monitoring well MW08-03 could not be sampled because of the formation of an ice bridge inside the well pipe which prevented formation groundwater from entering the well.

Groundwater chemistry at MW03-01 and MW08-02 was similar to results obtained previously. Groundwater quality results were compared to the Portage effluent discharge limits stipulated in the Meadowbank water licence. Both groundwater samples met these screening criteria.

The new design of the replacement monitoring wells is more robust than previous years although some components require further modification before a new well is installed.

Mike Dobr, RNDr, P.Geo (BC)

Associate, Hydrogeologist

GOLDER ASSOCIATES LTD.

Valérie Bertrand, M.A.Sc., P.Geol. (NU, NWT)

Associate, Geochemist

MD/VB/Iw

Attachments:

Figure 1 Appendix 1

Tables 1, 2 and 4

c:\documents and settings\apmacdonald\desktop\valerie\doc957_tm 2009 gwtr quality monitoring.doc

REFERENCES

Golder Associates Ltd. 2009. 2008 Groundwater Quality Monitoring Program, Meadowbank Mine. January 14, 2009.

Golder Associates Ltd., 2004. Meadowbank Baseline Groundwater Quality. April 26, 2004.

USEPA, 1994. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC, February 1994.

MW03-01 Groundwater Quality Results Agnico-Eagle Mines Ltd Meadowbank Division

								dowban		Iltramafic Roc	k						
			Portage														Method Detection
			Attenuation Pond							Goose Island							Limit
Laboratory comple	numbar	units	Effluent Limits Maximum	9755-2	9755-3	9044-01	12393-01	12393-02	12395-01	MW03-01 8581-01	8581-02	F66745	F68109	154321	154321	154359	
Laboratory sample Sampl	ing date	units	Average Conc.	07-Sep-03	07-Sep-03 FD	Aug-7-04	Aug-8-06	Aug-8-06 FD	Aug-14-06	Aug-17-07	Aug-17-07 FD	15-Sep-08	15-Sep-08 FD	7-Sep-09	7-Sep-09 Lab-dup	7-Sep-09 FD	
FIELD-MEASURED PAR		RS							Į.						Lab dap		
Temperature		°C		11.7	11.7	8	7.7	-	9.9	6.7	-	1.0	-	5.4	-	-	-
рН		s.u.	6.0-9.0	7.36	7.36	8.03	7.93	-	7.58	7.43	-	6.70	-	6.97	-	-	-
Conductivity		uS/cm		1855	1855	2500	382	-	538	776	-	2100	-	2436	-	-	-
Dissolved Oxygen Total Dissolved Solids	TDS	mg/L mg/L		2.0 793	2.0	2.0 1335	8.6 193	-	4.8 405	3.8 389	_	1100	-	1900	_	1900	_
LABORATORY PARAM		IIIg/L		733		1000	193		400	303	-	1100		1300		1300	
pH	LILIO	s.u.	6.0-9.0	7.24	7.3	7.46	-	-	7.36	6.78	6.96	7.9	7.8	6.71	-	7.20	-
Conductivity		uS/cm	****	-	-	2900	-	-	634	588	583	3200	3100	3300	3400	3400	0.001
Total Alkalinity	CaCO3	mg/L		30	30	27.3	-	-	51	36.7	36.7	24	33	15	17	18	1
Dissolved Sulphate	SO4	mg/L		15.6	15.8	15.9	42.8	43.1	51.1	46.5	46.3	6.0	5.7	3.9	-	3.6	0.5
Hardness (Total) Total Suspended Solids	TSS	mg/L	15	318	388	391 13	82	81.6	148 4	116	112 3	310 5	320 7	450	-	440	1 1
Turbidity	100	mg/L NTU	15 15	-		- 13	-	-	- 4	2	- 3	5 3.3	4.1	2.1	:	- 8.2	0.1
Dissolved Metals			.0		Į.				Į.			0.0			Į.	0.2	0.1
Aluminum	Al	mg/L		0.051	0.011	0.005	0.3	0.3	< 0.005	< 0.005	0.011	0.0013	0.0068	<0.0001	-	<0.0001	0.005
Antimony	Sb	3		< 0.001	<0.001	0.0002	< 0.0002	< 0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	0.001
Arsenic	As	mg/L	0.3	<0.001	0.003	0.0038	0.0005	0.0005	0.003	< 0.001	< 0.001	<0.0001	<0.0001	<0.002	-	< 0.002	0.0010
Barium	Ba Be	mg/L		0.12	0.13	0.3	0.025 <0.0002	0.025 <0.0002	0.051	0.048	0.051	0.25	0.25	0.42	-	0.39	0.001
Beryllium Bismuth	Ве Ві	mg/L mg/L		<0.001 <0.001	<0.001 <0.001	<0.0002 <0.0002	<0.0002	<0.0002	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	-	-			-	0.001 0.001
Boron	В	mg/L		0.53	1.03	2.39	0.1	0.1	0.27	0.2	0.21	-	-	-	-	-	0.05
Cadmium	Cd	mg/L	0.002	0.00007	0.00012	< 0.00004	<0.00004	< 0.00004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.001	-	<0.001	0.0002
Calcium	Ca	mg/L		65.6	67	94.2	17.6	17.9	33.7	24	24.5	73	75	100	-	99	0.05
Chromium ²	Cr	mg/L		< 0.001	< 0.001	0.0002	0.0012	0.0012	< 0.001	< 0.001	< 0.001	-	-	-	-	-	0.001
Cobalt	Co	mg/L		0.001	0.001	0.0008	0.0004	0.0004	< 0.001	< 0.001	< 0.001	-	-	-	-	-	0.0010
Copper	Cu Fe	mg/L	0.1	0.002	0.002 0.07	0.0004 0.08	0.0016 0.84	0.0016 0.85	< 0.001	< 0.001	0.001 < 0.05	0.0015	0.0023	<0.003	-	<0.003	0.001 0.05
Iron Lead	re Pb	mg/L mg/L	0.1	<0.05 <0.001	<0.07	<0.0002	0.84	0.85	0.2 < 0.001	< 0.05 < 0.001	< 0.05	<0.03 0.00021	<0.03 0.00020	<0.1 <0.001		<0.1 0.001	0.05
Lithium	Li	mg/L	0.1	0.017	0.017	0.033	0.0028	0.0012	0.005	< 0.005	< 0.005	-	-	-	_	-	0.001
Magnesium	Mg	mg/L		23.4	24.3	35.1	7.76	7.92	16.1	11.4	11.6	31	32	46	-	47	0.05
Manganese	Mn	mg/L		0.06	0.28	0.381	0.286	0.293	0.980	0.700	0.720	0.43	0.44	0.22	-	0.22	0.001
Mercury	Hg	mg/L		-		<0.00002	<0.00002	<0.00002	< 0.00002	< 0.00002	< 0.00002	<0.00001	<0.00001	<0.0001	-	<0.0001	0.00002
Molybdenum	Mo	mg/L		<0.0005	0.0057	0.0076	0.012	0.012	0.013	0.0079	0.0079	0.0082	0.0078	<0.03	-	<0.003	0.001
Nickel	Ni	mg/L	0.2	0.006	0.005	0.0026	0.0019	0.0019	< 0.001	0.001	0.001	0.0015	0.0015	<0.01	-	<0.01	0.001
Phosphorus Potassium	K	mg/L mg/L		0.1 5.71	0.15 5.95	0.04 8.56	<0.03 3.27	<0.03 3.28	< 0.15 6.1	< 0.15 4.3	< 0.15 4.4	8.4	8.5	11	-	11	0.01 0.01
Selenium	Se	mg/L		<0.001	<0.001	<0.0002	< 0.0002	<0.0002	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	_	<0.001	0.001
Silicon	SiO2	mg/L		0.32	3.27	3.89	1.96	1.98	2.50	1.20	1.20	-	-	-	-	-	0.05
Silver	Ag	mg/L		<0.0001	<0.0001	<0.00005	<0.00005	<0.00005	< 0.00025	< 0.00025	< 0.00025	<0.0001	<0.0001	<0.0003	-	<0.0003	0.0001
Sodium	Na	mg/L		20	22	327.0	15.0	15.6	52.5	34.2	35.0	-	-	420	-	430	0.1
Strontium Tellurium	Sr	mg/L		0.58 <0.001	0.59 <0.001	1.46 <0.0002	0.111 <0.0002	0.114 <0.0002	0.29 < 0.001	0.22 < 0.001	0.22 < 0.001	-	-	-	-	-	0.001
Thallium	Te Tl	mg/L mg/L		<0.001	<0.001	<0.0002	<0.0002	<0.0002	< 0.001	< 0.001	< 0.001	<0.002	<0.002	- <0.01	-	- <0.01	0.001 0.0001
Thorium	Th	mg/L		<0.0001	<0.0001	<0.0001	0.0004	0.0004	< 0.0001	< 0.0001	< 0.0001	-	-	-	_	-	0.0001
Tin	Sn	mg/L		<0.001	<0.001	<0.0002	<0.0002	<0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	0.001
Titanium	Ti	mg/L		<0.001	<0.001	0.0003	0.019	0.018	< 0.001	< 0.001	< 0.001	-	-	-	-	-	0.001
Uranium	U	mg/L		0.0006	0.0006	0.0003	0.0006	0.0006	< 0.0005	< 0.0005	< 0.0005	-	-	-	-	-	0.0005
Vanadium Zinc	V Zn	mg/L mg/L	0.4	<0.001 0.006	<0.001 <0.005	<0.0002 0.002	0.0006 0.005	0.0006 0.005	< 0.001 < 0.005	< 0.001 < 0.005	< 0.001 0.005	- 0.017	- 0.014	- <0.003	-	<0.003	0.001 0.005
	<u>411</u>	mg/L	0.4	0.006	<0.005	0.002	0.005	0.005	< U.UU3	< 0.005	0.005	0.017	0.014	<0.003		<0.003	0.005
Dissolved Anions Dissolved Fluoride	E	mg/L		< 0.05	< 0.05	0.12	0.16	0.17	0.16	0.18	0.18	<0.1	<0.1	0.1		<0.1	0.05
Dissolved Fluoride Dissolved Chloride	CI	mg/L ma/L	1000	< 0.05 626	< 0.05 621	0.12 845	34.7	33.7	128	126	126	950	980	990		950	0.05
	,	9/∟	.500			0.10	5 7.1	55.1	.20	.20	.20	550	550	550		550	V.£

MW03-01 Groundwater Quality Results Agnico-Eagle Mines Ltd Meadowbank Division

			Portage Attenuation Pond Effluent Limits							Iltramafic Roc Goose Island MW03-01							Method Detection Limit
Laboratory samp Samp	le number pling date QA/QC	units	Maximum Average Conc.	9755-2 07-Sep-03	9755-3 07-Sep-03 FD	9044-01 Aug-7-04	12393-01 Aug-8-06	12393-02 Aug-8-06 FD	12395-01 Aug-14-06	8581-01 Aug-17-07	8581-02 Aug-17-07 FD	F66745 15-Sep-08	F68109 15-Sep-08 FD	154321 7-Sep-09	154321 7-Sep-09 Lab-dup	154359 7-Sep-09 FD	
Nutrients																	
Total Nitrogen	N	mg/L								< 0.2	0.3	0.53	0.49	-	-	-	<0.02
Nitrate and Nitrite	NO3 + N	mg/L	20*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-	<0.2	<0.4	< 0.42	-	< 0.42	0.01 / 0.05
Nitrate	NO3	mg/L		-	-	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	0.09	< 0.02	< 0.02	< 0.02	-	< 0.02	0.05
Ammonia Nitrogen	N	mg/L	16	0.38	0.37	-	0.21	0.19	-	0.14	0.15	-	-	0.54	-	0.51	0.01

FD = Field Duplicate

Mw08-02, MW08-03 Groundwater Quality Results Agnico-Eagle Mines Ltd Meadowbank Division

					Int	ermediate Volcar	nic			Method
		Portage Attenuation Pond Effluent Limits ¹			Seco	nd Portage Lake	Talik			Detection
		Maximum Average			MW08-02			MWO	8-03	Limit
	ample number ampling date QA/QC	Conc.	F59984 08/09/2008	F59995 08/09/2008 FD	147144 29/08/2009	147172 29/08/2009 FD	147172 29/08/2009 Lab Dup	F66637 14/09/2008	F68088 14/09/2008 FD	
FIELD-MEASURED PA					l		240 240			
Temperature (oC)	TO THE PERCO		7.3	-	4.6	-	-	5.0	-	ı
pH (s.u.)		6.0 - 9.0	7.1	_	7.8	_	_	7.1	_	
Conductivity (uS/cm)		***	808	-	616	-	-	366	-	
Dissolved Oxygen (mg/	L)		9.9	-	-	-	-	10.3	-	
TDS (mg/L)	,		399	-	-	-	-	215	-	
LABORATORY PARAM	METERS									
TDS (mg/L)			500	520	530	510	-	-	-	-
pH (s.u.)		6.0 - 9.0	8.0	8.1	8.0	8.0	-	8.1	8.2	-
Conductivity (uS/cm)			-	-	700	710	-	490	480	0.001
Total Alkalinity CaCO3			76	76	76	76	-	60	59	2
Dissolved Sulphate SO			2.5	2.0	3.0	2.9	3.0	56	51	0.2
Hardness (Total) CaCC	(0 /		240	230	240	850	-	180	180	1
Total Suspended Solids Turbidity (NTU)	s (mg/L)	15 15	2.4	2.4	2.2	2.2	-	56 70	54 69	2 0.1
Dissolved Metals (mg/	/L)									
Aluminum	Al	1.5	0.0046	0.00487	< 0.03	< 0.03	-	0.0046	0.0041	0.001
Arsenic	As	0.3	0.0035	0.0035	0.003	< 0.002	-	< 0.001	< 0.001	0.001
Barium	Ba		0.045	0.043	0.04	< 0.03	-	0.033	0.034	0.002
Cadmium	Cd	0.002	< 0.0002	< 0.0002	<0.001	<0.001	-	< 0.0002	< 0.0002	0.0002
Calcium	Ca		50	48	51	340	-	46	46	1
Copper	Cu	0.1	0.00056	0.0011	< 0.003	< 0.003	-	0.003	0.0039	0.0005
Iron	Fe		< 0.03	< 0.03	<0.1	<0.1	-	< 0.03	< 0.03	0.03
Lead	Pb	0.1	<0.0001	0.00027	<0.001	<0.001	-	0.00056	0.00027	0.0001
Magnesium	Mg		27	27	27	<1	-	17	16	1
Manganese	Mn		0.030	0.031	<0.003	<0.003	-	0.32	0.32	0.0004
Mercury	Hg	0.0004	<0.00001	<0.00001	<0.0001	<0.0001	-	<0.00001	<0.00001	0.00001
Molybdenum	Мо		0.026	0.025	0.07	0.04	-	0.14	0.14	0.0005
Nickel	Ni	0.2	0.019	0.019	<0.01	<0.01	-	<0.001	0.0017	0.001
Potassium	K		1.8	1.5	2.0	1.3	-	4.4	4.5	0.1
Selenium	Se		<0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001	0.001
Silver Sodium	Ag Na		<0.0001	<0.0001	<0.0003 36	<0.0003 24	-	<0.0001	<0.0001	0.0001
Thallium	na Tl		<0.002	<0.002	<0.01	<0.01		<0.002	<0.002	0.002
Zinc	Zn	0.4	0.014	0.014	0.005	<0.003		0.002	0.002	0.002
Dissolved Anions (mg		U. .	0.0	0.0	0.000	10.000	ı	0.00.	0.0000	0.00.
Dissolved Fluoride	, <u>, , , , , , , , , , , , , , , , , , </u>		0.2	0.2	0.3	0.3	-	0.3	0.3	0.1
Dissolved Chloride	CI	1000	160	180	160	160	180	3.3	3.6	0.05
Nutrients (mg/L)										
Nitrate and Nitrite	NO3 + NO2		<0.1	<0.1	<0.04	<0.04	< 0.04	27	27	0.4
Dissolved Nitrate	NO3	20	-	-	<0.02	<0.02	<0.02	26	26	0.4
Nitrite	NO2		<0.1	<0.1	<0.02	<0.02	<0.02	1.1	1.2	0.02
Ammonia Nitrogen	N-NH3	16	<0.05	0.05	0.05	0.05	-	2.0	2.0	0.04

FD = Field duplicate

QA/QC of Groundwater Quality Results Agnico-Eagle Mines Ltd. Meadowbank Division

			Intermedia	te Volcanic			Ultra	mafic	
			Second Po	rtage Lake			Goose	Island	
			MWO	8-02			MWO	3-01	
Laboratory	sample number Sampling date QA/QC	147144 29/08/2009	147172 29/08/2009 FD	Method Detection Limit	RPD	154321 08/09/2009	154359 08/09/2009 FD	Method Detection Limit	RPD
LABORATORY PARA	METERS								
TDS (mg/L) pH (s.u.) Conductivity (uS/cm) Total Alkalinity CaCO: Dissolved Sulphate St Hardness (Total) CaC	O4 (mg/L)	530 8.0 7000 76 3 240	510 8.0 7100 76 2.9 850	10 - 1 2 0.1 1	3.8 0.1 1.4 0.0 3.4 111.9	1900 6.71 3300 15 3.9 450	1900 7.20 3400 18 3.6 440	10 - 1 2 0.1 1	0 7 3 18 8 2
Turbidity (NTU)		2.2	2.2	0.1	0.0	2.1	8.2	0.1	118
Total Metals (mg/L)									
Calcium Magnesium	Ca Mg	51 27	340 <1	1 1	148 186	100 46	99 47	1 1	1 2
Dissolved Metals (mg									
Aluminum Arsenic Barium Cadmium Copper Iron Lead Manganese Mercury Molybdenum Nickel Potassium Selenium Silver Sodium Thallium	AI As Ba Cd Cu Fe Pb Mn Hg Mo Ni K Se Ag Na TI	<0.03 0.003 0.04 <0.001 <0.003 <0.1 <0.001 <0.003 <0.001 0.07 <0.01 2.00 <0.001 <0.0003 <0.001 <0.001 <0.001	<0.03 <0.002 <0.030 <0.001 <0.003 <0.1 <0.001 <0.003 <0.001 0.04 <0.01 1.30 <0.001 <0.0003 <0.0001 <0.0003 <0.001 <0.0003	0.03 0.002 0.03 0.001 0.003 0.1 0.001 0.003 0.001 0.1 0.001 0.001 0.0003 0.01	nc nc nc nc nc nc nc nc nc nc nc nc nc n	<0.0001 <0.002 0.42 <0.001 <0.003 <0.1 <0.001 0.22 <0.0001 <0.03 <0.01 11 <0.001 <0.0003 420 <0.01	<0.0001 <0.002 0.39 <0.001 <0.003 <0.1 0.001 0.22 <0.0001 <0.03 <0.01 11 <0.001 <0.0003 430 <0.01	0.03 0.002 0.03 0.001 0.003 0.1 0.001 0.003 0.0001 0.03 0.01 0.001 0.001	nc nc 7 nc nc nc nc 0 nc nc nc nc nc
Zinc	Zn	0.01	< 0.003	0.003	nc	< 0.003	< 0.003	0.003	nc
Dissolved Anions (m	g/L)								
Dissolved Fluoride ⁴ Dissolved Chloride Nutrients (mg/L)	F Cl	0.3 160	0.3 160	0.1 0.5	+/- MDL 0	0.1 990	<0.1 950	0.1 10	nc 4
Nitrate and Nitrite	NO3 + NO2	<0.04	<0.04	0.04	nc	<0.42	<0.42	0.2/0.4	nc
Dissolved Nitrate ⁵ Nitrite Ammonia Nitrogen Notes:	NO3 + NO2 NO3 NO2 N-NH3	<0.04 <0.02 <0.02 0.05	<0.04 <0.02 <0.02 0.05	0.04 0.02 0.02 0.02	nc nc nc +/- MDL	<0.42 <0.02 <0.4 0.54	<0.42 <0.02 <0.4 0.51	0.02 0.4 0.02	nc nc 6

RPD value exceeds 20%

FD Field duplicate

RPD relative percent difference

nc not calculated (one or both result below MDL)

OPERABLE WELL LOCATION

INOPERABLE WELL LOCATION

DESIGN

CADD

CHECK

REVIEW

VJB

23MAY08

23MAY08

SCALE

AS SHOWN REV.

FIGURE 1

APPENDIX 1

FIELD SAMPLING SHEETS
LABORATORY ANALYTICAL REPORTS

√° puits d'obse	rvation: <u>Hwo</u>	3-01	N° pro	yet:	09-1428-	0013 2000
dentification du	projet: Headou	shark 2007/Grow	Repré	sentant du terrai	n: R. Due	hesre / P. Um
empérature:		\$ 15°C				8-27
•	illon(s): 					
					· · ·	
IVEAU D'EAU	U ET CALCUL D'U	IN VOLÚME DE PUR	RGE Calcul o dans un	l'un volume de pur forage de 200 mm	η φ:	uits de 50 mm ¢ îns tallé ·
rofondeur de l'e	eau:	A 7,5	57 (m) Volume	d'eau dans tubage	e:	(A-B)*2,0 =litre
ofondeur du pu	ıits:	в <u>266</u>	(m) Volume	d'eau dans l'envel	oppe de sable:	C * 8,8 =litre
ongueur saturée	e de l'enveloppe de s	able filtrant: C <u>26</u>	(m) Total th	éorique d'un volum	ie de purge (TTVP):	litre:
ISTE DES ÉC	QUIPEMENTS					
						242
pH et thermo	mètre: Modèle:	HANNA PA	N° série:		ampon et calibration	n: 64 67 910
Conductivime	etre: Modèle:	HANNA -	N° série: <u>How</u>	900 434 S	olution calibration:	/4//3 et
Tube à ciape	t θ Pompe	e à inertie (Waterra)	Autre:	· · · · · · · · · · · · · · · · · · ·		
					· ·	
ÉVELODDEN	MENT / DURGE TH	ÉORIQUE DU PUITS	3	· .		
			'.	Iiinaa		
olume à purg	er: IIVP :	k nombre de purge =	•	litres		
ébit approxim	natif:	l/min.				
ébut:	· · · · · · · · · · · · · · · · · · ·	Fin:				
Heure	Niveau d'eau	Volume retiré (L)	Temp. (°C)	рН	Cond. (uS/cm)	Remarques
8125	7.57	7 20	.7.7	6.49	266.	
8430		30 (50)	4,6	6,22	261.	
81.35	1-1-2	70 (70)	4,6	6,43	256	1 -
<i>BL 40</i>	135 7	30 (100)	5,0	7.25	12 2 ラ 22とテ	
21.45		25 (125)	49	7.11	Z680	
8h.50		10 (135)	<u> </u>	- - 7, 11	<u> </u>	Purge jurga"
8455		sec.	1			Sin hotare St
-						= 150 m.
94.10	4 Nous avoms	essaye le po	4			ruben de
////	la sonde				LLI, MARA S - S.C.	
otal du olume purgé:		135 l.				,
OMMENTAL		<u> </u>				
)deur :	9 Non	θ Oui Spécifié:		lric	sation: # Non	θ Oui
	* *	-	1 1 1 1			
urbidité:	Clair				I I Opaque	
Remarque:						
ONTENANT			GRANDEUR			M. S
N"	TYPE 40	mL 100 mL 250	ml 500 mL	1L 2L	4 <u>L</u>	trés Préservatifs
1 8 Plastic			_><			0 Non
2 6 Plastiq					θ Oui	8 Non
			•			

N° puits d'observa	tion: <u>Hwo</u>	3-01		N°	projet:	09-142	8-0013 - 2005
Identification du pr					eprésentant du t		heare / P. Unsphenon
Température:		oc sol		•	ite:		108/28-79-30-3
No(s) d'échantillon		-					to of the latest
NIVEAU D'EAU E	T CALCUL D'	UN VOLUM	IE DE PUR		cul d'un volume de s un forage de 200	purge dans le cas d'	un puits de 50 mm φ installé
Profondeur de l'eau:			A >50	5 (m) Volu	ıme d'eau dans tu	bage.	(A-B)*2,0 =litres
Profondeur du puits:		-	B 154	<u> </u>	ıme d'eau dans l'e	nveloppe de sable;	C * 8,8 = litres
Longueur saturée de	l'enveloppe de :	sable filtrant:				olume de punge (TTVI	
LISTE DES ÉQUIF	PEMENTS		· · · · · · · · · · · · · · · · · · ·	<u> </u>	•		
OpH et thermomèt	re: Modèle:	HANNIA	all de Er	N° série	<u>.</u> .	Tampon et colibe	ation: 04 01 0 10
0 Conductivimètre:							on: <u>143, ≤</u> et
θ Tube à clapet						Solution Calibratic	n. <i>[#3₄₋5</i> el
l.	, or omp	o a merae (v	raicita	Adde			· · · · · · · · · · · · · · · · · · ·
DÉVELOPPEMEN	T / PURGE TH	IÉORIQUE	DU PUITS	· · · · · · · · · · · · · · · · · · ·	- <u>-</u> .		
į.	TTVP ;					Retour a 20-7	- dean
Débit approximatif:			I/min.	· · · · · ·		æ 20-7	15l./12h.
Début:	·		man.		•		
		Fin:			- ,		
	veau d'eau	Volume		Temp. (°C		Cond. (uS/cm	Remarques
5455 6668	750 m. 45l.	(15	(150)	5,9	6,05	578	
6605	45€,	25 (5	(175)	5,1	6,30	2541	
1809/08/29	>40 m.	<u> </u>	(180)	3,1	6,50	2525	
5440		115	(195)	6,2	6.23	312	
54.45	658.	5 15	72/65	5,7	6.38	310	
5h50		15	7225	53	6,12	2585	
201.15	>50 m.	70	(245)	7.3	6,18	341	
1009/08/30		1 /			-		
5h35 7009/09/31	>50m,256	← 7.5 ((270)	7.3	6,67	1103	
13400	50	/7/	(295)	19,2	5,67		
Total du 131.05	50l.	5 75	(320)			392	<u> </u>
volume purge:	300.			7,7	6,25	2471	· [
COMMENTAIRES		-			···'		
Odeur:	0 Non	θ Oui - S	Spécifié:				
Turbidité:			· ·			risation: 0 Non	0 Oui
Remarque:	Clair.		1111	1 1 1 1		III Opaqu	le
CONTENT				GRANDEUR	-		
CONTENANT TYPE	40 n	nL 100 mi	L 250 mL		A.I ~		Flitrés Préservatifs
1 9 Plastique	8 Vеле	100 M	- zou tul	. אינט זוגר	1 ⁻ L 2L	4 L	·
	0 Verre		_ _	- X 		0 Oui	9 Non
·				_ / <		0 Ou	O INUIT

N° puits d'obsen	vation: <u>Hu</u>	83-01		N° p	rojet	09-1428-	6013 2000
Identification du	projet: <u>Head</u>	rubark z	009/G-	anducate Rep	résentant du t	errain: R. Decheone	18. Umple nore
Température: No(s) d'échantille		- Henre, c		<u>km/h</u> . Date	: :	2009/09	/01
NIVEAU D'EAU	ET CALCUL E	UN VOLUM	E DE PURGI		d'un volume de In forage de 20	purge dans le cas d'un p	uits de 50 mm ¢ installé
Profondeur de l'ear	1:		Α		e d'eau dans tu	· /	(A-B)*2,0 =litres
Profondeur du puits	s:	•				nveloppe de sable:	C * 8,8 =litres
Longueur saturée d	le l'enveloppe de	sabje filtrant:				olume de purge (TTVP):	litres
LISTE DES ÉQU	IPEMENTS	•	 				· .
thermome	etre: Modèle	: HAUNA	ott & ECN	l° série:		Tampon et calibration	1.84 AT A10
0 Conductivimètre	e: Modèle);rc	_ · · · N	 }° série:	-	Solution calibration:	443 Lot
θ Tube à clapet						Colonion Canbradon. 2	772,23G
			.				
DÉVELOPPEME	NT / PURGE T	HÉORIQUE !	OU PUITS	•			
Volume à purger:	TTVP	x nombre de	purge =		lits	es	
Débit approximati	f:		l/min.			•	
Début:		Fin:					
	Viveau d'eau	Volume	retiré (L)	Temp. (°C)	На	Cond. (uS/cm)	Remarques
8h 15 8h 20	>50 -		(335)	6,3	6,26	366	
9h 25	<u> </u>	30 3 10	(345) (350)	5,1	6,70	1238	
			(330)	4,8	6,78	2463	
	·						
						1	
							
		7		- 			
							· · ·
Total du rolume purgé:				-		,	
COMMENTAIRES			· L .		[
Odeur:	- Non	θ Oui S	pécifié:		1.	isation: • Non	
urbidité:	Clair			1 1 1 1		isation: -6 Non	€ Oui
Remarque:			·			·	
ONTENANT TYP	40	դրև 100 ովև		FRANDEUR 500 m/L	1 L 2 L	Filtré:	s Préservatifs
1 0 Plastique 2 0 Plastique	6 Verre						Non

4

	projet:		11 mak 200	9/Ground	Repré	sentant du tei	rain: R.Dael	Leone	
emperature:					Zo ku/LDate:		2009/09/	64	
lo(s) d'échantil	llon(s):								
IIVEAU D'EAU	JET CA	ומים רכתר	N VOLUM	E DE PURG		'un volume de p forage de 200	ourge dans le cas d'un pu mm φ:	its de 50 mm φ installé	
rofondeur de l'e	au:			Α	(m) Volume	d'eau dans tub	age;	(A-B)*2,0 =litres	
rofondeur du pบ	its:			B <u>200</u>	(m) Volume	d'eau dans l'en	veloppe de sable:	C * 8,8 =litres	4
ongueur saturée	de l'env	eloppe de sa	able filtrant:	c <u>Zo</u>	(m) Total the	éorique d'un vol	ume de purge (TTVP):	litres	!
ISTE DES ÉQ	UIPEM	ENTS .			· .				
pH et thermor	mètre:	Modèle:	HAJNA	AH # EC	N° série:	· · · · · · · · · · · · · · · · · · ·	Tampon et calibration	1:04 07 010	
Conductivimè	etre:	Modèle:	r	u	N° série:	· · · · · · · · · · · · · · · · · · ·	Solution calibration: /	<u>4/3</u> et	
Tube à clapet	t	0 Pompe	à inertie (
								· · · · · · · · · · · · · · · · · · ·	
Début:			Fin:			•	•		
Union	Misses			rectiré (I.)	Tamp (°C)	nH	Cond (uSlem)	Remarques	
. Heure	Nives	u d'eau	Volume	retiré (L)	Temp. (°C)	рН	Cond. (uS/cm)	Remarques Arcet du câbles chan	U. t
1 -	Nives		Volume		Temp. (°C)	рН 6 ,57	395	Arret du câbles cham et 160 m (probl. mécar)	Yant que)
Heure 16h13	Nives	u d'eau	Volume	5 (435) 5 (450)	10,0	6,57	39 <i>5</i> 426	Arrêt du câbles cham	944)
16h13	Nives	u d'eau Reference 100 120	Volume	5 (435) 5 (450) 5 (465)	10,0 7,0 6,3	6,68	395 426 2301	Arret du cables cham et 160 m (probl. mécar	lit)
16h13 Ch15 CL20 CL30	Nives	100 120 140 152	Volume	5 (435) 5 (466) 5 (480)	10,0	6,57 6,68 7,10	395 426 2381 2440	Arret du cables cham et 160 m (probl. mécar	944)
16h13 1Ch15 1GL 20	Nives	u d'eau Reference 100 120	Volume	5 (435) 5 (450) 5 (465)	10,0 7,0 6,3	6,68	395 426 2301	Arret du cables cham et 160 m (probl. mécar	Lit)
16h13 Ch15 CL20 CL30	Nives	100 120 140 152	Volume	5 (435) 5 (466) 5 (480)	10,0 7,0 6,3 6,8	6,57 6,68 7,10	395 426 2381 2440	Arret du cables cham et 160 m (probl. mécar	Lit)
16h13 Ch15 CL20 CL30	Nives	100 120 140 152	Volume	5 (435) 5 (466) 5 (480)	10,0 7,0 6,3 6,8	6,57 6,68 7,10	395 426 2381 2440	Arret du cables cham et 160 m (probl. mécar	lit)
16h13 Ch15 CL20 CL30	Nives	100 120 140 152	Volume	5 (435) 5 (466) 5 (480)	10,0 7,0 6,3 6,8	6,57 6,68 7,10	395 426 2381 2440	Arret du cables cham et 160 m (probl. mécar	lit)
16h13 1Ch15 1CL 20 16h 30	Nives	100 120 140 152	Volume	5 (435) 5 (466) 5 (480)	10,0 7,0 6,3 6,8	6,57 6,68 7,10	395 426 2381 2440	Arret du cables cham et 160 m (probl. mécar	at)
16h13 16h15 16h20 16h30 16h40	Nives	100 120 140 152	Volume	5 (435) 5 (466) 5 (480)	10,0 7,0 6,3 6,8	6,57 6,68 7,10	395 426 2381 2440	Arret du cables cham et 160 m (probl. mécar	lit)
IGhI3 IGhI5 IGL 20 IGL 30 IGHI0 otal du	>37	u d'eau Refortus 100 120 140 152 152	Volume	5 (435) 5 (466) 5 (480)	10,0 7,0 6,3 6,8	6,57 6,68 7,10	395 426 2381 2440	Arret du cables cham et 160 m (probl. mécar	at)
IGhI3 IGhI5 IGL 20 IGL 30 IGH0 Total du olume purgé:	>37	u d'eau Reforma 100 120 140 152 152	Volume 551 1	5 (435) 5 (466) 5 (480)	10,0 7,0 6,3 6,8	6,57 6,68 4,68 7,10 7,20	395 426 2381 2440	Arret du cables cham et 160 m (probl. mécar	at)
IGHIS IGHIS IGHIS IGHIS IGHIS IGHIO IGHIO Otal du olume purgé: COMMENTAIR Odeur:	>37	u d'eau Profession 100 120 140 152 152 152	Volume	Spécifié:	10,0 7,0 6,3 6,8 9,4	6,68 4,68 7,10 7,20	395 426 2381 2446 2456	Arret des câbles chement 160 m. /probl. mécad. durant a 18h le m	at)
IGhI3 IGhI5 IGL 20 IGL 30 IGH0 Total du olume purgé:	>37	u d'eau 100 120 140 152 152	Volume	Spécifié:	10,0 7,0 6,3 6,8	6,68 4,68 7,10 7,20	395 426 2382 2446 2456	Arret des câbles chement 160 m. /probl. mécad. durant a 18h le m	lit)
IGHIS IGHIS IGHIS IGHIS IGHIS IGHIO Otal du olume purgé: COMMENTAIR Odeur : Curbidité: Remarque:	>37	Non	Volume 551 1	Spécifié:	10,0 7,0 6,3 6,8 8,4 8,4	6,68 6,68 7,10 7,20	395 926 2382 2946 2956 Inisation: 6 Non I I Opaque	Arret des câbles chement 160 m. /probl. mécad. durant a 18h le m	lit)
otal du olume purgé: commental Robert : urbidité: temarque:	RES .	u d'eau Profession 100 120 140 152 152 152	Volume 551 1	Spécifié:	10,0 7,0 6,3 6,8 9,4	6,68 4,68 7,10 7,20	395 926 2382 2996 2956 Inisation: 6 Non I I Opaque	Arret die câbles chement 160 m /probl. mécarl durant a 18h le m	lit)

Identification (du projet: <u>/</u>	1eadowb	ank Zon	09/Grown	N pro	esentant du ter	таіn: <u>7.5 и</u>	6013 2000 wheore
Température: No(s) d'échan	_	2 5°C	faible	phise + ve	nts (±50 Date	3)	2009/09	1/05
NIVEAU D'EA	U ET CALC	אטים אט	VOLU M	E DE PURG		d'un voiume de p n forage de 200	ourge dans le cas d'un pr mm 4:	uits de 50 mm & install
Profondeur de l'	'eau:			A N/A	(m) Volume	d'eau dans tub	age:	(A-B)*2,0 =litre
Profondeur du p	nuits:						veloppe de sable:	C 7 8,8 =litre
ongueur satur		ope de sabl	e filtrant;				lume de purge (TTVP);	litre
LISTE DES É	QUIPEMENT	rs			 -			
/			, , ,	معة لمداد	110 - 1 - 1	_	T	
pH et thermo			-				Tampon et calibration	
Conductivim		Nodèle:			N° sėrie:		Solution calibration: ¿	4/3 / S et
Tube à clape	et θ	Pompe à	inertie (\	.Vateπa) .	Autre :		•	
DÉVELOPPE	MENT / PUR	GE THÉC	RIQUE	DU PUITS		,		
Volume à purg	ger: T.	TVP x no	ombr e de	e purg e =	577	litro	es	
Débit approxir	natif		•	l/min.		•		
Début:		Fir		· ·				
Heure	Niveau d	r <i>efendenc(</i> Peau	~) Volume	retiré (L)	Temp. (°C)	Hq	Cond. (uS/cm)	Remarques
15h00		160		<u>ien</u>				
15h05		26		10 (495)	6,1	6,60	307	<u> </u>
15h16		140	60 2	(515)	49	6,83	1660	1
15112 1517		70		<u>5 (528)</u> 5 (538)	58	6,87 7.03	<u>2389</u> 2281	_ <u>!</u>
15422		76		7 7542	5,8	712	2268	
15436		76		3 (545)	6,8	7,15	2261	
		i į						1
		j				4		
		<u> </u>		<u> </u>				1
Fotal du ∕olume purgè:								
COMMENTAL	RES		•					
Ddeur :	€ No	on (Oui	Spécifié:			risation: & Non	ę Oui
î urbidite:	Clair		1 1 1	1 1 1 1	(1 1 1	1 1 1 1 1	I I ! Opaque	
Remarque:		···						· · · · · · · · · · · · · · · · · · ·
TNAMETHO	TYPE				GRANDEUF.		Filti	rés Preservati
N°E	HITE	40 mL	100 1	mi. 250 m	500 nN	7 1L 2L		reservani
1 6 Piastic					- - X-		4 Du' 4 Du	F Nor
	- v=1(\$	<u> </u>		-	·			
								

N° puits d'obse	rvation: <u>Hwo</u>	3-61	N° pr	ojet:		013 2000
Identification du	u projet: <u>Meado</u>	ubank 2009/120	moduate Repre	esentant du ter		eluore_
Température:	= 150		Date:		2009/09/0	7
No(s) d'échanti	lion(s): Hw	63-61 + HWO	<u>3-61-D</u> uP			
			OF Alleri			
NIVEAU D'EAG	JET CALCUL D'U	IN VOLUME DE PUR	dans ui	i forage de 200 i	nm þ:	uits de 50 mm (installé
Profondeur de l'a			4_(m) Volume			(A-B) 2,0 =litres
Profondeur du pu	lits:	В <u>200</u>	<u>>(m)</u> . Volume	d'eau dans l'en	/eloppe de sable:	C * 8,8 =litres
Longueur saturée	e de l'enveloppe de s	able filtrant: C <u>2</u>	(m) Total th	éorique d'un vol	ume de purge (TT)か):	litres
LISTE DES ÉC	UIPEMENTS					
PoH et thermor	mètre: Modèle:	HANNA PHEE	CN° série:	<u>-</u> .	Tampon et calibration	1: 04 97 010
-6 Conductivimè	etre: Modèle:	1. 4.	N° série:	<u> </u>	Solution calibration:	<i>1413µS</i> et
8 Tube à clape		e à inertie (Waterra)				
		•			٠.	
Début:	Profosteur	Volume retiré (L)	Temp. (°C)	Hq	Cond. (uS/cm)	Remarques
Pom A	1 /	A 148.501.6				landément.
11430	198,5	N/A	10,5	6,67	370 /	
11434	ļ. <u> </u>	 	87	6.72	1101	<u> </u>
1154	 		12,5	6,89	2234	-
11456 11458	-		9.6	6,90	<u> 2342</u> 2485	
12406			9.0	713	2765	
12403	1		8.8	7.19	2382	
17.466	4	b	8,7	7,22	Z466	Echanillongge
17400	149,0	N/A	10,7	7.14	2440	8
17,65	1		9.8	7,16	7468	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 7 68	 		9,5	7,21	<u> </u>	Echantillonnage - Arret Echantillonna
Total du /11/16 volume purgé:	21. 24		<u> </u>			can pas asser
COMMENTAIR		1		<u> </u>		
Odeur:		8 Oui Spécifié:		٠,	risation: 8 Non	- 0 Oui
	% Non		1 1 1			TO CUI
Turbidité:	Clair		1 1 1 1 1 -	1 1 1 1 1	I I I Opaque	
Remarque:					<u> </u>	
CONTENANT			GRANDEUR			,
Nº /	TYPE 40	mi. 100 ml. 250 r	mL 500 mL	1 L 2 L	Fitt 4 L	rés Préservatifs
1 (Prastiqu	ue 6 Verre	<u>_</u> <u>_</u>	<u>-</u>			Wyon acide sulfurigue
2 Prestict	ı∈ ê Verre			·	6 Ові	#Non
3. Plasti	and .		<u>ა</u>			

		3-01	_{12,} bt	•		3-0013 2000
dentification of	u projet: <u>Heal</u>	whork 2009/6	Repr	esentant du te	rrain:	suchone
Température.	450	2 Phise +	vents Date:			169/88
No(s) d échanti	illon(s): <u>H</u> t	U03-01 + A	<u>lwos</u> -el-	Dup	The state of the s	
NIVEAU D'EAL	U ET CALCUL D'U	IN VOLUME DE PURC		d'un volume de n forage de 200		puits de 50 mm é installé
Profondeur de l'e	ац;	A 10/19	(m) Volume	e d'eau dans tut	page:	(A-B)(2,0 =litres
Profondeur du pu	lits:	в <u>7е</u> в	(m) Volume	e d'eau dans l'ei	nveloppe de sable:	C * 8,
Longueur saturée	e de l'enveloppe de s	able filtrant: C. 20	(m) Total th	néorique d'un vo	olume de purge (TTVP):	:litres
LISTE DES ÉQ	DUIPEMENTS	· · · · · · · · · · · · · · · · · · ·				·
opH et thermor	mètre: Modèle:	HANNA HEEL	N° série:	_	Tampon et calibrati	on: 84 87 810
& Conductivimè		م بر م				
θ Tube à ciapet		à inertie (Waterra)				
י ישטר מ משטשו	t brompe	a morae (rydeema)				·
• •	Au	I/min.				
Débit approxim: Début: Heure	ProfonLun	Fin: //min. Volume retiré (L)	Temp. (°C)	рН	! Cond. (uS/cm)	Remarques
Début:		Fin:	6,7	6.82	7461	
Début:	Profondeur	Fin: Volume retiré (L)	Temp. (°C)	 		Echantillounas
Débui: Heure 765	Nivebu d'esu 147,6	Fin: Volume refiré (L) N/A W/A	6,7	6.82	7461	
Début: Heure 7650 7655	Profonder Nivodu d'eau	Fin: Volume retiré (L)	6,7	7,05	7461 2442	Echantillounas
Début: Heure 7650 7655	Nivebu d'esu 147,6	Fin: Volume refiré (L) N/A W/A	6,7	7,05	7461 2442	Echantillounas
Début: Heure 7650 7655	Nivebu d'esu 147,6	Fin: Volume refiré (L) N/A W/A	6,7	7,05	7461 2442	Echantellonnas Atlente d'eau Francisco
Début: Heure 7650 7655	Nivebu d'esu 147,6	Fin: Volume refiré (L) N/A W/A	6,7	7,05	7461 2442	Echantellonnas Atlente d'eau Francisco
Début: Heure 7650 7655	Nivebu d'esu 147,6	Fin: Volume refiré (L) N/A W/A	6,7	7,05	7461 2442	Echantellonnas Atlente d'eau Francisco
Début: Heure 74.45 74.53 84.10	Nivebu d'esu 147,6	Fin: Volume refiré (L) N/A W/A	6,7	7,05	7461 2442	Echantellonnas Atlente d'eau Francisco
Début: Heure 7650 7655	1 of on leve Niverse d'esse 127,6 149,6	Fin: Volume refiré (L) N/A W/A	6,7	7,05	7461 2442	Echantellanas Atlente d'esu Tuendos E la fin de
Débui: Heure 7/1.55 7/1.55 8/1.10	Profess Leng Novem d'eau 127,0 149,0	Fin: Volume refiré (L) N/A W/A	6,7	7,05	7461 2442	Echantellanas Atlente d'esu Tuendos E la fin de
Début: Heure 7k 56 7k 53 8k 26 Total du volume purgé:	149,0 149,0	Fin: Volume refiré (L) N/A W/A	5,4	6,97	7461 2442	Echantellonnas Atlente d'eau Francisco
Début: Heure 71.50 71.55 8h.10 Total du volume purgé: COMMENTAIR	150 on leur Niverau d'equi 127,6 149,6 149,0	Volume retiré (L) N/A N/A	6,7	6,97	2436 2436	Echanillouras Atlente d'eau Talentores Ela Im de Ci Thantillor
Début: Heure 7//50 7//53 8//10 Total du volume purgé: COMMENTAIR Odeur :	150 on leur Niverau d'equi 127,6 149,6 149,0	Volume retiré (L) Volume retiré (L) VA NA NA Fin: Coul Spécifié:	5,4	6,97	7.461 7.472 7.436	Echanillouras Atlente d'eau Talentores Ela Im de Ci Thantillor
Début: Heure 7/4-55 7/4-55 8/4-10 Total du volume purgé: COMMENTAIR Odeur : Turbidité: Remarque:	150 on leur Niverau d'equi 127,6 149,6 149,0	Volume retiré (L) Volume retiré (L) VA NA NA Fin: Coul Spécifié:	5,4	6,97	7.461 7.472 7.436	Echanillouras Atlente d'eau Talentores Ela Im de Ci Thantillor
Début: Heure 7/45 7/45 7/45 8/4.26 Total du volume purgé: COMMENTAIR Odeur : Turbidité: Remarque:	150 on leur Niverau d'equi 127,6 149,6 149,0	Vojume refiré (L) Vojume refiré (L) VA NA NA GOUI Spécifié:	5,4 5,4 GRANDEUF.	6,97		Echantillouras Atlente d'Edu Talen dos Ela Im de Oij Shanotillour

1/4

FORMULAIRE C3.3.1

dentification do Température: No(s) d'échanti		sank 2009/Ground		N° projet:		
•	e. 5	Headowbank 2009/Groundwater		ésentant du terra	ain: <u>K. Duche</u>	isse/P.Umshen
lo(s) d'échanti		7°C solebel	Date:	-	2009/08	127
	illon(s):		· · ·		•	
IIVEAU D'EAI	U ET CALCUL D'U	IN VOLUME DE PUR	GE Calcul o	d'un volume de pu n forage de 200 m	rge dans le cas d'un p m φ:	puits de 50 mm φ installé
rofondeur de l'e	eau:	A 9,6	/ (m) Volume	d'eau dans tuba	e:	(A-B)*2,0 =litres
rofondeur du pu	ults:	в <u>19</u>	<u>お. (</u> m) Volume	d'eau dans l'enve	eloppe de sable:	C * 8,8 =litres
ongueur saturé	e de l'enveioppe de s	able filtrant: $C = \frac{Z}{2}$	4_(m) Total th	éorique d'un yolur	me de purge (TTVP):	litres
JSTE DES ÉC	QUIPEMENTS					
pH et thermo	mètre: Modèle:	HANNA PH & EC	LN° série:	1	ampon et calibratio	on: 04 07 0 10
Conductivime	etre: Modèle:	in to	.N° série:	3, n - 1 ₂	olution calibration:	<i>1413</i> et
) Tube à clape	t A Pompi	a à inertie (Waterra)	'Autre	in the second second	Francisco	•
·		**				
	FAIT / DUDOÈ TU	IÉORIQUE DU PUITS	Dune 101	Arisam 1	1:001	
DEVELOPPEN	MENI/PURGE IF	EURIQUE DU PUITS	Targe por	-	Actour d'e	au
/olume à purg		x nombre de purge =	45	litres	Same .	2
Débit approxim	natif:	<u>l/min</u> .			3,5 min	/m ·
Début:	-	Fin:				
Heure	Niveau d'eau	Volume retiré (L)	Temp. (°C)	рН -	Cond. (uS/cm)	Pomeration
						Remarques
13630		/ 10	15.4	6,26	164	Remarques
13435		30 (50)	11,6	6.37	140	Remarques
13h35 13h40	951.	30 (50)	71,6	6,37	<u> </u>	Remarques
13435	951.	30 (50)		6.37	140	
13h 35 13h 40 13h 45	१इर्-	30 (50) 30 (80) 15 (95)	11,6 6,4 5,2	6,37 6,42 6,34	1 <u>46</u> 99 151	Reprodum canyo
13h 35 13h 40 13h 45	१ इ	30 (50) 30 (80) .15 (95) /30 (125)	11,6 6,4 5,2	6,37 6,42 6,34 7,08	1 <u>46</u> 99 151	Reproten cany
13h 35 13h 40 13h 45 15h 55		30 (50) 30 (80) 15 (95) /30 (125) (40 (165)	11,6 6,4 5,2	6,37 6,42 6,34 7,08 6,14)40 99 /5/ 0 333	
13h 35 13h 40 13h 45	951. ·	30 (50) 30 (80) 15 (95) /30 (125) 40 (165) 30 (195)	11,6 6,4 5,2	6,37 6,42 6,34 7,08 6,14 6,88	140 99 151 0 333 788	Reproten cany
13h 35 13h 40 13h 45 15h 55		\$6 (50) 30 (80) 15 (95) 30 (125) 30 (135) 30 (215)	11,6 6,4 5,2	6,37 6,42 6,34 7,08 6,14 6,88 7,03	140 99 151 0 333 738 783	Reproten cany
13h 35 13h 40 13h 45 15h 55 16h 65 16h 10 16h 15 16h 20		\$0 (50) 30 (80) 15 (95) 30 (125) 30 (135) 30 (215) 25 (25)	11,6 6,4 5,2 7,7 5,3 4,9	6,37 6,42 6,34 7,08 6,14 6,88 7,03 7,21	140 99 151 0 333 738 783 783	Rapnostam comp.
13h 35 13h 40 13h 45 15h 55 16h 10 16h 15		\$6 (50) 30 (80) 15 (95) 30 (125) 30 (135) 30 (215)	11,6 6,4 5,2	6,37 6,42 6,34 7,08 6,14 6,88 7,03	140 99 151 0 333 738 783	Reproduce can pe
13h 35 13h 40 13h 45 15h 55 16h 05 16h 10 16h 15 16h 20 16h 25		\$0 (50) 30 (80) 15 (95) 30 (125) 30 (135) 30 (135) 25 (25) 15 (265)	11,6 6,4 5,2 7,7 5,3 4,9	6,37 6,42 6,34 7,08 6,14 6,88 7,03 7,21	140 99 151 0 333 738 783 783	Rapnostam comp.
13h 35 13h 40 13h 45 15h 55 16h 65 16h 10 16h 15 16h 20		\$0 (50) 30 (80) 15 (95) 30 (125) 30 (135) 30 (215) 25 (25)	11,6 6,4 5,2 7,7 5,3 4,9	6,37 6,42 6,34 7,08 6,14 6,88 7,03 7,21	140 99 151 0 333 738 783 783	Reproduce can pe

3/4

ORMULAIRE C3.3.1

Calculation du projet:	N° puits d'obse	ervation: <u>Ηω</u>	08-02	N° ;	orojet:	09-142	28-0013 2000		
Pate:	Identification d	lu projet: <u>Heal</u> a	bank 2009/Gom	reducates Rep	orésentant du te				
No(s) d'échantillon(s): NIVEAU D'EAU ET CALCUL D'UN VOLUME DE PURGE Caicul d'un volume de purge dans le cas d'un puits de 50 mm é int dans un forage de 200 mm é; A	Température:						108/22		
dans un forage de 200 mm 4: A	No(s) d'échant			• · · · · · · · · · · · · · · · · · · ·	,				
Profondeur du puils: B 191	NIVEAU D'EA	U ET CALCUL D	'UN VOLUME DE PI		il d'un volume de un forage de 200	purge dans le cas d'	un puits de 50 mm φ insta		
Profondeur du puits: B	Profondeur de l'e	eau:	Α	(m) Volun	ne d'eau dans tut	nage:	(A-B)*2,0 =litr		
De de l'enveloppe de sable filtrant: C	Profondeur du pr	uits:	в 1	9/_ (m) Volum	ne d'eau dans l'ei	nveloppe de sable:			
PH et thermomètre: Modèle: HANNA AN & EC N° série: Solution calibration: #1 8	Longueur saturé	e de l'enveloppe de	sable filtrant: C2	Z/ (m) Total	théorique d'un vo	lume de purge (TTVI	P):litr		
Conductivimètre: Modèle:	LISTE DES ÉC	UIPEMENTS	, 		· · · · · · · · · · · · · · · · · · ·				
Conductivimètre: Modèle:	pH et thermoi	mètre: Modèle	HANNA AH & E	د N° série:		Tampon et calibra	ation: 44 9 4 10		
Tube à clapet θ Pompe à Inertie (Waterra) Autre : DÉVELOPPEMENT / PURGE THÉORIQUE DU PUITS Solume à purger: TTVP x nombre de purge = litres Sébit approximatif: !/min. Sébut: Fin:									
DEVELOPPEMENT / PURGE THÉORIQUE DU PUITS		·					m <u>rers</u> et		
Olume à purger: TTVP x nombre de purge = litres	- Loo o olapoi		o a siciae (vvacina)	Autie	 .	•			
Olume à purger: TTVP x nombre de purge = litres	ÉVELOPPEM	ENT / PURGE TI	HÉORIQUE DU PUN	rs	· .				
### ##################################			•		. lite	ne .			
## Heure Niveau d'eau Volume retiré (L) Temp. (°C) pH Cond. (uS/cm) Remarques 191. 25 > C0 (%0 (305) /0, 1 7, 49 663. 191. 35 (30 /335) 5, 8 7, 55 653 171. 40 (151. 30 (365) 5, 5 7, 55 653 171. 40 (151. 30 (365) 5, 5 7, 55 655 172. 47 7, 65 655 173. 40 (151. 30 (365) 5, 6 7, 55 655 174. 50 (555) 7, 55 655 175. 655 1	_				inge				
Heure Niveau d'eau Volume retiré (L) Temp. (°C) pH Cond. (uS/cm) Remarques 191. 25		aur		•					
191, 25 260 (40 (305) 10, 1. 7, 49 663. 191, 25 (30 (335) 5, 8 7, 55 6, 53 191, 40 1151. 30 (335) 5, 8 7, 55 6, 53 191, 45 15 (386) 4, 9 7, 65 6, 55 182 plus de Tabalance 191, 45 360	ébut:		Fin:				•		
79\ 25 26		Niveau d'eau	Volume retiré (L) Temp. (°C)	pΗ	Cond. (uS/cm	Remarques		
171. 40 191. 45 191. 4		2 CD							
15 (388)					7.55	653			
tal du lume purgé: DMMENTAIRES leur: Phon 6 Oui Spécifié: Irisation: Phon 6 Oui pridité: Clair		(157		5.5	7,55	652			
tal du ume purgé: DMMENTAIRES leur: P Non	19h 45		15 (380)	4,9	7.65	655			
tal du jume purgé: DMMENTAIRES Jeur: Pion de Oui Spécifié: Irisation: Pion de Oui spécifié: Irisation: Pion de Oui Pridité: Clair					<u> </u>		Pas plus de		
DMMENTAIRES					<u> </u>	· · · · · · · · · · · · · · · · · · ·	tubulure		
DMMENTAIRES					<u> </u>	· · ·			
DMMENTAIRES		<u> </u>	ļ		-		-		
DMMENTAIRES Préserval eur: 9 Non θ Oui Spécifié: Irisation: θ Non θ Oui rbidité: Clair		· · · · · · · · · · · · · · · · · · ·			-				
DMMENTAIRES Préserval eur: 9 Non θ Oui Spécifié: Irisation: θ Non θ Oui rbidité: Clair	···								
DMMENTAIRES		· · · · · · · · · · · · · · · · · · ·		- 		 			
	tai du						<u> </u>		
OMMENTAIRES leur: 9 Non θ Oui Spécifié: Irisation: θ Non θ Oui rbidité: Clair I I I I I I I I I I I I I I I I I I I			380		! !				
leur :					<u> </u>				
N° 17PE Filtrés Préserval 1 6 Plastique 8 Verre 6 Oui 6 Non	deur : irbidité:	9 Non	9 Oui Spécifié:	1111					
N° 1YPE Filtrés Préserval 1 € Plastique € Verre € Oui € Non									
40 mL 100 mL 250 mL 500 mL 1L 2L 4L ********************************		YPE		GRANDEUR					
6 Plastique 9 Verre	. N° '	40	mL 100 mL 250	mL 500 mL	1L 2L	. 4L	Filtrés Préservatifs		
	e Plastique	9 Verre		i		•	A Non		
e Plastique e Verre e Oui e Non	9 Plastique	9 Verre		$=$ \sim					

N° puits d'observ	ration: <u>Mu</u>	<i>108-01</i>	=	N° pr	ojet:	09-1428-	0013 2400
Identification du j	projet: Meadou	bank w	09/Grand	Repr	ésentant du teri	ain: R. Dunkes	ne 19. Umplana
Température:			Soleil			7009-08	
No(s) d'échantille	on(s):					,	
NIVEAU D'EAU	ET CALCUL D	'UN VOLU	ME DE PURC		d'un volume de p n forage de 200 n		uits de 50 mm ø installé
Profondeur de l'eau	i:		A /6,5	/ <u>2 (</u> m) Volume	e d'eau dans tuba	ge:	(A-B)*2,0 =litres
Profondeur du puits	S:		B <u>7</u> 9/	(m) Volume	e d'eau dans l'env	eloppe de sable:	C * 8,8 =litres
Longueur saturée d	le l'enveloppe de	sable filtrar	_			me de purge (TTVP):	litres
			 ,				
LISTE DES ÉQU	IPEMENTS						
-		do					
θ pH et thermome	ètre: Modèle	; <u>#4NN</u>	A pH & EC	N° série:		Tampon et calibratio	n: 0 4 9 7 0 10
θ Conductivimètre	e: Modèle	: <u>Hañna</u>	pH & BC	N° série:		Solution calibration: ¿	<u>14/3</u> et
θ Tube à clapet	0 Pomp	e à înertie	(Waterra)	Autre:			
DÉVELOPPEME	NT / PURGE TI	HÉORIQU	E DU PUITS				
Volume à purger.		•	de purge =		litre	- :	
		X HOHIDIE		**************************************	11116	•	
Débit approximati	ıt		_ l/min.				
Début:		. Fin: _					
	Niveau d'eau	Volum	e retiré (L)	Temp. (°C)	pН	Cond. (uS/gm)	Remarques
8425	16,42	120		18,6	7,06	616	
8h 30		30		7.7	7,65	587	
8435			7 74 <i>+</i> 01	7.6	7.52	600	
				1 14 1	71/0		
8440		160 2	0 (496)	5,2	7.48	685	
8h.40 8h.45		160 20	0 (496) 3 (528)	5,7 5,2	7.52	687	
8440	= 40.0	160 2	0 (496) 0 (526) 0 (546)	5,2		685	
8h 40 8h 45 9h 00 14h06 14h05	= 40,0	160 20 30 20 20	0 (496) 0 (528) 0 (546) 0 (586) 0 (590)	5,2 5,2 4,8	7,52 7,90	687 723	
8h 40 8h 45 9h 00 14h 06 14h 05 14h 16	= 40,0	160 20 30 20 720 30 145 4 7	9 (496) 3 (526) 9 (546) 9 (566) 9 (590) 5 (615)	5,72 5,72 4,8 14,72 10,10	7.52 7.90 7.42 7.59 7.68	(, 35 687 723 674	
8h 40 8h 45 9h 00 14h06 14h05 14h 10	= 40,0	160 20 30 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	0 (496) 0 (526) 0 (540) 0 (566) 0 (590) 5 (615) 5 (640)	5,7 5,2 4,8 14,2 10,0 7,8	7,52 7,90 7,42 7,59 7,68 7,75	(25 (87 723 (74 (40 (44 (19	
8h 40 8h 45 9h 00 14h06 14h05 14h 10 14h 15	= 40,0	160 20 30 20 22 30 45 7 2 2 2	0 (496) 0 (528) 0 (546) 0 (546) 0 (540) 5 (615) 6 (640)	5,7 5,2 4,8 14,2 10,0 7,8 7,5 7,7	7,52 7,90 7,42 7,59 7,68 7,75	685 687 723 674 640 649 619	
8h 40 8h 45 9h 00 14h06 14h05 14h 10 14h 15 14h10	= 40,0	160 20 30 20 20 20 30 45 7 2 2 2	0 (496) 0 (528) 0 (546) 0 (546) 0 (546) 5 (645) 5 (646) 0 (686)	5,7 5,2 4,8 14,2 10,0 7,8 7,5 7,7	7,52 7,90 7,47 7,59 7,68 7,75 7,89 7,81	685 687 723 674 640 649 626	
8h 40 8h 45 9h 00 14h 06 14h 05 14h 16 14h 16 14h 26 14h 25 Total du 14h 35	= 40,0	160 20 30 20 20 30 45 7 2 2 2	9 (496) (528) (528) (546) (546) (546) (546) (646) (646) (686) (688)	5,7 5,2 4,8 14,2 10,0 7,8	7,52 7,90 7,42 7,59 7,68 7,75	685 687 723 674 640 649 619	
8h 40 8h 45 9h 00 14h 06 14h 05 14h 16 14h 16 14h 18 14h 28 Total du 14h 35 volume purgé:		160 20 30 20 20 30 45 7 2 2 2	0 (496) 0 (528) 0 (546) 0 (546) 0 (546) 5 (645) 5 (646) 0 (686)	5,7 5,2 4,8 14,2 10,0 7,8 7,5 7,7	7,52 7,90 7,47 7,59 7,68 7,75 7,89 7,81	685 687 723 674 640 649 619	
8h 40 8h 45 9h 00 /4h 06 /4h 05 /4h 16 /4h 16 /4h 16 /4h 15 Total du Mh35 volume purgé:	\$	160 2.0 3.0 2.0 3.0 3.0	0 (496) 0 (526) 0 (546) 0 (546) 0 (546) 5 (645) 5 (646) 0 (686) 0 (686)	5,7 5,2 4,8 14,2 10,0 7,8 7,5 7,7	7,52 7,90 7,47 7,59 7,89 7,89 7,81 7,97	685 687 723 674 640 640 649 626 616	
8h 40 8h 45 9h 00 14h 06 14h 05 14h 16 14h 16 14h 16 14h 15 Total du rh35 volume purgé: COMMENTAIRES	S Non	160 2.3 3.3 2.2 2.3 145 4.7 2.2 2.2 2.3 6 Oui	9 (496) (528) (528) (546) (546) (546) (546) (646) (646) (686) (688)	5,7 5,2 4,8 14,2 10,0 7,8 7,5 7,7	7,52 7,90 7,47 7,59 7,89 7,89 7,81 7,97	(85 (87 723 (74 640 (44) (19 (20 (616 611	θQui
8h 40 8h 45 9h 00 /4h 06 /4h 05 /4h 16 /4h 16 /4h 16 /4h 15 Total du Mh35 volume purgé:	\$	160 2.0 3.0 2.0 3.0 3.0	0 (496) 0 (526) 0 (546) 0 (546) 0 (546) 5 (645) 5 (646) 0 (686) 0 (686)	5,7 5,2 4,8 14,2 10,0 7,8 7,5 7,7	7,52 7,90 7,47 7,59 7,89 7,89 7,81 7,97	685 687 723 674 640 640 649 626 616	θ Qui
8h 40 8h 45 9h 00 14h 06 14h 05 14h 16 14h 16 14h 16 14h 15 Total du rh35 volume purgé: COMMENTAIRES	S Non	160 2.3 3.3 2.2 2.3 145 4.7 2.2 2.2 2.3 6 Oui	0 (496) 0 (526) 0 (546) 0 (546) 0 (546) 5 (645) 5 (646) 0 (686) 0 (686)	5,7 5,2 4,8 14,2 10,0 7,8 7,5 7,7	7,52 7,90 7,47 7,59 7,89 7,89 7,81 7,97	(85 (87 723 (74 640 (44) (19 (20 (616 611	θ Qui
8h 40 8h 45 7h 06 14h 06 14h 05 14h 16 14h 16 14h 15 Total du rh35 volume purgé: COMMENTAIRES Odeur:	S Non	160 2.3 3.3 2.2 2.3 145 4.7 2.2 2.2 2.3 6 Oui	0 (496) 0 (526) 0 (546) 0 (546) 0 (546) 5 (645) 5 (646) 0 (686) 0 (686)	5,7 5,2 4,8 14,2 10,10 7,8 7,5 7,7 6,6 8.8	7,52 7,90 7,47 7,59 7,89 7,89 7,81 7,97	(85 (87 723 (74 640 (44) (19 (20 (616 611	θ Qui
8h 40 8h 45 9h 00 14h 06 14h 05 14h 16 14h 16 14h 15 14h 15 Total du rh35 volume purgé: COMMENTAIRES Odeur: Turbidité: Remarque:	S Non Clair	160 2.3 3.3 2.2 2.3 145 4.7 2.2 2.2 2.3 6 Oui	0 (496) 0 (526) 0 (546) 0 (546) 0 (546) 5 (645) 5 (646) 0 (686) 0 (686)	5,7 5,2 4,8 14,2 10,0 7,8 7,5 7,7	7,52 7,90 7,47 7,59 7,89 7,89 7,81 7,97	(85 (87 723 (74 (20 (49 (618 (618 (611) sation: \$Non	
8h 40 8h 45 9h 00 14h 06 14h 05 14h 15 14h 15 Total du rh35 volume purgé: COMMENTAIRES Odeur: Turbidité: Remarque:	Non Clair	0 Oui	0 (496) 0 (526) 0 (546) 0 (546) 0 (546) 5 (645) 5 (646) 0 (686) 0 (686)	5, 7 5, 2 4, 8 14, 7 10, 10 7, 8 7, 5 7, 7 6, 6 8, 8	7,52 7,90 7,47 7,59 7,89 7,81 7,97	(85 (87 723 (74 640 (44) (19 (20 (616 611	
8h 40 8h 45 9h 00 14h 06 14h 05 14h 16 14h 16 14h 15 14h 15 Total du rh35 volume purgé: COMMENTAIRES Odeur: Turbidité: Remarque:	Non Clair	0 Oui	9 (496) 0 (528) 0 (546) 0 (546) 5 (615) 5 (646) 0 (686) 6 (685) 6 (685) 6 (685)	5, 7 5, 2 4, 8 14, 7 10, 10 7, 8 7, 5 7, 7 6, 6 8, 8	7,52 7,90 7,47 7,59 7,89 7,89 7,81 7,97	(85 (87 723 (74 (40 (49 (49 (41) (41) sation: \$Non [Opaque	

N° puits d'observa	ation: <u>HW6</u>	18-02	N° pr	ojet	89-1428.	0013 2000
Identification du p	rojet: <u>Heado</u>	whenk recor/Gran	nucter Repr	ésentant du tei		e 19-Um phenon.
Température:		Edel	Date:			38-29
No(s) d'échantillo	n(s):	W08-02			,	
NIVEAU D'EAU E	ET CALCUL D'	UN VOLUME DE PURG		d'un volume de _l n forage de 200	ourge dans le cas d'un p	ouits de 50 mm φ installé
Profondeur de l'eau	:	A 16,1	<u> </u>	e d'eau dans tub	ege:	(A-B)*2,0 =fitres
Profondeur du puits:	; ,	в 191	(m) Volume	e d'eau dans l'en	veløppe de sable:	C * 8,8 =litres
Longueur saturée de	e l'enveloppe de s	sable filtrant: C 21	(m) Total tr	iéorique d'un vol	ume de purge (TTVP):	litres
LISTE DES ÉQUI	PEMENTS				· · · · · · · · · · · · · · · · · · ·	
6 pH et thermomè	itre: Modèle:	HANNA PHAEC	N° série:		Tampon et calibratio	n:04 87 910
0 Conductivimètre		- a				_
θ Tube à clapet		e à inertie (Waterra)				
Débit approximatif		l/min.		l		i chartillomage
Heure 1	Viveau d'eau	Volume retiré (L)	Temp. (°C)	pH	Cond. (uS/cm)	Remarques
7480 7455	12, 136		9.5	7,62	576. 578	AVANT
16he8			4.3	7 77	610	ECHANTALO
10/20			4,5	7,79	616	
(2)	. 4 4	3.4				 -
-Gmalla	an du	notif Dacker	= Petite	Domate A	there aux pe	erasa de Acción
- Blockage	2 147	ma avec water	TR. 5/8"			
·				-		-
		h ·	-			<u> </u>
				_		
Total du volume purgé:			,			•
COMMENTAIRES		1	l			<u></u>
Odeur :	0 Non	θ Oui Spécifié:		1	risation: 9/Non	θ Qui
Turbidité:	Clair	[4]]]	1 1 1		I I I Opaque	
Remarque:						
CONTENANT TV			GRANDEUR			
N° .	40	mL 100 mL 250 mL	. 500 mL	1 L 2L	4L Fill	rés Préservatifs
1 6 Plastique 2 6 Plastique	6 Verre	<u> </u>	<u> </u>		9 Oui в Oui	8 Non aade suff
3 LPlanting	ue	3			- Louis	acide whig

N° puits d'observati Identification du pro Température: No(s) d'échantillon(jet: <u>Headou</u>	B-03 bunk 2001/Grounds 5-C Duogens &	N° pro Repré ueals Date:			13 2000 sne / P. Umphenow · 31
NIVĘAU D'EAU ET	CALCUL D'U	N VOLUME DE PURG		iun volume de pu forage de 200 m		ouits de 50 mm ¢ installé
Profondeur de l'eau:		Α	(m) Volume	d'eau dans tubaç	ge:\	(A-B)*2,0 =litres
Profondeur du puits:		в <u>191</u>	(m) Volume	d'eau dans l'env	eloppe de sable:	C * 8,8 =litres
Longueur saturée de l	'enveloppe de s	able filtrant: C_21	(m) Total the	éorique d'un volu	me de purge (TTVP):	litres
LISTE DES ÉQUIP	EMENTS					
9 pH et thermometr	e; Modèle:	HANNA PH LEC	N° série:	<u> </u>	rampon et calibratio	on: 04 0 0 10
8 Conductivimètre:	Modèle:	HANNA PHÁEC	N° série:	{	Solution calibration:	<u>/4//3</u> _et
θ Tube à clapet	0 Ротре	HANNA PHAEC a à înertie (Waterra)	Autre:			
DÉVELOPPEMEN	r / PURGE TH	ÉORIQUE DU PUITS	•		ti.	
Volume à purger.	TTŸP	c nombre de purge =	·	litre	s	
Débit approximatif:		l/min.			·	
Début:		Fin:				
Heure N	iveau d'eau	Volume retiré (L)	Temp. (°C)	рН	Cond. (uS/cm)	Remarques
151,25	7.50	125	21,8	6,95	100 .	
15430		(25 (50)	14,3	674	102. 98	
15h 37		15 (65)	11, 3	6,65	103	Flerage L. Waters =148
154.35	150	15 (106)	12.3	7,11	121	Blocase An Waters 2148
151,50 191,25	1.7(7	15 (115)	30,3	8.29	108	
19430	·	25 (140)	26,9	4.91	100	Blocage 147
191.32		10 (150)	170	7,63	122	
					• ,	
		•	ļ			
			 	<u> </u>	 ;	
Total du					· · · · · · · · · · · · · · · · · · ·	
volume purgé:	•	150	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
COMMENTAIRES	/		-	, 		
Odeur:	8 Non	θ Qui Spécifié:	=	l:	risation: 9 Non	0 Oui
			1 1 1 1 1		•	e
Turbidité:	Clair		. , ,	• • • •		•
Remarque:						
CONTENANT TYP N° 1 6 Plastique 2 6 Plastique	9 Verre	mi_ 100 ml_ 250 m	GRANDEUR L 500mL	1L 2L	4L F	Préservatifs 0 Non 0 Non

N° puits d'obs	ervation: <u>Muse</u>	8-03	N° p	rojet:	09-1428	6013 2000
Identification of	lu projet: Headou	bunk 2009 / Grown	lwater Repr	ésentant du t	errain: R.Duchione	1P Umphenorer
Température:	=10°C	Phile + vents>	50 km/h Date	•	2009/0	
No(s) d'échan		_	····	•		7
NIVEAU D'EA	U ET CALCUL D'I	JN VOLUME DE PUR		d'un volume de n forage de 20	purge dans le cas d'un 0 mm 6:	puits de 50 mm φ installé
Profondeur de l'	eáu:	Α	(m) Volum	e d'eau dans tu	bage:	(A-B)*2;0 =litre
Profondeur du p	uits:	в /9/	(m) Volum	e d'eau dans l'e	enveloppe de sable:	
Longueur saturé	e de l'enveloppe de s	sable filtrant C 24.	(m) Total ti	néorique d'un v	olume de purge (TTVP):	litre:
LISTE DES ÉC	QUIPEMENTS		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
θ pH et thermo	mètre: Modèle:	HANNA pHÉEC	N° série:	. <u> </u>	Tampon et calibratio	on: 84 87 810
6 Conductivime	itre: Modèle:	-v A	N° série:	<u></u>	Solution calibration:	et کیم 14/3
		e à inertie (Waterra)			* + * <u>.</u>	•
	•	ÉORIQUE DU PUITS			• • • • • • • • • • • • • • • • • • • •	
Volume à purg		nombre de purge =	· · · · · · · · · · · · · · · · · · ·	lit	res	
Débit approxim	atif:	Vfnin.		. • .		. •
Début:	· · · · · · · · · · · · · · · · · · ·	Fin:				
Heure	Niveau d'eau	Volume retiré (L)	Temp. (°C)	На	Cond. (uS/cm)	Remarques
10h35	73,70 m	15 (165)	23,5	7.16	117.	
16467		20 (185)	18,0	7.34	164	
10412	· · · · · · · · · · · · · · · · · · ·	20 (205)	15,7	7,12	//0	
10h 15	ļ	10 (215)	11.0	7,06	114	Blocage a = 147
10h 20 13h 37		10 (225)	11,50	6,90	1/4	-
13h 42		10 (235) 15 (256)	3,4	7,49	94 .	Generative artite.
1		70 (250)		7,07	/07	n 12
otal du olume purgé:					-	
OMMENTAIR	ES /		·		I	
Odeur:		θ Oui Spécifié:			Irisation: 9 Non	0.0
urbidité:					<i>p</i>	€ Oui
dibioite. temarque:	Ciali				I I I Opaque	· !
ONTENANT			GRANDEUR			
N°	TYPE 40 r	nL 100 mL 250 mL	_	1L. 2L	Filt 4L	rés Préservatifs
1 6 Plastique 2 6 Plastique			- X		9 Oui	6 Non
2 6 Plastique	e 6 Verre		- / \ 		iuO θ	0 Non

N° puits d'observ	ation: <u> </u>	<u> </u>	N° pro	jet:	99-1422-0	
Identification du p	rojet: Healant	mark 2009/ Granduste	Repré	sentant du ten	ain: <u>R.Duchesn</u> e	<u> </u>
Température:	= 10°C	· Muggerx + vents	le 36 L. Date:	•	2009/09	102
Vo(s) d'échantille		- d	/h)			
NIVEAU D'EAU	ET CALCUL D'U	IN VOLUME DE PURG		l'un volume de p ı forage de 200 r	urge dans le cas d'yn pι nm φ:	its de 50 mm φ installé
Profondeur de l'eau	:	A >80	(m) Volume	d'eau dans tuba	ige:	(A-B)*2,0 =litres
Profondeur du puits	· :	в 191	(m) Volume	d'eau dans l'en	veloppe de sable:	C * 8,8 =litres
ongueur saturée c	le l'enveloppe de s	able filirant: C <u>7</u>	(m) Total th	éorique d'un vol	ume de purge (TTVP):	litres
LISTE DES ÉQU	IPEMENTS				<u>.</u>	· :
pH et thermom		HANNIA PH & EC				
Conductivimètr	e: Modèle:	u .	N° série:	 .	Solution calibration:	14/13 p. 5 et
9. Tube à clapet	θ Pompe	e à inertie (Waterra)	Autre:	· .	****	
DÉVELOPPEME	NT / PURGE TH	IÉORIQUE DU PUITS				
Volume à purger	TTVP	x nombre de purge =	45	6 litre	* > S	
Débit approximat					•	The Secretarian
Début:		Fin:				
Heure	Niveau d'eau	Volume retiré (L)	Temp. (°C)	рН	Cond. (uS/cm)	Remarques
8h50	>80 m.	120 (276)	19,9	6.40	87	
8h55		70 /290)	17.9	6.51	97	
8457	149 m	15 7385)	14,7	6,50	91	Toujours bloome
9660	#L	10 7315)	13.9	6.80	90	12 0/49 mm
14200	liv watera	905 10 7375	Brassage		u en injectant	petite gte d'ai
15h08	149,5m	10 /3/35)	19,70	6,55	101 '	
154.85	149,5 m.	3 7338)	19,8	6,71	98	
15420	150	2 (346)	19,9	6,98	98	Bloque maintenant a
1544	150 -	rien				1
19440	137	rien			<u> </u>	Générative étein
19642	150	X 12. (340)	1/11	6,82	1/0	
	<u></u>					· D Redimer
Total du		:	l . ·			:
volume purgé:	·		<u> </u>			<u> </u>
COMMENTAIRE	s /					
Odeur :	9 Non	θ Oui Spécifié:		1	risation: 9 Non	θ Oui
		•			III Opaque	÷
Turbidité:	Clair	1:09 1 1 1			, i i opaque	
Remarque:						
CONTENANT T	YPE 4	0 mL 100 mL 250 ml	GRANDEUR 600 mL	1L 2L	Fil:	trés Préservatifs
1 6 Plastique			V		e Oui	0 Non

Identification du	projet: #		-03			N° pro		. 7	,	10 1	
•	projet i	Headowb	unk ?	009/6	rounde	Repre	sentant du terra	ain: <u>K.Du</u>		<u>- IP. U</u>	mys he
Tomnáratura:		= 700	Fine	pine	+ vents 1	+40 L Date:	- *	200	1/09/0	3	
=							:				
No(s) d'échantil	ion(s): _										
NIVEAU D'EAU	JET CAL	CUL D'UI	A AOTI	JME DE	E PURGE	Calcul d	l'un volume de pu li forage de 200 m	ırge dans le çaş ım ệ :	d'un puits	de 50 mm (installé
				Δ		(m) Volume	d'eau dans tuba	ge: /	/ (A	4-B)*2,0 = _	iitres
Profondeur de l'e	au:	•					d'eau dans l'env		·	; * 8,8 =	litres
Profondeur du pu	iits:				•					, 0,0	•
Longueur saturée	e de l'envel	loppe de sa	ible filtra	ant: C	. 2/	_(m) Total th	éorique d'un volu	me de purge (T	(VP):	 _	litres
LISTE DES ÉQ											
		84-421-4	//	14. 44	Est N	J° série	<u> </u>	Tampon et cali	bration: €	34 07	0 10
9 pH et thermor	métre:	Modele: "	TIANA	IF JIM	. 		•	Calution soliby	otion: Idl	/S et	
e Conductivime	etre:	Modèle:		·····	<u>~</u> }	√ série:	· .	Pointiou canou	ation. [4]	<u>, ,,</u> 51	
0.Tube à clape	+	6 Pompe	à inerti	ie (Wate	erra) 📝	Autre:	<u> </u>	\$ p			
U. Tube a crape	•				-						
DÉVELOPPEN	<u> </u>										
Volume à purg						45	6 litre	s .		r + Wass	3 . D 4
]	•			l/m			. •				-
Débit approxim	natit:				1111.			-	•	·	
Début:			Fin:			·			٠.		:
		u d'eau	Val	ıme ret	irá (1)	Temp. (°C)	рН	Cond. (uS	(cm)	Remai	
Heure	I NIVERI	uuteeu	. 401	4110 100	··· · · · · / · /			· · · · · · · · · · · · · · · · ·			
	71,100.									Generation	ce a
		Protontura		/2	(342)	Brassage	se l'es		;	Génération à notre o	ce a
8h15	>68			/2	(342)	Brassage				<u>Générato</u> a notre o manque l	rrivê
8h15 9h40		Professiona 150		rien		Brassage				Générati a notre o mangue d 2h 30 : De	ce a rrivê s fu ipart
8h15 9h40 9h46 9h45		150,3 150,3 199		rien						Générati a notre o mangue d 2h 30 : De	ce a rrivês s. fu ipart
8615 9640 9646 9645 9650		Profession 150 150,3 119 130 140		rien tien			he l'eac			Générati a notre o mangue d 2h 30 : De	ce a rrivês s. fu ipart
8h15 9h40 9h46 9h45		150,3 150,3 199		rien tien				97		Generation a notice of mangue of the so i De	ce a criver part nouv
8615 9640 9646 9645 9650		Profession 150 150,3 119 130 140	5 (rien rien 3			he l'eac	97		Generation a notice of anotice of ships of De de	ce a rivês fu fu fu part nouv
8615 9640 9646 9645 9650		Profession 150 150,3 119 130 140		rien rien 3	(34 5)	7. 21,8 8,8	40 l'eau 	97		Generation of notice of notice of short of the de	ce a rriver part nouv extre riots
8h15 9h40 9h46 9h45 9h50 9h50		150 150,3 19 19 130 140	5 (rien rien sien 3	(345) 12-()	7. 21,8 8,8	40 l'eau 	97		Generation a notice of a notice of a notice of a notice of the second of	ce a rrivês fran part nonu extre ruits
8h15 9h40 9h46 9h45 9h50 9h51		150 150,3 19 19 130 140	5 (rien rien sien 3	(345) 17.1 12.136	7. 21,8 8,8	40 l'eau 7,03	97		Generation of notice of notice of short of the de	ce a river part provide provid
8h15 9h40 9h46 9h45 9h50 9h51	>68	150 150,3 19 19 130 140	5 (rien rien sien 3	(345) 17.1 12.136	7. 21,8 8,8	40 l'eau 	97		Eau initations of American	ce a privile part proper prope
#15 9140 9146 9145 9150 9150 9151	>68	150 150,3 19 19 130 140	5 (rien rien sien 3	(345) 17.1 12.136	7. 21,8 8,8	40 l'eau 	97		Eau initations of American	reiver port
Ph 46 Ph 46 Ph 45 Ph 50 Ph 50 Ph 50 Ph 50 Ph 50 COMMENTAL	>68	Rofondaya 150 150,3 119 130 140 150,3	Injec	rien rien 3 dien	(345) 121,36 121,36	7. 21,8 8,8	40 e e e e e e e e e e e e e e e e e e e	97		Eau initians	etie part part nouv exist ruits voir ler la
#15 9140 9146 9145 9150 9150 9151	>68	150,3 150,3 119 130 140 150,3	Jajes	rien rien 3 dien	(345) 121.36 121.) pécifié:	7. 21,8 8,8	4. e.e	97 19 19 19	Non	Eau initations of American	etie
Ph 46 Ph 46 Ph 45 Ph 50 Ph 50 Ph 50 Ph 50 Ph 50 COMMENTAL	>68	Rofondaya 150 150,3 119 130 140 150,3	Jajes	rien rien 3 dien	(345) 121.36 121.) pécifié:	7. 21,8 8,8	4. e.e	97 19 19 19		Eau initians	entie
PLIS PLYO PLYO PLYO PLYO PLYO PLYO PLYO PLYO	>68	150,3 150,3 119 130 140 150,3	Jajes	rien rien 3 dien	(345) 121.36 121.) pécifié:	7. 21,8 8,8	4. e.e	97 19 19 19	Non	Eau initians	entie
Ph 15 Ph 40 Ph 45 Ph 45 Ph 50 Ph 51 Total du volume purgé COMMENTAL Odeur:	>68	150,3 150,3 119 130 140 150,3	Jajes	rien rien 3 dien	(345) 121.36 121.) pécifié:	2. 2. 8. 8. 8. 7. 8. 6.	4. e.e	97 19 19 19	Non	Eau initation of the second	este part part part part priots work
Ph 46 Ph 46 Ph 45 Ph 45 Ph 50 Ph 52 Total du volume purgé COMMENTAI Odeur: Turbidité: Remarque:	>68	150,3 150,3 119 130 140 150,3	Jajes	rien rien 3 dien	(345) 121.36 121.) pécifié:	21,8 3,8 9,7 8,6	40 8: eas	97 19 19 19	Non	Eau initation of the second	etie part part nouv exist ruits voir ler la
PLIS PLYO PLYO PLYO PLYO PLYO PLYO PLYO PLYO	>68	150,3 150,3 190,3 190,3 190 190 190,3	Jajes	rien rien 3 dien	(345) 121-36 121-36	2.8 3.8 8.7 8.6 GRANDEUR	4. e.e	97 19 19 19	Non	Eau initation of the second of	este part part part part priots work
Total du volume purgé COMMENTAL Odeur: Turbidité: Remarque:	>68	150,3 150,3 190,3 190,3 190 190 190,3	6 Oui	rien rien 3 dien	(345) 121-36 121-36	2.8 3.8 8.7 8.6 GRANDEUR	40 8: eas	97 19 19 19	Non Opaque Filtre	Eau initation of the second	este part part part part priots work

N° puits d'observation:	Muse	3-03	N° pro	ojet:	09-1428-00	13 7065	•
dentification du projet:	· Was la	whenk too7/Grow	Repré	seniant du ter	rain: R. Duck	cont	_
	4. 78 € Ticoror	Soluil + vents =	70 L. Date:		7 409 /09	104-05	
Température:		Salva + Cents	<u>U CL</u> /E		10017017	2.1-50	-
No(s) d'échantillon(s):							_
NIVEAU D'EAU ET CA	ALCUL D'U	IN VOLUME DE PURG		d'un volume de p n forage de 200 i	ourge dans le cas d'un pu mm ¢:	its de 50 mm ф installé	
rofondeur de l'eau;		A NA	_(m) Volums	d'eau dans tub	age;	(A-B)*2,0 =litres	
rofondeur du puits:	•	B 100	<u>∴(m)</u> Volume	d'eau dans l'en	veloppe de sable:	C * 8,8 =litres	
ongueur saturée de l'en	veloppe de s	able filtrant: C Z6	(m) Total th	écnqué d'úπ vol	ume de purge (TVP).	litres	-
·			3 1				ļ.
LISTE DES ÉQUIPEM							
pH et thermomètre:	Modèle;	HANNA PH JEC	N° série:	***	Tampon et calibration	: θ4 e7 θ10	
Conductivimètre:	Modèle:		N° série:	-	Solution calibration: /	11345 et	
	* * * · · ·	· ·			· · · · · · · · · · · · · · · · · · ·	, -	1
Tube à clapet	9 Pompe	e à Inertie (Waterra)	Autre:				
		<u> </u>		·			-}
DÉVELOPPEMENT /	PURGE TH	ÉORIQUE DU PUITS					
Volume à purger:	TTVP :	x nombre de purge =	456+	36+25 litr	≘s		
	- 11VI - 4			15			
Débit approximatif:		I/min.	,			.•	
Début:		Pix:				•	
Marine Nines	au d'eau	Volume retiré (L)	Temp. (°C)	рН	Cond. (uS/cm)	Remarques.	1
Heure Nive	150.5	20 { 20 (365)	Brassa	 	eau.	Acret de la ginisatrice	durant
069/09/05-	1.000			9		2/470 pour blast.	
150 2 9625	150.5	. 14	Brusso	er der.	Veair		_
9625	100	Trien	· -	<i>P</i> _ ~			
9430	120	\<1e.	· -				_}
9435	135	251.) .102. (375)	75,8	7.14	80	<u> </u>	
9445	150,5	158 (396)	76,3	7.18	77	•	
	17507.2	1 (140)	1	1	1		
94.55		Injection 15 P.	₩ oct	<i>ي</i>	· e	lan de sorg	سعو
10h30	 	Injection 25 l.	8,9	6.70	· 76	can de la	1.
8430 × 1/450	150,6		Brassa		l'ean	O, Im de glace	Hordus
			1	7		0 1	4
Total du volume purgé:							
COMMENTAIRES							
Odeur :	8 Non	θ Oui Specifié:		·	Irisation: 6 Non	⊕ Oui `	
	Clair	1 1 4 1	1.1.1.1		III Opaque		1
	J1011					•	
Remarque:				<u>.</u>			∄ .
			GRANDEUR		. '		7
CONTENANT TYPE		mL 100 mL 250 ml	- 500 m/	1 L 2 I	Filt _ 4 L	rés Preservatifs	
•		time too title won title	TY	2	6 Oui	6 Non	!
	Verre		~ X		6 Oui	6 Non	1.
2 (Plastique 6	Verre		- 1/-				ا

Attention: Valérie Bertrand
GOLDER ASSOCIATES LTD
OTTAWA
32 Steacie Dr.
Kanata, ON
Canada K2K 2A9

Your Project #: 09-1428-0013-2000

Site: HEADOWBANK Your C.O.C. #: E777270

Report Date: 2009/09/14

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A944820 Received: 2009/09/09, 9:00

Sample Matrix: GROUND WATER

Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed La	aboratory Method	Analytical Method
Total Alkalinity (pH end point 4.5)	2	2009/09/10	2009/09/10 ST	TL SOP-00038/6, STL	SM 2320 B-Titration
			SC	OP-00057/1	
Anions	2	2009/09/09	2009/09/10 ST	TL SOP-00014/6	MA. 300 - Ions 1.2
Conductivity	2	2009/09/10	2009/09/10 ST	TL SOP-00038/6	SM 2510
Disposal Charges	2	N/A	2009/09/09		
Fluoride	2	2009/09/10	2009/09/10 ST	TL SOP-00004/3	SM 4500-F- C.
Hardness	2	2009/09/10	2009/09/10 ST	TL SOP-00006/7	MA.200- Mét 1.1
Mercury by ICPMS	2	2009/09/10	2009/09/10 ST	TL SOP-00042/7	MA. 200 - Mét 1.1
Metals by ICPMS	2	2009/09/10	2009/09/10 ST	TL SOP-00006/7	MA.200- Mét 1.1
Ammonia Nitrogen	2	2009/09/10	2009/09/10 ST	TL SOP-00040/3	MA. 300 - N 1.1
Nitrate and/or Nitrite	2	2009/09/09	2009/09/10 ST	TL SOP-00014/6	MA. 300 - Ions 1.2
рН	2	2009/09/09	2009/09/09 ST	TL SOP-00016/8; STL	MA.100- pH1.1
			SC	OP-00038/6	
Total Dissolved Solids	2	2009/09/09	2009/09/09 ST	TL SOP-00050/1	MA. 115 - S.D. 1.0
Turbidity	2	N/A	2009/09/10 ST	TL SOP-00022/5	MA. 103 - Tur. 1.0

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

LEILA SABOURI, B. Sc., Biochemist, Project manager Email: leila.sabouri@maxxamanalytics.com

Phone# (514) 448-9001 Ext:4227

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CALA have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Page 1 of 9

2009/09/14 17:16

Maxxam Job #: A944820 Report Date: 2009/09/14 GOLDER ASSOCIATES LTD Client Project #: 09-1428-0013-2000 Project name: HEADOWBANK

Sampler Initials: RD

METALS (GROUND WATER)

	Units	MW03-01	MW03-01-DUP	RDL	QC Batch
COC Number		E777270	E777270		
Sampling Date		2009/09/08	2009/09/08		
Maxxam ID		154321	154359		

METALS					
Mercury (Hg)	mg/L	ND	ND	0.0001	658261
Aluminum (Al)	mg/L	ND	ND	0.03	658142
Calcium (Ca)	mg/L	100	99	1	658266
Magnesium (Mg)	mg/L	46	47	1	658266
Silver (Ag)	mg/L	ND	ND	0.0003	658142
Total Hardness (CaCO3)	mg/L	450	440	1	658266
Arsenic (As)	mg/L	ND	ND	0.002	658142
Barium (Ba)	mg/L	0.42	0.39	0.03	658142
Cadmium (Cd)	mg/L	ND	ND	0.001	658142
Copper (Cu)	mg/L	ND	ND	0.003	658142
Lead (Pb)	mg/L	ND	0.001	0.001	658142
Manganese (Mn)	mg/L	0.22	0.22	0.003	658142
Molybdenum (Mo)	mg/L	ND	ND	0.03	658142
Nickel (Ni)	mg/L	ND	ND	0.01	658142
Selenium (Se)	mg/L	ND	ND	0.001	658142
Sodium (Na)	mg/L	420	430	0.03	658142
Zinc (Zn)	mg/L	ND	ND	0.003	658142
Iron (Fe)	mg/L	ND	ND	0.1	658142
Potassium (K)	mg/L	11	11	0.1	658142
Thallium (TI)	mg/L	ND	ND	0.01	658142

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A944820 Report Date: 2009/09/14 **GOLDER ASSOCIATES LTD** Client Project #: 09-1428-0013-2000 Project name: HEADOWBANK

Sampler Initials: RD

CONVENTIONAL PARAMETERS (GROUND WATER)

Maxxam ID		154321	l54321	154359		
Sampling Date		2009/09/07	2009/09/07	2009/09/07		
COC Number		E777270	E777270	E777270		
	Units	MW03-01	MW03-01	MW03-01-DUP	RDL	QC Batch
			Lab-Dup			
				1		
CONVENTIONALS						
Conductivity	mS/cm	3.3	3.4	3.4	0.001	658248
Fluoride (F)	mg/L	0.1	N/A	ND	0.1	658344
Nitrates (N-NO3-)	mg/L	ND	N/A	ND	0.02	658073
Nitrites (N-NO2-)	mg/L	ND	N/A	ND	0.4	658073
Nitrogen ammonia (N-NH3)	mg/L	0.54	N/A	0.51	0.02	658246
рН	рН	6.71	N/A	7.20	N/A	657955
Turbidity	NTU	2.1	N/A	8.2	0.1	658518
Alkalinity Total (as CaCO3) pH 4.5	mg/L	15	17	18	2	658391
Chloride (CI)	mg/L	990	N/A	950	10	658074
Sulfates (SO4)	mg/L	3.9	N/A	3.6	0.1	658074
Total Dissolved Solids	mg/L	1900	N/A	1900	10	657950

ND = Not detected

N/A = Not Applicable

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam Job #: A944820 Report Date: 2009/09/14 GOLDER ASSOCIATES LTD Client Project #: 09-1428-0013-2000 Project name: HEADOWBANK

Sampler Initials: RD

GENERAL COMMENTS

Condition of sample(s) upon receipt: GOOD

METALS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries nor for the method blank results.

CONVENTIONAL PARAMETERS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries nor for the method blank results. Reported detection limits are multiplied by dilution factors used for sample analysis.

Results relate only to the items tested.

GOLDER ASSOCIATES LTD Attention: Valérie Bertrand

Client Project #: 09-1428-0013-2000

P.O. #:

Project name: HEADOWBANK

Quality Assurance Report Maxxam Job Number: A944820

QA/QC			Date		
Batch			Analyzed		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units
657950 FSI	Spiked Blank	Total Dissolved Solids	2009/09/09	100	%
Spiked Blank DUP	Total Dissolved Solids	2009/09/09	99	%	
	Method Blank	Total Dissolved Solids	2009/09/09	ND, RDL=10	mg/L
657955 DKH	QC STANDARD	pH	2009/09/09	99	%
	Spiked Blank	pH	2009/09/09	100	%
658073 DKH	Spiked Blank	Nitrates (N-NO3-)	2009/09/10	93	%
	·	Nitrites (N-NO2-)	2009/09/10	103	%
	Method Blank	Nitrates (N-NO3-)	2009/09/10	ND, RDL=0.02	mg/L
		Nitrites (N-NO2-)	2009/09/10	ND, RDL=0.02	mg/L
658074 DKH	Spiked Blank	Chloride (CI)	2009/09/10	94	%
		Sulfates (SO4)	2009/09/10	90	%
	Method Blank	Chloride (CI)	2009/09/10	ND, RDL=0.05	mg/L
	Wictioa Blank	Sulfates (SO4)	2009/09/10	ND, RDL=0.00	mg/L
658142 KQ	Spiked Blank	Aluminum (Al)	2009/09/11	94	//////////////////////////////////////
330142 NQ	Opiked Dialik	Silver (Ag)	2009/09/11	104	%
		, •,		101	%
		Arsenic (As)	2009/09/11		
		Barium (Ba)	2009/09/11	112	%
		Cadmium (Cd)	2009/09/11	101	%
		Copper (Cu)	2009/09/11	103	%
		Lead (Pb)	2009/09/11	100	%
		Manganese (Mn)	2009/09/11	103	%
		Molybdenum (Mo)	2009/09/11	106	%
		Nickel (Ni)	2009/09/11	101	%
		Selenium (Se)	2009/09/11	95	%
	Sodium (Na)	2009/09/11	107	%	
		Zinc (Zn)	2009/09/11	98	%
	Iron (Fe)	2009/09/11	101	%	
		Potassium (K)	2009/09/11	111	%
		Thallium (TI)	2009/09/11	110	%
	Method Blank	Aluminum (Al)	2009/09/10	ND, RDL=0.03	mg/L
		Silver (Ag)	2009/09/10	ND, RDL=0.0003	mg/L
		Arsenic (As)	2009/09/10	ND, RDL=0.002	mg/L
		Barium (Ba)	2009/09/10	ND, RDL=0.03	mg/L
		Cadmium (Cd)	2009/09/10	ND, RDL=0.001	mg/L
		Copper (Cu)	2009/09/10	ND, RDL=0.003	mg/L
		Lead (Pb)	2009/09/10	ND, RDL=0.001	mg/L
		Manganese (Mn)	2009/09/10	ND, RDL=0.003	mg/L
		Molybdenum (Mo)	2009/09/10	ND, RDL=0.03	mg/L
	Nickel (Ni)	2009/09/10	ND, RDL=0.01	mg/L	
		Selenium (Se)	2009/09/10	ND, RDL=0.001	mg/L
	Sodium (Na)	2009/09/10	ND, RDL=0.03	mg/L	
	Zinc (Zn)	2009/09/10	ND, RDL=0.003	mg/L	
		Iron (Fe)	2009/09/10	ND, RDL=0.003	mg/L
		Potassium (K)	2009/09/10	ND, RDL=0.1	mg/L
		Thallium (TI)	2009/09/10	ND, RDL=0.1	mg/L
558246 DKH	QC STANDARD	Nitrogen ammonia (N-NH3)	2009/09/10	ND, NDL=0.01	111g/L %
DOUZHU DINIT	Spiked Blank	Nitrogen ammonia (N-NH3)	2009/09/10	104	% %
	Method Blank	Nitrogen ammonia (N-NH3)		ND, RDL=0.02	
2E0040 AV0		` ,	2009/09/10	•	mg/L
658248 AK3	QC STANDARD	Conductivity	2009/09/10	103	%
	Spiked Blank	Conductivity	2009/09/10	104	%
250004 1/2	Method Blank	Conductivity	2009/09/10	ND, RDL=0.001	mS/cm
658261 KQ	Spiked Blank	Mercury (Hg)	2009/09/10	99	%
	Method Blank	Mercury (Hg)	2009/09/10	ND, RDL=0.0001	mg/L
658266 KQ	Spiked Blank	Calcium (Ca)	2009/09/10	96	%
		Magnesium (Mg)	2009/09/10	102	%

GOLDER ASSOCIATES LTD Attention: Valérie Bertrand

Client Project #: 09-1428-0013-2000

P.O. #:

Project name: HEADOWBANK

Quality Assurance Report (Continued)

Maxxam Job Number: A944820

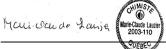
QA/QC			Date		
Batch			Analyzed		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units
658266 KQ	Method Blank	Calcium (Ca)	2009/09/10	ND, RDL=1	mg/L
		Magnesium (Mg)	2009/09/10	ND, RDL=1	mg/L
		Total Hardness (CaCO3)	2009/09/10	ND, RDL=1	mg/L
658344 AK3	QC STANDARD	Fluoride (F)	2009/09/10	94	%
	Spiked Blank	Fluoride (F)	2009/09/10	107	%
	Method Blank	Fluoride (F)	2009/09/10	ND, RDL=0.1	mg/L
658391 AK3	QC STANDARD	Alkalinity Total (as CaCO3) pH 4.5	2009/09/10	94	%
	Spiked Blank	Alkalinity Total (as CaCO3) pH 4.5	2009/09/10	103	%
	Method Blank	Alkalinity Total (as CaCO3) pH 4.5	2009/09/10	6, RDL=2	mg/L
658518 LI	QC STANDARD	Turbidity	2009/09/10	92	%
	Method Blank	Turbidity	2009/09/10	0.1, RDL=0.1	NTU

RDL = Reportable Detection Limit

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.



Validation Signature Page

Maxxam Job #: A944820

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

DELIA BARBUL, B.Sc., Chemist, Analyst 2

MARIE-CLAUDE LAUZHER, B.Sc., Chemist, Analyst 2

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CALA have approved this reporting process and electronic report format.

Leila Sabouri

Bertrand, Valerie [Valerie_Bertrand@golder.com] From:

Tuesday, September 08, 2009 5:07 PM Sent:

Leila Sabouri: Melanie Leclerc To:

Duchesne Jr., Roger; St-Laurent, Francois Cc:

Subject: Meadowbank - Une autre glacière sensée arriver demain matin, mecredi

Francois St-Laurent de Golder devrait vous emmener une glacière contenant un échantillon d'eau souterraine MW03-01 et son duplicata provenant du site Meadowbank au Nunavut. Il la donnera en main propre à Leila demain matin (à moins que la glacière ai manquée le vol nolisé – à confirmer par Roger).

Prière d'analyser l'échantillon et son duplicata pour les paramètres suivants, délais de 48 heures (see added conductivity):

pH, alkalinity, turbidity, hardness, ammonia nitrogen, nitrate, nitrite, chloride, fluoride, sulphate, total dissolved solids (TDS), conductivity

dissolved metals: aluminum, arsenic, barium, cadmium, calcium, copper, iron lead, manganese, magnesium, mercury, molybdenum, nickel, potassium, selenium, silver, sodium, thallium and zinc.

Svp confirmer la réception des échantillons lorsque vous les aurez en main. Numéro projet: 09-1428-0013

Merci à l'avance,

Valérie Bertrand, M.Sc.A., P.Geo. | Associate, Senior Geochemist | Golder Associates Ltd. 32 Steacie Drive, Kanata ON | Canada | K2K 2A9 T: [+1] 613.592.9600 ext. 3268 | M: [+1] 613.978.0544 | F: [+1] 613.592.9601 | E: vbertrand@golder.com | www.golder.com

This email transmission is confidential and may contain proprietary information for the exclusive use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify the sender and delete all copies. Electronic media is susceptible to unauthorised modification, deterioration and incompatibility. Accordingly, the electronic media version of any work product may not be relied upon.

Please consider the environment before printing this email.

From: Bertrand, Valerie

Sent: August 31, 2009 4:34 PM To: 'Leila Sabouri'; 'Melanie Leclerc'

Cc: Duchesne Jr., Roger; St-Laurent, Francois

Subject: Meadowbank - échantillon d'eau souterraine arrivera mardi matin.

Importance: High

Bonjour Leila et Mélanie,

François St-Laurent de notre bureau de Montréal ira porter une(?) glacière avec les échantillons du puit MW08-02 de Meadowbank.

A analyser est un échantillon d'eau MW08-02 et son duplicata, faire l'analyse du duplicata à partir d'une bouteille différente prévue pour le meme paramètre (le meme type de bouteille/préservatif).

Aussi, s'il vous plait faire uniquement l'analyse des paramètres en liste dans le courriel ci-bas (et vous assurer de faire les métaux dissous demandés, non les métaux totaux).

S'il y a des différences avec le bordereau inclu avec la glacière, ce courriel prévaut. Syp m'envoyer une confirmation de réception d'échantillon avec confirmation de la liste analytique. Merci à l'avance.

Analytique

L. J. COOU AVERIUS DARWII, OCHRETTUY (WUSUSU) WIT 304 737 boul. Barette, Chicoutimi (Québec) G7J 4C4

reseptione : (410) 000-0704

relecopieur : (418) 000-0094

www.maxxamanalytics.com

Téléphone : (418) 543-3788

Télécopieur : (418) 543-8994

Info. Facturation Info. Rapport (si différent de Facturation) Projet / Site : HEADOWBANK No. de commande : Compagnie: Golder Ass. Compagnie: No. de projet :09-1428-6813 Zoos No. de cotation : Adresse: 32 Steavie Drive Adresse: Attention de : V. Bertram Attention de : 16 élé, egu*** Téléphone: 5613-592-9600 Téléphone : Telecopieur: 613-592-9601 Telecopieur : HAM Phenois (Color.) Métaux Lourds (Cd, Cr, Cu, Ni, Pb, Zn) Š Soufre (S-Tot.) ART. 11 Échantillonneur : Échantillonneur : Netaux ICP politique - 13 élé,-sol** So. Je déclare par la présente comprendre et accepter les conditions et modalités BPC (Congénères) (GC-MS) CN-Ox. de Maxxam telles que décrites au verso du présent formulaire. Eau Potable: ORG. 8 SUN ART. 10 ¥. Phénois (GC/MS) Échantillon COV (EPA 624) ਹ Identification de l'échantillon Prélèvement Sulfure (SHz) COLIF (Fec.) de Type filtrer (point de prélèvement) (date / heure) contenants d'eau Autre SOF 5 MW03-01 5 MW03-01-DUP 5 MW03-01 5 MW03-01-DUP LÉGENDE: " Métaux 13 éléments (Ag. As. Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn), *** Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Co, Cu, Mn, Mo, Ni, Pb, Se, Na, Zn). Types d'eau : S = Souterraine P = Potable DL = Déchet liquide Délais : 24h 248h 72h Régulier Condition générale à la réception : Sur = Surface E = Eau usée C = Captage A moins d'être clairement identifié, tout échantillon d'eau reçu chez Maxxam sera considéré comme non-potable et ne sera pas soumis aux exigences du Normes/Réglement Applicables : (À remplir) Chaîne de responsabilité règlement sur la qualité de l'eau potable. Déssaisi par : 7 Date : 2009/6 Reçu par Remarques: abound Déssaisi par : Date: 0 Nombre de glacières : Température de réception : Transport des échantillons : Par client Personnel MAXXAM Courrier (spécifier) :

Attention: Valérie Bertrand
GOLDER ASSOCIATES LTD
OTTAWA
32 Steacie Dr.
Kanata, ON
Canada K2K 2A9

Your Project #: 09-1428-0013-2000

Site: MEADOWBANK Your C.O.C. #: E777266

Report Date: 2009/09/15

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A943489 Received: 2009/08/31, 16:35

Sample Matrix: GROUND WATER

Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Alkalinity (pH end point 4.5)	2	2009/09/02	2009/09/02	STL SOP-00038/6, STL	SM 2320 B-Titration
,				SOP-00057/1	
Anions	2	2009/09/01	2009/09/01	STL SOP-00014/6	MA. 300 - Ions 1.2
Conductivity	2	2009/09/14	2009/09/14	STL SOP-00038/6	SM 2510
Disposal Charges	2	N/A	2009/09/01		
Fluoride	2	2009/09/02	2009/09/02	STL SOP-00004/3	SM 4500-F- C.
Hardness	2	2009/09/02	2009/09/02	STL SOP-00006/7	MA.200- Mét 1.1
Mercury by ICPMS	2	2009/09/02	2009/09/02	STL SOP-00042/7	MA. 200 - Mét 1.1
Metals by ICPMS	2	2009/09/02	2009/09/02	STL SOP-00006/7	MA.200- Mét 1.1
Ammonia Nitrogen	2	2009/09/02	2009/09/02	STL SOP-00040/3	MA. 300 - N 1.1
Nitrate and/or Nitrite	2	2009/09/01	2009/09/01	STL SOP-00014/6	MA. 300 - Ions 1.2
pH	2	2009/09/01	2009/09/01	STL SOP-00016/8; STL	MA.100- pH1.1
				SOP-00038/6	·
Total Dissolved Solids	2	2009/09/01	2009/09/01	STL SOP-00050/1	MA. 115 - S.D. 1.0
Turbidity	2	N/A	2009/09/01	STL SOP-00022/5	MA. 103 - Tur. 1.0

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

LEILA SABOURI, B. Sc., Biochemist, Project manager Email: leila.sabouri@maxxamanalytics.com

Phone# (514) 448-9001 Ext:4227

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CALA have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Page 1 of 10

2009/09/15 06:01

Maxxam Job #: A943489 Report Date: 2009/09/15 GOLDER ASSOCIATES LTD Client Project #: 09-1428-0013-2000 Project name: MEADOWBANK

Sampler Initials: RD

METALS (GROUND WATER)

	Units	MW08-02	MW08-02-DUP	RDL	QC Batch
COC Number		E777266	E777266		
Sampling Date		2009/08/29	2009/08/29		
Maxxam ID		147144	I47172		

METALS					
Mercury (Hg)	mg/L	ND	ND	0.0001	655906
Aluminum (Al)	mg/L	ND	ND	0.03	655903
Calcium (Ca)	mg/L	51	340	1	655905
Magnesium (Mg)	mg/L	27	ND	1	655905
Silver (Ag)	mg/L	ND	ND	0.0003	655903
Total Hardness (CaCO3)	mg/L	240	850	1	655905
Arsenic (As)	mg/L	0.003	ND	0.002	655903
Barium (Ba)	mg/L	0.04	ND	0.03	655903
Cadmium (Cd)	mg/L	ND	ND	0.001	655903
Copper (Cu)	mg/L	ND	ND	0.003	655903
Lead (Pb)	mg/L	ND	ND	0.001	655903
Manganese (Mn)	mg/L	ND	ND	0.003	655903
Molybdenum (Mo)	mg/L	0.07	0.04	0.03	655903
Nickel (Ni)	mg/L	ND	ND	0.01	655903
Selenium (Se)	mg/L	ND	ND	0.001	655903
Sodium (Na)	mg/L	36	24	0.03	655903
Zinc (Zn)	mg/L	0.005	ND	0.003	655903
Iron (Fe)	mg/L	ND	ND	0.1	655903
Potassium (K)	mg/L	2.0	1.3	0.1	655903
Thallium (TI)	mg/L	ND	ND	0.01	655903

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A943489 Report Date: 2009/09/15 **GOLDER ASSOCIATES LTD** Client Project #: 09-1428-0013-2000 Project name: MEADOWBANK

Sampler Initials: RD

CONVENTIONAL PARAMETERS (GROUND WATER)

Maxxam ID		147144	147172	147172		
Sampling Date		2009/08/29	2009/08/29	2009/08/29		
COC Number		E777266	E777266	E777266		
	Units	MW08-02	MW08-02-DUP	MW08-02-DUP	RDL	QC Batch
				Lab-Dup		
CONVENTIONALS						
Conductivity	mS/cm	0.70	0.71	N/A	0.001	659319
Fluoride (F)	mg/L	0.3	0.3	N/A	0.1	656210
Nitrates (N-NO3-)	mg/L	ND	ND	ND	0.02	655836
Nitrites (N-NO2-)	mg/L	ND	ND	ND	0.02	655836
Nitrogen ammonia (N-NH3)	mg/L	0.05	0.05	N/A	0.02	656017
рН	рН	7.95	7.96	N/A	N/A	655857
Turbidity	NTU	2.2	2.2	N/A	0.1	655852
Alkalinity Total (as CaCO3) pH 4.5	mg/L	76	76	N/A	2	656261
Chloride (CI)	mg/L	160	160	180	0.5	655838
Sulfates (SO4)	mg/L	3.0	2.9	3.0	0.1	655838
Total Dissolved Solids	mg/L	530	510	N/A	10	655731

ND = Not detected

N/A = Not Applicable

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam Job #: A943489 Report Date: 2009/09/15 GOLDER ASSOCIATES LTD Client Project #: 09-1428-0013-2000 Project name: MEADOWBANK

Sampler Initials: RD

GENERAL COMMENTS

Condition of sample(s) upon receipt: GOOD except for the following:

Metals by ICPMS: Sample received > 24hrs after sampling, filtered and preserved in the lab.: I47144, I47172

Nitrate and/or Nitrite: Holding time already past.: 147144, 147172

pH: Holding time already past.: I47144, I47172 Turbidity: Holding time already past.: I47144, I47172

METALS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries nor for the method blank results.

Samples I47144 and I47172 were filtered in the laboratory prior to analyzing for metals. The corresponding metal results are then dissolved metals.

CONVENTIONAL PARAMETERS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries nor for the method blank results. Reported detection limits are multiplied by dilution factors used for sample analysis.

This report supersedes all previous reports with the same Maxxam job number

Results relate only to the items tested.

GOLDER ASSOCIATES LTD Attention: Valérie Bertrand

Client Project #: 09-1428-0013-2000

P.O. #:

Project name: MEADOWBANK

Quality Assurance Report Maxxam Job Number: A943489

QA/QC			Date		
Batch			Analyzed		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units
655731 FSI	Spiked Blank	Total Dissolved Solids	2009/09/01	99	%
	Spiked Blank DUP	Total Dissolved Solids	2009/09/01	100	%
	Method Blank	Total Dissolved Solids	2009/09/01	ND, RDL=10	mg/L
655836 AK3	Spiked Blank	Nitrates (N-NO3-)	2009/09/01	101	g/ _ %
7110	ориса Ванк	Nitrites (N-NO2-)	2009/09/01	93	%
	Method Blank	Nitrates (N-NO3-)	2009/09/01	ND, RDL=0.02	mg/L
	WELLIOU DIALIK	,		ND, RDL=0.02 ND, RDL=0.02	-
SEEDOO AVO	Cnilead Dlank	Nitrites (N-NO2-)	2009/09/01	•	mg/L
555838 AK3	Spiked Blank	Chloride (CI)	2009/09/01	101	%
	M (1 15)	Sulfates (SO4)	2009/09/01	101	%
	Method Blank	Chloride (CI)	2009/09/01	ND, RDL=0.05	mg/L
		Sulfates (SO4)	2009/09/01	ND, RDL=0.1	mg/L
355852 CN1	QC STANDARD	Turbidity	2009/09/01	96	%
	Method Blank	Turbidity	2009/09/01	0.1, RDL=0.1	NTU
55857 AK3	QC STANDARD	pH	2009/09/01	100	%
	Spiked Blank	рН	2009/09/01	100	%
55903 SC5	Spiked Blank	Aluminum (AI)	2009/09/02	96	%
		Silver (Ag)	2009/09/02	94	%
		Arsenic (As)	2009/09/02	87	%
		Barium (Ba)	2009/09/02	90	%
		Cadmium (Cd)	2009/09/02	98	%
		Copper (Cu)	2009/09/02	85	%
		Lead (Pb)	2009/09/02	91	%
		Manganese (Mn)	2009/09/02	88	%
		Molybdenum (Mo)	2009/09/02	97	%
		Nickel (Ni)	2009/09/02	82	%
		Selenium (Se)	2009/09/02	91	%
		Sodium (Na)	2009/09/02	83	%
		Zinc (Zn)	2009/09/02	86	%
		Iron (Fe)	2009/09/02	98	%
		Potassium (K)	2009/09/02	83	%
		Thallium (TI)	2009/09/02	94	%
	Method Blank	Aluminum (Al)	2009/09/02	ND, RDL=0.03	mg/L
		Silver (Ag)	2009/09/02	ND, RDL=0.0003	mg/L
		Arsenic (As)	2009/09/02	ND, RDL=0.002	mg/L
		Barium (Ba)	2009/09/02	ND, RDL=0.03	mg/L
		Cadmium (Cd)	2009/09/02	ND, RDL=0.001	mg/L
		Copper (Cu)	2009/09/02	ND, RDL=0.003	mg/L
		Lead (Pb)	2009/09/02	ND, RDL=0.001	mg/L
		Manganese (Mn)	2009/09/02	ND, RDL=0.003	mg/L
		Molybdenum (Mo)	2009/09/02	ND, RDL=0.03	mg/L
		Nickel (Ni)	2009/09/02	ND, RDL=0.01	mg/L
		Selenium (Se)	2009/09/02	ND, RDL=0.001	mg/L
		Sodium (Na)	2009/09/02	ND, RDL=0.001	mg/L
		Zinc (Zn)	2009/09/02	ND, RDL=0.03	mg/L
				•	-
		Iron (Fe)	2009/09/02	ND, RDL=0.1	mg/L
		Potassium (K)	2009/09/02	ND, RDL=0.1	mg/L
SEE00E 00E	Online d. Di.	Thallium (TI)	2009/09/02	ND, RDL=0.01	mg/L
555905 SC5	Spiked Blank	Calcium (Ca)	2009/09/02	110	%
		Magnesium (Mg)	2009/09/02	91	%
	Method Blank	Calcium (Ca)	2009/09/02	ND, RDL=1	mg/L
		Magnesium (Mg)	2009/09/02	ND, RDL=1	mg/L
		Total Hardness (CaCO3)	2009/09/02	ND, RDL=1	mg/L
555906 SC5	Spiked Blank	Mercury (Hg)	2009/09/02	89	%
-	Method Blank	Mercury (Hg)	2009/09/02	ND, RDL=0.0001	mg/L
				,	9, -

GOLDER ASSOCIATES LTD Attention: Valérie Bertrand

Client Project #: 09-1428-0013-2000

P.O. #:

Project name: MEADOWBANK

Quality Assurance Report (Continued)

Maxxam Job Number: A943489

QA/QC			Date		
Batch			Analyzed		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units
656017 DKH	Spiked Blank	Nitrogen ammonia (N-NH3)	2009/09/02	94	%
	Method Blank	Nitrogen ammonia (N-NH3)	2009/09/02	ND, RDL=0.02	mg/L
656210 AK3	QC STANDARD	Fluoride (F)	2009/09/02	94	%
	Spiked Blank	Fluoride (F)	2009/09/02	99	%
	Method Blank	Fluoride (F)	2009/09/02	ND, RDL=0.1	mg/L
656261 AK3	QC STANDARD	Alkalinity Total (as CaCO3) pH 4.5	2009/09/02	94	%
	Spiked Blank	Alkalinity Total (as CaCO3) pH 4.5	2009/09/02	98	%
	Method Blank	Alkalinity Total (as CaCO3) pH 4.5	2009/09/02	ND, RDL=2	mg/L
659319 AK3	QC STANDARD	Conductivity	2009/09/14	101	%
	Spiked Blank	Conductivity	2009/09/14	101	%
	Method Blank	Conductivity	2009/09/14	ND, RDL=0.001	mS/cm

RDL = Reportable Detection Limit

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Validation Signature Page

Maxxam Job #: A943489

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Information Outs Barby
OUEBEC

DELIA BARBUL, B.Sc., Chemist, Analyst 2

Marie Claude & cunja Marie Claude Lauder 2003-110

MARIE-CLAUDE LAUZHER, B.Sc., Chemist, Analyst 2

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CALA have approved this reporting process and electronic report format.

www.maxxamanalytics.com

Info. Facturation		Info. Rapport (si différent de Facturation)						No. de commande : Pro									Proje	rojet / Site: MEASON BANK													
Compagnie: Golder as		Compagnie :					N	o. de	e cot	atio	n:									1	VO. 1	lo. de projet : 09-1418-0013 zooo									
Adresse: 32 Steade	Detal						1436			nontes:					-			9			787/1059	Tax ta	100				100				
Kanta, Ontario, KZK	249															NO: + NO:		TURBID									lnes	TKW,	0		
Attention de : U. Bertran	d	Atte	Attention de :												8		1/1									Hardnes	7	CON			
Téléphone : 613-592-96	00	Télé	phone	<u> </u>										16 élé. éau		- S		ALK,			TOO			THM			Turbid,	U'C	100		
Telecopieur: 613-592-96	01								HAM	Or.)				18	Autres				П	Pag		_		<u></u>	BHAA		Tar	000	+ HG	03	
Échantillonneur : 7.0.		Écha	antillor	r: nneur:					П	Phénais (Color.)			Pb, Zn	**los		8		MES	-Tot.	CN Libre	Turbidité		Q	INOR.	(t)	EPA 8330	AIK,	opod,	TALS,+	F	
Je déclare par la présente compr de Maxxam telles que décrites au	endre ı versc	et acc	cepter	les conditions				H& G Tot.	BTEX			(GC-MS)	7, C7, Cu, Ni	que - 13 élé.	Sélénium-sol	Š	p-Tot.	Conductivité 🔀	Soufre (S-Tot.)	CN-0x.			ART, 11	ORG.	COLIF (Tot.)		PH, A	F, 0P	HETA	13D	
Identification de l'échantillon (point de prélèvement)	Éd	chantil Type d'eau	lon Autre	Prélèvement (date / heure)	à filtrer	nombre de contenants	HP (C#-Csi)	H & G Min.	COV (EPA 624)	Phénois (GC/MS)	HAP	BPC (Congénères) (GC-MS)	Métaux Lourds (Cd, Cr, Cu, NI, Pb, Zn)	Métaux ICP politique - 13 élésol**	Mercure	0	NTK NHS	pH Cond	Suffure (SHs)	CN-Tot.	DBOs DCO	RDS RMD	CUM ART. 10	Eau Potable: 06	COLIF (Fec.)	Explosif EPA 8095	Autre (spécifier) ;	ANION	P-tot, 1	155,	
MW08-0Z		5		2009/03/29		12	-	-				us.			_				0,					w		u,	X			X	
						Name 2																						-			
																						0.									
																													-		
											-																				
													-					-													
							-3						-	-	-			-		-					-					\vdash	
																									4						
												4									- 02					1					
LÉGENDE : ** Métaux 13 éléments (/	Λα Λα	Do Co	d Co (Or Cu Sa Ma M	o Ni D	h 7n																								- 7	
*** Métaux 16 éléments (A	Al, Sb,	Ag, As	, Ba, C	d, Cr, Co, Cu, Mn	, Mo, N	i, Pb, S	e, Na	, Zn)																			3				
Types d'eau : S = Souterraine P = Sur = Surface E =			DL = Do	échet liquide otage		is:					72		7				Dat				_	Co	ndit	ion	géné	rale	à la	réce	eptic	n:	
Normes/Réglement Applicables : _		1363	Y - 122%	(À remplir)	A mo	oins d'ê	tre c éré c	laire	ment	ide	ntifié, otabl	tout	écha ne se	antill era p	lon o	d'eau	ı reç	u che	z M	exxa	m lu)	0	2	0	د	0			
Chaîne de responsabilité					règle	ement s	ur la	qua	litá a	la lla	mit m	tabl	e.	- Carrier							00117		1		J)				
Déssaisi par : R. Duches m (Glachière) Date : 7009/08/31 Heure / Déssaisi par : Date : Heure :			Heure ('oh	6		Reç	u par	1	l	2	al	ou	as	إصد	081	01				que			1	1						
					·A	Reç	u par	:				- V		1	5									ete							
Nombre de glacières :				Température de	e récept	ion :		v,		Ŷ												Voir souther pour									
Transport des échantillons : Par client Personnel MAXXAM					П	Cor	urrie	r (sn	écifi	er) ·											V	11	7	10r	rie	1	120	12	2		
KEENVCOCFORMQ - 04/09		200000000000000000000000000000000000000		TIQUE INC .	Contract Contract	BLEU : FACT		Pag	ge 8	of 10)	UNE : F	RETOUR	RNER A	AU CLIE	NT AV	EC RAP	PORT F	INAL				ROSI	GUE:	NT.	0 (10	mi	2009	/09/	15 0 6:	

Irina Catalina Borgea

From:

Leila Sabouri

Sent:

Tuesday, September 01, 2009 9:39 AM

To:

Irina Catalina Borgea; Montreal Login

Subject:

FW: Meadowbank - échantillon d'eau souterraine arrivera mardi matin.

Importance: High

this replaces the coc given by client

From: Bertrand, Valerie [mailto:Valerie_Bertrand@golder.com]

Sent: Monday, August 31, 2009 4:44 PM

To: Leila Sabouri; Melanie Leclerc

Cc: Duchesne Jr., Roger; St-Laurent, Francois

Subject: RE: Meadowbank - échantillon d'eau souterraine arrivera mardi matin.

SVP faire les analyses dans un délais de 48 heures à 25% de surcharge. Merci

From: Bertrand, Valerie

Sent: August 31, 2009 4:34 PM **To:** 'Leila Sabouri'; 'Melanie Leclerc'

Cc: Duchesne Jr., Roger; St-Laurent, Francois

Subject: Meadowbank - échantillon d'eau souterraine arrivera mardi matin.

Importance: High

Bonjour Leila et Mélanie,

Francois St-Laurent de notre bureau de Montréal ira porter une(?) glacière avec les échantillons du puit MW08-02 de Meadowbank.

A analyser est un échantillon d'eau MW08-02 et son duplicata, faire l'analyse du duplicata à partir d'une bouteille différente prévue pour le meme paramètre (le meme type de bouteille/préservatif).

Aussi, s'il vous plait faire uniquement l'analyse des paramètres en liste dans le courriel ci-bas (et vous assurer de faire les métaux dissous demandés, non les métaux totaux).

S'il y a des différences avec le bordereau inclu avec la glacière, ce courriel prévaut. Svp m'envoyer une confirmation de réception d'échantillon avec confirmation de la liste analytique. Merci à l'avance.

Valérie Bertrand, M.Sc.A., P.Geo. | Associate, Senior Geochemist | Golder Associates Ltd. 32 Steacie Drive, Kanata ON | Canada | K2K 2A9

T: [+1] 613.592.9600 ext. 3268 | M: [+1] 613.978.0544 | F: [+1] 613.592.9601 | E: vbertrand@golder.com | www.golder.com

This email transmission is confidential and may contain proprietary information for the exclusive use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify the sender and detete all copies. Electronic media is susceptible to unauthorised modification, deterioration and incompatibility. Accordingly, the electronic media version of any work product may not be relied upon.

Please consider the environment before printing this email.

From: Bertrand, Valerie

Sent: August 11, 2009 1:01 PM

To: 'Leila Sabouri' Cc: Duchesne Jr., Roger

Subject: Bottle order for Meadowbank project, Nunavut

Importance: High

Bonjour Leila,

Svp faire envoyer des bouteilles et agents de preservation (à côté si possible) pour l'analyse des paramètres suivants, au site Meadowbank au Nunavut:

10 échantillons des paramètres suivants:

pH, alkalinity, turbidity, hardness, ammonia nitrogen, nitrate, nitrite, chloride, fluoride, sulphate, total dissolved solids (TDS)

dissolved metals: aluminum, arsenic, barium, cadmium, calcium, copper, iron lead, manganese, magnesium, mercury, molybdenum, nickel, potassium, selenium, silver, sodium, thallium and zinc.

Svp envoyer les bouteilles dans dans un minimum de 3 glacières et apposer l'étiquette en attachement à chacune des glacières. S'il vous plait nous faire parvenir les glacières au site Meadowbank avant le mardi 18 aout prochain. M'envoyer le coupon de transfert (waybill) pour que je puisse suivre le cheminement du paquet.

Svp m'aviser le plus tôt possible pour toute question ou commentaire, ou s'il y a un empêchement. Merci,

Votre numéro de reference: 09-1428-0013/2000

Valérie Bertrand, M.Sc.A., P.Geo. | Associate, Senior Geochemist | Golder Associates Ltd. 32 Steacie Drive, Kanata ON | Canada | K2K 2A9 T: [+1] 613.592.9600 ext. 3268 | M: [+1] 613.978.0544 | F: [+1] 613.592.9601 | E: vbertrand@golder.com | www.golder.com

This email transmission is confidential and may contain proprietary information for the exclusive use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify the sender and delete all copies. Electronic media is susceptible to unauthorised modification, deterioration and incompatibility. Accordingly, the electronic media version of any work product may not be relied upon.

Please consider the environment before printing this email.