

By Licensing Administrator at 11:17 am, May 06, 2011

A	b	b	e	n	d	ix	F	4
	~	~	•		•		-	

Report: 2010 Groundwater Quality Monitoring Program

TECHNICAL MEMORANDUM

DATE December 17, 2010

PROJECT No. 10-1428-0006

10-1428-0006 DCN 1207

TO Stéphane Robert Agnico-Eagle Mines Limited Meadowbank Division

CC Dan Walker

FROM Valérie Bertrand and Mike Dobr

EMAIL vbertrand@golder.com

2010 GROUNDWATER QUALITY MONITORING PROGRAM, MEADOWBANK MINE

1.0 INTRODUCTION

This document provides a summary of the 2010 groundwater monitoring program carried out at the Meadowbank mine site and a summary of water quality results obtained in 2010.

Completion of the groundwater monitoring program is a condition of the Meadowbank Project Certificate No.004 issued by the Nunavut Impact Review Board (NIRB) in December 2006 and of the Water License No. 2AM-MEA0815 issued by the Nunavut Water Board (NWB) June 09, 2008. Table 2 of Schedule 1 of the Meadowbank Water Licence states that groundwater must be monitored annually for Group 3 chemical parameters which include, per Table 1 of this Schedule: pH, turbidity, alkalinity, hardness, ammonia nitrogen, nitrate, nitrite, chloride, fluoride, sulphides, total dissolved solids (TDS), total and free cyanide for wells in the groundwater flow path of the tailing storage facility, and the following dissolved metals: aluminum, arsenic, barium, cadmium, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium and zinc.

1.1 Background

The proposed Goose Island and Portage open pits will be developed within a through talik (unfrozen ground that extends to the base of the permafrost) underneath Third Portage Lake. The tailings storage facility located in the basin of the north arm of Second Portage Lake is also believed to be situated over a through talik. Groundwater monitoring wells have been installed to provide information on baseline groundwater quality in the taliks. The objective of the groundwater sampling program, initiated in 2003, is two-fold:

- To measure the salinity of the deep groundwater to calibrate the pit groundwater inflow component of the site water quality model; and,
- To benchmark pre-mining groundwater quality against which to measure effects of mining on groundwater quality, if any.

To this end, groundwater flow and quality data has been collected from the Portage area since 2003 and have been used as input into the water quality model for the site. Groundwater in the Vault area is not monitored because the talk present under Vault Lake is not anticipated to extend through the permafrost.

Maintenance and replacement of defective monitoring wells is also a condition of the Meadowbank NIRB project certificate and Water Licence. Four monitoring wells were installed at the site in 2003. One of these original wells continues to be operable while the others have become damaged from frost action. The defective wells were replaced in 2006, and two of them were again replaced in 2008 with a more robust design. The installation of the third monitoring well, at the tailings storage facility, was deferred until verification of the effectiveness of the new well designs in 2009-2010. A borehole was drilled at this location in August 2010 (BH10-1) and instrumentation was installed in the borehole to measure ground water pressure and temperature for input into monitoring well design. A groundwater sample was taken from this borehole prior to instrumentation. Figure 1 shows the locations of the groundwater monitoring wells and the instrumented borehole BH10-1.

2.0 2010 GROUNDWATER MONITORING RESULT

Field activities related to the 2010 groundwater monitoring program were carried out between August 19 and September 2, 2010. Borehole logs and monitoring well designs for previously-existing installations are presented in previous reports (Golder, 2004 and 2008).

2.1 New Boreholes

A pilot hole BH10-01 using the HQ size coring method was drilled to evaluate the temperature and the pressure at the base of the storm water dike to design a new installation. Table 1 presents detailed information on the boreholes.

Table 1: Borehole Information

,	Borehole ID#	Easting [m]	Northing [m]	Collar Elevation [masl]	Azimuth	Dip [degree]	Bedrock Encountered [mbgs]	End Depth [mbgs] ¹
	BH10-01	637979.32	7215212.25	123.25	-	90	12.40	60

Notes: 1 Measured along borehole; masl (meters above sea level); mbgs (meters below ground surface).

Agnico-Eagle geologists logged the core from the borehole; the geological information is presented in Appendix 1. The borehole intersects chert conglomerate and intermediate volcanic rock to 28.5 metres (m), then quartzite with trace to 1% pyrite to 60 m depth.

Prior to the installation of the instrumentation, a groundwater sample was collected from the open borehole. Methodology on the development and sample collection are presented in Section 3.1.

2.2 Monitoring Well Development and Sample Collection

Prior to sampling, each well was purged with a Waterra tubing with a foot valve or by airlifting water out of the well using compressed air injected through a 5/8-inch diameter HDPE polyethylene tubing. Each well was purged of a minimum of 3 well volumes or until field-indicator chemical parameters stabilized (electrical conductivity, temperature and pH). Stabilization was considered to have been achieved when field-indicator readings varied by less than approximately 10% for three consecutive readings. Measurements obtained during well development are included in Appendix 2.

Well MW03-01

The PVC well riser pipe had collapsed (crushed) likely from ice pressure at 3.3 metres depth below ground. The crushed pipe was replaced and the three sections of heating cables were re-attached to the PVC well riser pipe. Ice was measured at 54.2 metres below ground. The heating cables were energized with a diesel generator over a period of 9 days to thaw the ice within the well.

To accelerate the melting process, the standing water above the ice bridge was purged. Four hundred litres of water were purged over a period of 4 hours with the ice surface still at 54.2 m. After 2 days of heating cable activation, 540 litres of water were purged from this well which is equivalent to 3 well volumes. The ice bridge remained in place during this period, so it is suspected that the riser pipe is damage between 12 m to 54.2 m and all the recovered water was likely derived from the well annulus above the screened interval.

Groundwater sampling was carried out using a 5/8-inch diameter HDPE polyethylene tubing with a foot valve. The sampling pump intake point was positioned at 51 m depth below ground surface, just above the ice level. Water samples were collected in duplicate, in clean, laboratory-supplied bottles. Where required, preservatives were added to the sample bottles prior to sample collection, to minimize chemical alteration during transport to the laboratory. Samples analyzed for dissolved metals were filtered through a 45 µm inline filter.

Energizing of the heating cables continued for 6 days after sampling in an attempt to melt the ice bridge. The ice finally melted after 8 days of heating.

Well MW08-02

When first measured, an ice bridge was present in the well at 41.2 meters below the top of casing (approximately 40.2 m below ground level). Heating cables fixed to the stainless steel riser pipe were energized with a diesel generator over a period of 3 days to completely melt the ice. The condition and performance of the individual well components (riser pipe and screen, and heating cables) were found to be in good working condition. The heating cables remained energized during well development and sampling. An obstruction was present at approximately 154 metres depth. This depth coincides with the lower extent of the heating cable and edge of the talik zone. The cause of the blockage is suspected to be a partially ice bridge.

Approximately 3 well volumes of water (650 litres) were purged from this monitoring well over 2 days. Water quality indicator parameters stabilized over this period. Groundwater sampling could not be carried out using a nitrogen-operated Solinst® stainless steel Double Valve Pump (DVP) attached to a ¼-inch low density polyethylene (LDPE) tubing as the electronic board inside the Solinst® Model 466 Electronic Pump Control Unit owned by Agnico Eagle was damaged. Groundwater samples were collected using the bailer method. WaTerra 5/8 inch tubing with a footvalve at the end was used as a bailer because the depth to the water table was too low to allow for continuous pumping. Water was sampled by lowering and pulling the tubing back to the surface. Each time the lower end of the tubing with the valve was recovered, the ball inside the foot valve was pushed back allowing the water from the tubing to drain into the sample bottles. The bailer intake point was lowered above the screened interval at about 153 metres depth. Samples were collected in triplicate. The inside packer were left deflated

Well MW08-03

An inspection with a borehole camera was completed in the monitoring well MW08-03 to assess the blockage encountered in 2009. The blockage at 151 m is an ice bridge. The cause of the ice bridge is uncertain but may be explained by the presence of deeper than expected permafrost boundary (compared to other similar locations) and/or may result from a local extension (deepening) of ground frost that could have been induced from circulation of cold air in the open well riser pipe when the pipe was drained.

A 5/8-inch diameter HDPE polyethylene tubing was lowered to 151 m inside the riser pipe to circulate warm water and to verify the assumption of an ice bridge. One metre of the ice bridge was thaw in 45 minutes confirming assumption of the ice bridge.

During the inspection with the borehole camera each joint of the well tubing was examined. All joints that were dry are in good conditions but it is impossible to speculate the if the wet joints below 100 m are leaking as the water at that depth could not be removed.

Heating cables fixed to the stainless steel riser pipe were energized with a diesel generator over a period of 9 days. No sample was collected from this monitoring well.

Borehole BH10-01

This hole was cased from surface to bedrock at 12.4 metres from surface, and open through bedrock to the final depth. Approximately 1 well volume of water (300 litres) was purged from this open hole. Groundwater sampling was carried out using a 5/8-inch diameter HDPE polyethylene tubing with a foot valve. The sampling pump intake point was positioned at 55 m depth below ground surface. Water samples were collected in triplicate. Temperature and pressure instruments were inserted into the open borehole grouted in place after the groundwater sample was obtained.

2.3 Sample Shipping

Samples were collected at location MW08-02 and BH10-01 in triplicate. The original samples collected at locations MW03-01, MW08-02 and BH10-01, along with a duplicate pair of each of above, were shipped to Maxxam Analytics of Montreal shortly after sampling in coolers with ice packs along with chain-of-custody forms. The sample of each well was retained in refrigeration on site for possible future analysis.

2.4 Comparative Guidelines

Groundwater quality data is compared to Third Portage Effluent Discharge Limits stated in the Meadowbank Water Licence for illustrative purposes only. Constituent concentrations in the Licence are defined for total rather than dissolved phases and groundwater quality data is provided for both total and dissolved components.

2.5 Quality Assurance/Quality Control

Guideline procedures provided by the USEPA (2002) were followed during the sampling program to ensure that the samples collected from the wells were representative of water flowing through the targeted rock formations. These procedures included the following:

- Measurement of field parameters at selected intervals until stable readings (within 10% of each other) were acquired;
- Minimizing the exposure of the sampled water to the atmosphere;
- Using compressed, inert gas (nitrogen) to lift water from the well for sampling;
- Conducting in-situ measurements of sensitive chemical parameters (temp. pH, conductivity);
- Keeping the samples refrigerated from the time of collection until shipment to the laboratory; and,
- Shipping the samples to the laboratory in temperature-regulated coolers within the specified sample holding times.

Groundwater samples were collected in duplicate for MW03-01 and in triplicate for MW08-02 and BH10-01. A duplicate pair of samples at locations MW08-02 and BH10-01 was shipped to the laboratory after collection. Analytical repeatability was tested by assessing the similarity between duplicate pairs of results. For each duplicate pairs of analysis where both results were higher than 5 times the method detection limit (MDL), the relative percent difference (RPD) was calculated as follows:

RPD = <u>absolute [difference (concentration of a given parameter)]</u> x 100 [average (concentration of a given parameter)]

Per USEPA recommended methods (USEPA, 1994), an RPD of 20% or less was considered acceptable. Where one or both results of the duplicate pair were less than 5 times the MDL, a margin of +/- MDL was considered acceptable.

3.0 RESULTS

3.1 Groundwater Chemistry

The results of the groundwater analyses collected during the 2003, 2004, 2006, 2007, 2008, 2009 and 2010 sampling events are presented in Tables 2, 3 and 4 at the end of the text. Laboratory analytical certificates from the 2010 sampling event are included in Appendix 3.

Since salinity of groundwater is of interest in predictive modelling of the quality of open pit inflows during operation, the concentration of salinity constituents measured are summarized in Table 5.

Table 5: Concentration of Constituents that relate to Groundwater Salinity

Monitoring Well	Lithology	Sample Year	TDS** (mg/L)	Conductivity (uS/cm)	Chloride (mg/L)
		2003	793	1855	626
		2004	1335	2900	845
		2006	315*	460*	81*
MW03-01	UM	2007	389	588	126
		2008	1100	3200	950
		2009	1900 [*]	3350 [*]	970 [*]
		2010	340	335*	5.7
		2008	510*	808**	160
MW08-02	IV	2009	520 [*]	705 [*]	160 [*]
		2010	450	690*	160
BH10-01	IV	2010	670*	935*	17

Note: 1. * average value; **field measurement except for data obtained in 2010 which were laboratory measured

Well MW03-01

One groundwater sample and one duplicate were collected in 2010. Table 4 shows that the concentration of salinity components in 2010 is the lowest since the first reading in 2003. Total dissolved solids (TDS) and conductivity are of similar magnitude to 2006 and 2007 results and chloride at least one order of magnitude lower than results in previous years. Concentrations of major ions are approximately an order of magnitude lower than previous results. Major ion concentrations suggest this sample is more dilute than previously. This is likely related to the source of the water coming from the well annulus rather than directly from the deep rock formation. Notwithstanding this, a number of trace elements present (currently and historically) at concentrations above detection limit (zinc, manganese and aluminum) are present at similar concentrations than previous years. All constituent concentrations are below Portage effluent quality criteria in the water licence.

Well MW08-02

One groundwater sample and two duplicates were collected in 2010. Salinity components TDS and conductivity are similar to those measured in 2008 and 2009. Chloride concentration in 2010 was similar to previous results. In 2010, metals concentrations were measured in their total components whereas in 2008 and 2009 dissolved metals were analyzed, but nonetheless, metals concentrations in 2010 are of similar magnitude to 2008 and 2009 results. All parameter concentrations met Portage effluent quality criteria.

Well MW08-03

This well could not be sampled in 2010 because of a deep blockage preventing access to formation groundwater.

Borehole BH10-01

One groundwater sample and two duplicates were collected in 2010. Salinity values and concentrations of major ions are of the same order of magnitude than groundwater at MW08-03, while total and dissolved metal concentrations are generally low to below analytical detection limits. All parameter concentrations met Portage effluent quality criteria.

3.2 Quality Assurance/Quality Control

Table 6 at the end of the text presents the Relative Percent Difference (RPD) or +/- MDL value calculated from each duplicated pair of results.

Half of duplicate pairs of analyses had one or both results below the method detection limit and consequently could not be assessed for repeatability. Of the remaining 34 duplicate pairs of results, there was no pair of results that exceeded 20% RPD. Trace components and major elements for the all samples are considered adequately repeatable.

4.0 CONCLUSION

The groundwater monitoring program was conducted in August and September 2010. Monitoring wells MW03-01, MW08-02 and the borehole BH10-01 were sampled. Monitoring well MW08-03 could not be sampled because of the formation of an ice bridge inside the well pipe which prevented formation groundwater from entering the well.

Groundwater chemistry at MW03-01 and MW08-02 was similar to results obtained previously except for notably lower salinity at MW03-01 in 2010. Groundwater quality results were compared to the Portage effluent discharge limits stipulated in the Meadowbank water licence. All groundwater sample collected in 2010 met these screening criteria.

The temperature and hydraulic pressure data collected in BH10-01 will be reviewed, based upon which Golder will provide recommendations on monitoring well design.

GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

ORIGINAL SIGNED

Valérie Bertrand, M.A.Sc., P.Geol. (NU, NWT) Associate, Geochemist Mike Dobr, RNDr, P.Geo. (BC) Principal, Hydrogeologist

ORIGINAL SIGNED

for. Denis Vachon, Jr. Eng.
Mine Water Management Group

TG/DV/MD/VJB/am

Attachments: Tables 2, 3, 4 and 6

Figure 1

Appendix 1 - MW10-01 Borehole Log Appendix 2 - Field Sampling Sheet Appendix 3 - Laboratory Reports

REFERENCES

Golder Associates Ltd., 2009. 2008 Groundwater Quality Monitoring Program, Meadowbank Mine, January 14, 2009.

Golder Associates Ltd., 2004. Meadowbank Baseline Groundwater Quality. April 26, 2004.

USEPA, 1994. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC, February 1994.

Table 2 MW03-01 Groundwater Quality Results Agnico-Eagle Mines Ltd Meadowbank Division

										Ultrama	fic Rock							
			Portage							Goose	Island							Method Detection Limit
			Attenuation Pond							MWC	3-01							Detection Limit
Laboratory sa S	ample number sampling date QA/QC	units	Effluent Limits Maximum Average Conc.	9755-2 7-Sep-03	9755-3 7-Sep-03 FD	9044-01 Aug-7-04	12393-01 Aug-8-06	12393-02 Aug-8-06 FD	12395-01 Aug-14-06	8581-01 Aug-17-07	8581-02 Aug-17-07 FD	F66745 15-Sep-08	F68109 15-Sep-08 FD	154321 7-Sep-09	154321 7-Sep-09 Lab-dup	154359 7-Sep-09 FD	L51870 L51884 26-Aug-10	26-Aug-10
FIELD-MEASURED PAR	AMETERS																	
Temperature		°C		11.7	11.7	8	7.7	-	9.9	6.7	-	1.0	-	5.4	-	-	3.1	-
pH Conductivity		s.u. uS/cm	6.0-9.0	7.36 1855	7.36 1855	8.03 2500	7.93 382	-	7.58 538	7.43 776	-	6.70 2100	-	6.97 2436	-	-	7.13 340	-
Dissolved Oxygen	DO	mg/L		2.0	2.0	2.0	8.6	-	4.8	3.8		-	1	-	-	_	-	-
Total Dissolved Solids	TDS	mg/L		793	-	1335	193	-	405	389	-	1100	-	1900	-	1900	-	-
LABORATORY PARAME	ETERS																	
рН		s.u.	6.0-9.0	7.24	7.3	7.46	-	-	7.36	6.78	6.96	7.9	7.8	6.71	-	7.2	6.9	-
Conductivity		uS/cm		-	-	2900	-	-	634	588	583	3200	3100	3300	3400	3400	350	0.001
Total Alkalinity Dissolved Sulphate	as CaCO3 SO4	mg/L mg/L		30 15.6	30 15.8	27.3 15.9	42.8	43.1	51 51.1	36.7 46.5	36.7 46.3	24 6.0	33 5.7	15 3.9	17	18 3.6	49 87	1 0.1
Hardness (Total)	304	mg/L		318	388	391	42.6 82	81.6	148	116	112	310	320	3.9 450]	440	77	0.1
Total Suspended Solids	TSS	mg/L	15	-	-	13	-	-	4	2	3	5	7	-	-	-		1
Total Dissolved Solids	TDS	mg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	240	10
Turbidity		NTU	15	-	-	-	-	-	-	-	-	3.3	4.1	2.1	-	8.2	210	0.2
Total Metals																		
Aluminum ¹	Al	mg/L		4.16	1.2	0.25	0.4	0.48	0.13	0.053	0.059	-	-	-	-	-	<0.03	0.03
Antimony	Sb	mg/L	0.5	<0.001	< 0.001	0.0004	<0.0002	<0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Arsenic Barium	As Ba	mg/L mg/L	0.5	<0.001 0.18	0.017 0.2	0.004 0.301	0.0005 0.027	0.0006 0.028	0.002 0.052	< 0.001 0.053	< 0.001 0.052	_	_	_	-	-	<0.002 <0.03	0.002 0.03
Beryllium	Be	mg/L		<0.001	<0.001	<0.0002	<0.0002	<0.0002	< 0.001	< 0.001	< 0.001	_	_	_	_	_	-	0.001
Bismuth	Bi	mg/L		<0.001	<0.001	<0.0002	<0.0002	<0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Boron	В	mg/L		0.59	1.07	2.43	0.11	0.11	0.27	0.23	0.23	-	-	-	-	-	-	0.05
Cadmium ³	Cd	mg/L		0.00024	0.00037	<0.00004	<0.00004	<0.00004	< 0.0002	< 0.0002	< 0.0002	-	-	-	-	-	<0.001	0.001
Calcium	Ca	mg/L		72	87.1	95.4	19.1	19.1	33.4	26.1	25.1	73	-	-	-	-	21	0.1
Chromium ² Cobalt	Cr Co	mg/L mg/L		0.049 0.004	0.32 0.016	0.004 0.0009	0.0017 0.0005	0.0021 0.0005	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	-	-	-	-	-	-	0.001 0.001
Copper ³	Cu	mg/L	0.3	0.044	0.070	0.0003	0.0003	0.0003	< 0.001	0.001	0.001						<0.003	0.003
Iron	Fe	mg/L	0.0	6.05	10.7	1.14	1.02	1.11	1.1	0.94	0.93	-	-	-	-	-	0.6	0.1
Lead ³	Pb	mg/L	0.2	0.013	0.03	0.0025	0.0015	0.0013	< 0.001	0.001	0.001	-	-	-	-	-	-	0.001
Lithium	Li	mg/L		0.025	0.031	0.04	0.0031	0.0032	0.006	< 0.005	< 0.005	-	-	-	-	-	-	0.001
Magnesium	Mg	mg/L		33.2	41.5	37.1	8.29	8.2	15.6	12.4	12.1		-	-	-	-	6.1	0.1
Manganese Mercury	Mn Hg	mg/L mg/L		0.073	0.72	0.415 <0.00002	0.309 <0.00002	0.304 <0.00002	0.93 < 0.00002	0.77 < 0.00002	0.75 < 0.00002	-	-	-	-	-	0.55 <0.0001	0.003 0.0001
Molybdenum	Mo	mg/L		<0.0005	0.011	0.0083	0.013	0.013	0.000	0.0084	0.00002			-	-	-	<0.001	0.0001
Nickel ³	Ni	mg/L	0.5	0.056	0.13	0.0045	0.002	0.0022	< 0.001	0.001	0.001	-	-	-	-	-	<0.01	0.01
Phosphorus	P	mg/L		0.069	0.075	0.16	< 0.03	< 0.03	< 0.15	< 0.15	< 0.15	-	-	-	-	-	-	0.01
Potassium	K	mg/L		7.31	9.1	9.13	3.63	3.68	6.1	4.7	4.5	-	-	-	-	-	2.1	0.1
Selenium	Se	mg/L		<0.001	<0.001	<0.0002	<0.0002	<0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	<0.001	0.001
Silicon Silver	SiO2 Ag	mg/L mg/L		0.4 0.0064	4.12 0.011	5.07 0.00028	2.31 <0.00005	2.71 <0.00005	2.7 < 0.00025	1.4 < 0.00025	1.3 < 0.00025					-	0.0014	0.05 0.00030
Sodium	Na Na	mg/L		22	25	357	16	15.9	50.5	39.1	37.5	-	-	-	-	-	2.5	0.00030
Strontium	Sr	mg/L		0.68	0.79	1.56	0.119	0.12	0.28	0.24	0.24	-	-	-	-	-	-	0.001
Tellurium	Te	mg/L		<0.001	<0.001	<0.0002	<0.0002	<0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Thallium	TI	mg/L		<0.0001	<0.0001	<0.00002	<0.00002	<0.00002	< 0.0001	< 0.0001	< 0.0001	-	-	-	-	-	<0.01	0.01
Thorium Tin	Th Sn	mg/L mg/L		<0.0005 <0.001	0.0038 0.002	<0.0001 0.0009	0.0005 <0.0002	0.0006 <0.0002	< 0.0005 < 0.001	< 0.0005 < 0.001	< 0.0005 < 0.001	1 - 1]	-	[-		0.0005 0.001
Titanium	Ti	mg/L		0.001	0.002	0.0009	0.0002	0.0002	0.006	0.003	0.003							0.001
Uranium	U	mg/L		0.0012	0.0017	0.0003	0.0006	0.0006	< 0.0005	< 0.0005	< 0.0005	-	-	-	-	-	-	0.0005
Vanadium	V	mg/L		<0.001	0.029	0.0004	0.0007	0.0008	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Zinc	Zn	mg/L	0.5	0.063	0.087	0.007	0.005	0.005	< 0.005	0.009	0.009	-	-	-	-	-	0.009	0.005

Table 2 MW03-01 Groundwater Quality Results Agnico-Eagle Mines Ltd Meadowbank Division

										Ultrama	fic Rock							
			Portage							Goose	Island							Method Detection Limit
			Attenuation Pond Effluent Limits							MWC	03-01							1
	sample number Sampling date QA/QC	units	Maximum Average Conc.	9755-2 7-Sep-03	9755-3 7-Sep-03 FD	9044-01 Aug-7-04	12393-01 Aug-8-06	12393-02 Aug-8-06 FD	12395-01 Aug-14-06	8581-01 Aug-17-07	8581-02 Aug-17-07 FD	F66745 15-Sep-08	F68109 15-Sep-08 FD	154321 7-Sep-09	154321 7-Sep-09 Lab-dup	154359 7-Sep-09 FD	L51870 L51884 26-Aug-10	26-Aug-10
Dissolved Metals																		
Aluminum	Al	mg/L		0.051	0.011	0.005	0.3	0.3	< 0.005	< 0.005	0.011	0.0013	0.0068	<0.0001	-	<0.0001	0.03	0.03
Antimony	Sb			< 0.001	< 0.001	0.0002	< 0.0002	< 0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Arsenic	As	mg/L	0.3	< 0.001	0.003	0.0038	0.0005	0.0005	0.003	< 0.001	< 0.001	< 0.0001	< 0.0001	< 0.002	-	< 0.002	< 0.002	0.0020
Barium	Ba	mg/L		0.12	0.13	0.3	0.025	0.025	0.051	0.048	0.051	0.25	0.25	0.42	-	0.39	< 0.03	0.03
Beryllium	Be	mg/L		< 0.001	< 0.001	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Bismuth	Bi	mg/L		< 0.001	< 0.001	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Boron	В	mg/L		0.53	1.03	2.39	0.1	0.1	0.27	0.2	0.21	-	-	-	-	-	-	0.05
Cadmium	Cd	mg/L	0.002	0.00007	0.00012	<0.00004	<0.00004	<0.00004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.001	-	<0.001	< 0.001	0.001
Calcium	Ca	mg/L		65.6	67	94.2	17.6	17.9	33.7	24	24.5	73	75	100	-	99	18	0.1
Chromium ²	Cr	mg/L	1	< 0.001	< 0.001	0.0002	0.0012	0.0012	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Cobalt	Co	mg/L		0.001	0.001	0.0008	0.0004	0.0004	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.0010
Copper	Cu	mg/L	0.1	0.002	0.002	0.0004	0.0016	0.0016	< 0.001	< 0.001	0.001	0.0015	0.0023	< 0.003	-	< 0.003	< 0.003	0.003
Iron	Fe	mg/L		< 0.05	0.07	0.08	0.84	0.85	0.2	< 0.05	< 0.05	<0.03	< 0.03	<0.1	-	<0.1	<0.1	0.1
Lead	Pb	mg/L	0.1	< 0.001	< 0.001	<0.0002	0.0014	0.0012	< 0.001	< 0.001	< 0.001	0.00021	0.00020	<0.001	-	0.001	<0.001	0.001
Lithium	Li	mg/L		0.017	0.017	0.033	0.0028	0.0027	0.005	< 0.005	< 0.005	-	-	-	-	-	-	0.001
Magnesium	Mg	mg/L		23.4	24.3	35.1	7.76	7.92	16.1	11.4	11.6	31	32	46	-	47	4.1	0.1
Manganese	Mn	mg/L		0.06	0.28	0.381	0.286	0.293	0.980	0.700	0.720	0.43	0.44	0.22	-	0.22	0.36	0.003
Mercury	Hg	mg/L		-	-	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00001	< 0.00001	< 0.0001	-	< 0.0001	< 0.0001	0.0001
Molybdenum	Mo	mg/L		< 0.0005	0.0057	0.0076	0.012	0.012	0.013	0.0079	0.0079	0.0082	0.0078	<0.03	-	< 0.003	< 0.03	0.030
Nickel	Ni	mg/L	0.2	0.006	0.005	0.0026	0.0019	0.0019	< 0.001	0.001	0.001	0.0015	0.0015	< 0.01	-	< 0.01	< 0.01	0.01
Phosphorus	Р	mg/L		0.1	0.15	0.04	< 0.03	< 0.03	< 0.15	< 0.15	< 0.15	-	-		-	-	-	0.01
Potassium	K	mg/L		5.71	5.95	8.56	3.27	3.28	6.1	4.3	4.4	8.4	8.5	11	-	11	1.5	0.1
Selenium	Se	mg/L		< 0.001	< 0.001	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	0.001
Silicon	SiO2	mg/L		0.32	3.27	3.89	1.96	1.98	2.50	1.20	1.20	-	-	-	-	-	-	0.05
Silver	Ag	mg/L		<0.0001	<0.0001	<0.00005	<0.00005	< 0.00005	< 0.00025	< 0.00025	< 0.00025	<0.0001	< 0.0001	< 0.0003	-	< 0.0003	< 0.0003	0.0003
Sodium	Na	mg/L		20	22	327.0	15.0	15.6	52.5	34.2	35.0	-	-	420	-	430	1.8	0.1
Strontium	Sr	mg/L		0.58	0.59	1.46	0.111	0.114	0.29	0.22	0.22	-	-	-	-	-	-	0.001
Tellurium	Te	mg/L		<0.001	<0.001	<0.0002	<0.0002	<0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Thallium	TI	mg/L		<0.0001	< 0.0001	<0.00002	<0.00002	<0.00002	< 0.0001	< 0.0001	< 0.0001	< 0.002	<0.002	<0.01	-	<0.01	<0.01	0.01
Thorium	Th	mg/L		<0.0005	<0.0005	<0.0001	0.0004	0.0004	< 0.0005	< 0.0005	< 0.0005	-	-	-	-	-	-	0.0005
Tin	Sn	mg/L		<0.001	<0.001	<0.0002	<0.0002	<0.0002	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Titanium	Ti	mg/L	1	<0.001	<0.001	0.0003	0.019	0.018	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	0.001
Uranium	U V	mg/L	1	0.0006	0.0006	0.0003	0.0006	0.0006	< 0.0005	< 0.0005	< 0.0005	-	-	-	-	-	-	0.0005
Vanadium Zinc	Zn	mg/L mg/L	0.4	<0.001 0.006	<0.001 <0.005	<0.0002 0.002	0.0006 0.005	0.0006 0.005	< 0.001 < 0.005	< 0.001 < 0.005	< 0.001 0.005	0.017	0.014	<0.003	-	<0.003	0.011	0.001 0.005
Dissolved Anions	ZII	IIIg/L	0.4	0.000	<0.005	0.002	0.003	0.003	₹ 0.003	< 0.003	0.003	0.017	0.014	<0.003	-	<0.003	0.011	0.003
Dissolved Allions Dissolved Fluoride	F	mg/L		< 0.05	< 0.05	0.12	0.16	0.17	0.16	0.18	0.18	<0.1	<0.1	0.1	-	<0.1	0.2	0.1
Dissolved Chloride	CI	mg/L	1000	626	621	845	34.7	33.7	128	126	126	950	980	990	-	950	5.7	0.05
Nutrients																		
Total Nitrogen	N	mg/L								< 0.2	0.3	0.53	0.49	-	-	-	-	<0.02
Nitrate and Nitrite	NO3 + NO2	mg/L	20*	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-	<0.2	<0.4	< 0.42	-	< 0.42	0.09	0.02
Nitrate	NO3	mg/L		-	-	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	0.09	<0.02	< 0.02	<0.02	-	< 0.02	-	0.05
Ammonia Nitrogen	N	mg/L	16	0.38	0.37	-	0.21	0.19	-	0.14	0.15	-	-	0.54	-	0.51	0.08	0.01

FD = Field Duplicate

Table 3 MW08-02, MW08-03 Groundwater Quality Results Agnico-Eagle Mines Ltd Meadowbank Division

							Int	ermediate Volca	nic				l
			Portage Attenuation				Se	cond Portage La	ake				Method
			Pond Effluent Limits ¹				MW08-02	oona r ortage Et	anc			08-03	Detection Lim
			Maximum Average Conc.										
Laboratory sa Si	mple number ampling date QA/QC	units	Conc.	F59984 9/8/2008	F59995 9/8/2008 FD	147144 8/29/2009	147172 8/29/2009 FD	147172 8/29/2009 Lab Dup	L56096 9/1/2010	L56473 9/1/2010 FD	F66637 9/14/2008	F68088 9/14/2008 FD	9/1/2010
FIELD-MEASURED PAR			l			l		Lub Dup			I		1
Temperature	RAMETERS	°C	1	7.3	1	4.6			9.2	-	5.0		1
nemperature nH		s.u.	6.0 - 9.0	7.1		7.8			7.9		7.1		
Conductivity		uS/cm	0.0 0.0	808	-	616	-		690	-	366	-	
Dissolved Oxygen		mg/L		9.9	-	-	-	-	-	-	10.3	-	
Total dissolved solids	TDS	mg/L		399	-	-		-	-	-	215	-	
LABORATORY PARAM	ETERS												
Total dissolved solids	TDS	mg/L		500	520	530	510		450	490	-	-	10
pH		s.u.	6.0 - 9.0	8.0	8.1	8.0	8.0	-	7.7	7.75	8.1	8.2	
Conductivity	as CaCO ₃	uS/cm		-	76	700	710	-	80	-	490	480	0.001
Total Alkalinity		mg/L		76		76	76		80	80	60	59	2
Dissolved Sulphate	SO ₄	mg/L		2.5	2.0	3.0	2.9	3.0	-	-	56	51	0.2
Hardness (Total)	as CaCO ₃	mg/L		240	230	240	850	-	220	220	180	180	1
Total Suspended Solids Turbidity	TSS	mg/L NTU	15 15	2.4	2.4	2.2	2.2		4	3.9	56 70	54 69	2 0.1
Total Metals (mg/L)		NIU	10	2.4	2.4	2.2	2.2	-	- 4	3.9	70	69	0.1
I otal Metals (mg/L) Aluminum	Al	ma/l	1.5					_	~0.03	<0.03			0.03
Antimony	Sb	mg/L mg/L	1.0		1 :	1 :	- 1	1 :	<0.03 <0.006	<0.006	1 :		0.006
Arsenic	As	mg/L	0.3	-	-	-	-	_	0.003	0.003	_		0.002
Barium	Ba	mg/L		-	-	-	-	-	0.03	0.04	-	-	0.03
Cadmium	Cd	mg/L	0.002	-	-	-	-	-	< 0.001	< 0.001	-	-	0.001
Calcium	Ca	mg/L			-	-	-	-	45	45	-	-	1
Chromium	Cr	mg/L		-	-	-	-	-	0.03	< 0.03	-	-	0.03
Cobalt	Co	mg/L		-	-	-	-	-	< 0.03	< 0.03	-	-	0.03
Copper Lead	Cu	mg/L	0.1	-	-	-	-	-	< 0.003	< 0.003	-	-	0.003
	Pb	mg/L	0.1	-	-	-	-	-	<0.001	<0.001	-	-	0.001
Magnesium	Mg	mg/L		-	-	-	-	-	26	26	-	-	1
Manganese Mercury	Mn Hg	mg/L mg/L	0.0004	- 1	-	-	-		0.042 <0.0001	0.044 <0.0001		-	0.003
Molybdenum	Mo	mg/L	0.0004						0.05	0.05	1 :		0.03
Nickel	Ni	mg/L	0.2		_	_		_	0.01	<0.01	_	_	0.01
Selenium	Se	mg/L		-	-	-	-	-	< 0.001	< 0.001	-	-	0.001
Silver	Ag	mg/L			-	-	-	-	< 0.0003	< 0.0003	-	-	0.0003
Sodium	Na	mg/L		-	-	-	-	-	32	32	-	-	0.03
Zinc	Zn	mg/L	0.4	-	-	-	-	-	0.01	0.007	-	-	0.005
Dissolved Metals (mg/L													
Aluminum	Al	mg/L	1.5	0.0046	0.00487	< 0.03	< 0.03	-	-	-	0.0046	0.0041	0.03
Arsenic	As	mg/L	0.3	0.0035	0.0035	0.003	< 0.002	-	-	ŀ	<0.001	<0.001	0.002/0.001
Barium	Ba	mg/L	0.002	0.045	0.043	0.04	< 0.03	-	-	-	0.033	0.034	0.030
Cadmium Calcium	Cd Ca	mg/L mg/L	0.002	<0.0002 50	<0.0002 48	<0.001 51	<0.001 340		1		<0.0002 46	<0.0002 46	0.001/0.0002
Copper	Cu	mg/L	0.1	0.00056	0.0011	<0.003	< 0.003			1 -	0.003	0.0039	0.003
Iron	Fe	mg/L	~	<0.03	< 0.03	<0.1	<0.1	-	-	-	< 0.03	<0.03	0.03
Lead	Pb	mg/L	0.1	< 0.0001	0.00027	< 0.001	< 0.001	-	-	-	0.00056	0.00027	0.0001/0.001
Magnesium	Mg	mg/L		27	27	27	<1	-	-	-	17	16	1
Manganese	Mn	mg/L		0.030	0.031	<0.003	< 0.003	-	-	-	0.32	0.32	0.003
Mercury Molybdenum	Hg Mo	mg/L mg/L	0.0004	<0.00001 0.026	<0.00001 0.025	<0.0001 0.07	<0.0001 0.04		1		<0.00001 0.14	<0.00001 0.14	0.00001/0.000
Nickel	Nio Ni	mg/L mg/L	0.2	0.026	0.025	<0.07	<0.04	1 :	1 :		<0.001	0.14	0.0005/0.03
	K	mg/L	0.2	1.8	1.5	2.0	1.3	_		-	4.4	4.5	0.01/0.001
Potassium	Se	mg/L]	< 0.001	< 0.001	< 0.001	< 0.001	-	-	-	< 0.001	< 0.001	0.001
		mg/L		< 0.0001	< 0.0001	< 0.0003	< 0.0003	-	-	-	< 0.0001	< 0.0001	0.0001/0.000
Potassium Selenium Silver	Ag			-	-	36	24	-	-	-	-	-	0.03
Selenium Silver Sodium	Na	mg/L		< 0.002	< 0.002	<0.01	<0.01	-	-	-	<0.002	< 0.002	0.002
Selenium Silver Sodium Thallium	Na Ti	mg/L				0.005	< 0.003	-			0.004	0.0035	0.005
Selenium Silver Sodium Thallium Zinc	Na TI Zn	mg/L mg/L mg/L	0.4	0.014	0.014	0.000							
Selenium Silver Sodium Thallium Zinc Dissolved Anions (mg/	Na TI Zn L)	mg/L mg/L	0.4	0.014									
Selenium Silver Sodium Thallium Zinc Dissolved Anions (mg/ Dissolved Fluoride	Na TI Zn L)	mg/L mg/L mg/L		0.014	0.2	0.3	0.3	- 190	0.3	0.3	0.3	0.3	0.1
Selenium Silver Sodium Thallium Zinc Dissolved Anions (mg/ Dissolved Fluoride Dissolved Chloride	Na TI Zn L)	mg/L mg/L	1000	0.014			0.3 160	- 180	0.3 160	0.3 160	0.3 3.3	0.3 3.6	0.1 0.05
Selenium Silver Sodium Thallium Zinc Dissolved Anions (mg/ Dissolved Fluoride Dissolved Chloride Nutrients (mg/L)	Na TI Zn L) F CI	mg/L mg/L mg/L mg/L		0.014 0.2 160	0.2 180	0.3 160	160				3.3	3.6	0.05
Selenium Silver Sodium Thallium Zinc Dissolved Anions (mg/) Dissolved Fluoride Dissolved Chloride Nutrients (mg/L) Nitrate and Nitrite	Na TI Zn L) F CI	mg/L mg/L mg/L mg/L	1000	0.014	0.2	0.3 160 <0.04	160 <0.04	<0.04			3.3	3.6	0.05
Selenium Silver Sodium Thallium Zinc Dissolved Anions (mg/ Dissolved Fluoride Dissolved Chloride Nutrients (mg/L)	Na TI Zn L) F CI	mg/L mg/L mg/L mg/L		0.014 0.2 160	0.2 180	0.3 160	160			160	3.3	3.6	0.05

MW10-01 Groundwater Quality Results Agnico-Eagle Mines Ltd Meadowbank Division

				Intermediate Volc	anic and Quartzite	Method
			Portage Attenuation Pond	Second Porta	age Lake Arm	Detection Limit
			Effluent Limits	BH 1	0-01	
Laboratory sar Sa	mple number impling date QA/QC	units	Maximum Average Conc.	L51892 L51894 27-Aug-10	L51893 L51895 27-Aug-10 FD	27-Aug-10
FIELD-MEASURED PARAMETERS						
Temperature		°C		3.9	-	-
рН		s.u.	6.0-9.0	7.6	-	-
Conductivity		uS/cm		910	-	-
LABORATORY PARAMETERS						
рН		s.u.	6.0-9.0	7.55	7.56	-
Weak Acid Dissociable Cyanide (CN-)		mg/L		0.1	-	
Total Cyanide (CN)		mg/L		0.11	-	
Conductivity		uS/cm		930	940	0.001
Total Alkalinity	CaCO3	mg/L		110	110	1
Dissolved Sulphate	SO4	mg/L		210	210	1
Hardness (Total)	TDO	mg/L		300	300	1
Total Dissolved Solids	TDS	mg/L NTU	15	650	690	10
Turbidity		NIU	15	56	55	0.1
Total Metals						
Aluminum ¹	Al	mg/L		< 0.03	< 0.03	0.03
Arsenic	As	mg/L	0.5	0.018	0.018	0.002
Barium	Ва	mg/L		0.44	0.44	0.03
Cadmium ³	Cd	mg/L		< 0.001	< 0.001	0.001
Calcium	Ca	mg/L		71	69	0.1
Copper ³	Cu	mg/L	0.3	< 0.003	< 0.003	0.003
Iron	Fe	mg/L		3.1	3.1	0.1
Lead ³	Pb	mg/L	0.2	< 0.001	< 0.001	0.001
Magnesium	Mg	mg/L		30	30	0.1
Manganese	Mn	mg/L		0.17	0.17	0.003
Mercury	Hg	mg/L		<0.0001	<0.0001	0.0001
Molybdenum	Мо	mg/L		< 0.03	<0.03	0.0005
Nickel ³	Ni	mg/L	0.5	0.05	0.04	0.001
Potassium	K	mg/L		7.7	7.7	0.1
Selenium	Se	mg/L		<0.001	<0.001	0.001
Silver	Ag	mg/L		<0.0003	<0.0003	0.00010
Sodium	Na	mg/L		58	58	0.05
Thallium	TI	mg/L		<0.01	0.01	0.01
Zinc	Zn	mg/L	0.5	<0.003	0.005	0.005

MW10-01 Groundwater Quality Results Agnico-Eagle Mines Ltd Meadowbank Division

				Intermediate Volc	anic and Quartzite	Method
			Portage Attenuation Pond	Second Porta	age Lake Arm	Detection Limit
			Effluent Limits	BH 1	0-01	Lillin
Lat	ooratory sample number Sampling date QA/QC	units	Maximum Average Conc.	L51892 L51894 27-Aug-10	L51893 L51895 27-Aug-10 FD	27-Aug-10
Dissolved Metals						
Aluminum	Al	mg/L		< 0.03	< 0.03	0.03
Arsenic	As	mg/L	0.3	0.007	0.007	0.0020
Barium	Ва	mg/L		0.42	0.44	0.03
Cadmium	Cd	mg/L	0.002	< 0.001	<0.001	0.0002
Calcium	Ca	mg/L		68	73	0.05
Copper	Cu	mg/L	0.1	< 0.003	< 0.003	0.001
Iron	Fe	mg/L		0.2	0.2	0.1
Lead	Pb	mg/L	0.1	< 0.001	<0.001	0.001
Magnesium	Mg	mg/L		30	31	0.05
Manganese	Mn	mg/L		0.18	0.18	0.001
Mercury	Hg	mg/L		< 0.0001	< 0.0001	0.0001
Molybdenum	Mo	mg/L		< 0.03	< 0.03	0.030
Nickel	Ni	mg/L	0.2	0.05	0.05	0.01
Potassium	К	mg/L		7.8	8	0.1
Selenium	Se	mg/L		< 0.001	< 0.001	0.001
Silver	Ag	mg/L		< 0.0003	< 0.0003	0.0003
Sodium	Na	mg/L		59	61	0.0
Thallium	TI	mg/L		<0.01	<0.01	0.01
Zinc	Zn	mg/L	0.4	< 0.005	0.012	0.005
Dissolved Anions						
Dissolved Fluoride	F	mg/L		0.4	0.5	0.1
Dissolved Chloride	CI	mg/L	1000	17	17	0.05
Nutrients		-				
Nitrate and Nitrite	NO3 + NO2	mg/L	20*	0.57	0.57	0.02
Ammonia Nitrogen	N	mg/L	16	3.8	3.8	0.1

FD = Field Duplicate

QA/QC of Groundwater Quality Results Agnico-Eagle Mines Ltd. Meadowbank Division

			Intermedia	te Volcanic		Inter	mediate Volc	anic and Qua	rtzite
			Second Po	rtage Lake			Second Porta	age Lake Arm	
			MWC	8-02			BH 1	0-01	
	sample number Sampling date QA/QC	L56096 9/1/2010	L56473 9/1/2010 FD	Method Detection Limit	RPD	L51892 L51894 8/27/2010	L51893 L51895 8/27/2010 FD	Method Detection Limit	RPD
LABORATORY PARAM	IETERS								
TDS (mg/L)		450	490	10	8.5	650	690	10	6.0
pH (s.u.)		7.7	7.8	-	0.1	7.55	7.56	-	0.13
Conductivity (uS/cm)		-	-	1	nc	930	940	1	1.1
Total Alkalinity CaCO3 (mg/L)	80	80	2	0.0	110	110	1	0.0
Dissolved Sulphate SO4	(mg/L)	-	-	0.1	nc	210	210	1	0.0
Hardness (Total) CaCO		220	220	1	0.0	300	300	1	0.0
Turbidity (NTU)		4	3.9	0.1	2.5	56	55	0.1	1.8
Total Metals (mg/L)									
Calcium	Ca	45	45	1	0	100	99	0.1	1.0
Magnesium	Mg	26	26	1	0	46	47	0.1	2.2
Metals (mg/L) *									
Aluminum	Al	< 0.03	< 0.03	0.03	nc	< 0.03	< 0.03	0.03	nc
Antimony	Sb	< 0.006	< 0.006	0.006	nc	-	-	-	-
Arsenic	As	0.003	0.003	0.002	0.0	0.007	0.007	0.002	0.0
Barium	Ba	0.03	0.040	0.03	+/- MDL	0.42	0.44	0.03	4.7
Cadmium	Cd	< 0.001	< 0.001	0.001	nc	< 0.001	< 0.001	0.001	nc
Copper	Cu	< 0.003	< 0.003	0.003	nc	< 0.003	< 0.003	0.003	nc
Iron	Fe	-	-	-	-	0.2	0.2	0.1	0.0
Lead	Pb	< 0.001	< 0.001	0.001	nc	< 0.001	< 0.001	0.001	nc
Manganese	Mn	0.042	0.044	0.003	4.7	0.18	0.18	0.003	0.0
Mercury	Hg	< 0.0001	< 0.0001	0.0001	nc	< 0.0001	< 0.0001	0.0001	nc
Molybdenum	Мо	0.05	0.05	0.03	0.0	< 0.03	< 0.03	0.03	nc
Nickel	Ni	0.01	< 0.01	0.01	nc	0.05	0.05	0.01	0.0
Potassium	K	-	-	-	-	7.8	8	0.1	2.5
Selenium	Se	< 0.001	< 0.001	0.001	nc	< 0.001	< 0.001	0.001	nc
Silver	Ag	< 0.0003	< 0.0003	0.0003	nc	< 0.0003	< 0.0003	0.0003	nc
Sodium	Na	32	32	0.03	0.0	59	61	0.03	3.3
Thallium	TI	-	-	-	-	<0.01	<0.01	0.001	nc
Zinc	Zn	0.01	<0.007	0.003	nc	< 0.005	0.012	0.003	nc
Dissolved Anions (mg/	L)								
Dissolved Fluoride ⁴	F	0.3	0.3	0.1	0.0	0.4	<0.5	0.1	nc
Dissolved Chloride	CI	160	160	0.5	0	17	17	0.05	0.0
Nutrients (mg/L)									
Nitrate and Nitrite	NO3 + NO2	-	-	0.04	nc	0.57	0.57	0.02	0.0
Dissolved Nitrate ⁵	NO3	-	-	0.02	nc	-	-	0.02	nc
Nitrite	NO2	-	-	0.02	nc	-	-	0.4	nc
Ammonia Nitrogen	N-NH3	0.06	0.06	0.02	0.0	3.8	3.8	0.1	0.0
Notes:							•		

Notes:

RPD value exceeds 20%

FD Field duplicate

RPD relative percent difference

nc not calculated (one or both result below MDL)

metals for samples MW08-02 and its duplicate are total metals metals for samples MW010-01 and its duplicate are dissovled metals

12/17/2010

SOUTH BASIN

REVISION DATE: 09/01/15 12:11PM By: ASalvador

AEM TITLE

AGNICO-EAGLE MINES LIMITED MEADOWBANK GOLD PROJECT NUNAVUT

GROUNDWATER MONITORING WELL LOCATION PLAN

SECOND PORTAGE LAKE

PROJECT	No.	08-1428-0008	FILE No.	0814280008-700	0-7100-01_	Α
DESIGN	VJB	23MAY08	SCALE	AS SHOWN	REV.	
CADD	нсм	23MAY08				
CHECK			l Fl	GURE	Ξ1	
REVIEW						

APPENDIX 1 MW10-01 Borehole Log

DRILL HOLE REPORT **AGNICO-EAGLE MINES LIMITED**

MEADOWBANK DIVISION

Sep 14, 2010

Page 1 of 2

Hole Name: BH-10-01 Units: METRIC

Project Name: PORTAGE Υ **Collar Survey:**

Depth: 60.00

Final Depth: 60.00

Core Storage:

Calculated RTAGE:

Project Number:

PORTAGE Multishot Survey: N Start Depth: 0

Coordinates: North:

No. Claim:

Pulse EM Survey: N

North:

7318.0

UTM:

Core Size: HQ Mine Site

123.3

East:

Localisation: **Date Started:**

Date Logged:

Surface Aug 29, 2010

Sep 14, 2010

Casing: Pulled

Contractor: Forage Orbit Garant 5124.0

Elevation:

Date Completed: Aug 31, 2010

Azimuth

Cimented: Y Logged by: Benoit de Chavigny Signature:

Collar Dip: -90.0

Primary

East:

Coordinates:

Elevation:

Comments: Geotechnical hole. In Stormwater Dyke to put piezometer and others instruments.

Sunvo Typo | Flag

Assays Averages

Survey Data

						_	
0.0	0	-90.00	NS	ОК	Surveyed with GPS. Vertical hole		
Depth	Azimuth Decimal	Dip Decimal	Suryve Type	Flag	Comments		

Detailed Li	ithology		Assay					
From	То	Lithology	Sample	From	То	Au (g/t)	Ag (g/t)	Sg (Kgm3)
0.0	12.4	MT, Mort terrain		1				
12.4	22.1	S4CH, Chert Conglomeratique						
		Sediments. Chert conglomeratic quartzite. White to pale grey in color. Aphanitic to very fine grained. Numerous medium to large bands of silicified cherty rounded fragments (quartz) up to 10-20 cm. Conglomeratic texture. Silicified and locally sericitized. Brechiated and strongly fractured (blocky core). RQD is very bad bethween 30-40 % Trace-1 % in fine disseminated Pyrite.						
ı		Mineralization						
		12.4 - 22.1 : PY, Dissiminée, 1.00% Trace-1 % Py diss.						
l		Alteration						
l		12.4 - 22.1 : SR+, Pénétrative, Faible						
		12.4 - 22.1 : SI+, Massive, Fort						

DRILL HOLE REPORT AGNICO-EAGLE MINES LIMITED

MEADOWBANK DIVISION

Page 2 of 2 Sep 14, 2010

Hole Name: BH-10-01 Units: METRIC

Detailed Lit	thology		Assay					
From	То	Lithology	Sample	From	То	Au (g/t)	Ag (g/t)	Sg (Kgm3)
22.1	24.0	S5, Brèche Brecchia zone. Quart-tourmaline and chlorite brechiated zone at the contact bethween sediment and intermediate volcaniclastic rock. White to pale grey to black in color. Very fine to fine grained. Brechiated with fragmental heavy quartz veining. Trace-3 % Py dissiminated or in little veinlets.						
		Mineralization 22.1 - 24.0 : PY, Stringer, 2.00% Trace-3 % Py diss or in stringers. Alteration 22.1 - 24.0 : CL+, Pénétrative, Moyen						
24.0	28.5	V9i, TUF INTERMÉDIAIRE Intermediate volcaniclastic rock. Grey to grey green in color. Fine to medium grained. Foliated with variable direction. Sericitic and chloritic alteration. Locally hematized near of the lower contact with quartzite. Trace-2 % Py dissiminated or in strigers. RQD is good at 80 %.						
		Mineralization 24.0 - 28.5 : PY, Dissiminée, 1.00% Trace-1 % Py diss. Alteration 24.0 - 28.5 : BO+, Pénétrative, Faible						
		24.0 - 28.5 : SR+, Pénétrative, Faible 24.0 - 28.5 : CL+, Pénétrative, Moyen 28.0 - 28.5 : HM+, Pénétrative, Faible						
28.5	60.0	S1A, Grès quartzitique Sediment. Quartzite. Grey to pale grey very pale yellow-green to tan in color. Medium to coarse grained. Quartz cristals (rounded) 70-80 % up to 10mm diameter. Sericitic matrix with locally less in chlorite. Massive bench. Trace-1 % Py disseminated. RQD is very good at 85-95 %.						
		Mineralization 28.5 - 60.0 : PY, Dissiminée, 1.00% Trace-1 % Py diss. Alteration 28.5 - 60.0 : CL+, Pénétrative, Faible 28.5 - 60.0 : SR+, Pénétrative, Moyen						

APPENDIX 2

Field Sampling Sheet

eati	No. don: her: perature:	RH-10 headows Sunny	10°C			Co Da	oject No. mpleted By: _ te: _ ne:	10-1478-00 DV/ RC 2-7/08/70 14:30	-	ordinana di L
VIC	NITORII	NG WELL I	NFORMA	NOIT			f ²⁵ .			
)ер	th to water E	Below Top of Ca	ısina:	Α. 0	108 met	20 0.00	ne well volume: -B)*2.0 =).	or a E1 mm /0	.0 inch) diameter i
ер	th to Bottom	of Well Below		_		120	-B)*1.1 =	litres -	for a 38 mm (1	.5 inch) diameter
iar	neter Stand	pipe:		c <u>9</u>	4 mm	L				
	UIPMEN		odel M	NNA	Seria	al No.	Ca	libration Buffers	. <u>6</u> 4	Ø7 □ 10
	ductivity Me			ANNA		al No.		libration Solutio	-	121.7 LI 10
is	solved Oxyge	en Meter: M	odel		Serie	ai No.	_	D.O. Chemet Ar		
un'	np: 🗆 Noi	ne Ø Watern	a 🗆 Perist	altic 🗆 !	Submersible		_			☐ Teflon ☐ P\
	npie IntakeD	7	Sm			• 1		140/16 12 3/6	niess Steel	☐ Teflon ☐ P\
_										
		ELOPMEN		NG				•		
	ge Volume:	. Well. Vol.	X	=		litres		•		
Flor	w Rate:			<u> </u>		_ L/min.	Start	-	Finish:	
	Time	Volume Removed (L)	Temp.	_ pH (Units)	- Cond. (uS/cm)	Redox (mV)	Dis. O ₂ (mg/L) or %	et.	Remarko	
		20	3.9	7.55	920	(11,4)	(IIIg/L) DI 76			
T		401	6,2	7,25	940		_	0		
Γ		601	Sit	7.42	925			WL-9.06		
Γ		80	4.6	7.51	920	1		1,04	• .	
Γ	15:26	100L	3,9	7,62	893	1.				
Γ		120L	4,2	7,104	1896			WL-9,07		
Г	15:47	1406	14.2	7,67	1900			1		
Ŀ	iloh	160	4.1	765	1903		and the same	1		
		180 C	4.0	7.68	905	100		A Comment	47	,
	16:10		29	7,60	1911	1 1 2 7 5 5 S		the state of	advert !	
	16:20	200 C			1 1 1 1 -		The state of the s			
	16:20	220 L	35	7,67	969	1 20		AND ADDRESS OF THE PARTY.	7	1
	16:20		3.8	7.67	907			Marie III	*	1
CO	16:20	220 L						Male III	•	
Co	16:20 16:30 16:37	220 L	3.8				V.	***C	3	, ė
Co	16:20 16:30 16:37	770 L 240 L	3.8				V N			, ė
Co	(6:20 (6:30 (6:37) (6:37)	220 L 240 L	No If yes	7.64	1907	IĤHH	I F Very Si	DV.		, 0
Co	l(c · 30) l(c · 30) l(c · 32) emments: Odour. Sheen:	220 L 240 L	No If yes	7.64	1907	IIIIIII	I F Very Si	ry		, 6
Co	l(6.20 l(2.32) l(2.32) mments: Odour: Sheen: Turbidity:	220 L 240 L	No If yes	7.64	1907	IFFIII	I F Very Si	by		. 3
C	l(6.20 l(2.32) l(2.32) omments: Odour. Sheen: Turbidity: Other:	TYes D Clear []	No If yes No If yes	7.64	1907	I I I I I I I I I I I I I I I I I I I		by .		
Co	l(6.20 l(2.32) l(2.32) mments: Odour: Sheen: Turbidity:	TYes D Clear []	No If yes	7.64	1111111	Containe		2L 4L	Filtered	
Co	l(6.20 l(2.32) l(2.32) omments: Odour. Sheen: Turbidity: Other:	TYes D Clear []	No If yes No If yes I I I I I I I	7.64 	1111111	Containe	er Size			Preservative
Co	l(6.20 l(2.32) l(2.32) omments: Odour. Sheen: Turbidity: Other:	Yes D Clear II	No If yes No If yes I I I I I I I Type stic □ Glass	7.6'4 	1111111	Containe	er Size		Filtered	Preservativo
Co	l(6.20 l(2.32) l(2.32) omments: Odour. Sheen: Turbidity: Other:	Yes	No If yes No If yes I I I I I I I Type tic □ Glass stic □ Glass	7.6'4 	1111111	Containe	er Size		Filtered	Preservative
Co	l(6.20 l(2.32) l(2.32) omments: Odour. Sheen: Turbidity: Other:	Yes D Clear II	No If yes No If yes No If yes I I I I I I I Type tic □ Glass stic □ Glass	7.64 1111 40 mL	1111111	Containe	er Size		Filtered Yes D N Yes D N	Preservative to the control of the c

☐ Yes

☐ Yes ☐ No

□ No

C:\Ducumens and SettingsBrMacdonald\DestropiGW Davel & Purging_Samp Data Sheet doc

☐ Glass

☐ Glass

☐ Plastic

☐ Plastic

Development

Purging/Sampling

ition: ther: perature:		ry	to to	-			Complet Date: Time:	ed By:	D. 27/10	V 18/10	RC		
ONITORIN pth to water B pth to Bottom ameter Standp	Below To	p of Casi	ng:	Α		etres etres	One well (A-B)*2.0 (A-B)*1.1) =		litres -	for a 51 mm for a 38 mm	(2.0 ind	ch) diameter we
QUIPMEN and Temp. Monductivity Messolved Oxyge Imp: Note IntakeD	Meter: ter: en Meter	Mod Mod	el	ultic 🗆 S	Seri	al No al No al No	Ва	Ca	alibratio	n Buffers n Solutio hemet A	n:		□ 10 efion □ PV0
VELL DEV urge Volume: ow Rate:						litres	. s	tart			Finish		
Time	Volu		Temp.	pH	- Cond.	Redo	x I	Dia. O ₂	T		Rema	-	
11:47	28		(°C)	7.70	(uS/cm) 707	(mV) (m	g/L) or %	+		WL:		7
19:00	300		4,2	7.59	910	1			1.50	-	ns	7,07	m
1-1-			110		110	1		· ·		47311	ny .		
											•		
		• .									Ξ,		
2 17 to 1	11												
	1	-							4				7.4
1.00	-		· ·						· -				1.1
	The state of the s		·		 	-			 `				
	-				-	9.	_				· .		
	 				+	Lap			+		· · ·		
												-	
Odour. Sheen: Turbidity: Other:	□ Yes	□ No		111111		HILL	IIIII	Very S	ilty				× 1
	. T	1 4		T		Col	ntainer Size				Γ.		
Analysi	45 .	1	ура	40 mL	100 mL	250 mL	500 mL,	1'L	2L	4L	Filtered	1	Preservatives
,		□ Ptastic		-							☐ Yes ☐	No I	
		Plastic		1				-) No	
		☐ Plastic		_				-				No	-
		☐ Plastic			-				-	-		3 No	
	2 . 10	☐ Plastic					-	-	-	-		3 No	
		☐ Plastic			-					+		O No	·
	1										I I Van I F	T Blo	
		□ Plastic					1 1/	1	-	+		3 No	

Prize

∴ Development□ Purging/Sampling

No.	Щ	CU-03	-0/		-		Project N	-	10	1428	-0006	-	
ation: ither:						•	Complete Date:	ea By:	K(DU	0 5		
perature:	4	30					Time:				18 25		
ONITORIN			EODA: A	TION						cv			
epth to water E epth to Bottom ameter Standa	Below To	op of Casi	ng:	Α		etres etres n.	One well (A-B)*2.0 (A-B)*1.1	=		litres - f	or a 51 mm or a 38 mm	(2.0 in (1.5 in	ch) diameter we
QUIPMEN	IT LIS	T.	,										
l and Temp. Monductivity Me		Mod Mod				ial No				n Buffers: n Solution			□ 10
issoived Oxyge	en Mete	m. Mod	el		Ser	tal No.				hemet Ar			···
ample IntakeD	epth: _				ubmersible)	Ba	ller. 🗆	None	□ Sta	inless Stee		Teflon □ PVC
urge Volume: ow Rate:		ell. Vol. X		_ =_		litres L/min.	St	art			Finisi	h:	
Time		ume wed (L)	Temp.	pH (Units)	- Cond. (uS/cm)	Redo (mV)		Dis. O ₂ g/L) or %			Rema	arics	
	2:		7.1	6.90	293			,		`			
		0	7.4	7.10	280								
		00	7.4	7.04	300	-			-				
<u> </u>	1	10	7.3	7.05	335	-			-		<u> </u>		
-	-	20	7.4	7.16	375/	,	_					·	
		60	712	6.60	3/54				-				
19	30		73	6.76	322	- ·			1				
		40	70	6.75	321				<u> </u>				
		00	7.4	6.92	324	/							
	35		24	7.01	324			1			:		
*. *	14	00	7.0	6.29	323	5				1			
Comments: Odour: Sheen: Turbidity: Other:	☐ Ye	s DNa	o If yes			9			ilty				
Analys	is	-	Гуре	40 mL	100 mL	Cor 250 mL	tainer Size	11	2L	4L	Filtere	ed	Preservatives
		□ Plastic	: D Glass			1			/ = -	+ *-	☐ Yes	□ No	
		☐ Plastic	□ Glass								+	□ No	
			1						1			D No	-
	•	☐ Plastic	Glass						1		- N	- M-	
											☐ Yes	□ No	
		☐ Plastic ☐ Plastic ☐ Plastic	Glass	B								□ No	
		☐ Plastic ☐ Plastic ☐ Plastic ☐ Plastic	Glass Glass Glass Glass Glass	3 b s s			•				☐ Yes		
		☐ Plastic ☐ Plastic ☐ Plastic	G Glass G Glass G G Glass G G Glass	3 B S S S S S S S S S S S S S S S S S S	·						☐ Yes	□ No	

No. ition: ther: perature:		NW.	-03-01 Y				Project N Complete Date: Time:		D	W	28-6 RC 8 26	30 /	
ONITORIN pth to water Be pth to Bottom o uneter Standpi	elow To	p of Casing	;	A		etres etres m	One well (A-B)*2.0 (A-B)*1.1	=	li	itres - f	or a 51 m or a 38 m	nm (2.0 i	nch) diameter wel
and Temp. Me nductivity Mete solved Oxyger mp: Money Mete None mple IntakeDe	oter: er: n Meter	Model Model	H	ANNA MIC OS	Ser	ial No. ial No. ial No.	H1 9 H1-9	7129 c	alibration alibration D.O. Ch None	Solution emet Ar	n:	1413	Teflon PVC
YELL DEVE orge Volume: ow Rate:		MENT/I		G _ =		litres L/min	. Si	art			Fin	ish:	
Time	Volu		Temp.	pH (Units)	- Cond. (uS/cm)	Redd (mV		ois. O ₂ o/L) or %			Re	marks	
11/4	. 2.0	9	Fel	7.2	333		, (<i>p2,0.76</i>		,			1
	40		6.40	63	313						1 %		
	60		0.60	72	279			,			14		
· ·	80		e.60	72	287						• .		
· '	10		0.7/	7.3	294	+		11.1				1 .	
	140	5	3.0	7.07	310								
	(70		40	4.04	1.367	1			1				
									 -		-		
				•		W				. ·			
			1							•	*		-
omments: Odour: Sheen: Turbidity: Other:	☐ Yes☐ Yes☐ Clear	B. □ No	If yes _ If yes _	11111		IIIII	IIIII	Very S	ilty				
Analysis		Ту				Co	ntainer Size		1,28				
Anarysis				40 mL	100 mL	250 mL	500 mL	1'L	2L	4L	Filte	red	Preservatives
		□ Plastic	D Glass								□ Yes	□ No	
		Plastic	D Glass		-				-		□ Yes	□ No	
		☐ Plastic	☐ Glass								☐ Yes	□ No	
		☐ Plastic	☐ Glass								☐ Yes	□ No	7.
		□ Plastic	D Glass			-				4	· □ Yes	□ No	
		□ Plastic	☐ Glass	· · ·			<u> </u>	 			□ Yes	□ No	
	100	□ Plastic	Glass	1	†	†	 	+					
		LI Flasur	L Class	,	1	1	1	1	4		☐ Yes	□ No	

: Development

ther: _ perature: _	4,12,	rvin	9 1	-10,C	Anna P		Complete Date:		1/09/10			e taonaced Parities (f
ONITORIN pth to water B pth to Bottom meter Standp	elow To	op of Casin	ıg:	Α	m	etres etres m	One well (A-B)*2.0 (A-B)*1.1	=				ch) diameter w ch) diameter v
QUIPMEN and Temp. M nductivity Met solved Oxyge	eter: er:	Mode Mode	al le	MNV	Ser	rial No rial No rial No	98/2	Ca	libration Buff libration Solu D.O. Cheme	ution:	1413	□ 10
mp: Non	epth: _	Waterra 			Submersibl	9	Bai	ler. 🗆	None 🗆	Stainless Stee	דם ופ	Teflon □ PV
rge Volume: ow Rate:		ell. Vol. X		_ =_		litres L/min.	Stu	art		Finis	sh:	20 20 4
Time			Temp.	pH	- Cond.	Redo		is. O ₂	Winds	Rem	narks	
17:20	330	ved (L)	(°C)	(Units)	(uS/cm)	(mV)	(mg	/L) or %				
7.21	37		19.0	7.12	500				73"			
1:30	400		05	197	650		100	0 7	 			
2.40	1130	-	93	137	(an)		700	3		-	17	-
8:00	950		9.0	7.17	DEF	-			The second second			
9,40	48	010	222	931	500					-		
0:00	501	. 1	257	7/60	730			1 - 2.80			4.5	
10120	52	71	1010	700	17/7	-			19 6			
11:40	51	106	18.2	7 68	690	-						
12 1 10	7	201	152	7.87	680	-			3 .		- 64	
13' 301	5	201 9	737	5 55	590						300	
124, 70		OL	17.1	7.61	680		771		7.1		Ar.	77.
omments: Odour: Sheen: Turbidity: Other:	□ Ye □ Ye Clear	s. 🗆 No	If yes	11111		111111	HHF	Very Sit	у	D and D	Tips:	
Analysis		7.	/pe			Con	tainer Size			Filter	ad I	Preservative
Allenysis	100.4	11/11/11	The Late	40 mL	100 mL	250 mL	500 mL,	1'L	2L 4			FIESEIVAUVE
		□ Plastic	D Glass		5.0					☐ Yes	□ No	
	3-4	Plastic	D Glass						- JA 17	☐ Yes	□ No	
	J. W.	□ Plastic	☐ Glass						<u> </u>	☐ Yes	□ No	-
And 95	-	☐ Plastic	☐ Glass					4		☐ Yes	□ No	
	Luc	☐ Plastic	. D Glase			-				Yes	□ No	
- Transport		☐ Plastic	D Glass							☐ Yes	□ No	
		☐ Plastic	☐ Glass						*	. □ Yes	□ No	
and the same of th		☐ Plastic	☐ Glass		1	1 1		,		☐ Yes	□ No	

Purging/Sampling Data Sheet ☐ Purging/Sampling Well No. Project No. Location: Completed By: Weather: Date: Temperature: Time: MONITORING WELL INFORMATION One well volume: Depth to water Below Top of Casing: metres $(A-B)^2.0 =$ Iltres - for a 51 mm (2.0 inch) diameter well Depth to Bottom of Well Below Top of Casing: metres litres - for a 38 mm (1.5 inch) diameter well Diameter Standpipe: C EQUIPMENT LIST. 7 Calibration Buffers: pH and Temp. Meter: Model Serial No. **D**7 Conductivity Meter. Model Serial No. Calibration Solution: Dissolved Oxygen Meter. Serial No. D.O. Chemet Ampoule ☐ Peristaltic ☐ Submersible Baller. □ None ☐ Stainless Steel ☐ Tefion □ PVC Sample IntakeDepth: WELL DEVELOPMENT/PURGING Purge Volume: Well. Vol. X Flow Rate: L/min. Start Finish: Volume Redox Dis. Oz pH (Units) Cond. Time Remarks Removed (L) (uS/cm) (mV) (mg/L) or % (°C) 1.9 Comments: Odour. ☐ Yes □ No If yes Sheen: ☐ Yes □ No Turbidity: Clear Other: Container Size Analysis Type Filtered Preservatives 40 mL 100 mL 250 mL 500 mL □ Plastic ☐ Glass ☐ Yes D No ☐ Plastic D Glass ☐ Yes D No ☐ Plastic ☐ Glass ☐ Yes D No ☐ Plastic ☐ Glass ☐ Yes □ No ☐ Piastic ☐ Glass □ No ☐ Yes ☐ Plastic ☐ Glass ☐ Yes □ No ☐ Plastic ☐ Glass ☐ Yes □ No ☐ Plastic ☐ Glass ☐ Yes □ No SCN No. Consumables: ☐ Waterra Tubing D HDPE Tubing ☐ Groundwater Filter: 0 or 1

D.O. Ampoules

: Development

C:\Ducuments and Senings\BrMacdonakl\Desktop\GW Devel & Purging_Samp Data Sheet.doc

☐ Silicon Tubing

Groundwater Development and

	ound rging							Ya	ye	3	De De	1 1	Sampling
Vell Nocat Veath	tion:	Me C Sin	Jon Da		0°C			Project N Complete Date: Time:		10-1428 D. Va.h. 1109/1	2-0006. 0		
Dep	ONITORIN oth to water B oth to Bottom meter Standp	elow Top of Well B	of Casing	g:	Α		etres etres n	One well (A-B)*2.0 (A-B)*1.1	=				nch) diameter well nch) diameter well
pH a Con Diss	QUIPMEN and Temp. M nductivity Met solved Oxyge np: Nor nple IntakeDe	ieter: ier: in Meter: ne 🗆 V	Model Model	□ Periste	Anna altic os	Seri	ial No.	18120 Ba	Ca	ibration Buffe ibration Solu D.O. Chemet None 🏻 S	tion:	141	7 🗆 10 3 Teflon 🗆 PVC
Pur	ELL DEV rge Volume: w Rate:		VIENT/F	•	NG =		litres L/min	. St	art		Fini	ish:	
	Time	Volum Remove	d (L)	Temp. (°C)	pH (Units)	Cond. (uS/cm)	Redo (mV		Dis. O ₂ g/L) or %		Re	marks	
	15:30	650		53	7,84	680				Sam			
									·	Jung	pling	AFT	ren.
										Jan 1	pling	AF	nen.
											pling	AFT	nen.
Co	omments: Odour: Sheen: Turbidity: Other:		□ No	If yes If yes I I I I I	11111			IIIII	Very Sit		pling	Act	Nen.
Co	Odour: Sheen: Turbidity:	□ Yes □ Yes Clear	□ No	If yes	1 1 1 1 1 1 1 40 mL	100 mL		I I I I I I I I I I I I I I I I I I I			Filte	A C+	Preservatives
Co	Odour: Sheen: Turbidity: Other:	☐ Yes☐ YesClear	□ No □ No	If yes			I I I I I	ntainer Size	Very Sit	y	Flite Yes Yes	A CH	Preservatives

Amalimia				of some	Cbi	ntainer Size				Filtered		_
Analysis ,	Ту	De	40 mL	100 mL	250 mL	500 mL,	1'L	2L	4L	Filte	red	Preservatives
	☐ Plastic	D Glass		Marie Comment				1		□ Yes	□ No	2
	☐ Plastic	D Glass								□ Yes .	□ No	
e character of the	☐ Plastic	☐ Glass							2.115	☐ Yes	□ No	
	☐ Plastic	☐ Glass	1							☐ Yes	□ No	
	☐ Plastic	☐ Glass								· 🗆 Yes	□ No	
	☐ Plastic	☐ Glass								☐ Yes	□ No	W 19
	☐ Plastic	☐ Glass								.□ Yes	□ No	
	☐ Plastic	☐ Glass								☐ Yes	□No	, ,

SCN No.	Consumables:	☐ Waterra Tubing	☐ HDPE Tubing	☐ Groundwater Filter:	0	or	1
	athigo	☐ Silicon Tubing	_ D.O. Ampoules				

į

. ,

APPENDIX 3

Laboratory Reports

CONFIRMATION-RECEIPT OF SAMPLES FOR ANALYSIS

Maxxam Job # B045377

Client Project #: 10-1248-0006

GOLDER ASSOCIATES LTD

Quote #: B00099

32 Steacie Dr.

Kanata

K2K 2A9

6 Samples Samples Received 2010/08/30

Client Confirmation 2010/08/30

Expected Report Delivery 2010/09/01 12:00

Report will be sent to: Invoice will be sent to: Valérie Bertrand

GOLDER ASSOCIATES LTD

32 Steacie Dr.

Kanata K2K 2A9

Ph 6135929600-3268 Fax 613-592-9601

Ph 6135929600-3268 Fax 613-592-9601 vbertrand@golder.com

We have received the following samples:

MW-03-01-201008 Sampled 2010/08/26 COC# E808174 Matrix: GROUND WATER

Maxxam #: L51870

Ammonia Nitrogen

*Anions

Conductivity

Fluoride

Hardness

Mercury by ICPMS

*Metals by ICPMS

Ηq Holding time already past.

Total Alkalinity (pH end point 4.5)

Total Dissolved Solids

Turbidity Holding time already past.

MW-03-01-201008-DISSOUS Sampled 2010/08/26

Maxxam #: L51884 Mercury by ICPMS

*Metals by ICPMS

BH-10-01-201008 Sampled 2010/08/27

Maxxam #: L51892

Ammonia Nitrogen

*Anions

Conductivity

Fluoride

Hardness

Mercury by ICPMS

*Metals by ICPMS

pН Holding time already past.

Total Alkalinity (pH end point 4.5)

Total Cyanide

Total Dissolved Solids

Turbidity
Weak Acid Dissociable Cyanides

Holding time already past.

Holding time already past.

Sampled 2010/08/27

DUP-1

Maxxam #: L51893

Ammonia Nitrogen *Anions

Conductivity

Fluoride Hardness

Mercury by ICPMS *Metals by ICPMS

pH Total Alkalinity (pH end point 4.5)

Total Dissolved Solids

Total Dissolved Solids

Turbidity Holding time already past.

BH-10-01-201008-DISSOUS

Maxxam #: L51894 Mercury by ICPMS *Metals by ICPMS

DUP-1-DISSOUS

Sampled 2010/08/27

Sampled 2010/08/27

Maxxam #: L51895 Mercury by ICPMS *Metals by ICPMS

Comments:

- An additionnal fee of 20\$ per sample could be charged for disposal of Hazardous samples. Client will be contacted before such hazardous charges are applied, and will be given option to pick up samples.
- Unless special storage arrangements are made, all samples will be discarded 30 days after their reception.
- Non-regular samples are flagged as (C) Composite by lab and (L) for Leachate.
- For revisions please contact your Project Management team at ph (514) 448-9001 or via email at ServiceTechniqueMontreal@maxxamanalytics.com.
- For revisions please contact your Maxxam Project Management team at Ph (514) 448-9001 or Fax (514) 448-9199. Your Project Manager is: LEILA SABOURI Alternate Project Manager MELANIE LECLERC

pΗ

TOTAL DISSOLVED SOLIDS

Total Dissolved Solids

TURBIDITY

Turbidity

Maxxam Job # B045377 PARAMETERS FOR ANALYSIS REQUESTED

10 mg/L

0.1 NTU

The values listed below are RDL's and not results. Report Detection Limit (RDL) may be elevated if there are matrix interferences or limited sample amounts.

Maxxam # L51870, Sample IDN: MW-03-01-201008 Maxxam # L51892, Sample IDN: BH-10-01-201008 Maxxam # L51893, Sample IDN: DUP-1 TOTAL ALKALINITY (PH END POINT 4.5) Alkalinity Total (as CaCO3) pH 4.5 1 mg/L **ANIONS** Chloride (CI) 0.05 ma/L Sulfates (SO4) 0.1 mg/L Nitrate (N) and Nitrite(N) 0.02 mg/L CONDUCTIVITY 0.001 mS/cm Conductivity FLUORIDE Fluoride (F) 0.1 mg/L **HARDNESS** Magnesium (Mg) 1 mg/L Total Hardness (CaCO3) 1 mg/L Calcium (Ca) 1 mg/L Maxxam # L51870, Sample IDN: MW-03-01-201008 Maxxam # L51884, Sample IDN: MW-03-01-201008-DISSOUS Maxxam # L51892, Sample IDN: BH-10-01-201008 Maxxam # L51893, Sample IDN: DUP-1 Maxxam # L51894, Sample IDN: BH-10-01-201008-DISSOUS Maxxam # L51895, Sample IDN: DUP-1-DISSOUS MERCURY BY ICPMS Mercury (Hg) 0.0001 mg/L METALS BY ICPMS Aluminum (AI) 0.03 mg/L Copper (Cu) 0.003 mg/L +Iron (Fe) 0.1 mg/L +Magnesium (Mg) 0.1 mg/L 0.003 mg/L Molybdenum (Mo) 0.03 mg/L Manganese (Mn) Nickel (Ni) 0.01 mg/L +Potassium (K) 0.1 mg/L 0.001 mg/L Silver (Aq) 0.0003 mg/L Selenium (Se) 0.03 mg/L Arsenic (As) 0.002 mg/L Sodium (Na) +Thallium (TI) 0.01 mg/L Zinc (Zn) 0.003 mg/L Barium (Ba) 0.03 mg/L Cadmium (Cd) 0.001 mg/L +Calcium (Ca) 0.1 mg/L Maxxam # L51870, Sample IDN: MW-03-01-201008 Maxxam # L51892, Sample IDN: BH-10-01-201008 Maxxam # L51893, Sample IDN: DUP-1 AMMONIA NITROGEN Nitrogen ammonia (N-NH3) 0.02 mg/L PΗ

Maxxam # L51892, Sample IDN: BH-10-01-201008

WEAK ACID DISSOCIABLE CYANIDES

Weak Acid Dissociable Cyanide (CN-) 0.01 mg/L

TOTAL CYANIDE

Total Cyanide (CN) 0.01 mg/L

B045377

Invoice To:

Sample Integrity Form

Maxxam Job #:

GOLDER ASSOCIATES LTD OTTAWA 32 Steacie Dr. Kanata, ON Canada K2K 2A9 Client Contact: Valérie Bertrand	Date Received: 2010/08/30 Your C.O.C. #: E808174 Your Project #: 10-1248-0006 Maxxam Project Manager: LEILA SABOUR Quote #: B00099
x Samples received after hold time exceeded	
Report Comments	
Received Date: 2010/08/30 (Time): 11:45	Ву:
Inspected Date: (Time):	Ву:
SIF Created Date: 2010/08/30 (Time): 15:20	By: GR

./	1 1		737 boul.	Barette, Chicoutimi (Quél	bec) G7J	4C4	Ü	Téléph	one : (4 wwv			3 To alytics.		oieur : (418) 5	43-899	34		х		ø	H				E:	δU	81	4
Info. Facturation		Info.	Rapp	ort (si différent de	Factu	ration)	No	de	con	nmar	nde								ų,		Proje	et / S	Site :						
Compagnie: Golder		Com	pagni	e:			2000		cota												100							- 000	160
Adresse: OTTAWA		Adre	sse:				INC), de	COL	ation	-				17			T			10.	ae b	rojet	•		10	tass		Y
	_									П	4			4		ş									П		S S		
Attention de : Valente Berla	Ad_	Atte	ntion c	de:					HAM	(Color.)			Pb, Zn)	16 élé. eau***	S	NOz+NOs			\Box	Ф	5		· 10	THM	BHAA		13		
Téléphone :		Télé	ohone	1	5			П	Î	ls (Co			i, Pb,	16	Autres			ES	fot.)	CN Libre			П			EPA 8330	DOCK		
Telecopieur :				r:				Fot.	X	Phénols (MS)	Zu, Z			Š	ot.	2	-S) e	D	Turbidité		ART. 11	NOB.	Tot.)	EPA.	3		
Échantillonneur : DV / RC		Écha	antillor	neur :				H & G Tot	ВТЕХ	П		GC-I	, C,	3 élés	los-mr	NO ₂	P-Tot.	ité	Soufre (S-Tot.)	×	T _a		ART		COLIF (Tot.)		A		
Je déclare par la présente compr de Maxxam telles que décrites au	endre	et acc	epter ésent	les conditions e formulaire.	et mod	alités	(0:		624)	C/MS)		jénères)	urds (Cd	olitique - 10	Sélénium-sol	Sot	NH3	onductiv	П	CN-Ox.	000	RMD	ART. 10	: ORG.		EPA 8095			
Identification de l'échantillon (point de prélèvement)		chantil Type d'eau		Prélèvement (date / heure)	à filtrer	nombre de contenants	HP (C10-C	H&GMin.	COV (EPA 624)	Phénois (GC/MS)	HAP	BPC (Congénères) (GC-MS)	Métaux Lourds (Cd, Cr, Cu, Ni,	Métaux ICP politique - 13 élésol"	Mercure		NTK	pH X Conductivité MES	Sulfure (SH2)	CN-Tot.	DBOs	П	CUM ART	Eau Potable:	COLIF (Fec.)	Explosif E	Autre (spécifier) :		
MW-03-01-201008		9		2010-0826	4	4																							
BH-10-01-201008		5		2010-08 27		5																							
D. D-1		5		2010-08 27		4																							
201								11											- 1				- 1						
	177																												
					- 77																			-					
										7			7	_															
																										7			
													1																
										-																			
LÉGENDE : ** Métaux 13 éléments (/	Ag, As,	Ba, Co	i, Co, 0	Cr. Cu, Sn, Mn, Mo	o, Ni, P	b, Zn),								-	-												-		
Types d'eau : S = Souterraine P = Sur = Surface E =	Potab		L = D	échet liquide	Déla	is : 🗌	24h	X	48h	E	72	h [□R	égul	ier		Date	e :_	William			Co	ndit	ion (géné	rale	à la re	eceptio	1:
Normes/Réglement Applicables : _				(À remplir)	sera	ins d'ê	éré c	omn	ne no	n-po	table	e et r	ne se	antill era pa	on d	l'eau oumi	reçı s au	x exi	z Ma geno	es c	m lu	V	SIX		1		1 0	raler	
Chaîne de responsabilité				1/0/	règle	ment s	ur la	qual	1		Ne STIFFE		е.	10	//	/	1	_	-			Da			No	NO	_		_
Déssaisi par :				Date:///	~	Heure :	110	C	/	Reçu	par	: _	(VV	U	11						He	mar		1			1.	
Déssaisi par :				Date: 30 8	2000	Heure :	110	24	•	Reçu	O'CHO	: 1	24	4	R	2	0	77	9			-	U	4	CN	in	gu	by 10	N
Nombre de glacières :			-	Température de	récept	ion :	4		50	50										3		L	lu	1-1	0-0	18	ow	phil	U
Transport des échantillons :	Par	client		Personnel MA	XXAM		Cou	rrier	(spé	cifie	r) ·					-AI													

Your Project #: 10-1248-0006 Your C.O.C. #: E808174

Attention: Valérie Bertrand
GOLDER ASSOCIATES LTD
OTTAWA
32 Steacie Dr.
Kanata, ON
Canada K2K 2A9

Report Date: 2010/09/09 Report #: NM-332188

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B045377 Received: 2010/08/30, 11:45

Sample Matrix: GROUND WATER

Samples Received: 6

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Primary reference
Total Alkalinity (pH end point 4.5)	3	2010/08/31	2010/09/01 STL SOP-00038/7	SM 2320 B-Titration
Anions	3	2010/08/30	2010/08/31 STL SOP-00014/7	MA. 300 - Ions 1.2
Weak Acid Dissociable Cyanides	1	2010/08/31	2010/08/31 STL SOP-00035/3	MA. 300 - CN 1.1
Total Cyanide	1	2010/08/31	2010/08/31 STL SOP-00035/3	MA. 300 - CN 1.1
Conductivity	3	2010/08/31	2010/08/31 STL SOP-00038/7	SM 2510
Disposal Charges	3	2010/08/30	2010/08/30	
Fluoride	3	2010/08/31	2010/08/31 STL SOP-00004/4	SM 4500-F- C.
Hardness	3	2010/08/31	2010/09/01 STL SOP-00006/8	MA.200- Mét 1.1
Mercury by ICPMS	6	2010/08/31	2010/09/01 STL SOP-00006/8	MA.200 - Mét 1.1
Metals by ICPMS	6	2010/08/31	2010/09/01 STL SOP-00006/8	MA.200- Mét 1.1
Ammonia Nitrogen	3	2010/08/31	2010/08/31 STL SOP-00040/5	MA. 300 - N 1.1
pH	3	2010/08/30	2010/08/30 STL SOP-00038/7	MA.100- pH1.1
Total Dissolved Solids	3	2010/08/31	2010/08/31 STL SOP-00050/2	MA. 115 - S.D. 1.0
Turbidity	3	N/A	2010/08/30 STL SOP-00022/6	MA. 103 - Tur. 1.0

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

LEILA SABOURI, Project manager Email: leila.sabouri@maxxamanalytics.com Phone# (514) 448-9001 Ext:4227

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 1 of 11

2010/09/09 16:43

Ligne sans frais: 1-877-4MAXXAM (462-9926)

Maxxam Job #: B045377 Report Date: 2010/09/09 GOLDER ASSOCIATES LTD Client Project #: 10-1248-0006

Sampler Initials: DV

METALS (GROUND WATER)

Maxxam ID		L51870		L51884	L51892		
Sampling Date		2010/08/26		2010/08/26	2010/08/27		
COC Number		E808174		E808174	E808174		
	Units	MW-03-01-201008	RDL	MW-03-01-201008-DISSOUS	BH-10-01-201008	RDL	QC Batch

METALS							
Mercury (Hg)	mg/L	ND	0.0001	ND	ND	0.0001	792908
Aluminum (Al)	mg/L	ND	0.03	0.03	ND	0.03	792898
Silver (Ag)	mg/L	0.0014	0.0003	ND	ND	0.0003	792898
Total Hardness (CaCO3)	mg/L	77	1	N/A	300	1	792909
Arsenic (As)	mg/L	ND	0.002	ND	0.018	0.002	792898
Barium (Ba)	mg/L	ND	0.03	ND	0.44	0.03	792898
Cadmium (Cd)	mg/L	ND	0.001	ND	ND	0.001	792898
Copper (Cu)	mg/L	ND	0.003	ND	ND	0.003	792898
Lead (Pb)	mg/L	ND	0.001	ND	ND	0.001	792898
Manganese (Mn)	mg/L	0.55	0.003	0.36	0.17	0.003	792898
Molybdenum (Mo)	mg/L	ND	0.03	ND	ND	0.03	792898
Nickel (Ni)	mg/L	ND	0.01	ND	0.05	0.01	792898
Selenium (Se)	mg/L	ND	0.001	ND	ND	0.001	792898
Sodium (Na)	mg/L	2.5	0.03	1.8	58	0.03	792898
Zinc (Zn)	mg/L	0.009	0.005	0.011	ND	0.003	792898
Iron (Fe)	mg/L	0.6	0.1	ND	3.1	0.1	792898
Magnesium (Mg)	mg/L	6.1	0.1	4.1	30	0.1	792898
Potassium (K)	mg/L	2.1	0.1	1.5	7.7	0.1	792898
Calcium (Ca)	mg/L	21	0.1	18	71	0.1	792898
Thallium (TI)	mg/L	ND	0.01	ND	ND	0.01	792898

ND = less than the reported detection limit

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: B045377 Report Date: 2010/09/09 **GOLDER ASSOCIATES LTD** Client Project #: 10-1248-0006

Sampler Initials: DV

METALS (GROUND WATER)

Maxxam ID		L51893	L51894	L51895		
Sampling Date		2010/08/27	2010/08/27	2010/08/27		
COC Number		E808174	E808174	E808174		
	Units	DUP-1	BH-10-01-201008-DISSOUS	DUP-1-DISSOUS	RDL	QC Batch

METALS						
Mercury (Hg)	mg/L	ND	ND	ND	0.0001	792908
Aluminum (Al)	mg/L	ND	ND	ND	0.03	792898
Silver (Ag)	mg/L	ND	ND	ND	0.0003	792898
Total Hardness (CaCO3)	mg/L	300	N/A	N/A	1	792909
Arsenic (As)	mg/L	0.018	0.007	0.007	0.002	792898
Barium (Ba)	mg/L	0.44	0.42	0.44	0.03	792898
Cadmium (Cd)	mg/L	ND	ND	ND	0.001	792898
Copper (Cu)	mg/L	ND	ND	ND	0.003	792898
Lead (Pb)	mg/L	ND	ND	ND	0.001	792898
Manganese (Mn)	mg/L	0.17	0.18	0.18	0.003	792898
Molybdenum (Mo)	mg/L	ND	ND	ND	0.03	792898
Nickel (Ni)	mg/L	0.04	0.05	0.05	0.01	792898
Selenium (Se)	mg/L	ND	ND	ND	0.001	792898
Sodium (Na)	mg/L	58	59	61	0.03	792898
Zinc (Zn)	mg/L	ND	ND	0.012	0.005	792898
Iron (Fe)	mg/L	3.1	0.2	0.2	0.1	792898
Magnesium (Mg)	mg/L	30	30	31	0.1	792898
Potassium (K)	mg/L	7.7	7.8	8.0	0.1	792898
Calcium (Ca)	mg/L	69	68	73	0.1	792898
Thallium (TI)	mg/L	ND	ND	ND	0.01	792898

ND = less than the reported detection limit

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: B045377 Report Date: 2010/09/09 **GOLDER ASSOCIATES LTD** Client Project #: 10-1248-0006

Sampler Initials: DV

CONVENTIONAL PARAMETERS (GROUND WATER)

Maxxam ID		L51870	L51870		L51892		
Sampling Date		2010/08/26	2010/08/26		2010/08/27		
COC Number		E808174	E808174		E808174		
	Units	MW-03-01-201008	MW-03-01-201008 Lab-Dup	RDL	BH-10-01-201008	RDL	QC Batch
		T	I		ı		
CONVENTIONALS							
Conductivity	mS/cm	0.35	N/A	0.001	0.93	0.001	792938
Fluoride (F)	mg/L	0.2	N/A	0.1	0.4	0.1	792696
Nitrogen ammonia (N-NH3)	mg/L	0.08	0.08	0.02	3.8	0.1	792716
рН	pН	6.90	N/A	N/A	7.55	N/A	792645
Total Cyanide (CN)	mg/L	N/A	N/A	N/A	0.11	0.01	792704
Turbidity	NTU	210	N/A	0.2	56	0.1	792647
Weak Acid Dissociable Cyanide (CN-)	mg/L	N/A	N/A	N/A	0.10	0.01	792906
Alkalinity Total (as CaCO3) pH 4.5	mg/L	49	N/A	1	110	1	792851
Chloride (CI)	mg/L	5.7	N/A	0.05	17	0.05	792623
Nitrate (N) and Nitrite(N)	mg/L	0.09	N/A	0.02	0.57	0.02	792623
Sulfates (SO4)	mg/L	87	N/A	0.1	210	1	792623
Total Dissolved Solids	mg/L	240	N/A	10	650	10	792717

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		L51893		
Sampling Date		2010/08/27		
COC Number		E808174		
	Units	DUP-1	RDL	QC Batch
				•

CONVENTIONALS				
Conductivity	mS/cm	0.94	0.001	792938
Fluoride (F)	mg/L	0.5	0.1	792696
Nitrogen ammonia (N-NH3)	mg/L	3.8	0.2	792716
рН	рН	7.56	N/A	792645
Turbidity	NTU	55	0.1	792647
Alkalinity Total (as CaCO3) pH 4.5	mg/L	110	1	792851
Chloride (CI)	mg/L	17	0.05	792623
Nitrate (N) and Nitrite(N)	mg/L	0.57	0.02	792623
Sulfates (SO4)	mg/L	210	1	792623
Total Dissolved Solids	mg/L	690	10	792717

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: B045377 Report Date: 2010/09/09 GOLDER ASSOCIATES LTD Client Project #: 10-1248-0006

Sampler Initials: DV

GENERAL COMMENTS

Condition of sample(s) upon receipt: GOOD except for the following: pH: Holding time already past.: L51870, L51892, L51893 Turbidity: Holding time already past.: L51870, L51892, L51893

METALS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries nor for the method blank results.

Samples L51884, L51894 and L51895 were filtered in the laboratory prior to analyzing for metals. The corresponding metal results are then dissolved metals.

CONVENTIONAL PARAMETERS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries nor for the method blank results. Reported detection limits are multiplied by dilution factors used for sample analysis.

This report supersedes all previous reports with the same Maxxam job number

Results relate only to the items tested.

GOLDER ASSOCIATES LTD Attention: Valérie Bertrand Client Project #: 10-1248-0006

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: B045377

QA/QC			Date		
Batch			Analyzed		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units
792623 FS	Spiked Blank	Chloride (CI)	2010/08/31	91	%
		Nitrate (N) and Nitrite(N)	2010/08/31	92	%
		Sulfates (SO4)	2010/08/31	94	%
	Method Blank	Chloride (CI)	2010/08/31	ND, RDL=0.05	mg/L
	Wictioa Diank	Nitrate (N) and Nitrite(N)	2010/08/31	ND, RDL=0.03	mg/L
		Sulfates (SO4)	2010/08/31	0.2, RDL=0.02	mg/L
792645 MR4	QC STANDARD	` ,	2010/08/30	102	111g/L
92043 WK4		pH		102	
700047 ND0	Spiked Blank	pH Total Calle	2010/08/30		%
92647 NR2	QC STANDARD	Turbidity	2010/08/30	100	%
	Method Blank	Turbidity	2010/08/30	0.1, RDL=0.1	NTU
'92696 MR4	QC STANDARD	Fluoride (F)	2010/08/31	96	%
	Spiked Blank	Fluoride (F)	2010/08/31	100	%
	Method Blank	Fluoride (F)	2010/08/31	ND, RDL=0.1	mg/L
792704 JS2	QC STANDARD	Total Cyanide (CN)	2010/08/31	95	%
	Spiked Blank	Total Cyanide (CN)	2010/08/31	99	%
	Method Blank	Total Cyanide (CN)	2010/08/31	ND, RDL=0.01	mg/L
92716 DKH	QC STANDARD	Nitrogen ammonia (N-NH3)	2010/08/31	103	%
	Spiked Blank	Nitrogen ammonia (N-NH3)	2010/08/31	104	%
	Method Blank	Nitrogen ammonia (N-NH3)	2010/08/31	ND, RDL=0.02	mg/L
92717 FSI	Spiked Blank	Total Dissolved Solids	2010/08/31	103	%
	Spiked Blank DUP	Total Dissolved Solids	2010/08/31	102	%
	Method Blank	Total Dissolved Solids	2010/08/31	ND, RDL=10	mg/L
92851 MR4	QC STANDARD	Alkalinity Total (as CaCO3) pH 4.5	2010/09/01	95	%
32031 WIIX4	Spiked Blank	Alkalinity Total (as CaCO3) pH 4.5	2010/09/01	96	%
	Spiked Blank DUP	Alkalinity Total (as CaCO3) pH 4.5	2010/09/01	94	%
	Method Blank			ND, RDL=1	
		Alkalinity Total (as CaCO3) pH 4.5	2010/09/01	The state of the s	mg/L
700000 1/0		, , , , , , , , , , , , , , , , , , , ,	2010/09/01	ND, RDL=1	mg/L
792898 KQ	Spiked Blank	Aluminum (Al)	2010/09/01	103	%
		Silver (Ag)	2010/09/01	87	%
		Arsenic (As)	2010/09/01	108	%
		Barium (Ba)	2010/09/01	103	%
		Cadmium (Cd)	2010/09/01	103	%
		Copper (Cu)	2010/09/01	100	%
		Lead (Pb)	2010/09/01	102	%
		Manganese (Mn)	2010/09/01	105	%
		Molybdenum (Mo)	2010/09/01	103	%
		Nickel (Ni)	2010/09/01	101	%
		Selenium (Se)	2010/09/01	101	%
		Sodium (Na)	2010/09/01	101	%
		Zinc (Zn)	2010/09/01	103	%
		Iron (Fe)	2010/09/01	108	%
		Magnesium (Mg)	2010/09/01	109	%
		Potassium (K)	2010/09/01	109	% %
		Calcium (Ca)	2010/09/01	107	% %
		Thallium (TI)		104	
	Mothad Disale	` '	2010/09/01		% ~~/!
	Method Blank	Aluminum (Al)	2010/09/01	ND, RDL=0.03	mg/L
		Silver (Ag)	2010/09/01	ND, RDL=0.0003	mg/L
		Arsenic (As)	2010/09/01	ND, RDL=0.002	mg/L
		Barium (Ba)	2010/09/01	ND, RDL=0.03	mg/L
		Cadmium (Cd)	2010/09/01	ND, RDL=0.001	mg/L
		Copper (Cu)	2010/09/01	ND, RDL=0.003	mg/L
		Lead (Pb)	2010/09/01	ND, RDL=0.001	mg/L
		Manganese (Mn)	2010/09/01	ND, RDL=0.003	mg/L
		Molybdenum (Mo)	2010/09/01	ND, RDL=0.03	mg/L
		Nickel (Ni)	2010/09/01	ND, RDL=0.01	mg/L
		//		,	

GOLDER ASSOCIATES LTD Attention: Valérie Bertrand Client Project #: 10-1248-0006

P.O. #: Project name:

Quality Assurance Report (Continued)

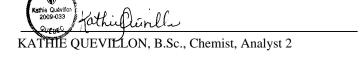
Maxxam Job Number: B045377

QA/QC			Date		
Batch			Analyzed		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units
792898 KQ	Method Blank	Selenium (Se)	2010/09/01	ND, RDL=0.001	mg/L
		Sodium (Na)	2010/09/01	ND, RDL=0.03	mg/L
		Zinc (Zn)	2010/09/01	0.007, RDL=0.003	mg/L
		Iron (Fe)	2010/09/01	ND, RDL=0.1	mg/L
		Magnesium (Mg)	2010/09/01	ND, RDL=0.1	mg/L
		Potassium (K)	2010/09/01	ND, RDL=0.1	mg/L
		Calcium (Ca)	2010/09/01	ND, RDL=0.1	mg/L
792906 JS2	QC STANDARD	Weak Acid Dissociable Cyanide (CN-)	2010/08/31	83	%
	Spiked Blank	Weak Acid Dissociable Cyanide (CN-)	2010/08/31	106	%
	Method Blank	Weak Acid Dissociable Cyanide (CN-)	2010/08/31	ND, RDL=0.01	mg/L
792908 KQ	Spiked Blank	Mercury (Hg)	2010/09/01	104	%
	Method Blank	Mercury (Hg)	2010/09/01	ND, RDL=0.0001	mg/L
792909 KQ	Method Blank	Total Hardness (CaCO3)	2010/09/01	ND, RDL=1	mg/L
792938 MR4	QC STANDARD	Conductivity	2010/08/31	102	%
	Spiked Blank	Conductivity	2010/08/31	104	%
	Method Blank	Conductivity	2010/08/31	ND, RDL=0.001	mS/cm

RDL = Reportable Detection Limit

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.


Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Validation Signature Page

Maxxam Job #: B045377

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Heliona Calestru (chimistrical Stellana Calestru 2006-140 Overet

STELIANA CALESTRU, B.Sc. Chemist, Analyst 2

VERONIC BEAUSEJOUR, B.Sc., Chemist, Supervisor

nfo. Facturation /		Info.	Rapp	ort (si différent de	Factu	ration)	NI				- 4-								۲.	-	raia	+ / 0	i+o .						
Compagnie : Golder		Com	npagni	e:			1000														Projet / Site :								
Adresse: OHTAWA	_						No	o, de	cot	atior	1:_		-		-			T	T		lo. c	le pr	ojet	:_/	U	10	-		
Attention de : Valeire Beila	Ad.	Atte	ntion (de :					M.	Or.)			Zu)	16 élé, eau***	S	NOz+NOs				Φ.	COT		7)	THM TH	BHAA 🗌		placket	څ	
éléphone :		Télé	phone	:				П	HAM	Phénols (Color.)			, Pb,	9	Autres	SON		ES	ot.)	CN Libre			П		П	EPA 8330	×		3
elecopieur :				ır :				ot.		hénol		MS)	Zu, Z	i.			ti li	Σ	-S) e	5	Turbidité		Ξ	INOR.	fot.)	EPA	toux.		
chantillonneur : DV / RC				neur:				H & G Tot.	BTEX			(GC-1	5	ssi	ios-m	ş	P-Tot.	ité	Soufre (S-Tot.)	×	Tur		ART. 11	$\bar{\Box}$	OLIF (M		
e déclare par la présente compr le Maxxam telles que décrites au	endre verso	1000000					(0	I		C/MS)		énères)	urds (Cd	fitique - 13	Sélénium-sol	SO+ NO2	왕	onductiv		CN-Ox.	000	RMD	ART. 10	ORG.	COLIF (Tot.)	EPA 8095			
Identification de l'échantillon (point de prélèvement)		chantil Type		Prélèvement	à filtrer	nombre de contenants	HP (C10-C50)	H & G Min.	COV (EPA 624)	Phénois (GC/MS)	HAP	BPC (Congénères) (GC-MS)	Métaux Lourds (Cd, Cr, Cu, Ni, Pb, Zn)	Métaux ICP politique - 13 élésol**	Mercure		NTK	pH X Conductivité MES	Sulfure (SH2)	CN-Tot.	DBOs	RDS H	CUM ART.	Eau Potable: ORG.	COLIF (Fec.)	Explosif EF	Autre (spécifier) :		
MW-03-01-201005		3		2010-0826	4	4																							
BH-10-01-201008		5		2010-0827		5																							
D. D. I		5		2010-08 27		4																							
201				21000															- 1				-						
	111				7																П								
					-																			-					1
																				1	1	Ħ							+
														\exists			_		-	+	+								
	-									-							-	+		+				-			-		+
		-																	-		-								+
ÉGENDE : ** Métaux 13 éléments (A	Ac As	Ba Co	1 Co 1	Or Cu Sp Mp Mo	NI P	h Zn)		- 0										1		_								_	4
*** Métaux 16 éléments (/	Al, Sb,	Ag, As	, Ba, C	d, Cr, Co, Cu, Mn,	Mo, N	i, Pb, Se		1,100		_	7	r	_	_							-	0-	1141			U. 1	3 I-		et a de
ypes d'eau : S = Souterraine P = Sur = Surface E =	Eau u					is:								300			Date	177	- 14-		-	00	naiti	on g	gene	rale	ala	récep Val	ovic
Normes/Réglement Applicables : _				(À remplir)	sera	oins d'ê consid	éré c	omn	ne no	n-po	otable	e et i	ne se	ra pa	as so	oumi	s aux	cne	genc	es d	u	VC	311		Tra		,	v w	
Chaîne de responsabilité				24/5/6	2	ement s	ur ia	qua	III d		CASCA PAGE		e.	10	11	1	7	_	-	-	+	Re	mare	ques	200		-	-	_
éssaisi par :	-			Date:///	~	Heure :	111				u par	-	5	VV.	N	4	-	04	1		-	4)	1			10	
Péssaisi par :				, , ,		Heure :		24			u par	: 1	24	th	2	di	est	74	,			1	U	1	_V	ion	Su	BH	100
Nombre de glacières :				Température de	récept	tion:	4		50	50										3 0		~	(U	1-1	0-0	18	UU	DU	Loc

Your Project #: 10-1428-0006-3000

Your C.O.C. #: E414235

Attention: Valérie Bertrand
GOLDER ASSOCIATES LTD
OTTAWA
32 Steacie Dr.
Kanata, ON
Canada K2K 2A9

Report Date: 2010/09/10

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B046328 Received: 2010/09/03, 8:00

Sample Matrix: GROUND WATER

Samples Received: 2

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Primary reference
Total Alkalinity (pH end point 4.5)	2	2010/09/07	2010/09/07 STL SOP-00038/7	SM 2320 B-Titration
Fluoride	2	2010/09/03	2010/09/07 STL SOP-00004/4	SM 4500-F- C.
Hardness	2	2010/09/09	2010/09/10 STL SOP-00006/8	MA.200- Mét 1.1
Mercury by ICPMS	2	2010/09/09	2010/09/10 STL SOP-00006/8	MA.200 - Mét 1.1
Metals by ICPMS	2	2010/09/09	2010/09/09 STL SOP-00006/8	MA.200- Mét 1.1
Ammonia Nitrogen	2	2010/09/08	2010/09/08 STL SOP-00040/5	MA. 300 - N 1.1
pH	2	2010/09/03	2010/09/03 STL SOP-00038/7	MA.100- pH1.1
Total Dissolved Solids	2	2010/09/03	2010/09/03 STL SOP-00050/2	MA. 115 - S.D. 1.0
Turbidity	2	N/A	2010/09/03 STL SOP-00022/6	MA. 103 - Tur. 1.0

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

LEILA SABOURI, Project manager Email: leila.sabouri@maxxamanalytics.com Phone# (514) 448-9001 Ext:4227

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 1 of 9 2010/09/10 15:04

Maxxam Job #: B046328 Report Date: 2010/09/10 GOLDER ASSOCIATES LTD Client Project #: 10-1428-0006-3000

Sampler Initials: DV

METALS (GROUND WATER)

Maxxam ID		L56096	L56473		
Sampling Date		2010/09/01	2010/09/01		
COC Number		E414235	E414235		
	Units	MW-08-2	DUP-11	RDL	QC Batch

METALS					
Mercury (Hg)	mg/L	ND	ND	0.0001	795664
Aluminum (Al)	mg/L	ND	ND	0.03	795660
Calcium (Ca)	mg/L	45	45	1	795666
Antimony (Sb)	mg/L	ND	ND	0.006	795660
Magnesium (Mg)	mg/L	26	26	1	795666
Silver (Ag)	mg/L	ND	ND	0.0003	795660
Total Hardness (CaCO3)	mg/L	220	220	1	795666
Arsenic (As)	mg/L	0.003	0.003	0.002	795660
Barium (Ba)	mg/L	0.03	0.04	0.03	795660
Cadmium (Cd)	mg/L	ND	ND	0.001	795660
Chromium (Cr)	mg/L	ND	ND	0.03	795660
Cobalt (Co)	mg/L	ND	ND	0.03	795660
Copper (Cu)	mg/L	ND	ND	0.003	795660
Lead (Pb)	mg/L	ND	ND	0.001	795660
Manganese (Mn)	mg/L	0.042	0.044	0.003	795660
Molybdenum (Mo)	mg/L	0.05	0.05	0.03	795660
Nickel (Ni)	mg/L	ND	ND	0.01	795660
Selenium (Se)	mg/L	ND	ND	0.001	795660
Sodium (Na)	mg/L	32	32	0.03	795660
Zinc (Zn)	mg/L	0.010	0.007	0.005	795660

ND = less than the reported detection limit

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam Job #: B046328 Report Date: 2010/09/10 GOLDER ASSOCIATES LTD Client Project #: 10-1428-0006-3000

Sampler Initials: DV

CONVENTIONAL PARAMETERS (GROUND WATER)

Maxxam ID		L56096	L56473		
Sampling Date		2010/09/01	2010/09/01		
COC Number		E414235	E414235		
	Units	MW-08-2	DUP-11	RDL	QC Batch

CONVENTIONALS					
Fluoride (F)	mg/L	0.3	0.3	0.1	794608
Nitrogen ammonia (N-NH3)	mg/L	0.06	0.06	0.02	795432
рН	рН	7.74	7.75	N/A	794537
Turbidity	NTU	4.0	3.9	0.1	794611
Alkalinity Total (as CaCO3) pH 4.5	mg/L	80	80	2	794785
Total Dissolved Solids	mg/L	450	490	10	794207

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: B046328 Report Date: 2010/09/10 GOLDER ASSOCIATES LTD Client Project #: 10-1428-0006-3000

Sampler Initials: DV

GENERAL COMMENTS

Condition of sample(s) upon receipt: GOOD except for the following: pH: Holding time already past.: L56096, L56473

METALS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries nor for the method blank results.

CONVENTIONAL PARAMETERS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries nor for the method blank results.

Results relate only to the items tested.

GOLDER ASSOCIATES LTD Attention: Valérie Bertrand

Client Project #: 10-1428-0006-3000

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: B046328

QA/QC			Date		
Batch			Analyzed		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units
794207 FSI	Spiked Blank	Total Dissolved Solids	2010/09/03	100	%
	Spiked Blank DUP	Total Dissolved Solids	2010/09/03	100	%
	Method Blank	Total Dissolved Solids	2010/09/03	ND, RDL=10	mg/L
794537 MR4	QC STANDARD	pH	2010/09/03	101	g/_
734337 WINA	Spiked Blank	pH	2010/09/03	100	%
794608 MR4	QC STANDARD	Fluoride (F)	2010/09/03	98	%
794000 WIN4	Spiked Blank	Fluoride (F)	2010/09/07	100	% %
	•	` '			
704044 1 1	Method Blank	Fluoride (F)	2010/09/07	ND, RDL=0.1	mg/L
794611 LI	QC STANDARD	Turbidity	2010/09/03	90	%
70.4705.140.4	Method Blank	Turbidity	2010/09/03	0.1, RDL=0.1	NTU
794785 MR4	QC STANDARD	Alkalinity Total (as CaCO3) pH 4.5	2010/09/07	106	%
	Spiked Blank	Alkalinity Total (as CaCO3) pH 4.5	2010/09/07	96	%
	Method Blank	Alkalinity Total (as CaCO3) pH 4.5	2010/09/07	ND, RDL=10	mg/L
795432 DKH	QC STANDARD	Nitrogen ammonia (N-NH3)	2010/09/08	105	%
	Spiked Blank	Nitrogen ammonia (N-NH3)	2010/09/08	104	%
	Method Blank	Nitrogen ammonia (N-NH3)	2010/09/08	ND, RDL=0.02	mg/L
795660 SC5	QC STANDARD	Aluminum (Al)	2010/09/09	103	%
		Antimony (Sb)	2010/09/09	96	%
		Arsenic (As)	2010/09/09	94	%
		Barium (Ba)	2010/09/09	96	%
		Cadmium (Cd)	2010/09/09	97	%
		Chromium (Cr)	2010/09/09	94	%
		Cobalt (Co)	2010/09/09	96	%
		Copper (Cu)	2010/09/09	96	%
		Lead (Pb)	2010/09/09	92	%
		Manganese (Mn)	2010/09/09	93	%
		• ,	2010/09/09	97	%
		Molybdenum (Mo)			
		Nickel (Ni)	2010/09/09	96	%
		Selenium (Se)	2010/09/09	99	%
		Sodium (Na)	2010/09/09	87	%
		Zinc (Zn)	2010/09/09	94	%
	Spiked Blank	Aluminum (Al)	2010/09/09	93	%
		Antimony (Sb)	2010/09/09	96	%
		Silver (Ag)	2010/09/09	85	%
		Arsenic (As)	2010/09/09	95	%
		Barium (Ba)	2010/09/09	87	%
		Cadmium (Cd)	2010/09/09	95	%
		Chromium (Cr)	2010/09/09	92	%
		Cobalt (Co)	2010/09/09	92	%
		Copper (Cu)	2010/09/09	91	%
		Lead (Pb)	2010/09/09	89	%
		Manganese (Mn)	2010/09/09	91	%
		Molybdenum (Mo)	2010/09/09	90	%
		Nickel (Ni)	2010/09/09	92	%
		Selenium (Se)	2010/09/09	92	% %
		` ,		92 92	% %
		Sodium (Na)	2010/09/09		
	Mothod Disale	Zinc (Zn)	2010/09/09	94 ND DDI 0.03	% ~~/!
	Method Blank	Aluminum (Al)	2010/09/09	ND, RDL=0.03	mg/L
		Antimony (Sb)	2010/09/09	ND, RDL=0.006	mg/L
		Silver (Ag)	2010/09/09	ND, RDL=0.0003	mg/L
		Arsenic (As)	2010/09/09	ND, RDL=0.002	mg/L
		Barium (Ba)	2010/09/09	ND, RDL=0.03	mg/L
		Cadmium (Cd)	2010/09/09	ND, RDL=0.001	mg/L
		Chromium (Cr)	2010/09/09	ND, RDL=0.03	mg/L
		Cobalt (Co)	2010/09/09	ND, RDL=0.03	mg/L

GOLDER ASSOCIATES LTD Attention: Valérie Bertrand

Client Project #: 10-1428-0006-3000

P.O. #: Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: B046328

QA/QC			Date		
Batch			Analyzed		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units
795660 SC5	Method Blank	Copper (Cu)	2010/09/09	ND, RDL=0.003	mg/L
		Lead (Pb)	2010/09/09	ND, RDL=0.001	mg/L
		Manganese (Mn)	2010/09/09	ND, RDL=0.003	mg/L
		Molybdenum (Mo)	2010/09/09	ND, RDL=0.03	mg/L
		Nickel (Ni)	2010/09/09	ND, RDL=0.01	mg/L
		Selenium (Se)	2010/09/09	ND, RDL=0.001	mg/L
		Sodium (Na)	2010/09/09	0.06, RDL=0.03	mg/L
		Zinc (Zn)	2010/09/09	0.007, RDL=0.005	mg/L
795664 SC5	Spiked Blank	Mercury (Hg)	2010/09/10	88	%
	Method Blank	Mercury (Hg)	2010/09/10	ND, RDL=0.0001	mg/L
795666 SC5	Spiked Blank	Calcium (Ca)	2010/09/10	105	%
		Magnesium (Mg)	2010/09/10	101	%
	Method Blank	Calcium (Ca)	2010/09/10	ND, RDL=1	mg/L
		Magnesium (Mg)	2010/09/10	ND, RDL=1	mg/L
		Total Hardness (CaCO3)	2010/09/10	ND, RDL=1	mg/L

RDL = Reportable Detection Limit

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Validation Signature Page

Maxxam Job #: B046328

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

KATHIE QUEVILLON, B.Sc., Chemist, Analyst 2

VERONIC BEAUSEJOUR, B.Sc., Chemist, Supervisor

Bo-46328 E- 414235 737 boul. Barette, Chicoutimi, Québec G7J 4C4 Telephone: (418) 543-3788 Fax: (418) 543-8994 www.maxxamanalytics.com Invoice Information Report Information (if differs from invoice) Project / Site: Order No.: Company Name: Company Name: ____ Project No.: 10- 1428-6006-3000 Quotation No.: Address: Ottaw Address: Š, × Contact Name: Valeue Derta CC: Michael Copti (mtl) Telephone: Telephone: Fax: Fax: MAH COLIF (Tot.) Sampler: I hereby acknowledge the understanding and acceptance of Maxxam's terms and conditions as listed on the back of this form. Sample VOC (EPA 624) Number Sample Identification Sampling To be Water filtered (sampling point) (date / time) samples Type Other G WM-08-5 01/09/2010 6 LEGEND: ** Metals 13 elements (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn), "" Metals 16 elements (Al, Sb, Ag, As, Ba, Cd, Cr, Co, Cu, Mn, Mo, Ni, Pb, Se, Na, Zn). Types of Water: G = Groundwater P = Potable LW = Liquid Waste Regular General Condition at Reception: Turnaround Time: 24h Sur = Surface E = Effluent C = Catchment Unless clearly identified all water samples received at Maxxam analytics will be treated as non-potable and will not be subject to the requirements under the Quebec Drinking Water Regulation. Applicable Regulations: (To complete) Chain of Custody Date: 02/09/200 Remarks: Relinquished by: Time: 21/100 Received by: Date: 63/09/2010 Relinquished by: Time: 8ha Received by: Number of coolers: Temperature upon reception: 8100 10-09-0 Courier (Specify); Page 8 of 9 By Client Sample Transport: MAXXAM Personnel 2010/09/10 15:04

Telephone: (418) 658-5784 Fax: (418) 658-6594

2690 Avenue Dalton, Sainte-Foy, Québec G1P 3S4

Your Project #: 10-1428-0006-3000

Your C.O.C. #: E414235

Attention: Valérie Bertrand
GOLDER ASSOCIATES LTD
OTTAWA
32 Steacie Dr.
Kanata, ON
Canada K2K 2A9

Report Date: 2010/09/30

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B051240 Received: 2010/09/03, 8:00

Sample Matrix: GROUND WATER

Samples Received: 2

			Date	Date		
A	Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Primary reference
F	Anions	2	2010/09/29	2010/09/30	STL SOP-00014/7	MA. 300 - lons 1.2

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

LEILA SABOURI, Project manager Email: leila.sabouri@maxxamanalytics.com Phone# (514) 448-9001 Ext:4227

Maxxam Job #: B051240 Report Date: 2010/09/30 GOLDER ASSOCIATES LTD Client Project #: 10-1428-0006-3000

Sampler Initials: DV

CONVENTIONAL PARAMETERS (GROUND WATER)

Maxxam ID		L77697	L77698		
Sampling Date		2010/09/01	2010/09/01		
COC Number		E414235	E414235		
	Units	MW-08-2	DUP-11	RDL	QC Batch

CONVENTIONALS					
Chloride (CI)	mg/L	160	160	0.3	802656

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: B051240 Report Date: 2010/09/30 GOLDER ASSOCIATES LTD Client Project #: 10-1428-0006-3000

Sampler Initials: DV

GENERAL COMMENTS

Condition of sample(s) upon receipt: GOOD

CONVENTIONAL PARAMETERS (GROUND WATER)

Please note that the results have not been corrected for QC recoveries nor for the method blank results. Reported detection limits are multiplied by dilution factors used for sample analysis.

Results relate only to the items tested.

GOLDER ASSOCIATES LTD Attention: Valérie Bertrand

Client Project #: 10-1428-0006-3000

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: B051240

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units
802656 DKH	Spiked Blank	Chloride (CI)	2010/09/30		90	%
	Method Blank	Chloride (CI)	2010/09/30	ND, R	DL=0.05	mg/L

RDL = Reportable Detection Limit

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Validation Signature Page

Maxxam	Job.	#· I	R051	240
IVIANNAIII	JUD	π. ι	ו טטט	4 TU

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

VERONIC BEAUSEJOUR, B.Sc., Chemist, Supervisor