RECEIVED

By Licensing Administrator at 11:15 am, May 06, 2011

Appendix A3

Report: Aquatic Effects Monitoring Program – Targeted Study: Dike Construction TSS Effects Assessment Study 2010

FINAL

Aquatic Effects Monitoring Program – Targeted Study: Dike Construction TSS Effects Assessment Study 2010

Meadowbank Mine, Nunavut

Prepared for:

Agnico-Eagle Mines Ltd.

Meadowbank Division Baker Lake, NU X0C 0A0

March 2011

Azimuth Consulting Group Inc.

218-2902 West Broadway Vancouver, BC V6K 2G8

Project No. AEM-10-02.2

TABLE OF CONTENTS

TA	BLE OF (CONTENTS	i
LIS	ST OF TA	BLES	iii
LIS	ST OF FIG	BURES	v
LIS	ST OF AP	PENDICES	vii
AC	KNOWLE	EDGEMENTS	viii
PR	OFESSIC	ONAL LIABILITY STATEMENT	ix
AC	RONYMS	S	x
EX	ECUTIVE	SUMMARY	1
1.	INTRO	ODUCTION	
	1.1.	Background	1
	1.2.	Study Outline	
	1.3.	Report Organization	3
2.	METH	HODS	
	2.1.	Sediment Chemistry	7
	2.2.	Sediment Metals Bioavailability	11
	2.2.1.	Overview	11
	2.2.2.	Field Sampling	11
	2.2.3.	Laboratory Tests	11
	2.2.3.	1. Sediment Toxicity	11
	2.2.3.	2. Sequential Extraction	12
	2.3.	Sediment Traps	15
	2.4.	Periphyton Community	19
	2.5.	Benthic Invertebrates	23
	2.6.	Quality Assurance / Quality Control	28
3.	RESU	JLTS	
	3.1.	Quality Assurance / Quality Control	31
	3.2.	Sediment Chemistry	
	3.3.	Sediment Metals Bioavailability	40
	3.3.1.	Toxicity	40
	3.3.2.	Sequential Extraction Analyses	41
	3.4.	Sediment Traps	45
	3.5.	Periphyton Community	
	3.6.	Benthic Invertebrates	58
	3.6.1.	Benthic Community Structure Drivers	60
	3.6.2.	CREMP	61
	3.6.3.	East Dike EAS	63

5.	REFERENCES	90
4.	CONCLUSIONS AND RECOMMENDATIONS	86
	3.6.5.2. Third Portage Lake – East Basin	67
	3.6.5.1. Second Portage Lake	66
	3.6.5. Benthos Weight of Evidence	65
	3.6.4. Bay-Goose EAS	65

LIST OF TABLES

Table ES-1. Conclusions from all TSS Effects Assessment Studies, 2008 - 2010.
Table 1-1. Status of key receiving environments related to TSS in 2008, 2009 and 2010.
Table 1-2. Conclusions from previous TSS Effects Assessment Studies, 2008 and 2009 (taken from Azimuth, 2010b)
Table 2-1. GPS sampling location coordinates (UTM, NAD83), Meadowbank EAS 2010
Table 3-1. QA/QC data for sediment chemistry parameters, Meadowbank EAS, 201033
Table 3-2. QA/QC data sediment sequential extraction analyses, Meadowbank EAS, 201034
Table 3-3. QA/QC data for periphyton, Meadowbank EAS, 201035
Table 3-4. Percent recovery of benthic invertebrate samples, Meadowbank EAS, 201036
Table 3-5. Conventional sediment chemistry and total metals (mg/kg) Meadowbank EAS 201039
Table 3-6. Magnitude of effects for sediment toxicity testing, Meadowbank EAS 201042
Table 3-7. Sediment attributes and proportion of total metals concentration in each sediment fraction43
Table 3-8. Sediment deposition rates and estimated accumulation for sediment traps, Second Portage, Third Portage, and Tehek Lakes, winter 2009-201047
Table 3-9. Sediment deposition rates and estimated accumulation for sediment traps, Second Portage, Third Portage, and Tehek Lakes, summer 201048
Table 3-10. Seasonal density (cells/cm²) of major periphyton groups, Meadowbank EAS 201052
Table 3-11. Seasonal biomass (μg/cm²) of major periphyton groups, Meadowbank EAS 201053

Table 3-12. Weights and content ratio of periphyton samples collected for loss on ignition (LOI) analysis54
Table 3-13. Area "effect" status by year for CREMP data set68
Table 3-14. Results of statistical analyses of benthic invertebrate community descriptors for the 2006 - 2009 CREMP data set, short-term Effect (from 2009 EAS report; Azimuth, 2010)69
Table 3-15. Results of statistical analyses of benthic invertebrate community descriptors for the 2010 CREMP data set, short-term Effects70
Table 3-16. Results of statistical analyses of benthic invertebrate community descriptors for the2006 to 2010 CREMP data set, long-term Effects71
Table 3-17. Results of statistical analyses of benthic invertebrate community descriptors for the 2009 to 2010 East Dike EAS data set72
Table 3-18. Results of statistical analyses of benthic invertebrate community descriptors for the 2010 Bay Goose Dike EAS data set73
Table 3-19. Weight-of-evidence assessment of potential TSS-related impacts to benthic invertebrates for Second Portage Lake from construction of the East Dike74
Table 3-20. Weight-of-evidence assessment of potential TSS-related impacts to benthic invertebrates for Second Portage Lake from construction of the Bay-Goose Dike75
Table 4-1. Conclusions from all TSS Effects Assessment Studies, 2008 - 2010.

LIST OF FIGURES

Figure 1-1. General site map highlighting the East Dike, Bay-Goose Dike and local receiving environments6
Figure 2-1. Sediment chemistry stations, Meadowbank EAS 201010
Figure 2-2. Sediment toxicity stations, Meadowbank EAS 201014
Figure 2-3. Sediment traps deployed in September (2009) and retrieved in July (2010), Meadowbank EAS 201017
Figure 2-4. Sediment traps deployed in July (2010) and retrieved in September (2010), Meadowbank EAS 201018
Figure 2-5. Periphyton sampling locations, Meadowbank EAS 201022
Figure 2-6. Benthic invertebrate stations, Meadowbank CREMP, 201025
Figure 2-7. Benthic invertebrate stations, Meadowbank East Dike EAS, 201026
Figure 2-8. Benthic invertebrate stations, Meadowbank Bay-Goose Dike EAS, 201027
Figure 3-1. Dissolved metals concentrations (mg/kg dw) detected in each of 4 fractions resulting from sequential extraction procedure (BCR 701)44
Figure 3-2. Relative periphyton biomass (top) (µg/cm²) and density (bottom) (cells/cm²) in Second Portage Lake55
Figure 3-3. Historical and 2010 periphyton community biomass in Second Portage Lake56
Figure 3-4. Mean total periphyton biomass (µg/cm², squares) and sediment content (g, circles) from loss on ignition analysis for 2009 (open) and 2010 (filled)57
Figure 3-5. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (depth, total organic carbon, sand, and silt) for 2009 and 2010 CREMP and EAS datasets76
Figure 3-6. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (clay, aluminum, arsenic, and cadmium) for 2009 and 2010 CREMP and EAS datasets77

Figure 3-7. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (chromium, copper and zinc) for 2009 and 2010 CREMP and EAS datasets	78
Figure 3-8. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across CREMP areas for 2006 through 2010.	79
Figure 3-9. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by short-term Effect grouping for CREMP data set	
Figure 3-10. Boxplots of benthic community metrics (abundance, richness Simpson's Diversity, and Bray Curtis distance) by long-term Effect grouping for CREMP data set	
Figure 3-11. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across Control and Impact areas for East Dike EAS 2010.	
Figure 3-12. Boxplots of benthic community metrics (abundance, richness Simpson's Diversity, and Bray Curtis distance) by Effect grouping for East Dike EAS data set. Year-specific boxplots are provided as well to facilitate data interpretation.)
Figure 3-13. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across Control and Impact areas for Bay Goose Dike EAS 2010.	
Figure 3-14. Boxplots of benthic community metrics (abundance, richness Simpson's Diversity, and Bray Curtis distance) by Effect grouping for Bay-Goose Dike EAS data set	

LIST OF APPENDICES

Appendix A. Statistical Analyses for TSS Effects Assessment Study 2010

Appendix B. Sediment Toxicity Test Results – Maxxam Analytics

Appendix C. Sediment Chemistry Laboratory Data – ALS Environmental

Appendix D. Sequential Extraction Laboratory Data – Maxxam Analytics

Appendix E. Sediment Trap Chemistry Laboratory Data – ALS Environmental

Appendix F. Presence (+) / Absence (-) Matrix of Periphyton Species 2010

Appendix G. Periphyton Loss on Ignition Laboratory Data – ALS Environmental

Appendix H. Benthic Invertebrate Raw Data, Meadowbank EAS 2010

ACKNOWLEDGEMENTS

Azimuth would like to thank AEM for their continued support of this program and for facilitating our work by providing logistical assistance and help whenever needed. Key personnel conducting this project were as follows:

Gary Mann (Azimuth) – Gary provided overall management for this project. Gary was co-author of this report and conducted the statistical analyses for benthic invertebrates and periphyton.

Laura Nendick and Maggie McConnell (Azimuth) – Laura and Maggie conducted data compilation, analysis, interpretation, and report writing. Maggie also provided technical support in the field.

Randy Baker (Azimuth) - Randy reviewed the report.

Ryan Hill (Azimuth) – Ryan reviewed the statistical analysis appendix.

Morgan Finley (Azimuth) – Morgan was monitoring crew leader in the field.

Ryan Vanengen (AEM) – Ryan participated in this project on many levels, from helping with the study design, to collecting benthic invertebrate samples, to providing background literature, to reviewing the report for AEM. Ryan is also conducting his M.Sc. research on the effects of sedimentation on benthic invertebrate communities at Meadowbank.

Tom Thompson, Patrick Angoyuaq, and Jessica Fang (AEM) – Tom, Patrick and Jessica were involved with field sampling at Meadowbank.

PROFESSIONAL LIABILITY STATEMENT

This report has been prepared by Azimuth Consulting Group Inc. (Azimuth), for the use of Agnico-Eagle Mines Ltd. (AEM), who has been party to the development of the scope of work for this project and understands its limitations. The extent to which previous investigations were relied on is detailed in the report.

In providing this report and performing the services in preparation of this report Azimuth accepts no responsibility in respect of the site described in this report or for any business decisions relating to the site, including decisions in respect of the management, purchase, sale or investment in the site.

This report and the assessments and recommendations contained in it are intended for the sole and exclusive use of AEM.

Any use of, reliance on, or decision made by a third party based on this report, or the services performed by Azimuth in preparation of this report is expressly prohibited, without prior written authorization from Azimuth. Without such prior written authorization, Azimuth accepts no liability or responsibility for any loss, damage, or liability of any kind that may be suffered or incurred by any third party as a result of that third party's use of, reliance on, or any decision made based on this report or the services performed by Azimuth in preparation of this report.

The findings contained in this report are based, in part, upon information provided by others. In preparing this report, Azimuth has assumed that the data or other information provided by others is factual and accurate. If any of the information is inaccurate, site conditions change, new information is discovered, and/or unexpected conditions are encountered in future work, then modifications by Azimuth to the findings, conclusions and recommendations of this report may be necessary.

This report is time-sensitive and pertains to a specific site and a specific scope of work. It is not applicable to any other site, development or remediation other than that to which it specifically refers. Any change in the site, remediation or proposed development may necessitate a supplementary investigation and assessment.

This report is subject to copyright. Reproduction or publication of this report, in whole or in part, without AEM's prior written authorization, is not permitted.

ACRONYMS

AEM – Agnico-Eagle Mines Ltd.

AEMP – Aquatic Effects Monitoring Program

ANOVA – Analysis of Variance

BACI – Before/After Control/Impact

CCME – Canadian Council of Ministers of the Environment

DQO – Data Quality Objective

EAS – Effects Assessment Study

ED – East Dike

GPS – Global Positioning System

HVH – High value habitat

INUG – Inuggugayualik Lake

ISQG - Interim Sediment Quality Guidelines

MDL - Method Detection Limit

MMER – Metal Mining Effluent Regulations

PDL – Pipedream Lake

PEL - Probable Effect Level

QA/QC - Quality Assurance / Quality Control

RPD – Relative Percent Difference

SEP – Sequential Extraction Procedure

SIA – Stable isotopes analysis

SIE – Severity of Ill Effects

SOP – Standard Operating Procedure

SP – Second Portage Lake

SQG – Sediment Quality Guidelines

TE – Tehek Lake

TEFF - Tehek Lake Far Field

TKN – Total Kjeldahl Nitrogen

TPE – Third Portage Lake – East Basin

TPN – Third Portage Lake – North Basin

TPS – Third Portage Lake – South Basin

TSS – Total suspended solids

UTM – Universal Transverse Mercator

WAL – Wally Lake

WOE – Weight of Evidence

EXECUTIVE SUMMARY

AEM commissioned studies in each of the last three years (2008 - 2010) to address concerns regarding the potential impacts of elevated TSS concentrations on the local receiving environment from dike construction. Based on the literature, elevated TSS concentrations can directly or indirectly affect the entire range of organisms in the aquatic environment, so these studies have addressed a broad array of ecosystem elements.

The East Dike TSS EAS was initiated in 2008 and targets the effects of TSS from East Dike construction, primarily on Second Portage Lake, but also extending into Tehek Lake (Azimuth, 2009b). As planned, this study continued in 2009 (Azimuth, 2010b) and 2010 (this report), focusing more on characterizing potential deposition-related impacts, largely to periphyton and benthic invertebrate communities.

The Bay-Goose TSS EAS was initiated in 2009 and targets the effects of TSS from Bay-Goose construction, primarily on the east basin of Third Portage Lake, but also downstream into Second Portage Lake and Tehek Lake. Due to the phased nature of construction of the Bay-Goose Dike (i.e., Phase 1 in 2009; Phase 2 in 2010), the timing of study components is variable, with some conducted in 2009 (Azimuth, 2009b) and others slated for either 2010 (this report) or possibly later.

Collectively, the results of these studies have improved our understanding of the potential short-term (i.e., on the order of a year) and long-term (i.e., multiple years) effects of elevated TSS on a broad range of ecosystem elements in local receiving environments. Results to date for each major study component have been summarized in **Table ES-1** (2010 results highlighted in **bold**) for both TSS EAS studies to provide a more holistic perspective.

TSS EAS studies have targeted both the pelagic zone (i.e., water column) and benthic zone (i.e., lake bottom) of receiving environments. Elevated TSS concentrations over basin-wide spatial scales were well documented for both studies, lasting on the scale of weeks-to-months. While the TSS had obvious consequences for water clarity (and thus light penetration), no other substantial changes to local limnology were identified. From a water chemistry perspective, elevated metals and nutrients were largely associated with particulates rather than found in the dissolved phase (and more bioavailable). From a water column (pelagic zone) perspective, both TSS EAS studies identified some short-term effects to primary productivity (e.g., phytoplankton biomass). However, these did not appear to cascade up the food chain to zooplankton. Consequently, based on available data, indirect effects to higher-level organisms through reduced prey biomass are considered unlikely. This was also corroborated in the laboratory with a larval trout test using live zooplankton as a food resource. With respect to potential direct effects in the

water column, no adverse effects to zooplankton or fish were seen in toxicity tests. Thus, the body of evidence collected to date suggests that while some effects have been seen in the water column, they are likely limited in time and have not been shown to propagate up the food chain.

In contrast to the pelagic zone, where potential effects would be linked to suspended sediments in the water column and thus less likely to have prolonged consequences, the benthic zone is susceptible to the potential effects of sedimentation. Sediment traps have been used to document sedimentation rates, deposition thickness and chemistry of settled matter over the last three years, both during the open water season and under ice cover. The 2008 results suggested that between 1 to 2 mm of construction-related deposition occurred in Second Portage Lake and identified possible changes to surface sediment chemistry (i.e., settled material in the traps contained elevated concentrations of several metals). Surface sediment chemistry results for 2009 did confirm that certain metals had increased in concentration in Second Portage Lake and in Tehek Lake relative to baseline. Thus, concerns in this zone relate primarily to physical smothering and to metals toxicity.

The concerns regarding metals toxicity were directly tested in 2010 using sediment toxicity tests and sequential extraction analysis. Results of amphipod (*Hyalella azteca*) and midge (*Chironomus tentans*) survival and growth endpoints in bioassays showed that surface sediments collected from within or adjacent to the East Dike construction zone (i.e., the zone delineated by the turbidity barriers) were not toxic relative to local reference sediment. The sequential extraction results showed that most of the metals in the sediment are associated with the residual matrix fraction, which is not considered bioavailable. Consequently, metals toxicity is not likely an issue in Second Portage Lake.

From an physical effects perspective, initial studies on periphyton biomass and community structure in Second Portage Lake conducted in 2009 identified reduced biomass and altered community composition in close proximity to the East Dike (i.e., in an area that would have been exposed to high TSS concentrations in 2008); these differences were not observed in an area exposed to lower TSS concentrations in 2008 (Azimuth, 2010b). Follow-up studies conducted in 2010 provided greater spatial resolution, confirming that effects were limited to the area closest to the East Dike.

For benthic invertebrates, the 2008 CREMP data indicated reduced benthic invertebrate abundances (a marginal trend) in Second Portage Lake (that did not extend to Tehek Lake); this was no longer observed in 2009 (i.e., abundance was similar to baseline), suggesting a short-term physical effect and subsequent recovery. The higher resolution EAS results in 2009 highlighted natural differences between Second Portage Lake (and Tehek) and the control areas (i.e., inherent inter-lake differences). Unfortunately, the 2010 results were contradictory, with the CREMP showing an even bigger drop in 2010 than that observed in 2008 (despite very low TSS exposure in 2010) and the EAS data

suggesting further recovery relative to control areas. When considered together, the 2010 CREMP results are likely highly localized and unrelated to TSS.

Available data for potential effects to benthic invertebrate communities in the east basin of Third Portage Lake are also inconclusive. While most results point to the lack of any TSS-related impacts to the community, there have been two successive drops in abundance that coincide with dike construction. However, these "drops" were likely due to natural variability (2009) or a regional trend of decreased abundance and richness (2010).

As for fish and fish habitat, the 2008 results raised concerns regarding physical effects due to sedimentation on high-value habitats. These concerns were raised based on the sediment trap results (discussed above) and on the trout embryo development toxicity (no renewal) test, which suggested that physical settling of particles onto embryos could impair development. Underwater video was used in 2009 to examine high-value fish habitat for evidence of increased sediment deposition; areas close to the East Dike were found to contain more obvious signs of sediment accumulation than areas further away.

TSS EAS studies are scheduled to continue in 2011 with a focus on evaluating the potential effects on periphyton and fish habitat related to the Bay-Goose Dike EAS; the evaluation of benthic invertebrate community will continue at the TPE CREMP station. **Table ES-1** highlights (in **BOLD CAPS**) the activities currently scheduled for 2011, which are summarized below:

- Periphyton Community The 2010 results for Second Portage Lake provided some spatial bounds to the observed depression in periphyton biomass. Given the correlation between mat sediment load and biomass, we recommend that a mat sediment survey be conducted in Third Portage Lake. This will be complemented with underwater video footage collected as part of the fish habitat assessment (below).
- Benthic Invertebrate Community East Dike EAS results largely point to an impact in 2008 and subsequent recovery in 2009, but there is some uncertainty. For the Bay-Goose Dike EAS, there is some uncertainty as to whether any impact occurred due to dike construction. Evaluation of these uncertainties will continue to be assessed through the 2011 CREMP sampling. In addition to the CREMP and EAS studies, supplemental work has been conducted by Ryan Vanengen (AEM) since 2009 as part of his master's research; these results may also address some of the existing uncertainties.
- *Fish/Fish Habitat* Bay-Goose Dike construction was completed in 2010. As a complement to baseline underwater video filmed in 2009 prior to dike construction, post-construction footage will be collected.

East Dike TSS EAS Bay-Goose TSS EAS TSS EAS Component

Water Quality and Limnology (studies conducted during major TSS release events (2008 for East Dike; 2009 for Bay-Goose Dike).

Prevailing TSS concentrations at exposure areas in 2008 were TSS Exposure estimated to be about 10 mg/L (Sept 13/14, 2008) and 6 mg/L

(Sept 24/25, 2008).

Prevailing TSS concentrations at exposure areas in 2009 were estimated to be about 10 mg/L (Sept 17-19, 2009) and 8 mg/L (Sept 24-27, 2009).

Elevated TSS reduced water clarity, but did not lead to

Similar to East Dike TSS EAS.

changes in temperature or dissolved oxygen profiles over depth.

Similar to East Dike TSS EAS.

Dike completion).

Water Quality While certain metals and nutrients were elevated, dissolved concentrations were low and these were associated with

particulate matter and not expected to result in direct effects to pelagic aquatic life.

to dike construction.

extraction analyses).

Field Effects Measurements

Primary Production - Pelagic

Chlorophyll- α

Limnology

• Phytoplankton biomass/taxonomy

Phytoplankton biomass was reduced in exposure areas in 2008. Biomass differences were much less two weeks later, suggesting a short-term effect.

Both phytoplankton biomass and chlorophyll- α were reduced in exposure areas in 2009. However, based on CREMP data they had recovered by November relative to the north and south basins.

Primary Production - Benthic

- Periphyton Community
- Sediment accumulation in mats.

Impacts of sedimentation were observed in Second Portage Lake in close proximity to the East Dike in 2009. Periphyton biomass was reduced in proportion to observed sediment content of periphyton mats. The 2010 results confirmed these findings and provided better spatial resolution of affected areas.

This component is scheduled for 2011 (i.e., the year after BG

Secondary Production - Pelagic Zooplankton biomass/taxonomy

No differences in zooplankton biomass at exposure areas relative to reference areas.

STUDIES IN 2011 WILL FOCUS ON MAT SEDIMENT SURVEY AND UNDERWATER VIDEO (SEE FISH HABITAT BELOW).

Higher zooplankton biomass in 2009 in the east basin than

observed in 2008 despite TSS exposure.

trend of reduced abundance and richness.

Secondary Production - Benthic

- Benthic community
 - Total abundance - Species richness
 - Simpson's Diversity Index
 - Bray Curtis Distance
- Surface sediment chemistry (coring)
- Surface sediment geochemistry
- Sequential extraction analysis

Based on CREMP data from 2006 to 2009, the only effect identified was a marginal reduction in benthic abundance in Second Portage Lake (SP) in 2008. Abundance at SP improved in 2009 to baseline levels. The 2010 SP results were somewhat anomolous; a large decrease in abundance was found that was not seen in the 2010 EAS data. This was concluded to be localized and not related

Higher resolution spatial sampling in 2009 did show specific areas in Second Portage Lake to differ from control areas. However, this may be due to inherently lower benthic abundance in Second Portage Lake and Tehek Lake (as seen in the CREMP) . The 2010 EAS results showed a modest "recovery" at impact areas relative to the 2009 control

areas. Sediment coring conducted in 2009 did identify elevated metals in surface sediments (relative to 2008). Follow-up studies in 2010 showed no sediment toxicity (see below)

that metals were not bioavailable (based on sequential

Based on CREMP data from 2006 to 2010, there has been a drop in benthic abundance and diversity coincident with dike construction. However, these results appear due to very high baseline (2007-2008) levels for both metrics. In 2009, the drop occurred despite low TSS exposure. In 2010, the drop was consistent with a general regional

Higher resolution spatial sampling in 2010 showed no differences between the east basin of Third Portage Lake and control areas. However, this may actually represent an effect given the baseline data (i.e., typically higher inherent abundance and richness than other lakes). Additional data should help differentiate these alternatives.

CREMP SAMPLING (TPE) WILL BE CONDUCTED IN 2011 AS PLANNED.

Fish/Fish Habitat

- Sediment Traps
- Underwater Video
- Food web (stable isotopes)
- Fish Population

Sediment trap data from open water 2008 and over winter 2008-2009 show increased sedimentation (1 - 2 mm), particularly in proximity to the East Dike. This was confirmed by the underwater video. HVH areas away from the dike were much less affected. 2010 results show some elevated accumulation due to BG Dike inputs.

Stable isotope studies confirmed the importance of both benthic and pelagic food webs in 2008.

Sediment trap data show some accumulation (up to 1.1 mm) in proximity of HVH areas in 2009. 2010 results showed similar to higher accumulations (to nearly 2 mm) A subset of traps has been deployed over winter. WINTER TRAPS **RETRIEVED AGAIN IN 2011; PROGRAM ENDING.**

Underwater video surveys conducted at HVH areas in the east basin in 2009 prior to construction; THESE WILL BE **RESURVEYED IN 2011.**

Laboratory Effects Measurements

Zooplankton

- Lethal Daphnia magna 48-hr LC50
- Sublethal Ceriodaphnia dubia 7-day growth/survival/repro

<u>Fish</u>

- Lethal Rainbow trout 96-hr LC50
- Sublethal Rainbow trout embryo 7-day (w/out renewal)
- 7-day (with renewal)
- larvae 7-day surv/growth

No direct effects were observed in toxicity tests of surface waters.

No direct effects were observed in toxicity tests of surface waters

- Sublethal Rainbow trout embryo
- Sublethal Rainbow trout swim-up

No effects were found for juvenile and larval tests. No effects were also seen in the standard (with renewal) embryo development test. Impaired development was seen in test without renewal, which suggests that physical settling of sediments could harm developing embryos.

No direct effects were observed in toxicity tests of surface

Benthic Invertebrates (Sediment)

- Lethal/sublethal Hyalella azteca 14-d survival/growth
- Lethal/sub Chironomus tentans 10-d survival/growth

No adverse effects in 2010 to survival or growth for amphipods (Hyalella azteca) or midges (Chironomus tentans) at impact areas relative to control areas. Sediments tested in Second Portage Lake are not toxic.

1. INTRODUCTION

1.1. Background

Agnico-Eagle Mines (AEM) Ltd.'s Meadowbank Mine is situated approximately 75 km north of the hamlet of Baker Lake, Nunavut. Construction phase for the mine started in 2008 and the operations phase started in late February 2010. An important component of mine development was the construction of major dikes across Second Portage Lake (East Dike) and the northwestern portion of the east basin of Third Portage Lake (Bay-Goose Dike) (**Figure 1-1**).

As described in detail elsewhere (Azimuth, 2009a and 2010a), East Dike (during 2008) and Bay-Goose Dike (during 2009 – 2010) construction activities resulted in widespread increases in total suspended solids (TSS) in Second and Third Portage Lake, respectively. The status of key local receiving environments since 2008 is provided in **Table 1-1** to help better characterize spatial and temporal patterns of TSS. In response to these situations, AEM commissioned studies in both 2008 (Azimuth, 2009b) and 2009 (2010b) to evaluate the potential for adverse ecological effects related to chronic exposure to elevated TSS concentrations (the TSS Effects Assessment Study, or TSS EAS).

The 2010 TSS EAS program was conducted by Azimuth Consulting Group Inc. (Azimuth) to address outstanding issues identified in last year's 2009 EAS report (Azimuth, 2010b), that are summarized in **Table 1-2** for studies pertaining to the East Dike and Bay-Goose Dike. The information provided in the table is a compilation of results (as of last year) for a suite of field and laboratory effects measurements; the table will be updated in **Section 4** to incorporate 2010 results.

1.2. Study Outline

This study was initiated in 2008 to assess the ecological significance of elevated TSS concentrations associated with construction of the East Dike (Azimuth, 2009b). The program was expanded in 2009 to address potential effects related to Bay-Goose Dike construction (Azimuth, 2010b). Details regarding the potential effects of elevated TSS to aquatic biota were summarized in last year's EAS report (Azimuth, 2010b).

An overview of the sampling components for 2010 included:

• **Sediment Chemistry** – Sediment was collected synoptically with samples for benthic invertebrate and sediment toxicity studies (see below). The results help characterize physical/chemical conditions at each sampling location to facilitate interpretation of the effects-based measurements (i.e., benthic community and toxicity testing). In addition to samples collected specifically to support the EAS,

- data from relevant CREMP areas (Azimuth, 2011) were also used where appropriate.
- **Benthic Invertebrates** This component combines data collected in the CREMP (Azimuth, 2011) with samples collected for both the East Dike and Bay-Goose EAS studies. The data sets were used in a complementary manner to make inferences regarding potential adverse effects of construction-related sediment inputs. The original EAS strategy was to track benthic communities in depositional areas for the two years following dike construction. In 2010, the EAS program focused on Second Portage Lake (second year of East Dike EAS) and the east basin of Third Portage Lake (first year of Bay-Goose EAS).
- Sediment Toxicity This program was added in 2010 to determine whether elevated metals identified during the 2008 and 2009 EAS studies in Second Portage Lake (Azimuth, 2009b; 2010b) were toxic. Two sediment toxicity tests (*Hyalella azteca* amphipod and *Chironomus tentans* midge larvae) were used to assess the likelihood that the elevated metals might be adversely affecting benthic invertebrate communities. Four samples were tested: two "exposure" stations (one located within the area enclosed by the turbidity barriers during East Dike construction [high sediment deposition relative to reference stations]; the other in the channel southeast of the East Dike downstream of the outlet from Third Portage [moderate to high deposition]) and two reference stations (one representing high natural mineralization [INUG] and the other just "typical" [TEFF]). Sampling focused on the top 2-cm of sediment only.
- Metals Bioavailability This program was added in 2010 as a complement to the sediment toxicity testing described above. One of the limitations of bulk sediment chemistry analyses (e.g., those described above) is that they only provide total metals content, with little information on metals bioavailability. In contrast, geochemical analysis of sediments can be used to help characterize metals concentrations by for specific fractions of vastly different bioavailability. Sediments from each of the toxicity testing locations were subjected to a sequential extraction procedure (following a standardized European Union method) that uses progressively more aggressive digestions to quantify metals concentrations for four fractions: readily available, bound to iron/manganese oxyhydroxides, bound to organic matter or sulphides, or part of the sediment matrix.
- **Sediment Traps** This program has been conducted since 2008 to monitor sediment deposition rates and thickness (and, where possible, sediment chemistry) at key locations relative to dike construction activities. Select traps were deployed

- in September 2009 and retrieved in July 2010. Traps were redeployed in July 2010 for the open water season, then retrieved again in September.
- **Periphyton Community** In 2009, potential effects to the periphyton community in Second Portage Lake construction-related (2008 East Dike construction) sediment inputs were assessed by direct measurement and underwater video. Those studies identified likely effects in close proximity to the East Dike due to sedimentation (**Table 1-2**). Further direct sampling was recommended for 2010 to assess the spatial extent of adverse effects. To that end, sampling was conducted at six stations on the northern side of Second Portage Lake along a sedimentation gradient (based on the 2008 East Dike event). Analyses included biomass, density, and total weight of sample (including loss on ignition analysis to determine sediment content in the periphyton mat).

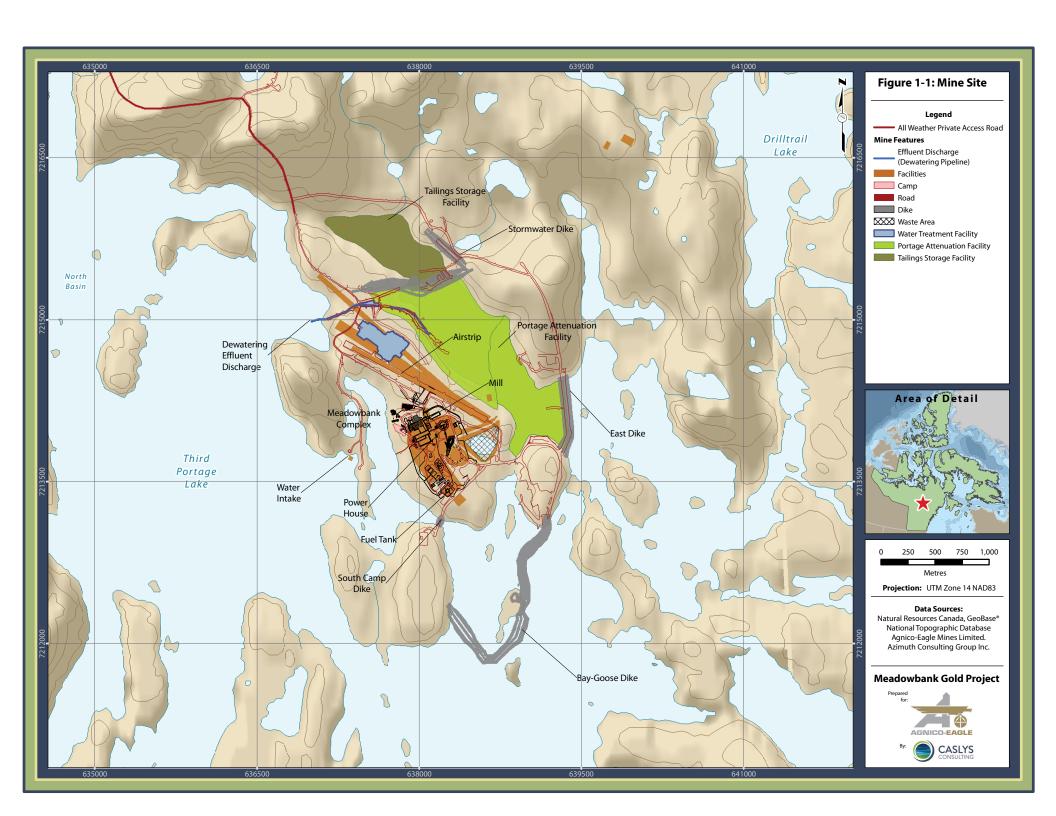
1.3. Report Organization

Previous EAS reports have been organized primarily based on the TSS-release event (i.e., 2008 East Dike construction or 2009 Bay-Goose Dike construction). To facilitate interpretation of results across the events and to reduce redundancy, this year's EAS report is organized by study component. The remainder of this report is organized into the following sections:

- **Section 2** Methods describes the methods used to collect data, and quality assurance/quality control measures taken.
- Section 3 Results presents and discusses the results for each study component.
- **Section 4** Conclusions and Recommendations provides a summary of key results to date for the TSS EAS.

Table 1-1. Status of key receiving environments related to TSS in 2008, 2009 and 2010.

		200	08				2009	2010						
	July	Aug	Sept	Oct - Dec	Jan - Jun July		Aug	Sept	Oct - Dec	Jan - Jun	July	Aug	Sept	Oct - Dec
Third Portage Lake														
North Basin (TPN)	Background	Background	Background	Background	Dewatering - no apparent TSS increase	Dewatering stopped	Background	Background	Background?	Dewatering, TSS < 1 mg/L	Dewatering, TSS < 1 mg/L	Dewatering, TSS < 1 mg/L	Dewatering, TSS < 1 mg/L	Dewatering, TSS < 1 mg/L
South Basin (TPS)	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background
East Basin (TPE)	Background	Background	Background	Background	Background	BG Dike construction starts	TSS concentrations gradually increase, but mostly at depth		TSS drops over time; still above HVH trigger by end of October	TSS increases again during causeway construction	TSS generally < 2 mg/L	TSS generally < 5 mg/L	TSS generally < 5 mg/L	TSS drops?
Second Portage Lake														
Main Basin (SP)	Background	ED construction starts; TSS rises dramatically in third week	TSS drops over time; meets targets by end of month	TSS drops?	TSS drops initially, then dewatering starts in March	Background	Some TSS input from BG dike construction, but low concentrations	TSS increases slightly, but limited spatially	TSS drops over time	TSS generally < 1 mg/L; 2 mg/L in Apr/May	TSS generally < 1 mg/L	TSS generally < 1 mg/L	TSS generally < 1 mg/L	TSS drops?
NW Arm	Background	TSS rises in parallel to main basin, but lower concentrations than main basin	TSS reduced, but rises again during WC Dike construction	TSS drops	TSS drops initially, then increases due to dewatering	TSS elevated due to dewatering activities; dewatering stops in early July	Isolated	Isolated	Isolated	Isolated	Isolated	Isolated	Isolated	Isolated
Drilltrail Arm	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background
Tehek Lake														
Near-field Basin (TE)	Background	TSS rises during third week	TSS drops over time; meets targets by end of month	TSS drops?	TSS drops?	Background	Very slight increase in TSS	TSS slightly above background?	TSS drops over time?	TSS drops over time?	Background?	Background?	Background?	Background?
Far-field Basin (TEFF)	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background


Notes: Shaded months indicate ice cover on lakes.

Acronyms: ED = East Dike; BG = Bay-Goose Dike; TSS = total suspended solids; DCM = dike construction monitoring.

"?" indicates uncertain condition.
CREMP stations shown in (), where applicable

Table 1-2. Conclusions from previous TSS Effects Assessment Studies, 2008 and 2009 (taken from Azimuth, 2010b).

TSS EAS Component	East Dike TSS EAS	Bay-Goose TSS EAS
Water Quality and Limnology	East Sine 100 EAG	Buy Good Too Enc
TSS Exposure	Prevailing TSS concentrations at exposure areas in 2008 were estimated to be about 10 mg/L (Sept 13/14) and 6 mg/L (Sept 24/25).	Prevailing TSS concentrations at exposure areas in 2009 were estimated to be about 10 mg/L (Sept 17-19) and 8 mg/L (Sept 24-27).
Limnology	Elevated TSS reduced water clarity, but did not lead to changes in temperature or dissolved oxygen profiles over depth.	Similar to East Dike TSS EAS.
Water Quality	While certain metals and nutrients were elevated, dissolved concentrations were low and these were associated with particulate matter and not expected to result in direct effects to pelagic aquatic life.	Similar to East Dike TSS EAS.
Field Effects Measurements		
Primary Production - Pelagic ■ Chlorophyll- α ■ Phytoplankton biomass/taxonomy	Phytoplankton biomass was reduced in exposure areas in 2008. Biomass differences were much less two weeks later, suggesting a short-term effect.	Both phytoplankton biomass and chlorophyll- α were reduced in exposure areas in 2009. However, based on CREMP data they had recovered by November relative to the north and south basins.
Primary Production - Benthic • Periphyton Community • Sediment accumulation in mats.	Impacts of sedimentation were observed in Second Portage Lake in close proximity to the East Dike in 2009. Periphyton biomass was reduced in proportion to observed sediment content of periphyton mats.	This component will be conducted in 2011 after BG Dike completed.
	FOLLOW-UP IN 2010.	
Secondary Production - Pelagic • Zooplankton biomass/taxonomy	No differences in zooplankton biomass at exposure areas relative to reference areas.	Higher zooplankton biomass in 2009 in the east basin than observed in 2008 despite TSS exposure.
Secondary Production - Benthic Benthic community Total abundance Species richness Simpson's Diversity Index Bray Curtis Distance Surface sediment chemistry (coring) Fish/Fish Habitat Sediment Traps Underwater Video Food web (stable isotopes) Fish Population	Based on CREMP data from 2006 to 2009, the only effect identified was a marginal reduction in benthic abundance in Second Portage Lake (SP) in 2008. Abundance at SP improved in 2009 to baseline levels. No other effects were found. Higher resolution spatial sampling in 2009 did show specific areas in Second Portage Lake to differ from control areas. However, this may be due to inherently lower benthic abundance in Second Portage Lake and Tehek Lake (as seen in the CREMP). Follow-up sediment coring conducted in 2009 did identify elevated metals in surface sediments (relative to 2008). However, based on the benthic community results, direct toxicity is unlikely. CONTINUE BENTHIC STUDIES AS PLANNED IN 2010; ADD TOXICITY TESTING IN 2010. Sediment trap data from open water 2008 and over winter 2008-2009 show increased sedimentation (1 - 2 mm), particularly in proximity to the East Dike. This was confirmed by the underwater video. HVH areas away from the dike were much less affected. Stable isotope studies confirmed the importance of both benthic and pelagic food webs.	Additional EAS benthic sampling areas in Third Portage Lake will be added to the program for 2010. Ryan Vanengen (AEM) is currently conducting M.Sc. Research (U. of Guelph) regarding the potential impacts of sedimentation on benthic invertebrates at Meadowbank. Results from this program will be integrated into future reports as it becomes available. START IN 2010. Sediment trap data show some accumulation (up to 1.1 mm) in proximity of HVH areas. A subset of traps has been deployed over winter. TRAPS DEPLOYED AGAIN IN 2010. Underwater video surveys were conducted at HVH areas in the east basin prior to construction; these areas will be surveyed again in 2011 after dike construction.
Laboratory Effects Measurements Zooplankton ■ Lethal - Daphnia magna 48-hr LC50 ■ Sublethal - Ceriodaphnia dubia 7-day growth/survival/repro	No direct effects were observed in toxicity tests of surface waters.	No direct effects were observed in toxicity tests of surface waters.
Fish Lethal - Rainbow trout 96-hr LC50 Sublethal - Rainbow trout embryo 7-day (w/out renewal) Sublethal - Rainbow trout embryo 7-day (with renewal) Sublethal - Rainbow trout swim-up larvae 7-day surv/growth	No effects were found for juvenile and larval tests. No effects were also seen in the standard (with renewal) embryo development test. Impaired development was seen in test without renewal, which suggests that physical settling of sediments could harm developing embryos.	No direct effects were observed in toxicity tests of surface waters.

METHODS

2.1. Sediment Chemistry

Sediment was collected in August 2010, following the same procedures as the CREMP (Azimuth, 2011). The top 3-5 cm of sediment was collected from all stations using a Petite Ponar grab (sampling area of 0.023 m²). Two or three grabs were composited and mixed into a bowl to comprise a sediment chemistry sample. Multiple grabs are composited, consistent with earlier work, to reduce the influence of within-station spatial heterogeneity. Sediment chemistry was collected after benthic invertebrate sampling to avoid possible disturbance of biota. EAS sediment chemistry sampling stations¹ are shown in **Figure 2-1**; UTM coordinates for each sample are presented in **Table 2-1**.

Only those grab samples that met the following acceptability criteria were retained for analysis: did not contain large foreign objects; adequate penetration depth (i.e., 10–15 cm); not overfilled (sediment surface not touching the top of sampler); did not leak (there was overlying water present and no visible leaks); and was undisturbed (sediment surface was relatively flat). Grabs that did not satisfy these conditions were discarded.

Sampling jars were placed in a cooler with ice packs and transported to ALS Environmental (Vancouver, BC) for analysis. A completed chain-of-custody form accompanied the samples during transport. Sediment samples were analyzed for pH, total organic carbon, moisture content, particle size (% gravel, sand, silt and clay), and total metals concentrations.

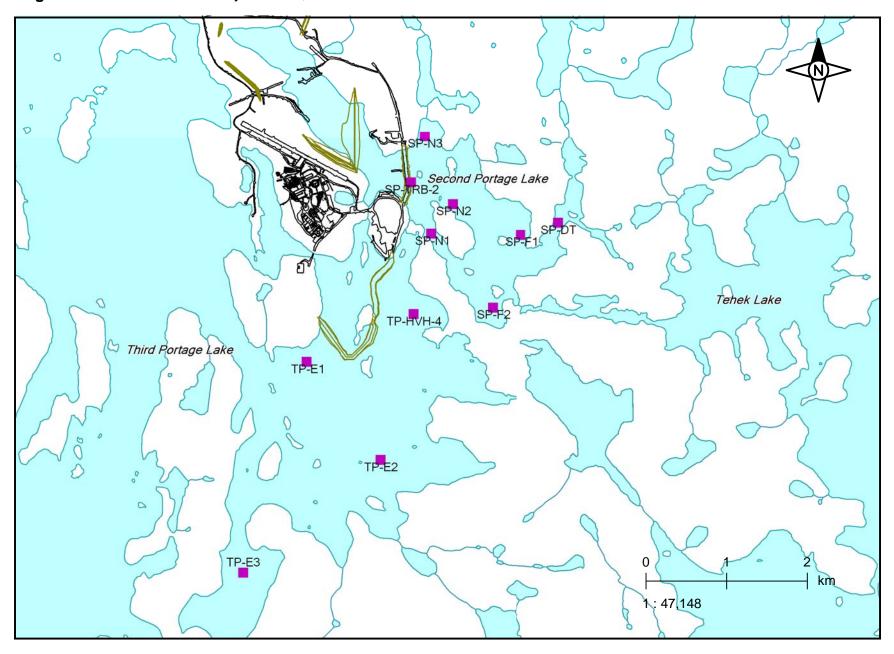
Sediment metals concentrations were compared to sediment quality guideline (SQG) concentrations developed by the Canadian Council of Ministers of the Environment (CCME, 2002) for the protection of aquatic life. There are two levels of SQGs: Interim Sediment Quality Guidelines (ISQG) and Probable Effects Level (PEL) concentrations. ISQGs are conservative values that represent the concentration below which adverse effects are unexpected. The PEL is less conservative and represents a concentration above which adverse effects may be observed, based on laboratory studies. It is important to realize that background concentrations of some metals in sediments routinely exceed both ISQG and PEL concentrations. This is common in many mineralized areas and this does not mean that adverse effects should be expected. All of the measured sediment chemistry concentrations from the study lakes were tabulated and compared against each other and, when available, the SQGs.

¹ Note that locations for CREMP areas are provided in Azimuth (2011).

 Table 2-1. GPS sampling location coordinates (UTM, NAD83), Meadowbank EAS 2010.

		Benthos &Sediment Chemistry & Toxicity (August)						Sediment Traps (July & September)							Periphyton (August)				
Lake	Date	Replicate ID ¹	Sample Type ²	Depth (m)	Easting	Northing	Season	Set Date	Retrieval Date	Trap ID ¹	Easting	Northing	Date	Replicate ID ¹	Easting	Northing			
l	20-Aug-10	SP-F1-1	B & C	7.7	14 W 640790	7213380		15-Sep-09	18-Jul-10	SP-ST1	14W 639661	7213999	22-Aug-10	SP-BL-1	14 W 639481	7214605			
ļ		SP-F1-2	В	9.6	14 W 640797	7213404	Winter 2009-	15-Sep-09	17-Jul-10	SP-ST6	14W 640072	7212805		SP-BL-2	14 W 639479	7214598			
ļ		SP-F1-3	В	8.5	14 W 640818	7213408	2010	12-Sep-09	18-Jul-10	SP-ST7	15W 358781	7213838		SP-BL-3	14 W 639478	7214589			
ļ		SP-F1-4	В	9.7	14 W 640780	7213389		15-Sep-09	17-Jul-10	SP-ST8	14W 639687	7213350		SP-BL-4	14 W 639473	7214580			
		SP-F1-5	В	9.9	14 W 640822	7213432								SP-BL-5	14 W 639463	7214567			
	23-Aug-10	SP-F2-1	B & C	7.4	14 W 640444	7212475		23-Jul-10	23-Sep-10	SP-ST1	14W 639651	7213991	23-Aug-10	SP-CREMP-1	14 W 641025	7213261			
ļ		SP-F2-2	В	7.8	14 W 640473	7212456	Summer 2010	23-Jul-10	23-Sep-10	SP-ST6	14W 640077	7212803		SP-CREMP-2	14 W 641021	7213265			
		SP-F2-3	В	7.2	14 W 640473	7212498	2010	23-Jul-10	23-Sep-10	SP-ST7	15W 358779	7213871		SP-CREMP-3	14 W 641014	7213263			
ļ		SP-F2-4	В	7.2	14 W 640455	7212505								SP-CREMP-4	14 W 640979	7213245			
		SP-F2-5	В	7.8	14 W 640486	7212444								SP-CREMP-5	14 W 640970	7213242			
	23-Aug-10	SP-DT-1	B&C	7.4	14 W 641262	7213530							23-Aug-10	SP-DT-1	15W 358708	7213974			
		SP-DT-2	В	8.5	14 W 641273	7213543								SP-DT-2	15W 358707	7213969			
		SP-DT-3	В	8.7	14 W 641240	7213548							24-Aug-10	SP-DT-3	15W 358702	7213969			
		SP-DT-4	В	7.3	14 W 641244	7213516								SP-DT-4	15W 358699	7213948			
Lake		SP-DT-5	В	9.8	14 W 641276	7213562								SP-DT-5	15W 358693	7213936			
Portage	22-Aug-10	SP-N1	Т	9.0	14 W 639663	7213395							22-Aug-10	SP-GSM-1	14 W 639937	7214476			
ort	20-Aug-10	SP-N1-1	B & C	8.0	14 W 639674	7213394								SP-GSM-2	14 W 639943	7214479			
퉏		SP-N1-2	В	7.5	14 W 639657	7213419								SP-GSM-3	14 W 639944	7214486			
Second		SP-N1-3	В	7.1	NA									SP-GSM-4	14 W 639957	7214490			
တ္တ		SP-N1-4	В	10.0	NA									SP-GSM-5	14 W 639969	7214498			
		SP-N1-5	В	7.2	NA														
	20-Aug-10	SP-N2-1	B & C	8.2	14 W 639946	7213765							22-Aug-10	SP-AZI-1	14 W 640538	7213838			
ļ		SP-N2-2	В	7.5	14 W 639950	7213740								SP-AZI-2	14 W 640539	7213843			
ļ		SP-N2-3	В	8.7	14 W 639946	7213720								SP-AZI-3	14 W 640548	7213848			
ļ		SP-N2-4	В	9.3	14 W 639965	7213722								SP-AZI-4	14 W 640555	7213848			
		SP-N2-5	В	8.3	14 W 639981	7213781								SP-AZI-5	14 W 640567	7213848			
	19-Aug-10	SP-N3-1	B & C	7.4	14 W 639592	7214608							21-Aug-10	SP-ISLA-1	14 W 640572	7213267			
		SP-N3-2	В	8.9	14 W 639606	7214588								SP-ISLA-2	14 W 640562	7213268			
		SP-N3-3	В	9.2	14 W 639589	7214573								SP-ISLA-3	14 W 640553	7213264			
		SP-N3-4	В	8.7	14 W 639563	7214585								SP-ISLA-4	14 W 640543	7213257			
		SP-N3-5	В	7.3	14 W 639570	7214615								SP-ISLA-5	14 W 640531	7213254			
	22-Aug-10	SP-TRB2	Т	7.0	14 W 639431	7214011													
	19-Aug-10		С	6.9	14 W 639422	7214034													

Table 2-1. GPS sampling location coordinates (UTM, NAD83), Meadowbank EAS 2010.


		Benthos &Se	diment Ch	emistry &	Toxicity (August	:)		Se	diment Traps	(July & Septe	Periphyton (August)					
Lake	Date	Replicate ID ¹	Sample Type ²	Depth (m)	Easting	Northing	Season	Set Date	Retrieval Date	Trap ID¹	Easting	Northing	Date	Replicate ID ¹	Easting	Northing
	25-Aug-10	TP-E1-1	B&C	7.4	14 W 638122	7211799		13-Sep-09	16-Jul-10	BG-ST1	14W 638706	7211757				
		TP-E1-2	В	7.5	14 W 638109	7211814	M: 0000	13-Sep-09	16-Jul-10	BG-ST2	14W 638974	7211821				
		TP-E1-3	В	8.0	14 W 638118	7211782	Winter 2009- 2010	13-Sep-09	27-Jul-10	BG-ST3	14W 639538	7211819				
		TP-E1-4	В	8.0	14 W 638091	7211762	2010	13-Sep-09	27-Jul-10	BG-ST5	14W 639012	7211252				
		TP-E1-5	В	8.5	14 W 638080	7211783		16-Sep-09	23-Jul-10	BG-ST6	14W 639343	7213331				
	27-Aug-10	TP-E2-1	B & C	9.5	14 W 639041	7210576	0	19-Jul-10	18-Sep-10	BG-ST2	14W 639011	7211788				
		TP-E2-2	В	10.0	14 W 639041	7210554	Summer 2010	19-Jul-10	20-Sep-10	BG-ST4	14W 639517	7212414				
		TP-E2-3	В	9.9	14 W 639109	7210567	2010	19-Jul-10	20-Sep-10	BG-ST6	14W 639343	7213331				
ake		TP-E2-4	В	9.0	14 W 639144	7210558										
Third Portage Lake		TP-E2-5	В	8.9	14 W 639174	7210561										
orta	25-Aug-10	TP-E3-1	B & C	11.0	14 W 637330	7209173		23-Sep-09	23-Jul-10	TPE-ST1	14W 637796	7211593				
<u>₽</u>		TP-E3-2	В	12.0	14 W 637327	7209136	Winter 2009-	23-Sep-09	24-Sep-10	TPE-ST2	14W 639014	7210490				
達	28-Aug-10	TP-E3-3	В	10.0	14 W 637364	7209202	2010	13-Sep-09	18-Jul-10	TPS-ST1	14W 635729	7208657				
		TP-E3-4	В	10.0	14 W 637377	7209188		13-Sep-09	23-Jul-10	TPS-ST2	14W 634334	7210449				
		TP-E3-5	В	10.0	14 W 637374	7209159										
	24-Aug-10	TP-HVH4-1	B & C	7.5	14 W 639454	7212393		19-Jul-10	20-Sep-10	TPE-ST1	14W 637802	7211607				
		TP-HVH4-2	В	7.8	14 W 639435	7212405		19-Jul-10	20-Sep-10	TPE-ST2	14W 639043	7210495				
		TP-HVH4-3	В	7.0	14 W 639504	7212414	Summer	19-Jul-10	20-Sep-10	TPE-ST3	14W 637953	7210229				
		TP-HVH4-4	В	7.2	14 W 639490	7212441	2010	19-Jul-10	24-Sep-10	TPE-ST4	14W 637344	7209104				
		TP-HVH4-5	В	8.0	14 W 639476	7212421		23-Jul-10	17-Sep-10	TPS-ST1	14W 635726	7208651				
								23-Jul-10	17-Sep-10	TPS-ST2	14W 634347	7201444				
INUG	25-Aug-10	INUG	Т	6.8	14 W 622794	7216851										
	27-Aug-10	TEFF	Т	7.4	15 W 361518	7210684		17-Sep-09	20-Jul-10	TE-ST1	15W 359929	7212109				
Φ.							Winter 2009-	17-Sep-09	20-Jul-10	TE-ST4	15W 362003	7210391				
Lak							2010	17-Sep-09	20-Jul-10	TE-ST5	15W 363218	7208193				
Tehek Lake								20-Jul-10	21-Sep-10	TE-ST1	15W 359935	7212097				
T _e							Summer	20-Jul-10	21-Sep-10	TE-ST4	15W 361998	7210374				
							2010	20-Jul-10	21-Sep-10	TE-ST5	15W 363218	7208181				
1									, -							

Notes

¹ Replicate/Trap IDs are as follows: SP=Second Portage Lake; F=farfield; DT=Drilltrail arm; N=nearfield; TRB=turbidity curtain; TP=Third Portage Lake; E=East basin; HVH=high-value habitat; INUG=Inuggugayualik Lake; TEFF=Tehek Lake - Farfield; ST=sediment trap; BG=Bay-Goose; TPE & TPS=Third Portage Lake - East & South basins; TE=Tehek Lake; BL=boat launch.

² Sample types are as follows: T = Toxicity; B = Benthos; C = chemistry.

Figure 2-1.Sediment chemistry stations, Meadowbank EAS 2010.

2.2. Sediment Metals Bioavailability

2.2.1. Overview

As described in **Section 1.2**, sediment inputs from the construction of the East Dike in 2008 resulted in elevated metals in surface sediments of Second Portage Lake (based on comparison of the top 1-2 cm of sediment from coring programs conducted in 2008 [CREMP; Azimuth, 2009c] and 2009 [EAS; Azimuth, 2010b]). Consequently, Azimuth recommended that follow-up sediment toxicity be conducted in 2010 as part of the EAS program.

Two sediment toxicity tests (described below) were used to assess whether the elevated metals have caused toxicity. In addition, and as a complement to the sediment toxicity testing, sequential extraction analysis (described below) was also conducted on the 2010 sediments. This is a geochemical analysis to determine how the metals are present in the sediment matrix (i.e., metals bioavailability). The intent of this study was to provide a sound scientific basis to support the toxicity test results.

2.2.2. Field Sampling

Sediment was collected only once in August 2010, using the same techniques and following the same acceptability criteria described in **Section 2.1**. The top 2 cm were collected from several grabs and composited until there was enough volume to fill 1 x 4L container (sediment toxicity) and 2 x 125ml bottles (sequential extraction) per station.

Four stations were tested: two "exposure" stations (i.e., one adjacent to the center of the former turbidity barrier for the East Dike [SP-TRB2] and the other in the channel southeast of the East Dike downstream of the outlet from Third Portage [SP-N1]) and two reference stations (one representing high natural mineralization [INUG] and the other just "typical" [TEFF]). Sampling stations are shown in **Figure 2-2**; UTM coordinates for each sample are presented in **Table 2-1**.

Sampling containers were placed in a cooler with ice packs and transported to Maxxam Analytics Inc. (Burnaby, BC) for both analyses. A completed chain-of-custody form accompanied the samples during transport. Sediment samples were analyzed as described in the tests below. Sediment toxicity tests were initiated on September 17, 2010.

2.2.3. Laboratory Tests

2.2.3.1. Sediment Toxicity

Two organisms were used to assess whether the elevated metals have caused sediment toxicity: an amphipod (*Hyalella azteca*) and a midge larva (*Chironomus tentans*). Organisms were both tested for endpoints of survival and growth.

The *Hyalella* test is a static, non-renewal test using juvenile (2-9 days old) amphipods, exposed to whole sediment for 14-days. This test was conducted at 23°C, using 5 replicates per treatment including a laboratory control, with 10 organisms per replicate.

The *Chironomus* test is a static, non-renewal test using 3rd instar larvae exposed to whole sediment for 10-days. This test was conducted at 23°C, using 5 replicates per treatment including a laboratory control, with 10 organisms per replicate.

2.2.3.2. Sequential Extraction

There are many sequential extraction procedures (SEP) that can be used for understanding the behavior of metals in sediments but most SEPs follow similar fractional degradation with minor variations (Zimmerman and Weindorf, 2010). The SEP followed in this study was a standard European Union method (BCR 701) that was developed to provide suitable reference materials for enabling the validation of the methodologies, and to control the quality of the measurements (Pueyo et al., 2001).

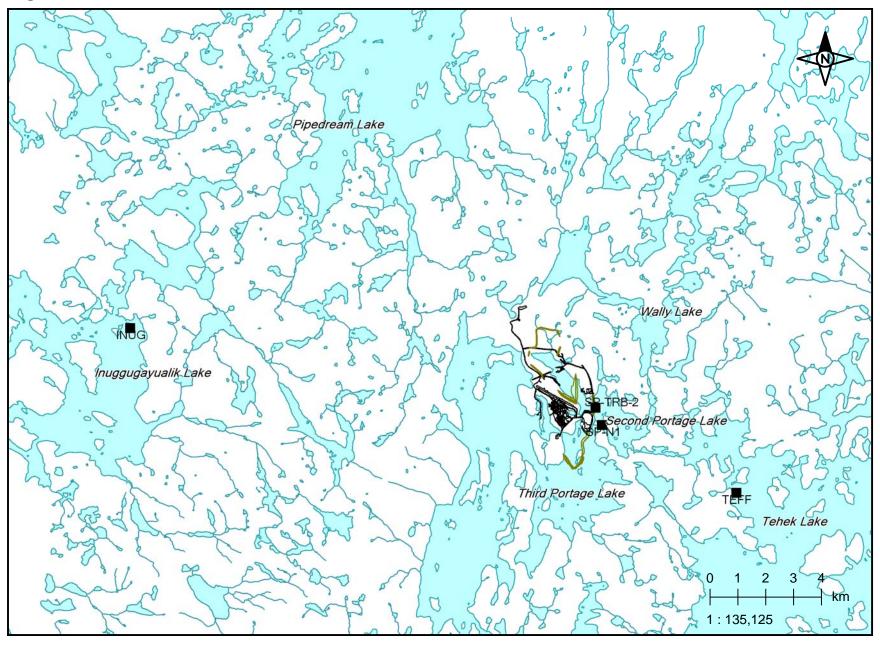
The theory behind sequential extraction is that the solid material (sediment in this case) can be partitioned into specific fractions that can be extracted selectively by using appropriate reagents (Tessier et al., 1979). The most mobile trace metals will be removed in the first fraction and continue in order of decreasing of mobility (Zimmerman and Weindorf, 2010). Typically, metals of anthropogenic inputs tend to reside in the first three fractions and metals found in the residual fraction occur as a geological matrix in the parent rock (Ratuzny et al., 2009). The BCR method follows an optimized three-step sequential extraction procedure that allows for characterization of metals availability into these four groups or fractions (Pueyo et al., 2001) as follows:

Carbonate-bound Fraction: step 1 uses acetic acid to remove metals that are weakly adsorbed to the surface of sediment particles and associated with carbonate coatings, otherwise readily available. Metals in this fraction will desorb with changes in pH.

Fe / **Mn oxide-bound Fraction**: step 2 uses hydroxylamine hydrochloride to remove metals that are associated with iron and manganese oxide coatings on the surface of sediment grains. Metals in this fraction will only be released under anoxic conditions.

Organic matter or Sulphide-bound Fraction: step 3 uses hydrogen peroxide (H_2O_2) / ammonium acetate to remove metals that are associated with organic matter (e.g., living organisms, detritus, coatings on mineral particles, etc) and with sulphide mineral coatings. Metals in this fraction will be released under oxidizing conditions, as organic material is degraded.

Residual Fraction: this fraction is what remains once the first three fractions have been removed. This fraction will only contain primary and secondary minerals that are



essentially part of the sediment matrix. Metals in this fraction are not expected to be released under natural conditions (Tessier et al., 1979).

The fraction resulting from each step is then analyzed for dissolved metals by ICPMS and dissolved hardness (CaCO₃).

Figure 2-2. Sediment toxicity stations, Meadowbank EAS 2010

2.3. Sediment Traps

Sediment traps have been an integral part of dike construction monitoring and the TSS EAS since 2008. The initial network (focused on the East Dike) was expanded in 2009 to support monitoring efforts for the Bay-Goose Dike. Trap deployment throughout the year since 2008 provides us with a good understanding of spatial and temporal dynamics in sedimentation.

A network of 19 sediment trap installations (each consisting of 4 replicate trap tubes) was deployed throughout the local receiving environments during Bay-Goose Dike construction activities. Traps were deployed in September 2009, retrieved in July 2010 (winter traps, **Figure 2-3**), re-deployed and retrieved again in September 2010 (summer traps, **Figure 2-4**)². The trap locations were primarily set near high value habitat to provide data on sediment deposition in proximity to important fish habitat. Sediment trap coordinates are presented in **Table 2-1**.

In 2009, the sediment trap frames were fully painted prior to deployment to remove any concern for rust formation. The same design was maintained in 2010. Each installation consisted of up to four PVC sediment trap tubes, positioned vertically, open-end up, in a grid formation on a small metal frame. Two types of trap tubes were used in 2010 with the following dimensions: (1) 7.6 cm inner diameter opening, 51.4 cm long, and (2) 10.1 cm inner diameter opening, 51.4 cm long. These differing diameters were accounted for when calculating deposition rates. Traps were deployed in the open water by looping sideline to all corners of the frame, gathering the line into a single loop and slowly lowering the trap to the lake bottom while keeping it level. Each trap was marked with a labeled surface buoy (winter traps were set up so that the buoy would be below the ice).

Sediment traps were retrieved by slowly pulling the line when the boat was directly above the buoy to keep the trap vertical. In a few cases, sediment traps could not be located for retrieval (either because the trap had moved over winter or because the water was too turbid to see the buoy 2–3 m below the surface). In other cases, one of the four trap tubes was missing or was cracked and leaking when the trap was retrieved. In another instance, the entire trap assembly was found on its side (likely due to ice). Once removed from the lake, each trap tube was capped, removed from the frame and left to settle for at least one day. Overlying water was decanted from each trap tube until the onset of resuspension, at which point the remaining water was swirled vigorously to suspend all sediments and transferred to pre-labeled 1-L containers. The overlying water was collected into a squirt bottle and used to fully rinse the trap tubes and ensure all sediment was collected into the 1-L container.

² A network of winter traps was set up once again starting in September 2010.

_

Sampling containers were transported to ALS Environmental (Vancouver, BC) for analysis. A completed chain-of-custody form accompanied the samples during transport. In the laboratory, samples were filtered through pre-weighed glass fiber filters then dried at 105°C. The dry weight of the sample was determined by subtracting the weight of the filter from the total dry weight. A portion of the samples were ashed by further drying the sample at 550°C and subtracting the ash weight from the dry weight of the sample.

Figure 2-3. Sediment traps deployed in September (2009) and retrieved in July (2010), Meadowbank EAS 2010.

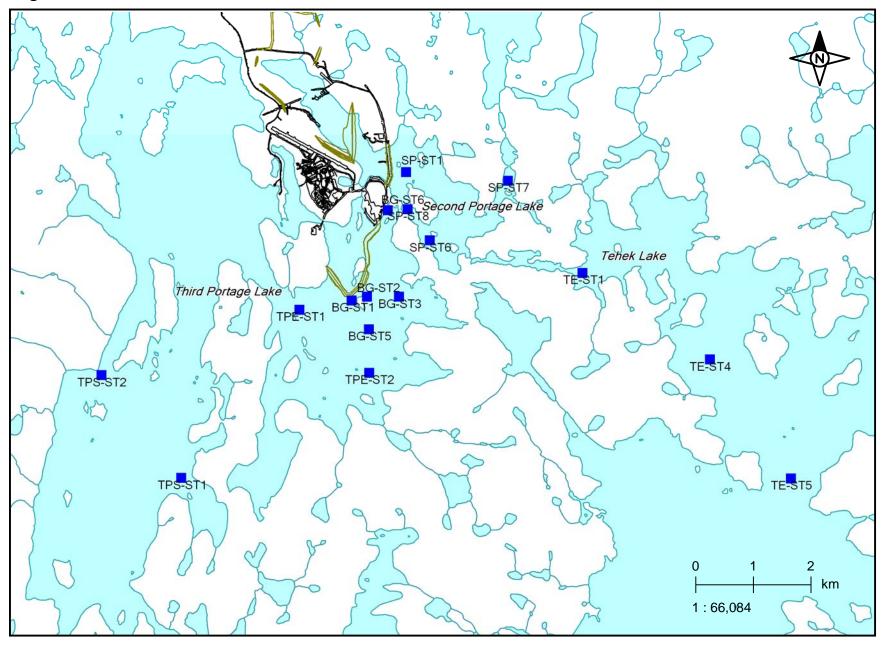
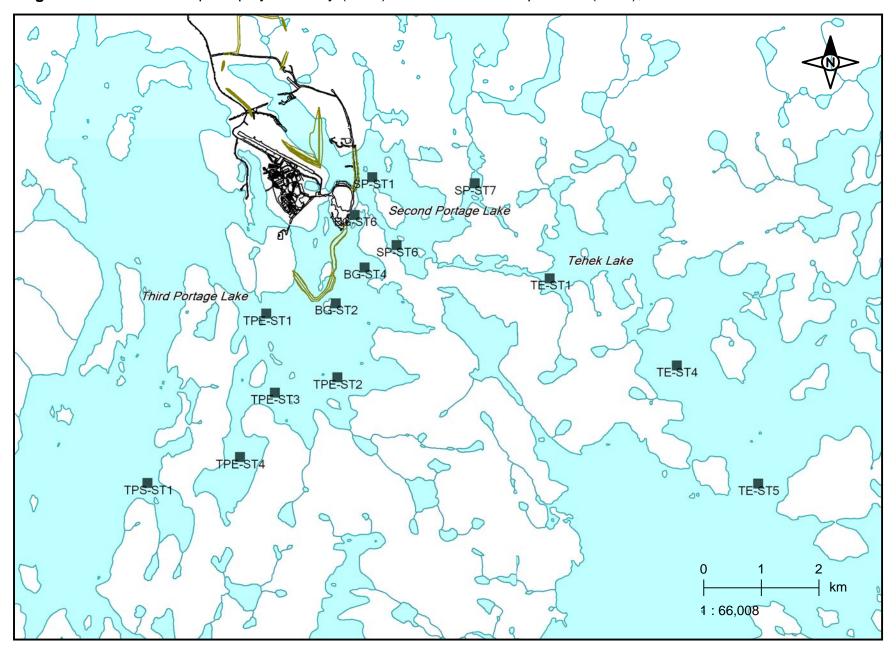



Figure 2-4. Sediment traps deployed in July (2010) and retrieved in September (2010), Meadowbank EAS 2010.

2.4. Periphyton Community

As described in **Section 1.2**, potential effects of construction-related sedimentation to the periphyton community were assessed in 2009 using underwater video and direct sampling as part of the East Dike EAS (Azimuth, 2010b). Apparent effects were identified in close proximity to the dike construction zone, but there was high uncertainty regarding the extent of potential impacts. Consequently, in addition to the three quantitative sampling areas targeted in 2009 (SP-BL, SP-CREMP, SP-DT), three more were added in 2010 on the northern side of the lake to provide greater spatial resolution (**Figure 2-5**). Collectively, these areas span a gradient in sedimentation from the 2008 East Dike event and should provide insights into the spatial and temporal extent and magnitude of effects to periphyton in Second Portage Lake.

Two sample types were collected from each location: one for determining periphyton density (cells/cm²) and biomass (μ g/cm²) by major taxonomic groups, and the other for determining the relative mass of sediment (based on loss on ignition) within the periphyton mat.

The stations are listed below in order of increasing distance from the East Dike (and hence decreasing exposure to construction-related sedimentation) in Second Portage Lake:

- Second Portage Lake Boat Launch (SP-BL) this is a near-field station located just outside (east) of the area that was enclosed by turbidity barriers in 2008; this station would have been exposed to relatively high TSS concentrations in 2008. Sampled in 2009 and 2010.
- Second Portage new near-field (SP-GSM) this is a near-field station located on the north shore of the lake about 0.5 km east of the dike.
- Second Portage new far-field (SP-AZI) this is a far-field station located in a flat area at the base of a steep slope on the north shore of the lake about 1.0 km east of the dike.
- Second Portage new far-field (SP-ISLA) this is a far-field station located on the south side of an island about 1.4 km southeast of the dike.
- Second Portage CREMP location (SP-CREMP) this is a far-field station located on the north shore of the lake about 1.8 km southeast of the dike, at the south tip of the entrance to the Drilltrail Arm; this area was likely exposed to slightly elevated TSS in 2008.
- *Drilltrail Arm (SP-DT)* this is a reference station located on the west shore about half way up the Drilltrail Arm. This station was not affected by the

sedimentation event (i.e., due to the continued inflow into the upper arm from the Wally Lake watershed).

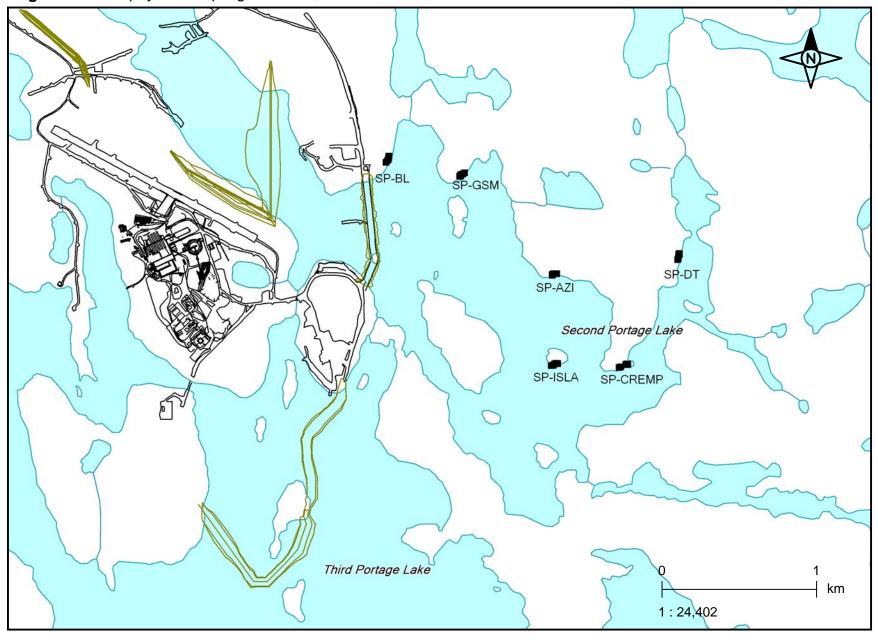
UTM coordinates for each station are presented in **Table 2-1**. Five replicate samples were collected from each station and analyzed independently for all analyses. Sampling locations were chosen according to the following criteria: a sufficient number of large, flat rocks from a water depth of 0.5 m with a flat surface facing upwards as much as possible, and with uniform algal coverage, not uniformly dense or sparse. Periphyton growth is naturally variable due to differences in wave action, aspect to sun, water depth and clarity, nutrient availability, rock type, water temperature and other factors.

Periphyton samples for biomass and density analyses were acquired using a specially designed periphyton 'scrubber'. The procedures for collecting the samples are outlined in detail in the SOP for Periphyton Sampling (AEM, 2009) but generally, 20cm^2 (the surface area of the 'scrubber') was thoroughly scrubbed from 3 rocks for each replicate station. These samples were preserved in the field with a small amount of Lugol's solution and sent to Plankton R Us Inc. (Winnipeg, MB) for taxonomic identification and analysis.

In the laboratory, each periphyton sample was mixed well before subsampling of a 2-mL aliquot that is suspended and sonicated for 10–20 seconds using a Sonifer Cell Disruptor (model w140) and gravity settled for 24 h in an Ütermohl chamber (Findlay et al., 1999). Counts were performed on an inverted microscope at magnifications of 125X, 400X, and 1200X with phase contrast illumination. Cells were identified, counted and measured from random fields until 100 cells of the dominant species were found. Cell counts were converted to wet weight biomass (mg/m^2) by approximating cell volume. Estimates of cell volume for each species were obtained by measurements of up to 50 cells of an individual species and applying the geometric formula best fitted to the shape of the cell (Vollenweider, 1968; Rott, 1981). Data were reported in terms of density (number of cells/cm²) and biomass ($\mu g/cm^2$).

Simpson's diversity index was calculated for each station to quantify periphyton species diversity among stations and replicate samples (Washington, 1984). Simpson's diversity is calculated as shown in **Section 2.5**.

Periphyton samples for loss on ignition analysis were also acquired by using the periphyton 'scrubber'; however, in this case the scrubber was used only to scribe a circle onto the chosen rock (one rock per replicate). Using two knifes (one thin filleting knife and one wider more spatula shaped knife) the circle was carefully scraped. The scraped sample was placed into a 125-ml glass sampling jar which had been pre-labeled with the station ID. Samples were frozen until the time of shipping.



Sampling containers were packed frozen and transported to ALS Environmental (Vancouver, BC) for analysis. A completed chain-of-custody form accompanied the samples during transport. In the laboratory, samples were filtered through pre-weighed glass fiber filters then dried at 105°C, and dry weight recorded (total weight minus the filter weight). Samples were then further dried at 550°C. This procedure 'ashes' the sample which produces yields the inorganic (sediment) component of the sample. Subtracting the ash weight from the dry weight yields the organic component of the sample.

Details regarding statistical analyses of periphyton are provided in **Appendix A**.

Figure 2-5. Periphyton sampling locations, Meadowbank EAS 2010.

2.5. Benthic Invertebrates

As described in **Section 1.2**, the assessment of TSS-related impacts to the benthic invertebrate community has relied on two data sets:

- *CREMP* This data set includes key areas from the CREMP, that has been conducted at most areas since 2006. This data set, focusing on comparisons among basins or lakes, complements the EAS data set in that it provides a broader context from both a temporal and spatial perspective. The methods described below for the EAS would largely apply to the CREMP as well; further details regarding locations are provided in the CREMP report (Azimuth, 2011). CREMP areas are shown in **Figure 2-6**.
- *EAS* This program is designed with a higher degree of spatial resolution in areas potentially impacted by construction-related sedimentation. Samples were collected to address both the East Dike EAS (**Figure 2-7**) and the Bay-Goose EAS (**Figure 2-8**). Details regarding locations and sampling methods are provided below.

Benthic invertebrates were collected from each sampling station in August 2010, using a Petite Ponar grab (0.023 m²) and a 500-µm sieve at the same time and locations as sediment chemistry samples. Sampling locations pertaining to the East Dike EAS and Bay-Goose EAS are illustrated in **Figures 2-7 and 2-8**, respectively; UTM coordinates for each sample are presented in **Table 2-1**. Five replicate samples were collected per station. Two independent grabs (subsamples) per replicate were composited to form a single sample to reduce sampling variation within stations and to increase the surface area sampled. Depths ranged from 6.8 to 12.0 m.

Only those grab samples that met the following acceptability criteria outlined in **Section 2.1** were retained for analysis. Grabs that did not satisfy these conditions were discarded. The procedures for collecting the benthic invertebrate samples are outlined in detail in the SOP for Benthos and Sediment Sampling (AEM, 2009).

Benthos samples were preserved in the field with a 10% buffered formalin solution and sent to Zaranko Environmental Assessment Services (ZEAS) (Nobleton, ON) for taxonomic identification and analysis. Upon arrival at ZEAS, samples were immediately logged and inspected to ensure adequate preservation to a minimum level of 10% buffered formalin and checked for correct labeling. Benthos samples were sorted at a magnification of between 7 and 10 times with the use of a stereomicroscope. To expedite sorting prior to processing, all samples were stained with a protein dye that is absorbed by aquatic organisms but not by organic material, such as detritus and algae.

Prior to sorting, samples were washed free of formalin in a 500-µm sieve. Benthos were enumerated and sorted into major taxonomic groups, (i.e., order and family), placed in

glass bottles and re-preserved in 80% ethanol for more detailed taxonomic analysis by senior staff. Each bottle was labeled internally with the survey name, date, station and replicate number.

Abundance of organisms/m² was determined from the total number of organisms enumerated. Nematodes and ostracods were not reported, nor were they included in abundance and richness calculations because they are too small to be reliably retained on a 500-µm sieve.

The following endpoints were used for assessing benthic community structure, based on sensitivity, objectivity, ease of interpretation and cost-effectiveness:

- Taxa richness (i.e., corresponds to the number of species or taxa per sample and provides a measure of diversity).
- Total abundance (i.e., number of organisms per m²).
- Abundance and richness of all major taxa (e.g., insects, molluscs, worms).
- Simpson's Diversity index (D), calculated as follows:

$$D = \sum \frac{n_i(n_i - 1)}{N(N - 1)}$$

where: N is the total number of organisms/station; n_i is the total number of organisms of the ith taxa/station.

• Bray-Curtis index (B-C), calculated as follows:

B-C=
$$\frac{\sum_{i=1}^{n} |y_{i1} - y_{i2}|}{\sum_{i=1}^{n} (y_{i1} + y_{i2})}$$

where: Y_{i1} is the count for species i at site I, Y_{i2} is the median of the count for species i at the references site(s), and n is the total number of species present at the two sites.

Details regarding statistical analyses of benthic invertebrates are provided in **Appendix A**.

Figure 2-6. Benthic invertebrate stations, Meadowbank CREMP, 2010.

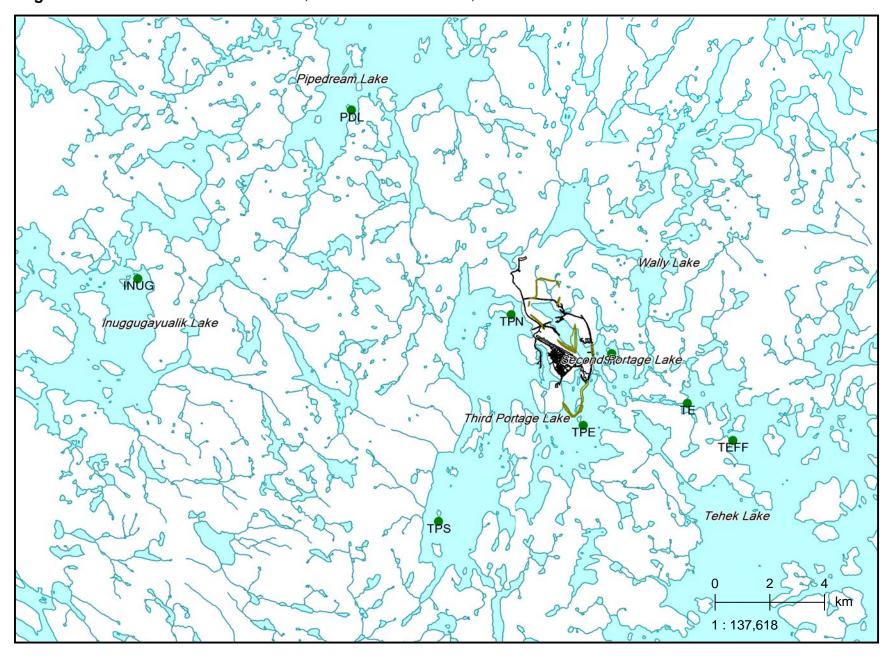


Figure 2-7. Benthic invertebrate stations, Meadowbank East Dike EAS, 2010.

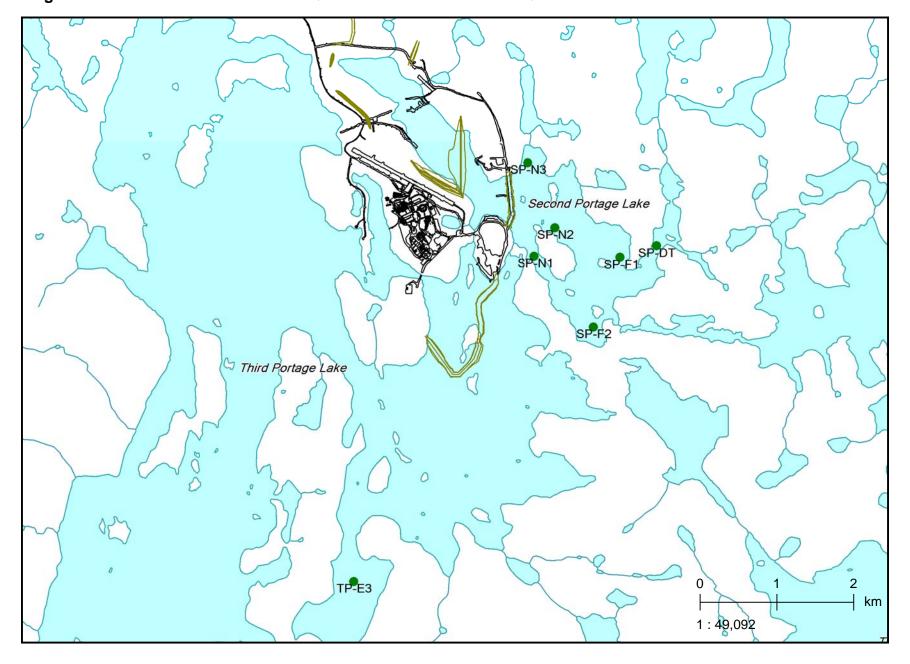
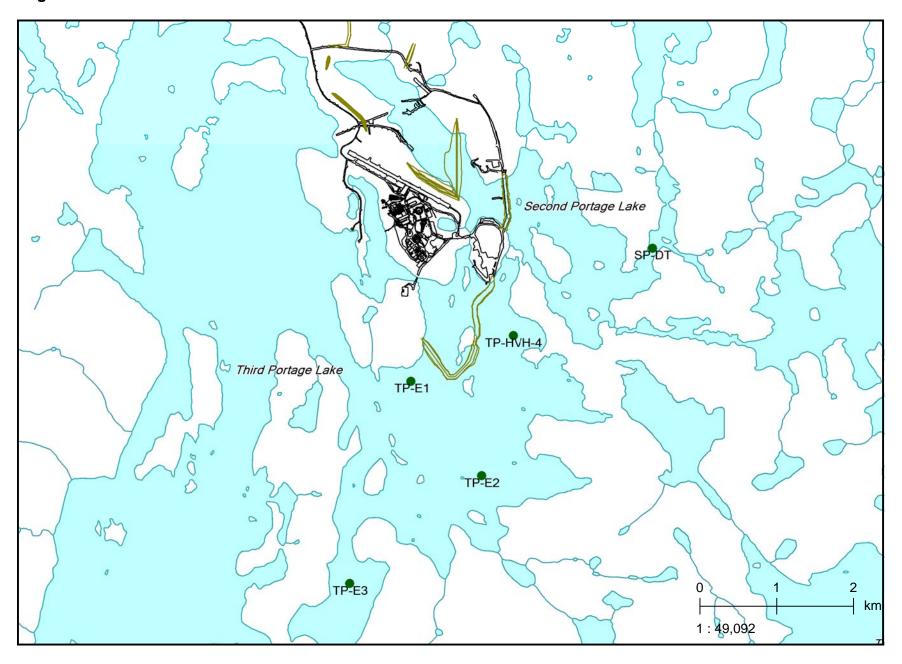



Figure 2-8. Benthic invertebrate stations, Meadowbank Bay-Goose EAS, 2010.

2.6. Quality Assurance / Quality Control

The objective of quality assurance and quality control (QA/QC) is to ensure that the chemical and biological data collected are representative of the material or populations being sampled, are of known quality, are properly documented, and are scientifically defensible. Data quality was assured throughout the collection and analysis of samples using specified standardized procedures, by the employment of laboratories that have been certified for all applicable methods, and by staffing the program with experienced technicians.

Laboratory and Field QA/QC: Sediment Sampling – Sediment chemistry analyses were conducted at ALS Environmental; this is an analytical laboratory accredited by the Canadian Association of Environmental Analytical Laboratories. This accreditation ensures that laboratories achieve and demonstrate the highest levels of technical and management excellence for their services.

Laboratory duplicate results were assessed at using the relative percent difference (RPD) between measurements for sediment chemistry results from grabs. The equation used to calculate a RPD is:

$$RPD = \frac{(A-B)}{((A+B)/2)} \times 100$$

where: A = analytical result; B = duplicate result.

The laboratory data quality objectives (DQO) for this project were 25% RPD for concentrations that exceed 10x the method detection limit (MDL).

RPD values may be either positive or negative, and ideally should provide a mix of the two, clustered around zero. Consistently positive or negative values may indicate a bias. Large variations in RPD values are often observed between duplicate samples when the concentrations of analytes are very low and approaching the detection limit. RPDs are not calculated for cases where either of the samples (i.e., either A and/or B above) is below detection.

Sediment toxicity tests were conducted at Maxxam Analytics; this laboratory follows a comprehensive QA/QC program to ensure that the data generated are of high quality and scientifically defensible. The *Hyalella* sediment test is considered valid if the mean survival in the controls is $\geq 80\%$ and the average dry weight is ≥ 0.1 mg/amphipod. The *Chironomus* sediment test is considered valid if the mean survival in the controls is $\geq 70\%$ and the average dry weight is ≥ 0.6 mg/larvae. Reference toxicant tests for each organism were run concurrently with the toxicity tests, using the same batch of organisms used in each test. QA/QC methodology for sediment toxicity testing is summarized in their report (**Appendix B**).

Sediment sequential extraction analyses were also conducted at Maxxam Analytics. As part of the laboratory quality assurance, two duplicate sediment samples were used to assess variability in the trace-element concentration data for each step of the sequential extraction process. One of the duplicates was the standard reference material BCR-701, for which certified concentrations of cadmium, chromium, copper, lead, nickel, and zinc have been determined for the sequential extraction procedures. The other sediment sample used for duplicate analysis was the aliquot from sample SP-TRB-2.

Field QA/QC standards during sediment sampling consisted of taking care between sampling areas, by rinsing and cleaning the Petite Ponar grab, stainless steel compositing bowls and spoons using site water and phosphate-free cleaning detergent, avoided the possibility of cross-contamination. No field duplicates were collected for sediment chemistry; however, field replicates were collected for sediment trap samples to determine natural variability and heterogeneity within and among stations.

Laboratory and Field QA/QC: Benthic Invertebrate Sampling – Standard procedures were used to collect benthic invertebrate samples. All sampling gear was thoroughly rinsed between sampling stations to ensure that there was no inadvertent introduction (i.e., cross-contamination) of biota from one station to another.

ZEAS incorporates the following set of QA/QC procedures in all benthic projects undertaken by the company to ensure the generation of high quality and reliable data:

- Samples were logged upon arrival, inspected, and enumerated;
- Samples were checked for proper preservation;
- Samples were stained to facilitate sorting;
- Taxonomic identifications were based on the most updated and widely used keys;
- 10% of the samples were re-sorted, and re-counted, targeting >90% recovery;
- Precision and accuracy estimates were calculated;
- A voucher collection was compiled;
- Sorted sediments and debris were re-preserved in 10% formalin and are retained for up to three months. For samples subject to subsampling, sorted and unsorted fractions were re-preserved separately.

Field replicates (5 per station) were collected for benthos to determine natural variability and heterogeneity. Replicates were collected at least 20 m apart from one another, within the defined sampling areas, as described in **Section 2.5**.

Laboratory and Field QA/QC: Periphyton Sampling – As a measure of laboratory QA/QC on the enumeration method, replicate counts were performed on 10% of the

samples. Laboratory replicate samples were chosen at random and processed at different times from the original analysis to reduce biases. The laboratory replicate is a new aliquot (10 ml) from the sample jar and is counted from the start in the same manner as the original aliquot (10 ml) taken from the jar.

Field replicates (5 per station) were collected for periphyton to test consistency in field methods and to determine natural variability and spatial heterogeneity within and among stations. When collection of each replicate sample was completed, the 'scrubber' was rinsed in lake water to ensure that no debris remained in the bristles.

3. RESULTS

3.1. Quality Assurance / Quality Control

QA/QC procedures consisted of a combination of careful field collection and sample handling, the collection of field duplicate samples and the analysis of laboratory replicates and standard reference materials. Results of the QA/QC analyses are presented in **Tables 3-1 to 3-4** for sediment chemistry, sediment sequential extraction, periphyton and benthos, respectively.

Sediment Chemistry – Laboratory duplicate results were assessed using the relative percent difference (RPD) between measurements. None of the RPD values exceed the DQO for lab duplicate samples in the sediment grab data (**Table 3-1**). This result confirms that sediments were well homogenized by the laboratory.

Sediment Toxicity – Results of QA/QC for sediment toxicity testing showed that all the tests met the acceptability criteria for test validity specified in their respective protocols. The *Hyalella* tests performed met the survival and dry weight validity criteria. The *Chironomus* tests performed met the survival and dry weight validity criteria. However, the average head capsule width of the larvae before test initiation was 0.53 mm, greater than the Environment Canada recommended range of 0.33 – 0.45 mm. This does not invalidate a test, since the larvae are still considered third instar at this size. However, it does account for the number of pupae and midges recovered at test completion. All statistical and raw data for these tests are included in the report prepared by Maxxam (**Appendix B**).

Sediment Sequential Extraction – The sediment sequential extraction analyses that were conducted at Maxxam followed a three-step procedure that was performed on the aliquots of each of the sediment samples and the standard reference material BCR-701. Laboratory duplicates were analyzed for each of the three steps. These samples showed a high degree of consistency and precision (**Table 3-2**). In only one case out of a possible 120 cases did the RPD exceed 25% (i.e., copper in step 3). There were, however, a few cases where the measured concentrations exceeded the RPD of 25% but were less than 10x the MDL (i.e., titanium and sodium in step 1, and tungsten in step 2). Consequently, DQOs were met in all samples.

Periphyton Sampling – Quantitative periphyton samples collected from prescribed areas of rock surface were quantified by biomass (μg/cm²) and density (cells/cm²). A randomly chosen sample was selected for a laboratory duplicate re-count (which accounted for 10% QA). The quality of the data is evaluated based on *total* density and *total* biomass of the laboratory duplicate. Although laboratory duplicates in some cases showed high within-

taxa variability, RPDs for *total* density and *total* biomass consistently met the DQOs (i.e., <25%) (**Table 3-3**).

Benthic Invertebrate Sampling – For benthic invertebrate samples, laboratory replicate counts were performed on 10% of all samples. Replicate samples were chosen at random and processed at different times from the original analysis to reduce bias. Of the re-sorted samples, 0/68 (0%), 3/60 (5%), 5/84 (6%), 1/58 (1.7%), and 2/23 (8.7%) organisms were missed (**Table 3-4**), with an overall omission rate of less than 4.5%. These results suggest that the vast majority of animals observed in benthic samples by the taxonomist were recovered. A reference collection of benthic taxa has been compiled.

Table 3-1. QA/QC data for sediment chemistry parameters, Meadowbank EAS 2010.

			Various Lakes	
Analytes		Original	Laboratory	RPD
	MDLs	August	<u>Duplicate</u>	(%)
CONVENTIONAL PARAMETERS				
Physical & Organic Parameters				
pH	0.10	6.38	6.38	0.0
Total Organic Carbon (% dw)	0.10	3.18	3.08	3.2
Particle Size				
% Gravel (>2mm)	0.10	<0.10	<0.10	NA
% Sand (2.00mm - 0.063mm)	0.10	3.66	3.79	-3.5
% Silt (0.063mm - 4µm)	0.10	63.3	66.1	-4.3
% Clay (<4µm)	0.10	33.0	30.1	9.2
TOTAL METALS (mg/kg dw)				
Aluminum	50	25400	25600	-0.8
Antimony	10	<10	<10	NA
Arsenic	5.0	33.3	33.2	0.3
Barium	1.0	96.4	96.8	-0.4
Beryllium	0.50	1.69	1.69	0.0
Cadmium	0.50	< 0.50	< 0.50	NA
Chromium	2.0	183	180	1.7
Cobalt	2.0	20.7	20.7	0.0
Copper	1.0	62.2	62.4	-0.3
Lead	30	<30	<30	NA
Mercury	0.0050	0.017	0.015	15.2
Molybdenum	4.0	6.8	6.6	3.0
Nickel	5.0	89.3	89.9	-0.7
Selenium	2.0	0.95	0.92	3.2
Silver	2.0	<2.0	<2.0	NA
Thallium	1.0	<1.0	<1.0	NA
Tin	5.0	< 5.0	<5.0	NA
Uranium	0.050	16.3	16.3	0.0
Vanadium	2.0	45.7	45.3	0.9
Zinc	1.0	107	108	-0.9

 $RPD = Relative \ Percent \ Difference \ (\%) = ((original - duplicate) / (original + duplicate) / x \ 100. \\ Shaded \ RPDs \ exceed \ 25\% \ (lab \ duplicates)$

NA = RPDs have not been calculated for cases where one of the samples is below detection and the other is not and in cases where both are below detection.

Table 3-2. QA/QC data for sediment sequential extraction analyses, Meadowbank EAS 2010.

					STEP 1			STEP 2			STEP 3	
Analytes	STEP 1	MDLs STEP 2	STEP 3	Original SP-TRB2	<u>Laboratory</u> Duplicate	RPD (%)	Original SP-TRB2	<u>Laboratory</u> Duplicate	RPD (%)	Original SP-TRB2	<u>Laboratory</u> Duplicate	RPD (%)
	SIEFI	SIEF Z	SIEFS	3F-TRD2	<u> </u>	(70)	3F-TRB2	<u> </u>	(70)	3F-TRB2	<u> </u>	(70)
CONVENTIONAL PARAMETER	RS (mg/kg)											
Dissolved Hardness (CaCO ₃)	30	30	25.5	15000	15240	-1.6	5238	4986	4.9	2647	2718	-2.7
DISSOLVED METALS (mg/kg	dw)											
Dissolved Aluminum	0.060	0.120	0.102	161	149	7.7	1080	1164	-7.5	355	340	4.3
Dissolved Antimony	0.006	0.012	0.0102	< 0.006	<0.006	NA	< 0.012	0.012	NA	< 0.0102	< 0.0102	NA
Dissolved Arsenic	0.006	0.012	0.0102	0.516	0.516	0.0	1.84	1.88	-2.3	0.265	0.281	-5.6
Dissolved Barium	0.006	0.012	0.0102	39.5	35.8	9.9	17.5	18.2	-4.0	8.42	8.47	-0.6
Dissolved Beryllium	0.0030	0.0060	0.0051	0.0876	0.0876	0.0	0.102	0.108	-5.7	0.0408	0.0408	0.0
Dissolved Bismuth	0.0018	0.0030	0.0026	0.0048	0.0042	13.3	0.284	0.312	-9.5	0.0235	0.0224	4.4
Dissolved Boron	18.0	30.0	25.5	<18	<18	NA	<30	<30	NA	<25.5	<25.5	NA
Dissolved Cadmium	0.0018	0.0030	0.0026	0.0402	0.0408	-1.5	0.0120	0.0138	-14.0	0.00918	0.00816	11.8
Dissolved Cesium	0.0180	0.0300	0.0255	<0.018	<0.018	NA	0.150	0.144	4.1	0.0459	0.0408	11.8
Dissolved Chromium	0.030	0.060	0.051	0.588	0.540	8.5	2.94	2.94	0.0	3.67	3.83	-4.1
Dissolved Cobalt	0.0018	0.0030	0.0026	1.22	1.19	2.0	1.04	1.07	-3.4	0.867	0.898	-3.5
Dissolved Copper	0.0180	0.0300	0.0255	7.50	7.32	2.4	7.92	8.16	-3.0	2.04	38.9	-180.1
Dissolved Iron	0.30	0.60	0.51	1116	1128	-1.1	1914	1782	7.1	423.8	400.9	5.6
Dissolved Lanthanum	0.018	0.030	0.0255	1.81	1.79	1.0	21.9	22.6	-3.2	5.97	5.66	5.3
Dissolved Lead	0.0018	0.0030	0.00255	0.642	0.624	2.8	5.68	6.06	-6.4	0.668	0.668	0.0
Dissolved Lithium	0.180	0.300	0.255	0.300	0.360	-18.2	1.02	1.14	-11.1	1.84	1.79	2.8
Dissolved Manganese	0.018	0.030	0.0255	188	189	-0.3	36.4	37.4	-2.9	17.4	18.0	-3.2
Dissolved Molybdenum	0.018	0.030	0.0255	<0.018	<0.018	NA	< 0.03	< 0.03	NA	0.785	0.811	-3.2
Dissolved Nickel	0.006	0.012	0.0102	2.41	2.33	3.5	2.99	2.90	3.1	3.33	3.19	4.2
Dissolved Phosphorus	0.60	1.20	1.02	3.0	3.0	0.0	500	507	-1.3	35.2	34.2	2.9
Dissolved Rubidium	0.018	0.030	0.0255	0.852	0.864	-1.4	1.21	1.26	-3.9	0.995	0.938	5.8
Dissolved Selenium	0.012	0.024	0.0204	< 0.012	<0.012	NA	< 0.024	<0.024	NA	0.046	0.046	0.0
Dissolved Silicon	30	60	51	264	240	9.5	720	660	8.7	408	357	13.3
Dissolved Silver	0.0018	0.003	0.00255	<0.0018	<0.0018	NA	0.0360	0.0366	-1.7	0.0337	0.0393	-15.4
Dissolved Strontium	0.018	0.030	0.0255	25.3	25.6	-1.4	7.02	7.50	-6.6	1.50	1.51	-1.0
Dissolved Tellurium	0.006	0.012	0.0102	<0.006	<0.006	NA	<0.012	<0.012	NA	<0.0102	<0.0102	NA
Dissolved Thallium	0.0006	0.0012	0.00102	0.0042	0.0042	0.0	0.014	0.015	-4.1	0.0087	0.0082	6.1
Dissolved Thorium	0.0018	0.003	0.00255	0.0108	0.0090	18.2	0.026	0.022	15.0	0.117	0.130	-10.3
Dissolved Tin	0.003	0.006	0.0051	<0.003	<0.003	NA	0.006	<0.006	NA	0.036	0.036	0.0
Dissolved Titanium	0.18	0.30	0.255	1.74	1.14	41.7	11.4	11.2	2.1	218	216	0.7
Dissolved Tungsten	0.003	0.006	0.0051	<0.003	<0.003	NA	0.006	0.012	-66.7	0.2295	0.2397	-4.3
Dissolved Uranium	0.0006	0.0012	0.00102	0.375	0.381	-1.6	1.29	1.38	-6.7	0.704	0.689	2.2
Dissolved Vanadium	0.06	0.12	0.102	0.30	0.24	22.2	2.58	2.76	-6.7	3.77	3.83	-1.3
Dissolved Zinc	0.03	0.06	0.051	2.33	2.21	5.5	7.98	7.68	3.8	3.83	3.77	1.3
Dissolved Zirconium	0.03	0.06	0.051	0.102	0.090	12.5	0.24	0.24	0.0	0.153	0.153	0.0
Dissolved Calcium	18	30	25.5	5442	5556	-2.1	1344	1242	7.9	428	454	-5.8
Dissolved Magnesium	18	30	25.5	348	330	5.3	456	462	-1.3	383	383	0.0
Dissolved Potassium	18	30	25.5	222	216	2.7	84	90	-6.9	168	163	3.1
Dissolved Sodium	18	30	25.5	24	18	28.6	<30	<30	NA	91.8	91.8	0.0
Dissolved Sulphur	3000	6000	5100	<3000	<3000	NA	<6000	<6000	NA	<5100	<5100	NA
Dissolved Sulphul	3000	0000	3100	<3000	<3000	11/2	20000	20000	INA	< 3100	23100	11/7

RPD = Relative Percent Difference (%) = ((original - duplicate) / (original + duplicate)/2) x 100.

Shaded RPDs exceed 25% (lab duplicates).

Bolded RPDs exceed 25%, but < 10 x MDL.

NA = RPDs have not been calculated for cases where one of the samples is below detection and the other is not and in cases where both are below detection.

Table 3-3. QA/QC data for periphyton, Meadowbank EAS 2010.

		Second Portage Lake			Seco	nd Portage L	_ake	Seco	nd Portage I	_ake
		SP-AZI-1	Lab	RPD	SP-BL-3	Lab	RPD	SP-DT-4	Lab	RPD
		22-Aug-10	<u>Duplicate</u>	(%)	22-Aug-10	<u>Duplicate</u>	(%)	24-Aug-10	<u>Duplicate</u>	(%)
Phytoplankton Density (cell	s/cm²)									
Cyanobacteria		580199	511413	13	345428	338699	2	720763	750670	-4
Chlorophyte		14954	26917	-57	0	0	0	14954	11963	22
Diatom		352905	340942	3	412719	399261	3	155517	149536	4
	Total	948057	879271	8	758147	737959	3	891234	912169	-2
Phytoplankton Biomass (ug	<u>/cm²)</u>									
Cyanobacteria		244.1	192.9	23	21.4	15.2	34	25.8	39.4	-42
Chlorophyte		85.7	154.3	-57	0	0	0	31.4	25.0	23
Diatom		304.3	298.3	2	131.6	123.5	6	86.5	99.7	-14
	Total	634.1	645.6	-2	153.0	138.6	10	143.6	164.0	-13

 $\mathsf{RPD} = \mathsf{Relative} \; \mathsf{Percent} \; \mathsf{Difference} \; (\%) = ((\mathsf{original - duplicate}) \, / \, (\mathsf{original + duplicate}) / 2) \; \mathsf{x} \; \mathsf{100}.$

Shaded RPDs exceed 25% (lab duplicates).

Table 3-4. Percent recovery of benthic invertebrate samples, Meadowbank EAS, 2010.

Number of Organisms Recovered	Number of Organisms in Re- sort	Percent Recovery
68	68	100.0%
57	60	95.0%
79	84	94.0%
57	58	98.3%
21	23	91.3%
	Organisms Recovered 68 57 79 57	Organisms Organisms in Resort 68 68 57 60 79 84 57 58

Average % Recovery 95.7%

Notes: all 50 samples were sorted in their entirety.

3.2. Sediment Chemistry

Total metals concentrations (mg/kg dry weight), pH, moisture content, total organic carbon and particle size were measured in sediment from each EAS benthic community and/or toxicity testing sampling station during August 2010 (laboratory report attached as **Appendix C**). The purpose of collecting these data was to support the interpretation of the benthic invertebrate community and toxicity testing results reported in **Sections 3.6** and 3.3, respectively; the purpose was <u>not</u> to assess changes in sediment chemistry related to dike construction, as that was done with an intensive coring program in 2009 that focused only on the top 1-2 cm (Azimuth, 2010b). The 2010 EAS results are described below for some context.

Chemistry results for 2010 are summarized in **Table 3-5**. Sediment was collected at depths ranging from 7.0–11.0 m. To ensure consistency and provide relevant information for benthic communities, sediment was collected synoptically with benthos samples. For this reason, sediment grain size was consistent among stations and was dominated by fine sediments (82–99% silt/clay).

Total organic carbon concentrations ranged from 2.9–6.7% dry weight over the study lakes (except for SP-TRB2 that was located inside the silt curtains adjacent to the dike, which had a TOC of 0.52%). These values are consistent with previous years data (Azimuth, 2010b; 2009b; 2008a, b) and are reasonably high for an oligotrophic system and illustrates the likely small amount of inorganic input into the lakes due to low sedimentation rate.

Sediment metals concentrations measured in each of the study lakes were compared against federal (CCME, 2002) ISQG and PEL sediment quality guidelines (**Table 3-5**) for those metals for which there are SQG guidelines. Note that exceedances of these guideline values does not necessarily imply that adverse effects have occurred or are expect to occur. These values are relatively conservative and do not reflect site-specific conditions, regional geochemistry or adaptations by benthic organisms to regional characteristics.

Arsenic, chromium and copper exceeded ISQGs in all samples in 2010, which was consistent with results from all previous years at all locations (Azimuth, 2010b; 2009b; 2008a, b). Arsenic exceeded the PEL at 8 of the 11 stations, while chromium exceeded the PEL in 7 of the 11 stations. Zinc exceeded the ISQGs at 5 stations, 4 of them in Second Portage Lake while cadmium twice exceeded the ISQG in Second Portage Lake only. Historical sediment chemistry data has shown similar metals exceedances (Azimuth, 2010b; 2009b; 2008a, b). Given that the 2009 and 2010 sediment chemistry data appear to be within the range of metals values seen in baseline data, the exceedances

of federal sediment quality guidelines are not likely to indicate effects from dike construction; this will be explored more in **Section 3.3**.

Table 3-5. Conventional sediment chemistry and total metals (mg/kg), Meadowbank EAS 2010.

Lake & Basin	ake & Basin				Sec	ond Portage	Lake			Third Portage Lake			
Station ID	Sediment Quality 0	,	SP-DT	SP-F1	SP-F2	SP-N1	SP-N2	SP-N3	SP-TRB2	TP-E1	TP-E2	TP-E3	HVH-4
Date Sampled	ISQG	PEL	23-Aug-10	20-Aug-10	23-Aug-10	20-Aug-10	20-Aug-10	19-Aug-10	19-Aug-10	25-Aug-10	27-Aug-10	25-Aug-10	24-Aug-10
CONVENTIONAL PARAMETERS													
Physical & Organic Parameters													
pH	NG	NG	5.83	6.38	6.40	6.20	6.40	5.78	8.26	5.88	5.50	5.86	6.00
Total Organic Carbon	NG	NG	4.96	4.10	6.70	2.88	4.40	4.22	0.52	2.86	3.18	3.12	2.77
Particle Size													
% Gravel (>2mm)	NG	NG	<0.10	< 0.10	<0.10	0.29	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	1.09
% Sand (2.0mm - 0.063mm)	NG	NG	5.83	7.31	2.73	17.3	2.98	1.95	0.68	2.59	3.66	3.34	2.89
% Silt (0.063mm - 4um)	NG	NG	67.9	66.1	73.5	61.0	69.6	70.8	80.7	64.1	63.3	70.1	48.4
% Clay (<4um)	NG	NG	26.3	26.5	23.8	21.4	27.5	27.2	18.6	33.3	33.0	26.5	47.6
TOTAL METALS (mg/kg dw)													
Aluminum	NG	NG	29400	25400	29900	22500	28100	27600	28000	25400	26200	26500	36100
Antimony	NG	NG	17	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Arsenic	5.9	17.0	59.2	50.2	15.2	10.8	35.5	104	11.1	23.2	32.4	24.6	26.6
Barium	NG	NG	145	98.0	163	102	123	119	149	103	104	131	139
Beryllium	NG	NG	2.81	2.06	2.48	1.59	2.20	2.12	0.61	1.91	1.88	1.66	2.55
Cadmium	0.6	3.5	2.6	<0.50	0.8	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50
Chromium	37.3	90.0	71.5	80.5	91.2	75.2	95.5	86.8	156	111	97.9	115	119
Cobalt	NG	NG	12.2	13.3	10.6	9.5	18.0	13.6	21.2	17.5	17.2	23.7	20.1
Copper	35.7	197	134	73.7	130	59.6	87.1	97.5	39.6	53.7	65.5	84.4	89.2
Lead	35.0	91.3	33	<30	<30	<30	<30	<30	<30	<30	<30	<30	33
Mercury	0.17	0.486	0.0392	0.0270	0.0290	0.0210	0.0274	0.0244	< 0.0050	0.0102	0.0149	0.0235	0.0133
Molybdenum	NG	NG	13.4	9.0	6.2	<4.0	7.0	10.3	<4.0	5.2	7.3	5.7	7.2
Nickel	NG	NG	54.5	54.9	85.6	52.8	70.9	67.2	102	73.0	62.0	142	80.1
Selenium	NG	NG	<2.0	0.62	<2.0	<2.0	0.73	0.88	<2.0	0.70	<2.0	0.86	<2.0
Silver	NG	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Thallium	NG	NG	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tin	NG	NG	<5.0	< 5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0
Uranium	NG	NG	26.2	17.6	25.9	14.5	18.7	22.2	3.12	16.7	19.0	15.4	27.9
Vanadium	NG	NG	40.4	40.6	45.1	37.3	44.3	43.1	54.7	42.3	42.8	43.4	57.7
Zinc	123	315	152	113	160	102	123	131	86.3	106	109	115	141

NG = no guideline

¹CCME (Canadian Council of Ministers of the Environment) Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, 1999, updated in 2002.

ISQG = Interim freshwater Sediment Quality Guideline, PEL = Probable Effect Level.

Shaded concentrations = or > ISQG.

Boxed, bold concentrations also > PEL.

Italicized numbers are below detection limits.

3.3. Sediment Metals Bioavailability

3.3.1. Toxicity

Sediment toxicity testing was conducted to assess the potential for adverse metals-related effects to the benthic community from exposure to the elevated metals reported in Second Portage Lake (Azimuth, 2009c; 2010b). The basic study design was a spatial "controlimpact" design that involved comparisons of two "control" areas (i.e., reference areas not affected by the TSS events) and two "impact" areas (i.e., areas thought to have high deposition of sediments released during construction of the East Dike).

Reference areas are important to include as sediment conditions can vary substantially between field-collected samples and the sediment used as negative laboratory control. Physical factors are known to influence the performance of test organisms. **Table 3-6** includes a summary of grain size and organic carbon content for test samples and the laboratory controls; there is a substantial difference between test sediments and the control sediment.

Results for the amphipod (*Hyalella*) and midge (*Chironomus*) tests are summarized in **Table 3-6** (see **Appendix B** for full details). Decisions regarding the presence/absence of toxicity were made as follows:

- Point of Comparison While laboratory control results were used as a point of
 comparison to estimate effect sizes, decisions regarding the presence/absence of
 toxicity were ultimately made using control-impact comparisons (i.e., comparing
 the results of SP-TRB2 and SP-N1 to the results of INUG and TEFF relative to
 the critical effect size discussed below). As described above, the reference
 sediments are considered a better comparator as they are much more similar from
 a physical perspective.
- Critical Effect Size A change of 20% in an endpoint (in impact area sediment relative to reference [field control] sediments) was used to define an adverse effect. This value is commonly used to assess risks of contaminated sediment to aquatic organisms (e.g., Science Advisory Board, 2008).

While the comparisons of interest were between control and impact areas, it is relevant to point out that there were no statistically significant differences between the laboratory controls and any of the four samples for all four test endpoints. As for the comparisons between control and impact areas, none of the test endpoints showed any indication of elevated toxicity in impact areas relative to control areas. Consequently, the elevated metals found in these samples do not appear to be toxic. Given the bulk sediment results, which showed high metals concentrations relative to sediment quality guidelines (see

Table 3-5), the lack of toxicity observed in these tests suggests limited metals bioavailability in these sediments. This idea is tested in the following section.

3.3.2. Sequential Extraction Analyses

As a complement to the sediment toxicity testing, sequential extraction analysis was conducted on the same four sediment samples tested for toxicity. This geochemical analysis was used to determine in what form metals that are present in the sediment matrix are found. Raw data can be found in **Appendix D**.

As described in **Section 2.2.3.2**, sequential extraction analysis partitions the trace elements within each sample into four operationally defined fractions that have been related to the bioavailability and mobility of elements. Concentrations for key metals are plotted in **Figure 3-1** showing for each of the sample stations the amount partitioning into each fraction; or in other words, the availability of the particular metals a given sample sediment. The "residual" fraction shown for each sample station and each metal was estimated by subtracting the sum of the other 3 fractions from the total (totals as reported in **Section 3.2** and in the CREMP report for INUG and TEFF [Azimuth, 2011]). For comparison, the 2009 bulk sediment metals concentrations are shown in **Figure 3-1** at the top of each station bar and guidelines (ISQG & PEL) are also shown where available. It is clear from these plots that most of the metals are found in the "residual" fraction relative to the total and are thus unlikely to be bioavailable.

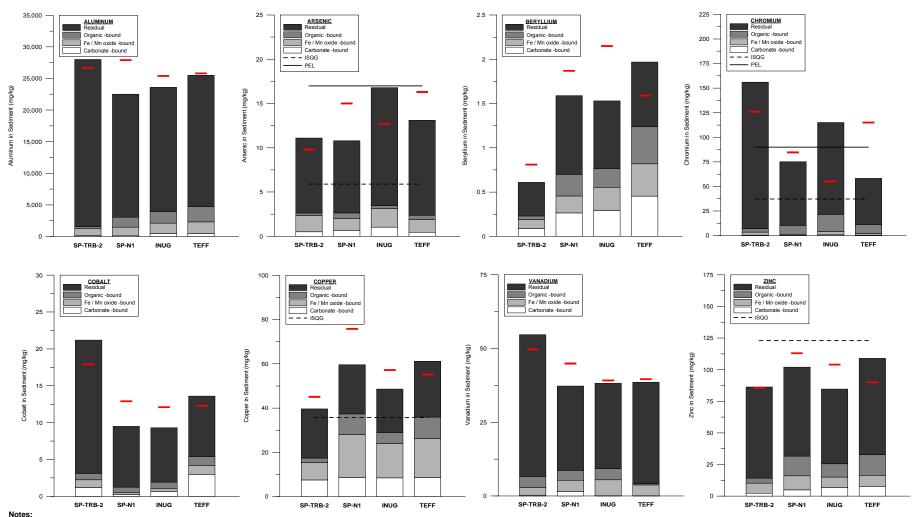
This result is also shown in **Table 3-7**, where total metals concentration measured in each sediment fraction is reported on a percentage basis along with physical attributes of the sediment samples. For all metals, the proportion of the total in the carbonate-bound and Fe/Mn-bound fractions (i.e, the most 'bioavailable') is relatively low for all stations. The highest percentage of metal is in the residual sediment fraction (shown in bold in **Table 3-7**), with little variation. Copper and beryllium were the only metals that have less than 50% in the residual fraction; all samples except SP-TRB2 have less than 50% copper in the residual fraction and TEFF (37%) and INUG (50%) have lower percentages of beryllium in the un-available fraction.

Comparing across stations, in most cases the reference areas (INUG and TEFF) actually have a somewhat greater proportion of available metals (e.g., all metals in **Table 3-7** in the carbonate-bound fraction except vanadium), although there is not much variability. Overall, most metals were predominantly associated with the residual fraction concentrations, so are unlikely to be bioavailable. This is consistent with the findings of the toxicity tests.

Table 3-6. Magnitude of effects for sediment toxicity testing, Meadowbank EAS 2010.

Sample Station	Control	SP-TRB2	SP-N1	INUG	TEFF
Collection Date	Control	22-Aug-10	22-Aug-10	25-Aug-10	27-Aug-10
Sediment attributes during test	ting				
% Total Organic Carbon	0.1	0.5	1.9	2.6	2.5
% Gravel (>2mm)	< 0.01	< 0.01	2.9	<0.01	< 0.01
% Sand (2.0mm-0.053mm)	97.7	1.2	24.4	15.3	7.4
% Silt (0.053mm-2um)	<0.01	84.8	39.0	42.9	38.9
% Clay (<2um)	2.4	14.0	33.7	41.9	53.7
14-d <i>Hyalella azteca</i> survival a	nd growth test				
Mean Survival (%) ± SD <i>Effect Size</i>	98 ± 4	88 ± 13 <i>-10</i> %	90 ± 12 <i>-8.2%</i>	100 ± 0 2.0%	88 ± 16 <i>-10%</i>
Mean Dry Weight (mg) ± SD <i>Effect Size</i>	0.11 ± 0.02	0.17 ± 0.03 55%	0.11 ± 0.02 0%	0.15 ± 0.04 36%	0.11 ± 0.02 0 %
10-d Chironomus tetans surviv	al and growth te	st			
Mean Survival (%) ± SD <i>Effect Size</i>	94 ± 9	80 ± 10 <i>-15%</i>	94 ± 5 0%	84 ± 15 <i>-11%</i>	88 ± 8 -6.4%
Mean Dry Weight (mg) ± SD Effect Size	1.71 ± 0.35	1.83 ± 0.29 7.0%	2.08 ± 0.15 22%	2.13 ± 0.42 25%	1.86 ± 0.23 8.8 %

Effect size calculated as (sample-control) / control.


Table 3-7. Sediment attributes and proportion of total metals concentration in each sediment fraction.

Sample Sta	tion	SP-TRB2	SP-N1	INUG	TEFF
Collection da	ate	22-Aug-10	22-Aug-10	25-Aug-10	27-Aug-10
Sediment a	ttributes				
% Total Org	anic Carbon	0.52	2.88	2.66	3.38
% Gravel (>	2mm)	<0.10	0.29	<0.10	< 0.10
% Sand (2.0	mm-0.063mm)	0.68	17.3	13.4	5.80
% Silt (0.063	3mm-4um)	80.7	61.0	62.8	75.9
% Clay (<4u	ım)	18.6	21.4	23.9	18.3
ractions	Metals				
70	Aluminum	0.6	0.9	2.0	1.9
Š	Arsenic	4.6	6.2	6.1	3.4
ρ	Beryllium	14	17	19	23
Carbonate-bound	Chromium	0.4	0.3	8.0	0.6
ם	Cobalt	5.7	2.8	7.0	22
og	Copper	19	14	17	14
ä	Vanadium	0.5	4.2	0.2	0.2
O	Zinc	2.7	4.9	7.9	7.0
	Aluminum	3.9	5.7	7.0	7.2
ψ	Arsenic	17	12	13	11
Fe / Mn oxide- bound	Beryllium	17	12	17	19
Mn ox bound	Chromium	1.9	1.4	3.0	3.0
M Jo	Cobalt	4.9	2.5	4.2	8.6
7	Copper	20	33	32	29
щ	Vanadium	4.7	10	14	10
	Zinc	9.2	11	10	8.0
ı	Aluminum	1.3	7.1	7.7	10
Organic matter- bound / Sulphide- bound	Arsenic	2.4	6.0	2.0	3.5
atto phi	Beryllium	6.7	15	14	21
	Chromium	2.4	12	15	16
inic ma d / Sulk bound	Cobalt	4.1	7.9	9.3	9.2
Organic matter- ound / Sulphide bound	Copper	5.2	16	10	16
Oric on	Vanadium	6.9	9.0	10	1.1
٩	Zinc	4.4	15	12	15
	Aluminum	94	86	83	81
	Arsenic	76	76	79	82
*	Beryllium	62	56	50	37
Residual*	Chromium	95	86	81	81
Sic	Cobalt	85	87	79	60
Re	Copper	56	37	41	41
	Vanadium	88	77	76	89
	Zinc	84	69	70	70

bolded numbers indicate in which fraction the largest proportion of each metal is found, for each sample.

^{*} the residual fraction was estimated by subtracting the sum of the other 3 fractions from the total.

Figure 3-1. Dissolved metals concentrations (mg/kg dw) detected in each of 4 fractions resulting from sequential extraction procedure (BCR 701).

Red dashes above each bar indicate total concentration measured in 2009 bulk sediment grabs (Azimuth, 2010a, 2010c). Sediment quality guidelines are represented by either a dashed bar (ISQG) or solid black bar (PEL). The residual fraction was estimated by subtracting the sum of the other three fractions from the total.

3.4. Sediment Traps

Trap retrieval rates were better than expected. Out of the 19 traps deployed over winter (2009–2010), 16 were successfully recovered, although one of those traps was not found until September. Out of the 19 traps re-deployed over summer (2010), 15 were successfully recovered. Sediment trap set locations are shown in **Figure 2-3** (winter 2009-2010) and **Figure 2-4** (summer 2010).

As noted in previous years, many traps contained more than just sediment (e.g., biota). Consequently, rather than just drying and weighing trap contents, as was done in 2008, 2009 and 2010 samples were also ashed (see **Section 2.3** for methods) to remove organic matter. All sedimentation estimates were made using the ash weights (i.e., non-organic content weight).

Results for sediment deposition rates and estimated deposition thickness are presented in **Tables 3-8 and 3-9** (lab reports in **Appendix E**). Sediment deposition was estimated based on wet weight density relative to tube diameter. Sediment deposition in the main body of Second Portage Lake appears to have decreased substantially in 2010 relative to 2008 (East Dike construction). For example, we estimated that 1.79 mm of sediment was deposited at SP-ST1 during the 2008 summer and a further 0.03 mm during the 2008-2009 winter (Azimuth, 2009b; 2010b). This past year, we estimated that only 0.57 mm was deposited in SP-ST1 during the 2009-2010 winter and a further 0.18 mm during the 2010 summer. This was not the case for the southern channel area, which receives water from Third Portage Lake (along with sediment inputs from Bay-Goose Dike construction). At SP-ST6, deposition thickness was estimated at 0.39 mm from September 2008 to September 2009; it was 1.23 mm from September 2009 to September 2010.

Sediment accumulation patterns in the east basin of Third Portage Lake were fairly consistent with TSS plumes related to construction patterns for Bay-Goose Dike. In 2009 summer, during the first season of Bay-Goose Dike construction, the sediment trap closest to the dike construction zone, BG-ST6 (right before discharge to Second Portage Lake), had the highest deposition rates (approximately 0.14 g wet/day) and accumulated 1.1 mm of sediment over the summer (Azimuth, 2010b). Most other traps (BG-ST1 through BG-ST5), however, accumulated much less sediment (~6–17 times less). Over winter 2009-2010 winter (i.e., when the causeway was being constructed and no turbidity barriers were in place), substantial sediment accumulation occurred at BG sediment traps, particularly at BG-ST3 (1.83 mm) and BG-ST6 (1.95 mm) (**Table 3-8**). In summer 2010 (i.e., when turbidity barriers were in place and work continued on the southern portion of the dike), 0.5 mm or less was deposited in BG sediment traps, whereas 0.50 to 0.73 mm of accumulation was observed in TPE-ST traps, particularly TPE-ST1 and TPE-ST3

(**Table 3-9**). However, accumulation was still quite low, at <1 mm for all summer 2010 sediment traps.

Sediment traps in Tehek Lake and Third Portage South accumulated very little sediment. In all cases (winter 2009-2010 and summer 2010) TE and TPS sediment traps had <0.3 mm accumulation (**Tables 3-8 and 3-9**).

Table 3-8. Sediment deposition rates and estimated accumulation for sediment traps, Second Portage, Third Portage, and Tehek Lakes, Winter 2009-2010.

Lake	Sediment	UTM Lo	cation	Set date	Retrieval	Trap contents	Trap contents ²	Set length	Deposition Rate	Accumulation ³
Lake	Trap ID	Easting	Northing	Set date	date ¹	(g dry weight)	(g wet weight)	(days)	(g wet weight/day)	(mm)
7 0	SP-ST1	14W 639661	7213999	15-Sep-09	18-Jul-10	0.8	5.3	306	0.017	0.57
Second Portage Lake	SP-ST6	14W 640072	7212805	15-Sep-09	17-Jul-10	0.5	3.3	305	0.011	0.35
econo ortago Lake	SP-ST7	15W 358781	7213838	12-Sep-09	18-Jul-10	0.2	1.0	309	0.003	0.11
ωĞ	SP-ST8	14W 639687	7213350	15-Sep-09	17-Jul-10	0.7	5.0	305	0.016	0.54
	BG-ST1	14W 638706	7211757	13-Sep-09	16-Jul-10	1.5	9.8	306	0.032	1.05
	BG-ST2	14W 638974	7211821	13-Sep-09	16-Jul-10	0.8	5.3	306	0.017	0.57
	BG-ST3	14W 639538	7211819	13-Sep-09	27-Jul-10	2.2	14.9	317	0.047	1.83
e)	BG-ST4	14W 639521	7212410	13-Sep-09	NA	-	-	-	-	-
Lake	BG-ST5	14W 639012	7211252	13-Sep-09	27-Jul-10	1.2	7.7	317	0.024	0.83
	BG-ST6	14W 639343	7213331	16-Sep-09	23-Jul-10	2.7	18.1	310	0.058	1.95
Third Portage	TPE-ST1	14W 637796	7211593	23-Sep-09	23-Jul-10	2.5	16.4	303	0.054	1.76
<u> </u>	TPE-ST2⁴	14W 639014	7210490	23-Sep-09	24-Sep-10	1.3	8.9	366	0.024	0.95
Ę	TPE-ST3	14W 638166	7210188	23-Sep-09	NA	-	-	-	-	-
F	TPE-ST4	14W 637352	7209098	23-Sep-09	NA	-	-	-	-	-
	TPS-ST1	14W 635729	7208657	13-Sep-09	18-Jul-10	0.2	1.5	308	0.005	0.18
	TPS-ST2	14W 634334	7210449	13-Sep-09	23-Jul-10	0.4	2.5	313	0.008	0.31
¥ 0	TE-ST1	15W 359929	7212109	17-Sep-09	20-Jul-10	0.4	2.8	306	0.009	0.30
Tehek Lake	TE-ST4	15W 362003	7210391	17-Sep-09	20-Jul-10	0.7	4.8	306	0.016	0.52
<u>ہ</u> م	TE-ST5	15W 363218	7208193	17-Sep-09	20-Jul-10	0.3	1.8	306	0.006	0.20

¹ NA = not retrieved successfully

³ Assumes mean material density of 2 g/cm³

² Assumes 85% moisture content

⁴ Sediment trap TPE-ST2 was not retrieved until September 2010

Table 3-9. Sediment deposition rates and estimated accumulation for sediment traps, Second Portage, Third Portage, and Tehek Lakes, Summer 2010.

Laka	Sediment	UTM Lo	cation	Cat data	Retrieval	Trap contents	Trap contents ²	Set length	Deposition Rate	Accumulation ³
Lake	Trap ID	Easting ¹	Northing	Set date	date ¹	(g dry weight)	(g wet weight)	(days)	(g wet weight/day)	(mm)
75 W	SP-ST1	14W 639651	7213991	23-Jul-10	23-Sep-10	0.2	1.7	62	0.027	0.18
ag on	SP-ST6	14W 640077	7212803	23-Jul-10	23-Sep-10	1.2	8.2	62	0.133	0.88
Second Portage Lake	SP-ST7	15W 358779	7213871	23-Jul-10	23-Sep-10	0.1	0.7	62	0.012	0.05
ωď	SP-ST8	14W 639677	7213354	23-Jul-10	NÅ	-	-	-	-	-
	BG-ST1	14W 638428	7211601	19-Jul-10	NA	-	-	-	-	-
	BG-ST2	14W 639011	7211788	19-Jul-10	18-Sep-10	0.7	4.8	61	0.079	0.52
	BG-ST3	14W 639488	7211998	19-Jul-10	NA	-	-	-	-	-
9	BG-ST4	14W 639517	7212414	19-Jul-10	20-Sep-10	0.7	4.5	63	0.071	0.48
<u>a</u>	BG-ST5	14W 639011	7211235	19-Jul-10	NA	-	-	-	-	-
l ge l	BG-ST6	14W 639343	7213331	19-Jul-10	20-Sep-10	0.7	4.8	63	0.076	0.51
Third Portage Lake	TPE-ST1	14W 637802	7211607	19-Jul-10	20-Sep-10	1.0	6.8	63	0.108	0.73
<u> </u>	TPE-ST2	14W 639043	7210495	19-Jul-10	20-Sep-10	0.7	4.6	63	0.073	0.50
Ę	TPE-ST3	14W 637953	7210229	19-Jul-10	20-Sep-10	1.6	10.5	63	0.166	0.65
F	TPE-ST4	14W 637344	7209104	19-Jul-10	24-Sep-10	0.7	5.0	67	0.074	0.53
	TPS-ST1	14W 635726	7208651	23-Jul-10	17-Sep-10	0.5	3.2	56	0.056	0.34
	TPS-ST2	14W 634347	7201444	23-Jul-10	17-Sep-10	0.2	1.1	56	0.020	0.07
-	TE-ST1	15W 359935	7212097	20-Jul-10	21-Sep-10	0.4	2.4	63	0.039	0.26
Tehek Lake	TE-ST4	15W 361998	7210374	20-Jul-10	21-Sep-10	0.5	3.4	63	0.054	0.21
ž ž	TE-ST5	15W 363218	7208181	20-Jul-10	21-Sep-10	0.5	3.1	63	0.049	0.19

¹ NA = not retrieved successfully

² Assumes 85% moisture content

³ Assumes mean material density of 2 g/cm³

3.5. Periphyton Community

Periphyton are unicellular and colonial aquatic algae species attached to and coating rocks and other hard substrates beneath the water surface (i.e. the epithelial layer). Periphyton provide an important food source for certain benthic invertebrate species and together with phytoplankton and benthic algae form the base of the food web. Periphyton are most abundant between the surface and several meters water depth, and typically increase in biomass during the course of the open water season, reaching maximum abundance during late summer, and decline during late fall and winter, as light diminishes.

Species composition and biomass of periphyton are indirect indicators of lake productivity, reflecting nutrient concentrations in the lake, and are sometimes indicators of the presence of physical or chemical stressors. As described in **Section 1.2**, follow-up studies on the periphyton community were conducted in 2010 to better understand the spatial extent of adverse effects identified last year close to the East Dike (Azimuth, 2010b). These focused on repeating the quantitative analyses conducted last year (i.e., periphyton biomass and the relative amount of sediment in the periphyton mat), but at more stations to provide better resolution. This provided a temporal perspective to complement the increased spatial resolution.

It should be noted that estimates of periphyton biomass are inherently variable due to many factors including small surface area sampled, nutrient availability, grazing pressure, substrate type, sun aspect, wave action and others. Variability was minimized to some extent by attempting to choose rocks that were not overly dense or bare, with similar apparent sun exposure and aspect (i.e., angle towards the sun), water depth and substrate type. Although we tried to select rocks with similar characteristics (e.g., depths, aspects and coverage by periphyton), this can only limit variability to a limited extent and some differences between stations may be due to these factors. Furthermore, while "flat", "smooth" rocks were targeted, it was impossible to achieve total uniformity within and among stations. Nevertheless, this technique is useful for detecting gross differences or changes in periphyton community, especially during colonization of new habitats or substrates (e.g., Azimuth, 2010d). Given this inherent variation, it may be difficult to discern between sampling bias and real effects. Consequently, while results are presented in absolute terms of density or biomass, the relative composition of the periphyton community is probably the most robust metric to characterize results and is thus presented in this manner also.

A total of 64 periphyton taxa were identified at the 6 sampling stations in Second Portage Lake, represented by 5 major taxonomic groups. This is a slight increase over 2009 results where 61 genera/species represented by 3 major taxonomic groups were identified (Azimuth 2010b).

Both in terms of density and biomass, the periphyton community was co-dominated by cyanophytes and diatoms, with chlorophytes making up the remaining minority (**Figure 3-2**). Chrysophytes and dinoflagellates (pelagic) were found in very low numbers (a single individual in a single sample at a single station). A matrix of the periphyton species presence/absence at each sampling station is presented in **Appendix F**.

As expected, total periphyton density was quite variable both within and among stations and ranged from 294,959 cells/cm² at SP-ISLA to 1.43 million cells/cm² at SP-DT (**Table 3-10**). Cyanophytes comprised 69% of the total periphyton density at all stations, and diatoms had the next highest density at only 30% (**Table 3-10**).

While biomass ($\mu g/cm^2$) is a more ecologically important metric than density, it is subject to limitations described above. Like density, total biomass per sample was also variable and ranged from 102 - 634 $\mu g/cm^2$, with diatoms (56%) and cyanophytes (29%) making up the majority of the mean station biomass (**Table 3-11**). Despite the differences in biomass and density, periphyton species richness was fairly similar among stations, ranging from 14 to 21 (**Table 3-11**). Simpson's diversity did not differ much among stations and ranged from 0.64 to 0.82, with an average of 0.74 (**Table 3-11**).

As shown in **Table 3-11** and **Figure 3-3**, total station biomass tended to increase with distance from the East Dike (i.e., along the gradient of decreasing exposure to TSS in 2008 from construction of the East Dike), with biomass at SP-BL (148 µg/cm²) adjacent to the dike, being substantially lower than all other 2010 stations. This was the finding in 2009 as well, where SP-BL had significantly lower periphyton biomass than the other 2009 stations, including notably less chlorophyte biomass (Azimuth 2010b). Comparing the 2009 and 2010 data, all three stations (SP-BL, SP-CREMP, SP-DT) had significantly lower biomass in 2010 than 2009 (**Figure 3-4**; see **Appendix A** for results of statistical comparisons). This suggests, similar to the benthic invertebrate results (**see Section 3.6**), that there was a natural regional (or at least lake-wide) trend of suboptimal conditions for periphyton productivity that was unrelated to TSS effects. This needs to be taken into consideration when looking at the results for new stations as they all would have likely had higher biomass in 2009 relative to what was found in 2010. Overall, the biomass results suggest that adverse effects were limited to SP-BL where greatest sedimentation occurred.

The second part of the study quantified the inorganic sediment content of the periphyton mat at each location (based on loss-on-ignition analyses) which is assumed to be directly related to the magnitude of settling of suspended solids from the water column. LOI analysis was conducted on periphyton samples to determine the ratio of inorganic (sediment) to organic content. Results are presented in **Table 3-12** and raw data can be viewed in **Appendix G.** Generally, the amount of sediment accumulation in the periphyton mat decreased as distance from the dike increased. In both 2009 and 2010,

sediment content in samples related to periphyton biomass, with sediment content decreasing as periphyton biomass increased (**Figure 3-4**). In general, this relationship can likely be attributed to dike construction sedimentation as it would be expected that sediment levels would be greatest at areas closest to the construction. Heavier sediment, such as sand and coarse silt particles will settle out more quickly and in closer proximity to the source. Fine silt and clay particles were distributed throughout the lake and will settle more evenly in the lake and most of it, not until an ice cover had developed, which prevents re-circulation and suspension of the sediment particles by horizontal and vertical wind-driven currents. However, given that the major sediment release event occurred in 2008, it is difficult to explain the significantly elevated mat sediment content observed at SP-BL in 2010 relative to 2009. This result is probably due to local spatial heterogeneity. As stated earlier in this section, there are a multitude of factors that contribute to this medium being inherently variable. Despite best efforts to collect samples of specific characteristics (again, see above text in this section), there is considerable variation in the absolute sediment content between each SP-BL replicate in both 2009 and 2010.

Based on available literature, periphyton communities should be fairly resilient to disturbances such as the elevated TSS associated with dike construction. Sedimentation has been shown to affect the periphyton growth (Yamada and Nakamura, 2002). Izagirre et al. (2009) assessed the effects of pulse sediment deposition on periphyton, and found that within 2 weeks of the event, periphyton almost fully recovered in terms of chlorophyll- α content, but failed to regain community composition within the same time frame. These data suggest that impacts to periphyton productivity will not likely be persistent. While the community at SP-BL appeared worse off in 2010 than it did in 2009, this observation is partly due to local heterogeneity and the regional (or lake-wide) trend of lower periphyton biomass in general. In actuality, the SP-BL community decreased proportionately less (27%) between 2009 and 2010 than did SP-CREMP (51%) or SP-DT (30%), which may indicate some recovery. However, the results were not statistically significant (see **Appendix A**).

Table 3-10. Seasonal density (cells/cm²) of major periphyton groups, Meadowbank EAS 2010.

04.4			Phy	toplankton Den	sitv (cells/c	:m²)	
Station	Date	Cyanobacteria	Chlorophyte		Diatom	, Dinoflagellate	Total
SP-BL-1	22-Aug-10	239257	0	0	436645	0	675902
SP-BL-2	22-Aug-10	481505	2991	0	496459	0	980955
SP-BL-3	22-Aug-10	345428	0	0	412719	0	758147
SP-BL-4	22-Aug-10	174316	0	0	430663	0	604979
SP-BL-5	22-Aug-10	190658	0	0	372344	0	563002
st	ation mean	286233	598	0	429766	0	716597
	as %	40%	0%	0%	60%	0%	
SP-GSM-1	22-Aug-10	915159	13458	0	260192	0	1188810
SP-GSM-2	22-Aug-10	724950	21533	14355	376830	0	1137669
SP-GSM-3	22-Aug-10	852354	8972	0	358886	0	1220213
SP-GSM-4	22-Aug-10	493468	8972	0	195144	0	697585
SP-GSM-5	22-Aug-10	354400	11215	0	139068	0	504684
st	ation mean	668066	12830	2871	266024	0	949792
	as %	70%	1%	0%	28%	0%	
SP-AZI-1	22-Aug-10	580199	14954	0	352905	0	948057
SP-AZI-2	22-Aug-10	376830	15951	0	303059	0	695840
SP-AZI-3	22-Aug-10	287109	17944	0	311035	0	616088
SP-AZI-4	22-Aug-10	520385	17944	0	155517	0	693846
SP-AZI-5	22-Aug-10	287109	42618	0	293838	0	623565
st	ation mean	410326	21882	0	283271	0	715479
	as %	<i>57</i> %	3%	0%	40%	0%	
SP-ISLA-1	21-Aug-10	857738	3589	0	165088	0	1026414
SP-ISLA-2	21-Aug-10	613695	0	0	226098	0	839793
SP-ISLA-3	21-Aug-10	531600	6729	0	213089	0	751418
SP-ISLA-4	21-Aug-10	385803	6729	0	159256	0	551787
SP-ISLA-5	21-Aug-10	170471	7851	0	116638	0	294959
st	ation mean	511861	4980	0	176034	0	692874
	as %	74%	1%	0%	25%	0%	
SP-CREMP-1	23-Aug-10	1073069	21533	0	254809	3589	1353000
SP-CREMP-2	23-Aug-10	888243	0	0	191406	0	1079649
SP-CREMP-3	23-Aug-10	882860	10767	0	276342	0	1169968
SP-CREMP-4	23-Aug-10	720336	0	0	151245	0	871580
SP-CREMP-5	23-Aug-10	741698	29907	0	101684	0	873289
st	ation mean	861241	12441	0	195097	718	1069497
	as %	81%	1%	0%	18%	0%	
SP-DT-1	23-Aug-10	1143949	0	0	287109	0	1431058
SP-DT-2	23-Aug-10	968992	26917	0	130096	0	1126005
SP-DT-3	24-Aug-10	815184	20508	0	156372	0	992064
SP-DT-4	24-Aug-10	720763	14954	0	155517	0	891234
SP-DT-5	24-Aug-10	674193	25635	0	274292	0	974119
st	ation mean	864616	17603	0	200677	0	1082896
	as %	80%	2%	0%	19%	0%	
Relative Abur	idance (%)	59	1	0	26	0	

Table 3-11. Seasonal density (cells/cm²) of major periphyton groups, Meadowbank EAS 2010.

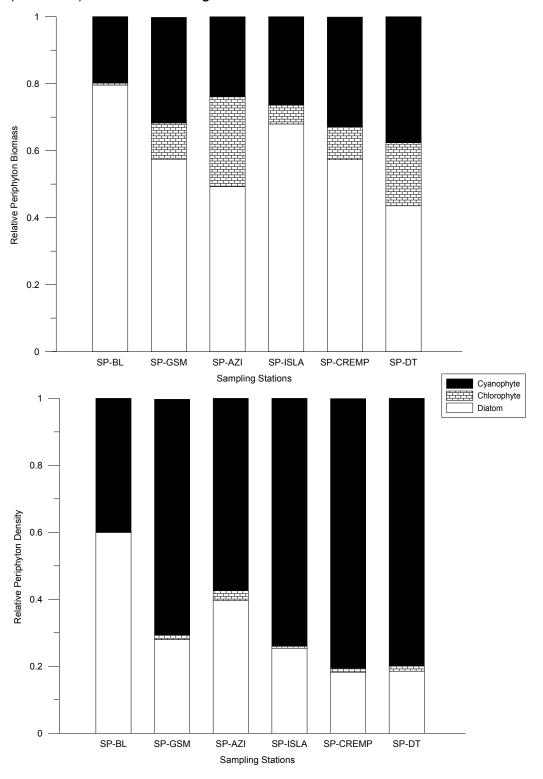

04.4			Phy	toplankton Den	sitv (cells/c	:m²)	
Station	Date	Cyanobacteria	Chlorophyte		Diatom	, Dinoflagellate	Total
SP-BL-1	22-Aug-10	239257	0	0	436645	0	675902
SP-BL-2	22-Aug-10	481505	2991	0	496459	0	980955
SP-BL-3	22-Aug-10	345428	0	0	412719	0	758147
SP-BL-4	22-Aug-10	174316	0	0	430663	0	604979
SP-BL-5	22-Aug-10	190658	0	0	372344	0	563002
st	ation mean	286233	598	0	429766	0	716597
	as %	40%	0%	0%	60%	0%	
SP-GSM-1	22-Aug-10	915159	13458	0	260192	0	1188810
SP-GSM-2	22-Aug-10	724950	21533	14355	376830	0	1137669
SP-GSM-3	22-Aug-10	852354	8972	0	358886	0	1220213
SP-GSM-4	22-Aug-10	493468	8972	0	195144	0	697585
SP-GSM-5	22-Aug-10	354400	11215	0	139068	0	504684
st	ation mean	668066	12830	2871	266024	0	949792
	as %	70%	1%	0%	28%	0%	
SP-AZI-1	22-Aug-10	580199	14954	0	352905	0	948057
SP-AZI-2	22-Aug-10	376830	15951	0	303059	0	695840
SP-AZI-3	22-Aug-10	287109	17944	0	311035	0	616088
SP-AZI-4	22-Aug-10	520385	17944	0	155517	0	693846
SP-AZI-5	22-Aug-10	287109	42618	0	293838	0	623565
st	ation mean	410326	21882	0	283271	0	715479
	as %	<i>57</i> %	3%	0%	40%	0%	
SP-ISLA-1	21-Aug-10	857738	3589	0	165088	0	1026414
SP-ISLA-2	21-Aug-10	613695	0	0	226098	0	839793
SP-ISLA-3	21-Aug-10	531600	6729	0	213089	0	751418
SP-ISLA-4	21-Aug-10	385803	6729	0	159256	0	551787
SP-ISLA-5	21-Aug-10	170471	7851	0	116638	0	294959
st	ation mean	511861	4980	0	176034	0	692874
	as %	74%	1%	0%	25%	0%	
SP-CREMP-1	23-Aug-10	1073069	21533	0	254809	3589	1353000
SP-CREMP-2	23-Aug-10	888243	0	0	191406	0	1079649
SP-CREMP-3	23-Aug-10	882860	10767	0	276342	0	1169968
SP-CREMP-4	23-Aug-10	720336	0	0	151245	0	871580
SP-CREMP-5	23-Aug-10	741698	29907	0	101684	0	873289
st	ation mean	861241	12441	0	195097	718	1069497
	as %	81%	1%	0%	18%	0%	
SP-DT-1	23-Aug-10	1143949	0	0	287109	0	1431058
SP-DT-2	23-Aug-10	968992	26917	0	130096	0	1126005
SP-DT-3	24-Aug-10	815184	20508	0	156372	0	992064
SP-DT-4	24-Aug-10	720763	14954	0	155517	0	891234
SP-DT-5	24-Aug-10	674193	25635	0	274292	0	974119
st	ation mean	864616	17603	0	200677	0	1082896
	as %	80%	2%	0%	19%	0%	
Relative Abur	idance (%)	59	1	0	26	0	

Table 3-12. Weights and content ratio of periphyton samples collected for loss on ignition (LOI) analysis.

Station	n	Sample Weig	ght (g)		Ratio
Station	11	Sediment	Organic	Total	(sediment:organic)
SP-BL	5	1.90	0.12	2.01	16.5:1
SP-GSM	5	0.69	0.12	0.81	5.7:1
SP-AZI	5	0.43	0.09	0.51	5.0:1
SP-ISLA	5	0.75	0.10	0.84	7.8:1
SP-CREMP	5	0.39	0.16	0.56	2.4:1
SP-DT	5	0.17	0.16	0.33	1.1:1

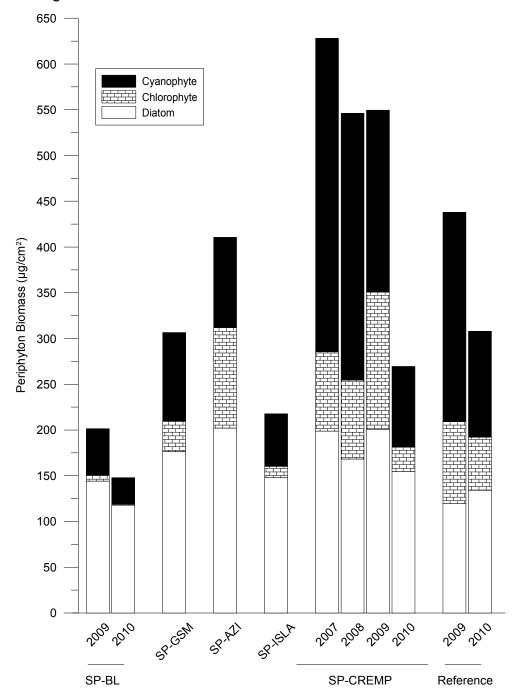


Figure 3-2. Relative periphyton biomass (top) ($\mu g/cm^2$) and density (bottom) (cells/cm²) in Second Portage Lake.

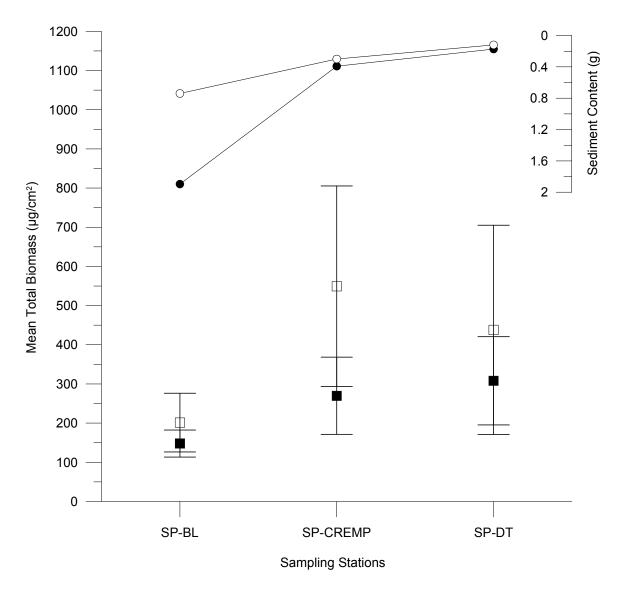


Figure 3-3. Historical and 2010 periphyton community biomass in Second Portage Lake.

Figure 3-4. Mean total periphyton biomass (µg/cm², squares) and sediment content (g, circles) from loss on ignition analysis for 2009 (open) and 2010 (filled).

Error bars depict standard deviation.

3.6. Benthic Invertebrates

This section summarizes results of the CREMP and EAS benthic invertebrate community studies to provide insights into the potential for adverse effects from TSS related to dike construction.

The following provides an overview of basic study design information for each component:

- Benthic Community Structure Drivers The available data sets (i.e., CREMP and EAS, for 2009 and 2010) were combined to help identify key factors in driving benthic community structure. It is well known that physical (e.g., depth, grain size, organic carbon content) and chemical (e.g., metals concentrations) factors can play a significant role in structuring the benthic community. This portion of the study looked at the relative importance of these natural factors and of total suspended solids (TSS; as a surrogate for construction-related sedimentation) using a linear regression approach. Details regarding the statistical analyses are provided in **Appendix A**.
- CREMP Benthic Invertebrates CREMP monitoring has been conducted since 2006 at a number of lakes surrounding the Meadowbank Mine. As such, it includes pre-development baseline data and thus provides context regarding spatial and temporal variability in the benthic community. The data set has been used to complement the finer-resolution EAS data sets to aid in the interpretation of the EAS results. The CREMP areas relevant to this year's EAS are shown in Figure 2-6³. The potential for mining-related impacts in each sampling area has been tracked annually since the construction phase of the development started in 2008. The status of specific areas over time is shown in Table 3-13. This data set was used to test for specific area-year impacts relative to control area-years and for specific longer-term impacts by area (i.e., for areas where more subtle, but prolonged, effects may have occurred). Details on statistical analyses are provided in Appendix A.
- East Dike EAS Benthic Invertebrates This is the second of a two-year benthic community monitoring program targeting the potential effects of sedimentation on the benthic community related to construction of the East Dike. A before-after-control-impact (BACI) approach was used to look for two types of differences:

³ The Baker Lake areas and Wally Lake were not included. Baker Lake benthos and sediment chemistry is quite different from the Meadowbank project lakes. Wally, which is one of the Meadowbank project lakes, was not included as it is inherently different (e.g., shallow, high TOC and more productive) than the other project lakes.

spatial differences between control and impact areas, and spatial-temporal differences (e.g., determining the presence of a recovery signal among impact areas relative to control areas). This program is complementary to the broaderfocused CREMP (see next bullet) in that the intent of this component was to provide higher spatial-resolution information (i.e., spatial extent of effects within Second Portage Lake). However, similar to last year, the East Dike EAS data set was also expanded to include relevant CREMP areas. Not only does the CREMP addition increase the power of the statistical analyses, but it also serves to facilitate data interpretation over time from discrete locations (e.g., since temporal and spatial trends are better characterized in the CREMP). The expanded data set includes six control areas (two from the EAS [SP-DT, TP-E3] and four from the CREMP [INUG, PDL, TPS, TEFF]) and six impact areas (four from the EAS [SP-N1, SP-N3, SP-F1, SP-F2) and two from the CREMP [SP and TE]) (see Figure 2-6 for CREMP areas and Figure 2-7 for East Dike EAS areas). The availability of two years of data allowed us to test for evidence of a recovery at impact areas in 2010. Details regarding the statistical analyses are provided in Appendix A.

• Bay-Goose Dike EAS Benthic Invertebrates – This was the first of a two-year post-construction benthic community monitoring program targeting the potential effects of sedimentation on the benthic community related to Bay-Goose Dike construction in 2009 and 2010. The data set consists entirely of "after" data for a single year (2010). Consequently, a control-impact (CI) approach was used to detect for spatial differences between control and impact areas. Similar to the East Dike EAS data set, the Bay-Goose Dike data set was expanded to include relevant CREMP areas. The expanded data set includes six control areas (two from the EAS [SP-DT, TP-E3] and four from the CREMP [INUG, PDL, TPS, TEFF]) and six impact areas (three from the EAS [TP-E1, TP-E2, TP-HVH4) and three from the CREMP [SP, TE and TPE]; see Figure 2-6 for CREMP areas and Figure 2-8 for Bay-Goose EAS areas). Details regarding the statistical analyses are provided in Appendix A.

Response variables for all benthic community analyses were selected to match the requirements of Environment Canada (2002), as follows (see **Section 2.5** for details regarding each variable):

- Total abundance (#/m²; this is actually density) of all taxa
- Total species richness (# taxa/sample)
- Simpson's diversity (D)

• Bray Curtis Distance (BC)⁴

3.6.1. Benthic Community Structure Drivers

Benthic invertebrate communities are known to be strongly influenced by physical (e.g., grain size, total organic carbon [TOC] and depth) and chemical parameters (e.g., aluminum, arsenic, cadmium, chromium, copper, and zinc were selected as they typically exceeded CCME sediment quality criteria and/or they have been singled out in previous EAS studies). While the studies were designed to minimize differences in these factors (i.e., by selecting areas with similar sediment characteristics and depth), formal comparisons were made between each response variable (means for each area/year combination) and a number of physical and chemical variables (typically sampled once per area/year) to determine the extent to which the latter were important in shaping the former.

This analysis looked at all 2009 and 2010 data (CREMP and EAS) where benthic invertebrate samples were collected synoptically with sediment chemistry. There were a total of 33 cases (see **Appendix A** for summaries of chemistry/physical [**Table A3-12**] and benthic [Tables A3-2, A3-8 and A3-10] data). The results of linear regression (i.e., predicted fit plus/minus 95% confidence intervals) are shown in **Figures 3-5 to 3-7**. Given that 44 relationships were tested (four benthic community metrics x 11 physical/chemical variables), a Bonferroni correction was made to the critical p-value (0.05/44 = 0.001) to properly set the Type 1 (i.e., "false positive") error rate. Given the large number of comparisons (44), simple odds dictate that 2 of 40 comparisons would be deemed significant due to chance. (i.e., with $\alpha = 0.05$ there is a 5% chance that a result will be statistically significant based on chance alone). None of the relationships in Figures 3-5 to 3-7 had p-values within an order of magnitude of 0.001, so none were considered statistically significant. With a sample size of 33, strong relationships should easily have p-values less than 0.001. Furthermore, only one of the 44 relationships had a p<0.05 (p=0.02 for a negative relationship between Simpson's diversity and depth). Thus, none of the physical or chemical factors we examined showed strong negative relationships with the four benthic community metrics.

The results above indicate that general physical and chemical differences among area/year combinations were unlikely to be responsible for any observed trends (see following sections) in benthic community metrics. For the physical factors, this also

⁴ Bray-Curtis is essentially an index of dissimilarity and the distance is based on comparison to reference (control) areas). It should be noted that large distances can be based on compositional differences between areas that are not related to impairment of the community. Consequently, caution must be used in interpreting this metric.

60

validates efforts to minimize differences among areas in grain size and depth across all studies (CREMP and EAS).

3.6.2. CREMP

Detailed results are provided in **Appendix A**. The CREMP data set is summarized by each Area⁵ and Year in **Appendix A** (see **Table A3-2** of **Appendix A** for the summary and **Appendix A1** for the raw data file). Results by Area and Year for each variable are shown in **Figure 3-8**, highlighting Area-Year combinations (dark points) potentially impacted by mining activities.

Statistical analyses focused on testing for single-year effects and for multi-year effects based on the following rationale for key areas:

- *SP and TE* These areas were exposed to elevated TSS concentrations in 2008 and are the main focus of these analyses. While exposure concentrations were much lower in 2009 and 2010, they remain impact areas.
- TPE In 2009, this area was sampled on August 13/14, which was during construction of the first phase of the Bay-Goose Dike (monitoring results showed that TSS concentrations had increased relative to background). Consequently, while TSS exposure was relatively low, this area was designated as "impact" starting in 2009.
- TPN Dewatering discharges from the NW Arm of Second Portage Lake were directed into this basin from March through early July 2009. While CREMP water quality monitoring results for that basin showed negligible exposure conditions, the area was conservatively designated as an impact area for 2009. While not directly related to dike construction activities, TSS is the major constituent of interest in the dewatering effluent and therefore relevant to the EAS.

Results for short-term (i.e., testing for effects in each year since initial exposure to TSS) and long-term (i.e., testing for effects in all years since initial exposure to TSS) effects are reported in **Table 3-14** (2008 & 2009; single-year effects), **Table 3-15** (2010; single-year effects) and **Table 3-16** (2008-2010 or 2009-2010; multi-year effects) each benthic community metric. Graphical representations of the analyses are shown in box-whisker plots for short-term (**Figure 3-9**) and long-term (**Figure 3-10**) effects. Key results for each area are as follows (followed by a brief discussion of uncertainty):

• *SP* (2008, 2009, 2010, and 2008-2010) – As reported for the past two years, the 2008 EAS (Azimuth, 2009b) reported a marginal trend (0.05<P<0.1) for

⁵ Note that variables used in statistical analyses are capitalized.

_

decreased total abundance at SP that did not extend to TE (see **Table 3-14**). As shown in **Figures 3-8 and 3-9**, abundance at SP rebounded in 2009 to slightly below "no-effect" predictions for that area and within the range of SP baseline results (i.e., 2006 – 2007). The 2010 results are similar to those seen in 2008 however, with >50% reduction in abundance compared to what was expected, based on 2009 data. Given the single year results, it was not surprising to find a significant multi-year adverse effect for abundance at SP. There were no significant reductions in taxa richness, Simpson's Diversity⁶ or Bray Curtis distance for the short-term or long-term effects. Overall, the 2010 results for abundance at SP are unexpected and warrant further discussion after analysis of the higher-resolution East Dike EAS data set (see **Section 3.6.5** for more discussion).

- TE (2008, 2009, 2010, and 2008-2010) As discussed above, the marginal trend in abundance observed in 2008 at SP did not extend into (for abundance or any other response variable; see **Tables 3-14 through 3-16**). The other single-year (2009 and 2010) and the multi-year (2008-2010) results confirm that finding and reaffirm that there does not appear to be any significant changes at TE related to mining activity. **Figure 3-8** probably shows this the best for all response variables. Most results for TE since 2008 are within the range of baseline results. The two low Simpson's Diversity results for TE in 2009 are due to replicate samples that contained relatively high numbers of sphaerid clams, which substantially reduced the diversity scores for those replicates (but not richness).
- TPE (2009, 2010 and 2009-2010) Given that this area is up-gradient of the East Dike and in the same basin (i.e., East Basin of Third Portage Lake) as the Bay-Goose Dike, the results for this area are only relevant for the Bay-Goose EAS. The main trends seen at this station were a decrease in benthic invertebrate abundance (not significant for 2009 or 2010 separately [Tables 3-14 and 3-15], but significant for the 2009-2010 multi-year effect [Table 3-16]) and an increase in Simpson's Diversity (marginal for 2010 [Table 3-15] and significant for 2009-2010 [Table 3-16]). The overall results for abundance are heavily influenced by the 2008 data, where abundance and richness were anomalously elevated relative to what would be expected in that basin (see Figure A3-6 and A3-7 in Appendix A).
- TPN (2009, 2010 and 2009-2010) As discussed above, this area was potentially exposed to elevated TSS during dewatering of the NW arm of Second Portage

⁶ Simpson's diversity index is sensitive to how organisms are allocated across taxa, not to the number of taxa.

Lake starting in March 2009. During dewatering, AEM was required to discharge water that was lower than TSS thresholds to minimize the potential for adverse effects in Third Portage Lake north basin. Based on CREMP water quality (Azimuth, 2010b; 2011) and Bay-Goose dike construction (Azimuth, 2010c) monitoring, TSS values in the north basin were very low (< 1 mg/L), suggesting that adverse effects to the benthic community would be unlikely. This was confirmed by the CREMP benthos results, which had no significant adverse effects. The only significant changes observed were increases for richness (2010; **Table 3-15**) and Simpson's Diversity (2009-2010; **Table 3-16**).

As discussed in **Appendix A**, effect sizes and associated confidence intervals help to place the observed results into perspective. As seen in **Tables 3-14 to 3-16**, the confidence intervals associated with reported effect sizes were quite large in a number of cases (i.e., reflective of high uncertainty in the estimated effect size). These confidence intervals are due to the fairly high degree of spatial and temporal variability that exists naturally in this region. The larger the confidence interval, the larger the effect size required for a statistically significant result (i.e., lower power). The degree to which the confidence interval extends above zero (or below for an adverse positive change, such as Bray Curtis distance) is a rough measure of how much larger an effect would have needed to be in order to be considered statistically significant.

The implication of this situation is that statistical significance should not be the only consideration when evaluating these results. As per previous year's EAS reports (Azimuth 2009a, 2010a), which highlighted the decrease in abundance at SP in 2008, marginal trends have been highlighted when p-values range between 0.05 . A variety of graphical methods have also been used to help visualize what the statistical models are actually testing.

The observed changes in the CREMP data set will be discussed in more detail in **Section 3.6.5** using a weight-of-evidence approach once the other data sets have been analyzed and interpreted.

3.6.3. East Dike EAS

The full East Dike EAS data set is summarized by each Area and Year in **Appendix A** (see **Table A3-10** of **Appendix A** for the summary and **Appendix A1** for the raw data file; summarized and raw 2010 results are provided in **Appendix H**).

Results by Area for each variable are shown in **Figure 3-11**; point shape (square for control and round for impact) and fill (none for all areas in 2009, grey for control areas in 2010 and black for impact areas in 2010) are used to highlight potential spatial and temporal trends.

Given that the major TSS release into Second Portage Lake occurred during East Dike construction in 2008, this analysis focused on:

- Assessing whether there is evidence of a prolonged difference between control and impact areas (i.e., indicating a potential TSS-related effects).
- Determining whether the data indicate that a recovery has occurred between 2009 and 2010 at impact areas (i.e., as shown by a differential improvement at impact areas relative to control areas).

Given that the spatial control-impact analysis primarily compares Second Portage Lake areas (and one Tehek Lake area) to other lakes, observed spatial differences could be related to inherent lake-specific factors (e.g., productivity) rather than to TSS exposure. The identification of a recovery at the impact areas, however, would provide stronger evidence that observed differences between control-impact areas in 2009 were likely related to TSS exposure. Ultimately, the strongest inferences regarding potential TSS-related impacts to the benthic community can be made by considering any trends identified in the East Dike EAS dataset with the results of the CREMP and Bay-Goose EAS data sets (see **Section 3.6.5**). Consequently, the remainder of this section focuses on results and leaves further interpretation to later in the report.

Key results⁷ (summarized in **Table 3-17** and shown in **Figure 3-12**) are as follows:

- Total abundance There was a significant difference in Effect (C vs. I areas; p<0.05), with the impact areas being 36% lower in abundance. While this difference may be attributable to TSS exposure, it could also be due to inherent differences in Second Portage Lake. There was also a significant difference for Year, with a 37% drop between years. This is consistent with the results of the CREMP, which showed this fairly consistently across the project lakes. The Effect*Year interaction, which tests for differential changes over time at C and I areas (e.g., a potential recovery) was marginal (0.05<p<0.15) for total abundance, showing a recovery magnitude of 43% (but with confidence intervals including a "no recovery" possibility).
- Total taxa richness Similar to abundance, significant decreases in total species richness were detected for Effect (32% drop in richness at I areas; p<0.001) and Year (20% drop in richness in 2010). The Effect*Year results show a recovery trend with a magnitude of 28% (0.05<p<0.15; confidence intervals barely overlap the "no recovery" possibility).

⁷ Magnitude of response for Effect and Year are shown relative to Control areas in 2009.

-

- Simpson's Diversity Caution must be used interpreting these results as model assumptions were not met and none of the transformation options assessed (typical or advanced) worked. The results showed a modest (-8%), but significant (p<0.05), reduction at impact areas for Effect. The 5% drop in 2010 for Year was not significant. The Effect*Year interaction results showed no evidence for a recovery at impact areas in 2010.
- *Bray Curtis Distance* This metric showed significant differences for Effect (impact areas 14% "further away" from control areas) and Year (2010 areas "further away" than 2009 areas). The Effect*Year interaction term results showed no evidence for a recovery at impact areas in 2010.

The observed changes in the ED EAS data set will be discussed in more detail in **Section 3.6.5** using a weight-of-evidence approach once the other data sets have been analyzed and interpreted.

3.6.4. Bay-Goose EAS

Detailed results are provided in **Appendix A**. The full Bay-Goose EAS data set is summarized by each Area and Year in **Appendix A** (see **Table A3-12** of **Appendix A** for the summary and **Appendix A1** for the raw data file). Results by Area for each variable are shown in **Figure 3-13**.

Statistical analyses focused on testing differences between control and impact areas. The "Effect" dummy variable for was coded with two levels: controls (INUG, PDL, TPS, TEFF, SP-DT, and TP-E3) and impact (TP-E1, TP-E2, TPE, and TPL-HVH4). Boxplots of response variables by Effect grouping are shown in **Figure 3-14**.

Results of statistical analyses are presented in **Table 3-18**. No significant differences were found between control and impact groups for any response variable. Given that this is based on one year of data only, we cannot rule out the possibility that the impact areas may have had healthier communities in past years (i.e., that the real effect size was much larger). This possibility will be explored more in **Section 3.6.5**.

3.6.5. Benthos Weight of Evidence

Three data sets were analyzed to assess the potential effects of dike-construction-related-TSS on benthic invertebrate communities (see preceding sections for details). While each independently provides some insights into the potential for TSS related impacts, collectively they support making stronger inferences regarding the nature of observed changes. Ideally, consideration of broader spatial and temporal patterns in the data should help to better elucidate the relative importance of natural variability *versus* TSS in explaining observed changes.

Tables 3-19 and 3-20 present weight-of-evidence assessments for Second Portage Lake (i.e., targeting potential effects related to sediment releases from construction of the East Dike in 2008) and for the east basin of Third Portage Lake (i.e., targeting potential effects related to sediment releases from construction of the Bay-Goose Dike in 2009 and 2010). Given that results of the toxicity testing and sequential extraction analyses (i.e., sediment metals are largely not bioavailable) indicate that contaminant-related effects are unlikely, physical smothering is considered the most likely mechanism for TSS-related adverse effects to the benthic community. However, based on the sediment trap data, the magnitude of this effect is also expected to be small. Consequently, the expectation would be that impacts would not be long-lived, so the assessment generally looked for evidence of recovery. That said, the possibility for longer-term impacts was also considered. Given these impact hypotheses, the lack of an observed "recovery" would essentially suggest that there may not have been an adverse effect from which to recover.

3.6.5.1. Second Portage Lake

Overall, the results for Second Portage Lake are inconclusive (**Table 3-19**). There is reasonable (but not conclusive) evidence to suggest that changes to the benthic community observed in the CREMP 2008 were due to construction-related sediment inputs (i.e., SP had the lowest abundance measured at that area compared to baseline data). While there is some evidence of a subsequent recovery (e.g., starting with the CREMP and EAS in 2009 and possibly extending to the EAS in 2010), this is clouded by contradictory results (mainly CREMP in 2010) and by an inherently less abundant and diverse benthic community in Second Portage Lake (and Tehek Lake too) in 2010. Given the prevailing pattern in the EAS data for Second Portage Lake in 2010, the 2010 CREMP result for SP must be considered highly localized (i.e., not representative of general conditions in Second Portage Lake in 2010) and unlikely related to dike construction. Consequently, the results for the 2008 to 2010 long-term effects also need to be viewed with caution.

Notwithstanding, even if the 2010 CREMP results were excluded from consideration, explanations for the observed changes, particularly those in the 2010 EAS, are still not completely clear. For example, the rebound in abundance at SP in the 2009 CREMP (mean 778; range 630 to 913) to within the range of baseline abundance levels for Second Portage Lake (means 623 and 913; ranges 522 to 1435) suggests a full recovery from the 2008 (mean 413; range 239 to 565) depression. Given that mean abundance results for all 2009 EAS areas (means range from 652 to 1474) were also within or exceeded the range of baseline conditions for Second Portage Lake, this suggests that the differences observed between control and impact areas in the 2009 EAS are unlikely due to the residual effects of construction-related sediment inputs (i.e., but rather to inherent interlake differences in abundance, as can be seen in **Figures A3-6 and A3-7 in Appendix**

A). However, there was evidence of a continued "recovery" in the 2010 EAS results, which is difficult to explain in light of the 2009 results. Perhaps the best explanation for this is that, similar to the 2009 results, it is due to inherent inter-lake differences that confound comparisons between control and impact areas.

While inconclusive, much of the available data for Second Portage Lake suggest that impacts were limited temporally (and spatially) and that recovery probably occurred within a year. The regionally lower trend in benthic community abundance confounds our ability to discern possible residual impacts in SP related to 2008 dike construction. Another year of data may help resolve some of the existing uncertainties.

3.6.5.2. Third Portage Lake – East Basin

The results for the east basin of Third Portage Lake are also somewhat inconclusive (**Table 3-20**), again related to challenges discerning between natural variability and low level TSS exposure. In this case, the main cause is the high (but potentially anomalous) invertebrate abundance measured during baseline period at the CREMP area TPE. Firstly, despite low exposure to TSS in 2009, a large (but not statistically significant) drop in benthos abundance was observed at the CREMP area TPE. Given the low exposure to TSS, this observed change was likely due to natural variability. Secondly, the further change in abundance observed at TPE in 2010 was also not statistically significant and was likely due to the regional trend discussed in **Section 3.6.2** (as can be seen in **Figures** A3-6 and A3-7 in Appendix A). Thirdly, the 2010 EAS data showed no significant difference in abundance between the east basin impact areas and the control areas. While these results point to a general lack of impact to the benthic community from sediment inputs from the construction of the Bay-Goose Dike, the successive drops in abundance at TPE are statistically significant when combined (i.e., the 2009 to 2010 long-term effect summarized in **Table 3-16**) and match the general exposure pattern (i.e., higher TSS exposure in 2009 and 2010).

While inconclusive, the prevailing patterns in the available data for the east basin of Third Portage Lake do not support the presence of a TSS-related impact (i.e., the abundance reductions observed in the CREMP data do not appear related to TSS).

⁸ The "recovery" is based on differential changes in the impact areas relative to control areas. In 2010, there was a general regional trend of decreased abundance and richness observed at most areas in 2010 relative to 2009. The EAS stations in Second Portage Lake, however, responded much less than would have been expected, thus representing a relative "recovery".

67

Table 3-13. Area "effect" status by year for CREMP data set.

Year	INUG	PDL	TPS	TEFF	SP	TE	TPE	TPN
2006	С		С		С		С	
2007	С		С		С	С	С	С
2008	С		С		1	1	С	С
2009	С	С	С	С	1	1	1	I
2010	С	С	С	С	1	- 1	1	I

Note: 1. Area designations: C = control; I = impact.

Table 3-14. Results of statistical analyses of benthic invertebrate community descriptors for the 2006 - 2009 CREMP data set, short-term Effect (from 2009 EAS report; Azimuth, 2010).

	Total	Таха	Simpson's	Bray Curtis
	Abundance	Richness	Diversity	Distance
	(#/m²)	(# taxa/ sample)	(unitless) ⁵	(unitless)
Data Transformation ¹	Log10	None	None	Log10
Advanced Transformation ²	Log10(x-120)	NA	NA	NA
Tests relative to controls				
C-SP2008 Differences?	Marginal	No	Marginal	No
p-value	0.08	0.27	0.12	0.95
Effect Size	-578	-2.4	0.11	-0.01
95% Upper Cl ³	-775	-7.1	-0.04	-0.24
95% Lower Cl ³	184	2.3	0.26	0.33
C-TE2008 Differences?	No	No	Marginal	No
p-value	0.47	0.89	0.14	0.24
Effect Size	-396	0.3	0.12	-0.16
95% Upper Cl ³	-881	-5.0	-0.05	-0.36
95% Lower Cl ³	1824	5.6	0.28	0.16
C-SP2009 Differences?	No	No	No	No
p-value	0.68	0.26	0.60	0.75
Effect Size	-195	-2.6	0.04	-0.04
95% Upper Cl ³	-693	-7.7	-0.12	-0.24
95% Lower Cl ³	1948	2.5	0.20	0.27
C-TE2009 Differences?	No	No	No	No
p-value	0.51	0.37	0.80	0.77
Effect Size	-384	-2.3	-0.02	-0.04
95% Upper Cl ³	-893	-7.9	-0.20	-0.26
95% Lower Cl ³	2195	3.4	0.16	0.31
C-TPE2009 Differences?	No	No	No	No
p-value	0.19	0.68	0.24	0.65
Effect Size	-2047	-0.9	0.08	-0.04
95% Upper Cl ³	-3197	-5.7	-0.07	-0.21
95% Lower Cl ³	2512	3.9	0.23	0.21

- 1. Initial transformation options discussed in **Section 2**.
- 2. Advanced transformations determined using Box-Cox method (Venables & Ripley
- ${\bf 3.}\ Confidence\ intervals\ reported\ relative\ to\ direction\ of\ effect\ (i.e.,\ positive\ or\ negative).$
- 4. Results are for model adjusted to account for unequal variances (see text for details).
- 5. Model assumptions not met, see text for details.

Table 3-15. Results of statistical analyses of benthic invertebrate community descriptors for the 2010 CREMP data set, short-term Effects.

	Total	Таха	Simpon's	Bray Curtis
	Abundance	Richness (# taxa/	Diversity	Distance
	$(\#/m^2)$	sample)	(unitless) ⁵	(unitless)
Data Transformation ¹	Log10	None	None	Log10
Advanced Transformation ²	Log10(x-70)	NA	NA	NA
Tests relative to controls				
C-SP2010 Differences?	Marginal	No	No	No
p-value	0.07	0.55	0.67	0.49
"No Effect" Mean ³	599	5.7	0.67	0.67
Effect Size	-362	-1.3	0.03	0.08
95% Upper Cl⁴	-483	-6.2	-0.11	-0.15
95% Lower CI ⁴	83	3.6	0.16	0.43
C-TE2010 Differences?	No	No	No	No
p-value	0.57	0.74	0.29	0.94
"No Effect" Mean	697	5.6	0.64	0.66
Effect Size	-194	0.8	0.07	-0.01
95% Upper Cl ⁴	-524	-4.6	-0.07	-0.23
95% Lower Cl ⁴	1203	6.3	0.22	0.33
C-TPE2010 Differences?	No	No	Marginal	No
p-value	0.23	0.50	0.06	0.45
"No Effect" Mean	2160	8.4	0.67	0.60
Effect Size	-1035	1.4	0.12	-0.07
95% Upper Cl⁴	-1780	-3.2	-0.01	-0.23
95% Lower Cl ⁴	1506	6.1	0.24	0.16
C-TPN2010 Differences?	No	Yes (incr.)	Marginal	No
p-value	0.55	0.05	0.11	0.88
"No Effect" Mean	714	5.4	0.67	0.60
Effect Size	263	5.0	0.10	0.02
95% Upper Cl ⁴	-392	0.1	-0.03	-0.18
95% Lower Cl ⁴	2614	9.8	0.23	0.30

- 1. Initial transformation options discussed in ${\bf Section}~{\bf 2}.$
- 2. Advanced transformations determined using Box-Cox method (Venables & Ripley 2002).
- 3. "No Effect" Mean estimated by not including the Effect coefficient when estimating Area-Year mean.
- 4. Confidence intervals estimated using 2 * Std. Error of Effect Size estimate.
- 5. Model assumptions not met, see text for details.

Table 3-16. Results of statistical analyses of benthic invertebrate community descriptors for the 2006 to 2010 CREMP data set, long-term Effects.

_	Total	Таха	Simpon's	Bray Curtis
	Abundance	Richness	Diversity	Distance
		(# taxa/		
	(#/m²)	sample)	(unitless)⁵	(unitless)
Data Transformation ¹	Log10	None	None	Log10
Advanced Transformation ²	Log10(x-70)	NA	NA	NA
Tests relative to controls				
C-SP'08-'10 Differences?	Yes	No	Marginal	No
p-value	0.04	0.18	0.15	1.00
"No Effect" Mean ³	849	8.30	0.70	0.67
Effect Size	-444	-2.1	0.06	0.00
95% Upper Cl ⁴	-629	-5.3	-0.03	-0.14
95% Lower Cl ⁴	-32	1.1	0.16	0.17
C-TE'08-'10 Differences?	No	No	No	No
p-value	0.32	0.84	0.21	0.37
"No Effect" Mean ³	993	8.16	0.67	0.67
Effect Size	-340	-0.36	0.06	-0.08
95% Upper Cl ⁴	-699	-4.16	-0.04	-0.22
95% Lower Cl⁴	595	3.45	0.17	0.11
C-TPE'09-'10 Differences?	Yes	No	Yes	No
p-value	0.04	0.80	0.01	0.25
"No Effect" Mean ³	2988	10.13	0.68	0.58
Effect Size	-1622	0.37	0.13	-0.07
95% Upper Cl ⁴	-2366	-2.76	0.04	-0.16
95% Lower Cl ⁴	-280	3.49	0.21	0.07
C-TPN'09-'10 Differences?	No	Marginal	Yes	No
p-value	0.77	0.11	0.04	0.63
"No Effect" Mean ³	979	7.19	0.68	0.59
Effect Size	109	2.61	0.10	-0.03
95% Upper Cl ⁴	-496	-0.70	0.01	-0.14
95% Lower Cl ⁴	1264	5.92	0.19	0.13

- 1. Initial transformation options discussed in **Section 2**.
- 2. Advanced transformations determined using Box-Cox method (Venables & Ripley 2002).
- 3. "No Effect" Mean estimated by not including the Effect coefficient when estimating Area-Year mean.
- 4. Confidence intervals estimated using 2 * Std. Error of Effect Size estimate.
- 5. Model assumptions not met, see text for details.

Table 3-17. Results of statistical analyses of benthic invertebrate community descriptors for the 2009 to 2010 East Dike EAS data set.

	Total	Таха	Simpon's	Bray Curtis
	Abundance	Richness	Diversity	Distance
		(# taxa/		
	(#/m²)	sample)	(unitless)	(unitless)
Data Transformation ¹	Log10	None	None	Log10
Advanced Transformation ²	Log10(x+230)	NA	NA	Log10(x-0.24)
Model Results				
C-I Effect Difference?	Yes	Yes	Yes	Yes
p-value	0.037	< 0.001	0.049	0.020
Magnitude	-36%	-32%	-8%	14%
Year Difference	Yes	Yes	No	Yes
p-value	0.014	0.003	0.174	0.037
Magnitude	-37%	-20%	-5%	12%
Effect*Year Difference?	Marginal	Marginal	No	No
p-value	0.148	0.075	0.950	0.829
"No Effect" Mean	513	5.4	0.71	0.64
Actual Mean	734	6.9	0.71	0.63
"Recovery" Size	221	1.5	0.00	-0.01
"Recovery" Magnitude	43%	28%	0%	-2%
95% Lower Cl ³ of Recovery Size	-77	-0.2	-0.08	-0.10
95% Upper Cl ³ of Recovery Size	652	3.2	0.08	0.10

^{1.} Initial transformation options discussed in **Section 2**.

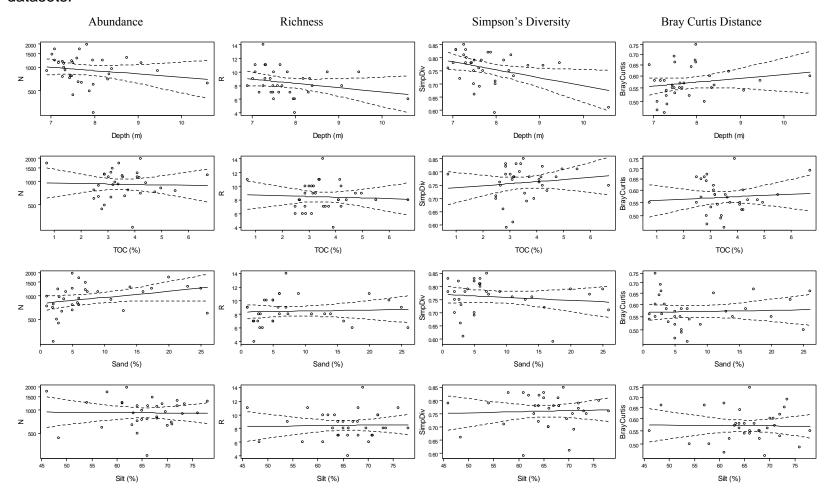
^{2.} Advanced transformations determined using Box-Cox method (Venables & Ripley 2002).

^{3.} Confidence intervals estimated using 2 * Std. Error of Effect Size estimate.

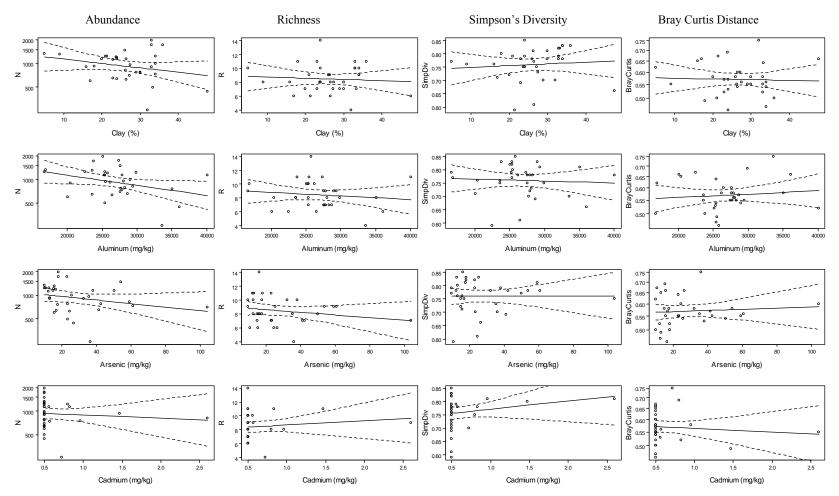
Table 3-18. Results of statistical analyses of benthic invertebrate community descriptors for the 2010 Bay Goose Dike EAS data set.

	Total Abundance	Taxa Richness	Simpon's Diversity	Bray Curtis Distance
		(# taxa/	•	
	(#/m²)	sample)	(unitless)	(unitless)
Data Transformation ¹	Log10	None	None	Log10
Advanced Transformation ²	NA	NA	NA	NA
Tests relative to control [C]				
C-I Effect Difference?	No	No	No	No
p-value	0.381	0.757	0.729	0.416
Control Group Mean	777	8.6	0.75	0.56
Impact Group Mean	622	8.3	0.76	0.59
Effect Size	-155	-0.3	0.02	0.03
Effect Magnitude (%)	-20%	-4%	2%	5%
95% Upper Cl ³ of Effect Size	-416	-2.5	-0.09	-0.05
95% Lower Cl ³ of Effect Size	292	1.9	0.12	0.12

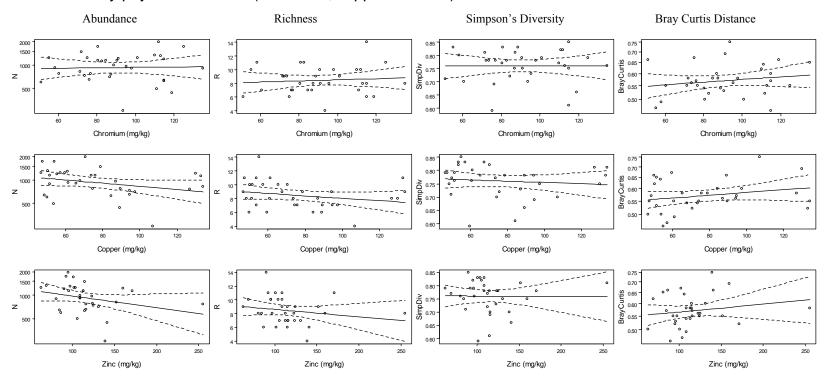
- 1. Initial transformation options discussed in **Section 2**.
- 2. Advanced transformations determined using Box-Cox method (Venables & Ripley 2002).
- 3. Confidence intervals estimated using 2 * Std. Error of Effect Size estimate.

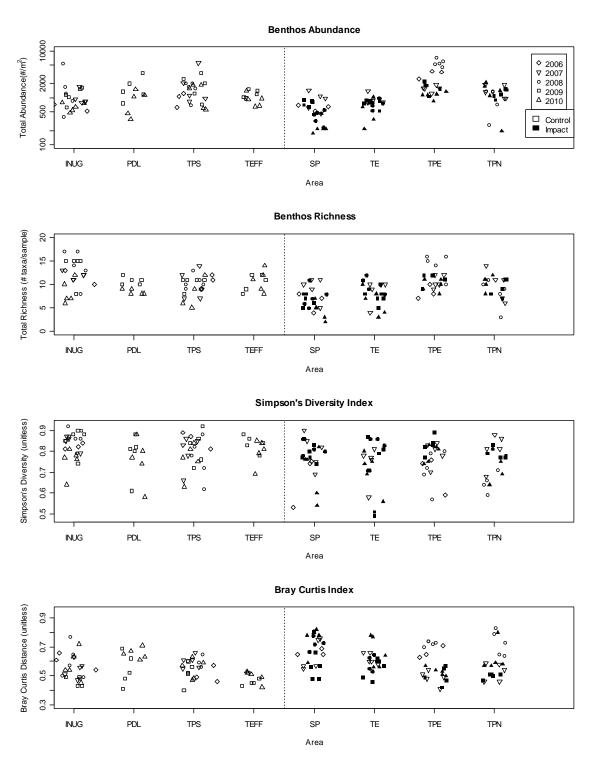

Table 3-19. Weight-of -evidence assessment of potential TSS-related impacts to benthic invertebrates for Second Portage Lake from construction of the East Dike.

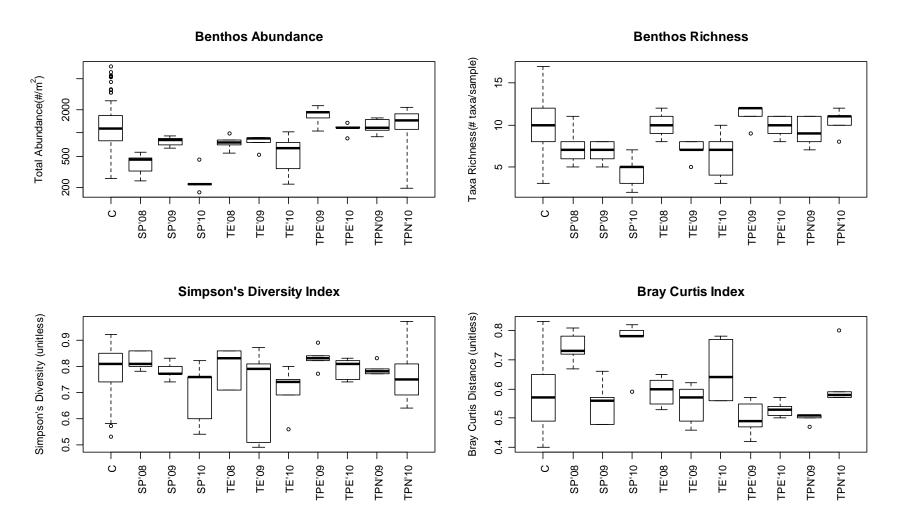
Lake (Basin)	Year(s)	CREMP	EAS	Weight-of-Evidence Interpretation
Second Portage Lake Elevated TSS primarily from East Dike construction in 2008, but also to a much lower degree from Bay-Goose Dike	2008	Marginally significant, but large drop in abundance was found at SP in 2008. This trend did not extent to TE.	No data.	Benthic community change (while statistically marginal) was substantial and affected both abundance and richness. Responses patterns at SP and TE consistent with TSS exposure gradient (i.e., much lower TSS in Tehek Lake).
from Bay-Goose Dike construction in 2009 and 2010.	2009	Apparent recovery seen at area SP in 2009, particularly for abundance, which was within the range of baseline conditions.	EAS study initiated; Community abundance and richness about 30% lower at impact areas relative to controls in 2009. The impact area results were, however, within the range of baseline conditions for Second Portage Lake. These results are consisten with inherent differences between the EAS impact areas (largely in Second Portage Lake) and the EAS control areas (i.e., consisting of one within-lake reference and a number of other CREMP areas), but could be due (in part) to TSS-related effects.	The apparent recovery at SP (CREMP) suggests that the differences observed in the 2009 EAS data are likely due to inherent inter-lake differences rather than to TSS exposure (i.e., SP and TE communities were typically lower in abundance and richness than other lakes from baseline studies). This is supported by the EAS impact area data largely meeting or exceeding baseline conditions in Second Portage Lake. Some contribution from the residual TSS effects, however, cannot be ruled out (particularly given the 2010 results below).
	2010	A marginally significant, but large drop was seen again at area SP in 2010, for both abundance and richness. This was over and above the general decrease in abundance and richness observed at most CREMP areas in 2010 (regional trend).	Evidence of a "recovery" (see text) at impact areas in 2010 was observed relative to 2009 results. Similar to 2009, it is difficult to attribute this to a true recovery as the data (except for SP) were within or exceeded the range of baseline conditions for the lake. That said, it is also difficult to understand why the lake wouldn't respond to a regional trend like most of the control areas.	SP was the only impact station in the EAS data set to drop substantially in 2010, suggesting a highly local trend at SP (not expected to be related to TSS exposure). The overall "recovery" observed at EAS impact areas (despite the drop at SP) suggests an improvement in 2010 relative to control areas. However, it is difficult to attribute this to a true recovery (as opposed to inherent inter-lake differences).
	2008 to 2010	When the above years are looked at together (i.e., asking whether there have been longer-term changes since the TSS event), there are statistically significant reductions in community abundance and diversity compared to controls.	2010 data show relative improvements relative to 2009, with impact area means well within the historical range for SP.	The CREMP result is strongly influenced by SP in 2010, which is thought to be localized and likely unrelated to TSS exposure (see above). Consequently, the long-term effects identified in the CREMP should be viewed with caution.

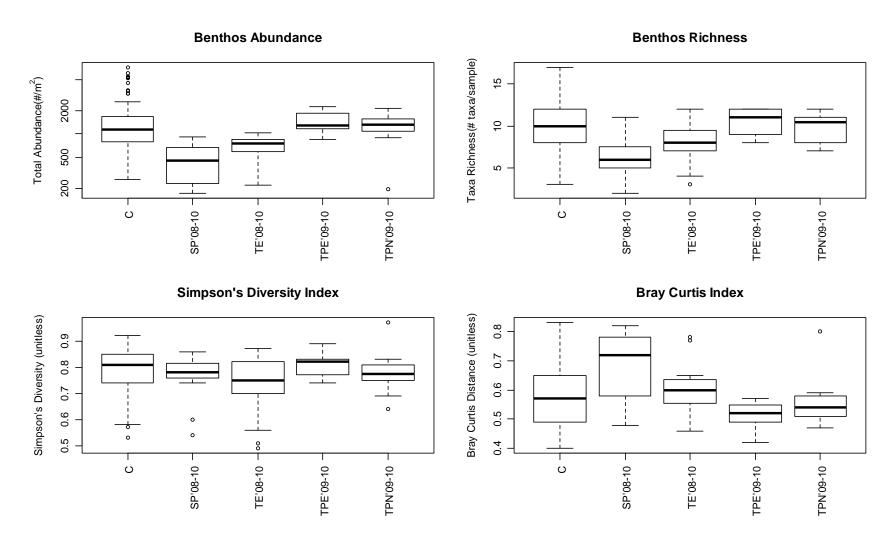

Table 3-20. Weight-of -evidence assessment of potential TSS-related impacts to benthic invertebrates for Third Portage Lake (east basin) from construction of the Bay-Goose Dike.

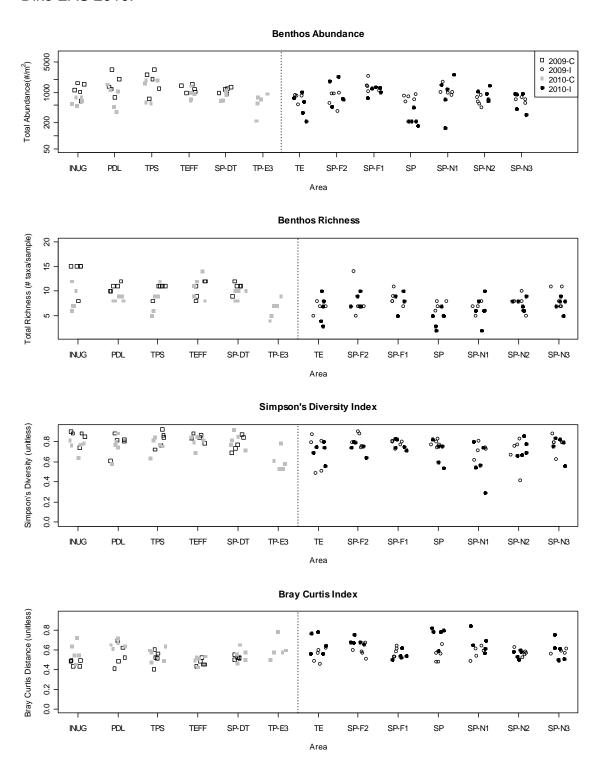
Lake (Basin)	Year(s)	CREMP	EAS	Weight-of-Evidence Interpretation
Third Portage Lake - Ed	ast Basin			
Elevated TSS primarily from Bay- Goose Dike in 2009 and 2010.	2009	Baseline conditions were variable with high abundance and diversity in 2006 and 2008. Despite a substantial drop in abundance and richness in 2009, none were statisitically significant. Exposure to TSS was also quite low, suggesting that the observed responses were likely due to natural fluctuations.	No data.	Results for TPE show a large drop that was not statistically significant, likely due to high variability at this station in baseline years and in the 2009 data.
	2010	Another drop in abundance and richness was observed in 2010, but of similar magnitude to the general regional trend of decreased abundance and diversity observed at most CREMP areas. None were statistically significant.	No significant differences identified between impact and control areas.	Both found no significant differences relative to controls, but variability was high (resulting in large confidence intervals) so there is uncertainty in this conclusion.
	2009 to 2010	Significantly reduced abundance at TPE from 2009 to 2010. This result is likely influenced by the anomalously high abundance observed in 2008.	Only 2010 data available; see above.	The CREMP results are strongly influenced by the very high abundance found at TPE during 2008. While the 2009 TPE results were within the baseline range, the 2010 results were the about a third lower than was measured at TPE in 2009. That said, there was a general trend of decreased abundance at most CREMP areas in 2010 (regional trend).

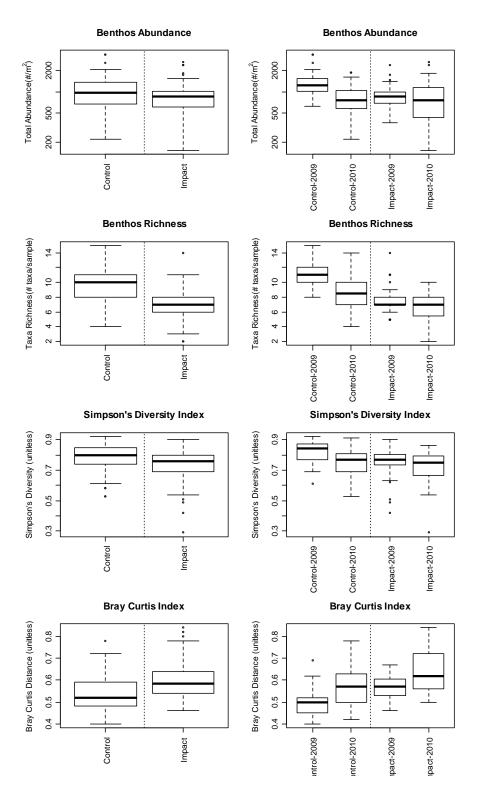

Figure 3-5. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (depth, total organic carbon, sand, and silt) for 2009 and 2010 CREMP and EAS datasets.

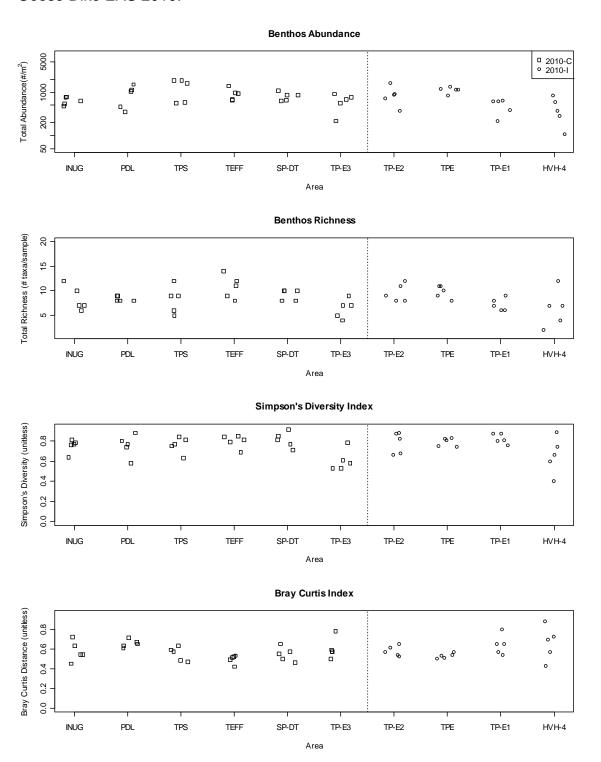

Figure 3-6. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (clay, aluminum, arsenic, and cadmium) for 2009 and 2010 CREMP and EAS datasets.


Figure 3-7. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (chromium, copper and zinc) for 2009 and 2010 CREMP and EAS datasets.


Figure 3-8. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across CREMP areas for 2006 through 2010.


Figure 3-9. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by short-term Effect grouping for CREMP data set.


Figure 3-10. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by long-term Effect grouping for CREMP data set.


Figure 3-11. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across Control and Impact areas for East Dike EAS 2010.

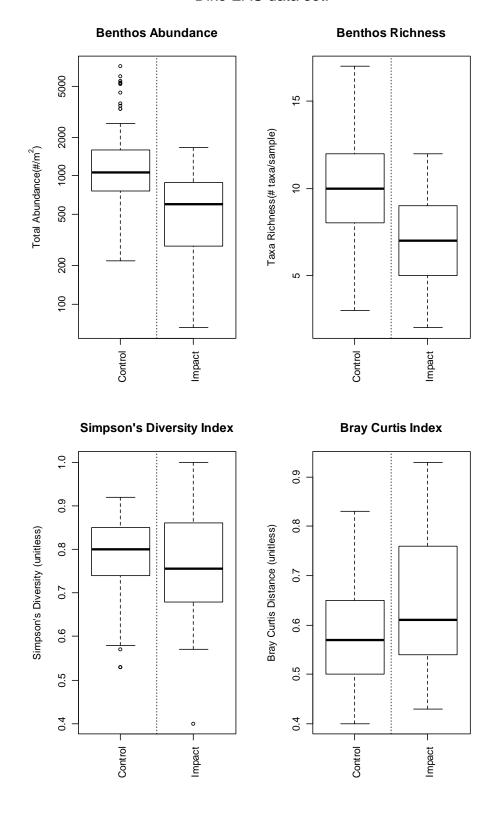

Figure 3-12. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by Effect grouping for East Dike EAS data set. Year-specific boxplots are provided as well to facilitate data interpretation.

Figure 3-13. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across Control and Impact areas for Bay Goose Dike EAS 2010.

Figure 3-14. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by Effect grouping for Bay-Goose Dike EAS data set.

4. CONCLUSIONS AND RECOMMENDATIONS

AEM commissioned studies in each of the last three years (2008 - 2010) to address concerns regarding the potential impacts of elevated TSS concentrations on local receiving environment from dike construction. Based on the literature, elevated TSS concentrations can directly or indirectly affect the entire range of organisms in the aquatic environment, so these studies have addressed a broad array of ecosystem elements.

The East Dike TSS EAS was initiated in 2008 and targets the effects of TSS from East Dike construction, primarily on Second Portage Lake, but also extending into Tehek Lake (Azimuth, 2009b). As planned, this study continued in 2009 (Azimuth, 2010b) and 2010 (this report), focusing more on characterizing potential deposition-related impacts, largely to periphyton and benthic invertebrate communities.

The Bay-Goose TSS EAS was initiated in 2009 and targets the effects of TSS from Bay-Goose construction, primarily on the east basin of Third Portage Lake, but also downstream into Second Portage Lake and Tehek Lake. Due to the phased nature of construction of the Bay-Goose Dike (i.e., Phase 1 in 2009; Phase 2 in 2010), the timing of study components is variable, with some conducted in 2009 (Azimuth, 2009b) and others slated for either 2010 (this report).

Collectively, the results of these studies have improved our understanding of the potential short-term and long-term effects of elevated TSS on a broad range of ecosystem elements in local receiving environments. Results to date for each major study component have been summarized in **Table 4-1** (2010 results highlighted in **bold**) for both TSS EAS studies to provide a more holistic perspective.

TSS EAS studies have targeted both the pelagic zone (i.e., water column) and benthic zone (i.e., lake bottom) of receiving environments. Elevated TSS concentrations over basin-wide spatial scales were well documented for both studies, lasting on the scale of weeks-to-months. While the TSS had obvious consequences for water clarity (and thus light penetration), no other substantial changes to local limnology were identified. From a water chemistry perspective, elevated metals and nutrients was largely associated with particulates rather than dissolved (and more bioavailable). From a water column (pelagic zone) perspective, both TSS EAS studies identified some short-term effects to primary productivity (e.g., phytoplankton biomass). However, these did not appear to cascade up the food chain to zooplankton. Consequently, based on available data, indirect effects to higher-level organisms through reduced prey biomass are considered unlikely. This was also corroborated in the laboratory with a larval trout test using live zooplankton as a food resource. With respect to potential direct effects in the water column, no adverse effects to zooplankton or fish were seen in toxicity tests. Thus, the body of evidence collected to date suggests that while some effects have been seen in the water column, they are likely limited in time and have not been shown to propagate up the food chain.

In contrast to the pelagic zone, where potential effects would be linked to suspended sediments in the water column and thus less likely to have prolonged consequences, the benthic zone is susceptible to the potential effects of sedimentation. Sediment traps have been used to document sedimentation rates, deposition thickness and chemistry of settled matter over the last three years, both during the open water season and under ice cover. The 2008 results suggested that between 1 to 2 mm of construction-related deposition occurred in Second Portage Lake and identified possible changes to surface sediment chemistry (i.e., settled material in the traps contained elevated concentrations of several metals). Surface sediment chemistry results for 2009 did confirm that certain metals had increased in concentration in Second Portage Lake and in Tehek Lake relative to baseline. Thus, concerns in this zone relate primarily to physical smothering and to metals toxicity.

The concerns regarding metals toxicity were directly tested in 2010 using sediment toxicity tests and sequential extraction analysis. Results of amphipod (*Hyalella azteca*) and midge (*Chironomus tentans*) survival and growth endpoints in bioassays showed that surface sediments collected from within or adjacent to the East Dike construction zone (i.e., the zone delineated by the turbidity barriers) were not toxic relative to local reference sediment. The sequential extraction results showed that the most of the metals in the sediment are associated with the residual matrix fraction, which is not considered bioavailable. Consequently, metals toxicity is not likely an issue in Second Portage Lake.

From an physical effects perspective, initial studies on periphyton biomass and community structure in Second Portage Lake conducted in 2009 identified reduced biomass and altered community composition in close proximity to the East Dike (i.e., in an area that would have been exposed to high TSS concentrations in 2008); these differences were not observed in an area exposed to lower TSS concentrations in 2008 (Azimuth, 2010b). Follow-up studies conducted in 2010 provided greater spatial resolution, confirming that effects were limited to the area closest to the East Dike.

For benthic invertebrates, the 2008 CREMP data indicated reduced benthic invertebrate abundances (a marginal trend) in Second Portage Lake (that did not extend to Tehek Lake); this was no longer observed in 2009 (i.e., abundance was similar to baseline), suggesting a short-term physical effect and subsequent recovery. The higher resolution EAS results in 2009 highlighted natural differences between Second Portage Lake (and Tehek) and the control areas (i.e., inherent inter-lake differences). Unfortunately, the 2010 results were contradictory, with the CREMP showing an even bigger drop in 2010 than that observed in 2008 (despite very low TSS exposure in 2010) and the EAS data suggesting further recovery relative to control areas. When considered together, the 2010 CREMP results are likely highly localized and unrelated to TSS.

Available data for potential effects to benthic invertebrate communities in the east basin of Third Portage Lake are also inconclusive. While most results point to the lack of any TSS-related impacts to the community, there have been two successive drops in

abundance that coincide with dike construction. However, these "drops" are likely due to natural variability (2009) or a regional trend of decreased abundance and richness (2010).

As for fish and fish habitat, the 2008 results raised concerns regarding physical effects due to sedimentation on high-value habitats. These concerns were raised based on the sediment trap results (discussed above) and on the trout embryo development toxicity (no renewal) test, which suggested that physical settling of particles onto embryos could impair development. Unfortunately, we will have to wait a number of years to determine if there was any impact to the 2009 year class of all key fish species (i.e., lake trout, Arctic char and round whitefish) in Second Portage Lake. Underwater video was used in 2009 to examine high-value fish habitat for evidence of increased sediment deposition; areas close to the East Dike were found to contain more obvious signs of sediment accumulation than areas further away.

TSS EAS studies are scheduled to continue in 2011 with a focus on evaluating the potential effects on periphyton and fish habitat related to the Bay-Goose Dike EAS; the evaluation of benthic invertebrate community will continue at the TPE CREMP station. **Table ES-1** highlights (in **BOLD CAPS**) the activities currently scheduled for 2011, which are summarized below:

- Periphyton Community The 2010 results for Second Portage Lake provided some spatial bounds to the observed depression in periphyton biomass. Given the correlation between mat sediment load and biomass, we recommend that a mat sediment survey be conducted in Third Portage Lake. This will be complemented with underwater video footage collected as part of the fish habitat assessment (below).
- Benthic Invertebrate Community East Dike EAS results largely point to an impact in 2008 and subsequent recovery in 2009, but there is some uncertainty. For the Bay-Goose Dike EAS, there is some uncertainty as to whether any impact occurred due to dike construction. Evaluation of these uncertainties will continue to be assessed through the 2011 CREMP sampling. In addition to the CREMP and EAS studies, supplemental work has been conducted by Ryan Vanengen (AEM) since 2009 as part of his master's research; these results may also address some of the existing uncertainties.
- Fish/Fish Habitat Bay-Goose Dike construction was completed in 2010. As a complement to baseline underwater video filmed in 2009 prior to dike construction, post-construction footage will be collected.

East Dike TSS EAS Bay-Goose TSS EAS TSS EAS Component

Water Quality and Limnology (studies conducted during major TSS release events (2008 for East Dike; 2009 for Bay-Goose Dike).

Prevailing TSS concentrations at exposure areas in 2008 were TSS Exposure

estimated to be about 10 mg/L (Sept 13/14, 2008) and 6 mg/L

(Sept 24/25, 2008).

Prevailing TSS concentrations at exposure areas in 2009 were estimated to be about 10 mg/L (Sept 17-19, 2009) and 8 mg/L (Sept 24-27, 2009).

Limnology Elevated TSS reduced water clarity, but did not lead to changes in temperature or dissolved oxygen profiles over

depth.

Similar to East Dike TSS EAS.

Water Quality While certain metals and nutrients were elevated, dissolved

> concentrations were low and these were associated with particulate matter and not expected to result in direct effects to

pelagic aquatic life.

to dike construction.

extraction analyses).

Similar to East Dike TSS EAS.

Dike completion).

Field Effects Measurements

Primary Production - Pelagic

- Chlorophyll- α
- Phytoplankton biomass/taxonomy

Phytoplankton biomass was reduced in exposure areas in 2008. Biomass differences were much less two weeks later, suggesting a short-term effect.

Both phytoplankton biomass and chlorophyll- α were reduced in exposure areas in 2009. However, based on CREMP data they had recovered by November relative to the north and south basins.

Primary Production - Benthic

- Periphyton Community
- Sediment accumulation in mats.

Impacts of sedimentation were observed in Second Portage Lake in close proximity to the East Dike in 2009. Periphyton biomass was reduced in proportion to observed sediment content of periphyton mats. The 2010 results confirmed these findings and provided better spatial resolution of affected areas.

This component is scheduled for 2011 (i.e., the year after BG

Secondary Production - Pelagic Zooplankton biomass/taxonomy

No differences in zooplankton biomass at exposure areas relative to reference areas.

STUDIES IN 2011 WILL FOCUS ON MAT SEDIMENT SURVEY AND UNDERWATER VIDEO (SEE FISH HABITAT BELOW).

Higher zooplankton biomass in 2009 in the east basin than

observed in 2008 despite TSS exposure.

trend of reduced abundance and richness.

Secondary Production - Benthic

- Benthic community
 - Total abundance
- Species richness
- Simpson's Diversity Index
- Bray Curtis Distance
- Surface sediment chemistry (coring)
- Surface sediment geochemistry - Sequential extraction analysis

Based on CREMP data from 2006 to 2009, the only effect identified was a marginal reduction in benthic abundance in Second Portage Lake (SP) in 2008. Abundance at SP improved in 2009 to baseline levels. The 2010 SP results were somewhat anomolous; a large decrease in abundance was found that was not seen in the 2010 EAS data. This was concluded to be localized and not related

Higher resolution spatial sampling in 2009 did show specific areas in Second Portage Lake to differ from control areas. However, this may be due to inherently lower benthic abundance in Second Portage Lake and Tehek Lake (as seen in the CREMP) . The 2010 EAS results showed a modest "recovery" at impact areas relative to the 2009 control

areas. Sediment coring conducted in 2009 did identify elevated metals in surface sediments (relative to 2008). Follow-up studies in 2010 showed no sediment toxicity (see below) that metals were not bioavailable (based on sequential

Based on CREMP data from 2006 to 2010, there has been a drop in benthic abundance and diversity coincident with dike construction. However, these results appear due to very high baseline (2007-2008) levels for both metrics. In 2009, the drop occurred despite low TSS exposure. In 2010, the drop was consistent with a general regional

Higher resolution spatial sampling in 2010 showed no differences between the east basin of Third Portage Lake and control areas. However, this may actually represent an effect given the baseline data (i.e., typically higher inherent abundance and richness than other lakes). Additional data should help differentiate these alternatives.

CREMP SAMPLING (TPE) WILL BE CONDUCTED IN 2011 AS PLANNED.

Fish/Fish Habitat

- Sediment Traps
- Underwater Video
- Food web (stable isotopes)
- Fish Population

Sediment trap data from open water 2008 and over winter 2008-2009 show increased sedimentation (1 - 2 mm), particularly in proximity to the East Dike. This was confirmed by the underwater video. HVH areas away from the dike were much less affected. 2010 results show some elevated accumulation due to BG Dike inputs.

Stable isotope studies confirmed the importance of both benthic and pelagic food webs in 2008.

Sediment trap data show some accumulation (up to 1.1 mm) in proximity of HVH areas in 2009. 2010 results showed similar to higher accumulations (to nearly 2 mm) A subset of traps has been deployed over winter. WINTER TRAPS **RETRIEVED AGAIN IN 2011; PROGRAM ENDING.**

Underwater video surveys conducted at HVH areas in the east basin in 2009 prior to construction; THESE WILL BE **RESURVEYED IN 2011.**

Laboratory Effects Measurements

Zooplankton

- Lethal Daphnia magna 48-hr LC50
- Sublethal Ceriodaphnia dubia 7-day growth/survival/repro

<u>Fish</u>

- Lethal Rainbow trout 96-hr LC50
- Sublethal Rainbow trout embryo 7-day (w/out renewal)
- Sublethal Rainbow trout embryo 7-day (with renewal)
- Sublethal Rainbow trout swim-up larvae 7-day surv/growth

No direct effects were observed in toxicity tests of surface waters.

No direct effects were observed in toxicity tests of surface waters

No effects were found for juvenile and larval tests. No effects

were also seen in the standard (with renewal) embryo development test. Impaired development was seen in test without renewal, which suggests that physical settling of sediments could harm developing embryos.

No direct effects were observed in toxicity tests of surface

- Lethal/sublethal Hyalella azteca 14-d survival/growth
- Lethal/sub Chironomus tentans 10-d survival/growth

No adverse effects in 2010 to survival or growth for amphipods (Hyalella azteca) or midges (Chironomus tentans) at impact areas relative to control areas. Sediments tested in Second Portage Lake are not toxic.

Benthic Invertebrates (Sediment)

5. REFERENCES

- Agnico-Eagle Mines Ltd. (AEM). 2009. Aquatic Environment Management Program, March 2009.
- Azimuth Consulting Group (Azimuth). 2011. Aquatic Effect Monitoring Program Core Receiving Environment Monitoring Program 2010, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Baker Lake, NU. *Report in progress*.
- Azimuth. 2010a. Aquatic Effects Monitoring Program Targeted Study: Dike Construction Monitoring 2009, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Baker Lake, NU.
- Azimuth. 2010b. Aquatic Effects Monitoring Program Targeted Study: Dike Construction TSS Effects Assessment Study 2009, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Baker Lake, NU.
- Azimuth. 2010c. Aquatic Effects Monitoring Program Core Receiving Environment Monitoring Program 2009, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Baker Lake, NU.
- Azimuth. 2010d. Aquatic Effects Monitoring Program –Habitat Compensation Monitoring 2009, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc. Vancouver BC for Agnico-Eagle Mines Ltd., Baker Lake, NU.
- Azimuth. 2009a. Aquatic Effects Monitoring Program Targeted Study: Dike Construction Monitoring 2008, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2009.
- Azimuth. 2009b. Aquatic Effects Monitoring Program Targeted Study: Second Portage Lake TSS Effects Assessment Study 2008, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2009.
- Azimuth. 2009c. Aquatic Effects Monitoring Program Receiving Environment Monitoring 2008, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2009.

- Azimuth. 2008a. Aquatic Effects Management Program Monitoring Meadowbank Gold Project, 2007. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2008.
- Azimuth. 2008b. Aquatic Effects Management Program Monitoring Meadowbank Gold Project, 2006. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2008.
- CCME (Canadian Council of Ministers of the Environment) 2002. Canadian Sediment Quality Guidelines for the Protection of Freshwater Aquatic Life, 1999, updated 2002.
- Environment Canada. 2002. Metal Mining EEM Guidance Document. Chapter 5: Benthic Invertebrates. June 2002.
- Findlay, D.L., Kasian, S.E.M., Turner, M.T., and M.P. Stainton. 1999. Responses of phytoplankton and epilithon during acidification and early recovery. Freshwater Biology. 42: 159-175.
- Izagirre O, A.Serra, H. Guasch, and A. Elosegi. 2009. Effects of sediment deposition on periphytic biomass, photosynthetic activity and algal community structure. Sci. Total Environment 407: 5691-5700 p.
- Pueyo, M., G. Rauret, D. Lück, M. Yli-Halla, H. Muntau, Ph. Quevauviller, and J.F. Lopez-Sanchez. 2001. Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimized three-step sequential extraction procedure. J. Environ. Monit., 3: 243-250.
- Ratuzny T., Z. Gong, B.-M. Wilke. 2009. Total concentrations and speciation of heavy metals in soil of the Shenyang Zhangshi Irrigation Area, China. Environmental Monitoring and Assessment, 156: 171–180.
- Rott, E. 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrobiologia, 43: 43-62.
- Science Advisory Board (SAB) for Contaminated Sites in British Columbia. 2008.

 Guidance for Detailed Ecological Risk Assessments (DERA) in British Columbia.

 British Columbia, Canada.
- Tessier, A., P.G.C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7): 844–851.
- Vollenweider, R.A. 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical Report, Organization for Economic Cooperation and Development, Paris, 27: 1-182.

- Washington, H.G. 1984. Review: diversity, biotic and similarity indices. A review with special relevance to aquatic ecosystems. Water Res. 186: 652-694.
- Yamada, H., and F. Nakamura. 2002. Effect of fine sediment deposition and channel works on periphyton biomass in the Makomanai River, Northern Japan. River research and applications 18: 491-493.
- Zimmerman, A.J. and D.C. Weindorf. 2010. Heavy metal and trace metal analysis in soil by sequential extraction: A review of procedures. International Journal of Analytical Chemistry, 2010: 7pp.

5 DD9 B8 **₹** 9 G

Appendix A – Statistical Analyses for TSS Effects Assessment Study 2010

TABLE OF CONTENTS

1.	INTRO	DDUCTION	1
2.	GENE	RAL STATISTICAL APPROACH	1
	2.1.2.2.2.3.	Overview	2
3.	BENT	HIC INVERTEBRATE COMMUNITY STUDIES - 2010	8
	3.2.2. 3.2.3.	Study Design Overview Results CREMP East Dike EAS Benthic Invertebrates Bay-Goose EAS Benthic Invertebrates Potential Influence of Physical and Chemical Parameters	9 10 12
4.	PERIF	PHYTON community	44
	4.1. 4.2.	Study Design OverviewResults	
5.	REFE	RENCES	49

TABLES

Table A3-1. Area "effect" status by year for CREMP data set16
Table A3-2. Benthic invertebrate descriptors by sampling area and year for the CREMP data set17
Table A3-3. Area-year "effects" coding for short-term effects, CREMP data set. 18
Table A3-4. Area-year "effect" coding for long-term effects, CREMP data set. 18
Table A3-5. Results of statistical analyses of benthic invertebrate community descriptors for the 2006 - 2009 CREMP data set, short-term Effect (from 2009 EAS report; Azimuth, 2010)19
Table A3-6. Results of statistical analyses of benthic invertebrate community descriptors for the 2010 CREMP data set, short-term Effects20
Table A3-7. Results of statistical analyses of benthic invertebrate community descriptors for the 2006 to 2010 CREMP data set, long-term Effects21
Table A3-8. Benthic invertebrate descriptors by sampling area and year for the East Dike EAS data set22
Table A3-9. Results of statistical analyses of benthic invertebrate community descriptors for the 2009 to 2010 East Dike EAS data set23
Table A3-10. Benthic invertebrate descriptors by sampling area and year for the Bay Goose Dike EAS data set24
Table A3-11. Results of statistical analyses of benthic invertebrate community descriptors for the 2010 Bay Goose Dike EAS data set25
Table A3-12. Physical and chemical characteristics (means) by sampling area and year for the CREMP & EAS data sets26
Table A4-1. Statistical model results for tests of significance of "Effect" on primary and secondary productivity for the 2009 Bay-Goose Dike EAS. 46

FIGURES

Figure A3-1.Map of CREMP sampling areas27
Figure A3-2. Map of East Dike EAS sampling areas28
Figure A3-3. Map of East Dike EAS sampling areas29
Figure A3-4. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across CREMP areas for 2006 through 2010.
Figure A3-5. Boxplots of benthic community metrics (abundance, richness Simpson's Diversity, and Bray Curtis distance) by short-term Effect grouping for CREMP data set3
Figure A3-6. Boxplots of benthic community metrics (abundance, richness Simpson's Diversity, and Bray Curtis distance) by long-term Effect grouping for CREMP data set32
Figure A3-7. Interaction Plot for total benthic abundance by Area and Year for the CREMP data set33
Figure A3-8. Interaction Plot for total benthic richness by Area and Year for the CREMP data set34
Figure A3-9. Interaction Plot for benthic Simpson's Diversity by Area and Year for the CREMP data set3
Figure A3-10. Interaction Plot for Bray Curtis distance by Area and Year for the CREMP data set36
Figure A3-11. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across Control and Impact areas for East Dike EAS 201037
Figure A3-12. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by Effect grouping for East Dike EAS data set. Year-specific boxplots are provided as well to facilitate data interpretation38
Figure A3-13. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across Control and Impact areas for Bay Goose Dike EAS 2010
Figure A3-14. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by Effect grouping for Bay-Goose Dike EAS data set40

Figure A3-15. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (depth, total organic carbon, sand, and silt) for 2009 and 2010 CREMP and EAS datasets41
Figure A3-16. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (clay, aluminum, arsenic, and cadmium) for 2009 and 2010 CREMP and EAS datasets42
Figure A3-17. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (chromium, copper and zinc) for 2009 and 2010 CREMP and EAS datasets
Figure A4-1. Comparison of total periphyton biomass (raw data in top plot; box plots in bottom plot) at SP-BL, SP-CREMP and SP-DT stations in Second Portage Lake, 2009 and 201047
Figure A4-2. Interaction plots for Control-Impact and Year for total periphyton biomass at Second Portage Lake stations with 2009 and 2010 data48

APPENDICES

Appendix A1. Raw data for benthic invertebrate analyses.

Appendix A2. Raw data for periphyton analyses.

1. INTRODUCTION

This appendix documents the statistical analyses conducted to support the 2010 TSS Effects Assessment Study (EAS) for the Meadowbank Mine. The 2010 EAS included components targeting potential environmental effects of East Dike construction in 2008 and Bay-Goose Dike construction in 2009 and 2010. This appendix is organized as follows:

- **Section 2** presents an overview of the general approach used for statistical analysis of the EAS data set.
- **Section 3** presents the results of the 2010 benthic invertebrate studies related to construction of both the East Dike and the Bay-Goose Dike.
- **Section 4** presents the results of the 2010 periphyton studies related to East Dike construction.

This appendix must be read along with the main report, because (1) raw data and basic descriptive statistics and graphs presented in the report are not generally repeated in the appendix, and (2) the main report provides an integrative assessment of these results.

2. GENERAL STATISTICAL APPROACH

2.1. Overview

All statistical analyses were conducted using R software (v. 2.10.1). Further information on all methods used in this appendix can be found in Dalgaard (2008), Pinheiro and Bates (2000), Venables and Ripley (2002), Gelman and Hill (2006), and Zar (1984).

The following process was generally followed for each response variable¹:

- (1) Individual replicates were plotted by area (and year if applicable). These plots were used to get a sense of the general response pattern and natural variability within and among areas (years). Plots were also used to identify potential outliers.
- (2) Model assumptions of normality and homogeneity of variance were tested formally using Shapiro-Wilk's and Bartlett's tests, respectively. In cases where either failed, four transformation options were evaluated: square root, fourth root, log₁₀, and log₁₀(y+1). The selected option is displayed in the results tables for each response variable.

¹ Note that names were generally capitalized when referring specifically to a variable and not capitalized when making general references to the factors they represent.

- (3) In cases where none of the basic transformation options were sufficient to meet model assumptions, the Box-Cox method (Pinheiro and Bates 2000) was used to determine an optimal transformation.
- (4) Hypotheses regarding adverse changes to response variables were tested using one of the following two general models (each explained further in **Section 2.2**):
 - a. Spatial control-impact (CI) model
 - b. Spatial-temporal before-after, control-impact (BACI) model
- (5) Statistical significance was based on $\alpha = 0.05$ (see **Section 2.3** for more information). In addition, p values between 0.05 and 0.15 were highlighted as "marginal trends." Note that effect sizes² and associated confidence intervals are typically provided to help interpret the results and put non-significant results into perspective.
- (6) Model assumptions were retested using visual methods (e.g., examination of model residuals and quartile-quartile plots). Where model assumptions were not fully met, several model variations were explored to determine the implications of the situation for model output; these options are explained further in the text.

2.2. Statistical Models

This section presents the basic model structure for CI and BACI type statistical models. Variations on these themes used for specific analyses are documented in the results sections.

This model is used to test for differences between control (C) and impact (I) areas. This is used when there is no temporal component to the study design. The C and I aspects of the design are coded into a single effect variable (i.e., a dummy variable with levels for each type of station). At Meadowbank, the CI designs usually incorporate multiple C and/or I areas. Note that when multiple I areas occur in the design, the effect coding can be the same for both or different to reflect different exposure levels (e.g., a simple exposure gradient). Basic model format is a two-factor model (i.e., response is a function of area + effect + error), which is formally represented as follows:

(1)
$$X_{jrs} = \mu + \beta_j + \gamma_{r(j)} + \varepsilon_{jrs}$$

where:

 X_{jrs} is the response associated with subsample s at Area j, which has Effect level m

² Effects sizes are typically reported in absolute terms (e.g., a negative value means a drop in a value relative to what would have been expected in the absence of an effect).

 μ is an intercept term

 β_i is the coefficient for Area j

 $\gamma_{r(i)}$ is the coefficient for Effect level r associated with Area j

 $\varepsilon_{\it jrs}$ is the error term where s denotes the number of subsamples taken in each Area j

This model is coded in R as follows (where "y" is the response variable):

$$lm (y \sim Area + Effect)$$

Spatial-Temporal (BACI-type) - Model 2

This study design is an extension of the basic BACI approach (e.g., Underwood 1991, 1992, 1994). While the actual designs at Meadowbank are not necessarily the same across response variables, all have the same general factors: Area, Year, an Effect variable coded to distinguish two or more TSS exposure levels (e.g., 0 = not exposed, 1 = exposed; or 0 = none, 1 = minor exposure and 2 = major exposure) across years. This results in a three-factor additive model (i.e., response is a function of Area + Year + Effect + error). In addition, we also include a term for Area:Year interactions to properly characterize patterns of inter-annual variation that innately differ among areas (not just between the ones we are testing with the variable 'Effect'), therefore. The model then becomes:

(2)
$$X_{kirs} = \mu + \beta_i + \tau_k + \gamma_{r(ki)} + (\tau \beta)_{ki} + \varepsilon_{kirs}.$$

where:

 X_{kjrs} is the response associated with subsample s in Year k at Area j, which has Effect level r

 μ is an intercept term

 β_i is the coefficient for Area j

 τ_k is the coefficient for Year k

 $\gamma_{r(kj)}$ is the coefficient for effect level r associated with Year k and Area j

 $(\tau\beta)_{ki}$ is the Area: Year interaction term

 ε_{kjrs} is the error term where *s* denotes the number of subsamples taken for each Area-Year (*jk*) combination

This model can be coded in R in the following ways (depending on whether or not the design is balanced [i.e., same number of replicates in all Area-Year combinations]) (where "y" is the response variable):

- Balanced: $lm (y \sim Area * Year + Effect)$
- Unbalanced $lmer (y \sim Area + Year + Effect + (1|Area:Year))$

For balanced designs, both of these models yield the same coefficients for the fixed effects.

2.3. Determining Statistical Significance

As described above, the determination of statistical significance in these analyses relied on evaluating p values relative to $\alpha = 0.05$ ("marginal trends" were highlighted with 0.05 < p < 0.15). It is important to note that estimation of p values is dependent on the interpretation of the study design and the primary inferences being made, which ultimately dictate the statistical degrees of freedom. Inappropriately defined experimental units can lead to pseudoreplication (Hurlbert, 1984), which is the use of inferential statistics to test impact effects when either treatments are not replicated or replicate samples are not temporally or spatially independent.

Hurlbert (1984) described several types of pseudoreplication: simple, sacrificial, temporal, and implicit. For the purposes of this discussion, we focus on the first two:

- Simple pseudoreplication is the lack of independent replication of study treatments. Replication can be considered as the <u>independent</u> application (or occurrence) of the <u>same</u> treatment. As recognized by Stewart-Oaten et al. (1986, 1992), accidental environmental perturbations rarely occur in an independent, yet similar, manner. Thus, we are usually left with attempting to make inferences regarding the effects of the perturbation without proper replication. Statistical comparisons between control and impact areas are ultimately confounded by possible inherent differences between the areas that would exist in the absence of the perturbation. Consequently, inferences regarding impact-related differences between control and impact areas are only as strong as the evidence available to support the fundamental assumption that the areas were similar prior to the perturbation; this is particularly important for control-impact (CI) designs where no data were available prior to the perturbation.
- Sacrificial pseudoreplication occurs when treatments are replicated, but where the subsample data for replicates are pooled (thus sacrificing information regarding true within-treatment variance) for analysis or where measurements taken within experimental units (i.e., subsamples) are treated as independent replicates (Hurlbert, 1984). The primary implication of sacrificial pseudoreplication is its effect on the estimation of error through the inflation of

its degrees of freedom, which ultimately lowers the p value of the fixed effects being tested.

Although they are quite different in their nature, the end result of both types of pseudoreplication is the increased probability of Type 1 error (i.e., incorrectly concluding that a difference exists, a "false positive").

Due to the nature of the EAS (i.e., determining the potential effects of construction-related sediment inputs), the study designs used in the EAS are not immune to pseudoreplication. From a practical perspective, the assessment of unplanned impacts has to acknowledge the reality of some level of pseudoreplication associated with the lack of proper treatment replication and employ strategies to deal with the non-independence among samples (Wiens and Parker, 1995). The following are examples of the main strategies used to minimize the influence of pseudoreplication on EAS conclusions:

- "Replication" of Treatments —
 While true replication of the
 treatments was not possible, the
 extent of elevated TSS in the
 receiving environment often allowed
 multiple areas to be sampled within
 the zone of elevated TSS. Coupled
 with multiple control areas, this
 reduced (but did not eliminate) the
 potential for natural differences
 between control and impact
 treatments to drive conclusions.
- Verifying Area Similarity Prior to Treatment – For CI designs (i.e., no "before" data), information from other monitoring programs (where available) was used to assess the validity of the assumption that control and impact areas were similar prior to exposure to elevated TSS.
- Scale of Inference and the Independence of Samples The scale of inference was matched to the study design. When inferences were made regarding differences between control and impact groups, then the degrees of freedom for the

Basic EAS CI Study Designs

The following represent the general hierarchy present in most of the EAS CI-type study designs. Design specifics are discussed later in the text for each study component.

Control – Impact Grouping
Sampling "Areas" (see below) were grouped according to whether or not they were exposed to elevated TSS concentrations.

Within C or I Groups
Multiple Areas were usually sampled within the above groupings.

Within Areas
Multiple measurements were randomly taken within areas.

Basic EAS BACI-type Study Designs

In addition to the sampling hierarchy used in the spatial CI designs (see previous text box), the BACI-type design also included the element of time, as follows:

Before – After Grouping Sampling "Years" (see below) were grouped according to whether or not the impact treatment had occurred.

Within B or A Groups
Multiple Years (some or all Areas) were sometimes sampled within the above groupings.

error term (see below for more information) was based on the Areas as the experimental unit (rather than on the number of subsamples taken in each Area). In contrast, where study design constraints prevented this scale of inference, conclusions were made regarding differences among areas (with degrees of freedom based on subsamples), with a qualitative discussion of the potential influence of TSS across the collective pool of impact areas.

In light of the previous discussion, careful consideration was given to how the statistical models were structured so that the p values were estimated in an appropriate manner for the intended scale of inference. Depending on the R package used to run the statistical model, the desired p values (and associated degrees of freedom) were either included directly as part of the model outputs (e.g., for lm or lme functions) or they were calculated in R (see below) based on the model outputs (for coefficient estimates and standard errors) and on our calculated degrees of freedom (e.g., for lmer function).

R's lme4 package for mixed-effects modeling does not include p values or degrees of freedom in model outputs³. Consequently, these were calculated in R after determining the appropriate degrees of freedom.

The following table shows the general formulations for the degrees of freedom and expected mean-squared error (E[MS]) for various model terms (note that CI designs would not include year as an element [or an interaction term] unless multiple "after" years were sampled; model terms as per **Section 2.2**):

Term	Levels	Df	E[MS]
Effect (γ)	r = 1, 2,, R	R-1	$\sigma^2 + Q + SK\sigma_{\beta}^2 + S\sigma_{\tau\beta}^2$
Area (β)	j = 1, 2,, J	J-R	$\sigma^2 + SK\sigma_{\beta}^2 + S\sigma_{\tau\beta}^2$
Year (τ)	k = 1, 2,, K	K-1	$\sigma^2 + SJ\sigma_{\tau}^2 + S\sigma_{\tau\beta}^2$
Interaction $(\beta \tau)$		(J-1)(K-1)	$\sigma^2 + S \sigma_{\tau \beta}^{2}$
Error (ε)	s = 1, 2,, S	(S-1)JK	σ^2

For a mixed-effects CI model with Effect as the fixed effect and Area as the random effect, overall significance of the Effect term would be tested by defining the appropriate F ratio as MS[Effect]/MS[Area] with degrees of freedom = (R - I), (J - R). For R = 2 (e.g., only two levels of Effect, control and impact), this provides the same result as the t-test for the treatment coefficient γ with degrees of freedom = J - R. If R > 2 (e.g., when

³ The primary reason for omitting these results is to avoid errors in model output. Mixed effect models can be quite complex, making estimation of the degrees of freedom statistically challenging. While there are computational methods that work for most situations, they fail to produce appropriate results in certain cases. Methods for determining the appropriate degrees of freedom for the simple mixed-effects models documented in this report are well established.

multiple impact areas were coded separately [0 for control areas and 1, 2, ... for impact areas) to allow estimation of impacts at specific areas, then each t-test comparing the specific impact level to controls would have df = J - R.

For a mixed-effects BACI model with Year and Effect as fixed effects and Area-Year as the random effect, overall significance of the Effect term would be tested by defining the appropriate F ratio as MS[Effect]/MS[Area*Year]. Numerator degrees of freedom are the same as discussed for the CI example, R-I. The calculation of denominator degrees of freedom starts with (J-I) * (K-I), then subtracts the Effect coefficients (R-I), then subtracts 1 for each Area-Year combination missing from the data set (e.g., for unbalanced designs). Again, for R=2 (e.g., only two levels of Effect, control and impact, where the latter are specific Area-Year combinations exposed to elevated TSS), this provides the same result as the t-test for the treatment coefficient γ using the denominator degrees of freedom. Also, if R > 2, then the denominator degrees of freedom would be used in each t-test comparing the specific impact level (e.g., Area SP in 2008) to controls.

In R, p values for the overall F-test for the Effect term were determined as follows:

$$p.value = 1-pf(F.ratio, df1=df1, df2=df2))$$

where:

pf is an R function that gives the F distribution function

F.ratio is the *F* ratio from the model ouput

Df1 is the numerator degrees for freedom for the *F*-test (see text above)

Df2 is the denominator degrees of freedom for the *F*-test (see text above)

For *t*-tests of specific Effect levels relative to controls, the p values were determined using the following R code:

$$p.value = 2 * (1-pt(abs(t.stat), Df=df2))$$

where:

pt is an R function that gives the Student t distribution

t.stat is the t statistic from the model output

Df is the appropriate degrees of freedom

3. BENTHIC INVERTEBRATE COMMUNITY STUDIES - 2010

3.1. Study Design Overview

The following provides an overview of basic study design information for each component:

- CREMP Benthic Invertebrates CREMP monitoring has been conducted since 2006 at a number of lakes surrounding the Meadowbank Mine. As such, it includes pre-development baseline data and thus provides context regarding spatial and temporal variability in the benthic community. The data set has been used to complement the finer-resolution EAS data sets to aid in the interpretation of the EAS results. The CREMP areas relevant to this year's EAS are shown in Figure A3-1⁴. The potential for mining-related impacts in each sampling area has been tracked annually since the construction phase of the development started in 2008. The status of specific areas over time is shown in Table A3-1. This data set was used to test for specific area-year impacts relative to control area-years and for specific longer-term impacts by area (i.e., for areas where more subtle, but prolonged, effects may have occurred). Details on Effect coding are provided in the results in Section 3.2.1. The BACI (Model 2) model was used for the analysis to test for both types (i.e., single-year and multi-year) of effects.
- East Dike EAS Benthic Invertebrates This is the second of a two-year follow-up benthic community monitoring program targeting the potential effects of sedimentation related to construction of the East Dike. While this data set consists entirely of "after" sampling, the BACI model (Model 2) was used to look for two types of differences: spatial differences between control and impact areas, and spatial-temporal differences (e.g., determining the presence of a recovery signal among impact areas relative to control areas). This program is complementary to the broader-focused CREMP (see next bullet) in that intent of this component was to provide higher-resolution information (e.g., spatial extent of effects within Second Portage Lake). However, similar to last year, the East Dike EAS data set was expanded to include relevant CREMP areas. Not only does the CREMP addition increase the power of the statistical analyses, but it also serves to facilitate data interpretation (e.g., since temporal and general spatial trends are better characterized in the CREMP). The expanded data set includes six control areas (two from the EAS [SP-DT, TP-E3] and four from the CREMP [INUG,

_

⁴ The Baker Lake areas and Wally Lake were not included. Baker Lake has a marine influence and is substantially different from the Meadowbank project lakes. Wally, which is one of the Meadowbank project lakes, was not included as it is inherently different (e.g., shallower and more productive) than the other project lakes.

PDL, TPS, TEFF]) and six impact areas (four from the EAS [SP-N1, SP-N3, SP-F1, SP-F2) and two from the CREMP [SP and TE]) (see **Figure A3-1** for CREMP areas and **Figure A3-2** for East Dike EAS areas). The availability of two years of data allowed us to test for evidence of a recovery at impact areas in 2010 using Model 2. Details are provided in **Section 3.2.2**.

- Bay-Goose Dike EAS Benthic Invertebrates This was the first of a two-year post-construction benthic community monitoring program targeting the potential effects of sedimentation related to the construction of the Bay-Goose Dike in 2009 and 2010. The data set consists entirely of "after" data for a single year (2010). Consequently, the CI model (Model 1) was used to try to detect spatial differences between control and impact areas. Similar to the East Dike EAS data set, the Bay-Goose Dike data set was expanded to include relevant CREMP areas. The expanded data set includes six control areas (two from the EAS [SP-DT, TP-E3] and four from the CREMP [INUG, PDL, TPS, TEFF]) and six impact areas (three from the EAS [TP-E1, TP-E2, TP-HVH4) and three from the CREMP [SP, TE and TPE]; see Figure A3-1 for CREMP areas and Figure A3-3 for Bay-Goose EAS areas). Details are provided in Section 3.2.3.
- Benthic Community Structure Drivers The available data sets (i.e., CREMP and EAS, across years) were combined to help identify key factors in driving benthic community structure. It is well known that physical factors (e.g., depth, grain size, organic carbon content) and chemical factors (e.g., metals concentrations) can play a significant role in structuring the benthic community. This portion of the study looked at the relative importance of these natural factors and of total suspended solids (TSS; as a surrogate for construction-related sedimentation) using a linear regression approach. Results are presented in Section 3.2.4.

3.2. Results

Response variables for all benthic community analyses were selected to match the guidance of Environment Canada (2002), as follows (see main EAS report for details regarding each variable):

- Total abundance (#/m²; this is actually density) of all taxa
- Total species richness (# taxa/sample)
- Simpson's diversity (D)
- Bray Curtis Distance (BC)

3.2.1. CREMP

Summary data for these variables are presented in **Table A3-2** (the raw data file is provided in **Appendix A1**). Results by Area and Year for each variable are shown in **Figure A3-4**, highlighting Area-Year combinations (dark points) potentially impacted by mining activities.

Statistical analyses focused on testing specific Area-Year combinations against the rest of the data set. Two "Effect" dummy variables were coded (for separate analysis) based on **Table A3-1**: one targeting single-year effects (**Table A3-3**) and the other multi-year effects (**Table A3-4**). Rationale for Effect codes were as follows:

- *TE and SP* These areas were exposed to elevated TSS concentrations in 2008 and are the main focus of these analyses. While exposure concentrations were much lower in 2009 and 2010, they remain impact areas.
- TPE In 2009, this area was sampled on August 13/14, which was during construction of the first phase of the Bay-Goose Dike (monitoring results showed that TSS concentrations had increased relative to background). Consequently, while TSS exposure was relatively low, this area was designated as "impact" starting in 2009.
- TPN Dewatering discharges from the NW Arm of Second Portage Lake were directed into this basin from March through early July 2009. While CREMP water quality monitoring results for that basin showed negligible exposure conditions, the area was conservatively designated as an impact area for 2009. While not directly related to dike construction activities, TSS is the major constituent of interest in the dewatering effluent and therefore relevant to the EAS.

Model 2 (unbalanced design) was used to identify statistically significant (p<0.05) differences between the base Effect levels (i.e., the control Area-Year[s] combination; see **Tables A3-3 and A3-4**) and each subsequent Effect level (i.e., each impact Area-Year[s] combination) (note that PDL and TEFF, while shown in many graphs, were not included in the analyses as these areas were only added in 2009). In cases where key model assumptions (i.e., normality and equality of variance) were not fully met, between two and five model variations were tested to assess the potential implications on the robustness of the conclusions. These included various combinations of basic vs. advanced transformations (e.g., log10[x] vs Box-Cox results for abundance), with/without certain outliers (identified in plots of various model output diagnostics) removed and with explicit modeling of heterogeneous within-group variances (see Heteroscedasticity Modeling in **Section 3.2.2** for more information). In general, the analyses were robust to observed variations from key model assumptions; results of these secondary analyses were only reported when they would result in substantive changes to a conclusion regarding effects.

Results for short-term and long-term effects are reported in **Table A3-5** (2008 & 2009; single-year effects), **Table A3-6** (2010; single-year effects) and **Table A3-7** (2008-2010)

or 2009-2010; multi-year effects) each benthic community metric. Graphical representations of the analyses are shown in two ways: box-whisker plots for the Effect groupings (**Figures A3-5 and A3-6**) and Area-Year interaction plots for each response variable (**Figures A3-7 through A3-10**). Key results for each area are as follows (followed by a brief discussion of uncertainty):

- *SP* (2008, 2009, 2010, and 2008-2010) As reported for the past two years, the 2008 EAS (Azimuth, 2009) reported a marginal trend (0.05<P<0.1) for decreased total abundance at SP that did not extend to TE (see **Table A3-4**). As shown in **Figures A3-4**, **A3-5 and A3-7**, abundance at SP rebounded in 2009 to slightly below "no-effect" predictions for that area and within the range of SP baseline results (i.e., 2006 2007). The 2010 results are similar to those seen in 2008, with >50% reduction in abundance compared to what was expected. Given the single year results, it was not surprising to find a significant multi-year adverse effect for abundance at SP. There were no significant reductions in taxa richness, Simpson's Diversity⁵ or Bray Curtis distance for the short-term or long-term effects. Overall, the 2010 results for abundance at SP are unexpected and warrant further discussion after analysis of the higher-resolution East Dike EAS data set.
- TE (2008, 2009, 2010, and 2008-2010) As discussed above, the marginal trend in abundance observed in 2008 at SP did not extend to TE (for abundance or any other response variable; see **Tables A3-5 through A3-7**). The other single-year (2009 and 2010) and the multi-year (2008-2010) results confirm that finding and reaffirm that there does not appear to be any significant changes at TE related to mining activity. **Figure A3-4** probably shows this the best for all response variables. Most results for TE since 2008 are within the range of baseline results. The two low Simpson's Diversity results for TE in 2009 are due to replicate samples that contained relatively high numbers of sphaerid clams, which substantially reduced the diversity scores for those replicates (but not richness).
- TPE (2009, 2010 and 2009-2010) Given that this area is up-gradient of the East Dike and in the same basin (i.e., East Basin of Third Portage Lake) as the Bay-Goose Dike, the results for this area are most relevant for the Bay-Goose EAS. The main trends seen at this station were a decrease in benthic invertebrate abundance (not significant for 2009 or 2010 separately [Tables A3-5 and A3-6], but significant for the 2009-2010 multi-year effect [Table A3-7]) and an increase in Simpson's Diversity (marginal for 2010 [Table A3-6] and significant for 2009-2010 [Table A3-7]). The overall results for abundance are heavily influenced by the 2008 data, where abundance and richness were anomalously elevated relative to what would be expected in that basin (see Figures A3-7 and A3-8).

⁵ Simpson's diversity index is sensitive to how organisms are allocated across taxa, not to the number of taxa.

• TPN (2009, 2010 and 2009-2010) – As discussed above, this area was potentially exposed to elevated TSS during dewatering of the NW arm of Second Portage Lake starting in March 2009. Based on CREMP water quality (Azimuth, 2010b; 2011a) and Bay-Goose dike construction (Azimuth, 2010c) monitoring, TSS exposure in the north basin was likely low, suggesting that adverse effects to the benthic community would be unlikely. This was confirmed by the CREMP benthos results, which showed no significant adverse effects. The only significant changes observed were increases for richness (2010; **Table A3-6**) and Simpson's Diversity (2009-2010; **Table A3-7**).

As discussed in **Section 2**, effect sizes and associated confidence intervals help to place the observed results in to perspective. As seen in **Table A3-7**, the confidence intervals associated with reported effect sizes were quite large in a number of cases (i.e., reflective of high uncertainty in the estimated effect size). These confidence intervals are due to the fairly high degree of spatial and temporal variability that exists naturally in this region. The larger the confidence interval, the larger the effect size required for a statistically significant result (i.e., lower power). The degree to which the confidence interval extends above zero (or below for an adverse positive change, such as Bray Curtis distance) is a rough measure of how much larger an effect would have needed to be in order to be considered statistically significant.

The implication of this situation is that statistical significance should not be the only consideration when evaluating these results. As per previous year's EAS reports (Azimuth 2009a, 2010a), which highlighted the decrease in abundance at SP in 2008, marginal trends have been highlighted even when P values exceed 0.05. A variety of graphical methods have also been used to help visualize what the statistical models are actually testing.

The observed changes in the CREMP data set will be discussed in more detail in **Section 3.6.5** of the main EAS document using a weight-of-evidence approach.

3.2.2. East Dike EAS Benthic Invertebrates

Summary data for these variables are presented in **Table A3-8** (the raw data file is provided in **Appendix A1**). Results by Area for each variable are shown in **Figure A3-9**; point shape (square for control and round for impact) and fill (none for all areas in 2009, grey for control areas in 2010 and black for impact areas in 2010) are used to highlight potential spatial and temporal trends.

Given that the major TSS release into Second Portage Lake occurred during East Dike construction in 2008, this analysis focused on:

• Assessing whether there is evidence of a prolonged difference between control and impact areas (i.e., indicating potential TSS-related effects).

• Determining whether the data indicate that a recovery has occurred between 2009 and 2010 at impact areas (i.e., as shown by a differential improvement at impact areas relative to control areas).

Given that the spatial control-impact analysis primarily compares Second Portage Lake areas (and one Tehek Lake area) to other lakes, observed spatial differences could be related to inherent lake-specific factors (e.g., productivity) rather than to TSS exposure. The identification of a recovery at the impact areas, however, would provide stronger evidence that observed differences between control-impact areas in 2009 were likely related to TSS exposure. Ultimately, the strongest inferences regarding potential TSS-related impacts to the benthic community can be made by considering any trends identified in the East Dike EAS dataset with the results of the CREMP and Bay-Goose EAS data sets (see **Section 3.6.5** of the main EAS document). Consequently, the remainder of this section focuses on results and leaves further interpretation to later in the report.

A variation of Model 2 was used to analyze this data set (R code: lmer (y ~ Effect*Year + (1|Area) + (1|Area:Year))). In this model, Effect was a dummy variable coded with two levels: control (INUG, PDL, TPS, TEFF, SP-DT) and impact (TE, SP-F1, SP-F2, SP, SP-N1, SP-N2, SP-N3); Year is a factor with levels 2009 and 2010; and the other two are random effects terms characterizing variability associated with Area (i.e., differences related to Area, regardless of Year) and Area:Year (i.e., differences related to specific Area/Year combinations). The interaction term Effect*Year is of particular interest to test for differential changes at impact (I) areas over time relative to control (C) areas (i.e., as would occur if a recovery were occurring).

Results of statistical analyses are presented in **Table A3-9**. Between one and four model variations were tested for each response variable to assess the robustness of conclusions and the potential implications of minor violations in model assumptions. These included various combinations of basic vs. advanced transformations (e.g., log10[x] vs log10[x+230] for abundance) and with/without certain outliers removed. Where the inclusion/exclusion of specific outliers affected the conclusions regarding model results, the specific cases are discussed in more detail to help understand the implications on the conclusions. Results reported in **Table A3-9** are for the following combinations (unless otherwise noted): abundance (advanced transformation:no outlier removal), richness (no transformation:no outlier removal), Simpson's Diversity (no transformation:no outlier removal). Where advanced transformations still failed to meet model assumptions in formal testing, model residuals were plotted and examined for major patterns.

Key results⁶ from **Table A3-9** are as follows:

⁶ Magnitude of response for Effect and Year are shown relative to Control areas in 2009.

- Total abundance There was a significant difference in Effect (C vs. I areas; p<0.05), with the impact areas being 36% lower in abundance. While this difference may be attributable to TSS exposure, it could also be due to inherent differences in Second Portage Lake. There was also a significant difference for Year, with a 37% drop between years. This is consistent with the results of the CREMP, which showed this fairly consistently across the project lakes. The Effect*Year interaction, which tests for differential changes over time at C and I areas (e.g., a potential recovery) was marginal (0.05<p<0.15) for total abundance, showing a recovery magnitude of 43% (but with confidence intervals including a "no recovery" possibility).
- Total taxa richness Similar to abundance, significant decreases in total species richness were detected for Effect (32% drop in richness at I areas; p<0.001) and Year (20% drop in richness in 2010). The Effect*Year results show a recovery trend with a magnitude of 28% (0.05<p<0.15; confidence intervals barely overlap the "no recovery" possibility).
- Simpson's Diversity Caution must be used interpreting these results as model assumptions were not met and none of the transformation options assessed (typical or advanced) worked. The results showed a modest (-8%), but significant (p<0.05), reduction at impact areas for Effect. The 5% drop in 2010 for Year was not significant. The Effect*Year interaction results showed no evidence for a recovery at impact areas in 2010.
- *Bray Curtis Distance* This metric showed significant differences for Effect (impact areas 14% "further away" from control areas) and Year (2010 areas "further away" than 2009 areas). The Effect*Year interaction term results showed no evidence for a recovery at impact areas in 2010.

The observed changes in the ED EAS data set will be discussed in more detail in **Section 3.6.5** of the main EAS document using a weight-of-evidence approach.

3.2.3. Bay-Goose EAS Benthic Invertebrates

Summary data for these variables by Area are presented in **Table A3-10** (the raw data file is provided in **Appendix A1**). Results by Area for each variable are shown in **Figure A3-12**.

Statistical analyses focused on testing differences between control and impact areas. The "Effect" dummy variable for was coded with two levels: controls (INUG, PDL, TPS, TEFF, SP-DT, and TP-E3) and impact (TP-E1, TP-E2, TPE, and TPL-HVH4). Boxplots of response variables by Effect grouping are shown in **Figure A3-13**.

Model 1 was modified to a mixed-effects model (Pinheiro and Bates 2002) by considering Area as a random effect (R code: lmer ($y \sim Effect + (1|Area)$)). This was done to ensure that Effect term was compared to the appropriate denominator degrees of freedom (see **Section 2.2 and 2.3**) Results of statistical analyses are presented in **Table**

A3-11. Model assumptions were generally met for all four response metrics, so only the model was run only once per metric (i.e., model variations with different transformations or with outlier removal were not needed). No significant differences were found between control and impact groups for any response variable. Given that this is based on one year of data only, we cannot rule out the possibility that the impact areas may have had healthier communities in past years (i.e., that the real effect size was much larger). This possibility will be explored more in **Section 3.6.5** of the main EAS document.

3.2.4. Potential Influence of Physical and Chemical Parameters

Benthic invertebrate communities are known to be strongly influenced by physical variables (e.g., grain size, total organic carbon [TOC] and depth) and chemical variables (aluminum, arsenic, cadmium, chromium, copper, and zinc were selected as they typically exceed CCME sediment quality criteria and/or they have been singled out in previous EAS studies). While the studies were designed to minimize differences in the physical variables (e.g., by selecting areas with similar sediment characteristics and depth), formal comparisons were made between each response variable (means for each area/year combination) and a number of physical and chemical variables (typically sampled once per area/year) to determine the extent to which the latter were important in shaping the former.

This analysis looked at all 2009 and 2010 data where benthic invertebrate samples were collected synoptically with sediment chemistry. There were a total of 33 cases, for which the physical and chemical variables have been summarized in **Table A3-12**; benthic data for those area/year combinations have been previously summarized in **Tables A3-2**, **A3-8** and **A3-10**. The results of linear regression analyses (i.e., predicted fit plus/minus 95% confidence intervals) are shown in **Figures A3-14 to A3-16**. Given that 44 relationships were tested (four benthic community metrics x 11 physical/chemical variables), a Bonferroni correction was made to the critical p-value (0.05/44 = 0.001) to properly set the Type 1 error (i.e., "false positives") rate. None of the relationships had p-values within an order of magnitude of 0.001 (based on both Spearman [non-parametric] and Pearson [parametric] correlations), so none were considered statistically significant.

The results above indicate that general physical and chemical differences among area/year combinations were unlikely to be responsible for any observed trends (see preceding sections) in benthic community metrics. For the physical factors, this also validates efforts to minimize differences among areas in grain size and depth across all studies (CREMP and EAS).

 Table A3-1. Area "effect" status by year for CREMP data set.

(Note: Only CREMP areas relevant to 2010 EAS are shown.)

Year	INUG	PDL	TPS	TEFF	SP	TE	TPE	TPN
2006	С		С		С		С	
2007	С		С		С	С	С	С
2008	С		С		1	1	С	С
2009	С	С	С	С	1	1	1	1
2010	С	С	С	С	1	- 1	- 1	1

Note: 1. Area designations: C = control; I = impact.

Table A3-2. Benthic invertebrate descriptors by sampling area and year for the CREMP data set.

				Depth				Ab	undan	ce			R	ichnes	ss		Sim	pson's	Diver	sity Inc	dex		Bray (Curtis I	ndex	
Area	Year	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max
INUG	2006	8	0	8	8	8	761	264	717	522	1043	10.3	2.5	10	8	13	0.82	0.02	0.82	0.81	0.84	0.60	0.06	0.61	0.54	0.66
INUG	2007	9.1	1.1	9.6	7.8	10.1	1022	393	848	783	1717	11.8	0.8	12	11	13	0.85	0.03	0.86	0.79	0.87	0.55	0.06	0.56	0.47	0.63
INUG	2008	9.4	1.9	8.7	8	12.6	1900	1975	1239	391	5326	13.8	3.7	14	8	17	0.87	0.05	0.86	0.79	0.92	0.60	0.12	0.57	0.49	0.77
INUG	2009	7.3	0.5	7	6.9	7.9	1191	407	1130	630	1630	13.6	3.1	15	8	15	0.85	0.06	0.88	0.74	0.90	0.46	0.03	0.48	0.43	0.49
INUG	2010	7.7	0.9	8	6.7	8.7	639	133	630	478	783	8.4	2.5	7	6	12	0.75	0.07	0.77		0.81	0.58	0.10	0.54	0.45	0.72
PDL	2009	7.7	0.5	7.5	7.2	8.3	1726	999	1348	761	3326	10.8	0.8	11	10	12	0.78	0.10	0.81	0.61	0.88	0.54	0.11	0.52	0.41	0.69
PDL	2010	6.9	0.5	6.8	6.5	7.7	896	484	1043	348	1500	8.4	0.5	8	8	9	0.75		0.77			0.65	0.04	0.65	0.61	0.71
TPS	2006	8.7	0	8.7	8.7	8.7	971	305	1065	630	1217	10.7	1.5	11	9	12	0.86		0.87			0.51	0.06	0.49	0.46	0.57
TPS	2007	9.1	1.3	8.4	8.3	11.4	2100	1961	1130	826	5500	9.8	3.1	9	7	14	0.80	0.08	0.83	0.66	0.86	0.60	0.04	0.61	0.55	0.66
TPS	2008	10.1	1	9.9	9.1	11.7	1604	552	1674	696	2043	10.6	1.5	10	9	13	0.76	0.10	0.78	0.62	0.88	0.58	0.05	0.59	0.52	0.65
TPS	2009	7.8	1.1	7.3	6.8	9.7	1961	1035	2022	717	3326	10.4	1.3	11	8	11	0.82	0.08	0.84			0.52	0.07		0.40	0.60
TPS	2010	7.6	0.7	7.6	6.7	8.4	1296	667	1587	565	1870	8.2	2.8	9	5	12	0.76	0.08	0.77		0.84	0.55	0.07		0.47	0.63
TEFF	2009	7.1	0.5	6.9	6.6	7.8	1235	249	1196	978	1543	10.4	1.8	11	8	12	0.84	0.04	0.84		0.88	0.47	0.04		0.43	0.52
TEFF	2010	7.3	0.5	7.4	6.6	8	922	298	935	652	1391	10.8	2.4	11	8	14	0.80	0.06	0.81	0.69	0.85	0.49		0.51	_	
SP	2006	7.8	0.0	7.8	7.8	7.8	623	91	652	522	696	6.3	2.1	7	4	8	0.67	0.12	0.74		0.75	0.66	0.02	0.65	0.65	0.69
SP	2007	9.1	1.0	9.1	8	10.6	913	390	978	457	1435	9.2	2.5	10	5	11	0.80	0.08	0.82		0.90	0.64	0.11	0.57	0.55	
SP	2008	9.6	2.4	9.9	7	13.2	413	130	457	239	565	7.4	2.3	7	5	11	0.82	0.04		0.78	0.86	0.74	0.05	0.73		0.81
SP	2009	7.4	0.5	7.5	6.8	8.1	778	114	804	630	913	6.8	1.3	7	5	8	0.78	0.03	0.77	0.74	0.83	0.55	0.07			0.66
SP	2010	8.0	0.9	8	6.8	8.9	257	113	217	174	457	4.4	1.9	5	2	7	0.70	0.12	0.76		0.82	0.75	0.09		0.59	0.82
TE	2007	9.1	1.3	9.1	7.1	10.7	952	251	870	783	1391	8.6	2.6	10	4	10	0.74	0.09	-	0.58		0.62	0.04	0.60	0.58	0.66
TE	2008	10.9	2.4	11.7	7.5	13.1	757	159	761	543	978	10.0	1.6	10	8	12	0.79	0.08	0.83	0.71	0.86	0.59	0.05	0.60	0.53	0.65
TE	2009	7.5	0.6	7.4	6.9	8.2	770	145	848	522	870	7.0	1.2	7	5	8	0.69		0.79	0.49	0.87	0.55	0.07	0.57	0.46	0.62
TE	2010	8.0	1.0	7.7	6.9	9.6	596	322	630	217	1022	6.4	2.9	7	3	10	0.71	0.09	-	0.56	0.80	0.66	0.11			0.78
TPE	2006	8.0	0.0	8	8	8	3261	606	3543	2565	3674	8.3	1.5	8	7	10	0.70	0.09	0.74		0.76	0.66	0.04	0.65		0.71
TPE	2007	8.5	8.0	8.7	7.6	9.5	1578	240	1609	1217	1891	10.6	1.3	10	9	12	0.79		0.81	0.70	0.84	0.49	0.05	0.49		
TPE	2008	9.6	1.6	8.9	7.8	11.5	5626	1013	5261	4478	7152	14.2	2.5	15	10	16	0.71	0.09	0.72		0.80	0.73	0.02	0.73	0.70	0.74
TPE	2009	7.1	0.6	6.9	6.5	7.8	1713	439	1826	1065	2239	11.2	1.3	12	9	12	0.83	0.04	0.83	0.77	0.89	0.50	0.06	0.49	0.42	0.57
TPE	2010	7.5	0.9	7.5	6.5	8.4	1139	182	1152	848	1348	9.8	1.3	10	8	11	0.79	0.04	0.81	0.74	0.83	0.53	0.03	0.53	0.50	0.57
TPN	2007	8.9	0.6	9.2	8	9.4	1422	471	1326	978	1935	9.8	3.3	11	6	14	0.81	0.08	0.81	0.68	0.88	0.53	0.06	0.54	0.46	0.59
TPN	2008	8.3	0.6	8.4	7.8	9.2	1017	509	1326	261	1391	8.2	3.1	9	3	11	0.68	0.08	0.66		0.81	0.73	0.08	0.73	0.64	0.83
TPN	2009	8.2	0.7	8.5	7.1	8.8	1239	279	1174	891	1565	9.2	1.8	9	7	11	0.79	0.02	0.78	0.77	0.83	0.50	0.02	0.51	0.47	0.51
TPN	2010	8.7	0.8	8.8	7.5	9.5	1322	731	1435	196	2109	10.4	1.5	11	8	12	0.77	0.13	0.75	0.64	0.97	0.62	0.10	0.58	0.57	0.80

Abbreviations: SD = standard deviation (presented for interest only on raw data as variables may not be normally distributed); Med = median; Min = minimum; Max = maximum.

Table A3-3. Area-year "effects" coding for short-term effects, CREMP data set.

Year	INUG	PDL	TPS	TEFF	SP	TE	TPE	TPN
2006	0		0		0		0	
2007	0		0		0	0	0	0
2008	0		0		1	4	0	0
2009	0	0	0	0	2	5	7	9
2010	0	0	0	0	3	6	8	10

Note: 1. Area designations: C = control; I = impact.

Table A3-4. Area-year "effect" coding for long-term effects, CREMP data set.

Year	INUG	PDL	TPS	TEFF	SP	TE	TPE	TPN
2006	0		0		0		0	0
2007	0		0		0	0	0	0
2008	0		0		1	2	0	0
2009	0	0	0	0	1	2	3	4
2010	0	0	0	0	1	2	3	4

Note: 1. Area designations: C = control; I = impact.

Table A3-5. Results of statistical analyses of benthic invertebrate community descriptors for the 2006 - 2009 CREMP data set, short-term Effect (from 2009 EAS report; Azimuth, 2010).

	Total	Таха	Simpson's	Bray Curtis
	Abundance	Richness	Diversity	Distance
		(# taxa/		
	(#/m²)	sample)	(unitless)⁵	(unitless)
Data Transformation ¹	Log10	None	None	Log10
Advanced Transformation ²	Log10(x-120)	NA	NA	NA
Tests relative to controls				
C-SP2008 Differences?	Marginal	No	Marginal	No
p-value	0.08	0.27	0.12	0.95
Effect Size	-578	-2.4	0.11	-0.01
95% Upper Cl ³	-775	-7.1	-0.04	-0.24
95% Lower Cl ³	184	2.3	0.26	0.33
C-TE2008 Differences?	No	No	Marginal	No
p-value	0.47	0.89	0.14	0.24
Effect Size	-396	0.3	0.12	-0.16
95% Upper Cl ³	-881	-5.0	-0.05	-0.36
95% Lower Cl ³	1824	5.6	0.28	0.16
C-SP2009 Differences?	No	No	No	No
p-value	0.68	0.26	0.60	0.75
Effect Size	-195	-2.6	0.04	-0.04
95% Upper Cl ³	-693	-7.7	-0.12	-0.24
95% Lower Cl ³	1948	2.5	0.20	0.27
C-TE2009 Differences?	No	No	No	No
p-value	0.51	0.37	0.80	0.77
Effect Size	-384	-2.3	-0.02	-0.04
95% Upper Cl ³	-893	-7.9	-0.20	-0.26
95% Lower Cl ³	2195	3.4	0.16	0.31
C-TPE2009 Differences?	No	No	No	No
p-value	0.19	0.68	0.24	0.65
Effect Size	-2047	-0.9	0.08	-0.04
95% Upper Cl ³	-3197	-5.7	-0.07	-0.21
95% Lower Cl ³	2512	3.9	0.23	0.21

- 1. Initial transformation options discussed in ${\bf Section}~{\bf 2}.$
- ${\bf 2.}~{\bf Advanced}~{\bf transformations}~{\bf determined}~{\bf using}~{\bf Box\text{-}Cox}~{\bf method}~{\bf (Venables}~{\bf \&}~{\bf Ripley}$
- 3. Confidence intervals reported relative to direction of effect (i.e., positive or negative).
- 4. Results are for model adjusted to account for unequal variances (see text for details).
- 5. Model assumptions not met, see text for details.

Table A3-6. Results of statistical analyses of benthic invertebrate community descriptors for the 2010 CREMP data set, short-term Effects.

	Total	Таха	Simpon's	Bray Curtis
	Abundance	Richness	Diversity	Distance
		(# taxa/	-	
	$(\#/m^2)$	sample)	(unitless) ⁵	(unitless)
Data Transformation ¹	Log10	None	None	Log10
Advanced Transformation ²	Log10(x-70)	NA	NA	NA
Tests relative to controls				
C-SP2010 Differences?	Marginal	No	No	No
p-value	0.07	0.55	0.67	0.49
"No Effect" Mean ³	599	5.7	0.67	0.67
Effect Size	-362	-1.3	0.03	0.08
95% Upper Cl⁴	-483	-6.2	-0.11	-0.15
95% Lower Cl ⁴	83	3.6	0.16	0.43
C-TE2010 Differences?	No	No	No	No
p-value	0.57	0.74	0.29	0.94
"No Effect" Mean	697	5.6	0.64	0.66
Effect Size	-194	0.8	0.07	-0.01
95% Upper Cl ⁴	-524	-4.6	-0.07	-0.23
95% Lower Cl ⁴	1203	6.3	0.22	0.33
C-TPE2010 Differences?	No	No	Marginal	No
p-value	0.23	0.50	0.06	0.45
"No Effect" Mean	2160	8.4	0.67	0.60
Effect Size	-1035	1.4	0.12	-0.07
95% Upper Cl ⁴	-1780	-3.2	-0.01	-0.23
95% Lower Cl ⁴	1506	6.1	0.24	0.16
C-TPN2010 Differences?	No	Yes (incr.)	Marginal	No
p-value	0.55	0.05	0.11	0.88
"No Effect" Mean	714	5.4	0.67	0.60
Effect Size	263	5.0	0.10	0.02
95% Upper Cl ⁴	-392	0.1	-0.03	-0.18
95% Lower Cl ⁴	2614	9.8	0.23	0.30

- 1. Initial transformation options discussed in **Section 2**.
- 2. Advanced transformations determined using Box-Cox method (Venables & Ripley 2002).
- 3. "No Effect" Mean estimated by not including the Effect coefficient when estimating Area-Year mean.
- 4. Confidence intervals estimated using 2 * Std. Error of Effect Size estimate.
- 5. Model assumptions not met, see text for details.

Table A3-7. Results of statistical analyses of benthic invertebrate community descriptors for the 2006 to 2010 CREMP data set, long-term Effects.

	Total	Taxa	Simpon's	Bray Curtis
	Abundance	Richness	Diversity	Distance
		(# taxa/		
	(#/m²)	sample)	(unitless)⁵	(unitless)
Data Transformation ¹	Log10	None	None	Log10
Advanced Transformation ²	Log10(x-70)	NA	NA	NA
Tests relative to controls				
C-SP'08-'10 Differences?	Yes	No	Marginal	No
p-value	0.04	0.18	0.15	1.00
"No Effect" Mean ³	849	8.30	0.70	0.67
Effect Size	-444	-2.1	0.06	0.00
95% Upper Cl⁴	-629	-5.3	-0.03	-0.14
95% Lower CI ⁴	-32	1.1	0.16	0.17
C-TE'08-'10 Differences?	No	No	No	No
p-value	0.32	0.84	0.21	0.37
"No Effect" Mean ³	993	8.16	0.67	0.67
Effect Size	-340	-0.36	0.06	-0.08
95% Upper Cl ⁴	-699	-4.16	-0.04	-0.22
95% Lower CI ⁴	595	3.45	0.17	0.11
C-TPE'09-'10 Differences?	Yes	No	Yes	No
p-value	0.04	0.80	0.01	0.25
"No Effect" Mean ³	2988	10.13	0.68	0.58
Effect Size	-1622	0.37	0.13	-0.07
95% Upper Cl ⁴	-2366	-2.76	0.04	-0.16
95% Lower CI ⁴	-280	3.49	0.21	0.07
C-TPN'09-'10 Differences?	No	Marginal	Yes	No
p-value	0.77	0.11	0.04	0.63
"No Effect" Mean ³	979	7.19	0.68	0.59
Effect Size	109	2.61	0.10	-0.03
95% Upper Cl ⁴	-496	-0.70	0.01	-0.14
95% Lower Cl ⁴	1264	5.92	0.19	0.13

- 1. Initial transformation options discussed in **Section 2**.
- 2. Advanced transformations determined using Box-Cox method (Venables & Ripley 2002).
- 3. "No Effect" Mean estimated by not including the Effect coefficient when estimating Area-Year mean.
- 4. Confidence intervals estimated using 2 * Std. Error of Effect Size estimate.
- 5. Model assumptions not met, see text for details.

Table A3-8. Benthic invertebrate descriptors by sampling area and year for the East Dike EAS data set.

	Depth						Abundance					Richness					Simpson's Diversity Index					Bray Curtis Index				
Area	Year	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max
INUG	2009	7	0	7	6.9	7.9	1191	407	1130	630	1630	13.6	3.1	15	8	15	0.85	0.06	0.88	0.74	0.90	0.46	0.03	0.48	0.43	0.49
INUG	2010	8	1	8	6.7	8.7	639	133	630	478	783	8.4	2.5	7	6	12	0.75	0.07	0.77	0.64	0.81	0.58	0.10	0.54	0.45	0.72
PDL	2009	8	0	7.5	7.2	8.3	1726	999	1348	761	3326	10.8	0.8	11	10	12	0.78	0.10	0.81	0.61	0.88	0.54	0.11	0.52	0.41	0.69
PDL	2010	7	0	6.8	6.5	7.7	896	484	1043	348	1500	8.4	0.5	8	8	9	0.75	0.11	0.77	0.58	0.88	0.65	0.04	0.65	0.61	0.71
TPS	2009	8	1	7.3	6.8	9.7	1961	1035	2022	717	3326	10.4	1.3	11	8	11	0.82	0.08	0.84	0.72	0.92	0.52	0.07	0.52	0.40	0.60
TPS	2010	8	1	7.6	6.7	8.4	1296	667	1587	565	1870	8.2	2.8	9	5	12	0.76	0.08	0.77	0.63	0.84	0.55	0.07	0.57	0.47	0.63
TEFF	2009	7	0	6.9	6.6	7.8	1235	249	1196	978	1543	10.4	1.8	11	8	12	0.84	0.04	0.84	0.78	0.88	0.47	0.04	0.45	0.43	0.52
TEFF	2010	7	1	7.4	6.6	8	922	298	935	652	1391	10.8	2.4	11	8	14	0.80	0.06	0.81	0.69	0.85	0.49	0.04	0.51	0.42	0.53
SP-DT	2009	7	0	7.5	6.5	7.6	1122	159	1174	935	1304	10.8	1.1	11	9	12	0.78	0.07	0.77	0.69	0.87	0.52	0.02	0.52	0.50	0.55
SP-DT	2010	8	1	8.5	7.3	9.8	817	186	848	630	1087	9.2	1.1	10	8	10	0.81	0.08	0.81	0.71	0.91	0.55	0.07	0.55	0.46	0.65
TP-E3	2010	11	1	10	10	12	626	262	674	217	913	6.4	1.9	7	4	9	0.61	0.10	0.58	0.53	0.78	0.60	0.11	0.57	0.50	0.78
TE	2009	7	1	7.4	6.9	8.2	770	145	848	522	870	7.0	1.2	7	5	8	0.69	0.18	0.79	0.49	0.87	0.55	0.07	0.57	0.46	0.62
TE	2010	8	1	7.7	6.9	9.6	596	322	630	217	1022	6.4	2.9	7	3	10	0.71	0.09	0.74	0.56	0.80	0.66	0.11	0.64	0.56	0.78
SP-F2	2009	7	0	7.1	6.9	7.6	757	273	935	370	978	8.0	3.5	7	5	14	0.81	0.07	0.79	0.74	0.90	0.59	0.06	0.58	0.51	0.67
SP-F2	2010	7	0	7.4	7.2	7.8	1213	824	717	478	2348	8.0	1.4	7	7	10	0.75	0.06	0.76	0.64	0.80	0.69	0.04	0.68	0.66	0.75
SP-F1	2009	7	0	7	6.8	7.3	1474	531	1391	1043	2370	8.6	1.5	8	7	11	0.78	0.03	0.80	0.73	0.81	0.58	0.05	0.58	0.53	0.64
SP-F1	2010	9	1	9.6	7.7	9.9	1135	244	1239	761	1348	8.0	1.9	8	5	10	0.77	0.05	0.75	0.71	0.83	0.54	0.05	0.54	0.50	0.62
SP	2009	7	1	7.5	6.8	8.1	778	114	804	630	913	6.8	1.3	7	5	8	0.78	0.03	0.77	0.74	0.83	0.55	0.07	0.56	0.48	0.66
SP	2010	8	1	8	6.8	8.9	257	113	217	174	457	4.4	1.9	5	2	7	0.70	0.12	0.76	0.54	0.82	0.75	0.09	0.78	0.59	0.82
SP-N1	2009	7	0	7.2	6.5	7.7	1135	342	1022	891	1739	6.6	1.1	7	5	8	0.72	0.07	0.73	0.62	0.81	0.57	0.06	0.59	0.49	0.64
SP-N1	2010	8	1	7.5	7.1	10	1239	926	1217	152	2609	6.4	3.0	6	2	10	0.59	0.20	0.57	0.29	0.80	0.67	0.10	0.65	0.57	0.84
SP-N2	2009	8	1	7.4	6.9	8.9	652	170	609	457	870	7.4	1.9	8	5	10	0.69	0.16	0.76	0.42	0.83	0.57	0.04	0.57	0.52	0.63
SP-N2	2010	8	1	8.3	7.5	9.3	957	317	935	652	1435	7.6	1.1	8	6	9	0.73	0.09	0.69	0.66	0.86	0.56	0.04	0.58	0.50	0.60
SP-N3		7	0	7.4	6.9	8	730	128	696	565	913	8.8	2.0	8	7	11	0.78	0.09	0.79	0.63	0.88	0.56	0.05	0.57		0.61
SP-N3	2010	8	1	8.7	7.3	9.2	700	314	913	304	935	7.4	1.5	8	5	9	0.75	0.11	0.79	0.56	0.84	0.60	0.10	0.61	0.50	0.75

Abbreviations: SD = standard deviation (presented for interest only on raw data as variables may not be normally distributed); Med = median; Min = minimum; Max = maximum.

Table A3-9. Results of statistical analyses of benthic invertebrate community descriptors for the 2009 to 2010 East Dike EAS data set.

	Total	Taxa	Simpon's	Bray Curtis
	Abundance	Richness (# taxa/	Diversity	Distance
	(#/m²)	sample)	(unitless)	(unitless)
Data Transformation ¹	Log10	None	None	Log10
Advanced Transformation ²	Log10(x+230)	NA	NA	Log10(x-0.24)
Model Results				
C-I Effect Difference?	Yes	Yes	Yes	Yes
p-value	0.037	< 0.001	0.049	0.020
Magnitude	-36%	-32%	-8%	14%
Year Difference	Yes	Yes	No	Yes
p-value	0.014	0.003	0.174	0.037
Magnitude	-37%	-20%	-5%	12%
Effect*Year Difference?	Marginal	Marginal	No	No
p-value	0.148	0.075	0.950	0.829
"No Effect" Mean	513	5.4	0.71	0.64
Actual Mean	734	6.9	0.71	0.63
"Recovery" Size	221	1.5	0.00	-0.01
"Recovery" Magnitude	43%	28%	0%	-2%
95% Lower Cl ³ of Recovery Size	-77	-0.2	-0.08	-0.10
95% Upper Cl ³ of Recovery Size	652	3.2	0.08	0.10

- 2. Advanced transformations determined using Box-Cox method (Venables & Ripley 2002).
- 3. Confidence intervals estimated using 2 * Std. Error of Effect Size estimate.

^{1.} Initial transformation options discussed in **Section 2**.

Table A3-10. Benthic invertebrate descriptors by sampling area and year for the Bay Goose Dike EAS data set.

				Depth				Ak	oundan	ce			R	ichnes	ss		Sim	pson's	Diver	sity In	dex		Bray (Curtis I	ndex	
Area	Year	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max	Mean	SD	Med	Min	Max
INUG	2010	8	1	8	6.7	8.7	639	133	630	478	783	8.4	2.5	7	6	12	0.75	0.07	0.77	0.64	0.81	0.58	0.10	0.54	0.45	0.72
PDL	2010	7	0	6.8	6.5	7.7	896	484	1043	348	1500	8.4	0.5	8	8	9	0.75	0.11	0.77	0.58	0.88	0.65	0.04	0.65	0.61	0.71
TPS	2010	8	1	7.6	6.7	8.4	1296	667	1587	565	1870	8.2	2.8	9	5	12	0.76	0.08	0.77	0.63	0.84	0.55	0.07	0.57	0.47	0.63
TEFF	2010	7	1	7.4	6.6	8	922	298	935	652	1391	10.8	2.4	11	8	14	0.80	0.06	0.81	0.69	0.85	0.49	0.04	0.51	0.42	0.53
SP-DT	2010	8	1	8.5	7.3	9.8	817	186	848	630	1087	9.2	1.1	10	8	10	0.81	0.08	0.81	0.71	0.91	0.55	0.07	0.55	0.46	0.65
TP-E3	2010	11	1	10	10	12	626	262	674	217	913	6.4	1.9	7	4	9	0.61	0.10	0.58	0.53	0.78	0.60	0.11	0.57	0.50	0.78
TP-E2	2010	9	1	9.5	8.9	10	909	469	891	370	1652	9.6	1.8	9	8	12	0.78	0.10	0.82	0.66	0.88	0.58	0.05	0.57	0.52	0.65
TPE	2010	8	1	7.5	6.5	8.4	1139	182	1152	848	1348	9.8	1.3	10	8	11	0.79	0.04	0.81	0.74	0.83	0.53	0.03	0.53	0.50	0.57
TP-E1	2010	8	0	8	7.4	8.5	496	186	609	217	652	7.2	1.3	7	6	9	0.82	0.05	0.81	0.76	0.87	0.64	0.10	0.65	0.54	0.80
HVH-4	2010	8	0	7.5	7	8	439	286	370	109	848	6.4	3.8	7	2	12	0.66	0.18	0.66	0.40	0.89	0.66	0.17	0.69	0.43	0.88

Abbreviations: SD = standard deviation (presented for interest only on raw data as variables may not be normally distributed); Med = median; Min = minimum; Max = maximum.

Table A3-11. Results of statistical analyses of benthic invertebrate community descriptors for the 2010 Bay Goose Dike EAS data set.

	Total Abundance	Taxa	Simpon's	Bray Curtis
	Abundance	Richness (# taxa/	Diversity	Distance
	(#/m²)	sample)	(unitless)	(unitless)
Data Transformation ¹	Log10	None	None	Log10
Advanced Transformation ²	NA	NA	NA	NA
Tests relative to control [C]				
C-I Effect Difference?	No	No	No	No
p-value	0.381	0.757	0.729	0.416
Control Group Mean	777	8.6	0.75	0.56
Impact Group Mean	622	8.3	0.76	0.59
Effect Size	-155	-0.3	0.02	0.03
Effect Magnitude (%)	-20%	-4%	2%	5%
95% Upper Cl ³ of Effect Size	-416	-2.5	-0.09	-0.05
95% Lower Cl ³ of Effect Size	292	1.9	0.12	0.12

- 1. Initial transformation options discussed in Section 2.
- 2. Advanced transformations determined using Box-Cox method (Venables & Ripley 2002).
- 3. Confidence intervals estimated using 2 * Std. Error of Effect Size estimate.

Table A3-12. Physical and chemical characteristics (means) by sampling area and year for the CREMP & EAS data sets.

Area	Year	Depth (m)	TOC (%)	Sand (%)	Silt (%)	Clay (%)	Aluminum (mg/kg)	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Zinc (mg/kg)
INUG	2009	7.26	3.52	7	69	24	25800	16.3	0.5	115	55.2	90
INUG	2010	7.7	2.66	13	63	24	23600	16.8	0.5	115	48.6	84.7
PDL	2009	7.66	0.72	20	46	33	27400	23.1	0.5	125	47.5	92.6
PDL	2010	6.9	2.65	11	73	16	20400	13	0.5	135	51.4	80.9
TPN	2009	8.18	2.86	25	54	21	16700	9.8	0.5	101	46.7	62.8
TPN	2010	8.74	3.11	23	72	5	16900	9.8	0.5	110	50.3	69.3
TPS	2009	7.82	4.22	5	62	33	25100	18	0.5	112	70.6	95.3
TPS	2010	7.6	4.1	14	78	9	23600	15.8	0.5	113	60.9	97.3
TPE	2009	7.08	3.41	6	58	36	23800	18.1	0.5	80.7	53.8	101
TPE	2010	7.5	3.02	4	72	24	25300	38.1	0.56	90.7	51.5	95.9
HVH-4	2009	7.3	3.26	1	65	34	29000	25.6	0.5	88.8	67.7	109
HVH-4	2010	7.5	2.77	3	48	48	36100	26.6	0.5	119	89.2	141
TP-E1	2010	7.88	2.86	3	64	33	25400	23.2	0.5	111	53.7	106
TP-E2	2010	9.46	3.18	4	63	33	26200	32.4	0.5	97.9	65.5	109
TP-E3	2010	10.6	3.12	3	70	27	26500	24.6	0.5	115	84.4	115
SP	2009	7.44	3.74	2	68	30	28300	42.5	0.5	76.9	89.5	124
SP	2010	7.98	3.91	2	66	32	33600	36.2	0.72	93.7	107	139
SP-F1	2009	7.02	3.16	7	67	26	27600	54	0.5	72.2	78.8	115
SP-F1	2010	9.08	4.1	7	66	27	25400	50.2	0.5	80.5	73.7	113
SP-F2	2009	7.26	5.51	6	65	30	35100	17.7	0.96	87.4	127	255
SP-F2	2010	7.48	6.7	3	74	24	29900	15.2	0.8	91.2	130	160
SP-N1	2009	7.17	3.56	16	64	20	27900	15	0.5	84.7	75.8	113
SP-N1	2010	7.96	2.88	17	61	21	22500	10.8	0.5	75.2	59.6	102
SP-N2	2009	7.62	3.63	5	71	23	28700	41.3	0.5	76.2	94.6	116
SP-N2	2010	8.4	4.4	3	70	28	28100	35.5	0.5	95.5	87.1	123
SP-N3	2009	7.43	4.75	1	64	34	27900	60.9	0.57	73.7	94.4	125
SP-N3	2010	8.3	4.22	2	71	27	27600	104	0.5	86.8	97.5	131
SP-DT	2009	7.3	4.17	9	68	23	40100	12.3	0.83	82.7	133	171
SP-DT	2010	8.34	4.96	6	68	26	29400	59.2	2.6	71.5	134	152
TE	2009	7.48	2.49	5	66	29	27700	23.5	0.5	60.5	74.4	116
TE	2010	7.98	2.49	26	57	17	20100	15.7	0.5	51.1	49.9	86.7
TEFF	2009	7.08	2.87	5	61	34	25400	12.7	0.5	55.2	57.2	104
TEFF	2010	7.32	3.38	6	76	18	25500	13.1	1.47	58.2	61.2	109

Figure A3-1. Benthic invertebrate stations, Meadowbank CREMP, 2010.

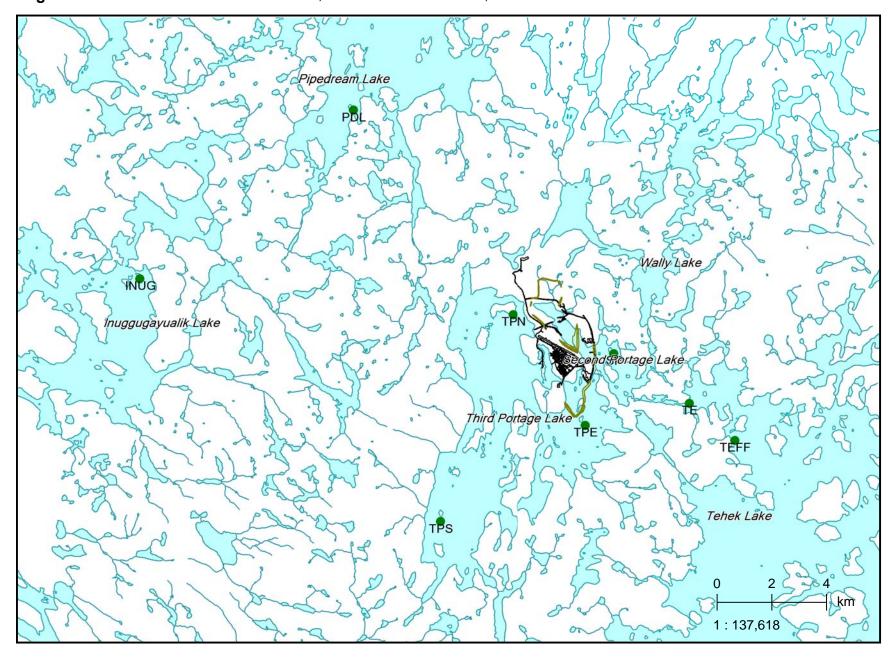
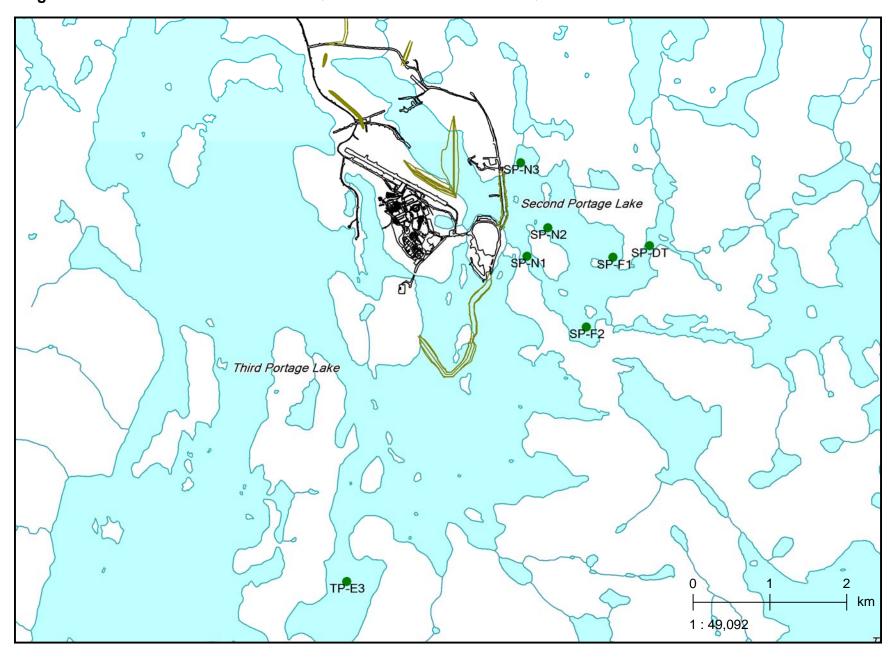
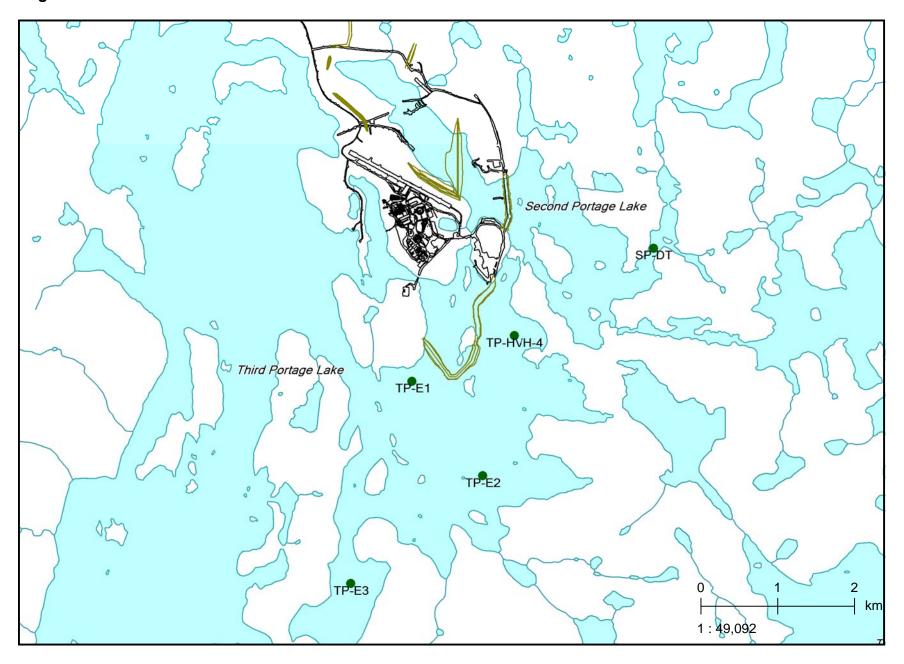
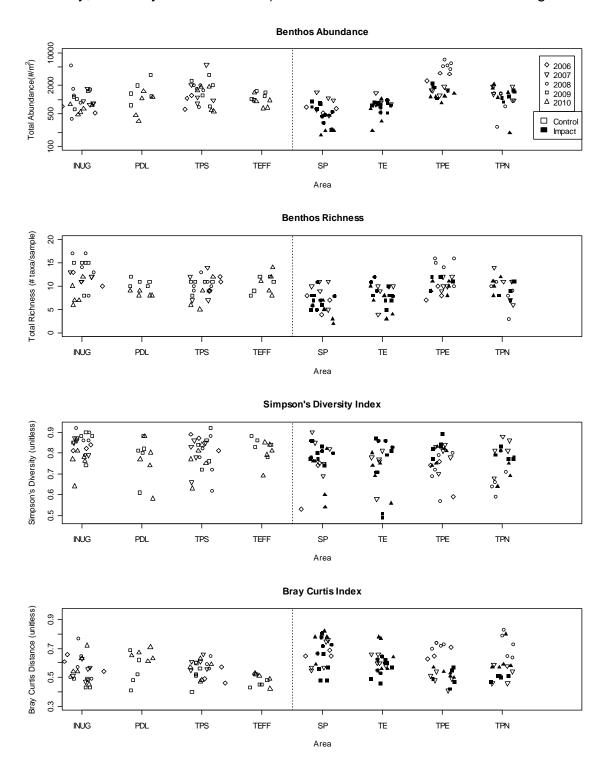
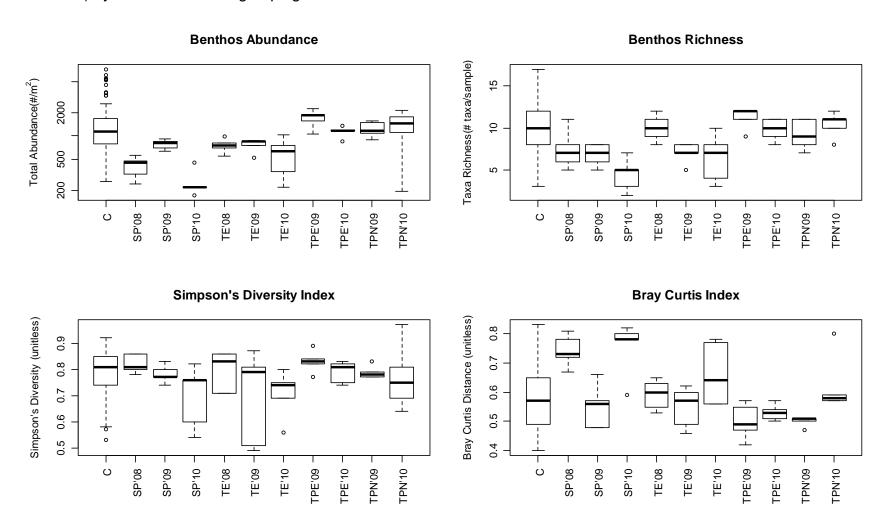
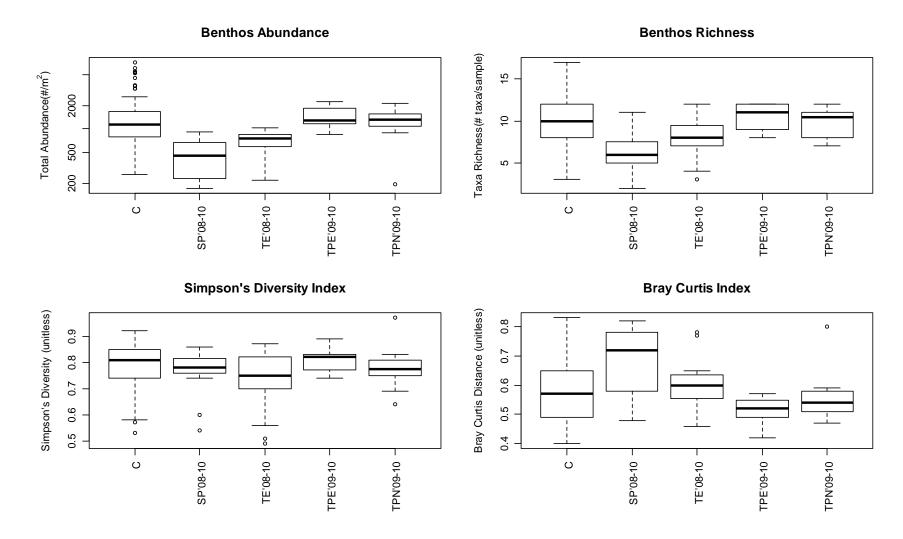
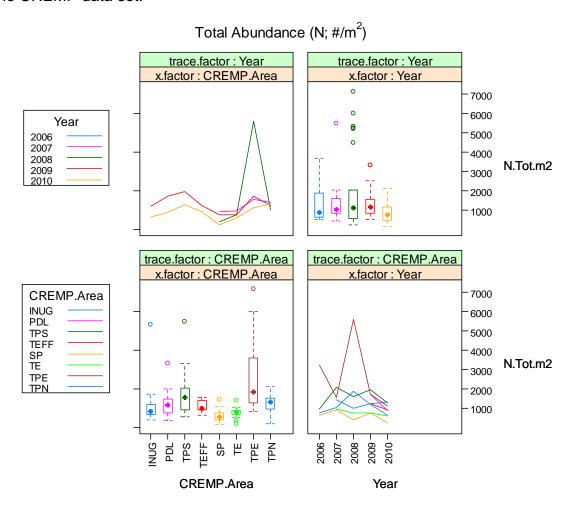


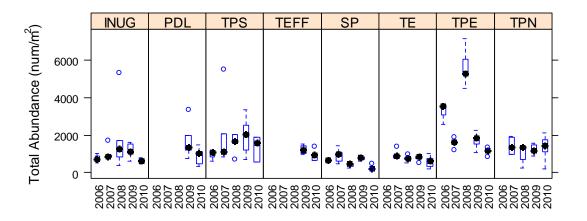
Figure A3-2. Benthic invertebrate stations, Meadowbank East Dike EAS, 2010.

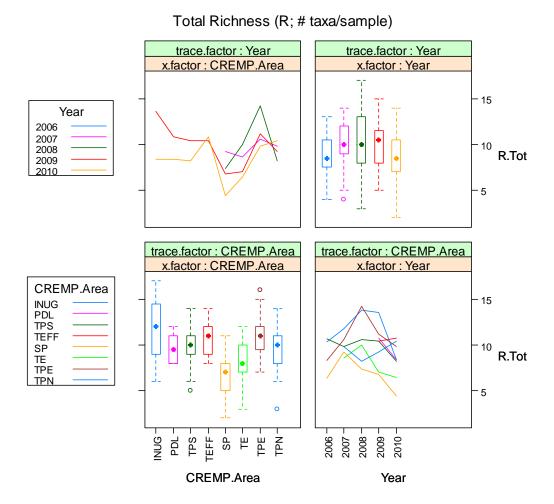




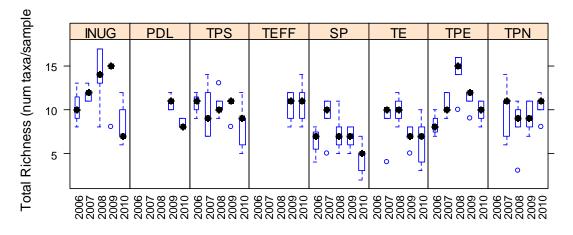

Figure A3-3. Benthic invertebrate stations, Meadowbank Bay-Goose EAS, 2010.

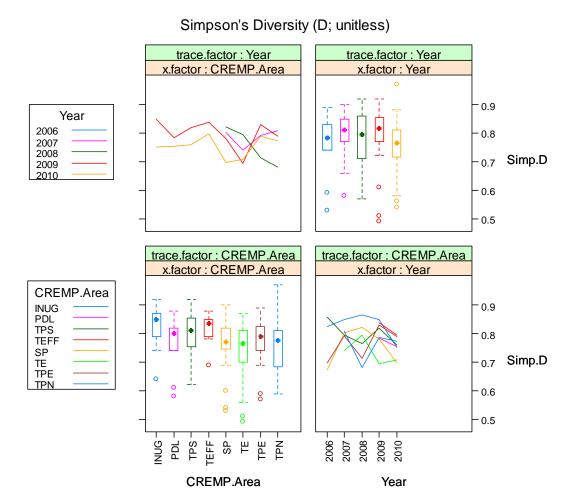

Figure A3-4. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across CREMP areas for 2006 through 2010.

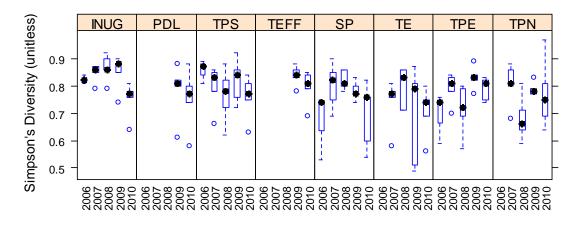

Figure A3-5. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by short-term Effect grouping for CREMP data set.

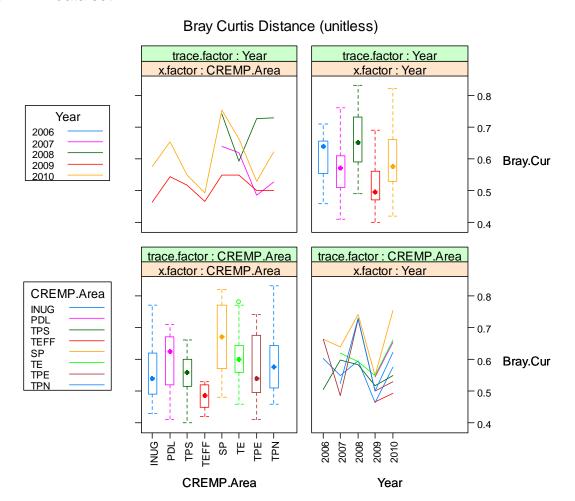

Figure A3-6. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by long-term Effect grouping for CREMP data set.

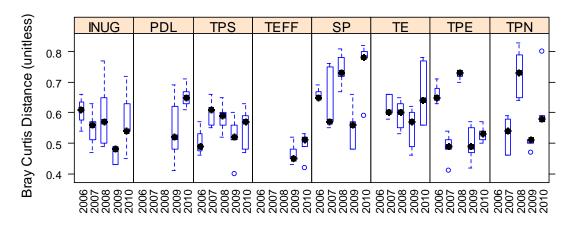

Figure A3-7. Interaction Plot for total benthic abundance by Area and Year for the CREMP data set.

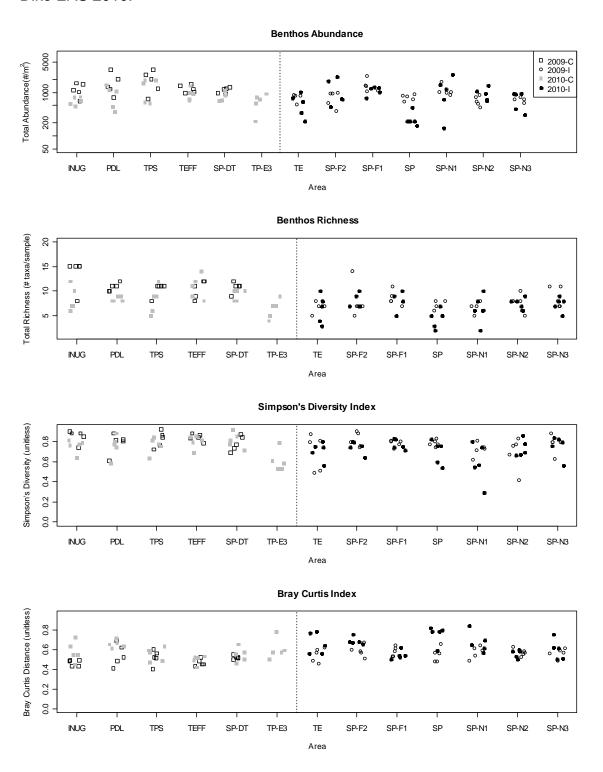

Benthos Abundance

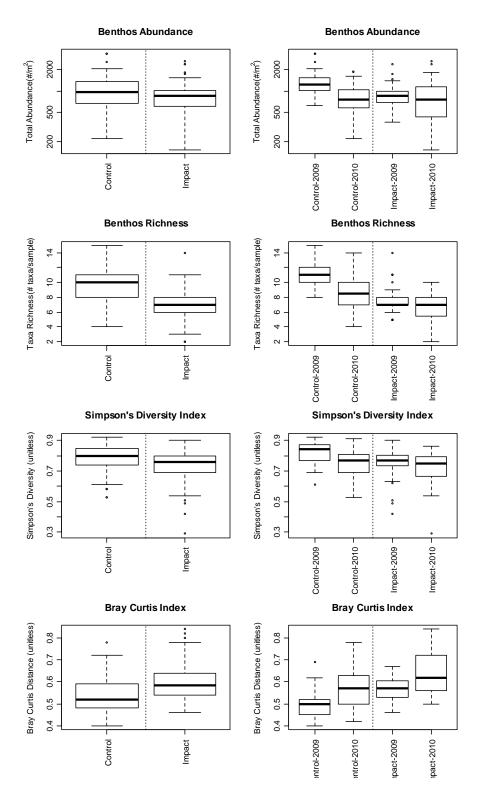

Figure A3-8. Interaction Plot for total benthic richness by Area and Year for the CREMP data set.

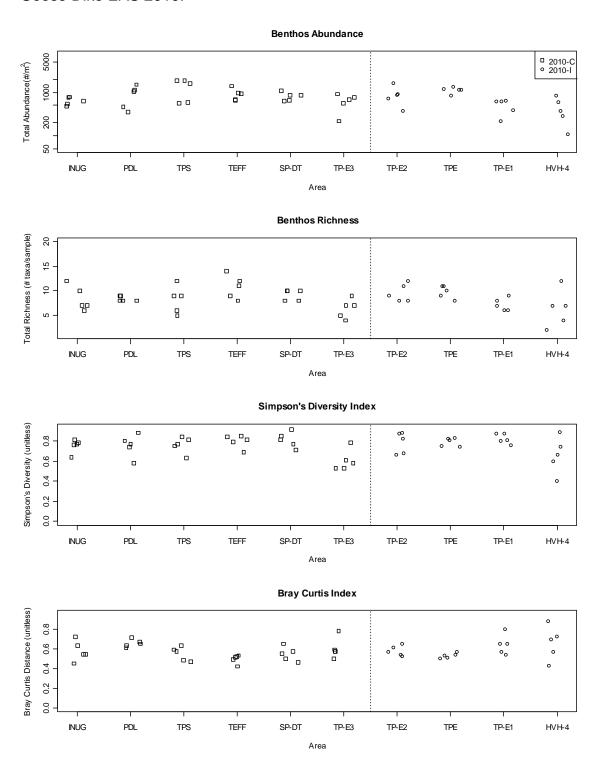

Benthos Richness

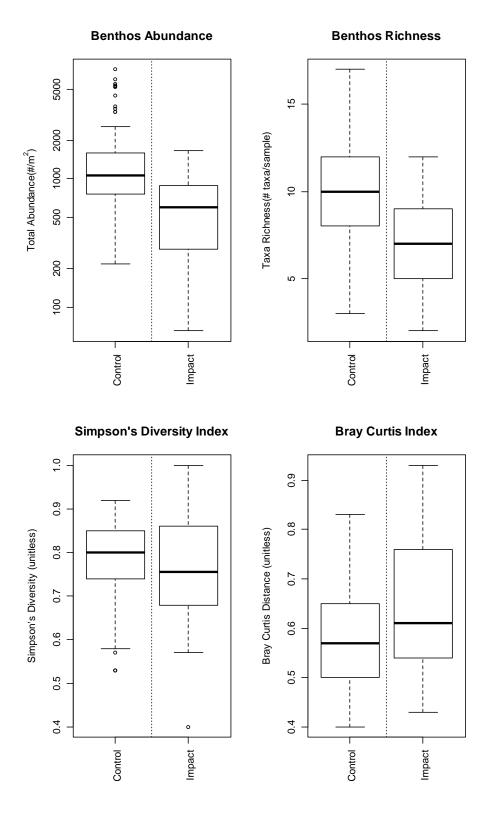

Figure A3-9. Interaction Plot for benthic Simpson's Diversity by Area and Year for the CREMP data set.

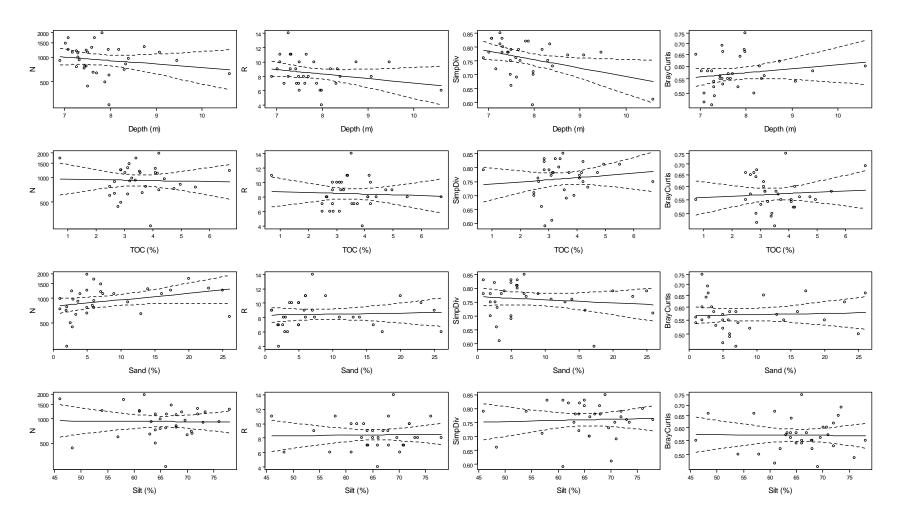

Simpson's Diversity Index

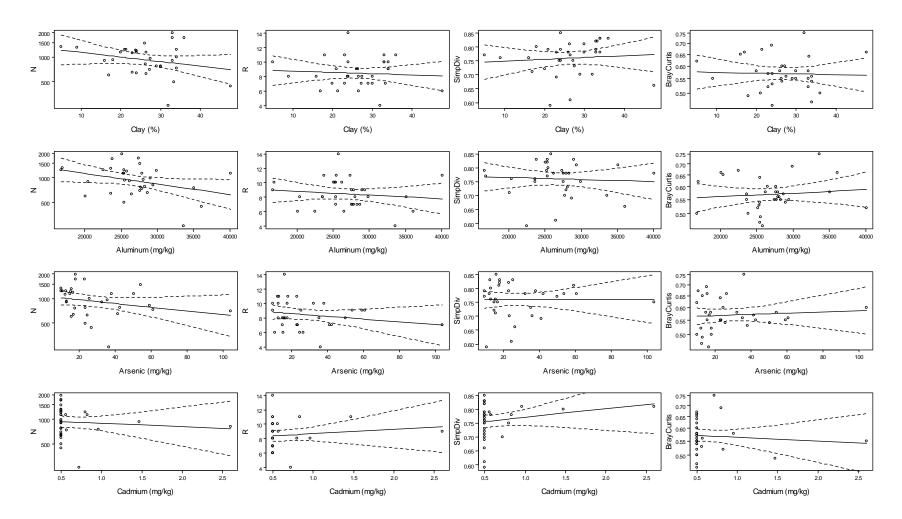

Figure A3-10. Interaction Plot for Bray Curtis distance by Area and Year for the CREMP data set.


Bray Curtis Index


Figure A3-11. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across Control and Impact areas for East Dike EAS 2010.


Figure A3-12. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by Effect grouping for East Dike EAS data set. Year-specific boxplots are provided as well to facilitate data interpretation.


Figure A3-13. Benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) across Control and Impact areas for Bay Goose Dike EAS 2010.


Figure A3-14. Boxplots of benthic community metrics (abundance, richness, Simpson's Diversity, and Bray Curtis distance) by Effect grouping for Bay-Goose Dike EAS data set.

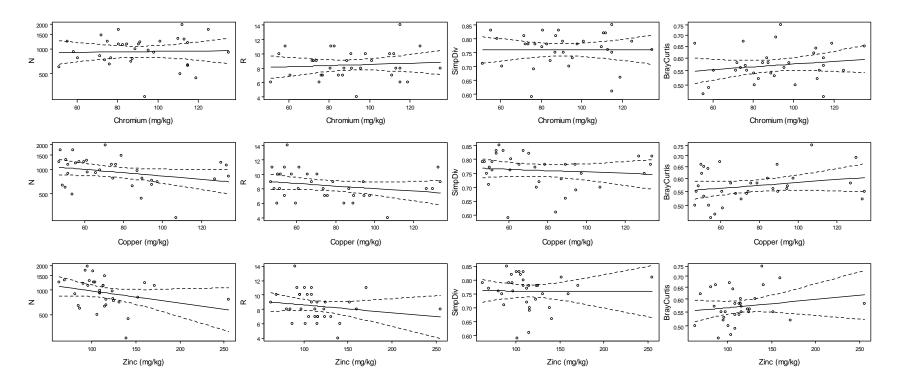

Figure A3-15. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (depth, total organic carbon, sand, and silt) for 2009 and 2010 CREMP and EAS datasets.

Figure A3-16. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (clay, aluminum, arsenic, and cadmium) for 2009 and 2010 CREMP and EAS datasets.

Figure A3-17. Key benthic community descriptors (abundance, richness, Simpson's Diversity, and Bray Curtis distance) as a function of key physical variables (chromium, copper and zinc) for 2009 and 2010 CREMP and EAS datasets.

4. PERIPHYTON COMMUNITY

4.1. Study Design Overview

This study component was conducted to address concerns regarding potential impacts to the periphyton community in Second Portage Lake stemming from construction of the East Dike in 2008. The 2010 EAS study had the following study design elements:

Area – Six different areas were sampled (see main document for maps) along a gradient of TSS exposure during the 2008 construction event (from none to high): SP-REF (control in Drilltrail Arm), SP-CREMP (very low exposure), SP-ISLA (low exposure), SP-AZI (low-moderate exposure), SP-GSM (moderate exposure), and SP-BL (high exposure) (Figure A4-1). Five replicate samples were collected at each area.

Visual examination of the 2010 periphyton data set (see main EAS report for figures and discussion) clearly bounded the zone of impact to SP-BL. While there was a general decrease in periphyton biomass at all stations in 2010 relative to 2009 (based on SP-BL, SP-CREMP and SP-REF, it was noted that SP-BL may have decreased proportionately less from year x to year y than the other areas (i.e., indicating a potential improvement, or recovery, relative to the other two areas). This question is further explored here using Model 2.

4.2. Results

The response variable assessed in this analysis was:

• Total periphyton biomass (μg/cm² ww)

Raw data and box plots for total biomass are shown in **Figure A4-2** (the raw data file is provided in **Appendix A2**). Results by Area and Date are shown in **Figure A4-2**.

A variation of Model 2 was used to analyze this data set (R code: lmer(y ~ Effect*Year⁷ + (1|Area) + (1|Area:Year))). In this model, Effect was a dummy variable coded with two levels: control (SP-DT and SP-CREMP⁸) and impact (SP-BL); Year is a factor with levels 2009 and 2010; and the other two are random effects terms characterizing variability associated with Area (i.e., differences related to Area, regardless of Year) and Area:Year (i.e., differences related to specific Area/Year combinations). The interaction

⁷ Note that "Effect*Year" in R code actually refers to "Effect + Year + Effect*Year". Most references to Effect*Year in the rest of the text refers to the interaction term only.

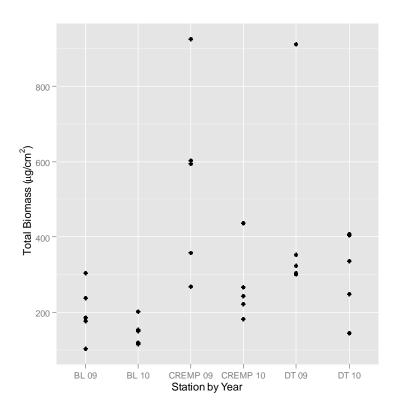
⁸ This area would have been exposed to low concentrations of TSS in 2008. Given that the area has had higher periphyton biomass than the SP-DT no exposure control, it was categorized as a control station to facilitate model analysis.

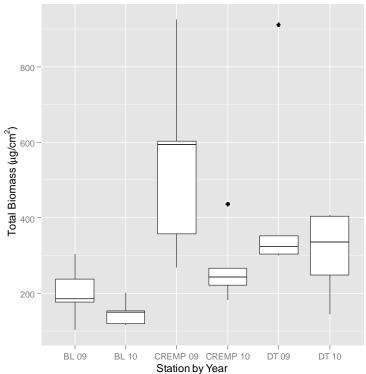
term Effect*Year is of particular interest to test for differential changes at impact (I) areas over time relative to control (C) areas (e.g., as would occur if a recovery were occurring).

Results of statistical analyses are presented in **Table A4-1**. Key results⁹ from **Table A4-1** are as follows:

- The control-impact (CI) Effect variable showed a 57% difference (marginally significant) between control and impact area means in 2009.
- The Year variable showed a 39% drop between 2009 and 2010 at the control areas (marginally significant), suggesting a broader trend of lower productivity that may be related to that seen for the benthic invertebrate studies (see **Section 3.2** for details).
- The Effect*Year interaction term, which was used to test for possible signs of recovery at SP-BL, did show a 25% "recovery" relative to the predicted "no effect" mean from the model. However, variability was high and the result was not statistically significant.

⁹ Magnitude of response for Effect and Year are shown relative to Control areas in 2009.


Table A4-1. Statistical model results for tests of significance of "Effect" on primary and secondary productivity for the 2009 Bay-Goose Dike EAS.


	Total Abundance
	(#/m²)
Data Transformation ¹	Log10
Advanced Transformation ²	NA
Model Results	
C-I Effect Difference?	Marginal
p-value	0.059
Magnitude	-57%
Year Difference	Marginal
p-value	0.109
Magnitude	-39%
Effect*Year Difference?	No
p-value	0.545
"No Effect" Mean	116
Actual Mean	145
"Recovery" Size	29
"Recovery" Magnitude	25%
95% Lower Cl ³ of Recovery Size	-77
95% Upper Cl ³ of Recovery Size	424

Notes:

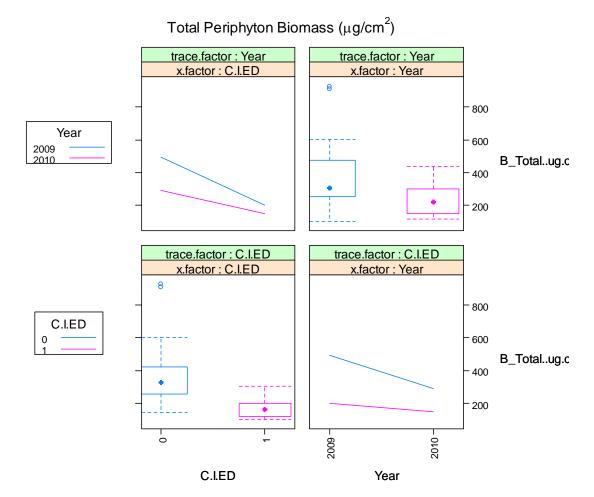

- 1. Initial transformation options discussed in Section 2.
- 2. Advanced transformations determined using Box-Cox method (Venables & Ripley 2002).
- 3. Confidence intervals estimated using 2 * Std. Error of Effect Size estimate.

Figure A4-1. Comparison of total periphyton biomass (raw data in top plot; box plots in bottom plot) at SP-BL, SP-CREMP and SP-DT stations in Second Portage Lake, 2009 and 2010.

Figure A4-2. Interaction plots for Control-Impact and Year for total periphyton biomass at Second Portage Lake stations with 2009 and 2010 data.

5. REFERENCES

- AEM (Agnico-Eagle Mines Ltd.). 2009a. Water quality monitoring and management plan for dike construction and dewatering at the Meadowbank Mine. Revised Final. March 2009.
- Azimuth Consulting Group (Azimuth). 2010a. Aquatic Effects Monitoring Program Targeted Study: Dike Construction Monitoring 2009, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Baker Lake, NU.
- Azimuth. 2008a. Effects Assessment Strategy for Elevated TSS in Third Portage Lake. Technical memorandum prepared by Azimuth Consulting Group Inc. Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. 9 September 2008.
- Azimuth. 2008b. Aquatic Effects Management Program Monitoring Meadowbank Gold Project, 2007. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2008.
- Azimuth. 2008c. Aquatic Effects Management Program Monitoring Meadowbank Gold Project, 2006. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2008.
- Azimuth. 2009a. Effects Assessment Strategy for Elevated TSS in Third Portage Lake. Technical memorandum prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Baker Lake, NU. 9 September 2009.
- Azimuth. 2009b. Aquatic Effects Monitoring Program Targeted Study: Dike Construction Monitoring 2008, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2009
- Azimuth. 2009c. Aquatic Effects Monitoring Program: Receiving Environment Monitoring 2008, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Vancouver, BC. March 2009.
- Azimuth. 2010b. Aquatic Effects Monitoring Program Core Receiving Environment Monitoring Program 2009, Meadowbank Gold Project. Report prepared by Azimuth Consulting Group Inc., Vancouver, BC for Agnico-Eagle Mines Ltd., Baker Lake, NU.
- Dalgaard, P. 2008. Introductory Statistics with R. Springer, New York.
- Environment Canada. 2002. Metal Mining Guidance Document for Aquatic Environmental Effects Monitoring. Chapter 5 Benthic Invertebrates.

- Gelman, A. and J. Hill. 2006. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York.
- Hurlbert, S. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54:187-211.
- Pinheiro, J.C., and D.M. Bates. 2000. Mixed-Effects Models in S and S-PLUS. Springer, New York.
- Stewart-Oaten, A., W. Murdoch, K. Parker. 1986. Environmental impact assessment: "Pseudorelication" in time? Ecology 67:929-940.
- Stewart-Oaten, A., J. Bence, C. Osenberg. 1992. Assessing effects of unreplicated perturbations: no simple solutions. Ecology 73:1396-1404.
- Underwood, A. 1991. Beyond BACI: Experimental designs for detecting human environmental impacts on temporal variations in natural populations. Aust. J. Mar. Freshwater. Res. 42:569-587.
- Underwood, A. 1992. Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. J. Exp. Mar. Biol. Ecol 161:145-178.
- Underwood, A. 1994. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecological Applications 4:3-15.
- Venables, W.N., and B.D. Ripley. 2002. Modern Applied Statistics with S. Springer, New York.
- Wiens, J., K. Parker. 1995. Analyzing the effects of accidental environmental impacts: approaches and assumptions. Ecological Applications 5:1069-1083.
- Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, New Jersey.

5 DD9 B8 ± 5 %

RAW DATA FOR ANALYSIS OF BENTHIC INVERTEBRATES – REPS AND MEANS

Program	Date	Year	CREMP.ST	CREMP.LT	C.I.ED	C.I.ED2	C.I.BG	AEM.AZI	Repeat	Station	Replicate	Depth.m	N.Tot.m2	N.Olig.m2	V.Insect.m2	N.Moll.m2	N.Other.m2	R.Tot	R.Olig	R.Insect	R.Moll	R.Other	Simp.D	Bray.Cur
CREMP CREMP	20-Aug-09 20-Aug-09	2009 2009	0	0	0	0	0	1	1	INUG INUG	1 2	7.6 7.9	1130.43 1543.48	108.7 65.22	521.74 934.78	434.78 456.52	65.22 86.96	15 15	2	7 9	3	3 2	0.85 0.88	0.43 0.49
CREMP CREMP	20-Aug-09 20-Aug-09	2009 2009	0	0	0	0	0	1 1	1 1	INUG INUG	3	7 6.9	1630.43 630.43	0	1086.96 304.35	456.52 326.09	86.96 0	15 8	0	10 6	3 2	2	0.88 0.74	0.43 0.49
CREMP CREMP	20-Aug-09 17-Aug-09	2009 2009	0	0	0	0	0	1 1	1 1	INUG PDL	5 1	6.9 7.2	1021.74 2000	43.48 0	521.74 1347.83	369.57 630.43	86.96 21.74	15 10	2	8	3 1	2	0.9	0.48 0.52
CREMP	17-Aug-09 17-Aug-09	2009	0	0	0	0	0	1	1	PDL PDL	2	8 8.3	1195.65 760.87	21.74 21.74	695.65 500	456.52 195.65	21.74 43.48	12 11	1	9	1	1 2	0.81	0.41
CREMP	17-Aug-09	2009	0	0	0	0	0	1	1	PDL	4	7.3	3326.09	195.65	2478.26	543.48	108.7	10 11	0	, 8 7	1	1	0.61	0.69
CREMP	17-Aug-09 12-Aug-09	2009	2	1	1	2	U	1	1	PDL SP	5	7.5 7.5	1347.83 804.35	326.09 65.22	847.83 347.83	152.17 260.87	21.74 130.43	5	1	2	1	1	0.82	0.62
CREMP CREMP	12-Aug-09 12-Aug-09	2009 2009	2	1	1 1	2		1 1	1 1	SP SP	3	7.7 6.8	695.65 913.04	21.74 65.22	391.3 413.04	260.87 326.09	21.74 108.7	7 8	1 0	4 5	1 2	1 1	0.77 0.83	0.57 0.48
CREMP CREMP	12-Aug-09 12-Aug-09	2009 2009	2 2	1	1 1	2		1 1	1 1	SP SP	4 5	7.1 8.1	847.83 630.43	43.48 21.74	434.78 369.57	326.09 239.13	43.48 0	8 6	0 0	6 5	1	1 0	0.77 0.8	0.48 0.56
CREMP CREMP	14-Aug-09 14-Aug-09	2009 2009	5 5	2	1 1	2		1	1 1	TE TE	1 2	7 7.4	847.83 760.87	21.74 108.7	152.17 391.3	586.96 195.65	86.96 65.22	7 7	1 0	4 5	1	1 1	0.51 0.87	0.62 0.57
CREMP CREMP	14-Aug-09 14-Aug-09	2009 2009	5 5	2	1 1	2		1 1	1 1	TE TE	3 4	6.9 8.2	521.74 869.57	0	130.43 391.3	391.3 347.83	0 130.43	5 8	0 0	3 5	2 1	0 2	0.49 0.79	0.6 0.49
CREMP CREMP	14-Aug-09 14-Aug-09	2009 2009	5 0	2	1 0	2 0	0	1 1	1 1	TE TEFF	5 1	7.9 6.9	847.83 1021.74	0	413.04 586.96	304.35 239.13	130.43 195.65	8 11	0 0	6 9	1 1	1 1	0.81 0.86	0.46 0.45
CREMP CREMP	14-Aug-09 14-Aug-09	2009 2009	0	0	0	0	0	1 1	1 1	TEFF TEFF	2	6.6 7.8	1543.48 1434.78	21.74 0	1347.83 1108.7	130.43 326.09	43.48 0	12 8	1	9	1 1	1 0	0.78 0.83	0.52 0.45
CREMP	14-Aug-09 14-Aug-09	2009 2009	0	0	0	0	0	1	1	TEFF TEFF	4	7.2 6.9	978.26 1195.65	0	608.7 934.78	326.09 217.39	43.48 43.48	12 9	0	10 7	1	1	0.84	0.43
CREMP	13-Aug-09 13-Aug-09	2009 2009	7	3	Ü	Ü	ŭ	1	1	TPE TPE	1 2	6.9 7.7	1543.48 1891.3	108.7 0	1130.43 1195.65	217.39 695.65	86.96	12 11	2	8 10	1	1	0.89	0.42
CREMP	14-Aug-09	2009	, 7 7	3				1	1	TPE	3	7.8 6.5	1065.22 1826.09	0 173.91	586.96	456.52 586.96	21.74	9	0	7	1	1	0.77	0.49
CREMP	14-Aug-09 14-Aug-09	2009	7	3				1	1	TPE TPE	4 5	6.5	2239.13	108.7	869.57 1326.09	717.39	195.65 86.96	12 12	2	10 8	1	1	0.84	0.57
CREMP	21-Aug-09 21-Aug-09	2009	9	4				1	1	TPN	2	8.7 7.1	1565.22 1173.91	21.74 0	1021.74 673.91	521.74 456.52	0 43.48	11 9	0	9 7	1	0	0.83	0.51
CREMP CREMP	21-Aug-09 21-Aug-09	2009 2009	9 9	4				1 1	1 1	TPN TPN	3 4	8.5 7.8	1478.26 1086.96	0	826.09 652.17	608.7 413.04	43.48 21.74	8 7	0 0	6 5	1	1 1	0.78 0.79	0.5 0.51
CREMP CREMP	21-Aug-09 21-Aug-09	2009 2009	9 0	4 0	0	0	0	1 1	1 1	TPN TPS	5 1	8.8 8	891.3 1217.39	0 86.96	478.26 956.52	391.3 173.91	21.74 0	11 11	0 1	9 9	1 1	1 0	0.77 0.92	0.47 0.4
CREMP CREMP	21-Aug-09 21-Aug-09	2009 2009	0	0	0	0 0	0	1 1	1 1	TPS TPS	2 3	6.8 7.3	2521.74 3326.09	21.74 282.61	2000 2130.43	500 913.04	0	11 11	1 1	9 9	1 1	0	0.86 0.84	0.56 0.6
CREMP CREMP	21-Aug-09 21-Aug-09	2009 2009	0	0	0	0 0	0	1 1	1 1	TPS TPS	4 5	7.3 9.7	2021.74 717.39	0 43.48	1717.39 304.35	304.35 369.57	0	11 8	0 1	10 6	1 1	0 0	0.76 0.72	0.52 0.51
CREMP CREMP	25-Aug-10 25-Aug-10	2010 2010	0	0	0	1 1	0	1 1	1 1	INUG INUG	1 2	6.8 6.7	478.26 543.48	86.96 21.74	130.43 391.3	260.87 108.7	0 21.74	6 7	1	3 4	2 1	0 1	0.76 0.77	0.63 0.72
CREMP CREMP	25-Aug-10 25-Aug-10	2010 2010	0	0	0	1 1	0	1 1	1 1	INUG INUG	3 4	8 8.3	760.87 630.43	0	239.13 173.91	456.52 413.04	65.22 43.48	12 7	0 0	7 4	3	2 1	0.78 0.64	0.45 0.54
CREMP CREMP	25-Aug-10 24-Aug-10	2010 2010	0	0	0	1 1	0	1 1	1 1	INUG PDL	5 1	8.7 6.6	782.61 1130.43	21.74 43.48	456.52 891.3	282.61 195.65	21.74 0	10 8	1 0	6 6	2 2	1 0	0.81 0.58	0.54 0.67
CREMP	24-Aug-10 24-Aug-10	2010 2010	0	0	0	1	0	1	1	PDL PDL	2	6.9 6.5	1043.48 1500	65.22 86.96	695.65 695.65	260.87 717.39	21.74 0	8	0	5	2	1	0.74 0.77	0.61 0.63
CREMP	24-Aug-10 24-Aug-10	2010 2010	0	0	0	1	0	1	1	PDL PDL	4	6.8 7.7	456.52 347.83	21.74	260.87 239.13	152.17 108.7	21.74	9	1	6	1	1	0.8	0.65 0.71
CREMP	21-Aug-10	2010 2010 2010	3	1	1	3	Ü	1	1	SP SP	1 2	8.9 6.8	217.39 217.39	0	108.7 65.22	86.96 130.43	21.74 21.74	5	0	, 3 1	1	1	0.82	0.8
CREMP	21-Aug-10 21-Aug-10	2010	3	1	1	3		1	1	SP SP	3	8.8 7.4	173.91 217.39	0	65.22 86.96	108.7 108.7	0 21.74	2	0	1	1 1	0	0.54	0.82
CREMP	21-Aug-10 21-Aug-10	2010	3	1	1	3		1	1	SP	5	8	456.52	43.48	152.17	217.39	43.48	7	1	4	1	1	0.76	0.78
CREMP	27-Aug-10 27-Aug-10	2010	6	2	1	3		1	1	TE TE	2	7.7 9.6	1021.74 347.83	21.74 0	282.61 108.7	673.91 130.43	43.48 108.7	10 4	0	7	1	1	0.56	0.56
CREMP CREMP	27-Aug-10 27-Aug-10	2010 2010	6 6	2	1 1	3		1 1	1 1	TE TE	3 4	8.2 7.5	217.39 760.87	0	65.22 326.09	108.7 239.13	43.48 195.65	3 7	0 0	1 5	1	1 1	0.69 0.75	0.78 0.64
CREMP CREMP	27-Aug-10 27-Aug-10	2010 2010	6 0	2 0	1 0	3 1	0	1 1	1 1	TE TEFF	5 1	6.9 7.4	630.43 652.17	43.48 0	304.35 369.57	239.13 260.87	43.48 21.74	8 9	1 0	5 7	1 1	1 1	0.8 0.81	0.56 0.51
CREMP CREMP	27-Aug-10 27-Aug-10	2010 2010	0	0	0	1 1	0	1 1	1 1	TEFF TEFF	2 3	7.2 7.4	1391.3 673.91	0	978.26 282.61	391.3 369.57	21.74 21.74	14 8	0 0	12 6	1 1	1 1	0.79 0.69	0.49 0.52
CREMP CREMP	27-Aug-10 27-Aug-10	2010 2010	0	0	0	1 1	0	1 1	1 1	TEFF TEFF	4 5	6.6 8	956.52 934.78	21.74 43.48	608.7 478.26	282.61 282.61	43.48 130.43	12 11	1 1	9 8	1 1	1 1	0.85 0.84	0.42 0.53
CREMP CREMP	19-Aug-10 19-Aug-10	2010 2010	8 8	3			1 1	1 1	1 1	TPE TPE	1 2	8.3 7.5	847.83 1152.17	43.48 21.74	413.04 434.78	369.57 543.48	21.74 152.17	9 8	2 1	5 5	1 1	1 1	0.75 0.74	0.53 0.57
CREMP CREMP	19-Aug-10 19-Aug-10	2010 2010	8 8	3			1 1	1 1	1 1	TPE TPE	3 4	6.8 8.4	1195.65 1152.17	43.48 108.7	760.87 652.17	369.57 326.09	21.74 65.22	10 11	1 2	7 7	1 1	1 1	0.81 0.82	0.5 0.54
CREMP CREMP	19-Aug-10 19-Aug-10	2010 2010	8 10	3 4			1	1 1	1 1	TPE TPN	5 1	6.5 7.5	1347.83 1434.78	86.96 86.96	673.91 1043.48	434.78 260.87	152.17 43.48	11 11	2 2	7 7	1 1	1 1	0.83 0.69	0.51 0.58
CREMP CREMP	19-Aug-10 19-Aug-10	2010 2010	10 10	4				1	1 1	TPN TPN	2	8.8 9.5	2108.7 1760.87	43.48 86.96	1739.13 1173.91	282.61 478.26	43.48 21.74	11 12	1 2	8	1 1	1 1	0.64 0.75	0.57 0.57
CREMP CREMP	19-Aug-10 19-Aug-10	2010 2010	10 10	4				1 1	1 1	TPN TPN	4	9.5 8.4	1108.7 195.65	0	913.04 152.17	152.17 43.48	43.48 0	10 8	0	8	1 1	1 0	0.81 0.97	0.59
CREMP	20-Aug-10 20-Aug-10	2010 2010	0	0	0	1 1	0	1	1	TPS TPS	1 2	7.2 8.1	1869.57 1869.57	86.96 43.48	1195.65 739.13	586.96 978.26	0	9	0	8	1 2	0	0.84	0.47
CREMP	20-Aug-10 20-Aug-10	2010 2010	0	0	0	1	0	1	1	TPS TPS	3	8.4 6.7	1586.96 586.96	0 21.74	1326.09 369.57	260.87 195.65	0	9	0	8	1	0	0.81 0.75	0.57
CREMP ED EAS	20-Aug-10 19-Aug-09	2010 2010 2009	0	0	0	1	0	1	1	TPS SP-DT	5	7.6 6.5	565.22 1173.91	0	239.13 326.09	326.09 739.13	0 108.7	6 11	0	5	1 2	0	0.63 0.69	0.59 0.55
ED EAS ED EAS	19-Aug-09 19-Aug-09	2009			0	0	0	1	1	SP-DT SP-DT	2	7.5 7.3	978.26 1304.35	0 86.96	434.78 543.48	456.52 630.43	86.96 43.48	9	0	6	2	1	0.77 0.73	0.52 0.52
ED EAS ED EAS	19-Aug-09 19-Aug-09	2009 2009			0	0	0	1	1	SP-DT SP-DT	4 5	7.6 7.6	1217.39 934.78	152.17 86.96	652.17 456.52	413.04 239.13	0	11 11	1 2	8	2 2	0	0.84 0.87	0.5 0.51
ED EAS ED EAS	23-Aug-09	2009 2009 2009			1	2 2	U	1	1	SP-F1 SP-F1	1 2	7.0 7 7.2	1108.7 1391.3	108.7	565.22 630.43	347.83 630.43	86.96 130.43	8 7	1	5	1	1	0.8 0.73	0.53 0.61
ED EAS	23-Aug-09 23-Aug-09	2009			1	2		1	1	SP-F1	3	6.8	2369.57	21.74	1347.83	869.57	130.43	11	1	8	1	1	0.77	0.64
ED EAS	23-Aug-09 23-Aug-09	2009			1	2 2 2		1	1	SP-F1 SP-F1	4 5	6.8 7.3	1043.48 1456.52	0	673.91 826.09	282.61 478.26	86.96 152.17	9 8	0	6	1	1 1 1	0.81	0.53
ED EAS	18-Aug-09 18-Aug-09	2009			1	2		1	1	SP-F2 SP-F2	1 2	7.6 6.9	934.78 978.26	0 21.74	326.09 500	543.48 413.04	65.22 43.48	5 14	0	9	3	1	0.74	0.58
ED EAS	18-Aug-09 18-Aug-09	2009			1	2		1	1	SP-F2 SP-F2	3	7.6 7.1	934.78 565.22	0	456.52 260.87	456.52 260.87	21.74 43.48	7 7	0	4	2	1	0.76	0.6
ED EAS	18-Aug-09 15-Aug-09	2009			1	2		1	1	SP-F2 SP-N1	5 1	7.1 6.5	369.57 1021.74	65.22 21.74	130.43 369.57	108.7 478.26	65.22 152.17	7 5	0	3	1	1	0.9	0.67
ED EAS	15-Aug-09 15-Aug-09	2009			1	2		1	1	SP-N1 SP-N1	3	7 7.4	1000 1021.74	0 21.74	521.74 347.83	456.52 565.22	21.74 86.96	7 6	0	3	1	1	0.74	0.54
ED EAS	15-Aug-09 15-Aug-09	2009			1	2		1	1	SP-N1 SP-N1	4 5	7.7 7.2	1739.13 891.3	0 86.96	804.35 347.83	804.35 369.57	130.43 86.96	8 7	0	5 4	2	1	0.73 0.81	0.61
ED EAS	17-Aug-09 17-Aug-09	2009			1	2		1	1	SP-N2 SP-N2	2	6.9 7.4	869.57 608.7	21.74	565.22 195.65	282.61 347.83	0 43.48	8 10	1	6 7	1	0	0.77	0.57
ED EAS	17-Aug-09 17-Aug-09	2009			1	2		1	1	SP-N2 SP-N2	3	8.9 7.5	456.52 543.48	21.74 43.48	65.22 260.87	347.83 217.39	21.74	5 6	1	3	1	1	0.42	0.63
ED EAS ED EAS	17-Aug-09 23-Aug-09	2009 2009			1 1	2		1 1	1 1	SP-N2 SP-N3	5 1	7.4 6.9	782.61 913.04	21.74 43.48	434.78 413.04	239.13 413.04	86.96 43.48	8 11	0 1	6 7	1 2	1 1	0.83 0.79	0.55 0.49
ED EAS ED EAS	23-Aug-09 23-Aug-09	2009 2009			1 1	2		1 1	1 1	SP-N3 SP-N3	2	8 7.5	565.22 695.65	0 21.74	304.35 369.57	217.39 173.91	43.48 130.43	7 11	0 1	4 7	2	1 1	0.79 0.88	0.59 0.56
ED EAS ED EAS	23-Aug-09 23-Aug-09	2009 2009			1 1	2 2		1 1	1 1	SP-N3 SP-N3	4 5	7.3	782.61 695.65	0 0	369.57 260.87	239.13 391.3	173.91 43.48	8 7	0 0	6 5	1 1	1 1	0.79 0.63	0.61 0.57
ED EAS ED EAS	23-Aug-09 23-Aug-09	2009 2009						1 1	1 1	HVH-4 HVH-4	1 2	7.1 6.9	1000 1086.96	43.48 108.7	521.74 695.65	239.13 195.65	195.65 86.96	10 9	1 2	6 5	2 1	1 1	0.84 0.74	0.57 0.63
ED EAS ED EAS	23-Aug-09 23-Aug-09	2009 2009						1 1	1 1	HVH-4 HVH-4	3 4	7.5 7.7	847.83 1065.22	21.74 0	521.74 673.91	260.87 282.61	43.48 108.7	9 7	0	7 5	1 1	1 1	0.85 0.82	0.48 0.54
ED EAS	23-Aug-09 22-Aug-09	2009 2009						1 0	1 1	HVH-4 TRB-1	5 1	7.3 8.2	934.78 456.52	65.22 0	630.43 173.91	173.91 173.91	65.22 108.7	11 7	1 0	8 5	1 1	1 1	0.88 0.79	0.5 0.65
ED EAS	22-Aug-09 22-Aug-09	2009 2009						0	1 1	TRB-1 TRB-1	2	7.5 6.9	1065.22 847.83	108.7 43.48	326.09 434.78	608.7 282.61	21.74 86.96	9 6	1 0	6 4	1 1	1 1	0.66	0.52 0.55
ED EAS	22-Aug-09 22-Aug-09	2009						0	1	TRB-1 TRB-1	4 5	7.2 8.5	739.13 978.26	21.74 43.48	282.61 391.3	347.83 521.74	86.96 21.74	8	0	6	1	1	0.75 0.69	0.51
ED EAS ED EAS	22-Aug-09 22-Aug-09 22-Aug-09	2009 2009 2009						0	1	TRB-2 TRB-2	1 2	6.1 6	391.3 500	86.96 173.91	86.96 86.96	108.7 173.91	108.7 65.22	5	1	2	1 1	1	0.83 0.79	0.78 0.67
ED EAS ED EAS	22-Aug-09	2009 2009 2009						0	1 1 1	TRB-2 TRB-2 TRB-2	2 3 4	6.2 6.4	717.39 347.83	217.39 65.22	43.48 21.74	326.09 173.91	130.43 86.96	6 5	1 1 1	2 1	2 2	1 1 1	0.79 0.74 0.79	0.84 0.83
ED EAS	22-Aug-09 22-Aug-09	2009					1	0	1	TRB-2	5	6.5	43.48	0	21.74	0	21.74	2	0 1	1 2	0	1 1 0	1	0.95
ED EAS	24-Aug-10 24-Aug-10	2010					1	1	1	HVH-4 HVH-4	2	7.5 7.8	282.61 369.57	21.74 0	86.96 86.96	173.91 217.39	0 65.22	4 7	0	4	1	2	0.66	0.72 0.69
ED EAS	24-Aug-10 24-Aug-10	2010					1	1	1	HVH-4 HVH-4	3 4	7 7.2	586.96 847.83	0 43.48	304.35 500	282.61 239.13	0 65.22	7 12	0 2	5 7	2	0	0.74	0.57
	24-Aug-10 23-Aug-10	2010			0	1	0	1	1	SP-DT	5	8 7.4	108.7 1086.96	0 43.48	0 478.26	108.7 521.74	0 43.48	2 10	0	0 7	2	0	0.4	0.88
ED EAS	23-Aug-10 23-Aug-10	2010			0	1	0	1	1	SP-DT SP-DT	3	8.5 8.7	652.17 847.83	65.22 43.48	326.09 260.87	152.17 434.78	108.7 108.7	10 8	1	5 5	1	1	0.91	0.57
	23-Aug-10 23-Aug-10	2010			0	1	0	1	1	SP-DT SP-DT	4 5	7.3 9.8	869.57 630.43	86.96 0	282.61 391.3	369.57 130.43	130.43	10 8	0	5 6	3	1	0.81	0.5
ED EAS	20-Aug-10 20-Aug-10	2010			1	3		1	1	SP-F1 SP-F1	1 2	7.7 9.6	1347.83 1304.35	43.48 21.74	695.65 500	434.78 586.96	173.91 195.65	9	0	6	1	1	0.82	0.54
ED EAS ED EAS	20-Aug-10 20-Aug-10	2010 2010			1 1	3 3		1 1	1 1	SP-F1 SP-F1	3 4	8.5 9.7	760.87 1239.13	0	456.52 760.87	239.13 413.04	65.22 65.22	5 8	0 0	3 6	1 1	1 1	0.71 0.75	0.62 0.52
ED EAS	20-Aug-10	2010			1	3		1	1	SP-F1	5	9.9	1021.74	0	543.48	347.83	130.43	10	0	8	1	1	0.83	0.5

ogram	Date	Year	CREMP.ST C	REMP.LT		C.I.ED2	C.I.BG	AEM.AZI	Repeat	Station			N.Tot.m2						R.Olig	R.Insect	R.Moll	R.Other	Simp.D	Bray.Cur
D EAS	20-Aug-10 20-Aug-10	2010			1	3		1	1	SP-N1 SP-N1	1 2	8 7.5	1521.74 1217.39	21.74 0	847.83 847.83	500 304.35	152.17 65.22	8 6	0	5	1	1	0.8	0.57
D EAS	20-Aug-10 20-Aug-10	2010 2010			1 1	3 3		1 1	1 1	SP-N1 SP-N1	3 4	7.1 10	152.17 2608.7	0 0	0 2000	130.43 521.74	21.74 86.96	2 10	0 0	0 7	1 2	1	0.29 0.74	0.84 0.69
EAS	20-Aug-10 20-Aug-10	2010 2010			1 1	3		1 1	1	SP-N1 SP-N2	5 1	7.2 8.2	695.65 695.65	0 21.74	130.43 260.87	456.52 369.57	108.7 43.48	6 8	0 1	4 5	1 1	1	0.55 0.69	0.61 0.5
EAS	20-Aug-10	2010			1	3		1	1	SP-N2	2	7.5	1065.22	0	760.87	304.35	0	7	0	5	2	0	0.78	0.58
EAS EAS	20-Aug-10 20-Aug-10	2010 2010			1	3		1 1	1 1	SP-N2 SP-N2	3 4	8.7 9.3	1434.78 652.17	108.7 21.74	869.57 239.13	391.3 369.57	65.22 21.74	6 9	0 1	3 6	2 1	1	0.66 0.67	0.6 0.53
EAS EAS	20-Aug-10 19-Aug-10	2010 2010			1 1	3 3		1 1	1 1	SP-N2 SP-N3	5 1	8.3 7.4	934.78 304.35	86.96 0	565.22 130.43	195.65 108.7	86.96 65.22	8 5	0 0	5 2	2 2	1 1	0.86 0.79	0.58 0.75
EAS	19-Aug-10 19-Aug-10	2010 2010			1	3		1	1	SP-N3 SP-N3	2	8.9 9.2	413.04 913.04	21.74 65.22	195.65 217.39	152.17 521.74	43.48 108.7	8	0	6	1 2	1	0.84 0.82	0.62 0.51
EAS	19-Aug-10 19-Aug-10	2010			1	3		1	1	SP-N3	4	8.7	934.78	0	195.65	673.91	65.22	7	0	4	2	1	0.56	0.61
EAS EAS	19-Aug-10 25-Aug-10	2010 2010			1	3	1	1 1	1 0	SP-N3 TP-E1	5 1	7.3 7.4	934.78 391.3	43.48 0	456.52 195.65	434.78 173.91	0 21.74	9 7	1 0	6 4	2 2	0 1	0.76 0.81	0.5 0.65
EAS EAS	25-Aug-10	2010 2010					1 1	1 1	0	TP-E1 TP-E1	2	7.5 8	652.17 608.7	21.74 21.74	369.57 152.17	260.87 391.3	0 43.48	8 9	1 1	5 5	2 2	0 1	0.87 0.76	0.57 0.54
EAS	25-Aug-10 25-Aug-10	2010					1	1	0	TP-E1	4	8	608.7	0	260.87	326.09	21.74	6	0	3	2	1	0.8	0.65
EAS EAS	25-Aug-10 27-Aug-10	2010 2010					1	1 1	0	TP-E1 TP-E2	5 1	8.5 9.5	217.39 891.3	0 0	86.96 586.96	130.43 260.87	0 43.48	6 12	0 0	4 9	2	0 1	0.87 0.88	0.8 0.52
EAS EAS	27-Aug-10 27-Aug-10	2010 2010					1 1	1 1	0	TP-E2 TP-E2	2	10 9.9	717.39 1652.17	21.74 65.22	304.35 934.78	391.3 630.43	0 21.74	8 11	1 1	6 7	1 2	0 1	0.66 0.82	0.61 0.57
EAS	27-Aug-10	2010					1	1	0	TP-E2	4	9	913.04	21.74	326.09	500	65.22	8	1	5	1	1	0.68	0.54
EAS EAS	27-Aug-10 25-Aug-10	2010 2010			0	1	1 0	1 1	0	TP-E2 TP-E3	5 1	8.9 11	369.57 913.04	21.74 0	217.39 260.87	130.43 652.17	0 0	9 5	1 0	7 3	1 2	0	0.87 0.53	0.65 0.59
EAS EAS	25-Aug-10 28-Aug-10	2010 2010			0	1	0	1 1	0	TP-E3 TP-E3	2	12 10	565.22 217.39	0 0	152.17 43.48	369.57 173.91	43.48 0	7 4	0	5 2	1 2	1 0	0.58 0.53	0.57 0.78
EAS	28-Aug-10	2010			0	1	0	1	0	TP-E3	4	10	760.87	21.74	260.87	456.52	21.74	7	1	4	1	1	0.61	0.57
EAS EAS	28-Aug-10 19-Aug-10	2010 2010			0	1	0	1 1	0 1	TP-E3 TRB-2	5 1	10 6.9	673.91 695.65	0 0	239.13 173.91	347.83 347.83	86.96 173.91	9 3	0 0	6 1	2 1	1 1	0.78 0.65	0.5 0.91
EAS EAS	19-Aug-10 19-Aug-10	2010 2010						1 1	1 1	TRB-2 TRB-2	2	6.8 6.9	282.61 413.04	43.48 43.48	173.91 108.7	65.22 217.39	0 43.48	5 7	1 0	2	2	0 1	0.72 0.87	0.85 0.68
EAS	19-Aug-10	2010						1	1	TRB-2	4	6.5	347.83	0	108.7	173.91	65.22	6	0	3	2	1	0.85	0.73
EAS EAS	19-Aug-10 23-Aug-10	2010 2010			1	3		1 1	1 1	TRB-2 SP-F2	5 1	6.6 7.4	478.26 717.39	43.48 0	304.35 347.83	65.22 326.09	65.22 43.48	10 7	1 0	6 4	2 2	1 1	0.92 0.8	0.63 0.67
EAS EAS	23-Aug-10 23-Aug-10	2010 2010			1 1	3		1 1	1 1	SP-F2 SP-F2	2	7.8 7.2	478.26 2347.83	21.74 21.74	217.39 1695.65	239.13 608.7	0 21.74	7 9	1 0	4 6	2	0 1	0.79 0.64	0.75 0.68
EAS	23-Aug-10	2010			1	3		1	1	SP-F2	4	7.2	1826.09	0	1456.52	347.83	21.74	10	0	7	2	1	0.74	0.66
EAS EAS	23-Aug-10 19-Aug-10	2010 2010			1	3		1 0	1 1	SP-F2 TRB-1	5 1	7.8 7.4	695.65 1000	0 21.74	130.43 543.48	456.52 369.57	108.7 65.22	7 9	0	4 6	2 2	1 1	0.76 0.86	0.68 0.46
EAS EAS	19-Aug-10 19-Aug-10	2010 2010						0 0	1 1	TRB-1 TRB-1	2	7.2 9.2	1065.22 782.61	130.43 86.96	369.57 326.09	434.78 326.09	130.43 43.48	8 8	0 2	5 4	2 1	1 1	0.84 0.79	0.51 0.5
EAS	19-Aug-10	2010						0	1	TRB-1	4	9.4	782.61	86.96	282.61	260.87	152.17	12	1	8	2	1	0.9	0.62
EAS EAS	19-Aug-10 18-Aug-10	2010 2010						0	1 0	TRB-1 TRB-3	5 1	7.1 7.8	1086.96 586.96	65.22 43.48	521.74 282.61	500 260.87	0	9 4	0	7 3	2 1	0	0.78 0.74	0.49 0.57
EAS EAS	22-Aug-10 22-Aug-10	2010 2010						0	0	TRB-3 TRB-3	2	7.8 7.7	413.04 65.22	43.48 21.74	304.35 0	21.74 21.74	43.48 21.74	5 3	1 1	2	1 1	1 1	0.65 1	0.76 0.93
EAS	22-Aug-10	2010						0	0	TRB-3	4	9.6	86.96	21.74	43.48	21.74	0	3	0	2	1	0	1	0.93
EAS EAS	22-Aug-10 22-Aug-10	2010 2010						0 0	0	TRB-3 TRB-4	5 1	10 7.5	173.91 152.17	65.22 21.74	86.96 108.7	0 21.74	21.74 0	5 4	1 1	3 2	0 1	1 0	0.86 0.71	0.86 0.84
EAS EAS	22-Aug-10 22-Aug-10	2010 2010						0	0	TRB-4 TRB-4	2	7 6.8	500 152.17	65.22 43.48	43.48 86.96	391.3 21.74	0	6 3	2 1	2 1	2 1	0	0.57 0.71	0.61 0.84
EAS	24-Aug-10	2010						0	0	TRB-4	4	7.4	1000	673.91	239.13	65.22	21.74	9	2	4	2	1	0.69	0.76
EAS MP	24-Aug-10 17-Aug-06	2010 2006	0	0			0	0 1	0 1	TRB-4 TPE	5 1	7.2 8	652.17 2565.22	86.96 0	173.91 1869.57	391.3 673.91	0 21.74	5 7	1 0	2 5	2 1	0 1	0.68 0.74	0.57 0.63
MP MP	17-Aug-06 17-Aug-06	2006 2006	0 0	0			0	1 1	1 1	TPE TPE	2	8 8	3673.91 3543.48	0 86.96	3260.87 2739.13	413.04 673.91	0 43.48	8 10	0 2	7 6	1 1	0 1	0.59 0.76	0.71 0.65
MP	18-Aug-06	2006	0	0			0	1	1	SP	1	7.8	521.74	0	108.7	347.83	65.22	4	0	2	1	1	0.53	0.69
EMP EMP	18-Aug-06 18-Aug-06	2006 2006	0 0	0 0			0 0	1 1	1	SP SP	2	7.8 7.8	695.65 652.17	21.74 0	347.83 326.09	239.13 239.13	86.96 86.96	8 7	1 0	5 5	1 1	1 1	0.74 0.75	0.65 0.65
EMP EMP	19-Aug-06 19-Aug-06	2006 2006	0	0			0	1 1	1 1	INUG INUG	1 2	8 8	521.74 717.39	0 43.48	239.13 347.83	217.39 282.61	65.22 43.48	8 10	0 2	5 5	2	1	0.82 0.81	0.66 0.61
MP	19-Aug-06	2006	0	0			0	1	1	INUG	3	8	1043.48	65.22	630.43	326.09	21.74	13	1	9	2	1	0.84	0.54
EMP EMP	21-Aug-06 21-Aug-06	2006 2006	0 0	0 0			0	1 1	1 1	TPS TPS	1 2	8.7 8.7	1217.39 1065.22	0 0	717.39 782.61	456.52 282.61	43.48 0	11 12	0 0	9 11	1 1	1 0	0.81 0.87	0.49 0.46
EMP EMP	21-Aug-06 18-Aug-07	2006 2007	0 0	0			0	1 1	1	TPS TPS	3 1	8.7 8.4	630.43 978.26	0 0	478.26 782.61	152.17 195.65	0	9 7	0	8 6	1 1	0	0.89 0.83	0.57 0.61
EMP	18-Aug-07	2007	0	0			0	1	1	TPS	2	11.4	1130.43	0	826.09	304.35	0	7	0	6	1	0	0.66	0.61
EMP EMP	18-Aug-07 18-Aug-07	2007 2007	0 0	0 0			0 0	1 1	1	TPS TPS	3 4	8.3 9.3	826.09 2065.22	0 282.61	652.17 1000	173.91 739.13	0 43.48	9 12	0 2	8 8	1 1	0 1	0.85 0.78	0.56 0.55
MP MP	18-Aug-07 19-Aug-07	2007 2007	0 0	0			0	1 1	1	TPS TPN	5 1	8.3 9.4	5500 1326.09	695.65 0	3456.52 978.26	1282.61 326.09	65.22 21.74	14 11	1 0	11 9	1 1	1	0.86 0.86	0.66 0.46
EMP	19-Aug-07	2007	0	0			0	1	1	TPN	2	9.2	1934.78	282.61	1108.7	521.74	21.74	14	2	10	1	1	0.88	0.46
MP MP	19-Aug-07 19-Aug-07	2007 2007	0 0	0 0			0 0	1 1	1	TPN TPN	3 4	8.6 8	1891.3 978.26	0 0	1173.91 695.65	695.65 195.65	21.74 86.96	11 7	0 0	9 5	1 1	1 1	0.81 0.81	0.54 0.58
MP MP	19-Aug-07 21-Aug-07	2007 2007	0 0	0			0	1 1	1	TPN TPE	5 1	9.4 9.5	978.26 1608.7	0 0	456.52 869.57	500 673.91	21.74 65.22	6 10	0	4 8	1 1	1	0.68 0.78	0.59 0.51
MP	21-Aug-07	2007	0	0			0	1	1	TPE	2	8.7	1217.39	21.74	760.87	413.04	21.74	10	1	7	1	1	0.84	0.41
MP	21-Aug-07 21-Aug-07	2007 2007	0 0	0 0			0 0	1 1	1 1	TPE TPE	3 4	7.8 7.6	1565.22 1608.7	0 0	1152.17 978.26	413.04 500	0 130.43	12 9	0 0	11 7	1 1	0 1	0.81 0.83	0.48 0.49
MP MP	21-Aug-07 25-Aug-07	2007 2007	0 0	0 0			0 0	1 1	1 1	TPE TE	5 1	8.8 8.9	1891.3 869.57	86.96 43.48	782.61 456.52	978.26 369.57	43.48 0	12 4	1 1	9 2	1 1	1 0	0.7 0.58	0.54 0.66
MP	25-Aug-07	2007	0	0			0	1	1	TE	2	7.1	1391.3	43.48	630.43	543.48	173.91	10	0	8	1	1	0.77	0.6
MP MP	25-Aug-07 25-Aug-07	2007 2007	0 0	0 0			0 0	1 1	1 1	TE TE	3 4	10.7 9.9	782.61 913.04	21.74 43.48	347.83 391.3	217.39 369.57	195.65 108.7	9 10	1	4 6	1 1	3 2	0.81 0.78	0.66 0.58
MP MP	25-Aug-07 27-Aug-07	2007 2007	0 0	0			0	1 1	1 1	TE SP	5 1	9.1 9.6	804.35 608.7	21.74 43.48	500 282.61	260.87 173.91	21.74 108.7	10 5	1 0	7 3	1 1	1 1	0.76 0.75	0.6 0.75
MP	27-Aug-07	2007	0	0			0	1	1	SP SP	2	10.6	1434.78	86.96	456.52	760.87	130.43	11	1	8	1	1	0.69	0.57
MP MP	27-Aug-07 27-Aug-07	2007 2007	0	0			0	1	1	SP	4	9.1	978.26 456.52	21.74 65.22	608.7 239.13	260.87 21.74	86.96 130.43	11 9	1	5	1	1 2	0.85 0.9	0.57 0.76
MP MP	27-Aug-07 28-Aug-07	2007 2007	0 0	0 0			0 0	1 1	1 1	SP INUG	5 1	8.4 9.8	1086.96 847.83	65.22 21.74	543.48 608.7	347.83 217.39	130.43 0	10 12	2 1	6 9	1 2	1 0	0.82 0.87	0.55 0.57
MP	28-Aug-07	2007	0	0			0	1	1	INUG	2	7.8	1717.39	130.43	1130.43	369.57	86.96	13	2	8	1	2	0.87	0.47
MP MP	28-Aug-07 28-Aug-07	2007 2007	0 0	0 0			0	1 1	1 1	INUG INUG	3 4	10.1 9.6	826.09 782.61	21.74 65.22	282.61 565.22	391.3 108.7	130.43 43.48	11 11	1 1	6 7	2 1	2 2	0.79 0.86	0.51 0.63
MP MP	28-Aug-07 16-Aug-08	2007 2008	0	0 0			0	1 1	1 1	INUG TPE	5 1	8 8.7	934.78 6021.74	21.74 108.7	369.57 5369.57	326.09 239.13	217.39 304.35	12 16	1	7 13	2 1	2 1	0.85 0.69	0.56 0.73
MP	16-Aug-08	2008	0	0			0	1	1	TPE	2	7.8	5217.39	0	4652.17	565.22	0	10	0	9	1	0	0.72	0.74
MP MP	16-Aug-08 16-Aug-08	2008 2008	0 0	0 0			0 0	1 1	1 1	TPE TPE	3 4	11.5 11.2	7152.17 4478.26	0 21.74	6326.09 4065.22	695.65 86.96	130.43 304.35	14 16	0 1	11 11	1 1	2	0.57 0.79	0.74 0.7
MP	16-Aug-08	2008	0	0			0	1	1	TPE	5	8.9	5260.87	86.96	4434.78	195.65	543.48	15	2	10	1	2	0.8	0.72
MP MP	17-Aug-08 17-Aug-08	2008 2008	0 0	0 0			0	1 1	1 1	TPS TPS	1 2	9.1 9.7	2043.48 695.65	21.74 21.74	1934.78 478.26	86.96 195.65	0	13 10	1 1	11 7	1 2	0	0.82 0.88	0.65 0.56
MP MP	17-Aug-08 17-Aug-08	2008 2008	0 0	0 0			0 0	1 1	1 1	TPS TPS	3 4	11.7 9.9	2043.48 1565.22	43.48 0	1630.43 1130.43	369.57 413.04	0 21.74	10 11	1 0	8 9	1 1	0 1	0.72 0.78	0.59 0.52
MP	17-Aug-08	2008	0	0			0	1	1	TPS	5	10	1673.91	0	1304.35	369.57	0	9	0	8	1	0	0.62	0.6
MP MP	18-Aug-08 18-Aug-08	2008 2008	0 0	0 0			0	1 1	1 1	TPN TPN	1 2	7.8 9.2	1391.3 717.39	0 0	1326.09 652.17	65.22 65.22	0	8 10	0	7 9	1 1	0	0.66 0.81	0.79 0.73
MP MP	18-Aug-08	2008 2008	0	0			0	1 1	1 1	TPN TPN	3 4	8.4 8.4	1326.09 260.87	21.74 0	1021.74 173.91	260.87 86.96	21.74 0	11 3	1 0	8	1 1	1 0	0.64 0.59	0.64 0.83
MP	18-Aug-08 18-Aug-08	2008	0	0			0	1	1	TPN	5	7.8	1391.3	0	1260.87	130.43	0	9	0	8	1	0	0.71	0.65
MP MP	19-Aug-08 19-Aug-08	2008 2008	4 4	2				1 1	1 1	TE TE	1 2	7.5 9.4	804.35 978.26	0 21.74	500 413.04	282.61 500	21.74 43.48	12 11	0 1	9 8	2 1	1 1	0.83 0.71	0.55 0.53
MP	19-Aug-08	2008	4	2				1	1	TE	3	11.7	543.48	0	260.87	282.61	0	8	0	7	1	0	0.71	0.63
MP MP	19-Aug-08 19-Aug-08	2008 2008	4 4	2				1 1	1 1	TE TE	4 5	13.1 12.6	695.65 760.87	21.74 0	456.52 565.22	173.91 195.65	43.48 0	10 9	1 0	7 8	1 1	1 0	0.86 0.86	0.65 0.6
MP MP	20-Aug-08	2008 2008	0	0 0			0	1 1	1 1	INUG INUG	1 2	8.1 8.7	847.83 1695.65	0 43.48	500 1260.87	326.09 326.09	21.74 65.22	14 13	0	11 9	2 1	1 2	0.79 0.86	0.57 0.49
MP	20-Aug-08 20-Aug-08	2008	0	0			0	1	1	INUG	3	9.8	1239.13	21.74	1021.74	152.17	43.48	17	1	12	2	2	0.92	0.5
MP MP	20-Aug-08 20-Aug-08	2008 2008	0 0	0 0			0	1 1	1 1	INUG INUG	4 5	12.6 8	5326.09 391.3	43.48 0	4565.22 239.13	652.17 130.43	65.22 21.74	17 8	1 0	12 6	3 1	1 1	0.9 0.86	0.65 0.77
MP	23-Aug-08	2008	1	1				1	1	SP	1	9.9	239.13	0	130.43	108.7	0	5	0	4	1	0	0.78	0.81
MP	23-Aug-08 23-Aug-08	2008 2008	1 1	1 1				1 1	1 1	SP SP	2 3	7 13.2	478.26 565.22	0 0	304.35 326.09	130.43 195.65	43.48 43.48	8 11	0 0	6 9	1 1	1 1	0.81 0.86	0.73 0.67
	23-Aug-08	2008	1	1				1	1	SP	4	7.8	456.52	0	326.09	130.43	0	7	0	6	1	0	0.86	0.72

Appendix A1: Benthic Invertebrate Means

Program	Date	Year	C.I.ED	C.I.BG	AEM.AZI	Repeat	Station	Depth.m	N.Tot.m2	N.Olig.m2	N.Insect.m2	N.Moll.m2	N.Other.m	2 R.Tot.m2	R.Olig.m2	R.Insect.m2	R.Moll.m2	R.Other.m2	Simp.D	Bray.Cur	тос
CREMP	20-Aug-09	2009	0	0	1	1	INUG	7.26	1191.3	43.48	673.91	408.7	65.22	14	1	8	3	2	0.85	0.46	3.52
CREMP	17-Aug-09	2009	0	0	1	1	PDL	7.66	1726.09	113.04	1173.91	395.65	43.48	11	1	8	1	1	0.79	0.55	0.72
CREMP	12-Aug-09	2009	1	2	1	1	SP	7.44	778.26	43.48	391.3	282.61	60.87	7	0	4	1	1	0.78	0.55	3.74
CREMP	14-Aug-09	2009	1	2	1	1	TE	7.48	769.57	26.09	295.65	365.22	82.61	7	0	5	1	1	0.7	0.55	2.49
CREMP	14-Aug-09	2009	0	0	1	1	TEFF	7.08	1234.78	4.35	917.39	247.83	65.22	10	0	8	1	1	0.83	0.47	2.87
CREMP	14-Aug-09	2009	2	2	1	1	TPE	7.08	1713.04	78.26	1021.74	534.78	78.26	11	1	9	1	1	0.83	0.5	3.41
CREMP	21-Aug-09	2009	2	2	1	1	TPN	8.18	1239.13	4.35	730.43	478.26	26.09	9	0	7	1	1	0.79	0.5	2.86
CREMP	21-Aug-09	2009	0	0	1	1	TPS	7.82	1960.87	86.96	1421.74	452.17	0	10	1	9	1	0	0.82	0.52	4.22
CREMP	25-Aug-10	2010	0	0	1	1	INUG	7.7	639.13	26.09	278.26	304.35	30.43	8	1	5	2	1	0.75	0.57	2.66
CREMP	24-Aug-10	2010	0	0	1	1	PDL	6.9	895.65	43.48	556.52	286.96	8.7	8	0	6	2	0	0.76	0.65	2.65
CREMP	21-Aug-10	2010	1	2	1	1	SP	7.98	256.52	8.7	95.65	130.43	21.74	4	0	2	1	1	0.7	0.75	3.91
CREMP	27-Aug-10	2010	1	2	1	1	TE	7.98	595.65	13.04	217.39	278.26	86.96	6	0	4	1	1	0.71	0.66	2.49
CREMP	27-Aug-10	2010	0	0	1	1	TEFF	7.32	921.74	13.04	543.48	317.39	47.83	11	0	8	1	1	0.8	0.49	3.38
CREMP	19-Aug-10	2010	2	1	1	1	TPE	7.5	1139.13	60.87	586.96	408.7	82.61	10	2	6	1	1	0.79	0.53	3.02
CREMP	19-Aug-10	2010	2	2	1	1	TPN	8.74	1321.74	43.48	1004.35	243.48	30.43	10	1	8	1	1	0.77	0.62	3.11
CREMP	20-Aug-10	2010	0	0	1	1	TPS	7.6	1295.65	30.43	773.91	469.57	21.74	8	0	7	1	0	0.76	0.55	4.1
ED EAS	19-Aug-09	2009	0	0	1	1	SP-DT	7.3	1121.74	65.22	482.61	495.65	78.26	11	1	7	2	1	0.78	0.52	4.17
ED EAS	23-Aug-09	2009	1	2	1	1	SP-F1	7.02	1473.91	26.09	808.7	521.74	117.39	9	0	6	1	1	0.78	0.58	3.16
ED EAS	18-Aug-09	2009	1	2	1	1	SP-F2	7.26	756.52	17.39	334.78	356.52	47.83	8	0	4	2	1	0.81	0.58	5.51
ED EAS	15-Aug-09	2009	1	2	1	1	SP-N1	7.17	1134.78	26.09	478.26	534.78	95.65	7	0	4	2	1	0.72	0.58	3.56
ED EAS	17-Aug-09	2009	1	2	1	1	SP-N2	7.62	652.17	26.09	304.35	286.96	34.78	7	1	5	1	1	0.69	0.57	3.63
ED EAS	23-Aug-09	2009	1	2	1	1	SP-N3	7.43	730.43	13.04	343.48	286.96	86.96	9	0	6	2	1	0.78	0.56	4.75
ED EAS	22-Aug-09	2009	1	2	0	1	TRB-1	7.66	817.39	43.48	321.74	386.96	65.22	8	0	6	1	1	0.74	0.55	3.91
ED EAS	22-Aug-09	2009	1	2	0	1	TRB-2	6.24	400	108.7	52.17	156.52	82.61	5	1	2	1	1	0.83	0.82	1.09
ED EAS	23-Aug-09	2009	2	2	1	1	HVH-4	7.3	986.96	47.83	608.7	230.43	100	9	1	6	1	1	0.83	0.54	3.26
ED EAS	19-Aug-10	2010	1	2	0	1	TRB-2	6.74	443.48	26.09	173.91	173.91	69.57	6	0	3	2	1	0.8	0.76	0.52
ED EAS	23-Aug-10	2010	0	0	1	1	SP-DT	8.34	817.39	47.83	347.83	321.74	100	9	1	6	2	1	0.81	0.55	4.96
ED EAS	20-Aug-10	2010	1	2	1	1	SP-F1	9.08	1134.78	13.04	591.3	404.35	126.09	8	0	6	1	1	0.77	0.54	4.1
ED EAS	20-Aug-10	2010	1	2	1	1	SP-N1	7.96	1239.13	4.35	765.22	382.61	86.96	6	0	4	1	1	0.59	0.67	2.88
ED EAS	20-Aug-10	2010	1	2	1	1	SP-N2	8.4	956.52	47.83	539.13	326.09	43.48	8	0	5	2	1	0.73	0.56	4.4
ED EAS	19-Aug-10	2010	1	2	1	1	SP-N3	8.3	700	26.09	239.13	378.26	56.52	7	0	4	2	1	0.75	0.6	4.22
BG EAS	25-Aug-10	2010	2	1	1	0	TP-E1	7.88	495.65	8.7	213.04	256.52	17.39	7	0	4	2	1	0.82	0.64	2.86
BG EAS	27-Aug-10	2010	2	1	1	0	TP-E2	9.46	908.7	26.09	473.91	382.61	26.09	10	1	7	1	1	0.78	0.58	3.18
BG EAS	28-Aug-10	2010	0	0	1	0	TP-E3	10.6	626.09	4.35	191.3	400	30.43	6	0	4	2	1	0.61	0.6	3.12
ED EAS	24-Aug-10	2010	2	1	1	1	HVH-4	7.5	439.13	13.04	195.65	204.35	26.09	6	1	4	2	1	0.66	0.66	2.77
ED EAS	19-Aug-10	2010	1	2	0	1	TRB-1	8.06	943.48	78.26	408.7	378.26	78.26	9	1	6	2	1	0.83	0.52	3.72
BG EAS	22-Aug-10	2010	2	1	0	0	TRB-3	8.58	265.22	39.13	143.48	65.22	17.39	4	1	2	1	1	0.85	0.81	2.98
BG EAS	24-Aug-10	2010	2	1	0	0	TRB-4	7.18	491.3	178.26	130.43	178.26	4.35	5	1	2	2	0	0.67	0.72	3.45
ED EAS	23-Aug-10	2010	1	2	1	1	SP-F2	7.48	1213.04	8.7	769.57	395.65	39.13	8	0	5	2	1	0.75	0.69	6.7

Gravel	Sand	Silt	Clay	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	1olybdenur	Nickel	Selenium	Silver	Thallium	Tin	Vanadium	Zinc
<1.0	7	69	24	25800	<10	16.3	139	1.59	<0.50	115	12.1	55.2	<30	0.0236	<4.0	79.8	<2.0	<2.0	<1.0	<5.0	39.6	90
<1.0	20	46	33	27400	<10	23.1	133	1.18	<0.50	125	22	47.5	<30	0.007	4.7	103	<2.0	<2.0	<1.0	<5.0	45.9	92.6
<1.0	2	68	30	28300	<10	42.5	143	2.4	< 0.50	76.9	17.6	89.5	<30	0.0861	8.1	72.4	<2.0	<2.0	<1.0	<5.0	42.6	124
<1.0	5	66	29	27700	<10	23.5	136	2.52	< 0.50	60.5	13.2	74.4	<30	0.0275	6.9	48.7	<2.0	<2.0	<1.0	<5.0	42.7	116
<1.0	5	61	34	25400	<10	12.7	124	2.15	<0.50	55.2	12.3	57.2	<30	0.0555	5.1	38.7	<2.0	<2.0	<1.0	<5.0	39.2	104
<1.0	6	58	36	23800	<10	18.1	124	1.88	< 0.50	80.7	16.1	53.8	<30	0.0679	5.4	65	<2.0	<2.0	<1.0	<5.0	38	101
<1.0	25	54	21	16700	<10	9.8	66.5	0.97	< 0.50	101	8.8	46.7	<30	0.0116	<4.0	49.7	<2.0	<2.0	<1.0	<5.0	29.2	62.8
<1.0	5	62	33	25100	<10	18	108	1.5	< 0.50	112	13.4	70.6	<30	0.0208	<4.0	71.9	<2.0	<2.0	<1.0	<5.0	39.3	95.3
< 0.10	13	63	24	23600	<10	16.8	99.3	1.53	< 0.50	115	9.3	48.6	<30	0.0154	<4.0	67.7	< 0.50	<2.0	<1.0	<5.0	38.2	84.7
< 0.10	11	73	16	20400	<10	13	82.5	1.02	< 0.50	135	10.9	51.4	<30	0.0098	<4.0	81.6	<2.0	<2.0	<1.0	<5.0	36.7	80.9
< 0.10	2	66	32	33600	<10	36.2	148	2.52	0.72	93.7	17.8	107	<30	0.0326	7.9	76.9	<2.0	<2.0	<1.0	<5.0	46.6	139
< 0.10	26	57	17	20100	<10	15.7	80.2	1.78	< 0.50	51.1	8	49.9	<30	0.0171	<4.0	32.6	< 0.50	<2.0	<1.0	<5.0	32.5	86.7
< 0.10	6	76	18	25500	<10	13.1	119	1.97	1.47	58.2	13.6	61.2	<30	0.016	4.6	35.4	<2.0	<2.0	<1.0	<5.0	38.6	109
< 0.10	4	72	24	25300	<10	38.1	125	1.81	0.56	90.7	16.4	51.5	<30	0.0158	5.4	64.9	<2.0	<2.0	<1.0	<5.0	37.3	95.9
< 0.10	23	72	5	16900	<10	9.8	64.5	0.99	< 0.50	110	8.4	50.3	<30	0.0483	<4.0	54.1	<2.0	<2.0	<1.0	<5.0	30.6	69.3
< 0.10	14	78	9	23600	<10	15.8	106	1.47	< 0.50	113	15.4	60.9	<30	0.025	<4.0	75.7	<2.0	<2.0	<1.0	<5.0	38.6	97.3
<1.0	9	68	23	40100	<10	12.3	205	3.03	0.83	82.7	11.6	133	35	0.0292	4.6	71.4	<2.0	<2.0	<1.0	<5.0	50.2	171
<1.0	7	67	26	27600	<10	54	116	2.21	< 0.50	72.2	11.4	78.8	<30	0.0244	10.6	46.1	<2.0	<2.0	<1.0	<5.0	37.9	115
<1.0	6	65	30	35100	<10	17.7	233	2.69	0.96	87.4	13.1	127	<30	0.0249	8.4	83	<2.0	<2.0	<1.0	<5.0	48.5	255
<1.0	16	64	20	27900	<10	15	125	1.87	< 0.50	84.7	12.9	75.8	<30	0.0219	6.1	58.5	<2.0	<2.0	<1.0	<5.0	44.9	113
<1.0	5	71	23	28700	<10	41.3	134	2.23	< 0.50	76.2	21.1	94.6	<30	0.024	7.3	71.3	<2.0	<2.0	<1.0	<5.0	40.4	116
<1.0	1	64	34	27900	<10	60.9	138	2.03	0.57	73.7	17.6	94.4	<30	0.0318	8.1	71.7	<2.0	<2.0	<1.0	<5.0	40.3	125
<1.0	2	74	25	27600	<10	30.8	135	1.97	0.55	80	18.3	82.5	<30	0.0297	8.1	75.3	<2.0	<2.0	<1.0	<5.0	39.9	117
<1.0	1	77	23	26700	<10	9.8	147	0.81	< 0.50	126	17.9	45.1	<30	0.0084	<4.0	84	<2.0	<2.0	<1.0	<5.0	49.7	85.7
<1.0	1	65	34	29000	<10	25.6	130	2.07	< 0.50	88.8	17.2	67.7	<30	0.0155	6.1	60.8	<2.0	<2.0	<1.0	<5.0	46.4	109
< 0.10	0.68	80.7	18.6	28000	<10	11.1	149	0.61	< 0.50	156	21.2	39.6	<30	< 0.0050	<4.0	102	<2.0	<2.0	<1.0	<5.0	54.7	86.3
< 0.10	5.83	67.9	26.3	29400	17	59.2	145	2.81	2.6	71.5	12.2	134	33	0.0392	13.4	54.5	<2.0	<2.0	<1.0	<5.0	40.4	152
< 0.10	7.31	66.1	26.5	25400	<10	50.2	98	2.06	< 0.50	80.5	13.3	73.7	<30	0.027	9	54.9	0.62	<2.0	<1.0	<5.0	40.6	113
0.29	17.3	61	21.4	22500	<10	10.8	102	1.59	< 0.50	75.2	9.5	59.6	<30	0.021	<4.0	52.8	<2.0	<2.0	<1.0	<5.0	37.3	102
< 0.10	2.98	69.6	27.5	28100	<10	35.5	123	2.2	< 0.50	95.5	18	87.1	<30	0.0274	7	70.9	0.73	<2.0	<1.0	<5.0	44.3	123
< 0.10	1.95	70.8	27.2	27600	<10	104	119	2.12	< 0.50	86.8	13.6	97.5	<30	0.0244	10.3	67.2	0.88	<2.0	<1.0	<5.0	43.1	131
< 0.10	2.59	64.1	33.3	25400	<10	23.2	103	1.91	< 0.50	111	17.5	53.7	<30	0.0102	5.2	73	0.7	<2.0	<1.0	<5.0	42.3	106
< 0.10	3.66	63.3	33	26200	<10	32.4	104	1.88	<0.50	97.9	17.2	65.5	<30	0.0149	7.3	62	<2.0	<2.0	<1.0	<5.0	42.8	109
< 0.10	3.34	70.1	26.5	26500	<10	24.6	131	1.66	< 0.50	115	23.7	84.4	<30	0.0235	5.7	142	0.86	<2.0	<1.0	<5.0	43.4	115
1.09	2.89	48.4	47.6	36100	<10	26.6	139	2.55	< 0.50	119	20.1	89.2	33	0.0133	7.2	80.1	<2.0	<2.0	<1.0	<5.0	57.7	141
< 0.10	8.79	74.9	16.3	21100	<10	67.8	169	1.3	< 0.50	130	26.5	63.4	<30	0.0269	10.8	136	0.71	<2.0	<1.0	<5.0	38.6	99
< 0.10	3.06	73.3	23.7	25400	<10	33.3	96.4	1.69	< 0.50	183	20.7	62.2	<30	0.017	6.8	89.3	0.95	<2.0	<1.0	<5.0	45.7	107
< 0.10	1.75	69	29.2	28400	<10	21.1	114	2.01	< 0.50	179	13.8	67.2	<30	0.0138	5.9	85.1	0.74	<2.0	<1.0	<5.0	49.1	120
< 0.10	2.73	73.5	23.8	29900	<10	15.2	163	2.48	0.8	91.2	10.6	130	<30	0.029	6.2	85.6	<2.0	<2.0	<1.0	<5.0	45.1	160

5 DD9 B8 ± 5 &

RAW DATA FOR ANALYSIS OF PERIPHYTON - REPS

Appendix A2: Periphyton Station Reps.

								B_Cyano	B_Chloro	B_Chryso	B_Diatom	B_Dino	B_Total	D_Cyano	D_Chloro	D_Chryso	D_Diatom	D_Dino	D_Total	Dry Weight	Ash Weight	Ash Free Dry
Program	Date	Year	Stn.Year	C.I.ED	Repeat	Station	Replicate	(ug/cm2)	(ug/cm2)	(ug/cm2)	(ug/cm2)	(ug/cm2)	(ug/cm2)	(cells/cm2)	(cells/cm2)	(cells/cm2)	(cells/cm2)	(cells/cm2)	(cells/cm2)	(g)	(g)	Weight (g)
ED EAS	21-Aug-10	2010		1	0	SP-ISLA	1	73.5	7.8	0	246.6	0	327.9	857738	3589	0	165088	0	1026414	0.867	0.77	0.0967
ED EAS	21-Aug-10	2010		1	0	SP-ISLA	2	83.5	0	0	181.2	0	264.7	613695	0	0	226098	0	839793	1.59	1.47	0.116
ED EAS	21-Aug-10	2010		1	0	SP-ISLA	3	38.9	14.5	0	154.4	0	207.8	531600	6729	0	213089	0	751418	0.591	0.517	0.0743
ED EAS	21-Aug-10	2010		1	0	SP-ISLA	4	69.4	29.1	0	87.7	0	186.2	385803	6729	0	159256	0	551787	0.854	0.736	0.118
ED EAS	21-Aug-10	2010		1	0	SP-ISLA	5	21.8	10.1	0	70	0	101.9	170471	7851	0	116638	0	294959	0.308	0.237	0.0711
ED EAS	22-Aug-10	2010	2	1	1	SP-BL	1	16.5	0	0	133.7	0	150.1	239257	0	0	436645	0	675902	1.44	1.32	0.127
ED EAS	22-Aug-10	2010	2	1	1	SP-BL	2	77.9	4.2	0	119.5	0	201.5	481505	2991	0	496459	0	980955	0.829	0.773	0.0564
ED EAS	22-Aug-10	2010	2	1	1	SP-BL	3	21.4	0	0	131.6	0	153	345428	0	0	412719	0	758147	3.04	2.88	0.163
ED EAS	22-Aug-10	2010	2	1	1	SP-BL	4	11.7	0	0	104	0	115.6	174316	0	0	430663	0	604979	2.92	2.79	0.134
ED EAS	22-Aug-10	2010	2	1	1 0	SP-BL	5	19.3	0	0	100.2	0	119.5	190658	0	0	372344	0	563002	1.81	1.72	0.0957
ED EAS	22-Aug-10	2010		1	0	SP-GSM	1 2	86.7	16.4 63.9	3.2	130.7 217.6	0	233.8	915159 724950	13458	14355	260192 376830	0	1188810 1137669	1.32 0.483	1.17 0.418	0.145 0.0645
ED EAS ED EAS	22-Aug-10	2010 2010		1	0	SP-GSM SP-GSM	3	111.5 89.2	30.3	0	271.1	0	396.2 390.6	852354	21533 8972	0	358886	0	1220213	0.483	0.418	0.0645
ED EAS	22-Aug-10 22-Aug-10	2010		1	0	SP-GSM	4	83.1	14.5	0	153.9	0	251.5	493468	8972	0	195144	0	697585	0.62	0.783	0.0875
ED EAS	22-Aug-10 22-Aug-10	2010		1	0	SP-GSM	5	113.3	41.5	0	108.9	0	263.7	354400	11215	0	139068	0	504684	0.712	0.553	0.159
ED EAS	22-Aug-10	2010		1	0	SP-AZI	1	244.1	85.7	0	304.3	0	634.1	580199	14954	0	352905	0	948057	0.406	0.367	0.0395
ED EAS	22-Aug-10	2010		1	0	SP-AZI	2	24.6	23.5	0	156.6	0	204.7	376830	15951	0	303059	0	695840	0.48	0.379	0.101
ED EAS	22-Aug-10	2010		1	0	SP-AZI	3	44.1	38.2	0	263.8	0	346.1	287109	17944	0	311035	0	616088	0.659	0.57	0.0888
ED EAS	22-Aug-10	2010		1	0	SP-AZI	4	133.6	186	0	119.1	0	438.7	520385	17944	0	155517	0	693846	0.548	0.428	0.121
ED EAS	22-Aug-10	2010		1	0	SP-AZI	5	44.4	217.6	0	167.2	0	429.3	287109	42618	0	293838	0	623565	0.478	0.402	0.0765
ED EAS	23-Aug-10	2010	4	0	1	SP-CREMP	1	75.6	73.7	0	286.3	1.3	436.9	1073069	21533	0	254809	3589	1353000	0.791	0.521	0.27
ED EAS	23-Aug-10	2010	4	0	1	SP-CREMP	2	138.5	0	0	127.7	0	266.2	888243	0	0	191406	0	1079649	0.417	0.369	0.0485
ED EAS	23-Aug-10	2010	4	0	1	SP-CREMP	3	40.7	16.1	0	185.2	0	242.1	882860	10767	0	276342	0	1169968	0.248	0.198	0.0498
ED EAS	23-Aug-10	2010	4	0	1	SP-CREMP	4	79.6	0	0	102.5	0	182.1	720336	0	0	151245	0	871580	0.712	0.393	0.318
ED EAS	23-Aug-10	2010	4	0	1	SP-CREMP	5	107.1	43.1	0	71.3	0	221.5	741698	29907	0	101684	0	873289	0.607	0.48	0.127
ED EAS	23-Aug-10	2010	6	0	1	SP-DT	1	234.6	0	0	170.1	0	404.7	1143949	0	0	287109	0	1431058	0.319	0.177	0.142
ED EAS	23-Aug-10	2010	6	0	1	SP-DT	2	167.7	0.7	0	79.2	0	247.7	968992	26917	0	130096	0	1126005	0.201	0.102	0.0991
ED EAS	24-Aug-10	2010	6	0	1	SP-DT	3	86.9	179.1	0	141.1	0	407	815184	20508	0	156372	0	992064	0.224	0.115	0.109
ED EAS	24-Aug-10	2010	6	0	1	SP-DT	4	25.8	31.4	0	86.5	0	143.6	720763	14954	0	155517	0	891234	0.258	0.149	0.109
ED EAS	24-Aug-10	2010	6	0	1	SP-DT	5	64.5	78.9	0	193.5	0	336.9	674193	25635	0	274292	0	974119	0.66	0.327	0.333
ED EAS	27-Aug-09	2009	1	1	1	SP-BL	1	44.8	12.5	0	127.5	0	184.8	568236	5981	0	278137	0	852354	0.437	0.398	0.0393
ED EAS	27-Aug-09	2009	1	1	1	SP-BL	2	63	8	0	233.1	0	304.1	714781	2991	0	328979	0	1046751	0.814	0.63	0.184
ED EAS	27-Aug-09	2009	1	1	1	SP-BL	3	18.4	0.2	0	84.9	0	103.5	634032	5981	0	139567	0	779580	0.952	0.889	0.0629
ED EAS	27-Aug-09	2009	1	1	1	SP-BL	4	4.7	0	0	172.4	0	177.1	46143	0	0	307617	0	353759	1.21	1.13	0.0776
ED EAS	27-Aug-09	2009	1	1	1	SP-BL	5	123	11.7	0	103	0	237.7	486739	8972	0	181686	0	677397	0.71	0.677	0.0328
ED EAS	28-Aug-09	2009	3	0	1	SP-CREMP	1	212.3	494.7	0	218.7	0	925.7	744689	49347	0	192901	0	986937	0.559	0.299	0.26
ED EAS	28-Aug-09	2009	3	0	1	SP-CREMP	2	318.3	71.2	0	213.1	0	602.6	724950	21533	0	154321	0	900804	0.839	0.417	0.422
ED EAS	28-Aug-09	2009	3	0	1	SP-CREMP	3	179.6	10.9	0	77.8	0	268.3	610106	29907	0	116638	0	756651	0.354	0.225	0.129
ED EAS	28-Aug-09	2009	3	0	1	SP-CREMP	4	160	88.3	0	345.5	0	593.8	850560	50244	0	222509	0	1123313	0.341	0.232	0.11
ED EAS	28-Aug-09	2009	3	0	1	SP-CREMP	5	123.6	84.6	0	148.7	0	356.9	829027	17944	0	236865	0	1083836	0.575	0.315	0.26
ED EAS	30-Aug-09	2009	5	0	1	SP-DT	1	478.1	297.3	0	134.5	0	909.9	645995	71777	0	269165	0	986937	0.205	0.0747	0.13
ED EAS	30-Aug-09	2009	5	0	1	SP-DT	2	230.5	6	0	116.1	0	352.6	628051	2991	0	152527	0	783568	0.433	0.19	0.243
ED EAS	30-Aug-09	2009	5	0	1	SP-DT	3	148.1	72.7	0	78.6	0	299.5	520385	38879	0	122619	0	681883	0.205	0.072	0.133
ED EAS ED EAS	30-Aug-09 30-Aug-09	2009 2009	5 5	0	1	SP-DT SP-DT	4	170.1 117.9	70.4 0	0	63.3 206.2	0	303.8 324.2	658812 476806	35889 0	0	112793 225586	0	807494 702391	0.319 0.33	0.136 0.15	0.183 0.179
ED EW2	30-Mug-03	2009	э	U	1	3r-U1	J	117.9	U	U	200.2	U	324.2	470000	U	U	223300	U	/02331	0.33	0.13	0.1/3

5 DD9B8±.'6' G98≠A9BH'HCL=7+IM'H9GH'F9GI@HG'Ë'A5LL5A' 5 B5@MH=7G'

FRESHWATER SEDIMENT TOXICITY TESTS USING HYALELLA AZTECA AND CHIRONOMUS TENTANS

Prepared for:

Azimuth Consulting Group 218 – 2902 West Broadway Vancouver, BC V6K 2G8

Prepared by:

Ecotoxicology Group Maxxam Analytics

Azimuth Project No.: AEM-10-02.2 Maxxam Project No.: 2-11-0691

October 2010

EXECUTIVE SUMMARY

Four sediment samples were collected by Azimuth Consulting Group on August 22, 25 and 27, 2010 and submitted to Maxxam Analytics for 10-d *Chironomus tentans* Survival and Growth and 14-d *Hyalella azteca* Survival and Growth sediment toxicity tests.

There was no statistically significant difference in any of the samples when compared to the lab controls for both endpoints, growth and survival, in either test, *Hyalella* or *Chironomid*.

The Chironomid and *Hyalella* tests performed on the sediment samples were initiated on September 17, 2010. The Chironomid tests performed met the survival and dry weight validity criteria. However, the average head capsule width of the larvae before test initiation was 0.53 mm, greater than the Environment Canada recommended range of 0.33 – 0.45 mm. This does not invalidate a test, since the larvae are still considered third instar at this size. However, it does account for the number of pupae and midges recovered at test completion. Statistical and raw data for these tests are included in this report, with supporting data provided in Appendix B. The *Hyalella* tests performed met the survival and dry weight validity criteria. All statistical and raw data for these tests are included in this report, with supporting data provided in Appendix C.

In addition to the sediment toxicity tests performed, physical and chemical analyses were performed on the whole sediment, the sediment porewater and the overlying water from the Chironomid and *Hyalella* sediment tests. The results for these analyses are provided in Appendix D.

Test Data Summary sheets of all test results are also provided and can be found in each individual test section.

TEST METHODS, STATISTICS AND VALIDITY CRITERIA

The Chironomid tests were conducted using the test method EPS 1/RM/32 Environment Canada Method (1997) Biological Test Method: Test for Survival and Growth in Sediment Using the Larvae of Freshwater Midges (*Chironomus tentans* or *Chironomus riparius*). This test provides survival and growth data for chironomids when exposed to whole sediment. The Chironomid test is a static, non-renewal test using 3rd instar larvae exposed to sediment for 10-days. This test is conducted at 23°C, using 5 replicates per treatment including a laboratory control, with 10 organisms per replicate. A detailed list of test conditions is included in the Test Data Summary sheet.

The *Hyalella* sediment tests were conducted using the test method EPS 1/RM/33 Environment Canada Method (1997) Biological Test Method: Test for Survival and Growth in Sediment Using the Freshwater Amphipod *Hyalella azteca*. This test provides survival and growth data for *Hyalella* when exposed to whole sediment. The Hyalella test is a static, non-renewal test using juvenile (2-9 days old) amphipods, exposed to sediment for 14-days. This test is conducted at 23°C, using 5 replicates per treatment including a laboratory control, with 10 organisms per replicate. A detailed list of test conditions is included in the Test Data Summary sheet.

The Chironomid sediment test is considered valid if the mean survival in the controls is ≥70% and the average dry weight is ≥0.6 mg/larvae.

The *Hyalella* sediment test is considered valid if the mean survival in the controls is ≥80% and the average dry weight is ≥0.1 mg/amphipod.

Statistical analyses for survival and growth comparisons were calculated using CETIS™ (Version 1.7.0.3), an Access based software application (Tidepool Scientific Software). Details on analyses used are provided in Test Data Summary sheets.

Reference Toxicant tests for each organism were run concurrently with the toxicity tests, using the same batch of organisms used in each test. Their respective LC50 and 95% confidence limits for each reference toxicant test were calculated using CETIS™ and are included in the Test Data Summary sheets. A control chart was prepared for each reference toxicant test, and is included in their respective appendices.

.

10-D CHIRONOMID GROWTH AND SURVIVAL TEST

.

Gi a a UfmcZ%\$!X'7\]fcbca]X'HYghFYgi `hg'Zcf'' 5 n]a i h\ 'GYX]a Ybh'GUa d`Yg' HYgh'8 UhY. 'GYdhYa VYf'%+z'&\$%\$'

.

GUa d'Y'	A YUb 'Gi fj]j U 'fl Ł'- 'G8 '	A YUb '8 fmiK Y][\ hifa [Ł- 'G8 '
Control	94 ± 9	1.71 ± 0.35
SP-TRB-2	80 ± 10	1.83 ± 0.29
SP-N1	94 ± 5	2.08 ± 0.15
INUG	84 ± 15	2.13 ± 0.42
TEFF	88 ± 8	1.86 ± 0.23

SD=Standard Deviation. *=Statistically significant difference compared to the Control

%\$!X`7\]fcbca]X Gi fj]j U`UbX`; fck h\ `GYX]a YbhHYgh

Client Name/Location	Azimuth Consulting Group / Vancouver, BC
Testing Lab/Location	Maxxam Analytics / Burnaby, BC
GUad`Y`=bZcfaUn]cb	
Sample Names	SP-TRB-2, SP-N1, INUG, TEFF
Type of Sample	Field collected sediments
Method of Collection	See Chain of Custody form
Sample Collector	See Chain of Custody form
Sample Volume	4 L
Sample Containers	4-L white food grade plastic buckets
Sample Collection Date	2010 August 22, 25, 27
Date & Time of Sample Receipt	2010 September 03 @ 08:25
Sample Temperature upon Arrival	10 - 13°C
Sediment and Pore Water	See Sediment Sample Descriptions sheet (Appendix A) and
Characterisation	analytical chemistry reports (Appendix D)
GUa d`Y`DfYdUfUf]cb	
Homogenisation	Samples were individually mixed until homogenised at ambient laboratory temperature; large debris and indigenous macroorganisms were removed during homogenisation (see Sediment Sample Descriptions sheet, Appendix A)
Date of Homogenisation	2010 September 16
Sediment – Physical Analyses	Each homogenised sediment was analysed for grain size, TOC and moisture content. See chemical analysis reports, Appendix D.
Sediment Porewater – Chemical Analyses	Samples of homogenised sediment were centrifuged to produce porewater. The porewater was then analysed for Ammonia and Sulfides. See chemical analysis report, Appendix D.
HYghCf[Ub]ga g"	
Species	Chironomus tentans
Source	Aquatic Bio Systems, Fort Collins, CO
Age at Start of Test	3 rd Instar
Water quality parameters of shipping water before shipment and after arrival	See Organism History Sheet See Acclimation and Holding Conditions sheets
Acclimation rate and procedure	See Acclimation and Holding Conditions sheets
Mortality upon arrival and preceding test	See Acclimation and Holding Conditions sheets

@UVcfUrcfmi7 cblfc`'GYX]a Ybh UbX'HYghK UhYf'	
Laboratory Control Sediment Source	Mackenzie Beach, Tofino, BC; Collected by Seacology (North Vancouver, BC)
Laboratory Control Sediment Storage	Stored in a cold room that was at 4 \pm 2°C
Laboratory Control Sediment	Sediment was sieved (0.5 mm) before use and rinsed
Preparation Procedure	thoroughly with control water
Control Water	Reconstituted water (EC 1997)
HYgh7 cbX]h]cbg' : UVJ[]h]Yg	
Test Method	Environment Canada Biological Test Method: Test for Survival and Growth in Sediment Using the Larvae of Freshwater Midges (Chironomus tentans or Chironomus riparius)EPS 1/RM/32 (1997)
Test Type	Static, no water renewal
Test Temperature	23°C ± 1°C. See the Test Measurement and Survival Data sheets
Light levels and photoperiod	Overhead full spectrum (fluorescent or equivalent); 607 – 763 lux, 16-h light:8-h dark
Aeration	Continuous and minimal in each test vessel; checked 3 times daily. Compressed oil-free air delivered through microbore airline tubing
Test Start Date	2010 September 17
Test Completion Date	2010 September 27
Test Duration	10 days
Test Vessels	300 mL glass jars; covered
Volume of Sediment	100 mL
Volume of Test Water	175 mL
Analysts	M. Grey, K. Tamaki, L. Stavroff, R. Masson, K. Melling, J. Laroulandie, D. Greschner, K. Pomeroy
Water Renewal	None
# Organisms / Vessel	10
Number of Replicates	5 (plus one measurement beaker) for each sediment sample
Feeding Regime	3.75 mL Tetrafin slurry, 4 times/10days
Dissolved Oxygen Concentrations (DO) and Temperature	In overlying water, at the start and end of the test and ~3 times/week in the measurement beakers. See Test Conditions and Survival Data sheets
pH, Conductivity and Hardness	In overlying water, at the start and end of the test in the measurement beakers. See Test Conditions and Survival Data sheets
Sediment Appearance During Test	See Aeration Checks and Test Observations sheets
Test Observations	Organism behaviour during the test, visible mortalities and/or abnormal behaviour was recorded on Test Observations sheet
Overlying Water – Chemical Analysis	Samples of the overlying water were analysed for Ammonia and Alkalinity on Day 0 (start) and Day 10 (end) of the test. See chemical analysis reports, Appendix D.

Anything Unusual about the Test, Deviation from Test Method, other Problems	By test completion, many larvae had begun to pupate, with some already developed into midges. Observed pupae and midges were included in the survival counts, but were excluded from final dry weight measurements. Initial head capsule width measurements were larger than the recommended with range of 0.33 – 0.45 mm (Average: 0.53mm)
FYgi `hgʻ	
Endpoints	Survival, Mean Dry Weight
Gi fj]j U 9bXdc]bhFYgi `hg'	There was no statistically significant difference in survival between the test sediments and the laboratory control.
Name and citation of program and methods used for calculating statistical endpoint	CETIS v1.7.0.3 – Parametric; Dunnett's Multiple Comparisons Test Data was tested for normality using Shapiro-Wilk's test and homogeneity of variance using Bartlett's test
; fck l\ '9bXdc]bhFYgi `hg'	There was no statistically significant difference in dry weight between the test sediments and the laboratory control.
Name and citation of program and methods used for calculating statistical endpoint	CETIS v1.7.0.3 – Parametric; Dunnett's Multiple Comparisons Test Data was tested for normality using Shapiro-Wilk's test and homogeneity of variance using Bartlett's test
E5.	
Test Validity Criteria • Mean survival in the test controls for <i>C. tentans</i> must be ≥70%	Mean survival in the control was 94%
Average Dry Weight ≥0.6mg	Mean Dry Weight was 1.71 mg
FYZYfYbWY′Hcl]WUbh'HYghʻ @7)\$`fl)ı '7@L´fbl['7i ^{8Ž} #@L´Zcf' Gifj]jU'	0.38 (0.29, 0.47)
Ref Tox Test Historic Mean and 2SD Range (mg Cu ²⁺ /L)	0.41; 2SD range: (0.17, 0.97)
Invalid Ref Tox Test?	No
Date of Ref Tox Test	2010 September 17
Organisms Batch and Condition of Ref Tox Test	Static 96-h water-only test. Same batch of organisms used

Report Date: Test Code: 30 Sep-10 16:55 (p 1 of 4) 16-4657-4172/CT-4954-0110

							res	t Code:	10-4	057-4172/01-49	104-01
Chironomus 10-c	d Survival and G	Frowth :	Sediment T	est						N	/laxxa
Analysis ID: 15	5-0113-4222	End	dpoint։ Տւ	ırvival Rate			CE	TIS Version	n: CETISV	1.7.0	
Analyzed: 30	0 Sep-10 16:55	Ana	alysis: Pa	arametric-Co	ntrol vs T	reatments	Offi	cial Resul	ts: Yes		
Batch ID: 09	9-4886-5450	Tes	st Type: Su	ırvival-AF Gr	owth		Ana	ılyst: K.	Melling		
Start Date: 17	7 Sep-10 17:38		• •	C/EPS 1/RM/				=	econstituted	ıMater	
	7 Sep-10 16:00			nironomus te			Brit		ot Applicable	vvater	
	d 22h	•		uatic Biosys)	Age		v vhhileanie		
Sample Code	Sample ID	Samn	le Date	Receive D		Sample Age	Client Na		Dec	piect	
CTRL2010Sept17			p-10 09:00	TRECEIVE D		9h				neral Misc. Bioa	000000
SP-TRB-2	02-9973-0060		g-10 09:00	03 Sep-10		26d 9h	/ Wall Hotels C	onouning .	Stoup III OC	nciai wiisc. Dioa	ssays
SP-N1	02-4340-9088		g-10 09:00	03 Sep-10		26d 9h					
INUG	09-3052-7692	,	g-10 09:00	03 Sep-10		23d 9h					
TEFF	20-8508-6076		g-10 00:00	03 Sep-10		21d 9h					
Sample Code CTRL2010Sept17	Material Type Freshwater Sec	liment	Sample S	Source Consulting G	roup	Station Lab Contr		****	Latitude	Longitud	<u> </u>
SP-TRB-2	Freshwater Sec			_	-						
SP-N1	Freshwater Sec			Consulting G	-	SP-TRB-2	<u>′</u>				
NUG				Consulting G	-	SP-N1					
	Freshwater Sec			Consulting G		INUG					
TEFF ———————————————————————————————————	Freshwater Sec	iment	Azimuth (Consulting G	roup	TEFF					
Data Transform		eta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected	d) 0		C > T	Not Run						14.31%	
Dunnett's Multipl	e Comparison T	est									
Sample Code v	s Sample Cod	е	Test Stat	Critical	MSD	P-Value	Decision	(5%)			
CTRL2010Sept17	SP-TRB-2		2.266	2.305	0.2044	0.0538	Non-Sign	ificant Effe	ct		
	SP-N1		0.04753	2.305	0.2044	0.7842	Non-Sign	ificant Effe	ct		
	INUG		1.554	2.305	0.2044	0.1838	Non-Sign	ificant Effe	ct		
	TEFF		1.055	2.305	0.2044	0.3577	Non-Sign	ificant Effe	ct		
Auxiliary Tests											
Attribute	Test			Test Stat	Critical	P-Value	Decision				
Extreme Value	Grubbs Singl	e Outlie	r	2.301	2.822	0.3824	No Outlie	rs Detected	i		
ANOVA Table											
Source	Sum Squares	;	Mean Squ	uare	DF	F Stat	P-Value	Decision	ո(5%)		
Between	0.1501287		0.037532	17	4	1.909	0.1483	Non-Sigr	nificant Effec	t	
rror	0.3932123		0.0196606		20						
Гotal	0.543341		0.0571927	78	24						
NOVA Assumpti	ions										
					A			(40/)			
\ttribute_	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Attribute Variances	Test Bartlett Equa	lity of Va	ariance	2.309	13.28	P-Value 0.6791	Equal Var	<u> </u>			

20105ept36 2010oct44

Analyst: 19 QA: 114

Report Date: Test Code: 30 Sep-10 16:55 (p 2 of 4)

16-4657-4172/CT-4954-0110

Chironomus 10-d Survival and Growth Sediment Test

Maxxam

Analysis ID: Analyzed: 15-0113-4222 30 Sep-10 16:55 Endpoint: Survival Rate

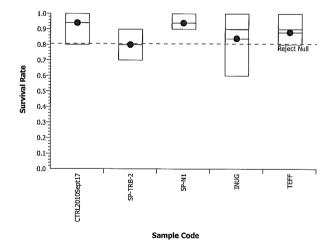
Analysis: Parametric-Control vs Treatments

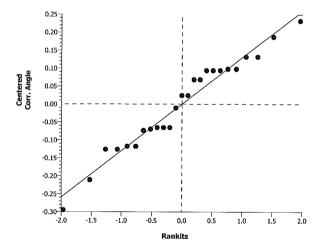
CETIS Version: CET Official Results: Yes

CETISv1.7.0

Survival	Date	Sum	manı
Survivai	Rate	Sum	marv

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
CTRL2010Sept17	5	0.94	0.906	0.974	0.8	1	0.04	0.08944	9.52%	0.0%
SP-TRB-2	5	8.0	0.762	0.838	0.7	0.9	0.04472	0.1	12.5%	14.89%
SP-N1	5	0.94	0.9192	0.9608	0.9	1	0.02449	0.05477	5.83%	0.0%
INUG	5	0.84	0.7823	0.8977	0.6	1	0.06782	0.1517	18.05%	10.64%
TEFF	5	0.88	0.8482	0.9118	8.0	1	0.03742	0.08367	9.51%	6.38%


Angular (Corrected) Transformed Summary


Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
CTRL2010Sept17	5	1.318	1.266	1.371	1.107	1.412	0.06153	0.1376	10.44%	0.0%
SP-TRB-2	5	1.118	1.068	1.167	0.9912	1.249	0.05772	0.1291	11.55%	15.24%
SP-N1	5	1.314	1.28	1.348	1.249	1.412	0.03992	0.08926	6.79%	0.32%
INUG	5	1.181	1.106	1.256	0.8861	1.412	0.08805	0.1969	16.68%	10.45%
TEFF	5	1.225	1.177	1.273	1.107	1.412	0.05653	0.1264	10.32%	7.1%

Survival Rate Detail

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
CTRL2010Sept17	1	1	1	0.9	0.8
SP-TRB-2	0.9	0.9	0.7	0.8	0.7
SP-N1	1	0.9	0.9	0.9	1
INUG	1	0.6	8.0	0.9	0.9
TEFF	0.9	0.9	8.0	1	8.0

Graphics

2010Sept3D 2010Oct

Report Date: Test Code:

30 Sep-10 16:55 (p 3 of 4) 16-4657-4172/CT-4954-0110

							i est	t Code:	16	-4657-4172/0	J1-4904-UII
Chironomus 10-	d Survival and G	rowth S	Sediment	Test							Maxxam
Analysis ID: 1	4-2354-7105	End	point: N	/lean Dry Wei	ght		CET	'IS Version	: CETIS	Sv1.7.0	
Analyzed: 3	0 Sep-10 16:55	Ana	lysis: F	Parametric-Co	ntrol vs Trea	atments	Offic	cial Results	s: Yes		
Batch ID: 0	9-4886-5450	Tes	t Type: S	Survival-AF Gr	owth		Ana	lyst: K.	Melling		
Start Date: 1	7 Sep-10 17:38	Pro	tocol: E	C/EPS 1/RM/	32		Dilu	-	constituted	d Water	
Ending Date: 2	7 Sep-10 16:00	Spe	cies: C	Chironomus te	ntans		Brin	e: No	t Applicab	le	
Duration: 9	d 22h	Sou	rce: A	quatic Biosys	tems, CO		Age	:			
Sample Code	Sample ID	Sampl	e Date	Receive D	ate Sa	mple Age	Client Nar	ne	Р	roject	
CTRL2010Sept17			-10 09:00		9h		Azimuth C	onsulting G	roup In G	Seneral Misc.	Bioassays
SP-TRB-2	02-9973-0060	-	-10 09:00			d 9h					
SP-N1	02-4340-9088	_	-10 09:00	•		d 9h					
INUG	09-3052-7692	_	-10 09:00	•		d 9h					
TEFF	20-8508-6076	27 Aug	-10 09:00	03 Sep-10	08:25 210	1 9h					
Sample Code	Material Type			Source		Station Lo		· · · · · · · · · · · · · · · · · · ·	Latitude	Lon	gitude
CTRL2010Sept17				Consulting G	-	Lab Contro					
SP-TRB-2	Freshwater Sed			Consulting G		SP-TRB-2					
SP-N1	Freshwater Sed			Consulting G		SP-N1					
INUG	Freshwater Sed			Consulting G	-	INUG					
TEFF	Freshwater Sed	iment	Azimuth	Consulting G	roup	TEFF					
Data Transform	Ze	ta	Alt Hyp		rlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransformed	0		C > T	Not Run						25.8%	
Dunnett's Multip	le Comparison T	est									
Sample Code v	s Sample Cod	е	Test Sta	t Critical	MSD	P-Value	Decision(5%)			
CTRL2010Sept17			-0.6334	2.305	0.4414	0.9417		ficant Effec	t		
	SP-N1		-1.948	2.305	0.4414	0.9984	-	ficant Effec			
	INUG		-2.205	2.305	0.4414	0.9993	_	ficant Effec			
	TEFF		-0.793	2.305	0.4414	0.9598	Non-Signi	ficant Effec	t		
Auxiliary Tests											
Attribute	Test										
Extreme Value				Test Stat	Critical	P-Value	Decision				
	Grubbs Single	e Outlier		Test Stat 2.45	Critical 2.822	P-Value 0.2283		s Detected			
ANOVA Table	Grubbs Single	e Outlier						s Detected			
	Grubbs Single Sum Squares		Mean Se	2.45					(5%)		
Source				2.45 quare	2.822	0.2283	No Outlier	s Detected Decision		ect	
Source Between Error	Sum Squares 0.6347302 1.833966		Mean So	2.45 quare 26	2.822 DF	0.2283 F Stat	No Outlier	Decision		ect	
Source Between Error	Sum Squares 0.6347302		Mean Sc 0.158683	2.45 quare 26 33	2.822 DF 4	0.2283 F Stat	No Outlier	Decision		ect	
Source Between Error Fotal	Sum Squares 0.6347302 1.833966 2.468696		Mean Sc 0.15868 0.091698	2.45 quare 26 33	2.822 DF 4 20	0.2283 F Stat	No Outlier	Decision		ect	
Source Between Error Total ANOVA Assumpt Attribute	Sum Squares 0.6347302 1.833966 2.468696 ions		Mean So 0.15868; 0.09169; 0.250386	2.45 quare 26 33	DF 4 20 24	0.2283 F Stat	No Outlier	Decision Non-Signi		ect	
Source Between Error Fotal ANOVA Assumpt Attribute Variances	Sum Squares 0.6347302 1.833966 2.468696 ions Test Bartlett Equal	ity of Va	Mean So 0.15868; 0.09169; 0.250380	2.45 quare 26 33 09 Test Stat 3.918	DF 4 20 24	0.2283 F Stat 1.73	P-Value 0.1828	Decision Non-Signi		ect	
Source Between Error Fotal ANOVA Assumpt Attribute /ariances	Sum Squares 0.6347302 1.833966 2.468696 ions	ity of Va	Mean So 0.15868; 0.09169; 0.250380	2.45 quare 26 33 09 Test Stat	DF 4 20 24 Critical	0.2283 F Stat 1.73 P-Value	P-Value 0.1828 Decision(Decision Non-Signi 1%)		ect	
Source Between Fror Fotal ANOVA Assumpt Attribute Variances Distribution	Sum Squares 0.6347302 1.833966 2.468696 ions Test Bartlett Equal Shapiro-Wilk	ity of Va	Mean So 0.15868; 0.09169; 0.250380	2.45 quare 26 33 09 Test Stat 3.918	DF 4 20 24 Critical	0.2283 F Stat 1.73 P-Value 0.4172	P-Value 0.1828 Decision(Equal Vari	Decision Non-Signi 1%)		ect	
Source Between Error Total ANOVA Assumpt Attribute Variances Distribution Mean Dry Weight Sample Code	Sum Squares 0.6347302 1.833966 2.468696 ions Test Bartlett Equal Shapiro-Wilk Summary Co	ity of Va	Mean Sc 0.15868: 0.091690 0.250380 riance y	2.45 quare 26 33 09 Test Stat 3.918 0.9699 95% LCL	DF 4 20 24 Critical 13.28	0.2283 F Stat 1.73 P-Value 0.4172	P-Value 0.1828 Decision(Equal Vari	Decision Non-Signi 1%)			Diff%
Source Between Error Fotal ANOVA Assumpt Attribute Variances Distribution Mean Dry Weight Sample Code CTRL2010Sept17	Sum Squares 0.6347302 1.833966 2.468696 ions Test Bartlett Equal Shapiro-Wilk Summary Co	ity of Va Normalit	Mean Sc 0.15868; 0.09169; 0.25038; riance y Mean 1.71	2.45 quare 26 33 09 Test Stat 3.918 0.9699 95% LCL 1.578	2.822 DF 4 20 24 Critical 13.28	0.2283 F Stat 1.73 P-Value 0.4172 0.6421	P-Value 0.1828 Decision(Equal Vari	Decision Non-Signi 1%) ances stribution	ficant Effe		Diff% 0.0%
Source Between Error Total ANOVA Assumpt Attribute Variances Distribution Mean Dry Weight Sample Code CTRL2010Sept17 SP-TRB-2	Sum Squares 0.6347302 1.833966 2.468696 ions Test Bartlett Equal Shapiro-Wilk Summary Co 5 5	ity of Va Normalit	Mean Sc 0.15868; 0.091698 0.250380 riance y Mean 1.71	2.45 quare 26 33 09 Test Stat 3.918 0.9699 95% LCL	DF 4 20 24 Critical 13.28	0.2283 F Stat 1.73 P-Value 0.4172 0.6421 Min	P-Value 0.1828 Decision(Equal Vari Normal Dis	Decision Non-Signi 1%) ances stribution	ficant Effe	/ CV%	
Source Between Error Total ANOVA Assumpt Attribute Variances Distribution Mean Dry Weight Sample Code CTRL2010Sept17 SP-TRB-2 SP-N1	Sum Squares 0.6347302 1.833966 2.468696 ions Test Bartlett Equal Shapiro-Wilk Summary Co 5 5 5	ity of Va Normalit	Mean So 0.15868; 0.091698 0.250380 riance y Mean 1.71 1.832 2.084	2.45 quare 26 33 09 Test Stat 3.918 0.9699 95% LCL 1.578	DF 4 20 24 Critical 13.28 95% UCL 1.843	0.2283 F Stat 1.73 P-Value 0.4172 0.6421 Min 1.256	P-Value 0.1828 Decision(Equal Vari Normal Dis	Decision Non-Signi 1%) ances stribution Std Err 0.156	Std Dev	/ CV% 20.4%	0.0%
ANOVA Table Source Between Error Total ANOVA Assumpt Attribute Variances Distribution Mean Dry Weight Sample Code CTRL2010Sept17 SP-TRB-2 SP-N1 INUG	Sum Squares 0.6347302 1.833966 2.468696 ions Test Bartlett Equal Shapiro-Wilk Summary Co 5 5	ity of Va Normalit	Mean Sc 0.15868; 0.091698 0.250380 riance y Mean 1.71	2.45 quare 26 33 09 Test Stat 3.918 0.9699 95% LCL 1.578 1.72	2.822 DF 4 20 24 Critical 13.28 95% UCL 1.843 1.943	0.2283 F Stat 1.73 P-Value 0.4172 0.6421 Min 1.256 1.546	P-Value 0.1828 Decision(Equal Vari Normal Dis	Decision Non-Signi 1%) ances stribution Std Err 0.156 0.1311	Std Dev 0.3489 0.2932	/ CV% 20.4% 16.01%	0.0% -7.09%

Report Date:

30 Sep-10 16:55 (p 4 of 4) 16-4657-4172/CT-4954-0110

Test Code:

....

Chironomus 10-d Survival and Growth Sediment Test

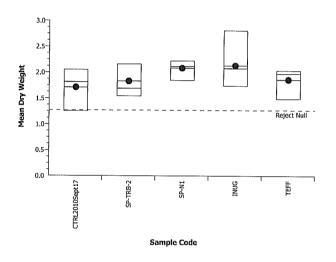
Maxxam

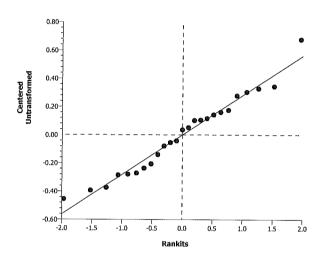
Analysis ID: Analyzed: 14-2354-7105 30 Sep-10 16:55

Endpoint: N Analysis: F

Endpoint: Mean Dry Weight

Parametric-Control vs Treatments


CETIS Version: Official Results: CETISv1.7.0


s: Yes

Mean	Dry	Weig	ht	Detai
------	-----	------	----	-------

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
CTRL2010Sept17	1.439	1.816	2.054	1.988	1.256
SP-TRB-2	1.691	1.546	2.136	2.16	1.626
SP-N1	1.847	2.041	2.226	2.186	2.119
INUG	1.739	2.81	2.184	1.853	2.078
TEFF	1.489	2.038	2.023	1.783	1.979

Graphics

Chironomus tentans Survival and Growth Test Survival of Larvae

Client # & Name: #4954 Azimuth	Start Date and Time: 2010Sept17 @ 17:38
Sample ID: Various	End Date: 2010Sept27
Sample # Various	Sample Date: 2010 Aug 22, 25, 27
Organism Lot #: AB100915CT	Stats File ID: CT-4954-0110

Analysts: M. Grey, J. Laroulandie

Sample	Client	Rep	# Surviving	%	Survi	val
ID	ID		Chironomids	Survived	Mean	SD
Control	-	Α	10	100	94	9
		В	10	100		
		С	10	100		
		D	9	90		
		Ε.	8	80		
AZ101	SP-TRB-2	А	9	90	80	10
		В	9	90		
		С	7	70		
		D	8	80		
		Е	7	70		
AZ102	SP-N1	А	10	100	94	5
		В	9	90		
		С	9	90		
		D	9	90		
		Е	10	100		
AZ103	INUG	А	10	100	84	15
		В	6	60		
		С	/8	80		
		D	9	90		
		Ш	9	90		
AZ104	TEFF	Α	9	90	88	8
		В	9	90		
		С	8	80		
		D .	10	100		
		E	8	80		

1990ve

Chironomid Survival and Growth Test Dry Weights of Larvae

Client # & Name: #4954 Azimuth Start Date and Time: 2010 Sept 17 @ 17:38

Organism Lot #: <u>AB100915CT</u> End Date: <u>2010 Sept 27</u>

Weighing Dates: <u>2010 Sep 24, 2010 Sep 29</u> Drying Temp (°C): <u>60°C</u>

Drying Time (h): <u>>24</u> Stats File ID: <u>CT-4954-0110</u>

Analysts: K. Tamaki

Boat	Sample	Rep	#	Boat Wt.	Boat & Worms	Worm Wt.	Mean Wt./worm	Mean Wt./	SD	% CV
#			Worms	(g)	Wt. (g)	(mg)	(mg)	Worm (mg)	-	
1	Control	Α	8	1.13279	1.14430	11.51	1.44	1.71	0.35	0.20
2		В	7	1.13875	1.15146	12.71	1.82			
3		С	9	1.17470	1.19319	18.49	2.05			
4		D	9	1.17125	1.18914	17.89	1.99			
5		E	7	1.17636	1.18515	8.79	1.26			
6	SP-TRB-2	Α	8	1.17904	1.19257	13.53	1.69	1.83	0.29	0.16
7		В	8	1.16225	1.17462	12.37	1.55			
8		С	7	1.15958	1.17453	14.95	2.14			
9		D	8	1.15129	1.16857	17.28	2.16			
10		E	7	1.14548	1.15686	11.38	1.63			
11	SP-N1	Α	10	1.17851	1.19698	18.47	1.85	2.08	0.15	0.07
12		В	9	1.18150	1.19987	18.37	2.04			
13		С	9	1.14042	1.16045	20.03	2.23			
14		D	9	1.15010	1.16977	19.67	2.19			
15		Е	10	1.14312	1.16431	21.19	2.12			
16	INUG	Α	8	1.14476	1.15867	13.91	1.74	2.13	0.42	0.20
<u>17</u>		В	5	1.17092	1.18497	14.05	2.81			
18		С	8	1.16226	1.17973	17.47	2.18			
19		D	9	1.17473	1.19141	16.68	1.85			
20		E	9	1.17657	1.19527	18.70	2.08			
21	TEFF	Α	9	1.17734	1.19074	13.40	1.49	1.86	0.23	0.12
22		В	9	1.17180	1.19014	18.34	2.04			
23		С	6	1.14978	1.16192	12.14	2.02			
24		D	10	1.15918	1.17701	17.83	1.78			
25		E	8	1.14465	1.16048	15.83	1.98			
26		QA/QC		1.15671	1.15665	-0.06				
27		QA/QC		1.15855	1.15857	0.02				
1		0 - A	8	1.13282	1.14439	11.57		/		
Analyst		in h4 for	KT	KT	KT					Marine aucen

The average dry weight for the replicate controls must be >0.6 mg, for the test to be valid.

Structt 2010 Sept 30

Maxxam Analytics

Chironomid Survival and Growth Test

Dry Weights o	of Larvae
Client # & Name: #4954 AZMOHO	Start Date and Time: 2000017@1738
Sample ID: <u>\\On\OS</u>	End Date: 2010Sept 27
Sample # <u>Vanas</u>	Weighing Dates: 20050024 20050029
Drying Temperature (°C):	Drying Time (h): 724WWS
Analysts: VITOWIV:	

# Control A 0 197 12 27 1.14 30 0.00 #DIV/0! #DIV/0! #### #### #### #### #### #### #### #			Analysts	: YILO	MUL						
# Control A 0 128 127 1.14 30 0.00 #DIV/0! ##### #### #### #### #### #### ####	Boat	Sample	Rep	#	Boat Wt.	Boat & Worms	Worm Wt.	Mean Wt./worm	Mean W/t	SD	% CV
Control	#			Worms	(g)	Wt. (g)	(mg)	(mg)			
2 B B B B B B B B B	1	Control	Α	B 108	1.18279	1-14430	0.00	#DIV/0!		#####	#####
D	2		В	F (0) (d)	1.13875	1.15146	0.00	#DIV/0!			
E	3		С	B 1009	1.17470	1.19319	0.00	#DIV/0!			
6 AZIO A DGS 1. TGC 1. 2257 0.00 #DIV/0! ##### #### #### #### #### #### ####	4		D (812/ ' *	1.17125	1.18914	0.00	#DIV/0!			
Total B G S 1. 1. 1. 1. 1. 1. 1.	5		E (B) 87	1.17630	1.1855	0.00	#DIV/0!			
S		47101	Α (DAS	1.17904	1.19257	0.00	#DIV/0!	#DIV/0!	#####	#####
10	7		В (D 48	1.16225	1.17462	0.00	#DIV/0!			
10	8	SPTEB-Z			1.15958	1.17453	0.00	#DIV/0!			
11				800	1.15129	1.16857	0.00	#DIV/0!			
11	10		E	RYZ	1.14548	1.15686	0.00	#DIV/0!			
13 SP-N C Q 1.10042 1.10045 0.00 #DIV/0!		17100	Α	10	1.17851	1.19698	0.00	#DIV/0!	#DIV/0!	#####	#####
14	12	ACIOZ	В	Ġ	1.18120	1.19987	0.00	#DIV/0!			
15	13	SD-111	С	<u> </u>	11.14042	1.16045	0.00	#DIV/0!			
16	14	01 10 1		- I	1.15010	1.16977	0.00	#DIV/0!			
17	15		E	10	1.14312	1.16431	0.00	#DIV/0!			
18	16	A7103	A (§	108	1.14476	1.15867	0.00	#DIV/0!	#DIV/0!	#####	#####
D 9 1.7473 1.914 0.00 #DIV/0! E 9 1.7473 1.9277 0.00 #DIV/0! 21 A 9 1.7473 1.9277 0.00 #DIV/0! B 9 1.7477 0.	17		В	P 1/ -	1.17092	1.18497	0.00	#DIV/0!			
S	18	SCIAL	С	8	1.10220	1.17973	0.00	#DIV/0!			
21	19	110001			1.17473	1.19141	0.00	#DIV/0!			
B Q	20		E	.L *	1.17b57	1.19577	0.00	#DIV/0!			
C		47104	Α	9	1.17734	1.19074	0.00	#DIV/0!	#DIV/0!	#####	#####
D O O O O O O O O O O O O O O O O O O O	22	11001			1.13.180	1.19014	0.00	#DIV/0!			
E	23	TECK	C (886	1.14978	1.16192	0.00	#DIV/0!			
26		(0))			1.159'.18	1-17-701	0.00	#DIV/0!			
D	25		Е	8	1.14465	116098	0.00	#DIV/0!			
28	26		Α		, , , ,		0.00	#DIV/0!	#DIV/0!	#####	#####
D 0.00 #DIV/0! 31 A 0.00 #DIV/0! ##### #### 32 B 0.00 #DIV/0! ##### #### 33 C 0.00 #DIV/0! 34 D 0.00 #DIV/0! 35 E 0.00 #DIV/0! 36 2 0 0.00 #DIV/0! 37 2 QA/QC	27			\searrow			0.00	#DIV/0!			
D			3	0	mala		0.00	#DIV/0!			
31			D	-0*	ALL	281	0.00	#DIV/0!			
B 0.00 #DIV/0! 33 C 0.00 #DIV/0! 34 D 0.00 #DIV/0! 35 E 0.00 #DIV/0! 36 20 QA/QC	30		E			<00 d	0.00	#DIV/0!			
C 0.00 #DIV/0! 34 D 0.00 #DIV/0! 35 E 0.00 #DIV/0! 36 20 QA/QC			Α				\$40.0DC	/ #DIV/0!	#DIV/0!	#####	#####
34 D 0.00 #DIV/0! 35 E 0.00 #DIV/0! 36 20 QA/QC							0.00	#DIV/0!			
035 E 0.00 #DIV/0! 387 20 QA/QC - 1.15071 1.1505 QA/QC - 1.15071 1.1505 1 0 - A 8 1-1322 1.1423		[С				0.00	#DIV/0!			
QA/QC — 1.15071 1.1505 QA/QC — 1.15855 1.15857 1 0-A 8 1.13732 1.14430							0.00	#DIV/0!			
QA/QC - 1.18855 1-1867 1 0-A 8 1-13702 1.14430	<u>3</u> 5		E				0.00	#DIV/0!			
1 0-A 8 1-13-22 1.144-39	336 2	0		- 472/17/20/1000	1.15671	1.15/05					
nalyst Q Q	§37 Z	r [- engagement	1.158 55	1-15857					
	1		0 - A	8	1-13732	1.144.30					
				0	CF	Y					

The average dry weight for the replicate controls must be >0.6 mg, for the test to be valid.

(A) west 2010 Sep 29

Page ___ of ____

Sample ID:	Cantrol	Start Date:	2010Sept 17
Sample Date:	n_{G}	End Date:	2010Sept27
Sample Received:	n/a	Sample #:	n/a

		Measure		Samples Taken						
pl	1	Hard	ness	Condi	uctance	Alka	linity	Ammonia		
		(mg/L	CaCO ₃)	(μ9	S/cm)	(mg/L	CaCO ₃)	(mg	/L)	
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	
9.1	8.4	104	80	368	508	164	120	X0.05	6.8	

Initial overlying WQ measurements: Final overlying WQ measurements: Rm Date 2010 Sep 17 Analyst **⟨**₩ Analyst

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (°C)	23.1	21.4	22.0	22,0	23. o
D.O. (mg/L)	8.6	8.7	8-6	8.7	8.4
Feeding	/	/	V	1	10
Analyst	KW	W	4	Kt	52Mb

Date 27 Synt 3/0
Feed 3.75ml
Tetrafin

Replicate	Α	В	С	D	E
# Surviving	10	10	10	9	8
Analyst	115	MG	16	MG	MG

Date	Replicate	Comments	Analyst
2010 Sept 27	B	one pupal coving found - hatched midge canterlassumed	
200 Sept27	A	two papared counted assumired, not weighted	M6
2010 Supt 27	В	two proposed canted as survived, not weighed.	MG
200 Sept 77	C	one aparted counted assurvived, not weighted	116
200 Sup 27	E	are prepared, counted assumired, not weighted	46
		17.)	
		Stacu of	
		2010 Octor	
		409	

Sample ID:

Start Date: 2010

Sample Date:

End Date: 2005

Sample Received:

Sample #:

		Measure	Samples Taken						
p	H	Hard	Iness	Condu	ıctance	Alka	kalinity Ammonia		
		(mg/L	CaCO ₃)	(μS	i/cm)	(mg/L	CaCO ₃)	(mg	g/L)
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
8.2	8.4	128	180	379	482	82	130	10.18	24

Initial overlying WQ measurements:

Analyst KM Date 2010 2017 Final overlying WQ measurements:

Date 27-Sept 2060 Analyst ブレ

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (°C)	83.8	21.9	22.2	22.7	22.8
D.O. (mg/L)	86	8.6	8,6	8.6	8.6
Feeding		/	V	/	No
Analyst	KM	W	K	KF	JL

Replicate	Α	В	С	D	E
# Surviving	9	9	7	8	7
Analyst	46	MG	16	115	MS

Date	Replicate	Comments	Analyst
2010Sept 18	all	doida	Ru
2010 Sept 27	В	one hatched midge, survived, not weighted	MG
2010 Sept 27	A	are popased, sorrived, not weighted	116
		Star fl	
		2010 00 4	

Page 3 of 5

Sample ID: <u>AZ 102 (SP - N1)</u>
Sample Date: <u>2010 Aug 22</u>

Sample Received: 2010 Sorto 3

Start Date: 700

End Date:

Sample #:

		Measure	Samples Taken							
р	Н	Hard	ness	Condu	uctance	Alkal	inity	Ammonia		
			CaCO ₃)	(µS	S/cm)	(mg/L (CaCO ₃)	(mg	/L)	
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	
0.8	7.9	128	64	311	272	743	35	d0.0	7.0	

Initial overlying WQ measurements:

Date 2010 Sep 17 Analyst [Du

Final overlying WQ measurements: Date 27 Sept 206 Analyst

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (°C)	<u> </u>	21.9	22.2	22.1	22.9
D.O. (mg/L)	8.6	8.6	8.6	8.7	8.6
Feeding	/	/)	No
Analyst	RM	W	Kt	KH	52

Replicate В C D Ε 0 0 # Surviving 丁し JU JL Analyst

Feed 3.	15 ML	Tetratin

Date	Replicate	Comments	Analyst
		72	
		27 P. I	
		391 B/0	

Sample ID: AZIO3 (INUG Sample Date: 7000

Sample Received: UOLO

Start Date:

End Date:

Sample #:

		Measure	ements		Samples Taken				
pH Hardness		Conductance		Alka	Alkalinity		onia		
		(mg/L	CaCO ₃)	(µS	(cm)	(mg/L	CaCO ₃)	(mg	j/L)
Initial	Final	Final Initial Final Init		Initial	Final	Initial	Final	Initial	Final
7.7	7.6	80	56	247	261	~ 38	220.65	40.05	ny 10:8
nitial overly	ing WQ me	asurements),		Final ove	rlying WQ m	neasuremen	1	77
				1	ļ	_	1		

Analyst [M RV Date 2010 Sep[]

Analyst 52 Date 27 Sept 20 bo

Monday
Day 10
22.9 FRISH 3.75 ML tetrafor

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (°C)	33.2	21.6	22.0	22.0	22.9
D.O. (mg/L)	8.5	8.6	8.2	8.6	8.6
Feeding		V	V	/	No
Analyst	KM	W	K	4	JL

Replicate	Α	В	С	D	E
# Surviving	10	6	8	9	0
Analyst	MG	Ms	MG	MG	MV

Date	Replicate	Comments	Analyst
20105118	D	One emerged	Ru
2010 Sept 27	В	ne popaged,	Mo
2010 Sept 27	A	one midge habehed, are prepared counted as	Mr
200 Sypt 23	A	serviced not weithed.	Mo
,			
			· ·
1744			
		1 Stra	
		Zonowiff	
		4000	

Chironomus tentans **Environment Canada Test Data Sheet**

Page \underline{S} of \underline{S}

Sample ID: Sample Date: 700H00

Start Date: 201

Sample Received: 200507

Sample #:

		Measure	Samples Taken						
pl	H	Hard	ness	Condi	Conductance		Alkalinity		nonia
		(mg/L	. CaCO ₃)		S/cm)	(mg/L CaCO ₃)		(mg/L)	
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
7.7	8.0	80	64	293	325	39	56	10.13	69

Initial overlying WQ measurements:

Date 2010 Sep 17 Analyst M

Final overlying WQ measurements: Date 27 Sept 2010 Analyst 2L

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (°C)	a3.a	21.6	22.0	22.0	23.1
D.O. (mg/L)	8.5	8.7	8-6	0.8	S. 5
Feeding	/			V	Ho
Analyst	KM	NP	K	4	JL

Replicate	Α	В	, C	D	E
# Surviving	9	9	way 8	10	8
Analyst	MG	双	MG	52	MG

Date	Replicate	Comments	Analyst
20108/16	\subset	One floating - dead.	
200 Sept 27	C	one pupal awing counted or survived not weight	MG
2010 Sept 27	C	one papared counted as survived, not weight	MV
		CHO	
		ZOLOFP	
**			

Chironomid Survival Growth Test Aeration Checks

Client # & Name: #44994 Azimuth

Start Date & Time: 2010Spt 176 1738

Initial when aeration is checked. If air is off record DO and note which replicate(s) in comments section.

_		13		1	7	7	92		
10	2	0/32	200	711	0	A SORP	1		<i>-</i>
6)	2010	X0 X.O	170	3	E S	2	de	3
œ)	0100	ACC 20	75)	F.		1867	\ <u>\</u>
		1350c		オ		マ マ		士	
9		6250 6250		丈	J	士		Z	1
2				士	B. market	せ	,	b	
4		500 500 500 500 500 500 500 500 500 500		2		か		さ 一	Samuel Control
က	ASSESSE	2000		\$		<u> </u>	A CONTRACTOR OF THE PERSON OF	X T	
7		3.4 5.5 0	1					THE STATE OF THE S	
-	(1600 1700 1700		Ţ		Z		Ĩ	
Day 0		SE THE		2		2		N	
Day -1	l	Scorte	2) 0	Z.	10/00/01	がだれる		なるとなる	
		Date		Early AM		Mid-day		Late PM	

Comments:

A WERMSON OF 16				

Randomization Chart for Chironomid Tests

	Back Wall				
	· 6	12	18	24	30
	5	11	17 🤻	23	29
Position Map	4	10 .	16	22	28
	3	9	15	21	27
	2	8	14	20	26
	1	7	13	19	25
	Front of Co	intor			

<u> </u>	Colour		·
Position #	Code	Treatment	Replicate
8	Red	Control	А
29	Red	Control	В
30	Red	Control	С
16	Red	Control	D
23	Red	Control	Ε
20	Red	Control	Measure
19	Green	AZ101	Α
7	Green	AZ101	В
12	Green	AZ101	С
26	Green	AZ101	D
21	Green	AZ101	Ε
24	Green	AZ101	Measure
9	Blue	AZ102	Α
6	Blue	AZ102	В
28	Blue	AZ102	С
2	Blue	AZ102	D
15	Blue	AZ102	E
5	Blue	AZ102	Measure
3	Yellow	AZ103	A
18	Yellow	AZ103	В
10	Yellow	AZ103	С
11	Yellow	AZ103	D
14	Yellow	AZ103	Е
27	Yellow	AZ103	Measure
22	Orange	AZ104	A
4	Orange	AZ104	В
1	Orange	AZ104	С
17	Orange	AZ104	D
25	Orange	AZ104	Ε
13	Orange	AZ104	Measure

14-D HYALELLA GROWTH AND SURVIVAL TEST

.

Gi a a UfmcZ%(!X`Hyalella`HYghFYgi `hg`Zcf`` 5 n]a i h\ `GYX]a YbhGUa d`Yg` HYgh8 UhY.`GYdhYa VYf`%+z~&\$%\$`

GUa d'Y'	A YUb 'Gifj]j U 'flŁ'- 'G8'	A YUb '8 fmiK Y][\ hifa [Ł'-'G8 '
Control	98 ± 4	0.11 ± 0.02
SP-TRB-2	88 ± 13	0.17 ± 0.03
SP-N1	90 ± 12	0.11 ± 0.02
INUG	100 ± 0	0.15 ± 0.04
TEFF	88 ± 16	0.11 ± 0.02

SD=Standard Deviation. *=Statistically significant difference compared to the Control

% !X`Hyalella azteca Gi fj]j U`UbX`; fck l\ `GYX]a YbhHYgh

	I
Client Name/Location	Azimuth Consulting Group / Vancouver, BC
Testing Lab/Location	Maxxam Analytics / Burnaby, BC
GUad`Y`±bZcfaUnjcb	
Sample Names	SP-TRB-2, SP-N1, INUG, TEFF
Type of Sample	Field collected sediments
Method of Collection	See Chain of Custody form
Sample Collector	See Chain of Custody form
Sample Volume	4 L
Sample Containers	4-L white food grade plastic buckets
Sample Collection Date	2010 August 22, 25, 27
Date & Time of Sample Receipt	2010 September 03 @ 08:25
Sample Temperature upon Arrival	10 - 13°C
Sediment and Pore Water	See Sediment Sample Descriptions sheet (Appendix A) and
Characterisation	analytical chemistry reports (Appendix D)
GUa d`Y'DfYdUfUf]cb'	
Homogenisation	Samples were individually mixed until homogenised at ambient laboratory temperature; large debris and indigenous macroorganisms were removed during homogenisation (see Sediment Sample Descriptions sheet, Appendix A)
Date of Homogenisation	2010 September 16
Sediment – Physical Analyses	Each homogenised sediment was analysed for grain size, TOC and moisture content. See chemical analysis reports, Appendix D.
Sediment Porewater – Chemical Analyses	Samples of homogenised sediment were centrifuged to produce porewater. The porewater was then analysed for Ammonia and Sulfides. See chemical analysis report, Appendix D.
HYghCf[Ub]ga g"	
Species	Hyalella azteca
Source	Aquatic Bio Systems, Fort Collins, CO
Age at Start of Test	Juveniles, between 7-9 days old
Water quality parameters of shipping water before shipment and after arrival	See Organism History Sheet See Acclimation and Holding Conditions sheets
Acclimation rate and procedure	See Acclimation and Holding Conditions sheets
Mortality upon arrival and preceding test	See Acclimation and Holding Conditions sheets

@UVcfUrcfmi7 cblfc`'GYX]a Ybh UbX'HYghiK UhYf'	
Laboratory Control Sediment Source	Mackenzie Beach, Tofino, BC; Collected by Seacology (North Vancouver, BC)
Laboratory Control Sediment Storage	Stored in a cold room that was at 4 ± 2°C
Laboratory Control Sediment Preparation Procedure	Sediment was sieved (0.5 mm) before use and rinsed thoroughly with control water
Control Water	Sam-5S reconstituted water (Borgmann 1996)
HYgh7 cbX]h]cbg'/ : WJ[]h]Yg'	
Test Method	Environment Canada Biological Test Method: Test for Survival and Growth in Sediment Using the Freshwater Amphipod <i>Hyalella azteca</i> , EPS 1/RM/33 (1997)
Test Type	Static, no water renewal
Test Temperature	23°C ± 1°C. See the Test Measurement and Survival Data sheets
Light levels and photoperiod	Overhead full spectrum (fluorescent or equivalent); 607 – 763 lux, 16-h light:8-h dark
Aeration	Continuous and minimal in each test vessel; checked 3 times daily. Compressed oil-free air delivered through microbore airline tubing
Test Start Date	2010 September 17
Test Completion Date	2010 October 01
Test Duration	14 days
Test Vessels	300 mL glass jars; covered
Volume of Sediment	100 mL
Volume of Test Water	175 mL
Analysts	L. Stavroff, K. Melling, K. Pomeroy, R. Masson, D. Greschner, K. Tamaki, J. Laroulandie, M. Brassil, D. Lee, M. Grey
Water Renewal	None
# Organisms / Vessel	10
Number of Replicates	5 (plus one measurement beaker) for each sediment sample
Feeding Regime	1.5 mL YCT three times/week (Yeast, Cerophyll, Trout Chow)
Dissolved Oxygen Concentrations (DO) and Temperature	In overlying water, at the start and end of the test and ~3 times/week in the measurement beakers. See Test Conditions and Survival Data sheets
pH, Conductivity and Hardness	In overlying water, at the start and end of the test in the measurement beakers. See Test Conditions and Survival Data sheets
Sediment Appearance During Test	See Aeration Checks and Test Observations sheets
Test Observations	Organism behaviour during the test, visible mortalities and/or abnormal behaviour was recorded on Test Observations sheet
Overlying Water – Chemical Analysis	Samples of the overlying water were analysed for Ammonia and Alkalinity on Day 0 (start) and Day 14 (end) of the test. See chemical analysis reports, Appendix D.

	·
Anything Unusual about the Test,	There were no deviations or problems with the test, except
Deviation from Test Method, other	control replicates A & C were accidentally switched when placed
Problems	into the drying pans. This would not affect the tests.
F Ygi `hgʻ	
Endpoints	Survival, Mean Dry Weight
Gifj]jƯ'9bXdc]bhFYgi`hg	There was no statistically significant difference in survival
	between the test sediments and the laboratory control.
Name and citation of program and	CETIS v1.7.0.3 – Parametric; Dunnett's Multiple Comparisons
methods used for calculating	Test
statistical endpoint	Data was tested for normality using Shapiro-Wilk's test and
	homogeneity of variance using Modified Levene's test
; fck ľ\ '9bXdc]bhFYgi `hg'	There was no statistically significant difference in dry weight
	between the test sediments and the laboratory control.
Name and citation of program and	CETIS v1.7.0.3 – Parametric; Dunnett's Multiple Comparisons
methods used for calculating	Test
statistical endpoint	Data was tested for normality using Shapiro-Wilk's test and
	homogeneity of variance using Bartlett's test
E5 '	
Test Validity Criteria	
 Mean survival in the test 	Mean survival in the control was 98%
controls for <i>H. azteca</i> must	
be ≥80%	
 Average Dry Weight ≥0.1mg 	Mean Dry Weight was 0.11 mg
FYZYfYbWY`HcI]WUbhHYgh`	237.8 (201.7, 274.4)
@7)\$`f-l)ı `7@£`fba[`7i ⁸² #@£26f`	
Gi fj]j ປີ	
Ref Tox Test Historic Mean and 2SD	232.16; 2SD range: (136.33, 395.34)
Range (mg Cu ²⁺ /L)	
Invalid Ref Tox Test?	No
Date of Ref Tox Test	2010 September 17
Organisms Batch and Condition of	Static 96-h water-only test. Same batch of organisms used
Ref Tox Test	

Report Date:

04 Oct-10 12:44 (p 1 of 2)

Test Code:

17-9357-7133/HA-4954-0110

Hyalella 10-d Su	rvival and Growth	Sediment Test							Max	xam
•	6-8917-7667 04 Oct-10 12:39	•	rvival Rate rametric-Co	ntrol vs T	reatments		IS Vers		FISv1.7.0	M4.102
Start Date: 1 Ending Date: 0	1-3654-9454 7 Sep-10 15:43 1 Oct-10 14:00 3d 22h	Species: Hya	rvival-Growt /EPS 1/RM/ alella azteca uatic Biosys	/33 a)	Anal Dilu Brin Age:	ent: e:	L. Stavroff Reconstitu Not Applic		
Sample Code	Sample ID S	ample Date	Receive D	ate	Sample Age	Client Nar	ne		Project	
CTRL2010Sept17 SP-TRB-2 SP-N1 INUG TEFF	02-9973-0060 2 02-4340-9088 2 09-3052-7692 2	7 Sep-10 09:00 2 Aug-10 09:00 2 Aug-10 09:00 5 Aug-10 09:00 7 Aug-10 09:00	03 Sep-10 03 Sep-10 03 Sep-10 03 Sep-10	08:25 08:25 08:25	7h 26d 7h 26d 7h 23d 7h 23d 7h	Azimuth C	onsultin	g Group In	General Misc. Bioassa	ıys
Sample Code	Material Type	Sample S	ource		Station Lo	ocation		Latitud	e Longitude	
CTRL2010Sept17 SP-TRB-2 SP-N1 INUG TEFF	7 Freshwater Sedim Freshwater Sedim Freshwater Sedim Freshwater Sedim Freshwater Sedim	ent Azimuth C ent Azimuth C ent Azimuth C	Consulting G Consulting G Consulting G Consulting G Consulting G	roup roup roup	Lab Contro SP-TRB-2 SP-N1 INUG TEFF					
Data Transform	Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correcte	d) 0	C > T	Not Run			*			14.41%	-
Dunnett's Multip Sample Code v CTRL2010Sept17	SP-TRB-2	Test Stat 1.508	2.305	MSD 0.2218	P-Value 0.1968	Decision(Non-Signi		fect		
	SP-N1 INUG TEFF	1.213 -0.3386 1.431	2.305 2.305 2.305	0.2218 0.2218 0.2218	0.2953 0.8912 0.2199	Non-Signi Non-Signi Non-Signi	ficant Ef	fect		
Auxiliary Tests										
Attribute	Test		Test Stat			Decision	****			
Extreme Value	Grubbs Single C	Outlier	2.559	2.822	0.1515	No Outlier	s Detec	ted		
ANOVA Table										
Source	Sum Squares	Mean Squ		DF	F Stat	P-Value		ion(5%)		
Between Error	0.1389767	0.0347441		4	1.5	0.2399	Non-S	ignificant E	ffect	
Total	0.4632071 0.6021838	0.0231603 0.0579045		20 24						
ANOVA Assumpt										
Attribute	Test		Test Stat	Critical	D.Volue	Decision/	10/1			
Variances		uality of Variance		4.893	P-Value 0.0450	Decision(Equal Vari				
Distribution	Shapiro-Wilk No	-	0.872		0.0047	Non-norma		oution		

2000doy 20100doy
Analyst: LS QA: PH

Report Date:

04 Oct-10 12:44 (p 2 of 2)

Test Code:

17-9357-7133/HA-4954-0110

Hyalella 10-d Survival and Growth Sediment Test

Maxxam

Analysis ID: Analyzed:

16-8917-7667 04 Oct-10 12:39

Endpoint: Survival Rate Analysis:

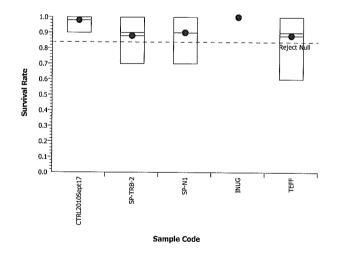
Parametric-Control vs Treatments

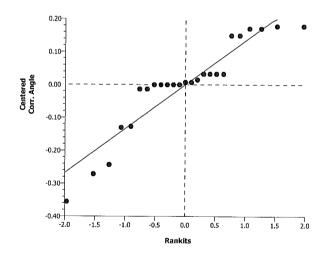
CETIS Version: Off

CETISv1.7.0

Survival	Rate	Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
CTRL2010Sept17	5	0.98	0.963	0.997	0.9	1	0.02	0.04472	4.56%	0.0%
SP-TRB-2	5	0.88	0.8304	0.9296	0.7	1	0.05831	0.1304	14.82%	10.2%
SP-N1	5	0.9	0.8534	0.9466	0.7	1	0.05477	0.1225	13.61%	8.16%
INUG	5	1	1	1	1	1	0	0	0.0%	-2.04%
TEFF	5	0.88	0.8175	0.9425	0.6	1	0.07348	0.1643	18.67%	10.2%


Angular (Corrected) Transformed Summary


Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
CTRL2010Sept17	5	1.379	1.352	1.407	1.249	1.412	0.03259	0.07288	5.28%	0.0%
SP-TRB-2	5	1.234	1.163	1.305	0.9912	1.412	0.08327	0.1862	15.09%	10.52%
SP-N1	5	1.263	1.197	1.328	0.9912	1.412	0.07704	0.1723	13.64%	8.47%
INUG	5	1.412	1.412	1.412	1.412	1.412	0	0	0.0%	-2.36%
TEFF	5	1.242	1.16	1.323	0.8861	1.412	0.09607	0.2148	17.3%	9.99%

Survival Rate Detail

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
CTRL2010Sept17	0.9	1	1	1	1
SP-TRB-2	1	1	8.0	0.7	0.9
SP-N1	1	0.9	0.7	0.9	1
INUG	1	1	1	1	1
TEFF	0.6	0.9	1	1	0.9

Graphics

Report Date:

04 Oct-10 14:30 (p 1 of 2)

Test Code:

17-9357-7133/HA-4954-0110

Analysed: 04 Oct-10 14:30	Hyalella 10-d Su	rvival and Grow	th Sedim	ent Test								Maxxar
Batch ID: 11-3654-9454 Test Type: Survival-Growth Start Date: 17 Sep-10 15-43 Protocol: EC/EPS IrMM33 Survival-Growth Start Date: 17 Sep-10 15-43 Protocol: EC/EPS IrMM35 Survival-Growth Survival-G	Analysis ID: 1	9-3965-0690	End	point: M	lean Dry Weig	ght-mg		CE	TIS Version:	CETISV	1.7.0	
Start Date: 17 Sep-10 16:43	Analyzed: 0	04 Oct-10 14:30	Anal	lysis: P	arametric-Coi	ntrol vs T	reatments	Official Results: Yes				
Start Date	Batch ID: 1	1-3654-9454	Test	Type: S	urvival-Growt	h		Ana	alyst: L. S	Stavroff		
	Start Date: 1	7 Sep-10 15:43	Prot	ocol: E	C/EPS 1/RM/	33			=	constituted	Water	
Sample Code	Ending Date: 0	1 Oct-10 14:00	Spec	cies: H	yalella azteca	l		Brit	ne: Not	Applicable		
CTRL2010Sept17	Duration: 1	3d 22h	Soul	rce: A	- quatic Biosys	tems, CC)	Age		1-1		
SP-TRB-2 02-9973-0060 22 Aug-10 09:00 03 Sep-10 08:25 26d 7h	Sample Code	Sample ID	Sample	e Date	Receive D	ate :	Sample Age	Client Na	me	Pre	oject	
SP-N1	CTRL2010Sept17	7 16-5515-3910	17 Sep	-10 09:00		-	7h	Azimuth C	Consulting G	roup In Ge	neral Misc.	Bioassays
NUG 09-3052-7692 25 Aug-10 09:00 03 Sep-10 08:25 23d 7h	SP-TRB-2	02-9973-0060	22 Aug	-10 09:00	03 Sep-10	08:25	26d 7h					-
Sample Code	SP-N1	02-4340-9088	22 Aug	-10 09:00	03 Sep-10	08:25	26d 7h					
Sample Code	INUG	09-3052-7692	25 Aug	-10 09:00	03 Sep-10	08:25	23d 7h					
CTRL2010Sept17 Freshwater Sediment Azimuth Consulting Group SP-TRB-2 Freshwater Sediment Azimuth Consulting Group SP-TRB-2 Freshwater Sediment Azimuth Consulting Group SP-TRB-2 SP-N1 Freshwater Sediment Azimuth Consulting Group SP-N1	TEFF	20-8508-6076	27 Aug	-10 09:00			21d 7h					
SP-TRB-2 Freshwater Sediment Azimuth Consulting Group SP-TRB-2 SP-N1 Freshwater Sediment Azimuth Consulting Group INUG Freshwater Sediment Azimuth Consulting Group INUG TEFF Freshwater Sediment Azimuth Consulting Group TEFF	Sample Code	Material Type		Sample	Source		Station L	ocation		Latitude	Lon	gitude
SP-N1	CTRL2010Sept17	7 Freshwater Sec	diment	Azimuth	Consulting G	roup	Lab Contr	ol			*****	
SP-N1	SP-TRB-2	Freshwater Sec	diment	Azimuth	Consulting G	roup	SP-TRB-2	2				
NUG Freshwater Sediment Azimuth Consulting Group TEFF TEFF TEFF TEFF TEFF TEFF TEFF TEFF TEFF TETE T	SP-N1	Freshwater Sec	diment	Azimuth	Consulting G	roup	SP-N1					
Teff Freshwater Sediment Azimuth Consulting Group Teff Teff Teff Tuly PMSD	INUG	Freshwater Sec	diment		_	•						
Dunnett's Multiple Comparison Test Sample Code Test Stat Critical MSD P-Value Decision(5%)	TEFF	Freshwater Sec	liment		_							
Dunnett's Multiple Comparison Test Sample Code Test Stat Critical MSD P-Value Decision(5%)	Data Transform	Ze	eta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Sample Code vs Sample Code Test Stat Critical MSD P-Value Decision(5%)	Jntransformed	0			Not Run	······				-		THE SAME
Attribute Test Sum Squares Mean Square DF F Stat P-Value Decision Decision Decision Sum Squares Mean Square DF F Stat P-Value Decision Squares Decision Squares Decision Squares DF F Stat P-Value Decision Square DF F Stat P-Value Decision Square DF F Stat DF F ST		INUG		-2.185	2.305	0.03916	0.9992	Non-Sign	ificant Effect			
ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(5%)	Auxiliary Tests											
NOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(5%)	Attribute	Test			Test Stat	Critical	P-Value	Decision				
Source Sum Squares Mean Square DF F Stat P-Value Decision(5%)	Extreme Value	Grubbs Singl	e Outlier		2.605	2.822	0.1268	No Outlie	rs Detected		· where	
Setween 0.01595208 0.003988021 4 5.523 0.0037 Significant Effect	ANOVA Table											
Continuation Cont	Source		5	Mean Sq	uare	DF	F Stat		Decision(5%)		
ANOVA Assumptions							5.523	0.0037	Significan	t Effect		
ANOVA Assumptions Attribute Test Test Stat Critical P-Value Decision(1%) Variances Bartlett Equality of Variance 4.422 13.28 0.3519 Equal Variances Distribution Shapiro-Wilk Normality 0.9538 0.3047 Normal Distribution Mean Dry Weight-mg Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff% CTRL2010Sept17 5 0.113 0.1051 0.1208 0.08 0.13 0.009226 0.02063 18.26% 0.0% SP-TRB-2 5 0.1689 0.1571 0.1807 0.1429 0.2188 0.01386 0.031 18.35% -49.52% SP-N1 5 0.1098 0.1027 0.117 0.084 0.132 0.008397 0.01878 17.09% 2.77% NUG 5 0.1501 0.1348 0.1654 0.11 0.214 0.01801 0.04028 26.83% -32.87%												
Test Stat Critical P-Value Decision(1%)				0.004710	0083	24						
Addition	•											
Distribution Shapiro-Wilk Normality 0.9538 0.3047 Normal Distribution Mean Dry Weight-mg Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff% CTRL2010Sept17 5 0.113 0.1051 0.1208 0.08 0.13 0.009226 0.02063 18.26% 0.0% SP-TRB-2 5 0.1689 0.1571 0.1807 0.1429 0.2188 0.01386 0.031 18.35% -49.52% SP-N1 5 0.1098 0.1027 0.117 0.084 0.132 0.008397 0.01878 17.09% 2.77% NUG 5 0.1501 0.1348 0.1654 0.11 0.214 0.01801 0.04028 26.83% -32.87%			14, 4						-			
Mean Dry Weight-mg Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff% CTRL2010Sept17 5 0.113 0.1051 0.1208 0.08 0.13 0.009226 0.02063 18.26% 0.0% SP-TRB-2 5 0.1689 0.1571 0.1807 0.1429 0.2188 0.01386 0.031 18.35% -49.52% SP-N1 5 0.1098 0.1027 0.117 0.084 0.132 0.008397 0.01878 17.09% 2.77% NUG 5 0.1501 0.1348 0.1654 0.11 0.214 0.01801 0.04028 26.83% -32.87%			-			13.28						
Gample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff% CTRL2010Sept17 5 0.113 0.1051 0.1208 0.08 0.13 0.009226 0.02063 18.26% 0.0% SP-TRB-2 5 0.1689 0.1571 0.1807 0.1429 0.2188 0.01386 0.031 18.35% -49.52% SP-N1 5 0.1098 0.1027 0.117 0.084 0.132 0.008397 0.01878 17.09% 2.77% NUG 5 0.1501 0.1348 0.1654 0.11 0.214 0.01801 0.04028 26.83% -32.87%		'	Normality	y 	0.9538		0.3047	Normal D	estribution			
CTRL2010Sept17 5 0.113 0.1051 0.1208 0.08 0.13 0.009226 0.02063 18.26% 0.0% SP-TRB-2 5 0.1689 0.1571 0.1807 0.1429 0.2188 0.01386 0.031 18.35% -49.52% SP-N1 5 0.1098 0.1027 0.117 0.084 0.132 0.008397 0.01878 17.09% 2.77% NUG 5 0.1501 0.1348 0.1654 0.11 0.214 0.01801 0.04028 26.83% -32.87%		•			A=0/ - =:							
SP-TRB-2 5 0.1689 0.1571 0.1807 0.1429 0.2188 0.01386 0.031 18.35% -49.52% SP-N1 5 0.1098 0.1027 0.117 0.084 0.132 0.008397 0.01878 17.09% 2.77% NUG 5 0.1501 0.1348 0.1654 0.11 0.214 0.01801 0.04028 26.83% -32.87%			ount		***************************************							
SP-N1 5 0.1098 0.1027 0.117 0.084 0.132 0.008397 0.01878 17.09% 2.77% NUG 5 0.1501 0.1348 0.1654 0.11 0.214 0.01801 0.04028 26.83% -32.87%							0.08				18.26%	0.0%
NUG 5 0.1501 0.1348 0.1654 0.11 0.214 0.01801 0.04028 26.83% -32.87%						0.1807	0.1429	0.2188	0.01386	0.031	18.35%	-49.52%
	SP-N1	5		0.1098	0.1027	0.117	0.084	0.132	0.008397	0.01878	17.09%	2.77%
	NUG	5		0.1501	0.1348	0.1654	0.11	0.214	0.01801	0.04028	26.83%	-32.87%
	ΓEFF	5		0.106	0.1	0.112	0.096	0.134	0.007051	0.01577	14.88%	6.18%

20100004 201000000 Analyst: 15 QA: PH

Report Date:

04 Oct-10 14:30 (p 2 of 2)

Test Code:

17-9357-7133/HA-4954-0110

Hyalella 10-d Survival and Growth Sediment Test

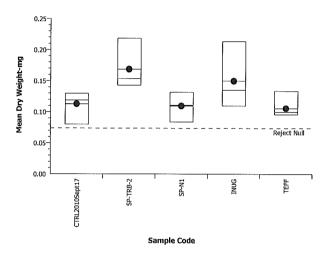
Maxxam

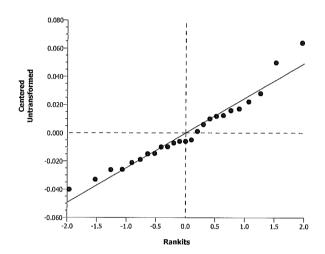
Analysis ID: Analyzed: 19-3965-0690 04 Oct-10 14:30 Endpoint: Analysis:

Mean Dry Weight-mg

Parametric-Control vs Treatments

CETIS Version:


CETISv1.7.0


Official Results: Yes

Mean Dry Weight-mg Detail

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
CTRL2010Sept17	0.08	0.119	0.1289	0.107	0.13
SP-TRB-2	0.154	0.179	0.2188	0.1429	0.15
SP-N1	0.111	0.084	0.1	0.1222	0.132
INUG	0.1356	0.214	0.11	0.162	0.129
TEFF	0.1	0.1011	0.096	0.134	0.09889

Graphics

Hyalella azteca Survival and Growth Test Survival of Amphipods

Client # & Name: #4954 Azimuth	Start Date and Time: 2010 Sept 17 @ 15:43
Sample ID: Various	End Date: 2010 Oct 01
Sample # Various	Sample Date: <u>2010 Aug 22, 25, 27</u>

Organism Lot #: AB100915HA Stats File ID: HA-4954-0110

Analysts: M. Grey, R. Masson

Sample	Client	Rep	# Surviving	%	Survi	val
ID	ID		Hyalella	Survived	Mean	SD
Control	-	А	9	90	98	4
		В	10	100		
		С	10	100		
		D	10	100		
		Е	10	100		
AZ101	SP-TRB-2	Α	10	100	88	13
		В	10	100		
		C	8	80		
		D	7	70		
		Е	9	90		
AZ102	SP-N1	А	10	100	90 -	12
		В	9	90		
		С	7	70		
		D	9	90		
		E	10	100		
AZ103	INUG	А	10	100	100	0
		В	10	100		
		С	10	100		
		D	10	100		
		Е	10	100		
AZ104	TEFF	Α	6	60	88	16
		В	9	90		
		С	10	100		
		D	10	100		
		Е	9	90		

2010 octou

Hyalella azteca Survival and Growth Test **Dry Weights of Larvae**

Client # & Name: #4954 Azimuth Start Date and Time: 2010 Sept 17 @ 15:43

Organism Lot #: AB100915HA End Date: 2010 Oct 01

Weighing Dates: 2010 Oct 04 Drying Temperature (°C): 60°C

Drying Time (h): >24 hrs Stats File ID: HA-4954-0110

Analysts: R. Masson

Boat	Sample	Rep	#	Hyalella	Hyalella Wt.	Mean Wt./Hyalella	Mean Wt /Sample	SD	% CV
#	oumpio	1.05	Hyalella	Wt.(g)	(mg)	(mg)	(mg)	OD	/ " "
1	Control	А	10	0.00080	0.80	0.08	0.11	0.02	0.18
2		В	10	0.00119	1.19	0.12			00
3		С	9	0.00116	1.16	0.13			
4		D	10	0.00107	1.07	0.11			
5		E	10	0.00130	1.30	0.13			
6	SP-TRB-2	Α	10	0.00154	1.54	0.15	0.17	0.03	0.18
7		В	10	0.00179	1.79	0.18			
8		С	8	0.00175	1.75	0.22			
9		D	7	0.00100	1.00	0.14			
10		Е	9	0.00135	1.35	0.15			
11	SP-N1	Α	10	0.00111	1.11	0.11	0.11	0.02	0.17
12		В	10	0.00084	0.84	0.08			
13		С	7	0.00070	0.70	0.10			
14		D	9	0.00110	1.10	0.12			
15		Е	10	0.00132	1.32	0.13			
16	INUG	Α	9	0.00122	1.22	0.14	0.15	0.04	0.27
17		В	10	0.00214	2.14	0.21			
18		С	10	0.00110	1.10	0.11			
19		D	10	0.00162	1.62	0.16			
20		Е	10	0.00129	1.29	0.13			
21	TEFF	Α	6	0.00060	0.60	0.10	0.11	0.02	0.15
22		В	9	0.00091	0.91	0.10			
23		С	10	0.00096	0.96	0.10			
24		D	10	0.00134	1.34	0.13			
25		E	9	0.00089	0.89	0.10			
1		QA/QC	10	0.00081	0.81	0.08			
8		QA/QC	8	0.00172	1.72	0.22			
19		QA/QC	10	0.00163	1.63	0.16			
Analys			RM	RM					

The average dry weight for the replicate controls must be >0.1 mg, for the test to be valid.

Maxxam Analytics

Hyalella azteca Survival and Growth Test **Dry Weights of Larvae**

Client # & Name: 4954 Azimu Hu	Start Date and Time: 2010 Sept 17@ 1543
Sample ID: Meadow Bank East	End Date: 2010 Octol
Sample Date: 2010 Aug 22, 25 27	Weighing Dates: 2010 Oct 04
Sample Received: 2010 Sept 3	Drying Temperature (°C): 60°
Sample # <u>B086482</u>	Drying Time (b): 3 days
Organism Lot#: ABID0915HA	Statistics File ID: HA-4954-0110

Analysts: R. Massow

Boat	Sample	Rep	#	Boat Wt.	Boat & <i>Hyalella</i>	Hyalella Wt.	Mean Wt <i>./Hyalella</i>	Mean Wt./Sample	SD	% CV
#			Hyalella	. (g)	Wt. (g)	(mg)	(mg)	(mg)		
1	Control	А	10		(0.00070)	0.00	#DIV/0!	#DIV/0!	#####	#####
2	Control	В	10		0.00119	0.00	#DIV/0!			
3	Control	С	D9 3		0.00116	0.00	#DIV/0!			
4	Control	D	10		0.00107	0.00	#DIV/0!			
5	Control	Е	10		0.00130	0.00	#DIV/0!			
6		Α	10		0.00154	0.00	#DIV/0!	#DIV/0!	#####	#####
7		В	10		0.00179	0.00	#DIV/0!			
8		C	ð		0.00175	0.00	#DIV/0!			
9		D	7		0.00100	0.00	#DIV/0!			
10		Е	9		0.00135	0.00	#DIV/0!			
11		Α	610	7	0.00111	0.00	#DIV/0!	#DIV/0!	#####	#####
12		В	010	A	0.00084	0.00	#DIV/0!			
13		C	7		0.00070	0.00	#DIV/0!			
14		D	9		0.00110	0.00	#DIV/0!			
15		Е	10		0.00132	0.00	#DIV/0!			
16		Α	9		0.00122	0.00	#DIV/0!	#DIV/0!	#####	#####
17		В	10		0.00214	0.00	#DIV/0!			
18		С	10		0.00110	0.00	#DIV/0!			
19		D	10		0.00162	0.00	#DIV/0!			
20		Е	10		0.00129	0.00	#DIV/0!			
21		Α	6	and the second	0.00060	0.00	#DIV/0!	#DIV/0!	#####	#####
22			Q 9		0.00091	0.00	#DIV/0!			
23		С (010	a de diff	0.00096	0.00	#DIV/0!			
24		D	ιÓ	and the second	0.00134	0.00	#DIV/0!			
25		Е	9		0.00089	0.00	#DIV/0!			
1		QA/QC	10		0.00081					
প্ত		QA/QC	ક	and the second s	0.00172					
19		QA/QC	10		0.00163					
Analys	t		lm		Rm					

The average dry weight for the replicate controls must be >0.1 mg, for the test to be valid.

(B) Prescription of -0.00080 - Possible damage to Hyalella

(B) One Hyalella possibly lost. Renzeroactor

(C) Damage to organisms fuzzioactor

(D) CTRL A & CTRL D) Possibly switched for 2000 Octot

٨	Λ	9	v	v	9	m
w	"	~	X	X	а	111

Hyalella azteca Canada Survival and Growth Test Measurement and Survival Data Sheet

Page ____ of ___

	modear cilicite dila O	ui vivai Data Officet	
Sample ID:	Control	Start Date:	2010Spot 17@1545
Sample Date:	n/9	End Date:	2010 Octo1
Sample Received:	na	Sample #:	nla

	Measurements							Samples Taken				
рН		Haro	Iness	Condu	Conductance		Alkalinity		onia			
		(mg/L	CaCO ₃)	(μS/cm)		(mg/L CaCO ₃)		(mg/L)				
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final			
8.1	8.0	112	128	410	533	60	78	1605	0.33			

Initial overlying WQ measurements:	Final overlying WQ measurements:
Analyst (M Rm Date 2010 Sep 17	Analyst &m Date 20,00 cf 0)

Day	Friday	Monday	Wednesday	Friday	Monday	Wednesday	Friday
	Day 0	Day 3	Day 5	Day 7	Day 10	Day 12	Day 14
Temp. (°C)	8,66	72.0	22.2	22.1	22.9	22.3	12.8
D.O. (mg/L)	8.8	8.6	8.7	8.7	8.5	8.6	8.6
Feeding		/		V	V	V	
Analyst	KM 15	W	K	K	5L	Kt	Lv

Feed 3.5ml VCT.

Replicate	Α	В	С	D	E
# Surviving	9	10	10	10	10
Analyst	116	Mb	Mo	Mr	110

Date	Replicate	Comments	Analyst

		J. 64 200	
		Jan Oct i	
		78	
-			

Hyalella azteca Canada Survival and Growth Test Measurement and Survival Data Sheet

Page $\underline{2}$ of $\underline{5}$

Sample ID: AZIOI (SP-TRB-2)

Start Date: ___ End Date:

2010Sept 17

Sample Received:

Sample Date:

2010Sept 03

Sample #: W72035-0

		Measure	ments			Samples Taken			
pl	рН		Iness	Condu	Conductance		Alkalinity		nonia
-		(mg/L	CaCO ₃)	O ₃) (μS/cm		(mg/L CaCO ₃)		(mg/L)	
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
8.1	8.1	140	180	413	508	168	110	10.20	40.05

Initial overlying WQ measurements:

Analyst KM Rm Date 2010 Sep. 7

Final overlying WQ measurements:

Analyst 2m Date 2000c to

Day	Friday	Monday	Wednesday	Friday	Monday	Wednesday	Friday
	Day 0	Day 3	Day 5	Day 7	Day 10	Day 12	Day 14
Temp. (°C)	227	72.0	223	223	22 - 7	22.3	22.7
D.O. (mg/L)	8.7	8.6	8.0	0-8	8.5	8.7	8.5
Feeding			/	V	V	V	
Analyst	KMP	B	19	K	工	Kt	fm

FEED 3.5 ML YCT

Replicate	Α	В	С	D	E
# Surviving	weenzowato	10	8	7	9
Analyst	PM	RM	fm	Run	lm

Date		Comments	Analyst
20105/18	211	doedy	Run
		1.6 ₁	
		7490	
		6/8	

٨	Ä	a	Y	¥	a	m
11	,	•	•	А	a	

Hyalella azteca Canada Survival and Growth Test Measurement and Survival Data Sheet

Page <u>3</u> of <u>5</u>

Sample ID: AZ 102 (SP-NT)
Sample Date: 2010Sept Aug 22
Sample Received: 2010Sept Aug 22

Start Date: 7010 Sept 17

End Date: 7010 Ct 0 |

Sample #: W72036-0 |

		Measure	ments		Samples Taken				
p⊦	pН		Hardness		Conductance A		linity	Ammonia	
	- In the state of		. CaCO ₃) (_I		/cm)	(mg/L CaCO ₃)		(mg/L)	
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
B. O	4.6	108	72	332	305	239	33	10.07	4.8

Initial overlying WQ measurements:

Analyst (M & Date 2010 Spp 17

Final overlying WQ measurements:

Analyst P Date 20100401

Day	Friday	Monday	Wednesday	Friday	Monday	Wednesday	Friday
	Day 0	Day 3	Day 5	Day 7	Day 10	Day 12	Day 14
Temp. (°C)	22.7	72.1	22.3	225	22.8	22.5	22.5
D.O. (mg/L)	9.8	8.5	8,5	8.5	8.580	8.6	8.6
Feeding	/	/	V	/	<i>'</i>	V	
Analyst	KM 13	W	B	K	JL	K	Rm

Feed 3. SML YCT Ozonsep 27 W. E JL

Replicate	Α	В	С	D	E
# Surviving	10	9	7	9	10
Analyst	116	MG	16	16	Mo

Date	Replicate	Comments	Analyst
		1.6	
		J. 61 200	
		Jack in	
		4/8	

Hyalella azteca Canada Survival and Growth Test Measurement and Survival Data Sheet

Sample ID:

Sample Date:

Start Date: 7.010 So0 End Date:

Sample Received:

Sample #:

	Measurements							Samples Taken			
pl	рН		Hardness		Conductance Alka		linity	Ammonia (mg/L)			
		(mg/L	CaCO ₃)	(μS/cm)		(mg/L CaCO ₃)					
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final		
7.7	7.4	100	60	323	293	131	23	10.06	5.0		

Initial overlying WQ measurements:

Date 2010 DOM Analyst K

Final overlying WQ measurements:

Date 20100cto1 Analyst Rm

Day	Friday	Monday	Wednesday	Friday	Monday	Wednesday	Friday
	Day 0	Day 3	Day 5	Day 7	Day 10	Day 12	Day 14
Temp. (°C)	20.8	21.8	22.4	22.4	22.8	22.4	22.5
D.O. (mg/L)	8.6	8.6	8.6	8.7	8.5	8.6	8.6
Feeding	/		V	V	72	V	
Analyst	KWR	W	K	K	JL	Kt	Rm

Replicate	Α	В	С	D	E
# Surviving	10	10	10	10	10
Analyst	No	46	MG	No	MG

Date	Replicate	Comments	Analyst
2010 Sept 18	D	One emerged. 2010 Sept 18-WE for	lun
		8	
		1.60	
		1.6g 200 Cd/8	
		Col /a	

Maxxam

Hyalella azteca Canada Survival and Growth Test Measurement and Survival Data Sheet

Page \leq of \leq

Sample ID: AZ 104 (TEFF)

PUAZZ End D

Sample Received: 100 Spoto 3

Start Date: 2010 Sept 17

Sample #: <u>W72038-01</u>

Measurements						Samples Taken			
рН		Hardness		Conductance		Alkalinity		Ammonia	
		(mg/L CaCO ₃)		(µS/cm)		(mg/L CaCO ₃)		(mg/L)	
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
7.6	7.5	104	64	324	282	34	32	140.05	4.4

Initial overlying WQ measurements:

Sample Date:

Analyst (M Rm Date 2010 Sep 17

Final overlying WQ measurements:

Analyst R M Date 2010 Octor

Day	Friday	Monday	Wednesday	Friday	Monday	Wednesday	Friday
	Day 0	Day 3	Day 5	Day 7	Day 10	Day 12	Day 14
Temp. (°C)	33,9	1.25	22.3	22.3	22.7	27.3	22.6
D.O. (mg/L)	8.6	8.5	8.6	8.7	8.6	8.7	8.6
Feeding		/	~	V	V	/	/
Analyst	KM	W	K	K	ブレ	H	fm

Feed 3.5mL VCT

Replicate	Α	В	С	D	E
# Surviving	C	9	10	10	9
Analyst	RM	Ron	116	NG	116

Date	Replicate	Comments	Analyst
20102018	104-C	One Land - Floating COE Run 2010 Sept 18	Lun
		Ŏ	
		·	
		M	
		1.6 mg 2000 Oct 18	
		OCH IN	

Mid-day Late PM

Hyalella Survival Growth Test Aeration Checks

	Client # & Name: #4954 AZIMUTA	Start Date: 2010Sept
--	--------------------------------	----------------------

Initial when aeration is checked. If air is off record DO and note which replicate(s) in comments section.

	Day -1	Day 0	1	2	3	4	5	6
Date	38916	2010 Sept 17	2010 Sept 18	2010 Sept 19	2010 Sep20	2010	3022	39892
Early AM	nia	15	Ru	NI	W	UP	Kt	K
Mid-day	from Na	15	Rus	281	W	B	A	K
Late PM	Rm	is	fm	SI	NP	H	日	Kt
	Day 7	8	9	10	11	12	13	14
Date	398024	2010 590 25	2010	2010 Seo 27	30028	201829	2010 Sept 30	200 0001
Farly AM	V.L	194	AY	51	VA.	VJ	DL	11/-

Comments:
DOUE RUZOLOSEPH 18
- To.
- Coch ff

bL

Randomization Chart for Hyalella Tests

	Back Wall				
	6	12	18	24	30
	5	11	17	23	29
Position Map	4	10	16	22	28
	3	9	15	21	27
	2	8	14	20	26
	1	7	13	19	25
	Front of Co	unfor			

	Colour			
Position #	Code	Treatment	Replicate	
30	Red	Control	A	
18	Red	Control	В	
15	Red	Control	С	
2	Red	Control	D	
1	Red	Control	E	
11	Red	Control	Measure	
9	Green	AZ101	А	
22	Green	AZ101	В	
28	Green	AZ101	С	
6	Green	AZ101	D	
16	Green	AZ101	E	
21	Green	AZ101	Measure	
29	Blue	AZ102	Α	
3	Blue	AZ102	В	
10	Blue	AZ102	С	
12	Blue	AZ102	D	
23	Blue	AZ102	Е	
24	Blue	AZ102	Measure	
20	Yellow	AZ103	Α	
27	Yellow	AZ103	В	
4	Yellow	AZ103	С	
14	Yellow	AZ103	D	
26	Yellow	AZ103	Е	
19_	Yellow	AZ103	Measure	
25	Orange	AZ104	Α	
5	Orange	AZ104	В	
7	Orange	AZ104	С	
13	Orange	AZ104	D	
8	Orange	AZ104	Ε	
17	Orange	AZ104	Measure	

Sediment Toxicity Tests for Azimuth Consulting Group Sampling Period: August 2010

LIST OF APPENDICES

- A SAMPLE INFORMATION
- B CHIRONOMID CULTURE AND SUPPORTING TEST DATA
- C HYALELLA CULTURE AND SUPPORTING TEST DATA
- D SEDIMENT TEST CHEMISTRY

APPENDIX

A SAMPLE INFORMATION

Chain of Custody Forms

Supporting Sample Information

Client: AZIMUTH CONSULTING GROUP

218 - 2902 WEST BROADWAY

VANCOUVER BC

CANADA V6K 2G8 Inv Attn: Gary Mann

Printed: 2010/09/13 Version 5

Reception Date: 2010/09/03 Reception Time: 08:25

Login Date: 2010/09/03

REQUIRED DATE: 2010/09/13, 18:00

Quote Number: A90744

Report: same

Attention: Gary Mann

Maggie McConnell

Task Order:

Line Item:

PHONE: (604) 730 - 1220Ext:

FAX: (604) 739 - 8511

EMAIL: gmann@azimuthgroup.ca

PROJECT NUMBER:

P.O. Number:

AEM-10-02.2 MEADOWBANK EAS

Site Location: Site #:

Client Number: 4954 Rpt Address #:

Q.C. Samples: No

Project Coordinator: RM1

Accounting Information

Desc. Code

Report Copies

EMAIL

Attention # cop. Fax

mmcconnell@azimuthgroup.ca

Maxxam	Client		Store Rec	cd.	Sampling		
<u>Number</u>	Sample ID/Report ID	Cont's	Code O	K	<u>Date</u>	MATRIX	Test Codes
W72035-01R	SP-TRB-2	1-4PAL N/A-V	BG-0 Ye	es	2010/08/22	SED	CHIROV-SD, DISPOSAL, ECOATTACHS
	SP-TRB-2						HYALELV-SD
W72035-02R	SP-TRB-2	1-120P N/A-V	BG-0 Ye	es	2010/08/22	SED	ARCHIVE, SUB2002
	SP-TRB-2						
W72035-03R	SP-TRB-2	1-120P N/A-V	BG-0 Ye	es	2010/08/22	SED	ARCHIVE2
	SP-TRB-2						
``'72036-01R	SP-N1	1-4PAL N/A-V	BG-0 Ye	es .	2010/08/22	SED	CHIROV-SD, DISPOSAL, ECOATTACHS
\ \	SP-N1						HYALELV-SD
W72036-02R	SP-N1	1-120P N/A-V	BG-0 Ye	es :	2010/08/22	SED	ARCHIVE
	SP-N1						
W72036-03R	SP-N1	1-120P N/A-V	BG-0 Ye	es :	2010/08/22	SED	ARCHIVE2
	SP-N1						
W72037-01R	INUG	1-4PAL N/A-V	BG-0 Ye	es :	2010/08/25	SED	CHIROV-SD. DISPOSAL, ECOATTACHS
	INUG						HYALELV-SD
W72037-02R	INUG	1-120P N/A-V	BG-0 Ye	es :	2010/08/25	SED	ARCHIVE
	INUG						
W72037-03R	INUG	1-120P N/A-V	BG-0 Ye	es 2	2010/08/25	SED	ARCHIVE2
	INUG						
W72038-01R	TEFF	1-4PAL N/A-V	BG-0 Ye	es 2	2010/08/27	SED	CHIROV-SD. DISPOSAL, ECOATTACHS
	TEFF						HYALELV-SD
W72038-02R	TEFF	1-120P N/A-V	BG-0 Ye	es 2	2010/08/27	SED	ARCHIVE
	TEFF						
W72038-03R	TEFF	1-120P N/A-V	BG-0 Ye	es 2	2010/08/27	SED	ARCHIVE2
	TEFF						

Remarks: ml4

Quote Remarks:

single metal: \$28 - soil

Inspected by: MBO

Date: 2010/09/03 Time: 17:47

Approved by: ML4

Date: 2010/09/08

Time: 14:57

Date of Sample Disposal: Disposal by:

Max	Xam Maria sa Inc	Enment sett	i Carada Way, Burn	aby BC VSG1K5 Art	(604) 734	}-7.	(31- <u>23</u> 9	COC			***** >ひなら	ЧS	2			ANA	LYTH		REQ Page —		FORM	
	Invoice To: Require Repor	77 Yes X No.		eport To:								***************************************		***************************************	***************************************		*******************************					
Company Name:	Ázimuth Consulti	E		*	same a	s involce			POS (APES)													
Contact Name:	Gary Mann & Mag	gie McConnell		**************************************	*****************	***************************************				Quotation #: Project #: AEM-10-02.2												
Address:	218-2902 W	Broadway			***************************************	••••••••••••••••••••••••••••••••••••••					Proj. Name		•••••		***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	dowb:	************	******************************	***************************************	·····	
	Vancouver, BC	PC: V2k	(2G8		PC			***************************************			Location:	***************************************								i		
Phone / Fax#:	Ph: 604.730.1220	FEX.	P		Fas		****************	************************			Sampler's I	- iti - i	***************************************		101612	adowbank Mine, Nunavut						
REGULATORY RE	Álimesesses.	**************************************			wanimaaninakan	·		******	Į													
CSR	Quinements:	-	RT DISTRIBUTI	ION:					·		AN	IALY:	SIS F	REQU	EST	ED	***************************************					
CCME	Cowo	G X PD	# F	Other:								Las	V08:	only								
COME FWAL	G50			nneil@azimut	inara.	N N/3	→	Chirongmus tantans 10-d												***************************************		
	***************************************			nn@azimuthq			2	SU		gon			**********							BB044444		
	•		·				azteca 14-day	8 1		Extraction	TTT-FEBRURA		***************************************			***************************************		1		Numerican (
SERVICE REQUES			***************************************		***************************************		Stec	35		ũ	Milanda		***************************************									
	Ensure you contact the lab)				***************************************	***************************************	(3 (%	Tuo.		Til 3												
Date Required:	***************************************	- \$	S: (WATERS)	igiselentences,			Hyalella	5		Secuential			***							-		
x REGULAR Tun	around	Tot	a Extrac	table Dis	salvea		Ť	ঠ		Š				2007								
					Hold >							-						************				
			Date/Time	Sample Type	50	Sample								000000				ı				
	le Identification	Matrix	Sampled	Grab/Comp	Days	Container #	·															
1 SP-TR8-2		sediment	:22-Aug-10	Comp.Sed Grabs		3	Х	Х		Х												
2 SP-N1		sediment	-22-ALg-10	Cómp.Sed Grabs		-3	Х	х	agaaa aa a	х	· in								*			
2 INUG		sediment	25-Aug-10	Comp Sed Grabs		3.	ж.	×		X								1				
4 TEFF		sediment	27-46-9-10	CompiSed Grabs		3.	X	X		×				·								
					***************************************	1	~~~~~~										\rightarrow	-	-	\dashv	1	
6		***************************************			***************************************	-														-		
7									-+			-										
			***************************************		············																	
8		***************************************						~~~~~~														
-9										1										Aberra	d-4000	
10								************		1		1										
11					······································		*********		-			1				$\neg \dagger$				1		
12					000,000,000,000,000,000,000							1										
<u> </u>					***************************************	ļ						ļ.,	ļ,					الر				
hor water sample:	s please indicate if sample o	containe: has ce	en preserved ()	?) snd/or filtered	(F).												4					
Relinquished By:	140000 ME	N. 2017		المعادد المراسية		, , m,		W. 1		*too	**************************************	Rec	sived			ſ	Te	mne	rature	1		
Signature:				Date(Ti	me:	265		112	V-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Their sealor	NA CV		بهما إسك	4		1	. ~	12.00		,		
**		ter of the section of	terroma reigrapassi serre e reserviu as is							CHARTTER CO.	Sant	3. h.	- P. J. J.	92	25	L						
COMMENTS/SPEC	AL INSTRUCTIONS: 1 4	-L containers for	r toxicaty testina	. Contact Curbs &	ijekho6	if wan bens to	mi, man	astirn		***************************************		- ام	7 / 7	7, 4				8 81 5.4	\$18 (M) 18 331	R Sin		
	2. 3	25-rd jars are fo	ir sequential ext	raction analysis	Contac	t Tim O'Hears	ાજુ ઘણી 1.	gradit. F	Þ	etteren, commence	TEMP	9 ⁻²	ئے آیا آیا۔	-[f -d				2000		Annual Control		
										***************************************		f	ن					.08	32191	19		

Sediment Sample Descriptions

Client # / Name: #4954 Azimuth Project #: 2-11-691

Maxxam Sample Name		Client Sample Name	Date Homogenised / Subsampled	Grain Size & Colour	Type of Debris Removed	Endemic Animals Removed	Odour	Centrifuged for porewater? Y/N	Purged with N₂?	Analyst
AZIOI	NEMI-2010 Sept 1 W7-2035 W7-2035	5 A WENG-2010 Spot 16 SP-TRB-2	290 Sept 16	clay- grey	nane	few chiraram + oligochoeta	naw	Y	y	NG
AZ102	W72036		201054-16	1/9 .11 / 1	none	none	none	¥	y	fur
AZ103	W72037	1000	2010Sep14	Bown Salt Iclay		chronomi Reved	ds None	Yes	yes	Kt
AZ104	W72058	TEFF	20152/16	Brown Silt/med	none	None	None	Y	\angle	fm
									:	

Maxxam

Freshwater Sediment Tests Porewater Measurements

Client # & Name:	#4991 A	ZIMUTh	_ Date Measured	2010 SEP 16	
Method for Porew	rater Collection:				
				17771701703 a & 64 a	
Sample ID	Temperature (°C)	рН	Ammonia Sample?	Analyst	
(m/rol		7.8	V	UP	
A2101		8,0	V	W	
A7102		7.8	V ,	W	
AZ103		7.1	/	VO	
AZIOH		7,0		W	
** ***********************************					
Comments	L. L.		1		
, o 45 a.c. to	- Vindenda				
				754	·
- FANNOC	7-W-9				

APPENDIX

B CHIRONOMID CULTURE DATA

Organism History

Head Capsule Width Measurements

Acclimation and Holding Conditions Record

Water Preparation Data Sheets

Reference Toxicant Control Chart

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

AB100915CT

Toll Free: 800/331-5916 Tel:970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

DATE:	9/14/10	
SPECIES:	Chironomus dilutus (formerly C. tentans)	
AGE:	Deposited on 9/3/2010	
LIFE STAGE:	Second Instar 9/14/2010	
HATCH DATE:	Emergent date 9/27/2010	
BEGAN FEEDING:	Immediately	
FOOD:	Selenastrum sp., Flake slurry	
Water Chemistry Record:	Current	Range
TEMPERATURE	:: <u>25°C</u>	22-26°C
SALINITY/CONDUCTIVITY	; <u></u>	,
TOTAL HARDNESS (as CaCO ₃)	:150 mg/l	100-190 mg/l
TOTAL ALKALINITY (as CaCO ₃)	:75 mg/l	50-110 mg/l
рН	: 7.78	7.53-8.31
Comments:		
	Jutellen	
	Facility Supervisor	

Maxxam

Chironomus tentans Measurements of Head Capsule Widths

Client # & Name: #4954 Azimuth

Start Date and Time: 2010 Sept 17 @ 17:38

End Date: 2010 Sept 27

Organism Lot #: AB100915CT

Head Widths at Beginning of Test

Head Widths at Beginning of Test									
		Head Width							
Chironomid #	Head Width (um)	(mm)							
1	358	0.36							
2	333	0.33							
3	394	0.39							
4	393	0.39							
5	364	0.36							
6	621	0.62							
7	610	0.61							
8	618	0.62							
9	603	0.60							
10	652	0.65							
11	624	0.62							
12	663	0.66							
13	589	0.59							
14	567	0.57							
15	684	0.68							
16	661	0.66							
17	530	0.53							
18	377	0.38							
19	552	0.55							
20	362	0.36							
Average	528	0.53							
SD	125.7	0.13							
Analyst	MB								

Average must be 0.33-0.45 mm (Environment Canada 1998)

Note: Head widths were measured using Motic camera attached to a microscope. Measured widths are in um

Maxxam

Chironomus tentans Measurements of Head Capsule Widths

Client # & Name:	#4954	AZIN	WTh

Start Date and Time: 2010 Sept 17 @ 1738

End Date: 2010 Sept 29

Organism Lot #: 48100915 CT

Head Widths at Beginning of Test

Head Widths at Beginning of Test									
	Head Width	Head Width							
Chironomid #	<=(iviicrome ter)	(mm)							
1	358								
3	233								
	333 394 292								
4									
5	364								
6	621								
77	610								
8	618								
9	603								
10	652								
11	624								
12	663								
13	539								
14	567								
15	684								
16	661								
17	530								
18	377								
19	552								
20	362								
Average	#DIV/0!	#DIV/0!							
SD	#QIV/0!	#DIV/0!							
Analyst	WB								

Average must be 0.33-0.45 mm (Environment Canada 1998)

-1-mm=40 units on micrometer

(A) Masured in microns in Motic camera MB 2010 SQ 17

Oreconte	ganis	sm:(_	NV	MONC	WS	tentar	B	Arriva					*	
Organis			100					Age		n Arri		/2 A		
	uppl tome	_	AB)O.J.								630		
		-	-81 A	151				Sti	idy/P	rojec	t#:	2-11	-691	
Arrival Co	nditi	ons	r				Т							
					Sa	linity (‰)					,			
				#	Col	OR nductivity	Ter	nperature			г	00		
Bag ID	# D	ead	1	ctive	• (μS/cm)		(°C)	р	Н	(m	g/L)	Feeding	Analyst
1/2					37	5/379	23	8/23.7	6.6	16.6	10.7	/(0.8		W
3						378		23.7	6	.6		5		
Con	tainei	· ID:												
Daily Con	dition				/Ac	climation								
		C	bser	/ations				Wa	ter C	Quality	У			
						Salinity (‰)	,						
	-			. #		OR Conducti	vitv	Temperat	UFA			DO	•	
Date		# D	ead	Inactiv	ve	(μS/c _m)	(°C)	uio	pΗ	4	(mg/L)	Feeding	Analyst
2010266	OK	\circ		0		_30c)	23.0		7.9	5	7-4	11/	K
			·											1
											-			

_														
Comment	s (e.g		eding	times a	and		, bel	naviour, ac	clima	tion o	cond	itions):	Analyst	Date
400	Κίκ	\sim		1.17	4	776	10	12 F	4	101	1//		4	101626D/
tetra	IIII	11												
						· · · · · · · · · · · · · · · · · · ·								
			_		·								-	
	······													
	~	-	· · · · · · · · · · · · · · · · · · ·											

Revision: 01

Revision Date: March 25, 2010

Document Control Number: 80-F-089-01

Form approved by:

Effective date:

Janet Rickard

Or	gani	sm: (MONO	'M(ustent	ar	B Arriva	Date	e & Ti	me:			
Organis	m Lo	t#: _					•	Age	иро	n Arri	val:			
S	uppl	ier:	FIL	35								630	·	
Cus	tome	r#: _	#4	97	<u>t</u>			Stı	ıdy/P	rojec	t#:	2-11	691_	
Arrival Co	nditi	ons					•							
	Salinity (‰) OR													
			;	#	Со	nductivity	Tei	mperature				DO		
Bag ID	# D	ead	Inac	ctive		μS/cm)		(°C)	p	H	<u>(n</u>	ng/L)	Feeding	Analyst
4/5					38	1/389	23.	9/23.8	6.5	6.5	12.4	//10.3		WP
Cont		ns Du				climation	-							
		С	bser	/ations	3			Wa	ater C	Qualit	у			
	-					Salinity (OR								
Date		# D	ead	# Inact		Conducti (µS/çm		Temperat (°C)	ure	pŀ		DO (mg/L)	Feeding	Analyst
2010Se0	16)	\mathcal{L})	21	2	22.4	-	7.	4	(11g/L)	·	V+
2010 Sep	7	la		13)	h/a	·	nle		,	1/e	vi/z	n/2	KM
							·							
Comment	ts (e.	g., fe	eding	times	and	quantities	, be	haviour, ac	clima	ation (onc	litions):	Analyst	Date
WCC B	4º	- (· 11.	1)	20010	١٠ر	Sted	10	tMT	16	TOANIA	G	ZODEPH
w_					·									
···						1.1								
						<u> </u>								
			·							780				

Revision: 01

Revision Date: March 25, 2010

Document Control Number: 80-F-089-01

Form approved by:

Effective date:

Aprol,2010

Maxxam

BATCH ID:

2010 SED 13

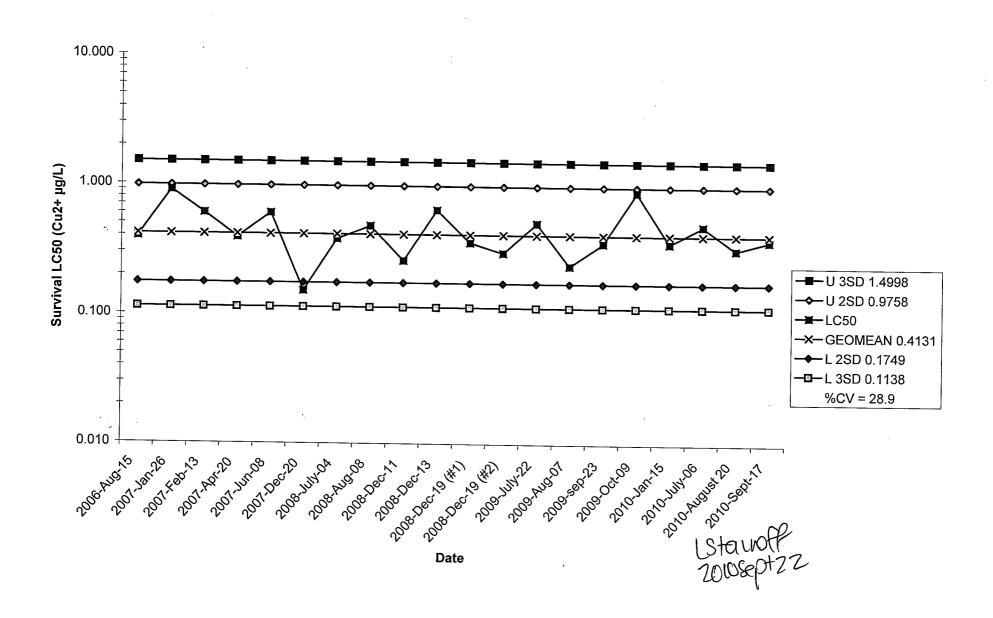
(Date Hardened)

Chironomus tentans H₂O Hardness Adjustment (Environment Canada 1997) (For water hardness 90 - 100 mg/L)

Chemical Weights	CaCl₂X2H₂O	MgSO₄ (g)	CaSO ₄ (g)	NaHCO₃ (g)	KCI (g)				
Brand	EMP	EMO	EMO	Emo	EMO				
Lot#	47171751	48317907	48226934	22600301	48221842				
Calculated	3.98	1.80	3.00	5.76	0.24				
Actual	3.9808	1.8002	3.0001	5.7680	0.2400				
Balance: <u>3536</u>									
Analyst: <i>L. Pomero</i>	/		Add to	60 litres D	l water				
Date: <u>2010 SEP</u>	3				;				
Water Use: #4954 AZIMUTh (i.e. Client #, Ref Tox, Holding, etc)									
Date Hardened:	K. Pomer	vy .							

Water Quality:		
Temp: <u>23.2</u> pH:	7.8	Hardness <u>Q6</u>
Cond.: 363 DO:	8.5	Alkalinity:
Analyst: Camac		Date: 201050016
Comments:		

NaHCO3 (Sodium Bicarbonate)


CaSO4 (Calcium Sulfate - anhydrous)

CaCl2 x 2H2O (Calcium Chloride - dihydrous)

MgSO4 (Magnesium Sulfate - anhydrous)

KCI (Potassium Chloride)

Chironomus tentans 96 hour Reference Toxicant Control Chart for Copper

APPENDIX

C HYALELLA CULTURE DATA

Organism History

Acclimation and Holding Conditions Record

Water Preparation Data Sheets

Reference Toxicant Control Chart

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

ABIOOGISHH LSHOWAP

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

DATE:	9/	14/2010	
SPECIES:	H ₃	valella azteca	
AGE:	4-0	5 day	
LIFE STAGE:	Ju	venile	
HATCH DATE:	Va	riable	
BEGAN FEEDING:	Im	mediately	
FOOD:	Fla	ike slurry	
Water Chemistry Record:		Current	Range
TEMPER	RATURE:	25°C	22-25°C
SALINITY/CONDUC	CTIVITY:	<u></u>	
TOTAL HARDNESS (as	CaCO ₃):	100 mg/l	100-204 mg/l
TOTAL ALKALINITY (as	CaCO ₃):	75 mg/l	50-100 mg/l
	pH:	7.81	7.26-8.26
Comments:			
		5/3/1/	
		Facility Supervisor	

		 81	ا ما	alt a	امہ	.,								-0.0
	_	-	lygi		XZI	KYL_		Arriva				-2011	Depti	(0.30.30)
Organis		_	19B(<u> </u>	15			Age	-	n Arri	•	7000	- + OCU	15
	uppl	3.0	Mbs		4-11	002 HEI	100	20/ 01		Order		1900		V
		r#: <u>‡</u>	HA	51,	*-11	150,4	100	<u>) 5</u> Sti	ıdy/P	roject	#:	-VOX	10US_	
Arrival Co	nditi	ons							r					
					Sa	linity (‰)								
			;	#	Coi	OR nductivity	Tei	nperature			. [00		
Bag ID	# D	ead	Inac	ctive	(μS/cm)		(°C)	р	H		g/L)	Feeding	Analyst
6/7			(<u> </u>	73	/728	23	7 /23.6	7.7	17.7	7.8	/7.6		KP
Conf	aino	× ID.	Î	Dar	\ A									
		-		MUI	<u>, 1 , </u>									
Daily Con	ditio					climation								
		O	bserv	ations	3			Wa	ater C	Quality	/			
				ļ		Salinity (OR	‰)	,						
				#		Conducti		Temperat	ure			DO		
Date	412	# D	ead	Inact	ive	(μS/cm	<u> </u>	(°C)		На		(mg/L)	····	Analyst
∞	Y/O		<u>ر</u>	\bigcirc		+3	0	739	1_	8.	4	8.1		KI
								1.0						
							_	Story.		\sim		-	-	
							- 2	MACO	U					
									*>		4			
	-									Market .	+			
Comment	s (e.	g., fee	ding	times	and	quantities	, be	haviour, ac	clima	tion c	ond	itions):	Analyst	Date
TA'1		\wedge	1.60.	11.00	7/	+ 01		-				- · ·	1 1	2-1 50-11
- 101·			<u>76</u>	\\\\	4) FEC		sml -	KI	μ	M	74	K	equisep 6
DMI		()	(b)	11:3	<u>50</u>							····	Kt	201034010
	-													
							101	,						
					-46		W	71100	0					
							20)	19		-				
			-	, , , , , , , , , , , , , , , , , , ,				USCPT.	27	-				
									_					

Revision: 01

Revision Date: March 25, 2010

Document Control Number: 80-F-089-01

Form approved by: _

Effective date:

Janet Rickard

 Oi	ganis	sm: _	Hy	atell	a.	aztece		Arriva	Dat	e & Ti	me:	2010	Septi	5010:3
Organis	m Lo	t#: _	HE	100	199	SHA		Age	upo	n Arri	val:	5-	70dus	,)
8	Suppl	ier: _	AB	5					#	Order	ed:	190	0	
Cus	tome	r#: 🔻	-49°	31,3	+112	133, 41	138	S Stu	ıdy/P	roject	t#:	Var	1015	· · · · · · · · · · · · · · · · · · ·
Arrival Co	nditi	ons												
					Sa	linity (‰)								
				#	Co	OR onductivity Temp		nperature			DO			
Bag ID	# D	ead		ctive		(μS/cm) ((°C)				ng/L)	Feeding	Analyst
8/9	9 0 0 738			23.		7.7	/7.7	7.6	17.7	/	W			
Con	taineı	r ID:		Pa	N	B				· ·				
Daily Con	dition					climation								
				vations				Wa	ter (Quality	,			
						Salinity (‰)							
				#	.	OR Conducti	vitv	Temperat	ure			DO		
Date		# D	ead	Inact		(μS/cm		(°C)	uio	рН	ı	(mg/L)	Feeding	Analyst
100	3 44	$\underline{}$)	\bigcirc		75		23.6	0	8:	2	8.2	1	N
										-0-				
		_												
								101						
							/ \	E au	De	-				
								U(08-2	$\sum_{i=1}^{n}$					
								_ 7	7	2	7			
				T										
Common		- for	alia a	4ima										
Commen	.s (e. <u>(</u>	j., 10¢	amg	umes	and	quantities	, bei	naviour, acc	lima	tion c	ond	litions):	Analyst	Date
77.1	Home	$\wedge \wedge$	(W	1110	7	Epd	7	(00 L XI (.	7	FIN	<u>~ 1</u>		161	0 :00 = 1
i din	1/2	\mathcal{O}	~	41:		051.		m1 4C	14	di	177		Kt	201 ODERA
ET 110	11/	()	(W)	11.	30)							Kt	2010SADL
	_													
					-									
					-			Sta	^	2				
							3	WILL STATE	¥4		····		-	
·	· · · · · · · · · · · · · · · · · · ·						4	210h		-				
								<u> </u>	1 Z.	Z_				
											_		-	
Revision: (01													

Revision Date: March 25, 2010

Document Control Number: 80-F-089-01

Form approved by: Effective date:

BATCH ID:

2010 SEP 13

Maxxam

(Date Hardened)

SAM-5S Reconstituted Water Recipe for *Hyalella azteca* as per Borgmann 1996 (For water hardness ~125 mg/L)

Chemical Weights	CaCl ₂ X2H ₂ O	MgSO₄ (g)	NaBr (g)	NaHCO3 (g)	KCI (g)					
Brand	EMO	EMD	EMD	EMD	EMO					
Lot #	47/7/751	483 17907	47355846	2260(307	48221842					
Calculated	8.82	1.81	0.06	5.04	0.22					
Actual	8.8208	0.0602	5.0399	0.2204						
Actual 8.8208 1.8102 0.0602 5.0399 0.2204 Balance: 3536 Analyst: K. Pomeroy Add to Type 2 DI (L): 60 Date: 7010 SEP 13										
Water Use: 4954, 11233, 4388, R (i.e., Client #, Ref Tox, Holding, etc) Date Hardened: 2010 SEP 13 Analyst: N. Pomeroz										

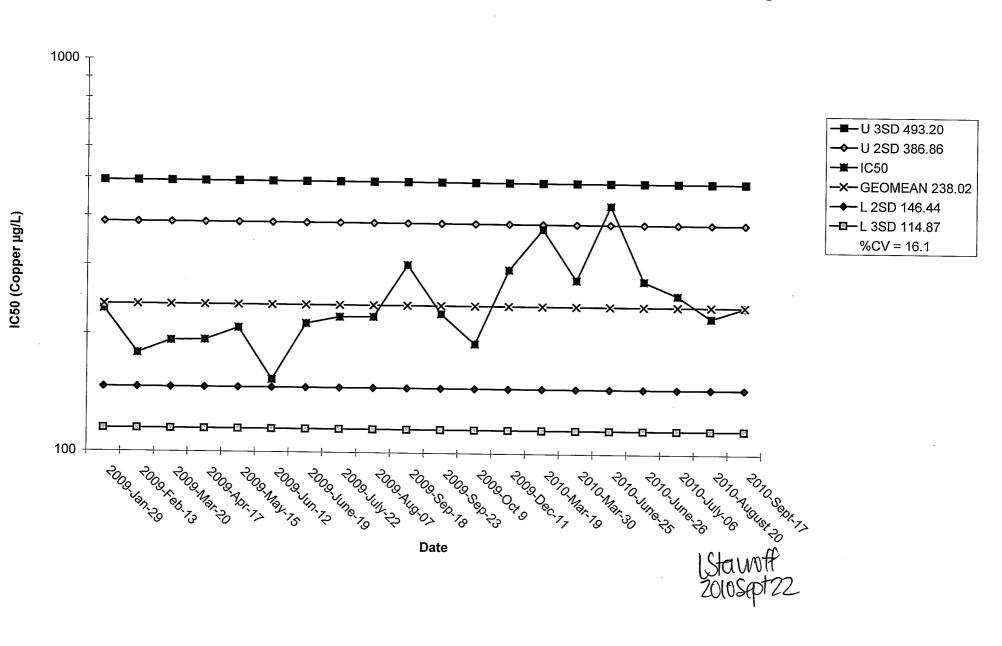
Water Quality:		15 We of 17
Temp: <u>23-7</u> pH:	7-6 Hard	ness 80 122 2010/67/17
Cond.: <u>397</u> DO	8.3 Alkal	inity:
Analyst: Citamaki		Date: <u>2010 Sep 16</u>
Comments:		

NaHCO3 (Sodium Bicarbonate)

NaBr (Sodium Bromide)

CaCl2 x 2H2O (Calcium Chloride - dihydrous)

MgSO4 (Magnesium Sulfate - anhydrous)


KCI (Potassium Chloride)

SAM-5S Recipe = 1 mM CaCl2, 1 mM NaHCO3, 0.01 mM NaBr, 0.05 mM KCl, and 0.25 mM MgSO4

Borgmann, U. 1996. Systematic analysis of aqueous ion requirements of *Hyalella azteca*: A standard artificial medium including the essential bromide ion. *Archives of Environmental Contamination and Toxicology*. 30: 356-363.

Hyalella azteca

Control Chart for 96 Hour Water Only Reference Toxicant Test using Cu²⁺

APPENDIX

D SEDIMENT TEST CHEMISTRY

Sediment Chemistry and Physical Analyses

Sediment Porewater Chemistry

Day 0 Chironomid Test Overlying Water

Day 10 Chironomid Test Overlying Water

Day 0 Hyalella Test Overlying Water

Day 14 Hyalella Test Overlying Water

Maxxam Job #: B087774 Report Date: 2010/10/05 www.niaxxamanalytics.com

Maxxam Analytics (TOX Internal)
Client Project #: 2-11-691 HY+CH SEDS (AZIMUTH)

RESULTS OF CHEMICAL ANALYSES OF SEDIMENT

Maxxam ID		X04085	X04086	X04087	X04088	X04089	
Sampling Date		2010/09/16	2010/09/16	2010/09/16	2010/09/16	2010/09/16	,
COC#		G035559	G035559	G035559	G035559	G035559	
	Units	CONTROL SEDIMENT	AZ101	AZ102	AZ103	AZ104 SEDIMENT	RDL
			SEDIMENT	SEDIMENT	SEDIMENT		
Physical Properties							
Texture	N/A	SAND	SILT LOAM	CLAY LOAM	SILTY CLAY	CLAY	N/A

Sediment Chamistry p.1

PARTICLE SIZE DISTRIBUTION ANALYSIS (SEDIMENT)

Maxxam ID		X04085	X04086	X04087	X04088	X04089	
Sampling Date		2010/09/16	2010/09/16	2010/09/16	2010/09/16	2010/09/16	
COC#		G035559	G035559	G035559	G035559	G035559	
	Units	CONTROL SEDIMENT	AZ101 SEDIMENT	AZ102	AZ103	AZ104	RDL
				SEDIMENT	SEDIMENT	SEDIMENT	
Percent Passing							
<0.002mm Pipette	%	2.41	13.99	33.72	41.87	53.70	0.01
<0.053mm Pipette	%	2.29	98.76	72.72	84.72	92.63	0.01
<0.125mm, Sieve #120	%	9.01	99.69	76.37	94.95	98.57	0.01
<0.250mm, Sieve #60	%	99.26	99.92	81.37	97.79	99.57	0.01
<2.00mm, Sieve #10	%	100.0	100.0	97.14	100.0	100.0	0.01
Percent of Entire Sample							
<0.002mm	%	2.41	13.99	33.72	41.87	53.70	0.01
<0.053mm & >0.002mm	%	<0.01	84.78	39.00	42.85	38.93	0.01
<2.00mm & >0.053mm	%	97.71	1.24	24.42	15.28	7.37	0.01
>2.00mm	%	<0.01	<0.01	2.86	<0.01	<0.01	0.01
% of the <2mm Fraction							
% Clay <0.002mm	%	2.41	13.99	34.71	41.87	53.70	0.01
% Sand <2.00mm & >0.053mm	%	97.71	1.24	25.14	15.28	7.37	0.01
% Silt <0.053mm & >0.002mm	%	<0.01	84.78	40.15	42.85	38.93	0.01

Maxxam Job #: B087774 Report Date: 2010/10/05

www.maxxamanalytics.com

Maxxam Analytics (TOX Internal) Client Project #: 2-11-691 HY+CH SEDS (AZIMUTH)

MISCELLANEOUS (SEDIMENT)

Maxxam ID		X04085	X04086	X04087	X04088	X04089	
Sampling Date		2010/09/16	2010/09/16	2010/09/16	2010/09/16	2010/09/16	
COC#		G035559	G035559	G035559	G035559	G035559	
	Units	CONTROL SEDIMENT	AZ101 SEDIMENT	AZ102	AZ103	AZ104	RDL
				SEDIMENT	SEDIMENT	SEDIMENT	
Misc. Inorganics							
Total Organic Carbon (C)	%	0.13	0.51	1.9	2.6	2.5	0.02

Sediment Chamistry P-2

Maxxam Job #: B087317 Report Date: 2010/09/24 www.maxxamanalytics.com

Maxxam Analytics (TOX Internal)

Client Project #: 2-11-691

Site Reference: HY + CH SED(AZIMUTH)POREWATER

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		X01943	X01944	X01945	X01946	X01947	
Sampling Date		2010/09/16	2010/09/16	2010/09/16	2010/09/16	2010/09/16	
COC#		G035560	G035560	G035560	G035560	G035560	
	Units	CONTROL POREWATER	AZ101	AZ102	AZ103	AZ104	RDL
MISCELLANEOUS					***************************************	<u> </u>	
Sulphide	mg/L	< 0.005	0.007	0.006	0.010	0.007	0.005
Nutrients							
Ammonia (N)	mg/L	0.20(1)	1.6	0.26(1)	0.26(1)	0.22(1)	0.05

Maxxam Job #: B088206 Report Date: 2010/09/24 www.maxxamanalytics.com

Maxxam Analytics (TOX Internal)

Client Project #: 2-11-691

Site Reference: CHRON DAY 0 (AZIMUTH SEDS)

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		X06739	X06740	X06741	X06742	X06743	
Sampling Date		2010/09/17	2010/09/17	2010/09/17	2010/09/17	2010/09/17	
COC#		G035562	G035562	G035562	G035562	G035562	
	Units	CRTL OVERLY	AZ101 OVERLY	AZ102 OVERLY	AZ103 OVERLY	AZ104 OVERLY	RDL
		H20 DAY 0	H20 DAY 0	H20 DAY 0	H20 DAY 0	H20 DAY 0	
Misc. Inorganics				······			•
Alkalinity (Total as CaCO3)	mg/L	64	82	43	38	39	0.5
Alkalinity (PP as CaCO3)	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Bicarbonate (HCO3)	mg/L	78	100	53	46	47	0.5
Carbonate (CO3)	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Hydroxide (OH)	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Nutrients							
Ammonia (N)	mg/L	<0.05(1)	0.18(1)	0.06(1)	<0.05(1)	0.13(1)	0.05

Chimonomias Day O averlying test water

^{(1) -} RDL raised due to sample matrix interference.

Maxxam Job #: B092237 Report Date: 2010/10/01 www.maxxamanalytics.com

Maxxam Analytics (TOX Internal) Client Project #: 2-11-691 CHIR DAY 10 (AZ. SEDS

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		X25503		X25504		X25505	X25506	X25507	
Sampling Date		2010/09/27		2010/09/27		2010/09/27	2010/09/27	2010/09/27	
COC#		G035563		G035563		G035563	G035563	G035563	
	Units	CTRL	RDL	AZ101	RDL	AZ102	AZ103	AZ104	RDL
		OVERLY		OVERLY		OVERLY	OVERLY	OVERLY	
		H2O DAY 10		H2O DAY 10		H2O DAY 10	H2O DAY 10	H2O DAY 10	
Misc. Inorganics									
Alkalinity (Total as CaCO3)	mg/L	120	0.5	130	0.5	35	22	56	0.5
Alkalinity (PP as CaCO3)	mg/L	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5	0.5
Bicarbonate (HCO3)	mg/L	150	0.5	160	0.5	42	27	69	0.5
Carbonate (CO3)	mg/L	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5	0.5
Hydroxide (OH)	mg/L	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5	0.5
Nutrients									
Ammonia (N)	mg/L	6.8	0.1	2.7	0.05	7.0	6.8	6.9	0.1

Day 10 overlying test water- Chivonomids.

Maxxam Job #: B088207 Report Date: 2010/09/24 www.maxxamanalytics.com

Maxxam Analytics (TOX Internal)

Client Project #: 2-11-691

Site Reference: HYALELLA DAY 0 (AZIMUTH SEDS)

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		X06744	X06745	X06746	X06747	X06748	
Sampling Date		2010/09/17	2010/09/17	2010/09/17	2010/09/17	2010/09/17	
COC#		G035561	G035561	G035561	G035561	G035561	
	Units	CRTL OVERLY	AZ101 OVERLY	AZ102 OVERLY	AZ103 OVERLY	AZ104 OVERLY	RDL
		H20 DAY 0	H20 DAY 0	H20 DAY 0	H20 DAY 0	H20 DAY 0	
Misc. Inorganics							
Alkalinity (Total as CaCO3)	mg/L	60	68	39	31	34	0.5
Alkalinity (PP as CaCO3)	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Bicarbonate (HCO3)	mg/L	73	82	47	38	42	0.5
Carbonate (CO3)	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Hydroxide (OH)	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Nutrients							
Ammonia (N)	mg/L	<0.05(1)	0.20(1)	0.07(1)	0.06(1)	<0.05(1)	0.05

Hyatella-Day O overlying test water.

^{(1) -} RDL raised due to sample matrix interference.

Maxxam Job #: B094477 Report Date: 2010/10/07 www.maxxamanalytics.com

Maxxam Analytics (TOX Internal)

Client Project #: 2-11-691 HYALELLA DAY 14 (AZIM

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		X39864		X39865		X39866	X39867	X39868	
Sampling Date		2010/10/01		2010/10/01		2010/10/01	2010/10/01	2010/10/01	
COC#		G035564		G035564		G035564	G035564	G035564	
	Units	CTRL OVERLY.H2O DAY 14	RDL	AZ101 OVERLY H2O DAY 14	RDL	AZ102 OVERLY H2O DAY 14	AZ103 OVERLY H2O DAY 14	AZ104 OVERLY H2O DAY 14	RDL
Misc. Inorganics					******			,	
Alkalinity (Total as CaCO3)	mg/L	78	0.5	110	0.5	33	23	32	0.5
Alkalinity (PP as CaCO3)	mg/L	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5	0.5
Bicarbonate (HCO3)	mg/L	95	0.5	130	0.5	40	28	39	0.5
Carbonate (CO3)	mg/L	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5	0.5
Hydroxide (OH)	mg/L	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5	0.5
Nutrients									
Ammonia (N)	mg/L	0.33	0.005	<0.05(1)	0.05	4.8	5.0	4.4	0.1

Hyalella - Day 14 overlying test water

5 DD9 B8 ± 7

G98 = A9BH·7 < 9A = GHFM @ 6 CF5 HCFM 8 5 H5 · Ë·5 @ G· 9BJ = FCBA9BH5 @

AZIMUTH CONSULTING GROUP INC.

ATTN: MAGGIE McCONNELL 218 - 2902 WEST BROADWAY VANCOUVER BC V6K 2G8

Phone: 604-730-1220

Date Received: 03-SEP-10

Report Date: 27-SEP-10 17:10 (MT)

Version: FINAL

Certificate of Analysis

Lab Work Order #: L928158

Project P.O. #: NOT SUBMITTED

Job Reference: MEADOWBANK MINE CREMP

Legal Site Desc: C of C Numbers:

Natasha Markovic-Mirovic Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LIMITED | Part of the ALS Group | A Campbell Brothers Limited Company

	Sample ID	L928158-1	L928158-2	L928158-3	L928158-4	L928158-5
	Description Sampled Date	23-AUG-10	23-AUG-10	23-AUG-10	24-AUG-10	24-AUG-10
	Sampled Time Client ID	WAL-1	WAL-2	WAL-3	PDL-1	PDL-2
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	88.4	88.7	89.2	74.1	75.0
-	pH (pH)	6.84	6.22	6.33	5.90	5.96
Particle Size	% Gravel (>2mm) (%)	<0.10	<0.10	<0.10	<0.10	<0.10
	% Sand (2.0mm - 0.063mm) (%)	2.57	0.27	1.49	11.4	13.0
	% Silt (0.063mm - 4um) (%)	87.4	95.2	81.9	72.8	74.4
	% Clay (<4um) (%)	10.0	4.56	16.6	15.8	12.6
Organic / Inorganic Carbon	Total Organic Carbon (%)	6.04	8.94	10.1	2.65	2.79
Metals	Aluminum (Al) (mg/kg)	22200	22700	23100	20400	21200
	Antimony (Sb) (mg/kg)	<10	<10	10	<10	<10
	Arsenic (As) (mg/kg)	20.6	29.6	60.5	13.0	12.0
	Barium (Ba) (mg/kg)	115	140	121	82.5	92.8
	Beryllium (Be) (mg/kg)	1.66	1.66	1.74	1.02	1.03
	Cadmium (Cd) (mg/kg)	0.66	1.47	1.74	<0.50	<0.50
	Chromium (Cr) (mg/kg)	61.4	62.5	63.8	135	138
	Cobalt (Co) (mg/kg)	9.4	11.5	10.0	10.9	11.5
	Copper (Cu) (mg/kg)	163	163	190	51.4	50.7
	Lead (Pb) (mg/kg)	38	40	40	<30	<30
	Mercury (Hg) (mg/kg)	0.0384	0.0612	0.0672	0.0098	0.0099
	Molybdenum (Mo) (mg/kg)	7.2	7.9	13.1	<4.0	<4.0
	Nickel (Ni) (mg/kg)	57.4	55.6	53.7	81.6	90.9
	Selenium (Se) (mg/kg)	<2.4	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Uranium (U) (mg/kg)	17.3	17.1	19.2	8.62	8.35
	Vanadium (V) (mg/kg)	32.3	30.9	32.2	36.7	36.3
	Zinc (Zn) (mg/kg)	132	158	135	80.9	87.3
Aggregate Organics	Oil and Grease (mg/kg)	1030	1520	2030	<500	<500
Hydrocarbons	EPH10-19 (mg/kg)	<800	<820	DLHM <840	<360 DLHM	OLHM <400
	EPH19-32 (mg/kg)	<800 DLHM	<820	<840	<360	<400
	LEPH (mg/kg)	<800	<820	<840	<360	<400
	HEPH (mg/kg)	<800	<820	<840	<360	<400
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Acenaphthylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-6	L928158-7	L928158-8	L928158-9	L928158-10
	Description Sampled Date	24-AUG-10	25-AUG-10	25-AUG-10	25-AUG-10	27-AUG-10
	Sampled Time Client ID	PDL-3	INUG-1	INUG-2	INUG-3	TE-1
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	68.2	75.5	47.7	82.6	74.7
	рН (рН)	5.95	5.91	6.02	5.90	6.14
Particle Size	% Gravel (>2mm) (%)	<0.10	<0.10	0.88	<0.10	<0.10
	% Sand (2.0mm - 0.063mm) (%)	20.5	13.4	16.4	3.08	26.4
	% Silt (0.063mm - 4um) (%)	70.7	62.8	52.5	79.2	56.5
	% Clay (<4um) (%)	8.78	23.9	30.3	17.8	17.1
Organic /	Total Organic Carbon (%)	2.44	2.66	0.59	4.28	2.49
Inorganic Carbon						
Metals	Aluminum (Al) (mg/kg)	17200	23600	24400	24200	20100
	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	11.5	16.8	12.6	18.6	15.7
	Barium (Ba) (mg/kg)	60.6	99.3	101	120	80.2
	Beryllium (Be) (mg/kg)	0.80	1.53	1.04	1.56	1.78
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	< 0.50
	Chromium (Cr) (mg/kg)	115	115	111	119	51.1
	Cobalt (Co) (mg/kg)	10.7	9.3	14.3	12.1	8.0
	Copper (Cu) (mg/kg)	34.9	48.6	31.3	54.1	49.9
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0112	0.0154	0.0066	0.0261	0.0171
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	4.1	4.2	<4.0
	Nickel (Ni) (mg/kg)	70.3	67.7	75.3	90.9	32.6
	Selenium (Se) (mg/kg)	<2.2	<0.50	<0.50	<2.6	<0.50
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Uranium (U) (mg/kg)	5.83	15.9	11.4	17.1	16.0
	Vanadium (V) (mg/kg)	32.1	38.2	41.5	38.7	32.5
	Zinc (Zn) (mg/kg)	72.7	84.7	80.0	100	86.7
Aggregate Organics	Oil and Grease (mg/kg)	790	<500	<500	<500	<500
Hydrocarbons	EPH10-19 (mg/kg)	OLHM <300	DLHM <400	<200	DLHM <560	DLHM <400
	EPH19-32 (mg/kg)	OLHM <300	OLHM <400	<200	DLHM <560	<400
	LEPH (mg/kg)	<300	<400	<200	<560	<400
	HEPH (mg/kg)	<300	<400	<200	<560	<400
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
,	Acenaphthylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-11	L928158-12	L928158-13	L928158-14	L928158-15
	Description Sampled Date Sampled Time	27-AUG-10	27-AUG-10	27-AUG-10	27-AUG-10	27-AUG-10
	Client ID	TE-2	TE-3	TEFF-1	TEFF-2	TEFF-3
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	76.9	76.6	81.1	78.6	77.0
	pH (pH)	5.51	5.99	5.87	5.79	5.80
Particle Size	% Gravel (>2mm) (%)	<0.10	<0.10	<0.10	<0.10	1.84
	% Sand (2.0mm - 0.063mm) (%)	10.4	7.84	5.80	9.30	6.49
	% Silt (0.063mm - 4um) (%)	67.1	71.9	75.9	71.8	55.4
	% Clay (<4um) (%)	22.6	20.3	18.3	18.9	36.2
Organic /	Total Organic Carbon (%)	2.90	2.60	3.38	2.60	2.79
Inorganic Carbon Metals	Aluminum (AI) (mg/kg)	20500	05500	05500	07700	20400
Motaro	Antimony (Sb) (mg/kg)	20500	25500	25500	27700	29100
	Arsenic (As) (mg/kg)	19	14	<10	<10	<10
	Barium (Ba) (mg/kg)	35.9	21.3	13.1	11.3	13.1
	Beryllium (Be) (mg/kg)	109	126	119	124	136
	Cadmium (Cd) (mg/kg)	1.79	2.08	1.97	2.04	2.15
	Chromium (Cr) (mg/kg)	2.51	2.04	1.47	1.35	1.53
	Cobalt (Co) (mg/kg)	50.7	60.4	58.2	64.6	64.2
		11.4	14.7	13.6	12.7	14.6
	Copper (Cu) (mg/kg)	57.6	65.4	61.2	62.3	62.2
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0239	0.0187	0.0160	0.0124	0.0127
	Molybdenum (Mo) (mg/kg)	13.0	7.0	4.6	4.5	5.0
	Nickel (Ni) (mg/kg)	31.4	48.6	35.4	35.8	35.9
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Uranium (U) (mg/kg)	18.0	16.4	24.3	26.0	25.2
	Vanadium (V) (mg/kg)	30.2	37.2	38.6	41.6	43.0
	Zinc (Zn) (mg/kg)	93.6	109	109	115	117
Aggregate Organics	Oil and Grease (mg/kg)	<500	<500	<500	<500	<500
Hydrocarbons	EPH10-19 (mg/kg)	DLHM <400	DLHM <400	DLHM <460	DLHM <400	DLHM <400
	EPH19-32 (mg/kg)	OLHM <400	OLHM <400	OLHM <460	<400	<400
	LEPH (mg/kg)	<400	<400	<460	<400	<400
	HEPH (mg/kg)	<400	<400	<460	<400	<400
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
-	Acenaphthylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-16	L928158-29	L928158-30	L928158-31	L928158-32
	Description Sampled Date Sampled Time Client ID	23-AUG-10 DUP-2	19-AUG-10 14:00 TRB-2	23-AUG-10 15:36 SP-DT	20-AUG-10 08:58 SP-F1	20-AUG-10 16:50 SP-N1
Grouping	Analyte					
SOIL	,					
Physical Tests	Moisture (%)	88.9				
,	pH (pH)	6.23	8.26	5.83	6.38	6.20
Particle Size	% Gravel (>2mm) (%)	<0.10	<0.10	<0.10	<0.10	0.29
	% Sand (2.0mm - 0.063mm) (%)	2.87	0.68	5.83	7.31	17.3
	% Silt (0.063mm - 4um) (%)	88.7	80.7	67.9	66.1	61.0
	% Clay (<4um) (%)	8.48	18.6	26.3	26.5	21.4
Organic /	Total Organic Carbon (%)	9.34	0.52	4.96	4.10	2.88
Inorganic Carbon		0.01	0.02	1.00	0	2.00
Metals	Aluminum (Al) (mg/kg)	22100	28000	29400	25400	22500
	Antimony (Sb) (mg/kg)	<10	<10	17	<10	<10
	Arsenic (As) (mg/kg)	29.3	11.1	59.2	50.2	10.8
	Barium (Ba) (mg/kg)	136	149	145	98.0	102
	Beryllium (Be) (mg/kg)	1.64	0.61	2.81	2.06	1.59
	Cadmium (Cd) (mg/kg)	1.47	<0.50	2.60	<0.50	<0.50
	Chromium (Cr) (mg/kg)	61.7	156	71.5	80.5	75.2
	Cobalt (Co) (mg/kg)	11.4	21.2	12.2	13.3	9.5
	Copper (Cu) (mg/kg)	158	39.6	134	73.7	59.6
	Lead (Pb) (mg/kg)	41	<30	33	<30	<30
	Mercury (Hg) (mg/kg)	0.0603	<0.0050	0.0392	0.0270	0.0210
	Molybdenum (Mo) (mg/kg)	7.7	<4.0	13.4	9.0	<4.0
	Nickel (Ni) (mg/kg)	54.6	102	54.5	54.9	52.8
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	0.62	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Uranium (U) (mg/kg)	18.1	3.12	26.2	17.6	14.5
	Vanadium (V) (mg/kg)	30.5	54.7	40.4	40.6	37.3
	Zinc (Zn) (mg/kg)	157	86.3	152	113	102
Aggregate Organics	Oil and Grease (mg/kg)	2290				
Hydrocarbons	EPH10-19 (mg/kg)	DLHM <840				
	EPH19-32 (mg/kg)	DLHM <840				
	LEPH (mg/kg)	<840				
	HEPH (mg/kg)	<840				
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.050				
-	Acenaphthylene (mg/kg)	<0.050				
	Anthracene (mg/kg)	<0.050				

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description Sampled Date Sampled Time Client ID	L928158-33 20-AUG-10 11:40 SP-N2	L928158-34 19-AUG-10 16:00 SP-N3	L928158-35 25-AUG-10 14:00 TP-E1	L928158-36 27-AUG-10 16:45 TP-E2	L928158-37 25-AUG-10 15:30 TP-E3
Grouping	Analyte					
SOIL	, ,					
Physical Tests	Moisture (%)					
i ilyolodi 100i0	pH (pH)	6.40	5.78	5.88	5.50	5.86
Particle Size	% Gravel (>2mm) (%)		<0.10	<0.10	<0.10	<0.10
	% Sand (2.0mm - 0.063mm) (%)	<0.10	1.95	2.59		
	% Silt (0.063mm - 4um) (%)	2.98 69.6	70.8	64.1	3.66 63.3	3.34 70.1
	% Clay (<4um) (%)					
Organic /	Total Organic Carbon (%)	27.5	27.2	33.3	33.0	26.5
Inorganic Carbon	• , ,	4.40	4.22	2.86	3.18	3.12
Metals	Aluminum (Al) (mg/kg)	28100	27600	25400	26200	26500
	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	35.5	104	23.2	32.4	24.6
	Barium (Ba) (mg/kg)	123	119	103	104	131
	Beryllium (Be) (mg/kg)	2.20	2.12	1.91	1.88	1.66
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (mg/kg)	95.5	86.8	111	97.9	115
	Cobalt (Co) (mg/kg)	18.0	13.6	17.5	17.2	23.7
	Copper (Cu) (mg/kg)	87.1	97.5	53.7	65.5	84.4
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0274	0.0244	0.0102	0.0149	0.0235
	Molybdenum (Mo) (mg/kg)	7.0	10.3	5.2	7.3	5.7
	Nickel (Ni) (mg/kg)	70.9	67.2	73.0	62.0	142
	Selenium (Se) (mg/kg)	0.73	0.88	0.70	<2.0	0.86
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Uranium (U) (mg/kg)	18.7	22.2	16.7	19.0	15.4
	Vanadium (V) (mg/kg)	44.3	43.1	42.3	42.8	43.4
	Zinc (Zn) (mg/kg)	123	131	106	109	115
Aggregate Organics	Oil and Grease (mg/kg)					
Hydrocarbons	EPH10-19 (mg/kg)					
	EPH19-32 (mg/kg)					
	LEPH (mg/kg)					
	HEPH (mg/kg)					
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)					
•	Acenaphthylene (mg/kg)					
	Anthracene (mg/kg)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description Sampled Date Sampled Time Client ID	L928158-38 24-AUG-10 13:43 HVH-4	L928158-39 19-AUG-10 14:00 TRB-1	L928158-40 23-AUG-10 15:36 TRB-3	L928158-41 20-AUG-10 08:58 TRB-4	L928158-42 20-AUG-10 16:50 SP-F2
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)					
,	pH (pH)	6.00	6.58	6.38	6.01	6.40
Particle Size	% Gravel (>2mm) (%)	1.09	<0.10	<0.10	<0.10	<0.10
	% Sand (2.0mm - 0.063mm) (%)	2.89	8.79	3.06	1.75	2.73
	% Silt (0.063mm - 4um) (%)	48.4	74.9	73.3	69.0	73.5
	% Clay (<4um) (%)	47.6	16.3	23.7	29.2	23.8
Organic /	Total Organic Carbon (%)	2.77	3.72	2.98	3.45	6.70
Inorganic Carbon	1	2.11	3.72	2.90	3.43	0.70
Metals	Aluminum (Al) (mg/kg)	36100	21100	25400	28400	29900
	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	26.6	67.8	33.3	21.1	15.2
	Barium (Ba) (mg/kg)	139	169	96.4	114	163
	Beryllium (Be) (mg/kg)	2.55	1.30	1.69	2.01	2.48
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	0.80
	Chromium (Cr) (mg/kg)	119	130	183	179	91.2
	Cobalt (Co) (mg/kg)	20.1	26.5	20.7	13.8	10.6
	Copper (Cu) (mg/kg)	89.2	63.4	62.2	67.2	130
	Lead (Pb) (mg/kg)	33	<30	<30	<30	<30
	Mercury (Hg) (mg/kg)	0.0133	0.0269	0.0170	0.0138	0.0290
	Molybdenum (Mo) (mg/kg)	7.2	10.8	6.8	5.9	6.2
	Nickel (Ni) (mg/kg)	80.1	136	89.3	85.1	85.6
	Selenium (Se) (mg/kg)	<2.0	0.71	0.95	0.74	<2.0
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Uranium (U) (mg/kg)	27.9	11.9	16.3	18.4	25.9
	Vanadium (V) (mg/kg)	57.7	38.6	45.7	49.1	45.1
	Zinc (Zn) (mg/kg)	141	99.0	107	120	160
Aggregate Organics	Oil and Grease (mg/kg)		00.0			
Hydrocarbons	EPH10-19 (mg/kg)					
	EPH19-32 (mg/kg)					
	LEPH (mg/kg)					
	HEPH (mg/kg)					
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)					
-	Acenaphthylene (mg/kg)					
	Anthracene (mg/kg)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-1	L928158-2	L928158-3	L928158-4	L928158-5
	Description Sampled Date	23-AUG-10	23-AUG-10	23-AUG-10	24-AUG-10	24-AUG-10
	Sampled Time Client ID	WAL-1	WAL-2	WAL-3	PDL-1	PDL-2
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Benz(a)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(a)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(b)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(g,h,i)perylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(k)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chrysene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Dibenz(a,h)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Fluorene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	2-Methylnaphthalene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Naphthalene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phenanthrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: d10-Acenaphthene (SS) (%)	85	92	87	85	83
	Surrogate: d12-Chrysene (SS) (%)	78	80	76	75	80
	Surrogate: d8-Naphthalene (SS) (%)	87	89	85	83	81
	Surrogate: d10-Phenanthrene (SS) (%)	83	89	83	81	80

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-6	L928158-7	L928158-8	L928158-9	L928158-10
	Description Sampled Date	24-AUG-10	25-AUG-10	25-AUG-10	25-AUG-10	27-AUG-10
	Sampled Time Client ID	PDL-3	INUG-1	INUG-2	INUG-3	TE-1
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Benz(a)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(a)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(b)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(g,h,i)perylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(k)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chrysene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Dibenz(a,h)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Fluorene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	2-Methylnaphthalene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Naphthalene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phenanthrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: d10-Acenaphthene (SS) (%)	87	95	88	84	90
	Surrogate: d12-Chrysene (SS) (%)	75	71	72	72	70
	Surrogate: d8-Naphthalene (SS) (%)	83	92	82	76	90
	Surrogate: d10-Phenanthrene (SS) (%)	82	84	81	71	82

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-11	L928158-12	L928158-13	L928158-14	L928158-15
	Description Sampled Date	27-AUG-10	27-AUG-10	27-AUG-10	27-AUG-10	27-AUG-10
	Sampled Time Client ID	TE-2	TE-3	TEFF-1	TEFF-2	TEFF-3
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Benz(a)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(a)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(b)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(g,h,i)perylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(k)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chrysene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Dibenz(a,h)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Fluorene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	2-Methylnaphthalene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Naphthalene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phenanthrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: d10-Acenaphthene (SS) (%)	82	89	94	93	92
	Surrogate: d12-Chrysene (SS) (%)	67	70	85	74	70
	Surrogate: d8-Naphthalene (SS) (%)	79	88	95	87	91
	Surrogate: d10-Phenanthrene (SS) (%)	76	80	90	84	83

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-16	L928158-29	L928158-30	L928158-31	L928158-32
	Description Sampled Date Sampled Time	23-AUG-10 DUP-2	19-AUG-10 14:00 TRB-2	23-AUG-10 15:36 SP-DT	20-AUG-10 08:58 SP-F1	20-AUG-10 16:50 SP-N1
	Client ID	DOF-2	IRD-2	3F-D1	35-51	SF-N1
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Benz(a)anthracene (mg/kg)	<0.050				
	Benzo(a)pyrene (mg/kg)	<0.050				
	Benzo(b)fluoranthene (mg/kg)	<0.050				
	Benzo(g,h,i)perylene (mg/kg)	<0.050				
	Benzo(k)fluoranthene (mg/kg)	<0.050				
	Chrysene (mg/kg)	<0.050				
	Dibenz(a,h)anthracene (mg/kg)	<0.050				
	Fluoranthene (mg/kg)	<0.050				
	Fluorene (mg/kg)	<0.050				
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050				
	2-Methylnaphthalene (mg/kg)	<0.050				
	Naphthalene (mg/kg)	<0.050				
	Phenanthrene (mg/kg)	<0.050				
	Pyrene (mg/kg)	<0.050				
	Surrogate: d10-Acenaphthene (SS) (%)	91				
	Surrogate: d12-Chrysene (SS) (%)	68				
	Surrogate: d8-Naphthalene (SS) (%)	86				
	Surrogate: d10-Phenanthrene (SS) (%)	79				

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description	L928158-33	L928158-34	L928158-35	L928158-36	L928158-37
	Sampled Date Sampled Time Client ID	20-AUG-10 11:40 SP-N2	19-AUG-10 16:00 SP-N3	25-AUG-10 14:00 TP-E1	27-AUG-10 16:45 TP-E2	25-AUG-10 15:30 TP-E3
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Benz(a)anthracene (mg/kg)					
,	Benzo(a)pyrene (mg/kg)					
	Benzo(b)fluoranthene (mg/kg)					
	Benzo(g,h,i)perylene (mg/kg)					
	Benzo(k)fluoranthene (mg/kg)					
	Chrysene (mg/kg)					
	Dibenz(a,h)anthracene (mg/kg)					
	Fluoranthene (mg/kg)					
	Fluorene (mg/kg)					
	Indeno(1,2,3-c,d)pyrene (mg/kg)					
	2-Methylnaphthalene (mg/kg)					
	Naphthalene (mg/kg)					
	Phenanthrene (mg/kg)					
	Pyrene (mg/kg)					
	Surrogate: d10-Acenaphthene (SS) (%)					
	Surrogate: d12-Chrysene (SS) (%)					
	Surrogate: d8-Naphthalene (SS) (%)					
	Surrogate: d10-Phenanthrene (SS) (%)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description Sampled Date	L928158-38 24-AUG-10	L928158-39	L928158-40 23-AUG-10	L928158-41 20-AUG-10	L928158-42 20-AUG-10
	Sampled Date Sampled Time Client ID	13:43 HVH-4	14:00 TRB-1	15:36 TRB-3	08:58 TRB-4	16:50 SP-F2
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Benz(a)anthracene (mg/kg)					
•	Benzo(a)pyrene (mg/kg)					
	Benzo(b)fluoranthene (mg/kg)					
	Benzo(g,h,i)perylene (mg/kg)					
	Benzo(k)fluoranthene (mg/kg)					
	Chrysene (mg/kg)					
	Dibenz(a,h)anthracene (mg/kg)					
	Fluoranthene (mg/kg)					
	Fluorene (mg/kg)					
	Indeno(1,2,3-c,d)pyrene (mg/kg)					
	2-Methylnaphthalene (mg/kg)					
	Naphthalene (mg/kg)					
	Phenanthrene (mg/kg)					
	Pyrene (mg/kg)					
	Surrogate: d10-Acenaphthene (SS) (%)					
	Surrogate: d12-Chrysene (SS) (%)					
	Surrogate: d8-Naphthalene (SS) (%)					
	Surrogate: d10-Phenanthrene (SS) (%)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	De Samp Samp	ample ID L928158-17 scription bled Date 23-AUG-10 bled Time Client ID SWIPE-2		
Grouping	Analyte			
SWAB				
Metals	Aluminum (Al)-Total (ug)	41		
	Antimony (Sb)-Total (ug)	<20		
	Arsenic (As)-Total (ug)	<20		
	Barium (Ba)-Total (ug)	<1.0		
	Beryllium (Be)-Total (ug)	<0.50		
	Bismuth (Bi)-Total (ug)	<20		
	Cadmium (Cd)-Total (ug)	<1.0		
	Calcium (Ca)-Total (ug)	40.7		
	Chromium (Cr)-Total (ug)	<2.0		
	Cobalt (Co)-Total (ug)	<1.0		
	Copper (Cu)-Total (ug)	<1.0		
	Iron (Fe)-Total (ug)	46.1		
	Lead (Pb)-Total (ug)	<5.0		
	Lithium (Li)-Total (ug)	<1.0		
	Magnesium (Mg)-Total (ug)	18		
	Manganese (Mn)-Total (ug)	0.59		
	Molybdenum (Mo)-Total (ug)	<3.0		
	Nickel (Ni)-Total (ug)	<5.0		
	Phosphorus (P)-Total (ug)	<30		
	Potassium (K)-Total (ug)	<200		
	Selenium (Se)-Total (ug)	<20		
	Silver (Ag)-Total (ug)	<1.0		
	Sodium (Na)-Total (ug)	<200		
	Strontium (Sr)-Total (ug)	<0.50		
	Thallium (TI)-Total (ug)	<20		
	Tin (Sn)-Total (ug)	<3.0		
	Titanium (Ti)-Total (ug)	1.5		
	Vanadium (V)-Total (ug)	<3.0		
	Zinc (Zn)-Total (ug)	1.04		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-18	L928158-19	L928158-20	L928158-21	L928158-22
	Description	00 410 40	04 AUG 40	05 410 40	05 AUG 40	05 4110 40
	Sampled Date Sampled Time	23-AUG-10	24-AUG-10	25-AUG-10	25-AUG-10	25-AUG-10
	Client ID	WAL-11-S	PDL-11-S	INUG-17-S	INUG-17-INT	INUG-17-D
Grouping	Analyte					
WATER	•					
Physical Tests	Conductivity (uS/cm)	28.9	20.6	14.6	14.6	14.0
	Hardness (as CaCO3) (mg/L)	12.2	8.20	5.12	5.10	5.15
	pH (pH)	7.44	7.35	6.99	7.01	6.98
	Total Suspended Solids (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Total Dissolved Solids (mg/L)	18	14	10	13	<10
	Turbidity (NTU)	0.46	0.24	0.46	0.39	0.39
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	10.2	6.9	4.4	4.6	4.5
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	10.2	6.9	4.4	4.6	4.5
	Ammonia-N (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (CI) (mg/L)	<0.50	0.51	0.52	0.60	0.59
	Fluoride (F) (mg/L)	0.034	0.030	0.042	0.049	0.049
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	<0.050	<0.050	<0.050	0.128	0.092
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Phosphate as P (mg/L)	0.0028	<0.0020	0.0104	0.0031	0.0029
	Silicate (as SIO2) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Sulfate (SO4) (mg/L)	2.06	1.38	0.63	0.71	0.71
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	2.16	1.90	2.08	2.12	2.09
	Total Organic Carbon (mg/L)	2.16	1.90	2.06	2.01	2.11
Total Metals	Aluminum (Al)-Total (mg/L)	0.0076	0.0058	0.0114	0.0126	0.0107
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Barium (Ba)-Total (mg/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Total (mg/L)	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017
	Calcium (Ca)-Total (mg/L)	3.27	2.12	1.02	1.05	1.02
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Cobalt (Co)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Copper (Cu)-Total (mg/L)	0.0011	<0.0010	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-23	L928158-24	L928158-25	L928158-26	L928158-27
	Description Sampled Date	28-AUG-10	28-AUG-10	28-AUG-10	28-AUG-10	28-AUG-10
	Sampled Time Client ID	TE-29-S	TE-29-INT	TE-29-D	TEFF-11-S	AUG EB-2
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	18.1	15.9	15.0	12.6	<2.0
	Hardness (as CaCO3) (mg/L)	6.56	6.56	6.67	5.36	<0.50
	pH (pH)	7.02	7.00	7.00	6.97	5.53
	Total Suspended Solids (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Total Dissolved Solids (mg/L)	10	11	<10	<10	<10
	Turbidity (NTU)	0.43	0.40	0.36	0.37	0.24
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	5.3	5.3	5.3	4.4	<2.0
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	5.3	5.3	5.3	4.4	<2.0
	Ammonia-N (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	0.0299
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (CI) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.049	0.049	0.048	0.045	<0.020
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.101	0.110	<0.050	<0.050	<0.050
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Phosphate as P (mg/L)	0.0044	<0.0020	<0.0020	<0.0020	<0.0020
	Silicate (as SIO2) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Sulfate (SO4) (mg/L)	1.63	1.62	1.65	1.53	<0.50
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.67	1.66	1.70	1.54	0.85
	Total Organic Carbon (mg/L)	1.68	1.65	1.63	1.60	0.81
Total Metals	Aluminum (Al)-Total (mg/L)	0.0112	0.0127	0.0109	0.0068	<0.0050
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Barium (Ba)-Total (mg/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Total (mg/L)	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017
	Calcium (Ca)-Total (mg/L)	1.60	1.63	1.65	1.30	<0.10
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Cobalt (Co)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Copper (Cu)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	0.0011
	Iron (Fe)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	0.00085

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-28	
	Description Sampled Date	27-AUG-10	
	Sampled Time		
	Client ID	AUG EB-3	
Grouping	Analyte		
WATER			
Physical Tests	Conductivity (uS/cm)	<2.0	
	Hardness (as CaCO3) (mg/L)	-	
	pH (pH)	5.78	
	Total Suspended Solids (mg/L)	<1.0	
	Total Dissolved Solids (mg/L)	<10	
	Turbidity (NTU)	0.21	
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	<2.0	
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	
	Alkalinity, Total (as CaCO3) (mg/L)	<2.0	
	Ammonia-N (mg/L)	0.0214	
	Bromide (Br) (mg/L)	<0.050	
	Chloride (CI) (mg/L)	<0.50	
	Fluoride (F) (mg/L)	<0.020	
	Nitrate (as N) (mg/L)	<0.0050	
	Nitrite (as N) (mg/L)	<0.0010	
	Total Kjeldahl Nitrogen (mg/L)	<0.050	
	Ortho Phosphate as P (mg/L)	<0.0010	
	Total Phosphate as P (mg/L)	<0.0020	
	Silicate (as SIO2) (mg/L)	<1.0	
	Sulfate (SO4) (mg/L)	<0.50	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)		
	Total Organic Carbon (mg/L)	0.70 RRV	
Total Metals	Aluminum (Al)-Total (mg/L)	<0.0050	
	Antimony (Sb)-Total (mg/L)	<0.00050	
	Arsenic (As)-Total (mg/L)	<0.00050	
	Barium (Ba)-Total (mg/L)	<0.020	
	Beryllium (Be)-Total (mg/L)	<0.0010	
	Boron (B)-Total (mg/L)	<0.10	
	Cadmium (Cd)-Total (mg/L)	<0.000017	
	Calcium (Ca)-Total (mg/L)	<0.10	
	Chromium (Cr)-Total (mg/L)	<0.0010	
	Cobalt (Co)-Total (mg/L)	<0.00030	
	Copper (Cu)-Total (mg/L)	0.0019	
	Iron (Fe)-Total (mg/L)	<0.030	
	Lead (Pb)-Total (mg/L)	0.00135	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-18	L928158-19	L928158-20	L928158-21	L928158-22
	Description Sampled Date	23-AUG-10	24-AUG-10	25-AUG-10	25-AUG-10	25-AUG-10
	Sampled Time Client ID	WAL-11-S	PDL-11-S	INUG-17-S	INUG-17-INT	INUG-17-D
	Client ID					
Grouping	Analyte					
WATER						
Total Metals	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/L)	0.97	0.73	0.62	0.63	0.63
	Manganese (Mn)-Total (mg/L)	0.00182	0.00126	0.00204	0.00195	0.00193
	Mercury (Hg)-Total (mg/L)	<0.000010	<0.00010	0.000014	0.000013	0.000012
	Molybdenum (Mo)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Nickel (Ni)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Barium (Ba)-Dissolved (mg/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017
	Calcium (Ca)-Dissolved (mg/L)	3.27	2.09	1.02	1.01	1.02
	Chromium (Cr)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Cobalt (Co)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Dissolved (mg/L)	0.97	0.73	0.63	0.62	0.63
	Manganese (Mn)-Dissolved (mg/L)	0.00035	0.00038	0.00032	0.00035	<0.00030
	Mercury (Hg)-Dissolved (mg/L)	<0.000010	0.000011	<0.000010	0.000017	0.000012
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0012
	Nickel (Ni)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Dissolved (mg/L)					
	(<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-23	L928158-24	L928158-25	L928158-26	L928158-27
	Description Sampled Date	28-AUG-10	28-AUG-10	28-AUG-10	28-AUG-10	28-AUG-10
	Sampled Time Client ID	TE-29-S	TE-29-INT	TE-29-D	TEFF-11-S	AUG EB-2
Grouping	Analyte					
WATER						
Total Metals	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Total (mg/L)	0.60	0.61	0.62	0.53	<0.10
	Manganese (Mn)-Total (mg/L)	0.00159	0.00167	0.00159	0.00147	<0.00030
	Mercury (Hg)-Total (mg/L)	0.000011	<0.00010	<0.000010	<0.000010	<0.000010
	Molybdenum (Mo)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Nickel (Ni)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Barium (Ba)-Dissolved (mg/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017
	Calcium (Ca)-Dissolved (mg/L)	1.63	1.62	1.65	1.28	<0.10
	Chromium (Cr)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Cobalt (Co)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Magnesium (Mg)-Dissolved (mg/L)	0.61	0.61	0.62	0.53	<0.10
	Manganese (Mn)-Dissolved (mg/L)	0.00057	0.00062	0.00060	0.00053	<0.00030
	Mercury (Hg)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Nickel (Ni)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description Sampled Date Sampled Time Client ID	L928158-28 27-AUG-10 AUG EB-3		
Grouping	Analyte			
WATER	·			
Total Metals	Lithium (Li)-Total (mg/L)	<0.0050		
	Magnesium (Mg)-Total (mg/L)	<0.10		
	Manganese (Mn)-Total (mg/L)	<0.00030		
	Mercury (Hg)-Total (mg/L)	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	<0.0010		
	Nickel (Ni)-Total (mg/L)	<0.0010		
	Potassium (K)-Total (mg/L)	<2.0		
	Selenium (Se)-Total (mg/L)	<0.0010		
	Silver (Ag)-Total (mg/L)	<0.000020		
	Sodium (Na)-Total (mg/L)	<2.0		
	Thallium (TI)-Total (mg/L)	<0.00020		
	Tin (Sn)-Total (mg/L)	<0.00050		
	Titanium (Ti)-Total (mg/L)	<0.010		
	Uranium (U)-Total (mg/L)	<0.00020		
	Vanadium (V)-Total (mg/L)	<0.0010		
	Zinc (Zn)-Total (mg/L)	<0.0050		
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)			
	Antimony (Sb)-Dissolved (mg/L)			
	Arsenic (As)-Dissolved (mg/L)			
	Barium (Ba)-Dissolved (mg/L)			
	Beryllium (Be)-Dissolved (mg/L)			
	Boron (B)-Dissolved (mg/L)			
	Cadmium (Cd)-Dissolved (mg/L)			
	Calcium (Ca)-Dissolved (mg/L)			
	Chromium (Cr)-Dissolved (mg/L)			
	Cobalt (Co)-Dissolved (mg/L)			
	Copper (Cu)-Dissolved (mg/L)			
	Iron (Fe)-Dissolved (mg/L)			
	Lead (Pb)-Dissolved (mg/L)			
	Lithium (Li)-Dissolved (mg/L)			
	Magnesium (Mg)-Dissolved (mg/L)			
	Manganese (Mn)-Dissolved (mg/L)			
	Mercury (Hg)-Dissolved (mg/L)			
	Molybdenum (Mo)-Dissolved (mg/L)			
	Nickel (Ni)-Dissolved (mg/L)			
	Potassium (K)-Dissolved (mg/L)			
	Selenium (Se)-Dissolved (mg/L)			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-18	L928158-19	L928158-20	L928158-21	L928158-22
	Description Sampled Date Sampled Time	23-AUG-10	24-AUG-10	25-AUG-10	25-AUG-10	25-AUG-10
	Client ID	WAL-11-S	PDL-11-S	INUG-17-S	INUG-17-INT	INUG-17-D
Grouping	Analyte					
WATER						
Dissolved Metals	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Sodium (Na)-Dissolved (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Vanadium (V)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Plant Pigments	Chlorophyll a (ug)	0.484	0.368	0.285	0.287	0.299

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID	L928158-23	L928158-24	L928158-25	L928158-26	L928158-27
	Description Sampled Date Sampled Time	28-AUG-10	28-AUG-10	28-AUG-10	28-AUG-10	28-AUG-10
	Client ID	TE-29-S	TE-29-INT	TE-29-D	TEFF-11-S	AUG EB-2
Grouping	Analyte					
WATER						
Dissolved Metals	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Sodium (Na)-Dissolved (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Vanadium (V)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Plant Pigments	Chlorophyll a (ug)	0.390	0.192	0.207	0.191	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

	Sample ID Description Sampled Date Sampled Time Client ID	L928158-28 27-AUG-10 AUG EB-3		
Grouping	Analyte			
WATER	•			
Dissolved Metals	Silver (Ag)-Dissolved (mg/L)			
	Sodium (Na)-Dissolved (mg/L)			
	Thallium (TI)-Dissolved (mg/L)			
	Tin (Sn)-Dissolved (mg/L)			
	Titanium (Ti)-Dissolved (mg/L)			
	Uranium (U)-Dissolved (mg/L)			
	Vanadium (V)-Dissolved (mg/L)			
	Zinc (Zn)-Dissolved (mg/L)			
Plant Pigments	Chlorophyll a (ug)			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Qualifiers for Individual Parameters Listed:

Qualifier	Description
RRV	Reported Result Verified By Repeat Analysis
DLM	Detection Limit Adjusted For Sample Matrix Effects
DLHM	Detection Limit Adjusted: Sample has High Moisture Content

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
AL-CSR-ICP-VA	Soil	Al in Soil by ICPOES (CSR SALM)	BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

ALK-SCR-VA Water Alkalinity by colour or titration EPA 310.2 OR APHA 2320

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

OR

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ANIONS-BR-IC-VA Water Bromide by Ion Chromatography APHA 4110 B

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

ANIONS-CL-IC-VA Water Chloride by Ion Chromatography APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

ANIONS-F-IC-VA Water Fluoride by Ion Chromatography APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

ANIONS-NO2-IC-VA Water Nitrite by Ion Chromatography APHA 4110 B

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Specifically, the nitrite detection is by UV absorbance and not conductivity.

ANIONS-NO3-IC-VA Water Nitrate by Ion Chromatography APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Specifically, the nitrate detection is by UV absorance and not conductivity.

ANIONS-SO4-IC-VA Water Sulfate by Ion Chromatography APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

C-DIS-ORG-LOW-CL Water Dissolved Organic Carbon APHA 5310 C-Instrumental

C-TOT-ORG-LECO-SK Soil Organic Carbon by combustion method SSSA (1996) p. 973

Total Organic Carbon (C-TOT-ORG-LECO-SK, C-TOT-ORG-SK)

Total C and inorganic C are determined on separate samples. The total C is determined by combustion and thermal conductivity detection, while inorganic C is determined by weight lass after addition of hydrochloric acid. Organic C is calculated by the difference between these two determinations.

Reference for Total C:

Nelson, D.W. and Sommers, L.E. 1996. Total Carbon, organic carbon and organic matter. P. 961-1010 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

Reference for Inorganic C:

Loeppert, R.H. and Suarez, D.L. 1996. Gravimetric Method for Loss of Carbon Dioxide. P. 455-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

C-TOT-ORG-LOW-CL Water Total Organic Carbon APHA 5310 C-Instrumental

CHLOROA-VA Water Chlorophyll a by Fluorometer EPA 445.0

Chlorophyll and Pheopigments by Fluorometry analysis is carried out using procedures adapted from USEPA Method 445.0. The sample is filtered using either a glass fiber filter or a 0.45 micron Membrane filter. The pigments are extracted from the filter with 90% aqueuos acetone. For chlorophylla analysis the extract is read using a fluorometer. For pheopigments the extract is first acidified then read. This method is not subject to interferences from chlorophyll b.

EC-PCT-VA Water Conductivity (Automated) APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity

electrode.

EPH-TUMB-FID-VA Soil EPH in Solids by Tumbler and GCFID BCMELP CSR

Extractable Hydrocarbons in Sediment/Soil

This analysis is carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Extractable Petroleum Hydrocarbons in Solids by GC/FID, Version 2.1 July 1999". The procedure, based on EPA 3570, uses a rotary extraction technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene or kept in hexane/acetone and analyzed by capillary column gas chromatography with flame ionization detection (GC/FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH).

Accuracy target values for Reference Materials used in this method are derived from averages of long-term method performance, as certified values do not exist for the reported parameters.

HARDNESS-CALC-VA Water Hardness APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-CCME-CVAFS-VA Soil CVAFS Hg in Soil (CCME) BCMELP CSR SALM METHOD 8/EPA 245.7

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 7000 series).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

HG-DIS-LOW-CVAFS-VA Water Dissolved Mercury in Water by CVAFS(Low) EPA SW-846 3005A & EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

HG-TOT-LOW-CVAFS-VA Water Total Mercury in Water by CVAFS(Low) EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

LEPH/HEPH-CALC-VA Soil LEPHs and HEPHs BC MOE LABORATORY MANUAL (2005)

Light and Heavy Extractable Petroleum Hydrocarbons in Solids. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated

by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenz(a,h)anthracene, Indeno(1,2,3-c,d)pyrene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Solids by GC/FID" (Version 2.1, July 20, 1999).

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modifed from EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-CSR-FULL-ICP-VA Soil Metals in Soil by ICPOES (CSR SALM) **BCMELP CSR SALM METHOD 8**

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-DIS-CCME-ICP-VA

Water

Diss. Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-CCME-MS-VA

Water

Diss. Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-CCME-ICP-VA

Water

Total Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-CCME-MS-VA

Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-UG-ICP-VA

Swab

Metals in Swab by ICPOES

NIOSH 7303/EPA 6010B

This analysis is carried out using procedures adapted from Method 7303 in the NIOSH Manual of Analytcial Methods (NMAM). The procedure involves a hot block digestion of the swab material, using a combination of nitric acid and hydrochloric acid. Instrumental analysis of the swab extract is by inductively coupled plasma - optical emission spectrophotometry (EPA 6010B).

MOISTURE-VA

Soil

Moisture content

ASTM METHOD D2974-00

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

N-TOTKJ-LOW-ED

Water

Total Kjeldahl Nitrogen-Low Level

APHA 4500Norg C-Dig.-Auto-Colorimetry

NH4-LOW-ED

Water

Ammonia-N Low Level

APHA 4500 NH3F-Colorimetry

OG-TMB-VA

Soil

Oil & Grease in Soils by Tumbler

NATM1100 V03 CCME PHC F2-F4G

A subsample of the sediment/soil is extracted with 1:1 hexane:acetone using a rotary extraction apparatus. The extract is analyzed gravimetrically. Accuracy target values for Reference Materials used in this method are derived from averages of long-term method performance, as certified values do not exist for the reported parameters.

PAH-SURR-MS-VA

Soil

PAH Surrogates for Soils

EPA METHODS 3570, 3545A & 8270

PAH-TUMB-H/A-MS-VA

Soil

PAH by Tumbler HEX/ACE with GCMS

EPA METHODS 3570 & 8270.

Polycyclic Aromatic Hydrocarbons in Sediment/Soil

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation.

PH-1:2-VA

Soil

CSR pH by 1:2 Water Leach

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PH-MAN-VA

Water

pH by Manual Meter

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

It is recommended that this analysis be conducted in the field.

PH-MAN-VA Water pH by Manual Meter

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH

electrode.

It is recommended that this analysis be conducted in the field.

PH-PCT-VA Water pH by Meter (Automated)

APHA 4500-H "pH Value"

APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

PO4-DO-COL-VA Water Dissolved ortho Phosphate by Colour

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-DO-COL-VA Water Dissolved ortho Phosphate by Colour APHA 4500-P Phosphorous

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA Water Total Phosphate P by Color APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA Water Total Phosphate P by Color APHA 4500-P Phosphorous

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 misron membrane filter followed by persulface digestion of the filtering.

determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PSA-PIPET+GRAVEL-SK Soil Particle size - Sieve and Pipette FORESTRY CANADA (1991) P. 46-48 MOD

Particle size analysis involves the measurement of the proportions of the various primary soil particle sizes (ie. clay < 0.004 mm, silt 0.004-0.063 mm, sand 0.063-2.0 mm and gravel > 2.0 mm). In this method, the gravel and sand portions are determined by sieving, while the clay portion is determined by sedimentation using Stokes Law, which relates the radius of the particles to the velocity of the sedimentation in water. Silt is calculated as 100% - (sand% + clav%)

Pretreatment of the soil with Calgon (sodium hexametaphosphate) is used to ensure the complete dispersion of the primary soil particles. Additional pretreatment may be necessary to remove cementing materials such as CaCO3 and organic matter.

Reference

Y.P. Kalra, and D.G. Maynard, 1991. Methods Manual For Forest Soil and Plant Analysis, Northwest Region. Forestry Canada (modified sand, silt and clay size ranges)

SILICATE-COL-VA Water Silicate by Colourimetric analysis APHA 4500-SIO2 D.

This analysis is carried out using procedures adapted from APHA Method 4500-SiO2 D. "Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method.

TDS-VA Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

*L-CSR-MS-VA Soil ICPMS TI in Soil by CSR SALM BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm

(10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

TSS-LOW-VA Water Total Suspended Solids by Grav. (1 mg/L) APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

TURBIDITY-VA Water Turbidity by Meter APHA 2130 "Turbidity"

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

TURBIDITY-VA Water Turbidity by Meter APHA 2130 Turbidity

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

U-200.2-MS-VA Soil Uranium in Soil by ICPMS EPA 200.2/6020A

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
ED	ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA
CL	ALS LABORATORY GROUP - CALGARY, ALBERTA, CANADA
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA
SK	ALS LABORATORY GROUP - SASKATOON, SASKATCHEWAN, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg milligrams per kilogram based on dry weight of sample.

mg/kg wwt milligrams per kilogram based on wet weight of sample.

mg/kg lwt milligrams per kilogram based on lipid-adjusted weight of sample.

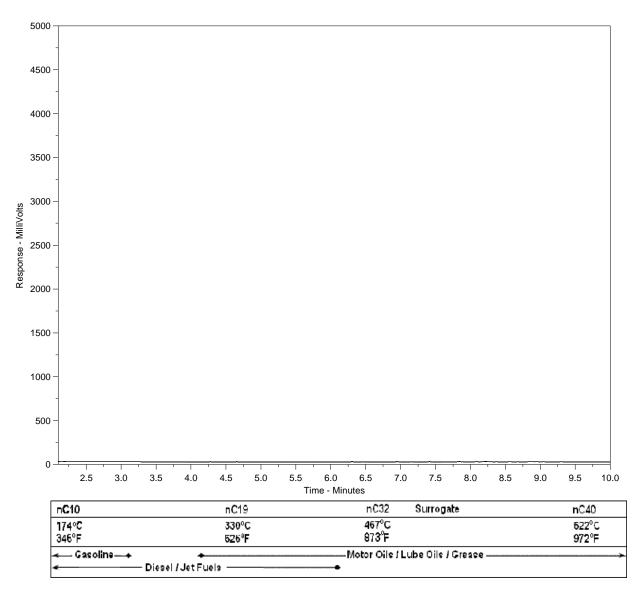
mg/L milligrams per litre.

< - Less than.

D.L. The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A Result not available. Refer to qualifier code and definition for explanation.

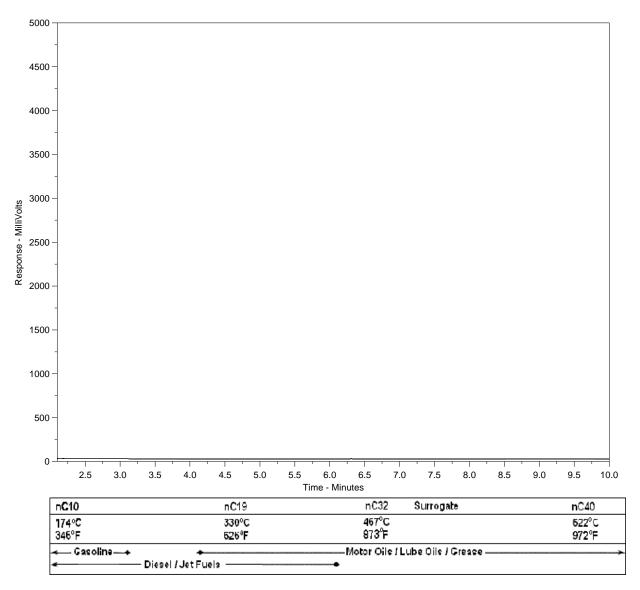
Test results reported relate only to the samples as receiveed by the laboratory.


UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Hydrocarbon Distribution Report

ALS Sample ID: L928158-1 Client ID: WAL-1


Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.

Please note that retention times may vary between samples by as much as 0.5 minutes. Lxxxxxx-L-x denotes low level samples, Lxxxxxx-S-x denotes SG cleaned samples.

Hydrocarbon Distribution Report

ALS Sample ID: L928158-8 Client ID: INUG-2

Chromatograms from the ALS HDR Reference Library indicate the patterns of hydrocarbon compounds found in petroleum products, reference standards, and some examples of natural plant and organic materials. The chromatogram from left to right roughly corresponds to increasing boiling point from approximately 174°C to 522°C, a range encompassing most middle distillate and residual petroleum products (diesel, fuel oils, lubricating oils, etc). Comparison of library chromatograms with those of unknown samples may aid in the identification of contaminants. Surrogate compounds, which are added to samples by the laboratory, are not present in HDR library chromatograms.

Please note that retention times may vary between samples by as much as 0.5 minutes. Lxxxxxx-L-x denotes low level samples, Lxxxxxx-S-x denotes SG cleaned samples.

ALS Laboratory Group
ANATION OF MAINTAINS SERVICES
Environmental Division

ALS)

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

COC#

Page 1 of 6

1

)	10:350m					
		(if no s)	'N (i	dition? Y / N (i	Condition? Y / N provided deta	_	$ \mathcal{V} $	۱۸,	1	03-SCP-10	Date & Time:	KC	Received By:		Relinquished By:
		Samples Received in Good	ved in the	Recei	Sample Condition (lab use on Samples Received in Good	SS	ture	Temperature	Te		Date & Time:		Received By:	puished Magy Mand	Relinquished By:
				٦	Shee	¥or	cent	adja	n the	inditions as specified or	e Terms and Co	and agrees with th	knowledges	By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet.	
								ξ	EGIB	Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.	delay analysis.	s of this form may	e all portion	Failure to complete	
						tails	s De	rdot	Haza	Special Instructions / Hazardous Details				Guidelines / Regulations	
5		F	×	×	Ļ	×	×	×	×	Sediment	8	27-Aug-10		© TE-1	
i v		-	×	×	×	×	×	×	×	Sediment	8	25-Aug-10		MINUG-3	
S			×	×	×	×	×	×	×	Sediment	8	25-Aug-10		NUG-2	
W			×	×	×	×	×	×	×	Sediment	8	25-Aug-10		NUG-1	1
W			×	×	×	×	×	×	×	Sediment	8	24-Aug-10		PDL-3	
W			×	×	×	×	×	×	×	Sediment	8	24-Aug-10		R PDL-2	
3			×	×	×	×	×	×	×	Sediment	8	24-Aug-10		A PDL-1	
4		_	×	×	×	×	×	×	×	Sediment	8	23-Aug-10		3 WAL-3	
W			×	×	×	×	×	×	×	Sediment	8	23-Aug-10		WAL-2	
L			×	×	×	×	×	×	×	Sediment	8	23-Aug-10		WAL-1	
	На		LE	1	PS PA	TC	Н	p⊦	-	(Select from drop-down list)	hh:mm	dd-mmm-yy		(This description will appear on the report)	*
	aza		PH			_	oist		_	Sample Type	Time	Date		Sample Identification	Sam
y Cont per of (rdous?		&HEP	rease			ıre		als (inc	MLM, MF	Sampler N	Natasha MM	ALS Contact:	(lab use only) 12928158	
	,		Н	_		_		_	cl. A			Q24230	Quote #:	ne: Fax:	Phone
							_		AI, P			Legal Site Description:	Legal Site	nple	Sample
	-					_		_	h) (PO/AFE:	ress:	Address
							_		CC	CREMP	Meadowbank Mine CREMP	7	Job #:	itact:	Contact:
						_			ME)			Client / Project Information:	Client / P	Company:	Comp
				T	\vdash	\vdash	-	-	L	Indicate Bottles: Filtered / Preserved (F/P) →→	Indicate Bottles: F			Invoice To: 🔽 Same as Report	Invoic
		st	eque	Sis R	Analysis Request									ne: 604-730-1220 Fax:	Phone:
‡ ALS	Contac	Emergency Service (<1 Day / Wkend) - Contact ALS	y/W	1 Da	ice (<	Serv	ency	merg	Ē	-	oup.ca	gmann@azimuthgroup.ca	Email 2:		
			SAP)	or A	1 Day	<u>ğ</u>	Priority Service (1 Day or ASAP)	iority	P	-	thgroup.ca	mmcconnell@azimuthgroup.ca	Email 1:	Iress: 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8	Address:
				ys)	3 Day	ъ (2-	Rush Service (2-3 Days)	sh t	R		Fax	▼ Excel	₹ PDF	ntact: Maggie McConnell	Contact:
				를	(Defa	Vice Ce	Regular Service (Default)	egula	य R	725		ard Cother	√ Standard	Company: Azimuth Consulting Group Inc.	Comp
						ted:	ques	R	Service Requested:	6		Report Format / Distribution	Report Fo	Report to:	Repo
							۱	I							

10.35am

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

coc#

Page |2 of 6

Report to: Company: Contact: Address: Phone:	Azimuth Maggie 218 - 29	Report Forma Standard P Standard P PDF Email 1: mrr Email 2: gma	Report Format / Distribution Standard 「Other F Standard 「Other F PDF F Excel 「Fax Email 1: mmcconnell@azimuthgroup.ca Email 2: gmann@azimuthgroup.ca	Sp S	: Fillared / Preserved (mı		∯	∯	∯	∯	∯	∯	∯	∯	∯	∯	∯	∯	Service Requested: Regular Service Rush Service (2) Priority Service Service
Company:	:	Client / Proje	Client / Project Information:	Indicate B	A Stee	served (F	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→	served (F/P) →→
Address:		PO/AFE:		NIEGOOWD	a N	Neadowbalk Mille CACMIT														h) (CC
Sample		Legal Site Description:	scription:				I. P	J, P	I, P	I, P	I, P	I, P	J, P	J, P	J, P	I, P	J, P	J, P	J, P	
Phone:	Fax:	Quote #: Q24	Q24230				ci. A	ci. A	d. A	cl. A	cl. A	bl. A	d. A	cl. A					H	H
	ab Work Order # (lab use only)	ALS Nat	Natasha MM	_ Sa	Sampler (Initials):	impler MLM, MF	MLM, MF		MLM, MF	MLM, MF	MLM, MF	MLM, MF	MLM, MF	MLM, MF	MLM, MF	MLM, MF	MLM, MF	MLM, MF	MLM, MF	MLM, MF
Sample	Sample Identification		Date		Time	_	Sample Type	Sample Type	Sample Type	Sample Type	Sample Type Meta	Sample Type Meta Distu								
1	(This description will appear on the report)		dd-mmm-yy	<u></u>	hh:mm	(Select from drop-do	(Select from drop-down list)	(Select from drop-down list)	(Select from drop-down list) エ エ	(Select from drop-down list)	(Select from drop-down list)	(Select from drop-down list)	(Select from drop-down list)	(Select from drop-down list)	(Select from drop-down list)	(Select from drop-down list)	(Select from drop-down list)	(Select from drop-down list)	(Select from drop-down list)	(Select from drop-down list)
	TE-2		27-Aug-10			Sediment		×	x	x x x	× × × ×	x x x	× × × ×	x x x x x	x	\times \times \times \times \times	x	x	x	x
Ç	TE-3		27-Aug-10			Sediment		×	×	x x x	× × × ×	x x x	× × × ×	X X X X X	x	x x x x x x x	x	x	x	x
	TEFF-1		27-Aug-10			Sediment		×	×	×	× × ×	×	× × ×	× × × ×	× × × × × × ×	× × × × ×	× × × × × × ×	× × × × × × ×	× × × × × × ×	× × × × × × ×
Ä,	TEFF-2		27-Aug-10			Sediment		×	×	×××	× × × ×	×××	× × × ×	x x x x x	x	x x x x x x x	x	x	x	x
5	TEFF-3		27-Aug-10			Sediment		×	×	×××	× × × ×	×××	× × × ×	x x x x x x	x x x x x x x x	x x x x x x x	x x x x x x x x	x x x x x x x x	x x x x x x x x	x x x x x x x x
1	DUP-2		23-Aug-10			Sediment		×	×	×××	×	×××	× × × ×	× × × × ×	× × × × × × ×	× × × × ×	× × × × × × ×	× × × × × × ×	× × × × × × ×	× × × × × × ×
+	Swipe-2		23-Aug-10			Other	Other													
		-																		
	Guidelines / Regulations					Special Instru						Special Instructions / Hazardous Details								
		"Sw	"Swipe-2" is a filter.	٠. ا																
	Failure to complete	all portions of	this form may	å	lay analysis	lay analysis. Please fill in thi	day analysis. Please fill in this form LE	day analysis. Please fill in this form LEGIBL	Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.	lay analysis. Please fill in this form LEGIBLY.
	By the use of this form the user acknowledges and agrees with the Terms and Conditions as spe	nowledges and	d agrees with ti	he T	erms and (erms and Conditions as spe	erms and Conditions as specified on t	erms and Conditions as specified on the a	erms and Conditions as specified on the adjac	erms and Conditions as specified on the adjacent	cified on the adjacent w									
Relinquished By:	MacCi. Mbn.el Date & Time: 29-Aug-10	Received By:		Date	Date & Time:	& Time:	e & Time:			3 & Time: Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature		Temperature	Temperature	Temperature
Relinquished	Date & Time:	Received •	7	Date	Date & Time:	30kg 10	200	30kg 10	30kg 10	30kg 10	3don 10:35 15:2									
Ву:		Ву:	1	7	7	1	1	1	1	1	1	700 10 1	700 10 1	7000 10 1	7000 10 1	1	7000 10 1	7000 10 1	700 10 1	7000 10 1

Phone:

Address:

Contact:

\ddress:

Phone: Sample

> Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC #

Page

|ယ ဋ

ြ

Relinquished Company: Invoice To: Contact: Company: Report to: WAL-11-S Lab Work Order# Maggie McConnell TE-29-S TE-29-INT INUG-17-D PDL-11-S 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 Maggie McConnell Azimuth Consulting Group Inc. TEFF-11-S TE-29-D INUG-17-INT INUG-17-S 604-730-1220 Same as Report (This description will appear on the report) Guidelines / Regulations By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Date & Time Date & Time: Fax Fax Sample Identification 29-Aug-10 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. ₹ PDF ALS Report Format / Distribution Received Quote #: Q24230 Job#: Client / Project Information: Email 2: gmann@azimuthgroup.ca Email 1: mmcconnell@azimuthgroup.ca Standard Legal Site Description: PO/AFE: Natasha MM **▼** Excel dd-mmm-yy 25-Aug-10 25-Aug-10 24-Aug-10 23-Aug-10 28-Aug-10 28-Aug-10 28-Aug-10 28-Aug-10 25-Aug-10 Date Other Fax Meadowbank Mine CREMP (Initials): Sample hh:mm Date & Time: Indicate Bottles: Filtered / Preserved (F/P) →-Time Water Water Water Water Water Water Water Water Water MLM, MF 08/09 (Select from drop-down list) Special Instructions / Hazardous Details Sample Type 10.35 र Service Requested: × × × T-Metals (incl. Ph) (CCME) Regular Service (Default) F/P Emergency Service (<1 Day / Wkend) - Contact ALS Priority Service (1 Day or ASAP) Rush Service (2-3 Days) × × × × Temperature × × × × D-Metals (incl. Ph) (CCME) × × × × × × TOC, DOC (F) × TKN, Ammonia × Samples Received in Good Condition? Y / N (if no TDS, TSS-low Analysis Request × × × Alk (SPECIATED) Anion Scan, Si, pH, EC × × × T-PO4, ortho-PO4 × × × Chlorophyll-a × × × Turbididty Hazardous? Highly Contaminated? 4 Number of Containers 44

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

Page

4 of

6

Contact: Maggie McConnell Company: Company: Azimuth Consulting Group Inc. Invoice To: Address: Report to: elinquished Lab Work Order Maggie McConnell Aug EB-3 Aug EB-2 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 604-730-1220 Same as Report (This description will appear on the report) Guidelines / Regulations By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet Date & Time: Fax Date & Time: Fax Sample Identification 29-Aug-10 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. Received ALS ₹ PDF Quote #: Q24230 PO/AFE: Report Format / Distribution Job#: Email 1: mmcconnell@azimuthgroup.ca Legal Site Description: Client / Project Information: Email 2: gmann@azimuthgroup.ca Standard Natasha MM "Aug EB-2" and "Aug EB-3" should be analysed for TSS but not TSS-low **▼** Excel dd-mmm-yy 28-Aug-10 27-Aug-10 Other Fax Meadowbank Mine CREMP hh:mm Sampler (Initials): Date & Time: Time indicate Bottles: Filtered / Preserved (F/P) →---Water Water MLM, MF (Select from drop-down list) Special Instructions / Hazardous Details Sample Type v Service Requested: × T-Metals (incl. Ph) (CCME) Regular Service (Default) Priority Service (1 Day or ASAP) Emergency Service (<1 Day / Wkend) - Contact ALS Rush Service (2-3 Days) なら D-Metals (incl. Ph) (CCME) × × TOC, DOC (F) Ъ × TKN, Ammonia Sample Condition (lab use only) Samples Received in Good Condition? Y / N (if no × × TDS, TSS-low Analysis Request × Alk (SPECIATED) × Anion Scan, Si, pH, EC × T-PO4, ortho-PO4 × × Chlorophyll-a × × Turbididty Hazardous? Highly Contaminated? Number of Containers

Phone:

Sample

Address: Contact: Phone:

COC #

Page 10 to 1

3

www.alsglobal.com

Phone: Company: Azimuth Consulting Group Inc. Relinquished Sample Contact: Company: Invoice To: Phone: Address: Contact: Report to: Address: 20 TRB-2 SHAH OF SP-DT SP-N1 Lab Work Order # SP-N3 (lab use only) TP-E1 SP-N2 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 TP-E2 SP-F1 604-730-1220 Maggie McConnell TP-E3 DSSICV. Same as Report (This description will appear on the report) Guidelines / Regulations By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet Fax Fax: Date & Time: Date & Time: Sample Identification August 29.2010 Received Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. ALS Quote #: Q24230 Job # Email 1: mmcconnell@azimuthgroup.ca Report Format / Distribution PO/AFE: Client / Project Information: Email 2: ✓ Standard Contact: _egal Site Description: PDF gmann@azimuthgroup.ca Natasha MM **▼** Excel dd-mmm-yy 20/08/10 Date 25/08/10 27/08/10 25/08/10 20/08/10 23/08/10 24/08/10 20/08/10 19/08/10 Other 19/08/10 Fax Meadowbank Min EAS Sample hh:mm (Initials): 16:00 Date & Time: 11:40 16:50 15:36 Indicate Bottles: Filtered / Preserved (F/P) → 13:43 15:30 16:45 14:00 8:58 14:00 Time Z Sediment (Select from drop-down list) Special Instructions / Hazardous Details Sample Type Ø35 Regular Service (Default) Service Requested: × × × × × T-Metals (incl. Al, Ph) (CCME × × Emergency Service (<1 Day / Wkend) - Contact ALS Priority Service (1 Day or ASAP) Rush Service (2-3 Days) × × × [emperature × × × × × рΗ × × × × × × × × × Moisture × × × × × × × TOC Sample Condition (lab use only) × × Samples Received in Good Condition? Y / N (if no × × PSA Analysis Request Hazardous? Highly Contaminated? $\mathcal{A}|\mathcal{A}|$ Number of Containers

COC #

Page (2 to 10 to 18 d)

Phone: Phone: Relinquished Sample Address: Contact: Invoice To: Contact: Company: Agnico-Eagle Mines Ltd Report to: Company: Address: Sample **≫** ∏RB-1 Lab Work Order # (lab use only) Ryan VanEngen TRB-3 SP-F2 TRB-4 Meadowbank Camp Baker Lake Nunavut 8677934100 x6759 Fax: Jeddica Fond Same as Report (This description will appear on the report) **Guidelines / Regulations** By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet Date & Time: Date & Time: Fax: Sample Identification 29-Aug-10 Fallure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. Received ALS Job #: ₹ PDF Contact: Client / Project Information: Email 2: mmcconnell@azimuthgroup.ca Email 1: rvanengen@agnico-eagle.com Report Format / Distribution Quote #: Q24230 PO/AFE: Standard Legal Site Description: Natasha MM Excel dd-mmm-yy Date 20/08/10 20/08/10 23/08/10 19/08/10 Other Fax Meadowbank Mine Sampler (Initials): hh:mm Indicate Bottles: Filtered / Preserved (F/P) → Date & Time: 14:00 16:50 15:36 8:58 Time Sediment Sediment Sediment Sediment (Select from drop-down list) EAS Special Instructions / Hazardous Details Sample Type 10:35 × Service Requested: × × T-Metals (incl. Al, Ph) (CCME Regular Service (Default) Rush Service (2-3 Days) × × Emergency Service (<1 Day / Wkend) - Contact ALS Priority Service (1 Day or ASAP) × рΗ × × × Moisture × × × TOC Samples Received in Good Condition? Y / N (if no × PSA Analysis Request Hazardous? Highly Contaminated? ખ્રભ **Number of Containers**

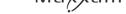
APPENDIX D

SEQUENTIAL EXTRACTION LABORATORY DATA – MAXXAM ANALYTICS

Maxxam Analytics 4606 Canada Way, Burnaby, BC Canada V5G 1K5 Tel: 604 734 7276 Fax: 604 731 2386 www.maxxam.ca

Table 1: Results for Harmonized Procedure of BCR Sequential Extraction Protocol

for 4 Meadowbank Samples - Nov 2010


					STEP 1	I		1
		SP-TRP-2	SP-TRP-2 DUP	SP-N1	INUG	TEFF	BCR-701	Method Blank
Dissolved Metals by ICPMS	Units	Step 1	Step 1	Step 1	Step 1	Step 1	Step 1	Step 1
Dissolved Hardness (CaCO3)	mg/kg	15000	15240	2988	2202	3024	21480	<30
Dissolved Aluminum (Al)	mg/kg	161.4	149.4	201	478.2	475.2	191.4	0.72
Dissolved Antimony (Sb)	mg/kg	<0.006	<0.006	< 0.006	<0.006	< 0.006	0.102	<0.006
Dissolved Arsenic (As)	mg/kg	0.516	0.516	0.672	1.026	0.45	2.208	<0.006
Dissolved Barium (Ba)	mg/kg	39.54	35.82	32.82	28.26	23.88	22.32	0.054
Dissolved Beryllium (Be)	mg/kg	0.0876	0.0876	0.26400	0.2898	0.4542	0.1164	< 0.003
Dissolved Bismuth (Bi)	mg/kg	0.0048	0.0042	0.0024	0.003	0.0018	0.00600	<0.0018
Dissolved Boron (B)	mg/kg	<18	<18	<18	<18	<18	<18	<18
Dissolved Cadmium (Cd)	mg/kg	0.0402	0.0408	0.1062	0.0528	0.0792	7.68	0.00600
Dissolved Cesium (Cs)	mg/kg	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Dissolved Chromium (Cr)	mg/kg	0.588	0.5400	0.228	0.876	0.354	2.616	< 0.03
Dissolved Cobalt (Co)	mg/kg	1.218	1.194	0.2634	0.654	2.982	2.166	0.0144
Dissolved Copper (Cu)	mg/kg	7.5	7.32	8.58	8.46	8.64	50.7	0.552
Dissolved Iron (Fe)	mg/kg	1116	1128	163.2	258.6	217.8	89.4	0.54
Dissolved Lanthanum (La)	mg/kg	1.806	1.788	8.22	8.16	19.44	0.21	<0.018
Dissolved Lead (Pb)	mg/kg	0.642	0.624	1.158	0.57600	0.5442	3.054	1.074
Dissolved Lithium (Li)	mg/kg	0.3	0.36	0.48	0.3	0.36	<0.18	<0.18
Dissolved Manganese (Mn)	mg/kg	188.4	189	36.72	108.6	876	193.2	0.144
Dissolved Molybdenum (Mo)	mg/kg	<0.018	<0.018	<0.018	<0.018	<0.018	0.018	<0.018
Dissolved Nickel (Ni)	mg/kg	2.412	2.328	3.498	5.61	6.12	15.66	0.042
Dissolved Phosphorus (P)	mg/kg	3	3	22.2	2.4	<0.6	406.8	<0.6
Dissolved Rubidium (Rb)	mg/kg	0.852	0.864	0.462	0.516	0.768	0.318	<0.018
Dissolved Selenium (Se)	mg/kg	<0.012	<0.012	0.012	0.012	0.036	0.03	<0.012
Dissolved Silicon (Si)	mg/kg	264	240.0	180.0	192	306	342	<30
Dissolved Silver (Ag)	mg/kg	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	0.0228	<0.0018
Dissolved Strontium (Sr)	mg/kg	25.26	25.62	5.43	4.7400	6.36	45.24	<0.018
Dissolved Tellurium (Te)	mg/kg	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
Dissolved Thallium (TI)	mg/kg	0.0042	0.0042	0.0036	0.0024	0.0054	0.015	0.0018
Dissolved Thorium (Th)	mg/kg	0.0108 (1)	0.009	0.00600	0.0066	0.0024	0.0114	<0.0018
Dissolved Tin (Sn)	mg/kg	<0.003	< 0.003	<0.003	0.0036	<0.003	0.0168	< 0.003
Dissolved Titanium (Ti)	mg/kg	1.74	1.14	0.42	0.36	<0.18	0.78	<0.18
Dissolved Tungsten (W)	mg/kg	<0.003	< 0.003	<0.003	<0.003	<0.003	0.0072	<0.003
Dissolved Uranium (U)	mg/kg	0.375	0.381	0.4698	0.8400	1.452	0.0714	0.0024
Dissolved Vanadium (V)	mg/kg	0.3	0.24	1.56	<0.06	<0.06	0.54	<0.06
Dissolved Zinc (Zn)	mg/kg	2.334	2.208	4.974	6.72	7.68	206.4	0.51
Dissolved Zirconium (Zr)	mg/kg	0.102	0.09	<0.03	<0.03	<0.03	<0.03	<0.03
Dissolved Calcium (Ca)	mg/kg	5442	5556	972	618	906	7200	<18
Dissolved Magnesium (Mg)	mg/kg	348	330	132	162	186	840.0	<18
Dissolved Potassium (K)	mg/kg	222	216	108	126	126	120.0	<18
Dissolved Sodium (Na)	mg/kg	24	18	30	30	36	54	<18
Dissolved Sulphur (S)	mg/kg	<3000	<3000	<3000	<3000	<3000	<3000	<3000
Diccorred Sulpridi (S)	myrky	~ 0000	~5000	~0000	~0000	_ <u> </u>	~5000	~3000
Maxxam ID		Y34587	Y34591	Y34588	Y34589	Y34590	Y34592	Y34593
Sampling Date		11/10/2010	11/10/2010	11/10/2010	11/10/2010	11/10/2010	11/10/2010	11/10/2010
COC Number	1	8324434	8324434	8324434	8324434	8324434	8324434	8324434

Maxxam ID	Y34587	Y34591	Y34588	Y34589	Y34590	Y34592	Y34593
Sampling Date	11/10/2010	11/10/2010	11/10/2010	11/10/2010	11/10/2010	11/10/2010	11/10/2010
COC Number	8324434	8324434	8324434	8324434	8324434	8324434	8324434

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

(1) Duplicate RPD for Th exceeds acceptance criteria. 10% of analytes failure in multielement scan is allowed.

Maxxam Analytics 4606 Canada Way, Burnaby, BC Canada V5G 1K5 Tel: 604 734 7276 Fax: 604 731 2386 www.maxxam.ca

Table 1: Results for Harmonized Procedure of BCR Sequential Extraction Protocol for 4 Meadowbank Samples - Nov 2010

					STEP 2			
		SP-TRB-2	SP-TRB-2 DUP	SP-N1	INUG	TEFF	BCR 701	Method
Dissolved Metals by ICPMS	Units	Step 2	Step 2	Step 2	Step 2	Step 2	Step 2	Step
Dissolved Hardness (CaCO3)	mg/kg	5238	4986	1152	702	930	6480	<3
Dissolved Aluminum (AI)	mg/kg	1080.0	1164	1272	1644	1848	3012	0.9
Dissolved Antimony (Sb)	mg/kg	< 0.012	0.012	0.012	<0.012	0.018	0.186	<0.0
Dissolved Arsenic (As)	mg/kg	1.842	1.884	1.326	2.106	1.452	18.96	<0.0
Dissolved Barium (Ba)	mg/kg	17.52	18.24	21.12	18.600	19.800	103.2	0.0
Dissolved Beryllium (Be)	mg/kg	0.102	0.108	0.192	0.264	0.366	0.498	<0.0
Dissolved Bismuth (Bi)	mg/kg	0.2838	0.31200	0.2802	0.2736	0.3126	0.597	<0.0
Dissolved Boron (B)	mg/kg	<30	<30	<30	<30	<30	<30	<3
Dissolved Cadmium (Cd)	mg/kg	0.01200	0.0138	0.111	0.0294	0.0504	3.744	<0.0
Dissolved Cesium (Cs)	mg/kg	0.15	0.144	0.15	0.096	0.21	0.174	<0.0
Dissolved Chromium (Cr)	mg/kg	2.94	2.94	1.02	3.42	1.74	40.62	0.1
Dissolved Cobalt (Co)	mg/kg	1.038	1.074	0.2394	0.3942	1.176	2.724	0.01
Dissolved Copper (Cu)	mg/kg	7.92	8.16	19.5	15.54	17.52	119.4	0.2
Dissolved Iron (Fe)	mg/kg	1914	1782	630	2670	4098	6360	1.3
Dissolved Lanthanum (La)	mg/kg	21.9	22.62	52.02	54.12	76.8	5.658	<0.0
Dissolved Lead (Pb)	mg/kg	5.682	6.06	9.48	8.400	12.96	117	0.01
Dissolved Lithium (Li)	mg/kg	1.02	1.14	0.36	<0.3	0.3	0.66	<0.
Dissolved Manganese (Mn)	mg/kg	36.36	37.44	9.12	16.38	151.2	129	0.0
Dissolved Molybdenum (Mo)	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.096	<0.0
Dissolved Nickel (Ni)	mg/kg	2.988	2.898	1.854	2.586	2.052	22.62	0.06
Dissolved Phosphorus (P)	mg/kg	500.4	507	103.2	143.4	6.6	1488	<1.
Dissolved Rubidium (Rb)	mg/kg	1.212	1.2600	1.3800	1.302	2.466	1.056	<0.0
Dissolved Selenium (Se)	mg/kg	<0.024	<0.024	0.066	0.066	0.1200	0.072	<0.0
Dissolved Silicon (Si)	mg/kg	720	660	300	360	420	1620	<6
Dissolved Silver (Ag)	mg/kg	0.03600	0.0366	0.0546	0.0378	0.0138	3.87	<0.0
Dissolved Strontium (Sr)	mg/kg	7.02	7.5	1.53	1.236	1.722	13.44	0.0
Dissolved Tellurium (Te)	mg/kg	<0.012	<0.012	<0.012	<0.012	< 0.012	<0.012	<0.0
Dissolved Thallium (TI)	mg/kg	0.0144	0.015	0.0162	0.0096	0.0288	0.0876	<0.00
Dissolved Thorium (Th)	mg/kg	0.0258	0.0222	0.021	0.0132	0.0102	0.0228	<0.0
Dissolved Tin (Sn)	mg/kg	0.006	<0.006	<0.006	<0.006	<0.006	0.294	0.0
Dissolved Titanium (Ti)	mg/kg	11.400	11.16	4.14	3.54	5.76	6.96	<0.
Dissolved Tungsten (W)	mg/kg	0.006	0.012	0.012	0.012	0.018	0.084	<0.0
Dissolved Uranium (U)	mg/kg	1.29	1.3800	2.484	3.156	5.172	0.756	<0.00
Dissolved Vanadium (V)	mg/kg	2.58	2.76	3.78	5.46	3.72	10.800	<0.
Dissolved Zinc (Zn)	mg/kg	7.98	7.68	11.04	8.400	8.76	103.8	2.8
Dissolved Zirconium (Zr)	mg/kg	0.24	0.24	0.12	0.24	0.12	0.12	<0.0
Dissolved Calcium (Ca)	mg/kg	1344	1242	300.0	174	216	1848	<3
Dissolved Magnesium (Mg)	mg/kg	456	462	96	66	96	450	<3
Dissolved Potassium (K)	mg/kg	84	90	72	78	90	90	<3
Dissolved Sodium (Na)	mg/kg	<30	<30	<30	<30	<30	<30	<3
Dissolved Sulphur (S)	mg/kg	<6000	<6000	<6000	<6000	<6000	<6000	<60
Marriago ID		V07000	V27270	V07007	V27200	V27200	V07074	V07/
Maxxam ID		Y37366	Y37370	Y37367	Y37368	Y37369	Y37371	Y373
Sampling Date	1	11/11/2010	11/11/2010	11/11/2010	11/11/2010	11/11/2010	11/11/2010	11/11/

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

(1) Duplicate RPD for Th exceeds acceptance criteria. 10% of analytes failure in multielement scan is allowed.

BCR 701

Method Blank

Table 1: Results for Harmonized Procedure of BCR Sequential Extraction Protocol for 4 Meadowbank Samples - Nov 2010

SP-N1

SP-TRB-2

SP-TRB-2 DUP

Maxxam Analytics 4606 Canada Way, Burnaby, BC Canada V5G 1K5 Tel: 604 734 7276 Fax: 604 731 2386 www.maxxam.ca

STEP 3

INUG

TEFF

Dissolved Metals by ICPMS Units Dissolved Hardness (CaCO3) mg/kg Dissolved Aluminum (AI) mg/kg Dissolved Antimony (Sb) mg/kg mg/kg Dissolved Arsenic (As) Dissolved Barium (Ba) mg/kg Dissolved Beryllium (Be) mg/kg Dissolved Bismuth (Bi) mg/kg Dissolved Boron (B) mg/kg Dissolved Cadmium (Cd) mg/kg Dissolved Cesium (Cs) mg/kg mg/kg Dissolved Chromium (Cr) Dissolved Cobalt (Co) mg/kg Dissolved Copper (Cu) mg/kg Dissolved Iron (Fe) mg/kg Dissolved Lanthanum (La) mg/kg Dissolved Lead (Pb) mg/kg Dissolved Lithium (Li) mg/kg Dissolved Manganese (Mn) mg/kg Dissolved Molybdenum (Mo) mg/kg Dissolved Nickel (Ni) mg/kg Dissolved Phosphorus (P) mg/kg Dissolved Rubidium (Rb) mg/kg Dissolved Selenium (Se) mg/kg Dissolved Silicon (Si) mg/kg Dissolved Silver (Ag) mg/kg mg/kg Dissolved Strontium (Sr) Dissolved Tellurium (Te) mg/kg Dissolved Thallium (TI) mg/kg Dissolved Thorium (Th) mg/kg Dissolved Tin (Sn) mg/kg Dissolved Titanium (Ti) mg/kg Dissolved Tungsten (W) mg/kg Dissolved Uranium (U) mg/kg mg/kg Dissolved Vanadium (V) Dissolved Zinc (Zn) mg/kg Dissolved Zirconium (Zr) mg/kg Dissolved Calcium (Ca) mg/kg Dissolved Magnesium (Mg) mg/kg Dissolved Potassium (K) mg/kg Dissolved Sodium (Na) mg/kg Dissolved Sulphur (S) mg/kg

OF-IKD-Z	SF-IKB-Z DUF	3F-N1	INUG	IEFF	BCK /UI	Welliou Blank
Step 3	Step 3	Step 3	Step 3	Step 3	Step 3	Step 3
2646.9	2718.3	1795.2	2126.7	2269.5	2657.1	<25.5
354.96	340.17	1591.2	1810.5	2432.7	1009.8	1.173
< 0.0102	<0.0102	< 0.0102	<0.0102	< 0.0102	0.0459	<0.0102
0.2652	0.2805	0.6477	0.3417	0.4641	3.1416	0.0153
8.415	8.466	12.393	13.209	13.719	20.145	2.8713
0.0408	0.0408	0.2448	0.2091	0.4182	0.1224	<0.0051
0.02346	0.02244	0.23562	0.07854	0.15351	0.32691	< 0.00255
<25.5	<25.5	<25.5	<25.5	<25.5	<25.5	<25.5
0.00918	0.00816	0.04794	0.01071	0.02703	0.33048	< 0.00255
0.0459	0.0408	0.2550	0.1428	0.4029	0.0816	<0.0255
3.672	3.825	9.129	17.340	9.078	138.21	0.357
0.8670	0.8976	0.7548	0.8670	1.2444	1.5402	0.00408
2.0400	38.913	9.333	4.8552	9.792	48.246	0.3060
423.81	400.86	744.6	1101.6	2198.1	1382.1	5.10
5.967	5.661	10.149	8.517	16.575	1.2138	< 0.0255
0.6681	0.6681	2.0706	1.4943	3.0753	8.874	0.05151
1.836	1.785	4.590	3.009	6.069	1.632	<0.255
17.442	18.003	16.320	20.961	91.29	24.480	0.3213
0.7854	0.8109	1.2291	1.3821	0.0561	0.7293	<0.0255
3.3303	3.1926	10.404	9.894	5.661	15.045	0.1020
35.19	34.17	199.92	109.65	37.74	244.80	3.57
0.9945	0.9384	2.0196	1.6830	2.9937	1.2546	<0.0255
0.0459	0.0459	0.3978	0.4335	0.4233	0.6324	<0.0204
408	357	816	816	1122	714	<51
0.03366	0.03927	0.11832	0.09384	0.08619	1.2648	0.02907
1.4994	1.5147	1.3260	1.3515	1.7136	2.3817	0.4896
<0.0102	<0.0102	0.0102	<0.0102	<0.0102	<0.0102	<0.0102
0.00867	0.00816	0.01428	0.01020	0.01632	0.03366	<0.00102
0.11730	0.13005	1.2393	0.6885	2.7234	0.24531	0.00306
0.0357	0.0357	0.0306	0.0357	0.0357	0.1377	0.1785
217.77	216.24	168.81	123.42	6.528	38.760	0.510
0.2295	0.2397	0.2805	0.0867	0.0153	0.1122	<0.0051
0.7038	0.6885	9.078	7.497	13.617	1.8768	0.00408
3.774	3.825	3.366	3.774	0.408	3.825	<0.102
3.825	3.774	15.657	10.455	16.371	48.144	1.020
0.153	0.153	1.428	1.275	1.173	0.612	<0.051
428.4	453.9	168.3	234.6	147.9	234.6	<25.5
382.5	382.5	336.6	372.3	464.1	504.9	<25.5
168.3	163.2	147.9	158.1	198.9	107.1	<25.5
91.8	91.8	91.8	91.8	112.2	91.8	71.4
<5100	<5100	<5100	<5100	<5100	<5100	<5100
	1		1	1	1	
Y37373	Y37377	Y37374	Y37375	Y37376	Y37378	Y37379

Maxxam ID Sampling Date COC Number

RDL = Reportable Detection Limit

11/11/2010

8324442

11/11/2010

8324442

EDL = Estimated Detection Limit

(1) Duplicate RPD for Th exceeds acceptance criteria. 10% of analytes failure in multielement scan is allowed.

11/11/2010

8324442

11/11/2010

8324442

11/11/2010

8324442

11/11/2010

8324442

11/11/2010

8324442

APPENDIX E

SEDIMENT TRAP CHEMISTRY LABORATORY DATA – ALS ENVIRONMENTAL

AZIMUTH CONSULTING GROUP INC.

ATTN: MAGGIE McCONNELL 218 - 2902 WEST BROADWAY VANCOUVER BC V6K 2G8

Phone: 604-730-1220

Date Received: 03-AUG-10

Report Date: 09-MAR-11 14:10 (MT)

Version: FINAL REV. 2

Certificate of Analysis

Lab Work Order #: L915449
Project P.O. #: NOT SUBMITTED

Job Reference: MEADOWBANK MINE EAS

Legal Site Desc: C of C Numbers:

Comments: ADDITIONAL 21-FEB-11 09:34

ADDITIONAL 21-FEB-11 09:34 ADDITIONAL 21-FEB-11 09:27 ADDITIONAL 21-FEB-11 09:27

Water samples containing algae and sediment were submitted to ALS for analysis. Originally, only determination of dry weight for all samples was requested. Subsequently, total metals analysis was requested on ten samples and ash free dry weight analysis was requested for the remainder of the samples.

In order to determine dry weight of the samples, they were filtered through pre-weighed glass fibre filters. Algae and sediment found on the filter and the filter itself were then dried at 105 degrees Celcius. The dry weight of the sample was determined by subtracting the weight of the filter from the total dry weight.

Ash free dry weight was determined by ashing the dry sample at 550 degrees Celcius and subtracting the ash weight from the dry weight of the sample.

Total metals were analysed by digesting the dry sample (including the filter) using the regular CSP digestion procedure.

Please note that the filter blanks, treated in the same manner as the samples, were digested and analysed for total metals. The weight used in the calculation of the metals concentrations for these samples was 0.50 g. Levels of some of the metals found in the filter blanks are quite high and this should be considered when reviewing the metals data. 09-MAR-11: Please note that the Dry Weight result for sample"SP ST1 R4" was incorrectly reported in the original report. The dry weight result has now been corrected in the following data tables.

Heather Easton Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LIMITED | Part of the ALS Group | A Campbell Brothers Limited Company

L915449 CONTD.... PAGE 2 of 16

ALS LABORATORY GROUP ANALYTICAL REPORT 09-MAR-11 14:10 (MT) Version: FINAL REV. 2

	Analyte Aluminum (Al) (mg/kg) Antimony (Sb) (mg/kg) Arsenic (As) (mg/kg) Barium (Ba) (mg/kg) Beryllium (Be) (mg/kg) Bismuth (Bi) (mg/kg) Cadmium (Cd) (mg/kg) Calcium (Ca) (mg/kg)	Date 16-JUL-10 Fime	16-JUL-10 BG ST2 R2 40500 0.39 38.4 11700 1.77	17-JUL-10 SP ST6 R2 41400 0.49 51.6 17500	17-JUL-10 SP ST8 R4 41300 0.36 55.3	18-JUL-10 SP ST1 R1 41200 0.28
SOIL Metals	Analyte Aluminum (Al) (mg/kg) Antimony (Sb) (mg/kg) Arsenic (As) (mg/kg) Barium (Ba) (mg/kg) Beryllium (Be) (mg/kg) Bismuth (Bi) (mg/kg) Cadmium (Cd) (mg/kg)	36900 0.24 37.0 6540 1.39 4.13	40500 0.39 38.4 11700 1.77	41400 0.49 51.6 17500	41300 0.36 55.3	41200 0.28
SOIL Metals	Aluminum (AI) (mg/kg) Antimony (Sb) (mg/kg) Arsenic (As) (mg/kg) Barium (Ba) (mg/kg) Beryllium (Be) (mg/kg) Bismuth (Bi) (mg/kg) Cadmium (Cd) (mg/kg)	0.24 37.0 6540 1.39 4.13	0.39 38.4 11700 1.77	0.49 51.6 17500	0.36 55.3	0.28
Metals	Antimony (Sb) (mg/kg) Arsenic (As) (mg/kg) Barium (Ba) (mg/kg) Beryllium (Be) (mg/kg) Bismuth (Bi) (mg/kg) Cadmium (Cd) (mg/kg)	0.24 37.0 6540 1.39 4.13	0.39 38.4 11700 1.77	0.49 51.6 17500	0.36 55.3	0.28
	Antimony (Sb) (mg/kg) Arsenic (As) (mg/kg) Barium (Ba) (mg/kg) Beryllium (Be) (mg/kg) Bismuth (Bi) (mg/kg) Cadmium (Cd) (mg/kg)	0.24 37.0 6540 1.39 4.13	0.39 38.4 11700 1.77	0.49 51.6 17500	0.36 55.3	0.28
	Arsenic (As) (mg/kg) Barium (Ba) (mg/kg) Beryllium (Be) (mg/kg) Bismuth (Bi) (mg/kg) Cadmium (Cd) (mg/kg)	0.24 37.0 6540 1.39 4.13	38.4 11700 1.77	0.49 51.6 17500	0.36 55.3	0.28
	Barium (Ba) (mg/kg) Beryllium (Be) (mg/kg) Bismuth (Bi) (mg/kg) Cadmium (Cd) (mg/kg)	37.0 6540 1.39 4.13	38.4 11700 1.77	17500		44.4
	Beryllium (Be) (mg/kg) Bismuth (Bi) (mg/kg) Cadmium (Cd) (mg/kg)	6540 1.39 4.13	11700 1.77	17500		41.1
	Bismuth (Bi) (mg/kg) Cadmium (Cd) (mg/kg)	4.13			16900	15200
	Cadmium (Cd) (mg/kg)			1.71	1.26	1.20
			6.21	7.48	6.64	6.42
	Calcium (Ca) (mg/kg)		1.73	2.26	2.02	3.29
		7840	11800	17600	17200	14800
	Chromium (Cr) (mg/kg)	674	423	332	521	638
	Cobalt (Co) (mg/kg)	32.3	28.3	28.6	27.9	29.9
	Copper (Cu) (mg/kg)	68.2	56.8	70.4	49.2	49.9
	Iron (Fe) (mg/kg)	63500	64100	69600	73000	69800
	Lead (Pb) (mg/kg)	27.1	42.7	53.2	44.3	36.8
	Lithium (Li) (mg/kg)	43.7	60.3	53.2	46.3	44.7
	Magnesium (Mg) (mg/kg)	28900	24600	22500	27300	30500
	Manganese (Mn) (mg/kg)	783	1200	2240	758	877
	Mercury (Hg) (mg/kg)	0.0220	0.0282	0.0472	0.0240	0.0253
	Molybdenum (Mo) (mg/kg)	3.79	4.19	5.66	4.21	3.94
	Nickel (Ni) (mg/kg)	252	158	147	175	208
	Phosphorus (P) (mg/kg)	606	631	1740	1170	1090
	Potassium (K) (mg/kg)	6440	10900	13500	11700	9700
	Selenium (Se) (mg/kg)	0.68	0.60	0.85	0.49	0.40
	Silver (Ag) (mg/kg)	1.45	0.81	0.94	0.81	0.82
	Sodium (Na) (mg/kg)	12400	22200	33300	32500	28100
	Strontium (Sr) (mg/kg)	54.6	127	214	204	99.7
	Thallium (TI) (mg/kg)	0.281	0.430	0.458	0.312	0.275
	Tin (Sn) (mg/kg)	2.6	6.1	4.5	4.7	4.5
	Titanium (Ti) (mg/kg)	873	1200	1010	772	695
	Uranium (U) (mg/kg)	13.0	16.6	12.7	7.09	6.65
	Vanadium (V) (mg/kg)	87.5	72.8	63.6	71.9	79.4
	Zinc (Zn) (mg/kg)	4670	8340	12600	12200	11000

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 3 of 16

ALS LABORATORY GROUP ANALYTICAL REPORT

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

				I	1	1	I
		Sample ID Description	L915449-34	L915449-39	L915449-44	L915449-45	L915449-52
		Sampled Date	20-JUL-10	20-JUL-10	23-JUL-10	23-JUL-10	23-JUL-10
		Sampled Time Client ID	TE ST4 R2	TE ST1 R3	TPS ST2 R4	TPE ST1 R1	BG ST6 R4
Grouping	Analyte						
SOIL							
Metals	Aluminum (Al) (mg/kg)		32600	45300	32800	42400	30200
	Antimony (Sb) (mg/kg)		0.36	0.50	0.36	0.15	0.21
	Arsenic (As) (mg/kg)		13.1	28.9	28.2	37.4	48.2
	Barium (Ba) (mg/kg)		17700	30200	19000	4060	2470
	Beryllium (Be) (mg/kg)		2.02	2.34	1.18	2.05	0.98
	Bismuth (Bi) (mg/kg)		8.10	13.2	7.82	4.35	1.88
	Cadmium (Cd) (mg/kg)		4.18	6.54	4.06	0.99	0.69
	Calcium (Ca) (mg/kg)		16800	25000	18900	5960	7550
	Chromium (Cr) (mg/kg)		73.9	152	299	755	447
	Cobalt (Co) (mg/kg)		9.99	17.5	21.5	42.2	29.9
	Copper (Cu) (mg/kg)		53.4	67.8	47.7	97.9	50.1
	Iron (Fe) (mg/kg)		31800	57600	43200	70500	72100
	Lead (Pb) (mg/kg)		54.7	72.7	45.9	35.2	19.8
	Lithium (Li) (mg/kg)		54.6	64.0	36.4	60.4	36.5
	Magnesium (Mg) (mg/kg)		11900	18400	18700	31900	23000
	Manganese (Mn) (mg/kg)		623	1050	1460	1130	664
	Mercury (Hg) (mg/kg)		0.0287	0.0470	0.0278	0.0214	0.0125
	Molybdenum (Mo) (mg/kg)		4.24	6.41	3.70	4.29	3.82
	Nickel (Ni) (mg/kg)		46.6	86.3	131	281	174
	Phosphorus (P) (mg/kg)		1410	1600	1330	683	1210
	Potassium (K) (mg/kg)		12300	19000	11200	7050	4200
	Selenium (Se) (mg/kg)		0.97	1.01	0.76	0.68	0.41
	Silver (Ag) (mg/kg)		0.70	1.12	0.71	0.98	0.35
	Sodium (Na) (mg/kg)		33000	56600	34700	7310	4760
	Strontium (Sr) (mg/kg)		115	180	122	51.4	37.9
	Thallium (TI) (mg/kg)		0.493	0.593	0.346	0.393	0.208
	Tin (Sn) (mg/kg)		4.5	8.0	4.1	2.9	<2.0
	Titanium (Ti) (mg/kg)		963	1200	660	945	591
	Uranium (U) (mg/kg)		24.9	19.1	10.9	24.7	8.45
	Vanadium (V) (mg/kg)		38.1	51.7	48.0	101	71.1
	Zinc (Zn) (mg/kg)		13000	22300	14600	2780	1810

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 4 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

		Sample ID Description Sampled Date Sampled Time Client ID	L915449-53		
Grouping	Analyte				
SOIL	7.11.1.1.1.1				
Metals	Aluminum (Al) (mg/kg)		29900		
	Antimony (Sb) (mg/kg)		0.57		
	Arsenic (As) (mg/kg)		3.15		
	Barium (Ba) (mg/kg)		52300		
	Beryllium (Be) (mg/kg)		0.44		
	Bismuth (Bi) (mg/kg)		5.98		
	Cadmium (Cd) (mg/kg)		7.20		
	Calcium (Ca) (mg/kg)		23300		
	Chromium (Cr) (mg/kg)		5.17		
	Cobalt (Co) (mg/kg)		0.47		
	Copper (Cu) (mg/kg)		10.0		
	Iron (Fe) (mg/kg)		939		
	Lead (Pb) (mg/kg)		68.6		
	Lithium (Li) (mg/kg)		17.5		
	Magnesium (Mg) (mg/kg)		3650		
	Manganese (Mn) (mg/kg)		31.0		
	Mercury (Hg) (mg/kg)		<0.0050		
	Molybdenum (Mo) (mg/kg)		0.84		
	Nickel (Ni) (mg/kg)		1.74		
	Phosphorus (P) (mg/kg)		214		
	Potassium (K) (mg/kg)		25200		
	Selenium (Se) (mg/kg)		<0.20		
	Silver (Ag) (mg/kg)		0.59		
	Sodium (Na) (mg/kg)		71000		
	Strontium (Sr) (mg/kg)		542		
	Thallium (TI) (mg/kg)		0.276		
	Tin (Sn) (mg/kg)		6.0		
	Titanium (Ti) (mg/kg)		32.9		
	Uranium (U) (mg/kg)		0.536		
	Vanadium (V) (mg/kg)		2.11		
	Zinc (Zn) (mg/kg)		37700		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 5 of 16

ALS LABORATORY GROUP ANALYTICAL REPORT

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

			I	1	1		
	Sample Descripti		L915449-2	L915449-3	L915449-4	L915449-5	
	Sampled D Sampled Ti	ate 16-JUL-10	16-JUL-10	16-JUL-10	16-JUL-10	16-JUL-10	
	Client		BG ST1 R2	BG ST1 R3	BG ST1 R4	BG ST2 R1	
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)	1.71	1.67	1.58	1.77	0.839	
	Ash Weight (g)	1.52	1.48	1.41	,	0.752	
	Ash Free Dry Weight (g)	0.184	0.186	0.170		0.0867	
		0.104	0.100	0.170		0.0007	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 6 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

		Sample ID	L915449-6	L915449-7	L915449-8	L915449-9	L915449-10
		Description Sampled Date	16-JUL-10	16-JUL-10	16-JUL-10	17-JUL-10	17-JUL-10
		Sampled Time Client ID	BG ST2 R2	BG ST2 R3	BG ST2 R4	SP ST6 R1	SP ST6 R2
Grouping TISSUE	Analyte						
	Discould a limber (as)						
Physical Tests	Dry Weight (g)		1.04	0.796	1.01	0.515	0.681
	Ash Weight (g)			0.718	0.905	0.433	
	Ash Free Dry Weight (g)			0.0766	0.107	0.0825	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 7 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

		Sample ID	L915449-11	L915449-12	L915449-13	L915449-14	L915449-15
		Description					
		Sampled Date Sampled Time	17-JUL-10	17-JUL-10	17-JUL-10	17-JUL-10	17-JUL-10
		Client ID	SP ST6 R3	SP ST6 R4	SP ST8 R1	SP ST8 R2	SP ST8 R3
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)		0.584	0.659	0.849	0.810	0.804
	Ash Weight (g)		0.490	0.546	0.779	0.728	0.738
	Ash Free Dry Weight (g)		0.0937	0.114	0.0699	0.0826	0.0661

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 8 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

		Sample ID	L915449-16	L915449-17	L915449-18	L915449-19	L915449-20
		Description Sampled Date	17-JUL-10	18-JUL-10	18-JUL-10	18-JUL-10	18-JUL-10
		Sampled Time Client ID	SP ST8 R4	TPS ST1 R1	TPS ST1 R2	TPS ST1 R3	TPS ST1 R4
Grouping	Analyte						
TISSUE	Analyte						
Physical Tests	Dry Weight (g)		0.858	0.318	0.284	0.327	0.284
	Ash Weight (g)		0.000	0.234	0.212	0.243	0.209
	Ash Free Dry Weight (g)			0.0847	0.0715	0.0836	0.0749

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 9 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

		Sample ID	L915449-21	L915449-22	L915449-23	L915449-24	L915449-25
		Description					
		Sampled Date Sampled Time	18-JUL-10	18-JUL-10	18-JUL-10	18-JUL-10	18-JUL-10
		Client ID	SP ST7 R1	SP ST7 R2	SP ST7 R3	SP ST7 R4	SP ST1 R1
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)		0.255	0.240	0.229	0.233	0.916
	Ash Weight (g)		0.168	0.154	0.148	0.147	
	Ash Free Dry Weight (g)		0.0869	0.0860	0.0811	0.0853	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 10 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

		Sample ID	L915449-26	L915449-27	L915449-28	L915449-29	L915449-30
		Description Sampled Date	18-JUL-10	18-JUL-10	18-JUL-10	20-JUL-10	20-JUL-10
		Sampled Time Client ID	SP ST1 R2	SP ST1 R3	SP ST1 R4	TE ST5 R1	TE ST5 R2
Grouping	Analyte						
TISSUE	B. W.: L.(.)						
Physical Tests	Dry Weight (g)		0.841	0.884	0.851	0.422	0.403
	Ash Weight (g)		0.776	0.819	0.782	0.288	0.269
	Ash Free Dry Weight (g)		0.0650	0.0658	0.0688	0.134	0.134

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 11 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

		Sample ID	L915449-31	L915449-32	L915449-33	L915449-34	L915449-35
		Description Sampled Date	20-JUL-10	20-JUL-10	20-JUL-10	20-JUL-10	20-JUL-10
		Sampled Time Client ID	TE ST5 R3	TE ST5 R4	TE ST4 R1	TE ST4 R2	TE ST4 R3
Grouping	Analyte						
TISSUE	Allalyte						
Physical Tests	Dry Weight (g)		0.405	0.000	0.000	0.000	0.000
Triyolour resis	Ash Weight (g)		0.405	0.386	0.993	0.993	0.960
	Ash Free Dry Weight (g)		0.273	0.267	0.746		0.731
	Horri 100 Bry Wolghi (g)		0.131	0.119	0.247		0.229

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 12 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

		Sample ID Description	L915449-36	L915449-37	L915449-38	L915449-39	L915449-40
		Sampled Date	20-JUL-10	20-JUL-10	20-JUL-10	20-JUL-10	20-JUL-10
		Sampled Time Client ID	TE ST4 R4	TE ST1 R1	TE ST1 R2	TE ST1 R3	TE ST1 R4
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)		0.913	0.518	0.511	0.538	0.500
	Ash Weight (g)		0.694	0.408	0.442		0.390
	Ash Free Dry Weight (g)		0.219	0.110	0.109		0.110

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 13 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

		Sample ID	L915449-41	L915449-42	L915449-43	L915449-44	L915449-45
		Description Sampled Date	23-JUL-10	23-JUL-10	23-JUL-10	23-JUL-10	23-JUL-10
		Sampled Time Client ID	TPS ST2 R1	TPS ST2 R2	TPS ST2 R3	TPS ST2 R4	TPE ST1 R1
Grouping	Analyte						
TISSUE	Dm. Wainht (n)						
Physical Tests	Dry Weight (g) Ash Weight (g)		0.546	0.465	0.485	0.743	3.28
	Ash Free Dry Weight (g)		0.413	0.357	0.366		
	ASTI Free Dry Weight (g)		0.133	0.108	0.119		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 14 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

		Sample ID Description	L915449-46	L915449-47	L915449-48	L915449-49	L915449-50
		Sampled Date Sampled Time	23-JUL-10	23-JUL-10	23-JUL-10	23-JUL-10	23-JUL-10
		Client ID	TPE ST1 R2	TPE ST1 R3	TPE ST1 R4	BG ST6 R1	BG ST6 R2
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)		2.96	2.50	2.77	3.07	2.88
	Ash Weight (g)		2.66	2.25	2.48	2.81	2.68
	Ash Free Dry Weight (g)		0.298	0.247	0.284	0.254	0.198

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L915449 CONTD.... PAGE 15 of 16

09-MAR-11 14:10 (MT) Version: FINAL REV. 2

ALS LABORATORY GROUP ANALYTICAL REPORT

Sample ID L915449-51 L915449-52 Description 23-JUL-10 23-JUL-10 Sampled Date Sampled Time BG ST6 R3 BG ST6 R4 **Client ID** Grouping Analyte **TISSUE Physical Tests** Dry Weight (g) 3.09 2.91 Ash Weight (g) 2.66 Ash Free Dry Weight (g) 0.246

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L915449 CONTD.... PAGE 16 of 16 09-MAR-11 14:10 (MT)

Version: FINAL REV. 2

Qualifiers for Individual Parameters Listed:

Qualifier Description

RM-H Reference Material recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ASHFREE-DRY-VA	Tissue	Ash Free Dry Weight	44.3 ASH CONTENT & ORG. MATTER CONTENT

This analysis is carried out using procedures adapted from the Canadian Society of Soil Science method "44.3 Ash Content and Organic Matter Content", (1993). Ash Free Dry Weight is determined by the difference between 'Dry Weight' and 'Ash Weight' which are both determined gravimetrically. Dry Weight is determined by drying the sample at 105 "C and the Ash Weight is subsequently determined by ashing the dried sample at 550 "C.

HG-200.2-CVAF-VA Soil Mercury in Soil by CVAFS EPA 200.2/245.7

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 245.7).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is dried at 40 C, then ground to < 2 mm particle size using a stainless steel flail grinder. A representative portion is digested with concentrated nitric and hydrochloric acids for 2 hours in an open vessel digestor at 95 degrees. Instrumental analysis of the digested exttract is by collision cell inductively coupled plasma - mass spectrometry (modifed from EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg milligrams per kilogram based on dry weight of sample.

mg/kg wwt milligrams per kilogram based on wet weight of sample.

mg/kg lwt milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L milligrams per litre.

< - Less than.

D.L. The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC #

Page _1 of 7

Group Inc. Report Format / Distribution Fax		10 94/15 (MD) Date & Time:	inquished Date & Time: 25-Jul-10	By the use of this form the user acknow.	Failure to complete all p		Guidelines / Regulations		8 BG S12 R4	→ BG ST2 R3	BG ST2 R2	S BG ST2 R1	BG ST1 R4	3 BG ST1 R3	BG ST1 R2	BG ST1 R1	(This description will appear on the report)	Sample Identification	Lab Work Order # 1915449. ALS	Phone: Fax: Qui	Sample	Address: PO	Contact: Job#:	Company:	Invoice To: Same as Report	Phone: 604-730-1220 Fax:	Em	Address: 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 Em	Contact: Maggie McConnell	Company: Azimuth Consulting Group Inc.	Report to:
Service Requested:	1/6	3 Sived	sived	ledges and agrees with the	ortions of this form may c	** Samples are a mix			16-Jul-10	16-Jul-10	16-Jul-10	16-Jul-10	16-Jul-10	16-Jul-10	16-Jul-10	16-Jul-10	dd-mmm-yy	Date	act:		pal Site Description:	/AFE:		ent / Project Information:					▼ Excel		port Format / Distribution
Service Requested:		Date & Time:	Date & Time:	erms and Co	elay analysis.	of water and se				0	0	0	0	0	0	0		Time					eadowbank Mine		Indicate Bottles: F		up.ca	thgroup.ca	ax		
Highly Contaminated?						diments; please contact	Special Instructions		Other	ther	ther	ther	ther	ther	ther	ther	(Select from drop-down list)	Sample Type	1DF, MLM				EAS		iltered / Preserved (F/P) →→						
Highly Contaminated?				on the	LEGIB	t us reg	/ Haza	П	×	×	×	×	×	×	×	×	Dr	y W	eight /							Г	<u></u>	ГР	ΓR		Servic
Highly Contaminated?	') mperatu		adjace	. 5	arding	rdous	Н	+	H	-					_	-					_			┝		merge	riority (ush Se	egular	e Req
Highly Contaminated?	L			int wo		other	Detail																				ncy Se	Service	Prvice (Servic	ueste
Highly Contaminated?	pro	Samples Condition	imple Co	rksnee		analyse	5	\vdash	+	\vdash		_			_	-	F								H	Analy	Vice ((1 Da	2-3 Da	e (Defa	#
Highly Contaminated?	1	Receive	ndition (ľ	•	es (e.g.		Ħ																		/sis Re	<1 Day	y or AS	ys)	ault)	
Highly Contaminated?	tails)	d in Goo	ab use o			ash-fr		Н	+	-	_					 	L								┞	quest	/ Wken	AP)			
Highly Contaminated?		Δ.	nly)			ee DW																					g.				
Highly Contaminated?);		Н	-	\perp					<u> </u>	_	т									ł	ontact				
								H	-	-	-	-			_		✝									1	ALS				

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC

Page 2 of

Phone: Relinquished Phone: Company: Azimuth Consulting Group Inc. Relinquished Sample Address: Contact: Company: Invoice To: Address: Contact: Report to: Lab Work Order # Maggie McConnell (lab use only) SP ST8 R1 SP ST6 R4 SP ST6 R3 SP ST6 R2 SP ST6 R1 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 SP ST8 R4 SP ST8 R3 SP ST8 R2 604-730-1220 Same as Report (This description will appear on the report) Guidelines / Regulations By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Fax Date & Time: Date & Time: Fax Sample Identification Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. Received ALS PO/AFE: Quote #: Q24230 Email 1: mmcconnell@azimuthgroup.ca Report Format / Distribution Job#: Email 2: gmann@azimuthgroup.ca Legal Site Description: Client / Project Information: ₹ PDF ▼ Standard Natasha MM ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** ₹ Excel dd-mmm-yy 17-Jul-10 17-Jul-10 17-Jul-10 Date 17-Jul-10 17-Jul-10 17-Jul-10 17-Jul-10 17-Jul-10 Other Fax Meadowbank Mine EAS hh:mm Sampler (Initials): Date & Time: Indicate Bottles: Filtered / Preserved (F/P) →-Time Other Other Other Other Other Other Other Other MDF, MLM (Select from drop-down list) Special Instructions / Hazardous Details Sample Type Service Requested: × × × × × Dry Weight Regular Service (Default) Temperature Emergency Service (<1 Day / Wkend) - Contact ALS Priority Service (1 Day or ASAP) Rush Service (2-3 Days) Sample Condition (lab use only) Samples Received in Good Condition? Y / N (if no Analysis Request Hazardous? Highly Contaminated? Number of Containers

Page |<u>ဒ</u> ဋ

Sample Phone: Phone: Address: Company: Azimuth Consulting Group Inc. Report to: Relinquished Address: Contact: Company: Invoice To: Contact: Relinquished Lab Work Order Maggie McConnell lab use only) SP ST7 R3 SP ST7 R2 TPS ST1 R4 604-730-1220 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 SP ST7 R4 SP ST7 R1 TPS ST1 R3 TPS ST1 R2 TPS ST1 R1 Same as Report (This description will appear on the report) **Guidelines / Regulations** By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Fax Date & Time: Date & Time: Fax: Sample Identification Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By: Received ALS ₹ PDF Quote #: Q24230 PO/AFE: Client / Project Information: Email 1: mmcconnell@azimuthgroup.ca Report Format / Distribution Legal Site Description: Job #: Email 2: gmann@azimuthgroup.ca ▼ Standard Natasha MM ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** **▼** Excel dd-mmm-y Date [Other 18-Jul-10 18-Jul-10 18-Jul-10 18-Jul-10 18-Jul-10 18-Jul-10 18-Jul-10 18-Jul-10 Fax Meadowbank Mine EAS Sampler (Initials): hh:mm Time ndicate Bottles: Filtered / Preserved (F/P) →-Other Other Other Other Other Other Other Other MDF, MLM (Select from drop-down list) Special Instructions / Hazardous Details Sample Type × × × × Service Requested: × × × Dry Weight Regular Service (Default) Rush Service (2-3 Days) Emergency Service (<1 Day / Wkend) - Contact ALS Priority Service (1 Day or ASAP) ample Condition (lab use only) Analysis Request Hazardous? Highly Contaminated? Number of Containers

COC #

Page

4 0

Phone: Sample Phone: Relinquished Contact: Contact: Maggie McConnell Company: Azimuth Consulting Group Inc. Report to: Relinquished Company: Invoice To: Address: Address: Lab Work Order SP ST1 R4 SP ST1 R3 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 TE ST5 R3 TE ST5 R2 TE ST5 R1 SP ST1 R2 SP ST1 R1 604-730-1220 TE ST5 R4 Same as Report (This description will appear on the report) Guidelines / Regulations By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Date & Time: Fax: Fax: Date & Time: Sample Identification Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By: Received ₹ PDF ALS PO/AFE: Email 1: mmcconnell@azimuthgroup.ca Report Format / Distribution Contact: Quote #: Q24230 Legal Site Description: Job#: Client / Project Information: Email 2: gmann@azimuthgroup.ca Standard Natasha MM ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** Excel dd-mmm-yy 20-Jul-10 18-Jul-10 20-Jul-10 20-Jul-10 20-Jul-10 Date 18-Jul-10 18-Jul-10 18-Jul-10 f" Other Fax Meadowbank Mine EAS Sampler (Initials): Date & Time: hh:mm Time ndicate Bottles: Filtered / Preserved (F/P) →-Other Other Other Other Other Other Other Other MDF, MLM (Select from drop-down list) Special Instructions / Hazardous Details Sample Type × × Service Requested: × × × × Dry Weight Regular Service (Default) Priority Service (1 Day or ASAP) Rush Service (2-3 Days) Emergency Service (<1 Day / Wkend) - Contact ALS 6 nple Condition (lab use only) Analysis Request Hazardous? Highly Contaminated? **Number of Containers**

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC

Page 5 of

Phone: Phone: Sample Contact: Company: Invoice To: Contact: Report to: Address: Company: Relinquished Address: Relinquished Lab Work Order # lab use only Maggie McConnell Azimuth Consulting Group Inc. TE ST1 R2 TE ST4 R4 TE ST4 R2 TE ST4 R1 604-730-1220 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 TE ST1 R1 TE ST4 R3 TE ST1 R4 TE ST1 R3 Same as Report (This description will appear on the report) Guidelines / Regulations By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Fax Fax: Date & Time: Date & Time: Sample Identification Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. Received ALS Email 1: mmcconnell@azimuthgroup.ca Report Format / Distribution Quote #: Q24230 PO/AFE: Job#: Client / Project Information: Email 2: gmann@azimuthgroup.ca ₹ PDF **▼** Standard Legal Site Description: ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** Natasha MM dd-mmm-yy **▼** Excel 20-Jul-10 20-Jul-10 Date 20-Jul-10 20-Jul-10 20-Jul-10 20-Jul-10 20-Jul-10 20-Jul-10 [Other □ Fax Meadowbank Mine EAS (Initials): Sampler Date & Time: hh:mm Indicate Bottles: Filtered / Preserved (F/P) →-Time Other Other Other Other Other Other Other Other MDF, MLM (Select from drop-down list) Special Instructions / Hazardous Details Sample Type × Service Requested: × × × × × × Dry Weight Regular Service (Default) Emergency Service (<1 Day / Wkend) - Contact ALS Priority Service (1 Day or ASAP) Rush Service (2-3 Days) sample Condition (lab use only) Analysis Request Hazardous? Highly Contaminated? Number of Containers

Report to:

Page

ြ ဝ

Company: Azimuth Consulting Group Inc. 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 (This description will appear on the report) Guidelines / Regulations By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet Date & Time: Date & Time Sample Identification Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. Received ALS Quote #: Q24230 PO/AFE: ₹ PDF Email 1: mmcconnell@azimuthgroup.ca Report Format / Distribution Contact: Legal Site Description: Job# Client / Project Information: Email 2: gmann@azimuthgroup.ca Standard Natasha MM ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** ₹ Excel dd-mmm-yy 23-Jul-10 23-Jul-10 23-Jul-10 23-Jul-10 23-Jul-10 23-Jul-10 23-Jul-10 23-Jul-10 Date C Other Fax Meadowbank Mine EAS Sampler Date & Time: (Initials): hh:mm Time ndicate Bottles: Filtered / Preserved (F/P) →-Other Other Other Other Other Other Other MDF, MLM (Select from drop-down list) Special Instructions / Hazardous Details Sample Type × Service Requested: × × × × Dry Weight Temperature Regular Service (Default) Emergency Service (<1 Day / Wkend) - Contact ALS Priority Service (1 Day or ASAP) Rush Service (2-3 Days) Samples Received in Good Condition? Y / N (if no Analysis Request Hazardous?

Phone:

Fax

Lab Work Order

TPE ST1 R2 TPE ST1 R1 TPS ST2 R4

TPE ST1 R3 TPE ST1 R4

TPS ST2 R2 TPS ST2 R1

TPS ST2 R3

Relinquished

Relinquished

Sample

Contact:

Company:

Address:

Invoice To: Phone:

Same as Report

604-730-1220

Fax

Address: Contact:

Maggie McConnell

Highly Contaminated? Number of Containers

Page

__7 of

7

	provided details)	,	F				oy.				BY:
	Condition? Y / N (if no	7,0		9/2 MICI	Date & Time:	2	Received		Date & Time:	/	Relinquished
	Sample Condition (lab use only)	Temperature			Date & Time:		Received By:	25-Jul-10	Date & Time: 2	Vy July	Relinquished By:
	vorksheet.	ecified on the adjacent worksheet	d on t		ne Terms and (and agrees with th	nowledges	By the use of this form the user acknowledges and agrees with the Terms and Conditions as spi	By the use of t		
		is form LEGIBLY.	m LEC	. Please fill in this for	delay analysis	of this form may	all portions	Failure to complete all portions of this form may delay analysis. Please fill in th			
V) *	contact us regarding other analyses (e.g., ash-free DW) **	regarding othe	act us		ix of water and	** Samples are a mix of water and sediments; please					
	ails	azardous Det	ns / Ha	Special Instructions / Hazardous Details				ations	Guidelines / Regulations	Gui	
			_								
			×	Other		23-Jul-10		 		BG ST6 R4	V
			×	Other		23-Jul-10				BG ST6 R3	
			×	Other		23-Jul-10				BG ST6 R2	3
			×	Other		23-Jul-10				BG ST6 R1	
\vdash			_	(Select from drop-down list)	hh:mm	dd-mmm-yy		This description will appear on the report)	description will a	(This	**
		y vv	v W	Sample Type	Time	Date		ntification	Sample Identification		Sample
dous? Conta		eigiit_	eight	MDF, MLM	Sampler (Initials):	Natasha MM	ALS Contact:			ab Work Order # (lab use only)	Lab (la
mir			_			Q24230	Quote #:		Fax:		Phone:
nate						Legal Site Description:	Legal Site				Sample
d?	_						PO/AFE:				Address:
_				ine EAS	Meadowbank Mine EAS	7	Job #:				Contact:
						Client / Project Information:	Client / Pr				Company:
			Į	Indicate Bottles: Filtered / Preserved (F/P) $ ightarrow ightarrow$	Indicate Bottle				eport	Same as Report	Invoice To:
	Analysis Request								Fax:	604-730-1220	Phone:
Contact ALS	Emergency Service (<1 Day / Wkend) - Contact ALS	Emergency	٦		oup.ca	gmann@azimuthgroup.ca	Email 2:				
	Priority Service (1 Day or ASAP)	Priority Serv	_		uthgroup.ca	mmcconnell@azimuthgroup.ca	Email 1:	ver, BC, V6K 2G8	oadway, Vancou	218 - 2902 West Broadway, Vancouver, BC, V6K 2G8	Address:
	Rush Service (2-3 Days)	Rush Servic	٦		Fax	₩ Excel	₽DF			Maggie McConnell	Contact:
	Regular Service (Default)		ব			rd Cther	✓ Standard		Group Inc.	Company: Azimuth Consulting Group Inc.	Company:
	sted:	service Requested.	90			Report Format / Distribution	Report ro				Report to:

AZIMUTH CONSULTING GROUP INC.

ATTN: MAGGIE McCONNELL 218 - 2902 WEST BROADWAY VANCOUVER BC V6K 2G8

Phone: 604-730-1220

Date Received: 30-AUG-10

Report Date: 08-MAR-11 10:27 (MT)

Version: FINAL REV. 2

Certificate of Analysis

Lab Work Order #: L925853
Project P.O. #: NOT SUBMITTED

Job Reference: MEADOWBANK MINE EAS

Legal Site Desc: C of C Numbers:

Comments: ADDITIONAL 21-FEB-11 09:51

ADDITIONAL 21-FEB-11 09:51

08-MAR-11: The additional analyses, Ash free dry weight and metals, were requested by the client on Feb. 17, 2011. Please note that this request was past the recommended holding time for mercury and metals. The filter blank reported with the metals was an acid washed blank filter used to filter the biomass. The weight used to calculate the results for this

sample was 0.50 g.

Heather Easton Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

L. Ear

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LIMITED Part of the ALS Group A Campbell Brothers Limited Company

L925853 CONTD....

PAGE 2 of 5 08-MAR-11 10:27 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

Version: FINAL REV. 2

	Sample		L925853-7	L925853-9	
	Descripti Sampled Da	ate 27-JUL-10	27-JUL-10		
	Sampled Tii Client		BG-ST5-R3	FILTER BLANK	
Grouping	Analyte				
SOIL					
Metals	Aluminum (Al) (mg/kg)	38500	44900	772	
	Antimony (Sb) (mg/kg)	0.24	0.37	0.30	
	Arsenic (As) (mg/kg)	46.9	49.8	0.164	
	Barium (Ba) (mg/kg)	4280	9810	1800	
	Beryllium (Be) (mg/kg)	1.75	2.13	<0.20	
	Bismuth (Bi) (mg/kg)	3.77	6.11	0.45	
	Cadmium (Cd) (mg/kg)	1.08	2.08	0.13	
	Calcium (Ca) (mg/kg)	6950	10100	1140	
	Chromium (Cr) (mg/kg)	584	471	1.92	
	Cobalt (Co) (mg/kg)	34.5	30.5	<0.10	
	Copper (Cu) (mg/kg)	71.3	69.0	13.6	
	Iron (Fe) (mg/kg)	69600	73400	80	
	Lead (Pb) (mg/kg)	32.7	44.7	7.80	
	Lithium (Li) (mg/kg)	56.5	68.7	1.1	
	Magnesium (Mg) (mg/kg)	27300	26800	268	
	Manganese (Mn) (mg/kg)	1050	939	2.9	
	Mercury (Hg) (mg/kg)	0.0213	0.0241	<0.0050	
	Molybdenum (Mo) (mg/kg)	4.25	4.97	<0.50	
	Nickel (Ni) (mg/kg)	215	192	0.70	
	Phosphorus (P) (mg/kg)	833	732	<50	
	Potassium (K) (mg/kg)	6990	11100	1600	
	Selenium (Se) (mg/kg)	0.55	0.56	<0.20	
	Silver (Ag) (mg/kg)	0.60	1.07	0.24	
	Sodium (Na) (mg/kg)	7760	17900	6280	
	Strontium (Sr) (mg/kg)	47.8	78.0	13.0	
	Thallium (TI) (mg/kg)	0.357	0.473	<0.050	
	Tin (Sn) (mg/kg)	2.7	4.5	<2.0	
	Titanium (Ti) (mg/kg)	1040	1340	3.9	
	Uranium (U) (mg/kg)	15.4	19.4	<0.050	
	Vanadium (V) (mg/kg)	89.3	84.2	<0.20	
	Zinc (Zn) (mg/kg)	4000	7020	1520	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L925853 CONTD....

PAGE 3 of 5 08-MAR-11 10:27 (MT)

Version: FINAL REV. 2

	Sample		L925853-2	L925853-3	L925853-4	L925853-5
	Descri Sampled	Date 27-JUL-10	27-JUL-10	27-JUL-10	27-JUL-10	27-JUL-10
	Sampled Clie	Time nt ID BG-ST3-R1	BG-ST3-R2	BG-ST3-R3	BG-ST3-R4	BG-ST5-R1
Grouping	Analyte					
TISSUE	Analyte					
Physical Tests	Dry Weight (g)	2.51	2.38	2.42	2.45	1.29
,	Ash Weight (g)	2.51	2.30	2.42	2.45	1.18
	Ash Free Dry Weight (g)		0.194	0.169	0.182	0.111
	, , , , , , , , , , , , , , , , , , , ,		0.194	0.109	0.162	0.111

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L925853 CONTD....

PAGE 4 of 5 08-MAR-11 10:27 (MT)

Version: FINAL REV. 2

1						
		Sample ID Description	L925853-6	L925853-7	L925853-8	
		Sampled Date	27-JUL-10	27-JUL-10	27-JUL-10	
		Sampled Time Client ID	BG-ST5-R2	BG-ST5-R3	BG-ST5-R4	
Grouping	Analyte					
TISSUE	•					
Physical Tests	Dry Weight (g)		1.18	1.40	1.32	
	Ash Weight (g)		1.10	1.40	1.32	
	Ash Free Dry Weight (g)		0.102		0.117	
	, , , , , , , , , , , , , , , , , , , ,		0.102		0.117	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L925853 CONTD.... PAGE 5 of 5 08-MAR-11 10:27 (MT)

Version: FINAL REV. 2

Qualifiers for Individual Parameters Listed:

Qualifier	Description
RM-H	Reference Material recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ASHFREE-DRY-VA	Tissue	Ash Free Dry Weight	44.3 ASH CONTENT & ORG. MATTER CONTENT

This analysis is carried out using procedures adapted from the Canadian Society of Soil Science method "44.3 Ash Content and Organic Matter Content", (1993). Ash Free Dry Weight is determined by the difference between 'Dry Weight' and 'Ash Weight' which are both determined gravimetrically. Dry Weight is determined by drying the sample at 105 "C and the Ash Weight is subsequently determined by ashing the dried sample at 550 "C.

HG-200.2-CVAF-VA Soil Mercury in Soil by CVAFS EPA 200.2/245.7

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 245.7).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is dried at 40 C, then ground to < 2 mm particle size using a stainless steel flail grinder. A representative portion is digested with concentrated nitric and hydrochloric acids for 2 hours in an open vessel digestor at 95 degrees. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modifed from EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg milligrams per kilogram based on dry weight of sample.

mg/kg wwt milligrams per kilogram based on wet weight of sample.

mg/kg lwt milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L milligrams per litre.

< - Less than.

D.L. The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#

Page __1 of

Phone: Company: Azimuth Consulting Group Inc. Phone: Sample Company: Invoice To: Contact: Report to: Relinquished Address Contact: Address: Relinquished Sample Lab Work Order # (lab use only) Maggie McConnell 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 604-730-1220 BG-ST3-R2 BG-ST3-R1 BG-ST5-R4 BG-ST5-R1 BG-ST3-R4 BG-ST3-R3 BG-ST5-R3 BG-ST5-R2 Same as Report (This description will appear on the report) Guidelines / Regulations By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet Fax: Date & Time: Fax Date & Time Sample Identification 925853 26.300 ON AND AND Received Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. Received Report Format / Distribution Quote #: Q24230 PO/AFE: Job #: Contact: Legal Site Description Client / Project Information: Email 2: Email 1: < PDF Standard gmann@azimuthgroup.ca mmcconnell@azimuthgroup.ca Natasha MM ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** dd-mmm-yy Excel 27-Jul-10 27-Jul-10 27-Jul-10 27-Jul-10 27-Jul-10 27-Jul-10 27-Jul-10 27-Jul-10 Date Other Fax Meadowbank Mine EAS Sampler (Initials): Date & Time hh:mm Time Indicate Bottles: Filtered / Preserved (F/P) →-Other Other Other 30/03 9:30m Other Other Other Other 록 (Select from drop-down list) Special Instructions / Hazardous Details Sample Type Service Requested: × × × × × × × × Dry Weight 7.4 Regular Service (Default) Emergency Service (<1 Day / Wkend) - Contact ALS Priority Service (1 Day or ASAP) Rush Service (2-3 Days) Sample Condition (lab use only Samples Received in Good Condition? Y / N (if no Analysis Request Hazardous? Highly Contaminated? Number of Containers

AZIMUTH CONSULTING GROUP INC.

ATTN: MAGGIE McCONNELL 218 - 2902 WEST BROADWAY VANCOUVER BC V6K 2G8

Phone: 604-730-1220

Date Received: 04-OCT-10

Report Date: 08-MAR-11 10:50 (MT)

Version: FINAL REV. 2

Certificate of Analysis

Lab Work Order #: L938889
Project P.O. #: NOT SUBMITTED

Job Reference: Legal Site Desc:

C of C Numbers: 1, 2, 3, 4, 5, 6, 7, 8

Comments: ADDITIONAL 21-FEB-11 10:01 ADDITIONAL 21-FEB-11 10:01

08-MAR-11: Samples containing algae and sediment were submitted to ALS for analysis of Dry Weight. Subsequently, on February 17, 2011, total metals analysis was requested on some of the samples and Ash free dry weight was requested on the remainder.

In order to determine dry weight of the algae and sediment, samples were filtered through pre-weighed glass fibre filters. Algae and sediment found on the filter and the filter itself were then dried at 105 degrees Celcius. The dry weight of the sample was determined by subtracting the weight of the filter from the total dry weight.

Ash free dry weight was determined by ashing the dry sample at 550 degrees Celcius and subtracting the ash weight from the dry weight of the sample.

Total metals were analysed by digesting the dry sample (including the filter) using regular CSR digestion procedures and subsequently analysing the digest using ICPOES, ICPMS and CVAFS.

Please note that filter blanks, treated in the same manner as the samples, were digested and analysed for total metals. Levels of some of the metals found in the filter blank sample are quite high and this should be considered wihen reviewing the metals data for the samples.

Heather Easton Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

L East

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LIMITED | Part of the ALS Group | A Campbell Brothers Limited Company

L938889 CONTD.... PAGE 2 of 18

08-MAR-11 10:50 (MT) Version: FINAL REV. 2

Description Sampled Date Sampled Time Client ID BG S		20-SEP-10 TPE ST1 R2	20-SEP-10 TPE ST3 R4	20-SEP-10
	T2 R4 BG ST4 R3	TPE ST1 R2	TPE ST3 R4	TDE OTO DO
				TPE ST2 R3
430	50900	32500	26300	34300
0.3	36 0.43	0.19	0.17	0.62
34	.7 46.9	44.0	18.1	45.4
129	19200	4750	5010	6300
1.8	30 1.83	2.15	1.39	2.08
6.5		4.04	3.36	4.80
1.8		1.29	1.30	1.55
137		5650	7390	7180
57		201	171	268
29		23.8	23.5	25.7
65		85.1	46.4	72.0
675		74700	41000	87900
45		34.6	32.9	34.3
58		56.7	47.2	56.4
279		14800	13000	17300
97		1070	1990	1840
0.0		0.0184	0.0173	0.0233
4.2		6.82	3.77	5.98
19		123	94.2	145
10		1210	760	1240
115		7290	6530	8200
0.6		0.83	0.43	0.90
0.7		0.39	0.38	0.45
244		8320	8910	11900
16		43.9	49.1	52.6
0.4		0.476	0.446	0.501
				3.1
				1180
				24.6
				61.6
				4580
	111 20 83	9.8 4.9 1180 1240 20.7 15.3 83.4 93.4 9180 13700	1180 1240 1100 20.7 15.3 27.1 83.4 93.4 61.9	1180 1240 1100 1020 20.7 15.3 27.1 17.9 83.4 93.4 61.9 52.2

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD.... PAGE 3 of 18

ALS LABORATORY GROUP ANALYTICAL REPORT

08-MAR-11 10:50 (MT) Version: FINAL REV. 2

		Sample ID	L938889-23	L938889-27	L938889-29	L938889-32	L938889-45
		Description Sampled Date	20-SEP-10	21-SEP-10	21-SEP-10	21-SEP-10	23-SEP-10
		Sampled Time Client ID	BG ST6 R3	TE ST4 R3	TE ST5 R2	TE ST1 R1	SP ST6 R2
Grouping	Analyte						
SOIL	Analyte						
Metals	Aluminum (AI) (mg/kg)						
Wetais	Antimony (Sb) (mg/kg)		49800	36700	40900	39200	36900
			0.53	0.47	0.79	0.75	0.21
	Arsenic (As) (mg/kg)		34.4	16.7	11.9	45.9	26.6
	Barium (Ba) (mg/kg)		19600	17300	33000	28000	4090
	Beryllium (Be) (mg/kg)		1.60	2.31	1.89	2.26	3.01
	Bismuth (Bi) (mg/kg)		6.29	6.03	9.19	8.36	5.31
	Cadmium (Cd) (mg/kg)		0.75	0.81	1.05	1.03	1.68
	Calcium (Ca) (mg/kg)		17100	14200	25400	21900	6680
	Chromium (Cr) (mg/kg)		744	69.4	77.7	82.4	137
	Cobalt (Co) (mg/kg)		34.4	22.9	14.3	11.2	18.0
	Copper (Cu) (mg/kg)		57.8	75.4	53.4	63.1	142
	Iron (Fe) (mg/kg)		71300	57800	35700	65300	57700
	Lead (Pb) (mg/kg)		44.4	55.8	109	60.2	38.3
	Lithium (Li) (mg/kg)		54.1	58.8	58.8	50.7	62.3
	Magnesium (Mg) (mg/kg)		33700	11300	12700	12700	13600
	Manganese (Mn) (mg/kg)		770	6100	2340	848	838
	Mercury (Hg) (mg/kg)		0.0148	0.0258	0.0320	0.0275	0.0283
	Molybdenum (Mo) (mg/kg)		3.63	8.79	4.69	7.42	10.4
	Nickel (Ni) (mg/kg)		246	68.8	51.6	47.6	122
	Phosphorus (P) (mg/kg)		861	999	1050	2770	1040
	Potassium (K) (mg/kg)		14500	13700	21400	18600	7680
	Selenium (Se) (mg/kg)		0.53	0.67	0.99	0.89	1.40
	Silver (Ag) (mg/kg)		0.91	0.56	1.08	1.01	0.86
	Sodium (Na) (mg/kg)		33200	28600	55300	46800	8580
	Strontium (Sr) (mg/kg)		200	173	315	268	50.9
	Thallium (TI) (mg/kg)		0.401	0.666	0.629	0.536	0.497
	Tin (Sn) (mg/kg)		5.0	5.1	7.9	11.1	3.2
	Titanium (Ti) (mg/kg)		1030	1210	1130	1100	927
	Uranium (U) (mg/kg)		12.8	33.3	23.7	24.2	36.3
	Vanadium (V) (mg/kg)		93.8	44.8	38.9	39.4	59.8
	Zinc (Zn) (mg/kg)		12300	10800	21000	17600	3400
	, , , , ,		12300	10000	21000	17000	3400

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD.... PAGE 4 of 18

ALS LABORATORY GROUP ANALYTICAL REPORT

08-MAR-11 10:50 (MT) Version: FINAL REV. 2

		Sample ID	L938889-49	L938889-59	L938889-60	L938889-63
		Description Sampled Date	17-SEP-10	24-SEP-10	24-SEP-10	
		Sampled Time Client ID	TPS ST1 R2	TPE ST4 R4	TPE ST2 OW R1	FILTER BLANK
Grouping	Analyte					
SOIL	·					
Metals	Aluminum (Al) (mg/kg)		28600	31400	43000	513
	Antimony (Sb) (mg/kg)		0.34	0.34	0.48	0.24
	Arsenic (As) (mg/kg)		59.8	32.1	39.1	0.118
	Barium (Ba) (mg/kg)		15200	9490	10700	1240
	Beryllium (Be) (mg/kg)		1.57	1.86	2.21	<0.20
	Bismuth (Bi) (mg/kg)		7.32	4.17	4.97	0.52
	Cadmium (Cd) (mg/kg)		3.24	0.51	0.45	0.26
	Calcium (Ca) (mg/kg)		12500	8170	9670	886
	Chromium (Cr) (mg/kg)		105	124	363	1.07
	Cobalt (Co) (mg/kg)		23.9	23.2	27.5	<0.10
	Copper (Cu) (mg/kg)		60.7	92.3	69.0	8.76
	Iron (Fe) (mg/kg)		57900	63900	71000	60
	Lead (Pb) (mg/kg)		43.3	39.7	43.3	7.48
	Lithium (Li) (mg/kg)		43.3	50.3	68.8	1.2
	Magnesium (Mg) (mg/kg)		11600	12200	23000	255
	Manganese (Mn) (mg/kg)		2250	2620	899	3.0
	Mercury (Hg) (mg/kg)		0.0160	0.0238	0.0252	<0.0050
	Molybdenum (Mo) (mg/kg)		6.46	6.38	4.76	<0.50
	Nickel (Ni) (mg/kg)		78.3	89.6	170	<0.50
	Phosphorus (P) (mg/kg)		1220	973	767	<50
	Potassium (K) (mg/kg)		10100	9010	11800	1180
	Selenium (Se) (mg/kg)		0.62	0.67	0.69	<0.20
	Silver (Ag) (mg/kg)		0.51	0.43	0.82	0.16
	Sodium (Na) (mg/kg)		27600	15200	17300	5430
	Strontium (Sr) (mg/kg)		94.4	99.7	122	7.53
	Thallium (TI) (mg/kg)		0.407	0.499	0.503	<0.050
	Tin (Sn) (mg/kg)		5.0	3.3	4.6	<2.0
	Titanium (Ti) (mg/kg)		875	1020	1310	3.6
	Uranium (U) (mg/kg)		21.1	21.6	21.8	<0.050
	Vanadium (V) (mg/kg)		37.2	46.4	75.0	<0.20
	Zinc (Zn) (mg/kg)					
	Zinc (Zn) (mg/kg)		11100	5790	6540	1160

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD.... PAGE 5 of 18

08-MAR-11 10:50 (MT) Version: FINAL REV. 2

		Sample ID Description Sampled Date Sampled Time Client ID	L938889-1 18-SEP-10 BG ST2 R1	L938889-2 18-SEP-10 BG ST2 R2	L938889-3 18-SEP-10 BG ST2 R3	L938889-4 18-SEP-10 BG ST2 R4	L938889-5 20-SEP-10 BG ST4 R1
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)		0.850	0.746	0.775	1.03	0.726
	Ash Weight (g)		0.777	0.680	0.701		0.656
	Ash Free Dry Weight (g)		0.0733	0.0657	0.0739		0.0699

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD.... PAGE 6 of 18

08-MAR-11 10:50 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

Version: FINAL REV. 2

	Sample II	L938889-6	L938889-7	L938889-8	L938889-9	L938889-10
	Descriptio Sampled Dat Sampled Tim	20-SEP-10	20-SEP-10	20-SEP-10	20-SEP-10	20-SEP-10
	Client I		BG ST4 R3	BG ST4 R4	TPE ST1 R1	TPE ST1 R2
Grouping	Analyte					
TISSUE						
Physical Tests	Dry Weight (g)	0.745	0.788	0.746	0.921	2.87
	Ash Weight (g)	0.684		0.675	0.811	
	Ash Free Dry Weight (g)	0.0614		0.0719	0.111	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD.... PAGE 7 of 18

08-MAR-11 10:50 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

Version: FINAL REV. 2

	Sample I		L938889-12	L938889-13	L938889-14	L938889-15
	Description Sampled Da	te 20-SEP-10	20-SEP-10	20-SEP-10	20-SEP-10	20-SEP-10
	Sampled Tin Client		TPE ST1 R4	TPE ST3 R1	TPE ST3 R2	TPE ST3 R3
Grouping	Analyte					
TISSUE						
Physical Tests	Dry Weight (g)	1.01	1.53	1.44	2.34	1.41
	Ash Weight (g)	0.906	1.35	1.32	2.14	1.26
	Ash Free Dry Weight (g)	0.103	0.186	0.117	0.199	0.153

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD....

PAGE 8 of 18 08-MAR-11 10:50 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT 08-MAR-11 10:50 (MT) Version: FINAL REV. 2

		Sample ID Description	L938889-16 20-SEP-10	L938889-17	L938889-18	L938889-19	L938889-20
		Sampled Date Sampled Time Client ID		20-SEP-10 TPE ST2 R1	20-SEP-10 TPE ST2 R2	20-SEP-10 TPE ST2 R3	20-SEP-10 TPE ST2 R4
Grouping	Analyte						
TISSUE	•						
Physical Tests	Dry Weight (g)		2.84	0.953	0.683	1.15	0.715
•	Ash Weight (g)		2.04	0.840	0.603	1.10	0.635
	Ash Free Dry Weight (g)			0.113	0.0804		0.0804
				0.110	0.0004		0.0004

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD.... PAGE 9 of 18

08-MAR-11 10:50 (MT) Version: FINAL REV. 2

		Sample ID Description Sampled Date Sampled Time Client ID	L938889-21 20-SEP-10 BG ST6 R1	L938889-22 20-SEP-10 BG ST6 R2	L938889-23 20-SEP-10 BG ST6 R3	L938889-24 20-SEP-10 BG ST6 R4	L938889-25 21-SEP-10 TE ST4 R1
		Client ID					
Grouping	Analyte						
TISSUE	Dm. Mai-bt (-)						
Physical Tests	Dry Weight (g) Ash Weight (g)		0.808	0.736	0.810	0.810	0.408
			0.741	0.664		0.749	0.334
	Ash Free Dry Weight (g)		0.0675	0.0721		0.0615	0.0741

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD....

PAGE 10 of 18 08-MAR-11 10:50 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

Version: FINAL REV. 2

				I	1		I
		Sample ID Description	L938889-26	L938889-27	L938889-28	L938889-29	L938889-30
		Sampled Date	21-SEP-10	21-SEP-10	21-SEP-10	21-SEP-10	21-SEP-10
		Sampled Time Client ID	TE ST4 R2	TE ST4 R3	TE ST4 R4	TE ST5 R2	TE ST5 R3
Grouping	Analyte						
TISSUE	, and yet						
Physical Tests	Dry Weight (g)		0.363	1.23	1.04	0.688	0.578
,	Ash Weight (g)		0.303	1.23	0.909	0.000	0.443
	Ash Free Dry Weight (g)		0.292		0.909		0.443
	, 5 (6)		0.0713		0.131		0.133

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD.... PAGE 11 of 18

08-MAR-11 10:50 (MT) Version: FINAL REV. 2

ALS LABORATORY GROUP ANALYTICAL REPORT

L938889-31 L938889-32 L938889-33 L938889-34 L938889-35 Sample ID Description 21-SEP-10 21-SEP-10 21-SEP-10 21-SEP-10 21-SEP-10 Sampled Date Sampled Time TE ST5 R4 TE ST1 R1 TE ST1 R2 TE ST1 R3 TE ST1 R4 Client ID Grouping Analyte **TISSUE Physical Tests** Dry Weight (g) 0.739 0.485 0.613 0.341 0.629 Ash Weight (g) 0.486 0.243 0.339 0.513 Ash Free Dry Weight (g) 0.127 0.0978 0.146 0.116

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD....

PAGE 12 of 18 08-MAR-11 10:50 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

Version: FINAL REV. 2

		Sample ID	L938889-36	L938889-37	L938889-38	L938889-39	L938889-40
		Description Sampled Date	23-SEP-10	23-SEP-10	23-SEP-10	23-SEP-10	23-SEP-10
		Sampled Time Client ID	SP ST1 R1	SP ST1 R2	SP ST1 R3	SP ST1 R4	SP ST7 R1
		Client ID					
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)		0.285	0.328	0.265	0.284	0.189
	Ash Weight (g)		0.242	0.278	0.225	0.245	0.109
	Ash Free Dry Weight (g)		0.0427	0.0501	0.0401	0.0387	0.0799

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD....

PAGE 13 of 18 08-MAR-11 10:50 (MT)

08-MAR-11 10:50 (MT) Version: FINAL REV. 2

		Sample ID	L938889-41	L938889-42	L938889-43	L938889-44	L938889-45
		Description Sampled Date	23-SEP-10	23-SEP-10	23-SEP-10	23-SEP-10	23-SEP-10
		Sampled Time	SP ST7 R2	SP ST7 R3	SP ST7 R4	SP ST6 R1	SP ST6 R2
		Client ID	3F 317 K2	0F 317 K3	3F 317 K4	3F 310 K1	3F 310 K2
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)		0.213	0.179	0.180	1.25	3.71
	Ash Weight (g)		0.114	0.110		1.02	
	Ash Free Dry Weight (g)		0.0987	0.0684		0.225	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD....

PAGE 14 of 18 08-MAR-11 10:50 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

Version: FINAL REV. 2

		mple ID L938889-46 scription	L938889-47	L938889-48	L938889-49	L938889-50
	Samp	led Date 23-SEP-10	23-SEP-10	17-SEP-10	17-SEP-10	17-SEP-10
		led Time Client ID	SP ST6 R4	TPS ST1 R1	TPS ST1 R2	TPS ST1 R3
Grouping	Analyte					
TISSUE						
Physical Tests	Dry Weight (g)	2.07	1.21	0.727	0.876	0.300
	Ash Weight (g)	1.69	0.992	0.659		0.254
	Ash Free Dry Weight (g)	0.374	0.220	0.0684		0.0464

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD.... PAGE 15 of 18

08-MAR-11 10:50 (MT) Version: FINAL REV. 2

		Sample ID Description Sampled Date Sampled Time Client ID	L938889-51 17-SEP-10 TPS ST1 R4	L938889-52 17-SEP-10 TPS ST2 R1	L938889-53 17-SEP-10 TPS ST2 R2	L938889-54 17-SEP-10 TPS ST2 R3	L938889-55 17-SEP-10 TPS ST2 R4
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)		0.568	0.239	0.206	0.234	0.194
	Ash Weight (g)		0.509	0.182	0.159	0.181	0.146
	Ash Free Dry Weight (g)		0.0599	0.0572	0.0462	0.0528	0.0481
			0.0000	0.0072	0.0102	0.0020	0.0101

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD....

PAGE 16 of 18 08-MAR-11 10:50 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

Version: FINAL REV. 2

		Sample ID	L938889-56	L938889-57	L938889-58	L938889-59	L938889-60
		Description Sampled Date	24-SEP-10	24-SEP-10	24-SEP-10	24-SEP-10	24-SEP-10
		Sampled Time Client ID	TPE ST4 R1	TPE ST4 R2	TPE ST4 R3	TPE ST4 R4	TPE ST2 OW R
Grouping	Analyte						
TISSUE	•						
Physical Tests	Dry Weight (g)		0.878	1.34	0.444	2.35	1.58
	Ash Weight (g)		0.728	1.15	0.361	2.00	1.00
	Ash Free Dry Weight (g)		0.151	0.187	0.0828		
	, .		0.101	0.107	0.0020		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L938889 CONTD....

PAGE 17 of 18 08-MAR-11 10:50 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

Version: FINAL REV. 2

	9 9	Sample ID Description Sampled Date Sampled Time Client ID	L938889-61 24-SEP-10 TPE ST2 OW R2	L938889-62 24-SEP-10 TPE ST2 OW R3		
Grouping	Analyte					
TISSUE	7 11 10 17 10					
Physical Tests	Dry Weight (g)		1.54	1.48		
•	Ash Weight (g)		1.36	1.30		
	Ash Free Dry Weight (g)		0.180	0.179		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L938889 CONTD....

PAGE 18 of 18

08-MAR-11 10:50 (MT)

Version: FINAL REV. 2

Qualifiers for Individual Parameters Listed:

Qualifier	Description
RM-H	Reference Material recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Test Method References:

ALS Test Code Matrix		Test Description	Method Reference**
ASHFREE-DRY-VA	Tissue	Ash Free Dry Weight	44.3 ASH CONTENT & ORG. MATTER CONTENT

This analysis is carried out using procedures adapted from the Canadian Society of Soil Science method "44.3 Ash Content and Organic Matter Content", (1993). Ash Free Dry Weight is determined by the difference between 'Dry Weight' and 'Ash Weight' which are both determined gravimetrically. Dry Weight is determined by drying the sample at 105 "C and the Ash Weight is subsequently determined by ashing the dried sample at 550 "C.

HG-200.2-CVAF-VA Soil Mercury in Soil by CVAFS EPA 200.2/245.7

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 245.7).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is dried at 40 C, then ground to < 2 mm particle size using a stainless steel flail grinder. A representative portion is digested with concentrated nitric and hydrochloric acids for 2 hours in an open vessel digestor at 95 degrees. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modifed from EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Lo	ocation						
VA	ALS LABORA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA						
Chain of Custody Numbers:								
1	2	3	4	5				

GLOSSARY OF REPORT TERMS

Surrogate A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

8

mg/kg milligrams per kilogram based on dry weight of sample.

mg/kg wwt milligrams per kilogram based on wet weight of sample.

mg/kg lwt milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L milligrams per litre.

< - Less than.

D.L. The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS)

Canada Toll Free: 1 800 668 9878 www.alsglobal.com

Page 1 of 8

Environmental Division

L.	
A	Canada Toll Free: *
.5)	www.aisglob

Report Format / Distribution Report to: Service Requested: Company: Azimuth Consulting Group Inc. Standard Cther Regular Service (Default) Maggie McConnell PDF Excel
 ■ Contact: r Fax Rush Service (2-3 Days) 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 Address: Email 1: mmcconnell@azimuthgroup.ca Priority Service (1 Day or ASAP) Email 2: gmann@azimuthgroup.ca Emergency Service (<1 Day / Wkend) - Contact ALS 604-730-1220 Analysis Request Phone: Fax: Indicate Bottles: Filtered / Preserved (F/P) → Invoice To: Same as Report Company: Client / Project Information: Contact: Meadowbank Mine EAS Job #: Address: PO/AFE: Highly Contaminated? Number of Containers Sample Legal Site Description: Phone: Quote #: Q24230 Fax: Lab Work Order # ALS Sampler _938 889 Hazardous? Weight Natasha MM MDF, MLM Contact: (Initials): Sample Sample Identification Date Time Sample Type 5 (This description will appear on the report) # # hh:mm dd-mmm-yy (Select from drop-down list) diament. BG ST2 R1 18-Sep-10 Other Х BG ST2 R2 18-Sep-10 Other Х BG ST2 R3 18-Sep-10 X Other outrolije. BG ST2 R4 18-Sep-10 Other Х BG ST4 R1 Panie . 20-Sep-10 Other Х IBG ST4 R2 20-Sep-10 Other Х BG ST4 R3 20-Sep-10 Other Х baaaaaaaaaaa BG ST4 R4 Other 20-Sep-10 Х Better or 11 mg Guidelines / Regulations Special Instructions / Hazardous Details ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** Fallure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Relinquished | Morgan Finley Date & Time: Received Sensite Condition (lab use only) has a community 104/0ct 10:40 26-Sep-10 Temperature Samples Received in Good Relinquished Date & Time: Received Date & Time: Condition? Y / N (if no provided details)

ALS Laborátóry Group

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

COC# Page 2 of 8

www.alsglobal.com

Environmental Division Report to: Report Format / Distribution Service Requested: Company: Azimuth Consulting Group Inc. ∇ Standard
□ Other Regular Service (Default) Contact: Maggie McConnell PDF ☑ Excel 厂 Fax Rush Service (2-3 Days) 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 Address: Email 1; mmcconnell@azimuthgroup.ca Priority Service (1 Day or ASAP) Email 2: gmann@azimuthgroup.ca Emergency Service (<1 Day / Wkend) - Contact ALS 604-730-1220 Phone: Fax: Analysis Request Invoice To: Same as Report Indicate Bottles: Filtered / Preserved (F/P) -Company: Client / Project Information: Contact: Meadowbank Mine EAS Job #: Address: PO/AFE: Number of Containers Sample Legal Site Description: Phone: Quote #: Q24230 Fax: Lab Work Order # 🐚 L938 889 ALS Sampler Hazardous? Weight Natasha MM MDF, MLM (lab use only) (Initials): Contact: Sample Identification Sample Time Date Sample Type D'A # 250 (This description will appear on the report) dd-mmm-yy hh:mm (Select from drop-down list) TPE ST1 R1 20-Sep-10 Other distallina. TPE ST1 R2 Х 20-Sep-10 Other gg altilit TPE ST1 R3 20-Sep-10 Other Х i i salah keci TPE ST1 R4 20-Sep-10 Other Х TPE \$T3 R1 20-Sep-10 Other Х TPE ST3 R2 推注编码 20-Sep-10 Other Х TPE ST3 R3 MINISTERN STATE 20-Sep-10 Other Х TPE ST3 R4 20-Sep-10 Other Х Marine 18 Guidelines / Regulations Special Instructions / Hazardous Details ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Relinquished Morgan FinJey Date & Time: Received s Sample Condition (lab use only) appearing the absence Date & Time: 26-Sep-10 Samples Received in Good Relinquished Date & Time: Received Date & Time: Condition? Y / N (if no provided details)

Environmental Division

^P ALS

Unain of Custody / Analytical Request Form Canada Toli Free: 1 800 668 9878

www.alsglobal.com

COC#	 		
	Page	3 of	8_

Report to:	-	Report Fo	rmat / Distributio	n		Ser	vice Rec	uested	:		-				\neg
Company:	Azimuth Consulting Group Inc.	√ Standa	ard Cother			R	Regular	Service	(Def	ault)					一
Contact:	Maggie McConnell	₽DF	☑ Excel ☐	Fax		Г	Rush Se								\neg
Address:	218 - 2902 West Broadway, Vancouver, BC, V6K 2G8	Email 1:	mmcconnell@azir	nuthgroup.ca		T-	Priority	Service	(1 Da	у ог А	SAP)				ᆿ
		Email 2:	gmann@azimuthg	roup.ca		Γ	Emerge					end) -	Conta	ct AL	s
Phone:	604-730-1220 Fax:						· -		Analy	sis R	eque	st .			\neg
Invoice To:	Same as Report Same			Indicate Bottle	s: Filtered / Preserved (F/P) ↔-			, I			-	\top	\top		\neg
Сотрапу:		Client / Pi	roject Information	:									7 /	١. ا	
Contact:		Job #:		Meadowbank M	ine EAS	1				1 1	- 1				, ,
Address:		PO/AFE:				1								2	ıχ
Sample		Legal Site	Description:			1							!	뚌	Ē
Phone:	Fax:	Quote #:	Q24230			1				1				뺼	먑
, Prochab	Work Order # 238887	ALS	Natasha MM	Sampler	MDF, MLM	Ħ			1				ازخ	Contaminated?	Number of Containers
1111		Contact:		(Initials):		Weight]			1 1	- 1		팅	[진	ě
∄ Sample	Sample Identification		Date	Time	Sample Type	<u>></u>	i						Hazardous?	High	틸
ing #light	(This description will appear on the report)		dd-mmm-yy	hh:mm	(Select from drop-down list)	Dny		$\perp \perp$		$\downarrow \downarrow$	_		<u> </u>	포	Ž
	TPE ST2 R1		20-Sep-10	<u> </u>	Other	Х	<u> </u>		_	1			!	Ш	Щ
	TPE ST2 R2		20-Sep-10		Other	X	<u> </u>	$\perp \perp$	\bot	$\downarrow \downarrow \downarrow$	_	\bot	$\perp \!\!\! \perp \!\!\! \perp \!\!\! \perp$	Ш	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
	TPE ST2 R3		20-Sep-10	·	Other	X				1			_ '	\sqcup	لب
A STATE OF THE PARTY OF THE PAR	TPE ST2 R4		20-Sep-10		Other	X		\sqcup		4-1					
	BG ST6 R1		20-Sep-10		Other	X		1. 1.]		!	Ш	Ш
	BG ST6 R2		20-Sep-10		Other	X		$\perp \perp$	_	1			$oldsymbol{\perp}$		
	BG ST6 R3	-	20-Sep-10		Other	Х		1							,
TO AND AND THE COMME	BG ST6 R4		20-Sep-10		Other	Х		4		\sqcup		\bot	$oldsymbol{\perp}$		Ш
distriction of the second						ļ				\sqcup		\bot			
	Cuitaliana (Daniela)				<u> </u>	<u> </u>		Щ				Щ.			
	Guidelines / Regulations		** C		Special Instructions										
	Failure As a second de				sediments; please contac			other a	nalyse	es (e.g	., ash	-free D	W) **		_
	By the use of this form the user ackn				. Please fill in this form			nt war	kebaa						
Relinquished	Marana Sieley Date 9 Times	Received	C	Date & Time:	1 1 1	base.		Ser Ser			lah Ose	nniv) iii	a ministr	otopp.iv.	o kazardi
Ву:	26-Sep-10	Ву:	<u> </u>	Date & Time.	04/oct 10:4)	Temperatu			Receive			ga.12.1610279	20010122	-falate
Relinquished By:	**************************************	Received By:		Oate & Time:			148		Conditio	n? Y / h	V (if				

' 🙈

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

COC#	 		

provided details)

www.alsglobal.com **Environmental Division** Page __4 of __8 Report to: Report Format / Distribution Service Requested: Company: Azimuth Consulting Group Inc. ✓ Standard Other Regular Service (Default) Maggie McConnell PDF Excel
 ■ Contact: ☐ Fax Rush Service (2-3 Days) 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 Address: Email 1; mmcconnell@azimuthgroup.ca Priority Service (1 Day or ASAP) Email 2: gmann@azimuthgroup.ca Emergency Service (<1 Day / Wkend) - Contact ALS Phone: 604-730-1220 Fax: **Analysis Request** Involce To: ✓ Same as Report Indicate Bottles: Filtered / Preserved (F/P) -Client / Project Information: Company: Contact: Meadowbank Mine EAS Job #: Address: PO/AFE: Highly Contaminated? Number of Containers Sample Legal Site Description: Phone: Q24230 Fax: Quote #: ille mit Lab Work Order # Page 10 ALS Sampler Hazardous? Natasha MM MDF, MLM (lab use only) Contact: (Initials): Sample Sample Identification Time Date Sample Type 5 (This description will appear on the report) # # hh:mm dd-mmm-yy (Select from drop-down list) TE ST4 R1 Other 21-Sep-10 Х TE ST4 R2 rapalit Han 21-Sep-10 Other Х TE ST4 R3 21-Sep-10 Other Х TE ST4 R4 21-Sep-10 Other Х MUNICIPETED TE ST5 R2 21-Sep-10 Other Х TE ST5 R3 with the Co 21-Sep-10 Other Х TE ST5 R4 Х 21-Sep-10 Other cidenconti Sec. 314 وبالإرزاد Guidelines / Regulations Special Instructions / Hazardous Details ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Relinguished Morgan Finley Date & Time Received Date & Time: Sample Condition ((ab use only) and a measurable 26-Sep-10 Oct Temperature Samples Received in Good Relinquished Date & Time Received Date & Time: Condition? Y / N (if no

Bv:

' **A**LS

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

000#	 			-
	Page	5 of	8	

0004

Environmental Division

Canada Toll F
www.al

Report to: Report Format / Distribution Service Requested: Company: Azimuth Consulting Group Inc. ✓ Standard ☐ Other □ Regular Service (Default) Maggie McConnell PDF Contact: F Excel F Fax Rush Service (2-3 Days) 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 Address: Email 1: mmcconnell@azimuthgroup.ca Priority Service (1 Day or ASAP) gmann@azimuthgroup.ca Email 2: Emergency Service (<1 Day / Wkend) - Contact ALS Phone: 604-730-1220 Fax: Analysis Request Invoice To: Same as Report Indicate Bottles: Filtered / Preserved (F/P) Company Client / Project Information: Contact: Meadowbank Mine EAS Job #: Address: PO/AFE: Highly Contaminated? Number of Containe Sample Legal Site Description: Phone: Quote #: Q24230 Fax: Lab Work Order # L938 885 AL\$ Sampler Hazardous? Natasha MM MDF, MLM (lab use only) Contact: (Initials) Sample Sample Identification Date Time Sample Type Š # (This description will appear on the report) dd-mmm-yy hh:mm (Select from drop-down list) ing TE ST1 R1 21-Sep-10 Other х TE ST1 R2 wana a 21-Sep-10 Х Other TE ST1 R3 21-Sep-10 Other Х TE ST1 R4 i Padiwe 21-Sep-10 Other х SP ST1 R1 23-Sep-10 Other Х 的機關於自 SP ST1 R2 23-Sep-10 Other Х SP ST1 R3 intrania) 23-Sep-10 Other Х SP ST1 R4 23-Sep-10 Other Х way m **Guidelines / Regulations** Special Instructions / Hazardous Details ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Relinquished Morgan Firey Date & Time Received Date & Time: Sample Condition (lab usa only) standard conditions -vissemiavimetėlėjisti 26-Sep-10 Temperature Samples Received in Good Relinquished Date & Time: Received Date & Time: Condition? Y / N (if no provided details)

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC# Page 6 of 8

Environmental Division

Report Format / Distribution Report to: Service Requested: Company: Azimuth Consulting Group Inc. ✓ Standard Other Regular Service (Default) Contact: Maggie McConnell ₩ PDF Excel
 ■ Fax Rush Service (2-3 Days) 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 Address: Email 1: mmcconnell@azimuthgroup.ca Priority Service (1 Day or ASAP) Email 2: gmann@azimuthgroup.ca Emergency Service (<1 Day / Wkend) - Contact ALS Phone: 604-730-1220 Analysis Request Fax: Invoice To: ✓ Same as Report Indicate Bottles: Filtered / Preserved (F/P) ---Client / Project Information: Company: Contact: Job #: Meadowbank Mine EAS PO/AFE: Address: Highly Contaminated? Number of Containers Sample Legal Site Description: Phone: Quote #: Q24230 Fax: Lab Work Order # 3435 ALS Sampler Hazardous? Natasha MM MDF, MLM (lab use only) Contact: (Initials); Sample Sample Identification Time Date Sample Type Š # # (This description will appear on the report) hh:mm dd-mmm-yy (Select from drop-down list) SP ST7 R1 23-Sep-10 Other Х SP ST7 R2 23-Sep-10 Other Х meanufak: SP ST7 R3 23-Sep-10 Other Х SP ST7 R4 li Manupiali 23-Sep-10 х Other SP ST6 R1 23-Sep-10 Other Х SP ST6 R2 23-Sep-10 Other Х aliekeleter SP ST6 R3 23-Sep-10 Other Χ SP ST6 R4 Other Х 23-Sep-10 KHO TERM Guidelines / Regulations Special Instructions / Hazardous Details * Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** Fallure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Relinquished Morgan Finley Date & Time: Received Date & Time: Sample Condition (lab use only) Separation of Page 1997 CH 26-Sep-10 By: Temperature Samples Received in Good Relinquished Date & Time: Received Date & Time: Condition? Y / N / If no provided details)

Environmental Division

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

www.alsglobal.com

COC#	 	
	Page	 8

Report to:	Report F	ormat / Distributio	n		Ser	vice Rec	uested	:					_	\neg
Company: Azimuth Consulting Group Inc.	√ Stand	ard COther	<u> </u>		₽	Regular	Service	e (Def	ault)					ㅓ
Contact: Maggie McConnell	₩ PDF	PDF FExcel Fax					Rush Service (2-3 Days)							\exists
Address: 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8	Email 1:	ail 1: mmcconnell@azimuthgroup.ca				Priority Service (1 Day or ASAP)						\neg		
	Email 2:	gmann@azimuthg	roup.ca		T	Emerge		` 	•		1d) - Cc	ontact	t ALf	s
Phone: 604-730-1220 Fax:			-		┢	<u> </u>				equest				
Invoice To:			Indicate Bottle	s; Filtered / Preserved (F/P)			TT	Т			\top	\neg	Т	ᅦ
Company:	Client / P	roject Information	1:					1	1		\top			
Contact:	Job #:		Meadowbank M	line EAS	1	Ιİ		- 1		.		i	ĺ	-
Address:	PO/AFE:				1					i I			2	y,
Sample	Legal Site	Description:			1			-					æ	ine
Phone: Fax:	Quote #:	Q24230						ļ					Ë	
Lab Work Order # L938889	ALS Contact:	Natasha MM	Sampler (Initials):	MDF, MLM	Weight				1.			Hazardous?	Contaminated?	Number of Containers
%Sample dentification		Date	Time	Sample Type	≸							ag	Highly	agu
(This description will appear on the report)		dd-mmm-yy	hh:mm	(Select from drop-down list)	Dη			ŀ				훈	Ē	ž
TPS ST1 R1		17-Sep-10		Other	Х									ᅦ
TPS ST1 R2		17-Sep-10		Other	Х							丁	十	╗
IIII向际的 TPS ST1 R3		17-Sep-10		Other	х							T	\neg	71
TPS ST1 R4		17-Sep-10		Other	Х						11		\dashv	\exists
TPS ST2 R1		17-Sep-10		Other	х				1		\top		\exists	Π
TPS ST2 R2		17-Sep-10		Other	X							\neg	T	\sqcap
TPS ST2 R3		17-Sep-10		Other	х						\top		丁	ᆲ
TPS ST2 R4		17-Sep-10		Other	Х									\Box
White page 1 or 1														
and of Mary														
Guldelines / Regulations	<u>,</u> .			Special Instructions								$\overline{}$		\Box
				sediments; please contact			other a	nalys	es (e.g	., ash-fr	ee DW) ^*		
				s. Please fill in this form										
By the use of this form the user ack				Conditions as specified o										ٺ
Relinquished Morgan Finley Date & Time: 26-Sep-10	Received By:	SH	Date & Time:	04/0ct 10:40	(9¢∉≈	Temperatu		min.mid3.434.4				A PAGES	111111111111111111111111111111111111111	PRES.
Relinquished Date & Time:	Received By:		Date & Time:			14,8		Conditi		ed in Good N (if no etails)				-

Environmental Division

`**A**

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

COC# _____8 of __8

www.alsglobal.com

Report to: Report Format / Distribution Service Requested: Company: Azimuth Consulting Group Inc. ✓ Standard

✓ Other Regular Service (Default) ₩ PDF Maggie McConnell ✓ Excel ☐ Fax Contact: Rush Service (2-3 Days) 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 Email 1: mmcconnell@azimuthgroup.ca Address: Priority Service (1 Day or ASAP) Email 2: gmann@azimuthgroup.ca Emergency Service (<1 Day / Wkend) - Contact ALS Phone: 604-730-1220 Fax: **Analysis Request** Invoice To: ✓ Same as Report Indicate Bottles: Filtered / Preserved (F/P) → Client / Project Information: Company: Contact: Meadowbank Mine EAS Job#: PO/AFE: Address: Highly Contaminated? Number of Containers Sample Legal Site Description: Phone: Fax: Quote #: Q24230 Lab Work Order # ALS Sampler Hazardous? Natasha MM MDF, MLM (lab use only) Contact: (Initials): Sample Identification Sample Date Time Sample Type 9 # 27 (This description will appear on the report) hh:mm dd-mmm-yy (Select from drop-down list) TPE ST4 R1 Other 24-Sep-10 Х TPE ST4 R2 distribution of the 24-Sep-10 Other Х a distribution l TPE ST4 R3 24-Sep-10 Other х emprenation (de TPE ST4 R4 24-Sep-10 Other Х TPE ST2 OW R1 24-Sep-10 Other Х TPE \$T2 OW R2 iliosaabid 24-Sep-10 Other х TPE ST2 OW R3 24-Sep-10 Other inglikeki him week off Guldelines / Regulations Special Instructions / Hazardous Details ** Samples are a mix of water and sediments; please contact us regarding other analyses (e.g., ash-free DW) ** Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Relinguished Morgan Finley Date & Time: Received and the second s Date & Time: 26-Sep-10 oct By: Temperature Samples Received in Good Relinguished Date & Time: Received Date & Time: Condition? Y / N (if no provided details)

APPENDIX F

PRESENCE (+) / ABSENCE (-) MATRIX OF PERIPHYTON SPECIES 2010

	Species & Code	SP-BL-1	SP-BL-2				SP-GSM-1				
	,	22-Aug-10	22-Aug-10	22-Aug-10	22-Aug-10	22-Aug-10	22-Aug-10	zz-Aug-10	7 22-Aug-10	7 22-Aug-10	ZZ-Aug-1
1014	Chroococcus limneticus Lemmermann		_	_			_				
1014	Chroococcus turgidus (Kutzing) Nageli	-	-	-	-	-	-	-	-	-	-
1033	Rhabdogloea lineare Schmidle and Lauterbo	-	-	-	-	-	-	-	-	-	-
1040	Phormidium	-	-	-	-	-	-	-	-	-	-
1070	Anabaenopsis	-	-	-	+	-	-	+	-	+	+
1077	Pseudoanabaena	+	+	-	-	+	+	+	+	-	+
1081	Nostoc	-	-	-	+	-	-	-	-	-	-
1084	Gloeocapsa punctata	+	+	+	-	+	+	+	+	+	-
1104 1122	Scytonema Phormidium autumnale Agardh	-	-	-	-	-	+	-	-	-	-
1124	Petalonema alatum Berk	-	-	+	-	+	+	+	+	+	+
1133	Anabaena flos-aquae (Lyngb.) Breb. & Borne	-	-	-	-	-	-			-	-
1135	Anabaena mendotae	-	-	-	-	-	-	-	-	-	-
1136	Lyngbya mucicola Lemmermann	+	+	+	+	+	+	+	+	+	+
1219	Stigonema mamillosum Gardner	-	-	-	-	-	-	-	-	-	-
1220	Rivularia dura Roth	-	+	-	-	-	-	-	-	-	-
1224	Chroococcopsis fluviatilas Geitler	-	-	-	-	-	-	-	-	-	-
	Chlorophyte										
2121	Oocystis lacustris Chodat	-	-	-	-	-	-	-	-	-	-
2178	Cosmarium	-	+	-	-	-	-	-	-	-	+
2199	Spondylosium planum (Wolle) W. and G.S. V	-	-	-	-	-	-	-	-	-	-
2205	Mougeotia	-	-	-	-	-	+	+	-	+	-
2216	Zygnema	-	-	-	-	-	-	-	+	+	+
2228	Oedogonium	-	-	-	-	-	-	-	-	-	-
2511	Ulothrix zonata Kutzing	-	-	-	-	-	-	-	-	-	-
	Chrysophyte										
4388	Dinobryon sertularia Ehrenberg	-	-	-	-	-	-	+	-	-	-
	Diatom										
5507	Cyclotella stelligera Cleve and Grunow	-	-	-	-	+	+	+	+	+	-
5513	Tabellaria fenestrata (Lyngbye) Kutzing	+	+	-	-	+	+	+	+	+	-
5514	Tabellaria flocculsa (Roth) Kutzing	+	+	+	+	+	+	+	+	+	+
5516	Fragilaria construens (Ehrenberg) Grunow	-	-	-	-	-	-	-	-	+	-
5518	Synedra acus Kutzing	-	-	+	-	-	-	-	-	+	-
5523	Synedra ulna (Nitzsch) Ehrenberg	-	-	-	-	-	-	-	-	-	-
5524	Asterionella formosa Hassall	-	-	-	-	-	-	-	-	-	-
5538 5546	Penate diatoms	+	-	-	-	-	-	-	-	-	-
5547	Gyrosigma Frustulia rhomboides (Ehrenberg) de Toni	+	-	-	-	-	-	+	-	+	_
5551	Cyclotella michiganiana Skvortzow	+	-	+	+	+	+		_	-	+
5702	Achnanthes minutissima Kutzing	+	+	+	+	+	+	+	+	+	+
5720	Cyclotella bodanica Eulenst	-	-	-	-	-	-	-	-	-	+
5726	Eucocconeis	+	+	+	-	+	-	-	+	-	-
5728	Epithemia argus Kutzing	+	-	+	-	-	+	-	-	+	-
5733	Eunotia pectinalis (Kutzing) Rabenhorst	-	-	-	-	+	-	-	+	-	-
5753	Navicula	-	-	-	-	-	-	-	-	-	-
5778	Stauroneis anceps Ehrenberg	+	-	-	+	-	-	-	+	+	+
5792 5794	Neidium iridis (Ehrenberg) Cleve Pinnularia flexuosa Cleve	-	-	-	-	-	-	-	-	-	-
5794 5805	Cocconies	-	-	-	-	-	+	-	+	-	-
5821	Eunotia exigua (Brebisson) Grunow	-	-	-	-	-	-	-	-	-	-
5825	Fragilaria pinata Ehrenberg	-	-	-	-	-	-	-	-	-	-
5826	Cymbella gracilis (Rabhorst) Cleve	+	-	-	-	-	-	-	-	-	-
5834	Cymbella microcephala Grunow	+	+	+	+	-	-	-	-	-	-
5836	Encyonema silesiacum (Bleisch) D.G. Mann	+	-	-	+	+	+	+	+	-	-
5854	Pinnularia borealis Ehrenberg	-	+	-	+	-	-	+	-	-	-
5860	Diatoma vulgare Bory	+	+	+	+	+	+	+	-	-	+
5865	Cymbella prostata (Berkeley) Cleve	-	-	-	-	-	-	+	-	-	-
5866	Surirella ovata Kutzing	-	-	-	-	-	-	-	-	-	-
5870 5871	Navicula radiosa Kutzing Cymbella lapponica	+	-	+	-	-	-	+	+	+	-
5873	Gomphonema minutum	-	+	+	-	-	+	+	+	-	+
5874	Nitzschia palea (Kutzing) W. Smith	-	+	+	-	-	-	-	-	-	-
5882	Anomoenies vitrea Ross	+	+	+	+	+	+	+	+	+	+
5884	Gomphonema angustum Agardh	-	-	-	-	-	-	-	-	+	-
5887	Navicula pupula Kutzing	-	+	+	+	+	-	-	-	-	-
5916	Fragilaria capucina Grunow	+	+	+	+	-	+	+	+	+	-
	Dinoflagellate										
7632	Gymnodinium	-	-	-	-	-	-	-	-	-	-

	Species & Code										SP-ISLA-5
	Species & Code	22-Aug-10	22-Aug-10	22-Aug-10	22-Aug-10	22-Aug-10	21-Aug-10	21-Aug-10	21-Aug-10	21-Aug-10	21-Aug-10
4044	Cyanophyte										
1014 1015	Chrococcus limneticus Lemmermann	-	+	-	-	+	-	+	-	-	-
1013	Chroococcus turgidus (Kutzing) Nageli Rhabdogloea lineare Schmidle and Lauterbo	. +	-	-	-	-	+	-	-	-	-
1033	Phormidium		-	-	+	-	-	_	_	-	-
1070	Anabaenopsis	+	+	+	+	_	_	+	+	+	_
1077	Pseudoanabaena		-	-	-	-	-		+	-	-
1081	Nostoc	-	-	-	-	-	-	-	-	-	-
1084	Gloeocapsa punctata	-	-	+	+	+	+	+	+	-	+
1104	Scytonema	-	-	-	-	-	+	-	-	+	-
1122	Phormidium autumnale Agardh	-	-	-	-	-	-	-	-	-	+
1124	Petalonema alatum Berk	+	+	+	+	+	+	+	+	+	-
1133	Anabaena flos-aquae (Lyngb.) Breb. & Borne	-	-	-	-	-	-	-	-	-	-
1135	Anabaena mendotae	-	+	-	-	-	-	-	-	-	-
1136	Lyngbya mucicola Lemmermann	+	-	+	+	+	+	+	+	+	+
1219	Stigonema mamillosum Gardner	-	-	-	-	-	-	-	-	-	-
1220	Rivularia dura Roth	-	-	-	-	+	-	-	-	-	+
1224	Chroococcopsis fluviatilas Geitler	-	-	-	-	-	-	-	-	-	-
	Chlorophyte										
2121	Oocystis lacustris Chodat	-	-	-	-	-	-	-	-	-	-
2178	Cosmarium	-	-	-	-	-	-	-	-	-	-
2199	Spondylosium planum (Wolle) W. and G.S. V	-	-	-	-	-	-	-	-	-	+
2205	Mougeotia	+	+	+	-	+	+	-	-	-	-
2216	Zygnema	-	-	+	-	-	-	-	+	+	+
2228	Oedogonium	-	+	-	-	-	-	-	-	-	-
2511	Ulothrix zonata Kutzing	-	-	-	+	-	-	-	-	-	-
	Chrysophyte										
4388	Dinobryon sertularia Ehrenberg	-	-	-	-	-	-	-	-	-	-
	Diatam										
EE07	Diatom Cycletelle etalligere Clave and Crypour	_	_		_	_	_	_	_	_	_
5507 5513	Cyclotella stelligera Cleve and Grunow	-	-	+		-	+				+
5514	Tabellaria fenestrata (Lyngbye) Kutzing Tabellaria flocculsa (Roth) Kutzing	+	+	+ +	+	+	+	+	+	+	+
5516	Fragilaria construens (Ehrenberg) Grunow	+	-	-	-	-	-	-		+	-
5518	Synedra acus Kutzing		_	+	_	_	_	_	_		+
5523	Synedra ulna (Nitzsch) Ehrenberg	_	+	-	-	-	-	_	-	-	-
5524	Asterionella formosa Hassall	-	-	-	-	-	-	-	-	-	-
5538	Penate diatoms	-	-	-	-	-	-	-	-	-	-
5546	Gyrosigma	-	-	+	-	-	-	-	+	-	+
5547	Frustulia rhomboides (Ehrenberg) de Toni	-	-	+	+	+	-	-	-	+	+
5551	Cyclotella michiganiana Skvortzow	+	-	-	+	+	-	-	-	-	+
5702	Achnanthes minutissima Kutzing	+	+	+	+	+	+	+	+	+	+
5720	Cyclotella bodanica Eulenst	-	-	-	-	-	-	-	-	-	-
5726	Eucocconeis	+	+	+	+	+	-	-	+	-	+
5728	Epithemia argus Kutzing	-	-	-	-	-	-	-	-	-	-
5733	Eunotia pectinalis (Kutzing) Rabenhorst		-	-	-	-	-	+	-	-	-
5753 5779	Navicula	+	-	-	-	-	-	-	-	-	-
5778 5792	Stauroneis anceps Ehrenberg Neidium iridis (Ehrenberg) Cleve	+	-	-	-	-	+	+	+	+	-
5792 5794	Pinnularia flexuosa Cleve	-	-	-	-	+	-	-	-	-	-
5805	Cocconies	-	-	-	-	-	-	+	-	-	-
5821	Eunotia exigua (Brebisson) Grunow	_	-	_	_	+	_		_	_	_
5825	Fragilaria pinata Ehrenberg	_	-	-	-		-	_	+	-	-
5826	Cymbella gracilis (Rabhorst) Cleve	-	-	-	-	-	-	-	-	-	-
5834	Cymbella microcephala Grunow	+	+	-	-	-	-	-	-	-	-
5836	Encyonema silesiacum (Bleisch) D.G. Mann	-	+	+	-	+	-	-	-	-	+
5854	Pinnularia borealis Ehrenberg	-	-	-	-	-	-	+	-	-	+
5860	Diatoma vulgare Bory	+	-	-	-	-	-	+	-	+	+
5865	Cymbella prostata (Berkeley) Cleve	-	-	-	+	-	+	+	-	-	-
5866	Surirella ovata Kutzing	-	-	-	-	-	-	-	+	-	-
5870	Navicula radiosa Kutzing	+	+	-	-	-	-	-	-	+	-
5871	Cymbella lapponica	+	+	-	-	+	-	-	-	-	-
5873	Gomphonema minutum	-	-	-	+	-	+	+	-	-	-
5874	Nitzschia palea (Kutzing) W. Smith	+	-	-	-	-	-	+	-	-	-
5882	Anomoenies vitrea Ross	+	+	+	+	+	+	+	+	+	+
5884	Gomphonema angustum Agardh	-	-	-	-	-	-	-	-	-	-
5887	Navicula pupula Kutzing	-	-	-	+	-	-	-	-	+	+
5916	Fragilaria capucina Grunow	+	+	+	+	+	+	-	+	+	+
	Dinoflagellate										
7632	Gymnodinium	-	-	-	-	-	-	-	-	-	-

	Species & Code		23-Aug-10			SP-CREMP- 23-Aug-10			SP-DT-3 24-Aug-10	SP-DT-4 24-Aug-10	
	Cyanophyte	, i		, i	Ů	, i			, i		
1014	Chrococcus limneticus Lemmermann	-	-	-	-	-	-	-	+	+	-
1015	Chroococcus turgidus (Kutzing) Nageli	-	-	-	-	-	-	-	-	-	-
1033	Rhabdogloea lineare Schmidle and Lauterbon	-	-	+	-	-	-	-	+	-	-
1040	Phormidium	-	-	-	-	-	-	-	-	-	-
1070	Anabaenopsis	+	+	-	+	+	+	+	+	+	+
1077	Pseudoanabaena	+	+	+	-	-	-	-	-	-	-
1081	Nostoc	-	+	-	-	+	-	-	-	-	-
1084	Gloeocapsa punctata	+	+	+	+	+	+	+	+	+	+
1104	Scytonema	-	-	-	-	-	-	-	-	-	-
1122	Phormidium autumnale Agardh	-	-	-	-	-	-	-	-	-	-
1124	Petalonema alatum Berk	+	+	-	+	-	+	+	+	-	-
1133	Anabaena flos-aquae (Lyngb.) Breb. & Borne	-	-	-	-	-	-	+	-	-	-
1135	Anabaena mendotae	-	-	-	-	-	-	-	-	-	-
1136	Lyngbya mucicola Lemmermann	+	+	+	+	+	+	+	+	+	+
1219	Stigonema mamillosum Gardner	-	-	-	-	-	-	-	-	-	+
1220	Rivularia dura Roth	-	-	-	+	+	+	+	-	-	-
1224	Chroococcopsis fluviatilas Geitler	-	=	+	-	-	-	-	-	-	-
	Chlorophyte										
2121	Oocystis lacustris Chodat	-	-	-	-	-	-	+	-	-	-
2178	Cosmarium	-	-	-	-	-	-	-	-	+	-
2199	Spondylosium planum (Wolle) W. and G.S. W	-	-	-	-	-	-	-	-	-	-
2205	Mougeotia	+	-	+	-	+	-	-	+	+	-
2216	Zygnema	+	-	-	-	+	-	-	-	-	-
2228	Oedogonium	-	-	-	-	-	-	-	+	-	-
2511	Ulothrix zonata Kutzing	-	-	-	-	-	-	-	-	-	+
	Chrysophyte										
4388	Dinobryon sertularia Ehrenberg	-	_	-	-	-	-	-	-	-	-
.000	,										
	Diatom										
5507	Cyclotella stelligera Cleve and Grunow	-	+	-	-	+	-	-	+	+	-
5513	Tabellaria fenestrata (Lyngbye) Kutzing	+	+	-	-	+	+	+	+	+	-
5514	Tabellaria flocculsa (Roth) Kutzing	+	+	+	+	+	+	+	+	+	+
5516	Fragilaria construens (Ehrenberg) Grunow	-	-	-	-	-	-	-	-	-	-
5518	Synedra acus Kutzing	-	+	-	-	-	-	-	-	-	-
5523	Synedra ulna (Nitzsch) Ehrenberg	-	-	-	-	-	-	+	-	-	-
5524	Asterionella formosa Hassall	-	-	-	+	-	-	-	-	-	-
5538	Penate diatoms	-	-	+	-	-	-	-	-	-	-
5546 5547	Gyrosigma	+		+	-	-	-	-	+	-	-
5547 5551	Frustulia rhomboides (Ehrenberg) de Toni Cyclotella michiganiana Skvortzow	+	+	-	-	+	-	-	-	-	+
5702	Achnanthes minutissima Kutzing	+	+	+	+	+	-	-	+	+	+
5720	Cyclotella bodanica Eulenst	-	-	-		-	-	+	- T	-	
5726	Eucocconeis	+	_	_	+	+	+	_	+	_	+
5728	Epithemia argus Kutzing	-	_	_	+		·	_	+	+	+
5733	Eunotia pectinalis (Kutzing) Rabenhorst	_	_	_	-	_		_	· -	-	
5753	Navicula	-	_	-	-	-	-	-	_	-	-
5778	Stauroneis anceps Ehrenberg	-	-	-	-	-	-	-	-	-	-
5792	Neidium iridis (Ehrenberg) Cleve	-	-	-	-	-	-	-	+	-	-
5794	Pinnularia flexuosa Cleve	-	-	-	-	-	-	-	+	-	-
5805	Cocconies	-	-	-	+	-	-	-	-	-	-
5821	Eunotia exigua (Brebisson) Grunow	-	-	-	-	-	-	-	-	+	-
5825	Fragilaria pinata Ehrenberg	-	-	+	-	-	-	+	-	-	+
5826	Cymbella gracilis (Rabhorst) Cleve	-	-	-	-	-	-	-	-	-	-
5834	Cymbella microcephala Grunow	-	+	+	-	-	-	+	+	+	+
5836	Encyonema silesiacum (Bleisch) D.G. Mann	+	-	+	+	+	-	+	+	-	+
5854	Pinnularia borealis Ehrenberg	-	-	-	-	-	-	-	-	-	-
5860	Diatoma vulgare Bory	+	+	+	+	-	-	-	-	+	+
5865	Cymbella prostata (Berkeley) Cleve	+	+	+	-	-	-	-	-	-	-
5866	Surirella ovata Kutzing	-	-	-	-	-	-	-	-	-	-
5870	Navicula radiosa Kutzing	-	-	-	-	-	+	-	-	+	+
5871	Cymbella lapponica	-	+	+	-	-	+	+	-	+	+
5873	Gomphonema minutum	-	-	-	-	-	+	+	-	+	-
5874	Nitzschia palea (Kutzing) W. Smith	-	+	-	+	+	-	-	-	-	+
5882	Anomoenies vitrea Ross	+	+	+	+	+	+	+	+	+	+
5884	Gomphonema angustum Agardh	-	+	+	+	-	-	-	-	-	+
5887	Navicula pupula Kutzing	-	+	-	+	+	+	-	+	+	+
5916	Fragilaria capucina Grunow	+	+	+	+	+	+	+	+	+	+
	Dinoflagellate										

APPENDIX G

PERIPHYTON LOSS ON IGNITION LABORATORY DATA – ALS ENVIRONMENTAL

AZIMUTH CONSULTING GROUP INC.

ATTN: MAGGIE McCONNELL 218 - 2902 WEST BROADWAY VANCOUVER BC V6K 2G8

Phone: 604-730-1220

Date Received: 03-SEP-10

Report Date: 15-OCT-10 17:38 (MT)

Version: FINAL

Certificate of Analysis

Lab Work Order #: L928174

Project P.O. #: NOT SUBMITTED

Job Reference: MEADOWBANK MINE EAS PERI

Legal Site Desc: C of C Numbers:

Natasha Markovic-Mirovic Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LIMITED | Part of the ALS Group | A Campbell Brothers Limited Company

		Sample ID	L928174-1	L928174-2	L928174-3	L928174-4	L928174-5
		Description Sampled Date	21-AUG-10	21-AUG-10	21-AUG-10	21-AUG-10	21-AUG-10
	•	Sampled Time Client ID	SP-ISLA-1	SP-ISLA-2	SP-ISLA-3	SP-ISLA-4	SP-ISLA-5
Grouping	Analyte						
TISSUE	-						
Physical Tests	Dry Weight (g)		0.867	1.59	0.591	0.854	0.308
	Ash Weight (g)		0.770	1.47	0.517	0.736	0.237
	Ash Free Dry Weight (g)		0.0967	0.116	0.0743	0.118	0.0711
			0.000	511.15	5151.15	U	0.0

		Sample ID	L928174-6	L928174-7	L928174-8	L928174-9	L928174-10
		Description Sampled Date	22-AUG-10	22-AUG-10	22-AUG-10	22-AUG-10	22-AUG-10
		Sampled Time Client ID	SP-BL-1	SP-BL-2	SP-BL-3	SP-BL-4	SP-BL-5
Grouping	Analyte						
FISSUE							
Physical Tests	Dry Weight (g)		1.44	0.829	3.04	2.92	1.81
	Ash Weight (g)		1.32	0.773	2.88	2.79	1.72
	Ash Free Dry Weight (g)		0.127	0.0564	0.163	0.134	0.0957

		Sample ID	L928174-11	L928174-12	L928174-13	L928174-14	L928174-15
		Description Sampled Date	22-AUG-10	22-AUG-10	22-AUG-10	22-AUG-10	22-AUG-10
		Sampled Time Client ID	SP-GSM-1	SP-GSM-2	SP-GSM-3	SP-GSM-4	SP-GSM-5
Grouping	Analyte						
TISSUE	7 iliulyeo						
Physical Tests	Dry Weight (g)		1.32	0.483	0.928	0.620	0.712
,	Ash Weight (g)		1.17	0.483	0.928	0.532	0.712
	Ash Free Dry Weight (g)		0.145	0.0645	0.765	0.0875	0.159
	, , ,		0.143	0.0043	0.140	0.0073	0.133

		Sample ID	L928174-16	L928174-17	L928174-18	L928174-19	L928174-20
		Description Sampled Date	22-AUG-10	22-AUG-10	22-AUG-10	22-AUG-10	22-AUG-10
	,	Sampled Time Client ID	SP-AZI-1	SP-AZI-2	SP-AZI-3	SP-AZI-4	SP-AZI-5
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)		0.406	0.480	0.659	0.548	0.478
	Ash Weight (g)		0.367	0.379	0.570	0.428	0.402
	Ash Free Dry Weight (g)		0.0395	0.101	0.0888	0.121	0.0765

	Sample ID		L928174-22	L928174-23	L928174-24	L928174-25
	Description Sampled Date	23-AUG-10	23-AUG-10	23-AUG-10	23-AUG-10	23-AUG-10
	Sampled Time Client ID	•	SP-CREMP-2	SP-CREMP-3	SP-CREMP-4	SP-CREMP-5
Grouping	Analyte					
TISSUE		_				
Physical Tests	Dry Weight (g)	0.791	0.417	0.248	0.712	0.607
	Ash Weight (g)	0.521	0.369	0.198	0.393	0.480
	Ash Free Dry Weight (g)	0.270	0.0485	0.0498	0.318	0.127

		Sample ID	L928174-26	L928174-27	L928174-28	L928174-29	L928174-30
		Description Sampled Date	23-AUG-10	23-AUG-10	24-AUG-10	24-AUG-10	24-AUG-10
		Sampled Time Client ID	SP-DT-1	SP-DT-2	SP-DT-3	SP-DT-4	SP-DT-5
Grouping	Analyte						
TISSUE							
Physical Tests	Dry Weight (g)		0.319	0.201	0.224	0.258	0.660
	Ash Weight (g)		0.177	0.102	0.115	0.149	0.327
	Ash Free Dry Weight (g)		0.142	0.0991	0.109	0.109	0.333

L928174 CONTD....
PAGE 8 of 8
15-OCT-10 17:38 (MT)

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ASHFREE-DRY-VA	Tissue	Ash Free Dry Weight	44.3 ASH CONTENT & ORG. MATTER CONTENT

This analysis is carried out using procedures adapted from the Canadian Society of Soil Science method "44.3 Ash Content and Organic Matter Content", (1993). Ash Free Dry Weight is determined by the difference between 'Dry Weight' and 'Ash Weight' which are both determined gravimetrically. Dry Weight is determined by drying the sample at 105 "C and the Ash Weight is subsequently determined by ashing the dried sample at 550 "C.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg milligrams per kilogram based on dry weight of sample.

mg/kg wwt milligrams per kilogram based on wet weight of sample.

mg/kg lwt milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L milligrams per litre.

< - Less than.

D.L. The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Environmental Division

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#

Page 1 of

lω

Phone: Report to:-Remdy Baker Phone: Company: Azimuth Consulting Group Inc. Sample Address: Contact: Company Invoice To: Address: Contact: Sample elinquished elinquished * Lab Work Order # (lab use only) Maggie McConnell SP-BL-5 SP-BL-3 SP-ISLA-5 218 - 2902 West Broadway, Vancouver, BC, V6K 2G8 SP-BL-4 SP-BL-2 SP-BL-1 SP-ISLA-4 604-730-1220 SP-ISLA-3 SP-ISLA-2 SP-ISLA-1 Same as Report (This description will appear on the report) Guidelines / Regulations By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the adjacent worksheet. Fax Fax Date & Time: Date & Time Sample Identification C92817 29-Aug-10 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. -C By: Received ALS PDF Ву Job #: Received Contact: Quote #: Q24230 Email 1: mmcconnell@azimuthgroup.ca Standard Report Format / Distribution Legal Site Description: PO/AFE: Client / Project Information: Email 2: gmann@azimuthgroup.ca Samples are periphyton, with sediment mixed in; not preserved; email Gary Mann if there are any questions Natasha MM dd-mmm-yy Excel 21-Aug-10 22-Aug-10 22-Aug-10 22-Aug-10 21-Aug-10 21-Aug-10 21-Aug-10 22-Aug-10 22-Aug-10 21-Aug-10 Date Other Fax Meadowbank Mine (AS) Sample (Initials): hh:mm Indicate Bottles: Filtered / Preserved (F/P) → Date & Time: Date & Time: Time 20/20 Other MF/AC/ZI (Select from drop-down list) Special Instructions / Hazardous Details Sample Type Š \0.55 \0.55 \0.55 Service Requested: × × × × × × × Dry weight (in dry weight, not がい Regular Service (Default) Priority Service (1 Day or ASAP) Rush Service (2-3 Days) Emergency Service (<1 Day / Wkend) - Contact ALS × × × × × × × × Ash-Free DW (in dw, not %) Sample Condition (lab use only) Samples Received in Good Condition? Y / N (if no Analysis Request Hazardous? Highly Contaminated? Number of Containers

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#

Page __2 of ω

Temperature	also mes	Date & Time	RC	Received By:	Date & Time:	Morgan Figley	Relinquished By:
		Date & Time:		Received	Date & Time: 29-Aug-10		Relinquished
n this form LEGIBLY. specified on the adjacent worksheet.	s. Please fill in Conditions as	delay analysishe Terms and	ons of this form may es and agrees with t	Failure to complete all portions of this form may delay analysis. Please fill in this By the use of this form the user acknowledges and agrees with the Terms and Conditions as spec	Failu By the use of this for		
not preserve	ment mixed in; r	hyton, with sedir	Samples are periphyton, with sediment mixed in; not preserved; email Gary Mann if there are any questions				
tructions / Hazardous Details	Special Instruc				Guidelines / Regulations		,
	Other		22-Aug-10			SP-AZI-5	2
	Other		22-Aug-10			SP-AZI-4	ā
	Other		22-Aug-10				S
	Other		22-Aug-10			SP-AZI-2	J
	Other		22-Aug-10			SP-AZI-1	5
	Other		22-Aug-10			SP-GSM-5	જા
	Other		22-Aug-10			SP-GSM-4	
	Other		22-Aug-10			SP-GSM-3	12
	Other		22-Aug-10			SP-GSM-2	
	Other		22-Aug-10			SP-GSM-1	
lrop-down list)	(Select from drop-down list)	hh:mm	dd-mmm-yy	on the report)	(This description will appear on the report)	_	*
в Туре	Sample Type	Time	Date	ion	Sample Identification		Sample
	MF/AC/ZI	Sampler (Initials):	t: Natasha MM	ALS Contact:		Lab Work Order # (lab use only)	.
			: Q24230	Quote #:	Fax:		Phone:
			Legal Site Description:	Legal S			Sample
				PO/AFE:			Address:
Per	$ \checkmark $	Meadowbank Mine (AS)		Job #:			Contact:
			Client / Project Information:	Client /			Company:
/ed (F/P) →→	Indicate Bottles: Filtered / Preserved (F/P) →	Indicate Bottle			Same as Report	T	Invoice To
					Fax:	604-730-1220	Phone:
		roup.ca	gmann@azimuthgroup.ca	Email 2:			
		nuthgroup.ca	mmcconnell@azimuthgroup.ca), V6K 2G8 Email 1:	218 - 2902 West Broadway, Vancouver, BC, V6K 2G8	218 - 2902 Wes	Address:
		Fax	▼ Excel	₩ PDF	nell	Maggie McConnell	Contact:
₹			dard f Other	Standard	ulting Group Inc.	Azimuth Consulting Group Inc	Company:
Service Requested:		ר	Report Format / Distribution	Report		Report to: Randy Baker	Report to

70:35

Environmental Division

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#

Page 3 of ω

							١	١	١	١	l	١	l	l	١	1
Report to: Randy Baker		Report Fo	Report Format / Distribution			Serv	ice R	Service Requested:	Ä							_
Company: Azimuth Consulting Group Inc	oup Inc.	Standard	ard Other			₹1	Regu	Regular Service (Default)	ce (De	fault)						
Contact: Maggie McConnell		₹ PDF	▼ Excel	Fax		*****	Rush	Rush Service (2-3 Days)	(2-3 [ays)						
· ·	218 - 2902 West Broadway, Vancouver, BC, V6K 2G8	Email 1:	mmcconnell@azimuthgroup.ca	uthgroup.ca		٦	Prior	Priority Service (1 Day or ASAP)	ж (1 D	ay or /	ASAP)					
		Email 2:	gmann@azimuthgroup.ca	oup.ca		- Freeze	Eme	Emergency Service (<1 Day / Wkend) - Contact ALS	ervice	(<1 D	ay / W	(end)	- Con	tact A	LS	
Phone: 604-730-1220 F	Fax:								Ana	lysis	Analysis Request	st				_
Invoice To: Same as Report	ort .			Indicate Botti	Indicate Bottles. Filtered / Preserved (F/P) $\rightarrow \rightarrow$			_					L			_
Company:		Client / P	Client / Project Information:			ot 9)							_		_
Contact:		Job #:	7	Meadowbank Mine EAS	Mine EAS) Per	nt, n	ot %						_			_
Address:		PO/AFE:				eigl	, no					_	_	42		
Sample		Legal Site	Legal Site Description:			y w	dw.			_	_		_	ato		J.111C
Phone: F	Fax:	Quote #:	Q24230			n dı	V (ir					_	_	mir		
Lab Work Order #		Contact:	Natasha MM	Sampler (Initials):	MF/AC/ZI	ght (i	e DV							ous?	Conta r of C	. 51 0
Sample	Sample Identification		Date	Time	Sample Type	/ we	h-Fr			_	_		_		_	
# (This des	(This description will appear on the report)		dd-mmm-yy	hh:mm	(Select from drop-down list)	Dr	As	\vdash		┝			<u> </u>	_	_	1.40
SP-CREMP-1			23-Aug-10		Other	×	×			-			_	_	_	_
SP-CREMP-2			23-Aug-10		Other	×	×				_				_	_
SP-CREMP-3			23-Aug-10		Other	×	×						_	-	-	_
SP-CREMP-4			23-Aug-10		Other	×	×	_		_					_	
SP-CREMP-5			23-Aug-10		Other	×	×						-		~	_
SP-DT-1			23-Aug-10		Other	×	×	_		<u> </u>			-		_	
27 SP-DT-2			23-Aug-10		Other	×	×						_	_	_	_
SP-DT-3			24-Aug-10		Other	×	×	_		_			_	_	_	
SP-DT-4			24-Aug-10		Other	×	×								_	Ц.
30 SP-DT-5			24-Aug-10		Other	×	×	_		H			L	├	-	_
Guidel	Guidelines / Regulations				Special Instructions	/ Ha	zard	tions / Hazardous Details	slik							_
			Samples are periph	yton, with sed	Samples are periphyton, with sediment mixed in; not preserved; email Gary Mann if there are any questions	ed; e	mail (Sary Ma	nn if th	ere ar	e any o	questic	ons			_
Ви	Failure to complete all portions of this form may delay analysis. Please fill in this By the use of this form the user acknowledges and agrees with the Terms and Conditions as spec	II portion	ns of this form may s and agrees with t	delay analys ne Terms and		LEG on th	e adj	form LEGIBLY. fied on the adjacent worksheet.	orksh	eet.						
Relinquished	Date & Time:	Received		Date & Time:					Sample	Conditio	Sample Condition (lab use only)	(Aino es				
Morgan Finley	29-Aug-10	Ву					emperature		Samp	les Rece	Samples Received in Good	Good				
Relinquished M. Lu.	Date & Time:	Received		Date & Time:					Con	Condition? Y / N (₩,	s) (if no				
							-			١						

APPENDIX H

BENTHIC INVERTEBRATE SUMMARIZED AND RAW DATA, MEADOWBANK EAS 2010

Benthic invertebrate total abundance (#/m²), Meadowbank EAS 2010.

Station	Date	Depth		Total Abun	dance (#/m²)		Total	Simpson's
Otation	Dute	Бери	Oligochaetes	Insects	Molluscs	Other Taxa	1000	Diversity
Third Portage L	.ake							
TP-E1-1	25-Aug-10	7.4	0	196	174	22	391	0.81
TP-E1-2	25-Aug-10	7.5	22	370	261	0	652	0.87
TP-E1-3	25-Aug-10	8.0	22	152	391	43	609	0.76
TP-E1-4	25-Aug-10	8.0	0	261	326	22	609	0.80
TP-E1-5	25-Aug-10	8.5	0	87	130	0	217	0.87
0	_0 / lag . 0	Station Mean	9	213	257	17	496	0.82
TP-E2-1	27 Aug 10	9.5	0	587	261	43	891	0.88
TP-E2-1 TP-E2-2	27-Aug-10 27-Aug-10	9.5 10.0	0 22	304	261 391	43 0	717	0.88
TP-E2-2		9.9	65	935	630	22		0.82
	27-Aug-10						1652	
TP-E2-4	27-Aug-10	9.0	22	326	500	65	913	0.68
TP-E2-5	27-Aug-10	8.9 Station Mean	22 26	217 474	130 383	0 26	370 909	0.87 0.78
		Station Weari	20	4/4	303	20	909	0.78
TP-E3-1	25-Aug-10	11.0	0	261	652	0	913	0.53
TP-E3-2	25-Aug-10	12.0	0	152	370	43	565	0.58
TP-E3-3	28-Aug-10	10.0	0	43	174	0	217	0.53
TP-E3-4	28-Aug-10	10.0	22	261	457	22	761	0.61
TP-E3-5	28-Aug-10	10.0	0	239	348	87	674	0.78
	_	Station Mean	4	191	400	30	626	0.61
HVH4-1	24-Aug-10	7.5	22	87	174	0	283	0.60
HVH4-2	24-Aug-10	7.8	0	87	217	65	370	0.66
HVH4-3	24-Aug-10 24-Aug-10	7.0	0	304	283	0	587	0.74
HVH4-4	24-Aug-10 24-Aug-10	7.2	43	500	239	65	848	0.89
HVH4-5	24-Aug-10 24-Aug-10	8.0	0	0	109	0	109	0.69
110114-2	24-Aug-10	Station Mean	13	196	204	26	439	0.40
		Glation moun	.0	700	204	20	400	0.00
econd Portage		- .	40	470	500	40	4007	0.77
SP-DT-1	23-Aug-10	7.4	43	478	522	43	1087	0.77
SP-DT-2	23-Aug-10	8.5	65	326	152	109	652	0.91
SP-DT-3	23-Aug-10	8.7	43	261	435	109	848	0.71
SP-DT-4	23-Aug-10	7.3	87	283	370	130	870	0.81
SP-DT-5	23-Aug-10	9.8 Station Mean	0	391	130	109	630	0.85
		Station Weari	48	348	322	100	817	0.81
SP-F1-1	20-Aug-10	7.7	43	696	435	174	1348	0.82
SP-F1-2	20-Aug-10	9.6	22	500	587	196	1304	0.74
SP-F1-3	20-Aug-10	8.5	0	457	239	65	761	0.71
SP-F1-4	20-Aug-10	9.7	0	761	413	65	1239	0.75
SP-F1-5	20-Aug-10	9.9	0	543	348	130	1022	0.83
	· ·	Station Mean	13	591	404	126	1135	0.77
SP-F2-1	23-Aug-10	7.4	0	348	326	43	717	0.80
SP-F2-2	23-Aug-10 23-Aug-10	7.8	22	217	239	0	478	0.79
SP-F2-2 SP-F2-3	23-Aug-10 23-Aug-10	7.6 7.2	22	1696	609	22	2348	0.79
	•							
SP-F2-4	23-Aug-10	7.2	0	1457	348	22	1826	0.74
SP-F2-5	23-Aug-10	7.8 Station Mean	0 9	130 770	457 396	109 39	696 1213	0.76 0.75
			•					
SP-N1-1	20-Aug-10	8.0	22	848	500	152	1522	0.80
SP-N1-2	20-Aug-10	7.5	0	848	304	65	1217	0.57
SP-N1-3	20-Aug-10	7.1	0	0	130	22	152	0.29
SP-N1-4	20-Aug-10	10.0	0	2000	522	87	2609	0.74
SP-N1-5	20-Aug-10	7.2	0	130	457	109	696	0.55
		Station Mean	4	765	383	87	1239	0.59
SP-N2-1	20-Aug-10	8.2	22	261	370	43	696	0.69
SP-N2-2	20-Aug-10	7.5	0	761	304	0	1065	0.78
SP-N2-3	20-Aug-10	8.7	109	870	391	65	1435	0.66
SP-N2-4	20-Aug-10	9.3	22	239	370	22	652	0.67
SP-N2-5	20-Aug-10	8.3	87	565	196	87	935	0.86
- · •	g . v	Station Mean	48	539	326	43	957	0.73
CD NO 4	10 0 10					G.F.		
SP-N3-1	19-Aug-10	7.4 8.0	0	130 106	109 152	65 43	304	0.79
SP-N3-2	19-Aug-10	8.9	22	196	152	43	413	0.84
SP-N3-3	19-Aug-10	9.2	65	217	522	109	913	0.82
SP-N3-4	19-Aug-10	8.7	0	196	674	65	935	0.56
SP-N3-5	19-Aug-10	7.3	43	457	435	0	935	0.76
01 110 0	•	Station Mean	26	239	378	57	700	0.75

Station	Date	Depth (m)		Total Richi	ness (#/taxa)		Total
Station	Date	Deptii (iii)	Oligochaetes	Insects	Molluscs	Other Taxa	Iotai
Third Portage La	ake						
TP-E1-1	25-Aug-10	7.4	0	4	2	1	7
TP-E1-2	25-Aug-10	7.5	1	5	2	0	8
TP-E1-3	25-Aug-10	8.0	1	5	2	1	9
TP-E1-4	25-Aug-10	8.0	0	3	2	1	6
TP-E1-5	25-Aug-10	8.5	0	4	2	0	6
0	_0 / tag . 0	Station Mean	0	4	2	1	7
TP-E2-1	27-Aug-10	9.5	0	9	2	1	12
TP-E2-1	27-Aug-10 27-Aug-10	10.0	1	6	1	0	8
			•				
TP-E2-3	27-Aug-10	9.9	1	7	2	1	11
TP-E2-4	27-Aug-10	9.0	1	5	1	1	8
TP-E2-5	27-Aug-10	8.9	11	7	1	0	9
		Station Mean	1	7	1	1	10
TP-E3-1	25-Aug-10	11.0	0	3	2	0	5
TP-E3-2	25-Aug-10	12.0	0	5	1	1	7
TP-E3-3	28-Aug-10	10.0	0	2	2	0	4
TP-E3-4	28-Aug-10	10.0	1	4	1	1	7
TP-E3-5	28-Aug-10	10.0	0	6	2	1	9
200	20 / 109 10	Station Mean	0	4	2	1	6
HVH4-1	24 4~ 40		1	2	1	0	4
	24-Aug-10	7.5				0	
HVH4-2	24-Aug-10	7.8	0	4	1	2	7
HVH4-3	24-Aug-10	7.0	0	5	2	0	7
HVH4-4	24-Aug-10	7.2	2	7	2	1	12
HVH4-5	24-Aug-10	8.0	0	0	2	0	2
		Station Mean	1	4	2	1	6
Second Portage	Lake						
SP-DT-1	23-Aug-10	7.4	0	7	2	1	10
SP-DT-2	23-Aug-10	8.5	1	5	3	1	10
SP-DT-3	23-Aug-10	8.7	1	5	1	1	8
SP-DT-4	23-Aug-10	7.3	1	5	3	1	10
SP-DT-5	23-Aug-10	9.8	0	6	1	1	8
		Station Mean	1	6	2	1	9
SP-F1-1	20-Aug-10	7.7	0	6	1	1	8
SP-F1-2	20-Aug-10 20-Aug-10	9.6	1	6	1	1	9
	•		0	3	1	1	5
SP-F1-3	20-Aug-10	8.5					
SP-F1-4	20-Aug-10	9.7	0	6	1	1	8
SP-F1-5	20-Aug-10	9.9 Station Mean	0 0	<u>8</u>	1	1 1	10
		Station Weari	U	ь	1	1	8
SP-F2-1	23-Aug-10	7.4	0	4	2	1	7
SP-F2-2	23-Aug-10	7.8	1	4	2	0	7
SP-F2-3	23-Aug-10	7.2	0	6	2	1	9
SP-F2-4	23-Aug-10	7.2	0	7	2	1	10
SP-F2-5	23-Aug-10	7.8	0	4	2	1	7
0 0	_0 / tag . 0	Station Mean	0	5	2	1	8
SP-N1-1	20 4 40	0.0					
	20-Aug-10	8.0	0	5	2	1	8
SP-N1-2	20-Aug-10	7.5	0	4	1	1	6
SP-N1-3	20-Aug-10	7.1	0	0	1	1	2
SP-N1-4	20-Aug-10	10.0	0	7	2	1	10
SP-N1-5	20-Aug-10	7.2	0	4	1	1	6
		Station Mean	0	4	1	1	6
SP-N2-1	20-Aug-10	8.2	1	5	1	1	8
SP-N2-2	20-Aug-10	7.5	0	5	2	0	7
SP-N2-3	20-Aug-10	8.7	0	3	2	1	6
SP-N2-4	20-Aug-10	9.3	1	6	1	1	9
SP-N2-5	20-Aug-10	8.3	0	5	2	1	8
	- 3	Station Mean	0	5	2	1	8
CD NO 1	19-Aug-10	7.4	0	2	2	1	5
SP-N3-1	•	7.4 8.9	0	6	1	1	8
SP-N3-2	19-Aug-10						
SP-N3-3	19-Aug-10	9.2	1	4	2	1	8
SP-N3-4	19-Aug-10	8.7	0	4	2	1	7
SP-N3-5	19-Aug-10	7.3	1	6	2	0	9
		Station Mean	0	4	2	1	7

Station Replicate	HVH-4 1	HVH-4 2	HVH-4 3	HVH-4 4	HVH-4 5	SP-DT	SP-DT 2	SP-DT 3	SP-DT 4	SP-DT 5	SP-F1	SP-F1	SP-F1	SP-F1	SP-F1 5	SP-N1	SP-N1 2	SP-N1	SP-N1	SP-N1 5	SP-N2 1	SP-N2 2	SP-N2 3
Depth (m)	7.5	7.8	7.0	7.2	8.0	7.4	8.5	8.7	7.3	9.8	7.7	9.6	8.5	9.7	9.9	8.0	7.5	7.1	10.0	7.2	8.2	7.5	8.7
# Grabs/sample	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Mesh Size (µm)	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
Date					24-Aug-10																		
ROUNDWORMS P. Nemata			3					1	1	1	1	2	2	6	2		1	6	3				
FLATWORMS																							
P. Platyhelminthes																							
Cl. Turbellaria																							
indeterminate																							
ANNELIDS																							
P. Annelida																							
WORMS																							
Cl. Oligochaeta																							
F. Enchytraeidae																							
F. Naididae																							
Nais barbata																							
Nais communis																							
Nais Slavina appendiculata																							
F. Tubificidae																							
Limnodrilus hoffmeisteri																							
Rhyacodrilus coccineus	1			1			1	1	3														
Rhyacodrilus montana																							
Rhyacodrilus sodalis																							
Tasserkidrilus americanus																							
immatures with hair chaetae						2	2	1	1		2					1							5
immatures without hair chaetae																							
F. Lumbriculidae Lumbriculus				1								1									1		
indeterminate				'								'									'		
ARTHROPODS																							
P. Arthropoda																							
MITES																							
Cl. Arachnida																							
O. Acarina		2		3		2	5	5	6	5	8	9	3	3	6	7	3	1	4	5	2		3
HARPACTICOIDS O. Harpacticoida																							
SEED SHRIMPS																							
Cl. Ostracoda	20	22	63	22	6	4	5	1	1	2	5	6	2	8	7	23	3	3	2	21	5	14	12
TADPOLE SHRIMP					-		-			_	-	-	=	-			-	-	_		-		
O. Notostraca																							
Lepidurus arcticus																							
WATER SCUDS																							
O. Amphipoda																							
F. Gammaracanthidae																							
Gammaracanthus F. Hyalellidae																							
Hyalella		1																					
INSECTS																							
Cl. Insecta																							
BEETLES O. Coleoptera																							
F. Staphylinidae																							
MAYFLIES																							
O. Ephemeroptera																							
F. Baetidae																							
indeterminate															1								
CADDISFLIES																							
O. Trichoptera																							
F. Limnephilidae																							
Grammotaulius																							
Grensia praeterita		1					1			2			1		1								
pupae																							
immature																							

Appendix <. Benthic invertebrate raw data (total number of organisms in two 0.023 m2 grabs), Meadowbank EAS 2010.

Name of Part of the Part of th	Station	HVH-4	HVH-4	HVH-4	HVH-4	HVH-4	SP-DT	SP-DT	SP-DT	SP-DT	SP-DT	SP-F1	SP-F1	SP-F1	SP-F1	SP-F1	SP-N1	SP-N1	SP-N1	SP-N1	SP-N1	SP-N2	SP-N2	SP-N2
Marchane	Replicate	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3
Manufaction																								
Ten Control of Ten Co																								
Color Colo																								
Process Proc	TRUE FLIES	24-Aug-10	24-Aug-10	24-Aug-10	24-Aug-10	24-Aug-10	23-Aug-10	23-Aug-10	23-Aug-10	23-Aug-10	23-Aug-10	20-Aug-10												
Controlling																								
Selection of the content of the cont																								
Companies Comp															2									
Contemporal Contem															-									
Consequence of the content of the co																								
Conversion				1																				
Controlled																								
Mathematical Control of the control																								
Machine Magnificant																								
Particular properties of the p					4		3			1		13			2	7	19	34		49			16	1
Particular plane																								
Page																								
Programma																	2				1			
Suppose			1																					
Section of the content of the conten																								
Tangement of the content of the cont	Stempellinella																							
F. Chamenione			1				3	4	2	2	8	8	3	15	5	6	14			32	2	4	3	35
S.F. Omerwate				1	3								1		1									
Priesto Pulsey P																								
Paradominame																								
Fundamental Provincia Prov		1			1		1			1	1		1			1				1	'	1		
S.F. Ordendamental S.F. Service							•			•	•											•		
Company																								
Concession Concession Contesting 1																	1					1	2	
Concession Conference Conc	Corynoneura																							
Hydrochemical 1 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																								
Mesconforeprose 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																								
Mancacidada 1 1 1 1 1 1 1 1 1			1	5	6		1					1	4		3									
Manicale distance of the second of the secon																								
Parachdum					1		1									1		1		6				
Pastentionals																								
Pasentocidation Pasentocidat																								
Reparticulating (Alternative Medical M																								
2 Aglatischia incidentaminate series and external programminate series and external programmination of the external programmination of the ext	Psectrocladius (Monopsectrocladius)																							
Indeterminate								1	4		1	1												
S.F. Prodameniane Mornodiamea S.F. Tanypodinea Ababearnyia Apabearnyia Apabear																				1				
Monodiameas																								
S.F. Tarypodnae Abberariya Procladius 3							0	-		2		2	2			2							2	
Ablabasmyla							8	5	1	2	4	2	2			2		1		1		1	3	
Proceedius 3 6 3 5 4 4 7 2 7 12 5 21 6 3 3 2 2 5 11 4 Thisemennalinyis complex Triscopelicipal indeterminate F. Emplicidus Considerary Neoplastra															1									
Thisnemanining complex Trissopelopia indeterminate F. Empididae Conlitera Neoplasta Challera Republista Challera Republista		3		6	3		5	4	4	7	2	7	12	5		6	3	3		2	2	5	11	4
F. Emplididae F. Emplididae Chellifora Meoplasta Chellifora Meoplasta Chellifora Meoplasta Chellifora Meoplasta Chellifora Micdemannia Mic																								
F. Emplidiae Chelifera Neoplastra Chelifera Wiedermannia pupase MOLLUSCS P. Mollusca CLAMS CLAMS CL. Bivalvia F. Sphaerilidae Oyclocalyx Quicoalyx Quicoal	Trissopelopia																							
Chellfera Videoplastia																								
Chellfera Widedemannia pupase MOLLUSCS P. Mollusca CLAMS CL Bivahia F. Sphaeriidae Cyclocalyx/Nelopisidium 8 10 12 10 4 22 4 20 15 6 20 27 11 19 16 20 14 6 18 21 17 13 16 Cyclocalyx/Religibility Cyclocalyx (Psicilum) Sphaerium nitidium TOTAL NUMBER OF TAXA 1 4 7 7 12 2 10 10 8 10 8 8 9 5 8 10 8 6 2 10 6 8 7 6																								
Wiedemannia																								
## DOLLUSCS P. Mollusca CLAMS CL Bylankia F. Sphaeriidae Cyclocalyx/Neopisidium 8 10 12 10 4 22 4 20 15 6 20 27 11 19 16 20 14 6 18 21 17 13 16 Cyclocalyx/Neopisidium Cyclocalyx (Psidium) Sphaerium nitidum TOTAL NUMBER OF TAXA 4 7 7 12 2 10 10 8 10 8 8 9 5 8 10 8 6 2 10 6 8 7 6																								
MOLLUSCS P. Mollusca CLAMS CL Symbaridae F. Sphaeriidae Cyclocalyx/Repisidium Sphaeriim nitidium TOTAL NUMBER OF TAXA 4 7 7 12 2 10 10 8 10 8 8 9 5 8 10 8 6 2 10 8 8 7 6																								
P. Molluses C.LAMS C.LAM																								
CLAMS CL Baharidae F. Sphaerlidae Cyclocallyx/Neoplaidium 8 10 12 10 4 22 4 20 15 6 20 27 11 19 16 20 14 6 18 21 17 13 16 Cyclocallyx Neoplaidium Cyclocallyx ribidium Cyclocallyx ribidium Sphaerlum nibidum TOTAL NUMBER OF TAXA 1 4 7 7 12 2 10 10 8 10 8 8 9 5 8 10 8 6 2 10 6 8 7 6																								
CL Bivalvida F. Sphaeriidae Cyclocalyx/Neopisidilum 8 10 12 10 4 22 4 20 15 6 20 27 11 19 16 20 14 6 18 21 17 13 16 Cyclocalyx indidium Cyclocalyx indidium Cyclocalyx (Psidium) Sphaerium nitidum TOTAL NUMBER OF TAXA 1 4 7 7 12 2 10 10 8 10 8 8 9 5 8 10 8 6 2 10 6 8 7 6																								
F. Sphaeriidae Cyclocaly/wRegolsidium 8 10 12 10 4 22 4 20 15 6 20 27 11 19 16 20 14 6 18 21 17 13 16 Cyclocaly/x inditium Cyclocalyx (Pisidium) Sphaerium nitidum TOTAL NUMBER OF TAXA 1 4 7 7 12 2 10 10 8 10 8 8 9 5 8 10 8 6 2 10 6 8 7 6																								
Cyclocallyx/Neoplaidifurm 8 10 12 10 4 22 4 20 15 6 20 27 11 19 16 20 14 6 18 21 17 13 16 Cyclocallyx (Pisidium) Cyclocallyx (Pisidium) Sphaerium nitidium TOTAL NUMBER OF TAXA 1 4 7 7 12 2 10 10 8 10 8 8 9 5 8 10 8 6 2 10 6 8 7 6																								
Cyclocalyx 1 1 1 1 1 1 1 1 1		8	10	12	10	4	22	4	20	15	6	20	27	11	19	16	20	14	6	18	21	17	13	16
Cyclocalyx ribidium Cyclocalyx (Pisidium) Sphaerium nibidum 4 7 7 12 2 10 10 8 10 8 8 9 5 8 10 8 6 2 10 6 8 7 6						1		1												6			1	
Cyclocallyx (Pisidium) Sphaerium nitidum 2 2 1 TOTAL NUMBER OF TAXA 1 4 7 7 12 2 10 10 8 10 8 8 9 5 8 10 8 6 2 10 6 8 7 6	Cyclocalyx nitidium																							
TOTAL NUMBER OF TAXA 4 7 7 12 2 10 10 8 10 8 8 9 5 8 10 8 6 2 10 6 8 7 6	Cyclocalyx (Pisidium)																							
	Sphaerium nitidum						2	2		1														
	TOTAL NUMBER OF TAXA 1																							
101AL NUMBER UF URGANISMS 13 17 47 39 5 50 50 30 39 40 29 52 50 50 50 50 50 50 50 50 50 50 50 50 50																								
	TOTAL NUMBER OF ORGANISMS*	13	17	21	39	5	υU	30	39	40	29	02	60	35	3/	4/	70	υb	- /	120	32	32	49	00

¹ Number of taxa totals exclude nematodes & ostracods, immatures & pupae (Tubificidae, Limnephilidae, Chironomidae, Empididae), and indeterminates (Lumbriculidae, Chironominae, Orthocladiinae, Tanypodinae).

² Number of organisms totals exclude nematodes (P. Nemata) & ostracods (Cl. Ostracoda). Third Portage Lake - East Stations include: TP-E1, TP-E2, TP-E3, HVH-4.
Second Portage Lake Stations include: SP-DT, SP-F1, SP-F2, SP-N1, SP-N2, SP-N3.

Station	SP-N2	SP-N2	SP-N3	SP-N3	SP-N3	SP-N3	SP-N3	TP-E1	TP-E1	TP-E1	TP-E1	TP-E1	TP-E2	TP-E2	TP-E2	TP-E2	TP-E2	TP-E3	TP-E3	TP-E3	TP-E3	TP-E3	SP-F2	SP-F2	SP-F2	SP-F2	SP-F2
Replicate	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Depth (m)	9.3	8.3	7.4	8.9	9.2	8.7	7.3	7.4	7.5	8.0	8.0	8.5	9.5	10.0	9.9	9.0	8.9	11.0	12.0	10.0	10.0	10.0	7.4	7.8	7.2	7.2	7.8
# Grabs/sample	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Mesh Size (µm)	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
Date	20-Aug-10	20-Aug-10	19-Aug-10	19-Aug-10	19-Aug-10	19-Aug-10	19-Aug-10	25-Aug-10	25-Aug-10	25-Aug-10	25-Aug-10	25-Aug-10	27-Aug-10	27-Aug-10	27-Aug-10	27-Aug-10	27-Aug-10	25-Aug-10	25-Aug-10	28-Aug-10	28-Aug-10	28-Aug-10	23-Aug-10	23-Aug-10	23-Aug-10	23-Aug-10	23-Aug-10
ROUNDWORMS P. Nemata	2	1											7		4			4		1	3	2	1				
FLATWORMS																											
P. Platyhelminthes																											
Cl. Turbellaria																											
indeterminate																											
ANNELIDS																											
P. Annelida																											
WORMS																											
Cl. Oligochaeta																											
F. Enchytraeidae																											
F. Naididae																											
Nais barbata																											
Nais communis																											
Nais																											
Slavina appendiculata F. Tubificidae																											
Limnodrilus hoffmeisteri																											
Rhyacodrilus coccineus									1	1					3	1	1										
Rhyacodrilus montana																											
Rhyacodrilus sodalis																											
Tasserkidrilus americanus																											
immatures with hair chaetae		4		1	2																				1		
immatures without hair chaetae																											
F. Lumbriculidae																											
Lumbriculus indeterminate	1				1		2							1							1			1			
ARTHROPODS																											
P. Arthropoda MITES																											
Cl. Arachnida																											
O. Acarina	1	4	3	2	5	3		1		2	1		2		1	3			2		1	4	2		1	1	5
HARPACTICOIDS O. Harpacticoida																											
SEED SHRIMPS																											
Cl. Ostracoda	9	26		2	2	3	5	27	10	31	49	5	36	25	44	12	14	15	44	4	5	17	1	3	2	3	2
TADPOLE SHRIMP																											
O. Notostraca																											
Lepidurus arcticus																											
WATER SCUDS O. Amphipoda																											
F. Gammaracanthidae																											
Gammaracanthus																											
F. Hyalellidae																											
Hyalella																											
INSECTS																											
Cl. Insecta																											
BEETLES																											
O. Coleoptera																											
F. Staphylinidae																											
MAYFLIES																											
O. Ephemeroptera																											
F. Baetidae																											
indeterminate																											
CADDISFLIES																											
O. Trichoptera																											
F. Limnephilidae Grammotaulius																											
Grammotaulius Grensia praeterita				1				1																	1		
pupae																											
immature																											
minimuro																											

Appendix <. Benthic invertebrate raw data (total number of organisms in two 0.023 m2 grabs), Meadowbank EAS 2010.

See Teach 19 25 25 25 25 25 25 25 25 25 25 25 25 25	Station Replicate	SP-N2	SP-N2 5	SP-N3	SP-N3	SP-N3	SP-N3 4	SP-N3	TP-E1	TP-E1	TP-E1	TP-E1	TP-E1	TP-E2	TP-E2	TP-E2	TP-E2 4	TP-E2 5	TP-E3	TP-E3	TP-E3	TP-E3	TP-E3	SP-F2	SP-F2	SP-F2	SP-F2	SP-F2
March Marc	Depth (m)	9.3	8.3	7.4	8.9	9.2	8.7	7.3	7.4	7.5	8.0	8.0	8.5	9.5	10.0	9.9	9.0	8.9	11.0	12.0	10.0	10.0	10.0	7.4	7.8	7.2	7.2	7.8
Section Sect																												
Selection																												
Post																												
Consistent																												
STATE OF STA																												
Convenient			1																	1		1						
Control of the cont																												
Contention																												
Control Cont		1																										
Control Cont																									1		1	1
Martine Mart																												
Position contingent		1	5		1	2	1	6	4	5		7	1	6	1	10	2	2		1		1		10	7	59	27	3
Participation																												
Mary Control Mary																												
Property										1				2		1									1			
Suppose Supp																												
Separation 1	Sergentia																											
The proper prope																												
St. Chammarine Company			13		1	4		7								10	1	1	3		1		2	4		14		
Street S		1									1			1				1						1			1	1
Printage																												
Final Coloration Service Servi	Potthastia																											
E-Processional Processional Pro				1	1			1												1			2			1		
All Company																												
Concept Controlled			3		1									9	8	7	5	1										
Consequent Process Consequence			-		•									-	-		-	•										
Handermonesconfields	Cricotopus																											
Memoropogra																												
Macrobings									2	4	1	3	1	4	1		3	2				2	2					
Pare close in the control of the con																											1	
Place Consisting Place Consistent Place Consistent Place Consistent Place Consistent Place																												
Pasecocidadis	Paracladius																											
Pasecrocidadis Alternace processed and Market Control of the Contr																												
Petercolatival 2																												
All standing load seminate series and seminate							1	1						1				1										
Indeterminate of the proper of																1												
Monodameas 2 3 1 2 - 1 1 1 1 3 3 2 1 1 2 - 2 3 1 1 2 3 2 5 3 4 1 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1																												
SF. Tamycodnias																												
Ablabearyyia			2			3	1	2					1	1	1	3			2	1		1	1				2	
Proceedings 4 2 5 4 1 6 4 4 3 2 1 1 2 1 11 4 2 7 2 1 7 2 1 7 3 1 1 2 3 1 1 7 3 1 1 2 3 1 1 7 1 1 7 1 1 7 1 1 1 1 1 1 1 1 1 1																										1		
Thishemanniming complex Tishempeding a language of the control of		4	2	5	4	1	6	4		4	3	2	1	2	1	11	4	2	7	2	1	7	3	1	1	2	3	1
Indeterminate									2	3	1				2					1			1					
F. Emplidicae Chelifera/Neopolastra Chelifera/Neopolastra Chelifera/Neopolastra Chelifera/Neopolastra Chelifera Wiedernannia pupae MOLLUSCS P. Mollusca CLAMS CL. Brawlia F. Sphaeriidae C. Polycocaly/Neopolastra C. Georgian S. C. Brawlia F. Sphaeriidae C. Georgian S. C. Brawlia S. C. Brawlia F. Sphaeriidae C. Georgian S. C. Brawlia S. S																												
Chellera/Recipisats Chellera Wiedemannia pupas MOLLUSCS P. Mollusca CL Bivania F. Sphaeritidae O'clocaly/Neoplosidium O'clocaly/Recipisidium O'clocaly/Repisidium O'clocaly/Rep																												
Chellera Wiedermannia pupae MOLLUSCS P. Mollusca CLAMS CL. Bivalvia F. Sphaeriidae Cyclocally//Repisidium Cyclocally/(Pisidium) Sphaenium nitidum TOTAL NUMBER OF TAXA 9 8 5 8 8 7 9 7 8 9 7 8 9 6 6 12 8 11 8 9 5 7 4 7 9 7 7 9 7 9 10 7																												
MOLLUSCS																												
MOLLUSCS P. Mollusca CLAMS CLE Properties C. Deviation F. Sphaeridae C. Octocallyx C.																												
P. Molliusca CLAMS CL Bivaria F. Sphaeridae Cyclocallyx Q 2 1 10 3 1 1 5 5 7 3 3 3 9 18 26 23 6 28 17 7 21 14 6 4 24 10 8 Q yelocallyx registricity Q yelocallyx (Pisidium) Sphaerium nitidum TOTAL NUMBER OF TAXA 1 9 8 5 8 8 7 9 7 8 9 6 6 12 8 11 8 9 5 7 4 7 9 7 7 9 10 7	pupae																											
P. Molliusca CLAMS CL Bivaria F. Sphaeridae Cyclocallyx Q 2 1 10 3 1 1 5 5 7 3 3 3 9 18 26 23 6 28 17 7 21 14 6 4 24 10 8 Q yelocallyx registricity Q yelocallyx (Pisidium) Sphaerium nitidum TOTAL NUMBER OF TAXA 1 9 8 5 8 8 7 9 7 8 9 6 6 12 8 11 8 9 5 7 4 7 9 7 7 9 10 7																												
Cl. Birahia F. Sphaerildae Cyclocally/Neoplasidium 17 7 4 7 14 28 19 7 7 13 8 3 9 18 26 23 6 28 17 7 21 14 6 4 24 10 8 Cyclocally/s rificium Cyclocally rificium Cyclocally rificium Sphaenium litidum TOTAL NUMBER OF TAXA 1 9 8 5 8 8 7 9 7 8 9 6 6 12 8 11 8 9 5 7 4 7 9 7 7 9 10 7																												
F. Sphaeritidae Cyclocally/Neoplosidium 17 7 4 7 14 28 19 7 7 13 8 3 9 18 26 23 6 28 17 7 21 14 6 4 24 10 8 6 13 Cyclocally/respiration Cyclocally/respiration Sphaerium nididum TOTAL NUMBER OF TAXA 9 8 5 8 8 7 9 7 8 9 6 6 12 8 11 8 9 5 7 4 7 9 7 7 9 10 7																												
Cyclocallyx/Neoplasidium 17 7 4 7 14 28 19 7 7 13 8 3 9 18 26 23 6 28 17 7 21 14 6 4 24 10 8 Cyclocallyx 2 1 10 3 1 1 5 5 7 3 3 3 3 2 2 1 1 2 9 7 4 6 13 Cyclocallyx (Cyclocallyx (Plaidium) Sphaenium nitidum) TOTAL NUMBER OF TAXA 1 9 8 5 8 8 7 9 7 8 9 6 6 12 8 11 8 9 5 7 4 7 9 7 7 9 10 7																												
Cyclocallyx 2 1 10 3 1 1 5 5 7 3 3 3 2 1 1 2 9 7 4 6 13 Cyclocallyx rilidium Cyclocallyx (Pistdium) Sphaenium nitidum TOTAL NUMBER OF TAXA 1 9 8 5 8 8 7 9 7 8 9 6 6 12 8 11 8 9 5 7 4 7 9 7 7 9 10 7		17	7	4	7	14	28	19	7	7	13	8	3	9	18	26	23	6	28	17	7	21	14	6	4	24	10	8
Cyclocalyx (Psidium) Sphaenium nilidum TOTAL NUMBER OF TAXA ¹ 9 8 5 8 8 7 9 7 8 9 6 6 12 8 11 8 9 5 7 4 7 9 7 9 10 7			2	1		10	3	1	1	5	5	7	3	3		3			2		1		2	9	7	4	6	13
Sphaerium nididum TOTAL NUMBER OF TAXA 1 9 8 5 8 8 7 9 7 8 9 6 6 12 8 11 8 9 5 7 4 7 9 7 9 10 7																												
TOTAL NUMBER OF TAXA ¹ 9 8 5 8 8 7 9 7 8 9 6 6 12 8 11 8 9 5 7 4 7 9 7 7 9 10 7																												
	эрпаенин пиашн																											
	TOTAL NUMBER OF TAXA 1	9	8	5	8	8	7	9	7	8	9	6	6	12	8	11	8	9	5	7	4	7	9	7	7	9	10	7
		30	43	14	19	42	43	43	18	30		28	10		33		42	17	42	26		35	31	33	22			32

¹ Number of taxa totals exclude nematodes & ostracods, immatures & pupae (Tubificidae, Limnephilidae, Chironomidae, Empididae), and indeterminates (Lumbriculidae, Chironominae, Orthocladiinae, Tanypodinae).

² Number of organisms totals exclude nematodes (P. Nemata) & ostracods (Cl. Ostracoda).
Third Portage Lake - East Stations include: TP-E1, TP-E2, TP-E3, HVH-4.
Second Portage Lake Stations include: SP-DT, SP-F1, SP-F2, SP-N1, SP-N2, SP-N3.