

By Licensing Administrator at 11:15 am, May 06, 2011

Αp	pen	dix	B1
$\Delta \mathbf{p}$	NEII	MIA.	וט

Report: Site Wide Water Balance Model Update

TECHNICAL MEMORANDUM

DATE September 2, 2010 **PROJECT No.** 10-1428-0004/3000

TO Mr. Stéphane Robert DOC No. 1092 Ver. 0

Agnico-Eagle Mines Limited Meadowbank Division

FROM Ryan Mason and Dan Walker

EMAIL RYMason@golder.com;
Dan_Walker2@golder.com

SITE WIDE WATER BALANCE MODEL UPDATE, MEADOWBANK GOLD PROJECT, NUNAVUT

1.0 INTRODUCTION

At the request of Agnico-Eagle Mines Ltd. (AEM), this technical memorandum presents an update to the site wide water balance for the Meadowbank Gold Project, Nunavut. The update was completed in order to evaluate mine water supply and storage requirements over the live of mine in response to an updated mine plan for the project and operational variations related to freshwater use within the mill process early in the mine life.

2.0 BACKGROUND

Details of the site wide water balance for the Meadowbank Project are provided in *Meadowbank Gold Project Updated Water Management Plan* (AEM, July 2009; Doc. No. 833). The model was developed to assist in the evaluation of the maximum operating storage volume of the contact water management infrastructure under average year climate conditions over the life the mine and under closure conditions. The model focuses specifically on contact water management infrastructure and areas that have been physically or chemically affected by mining activities.

The following summarizes the changes made to the model described in Doc. No. 833:

Dewatering

- North Portage Arm dewatering water levels and rates updated to reflect observed values to June 2010;
 and
- Estimated Bay-Goose dewatering volume not meeting TSS discharge criteria directed to the Portage Attenuation Pond for treatment prior to release to Third Portage Lake (3PL).

Updated Mine Plan

- Portage Pit active life January 2009 (Year -1; model month 27) to December 2015 (Year 6, model month 110);
- Goose Island Pit active life January 2014 (Year 5, model month 87) to December 2017 (Year 8, model month 134); and
- Vault Pit active life January 2015 (Year 6, model month 99) to December 2019 (Year 10, model month 158).

Mill Processing

- Active life January 2010 (Year 1, model month 39) to December 2019 (Year 10, model month 158);
- Process rate at mill start up (% of 8,500 tonne/day target):
 - January 2010 = 0%;
 - February 2010 = 15%;
 - March 2010 = 67%;
 - April 2010 = 69%;
 - May 2010 = 67%;
 - June 2010 = 85%;
 - July 2010 = 75%;
 - August 2010 = 80%;
 - September 2010 = 85%;
 - October 2010 = 90%;
 - November 2010 = 95%; and
 - December 2010 onwards = 100%.
- Tailings slurry solids content of 35% January through December 2010 (Year 1, model months 39 to 50), and 50.8% January 2011 (Year 2, model month 51) onwards;
- Minimum freshwater water make-up rate to process of 125.8 m³/hr prorated in 2010 following process rate at mill start up presented above; and
- Maximum reclaim pumping rate of 400 m³/hr.
- Tailings Storage Facility (TSF)
 - In-situ tailings water content of 72% January through December 2010 (Year 1, model months 39 to 50), and 40% January 2011 (Year 2, model month 51) onwards;
 - Active life January 2010 (Year 1 model month 39) to December 2019 (Year 10, model month 158); and
 - Maximum reclaim treatment rate of 15,000 m³/day starting May 2017 (Year 8, model month 127) increasing to 25,000 m³/day starting December 2019 (Year 10, model month 158).
- Rock Storage Facilities (RSFs)
 - Portage RSF active life January 2009 (Year -1, model month 27) to December 2015 (Year 6, model month 110);
 - Vault RSF active life January 2015 (Year 6, model month 110) to December 2019 (Year 10, model month 158); and

 Portage Pit rock storage life January 2013 (Year 4, model month 87) to December 2017 (Year 8, model month 134).

Attenuation and Reclaim Ponds

- Make-up water to process sourced from 3PL; no process water make-up sourced from the Portage Attenuation Pond;
- Water reporting to the Portage and Goose Island pits directed to the Reclaim Pond until January 2011 (Year 2, model month 51); then to the Attenuation Pond until the Reclaim and Attenuation Ponds combine:
- Truck wash bay water requirement of 300,000 m³/year added starting July 2010 (Year 1, model month 45); water sourced from 3PL and discharged to Reclaim Pond;
- Treated sewage water sent to Reclaim Pond via Tear Drop Lake until the end of mining in Portage Pit (December 2015, Year 6, model month 110); and
- Dust control water sourced from freshwater at a rate of 15,000 m³/year (3,000 m³/month May to September) and 5,000 m³/year (1,000 m³/month May to September) for Portage and Vault mining areas, respectively.

Open Pits

- Estimated groundwater and dike inflows and seepage rates reporting to pits redistributed based on the updated mine plan;
- Portage Pit reflooding period January 2016 (Year 7, model month 111) to August 2023 (Year 14, model month 203);
- Goose Island Pit reflooding period January 2018 (Year 10, model month 135) to August 2023 (Year 14, model month 203);
- Vault Pit reflooding period January 2020 (Year 11, model month 159) to August 2025 (Year 16, model month 226);
- Tear Drop Lake diverted to Portage Pit starting January 2016 (Year 7, model month 111) and Goose Island Pit starting January 2018 (Year 9, model month 135) to assist with pit reflooding;
- Redirection of water from 3PL to Portage and Goose Island pits starting January 2018 (Year 9, model month 135) to assist with pit reflooding; and
- Redirection of water from Wally Lake to Vault Pit starting February 2020 (Year 11, model month 160) to assist with pit reflooding.

3.0 UPDATED MODEL RESULTS

The results of the updated site water balance are summarized in Table 1 attached and in the flow logic diagrams presented on Figures 1 to 13. The results for mine years -1 (2009), 1 (2010), 2 (2011), 4 (2013), 6 (2015), 8 (2017), 10 (2019), and 12 (2021) are presented to coincide with key periods in the mine development plan with respect to water management. Time series of key water management facilities are presented on Figures 14 to 21.

3.1 Portage Area

Dewatering of the Second Portage Lake Arm directly to 3PL commenced in March 2009 (Year -1, model month 29) and continued until July 2009 (Year -1, model month 33) when TSS levels precluded direct discharge without further treatment (Figure 15). Decant of the remaining dewatering volume commenced in October 2009 (Year -1, model month 36) with the installation of two TSS treatment systems for a combined maximum treatment capacity of 1,920 m³/hr. The available TSS treatment capacity is estimated to be sufficient to complete decanting of the remaining water volume, including transfers from Bay-Goose Dike dewatering, by July 2011 (Year 2, model month 57) without the need for additional TSS management.

Dewatering of the Second Portage Arm will isolate three main basins:

- A north basin which will be used for tailings storage and a reclaim pond during the first 3.5 years of mill operations (Years 1 to 4; 2010 to 2013) (Figure 14);
- A central basin which will be used as an attenuation pond during the first 3.5 years of mill operations (2010 to 2013, Years 1 to 4), and for tailings storage and reclaim pond thereafter (Figure 15); and
- An east basin within which Portage Pit mining operations will be completed.

Under the current mine plan, the Tailings Storage Facility (TSF) will ultimately comprise the north and central basins and will be isolated from the east basin through the construction of the Central Dike.

In accordance with the existing mine water management plan (Doc. No. 833), the updated model results shown on Figure 15 assume that the Portage Attenuation Pond will be operated to minimize the amount of water stored within the facility during the open water season. This will facilitate the construction of the Central Dike and maximize the storage capacity available for the spring freshet reporting from the pond tributary area. Based on this approach, 500,000 m³ to 7.8x10⁶ m³ of water will be decanted annually to 3PL from the Portage Attenuation Pond during its operation (2010 to 2013, Years 1 to 4).

Based on the updated water balance model results shown on Figures 14 and 15, the water volume within the Reclaim Pond is expected to increase over the mine life. This is a variation from the water management plan presented in Doc. No. 833, which indicated a relatively constant reclaim pond water volume of approximately 800,000 m³ and 4.2x10⁶ m³, for Years 1 to 4 (2010 to 2013) and 6 to 9 (2015 to 2018), respectively. This variation is attributed to:

- Comparatively lower tailings slurry solids content in Year 1 (i.e., an increase in the amount of water being sent to the TSF from process);
- The maximum reclaim rated limited to 400 m³/hr,

- An increase in the minimum freshwater process rate (*i.e.*, a reduction in reclaim water demand to process) to 125.8 m³/hr:
- The addition of truck washbay water; and
- Redirection of Portage and Goose Island pit water (2010, Year 1 only) and Tear Drop Lake Water from the Attenuation Pond to the Reclaim Pond.

Nevertheless, the TSF is still predicted to have sufficient capacity to store all excess water (once reclaim demands are satisfied) reporting to the Reclaim Pond during mine operations (Figures 14 and 15) providing that reclaim treatment is in place by May 2017 (Year 8, model month 127). This differs from the water management plan presented in Doc. No. 833 which indicated that reclaim water treatment would not be required until the end of mine life. A reclaim treatment rate of 15,000 m³/day, expanding to 25,000 m³/day at the end of mine life, has been assumed for the updated water balance model, with the treated effluent being discharged to the Portage Pit Lake. It is noted that the treatment and discharge of excess Reclaim Pond water to the Portage Pit Lake may occur as early as January 2016 (Year 7, model month 111), if required. In accordance with Doc. No. 833, the proposed water treatment strategy for reclaim pond water should be reviewed and updated as required throughout the mine life based on observed reclaim water quality and storage volumes.

As described in Doc. No. 833, the model assumes average year climate conditions. Extreme events were not incorporated into the model as it was assumed that the following contact water management contingencies would be in place:

- 1) The contact water management infrastructure will be designed, sized and operated to intercept and contain extreme event run-off from the mine affected areas.
- 2) Following the construction of the Stormwater Dike across 2PL Arm in 2010 (Year 1), the Reclaim Pond basin would have the capacity to store up to 6.5x10⁶ m³ of water if necessary. In 2013 (Year 4), the Portage Attenuation and Reclaim ponds combine, and tailings deposition will begin in the TSF south cell. Following construction of the Central Dike to elevation 150 masl, the TSF would have an approximate water storage capacity of 12.0x10⁶ m³.
- 3) The Portage Attenuation Pond has a capacity of approximately 2.8X10⁶ m³ to El. 116 masl (the bathymetric divide between the main and east basins) and should accommodate the storage needs until the Portage Attenuation and Reclaim ponds combine in 2013 (Year 4). Under the updated water management strategy, attenuation water is monitored, treated (if necessary) and released to 3PL until the ponds combine. If required, additional capacity within the Portage Attenuation Pond basin could be obtained through the construction of the Central Dike prior to 2013 (Year 4).
- 4) Any excess contact water would be directed to the TSF or to open pits if available for temporary storage prior to recycle, re-use, and/or treatment (if necessary) and release to the environment. Upon completion of pit operations, excess water would be directed to the pit lakes to assist with reflooding.

Based on the above, the uncontrolled release of contact water to the neighbouring lakes during mine life is not anticipated.

The modeled process water rates over the life of mine are presented on Figure 16. As indicated, excess freshwater make-up to process is required in 2010 (Year 1, model months 39 to 50) to provide for mill start-up,

and due to the comparatively lower tailings slurry solids content (*i.e.*, greater amount of water required for process) and limit on maximum reclaim pumping capacity. With the increase in tailings slurry solid content in January 2011 (Year 2, model month 51) onwards, the total process water demand drops, and the modeled reclaim rate is dictated by the minimum process freshwater requirement (*i.e.*, approximately 91,900 m³/mon) rather than reclaim water availability or pumping capacity.

Under the previous version of the water balance model described in Doc. No. 833, freshwater make-up water requirements to process were satisfied in part using Portage Attenuation Pond transfers in 2010 to 2013 (Years 1 to 4). Owing to water quality (TSS) and logistic concerns, it is understood that the use of Portage Attenuation Pond water is not currently planned, and freshwater make-up to process will be sourced entirely from 3PL. The estimated freshwater requirements from all modeled sources are presented on Figure 17 and Table 1. As indicated, the annual freshwater requirement to process in 2010 (Year 1) is slightly greater than the remaining years owing to the process water requirements described above; however the total annual freshwater requirement from all sources modeled is comparable at approximately 1.43 to 1.45x10⁶ m³/yr prior to diversion of 3PL water to assist with pit flooding in 2018 (Year 9).

Flooding of the Portage Pit via diversion of Tear Drop Lake water and groundwater and dike seepage and runoff collection is assumed to commence in January 2016 (Year 7, model month 111), while the discharge of treated reclaim pond water to the flooding pit is assumed to begin June 2017 (Year 8, model month 128). Flooding via controlled discharge from 3PL will not commence until January 2018 (Year 9, model month 135) when Goose Island Pit operations cease, and will continue at an average annual rate of approximately 4.88x10⁶ m³/yr (pumped June through September) through 2023 (Year 14, Figures 18 and 19). In accordance with Doc. No. 833, the average annual discharge rate from 3PL was set to accommodate all of the Portage and Goose Island pit inflows and tributary area runoff, the mill site runoff, and reclaim pond treatment discharge over an eight year period (assuming average annual conditions). A reduction in the estimated average annual (4.88x10⁶ m³/yr from 5.28x10⁶ m³/yr) and total (29.3x10⁶ m³ from 42.2x10⁶ m³) 3PL water requirement for Portage and Goose Island pit flooding is realized under the updated mine plan due to the greater proportion of pit inflows, tributary area runoff, Tear Drop Lake diversions, and treated reclaim water being sent to the pit within the eight year flooding period. As described in Doc. No. 833, the estimated reflooding volumes within the Goose Island and Portage pit dike areas, including the mined out pits, is approximately 12.7x10⁶ m³ and 42.9x10⁶ m³, respectively, for a total reflooding volume of approximately 55.6x10⁶ m³.

An annual total freshwater requirement of 1.45x10⁶ m³/yr is greater than the currently licensed value of 700,000 m³ from all sources including explosives mixing (Nunavut Water Board Water Licence No. 2AM-MEA0815 Type "A" dated June 9, 2008). As indicated in Table 1, the estimated water discharges to 3PL in 2010 to 2012 (Years 1 to 3) exceed the freshwater demands during the same period. In 2014 to 2017 (Years 5 to 8), approximately 750,000 m³/year of additional water will be required from 3PL (assuming Vault dust control water sourced from 3PL) in comparison to the licensed conditions. However, the diversion of 3PL water to assist with pit reflooding has been delayed 3 years from 2015 (Year 6) to 2018 (Year 9) under the updated mine plan (*i.e.*, total freshwater demand in Years 6 to 8 are less than modeled previously), and the modeled average annual reflooding requirement from 3PL has been reduced by approximately 400,000 m³/year. Given the above, and the relatively large surface area and volume of 3PL (approximately 33 km² and 446x10⁶ m³, respectively; Golder, 2006. *Bathymetric Surveys Meadowbank Project Nunavut*, Doc. 309, Ver. O, dated 24 November, 2006), a total annual freshwater requirement of 1.45x10⁶ m³/yr is expected to have minimal impact on 3PL water levels relative to anticipated levels under the previous mine plan and current license conditions.

3.2 Vault Area

Vault Lake dewatering and mining operations within the Vault Pit commence in 2014 (Year 5) and 2015 (Year 6), respectively (Table 1, Figure 20). The existing TSS treatment capacity on site for the dewatering of Second Portage Arm is estimated to be sufficient to complete dewatering of Vault Lake by January 2015 (Year 6, model month 99) without the need for the additional TSS management.

During mining operations, Vault Pit and RSF runoff will be redirected to the Vault Attenuation Pond prior to treatment (if necessary) and discharge to Wally Lake. In accordance with Doc. No. 833, the Vault Attenuation Pond was assumed to be operated such that the annual volume of water collected within the pond on a hydrologic year basis (Oct. 1 through Sept. 30) would be decanted during the open water period between June and September (Figure 20). This limits the amount of water that will be stored over the winter period and maximizes the storage capacity available for the spring freshet from the pond tributary area.

Flooding of the Vault Pit and Attenuation Pond via controlled discharge from Wally Lake is assumed to commence February 2020 (Year 11, model month 160) and continue at an average annual rate of approximately 4.0x10⁶ m³/yr (pumped June through September) through 2025 (Year 16, Figure 21). The estimated average annual and total (24.2x10⁶ m³) Wally Lake water requirement for pit flooding is the same as was presented in Doc. No. 833. The estimated reflooding volume within the Vault Dike, including the mined-out pit, is approximately 26.9x10⁶ m³.

4.0 CLOSURE

We trust the above information meets with your requirements. If additional information is required, please do not hesitate to contact us.

GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

Ryan Mason, P.Eng. (BC, ON) Water Resources Engineer

ORIGINAL SIGNED AND SEALED

Dan Walker, Ph.D., P.Eng. (BC, NWT, NU) Associate, Project Manager

DRW/RM/rs/aw

Attachments: Table 1: Updated Water Balance Model Summary

Figures 1 to 21

\bur1-s-filesrv2\final\2010\1428\10-1428-0004\doc 1092 tmo\ver 0\doc 1092 ver 0. tm 0902_10-side wide water balance model update - meadowbank.doc

Table 1: Updated Water Balance Model Summary

Table 1: Updated Water Balance Model	Cullillal y															
	Yea	r -1	Ye	ar 1	Yea	ar 2	Yea	ır 4	Yea	ar 6	Yea	ar 8	Yea	r 10	Yea	ır 12
	inflow	outflow	inflow	outflow	inflow m³/year	outflow	inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow
	m³/year	m³/year	m³/year	m³/year		m³/year	m³/year	m³/year								
Reclaim Pond (Mine Year 1 to 4)																
Pumped from Wash Bay			150,000		300,000		125,000									
Treated Sewage from Tear Drop Lake			28,927		0		0									
Pumped from Goose Pit					0		0									
Pumped from Portage Pit			709,600		0		0									
Tails Storage Runoff & Seepage			2,480,600		1,834,200		735,400									
Other Areas Runoff			568,900		95,200		0									
Rock Storage Runoff			18,300		24,400		0									
Direct Precipitation			44,000		44,500		39,500									
Direct Evaporation				53,600		52,000		47,900								
Decant to Attenuation								2,750,000								
Reclaim Water to Mill				2,667,100		1,796,200		898,100								
Sub-Total			4,000,327	2,720,700	2,298,300	1,848,200	899,900	3,696,000								
Change in Storage			1,27	9,627	450,	,100	(2,976	5,100)								
Stormwater Attenuation Pond (Reclaim	Pond Mine	Year 4 to 9)														
Pumped from Wash Bay							175,000		300,000		300,000		300,000			
Treated Sewage from Tear Drop Lake	28,927		0				28,927		28,927							
Pumped from Goose Pit					2,282,797		348,400		985,200		1,009,300					
Pumped from Portage Pit	344,700		0		792,916		966,400		1,061,700							
East Dike to Attenuation	3,467,833		161,104													
Bay-Goose Dike Construction			1,095,760													
Rock Storage Runoff	7,717						24,400		24,400		82,700		82,700		82,700	
Other Areas Runoff	113,900		225,200		355,800		373,600		328,100		517,500		124,300		329,000	
Decant from Reclaim Pond							2,750,000									
Tails Storage Runoff & Seepage							1,167,700		1,932,600		1,953,800		1,965,700			
Direct Precipitation	108,700		27,200		300		27,700		37,400		31,400		6,200			
Direct Evaporation		128,200		28,500		200		60,000		45,400		37,200		6,700		
Reclaim Water to Mill				•				898,100		1,796,200		1,796,200		1,796,200		
Dewater to Third Portage		9,294,600						·								
Decant to Third Portage Lake		2,892,200		7,811,900		3,461,231		510,100								
Treatment to Portage Pit												3,652,500		2,832,300		205,800
Treatment to Goose Pit														2,832,300		205,800
Sub-Total	4,071,777	12,315,000	1,509,264	7,840,400	3,431,813	3,461,431	5,862,127	1,468,200	4,698,327	1,841,600	3,894,700	5,485,900	2,478,900	7,467,500	411,700	411,600
Change in Storage	(8,243			1,136)	(29,		4,393		2,856		(1,591			8,600)	10	00
Mill Water Balance		, ,		•		•	ŕ	•	•	,	· · ·	,				-
Ore Water			74,500		107,900		107,900		107,900		107,900		107,900		0	
Reclaim Water			2,667,100		1,796,200		1,796,200		1,796,200		1,796,200		1,796,200		0	
Process Freshwater from Third Portage			1,236,700		1,102,800		1,102,800		1,102,800		1,102,800		1,102,800		0	
Tailings Transport Water			. ,	3,978,400		3,006,800		3,006,800		3,006,800	, ,	3,006,800	, , ,	3,006,800		0
Sub-Total			3,978,300	3,978,400				3,006,800		3,006,800	3,006,900	3,006,800	3,006,900	3,006,800	0	0
Balance		I		00)	10		10		10		10			00		0

Note: Based on mine year.

Table 1: Updated Water Balance Model Summary (continued)

	Yea	ır -1	Yea	r 1	Ye	ar 2	Yea	ar 4	Year 6		Year 8		Year 10		Year 12	
	inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow
	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year
Goose Island Pit (Reflooding begins M	ine Year 9)															
Direct Precipitation											0		25,700		76,400	
Other Area Runoff					0		0		0		0		159,100		133,600	
Goose Island Pit Runoff & Seepage					239,500		348,400		985,200		1,009,300		751,300		495,900	
Treated from Reclaim Pond											0		2,832,300		205,800	
Pumped from Third Portage											0		360,000		360,000	
Dewater to Third Portage						2,282,797										
Treated Sewage from Tear Drop Lake													14,464		14,464	
Pumped to Reclaim (to Mine Year 4)						0		0								
Pumped to Attenuation/Reclaim						2,282,797		348,400		985,200		1,009,300		0		
Evaporation												0		31,800		99,30
Sub-Total					239,500	4,565,594	348,400	348,400	985,200	985,200	1,009,300	1,009,300	4,142,864	31,800	1,286,164	99,30
Change in Storage					(4,32	6,094)	()	O)		0	4,111	,064	1,186	,864
Portage Pit (Reflooding begins Mine Yo	ear 7)								•							
Direct Precipitation											28,400		100,400		143,000	
Other Area Runoff											234,500		138,400		134,300	
Portage Runoff and Seepage	344,700		709,600		792,900		966,400		1,061,700		2,147,900		919,500		504,700	
Treated from Reclaim Pond											3,652,500		2,832,300		205,800	
Pumped from Third Portage													4,520,000		4,520,000	
Treated Sewage from Tear Drop Lake											28,927		14,464		14,464	
Pumped to Reclaim (to Mine Year 4)				709,600		0		0								
Pumped to Attenuation/Reclaim		344,700		0		792,916		966,400		1,061,700						
Evaporation												38,200		124,000		177,40
Sub-Total	344,700	344,700	709,600	709,600	792,900	792,916	966,400	966,400	1,061,700	1,061,700	6,092,227	38,200	8,525,064	124,000	5,522,264	177,40
Change in Storage)	0		(1	6)	()	0)	6,05	4,027	8,401	,064	5,344	,864
Vault Water Attenuation Pond (Reflood	ling begins N	line Year 11)						•							
Vault Pit Runoff & Seepage									28,300		48,900		48,900			
Rock Storage Runoff									24,600		52,600		52,600		178,200	
Other Areas Runoff									489,500		378,000		378,000		570,400	
Direct Runoff									3,800		3,400		3,400		35,600	
Pumped from Wally Lake															4,040,000	
Direct Evaporation										9,300		8,000		8,000		46,70
Decant to Wally Lake										537,000		474,800		474,800		
Sub-Total									546,200	546,300	482,900	482,800	482,900	482,800	4,824,200	46,70
Change in Storage									(10	0)	1	00	10	0	4,777	

Note: Based on mine year.

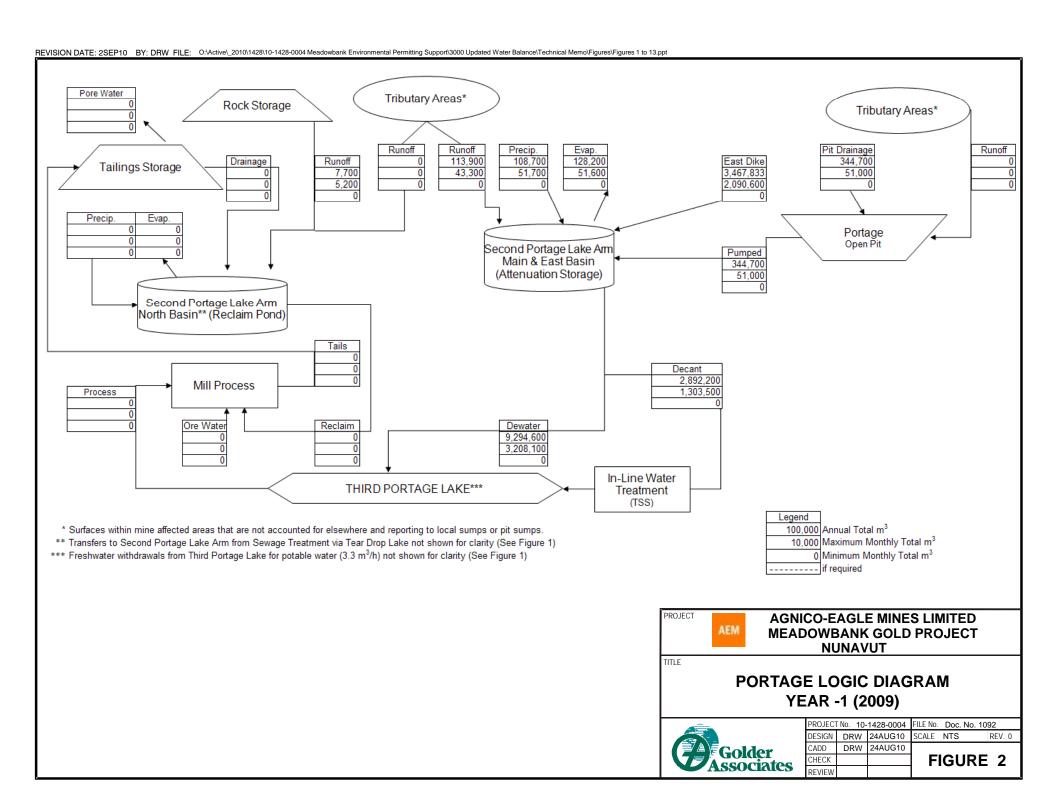
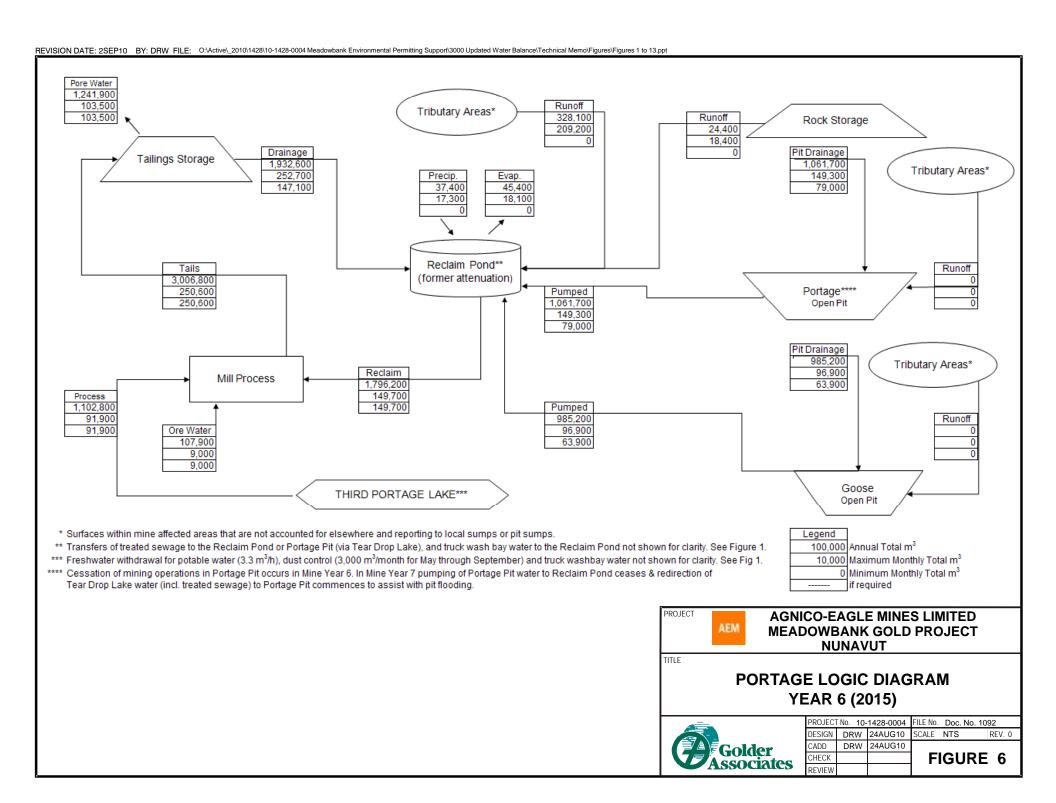


Table 1: Updated Water Balance Model Summary (continued)

	Year -1		Ye	ar 1	Year 2		Year 4		Yea	ar 6	Yea	r 8	Year 10		Year 12	
	inflow outflow		inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow	inflow	outflow
	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year	m³/year
Third Portage Lake																
Freshwater to Process				1,236,728		1,102,764		1,102,764		1,102,764		1,102,764		1,102,764		0
Potable Freshwater		28,927		28,927		28,927		28,927		28,927		28,927		28,927		28,927
Wash Bay Water				150,000		300,000		300,000		300,000		300,000		300,000		0
Dust Control to Portage		15,000		15,000		15,000		15,000		15,000		15,000		15,000		0
Dust Control to Vault										5,000		5,000		5,000		0
Pumped to Goose Pit														360,000		360,000
Pumped to Portage Pit														4,520,000		4,520,000
Dewater from Attenuation	9,294,600															
Decant from Attenuation Treatment	2,892,200		7,811,900		3,461,231		510,100									
Dewater from Bay-Goose Dike					2,282,797											
Sub-Total	12,186,800	43,927	7,811,900	1,430,655	5,744,028	1,446,691	510,100	1,446,691	0	1,451,691	0	1,451,691	0	6,331,691	0	4,908,927
Change in Storage	12,142	2,873	6,38	1,245	4,29	7,337	(936,591)		(1,451,691)		(1,451,691)		(6,331,691)		(4,908,927)	
Wally Lake																
Decant from Attenuation									537,000		474,800		474,800			
Pumped to Vault Lake																4,040,000
Sub-Total									537,000	0	474,800	0	474,800	0	0	4,040,000
Change in Storage									537	,000	474,800		474,8	474,800		,000)

Note: Based on mine year.

CADD

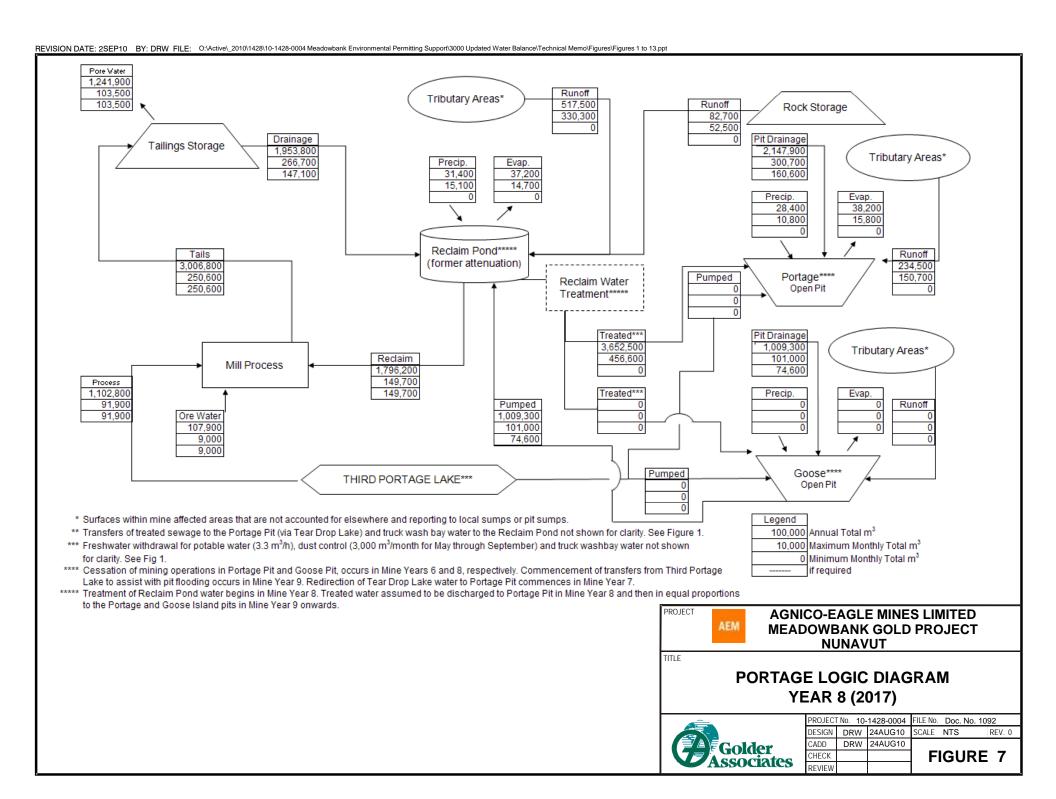
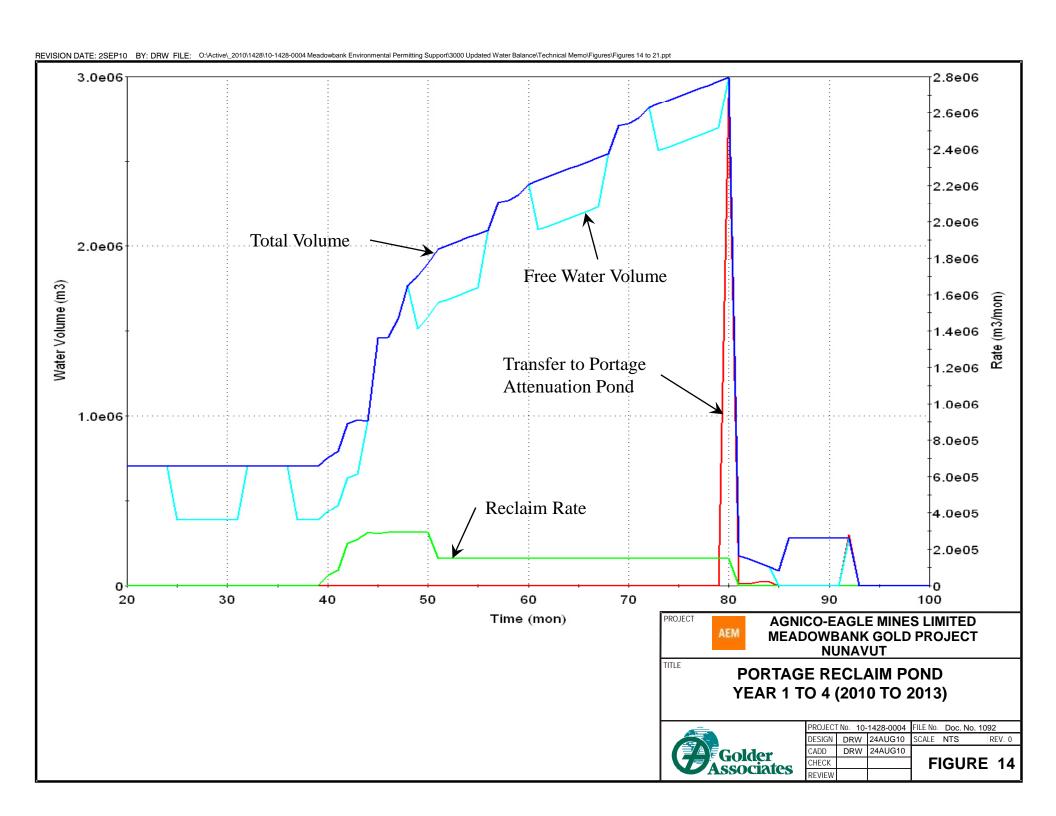
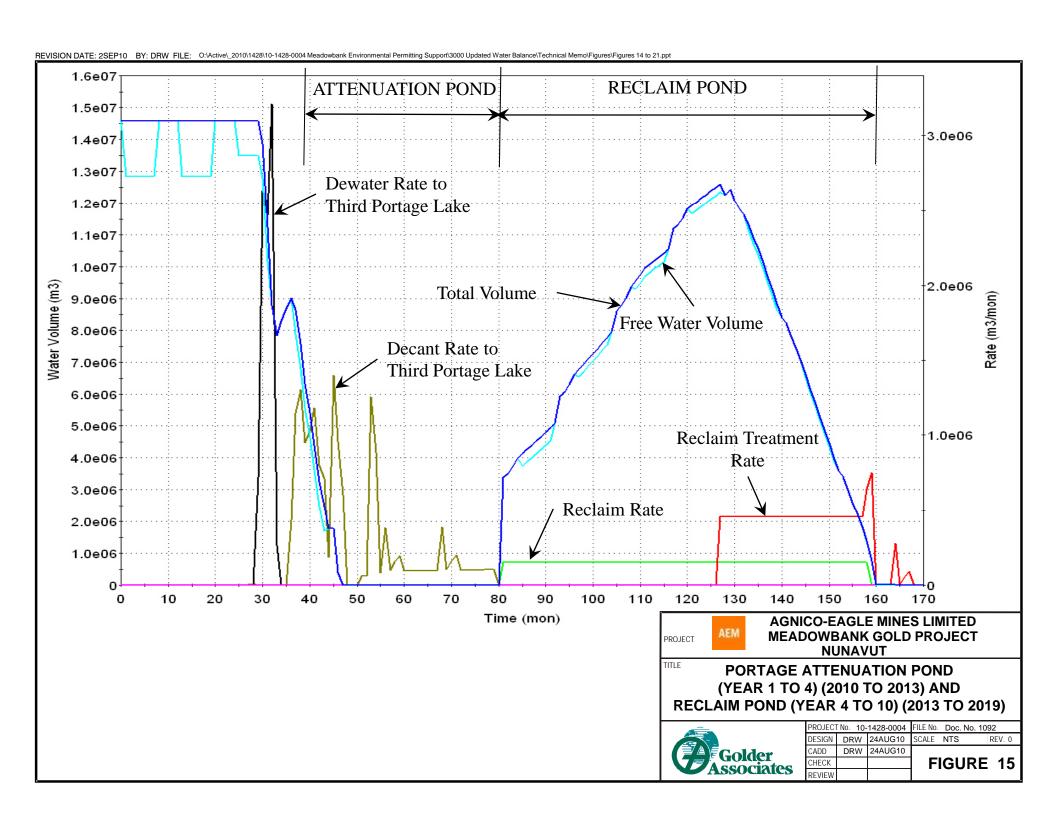
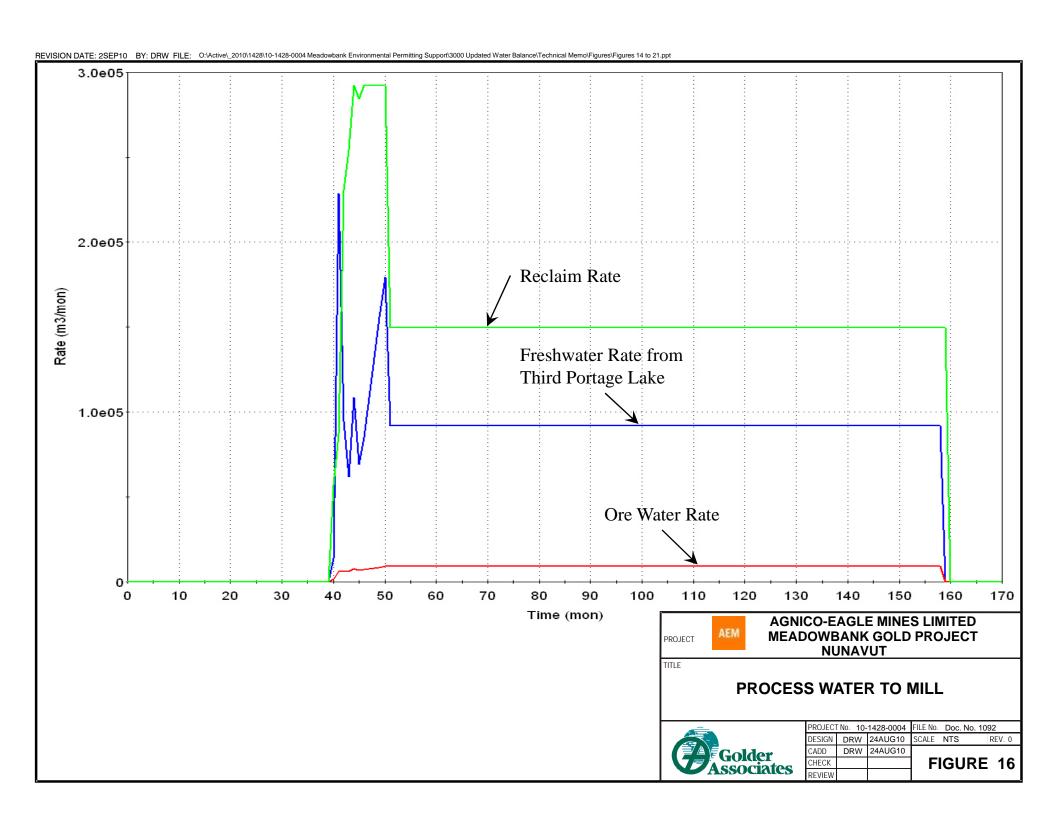

CHECK

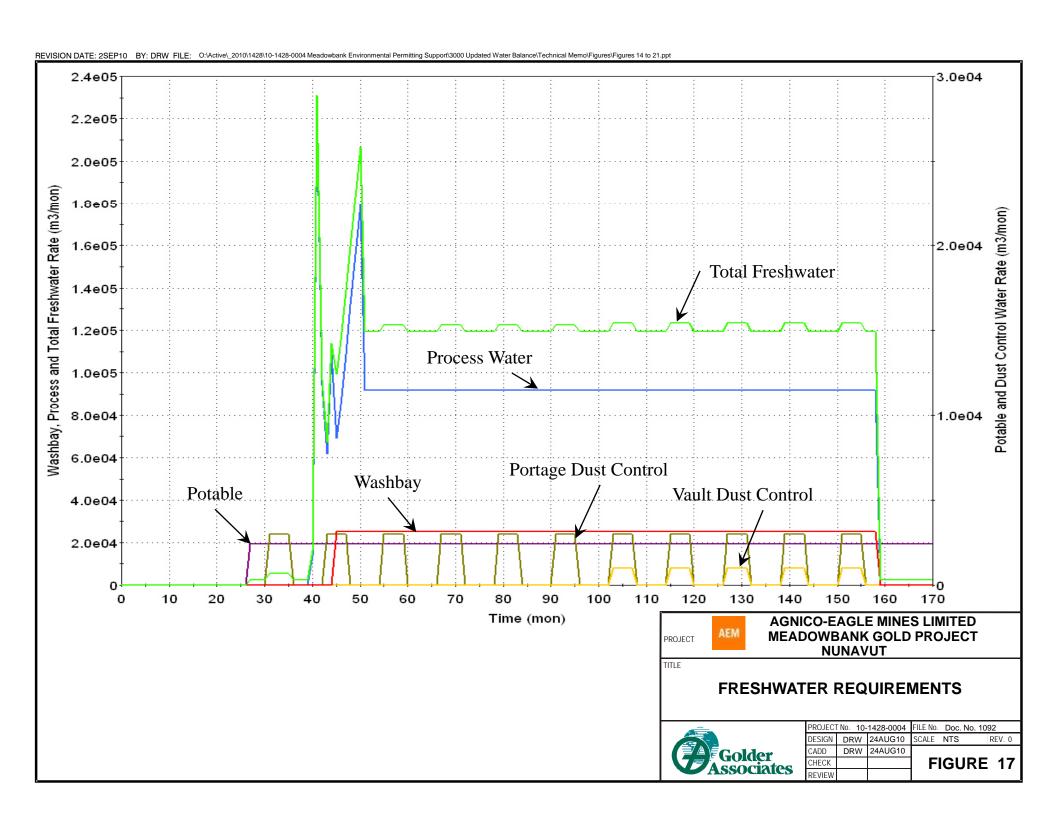
REVIEW

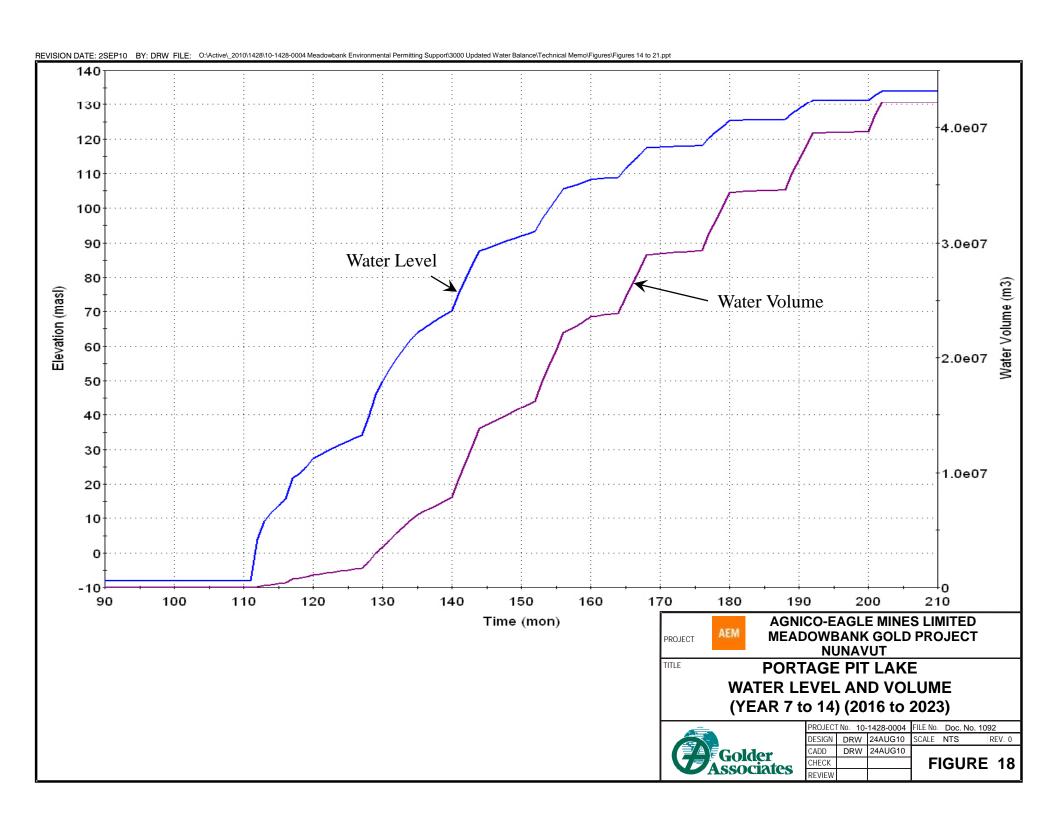
Golder

DRW 24AUG10

FIGURE 5


FIGURE 10


CHECK REVIEW

