Appendix G1

Management Plans

Report: Baker Lake Bulk Fuel Storage Facility: Environmental Performance Monitoring Plan; v2; December 2011

Report: Spill Contingency Plan: Meadowbank Mine Site, All Weather Private Access Road, and Baker Lake Facilities; v2; December 2011

MEADOWBANK GOLD PROJECT

Baker Lake Bulk Fuel Storage Facility: Environmental Performance Monitoring Plan

In Accordance with Water License 2AM-MEA0815

Prepared by:
Agnico-Eagle Mines Limited – Meadowbank Division

Version 2 December 2011

EXECUTIVE SUMMARY

Agnico Eagle Mines Limited – Meadowbank Division (AEM) is currently developing the Meadowbank Gold Project approximately 70 km north of the Hamlet of Baker Lake. As part of the project, six 10 million litres million litres bulk fuel storage tanks were constructed at the Baker Lake Marshalling Area to receive and store bulk shipments of diesel fuel for the Meadowbank Project. This document provides the details for the Baker Lake Bulk Fuel Storage Facility Environmental Performance Monitoring Plan required by Water License 2AM-MEA0815 Part I, Item 17.

To adequately assess the environmental performance of the bulk fuel storage tank at Meadowbank this report provides: a summary of the design, installation, operation and maintenance that follows the CCME (2003) Environmental Code of Practice for Aboveground Storage Tank Systems Containing Petroleum and Allied Petroleum Products; a summary of the location and environmental setting; a summary of the NWB Type A water license requirements; and an environmental assessment to support the recommended environmental monitoring for the ongoing evaluation of the secondary containment.

IMPLEMENTATION SCHEDULE

As required by Water License 2AM-MEA0815, Part B, Item 16, the proposed implementation schedule for this Plan is outlined below.

This Plan will be immediately implemented (December 2012) subject to any modifications proposed by the NWB as a result of the review and approval process.

DISTRIBUTION LIST

AEM - Environment Superintendent

AEM - Environmental Coordinator

AEM – Services General Superintendent

AEM - Site Services General Foreman

DOCUMENT CONTROL

Version	Date (YMD)	Section	Page	Revision
1	09/12/22			Comprehensive plan for Baker Lake Bulk Fuel Storage Facility
2	11/12/13			Update all items related to the Baker Lake Fuel Storage Installations: Final Report of Phase 3 (2010)

Prepared and Approved By:

Stéphane Robert

Environment Superintendent

TABLE OF CONTENTS

SECT	ION 1 •	INTRODUCTION	1
SECT	ION 2 •	SITE LOCATION, CONSTRUCTION AND OPERATION	2
2.1	Site Loc	eation	2
2.2		and Installation Summary	
2.3	•	on and Maintenance Summary	
SECT	ION 3 •	ENVIRONMENTAL SETTING	5
3.1	Topogra	aphy	5
3.2	Geology	/	5
3.3	Flora an	nd Fauna	5
3.4	Subsurfa	ace Conditions	5
3.5	Water C	Quality	6
SECT	ION 4 •	NWB TYPE A WATER LICENSE CONDITIONS	7
SECT	ION 5 •	ENVIRONMENTAL PERFORMANCE ASSESSMENT	o
5.1		pp Report Review	
5.2		ary Containment Visual Inspection	
5.3		mental Assessment	
	5.3.1 5.3.2	Terrestrial Environment	
	5.3.3	Groundwater	
SECT	ION 6 •	PERFORMANCE MONITORING PLAN	11
6.1	Visual a	nd Operational Inspections	11
6.2		Contact Water Monitoring	
6.3		lonitoring	
•	6.3.1	Soil Sampling	
	6.3.2	Water Sampling	12
	6.3.3	Assessment of the Need For Groundwater Well Installation	12
SECT	ION 7 •	PEFFRENCES	13

LIST OF FIGURES

Figure 2.1: General Location of Baker Lake Bulk Fuel Storage Facilities	3
Figure 2.2: Baker Lake Bulk Fuel Storage Facility Site Layout	4

LIST OF APPENDICES

Appendix A1: Baker Lake Fuel Storage Installations: Interim Report Following Construction of Phase 1 (2007) and Phase 2-A (2008)

Appendix A2: Baker Lake Fuel Storage Installations: Final Report Following Construction of Phase 2-B (2009)

Appendix A3: Baker Lake Fuel Storage Installations tank #5 and #6: Final Report following the construction of Phase 3 (2010)

Appendix B: Baker Lake Environmental Performance Monitoring Plan: Environmental Assessment October 25, 2009

SECTION 1 • INTRODUCTION

Agnico Eagle Mines Ltd. (AEM) is currently developing the Meadowbank Gold Project approximately 70 km north of the Hamlet of Baker Lake. As part of the project, six 10 million litres bulk fuel storage tanks were constructed at the Baker Lake Marshalling Area to receive and store bulk shipments of diesel fuel for the Meadowbank Project. Following the amendment of License A, 2 more ten million litre bulk fuel storage tank (#5 and #6) were constructed in 2010.

This document provides the details necessary to fulfill Part I, Item 17 of the Nunavut Water Board Type A License 2AM-MEA0815. In the license it states;

The Licensee shall submit to the Board for approval, within six (6) months following construction of each the Mine Site Bulk Fuel Storage Facility and Marshalling Area Bulk Fuel Storage Facility, a plan for the environmental and performance monitoring of each Facility. The Plans are to include:

- a. An assessment of performance;
- b. Location, environmental setting and the potential for leaks or Seepage that could impact Water;
- c. An assessment of the need for, and if required, the design for installation, monitoring, and maintenance of vertical Ground Water monitoring wells to be installed in accordance with the Environmental Code of Practice for Aboveground Storage Tank Systems Containing Petroleum Products, 2003; CCME; and
- d. Recommended sampling for ongoing monitoring of the integrity of the secondary containment.

To adequately assess the environmental performance of the bulk fuel storage tank at Meadowbank this report provides: a summary of the design, installation, operation and maintenance that follows the CCME (2003) Environmental Code of Practice for Aboveground Storage Tank Systems Containing Petroleum and Allied Petroleum Products; a summary of the location and environmental setting; a summary of the NWB Type A water license requirements; and an environmental assessment to support the recommended environmental monitoring for the ongoing evaluation of the secondary containment.

The requirements of Part I, Item 17 are addressed in the following sections:

- The assessment of performance (point a above) is provided in Sections 5.1, 5.2 and 5.3;
- The location (point b) of the facility in presented in Section 2.1;
- The environmental setting (point b) is described in Section 3.0;
- The potential for leaks and seepage that could impact water (point b) is discussed in Section 5.4;
- The assessment of the need for groundwater monitoring wells (point c) is discussed in Section 6.3; and
- The recommended sampling for ongoing monitoring of the integrity of the secondary containment (point d) is provided in Section 6.1.

SECTION 2 • SITE LOCATION, CONSTRUCTION AND OPERATION

2.1 SITE LOCATION

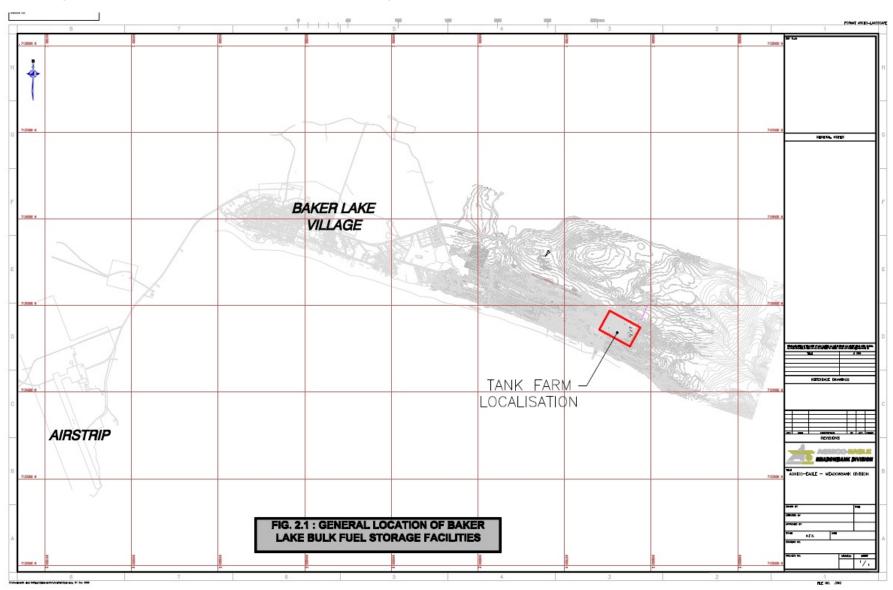
The Baker Lake Bulk Fuel Storage Tank Facility is located east of the hamlet of Baker Lake, on the north shore of Baker Lake. There are six (6) above ground storage tanks, each with a capacity of 10 million litres each. The GPS coordinates of these facilities is NAD 83 15W E 356874 N 7134486. A general site location is provided in Figure 2.1. A site layout of the infrastructure and tanks is provided in Figure 2.2.

2.2 DESIGN AND INSTALLATION SUMMARY

Following regulatory approval, during the summer of 2007, AEM built bulk fuel tanks #1 and #2; the construction of the secondary containment enclosure and installation of the HDPE liner in accordance with CCME (2003) specifications was also completed in 2007 (AEM, 2009a). Bulk fuel storage tanks #3 and #4 were completed in October 2008; the secondary containment enclosure and installation of the HDPE liner was completed for these tanks in July 2009 (AEM, 2009b). Following amendment of the License A, AEM built bulk fuel tank #5 and #6: the secondary containment enclosure and installation of the HDPE line was completed for these tanks in October 2010 (AEM, 2010).

All of the aboveground storage tanks were field erected. Construction activity was supervised by Hatch Engineering and Stavibel Engineering and included qualified steel fabricators and installers.

2.3 OPERATION AND MAINTENANCE SUMMARY


Inventory control of transfer and weekly volume inspections using manual or electronic dip reconciliation are conducted by Meadowbank mine operations staff. Weekly inspections are logged and reported by the operations staff. Weekly visual inspections and inventory reconciliation are used to evaluate and determine bulk fuel tank leakage.

The bulk fuel storage facility is maintained in accordance with best management practices.

The bulk fuel tanks are filled during barge season on an annual basis. During the period of re-filling there is the greatest risk of over-filling. Through regular visual inspections, inventory control and monitored fuel transfer, the risk of over-filling will be significantly reduced. In the case of a spill, the spill contingency plan will be implemented (AEM, 2011).

Version 2; December 2011

Figure 2.1: General Location of Baker Lake Bulk Fuel Storage Facilities

Baker Lake Bulk Fuel Storage Facility Environmental Performance Monitoring Plan

Version 2; December 2011

SECTION 3 • ENVIRONMENTAL SETTING

3.1 TOPOGRAPHY

The bulk fuel storage area is located east of the Hamlet of Baker Lake, approximately 350 m north of Baker Lake. The storage facility sits on a low terrace parallel with the shoreline of the lake. There is a gradual slope (5 to 10% grade) toward Baker Lake with an approximate elevation change of 35 m from the bulk fuel storage facility to the Baker Lake shoreline.

The Baker Lake shoreline is gently sloping, well-drained and is lined with marine gravels, sands and boulders.

3.2 GEOLOGY

The regional surficial geology is characterized by sandy till, bedrock outcrops, felsenmeer (ice-shattered bedrock) and shallow lakes (Golder, 2007). The most common soil type in this region is glacial till. Marine beach deposits are found along the north shore of Baker Lake.

The soil near the bulk fuel storage facility is comprised of silts, sands, gravels, cobble and boulders and frost-susceptible glacial till overlying weathered bedrock (Golder, 2007). The soil thickness is typically less than 1.4 m with permafrost or bedrock encountered at less than 2 m. Approximately 60% of the surface area surrounding the bulk fuel storage facility is comprised of bedrock outcrop.

3.3 FLORA AND FAUNA

There are no trees and few shrubs in the area surrounding the bulk fuel storage facility. The site is covered by low-lying vegetation; predominated by grassy hummocks, dwarf willow, sedge, green moss and lichen.

Arctic ground squirrels, ptarmigan and songbirds are inhabitants in the area surrounding the bulk fuel storage facility. Lake cisco, lake trout, arctic char, lake whitefish, round whitefish, slimy sculpin and stickleback are predominant species found in Baker Lake.

3.4 SUBSURFACE CONDITIONS

Test pits excavated in 2005 near the bulk fuel storage facility and between the tanks and the shoreline indicate a saturated top layer (0.2 m) of organic material (primarily green moss) (Golder, 2005; 2007). A layer of grey to black medium sand is present up to 0.7 m thickness throughout the area, below which a saturated, grey brown, sand and silt layer is found.

Bedrock is exposed at shallow depths throughout the site in locations where topsoil or till soils are present (Golder, 2005). Bedrock is encountered at a maximum depth of 1.4 m. As predicted by the soil conditions, seepage flows in test pits indicate high site drainage.

Version 2; December 2011

3.5 WATER QUALITY

Baker Lake water quality closely resembles distilled water as many conventional water chemistry parameters are at or below detection limits (BAER, 2005). The water column is generally well mixed and the water chemistry homogenous. During the open water season there is limited vertical stratification in temperature and dissolved oxygen, with observed higher salinity in the bottom strata.

SECTION 4 • NWB TYPE A WATER LICENSE CONDITIONS

The Nunavut Water Board (NWB) Type A Water License 2AM-MEA0815 requirements related to the bulk fuel storage facility in Baker Lake are provided below. AEM is committed to achieving all of these requirements.

Part F: Conditions Applying to Waste Disposal and Management

 Effluent from fuel containment facilities that require Discharge to land, shall not exceed the following Effluent quality limits:

Parameter	Maximum Average Concentration
Benzene(µg/L)	370
Toluene(μg/L)	2
Ethylbenzene(µg/L)	90
Lead(ug/L)	1
Oil and Grease(mg/L)	15 and no visible sheen

- 7. The Licensee shall confirm compliance with Effluent quality limits in Part F, Items 2, 3, and 6 prior to Discharge.
- 8. The Licensee shall provide at least ten (10) days notice to the Inspector prior to any planned Discharges from any facilities. The notice shall include an estimated volume proposed for Discharge and the receiving location.
- 9. The Licensee shall, under Part Item 6, discharge effluent in such a manner as to minimize surface erosion at a distance of at least thirty (30) metres above the ordinary high water mark of any Water body, where direct flow into a Water body is not possible and no additional impacts are created, or as otherwise approved by the Board in writing.

23. All Effluent being discharged from the constructed facilities at the Baker Lake Marshalling Facility, including the Marshalling Area Bulk Fuel Storage Facility, ammonia storage and explosives storage and general marshalling area at Monitoring Stations ST-38 through ST-42 respectively, shall not exceed the following Effluent quality limits:

Parameter	Maximum Average Concentration (MAC)	Maximum Concentration of any single Grab Sample
pН	6.0 - 9.5	6.0 – 9.5
Total Arsenic (mg/L)	**0.5	1.00
Total Copper (mg/L)	**0.30	0.60
Total Lead (mg/L)	*0.05	0.10
Total Nickel (mg/L)	**0.50	1.00
Total Zinc (mg/L)	*0.50	1.00
Total Suspended Solids	*15.0	30.0
(mg/L)		
Ammonia (mg/L)	6.0	6.0
Total Cyanide	*0.1	0.2
Benzene (ug/L)	370	370
Toluene (ug/l)	2	2
Ethylbenzene (ug/L)	90	90
Lead (ug/L)	1	1
Oil and Grease (mg/L)	5.0 and no visible sheen	5.0 and no visible sheen

^{*}Environmental Guideline for Industrial Waste Discharges, 2004

Part H: Conditions Applying to Emergency Response and Contingency Planning

- The Licensee shall prevent any chemicals, petroleum products or unauthorized Wastes associated with the project from entering Water.
- The Licensee shall provide secondary containment for fuel and chemical storage as required by applicable standards and acceptable industry practice.
- The Licensee shall perform weekly inspections of fuel containment facilities for leaks and settlement and shall keep a written log of inspections to be made available to an Inspector upon request.

^{**}Metal Mines Effluent Regulations (MMER)

SECTION 5 • ENVIRONMENTAL PERFORMANCE ASSESSMENT

To adequately assess the environmental performance of the bulk fuel storage tanks and facilities, a desk-top review of the design and installation reports (AEM, 2009a,b) were completed. In addition, a consultant performed a geotechnical inspection to annually evaluate the site drainage, secondary containment and performed an environmental assessment of the bulk fuel storage facility. The latest inspection was performed in September of 2011 by Golder Associates (Golder, 2011).

5.1 DESK-TOP REPORT REVIEW

The Baker Lake bulk fuel storage facility was commissioned in 2007 (for tanks #1 and #2,) July 2009 (for tanks #3 and #4), 2010 (for tanks #5 and #6). The installation reports (AEM, 2009a,b; AEM, 2010; and AEM 2011; attached in Appendix A) indicated the use of best management practices during the installation of the aboveground fuel storage tanks. Following the tank construction, X-Ray testing of horizontal and vertical welds was completed. All of the welds met the specifications outlined in the API Standard 650 (AEM, 2009a,b).

Under the supervision of Hatch Engineering, the construction of the secondary containment berms for tanks #1 and #2 was completed. Enviroline Services Inc. was hired in October 2007 to install the HDPE membrane liner in accordance with CCME (2003) specifications; this liner was subsequently covered with a surface layer of crushed stone. Under the supervision of Stavibel Engineering the secondary containment berms were constructed and the HDPE membrane liner was designed and installed for bulk fuel storage tanks #3, #4 under the supervision of Luc Croisetière and AEM. Under the supervision of Stavibel Engineering, the construction of the secondary containment berms for tanks #5 and #6 was completed. Enviroline Services Inc. was hired in May 2010 to install the HDPE membrane liner (AEM, 2010).

A secondary containment volume calculation using Autocad Civil 3D was completed to provide verification on the liquid storage capacity of the storage tank system. The CCME Environmental Code of Practice for Aboveground Storage Tanks (2003) states:

a storage tank system that consists of more than one storage tank which should have a volumetric capacity of not less than the sum of the capacity of the largest storage tank located in the contained space and 10% of the capacity of the largest tank or the aggregate capacity of all other storage tanks located in the contained space.

In accordance with the CCME (2003) code of practice, the Baker Lake bulk fuel storage tanks meet the volumetric requirements for a storage tank system (AEM, 2009a,b; AEM, 2010; and AEM, 2011).

5.2 SECONDARY CONTAINMENT VISUAL INSPECTION

A consultant performs a geotechnical inspection annually and inspects the bulk fuel secondary containment structures, the report is sent to NWB annually. Last inspection was performed in September of 2011 by Golder Associates (Golder, 2011).

5.3 ENVIRONMENTAL ASSESSMENT

The management of site drainage, surface water collection and water/fuel removal within the secondary containment area is an important measure in the protection of the terrestrial environment, surface water and ground water from potential sources of contamination. The environmental protection objectives, strategy and an evaluation of the potential of leaks or seepage to contaminate the terrestrial environment, surface water and ground water are provided in the following sections. Much of the environmental protection strategy centres on the control of contact water. In this report contact water is defined as any water that may be physically or chemically affected by the nearby operational activities.

5.3.1 Terrestrial Environment

The primary objective of the terrestrial management plan is to minimize any adverse impacts to the terrestrial (soil, flora and fauna) environment. To meet this objective, bulk fuel storage facility structures have been constructed to minimize the operational footprint and control contact run-off water within the secondary containment area. Due to the site grading, all water that comes into contact with the bulk fuel storage facility is intercepted and directed into the impermeable HDPE lined secondary containment area.

The ground beneath the secondary containment area has been adequately graded to ensure berm stability.

5.3.2 Surface Water

The objective of water management around the bulk fuel storage facility is to minimize impacts on the quantity and quality of surface water and groundwater. To meet this objective, the bulk fuel storage facility structures have been constructed to intercept and direct contact run-off water to the impermeable HDPE lined secondary containment area. As there is a high volume of fuel transfer and activity around the modular fuel dispenser, the pad below the modular fuel dispenser and refuelling station is lined and sloped toward the secondary containment berm.

Seepage flows in test pits indicate high site drainage due to the high soil porosity. Therefore, should contact water reach the natural environment, the ultimate fate of the contaminants is likely to be in shallow groundwater or surface water (Golder, 2007).

5.3.3 Groundwater

It is not expected that groundwater would be impacted as there is no direct pathway for contaminated water to seep from the bulk fuel storage facility. Due to the site grading, all contact water from the bulk fuel storage facility is directed inside the HDPE lined secondary containment area. Should the integrity of the liner become compromised, there could be leakage into the below grade soil; this would likely present the greatest source of hydrocarbon contamination to impact groundwater and receiving water.

SECTION 6 • PERFORMANCE MONITORING PLAN

The environmental performance monitoring plan is a tiered approach with an emphasis on visual and operational inspections; routine surface water sampling to control and monitor the quality of the contact water; and event monitoring (in the case of a spill emergency or occurrence). Management of the bulk fuel storage facility will be guided by the monitoring results.

6.1 VISUAL AND OPERATIONAL INSPECTIONS

Visual and operational inspections are a central component of the environmental performance monitoring plan. Visual inspections of the secondary containment structure are important because if the integrity of the berm walls or liner is compromised this presents the greatest potential for leaks or seepage into groundwater and ultimately the receiving environment.

Visual inspections will be conducted by operations staff once per week, at the same time as the manual or electronic dip tests are conducted for inventory reconciliation. The operations staff will inspect the facilities for: tank and piping condition, secondary containment berm structure and integrity, indicators of liner damage, precipitation/ run-off accumulation, evidence of tampering or misuse, any structural abnormalities and visible sheens on contact water pools and crush material inside the secondary containment.

Environmental staff will follow-up with operations staff and conduct weekly visual inspections of the secondary containment area. A weekly written log will be completed and available upon request.

6.2 ROUTINE CONTACT WATER MONITORING

Due to snow accumulation, melting and precipitation, contact water will unavoidably collect inside the secondary containment area. Contact water from inside the secondary containment area will be sampled as described below prior to its release into the terrestrial environment. During water discharge, piping will be directed onto the nearby tundra at least 30 m from the high tide mark, to allow for natural attenuation and drainage (i.e. surface water will never be pumped directly into Baker Lake).

During visual inspections the quantity of contact water collected inside the secondary containment area will be evaluated. If there is a visible sheen on the contact water or if water withdrawal is deemed necessary, water samples will be collected and analyzed for the following parameters: pH, Total Arsenic, Total Copper, Total Lead, Total Nickel, Total Zinc, Total Suspended Solids, Ammonia, Total Cyanide, Benzene, Toluene, Ethylbenzene, Lead, and Oil and Grease. If the contact water exceeds the licensed limits, the portable oil-water separator will be used to treat the water. Prior to withdrawal, samples will be re-analyzed at a certified laboratory.

In addition, water samples from Baker Lake are collected as part of the Aquatic Effects Management Program (AEMP, 2008). The results of these analyzes are included in the annual report. These

samples are used to evaluate the performance of the overall water management plan for the Baker Lake Marshalling Area.

6.3 EVENT MONITORING

In the event of a spill occurrence at the bulk fuel storage facility, the spill contingency plan will be followed (AEM, 2008). As a follow-up to the spill response, the environmental staff will conduct an environmental assessment to determine the extent of impacts of the spill occurrence on the nearby environment. This will include the identification of the potential environmental pathways of concern that may result in impacts to surface water (i.e. Baker Lake near-shore surface water), soil or groundwater.

6.3.1 Soil Sampling

Following the unlikely event where a spill is not contained within the secondary containment area, soil sampling may be required to locate and prevent further impact to the terrestrial and aquatic receiving environment. Depending on the quantity of the spill, the organic surface soils and silt-containing till below the surface are a likely sink for hydrocarbons, thus soil samples will be taken at selected locations to horizontally and vertically delineate the impacted areas. Furthermore, the soil samples will provide valuable information used to determine the necessity of installing groundwater wells (see Section 6.3.3 below).

6.3.2 Water Sampling

Following a spill event, an environmental assessment will be conducted. Similar to routine contact water sampling (inside the secondary containment area), if there is a visible sheen on the contact water or if water withdrawal is deemed necessary, water samples will be collected and analyzed for the following parameters: pH, Total Arsenic, Total Copper, Total Lead, Total Nickel, Total Zinc, Total Suspended Solids, Ammonia, Total Cyanide, Benzene, Toluene, Ethylbenzene, Lead, and Oil and Grease. If the contact water exceeds the licensed limits, the portable oil-water separator will be used to treat the water. Prior to withdrawal, samples will be re-analyzed at a certified laboratory.

As part of the AEMP (AEMP, 2010), receiving environment surface and at- depth water samples will be taken in Baker Lake and analyzed for the same parameters as listed above.

6.3.3 Assessment of the Need For Groundwater Well Installation

Following a spill event, if soil sample results identify elevated concentrations of contaminants (i.e. exceeding the CCME Canada-Wide Standard (CWS) for Petroleum Hydrocarbons (PHC) in Soil, 2008) and/or if water samples identify elevated receiving environment water samples (i.e. exceeding licensed limits caused as a result of the spill event), an assessment of the need for groundwater wells will be conducted. The assessment, and if required, design for installation, monitoring and maintenance of vertical ground water monitoring wells will be in accordance with CCME (2003) procedures.

SECTION 7 • REFERENCES

AEM (2009a). Baker Lake Fuel Storage Installations: Interim Report of Phase 1 (2007) and Phase 2-A (2008). April 2009.

AEM (2009b). Baker Lake Fuel Storage Installations: Final Report of Phase 2-B (2009). December 2009.

AEM (2010). Baker Lake Fuel Storage Installations: Final Report of Phase 3 (2010). January 2011.

AEM (2011). Meadowbank Gold Project: Spill Contingency Plan. December 2011.

AEMP (2010). Core- Receiving Environment Monitoring Program: Meadowbank Gold Project. June 2010.

BAER (2005). Meadowbank Gold Project Baseline Aquatic Ecosystem Report. October 2005.

CCME (2008). Canadian Council of Ministers of the Environment: Canada Wide Standards for Petroleum Hydrocarbons in Soil. PN 1398. January 2008.

CCME (2003). Canadian Council of Ministers of the Environment: Environmental Code of Practice for Aboveground and Underground Storage Tank Systems Containing Petroleum and Allied Petroleum Products. ISBN 1-896997-33-3.

Golder Associates Ltd. (2007). Water Use and Management Plan: Baker Lake Marshalling Area Meadowbank Gold Project. March 2007.

Golder Associates Ltd (2005). Field Geotechnical Investigations Baker Lake Staging Area, Meadowbank Gold Project. Report N. 05-1413-040.

Golder Associates Ltd (2011). 2011 Annual Geotechnical Inspection Meadowbank Gold Mine, Nunavut. Report N. 11-1221-0095/2100 1305 Ver. B.

Appendix A1

Baker Lake Fuel Storage Installations: Interim Report Following Construction of Phase 1 (2007) and Phase 2-A (2008)

Appendix A2

Baker Lake Fuel Storage Installations: Final Report Following Construction of Phase 2-B (2009)

Appendix A3

Baker Lake Fuel Storage Installations: Final Report Following Construction of Phase 3 (2010)

Appendix B

Baker Lake Environmental Performance Monitoring Plan: Environmental Assessment October 25, 2009

MEADOWBANK GOLD PROJECT

Spill Contingency Plan Meadowbank Mine Site All Weather Private Access Road (AWPAR) Baker Lake Facilities

In Accordance with Water License 2AM-MEA0815

Prepared by:
Agnico-Eagle Mines Limited – Meadowbank Division

Version 2 December 2011

EXECUTIVE SUMMARY

This document presents the Spill Contingency Plan for Agnico-Eagle Mines Limited (AEM) Meadowbank Mine Site, All Weather Private Access Road (AWPAR) and Baker Lake Facilities, which is a requirement of the Meadowbank Gold Project Type A Water License No. 2AM-MEA0815 issued on June 09, 2008. The Spill Contingency Plan (SCP) designates lines of authority, responsibility, establishes proper reporting and details plans of action in the event of a spill. This plan applies to the operational phase of the mine and is applicable to all AEM employees and any contractors associated with the project located at latitude 65°01'52"N longitude 96° 04'22"W approximately 70 km north of Baker Lake in Nunavut including the Baker Lake Marshalling Facilities located at latitude 64°18'36"N and longitude 95° 58'04"W and the AWPAR.

IMPLEMENTATION SCHEDULE

As required by Water License 2AM-MEA0815, Part B, Item 16, the proposed implementation schedule for this Plan is effective immediately (December 2011) subject to any modification proposed by the NWB as a result of the review and approval process.

DISTRIBUTION LIST

AEM - Environmental Superintendent

AEM – General Mine Manager

AEM – Engineering Superintendent

AEM – Health and Safety Superintendent

AEM – Geology Superintendent

AEM – Mill Superintendent

AEM – Maintenance Superintendent

AEM – Mine Superintendent

AEM - Project Construction Manager

AEM – Site Services Superintendent

AEM – General Services Superintendent

DOCUMENT CONTROL

Version	Date (YMD)	Section	Page	Revision
1	08/08/08			Comprehensive plan for Meadowbank Mine Site, Exploration Camp and Baker Lake Facilities
2	11/12/04			Update of Contacts, Spill management materials, include AWPAR map and Spill KIT Location Map

Table 1 - Document Control

Version 2:	MIL	
Prepared By:	Jeffrey Pratt Environment Coordinator	
Approved By:	Stephane Robert Environmental Superintendent	

TABLE OF CONTENTS

EXEC	ECUTIVE SUMMARYII		
IMPLI	EMENTAT	FION SCHEDULE	III
DISTE	RIBUTION	I LIST	III
DOC	JMENT CO	ONTROL	IV
SECT	ION 1 •	INTRODUCTION	1
1.1	Purpose	e and Scope of the Spill Contingency Plan	1
SECT	ION 2 •	PROJECT DESCRIPTION	2
2.1	PREVE	NTION AND INSPECTIONS	2
SECT	ION 3 •	DEFINITIONS	4
3.1 3.2		a Spill?ls And Reportable Spills On Site	
SECT	ION 4 •	RESPONSE ORGANIZATION	6
4.1		esponder	
4.2	•	isor	
4.3 4.4		t Commanderency Response Team	
4.5	•	ency Response Team Coordinator	
4.6	_	ONMENTAL SUPERINTENDENT or designate	
4.7		RAL MINE MANAGER on duty	
4.8		H AND SAFETY Superintendent or designate	
4.9		E Health care providers	
4.10	эрш ке	esponse Team Contact Information	11
SECT	ION 5 •	ACTION PLAN	13
5.1		ction	
	5.1.1 5.1.2	Respond QuicklyRespond Safely	
5.2		n Land	
5.3	•	n Water	

5.4 5.5	•	of Spilled Material	
SECT	ION 6 •	HAZARDOUS MATERIALS STORED ON SITE	17
SECT	ION 7 •	POTENTIAL SPILL ANALYSIS	19
SECT	ION 8 •	RESPONSE EQUIPMENT	20
8.1	General I	Equipment	20
SECT	ION 9 •	TRAINING & EMERGENCY SPILL / EXERCISE	25
9.1	Training. 9.1.1	On-site Personnel	
SECT	ION 10 •	LIST OF ACRONYMS	26
		LIST OF TABLES	
Table Table Table Table Table	2 - Spill Qu 3 - Internal 4 - Contrac 5 - Externa 6 - Externa	ent Control	LINE 5 11 12 12
		LIST OF FIGURES	
Figure	2 - Spill R	cident Reporting Procedure Response Equipment Locationsf AWPAR Including Locations of Environmental Emergency Seacans	23

LIST OF APPENDICES

APPENDIX A: NWT/NU Spill Report Form

APPENDIX B: General Response Procedures for Spilled Chemical Substances Explosives

B.1 Ammonium Nitrate

B.2 Ammonium Nitrate Fuel Oil (ANFO)

APPENDIX C: General Response Procedures for Spilled Chemical Substances

C.1 Compressed Gases

APPENDIX D: General Response Procedures for Spilled Chemical Substances

D.1 Flammable and Combustible Liquids

APPENDIX E: General Response Procedures for Spilled Chemical Substances

E.1 Oxidizing Substances - Liquids E.2 Oxidizing Substances - Solids

APPENDIX F: General Response Procedures for Spilled Chemical Substances

F.1 Poisonous and Toxic Substances (Sodium Cyanide)

APPENDIX G: General Response Procedures for Spilled Chemical Substances

Corrosive Substances G.1 Acids, Liquids G.2 Acids, Solids

G.3 Bases/Alkali, Liquids G.4 Bases/Alkali, Solids

APPENDIX K: Woodward Group of Companies Spill Response Procedures.

SECTION 1 • INTRODUCTION

1.1 PURPOSE AND SCOPE OF THE SPILL CONTINGENCY PLAN

The overall purpose of creating a spill contingency plan is to minimize the impacts of spills by the establishment of predetermined lines of response and plans of action. This plan has been designed to facilitate effective communication and the efficient clean-up of spills from potentially hazardous materials. These hazardous materials include:

- Hydrocarbon liquids such as diesel fuel, gasoline, hydraulic oil;
- Soluble solids such as ammonium nitrate prill;
- Soluble liquids, such as glycols, acids, and paints;
- Corrosive liquids such as sulphuric acid and sodium cyanide.

More specifically the objectives of this Spill Contingency Plan (SCP) are to:

- Identify roles, responsibilities, and reporting procedures.
- Provide readily accessible emergency information to the cleanup crews, management, and government agencies.
- Comply with federal and territorial regulations and guidelines pertaining to the preparation of contingency plans and notification requirements.
- Promote the safe and effective recovery of spilled materials.
- Minimize the environmental impacts of spills to water or land.
- . This plan has been prepared in accordance with the following reference documents:
 - Indian and Northern Affairs Canada (INAC) 2007. Guidelines for Spill Contingency Planning.
 - Government of Nunavut (GN), Contingency Planning and Spill Reporting in Nunavut. A Guide to the New Regulations.
 - Government of Nunavut (GN) 2002, Guideline General Management of Hazardous Wastes in Nunavut.
 - Northwest Territories Resources Wildlife and Economic Development Environmental Protection Service. 1988. *Spill Contingency Planning and Reporting Regulations*.

SECTION 2 • PROJECT DESCRIPTION

The Meadowbank Gold Project, operated by Agnico-Eagle Mines Limited, is located approximately 70 km north of the Hamlet of Baker Lake in Nunavut. The project is located on Inuit Owned surface lands (IOL BL-14) and has the following coordinates:

Latitude: 65°01'52"N Longitude: 96° 04'22"W NTS map sheet 66H/1.

Meadowbank Project components include marshalling facilities in Baker Lake, and the 110 kilometre All Weather Private Access Road (AWPAR) from Baker Lake to the Meadowbank Mine Site (Figure 2). The Meadowbank mine site consists of the process plant, sewage treatment plant, water intake, accommodation buildings, power plant, tank farm, warehouse, truck shop, emulsion plant, and the open pit (Figure 2.2). The fuel farm at the Meadowbank mine site consists of a single 5.6 million liter tank. The Baker Lake Marshalling Area consists of a laydown transfer area to temporarily store materials prior to the delivery to the Meadowbank mine site. A fuel tank farm is located at Baker Lake marshalling facility which consists of six, 10 million liter tanks and fuel is delivered in bulk by sealift to the fuel farm (Figure 2.3). From there, fuel is hauled to the Meadowbank mine site by tanker trucks on the AWPAR. Fuel storage locations have been designed to meet the CCME guidelines for Aboveground Storage Tank Systems Containing Petroleum and Allied Petroleum Products.

Emergency spill response equipment (i.e. spill kits) is installed at each fuel storage location. Spill kits contain the appropriate type, size and quantity of equipment for the volume and type of product present at the storage location. Transport trucks, heavy equipment and light vehicles are all equipped with spill kits.

Construction at the mine site began with the issuance of the Type A Water License and other pertinent authorizations in July 2008 with Operations commencing in January 2010.

2.1 PREVENTION AND INSPECTIONS

The first step in spill response is to take actions to prevent the spill from occurring. Transport, transfer and storage of materials are performed by trained personnel using secondary containment, with well-maintained equipment and containers. Refuelling stations in Baker Lake and at the mine site are equipped with a lined area to contain any minor leaks or spills while refuelling. Transfer of fuel from tanks to tanker trucks are performed with the aid of fuel pumps. Good housekeeping practices are adopted especially in areas such as storage facilities, loading and unloading zones. Site orientations are conducted with all employees and spill prevention and response is discussed in detail. Regular worksite inspections are conducted to identify measures to minimize the risk of spills. All personnel are trained to be aware of the potential hazards associated with the fuel/chemicals with which they are assigned to work. In addition to work site inspections conducted by area specific employees, the Environmental Department conducts weekly inspections to audit facilities handling or storing hazardous materials.

AEM supports the following general principles for spill prevention:

- Provide up to date and accessible Material Safety Data Sheets (MSDS) for all hazardous materials
- Daily inspections fuel/chemical storage areas for leaks (including flex connectors and plumbing) and platform shifting
- · Daily inspections of hazardous materials storage areas
- Train workers in the use of safe work procedures for hazardous materials, and procedures to clean up spills
- Encourage workers to take reasonable measures to prevent spills
- Keep drums/containers sealed or closed,
- Place drums/containers within a suitable form of secondary or spill containment
- Keep "overpack" or "salvage" drums nearby to contain leaking drums
- Keep storage areas secure from unauthorized access
- Segregate incompatible materials
- Ensure chemical storage areas are adequately protected from weather and physical damage
- Provide adequate spill response materials at storage areas (details of spill prevention equipment are outlined in Section 8).

SECTION 3 • **DEFINITIONS**

3.1 WHAT IS A SPILL?

For the purposes of this plan, a major spill is defined as an accidental release of product into the environment that has the potential for adverse impact. The emergency response team must be notified immediately of a major spill or emergency. A tanker truck overturn on the AWPAR is considered a major spill for the purpose of this plan and Section 7 provides response procedures for an incident of this type.

A minor spill is defined as any hazardous chemical spill that does not involve highly toxic, highly reactive, or explosive chemicals in a situation that is not life threatening. Furthermore, this type of spill presents a manageable physical or health hazard to personnel who, when wearing proper personal protective equipment, will not be exposed to any chemical at a level that exceeds any recognized action level or permissible exposure limit. Minor or simple spills are still to be reported to the Environment Department but they are not expected to involve emergency responders.

3.2 MATERIALS AND REPORTABLE SPILLS ON SITE

As a precaution, if there is any doubt as to whether the quantity spilled meets the minimum reportable thresholds listed in **Table 2**, the spill incident will be reported. Furthermore, AEM will maintain a detailed log of all spills of hazardous materials, including non-reportable spills. As part of AEM's overall environmental management system and in the spirit of a continuous improvement of environmental performance, procedures will be implemented to encourage all employees to communicate non-reportable spill incidents.

To ensure compliance with Section 36(3) of the *Fisheries Act* and Section 35 of the *Migratory Bird Regulations* all spills of fuel or hazardous materials, regardless of quantity into a water body (including frozen), shall be reported immediately to the NT-NU 24-HOUR SPILL REPORT LINE (at 867.920.8130).

Table 2 - Spill Quantities That Must Be Reported To The NT-NU 24-HOUR SPILL REPORT LINE

Transportation Class	Type of Substance	Compulsory Reporting Amount
1	Explosives	Any amount
2.1	Compressed gas (flammable)	Any amount of gas from containers with a capacity exceeding 100 L
2.2	Compressed gas (non-corrosive, non-flammable)	Any amount from containers with a capacity exceeding 100 L
2.3	Compressed gas	Any amount
2.4	Compressed gas (corrosive)	Any amount
3.1, 3.2, 3.3	Flammable liquid	100 L
4.1	Flammable solid	25 kg
4.2	Spontaneously combustible solid	25 kg
4.3	Water reactant solids	25 kg
5.1	Oxidizing substances	50 L or 50 kg
5.2	Organic peroxides	1 L or 1 kg
6.1	Poisonous substances	5 L or 5 kg
7	Radioactive substances	Any amount
8	Corrosive substances	5 L or 5 kg
9.1 (in part)	Miscellaneous substances	50 L or 50 kg
9.2	Environmentally hazardous	1 L or 1 kg
9.3	Dangerous wastes	5L or 5 kg
9.1 (in part)	PCB mixtures of 5 ppm or more	0.5 L or 0.5 kg
None	Other contaminants	100 L or 100 kg

Note: L = litre; kg = kilogram; PCB = polychlorinated biphenyls; ppm = parts per million.

SECTION 4 • RESPONSE ORGANIZATION

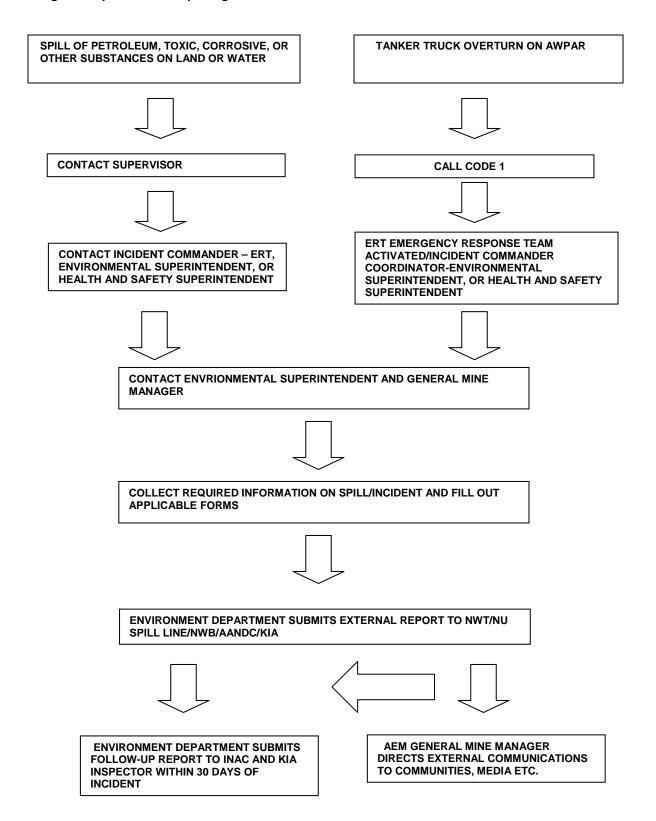

This section addresses the response organization and the responsibilities of each individual during response to an incident.

Figure 4.1 illustrates AEM's Spill Reporting Procedure in the event of a spill and Sections 4.1- 4.9 list the major responsibilities of site staff that will be participating in the emergency response management.

The first person (first responder) to notice, or come in contact with, any spill situation either initiates a Code 1 (in the case tanker truck overturn on AWPAR) or reports to his/her immediate supervisor (in the case of all other spills on land or water). The supervisor is responsible to report the incident to the designated Incident Commander for a major spill or to the environment department for a minor spill. If a Code 1 is initiated, the incident commander will respond to any tanker truck overturns along AWPAR in conjunction with the ERT. Major responsibilities such as initial coordination, spill clean-up and mobilizing the Emergency Response Team (ERT) are part of the Incident Commander's duties.

The Incident Commander will contact the Environmental Superintendent and/or General Mine Manager or alternate, who in turn will inform the VP, Environment and Sustainable Development. After all information has been collected, the Environmental Superintendent or alternate will submit a spill report and follow up spill report to the NWT/NU Spill Line, Nunavut Water Board, Kivalliq Inuit Association and Aboriginal Affairs and Northern Development Canada. Incidents' involving tanker truck overturns that require media communications will be the responsibility of AEM General Mine Manager or alternate.

Figure 1: Spill/Incident Reporting Procedure

4.1 FIRST RESPONDER

The person who has caused a spill or is the first to observe the spill is the first responder.

The responsibilities of the First Responder are as follows:

- In case of a tanker truck overturn, initiate a Code 1. Remain on radio to provide guidance to the ERT.
- In case of spill to land or water, contact the supervisor to report the incident.
- Identify and contain the spill, IF SAFE TO DO SO.
- Participate in spill response as a member of the clean-up crew.

4.2 SUPERVISOR

The responsibilities of the Supervisor are as follows:

- Initial assessment of the severity of the incident.
- Contacts the Incident Commander.
- Gathers facts about the spill.
- Participate in spill response as a member of the clean-up crew.

4.3 INCIDENT COMMANDER

Responsibilities of the Incident Commander are as follows:

- Assume complete authority over cleanup personnel and the spill scene, as well as assume responsibility for all mitigation efforts.
- Evaluate the initial situation and assess the magnitude of the problem.
- Activates the initial response plan.
- Alert and assemble key personnel in the response team, as deemed appropriate, to handle the situation.
- In consultation with the Environmental Superintendent or designate, develop the overall plan of action for containment and cleanup of the specific incident, as well as direct and implement the plan.
- Ensure assigned responsibilities are carried out and the activities of team members are coordinated.
- Assess the requirements for people, equipment, materials, and tools to contain the spill in light of what resources are immediately available; urgency will depend on the nature of the spill.

• In consultation with the Environmental Superintendent or designate mobilize any additional resources that may be required and arrange for the transportation of necessary personnel and/or materials to the site.

4.4 EMERGENCY RESPONSE TEAM

AEM has an Emergency Response Team (ERT) that is trained and responsible for controlling the large spills as well as spills from tanker truck overturns along AWPAR, and assisting with medical and other emergencies that may occur at the camp. These team members attend regular training sessions.

4.5 EMERGENCY RESPONSE TEAM COORDINATOR

The responsibilities of the Emergency Response Team Coordinator (ERTC) are as follows:

- Mobilize all ERT personnel, equipment, personal protective equipment and supplies as required to the site of the spill.
- Assist Incident Commander in obtaining any additional resources not available on site.
- Ensure that appropriate PPE is worn properly.
- Assist in developing and implementing emergency response training programs and exercises.
- Ensure that all spill response personnel receive adequate training to fulfil their responsibilities as part of the ERT.

4.6 ENIVRONMENTAL SUPERINTENDENT OR DESIGNATE

The Environmental Superintendent or designate is responsible for implementing and maintaining the SCP. In addition, the Environmental Superintendent's or designates responsibilities in the case of a spill are to:

- Liaise with the Incident Commander.
- Provide technical advice on the anticipated environmental impacts of the spill.
- Advise on the effectiveness of various containment, recoveries, and disposal options, and suggest the most appropriate approach.
- Prepare and submit any formal reports (see Appendix A for NWT/NU Spill Report Form) to regulators and AEM management detailing the occurrence of a spill.
- Contact the Senior Vice President Environment and Sustainable Development immediately for a major spill.
- Act as the spokesperson with regulatory and government agencies.
- If authorized by the General Mine Manager, act as a spokesperson with the public and media, as required.

- Implement a sampling protocol for the collection and analysis of samples to identify and monitor possible contaminant levels resulting from the spill.
- Ensure on-site resources for spill response and cleanup are available.
- Monitor the effectiveness of the cleanup operation and recommend further work, if necessary.
- Reviews incident occurrences and recommends preventative measures.
- Assists in implementing training and simulation requirements for spill response personnel.

4.7 GENERAL MINE MANAGER ON DUTY

The General Mine Manager / designate is required to inform team members of the detailed nature of the operations to be performed in the event of a facility malfunction causing a spill during the Operations phase. The responsibilities of the General Mine Manager/designate are as follows:

- Liaise with AEM personnel resources and keep them informed of cleanup activities.
- Assist the Incident Commander and ERT as needed, particularly in obtaining any additional resources not available onsite for spill response and cleanup.

4.8 HEALTH AND SAFETY SUPERINTENDENT OR DESIGNATE

The following are the responsibilities of the Health and Safety Superintendent or designate in conjunction with the Training Department:

- Maintain emergency and health and safety records.
- Assist in conducting emergency spill response exercises.
- Track all emergency and health and safety training that on-site staff have received, and when retraining will be required.
- Notify the Incident Commander (related to ERT) when retraining is required.
- Ensure that employees are retrained in appropriate emergency response skills, Workplace Hazardous Materials Information System (WHMIS) training, Hazard Communication (HAZCOM), Occupational Health and Safety Administration (OHSA) training, first aid, and respirator fit-testing prior to expiry of existing training certification.
- Consult with appropriate organizations regarding retraining requirements and schedules.

4.9 ON-SITE HEALTH CARE PROVIDERS

On-site medics are responsible for the following:

- Providing on-site first aid and other medical support.
- Providing additional training for ERT members.

In addition to the health care providers on site, the Baker Lake Hamlet health professionals will be called first on the scene, if required.

4.10 SPILL RESPONSE TEAM CONTACT INFORMATION

Internal contact information is contained in Table 4.2 for all AEM personnel involved in spill recovery and subsequent reporting. Table 4.3 provides contact information for AEM contractors present at the mine site. Important external contacts such as regulatory agencies and health organizations are listed in Table 4.4. Table 4.5 provides contact information for external contractors should incident warrant assistance from outside sources.

Table 3 - Internal Contacts

Title	Name	Telephone No.		
Vice President, Environment and Sustainable Development	Louise Grondin	416-847-8656 Cell:819-724-2020		
General Mine Manager	Dominique Girard	867.793.4610 ext.6910 Cell: 819.856.7863		
Health and Safety Superintendent or Assistant Superintendent	Len Kutchaw Or Norm Ladouceur	867.793.4610 ext.6720		
Emergency Response Team	Len Kutchaw/Andre Rouleau	867.793.4610 ext.6809 867.793.4610 ext. 6838 Cell: 819.763.0229		
Environmental Superintendent	Stephane Robert			
Environmental Coordinator Or Environmental Department	Jeffrey Pratt Or Environmental Technicians	867.793.4610 ext. 6728 Or 867.793.4610 ext. 6747		
Incident Commander	Jeffrey Pratt/ Stephane Robert	867-793-4610 ext. 6728		
On site Medics	On-site Nurses	867.793.4610 ext.6734		
Site Security	On-site Security	867.793.4610 ext.6748		

Table 4 - Contractor Contacts

Title	Telephone No.
Nolinor Aviation Services	Protocol Agent 867.793.4610 ext. 6808
First Air	867.446.1744
Calm Air	867.793.2873
Dyno Nobel Explosives Ltd.	867.793.4610 ext.6804
Woodward Group of Companies (Shipping)	709.896.2421 or 709.896.6569

Table 5 - External Contacts

Organization/Authority	Telephone Number	Fax Number		
NT-NU 24-Hour Spill Report Line	867-920-8130 spills@gov.nt.ca	867-873-6924		
Workers Safety and Compensation Commission	867-979-8637	867-979-8501		
Kivalliq Inuit Association	867-645-5725	867-645-2348		
Nunavut Water Board	867-360-6338	867-360-6369		
AANDC Inspector	867-975-4548	867-979-6445		
Environment Canada, Enforcement Branch	867-975-4644	867-975-4594		
Department of Fisheries and Ocean (DFO) – Nunavut Regional Office	867-979-8000	867-979-8039		
Manager, Environmental Protection, Government of Nunavut	867-975-7748	867-975-5981		
Kivalliq Health Services – Baker Lake (Health Centre)	867-793-2816	867-793-2813		
Baker Lake Hamlet Office	867-793-2874			
Baker Lake Fire Emergency	867-793-2900	N/A		

Table 6 - External Spill Response Contractor Phone Numbers

Contractor	Telephone No.	Area of expertise	
Loc	cal		
Baker Lake Contracting & Supplies	867.793.2831	General Contracting and repairs	
Peter's Expediting	867.793.2703	Transportation	
NWT Ltd (Arctic Fuel)	867.793.2311	Fuel Transportation	

SECTION 5 • ACTION PLAN

Spills may be the result of any of the following occurrences:

- Tanks, drums or containers may develop leaks or rupture.
- Failure of equipment such as valves, piping or containment structures.
- Overfilling.
- Improper storage.
- Spills during transfer of fuel, chemicals or waste products.
- Spills resulting from accidents during transportation.

5.1 INITIAL ACTION

For all spill emergencies, it is required that priority actions be undertaken. These are:

- Respond Quickly;
- Ensure Safety; and
- Report the Spill.

5.1.1 Respond Quickly

- Identify the spilled material.
- Be alert ensure safety of yourself and others by notifying them of the incident.
- Shut off ignition sources such as vehicles and unplug electrical equipment NO SMOKING.
- Attend to the injured.
- Assess the severity of the spill.
- Contact the Incident Commander, identify the location and request assistance as required. Incident Commander will mobilize the Emergency Response Team if required.

The primary form of ensuring safety is by using preventative measures. All personnel who deal with chemicals must have training in first aid and safe materials handling, including the Workplace Hazardous Materials Information System (WHMIS). In addition, regular training updates and site-specific exercises / drills are integral to preventing incidents.

5.1.2 Respond Safely

- Consult the MSDS and Product Guides for further information on the substance;
- Keep people away from spill site;
- Wear appropriate PPE such as impervious clothing, goggles, and gloves when containing the spill
- Approach spill from upwind IF IT IS SAFE TO DO SO
- Assess whether the spill, leak, or system failure can be readily stopped or brought under control;
- Stop product flow or leak if possible and IF IT IS SAFE TO DO SO
- Do not contain compounds (e.g gasoline, aviation fuel) if vapours might ignite allow them to evaporate.
- Depending on the type of compound spilled and IF IT IS SAFE TO DO SO, contain product using booms, berms, absorbent pads, earthen dike, trenches or improvise with materials at hand.

5.1.3 Report Spill

- Obtain all necessary information to complete the external reportable spill. External reportable spills must be reported to the NWT-NU 24 Hour Spill Line/AANDC/Kivalliq Inuit Association (KIA) and the Nunavut Water Board by AEM Environment Staff.
- A detailed spill report, no later than 30 days after reporting the spill, will be submitted to the AANDC Water License Inspector and the KIA Land's Inspector by AEM Environment Staff.
 This report will contain the amount and type of spilled product, the GPS location of the spill and the measures taken to contain, cleanup and restore the spill site.

Procedures will vary depending on the season and hazardous material lost. The MSDS must be consulted to ensure that safety procedures are followed. Response procedures specific to spills on land, water, snow and ice are presented in the following sections as general guidelines.

5.2 SPILLS ON LAND

Response to spills on land will include the general procedures detailed in the following section. The main spill control techniques involve the use of two types of barriers: dykes and trenches. Barriers should be placed down-gradient (down-slope) from the source of the spill, and as close as possible to the source of the spill. Barriers will slow the progression of the fuel and will also serve as containment to allow recovery of the fuel.

Depending on the volume spilled, the site of the spill as well as available material, a dyke may be built with soil, booms, lumber, snow, etc. A plastic liner should be placed at the foot of and over the dykes

to protect the underlying soil or other material and to facilitate recovery of the fuel. Construct dykes in such a way as to accumulate a thick layer of free product in a single area (V-shaped or U shaped).

Trenches are useful in the presence of permeable soil and when the spilled fuel is migrating below the ground surface. A plastic liner should be placed on the down-gradient edge of the trench to protect the underlying soil. Liners should not be placed at the bottom of the trench to allow water to continue flowing underneath the layer floating oil.

The use of large quantities of absorbent materials to recover important volumes of fuel should be avoided. Large volumes of free-product should be recovered, as much as possible, by using vacuums and pumps, and containerized. Mixtures of water and fuel may be processed through an oil-water separator. Absorbent sheets should be used to soak up residual fuel on water, on the ground (soil and rock), and on vegetation. Peat moss may also be sprinkled on vegetation to absorb films of petroleum products.

5.3 SPILLS ON WATER

Response to spills on water will include the general procedures provided in the following section. Various containment, diversion and recovery techniques are discussed in the following sections. The following elements must be taken into consideration when conducting response operations:

- type of water body or water course (lake, stream, river)
- water depth and surface area
- wind speed and direction
- type of shoreline
- seasonal considerations (open-water, freeze-up, break-up, frozen)

Containment of an oil slick in water will require the deployment of mobile floating booms to intercept, control, contain and concentrate (i.e., increase thickness) the floating oil. One end of the boom will be anchored to shore while the other will be towed by a boat and used to circle the oil slick and return it close to shore for recovery using a skimmer. Reducing the surface area of the slick will increase its thickness and thereby improve recovery. Mechanical recovery equipment (i.e., skimmers and oil/water separators) will be mobilized to site if required.

Measures will be taken to protect sensitive and accessible shoreline. The oil slick will be monitored to determine the direction of migration. In the absence of strong winds the oil will likely flow towards the discharge of the lake. Measures will be taken to block and concentrate the oil slick at the lake discharge using booms where it will subsequently be recovered using a portable skimmer, a vacuum, or sorbent materials.

In small slowly-flowing rivers, streams, channels, inlets or ditches, inverted weirs (i.e., siphon dams) will be used to stop and concentrate moving oil for collection while allowing water to continue to flow unimpeded. In the case of floating oil, in a stream, heading for a culvert (i.e., at a road crossing) a culvert block will be used to stop and concentrate moving oil for collection while allowing water to continue to flow unimpeded. In both cases oil will then be recovered using a portable skimmer or sorbent materials.

In the case of spills in larger rivers, with fast moving currents, diversion booming will be used to direct the oil slick ashore for recovery. Single or multiple booms (i.e., cascading) may be used for diversion. Typically, the booms are anchored across the river at an angle. The angle will depend on the current velocity. Choosing a section of a river that is both wider and shallower will make boom deployment easier. Diversion booming may also be used to direct an oil slick away from a sensitive area to be protected.

5.4 SPILLS ON SNOW AND ICE

In general, snow and ice will slow the movement of hydrocarbons. The presence of snow may also hide the oil slick and make it more difficult to follow its progression. Snow is generally a good natural sorbent, as hydrocarbons will have a tendency to be soaked up by snow through capillary action. However, the use of snow as a sorbent material will be limited as much as possible. Snow and frozen ground will also prevent hydrocarbons from migrating down into soil or at least slow the migration process. Ice will prevent seepage of fuel into the water.

Most response procedures for spills on land may be used for spills on snow and ice. The use of dykes (i.e., compacted snow berms lined with plastic sheeting) or trenches (dug in ice) will slow the progression of the fuel and will also serve as containment to allow recovery of the fuel.

Free-product will be recovered by using a vacuum, a pump, or sorbent materials. Contaminated snow and ice will be scraped up manually or using heavy equipment depending on volumes. The contaminated snow and ice will be placed in containers or within plastic lined berms on land.

5.5 DISPOSAL OF SPILLED MATERIAL

All contaminated spill pads, and booms are placed within Quatrex bags and contaminated water is placed within drums for shipment to an approved disposal facility. All contaminated soil is placed in a temporary site to be treated later on.

SECTION 6 • HAZARDOUS MATERIALS STORED ON SITE

A variety of petroleum products and other hazardous materials will be used as part of the mining operations. Large quantities of petroleum products will be stored at various sites. Explosives will also be stored on site. Other hazardous materials will be used but in smaller quantities. Nonetheless, all these products are considered as potential environmental and safety hazards.

Material Safety Data Sheets (MSDS) of all materials transported, stored and used on-site will be made available at strategic locations near to where hazardous materials or toxic substances are stored or utilized. Appendices B to G provide General Response Procedures for Spilled Chemical Substances.

Table 7 identifies the predominant hazardous materials transported, stored and generated at the site.

Table 7- Materials Stored At Site During Operations

Material	Maximum Amount	Maximum Amount	Storage Location	
	present on Site	transported per unit		
Acetylene	500 cylinders	300 cylinders per c-	Inventory Lay down	
		cans		
Activated Carbon	350 MT	10 mt per c-can	Inventory Lay down	
			and Process Plant lay	
			down	
Ammonium Nitrate	10 000 MT	20 mt per c-can	Emulsion plant	
Ammonium Nitrate Fuel	Manufactured on	20 000 kg per truck	Emulsion plant	
Oil (ANFO)	demand			
Motor Oil	Estimated at	20 800L per c-can	Inventory Lay down,	
	800 000L		garage	
Trojan Boosters (Blasting	34 000 KG	15 mt per c-cans	Emulsion plant	
Systems)				
Borax, Anhydrous	7 500KG	3 375KG per c-cans	Inventory Lay down	
			and Process Plant lay	
			down	
Calcium Chloride	600 000L	10 000L per c-cans	Inventory Lay down	
Calcium Hydroxide	NOT IN INVENTORY		Inventory Lay down	
Calcium Oxide	NOT IN INVENTORY			
Calcium Peroxide	NOT IN INVENTORY			
Carbon Dioxide	10 cylinders	10 cylinders per c-can		
Copper Sulphate	500 MT	20 MT Per c-can	Inventory Lay down	
			and Process Plant lay	
			down	
Diesel Fuel	5.5 million Liters	40 000L per tanker	Tank farm	
Dyno Split (Detagel)	135 000 KG	15 mt per c-cans	Emulsion plant	

Nonel EZTL	1 400 KG	15 mt per c-cans	Emulsion plant		
Nonel MS	1 800 KG	15 mt per c-cans	Emulsion plant		
Ethylene Glycol	60 000L	10 000L per c-can	Inventory Lay down		
Ferric Chloride	NOT IN INVENTORY				
Hexahydrate					
Ferric Subsulfate Solution	NOT IN INVENTORY				
Hydrochloric Acid	120 MT	12 MT per c-can	Inventory Lay down		
Hydrofluoric Acid	NOT IN INVENTORY				
Hydrogen Peroxide	NOT IN INVENTORY				
Jet B Fuel	20 000L	11 000L Tanker	Tank, tarmac		
Lead Acid Batteries	500L	500L per c-can	Warehouse		
Magnafloc 10 (Flocculant)	300 MT	15 MT per c-can	Inventory Lay down		
Nitric Acid	120 000L	8 000L per c-can	Inventory Lay down		
Portland Cement	3 500 mt	20 mt per c-can	Dyke and		
			Contruction lay down		
Sodium Cyanide	1 300 MT	19 mt per c-can	Inventory Lay down		
			and Process Plant lay		
			down		
Sodium Hydroxide	10 KG	10 kg in c-can	Warehouse		
Sodium Nitrate	10.2 MT	5.1 MT per c -can	Inventory Lay down		
Sulphuric Acid					
Sulfur	4 600MT	20 MT per c-can	Inventory Lay down		
			and Process Plant lay		
			down and Quarry 1		
Unleaded Gasoline	50 000L	40 000L tanker	Tank farm		
Varsol	4 000L	2000 L per c-can	Inventory Lay down		

SECTION 7 • POTENTIAL SPILL ANALYSIS

In order to prepare for emergency spill response, potential spill analysis was conducted and on various worst case scenarios. The exercise serves to identify potential risk areas, as well as to determine the fate of spilled products and their environmental effects. One potential scenario was identified for the Meadowbank Gold Project:

 Road between Baker Lake and the Meadowbank Mine Site – spill contents of a tanker truck into water body.

Scenario #1: Road Accident Tanker Truck Spill on AWPAR

<u>Description of incident:</u> Spill of the contents of a fuel tanker to the ground or water during transport from the Baker Lake to the Meadowbank Mine Site.

Potential causes: Vehicle accident, human error

<u>Hazardous products spilled:</u> Diesel fuel Maximum volume spilled: 40,000 litres.

Immediate receiving medium: stream, river or lake.

Distance and direction to nearest receiving body of water: N/A

Resources to protect: streams, rivers and lakes

<u>Estimated emergency response time:</u> Maximum time is 90 minutes depending on location of spill (assuming truck driver is injured and cannot commence spill response procedures). Minimum time to respond to a spill on the AWPAR is 15 minutes.

<u>Spill response procedures:</u> Contain and recover oil slick downriver as described in Section 5.3, protect shorelines using sorbent booms. Collect free-product for temporary storage. Clean-up soiled shorelines. If the response crew arrives before the complete spill, seal the leak where feasible, contain and recover oil spill on ground using dykes, sumps or trenches as described in Section 5.2. Also if the truck driver is not injured, he will act as a first responder and immediately initiate the spill contingency plan as defined in Section 5 using the spill kit kept in the fuel trucks.

SECTION 8 • **RESPONSE EQUIPMENT**

8.1 GENERAL EQUIPMENT

This section addresses the emergency response machinery, equipment, tools and other resources that will be made available on-site for spill counter measures.

Mobile Equipment available to AEM, that will be used for spill contingency include:

Graders Winch Trucks Cranes Pickup Trucks Snowmobiles **Generator Sets** Fire Truck Vacuum Truck Loaders **Aluminum Boats** Backhoe Fuel Trucks Bulldozer **Bobcat** Forklift Haul Trucks Water Trucks **Snow Cat** Excavators

If required, additional equipment on site will be made available to assist with spill recovery.

Temporary containment systems are also available on site and include:

- Booms
- Drums
- Tanks
- Tailings Pond
- Spill absorbent material packages/pads
- Silt fencing
- Maritime Barrier

Emergency transportation that will be used under an emergency situation are:

- Aircraft (fixed wing or helicopter)
- 4-wheel drive vehicles
- Snowmobiles
- Boats

Communication equipment on site includes radios, telephones, faxes and other wireless communication systems that will be used in the event of an emergency situation.

Spill Response kits are strategically located where required. Each department and work area is responsible for providing sufficient spill response kits in their respective work areas. The kits are kept in marked and accessible locations. The locations include all fuel storage areas, chemical storage areas and so on.

All of the mobile equipment on site (heavy equipment) contains an emergency spill kit.

An Environmental Emergency Trailer which is easily accessible and mobile is located on site which contains the following items:

- Pump Elastec
- Pump accessories
- Vaccum ends
- 45 gallons top
- Tubing 2 inches diameter
- Tubing 3 or 4 inches diameter?
- Diesel Fuel jerry can (place on a miniberm)
- Spill kit accessory (red box)
- Drums opener
- Wescot (to open empty drum screw)
- Empty drums
- 2 drums berm
- 4 drums berm 4x8
- Tarp 20x30
- Tarp 30x50
- oil white spill pads
- Universal boom 5x10
- Universal boom 8x10
- ABS pipe : 10' (4")
- ABS pipe: 10' (6")
- Cell U-Sorb
- Sphagsorb
- 3 Size of Wedge wood
- Plug pattie
- Quattrex bags
- Hand shovel
- Ice braker chisel
- Sledge hammer
- Rod bar (4')

Along the AWPR there are 9 environmental emergency sea cans. These sea cans are strategically placed along the road at water crossings. Each environmental emergency sea can contains the following material:

- Empty drums (Sealed)
- Mini berm 36"x36" x4'
- 4 drum spill berm 4x8
- Tarp 20'x30'
- Tarp 30'x50'
- oil white spill pads
- Universal boom 5"x10' (Chemical)
- Universal boom 8"x10' (Chemical)
- Oil only booms 5"x10' (Hydro-carbons)
- Maritime barrier (Baffle)
- ABS pipe : 10' (4")
- Cell U-Sorb

- Amerisorb peat moss
- Oil gator absorbant
- Plug pattie
- Quattrex bags
- Fork lift crate (pallets)
- Long handle round point shovel Chisel point crow bar 16 lbs 57"
- Ice braker chisel
- Sledge hammer 12 lbs 36"
- Rod bar (4')

If required, external resources are available in the Hamlet of Baker Lake and those contacts are found in Table 6.

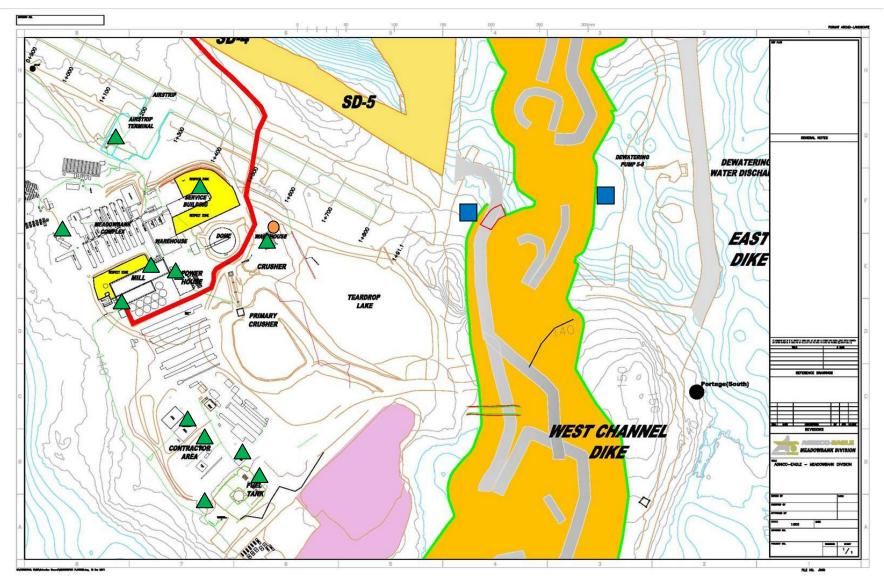


Figure 2 – Spill Response Equipment Locations

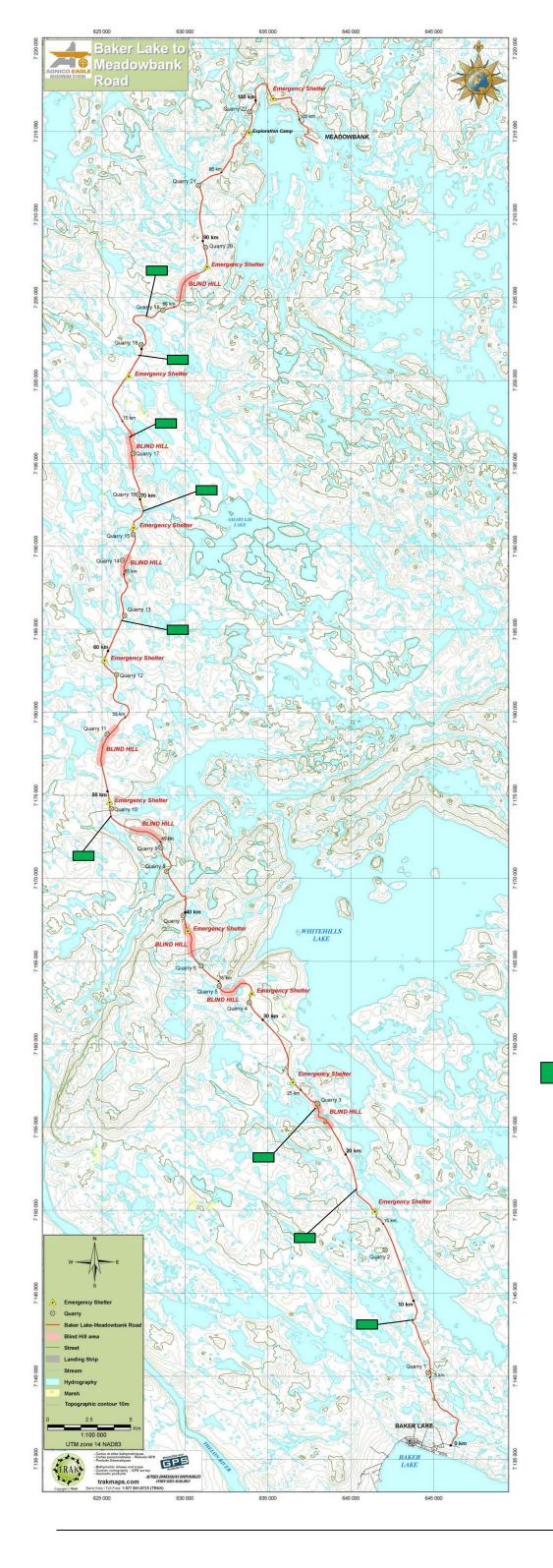


Figure 3 - Map of AWAPR Including Locations of Environmental Emergency Seacans

Environmental Emergency Seacans

SECTION 9 • TRAINING & EMERGENCY SPILL / EXERCISE

9.1 TRAINING

9.1.1 On-site Personnel

A designated ERT consisting of on-site personnel has been established. AEM will ensure that the ERT is trained and present at all times. All members of the team are trained and familiar with emergency and spill response resources, including their location and access, the SCP, and appropriate emergency spill response methodologies. The ERT has up to 40 members, each of whom train 8 hours per month.

The following training is included:

- A review of the spill response plan and responsibilities of the ERT members.
- The nature, status, and location of fuel and chemical storage facilities.
- The on-site and off-site spill response equipment and how to use it.
- Emergency contact lists.
- Desktop exercises of "worst case" scenarios.
- The likely causes and possible effects of spills.

Every employee at AEM receives spill and waste management training during their initial site orientation so they are able to respond to small spills and raise the alarm if a larger response is required. ERT members receive more extensive HAZMAT training and learn how to respond while wearing personal protective clothing.

The Environmental Department regularly attends tool-box sessions to provide information on spill response and reporting procedures.

SECTION 10 • LIST OF ACRONYMS

ANFO Ammonium Nitrate Fuel Oil AWPR All Weather Private Road

CCME Canadian Council of Ministers of the Environment

DFO Fisheries and Oceans Canada

EMS Environmental Management System

ERP Emergency Response Plan ERT Emergency Response Team

ERTC Emergency Response Team Coordinator

GN Government of Nunavut HCN Hydrogen Cyanide

HMMP Hazardous Materials Management Plan INAC Indian and Northern Affairs Canada

LEL Lower Explosion Limit

AEM Agnico-Eagle Mines Limited MSDS Materials Safety Data Sheets

NIOSH National Institute for Occupational Safety and Health

OHSP Occupational Health & Safety Plan

PCB Polychlorinated Biphenyls
PPE Personal Protective Equipment

SCP Spill Contingency Plan

TDG Transportation of Dangerous Goods WHMIS Workplace Hazardous Materials

Appendix A

NWT/NU Spill Report Form

NT-NU SPILL REPORT

CASOLINE CHEMICALS AND OTHER HAZARDOLIS MATERIALS

NT-NU 24-HOUR SPILL REPORT LINE

TEL: (867) 920-8130 FAX: (867) 873-6924 EMAIL: spills@gov.nt.ca

									REPORT LINE OSE ONLY
Α	REPORT DATE: MONTH – DAY – YEAR				ORIGINAL SPILL REF	PORT,	REPORT NUMBER		
В	OCCURRENCE DATE: MONTH	I – DAY – YEAR	OCCURRENCE		ENCE	TIME	□ UPDATE # TO THE ORIGINAL SPILL REPOR		
С	LAND USE PERMIT NUMBER (IF APPLICABLE)		1	WATE	ER LICENCE NUMBER	(IF APPLICABLE)			
D	GEOGRAPHIC PLACE NAME O	OR DISTANCE AND DIRECTION	FROM NAMED LO	OCATION		REGION	IT DADJACENT JUI	RISDICTION	OR OCEAN
Е	LATITUDE			ı	LONG	SITUDE			
_	DEGREES RESPONSIBLE PARTY OR VES		SECONDS RESPONSIBLE F			REES SOR OFFICE LOCATI	MINUTES	SE	CONDS
F									
G	ANY CONTRACTOR INVOLVED	0	CONTRACTOR	ADDRESS (ORO	FFICE LOCATION			
	PRODUCT SPILLED		QUANTITY IN LIT	TRES, KILO	OGRA	MS OR CUBIC METRE	S U.N. NUMBER		
Н	SECOND PRODUCT SPILLED	(IF APPLICABLE)	QUANTITY IN LIT	TRES, KILO	OGRA	MS OR CUBIC METRE	S U.N. NUMBER		
ī	SPILL SOURCE		SPILL CAUSE				AREA OF CONTAIN	INATION IN	SQUARE METRES
J	FACTORS AFFECTING SPILL O	OR RECOVERY	DESCRIBE ANY	ASSISTAN	ICE R	IEQUIRED	HAZARDS TO PER	SONS, PRO	PERTY OR EQUIPMENT
K	ADDITIONAL INFORMATION, COMMENTS, ACTIONS PROPOSED OR TAKEN TO CONTAIN, RECOVER OR DISPOSE OF SPILLED PRODUCT AND CONTAMINATED MATERIALS								
L	REPORTED TO SPILL LINE BY	POSITION		EMPLOYE	YER LOCATION CALLIN		LOCATION CALLING FF	LING FROM TELEPHONE	
М	ANY ALTERNATE CONTACT	POSITION		EMPLOYE	R		ALTERNATE CONTACT LOCATION		LTERNATE TELEPHONE
			DEDUCT I IN	E LISE ON	ΠV				
_	REPORT LINE USE ONLY RECEIVED AT SPILL LINE BY POSITION EMPLOYER			LOCATION CALLED REPORT LINE NUM		REPORT LINE NUMBER			
N	N RECEIVED AT SMILL LINE BY STATION OPERATOR					YELLOWKNIFE, NT		867) 920-8130	
LEA	DAGENCY DEC DCCG DC	SNWT DGN DILA DINAC	□NEB □TC	SIGNI	IFICA	NCE DMINOR DMA	JOR 🗆 UNKNOWN	FILE STATU	US □ OPEN □ CLOSED
AGENCY CONTACT NAME			CONT	CONTACT TIME		REMARKS			
LEAD AGENCY									
FIRS	ST SUPPORT AGENCY								
\vdash	SECOND SUPPORT AGENCY								
THEO SUPPORT AGENCY									

PAGE 1 OF _____

Appendix B

General Response Procedures for Spilled Chemical Substances

Explosives

- **B.1 Ammonium Nitrate**
- **B.2 Ammonium Nitrate Fuel Oil (ANFO)**

B.1 Ammonium Nitrate

AEM commits to review, modify and approve as required to establish this procedure as appropriate for use at the Meadowbank camp.

The first step against prevention of potential spills and association hazards is the application of proper storage procedures for bulk Ammonium Nitrate, including the following:

- Good housekeeping of the storage facility will prevent spilling and or contamination of materials.
- Ammonium nitrate should be stored away from combustible materials and fuels, as well as
 other blasting accessories (i.e. boosters, delays, detonating cords and detonators).
- The storage facility should be well ventilated.
- Proper signage restricting the use/exposure of ammonium nitrate to ignition sources should be posted (e.g. no hot work, smoking or vehicle maintenance).
- The storage facility should be locked at all times with only authorized personnel allowed access.

The following is a general spill response procedure for ammonium nitrate. Consult the MSDS for the specific spilled compound to determine whether deviations from the general guidance are required. AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For an ammonium nitrate spill (solid):

- 1) Isolate and evacuate the spill area.
- 2) Contact the your Supervisor who will then contact the On-Scene Coordinator and coordinate appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 3) Put on appropriate personal protective equipment. For an ammonium nitrate spill this includes:
 - a. Gloves as recommended by the MSDS or glove manufacturer
 - b. Protective eyeglasses or chemical safety goggles or face shield **as recommended by the MSDS**
 - c. Lab coat, coveralls or TyvekTM coveralls as recommended by the MSDS
 - d. Half mask air-purifying respirator with cartridges and/filters as recommended by the
 MSDS or respirator manufacturer
- 4) Ventilate (open windows/doors to outdoors) closed spaces before entering.

- 5) Remove all sources of heat and ignition (no smoking, flares, sparks or flames in immediate area) and remove uncontaminated combustible materials and organic compounds (wood, paper, oil, etc.,) from spill area.
- 6) For spills to land, protect the spill area from storm water runoff by constructing a ditch or dike using suitable absorbent materials, soil or other appropriate barrier.
- 7) Vacuum or sweep the spill residue using non-metal, non-sparking tools and place the residue in a labelled, plastic, container (plastic pail with lid or double heavy duty plastic bags) for re-use or off-site disposal at a licensed disposal facility.

Note: Recovered solid, if generally free from impurities, may be suitable for its intended use. In this case, place solid in suitable container with lid, and **clearly label the container per WHMIS Guidelines**. Note: Minimize dust generation during the operation.

8) Remove and bag personal protective equipment for cleaning and disposal at a licensed facility. Thoroughly wash potential skin contact locations after handling.

B.2 Ammonium Nitrate Fuel Oil (ANFO)

Currently no ANFO is stored at the site. ANFO is fabricated as required, with ammonium nitrate and fuel oil. In the event that ANFO would be stored at the camp, AEM commits to review, modify and approve as required to establish this procedure as appropriate for use at the Meadowbank Gold Project. Proper handling and disposal of ANFO is an important first step in mitigating against spills and associated hazards.

The proper storage procedures are as follows:

- ANFO should only be used under the supervision of authorized trained personnel.
- ANFO should be kept away from heat, sparks, and flames, as well as initiating explosives, oxidizing agents, combustibles, and other sources of heat.
- Containers should be protected from physical damage and in dry, well ventilated conditions.
- Transportation to the Mine site will be in accordance with Section 14 of the Mines Act and Regulations and the Transportation of Dangerous Goods Act. Transport vehicles will be in sound mechanical condition and equipped with proper safety equipment. Loaded vehicles will not be left unattended and only authorized personnel will be responsible for the security of the explosives under their control.
- Explosives that have been identified as deteriorated or damaged will need to be disposed of
 or destroyed. The appropriate method of disposal or destruction and subsequent course of
 action will be determined by authorized personnel or the explosive supplier.

The following is a general spill response procedure for ammonium nitrate fuel oil – ANFO. The following procedure does not apply to emulsions or other explosives. Consult the MSDS for the specific spilled compound to determine whether deviations from the general guidance are required. AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For an ANFO spill (solid):

- 1) Isolate and evacuate the spill area.
- 2) Immediately extinguish any open flames and remove ignition sources (no smoking, flares, sparks in immediate area) IF SAFE TO DO SO. Fires involving large quantities of ANFO should not be fought.
- 3) Contact the On-Scene Coordinator who will assemble ERT members and the appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 4) Put on appropriate personal protective equipment. For an ANFO spill this includes:

- a. Gloves as recommended by the MSDS or glove manufacturer.
- b. Protective eyeglasses or chemical safety goggles or face shield **as recommended by the MSDS.**
- c. Lab coat, coveralls or TyvekTM coveralls as recommended by the MSDS.
- d. Shoe covers or rubber boots.
- e. Half mask air-purifying respirator with cartridges and/filters as recommended by the MSDS or respirator manufacturer.
- 5) If the spill has occurred outdoors, stay upwind and avoid low lying areas. Ventilate

(open windows/doors to outdoors) closed spaces before entering. Ensure adequate explosion proof ventilation for clean-up.

- 6) Remove all sources of heat and ignition (no smoking, flares, sparks or flames in immediate area) and remove uncontaminated combustible materials and organic compounds (wood, paper, oil, etc.,) from spill area.
- 7) Do not operate radio transmitters within 100 m of electric detonators.
- 8) For spill on land, protect the spill area from storm water runoff by constructing a ditch or dike using suitable absorbent materials, soil or other appropriate barrier. For spill to water, utilize damming, and/or water diversion to minimize the spread of contamination.
- 9) Collect, sweep or shovel spilled material and the other contaminated material/soil using non-metallic, spark-proof tools and place residue into a labelled, plastic, waste container (plastic pail with lid or double heavy duty plastic bags) for off-site disposal at a licensed disposal facility.

Note: Recovered solid, if generally free from impurities, may be suitable for its intended use. In this case, place solid in suitable container with lid, and clearly label the container per WHMIS Guidelines.

Note: The drums/containers/residues are to be stored in ventilated areas away from incompatible materials for eventual off-site disposal at a licensed disposal facility.

10) Remove and bag personal protective equipment for cleaning or disposal at a licensed disposal facility. Thoroughly wash with soap potential skin contact locations after handling. Properly dispose of contaminated leather articles including shoes that cannot be decontaminated.

Appendix C

General Response Procedures for Spilled Chemical Substances

C.1 Compressed Gases

C.1 Compressed Gases

AEM commits to review, modify and approve as required to establish this procedure as appropriate for Meadowbank Gold Project.

The following is a general spill response procedure for compressed gases. Consult the MSDS for the specific spilled compound to determine whether deviations from the general guidance are required. AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For a compressed (inert and flammable) gas leak:

- 1) IF SAFE TO DO SO and it will stop the gas leak, turn off cylinder valve.
- 2) If the leak cannot be stopped by closing the cylinder valve, and it is **an inert atmospheric gas** (e.g. nitrogen, carbon dioxide, etc) isolate and evacuate the affected area. If the leak is a **flammable gas** and the leak is outside of a ventilated building enclosure that will contain the gas, immediately activate the fire alarm system and evacuate the area/building.
- 3) Contact the On-Scene Coordinator who will assemble spill response team members and the appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 4) If possible and safety permits, adjust leaking cylinder so that gas escapes rather than liquid.
- 5) If possible and safety permits, eliminate all ignition sources (no smoking, flares, sparks or flames in immediate area) and turn off electrical equipment.
- 6) If the spilled has occurred outdoors, stay upwind and avoid low lying areas. If the spill has occurred inside a building, prevent spread of vapour throughout the building by closing doors to other rooms and hallways. If the room's air exchange system distributes air throughout the building, then it may also be necessary to have it shut-down. Allow vapours to ventilate outdoors by opening windows and doors to the exterior.
- 7) Isolate area until gas has dispersed. On-Scene Coordinator to verify safe conditions.

Appendix D

General Response Procedures for Spilled Chemical Substances

D.1 Flammable and Combustible Liquids

D.1 Flammable and Combustible Liquids

AEM commits to review, modify and approve as required to establish this procedure as appropriate for use at the Meadowbank Gold Project. The following is a general spill response procedure for flammable or combustible liquids, particularly petroleum hydrocarbon products. Consult the MSDS for the specific spilled compound to determine whether deviations from the general guidance are required.

AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For a spill of flammable or combustible petroleum hydrocarbon product (liquid):

- 1) Isolate and evacuate the spill area.
- 2) Immediately extinguish any open flames and remove ignition sources (no smoking, flares, sparks in immediate area) IF SAFE TO DO SO.
- 3) Stop leak and contain spill (see Step 9) IF SAFE TO DO SO.
- 4) Contact the On-Scene Coordinator who will assemble ERT members if required and the appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 5) Put on appropriate personal protective equipment. Depending on the scale of the spill and properties of the spilled substance, this can include:
 - a. Gloves as recommended by the MSDS or glove manufacturer.
 - b. Splash goggles or face shield.
 - c. Shoe covers or rubber boots.
 - d. Lab coat or TyvekTM coveralls.
 - e. Half mask air-purifying respirator with **organic vapour or combination** cartridges, or **as otherwise recommended by the MSDS or respirator manufacturer**.
- 6) If the spilled has occurred outdoors, stay upwind and avoid low lying areas. If the spill has occurred inside a building, prevent spread of vapour throughout the building by closing doors to other rooms and hallways. If the room's air exchange system distributes air throughout the building, then it may also be necessary to have it shut-down.
- 7) Ventilate (open windows/doors to outdoors) closed spaces before entering. Ensure adequate explosion-proof ventilation for clean-up. A vapour suppressing foam or water spray may be used to reduce vapours.

- 8) Remove all sources of ignition (no smoking, flares, sparks or flames in immediate area) and combustible materials (wood, paper, oil, etc.) within the spilled area.
- 9) Contain spill by using spill absorbent, spill pads or pillows, soil or snow to construct a dike that limits flow and prevents entry to sewer, waterways or onto ice. For spills to land, excavation of trenches/pits to capture spill flow may also be appropriate. If possible, compact soil or snow dikes, and place plastic tarps over the dike and at its foot to allow the product to pool on the plastic for easy recovery.

<u>Note</u>: Do not use paper towels to absorb spill as this increases the rate of evaporation and vapour concentration in the air.

Note: Do not flush with water into drainage areas or ditches as this will spread spill.

<u>Note</u>: Snow works well as a natural absorbent to collect and contain spilled petroleum hydrocarbons. However, its use in containing a spill will result in a water-contaminant mixture that may be more difficult to manage. It is important to scrape up the contaminated snow and ice as soon as possible.

- 10) Carefully cover the spill area with spill absorbent, spill pads, soil or snow, starting at the outside and working inward. Do not touch or walk through spilled material.
- 11) Sweep up or shovel the residue using non-metallic, spark-proof tools and place the residue into a labelled, plastic, waste container (plastic pail with lid or double heavy duty plastic bags). For larger spills to land, excavate impacted absorbent material and soil, place in lined and bermed temporary storage area or directly into sealed drums/containers.

<u>Note</u>: The drums/containers/residues are to be stored in ventilated areas away from incompatible materials for eventual treatment at on-site landfarm (if present) or off-site disposal at a licensed disposal facility. Electrically ground all containers and transporting equipment.

Note: Larger pools of product may be pumped into empty storage tanks or drums.

- 12) If spill is indoors, mop the affected area using detergent and water. Dispose of this water to drums for eventual off-site disposal at a licensed disposal facility. Spills to land may require further excavation or remediation of contaminated soil until acceptable soil quality is achieved. The On-Scene Coordinator and/or Environmental Superintendent will assess this requirement.
- 13) For spills to water, immediately limit the area of the spill on water using absorbent pads and booms and similar materials to capture small spills on water. Deploy and slowly draw in absorbent booms to encircle and absorb the spilled product. Recover larger spills on water with floating skimmers and pumps, as required, and discharge recovered product to drums or tanks.

<u>Note</u>: Petroleum hydrocarbons are generally hydrophobic, and as such, do not readily dissolve in water. They typically tend to float on the water's surface. Absorbent booms are often relied on to recover hydrocarbons that escape land containment and enter water.

<u>Note</u>: Antifreeze sinks and mixes with water. If released to water, attempt to isolate/confine the spill by damming or diverting the spill. Pump contaminated water to tanks or drums.

14) Remove and bag personal protective equipment for cleaning, informing laundry personnel of contaminant hazards, or disposal at a licensed disposal facility. Thoroughly wash with soap potential skin contact locations after handling. Properly dispose of contaminated leather articles, (including shoes) that cannot be decontaminated.

Appendix E

General Response Procedures for Spilled Chemical Substances

Oxidizing Substances

E.1 Liquids

E.2 Solids

E.1 Liquids

AEM commits to review, modify and approve as required and to establish this procedure as appropriate for use at the Meadowbank Gold Project. The following is a general spill response procedure for liquid oxidizer compounds. Consult the MSDS for the specific spilled compound to determine whether deviations from the general guidance are required.

AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For a liquid oxidizer spill:

- 1) Isolate and evacuate the spill area.
- 2) Stop leak and contain spill (see Step 8) IF SAFE TO DO SO.
- 3) Contact the On-Scene Coordinator who will assemble ERT members if required and the appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 4) Put on the appropriate personal protective equipment. Depending on the scale of the spill and properties of the spilled substance, this can include:
 - a. Gloves as recommended by the MSDS or glove manufacturer.
 - b. Splash goggles or face shield.
 - c. Shoe covers or rubber boots.
 - d. Lab coat, coveralls or TyvekTM coveralls as recommended by the MSDS.
 - e. Half mask air-purifying respirator with cartridges and/or filters as recommended by the MSDS or respirator manufacturer.
- 5) Ventilate closed spaces before entering. Ensure adequate explosion-proof ventilation for clean-up.
- 6) Remove and/or moisten with water any combustible material (wood, paper, oil, etc.) affected by the spill.
- 7) Use water spray to reduce vapours or divert vapour cloud drift, if required.
- 8) Contain spill by using non-combustible spill absorbent, soil or snow to construct a dike that limits flow and prevents entry to sewer, waterways or onto ice. For spills to land, excavation of trenches/pits to capture spill flow may also be appropriate.

<u>Note</u>: Flushing area with flooding quantities of water may also be appropriate assuming this does not make clean up and waste management more difficult—**refer to the MSDS**.

- 9) Carefully cover the spill area with spill absorbent, soil or snow, starting at the outside and working inward. Use non-combustible absorbent. Do not touch or walk though spilled material.
- 10) Sweep up or shovel the spill residue using non-metal, non-sparking tools and place the residue into a labelled, plastic, waste container (plastic pail with lid or double heavy duty plastic bags) for off-site disposal at a licensed disposal facility.
- 11) For indoor spills, mop the affected area using detergent and water. Flushing area with flooding quantities of water may also be appropriate **refer to the MSDS**. Dispose of this water to the sanitary sewer, process stream or waste drums as appropriate. Spills to land may require further excavation or remediation of contaminated soil until acceptable soil quality is achieved. The On-Scene Coordinator and/or Environmental Superintendent will assess this requirement.
- 12) Remove and bag personal protective equipment for cleaning, informing laundry personnel of contaminant hazards, or disposal at a licensed disposal facility. Thoroughly wash with soap potential skin contact locations after handling. Properly dispose of contaminated clothing that cannot be decontaminated.

E.2 Solids

AEM commits to review, modify and approve as required to establish this procedure as appropriate for use at the Meadowbank Gold Project.

The following is a general spill response procedure for solid oxidizer compounds. Consult the MSDS for the specific spilled compound to determine whether deviations from the general guidance are required.

AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For a **solid oxidizer spill**:

- 1) Isolate and evacuate the spill area.
- 2) Contact the On-Scene Coordinator who will assemble ERT members if required and the appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 3) Put on the appropriate personal protective equipment. Depending on the scale of the spill and properties of the spilled substance, this can include:
 - a. Gloves as recommended by the MSDS or glove manufacturer.
 - b. Safety glasses or goggles.
 - c. Lab coat.
 - d. Half mask air-purifying respirator with N95 or greater protection particulate filter or as recommended by the MSDS or respirator manufacturer.
- 4) Remove all sources of heat and ignition (no smoking, flares, sparks or flames in immediate area) and remove uncontaminated combustible materials and organic compounds (wood, paper, oil, etc.,) from spill area.
- 5) For spills to land, protect the spill area from storm water runoff by constructing a ditch or dike using suitable non-combustible absorbent materials, soil or other appropriate barrier. For spill to water, utilize damming, and/or water diversion to minimize the spread of contamination.
- 6) Vacuum, sweep or shovel the spill residue using non-metal, non-sparking tools and place the residue into a labelled, plastic, container (plastic pail with lid or double heavy duty plastic bags) for reuse or off-site disposal at a licensed disposal facility.

<u>Note</u>: Recovered solid, if generally free from impurities, may be suitable for its intended use. In this case, place solid in suitable container with lid, and **clearly label the container per WHMIS Guidelines**.

Note: Minimize dust generation.

- 7) If there is still oxidizer residue left in the spill area, neutralize with appropriate agent **as recommended by the MSDS**, or for spills to land continue to excavate until no visible spilled solid remains. Use non-combustible spill absorbent or soil to absorb the neutralized residue. Place in suitable drums/containers for disposal to a licensed facility.
- 8) For indoor spills, mop the affected area using detergent and water. Dispose of this water to the sanitary sewer, process stream or waste drums as appropriate.
- 9) Remove and bag personal protective equipment for cleaning, informing laundry personnel of contaminant hazards, or disposal at a licensed disposal facility. Thoroughly wash with soap potential skin contact locations after handling. Properly dispose of contaminated clothing that cannot be decontaminated.

Appendix F

General Response Procedures for Spilled Chemical Substances

Poisonous and Toxic Substances

F.1 Sodium Cyanide

F.1 Sodium Cyanide

AEM commits to review, modify and approve as required to establish this procedure as appropriate for use at the Meadowbank Gold Project.

The following is a general spill response procedure for solid Sodium Cyanide.

AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For a Sodium Cyanide (solid) spill:

- 1) Isolate and evacuate the spill area.
- 2) Contact the On-Scene Coordinator who will assemble ERT members and the appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 3) Put on the appropriate personal protective equipment. Depending on the scale of the spill and properties of the spilled substance, this can include:
- e. Gloves as recommended by the MSDS or glove manufacturer.
- f. Safety glasses or goggles.
- g. Lab coat.
- h. Half mask air-purifying respirator as recommended by the MSDS or respirator manufacturer.

Note: For worker safety, maintain readily accessible supply of cyanide antidote kits on site.

- 4) Ventilate area of spill or leak.
- 5) Avoid exposure to acids, water or weak alkalies which can react to form toxic hydrogen cyanide (HCN) gas.
- 6) Contain spill to prevent release to sewer, waterway or onto ice. For spills to land, protect the spill area from storm water runoff by constructing a ditch or dike using absorbent materials, soil or other appropriate barrier. If raining, cover spill area with tarp or plastic to minimize contact with water and prevent subsequent runoff. For spill to water, utilize damming, and/or water diversion to minimize the spread of contamination.
- 7) Shovel the spilled material into labelled drums, containers or plastic bags for re-use or off-site disposal at a licensed disposal facility.

Note: Recovered solid, if generally free from impurities, may be suitable for its intended use. In this case, place solid in suitable container with lid, and clearly label the container per WHMIS Guidelines.

Note: Minimize dust generation.

8) If there is still spilled sodium cyanide residue left in the spill area, neutralize with appropriate agent as recommended by the MSDS (sodium or calcium hypochlorite solution), or for spills to land continue to excavate until no visible spilled solid remains. Use suitable spill absorbent or soil to absorb the neutralized residue. Place in suitable drums/containers for disposal to a licensed facility. Collect material and place in a closed container for recovery or disposal.

- 9) For indoor spills, mop the affected area using detergent and water. Dispose of this water to waste drums/containers for disposal to a licensed facility.
- 10) Remove and bag personal protective equipment for disposal at a licensed disposal facility. Thoroughly wash with soap potential skin contact locations after handling. Properly dispose of contaminated clothing that cannot be decontaminated.

Appendix G

General Response Procedures for Spilled Chemical Substances

Corrosive Substances

- **G.1** Acids, Liquids
- G.2 Acids, Solids
- G.3 Bases/Alkali, Liquids
- G.4 Bases/Alkali, Solids

G.1 Acids, Liquids

AEM commits to review, modify and approve as required to establish this procedure as appropriate for use at the Meadowbank Gold Project.

The following is a general spill response procedure for liquid acid compounds. Consult the MSDS for the specific spilled compound to determine whether deviations from the general guidance are required. AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For a liquid acid spill:

- 1) Isolate & evacuate the spill area.
- 2) Stop leak and contain spill (see Step 8 below) IF SAFE TO DO SO.
- 3) Contact the On-Scene Coordinator who will assemble ERT members if required and the appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 4) Put on appropriate personal protective equipment. Depending on the scale of the spill and properties of the spilled substance, this can include:
 - a. Gloves as recommended by the MSDS or glove manufacturer.
 - b. Splash goggles or face shield.
 - c. Shoe covers or rubber boots.
 - d. Lab coat or TyvekTM coveralls.
 - e. Half mask air-purifying respirator with acid gas or combination cartridges, or as otherwise recommended by the MSDS or respirator manufacturer.
- 5) If the spill has occurred outdoors, stay upwind and stay out of low areas. If the spill has occurred inside a building, prevent spread of vapour throughout the building by closing doors to other rooms and hallways. If the room's air exchange system distributes air throughout the building, then it may also be necessary to have it shut-down.
- 6) Ventilate (open windows/doors to outdoors) closed spaces before entering.
- 7) Remove all sources of ignition (no smoking, flares, sparks or flames in immediate area).
- 8) Contain spill by using spill absorbent, spill pads or pillows, or dry soil to construct a dike that limits flow and prevents entry to sewer, waterways or onto ice. For spills to land, excavation of trenches/pits to capture spill flow may also be appropriate. Ideally, use spill absorbent that contains a mild neutralizing agent as recommended by the MSDS.

<u>Note</u>: Many acids, particularly concentrated acids react violently in the presence of water. Do not flush spill area with water unless the **MSDS** indicates acceptable.

<u>Note</u>: Nitric Acid reacts violently and explosively with organic chemicals and organic material such as wood, cotton and paper; therefore, do not use organic absorbent material on Nitric acid.

<u>Note</u>: Hydrofluoric acid will fume during neutralization. Provide adequate ventilation and approach from upwind. Neutralize carefully with sodium bicarbonate, soda ash or lime. Use water spray to disperse the gas/vapour if required. Remove all sources of ignition.

9) Carefully cover the spill area with spill absorbent, spill pads or dry soil, starting at the outside and working inward. If practical, neutralize spill using **MSDS-recommended** or commercially available neutralizers. Use pH indicator paper to determine if spill is neutralized (pH 7).

Note: Use caution as neutralization reactions generate heat.

- 10) Sweep or shovel the neutralized spill residue using non-metal, non-sparking tools and place the residue into a labelled, plastic, waste container (plastic pail with lid or double heavy duty plastic bags) for off-site disposal at a licensed disposal facility.
- 11) Check the pH of the spill area. If it is less than pH 6, then further neutralize with a dilute solution of a suitable reagent **as identified on the MSDS** or for spill to land continue to excavate contaminated soil.
- 12) For indoor spills, mop the affected area using detergent and water. Dispose of this water to the sanitary sewer, process stream or waste drums as appropriate.
- 13) Remove and bag personal protective equipment for cleaning, informing laundry personnel of contaminant hazards, or disposal at a licensed disposal facility. Thoroughly wash with soap potential skin contact locations after handling. Properly dispose of contaminated clothing that cannot be decontaminated.
- 14) After the spill has been cleaned up, the area should be free of vapours. However, if personnel note odours or irritation, isolate the spill area, re-clean the area as per **Steps 11 and 12** or wait at least **1 hour** before re-entering or until considered safe by the On-Scene Coordinator or Environmental Superintendent.

G.2 Acids, Solids

AEM commits to review, modify and approve as required to establish this procedure as appropriate for use on the Meadowbank Gold Project.

The following is a general spill response procedure for solid acid compounds. Consult the MSDS for the specific spilled compound to determine whether deviations from the general guidance are required.

AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For a **solid acid spill**;

- 1) Isolate and evacuate the spill area.
- 2) Contact the On-Scene Coordinator who will assemble ERT members if required and the appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 3) Put on the appropriate personal protective equipment. Depending on the scale of the spill and properties of the spilled substance, this can include:
 - a. Gloves as recommended by the MSDS or glove manufacturer.
 - b. Safety glasses or goggles.
 - c. Lab coat.
 - d. Half mask air-purifying respirator with N95 or greater protection particulate filter, or as otherwise recommended by the MSDS or respirator manufacturer.
- 4) Contain spill to prevent release to sewer, waterway or onto ice. For spills to land, protect the spill area from storm water runoff by constructing a ditch or dike using absorbent materials, dry soil or other appropriate barrier. If raining, cover spill area with tarp or plastic to minimize contact with water and prevent reaction and/or subsequent runoff. For spill to water, utilize damming, and/or water diversion to minimize the spread of contamination.
- 5) If necessary to minimize dust production, slightly moisten the solid. Use water, or if the material is water reactive, another inert liquid **as recommended by the MSDS**.
- 6) Sweep up or shovel the residue using non-metallic, spark-proof tools and place the residue into a labelled, plastic, waste container (plastic pail with lid or double heavy duty plastic bags) for reuse or off-site disposal at a licensed disposal facility

<u>Note</u>: Recovered solid, if generally free from impurities, may be suitable for its intended use. In this case, place solid in suitable container with lid, and **clearly label the container per WHMIS Guidelines**.

7) Remaining solid acid residue may be neutralized using a dilute solution of appropriate agent **as recommended by the MSDS** (e.g. sodium bicarbonate - baking soda), or for spills to land continue to excavate until no visible spilled solid remains. Check the pH of the spill area; the final pH should be between pH 6 and 10. Use spill absorbent, spill pads or dry soil to absorb the neutralized residue.

Note: Use caution as neutralization reactions generate heat.

- 8) For indoor spills, mop the affected area using detergent and water. Dispose of this water to the sanitary sewer, process stream or waste drums as appropriate.
- 9) Remove and bag personal protective equipment for cleaning, informing laundry personnel of contaminant hazards, or disposal at a licensed disposal facility. Thoroughly wash with soap potential skin contact locations after handling. Properly dispose of contaminated clothing that cannot be decontaminated.

G.3 Bases/Alkali, Liquids

AEM commits to review, modify and approve as required to establish this procedure as appropriate for use at the Meadowbank exploration camp.

The following is a general spill response procedure for liquid alkali or base compounds. Consult the MSDS for the specific spilled compound to determine whether deviations from the general guidance are required.

AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For a liquid alkali or base spill:

- 1) Isolate & evacuate the spill area.
- 2) Stop leak and contain spill (see Step 8) IF SAFE TO DO SO.
- 3) Contact the On-Scene Coordinator who will assemble ERT members and the appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 4) Put on the appropriate personal protective equipment. Depending on the scale of the spill and properties of the spilled substance, this can include:
 - a. Gloves as recommended by the MSDS or glove manufacturer.
 - b. Splash goggles or face shield.
 - c. Shoe covers or rubber boots.
 - d. Lab coat or TyvekTM coveralls.
 - e. Half mask air-purifying respirator with cartridges/filters as recommended by the MSDS or respirator manufacturer.
- 5) If the spill has occurred outdoors, stay upwind and stay out of low areas. If the spill has occurred inside a building, prevent spread of vapour throughout the building by closing doors to other rooms and hallways. If the room's air exchange system distributes air throughout the building, then it may also be necessary to have it shut-down.
- 6) Ventilate (open/windows to outdoors) closed spaces before entering.
- 7) Remove all sources of ignition (no smoking, flares, sparks or flames in immediate area) and combustible materials (wood, paper, oil, etc.).
- 8) Contain spill by using spill absorbent, spill pads or pillows, or dry soil to construct a dike that limits flow and prevents entry to sewer, waterways or onto ice. For spills to land, excavation of trenches/pits

to capture spill flow may also be appropriate. Ideally, use spill absorbent that contains a mild neutralizing agent as recommended by MSDS.

Note: Use caution as neutralization reactions generate heat.

9) Carefully cover the spill area with spill absorbent, spill pads or dry soil, starting at the outside and working inward. If practical, neutralize spill using MSDS-recommended or commercially available neutralizers. Use pH indicator paper to determine if spill is neutralized (pH 7).

Note: Use caution as neutralization reactions generate heat.

- 10) Sweep or shovel the neutralized spill residue using non-metal, non-sparking tools and place the residue into a labelled, plastic, waste container (plastic pail with lid or double heavy duty plastic bags) for off-site disposal at a licensed disposal facility.
- 11) Check the pH of the spill area. If it is greater than pH 10, then further neutralize with a dilute solution of a suitable reagent **as identified on the MSDS**, or for spill to land continue to excavate contaminated soil.
- 12) For indoor spills, mop the affected area using detergent and water. Dispose of this water to the sanitary sewer, process stream or waste drums as appropriate.
- 13) Remove and bag personal protective equipment for cleaning, informing laundry personnel of contaminant hazards, or disposal at a licensed disposal facility. Thoroughly wash with soap potential skin contact locations after handling. Properly dispose of contaminated clothing that cannot be decontaminated.
- 14) After the spill has been cleaned up, the area should be free of vapours. However, if personnel note odours or irritation, isolate the spill area, re-clean as per **Steps 11 and 12** or wait at least **1 hour** before re-entering or until it is considered to be safe by the On-Scene Coordinator or Environmental Superintendent.

G.4 Bases/Alkali, Solids

AEM commits to review, modify and approve as required to establish this procedure as appropriate for use at the Meadowbank Gold Project.

The following is a general spill response procedure for solid alkali or base compounds. Consult the MSDS for the specific spilled compound to determine whether deviations from the general guidance are required.

AEM commits to review and test, and if necessary, modify and update thus spill response procedure on an annual basis.

For a solid alkali or base spill;

- 1) Isolate and evacuate the spill area.
- 2) Contact the On-Scene Coordinator who will assemble ERT members if required and the appropriate spill response materials outside the spill area. **Obtain and read the MSDS** for the substance to determine the chemical-specific hazards and to identify any special precautions that must be taken.
- 3) Put on the appropriate personal protective equipment. Depending on the scale of the spill and properties of the spilled substance, this can include:
 - a. Gloves as recommended by the MSDS or glove manufacturer.
 - b. Safety glasses or goggles.
 - c. Lab coat.
 - d. Half mask air-purifying respirator with N95 or greater protection particulate filter or as recommended by the MSDS or respirator manufacturer.
- 4) Contain spill to prevent release to sewer, waterway or onto ice. For spills to land, protect the spill area from storm water runoff by constructing a ditch or dike using absorbent materials, dry soil or other appropriate barrier. If raining, cover spill area with tarp or plastic to minimize contact with water and prevent reaction and/or subsequent runoff. For spill to water, utilize damming, and/or water diversion to minimize the spread of contamination.
- 5) If necessary to minimize dust production, slightly moisten the solid. Use water, or if the material is water reactive, another inert liquid **as recommended by the MSDS**.

<u>Note</u>: Do not use water to flush bases in powdered form, such as calcium oxide (lime), as this material is not very soluble.

6) Sweep or shovel the residue using non-metallic, spark-proof tools and place the residue into a labelled, plastic, waste container (plastic pail with lid or double heavy duty plastic bags) for offsite disposal at a licensed disposal facility.

<u>Note</u>: Recovered solid, if generally free from impurities, may be suitable for its intended use. In this case, place solid in suitable container with lid, and **clearly label the container per WHMIS Guidelines**.

- 7) Remaining solid alkali or base residue may be neutralized using a dilute solution of appropriate acid. Check the pH of the spill area; the final pH should be between pH 6 and 10. Use spill absorbent, spill pads or dry soil to absorb the neutralized residue.
- 8) For indoor spills, mop the affected area using detergent and water. Dispose of this water to the sanitary sewer, process stream or waste drums as appropriate.
- 9) Remove and bag personal protective equipment for cleaning, informing laundry personnel of contaminant hazards, or disposal at a licensed disposal facility. Thoroughly wash with soap potential skin contact locations after handling. Properly dispose of contaminated clothing that cannot be decontaminated.

Appendix K

Woodward Group of Company Spill Contingency Plans