Appendix F3

Report: Assay Road Seepage Assessment and Engineering QCQA

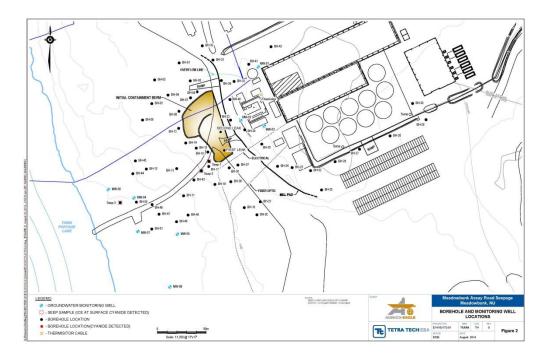
MEADOWBANK MINE, ASSAY ROAD SEEPAGE PHASE 2: ENVIRONMENTAL SITE ASSESSMENT AND ENGINEERING QA/QC

PRESENTED TO

Agnico Eagle Mines Limited

AUGUST 2014 ISSUED FOR USE FILE: E14103172-01 This page intentionally left blank.

EXECUTIVE SUMMARY


Tetra Tech EBA Inc. is pleased to provide this report to Agnico Eagle Mines (AEM) summarizing our findings from our Environmental Site Assessment of the Assay Road Seepage and the Quality Assurance/Quality Control (QA/QC) monitoring for the construction of the interception trench at the Meadowbank Mine, about 80 km north of Baker Lake, Nunavut. The purpose of this project was to identify cyanide impacted soil and groundwater; provide monitoring suggestions for cyanide impacted soil and groundwater; and perform QA/QC for the construction of an interception trench. The objectives of this work were as follows:

- Evaluate the extent of the soil impacted by the cyanide leak from the Meadowbank Mine Mill, with the goal of selecting a location for an interception trench;
- Provide recommendations for soil and groundwater monitoring after installation of the interception trench;
- Provide QA/QC services for the construction of the interception trench, and
- Provide a report summarizing the findings of the Environmental Site Assessment and the QA/QC services.

Phase 2 Environmental Evaluation

Tetra Tech EBA conducted an Environmental Site Assessment from February 19, 2014 to March 6, 2014 to investigate and evaluate the extent of ground impacted by the cyanide leak with the goal of selecting a location for an interception trench and to allow future determination of clean-up requirements of the contaminated materials.

The Environmental Site Assessment was conducted with a downhole hammer-air rotary drill without water. A total of 52 boreholes were drilled in various areas located on the tundra and pad. In addition to the boreholes, eight (8) monitoring wells were installed, three (3) on the pad and five (5) on the tundra (Figure 2). Soil samples were collected from each borehole and analysed for pH, Total (Strong Acid Dissociable) Cyanide and Weak Acid Dissociable (WAD) Cyanide. Where possible, ice or water samples were collected and analyzed for Total Cyanide and WAD Cyanide.

There are no guidelines for Total and WAD Cyanide in the Canadian Council of Ministers of the Environment (CCME), "Soil Quality Guideline for the Protection of Environmental and Human Health" or the Environmental Protection Division, Department of Environment, Government of Nunavut, "Environmental Guideline for Contaminated Site Remediation" (March 2009 Revised). Free cyanide was not analyzed in this assessment since WAD Cyanide includes free cyanide and this was an initial investigation to determine the extent of cyanide impacted soil down the grade from the Assay Lab. Therefore, the British Columbia Environmental Management Act for Contaminated Sites Regulations, Schedule 4 and 6 for Total and WAD Cyanide were used to evaluate the level of contamination.

A total of 62 soil samples collected from the natural area downslope of the mill pad were submitted for analysis of Total and WAD Cyanide, of which 17 samples detected Total Cyanide with values ranging from 0.5 to 51 mg/kg. Only one location (BH-38, 51 mg/kg) was greater than the British Columbia guidelines for Total Cyanide. As for WAD Cyanide, there were only three samples where WAD Cyanide was detected, with values ranging from 0.9 to 3 mg/kg. A total of 30 soil samples were collected from the mill pad and submitted for analysis of Total and WAD Cyanide, of which there was one sample (BH-22, 1.7 mg/kg) where Total Cyanide was detected. No WAD Cyanide was detected.

A total of 6 water (ice) samples collected from the natural area outside of the mill pad were submitted for analysis of Total and WAD Cyanide. Total Cyanide was detected with values ranging from 0.192 to 2.23 ppm. All water samples analyzed, except one (Seep 3), exceed Meadowbank's Water License No. 2AM-MEA0815 for Total Cyanide in effluent. On the mill pad, there was one water sample (BH-22) submitted where Total Cyanide (24.59 ppm) and WAD Cyanide (10.6 ppm) was detected.

Phase 2 Engineering

Tetra Tech EBA agreed with AEM's suggestion that an interception trench needed to be constructed downstream of the temporary containment berms that were rapidly constructed downslope of the mill pad when the seepage was first observed. AEM designed the interception trench, with consultation by Tetra Tech EBA, and Tetra Tech EBA was selected to perform geotechnical QA/QC during its construction. The purpose of the geotechnical engineering QA/QC program was to verify that geotechnical related construction activities were undertaken in accordance with the project drawings and specifications, and that the design intent was satisfied.

The AEM design for the interception trench utilizes shallow ditches and a sump. To mitigate anticipated thaw in permafrost the final design for the interception trench included significant over excavation and replacement with thaw stable materials, and a liner and cut-off system that is keyed in deep enough below the ditch or sump bottom to be below the depth of anticipated thaw. However, to insure thermal stability, it will be essential that water not be allowed to pond in the ditches or sump.

Conclusions

During this investigation cyanide was detected at a depth of 1.68 mbgs near the location where the seep was initially identified. Down gradient of the initial containment, cyanide was detected to depths of 0.7 mbgs. Cyanide was not detected approximately 60 m from the lake (BH-47) in the soil, but was found at low levels in water (ice) that accumulated on the surface (Seep 3). Seep 3 is located about 30 m from the lakes edge and had low levels of cyanide (Total cyanide - 0.192 mg/L; WAD cyanide - 0.033 mg/L). This information suggests that the cyanide initially infiltrated into the soil close to the initial seepage area; however further away from the seepage location cyanide may have accumulated only in the topsoil with little or no penetration into the underlying till overburden or bedrock.

It was decided that the interception trench would be installed between Seep 3 and BH-47. The location of the interception trench was based on the desire to minimize disturbance to the natural tundra downslope of the mill pad, and so it would act as a barrier between areas with detected cyanide contamination and the lake, while staying at least 30 m away from Third Portage Lake. An interception trench at this location should prevent the cyanide contamination from reaching Third Portage Lake. It is recommended that any water pooling within the collection area of the interception trench be pumped out within one day.

Spills from the CIP tanks were not being contained by the secondary containment system and hence cyanide impacted water was leaking into the foundation soils below the mill building and then out through the mill pad fill materials to the natural area downslope of the mill. In order to remove the source of contamination, AEM has taken steps to repair/reseal areas in the secondary containment that were identified to be leaking and that lead to the observed seepage. The main area of concern was the secondary containment system around the CIP tanks, which has now been repaired.

A ground temperature monitoring cable (thermistor cable) was installed near the mill to determine ground temperatures in the pad. The cable indicates that the pad fill materials and underlying native ground have refrozen and the active layer was determined to be about 1.5 m thick in June. Therefore, repairs to the containment system in the mill in conjunction with the presence of frozen ground indicate that the potential for continued seepage should be minimal.

Recommendations

AEM has established a Freshet Action Plan (April 2014), which outlines work that AEM will undertake to monitor the interception trench and the sampling protocols. AEM will conduct daily inspections of the pumping, collection systems and perimeter area and will record all pumped volumes of water from the interception trench. Any of the water collected will be pumped to the mill and discharged with the tailings to the tailings storage facility (TSF). The sampling program in this action plan states that on a monthly basis AEM will submit water samples to Multi Lab for analysis of Free Cyanide, Total Cyanide, Copper and Iron from the interception trench, monitoring wells 14MW04, 14MW05,14MW06, 14MW07, and 14MW08, the original containment area and Third Portage Lake. Biweekly they will collect waters twice a week from the original containment berm, the interception trench, and monitoring wells 14MW02, 14MW03, 14MW08, 201, 202, and 203 to be submitted to the AEM on-site lab for WAD cyanide analysis.

After reviewing the information from this Environmental Site Assessment and AEM's Freshet Action Plan (April 2014), the following recommendations apply:

- Continue to sample the original containment berm, interception trench, Third Portage Lake and monitoring wells 14MW01 to 14MW08, 201, 202 and 203, if water is present and not frozen, for analysis of Free and Total cyanide, Copper, and Iron;
- In monitoring wells with known detected cyanide, collect water samples once in the spring and fall for analysis
 of ammonium, nitrate/nitrite, and pH. The purpose for the ammonium and nitrate/nitrite is that these
 compounds increase in response to biodegradation of cyanide;
- If water is ponding down gradient of the interception trench, water samples should be collected and submitted for analysis of Free and Total cyanide, Copper, and Iron;
- During the investigation, no seep (water) samples or soil samples were collected within 30 m of the lake.
 Cyanide was detected at Seep 3, thus further sampling should be conducted down gradient of the trench in

the soil and water. Water should be analyzed for Free and Total Cyanide, Copper, and Iron, while soils should be analyzed for Free and Total cyanide;

- Depending on the results of the soil samples collected and potentially ponded water samples collected within 30 m of Third Portage Lake it is recommended that sediment samples be collected from the shore of Third Portage Lake. These sediment samples should be analyzed for Free and Total Cyanide, Copper and Iron.
- AEM should install sumps inside the original containment berm to aid in the collection of water. This water can
 be pumped up to the mill and discharged with the TSF. This should improve collection of water in the spring
 near the mill pad;
- AEM should continue with the repairs to the mill to ensure seepage sources are eliminated; and
- Collect additional soil samples on the northeast side of the mill in the direction of Tear Drop Lake to confirm if any cyanide travelled in that direction. If water is observed in a drill hole a well should be installed.

The following soil sampling recommendations should be implemented at closure of the mine:

Soil samples should be collected and tested for Free Cyanide in the areas where known cyanide was
detected, as free cyanide was not analyzed in this investigation. These areas should be delineated in order to
produce a remedial action plan, if needed;

TABLE OF CONTENTS

EXE	CUTI	VE SUMMARY	i
1.0	INTE	RODUCTION	1
2.0	SCC	DPE OF WORK	1
2.0	2.1	Phase 2 Environmental Evaluation	
	۷.۱	2.1.1 Scope of Environmental Site Assessment	
	2.2	Phase 2 Engineering	
	2.2	2.2.1 Phase 2 Engineering Scope of Work	
3.0	BAC	CKGROUND INFORMATION	2
3.0	3.1	Site Details and Background	
	3.2	Climate	
	3.3	Site Topography and Vegetation	
	3.4	Regional Bedrock Geology	
	3.5	Regional Surficial Soils	
	3.6	Hydrogeology	
	3.7	Cyanide	
4.0		/IRONMENTAL CRITERIA	
	4.1	Regulatory Guidelines	
	4.2	Criteria for Cyanide in Soil	
	4.3	Criteria for Cyanide in Water	
		4.3.1 Water Licence	
		4.3.2 General Criteria	8
5.0	SITE	WORK	8
	5.1	Site Safety	8
	5.2	Soil Sampling Program	g
	5.3	Water Sampling Program	10
	5.4	Thermistor Cable	10
6.0	DES	SIGN AND CONSTRUCTION OF THE INTERCEPTION TRENCH	10
	6.1	As-Built Interception Trench Location and Design	10
		6.1.1 Interception Trench Preparation	
		6.1.2 Geotextile Placement	
		6.1.3 20 mm Aggregate/8% Bentonite Material Placement	11
		6.1.4 150 mm and Rock Fill Material Placement	
		6.1.5 Testing of 20 mm Crushed Aggregate/8% Bentonite Material	
7.0	RES	SULTS AND DISCUSSIONS	12
	7.1	Soil	
	7.1	Water	
	7.3	Thermistor Readings	

8.0	CONCL	USIONS AND RECOMMENDATIONS
9.0	CLOSU	RE
REFI	ERENCE	S17
APF	PENDIX	K SECTIONS
TAB	LES	
Table	e 1	Analytical Results for Tundra Soil - AEM- Meadowbank Assay Seepage
Table	e 2	Analytical Results for Mill Pad Soil - AEM- Meadowbank Assay Seepage
Table	e 3	Water/Ice Analytical Results - AEM - Meadowbank Assay Seepage
РНО	TOGRAF	PHS
Photo	o 1	Southwest view of the downhole hammer-air rotary drill drilling BH-18
Photo	0 2	Metal containers underneath the curtain of the drill to collect soil samples
Phote	o 3	Ice (~12 cm thick) located at BH-11.
Phote	o 4	Northwest view of drill, drilling BH-39 in front of the Assay Lab
Photo	0 5	View from MW-04 facing northeast towards the Assay Lab
Photo	0 6	Northwest view of the location for the three old wells (201, 202, and 203) located in the tires and the location of the thermistor cable just southeast of the tires. This area is located between the Assay Lab and the Mill.
Photo	07	View of the North side of the Mill, illustrating the location of monitoring well MW01 behind the two cement blocks
Photo	8 0	View on the south side of the tank farm drilling BH-27
Phote	o 9	West End of Interception Trench Facing Northwest, Trench Bottom Prior to Cleaning
Photo	o 10	West End of Interception Trench Facing Northwest, Trench Bottom after Cleaning, Contractors Laying Geotextile on Downstream Slope
Photo	o 11	East End of Interception Trench Facing Northeast, Geotextile Placement with Overlap and Tie-in at Top
Photo	o 12	West End of Interception Trench Facing North, Contractor Filling in and Compacting Low Areas
Photo	o 13	West End of Interception Trench Facing Northwest, Background: CAT 365 Excavator Bucket Compacting Two Lifts of Bentonite Material on Downstream Slope. Foreground: Two Lifts of Bentonite Material Visible
Photo	o 14	West End of Interception Trench Facing Southeast, CAT 365 Excavator Bucket
		Compacting Upstream Bentonite Material Slope below the Bedrock Contact
Phote	o 15	East End of Interception Trench Facing Northwest, Bentonite Material on Upstream Slope below Bedrock Contact
Phote	o 16	West End of Interception Trench Facing Northwest, Completed Bentonite Placement
Photo	o 17	East End of Interception Trench Facing Southwest, Completed Interception Trench Covered in Rockfill (Photo courtesy AEM)

APPENDICES

Appendix A	Laboratory Data
Appendix B	Borehole Notes and Monitoring Well Logs
Appendix C	Interception Trench As-built drawings
Appendix D	Job Hazard Analysis
Appendix E	Ground Temperature Data
Appendix F	Constant Head Permeability Test Results, 20 mm Crushed Aggregate/8% Bentonite
Appendix G	Tetra Tech EBA General Terms and Conditions

ACRONYMS & ABBREVIATIONS

AEM Agnico Eagle Mines

CCME Canadian Council of Ministers of the Environment

mbgs metres below ground surface
QA/QC Quality Assurance/Quality Control

TSF Tailings Storage Facility SAD Strong Acid Dissociable WAD Weak Acid Dissociable

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Agnico Eagle Mines Limited and their agents. Tetra Tech EBA Inc. (Tetra Tech EBA) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Agnico Eagle Mines Limited, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in Tetra Tech EBA's Services Agreement. Tetra Tech EBA's General Conditions are provided in Appendix G of this report.

1.0 INTRODUCTION

Tetra Tech EBA Inc. (Tetra Tech EBA) is pleased to provide this report to Agnico Eagle Mines (AEM) summarizing our findings from our Environmental Site Assessment of the Assay Road Seepage and the quality assurance/quality control (QA/QC) monitoring of the construction of the interception trench at the Meadowbank Mine, about 80 km north of Baker Lake, Nunavut,. The purpose of this project was to identify cyanide impacted soil and groundwater; provide monitoring suggestions for cyanide in soil and groundwater; and perform quality assurance/quality control (QA/QC) during construction of an interception trench. The objectives of this work were as follows:

- Evaluate the extent of the soil impacted by a cyanide leak from the Meadowbank Mine Mill, with the goal of selecting a location for an interception trench;
- Provide recommendations for soil and groundwater monitoring after installation of the interception trench;
- Provide QA/QC services for the construction of the interception trench, and
- Provide a report summarizing the findings of the Environmental Site Assessment and the QA/QC services.

The Environmental Site Assessment was conducted in general accordance with the "Environmental Guideline for Contaminated Site Remediation" (Government of Nunavut 2009).

2.0 SCOPE OF WORK

2.1 Phase 2 Environmental Evaluation

Tetra Tech EBA conducted an Environmental Site Assessment from February 19, 2014 to March 6, 2014 to investigate and evaluate the extent of ground impacted by the cyanide leak with the goal of selecting a location for an interception trench and to allow future determination of clean-up requirements of the contaminated materials. During the drilling program there were some modifications made to the work plan. These changes included additional boreholes and monitoring wells and some proposed borehole locations were moved as the program progressed.

2.1.1 Scope of Environmental Site Assessment

The scope of work for the Environmental Site Assessment included the following:

- Conducting a safety meeting with AEM and Tetra Tech EBA representatives to review the Safety Plan and identify all hazards, PPE requirements, emergency contacts, and safe work practices.
- Determining where all underground utilities such as electrical and water lines are located on site prior to drilling.
- A total of 52 boreholes were drilled in various areas located on the tundra and pad. In addition to the boreholes, eight (8) monitoring wells were installed, three (3) on the pad, and five (5) on the tundra. All holes were drilled using a downhole hammer-air rotary drill without water.
- Samples were collected in most boreholes and monitoring well locations, where possible. There were some
 locations on the pad where soil samples could not be collected due to voids underneath or in the pad. Each
 borehole and monitoring well was drilled to bedrock.

- Samples were collected at the drill using either plywood or a metal pan and then scooped into plastic bags using a metal spoon. After each sample was collected, the pans, spoon, and plywood were brushed off to minimize cross contamination. In addition, before drilling each hole, the drill was purged using compressed air to clean off the drill bit. When moved from a known contaminated site on the pad to the tundra, the drill rod and drill bit where exchanged for clean rods and drill bits.
- A total of 92 soil samples were submitted to Maxxam Analytics in Montreal Quebec for analysis of Total (Strong Acid Dissociable) Cyanide and Weak Acid Dissociable (WAD) Cyanide. There were 10 samples submitted for soil pH. All soil samples were maintained below 4°C.
- Where possible, ice or water samples were collected and placed into plastic containers for analysis. A total of 7 samples were sent to Multi-Lab Direct in Val-d'Or Quebec for analysis of Total Cyanide and WAD Cyanide. All water/ice samples were maintained below 4°C. An additional sample was taken at the same time for each of the 7 water/ice samples and submitted to the on-site Assay Lab for analysis of WAD Cyanide.
- All borehole locations and monitoring well locations were determined using a handheld Trimble GPS.

2.2 Phase 2 Engineering

Tetra Tech EBA agreed with AEM's suggestion that an interception trench needed to be constructed downstream of the temporary containment berms. AEM designed the interception trench and Tetra Tech EBA performed geotechnical QA/QC during its construction. The QA/QC for the interception trench was carried out between April 24, 2014 and May 1, 2014. The purpose of the geotechnical engineering QA/QC program was to verify that geotechnical related construction activities were undertaken in accordance with the project drawings and specifications, and that the design intent was satisfied. This section provides Tetra Tech EBA's scope for the engineering work.

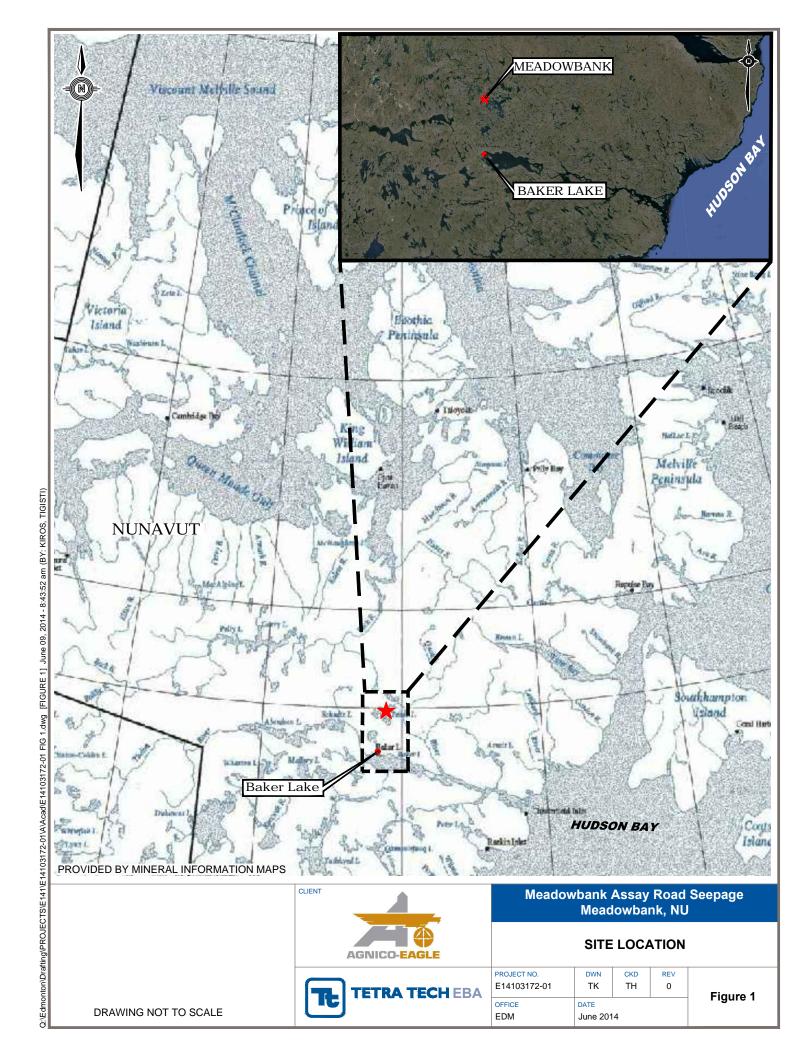
2.2.1 Phase 2 Engineering Scope of Work

The proposed Phase 2 engineering scope of work included the following:

- Reviewing AEM's Engineering design plan for the interception trench and providing feedback in a memo;
- Performing a visual inspection of the interception trench excavation and cleaning/preparation prior to 20 mm crushed aggregate/8% bentonite fill placement;
- Observing 20 mm crushed aggregate/8% bentonite fill placement and compaction;
- Providing geotechnical design clarifications and verification that the design intent was being achieved; and
- Overseeing the construction of the permanent interception trench in a QA/QC only capacity.

3.0 BACKGROUND INFORMATION

3.1 Site Details and Background


The Meadowbank Mine is located approximately 80 km north of Baker Lake, Nunavut (Figure 1) in the Kivalliq Region (formerly District of Keewatin). It is located near Third Portage Lake approximately 190 m northeast from the edge of the lake (65°1'30"N, 96°4'14"W). On November 26, 2013, Tetra Tech EBA was provided with a detailed report, "*Preliminary AEM Report – Assay Road Seepage*" (AEM, November 2013) discussing the seepage issue identified at the Meadowbank Mine. This report noted that on November 4, 2013, seepage was

first observed coming through the road embankment in front of the Assay Lab. Testing of the seepage water identified that it was process water, as indicated by the presence of cyanide, copper, and iron.

After the seepage was identified by AEM, a temporary containment berm was constructed downstream of the road to contain the water. Because of winter conditions, the seepage water froze relatively quickly and the ice was regularly removed from the containment area using a backhoe. As winter conditions continued, the amount of seepage decreased, due to freezing within the road embankment. The seepage was thought to be primarily originating from the mill, particularly from the CIP secondary containment system.

AEM drilled a number of boreholes on the mill pad, but only water samples were collected from holes that had enough water. AEM also collected water samples from groundwater wells installed by AEM (201, 202, and 203) located on the pad in front of the CIP area behind the Assay Lab. In the area where the cyanide leaked onto the ground surface downslope of the mill pad, three samples were collected from inside the temporary containment berm, along with an additional sample collected from the surface water of the lake downgrade of the leak. Cyanide was detected from the water samples collected from the wells and inside the temporary containment berm. Cyanide was not detected in the sample that was taken from the lake. Additional samples were taken from the lake near the water tank intake pipe intermittently from November 26, 2013 to May 26, 2014 and submitted to Multi Lab for analysis of Total Cyanide. Cyanide values ranged from less than 0.005 (detection limit is 0.005 mg/L) to 0.087 mg/L. These values are very low, as well, the Total Cyanide values have been below detection limits since April 1, 2014.

AEM conducted an assessment program inside the mill and determined that there were several secondary containment systems that required repair. AEM is currently undertaking an extensive repair/reseal program within the mill to ensure integrity of these containment systems that were identified to be leaking and which lead to the seepage. The main area of concern identified in this assessment program was the CIP tank secondary containment system which was designed to contain spills from the CIP tanks. This containment system has now been repaired.

3.2 Climate

Based on meteorological data from weather stations at Baker Lake, the mean annual temperature is -11°C. Based on 153 complete months of data at the Baker Lake Airport, the mean monthly air temperatures for Baker Lake ranged from -38.2°C in January 2004 to 13.7°C in June 2007. Total annual rainfall from 2000 to 2012 averaged 26 mm and 11 mm of snow water equivalent (Government of Canada 2014).

3.3 Site Topography and Vegetation

The Meadowbank Mine is located adjacent to Third Portage Lake in the Low Arctic ecoclimatic zone, characterized with low relief, having an elevation range of 0 to 70 m above the lake level. The site is predominantly covered in heath tundra interspersed with lichen-dominated bedrock outcroppings and boulder fields (Cumberland Resources Ltd. 2005).

3.4 Regional Bedrock Geology

The Meadowbank Mine is located on the Canadian Shield, which consists of Archean rocks. Archean rocks are greater than 2.5 billion years old and the Shield contains the largest area in the world of Archean rocks. The mine site is underlain with Archaean greenstone and metasedimentary rocks consisting of iron formation, intermediate volcanic and ultramafic rocks with quartzite in some areas. Enclosed within the greenstone are volcaniclastic sediments, felsic-to-intermediate flows and tuffs, sediments and oxide iron formations, and sericite schists. The ultramafic rocks contain serpentinite, chlorite, actinolite, and talc. There are two main faults identified in the Meadowbank Mine region, the Bay Zone Fault and the Second Portage Fault. There are areas where bedrock outcrops are found and the bedrock appears to follow the surface topography, with some local relief in the bedrock surface of 0.5 meters (Cumberland Resources Ltd. 2005).

3.5 Regional Surficial Soils

The area is partially covered with glacial till that has a sandy silty till with gravel matrix. The percent fines for silt and clay are typically 20 to 40%. Both boulders and cobbles are present in the till with the cobble content ranging from 0 to 35% with an average of 12% by volume. The colour of the till in this area ranges from dark brown to reddish brown (Cumberland Resources Ltd. 2005; Golder Associates. 2008).

3.6 Hydrogeology

The Meadowbank Mine is located near the surface water divide between the Back River basin, which flows north to northwest towards the Arctic Ocean and the Thelon River basin, which flows east to southeast into Hudson Bay. The regional deep groundwater flows northwest from the northwestern end of Third Portage Lake and in the southeast direction from the southeast end of Third Portage Lake and Second Portage Lakes.

Continuous permafrost depth extends between 450 and 550 m. Ground temperature measurements in the project area indicate an active zone thickness averaging 1.3 m in shallow overburden and up to 4 m adjacent to the lakes (Cumberland Resources Ltd. 2005). The shallow groundwater flow has little to no hydraulic connection with the groundwater regime located below the deep permafrost. Based on the regional geology and the presence of permafrost, the groundwater flow is likely complex and controlled by topography, surface water bodies, and bedrock structure. Vertical groundwater flow is limited by the permafrost. The period of groundwater flow is highly influenced by climatic conditions and flow is also likely limited to the short summer season when the active layer thaws, thus allowing water to flow in this horizon. It is expected that the surface water bodies are expressions of the water table.

Based on the site topography, it is expected that flow of water in the active layer is towards Third Portage Lake. Third Portage Lake is located approximately 190 m from the Mill Pad. From photos taken in the fall, there are areas located near the lake where water ponds, thus water in the active layer is close to surface in this area, and the grassy vegetation observed reflects wetland conditions.

3.7 Cyanide

Cyanide is a general term that refers to a group of chemicals where carbon and nitrogen combine to form compounds (CN). The chemistry of cyanide is complex, as there are different cyanide compounds, which have been grouped into five groups: free cyanide, simple cyanide compounds, weakly complexed cyanide, moderately strong complexed cyanide and strong complexed cyanide. These five groups have then been categorized into three common names: free cyanide, WAD cyanide, and Total cyanide. Most cyanide in solution combines with metals and metalloids and form dissolved complexes (Lottermoser, Bernd. 2007).

Free Cyanide

Free cyanide refers to two species: the cyanide anion (CN) dissolved in water and the hydrocyanic acid (HCN) formed in solution (Lottermoser, Bernd. 2007):

$$CN_{(aq)} + H_2O_{(l)} \longleftrightarrow HCN_{(aq)} + OH_{(aq)}$$

The amount of cyanide converted to hydrogen cyanide depends on the salinity and pH of the solution. At alkaline pH greater than 10.5, most of the free cyanide is present as the cyanide anion. Equal concentrations of CN and HCN are present at a pH of 9.3. At neutral to acidic pH conditions (pH < 8.3), all free cyanide is present as hydrogen cyanide. Hydrogen cyanide is volatile and can be dispersed to the atmosphere. As for the salinity, hydrogen cyanide is promoted in high saline conditions (Lottermoser, Bernd. 2007).

WAD Cyanide

Weak acid dissociable (WAD) cyanide consists of free cyanide, simple cyanide compounds, and weak to moderately strong complexes. Simple cyanide compounds are the salts of hydrocyanic acid (e.g.: NaCN, KCN, Ca(CN)₂, Cu(CN), Ni(CN)). These compounds exist as solid cyanides, some of which are water soluble, which can form free cyanide and dissolved cations. The weak to moderately strong complexes are metal complexes (e.g. Zn(CN)⁻²₄, Cd(CN)⁻₃, Cu(CN)⁻²₄, Ni(CN)⁻²₄ and Ag(CN)⁻₂) which create free cyanide when the pH is lowered to approximately 4.5 (Lottermoser, Bernd. 2007)

Total Cyanide

Total Cyanide consists of free cyanide, simple compounds, weak to moderately strong complexes and strong complexes. These strong complexes include complexes of gold, iron, and cobalt, and their destruction is slow under natural conditions. A change in environmental conditions such as pH, water temperature, salinity, complex concentration, oxidant concentration, and intensity of sunlight or UV radiation reduces the stability of the strong cyanide complexes (Lottermoser, Bernd. 2007).

Toxicity

Free cyanide is the most toxic cyanide form, since it causes toxicity at low concentrations. For the other cyanide species, WAD and Total, higher concentrations are required to induce toxicity. Hydrogen cyanate and cyanate ions are less toxic than hydrogen cyanide, while thiocyanate is relatively non-toxic compared to free cyanide. The stability of the cyanide influences the toxicity of the different cyanides. The more stable the cyanide, the less toxic

it is, particularly to aquatic life. Therefore, WAD cyanide is an appropriate measure for assessing potential toxicity of cyanide solutions to humans and animals (Lottermoser Bernd. 2007).

Fate and Transport in Soil

Transport and distribution of cyanide is mainly affected by volatilization and biodegradation in soils. Volatilization of cyanide increases in acidic soils and can be the dominant mechanism for cyanide loss from soil surfaces. Cyanide can also create metal complexes with heavy metals, especially iron, and precipitate out of solution. Hydrogen cyanide is not affected by photolysis in soils, but complex cyanides may rapidly photo dissociate and release free cyanide when exposed to sunlight. Cyanide can be absorbed to soil particles, particularly to clays and organic matter. The rate at which hydrogen cyanide and metal cyanide adsorb to soils in not significant when compared to volatilization and biodegradation. The high volatility of cyanide and the action of soil microbes do not permit high levels of cyanide to persist or accumulate in the soil under natural conditions. Biodegradation of cyanide in the soil by microbes tends to generate carbonates and ammonia. Cyanide in the soil will decompose to ammonia, carbon dioxide, and nitrogen (nitrate) in aerobic conditions and nitrogen (ammonium), thiocyanate, and carbon dioxide under anaerobic conditions (CCME. 1999).

Mobility of cyanide in the soil changes with stability and dissociation of the compound, soil type, soil permeability, soil chemistry, and presence of aerobic and anaerobic conditions. The following soil characteristics increase the mobility of cyanide: low pH, high negative soil charges, and low clay content. Whereas soils with neutral to alkaline pH, high clay content, high positive soil charges, presence of organic matter, iron, or other metal oxides can increase soil attenuation. Attenuation may be increased under aerobic conditions, since biodegradation is higher in aerobic conditions. Some comparisons were completed for different cyanide complexes for mobility, in that aqueous simple cyanide and ferricyanides tend to be very mobile in soil, while cyanides dissolved in leachate move slower than those in the aqueous solution. Copper, cobalt, zinc, and nickel-cyanide complexes were found to be more mobile than iron and manganese complexes (CCME. 1999).

4.0 ENVIRONMENTAL CRITERIA

The following subsections outline the rationale for the selection of applicable generic risk management guidelines for soil.

4.1 Regulatory Guidelines

The regulatory guideline documents that were consulted are summarized below. These documents provide a generic set of guidelines against which the analytical results are compared to provide a general site condition.

- Canadian Council of Ministers of the Environment, Soil Quality Guideline for the Protection of Environmental and Human Health (2007) - Wildland Land Use;
- Canadian Council of Ministers of the Environment, Canadian Water Quality Guidelines for Protection of Fresh/ Marine Water Aquatic Life (2007);
- Environmental Protection Division, Department of Environment, Government of Nunavut, Environmental Guideline for Contaminated Site Remediation (March 2009 Revised) Wildland Land Use;
- British Columbia Environmental Management Act for Contaminated Sites Regulations, Schedule 4 Generic Numerical Soil Standards (2014) – Wildland Use and;
- British Columbia Environmental Management Act for Contaminated Sites Regulations, Schedule 6 Generic Numerical Water Standards (2014).

4.2 Criteria for Cyanide in Soil

Currently, there are no soil guidelines for Total and WAD Cyanide under the Canadian Council of Ministers of the Environment (CCME), "Soil Quality Guideline for the Protection of Environmental and Human Health" or the Environmental Protection Division, Department of Environment, Government of Nunavut, "Environmental Guideline for Contaminated Site Remediation" (March 2009 Revised). Only free cyanide is regulated under these guidelines, in which for Wildland land use, the guideline is 0.9 mg/kg. Free cyanide was not analyzed in this assessment since WAD Cyanide includes free cyanide and this was an initial investigation to determine the extent of cyanide impacted soil downgrade of the Assay Lab.

There are guidelines under the British Columbia (BC) Environmental Management Act for Contaminated Sites Regulations, Schedule 4 for Total and WAD Cyanide. Under these guidelines there are five (5) land use categories, Agriculture, Commercial Residential, Industrial, and Urban Park (Wildlands). Below are the definitions for each land use:

- Agricultural: means the use of land for the primary purpose of producing agricultural products for human or animal consumption including, without limitation, livestock raising operations, croplands, orchards, pastures, greenhouses, plant nurseries and farms;
- Commercial: means the use of land for the primary purpose of buying, selling or trading of merchandise or services including, without limitation, shopping malls, office complexes, restaurants, hotels, motels, grocery stores, automobile service stations, petroleum distribution operations, dry cleaning operations, municipal yards, warehouses, law courts, museums, churches, golf courses, government offices, air and sea terminals, bus and railway stations, and storage associated with these uses;
- **Residential:** means the use of land for the primary purpose of a residence by persons on a permanent, temporary or seasonal basis, including, without limitation, single family dwellings, cabins, apartments, condominiums or townhouses, or institutional facilities, including, without limitation, schools, hospitals, daycare operations, prisons, correctional centres and community centres;
- Urban Park: means the use of urban land for the primary purpose of outdoor recreation including, without limitation, municipal parks, fairgrounds, sports fields, rifle ranges, captive wildlife parks, biking and hiking areas, community beaches and picnic areas, but does not mean Wildlands such as ecological reserves, national or provincial parks, protected wetlands or woodlands, native forests, tundra and alpine meadows;
- Wildlands: means the use of land for the primary purpose of supporting natural ecosystems, including the use of land for ecological reserves, national or provincial parks, protected wetlands or woodlands, native forests, tundra and alpine meadows, but does not include uses defined as urban park land use. The land use of the site is Wildlands land use when the concentration of any substance in the soil at a depth of less than 3 metres is greater than the numerical standards for soil that would apply if the land use of the site were urban park land use.

For the purposes of this comparison, the urban park (Wildland) land use values from British Columbia (BC) Environmental Management Act for Contaminated Sites Regulations, Schedule 4 for Total and WAD Cyanide were used as a guideline. Maximum Total and WAD Cyanide from this act are 50 and 10 mg/kg, respectively.

4.3 Criteria for Cyanide in Water

4.3.1 Water Licence

As per Water Licence No. 2AM-MEA0815 (see Table A below), all effluent shall not exceed the following criteria for Cyanide:

Table A – Cyanide Effluent Crit	eria	
Parameter	Max. Average Concentration	Max. Allowable Grab Sample Concentration
Total Cyanide (mg/L)	0.5	1.0

4.3.2 General Criteria

In this investigation Total and WAD cyanide were measured on site, but not free cyanide. The reason for this is that WAD cyanide includes free cyanide. Thus, free cyanide was not included in the analysis as the purpose of this investigation was to determine the extent of the cyanide impacted material. Also, WAD cyanide is an appropriate measure for assessing potential toxicity of cyanide solutions to humans and animals.

Currently, there are no water guidelines for Total, WAD and Free Cyanide under the Under the Government of Nunavut's Contaminated Guidelines, "Environmental Guideline for Contaminated site Remediation" (March 2009 Revised) for water. As for CCME's, "Canadian Water Quality Guidelines for Protection of Fresh/ Marine Water Aquatic Life" guideline, there are only standards for free cyanide for freshwater aquatic life (5 µg/l or 0.005 mg/L). Therefore the BC Environmental Management Act for Contaminated Sites Regulations (CSR), Schedule 6-Generic Numerical Water standards were utilized as it contains standards for both Total (Drinking Water: 200 mg/L) and WAD cyanide (Aquatic Life: 50 mg/L-freshwater or 10 mg/L for marine/estuary). Therefore the water licence criteria for Total Cyanide in effluent are utilized to evaluate the results from the testing on recovered water samples.

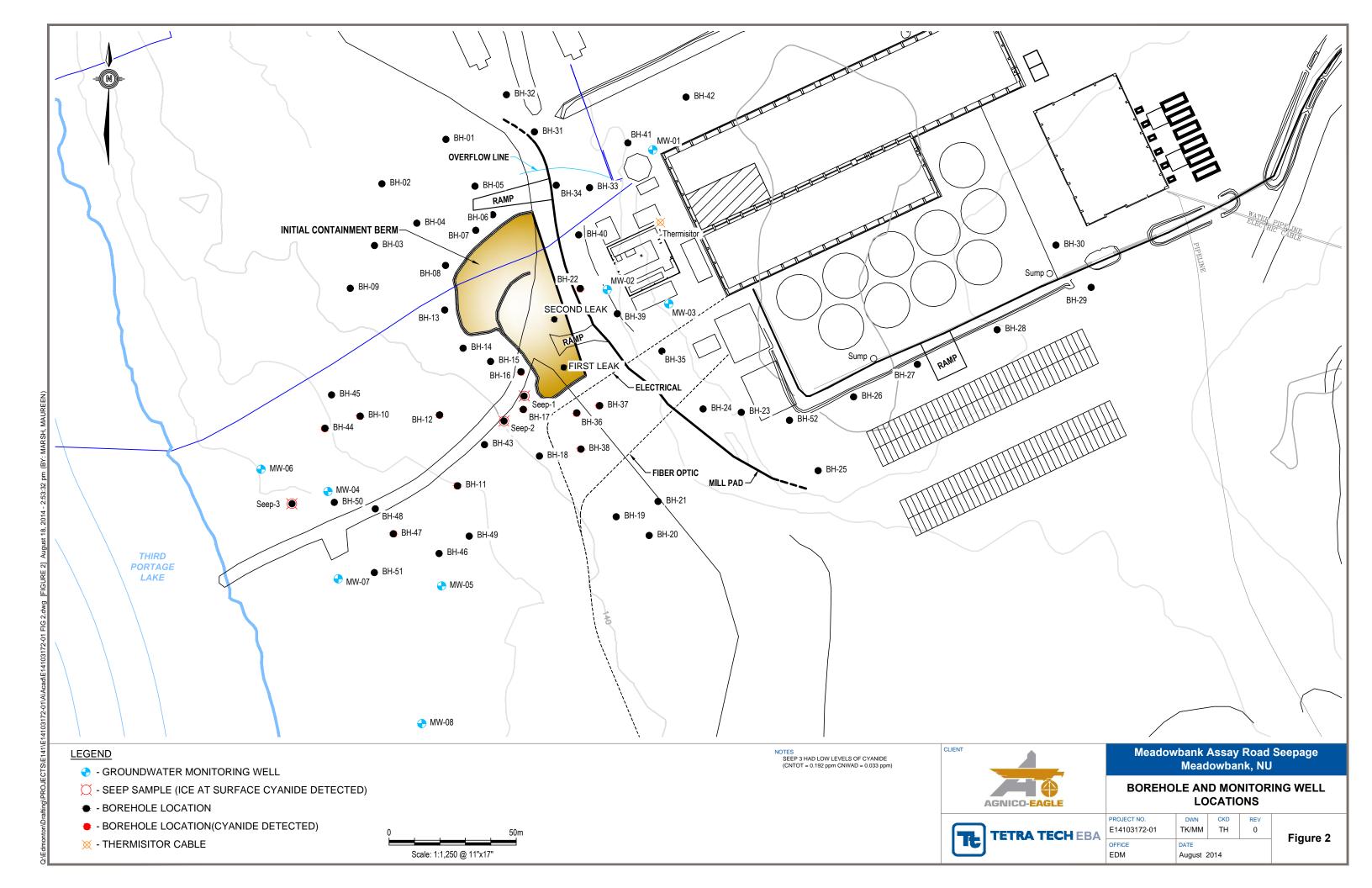
5.0 SITE WORK

5.1 Site Safety

In accordance with AEM's policies, Tetra Tech EBA staff completed AEM's online site orientation and safety training. Pre-job hazard assessments were completed prior to going in the field, and were updated with a field-level assessment once on site. In conjunction with AEM, Tetra Tech EBA completed a job hazard analysis form (See Appendix D) prior to conducting any field work. Each day, Tetra Tech EBA, AEM, and the driller conducted a safety meeting prior to drilling and completed a Safe Work Form, which was updated and signed daily. Tetra Tech EBA participated in the staff safety meetings at the beginning of the program with various mine manager representatives to go over the job hazard analysis and to review the scope of the project. Prior to drilling, the electrical and water lines were located on site. During the course of the work, Tetra Tech EBA met with the electrical supervisor to confirm holes located near the buildings and that when drilling near electrical lines, the power to these lines were locked out and tagged out.

For the geotechnical QA/QC work, Tetra Tech EBA staff completed AEM's online site orientation and safety training. Pre-job hazard assessments were completed prior to going in the field, and were updated with a field-level assessment once on site.

5.2 Soil Sampling Program


Prior to the drilling program, Tetra Tech EBA completed a walkthrough of the site with an AEM employee to explain where the leaks originated and where the water was originally coming out of the pad. After the walkthrough it was decided to begin drilling in front of the Assay Lab first then continue to drill on either side of the Assay Lab. Photos were taken throughout the drilling program (Photos 1-8).

A total of 52 boreholes were drilled in various areas (Figure 2). All holes were drilled using a downhole hammerair rotary drill without water. Samples were collected from the drill using either plywood or a metal pan and then scooped into plastic bags using a metal spoon. After the collection of each sample, the pans, spoon, and plywood were brushed off to minimize cross contamination. In addition, before drilling each hole, the drill was purged using compressed air to clean off the drill bit. When moving from a known contaminated site on the pad to the tundra, the drill rod and drill bit were exchanged for clean rods and drill bits.

All borehole locations had the total depth recorded, and depth of refusal. The colour of the cuttings was noted at some, but not all borehole locations, during the drilling program. Cuttings collected from the pad were grey in colour, while cuttings collected from the native terrain downslope of the mill pad were brown to reddish brown in colour. There were some locations on the pad where soil samples could not be collected due to voids in the rockfill materials used to construct the pad or underneath the pad.

Soil samples were placed into plastic Ziploc bags supplied by the laboratory, stored in an insulated cooler and kept cold for transport to Maxxam Analytics International Corporation in Montreal, Quebec. Holding times for all soil samples were within acceptable limits. The temperature of the samples upon being received by the laboratory was below 4°C. No samples were broken or lost during transport.

A total of 92 samples were analyzed for Total and WAD cyanide and 8 samples were analyzed for soil pH.

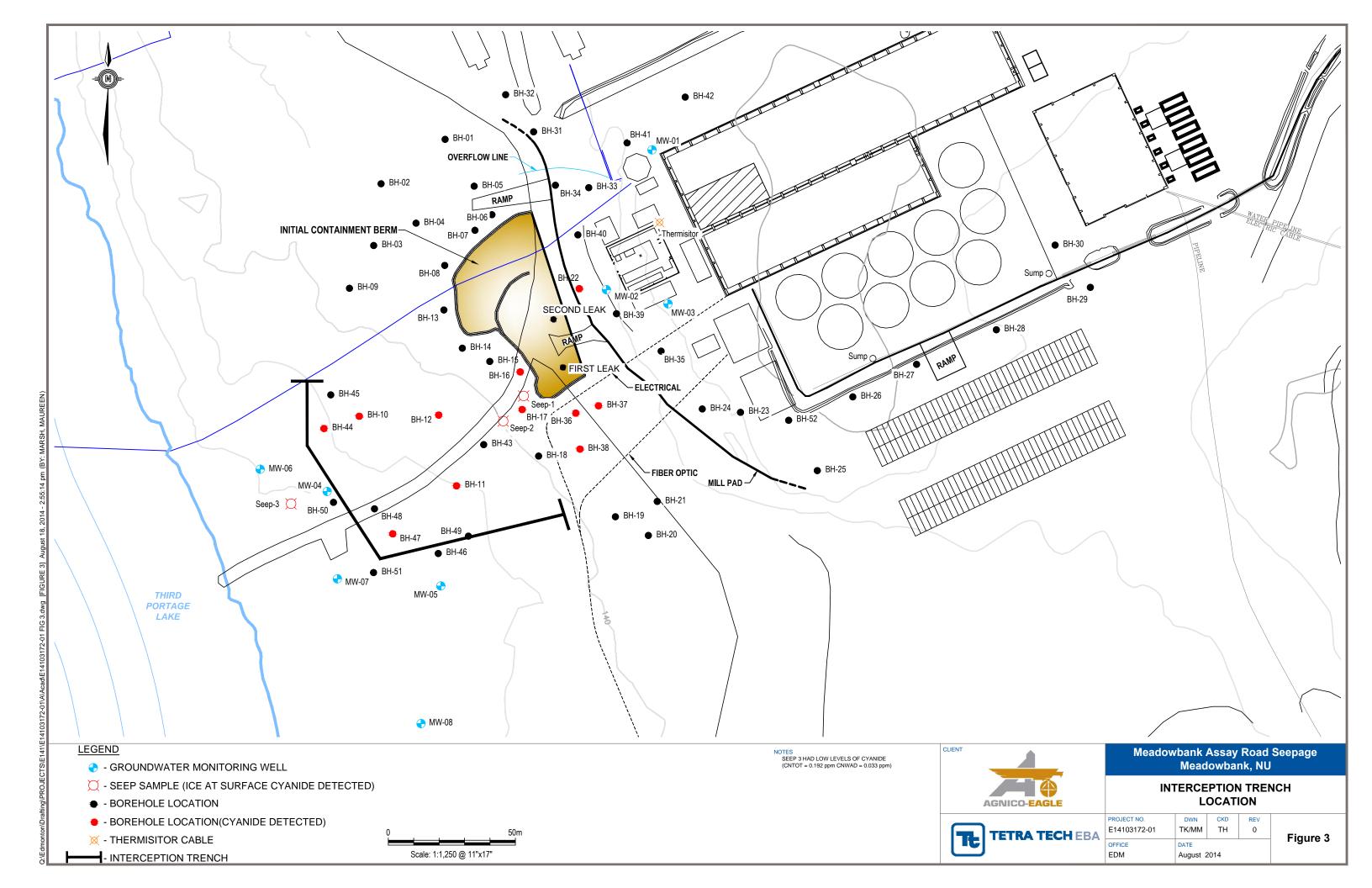
5.3 Water Sampling Program

Where possible, ice or water samples were collected during drilling and placed into plastic containers for analysis. Samples were stored in an insulated cooler and were kept cold for transport to Multi-Lab Direct in Val-d'Or Quebec. A total of seven samples were sent to Multi-Lab Direct for analysis of Total Cyanide and WAD Cyanide. All water/ice samples were maintained below 4°C. An additional sample was taken at the same time for each of the seven water/ice samples and submitted to the Assay Lab on site for analysis of WAD Cyanide.

In addition to the sampled boreholes, eight (8) monitoring wells were installed, three (3) on the pad and five (5) in the natural terrain downslope of the mill pad. Monitoring wells were completed with 2" PVC solid pipe with a slotted screen at the bottom. These screens vary in depth, depending on the borehole depth (See Appendix B). The screen was surrounded by a silica sand filter pack followed by bentonite to grade. There were no metal coverings placed on the wells at the time of installation. After installation, no water samples could be obtained at the time of the investigation, due to frozen ground conditions.

5.4 Thermistor Cable

A thermistor cable was installed to 15.5 mbgs behind the Assay Lab near old monitoring wells 201, 202, and 203. The thermistor cable was completed with a 3" PVC solid pipe with caps at the bottom and top. The inside of the PVC pipe was filled with fine crushed gravel to the top of the PVC pipe. Readings were taken at the time of installation and every few days afterwards to determine the ground temperature. Appendix E presents the measured ground temperature and the calibration for the thermistor cable.


6.0 DESIGN AND CONSTRUCTION OF THE INTERCEPTION TRENCH

6.1 Interception Trench Location, Design and As-Built Construction

The interception trench design was developed by AEM with consultation by Tetra Tech EBA. The trench was located to minimize disturbance to the natural terrain, act as a barrier between detected cyanide and the lake, while staying at least 30 m away from Third Portage Lake. The approximate location of the interception trench is shown on Figure 3.

The initial design was to have a culvert within a rockfill mound and seacan placed on top for housing pumping equipment. The idea was to allow permafrost to aggrade into the bentonite material, providing a secondary impermeable boundary if water was allowed to pool in the collection area and started to slowly seep through the bentonite. This design was altered with input from Tetra Tech EBA and AEM, since the trench was over-blasted, and if the collection area was covered by rockfill to the original ground level, there was potential that the permafrost would aggrade too high and potentially freeze any pooled water before it could be pumped out. As a result, AEM committed that any pooled water in the collection area will be immediately pumped out to limit the possibility of long term pooling and seeping through the bentonite material, therefore the rockfill mound and seacan were abandoned.

Construction of the interception trench generally followed the intended design with a few changes made to "field-fit" to site conditions. As-built drawings provided by AEM are presented in Appendix C.

The AEM design for the interception trench utilizes shallow ditches and a sump. To mitigate anticipated thaw in permafrost conditions, the final design for the interception trench includes significant over excavation and replacement with thaw stable materials, and a cut-off system keyed in deep enough below the ditch or sump bottom to be below the depth of anticipated thaw. However, to insure thermal stability, it will be essential that water not be allowed to pond in the ditches or sump for longer than 1 day.

6.1.1 Interception Trench Preparation

The excavation of blast debris from the interception trench was ongoing when Tetra Tech EBA arrived on site on April 24, 2014. Excavation was carried out with a Caterpillar (CAT) 365 excavator positioned parallel to the trench. Excavation removed the bulk of the blast material down to refusal on bedrock. The contractor was directed to remove all smaller rock fragments and unsound rock that remained at the bottom of the interception trench with the smaller CAT 345 backhoe equipped with a small (1 m wide) bucket fitted with "duck teeth". Almost the entire excavation was located within sound bedrock. The bottom of the trench was somewhat irregular as a result of the inaccuracies of blasting. Photos 9 and 10 show the interception trench after the initial removal of blast material and after final cleaning, respectively.

6.1.2 Geotextile Placement

Geotextile was placed on the downstream slope of the interception trench under observation of Tetra Tech EBA. The geotextile was placed with a minimum panel overlap of 300 mm, and with approximately 1000 mm tied in at the top of the downstream slope. Photo 11 shows the geotextile on the downstream slope as it is being tied in.

6.1.3 20 mm Aggregate/8% Bentonite Material Placement

Bottom of Interception Trench

A mixture of 20 mm crushed aggregate with 8% bentonite (bentonite material) was placed on the bottom of the interception trench following inspection by Tetra Tech EBA. The bentonite material was compacted using a Wacker DPU 5045H Vibrating Plate with a minimum of four passes per lift; compaction activities are shown in Photo 12.

The aggregate/bentonite material was first placed to fill in the low (over-blasted) areas of the interception trench. Lift thicknesses between 200 and 300 mm were used. The bottom of the interception trench was built up in this manner until the desired thicknesses and grades were reached, as measured by the on-site surveyor. To meet the design intent, a minimum bentonite material thickness of 500 mm above the bedrock and minimum grades of 1.5 percent towards the collection area were achieved.

Downstream (Lake Side) Slope

Bentonite material was placed on the downstream slope of the trench in two lifts (300 mm and 200 mm) and compacted with the CAT 365 excavator bucket for a total thickness of 500 mm. Photo 13 shows the CAT 365 excavator compacting two lifts of bentonite material on the downstream slope.

Upstream (Mill side) Slope

Bentonite material was placed along the upstream slope to direct any flowing subsurface water (most likely flowing in the active layer at the overburden/bedrock contact) into the interception trench. Compaction was carried out with the CAT 365 excavator bucket. The contractor was directed to ensure there was no gap or "gutter" between the upstream wall and bentonite material. Care was taken so that the top of the bentonite material was below the overburden/bedrock contact. Photos 13 to 16 show bentonite placement on the upstream slope.

6.1.4 150 mm and Rock Fill Material Placement

The placement of the 150 mm and Rock Fill material was done after Tetra Tech EBA had left the site. This stage was not as crucial to the performance of the interception trench as the bentonite material placement. Photo 17 shows the interception trench at completion, photos courtesy of AEM.

6.1.5 Testing of 20 mm Crushed Aggregate/8% Bentonite Material

One sample (sample 1) of bentonite material was subjected to constant head hydraulic conductivity testing in Tetra Tech EBA's Edmonton laboratory in accordance with ASTM D5084. To get a sample representative of insitu conditions, the sample was taken directly out of the bottom of the interception trench as the contractor was placing the bentonite material. In-situ moisture content prior to testing was 3.7%, moisture content after testing was 12.7%, with an average dry density of 1875 kg/m³. The hydraulic conductivity of the bentonite material was determined to be 2.2 x 10⁻⁵ cm/s, which is adequate to minimize water seepage out of the interception trench. Detailed constant head hydraulic conductivity test results are presented in Appendix F.

7.0 RESULTS AND DISCUSSIONS

The results of the 2014 Meadowbank Mine Assay Seepage Environmental Site Assessment are presented in the following section and in Tables 1 to 3. The laboratory reports are in Appendix A.

7.1 Soil

Natural Terrain

There were a total of 62 soil samples submitted for analysis of Total and WAD Cyanide from the boreholes drilled in the natural terrain downslope of the mill pad. Of those 62 samples, there were 17 samples where Total Cyanide was detected, with values ranging from 0.5 to 51 mg/kg. When compared to the British Columbia (BC) Environmental Management Act: Contaminated Sites Regulations for Urban Park (Wildlands), Schedule 5, only one location (BH-38, 51 mg/kg) was greater than the BC guidelines (50 mg/kg) for Total Cyanide.

For WAD Cyanide, there were only three samples where WAD Cyanide was detected, with values ranging from 0.9 to 3 mg/kg. All of these samples were below the British Columbia (BC) Environmental Management Act: Contaminated Sites Regulations for Urban Park (Wildlands), Schedule 5 (10 mg/kg).

The pH of the soil on the tundra ranged from 6.89 to 7.20, which meets applicable guidelines.

Mill Pad

There were a total of 30 soil samples submitted for analysis of Total and WAD Cyanide from boreholes drilled through the pad. Of those 30 samples, there was one sample (BH-22, 1.7 mg/kg) where Total Cyanide was detected. No WAD Cyanide was detected. Water was observed in BH-22 and MW-02, which was located in front of the Assay Lab.

The pH of the material on the pad ranged from 8.58 to 9.38 which is greater than the applicable guidelines. This material is created mainly of crushed blast rock, which would have been pulverized during drilling. In gold mines there are issues with having waste rock having low pH causing acid drainage, thus having higher than neutral pH values is better than lower pH values. Therefore, the pH values observed in the pad should not be a concern.

7.2 Water

Natural Terrain

There were a total of 6 water (ice) samples submitted for analysis of Total and WAD Cyanide from the natural terrain downslope of the mill pad. Total and WAD Cyanide was detected at all six sample locations. Total Cyanide was detected with values ranging from 0.192 to 2.23 ppm. The Water Licence No. 2AM-MEA0815 provides effluent discharge for Total Cyanide at 0.5 ppm for maximum average concentration and 1.0 pm for maximum allowable grab sample concentration. Using this value as a guideline, all samples analyzed, except Seep 3, exceed the water License for Total Cyanide. Seep 3 is located approximately 30 m from the edge of the lake, where cyanide was detected.

The Water Licence No. 2AM-MEA0815 does not have effluent discharge values for WAD Cyanide. Using the BC guidelines as a guide, none of the water samples exceeded the BC guidelines to protect freshwater aquatic life (50 ppm).

Mill Pad

There was one water sample (BH-22) submitted for analysis of Total and WAD Cyanide from boreholes drilled in the pad. The Total Cyanide detected was 24.59 ppm and WAD Cyanide was 10.6 ppm. The Total Cyanide exceeds the effluent discharge established in the Water Licence No. 2AM-MEA0815.

Monitoring well MW-02 did contain water, but no sample was collected, as it was adjacent to BH-22.

7.3 Ground Temperature

Regular readings have been obtained from the thermistor cable between March 5, 2014 and June 16, 2014 to determine changes in the ground temperature regime and determine the thickness of the active layer. The active layer depth is approximately 1.5 mbgs and ground temperature at the depth of zero annual amplitude (approximately 12 mbgs) is -2.0°C.

8.0 CONCLUSIONS AND RECOMMENDATIONS

During this investigation cyanide was detected at a depth of 1.68 mbgs near the location where the seep was initially identified. Down gradient of the initial containment, cyanide was detected to depths of 0.7 mbgs. Cyanide was not detected approximately 60 m from the lake (BH-47) in the soil, but was found at low levels in water (ice) that accumulated on the surface (Seep 3). Seep 3 is located about 30 m from the lakes edge and had low levels of cyanide (Total cyanide- 0.192 mg/L; WAD cyanide-0.033 mg/L). This information suggests that the cyanide initially infiltrated into the soil close to the initial seepage area; however further away from the seepage cyanide may have accumulated in the topsoil with little infiltration into the mineral soil (till overburden) or bedrock.

It was decided that the interception trench be installed between Seep 3 and BH-47. The decision for the location of the interception trench was based on the premise to minimize disturbance to the natural terrain, and act as a barrier between detected cyanide and the lake, while staying at least 30 m away from Third Portage Lake. An interception trench at this location should prevent cyanide contamination reaching Third Portage Lake. It is recommended that any pooled water within the collection area of the interception trench be pumped out immediately.

In order to remove the source of contaminant, AEM has taken steps to repair/reseal the containment systems that have been identified to be leaking and lead to the seepage. The main area of concern was the CIP tank containment system, which has been repaired. A ground temperature cable (thermistor cable) was installed near

the mill to determine the ground thermal regime. The fact that the mill pad has refrozen and there is only a thin active layer in the pad indicates that the repairs to the containment system have been effective in limiting seepage to the point that the ground has refrozen as significant continued seepage would likely preclude freezing.

AEM has currently established a Freshet Action Plan (April 2014), which outlines protocols AEM will take to monitor the interception trench and sampling protocols. AEM will conduct daily inspections of the pumping, collection systems and perimeter area and will record all pumped volumes of water from the interception trench. Any of the water collected will be pumped to the mill and discharged with the tailings to the tailings storage facility (TSF). The sampling program in this action plan states that on a monthly basis AEM will submit water samples to Multi Lab for analysis of Free Cyanide, Total Cyanide, Copper and Iron from the interception trench, monitoring wells 14MW04, 14MW05, 14MW06, 14MW07, and 14MW08, the original containment area and Third Portage Lake. AEM will collect waters twice a week from the area within the original containment berm, the interception trench, and monitoring wells 14MW02, 14MW03, 14MW08, 201, 202, and 203 to be submitted to the AEM on-site lab for WAD cyanide analysis.

After reviewing the information from this Environmental Site Assessment and AEM's Freshet Action Plan (April 2014), the following recommendations apply:

- Continue to sample water ponding within the original containment berm, interception trench, Third Portage Lake and monitoring wells 14MW01 to 14MW08, 201, 202 and 203, if water is present and not frozen, for analysis by Multi Lab of Free and Total cyanide, Copper, and Iron;
- In monitoring wells with known detected cyanide, collect and submit water samples to Multi Lab once in the spring and fall for analysis of ammonium, nitrate/nitrite, and pH. The purpose for the ammonium and nitrate/nitrite is that these compounds increase with the biodegradation of cyanide;
- If water is ponding down gradient of the interception trench, water samples should be collected and submitted to Multi Lab for analysis of Free and Total cyanide, Copper, and Iron;
- During the investigation no seep (water) samples or soil samples were collected within 30 m of the lake.
 Cyanide was detected at Seep 3, thus further sampling should be conducted down gradient of the trench in the soil and water. Water should be analyzed by Multi Lab for Free and Total Cyanide, Copper, and Iron, while soils should be analyzed for Free and Total cyanide;
- Depending on the results of the soil samples collected and potentially ponded water samples collected within 30 m of Third Portage Lake then sediment samples should be collected from the shore of Third Portage Lake. These sediment samples should be analyzed by Multi Lab for Free and Total Cyanide, Copper and Iron.
- AEM should install sumps inside the original containment berm to aid in the collection of water. This water can
 be pumped up to the mill and discharged to the TSF. This should improve collection of water in the spring
 near the mill pad;
- If not already complete, AEM should continue with the repairs to the secondary containment systems within the mill to ensure seepage sources are eliminated; and
- Collect additional soil samples on the northeast side of the mill in the direction of Tear Drop Lake to confirm if
 any cyanide travelled in that direction. If water is observed in the boreholes during this recommended
 investigation a well should be installed.

The following soil sampling recommendations should be implemented at closure of the mine:

Soil samples should be collected for Free cyanide in the areas where known cyanide was detected, as free
cyanide was not analyzed in this investigation. These areas should be delineated in order to produce a
remedial action plan, if needed;

9.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech EBA Inc.

Prepared by:

Tyrel Hemsley, M.Sc., A.I.T. Environmental Scientist Environment Practice

Tyll bemsley

Direct Line: 780.451.2130 x520 Tyrel.Hemsley@tetratech.com

Prepared by:

Ernest Palczewski, B.Sc., Geol.I.T.

Emt Palmli

Geologist, Arctic Region Engineering Practice

Direct Line: 780.451.2130 x353 Ernest.Palczewski@tetratech.com

Reviewed by: Kevin W. Jones, P.Eng. Vice President, Arctic Development Engineering Practice Direct Line: 780.451.2125 Kevin.Jones@tetratech.com Reviewed by:

Michael J. Bensing, P.Eng. (Alberta) Team Lead - Geoenvironmental

Michael J. Bensing

Environment Practice

Direct Line: 780.451.2130 x500 Mike.Bensing@tetratech.com

/tm

PERMIT TO PRACTICE
TETRA TECH EBA INC.

Signature

PERMIT NUMBER: P 018

NT/NU Association of Professional Engineers and Geoscientists

REFERENCES

- Agnico Eagle, November 2013, Preliminary AEM Report Assay Road Seepage
- British Columbia Ministry of Environment. 2014. Environmental Management Act: Contaminated Sites Regulations, Schedule 4 Generic Numerical Soil Standards. Updated January 27,2014
- British Columbia Ministry of Environment. 2014. Environmental Management Act: Contaminated Sites Regulations, Schedule 6 Generic Numerical Water Standards. Updated January 27,2014
- CCME (Canadian Council of Ministers of the Environment), September 2007, Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Chapter 7. In: Canadian Environmental Quality Guidelines, CCME, 1999. Winnipeg, MB.
- CCME (Canadian Council of Ministers of the Environment). 2007. Canadian water quality guidelines for the protection of aquatic life: summary table. Update 7.1, December 2007. In: Canadian Environmental Quality Guidelines, 1999, CCME, Winnipeg, MB.
- CCME. 1999. Canadian Soil Quality Guidelines for Protection of Environmental and Human Health: Cyanide (Free) 1997. In. Canadian Environmental and Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg
- Cumberland Resources Ltd. 2005. Meadowbank Gold Project. Baseline Physical Ecosystem Report.
- Golder Associates. 2008. 2007 Till Core Material Investigation and Laboratory Testing, Meadowbank Gold Project. Job No: 07-1413-0047/4000
- Government of Canada. Baker Lake A Nunavut-Weather.

 http://climate.weather.gc.ca/climateData/monthlydata_e.html?timeframe=3&Prov=NU&StationID=1709&mlyRange=1946-01-01|2012-12-01&Year=2000&Month=01&Day=01. Acquired March 25, 2014.
- Government of Nunavut. 2009. Environmental Guideline for Contaminated Site Remediation. Department of Environment's Environmental Protection Division. Revised March 2009
- Lottermoser, Bernd. 2007. Mine Wastes: Characterization, Treatment and Environmental Impacts 2nd Edition. Springer

TABLES

Table 1	Analytical Results for Tundra Soil - AEM- Meadowbank Assay Seepage
Table 2	Analytical Results for Mill Pad Soil - AEM- Meadowbank Assay Seepage
Table 3	Water/Ice Analytical Results - AEM - Meadowbank Assay Seepage

Table 1: Anal	ytical Results	Tundra Soil - AE	M- Meadowbank /	Assay Seepage
---------------	----------------	------------------	-----------------	---------------

Parameters pH ² Total Cyanide ¹ WAD Cyanide ¹ Moisture Content		Guidelines Downgradient of the Assay										ab			_		•	
Parameters	Units	Wildland/	BH-01	BH-02	BH-03	BH-04	BH-05	BH-06	BH-07	BH-08	BH-09	BH-10	ВН	-11	B⊦	l-12	BH-13	BH-14
		Urban Park	40-60	0-44	40-60	0-39	0-45	40-75	40-60	40-60	40-52	0-40	0-40	40-62	0-40	40-70	40-70	40-70
pH ²		6 to 8								6.91			7.20					
Total Cyanide ¹	mg/kg	50	<0.5	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	13	30	0.6	1.5	1.4	<0.5	<0.5
WAD Cyanide ¹	mg/kg	10	<0.5	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Moisture Content	%	NG	20	56	14	16	15	18	12	13	6.6	17	25	15	16	6.9	5.6	4.4
Laboratory Identific	ation No.		X63656	X63657	X63658	X63659	X63660	X63661	X63662	X63663	X63664	X63665	X63666	X63667	X63668	X68074	X63669	X68075

Parameters		Guidelines							Downgra	adient of th	ne Assay La	ıb						
Parameters	Units	Wildland/	BH-14	BH-1	5		BH-16			вн-	17		BH	-18	BH-19	BH-20	BH-21	BH-36
		Urban Park	70-112	40-70	70-100	0-40	70-100	100-140	40-70	70-100	100-140	140-168	40-70	70-100	40-59	40-70	70-90	40-70
pH ²		6 to 8							7.12				6.89				7.93	
Total Cyanide ¹	mg/kg	50	<0.5	<0.5	<0.5	1.9	14	0.6	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	27
WAD Cyanide ¹	mg/kg	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3
Moisture Content	%	NG	4.2	14	9.4	11	7.9	8.2	12	9.9	7.0	3.8	13	12	3.7	6.8	2.9	9.4
Laboratory Identifica	ation No.		X63670	X63671	X68076	X68077	X63672	X68078	X63673	X68079	X68080	X63674	X63683	X68081	X63684	X63685	X63686	X68105

Parameters		Guidelines							Downgr	adient of th	ne Assay La	ab						
Parameters	Units	Urban Park	BH	-36	BH	I-37	BH-38		BH-43		ВН	-44	BH-45	BH-	46	BH-47	ВН	-48
		(Wildland)	70-100	100-129	40-70	70-109	0-29	0-40	70-100	100-121	40-70	70-94	40-52	40-70	100-139	0-41	40-70	100-140
pH ²		6 to 8																
Total Cyanide ¹	mg/kg	50	1.7	0.9	1	0.9	<u>51</u>	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	4	<0.5	<0.5
WAD Cyanide ¹	mg/kg	10	<0.5	<0.5	1.2	0.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Moisture Content	%	NG	6.3	7.4	13	6.0	30	41	6.9	9.9	9.9	6.4	16	7.6	5.6	19	9.4	7.3
Laboratory Identifica	ation No.		X68106	X68107	X68114	X68115	X68116	X71668	X71669	X71670	X71671	X71672	X71673	X71674	X71675	X71676	X71677	X71678

Parameters		Guidelines			Downgra	adient of the	Assay Lab				Monitoring Wells									
Parameters	Units	Urban Park	ВН	-49		BH-50			BH-51		MW-04	MW-05	MW-06	MW-07	MW	/ -08				
		(Wildland)	40-70	70-100	0-40	70-100	100-133	0-40	70-100	100-133	70-91	70-100	70-122	40-70	40-70	70-100				
pH^2		6 to 8																		
Total Cyanide ¹	mg/kg	50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5				
WAD Cyanide ¹	mg/kg	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				
Moisture Content	%	NG	6.0	5.5	19	7.7	6.3	22	9.0	4.4	7.6	8.4	8.0	16	9.1	6.2				
Laboratory Identific	ation No.		X71679	X71680	X71681	X71682	X71683	X71684	X71685	X71686	X71690	X71691	X71692	X71693	X71694	X71695				

Notes:

NG- No Guideline

Bold - Greater than the referenced guideline

Cyanide Detected

¹ Environmental Management Act: Contaminated Sites Regulations, British Columbia (updated January 31, 2014); Urban Park (Wildlands). The BC guidelines are in μg/g which are equal to mg/kg

 $^{^{2}}$ Environmental Guidelines for Contaminated Site Remediation, Nunavut. Wildland Blank-Not analyzed $\,$

Table 2: Analytical Results for Mill Pad Soil - AEM- Meadowbank Assay Seepage

Table 2: 7 mary	1100111100														Ī			1
		Guidelines	N	North of Mill		N	lorthwest o	of Assay La	ıb			In Front of	Assay Lab		9	Southwest of Ass	ay Lab	
Parameters	Units	Urban Park (Wildland)	BH-	-41	BH-42	ВН	-33	ВН	-34	вн	-40	BH-22	ВІ	H-39	BH	I-35	BH-23	BH-24
		(Wilalia)	300-350	400-450	300-350	300-350	400-450	300-350	500-577	400-450	550-645	500-550	300-350	400-450	300-350	400-450	450-500	400-450
pH ²		6 to 8														<u>9.28</u>		
Total Cyanide ¹	mg/kg	50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
WAD Cyanide ¹	mg/kg	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Moisture Content	%	NG	7.2	0.8	1.1	14	2.7	4.8	5.2	12	4.5	16	3.6	3.0	3.2	3.4	0.8	2.3
Laboratory Identifi	cation No.		X68121	X68122	X68123	X68099	X68100	X68101	X68102	X68119	X68120	X63687	X68117	X68118	X68103	X68104	X68082	X68083

		Guidelines	Southwest of	of Assay Lab			S	outhwest s	ide of Tanl	ks			Northwe	est of Tanks	Monitor	ing Wells
Parameters	Units	Urban Park	BH-24	BH-52		BH-25		BH-26	BH-27	BH-28	ВН	-29	В	H-30	MW-01	MW-03
	(Wildland		500-530	300-350	250-300	400-450	500-530	400-450	500-550	500-550	300-350	500-550	400-450	550-690	400-450	400-450
pH^2		6 to 8			9.30						<u>8.58</u>			9.38		
Total Cyanide ¹	mg/kg	50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
WAD Cyanide ¹	mg/kg	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Moisture Content	%	NG	1.2	0.3	1.9	0.8	0.5	0.8	0.2	0.8	1.0	0.3	3.3	1.0	2.2	2.4
Laboratory Identifi	cation No.		X68088	X71687	X68089	X68089 X68090 X68091 X		X68092	X68093	X68094	X68095	X68096	X68097	X68098	X71688	X71689

Notes

Bold - Greater than the referenced guideline

Cyanide Detected

¹ Environmental Management Act: Contaminated Sites Regulations, British Columbia (updated January 31, 2014); Urban Park (Wildlands). The BC guidelines are in µg/g which are equal to mg/kg

² Environmental Guidelines for Contaminated Site Remediation, Nunavut. Wildland Blank-Not analyzed

Table 3: Water/Ice Analytical Results - AEM - Meadowbank Assay Seepage

Parameters	Unit	Guidelines			In Front of Assay Lab	Downgradient of Assay Lab-Tundra					
		Drinking Water ¹	Aquatic Life	Licence No. 2AM-MEA0815	BH-22	BH-36	Seep 1	Seep 2	BH-11	BH-47	Seep 3
Total Cyanide ²	mg/L	200	NG	0.5 (1.0) ⁴	<u>24.59</u>	2.23	2.31	<u>1.59</u>	<u>1.76</u>	<u>1.05</u>	0.192
WAD Cyanide ²	mg/L	NG	50	NG	10.6	0.644	0.944	0.935	1.48	0.101	0.033
WAD Cyanide ³	mg/L	NG	50	NG		1.31	1.05	0.883	4.91	0.237	0.544
Laboratory Identification No.				V-32663	V-32719	V-32716	V-32717	V-32662	V-32758	V-32718	

Notes:

Bold = Greater than the referenced guideline or Water License

Cyanide Detected

¹ Environmental Management Act: Contaminated Sites Regulations, British Columbia (updated January 31, 2014); Schedule 6 Generic Numerical Water Standards

² Multi-lab Direct Analytical Results

³ Meadowbank Assay Lab Analytical Results

⁴ Maximum Average Concentration (Maximum Allowable Grab Sample Concentration) Blank-Not analyzed

PHOTOGRAPHS

Photo 1	Southwest view of the downhole hammer-air rotary drill drilling BH-18
Photo 2	Metal containers underneath the curtain of the drill to collect soil samples
Photo 3	Ice (~12 cm thick) located at BH-11.
Photo 4	Northwest view of drill, drilling BH-39 in front of the Assay Lab
Photo 5	View from MW-04 facing northeast towards the Assay Lab
Photo 6	Northwest view of the location for the three old wells (201, 202, and 203) located in the tires and the location of the thermistor cable just southeast of the tires. This area is located between the Assay Lab and the Mill.
Photo 7	View of the North side of the Mill, illustrating the location of monitoring well MW01 behind the two cement blocks
Photo 8	View on the south side of the tank farm drilling BH-27
Photo 9	West End of Interception Trench Facing Northwest, Trench Bottom Prior to Cleaning
Photo 10	West End of Interception Trench Facing Northwest, Trench Bottom after Cleaning, Contractors Laying Geotextile on Downstream Slope
Photo 11	East End of Interception Trench Facing Northeast, Geotextile Placement with Overlap and Tie-in at Top
Photo 12	West End of Interception Trench Facing North, Contractor Filling in and Compacting Low Areas
Photo 13	West End of Interception Trench Facing Northwest, Background: CAT 365 Excavator Bucket Compacting Two Lifts of Bentonite Material on Downstream Slope. Foreground: Two Lifts of Bentonite Material Visible
Photo 14	West End of Interception Trench Facing Southeast, CAT 365 Excavator Bucket Compacting Upstream Bentonite Material Slope below the Bedrock Contact
Photo 15	East End of Interception Trench Facing Northwest, Bentonite Material on Upstream Slope below Bedrock Contact
Photo 16	West End of Interception Trench Facing Northwest, Completed Bentonite Placement
Photo 17	East End of Interception Trench Facing Southwest, Completed Interception Trench Covered in Rockfill (Photo courtesy AEM)

Photo 1: Southwest view of the down hole air hammer drill drilling BH-18.

Photo 2: Metal containers underneath the curtain of the drill to collect soil samples.

Photo 3: Ice (~12 cm thick) located at BH-11.

Photo 4: Northwest view of drill, drilling BH-39 in front of the Assay Lab.

Photo 5: View from MW-04 facing northeast towards the Assay Lab.

Photo 6: Northwest view of the location for the three old wells (201, 202, and 203) located in the tires and the location of the thermistor cable just southeast of the tires. This area is located between the Assay Lab and the Mill.

Photo 7: View of the North side of the Mill , illustrating the location of monitoring well MW01 behind the two cement blocks.

Photo 8: View on the south side of the tank farm drilling BH-27.

Photo 9: West End of Interception Trench Facing Northwest Trench Bottom Prior to Cleaning

Photo 10: West End of Interception Trench Facing Northwest
Trench Bottom after Cleaning. Contractors Laying Geotextile on Downstream Slope

Photo 11: East End of Interception Trench Facing Northeast Geotextile Placement with Overlap and Tie-in at Top

Photo 12: West End of Interception Trench Facing North Contractor Filling in and Compacting Low Areas

Photo 13: West End of Interception Trench Facing Northwest Background: CAT 365 Excavator Bucket Compacting Two Lifts of Bentonite Material on Downstream Slope. Foreground: Two Lifts of Bentonite Material Visible

Photo 14: West End of Interception Trench Facing Southeast CAT 365 Excavator Bucket Compacting Upstream Bentonite Material Slope Below the Bedrock Contact

Photo 15: East End of Interception Trench Facing Northwest
Bentonite Material on Upstream Slope Below Bedrock Contact

Photo 16: West End of Interception Trench Facing Northwest Completed Bentonite Placement

Photo 17: East End of Interception Trench Facing Southwest Completed Interception Trench Covered in Rockfill (Photo courtesy AEM)

APPENDIX A LABORATORY DATA

Company: Agnico Eagle Division Meadowbank

Client: M. Stéphane Robert Address: General Delivery

Baker Lake Nunavut X0C 0A0

Phone: (604) 677-0689 (--) Fax: (604) 677-0687

Lab number: V-32716

Sampling location: Seep 1 Sampling date: February 27, 2014

Sample name: Seep 1 Sampling hour: N/D

Sampled by: Tyrel Hemsley Date received: March 04, 2014

Matrix: Waste Water

Drinking water distribution:

Reported on: March 04, 2014

Unless otherwise stated, all samples were received in acceptable condition.

Results relate only to the sample tested.

All samples will be disposed of after 30 days following analysis.

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155

ver

Lab number: V-32716 Sample name: Seep 1

Sampling date: February 27, 2014

mpling location: Seep 1	Sampling hour: N/D
-------------------------	--------------------

Sampling location:	Seen 1	Sampling hour: N/D	
Parameter	Result	ult Method name Analysis date	
Cyanide W.A.D.	0.944 mg/L	Sous-traitance\Multilab Direct	March 04, 2014
Total Cyanide (CNt)	2.31 mg/L	M-CN-1.0	March 04, 2014
, , , , , , , , , , , , , , , , , , , ,	3		, ,

Detection limit

Lab number: V-32716 Sample name: Seep 1

Sampling date: February 27, 2014

Sample harrie.	Soon 1	Sampling bour: N/D	
Sampling location: Parameter	Value Unit	Sampling hour: N/D Method Accreditation	
Cyanide W.A.D.	0.005 mg/L	Sous-traitance	Yes
Total Cyanide (CNt)	0.005 mg/L 0.005 mg/L	M-CN-1.0	Yes
Total Oyallac (Olvi)	0.003 mg/L	W ON 1.0	103

Quality control Report

Lab number: V-32716
Sample name: Seep 1
Sampling location: Seep 1
Sampling hour: N/D
Sampling hour: N/D

Parameter Total Cyanide (CNt) mg/L Blank < 0.005 Standard name DMR-0025-2014-7 Result 0.0780 Accuracy 95.7% Limit 0.0693 - 0.0937

Additional information

Lab number: V-32716
Sample name: Seep 1
Sampling location: Seep 1
Sampling hour: N/D
Sampling hour: N/D

Lab method Method reference M-CN-1.0 MA.300-CN 1.2

Company: Agnico Eagle Division Meadowbank

Client: M. Stéphane Robert Address: General Delivery

Baker Lake Nunavut X0C 0A0

Phone: (604) 677-0689 (--) Fax: (604) 677-0687

Lab number: V-32717

Sampling location: Seep 2 Sampling date: February 27, 2014

Sample name: Seep 2 Sampling hour: N/D

Sampled by: Tyrel Hemsley Date received: March 04, 2014

Matrix: Waste Water

Drinking water distribution:

Reported on: March 04, 2014

Unless otherwise stated, all samples were received in acceptable condition.

Results relate only to the sample tested.

All samples will be disposed of after 30 days following analysis.

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

multilab@cablevision.qc.ca

F-02-06

Lab number: V-32717 Sample name: Seep 2

Sampling date: February 27, 2014

ampling location: Seep 2	Sampling hour: N/D
--------------------------	--------------------

Parameter	Result	Method name	Analysis date
Cyanide W.A.D.	0.935 mg/L	Sous-traitance\Multilab Direct	March 04, 2014
Total Cyanide (CNt)	1.59 mg/L	M-CN-1.0	March 04, 2014
• , ,	G		

Detection limit

Lab number: V-32717 Sample name: Seep 2

Sampling date: February 27, 2014

Sampling location:		Sampling date: 1 editary 27, 2014 Sampling hour: N/D	
Parameter	Value Unit	Method Accreditat	
Cyanide W.A.D.	0.005 mg/L	Sous-traitance	Yes
Total Cyanide (CNt)	0.005 mg/L	M-CN-1.0	Yes
Total Oyalliac (OTAL)	0.003 mg/L	W ON 1.0	103

Quality control Report

Lab number: V-32717
Sample name: Seep 2
Sampling location: Seep 2
Sampling hour: N/D
Sampling hour: N/D

Parameter		
Total Cyanide (CNt) mg/L	Blank < 0.005	
, , ,	Standard name DMR-0025-2014-7	
	Result 0.0780	
	Accuracy 95.7%	
	Limit 0.0693 - 0.0937	

Additional information

Lab number: V-32717
Sample name: Seep 2
Sampling location: Seep 2
Sampling hour: N/D
Sampling hour: N/D

Lab method Method reference M-CN-1.0 MA.300-CN 1.2

Company: Agnico Eagle Division Meadowbank

Client: M. Stéphane Robert Address: General Delivery

Baker Lake Nunavut X0C 0A0

Phone: (604) 677-0689 (--) Fax: (604) 677-0687

Lab number: V-32718

Sampling location: Seep 3 Sampling date: February 27, 2014

Sample name: Seep 3 Sampling hour: N/D

Sampled by: Tyrel Hemsley Date received: March 04, 2014

Matrix: Waste Water

Drinking water distribution:

Reported on: March 04, 2014

Unless otherwise stated, all samples were received in acceptable condition.

Results relate only to the sample tested.

All samples will be disposed of after 30 days following analysis.

Sauf indication contraire, tous les échantillons ont été reçus en bon état. This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec)

Version 3^{ième}: 26/10/2005

F-02-06

Lab number: V-32718 Sample name: Seep 3

Sampling date: February 27, 2014

Compling locations		Sampling date: 1 editary 27, 2014 Sampling hour: N/D			
Sampling location: Parameter	Result	Method name Analysis d			
		Sous-traitance\Multilab Direct	Analysis date		
Cyanide W.A.D.	0.033 mg/L		March 04, 2014		
Total Cyanide (CNt)	0.192 mg/L	M-CN-1.0	March 04, 2014		

Detection limit

Lab number: V-32718 Sample name: Seep 3

Sampling date: February 27, 2014

Sampling location:	Seep 3	Sampling hour:	N/D
Parameter	Value Unit	Method	Accreditation
Cyanide W.A.D.	0.005 mg/L	Sous-traitance	Yes
Total Cyanide (CNt)	0.005 mg/L	M-CN-1.0	Yes
• , ,	-		

Quality control Report

Lab number:V-32718Sample name:Seep 3Sampling location:Seep 3Sampling hour:N/D

Parameter		
Total Cyanide (CNt) mg/L	Blank < 0.005	
	Standard name DMR-0025-2014-7	
	Result 0.0780	
	Accuracy 95.7%	
	Limit 0.0693 - 0.0937	

Additional information

Lab number: V-32718
Sample name: Seep 3
Sampling location: Seep 3
Sampling hour: N/D
Sampling hour: N/D

Lab method Method reference M-CN-1.0 MA.300-CN 1.2

Company: Agnico Eagle Division Meadowbank

Client: M. Stéphane Robert Address: General Delivery

Baker Lake Nunavut X0C 0A0

Phone: (604) 677-0689 (--) Fax: (604) 677-0687

Lab number: V-32719

Sampling location: BH-36 Sampling date: March 02, 2014

Sample name: BH-36 Sampling hour: N/D

Sampled by: Tyrel Hemsley Date received: March 04, 2014

Matrix: Waste Water

Drinking water distribution:

Reported on: March 04, 2014

Unless otherwise stated, all samples were received in acceptable condition.

Results relate only to the sample tested.

All samples will be disposed of after 30 days following analysis.

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel: multilab@cablevision.qc.ca

F-02-06 Version 3^{ième}: 26/10/2005

Lab number: V-32719 Sample name: BH-36 Sampling location: BH-36

Sampling date: March 02, 2014

Sampling hour:	N/L)

Sampling location: I	DI 1 00	Sampling nour: N/L	
Parameter	Result	Method name	Analysis date
Cyanide W.A.D.	0.644 mg/L	Sous-traitance\Multilab Direct	March 04, 2014
Total Cyanide (CNt)	2.23 mg/L	M-CN-1.0	March 04, 2014
, ,	C		

Detection limit

Lab number: V-32719 Sample name: BH-36 Sampling location: BH-36

Sampling date: March 02, 2014

Sampling hour: N/D

Sampling location:	BH-30	Sampling nour:	N/D
Parameter	Value Unit	Method	Accreditation
Cyanide W.A.D.	0.005 mg/L	Sous-traitance	Yes
Fotal Cyanide (CNt)	0.005 mg/L	M-CN-1.0	Yes
, , ,	3		

Quality control Report

Lab number:V-32719Sample name:BH-36Sampling location:BH-36BH-36Sampling hour:N/D

Parameter		
Total Cyanide (CNt) mg/L	Blank < 0.005	
	Standard name DMR-0025-2014-7	
	Result 0.0780	
	Accuracy 95.7%	
	Limit 0.0693 - 0.0937	

Additional information

Lab number:V-32719Sample name:BH-36Sampling location:BH-36BH-36Sampling hour:N/D

ab method 1-CN-1.0	Method reference
M-CN-1.0	MA.300-CN 1.2

Your P.O. #: OP-310962-J Your Project #: E14103172-01

Attention: Kevin Buck

Agnico Eagle Ltée-Division Meadowbank Meadowbank Baker Lake, Nunavut, Canada Meadowbank Nunavut, QC CANADA X0C 0A0

Report Date: 2014/02/28 Report #: R1834795 Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B410248 Received: 2014/02/27, 08:10

Sample Matrix: SOIL # Samples Received: 24

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Primary Reference
Weak Acid Dissociable Cyanides*	24	2014/02/27	2014/02/28	STL SOP-00035	MA. 300 - CN 1.2
Total Cyanide*	24	2014/02/27	2014/02/28	STL SOP-00035	MA. 300 - CN 1.2
pH*	5	2014/02/27	2014/02/27	STL SOP-00016	MA.100- pH1.1

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Rita Kurdoghlanian, Project Manager Email: RKurdoghlanian@maxxam.ca Phone# (514) 448-9001 Ext:4272

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 1 of 11 2014/02/28 20:17

Ligne sans frais: 1-877-4MAXXAM (462-9926)

^{*} Maxxam is accredited as per the MDDEFP program.

Agnico Eagle Ltée-Division Meadowbank Client Project #: E14103172-01

Your P.O. #: OP-310962-J

CONVENTIONAL PARAMETERS (SOIL)

Maxxam ID					X63656		X63657		X63658		
Sampling Date					2014/02/21		2014/02/21		2014/02/21		
	Units	Α	В	С	BH-01 (40-60)	RDL	BH-02 (0-44)	RDL	BH-03 (40-60)	RDL	QC Batch
								,		,	
% Moisture	%	-	-	-	20	N/A	56	N/A	14	N/A	N/A
CONVENTIONALS											
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	0.5	<1	1	<0.5	0.5	1275367
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	0.5	<1	1	<0.5	0.5	1275397

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID					X63659	X63660	X63661	X63662		
Sampling Date					2014/02/21	2014/02/22	2014/02/22	2014/02/22		
	Units	Α	В	С	BH-04	BH-05	BH-06		RDL	QC Batch
					(0-39)	(0-45)	(40-75)	(40-60)		
% Moisture	%	-	-	-	16	15	18	12	N/A	N/A
CONVENTIONALS										
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	<0.5	<0.5	0.5	1275367
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1275397

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID					X63663	X63664		X63665		
Sampling Date					2014/02/22	2014/02/22		2014/02/22		
	Units	Α	В	С	BH-08	BH-09	RDL	BH-10	RDL	QC Batch
					(40-60)	(40-52)		(0-40)		
% Moisture	%	-	-	-	13	6.6	N/A	17	N/A	N/A
CONVENTIONALS										
рН	рН	-	-	-	6.91	N/A	N/A	N/A	N/A	1275318
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	0.5	13	5	1275367
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	0.5	<0.5	0.5	1275397

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Agnico Eagle Ltée-Division Meadowbank Client Project #: E14103172-01

Your P.O. #: OP-310962-J

CONVENTIONAL PARAMETERS (SOIL)

Maxxam ID					X63666		X63667	X63668	X63669		
Sampling Date					2014/02/22		2014/02/22	2014/02/22	2014/02/22		
	Units	Α	В	С	BH-11 (0-40)	RDL	BH-11	BH-12	BH-13	RDL	QC Batch
							(40-62)	(0-40)	(40-70)		
% Moisture	%	-	-	-	25	N/A	15	16	5.6	N/A	N/A
CONVENTIONALS											
рН	рН	-	-	-	7.20	N/A	N/A	N/A	N/A	N/A	1275318
Total Cyanide (CN)	mg/kg	2	50	500	30	10	0.6	1.5	<0.5	0.5	1275367
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	0.5	<0.5	<0.5	<0.5	0.5	1275397

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID					X63669	X63670	X63671		X63672		
Sampling Date					2014/02/22	2014/02/22	2014/02/23		2014/02/23		
	Units	Α	В	С	BH-13	BH-14	_	RDL	_	RDL	QC Batch
					(40-70) Lab-Dup	(70-112)	(40-70)		(70-100)		
% Moisture	%	-	-	-	5.6	4.2	14	N/A	7.9	N/A	N/A
CONVENTIONALS											
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	<0.5	0.5	14	5	1275367
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	0.5	<0.5	0.5	1275397

N/A = Not Applicable RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Agnico Eagle Ltée-Division Meadowbank Client Project #: E14103172-01

Your P.O. #: OP-310962-J

CONVENTIONAL PARAMETERS (SOIL)

Maxxam ID					X63673	X63674	X63683	X63683		
Sampling Date					2014/02/23	2014/02/23	2014/02/23	2014/02/23		
	Units	Α	В	С	BH-17 (40-70)	BH-17 (140-168)	BH-18 (40-70)	BH-18 (40-70) Lab-Dup	RDL	QC Batch
% Moisture	%	-	-	-	12	3.8	13	13	N/A	N/A
CONVENTIONALS										
рН	рН	-	-	-	7.12	N/A	6.89	N/A	N/A	1275318
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	0.5	<0.5	<0.5	0.5	1275367
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1275397

N/A = Not Applicable RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam ID					X63684	X63685	X63686	X63687		
Sampling Date					2014/02/23	2014/02/23	2014/02/23	2014/02/23		
	Units	Α	В	С	BH-19	BH-20	BH-21	BH-22	RDL	QC Batch
					(40-59)	(40-70)	(70-90)	(500-550)		
% Moisture	%	-	-	-	3.7	6.8	2.9	16	N/A	N/A
CONVENTIONALS										
рН	рН	-	-	-	N/A	N/A	7.93	N/A	N/A	1275318
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	<0.5	1.7	0.5	1275367
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1275397

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Agnico Eagle Ltée-Division Meadowbank Client Project #: E14103172-01

Your P.O. #: OP-310962-J

<0.5

0.5

1275397

CONVENTIONAL PARAMETERS (SOIL)

Maxxam ID Sampling Date					X63687 2014/02/23		
	Units	Α	В	С	BH-22 (500-550) Lab-Dup	RDL	QC Batch
% Moisture	%	-	-	-	16	N/A	N/A
CONVENTIONALS							
Total Cyanide (CN)	ma/ka	2	50	500	1 7	0.5	1275367

2

10

100

N/A = Not Applicable

RDL = Reportable Detection Limit

Weak Acid Dissociable Cyanide (CN-) mg/kg

QC Batch = Quality Control Batch

Agnico Eagle Ltée-Division Meadowbank Client Project #: E14103172-01

Your P.O. #: OP-310962-J

GENERAL COMMENTS

Condition of sample(s) upon receipt: GOOD

All results are calculated on a dry weight basis except where not applicable.

A,B,C: Criteria following appendix 2 of the "Soil Protection and Contaminated Sites Rehabilitation Policy" entitled "Generic criteria for soils and groundwater". For all metals analyses in soil, the criterion A refers to "Background Level of St. Lawrence Lowlands Sector".

For groundwaters:

The A and B criteria follow the appendix 2 of the "Soil Protection and Contaminated Sites Rehabilitation Policy" entitled "Generic criteria for soils and groundwater". The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water or Infiltration into Sewers".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

CONVENTIONAL PARAMETERS (SOIL)

Please note that the results have not been corrected for QC recoveries nor for the method blank results. Reported detection limits are multiplied by dilution factors used for sample analysis.

Results relate only to the items tested.

Agnico Eagle Ltée-Division Meadowbank

Attention: Kevin Buck

Client Project #: E14103172-01

P.O. #: OP-310962-J Site Location:

Quality Assurance Report Maxxam Job Number: B410248

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units
1275318 KV1	QC Standard	pH	2014/02/27		99	%
	Spiked Blank	pH	2014/02/27		101	%
1275367 DB2	QC Standard	Total Cyanide (CN)	2014/02/28		103	%
	Spiked Blank	Total Cyanide (CN)	2014/02/28		111	%
	Method Blank	Total Cyanide (CN)	2014/02/28	< 0.5		mg/kg
1275397 DB2	Spiked Blank	Weak Acid Dissociable Cyanide (CN-)	2014/02/28		105	%
	Method Blank	Weak Acid Dissociable Cyanide (CN-)	2014/02/28	<0.5		mg/kg

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Validation Signature Page

Maxxam Job #: B410248

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Minate Date Berty

Delia Barbul, B.Sc., Chemist

Miritan Assayas 2012-138

Miryam Assayag

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

27-Feb-14.08:10
Alain Lemieux

ample Analysis and Chain of Custody Record
5999 Toll Free: 1-877-4MA-XXAM (462-9926) Page 1 of 3

E-

Analytic	que '		i. Barette, Chicoutimi,	Queueu				www.	.maxx	aman	alytic	s.con	1		0-0	1994									Cont	-		
Invoice Information	15021	The state of the s	ormation (if differ	s from in	voice)	Ord	der I	No.:												Proje	ect /	Site						
Company Name: AEM Meado		mpany	Name:		_	17.424		ion I												100			177. 30	410	3:	12	-01	-
Address: 10200 route de		ldress:_				Qu	Otal	1011	VO											TOJE	,011	.O., <u>s</u>	-,	110				
Preissac, Rouyn-Norande		0													NOs + NOs													
Contact Name: Kevin Buck		ntact N	STATE OF THE STATE		_								1		NO													
Telephone: 819 - 759 - 3555		B one											16 ele. wa	-	10×					200			THM	TOTAL-PC				
Fax: 819 (759) - 3663								MAH	(Coloc)					Others					CN					TOT				
Sampler: Tyre/Tom Too	mżors	mpler:_							Phenols (Co			Po, Znj	asoil"		2	St.	TSS	Total Sulphur (S)	Free CN	Turbidity			INOR.	Tot.)	EPA 8330		_	0
I hereby acknowledge the unders and conditions as listed on the ba	standing a ack of this	nd acce form.	ptance of Max	kam's t	erms		0.8 G Tot.	BTEX			(GC-MS)	Cr. Cu, NI,	ation - 13 ele	Selenium-soil	708	P-Tot	Conductivity	Total Su	Ox-CN			ART. 11	ORG.	COLIF (Tot.)	960		TOTA	NA.
Sample Identification (sampling point)	Sam Wat Soil Typ	er	Sampling (date / time)	To be filtered	Number of samples	PH (Co-Co)	O & G Min.	VOC (EPA 624)	Phenois (GC/MS)	РАН	PCB (Congeners) (GC-MS)	Heavy Metais (Cd, Cr, Cu, NI, Po, Zn)	Metals ICP regulation - 13 ele, soil"	Mercury	20	TKN NAS	piri Cond	Suffde (SHz)	Tot-CN (BOD: 000	RDS RMD	CUM ART. 10	Potable Water:	COLLF (Fee.)	Explosive EPA 8086	Other (specify):		
BH-01 (40-60)	X		21/02/14																								χ	X
BH-02 (0-44)	X		21/02/14																								X	χ
BH-03 (40-60)	X		21/02/14																								χ	X
BH-04 (0-39)	X		21/02/14																								X	X
BH-05 (0-45)	X		22/02/14		i				Ц																		X	X
BH-06 (40-75)	X		22/02/14		1																						X	X
BH-07 (40-60)	X		23/03/14		1														П								X	X
BH-08 (40-60)	X		22/03/14		1														П)	X	X
BH-09 (40-52)	X		22/02/14		1										4												X	Y
BH-10 (0-40)	X		29/09/14		1																						X	X
LEGEND: " Metals 13 elements (Ag. "Metals 16 elements (Al,	As, Ba, Co Sb, Ag, As,	I, Co, Cr, Ba, Cd,	Cu. Sn. Mn. Mo.	Ni, Pb, . Io, Ni, F	Zn), b, Se, I	Va, Zr	n).																					15.3.
Types of Water: G = Groundwater Sur = Surface Applicable Regulations: Chain of Custody		ole LW ent C =	= Liquid Waste Catchment mplete)	Turna Unle	round T ss clea eated a Quebec	ime: 2 rly ide is nor	24 entifi	ied a	e and	ter s	not	les r	ecei	egula ved ct to	at Ma	Dat exxa	m an	alyti	cs w	rill er		enera 3			ion a	it Rec	eption	li.
Relinquished by: Marie-Pier	-Morc	il	Date: 05/06	114	Time: C	ih	30	0	Rec	eived	by:										Re	emar						
Relinquished by:			Date:2014-07						Rec	eived	by:	D	l is	A;	1	Pib	hie	C	MC	.1		8	I C	. こ-	7	es ies		
Number of coolers:			Temperature up				, ,				(_	()	4			7	J				Se	al	-7	ies		
Sample Transport: By Clie	nt 🔲	MAXXAN	M Personnel	Xco	urier (S	pecif	fy):																		50			
KEENVCOCFORMQE - Saint-Laurent - 07/09		WHITE: MA	XXAM ANALYTICS INC			INVOICE				YE	LLOW	RETUR	IN TO C	LIENT	WITH FE	NAL RE	PORT				PINK:	CLIENT						

Page 9 of 11

2014/02/28 20:17

Invoice Information		Repo	ort Info	ormation (if differ	s from i	nvoice)			WW			and America								t.V	etro pose		11000						
Company Name:				Name:		C. Constant			No.										-		851	ct /		_				-	
Address:		15700 7	ess:	10.000.000			Q	uota	ation	No.:			-							Р	roje	ct N	0.:_					_	
W		ONNESSO.	0,200,00													NOs													
Contact Name:		Cont	act N	ame:										1		NO:+		1											
Telephone:		- 60								-				16 ele. water***		NO:		1		I	0			THAM	8				
Fax:		Fax:							MAH	043				100	Others:	2		\neg			T0C			F	TOTAL-PC				
Sampler:		Sam	pler:_							Phenols (Color.)			PB, Zh)	**los-		Ő.		SST	(S) mid	Free CN	Turbidity		Ū	MOH.	ot.)	EPA 8330		9	EA
I hereby acknowledge the unders and conditions as listed on the ba				ptance of Max	xam's	terms		O & G Tot	DIE MEX			(GC-MS)	, Cr, Cu, Ni,	ston - 13 ele	Selenium-soil	Š	P-Tot	Conductivity	Total Sulphur (S)	Ox-CM			ARE. 11	ORG.	COLIF (Tot.)			(うかって
Sample Identification (sampling point)	Soil	Sampl Water Type		Sampling (date / time)	To be filtered	Number of samples	PH (Co-Ca)	0 & G Min.	VOC (EPA 624)	Phenois (GC/NS)	PAH	PCB (Congeners) (GC-MS)	Heavy Metals (Cd, Cr, Cu, Ni, Pb, Zn)	Wetals ICP regulation - 13 elesoil**	Mercury	20	TIKN NBS	pH Cond		TotCN	800s COD	RDS RND	CUM ART. 10	Potable Water. (COLIF (Fec.)	Explosive EPA 8095	Other (specify):	PHO	33
BH-11 (0-40)	χ			29/09/14		1																						X	XX
BH-11 (40-602)	X			23/03/14																							Ť)	(X
BH-12 (0-40)	X			22/02/14																									K X
who was to be a second on	10.0	101	000		\$	0																						0	STONE OF THE PARTY.
BH-13(40-70)	X			22/02/14		1																						X	
BH-14 (70-112)	X			23/03/14																								1	XX
BH-15(40-70)	X			23/02/14																								3	(X
BH-16 (70-100)	X			23/03/14		1																						0	XX
BH-17 (40-70)	X			23/00/10		1																					9	drich Th	XX
BH-17 (140-168)	X		<u> </u>	23/02/14		1																						3	X
LEGEND: Metals 13 elements (Ag, Metals 16 elements (Al,	Sb, Ag	, As, B	a, Cd,	Cu, Sn, Mn, Ma, Cr, Co, Cu, Mn, N	Ni, Pb, Io, Ni, I	Zn), Pb, Se, i	Na, Z	Zn).								,	•												
Types of Water: G = Groundwater Sur = Surface		otable ffluent		= Liquid Waste Catchment	11.1000000	around T				4					-		Dat	-			_						at Rec	ceptio	on:
Applicable Regulations: Chain of Custody			(То со	mplete)	be to	ess clea reated a Quebec	as no	n-po	otabl	e and	will	not	be si	ecei ubje	ved a	the	exxar requi	n and reme	alytic ents u	s wil	il r		3°	(,	0	ř			
Relinquished by:				Date2014-02-		Time:		-		7.00	eived	Annesyte:	0	1	4	1	11	206	his	(2)	mol	Re				-	211		
Relinquished by:				Date:		Time:	, ,		*:	Rec	eived	by:	C	7	7	///		· u p	VIE	01	#			IC	e	-4	ies - y		
Number of coolers:				Temperature up		STANDARY STANDARY			-	Maryor	200 1500	10000	1075		/			_	_	-				-	2 .	1	V	00	

BLUE: INVOICING

YELLOW RETURN TO CLIENT WITH FINAL REPORT

KEENVCOOFORMQE - Saint-Laurent - 07/09

PINK: CLIENT

Maxxar	n	269	0 Ave	tée de Liesse, Ville St- nue Dalton, Sainte-Fo Barette, Chicoutimi,	y, Québe	ec G1P 3		P5	Tele Tele	phone	e: (514 e: (418 e: (418 xxama) 658-5) 543-3	5784 3788	Fax Fax	(418)	658-	6594	Toll	Free	: 1-87	7-4M	A-XXA	M (46	2-992	26)	Pa	ge <u>3</u>	_of	3
nvoice Information		Report	Info	rmation (if differs	from in	nvoice)	0	rder	No.	1)										ŗ	Proie	ect /	Site						
Company Name:	_	Compa	any l	Vame:		_=	-		ation	2													Vo.:_						-0
Address:		Addres	SS:				Q	uote	HOI	140.											TOJE	ou i	10					_	T
**																Ş													
Contact Name:		Contac	et Na	ame:										-		NO:+ NO:								_					
elephone:														16 ele, water***							Ö	1			8				
ax:		Fax:							MAH					19	Others	SON I					TOC			THM	TOTAL-PC				
Sampler:		Sampl							2	Phenots (Color.)			, Znj	100		S.		28	(3)	Free CN	Turbidity			INOR.		EPA 8330		d	0
hereby acknowledge the unders and conditions as listed on the ba	tandir	ng and a	cce	ptance of Maxx	am's t	terms		O&G Tot.	BTEX			I (OC-MS)	d, Cr, Cu, Ni, Pi	ation - 13 ele	Selentum-soil	OS	NHb P-Tot.	Conductivity	Total Suphur (S)	Ox-CN	COD Turb		AFIT. 11		COULF (Tot.)			ATOT	13 12 13
Sample Identification (sampling point)	Soil	Sample Water Type C	ther	Sampling (date / time)	To be filtered		PH (C-s-Cm)	O&GMin.	VOC IEPA 6249	Phenois (GC/MS)	PAH PAH	PCB (Congeners) (GC-MS)	Heavy Metals (Cd, Cr, Cu, Nr, Po, Zn)	Metals ICP regulation - 13 elesoil**	Mercury	20	TION NH	DH Conc	Suffide (SHt)	TetCN	BODs CC	HDS RAND	CUM ART. 10	Potable Water, ORG,	COUIF (Fec.)	Explosive EPA 8055	Other (specify):	5 2	2
34-18 (40-70)	X			33/03/14		1													-								X		γ
34-19 (40-59)	X			23/02/14		i				T																		γ	V
34-20(40-70)	X			23/02/14																								X	v
16-90) IC-H2	X			23/03/14		1				+					=							H					1	X	-
3H-22 (5m-550)	X			23/02/14		1									-			-				_						-	
DH-99 (200-200)	^			اربوں رحم																									(X
LEGEND: " Metals 13 elements (Ag, "" Metals 16 elements (Al, :	As, Ba Sb, Ag	a, Cd, Co , As, Ba,	Cd, C	Cu, Sn, Mn, Mo, Cr, Go, Cu, Mn, N	Ni, Pb, 10, Ni, F	Zn), Pb, Se, I	Na, Z	žn).									•			3 4									
Types of Water: G = Groundwater Sur = Surface Applicable Regulations:		ffluent	C =	= Liquid Waste Catchment mplete)	11000111110	around T ess clea reated a						7			3.5		Da axxa	_	alyti	cs w	rill	Ge		al Co			at Rec	eptio	n:
Chain of Custody		(1)	3 601	inpiete)	be to	reated a Quebec	Drir	n-p	otab g Wa	le ar ter F	nd wi Regul	Il not ation	be s	ubje	ct to	the	requ	irem	ents	und	er		ن	95 [7]		U			
Relinquished by:				Date 01402.	77	Time: (18:	.10		Re	ceive	d by:	V	ريا م	4.	11) hh	ie (37.0	5.11	/	Re	emar	ks:					
Relinquished by:				Date:		Time:	, .	10		Re	ceive	d by		()			0 10 0		7	000			5	To	e.	-4	25		
Number of coolers:				Temperature up	on rec	eption:				, Wast		1000											-	(1	1	'es - y		
Sample Transport: By Clien	nt	MAX	XAN	1 Personnel		ourier (S	bec	if _v).													-			2	ec	11	- Y	CI	

BLUE INVOICING

YELLOW: RETURN TO CLIENT WITH FINAL REPORT

WHITE: MAXXAM ANALYTICS INC

KEENVOOCFORMOE - Saint-Laurent - 07/09

PINK: CLIENT

Your P.O. #: OP-310962-J Your Project #: E14103172-01

Attention: Kevin Buck

Agnico Eagle Ltée-Division Meadowbank Meadowbank Baker Lake, Nunavut, Canada Meadowbank Nunavut, QC CANADA X0C 0A0

Report Date: 2014/03/07 Report #: R1836907 Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B411247 Received: 2014/03/05, 08:10

Sample Matrix: SOIL # Samples Received: 40

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Primary Reference
Weak Acid Dissociable Cyanides*	40	2014/03/06	2014/03/07	STL SOP-00035	MA. 300 - CN 1.2
Total Cyanide*	40	2014/03/05	2014/03/06	STL SOP-00035	MA. 300 - CN 1.2
pH*	4	2014/03/06	2014/03/06	STL SOP-00016	MA.100- pH1.1

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Rita Kurdoghlanian, Project Manager Email: RKurdoghlanian@maxxam.ca Phone# (514) 448-9001 Ext:4272

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 1 of 13 2014/03/07 14:26

^{*} Maxxam is accredited as per the MDDEFP program.

Agnico Eagle Ltée-Division Meadowbank Client Project #: E14103172-01

•

Your P.O. #: OP-310962-J Sampler Initials: TT

CONVENTIONAL PARAMETERS (SOIL)

Maxxam ID					X68074	X68074	X68075	X68076		
Sampling Date					2014/02/22	2014/02/22	2014/02/22	2014/02/23		
	Units	Α	В	С	BH-12 (40-70)	BH-12 (40-70) Lab-Dup	BH-14 (40-70)	BH-15 (70-100)	RDL	QC Batch
							1	1		
% Moisture	%	•	-	-	6.9	6.9	4.4	9.4	N/A	N/A
CONVENTIONALS										
Total Cyanide (CN)	mg/kg	2	50	500	1.4	1.6	<0.5	<0.5	0.5	1277739
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1277819

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID					X68077	X68078	X68079	X68080		
Sampling Date					2014/02/23	2014/02/23	2014/02/23	2014/02/23		
	Units	Α	В	С	BH-16	BH-16	BH-17	BH-17	RDL	QC Batch
					(0-40)	(100-140)	(70-100)	(100-140)		
% Moisture	%	-	-	-	11	8.2	9.9	7.0	N/A	N/A
CONVENTIONALS										
Total Cyanide (CN)	mg/kg	2	50	500	1.9	0.6	<0.5	<0.5	0.5	1277739
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1277819

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID					X68081	X68082	X68083	X68088		
Sampling Date					2014/02/23	2014/02/25	2014/02/25	2014/02/25		
	Units	Α	В	С	BH-18	BH-23	BH-24		RDL	QC Batch
					(70-100)	(450-500)	(400-450)	(500-530)		
% Moisture	%	-	-	-	12	0.8	2.3	1.2	N/A	N/A
CONVENTIONALS										
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	<0.5	<0.5	0.5	1277739
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1277819

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Agnico Eagle Ltée-Division Meadowbank

Client Project #: E14103172-01

Your P.O. #: OP-310962-J Sampler Initials: TT

CONVENTIONAL PARAMETERS (SOIL)

Maxxam ID					X68089	X68090	X68091	X68091		
Sampling Date					2014/02/25	2014/02/25	2014/02/25	2014/02/25		
	Units	Α	В	С	BH-25 (250-300)	BH-25 (400-450)	BH-25 (500-530)	BH-25 (500-530) Lab-Dup	RDL	QC Batch
% Moisture	%	-	-	-	1.9	0.8	0.5	0.5	N/A	N/A
CONVENTIONALS										
рН	рН	-	-	-	9.30	N/A	N/A	N/A	N/A	1277885
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	<0.5	<0.5	0.5	1277739
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1277819

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID					X68092	X68093	X68094	X68095		
Sampling Date					2014/02/27	2014/02/27	2014/02/27	2014/02/27		
	Units	Α	В	С	BH-26	BH-27	BH-28	BH-29	RDL	QC Batch
					(400-450)	(500-550)	(500-550)	(300-350)		
% Moisture	%	-	-	-	0.8	0.2	0.8	1.0	N/A	N/A
CONVENTIONALS										
рН	рН	-	-	-	N/A	N/A	N/A	8.58	N/A	1277885
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	<0.5	<0.5	0.5	1277739
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1277819

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Agnico Eagle Ltée-Division Meadowbank Client Project #: E14103172-01

Your P.O. #: OP-310962-J Sampler Initials: TT

CONVENTIONAL PARAMETERS (SOIL)

Maxxam ID					X68096	X68097		X68098		
Sampling Date					2014/02/27	2014/02/27		2014/02/27		
	Units	Α	В	С	BH-29		QC Batch	BH-30	RDL	QC Batch
					(500-550)	(400-450)		(550-690)		
% Moisture	%	-	-	-	0.3	3.3	N/A	1.0	N/A	N/A
CONVENTIONALS										
рН	рН	-	-	-	N/A	N/A	1277885	9.38	N/A	1277885
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	1277739	<0.5	0.5	1277740
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	1277819	<0.5	0.5	1277816

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID					X68099	X68100	X68101	X68102		
Sampling Date					2014/03/01	2014/03/01	2014/03/01	2014/03/01		
	Units	Α	В	С	BH-33	BH-33	BH-34		RDL	QC Batch
					(300-350)	(400-450)	(300-350)	(500-577)		
% Moisture	%	-	-	-	14	2.7	4.8	5.2	N/A	N/A
CONVENTIONALS										
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	<0.5	<0.5	0.5	1277740
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1277816

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID					X68103	X68104		X68105		
Sampling Date					2014/03/02	2014/03/02		2014/03/02		
	Units	Α	В	С	BH-35	BH-35	RDL		RDL	QC Batch
					(300-350)	(400-450)		(40-70)		
% Moisture	%	-	-	-	3.2	3.4	N/A	9.4	N/A	N/A
CONVENTIONALS										
рН	рН	-	-	-	N/A	9.28	N/A	N/A	N/A	1277885
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	0.5	27	10	1277740
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	0.5	3	1	1277816

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Agnico Eagle Ltée-Division Meadowbank

Client Project #: E14103172-01

Your P.O. #: OP-310962-J Sampler Initials: TT

CONVENTIONAL PARAMETERS (SOIL)

Maxxam ID					X68106	X68107		X68114	X68114		
Sampling Date					2014/03/02	2014/03/02		2014/03/02	2014/03/02		
	Units	Α	В	С	BH-36 (70-100)	BH-36 (100-129)	RDL	BH-37 (40-70)	BH-37 (40-70) Lab-Dup	RDL	QC Batch
% Moisture	%	_	_	_	6.3	7.4	N/A	13	13	N/A	N/A
CONVENTIONALS	,,,				0.0		,, .				1,771
Total Cyanide (CN)	mg/kg	2	50	500	1.7	0.9	0.5	1	1	1	1277740
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	0.5	1.2	1.1	0.5	1277816

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID					X68115		X68116		X68117		
Sampling Date					2014/03/02		2014/03/02		2014/03/02		
	Units	Α	В	С	BH-37 (70-109)	RDL	BH-38 (0-29)	RDL	BH-39 (300-350)	RDL	QC Batch
											1
% Moisture	%	-	-	-	6.0	N/A	30	N/A	3.6	N/A	N/A
CONVENTIONALS											
Total Cyanide (CN)	mg/kg	2	50	500	0.9	0.5	51	10	<0.5	0.5	1277740
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	0.9	0.5	<0.5	0.5	<0.5	0.5	1277816

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID					X68118	X68119	X68119	X68120		
Sampling Date					2014/03/02	2014/03/02	2014/03/02	2014/03/02		
	Units	Α	В	С	BH-39	BH-40	BH-40		RDL	QC Batch
					(400-450)	(400-450)	(400-450)	(550-645)		
							Lab-Dup			
% Moisture	%	-	-	-	3.0	12	12	4.5	N/A	N/A
CONVENTIONALS										
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	<0.5	<0.5	0.5	1277740
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1277816

N/A = Not Applicable RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Agnico Eagle Ltée-Division Meadowbank

Client Project #: E14103172-01

Your P.O. #: OP-310962-J Sampler Initials: TT

CONVENTIONAL PARAMETERS (SOIL)

Maxxam ID					X68121	X68122	X68123		
Sampling Date					2014/03/02	2014/03/02	2014/03/02		
	Units	Α	В	С	BH-41 (300-350)	BH-41 (400-450)	BH-42 (300-350)	RDL	QC Batch
% Moisture	%	-	-	-	7.2	0.8	1.1	N/A	N/A
CONVENTIONALS									
Total Cyanide (CN)	mg/kg	2	50	500	<0.5	<0.5	<0.5	0.5	1277740
Weak Acid Dissociable Cyanide (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	0.5	1277816

N/A = Not Applicable RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Ligne sans frais: 1-877-4MAXXAM (462-9926)

Agnico Eagle Ltée-Division Meadowbank

Client Project #: E14103172-01

Your P.O. #: OP-310962-J Sampler Initials: TT

GENERAL COMMENTS

Condition of sample(s) upon receipt: GOOD

All results are calculated on a dry weight basis except where not applicable.

A,B,C: Criteria following appendix 2 of the "Soil Protection and Contaminated Sites Rehabilitation Policy" entitled "Generic criteria for soils and groundwater". For all metals analyses in soil, the criterion A refers to "Background Level of St. Lawrence Lowlands Sector".

For groundwaters:

The A and B criteria follow the appendix 2 of the "Soil Protection and Contaminated Sites Rehabilitation Policy" entitled "Generic criteria for soils and groundwater". The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water or Infiltration into Sewers".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

CONVENTIONAL PARAMETERS (SOIL)

Please note that the results have not been corrected for QC recoveries nor for the method blank results. Reported detection limits are multiplied by dilution factors used for sample analysis.

Results relate only to the items tested.

Agnico Eagle Ltée-Division Meadowbank

Attention: Kevin Buck

Client Project #: E14103172-01

P.O. #: OP-310962-J Site Location:

Quality Assurance Report Maxxam Job Number: B411247

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units
1277739 CC6	QC Standard	Total Cyanide (CN)	2014/03/06		109	%
	Spiked Blank	Total Cyanide (CN)	2014/03/06		104	%
	Method Blank	Total Cyanide (CN)	2014/03/06	< 0.5		mg/kg
1277740 DB2	QC Standard	Total Cyanide (CN)	2014/03/06		117	%
	Spiked Blank	Total Cyanide (CN)	2014/03/06		103	%
	Method Blank	Total Cyanide (CN)	2014/03/06	< 0.5		mg/kg
1277816 DB2	Spiked Blank	Weak Acid Dissociable Cyanide (CN-)	2014/03/07		108	%
	Method Blank	Weak Acid Dissociable Cyanide (CN-)	2014/03/07	< 0.5		mg/kg
1277819 CC6	Spiked Blank	Weak Acid Dissociable Cyanide (CN-)	2014/03/07		106	%
	Method Blank	Weak Acid Dissociable Cyanide (CN-)	2014/03/07	< 0.5		mg/kg
1277885 KV1	QC Standard	pH	2014/03/06		100	%
	Spiked Blank	pH	2014/03/06		102	%

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Validation Signature Page

Maxxam Job #: B411247

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Delia Barbul, B.Sc., Chemist

Miryam Assayag

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

5-Mar-14 08:10 Alain Lemieux B411247 MTL-0024 MF5

X889 Montée de Liesse 2690 Avenue Dalton,

Sample Analysis and Chain of Custody Record

Fax: (514) 448-9199 Toll Free: 1-877-4MA-XXAM (462-9926)

Telephone: (418) 543-3788 Fax: (418) 543-8994

Invoice Information		The second second second	formation (if differ		volce)	0	rder	No.:												Proje	ect /	Site							
Company Name: AEM Mes	dow	6 Compan	y Name:			0	ıota	tion	No.:										1	Proje	ect N	lo ·	FI	410	31	72	0) [
Address: 10200 rowle de		Address			_	(33)			+					1	П					10,0				11.				+	
Preissac, Rouga-Noran	de	JOY 10	0												NO.														
Contact Name: Kevin Buck		Contact	Name:			4							E Comment		NO2+														
Telephone: 819, 759, 3555	206	8731 Chor	e:										16 ele, water***	1	NG.					DOC			THM	2					
Fax: 819, 759, 3663		Fax:						MAH	000)				12	Others			П			2			=	TOTAL-PC			7		
Sampler: Tycel /Tom		Sampler							Phenois (Color.)			Pb, Zn)	-Soil		Š.		TS	S) and	Free CN	Turbidity			WOR.	्र	EPA 8330	.	410	4	
I hereby acknowledge the underst and conditions as listed on the bac	andir ck of	ng and acc this form.	ceptance of Max	xam's to	erms		0 & G Tet	BTEX			PCB (Congeners) (GC-MS)	leavy Wetals (Cd, Cr, Cu, NI, Pb, Zn)	Hetals ICP regulation - 13 ele-soil**	Selenium-soil	30,	P-Tot	Conductivity	Total Sulphur (S)	OxCN			ART, 11	ORG.	COUF (Tot)			10	4	
Sample Identification	,	Sample	Sampling	To be	Number	F	.si	A 624)	ols (GC/MS)		ngeners	etals (Co	P regul		ਨ	墨	Cond	裏		000	RMD	3T. 10	Vater. ((30)	EPA 8	ecity	4	= 4	
(sampling point)	Soil	Water Type Oth	(date / time)	filtered	of samples	PH (C»-C»)	O & G Min.	VOC (EPA 624)	Phenois	PAH	PCB [Co	Heavy M	Netas C	Mercury		TKN	품	Suffide (SHs)	Tot-CN	BODs	RDS	CUM ART. 10	Potable Water.	COLIF (Fec.)	Explosive EPA 8095	Other (specify):	J.	3	4
BH-12 (40-70)	X		Feb 22/19		1																						K)	K	1
BH-14 (40-70)			Feb 22/14		-1																						XX	2	1
BH-15 (70-100)			Feb 23/14		1																						x)	0	
BH-16 (0-40)					1															-								c	
BH-16 (100-140)					1																							0	
BH-17(70-100)					1																						X	•	
BH-17 (100-140)					1																						XX	0	
BH-18 (70-100)			V		1																						k x	0	
134-23 (450-500)			Feb 25/12	1	1																						XX		
BH-24 (400-450)	V		1		1																					٠,		5	
LEGEND: ** Metals 13 elements (Ag., / *** Metals 16 elements (Al., S	As, Ba b, Ag	As, Ba, Co	r, Cu, Sn, Mn, Mo, , Cr, Co, Cu, Mn, N	Ni, Pb, Z Io, Ni, P	n), b, Se, N	la, Z	n).								_														
Types of Water: G = Groundwater Sur = Surface			V = Liquid Waste = Catchment	Turnar	ound Ti	me: [X2	4h	48	sh [72	h [Re	egula	r [Da	e:				Ge	nera	l Co	ndit	on a	t Re	ceptio	on:	1
Applicable Regulations:			omplete)	Unles be tre	s clear	ly id	entif	ied a	ll wa	ter s	amp	les re	eceiv	ved a	at Ma	axxa	m an	alyti	cs w	ill									
Chain of Custody				the Q	uebec	Drin	king	Wate	er Re	gula	tion.					oqu		JIII.O	unu	"									
Relinquished by Tyre/ Hemsley	Tyr	Il Men	Date: Mw 2	1/4	īme: /	80	7		Rece	eived	by:										Re	mark	(S:	TC	E-	46	- 5		
Relinquished by:	/		Date:		īme:	8			Rece	eived	by:		1										<	-11	1-	1.0			
Number of coolers: 2		_	Temperature up	oon rece	ption:		0	+	0	*	0	-/	/	0	•	1	al.	0	-				10	-M	4-	20			
Sample Transport: By Client		MAXXA	M Personnel	X Cou	rier (S	peci	fy):					1																	

KEENVCOCFORMQE - Saint-Laurent - 07/09

Page 10 of 13 Music Plana Millio France

2014/03/07 14:26

Sample Analysis and Chain of Custody Record Telephone: (514) 448-9001 Fax: (514) 448-9199 Toll Free: 1-877-4MA-XXAM (462-9926) 889 Montée de Liesse, Ville St-Laurent, Québec H4T 1P5 2690 Avenue Dalton, Sainte-Foy, Québec G1P 3S4 Telephone: (418) 658-5784 Fax: (418) 658-6594 Telephone: (418) 543-3788 Fax: (418) 543-8994 737 boul, Barette, Chicoutimi, Québec G7J 4C4 www.maxxamanalytics.com Report Information (if differs from invoice) Invoice Information Project / Site: Order No.: Company Name: Project No.: E14103172-0 Company Name: Quotation No.: Address: Contact Name: Contact Name: Telephone: Telephone: Fax: MAH Sampler: I hereby acknowledge the understanding and acceptance of Maxxam's terms and conditions as listed on the back of this form. Sample Sampling Sample Identification To be of filtered (date / time) (sampling point) Soil Type Other 13H-24 (500-530) Feb 25/14 BH-25 (250-300) BH-25 (400-450) BH-25 (500-550) Feb 27/14 13/4-26 (400-450) BH-27 (500-550) BH-2B (500-550) BH-29 (300-350) 134-29 (500-550) General Condition at Reception: Types of Water: G = Groundwater P = Potable LW = Liquid Waste Turnaround Time: 24h 48h 72h Regular Date: E = Effluent C = Catchment Unless clearly identified all water samples received at Maxxam analytics will be treated as non-potable and will not be subject to the requirements under the Quebec Drinking Water Regulation. (To complete) Applicable Regulations: Chain of Custody Remarks: Received by: TEE- YES Received by: Time: Relinguished by: SEXL- NO Temperature upon reception: Number of coolers: Courier (Specify): Sample Transport: By Client MAXXAM Personnel

> Page 11 of 13 Marco France Mario FRASER 2014/03/05

KEENVCOCFORMOE - Saint-Laurent - 07/09

BLUE: INVOICING

2014/03/07 14:26

Invoice Information		Repo	ort Info	rmation (if differ	s from i	nvoice)					aman	alytic	s.com		-		_	-	_		-	_	_	_				
Company Name:		54		Vame:			O	rder	No.:	-	-	-	_	-		-				Proje				1.	- 1			
Address:		10 1714	ess:				Qı	uota	ation	No.:							_	_		Proje	ct N	0.:_	E	10	11	03	17	2.
a co o Plan	, /		0001								9																	
Contact Name:		Cont	act Na	ıme:			d									NO1+ NO2												
Telephone:											İ			16 ele, water"														
Fax:		Fax:												15 e	Others	2				_ T0C			THE C	TOTAL-PC	П	-	1	
Sampler:		10 00 00 00 00 00 00 00 00 00 00 00 00 0	pler:					П	I MAH	Phenols (Color.)			(52)	*-lic		NO.] SS	ur (S)	Free CH			П	INOR.		EPA 6330	1	4 4	
hereby acknowledge the unders and conditions as listed on the ba	tandir	ng and	acce	otance of Maxx	kam's t	erms		O & G Tot.	BTEX			(GC-MS)	Cr, Cu, Ni, Ph	ion - 13 eleve	Selenium-soil		ctherty 🗌	Total Sulphur (S)	□ NO-7	COB Turbidity	\Box	ART.11		COLIF (Tot)		1 137	2	3
Sample Identification (sampling point)	Soil	Sample Water Type		Sampling (date / time)	To be filtered	Number of samples	PH (Cx-Cx)	O & G Min.	VOC (EPA 624)	Phenols (GC/MS)	PAH	PCB (Congeners) (GC-MS)	Heavy Metals (Cd, Cr, Cu, Ni, Pb, Zn)	Metals ICP regulation - 13 elesoil**			pH Conductivity	Sulfide (SH)	Tel-CN OxCN	BODs COB	RDS RMD	CUM ART, 10	Potable Water. ORG.	COLIF (Fec.)	Explosive EPA 8095	Other (specify):	1	1
3H-30(550-690)	X			Feb 27/14		1															-			Ü		>	()	ر -
34-33 (300-350)				Mar 1/14		1							1									\exists	П)	cx	-
H-33 (400-450)						1										T						П		T		À	-	-
3H-34 (300-350)						1														П		П			T	7		0
BH-34 (500-577)				V		1																				λ	- 1	
3 H-35 (300-350)				May 2/14	,	1																		T	7	$\hat{\lambda}$		-
34-35 (400-450)				1		1																П		T	1	X	-	_
34-36 (40-70)	1					1														П				T	+	X		-
34-36 (70-100)						(e									1				7	П	1	T	7	7		X	_	
314-36 (100-129)	V			V		1							1							П	1	7	\forall	_	+	k	-	_
LEGEND: " Metals 13 elements (Ag, Metals 16 elements (Al,	As, Ba	, Cd, C	Co, Cr, C	Cu, Sn, Mn, Mo, I	Ni, Pb, I	Zn),	Ja 71	n)					-				- //-	-	1					_		-	11	
Types of Water: G = Groundwater Sur = Surface	P=R	otable	LW:	= Liquid Waste Catchment		round Ti			24h [48	h [72	h [Reg	gular		ate:	_			Ge	nera	l Cor	nditi	on at	Rece	ptio	n:
Applicable Regulations:				nplete)	Unie	ss clear eated a	ly ide	entif	fied a	ll wa	ter sa	ampl	es re	ceiv	ed at	Maxx	am a	nalyti	cs w	ill								
Chain of Custody				107. 109	the C	luebec	Drin	king	Wate	er Re	gulat	ion.	o su	bjec	10 11	16 160	unen	ients	una	31								
Relinquished by Tyrel Hemsley	Type	lpe	rsh	Date: May 2	1/4	Time:	180	17	7	Rece	ived I	by:									Rei				- 1-	7		
Relinquished by:			_ 1	Date:		Time:	3				ived I	by:	1								Remarks:							
Number of coolers:				Temperature up			-	30		3 -	0		1	0	**	1 .	6	. "			THE THE PROPERTY OF THE PROPER							

2014/03/07 14:26

Page 12 of 13

Plan to flascy Haller France 2019/03/05 08:10

Maxxar	~				esse, Ville St				1P5		Ditt.	- 8	4) 448-) 448-	9199							ain 62-992			ge_			
Analytic	ue				on, Sainte-ri Chicoutimi,	MINISTER.		54		Tele	ephon	ie: (41	8) 658- 8) 543- analyti	3788	Fax	COLUMN TO A	() 658- () 543-										E-				
Invoice Information .		Rep	ort Infe	ormatic	on (if differ	s from i	nvoice)	0	rder	No).:											Proje	ect /	Site							7
Company Name:	_	Com	npany	Name:							n No														-	14	11,)3	17	2 -1	0
Address:		Add	ress:_	A				- 4	T	TODI	TNO	Ŧ	T	T	T-							roje	ect iv	10.:_	1		JU	1)	1/0		4
Supple (1) Gontact Name:	-	Con	tact N	ame.			-	Ą									NO: + NO:														
Telephone:		0-200	phone	TOTAL SEA											16 ele, water***										Q	D ₂					
Fax:		Fax:	Most Calenda							HALL					16 6	Others	100		П	П		_ T00			TRIB	TOTAL-PC			7	0	
Sampler:		10000000							In	1	Dhande (Color)	2000		15,71	1,50	12	NO:		TSS	ur (S)	Free CN	Turbidity			MOR.	Õ	EPA 8330		7	4	
I hereby acknowledge the unders and conditions as listed on the ba		ing and	d acce			kam's	terms		0.4 G Tot	Tare	îE		(CC-MS)	I, Cr, Cu, Ni, Pi	ation - 13 ele	Selenium-sod	30.	P-Tot	Conductivity	Total Sulphur (S)	OxCM	COD Turk		ART. 11		COLIF (Tot.)		5	10	3	
Sample Identification (sampling point)	Soil	Sampl Water Type			mpling e / time)	To be filtered	Number of samples	PH (Cre-Co)	0 & G Min.	UNIT ITEM SOLD	VOC (Era 524) L	riterios (durino)	PCB (Congeners) (GC-MS)	Heary Metals (Cd, Cr, Cu, Ni, Pb, Zn)	Metals ICP regulation - 13 elesoal"	Mercury :	F D GI	TKN NHH	pH Condi	Suffide (SH.)	Tot-CN C	BODs 00	RDS RMD	CUM ART. 10	Potable Water: ORG.	COLIF (Fec.)	Explosive EPA 8095	Other (specify):	CN	CN	HO
BH-37 (40-70)	X			Ma	2/14																								X	X	
BH-37 (70-109)		N.			1																									K	
B4-38 (0-29)					No.		1																					1	7	X	
BH-39 (300-350)							1						- trac																X :	X	
BH-39 (400-450)							1																				П		x.	V	7
BH-40 (400-450)							i i		Г			T																	x	7	1
BH-40 (550-645)							1				T	Т																	V	x	1
BH-41 (300-350)							T				T	-	T																X	-	7
BH-41 (400-450)							i	Г	Г			T																	k)	V	
13/4-42 (300-350	V			1	/		i																						X	x	
LEGEND: " Metals 13 elements (Ag. " Metals 16 elements (Al.	As, E	la, Cd, C	Co, Cr,	Cu, Sn,	, Mn, Mo,	Ni, Pb,	Zn),	la 7	(n)						-														/	1	-
Types of Water: G = Groundwater Sur = Surface	P= E=	Potable Effluent	LW	= Liqui	id Waste	Turna	around T	ime:	X														Ge	enera	al Co	ndit	ion a	at Re	cepti	on:	1
Applicable Regulations:			(То со	mplete) 1		be tr	ss clear eated a Quebec	s no	n-Do	otab	ole ar	nd w	III not	be s	rece subje	ived ect to	at M	requ	m an irem	ents	cs w und	er									
Chain of Custody	_	, ,	1.	/Date	- 11 -	-	1-17/			J WE		-	ed by:						-			-	Re	mar	ks:	_	_	_			_
Relinquished by: Tyrul Heasty Relinquished by:	- Ty	med	Vus	Date	19012	1/4	Time: /	80	/		1.100	Delig Name	003100	_	201							-				CE.	-4	cs			
Heilinquished by:		_		Date	Valinda viida viida		rime.	-	14	4	A '		ed by:	_/	6	_	- /	U	40	1		_					- 4				

Marcifrana MARCI FRASA 2014/03/05 08:10

YELLOW: RETURN TO CLIENT WITH FINAL REPORT

2014/03/07 14:26

PINK: CLIENT

MAXXAM Personnel

Sample Transport: By Client

KEENVCOCFORMOE - Saint-Laurent - 07/09

Votre # de commande: OP-310962-J Votre # du projet: E14103172-01

Attention: Kevin Buck

Agnico Eagle Ltée-Division Meadowbank Meadowbank Baker Lake, Nunavut, Canada Meadowbank Nunavut, QC CANADA X0C 0A0

Date du rapport: 2014/03/12 # Rapport: R1838755

Version: 1

CERTIFICAT D'ANALYSES

DE DOSSIER MAXXAM: B412113

Reçu: 2014/03/10, 08:00

Matrice: SOL

Nombre d'échantillons reçus: 28

		Date de l'	Date		
Analyses	Quantité	extraction	Analysé	Méthode de laboratoire	Référence Primaire
Cyanures disponibles*	28	2014/03/10	2014/03/12	STL SOP-00035	MA. 300 - CN 1.2
Cyanures Totaux*	28	2014/03/10	2014/03/11	STL SOP-00035	MA. 300 - CN 1.2

Notez: Les données brutes sont utilisées pour le calcul du RPD (% d'écart relatif). L'arrondissement des résultats finaux peut expliquer la variation apparente.

clé de cryptage

Veuillez adresser toute question concernant ce certificat d'analyse à votre chargé(e) de projets

Rita Kurdoghlanian, Chargée de projets Email: RKurdoghlanian@maxxam.ca Phone# (514) 448-9001 Ext:4272

Ce rapport a été produit et distribué en utilisant une procédure automatisée sécuritaire.

Maxxam a mis en place des procédures qui protègent contre l'utilisation non autorisée de la signature électronique et emploie les «signataires» requis, conformément à la section 5.10.2 de la norme ISO/CEI 17025:2005(E). Veuillez vous référer à la page des signatures de validation pour obtenir les détails des validations pour chaque division.

Page 1 de 10 2014/03/12 15:39

^{*} Maxxam détient l'accréditation pour cette analyse selon le programme du MDDEFP.

Agnico Eagle Ltée-Division Meadowbank

Votre # du projet: E14103172-01

Votre # de commande: OP-310962-J

PARAMÈTRES CONVENTIONNELS (SOL)

Identification Maxxam					X71668	X71669	X71670	X71671	X71671		
Date d'échantillonnage					2014/03/03	2014/03/03	2014/03/03	2014/03/03	2014/03/03		
	UNITÉS	Α	В	С	BH-43	BH-43	BH-43	BH-44	BH-44	LDR	Lot CQ
					(0-40)	(70-100)	(100-121)	(40-70)	(40-70)		
					` `	, ,	` '	, i	Dup.		
									de Lab.		1
% Humidité	%	-	-	-	41	6.9	9.9	9.9	9.9	N/A	N/A
CONVENTIONNELS											
Cyanures Totaux	mg/kg	2	50	500	<0.5	<0.5	<0.5	0.6	0.6	0.5	1279232
Cyanures disponibles (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	1279273

N/A = Non Applicable LDR = Limite de détection rapportée Lot CQ = Lot Contrôle Qualité

Identification Maxxam					X71672	X71673	X71674	X71675		
Date d'échantillonnage					2014/03/03	2014/03/03	2014/03/03	2014/03/03		
	UNITÉS	Α	В	С	BH-44	BH-45	BH-46	BH-46	LDR	Lot CQ
					(70-94)	(40-52)	(40-70)	(100-139)		
% Humidité	%	-	-	-	6.4	16	7.6	5.6	N/A	N/A
CONVENTIONNELS										
Cyanures Totaux	mg/kg	2	50	500	<0.5	<0.5	<0.5	<0.5	0.5	1279232
Cyanures disponibles (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	0.5	1279273

N/A = Non Applicable LDR = Limite de détection rapportée Lot CQ = Lot Contrôle Qualité

Identification Maxxam					X71676		X71677	X71678	X71679		
Date d'échantillonnage					2014/03/03		2014/03/03	2014/03/03	2014/03/03		
	UNITÉS	Α	В	С	BH-47	LDR	BH-48	BH-48	BH-49	LDR	Lot CQ
					(0-41)		(40-70)	(100-140)	(40-70)		
% Humidité	%	-	-	-	19	N/A	9.4	7.3	6.0	N/A	N/A
CONVENTIONNELS											
Cyanures Totaux	mg/kg	2	50	500	4	1	<0.5	<0.5	<0.5	0.5	1279232
Cyanures disponibles (CN-)	mg/kg	2	10	100	<0.5	0.5	<0.5	<0.5	<0.5	0.5	1279273

N/A = Non Applicable LDR = Limite de détection rapportée Lot CQ = Lot Contrôle Qualité

Agnico Eagle Ltée-Division Meadowbank

Votre # du projet: E14103172-01

Votre # de commande: OP-310962-J

PARAMÈTRES CONVENTIONNELS (SOL)

Identification Maxxam					X71680	X71681	X71682	X71683	X71683		
Date d'échantillonnage					2014/03/03	2014/03/03	2014/03/03	2014/03/03	2014/03/03		
	UNITÉS	Α	В	С	BH-49 (70-100)	BH-50 (0-40)	BH-50 (70-100)	BH-50 (100-133)	BH-50 (100-133) Dup. de Lab.	LDR	Lot CQ
			1		_	1		_	1		
% Humidité	%	-	-	-	5.5	19	7.7	6.3	6.3	N/A	N/A
CONVENTIONNELS											
Cyanures Totaux	mg/kg	2	50	500	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	1279232
Cyanures disponibles (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	1279273

N/A = Non Applicable

LDR = Limite de détection rapportée Lot CQ = Lot Contrôle Qualité

Identification Maxxam					X71684	X71685	X71686	X71687	X71688		
Date d'échantillonnage					2014/03/03	2014/03/03	2014/03/03	2014/03/03	2014/03/04		
	UNITÉS	Α	В	С	BH-51	BH-51	BH-51	BH-52	MW-01	LDR	Lot CQ
					(0-40)	(70-100)	(100-133)	(300-350)	(400-450)		
% Humidité	%	-	-	-	22	9.0	4.4	0.3	2.2	N/A	N/A
CONVENTIONNELS											
Cyanures Totaux	mg/kg	2	50	500	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	1279232
Cyanures disponibles (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	1279273

N/A = Non Applicable LDR = Limite de détection rapportée Lot CQ = Lot Contrôle Qualité

Identification Maxxam					X71689	X71690	X71691	X71692	X71693		
Date d'échantillonnage					2014/03/04	2014/03/05	2014/03/05	2014/03/05	2014/03/05		
	UNITÉS	Α	В	С	MW-03	MW-04	MW-05	MW-06	MW-07	LDR	Lot CQ
					(400-450)	(70-91)	(70-100)	(70-122)	(40-70)		
% Humidité	%	-	-	-	2.4	7.6	8.4	8.0	16	N/A	N/A
CONVENTIONNELS											
Cyanures Totaux	mg/kg	2	50	500	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	1279232
Cyanures disponibles (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	1279273

N/A = Non Applicable

LDR = Limite de détection rapportée

Lot CQ = Lot Contrôle Qualité

Agnico Eagle Ltée-Division Meadowbank

Votre # du projet: E14103172-01

Votre # de commande: OP-310962-J

PARAMÈTRES CONVENTIONNELS (SOL)

Identification Maxxam					X71694	X71695	X71695		
Date d'échantillonnage					2014/03/05	2014/03/05	2014/03/05		
	UNITÉS	Α	В	С	MW-08 (40-70)	MW-08 (70-100)	MW-08 (70-100) Dup. de Lab.	LDR	Lot CQ
							•		
% Humidité	%	-	-	-	9.1	6.2	6.2	N/A	N/A
CONVENTIONNELS									
Cyanures Totaux	mg/kg	2	50	500	<0.5	<0.5	<0.5	0.5	1279232
Cyanures disponibles (CN-)	mg/kg	2	10	100	<0.5	<0.5	<0.5	0.5	1279273

N/A = Non Applicable

LDR = Limite de détection rapportée

Lot CQ = Lot Contrôle Qualité

Agnico Eagle Ltée-Division Meadowbank

Votre # du projet: E14103172-01

Votre # de commande: OP-310962-J

REMARQUES GÉNÉRALES

État des échantillons à l'arrivée: BON

Tous les résultats sont calculés sur une base sèche excepté lorsque non-applicable.

A,B,C: Ces critères proviennent de l'Annexe 2 de la « Politique de protection des sols et de réhabilitation des terrains contaminés ». Pour les analyses de métaux(et métalloides) dans les sols, le critère A désigne la « Teneur de fond Secteur Basses-Terres du Saint-Laurent ». A,B-eau souterraine: A=Critère pour fin de consommation; B=Critère pour la résurgence dans les eaux de surface ou infiltration dans les égouts. Ces références ne sont rapportées qu'à titre indicatif et ne doivent être interprétées dans aucun autre contexte.

- = Ce composé ne fait pas parti de la réglementation.

PARAMÈTRES CONVENTIONNELS (SOL)

Veuillez noter que les résultats n'ont pas été corrigés ni pour la récupération des échantillons de contrôle qualité, ni pour le blanc de méthode. Les limites de détections indiquées sont multipliées par les facteurs de dilution utilisés pour l'analyse des échantillons.

Les résultats ne se rapportent qu'aux échantillons soumis pour analyse

Agnico Eagle Ltée-Division Meadowbank Attention: Kevin Buck Votre # du projet: E14103172-01

P.O. #: OP-310962-J Adresse du site:

Rapport Assurance Qualité

Dossier Maxxam: B412113

Lot			Date			
Lot			Analysé			
Num Init	Type CQ	Groupe	aaaa/mm/jj	Valeur	Réc	UNITÉS
1279232 DB2	MRC	Cyanures Totaux	2014/03/11		96	%
	Blanc fortifié	Cyanures Totaux	2014/03/11		109	%
	Blanc de méthode	Cyanures Totaux	2014/03/11	< 0.5		mg/kg
1279273 CC6	Blanc fortifié	Cyanures disponibles (CN-)	2014/03/12		109	%
	Blanc de méthode	Cyanures disponibles (CN-)	2014/03/12	<0.5		mg/kg

MRC: Un échantillon de concentration connue préparé dans des conditions rigoureuses par un organisme externe. Utilisé pour vérifier la justesse de la méthode.

Blanc fortifié: Un blanc, d'une matrice exempte de contaminants, auquel a été ajouté une quantité connue d'analyte provenant généralement d'une deuxième source. Utilisé pour évaluer la précision de la méthode.

Blanc de méthode: Une partie aliquote de matrice pure soumise au même processus analytique que les échantillons, du prétraitement au dosage. Sert à évaluer toutes contaminations du laboratoire.

Réc = Récupération

Page des signatures de validation

Dossier Maxxam: B412113			

Les résultats analytiques ainsi que les données de contrôle-qualité contenus dans ce rapport furent vérifiés et validés par les personnes suivantes:

Delia Barbul, B.Sc., Chimiste

Maxxam a mis en place des procédures qui protègent contre l'utilisation non autorisée de la signature électronique et emploie les «signataires» requis, conformément à la section 5.10.2 de la norme ISO/CEI 17025:2005(E). Veuillez vous référer à la page des signatures de validation pour obtenir les détails des validations pour chaque division.

889 Montée de Liesse, Ville St-Laurent, Québec H4T 18 2690 Avenue Dalton, Sainte-Foy, Québec G1P 3S4 737 boul. Barette, Chicoutimi, Québec G7J 4C4

1	0-Mar-14 08:00
Alain Le	
B4121	
ICB	MTL-0084

lysis and Chain of Custody Record: 1-877-4MA-XXAM (682-9926) Page _____ of _____

= 111			
-			

0/		-												_								_		_		_	_		_	_
Invoice Information					if differs	from inv	voice)	Or	der l	No.:											P	roje	ct/	Site:	:					
Company Name: AEM Men	dow	bead	t pany	Name:				O	intat	ion I	No :										P	roje	ct N	0.	E	14	10	3/7	2	-01
Address: 10200 roule de		Add	ress:_					-	10141	1011	10			П				T	Т	T		10,0							T	T
Preisse Rougn-No	ron	45	OY IC	0													NO2 + NO2						Ì							
Contact Name: Kevin Bu															ter".		NO													
Telephone: 819, 759, 3555	26	836	phone:												16 ele. water		NO.					201			THM	TOTAL-PC		1		
Fax: 819, 759, 3663		Fax:						1		MAH	loc)				n	Others					- XS	_				TOT [~ 1	q
Sampler: Type / Tom/M	lack	√ San	pler:_								Phenols (Color.)			Pb, Znj	1000		NO ₂	P-Tot	135	(S) July	Free CN	Turbidity		ART. 11	INOR.	Tot.)	EPA 8330			4
I hereby acknowledge the unders and conditions as listed on the ba	tandi ick of	ng and this fo	d acce orm.	ptance	of Maxx	am's te	erms		O & G Tot.	BIEK			(GC-WS)	d, Cr, Cu, NS,	lation - 13 el	Selenium-soil	SS C	MH6 P-1	Canductivity	Total Sulphur (S)	OxCN	COD 7		ABIT.	ORG.	COLIF (Tot.)	9008	F	0.	ک
Sample Identification (sampling point)	Soil	Samp Water Type		19000042.55	pling / time)	To be filtered	Number of samples	PH (Cu-Cz)	O & G Min.	VOC (EPA 624)	Phenols (GC/MS)	РАН	PCB (Congeners) (GC-MS)	Heary Metals (Cd, Cr, Cu, Ni, Pb, Zn)	Metals (CP regulation - 13 elesoil**	Mercury	r al	TKN NH	pH Com	Sulfide (SHs)	Tot-CN	BODs C	RDS RMD	CUM ART. 10	Potable Water	COLIF (Fec.)	Explosive EPA 8095	Other (specify):	3	3
134-43 (0-40)	X		-	Mar	3/14		-		1100																			>	()	k
BH-43 (70-100)		-			1		1		×																			>		6
BH-43 (100-121)							-																					>	0)	0
BH-44 (40-70)							1																						2	0
BH-44 (70-94)							1																					>	0 1	c
BH-45 (40-52)							1)	()	0
BH-46 (40-70)							1									-												>	0	E
BH-46 (100-139)							1			à.																		7	2	de
BH-47 (0-41)					1		1			5)	e)	k
BH-48 (40-70) LEGEND: "Metals 13 elements (Ag, "Metals 16 elements (Al,	As, E	Ba, Cd,	Co, Cr,	Cu, Sn,	Mn, Mo,	Ni, Pb, 2	Zn),	Na 7	70)																			>	cx	C
Types of Water: G = Groundwater Sur = Surface	P=		e LW		d Waste	Turna	round T	ime:	B	100			7:			egula		Da	-				Ge	ener				at Rec	epti	ion:
Applicable Regulations:				mplete)		be tre	ss clea eated a luebec	is no	n-po	otabl	e an	d will	not	be s	ecei ubje	ved o	at Ma	axxa requ	m an irem	alyti ents	und	/ill er		sei		1	N			
Chain of Custody	-		,	4		-				vvat			_		_	-					-	_	_	emai	_	-	(V	, and	-	
Relinquished by Tyrel Hansly	TI	M	Vers	Date:	Mar 5	1/4	Time: /	0		^		eive	-	_		. 1	1.	0	0/	100		0								
Relinquished by:	_			Date.	6441	05/10	2642	WS	: pl	1	Rec	ceive	by:	A	I A	UN	#	1	KIR.	676	H									
Number of coolers: 2		_		Temp	erature up	pon rece	eption:			2		2	2		1	1	1	4	1	_										
Sample Transport: By Clie	nt	\square M	IAXXAI	M Perso	nnel	Co	urier (S	Spec	ify):				Source					-Storow	724						_					
									Acres 1			11											California Control	-2						

Sample Analysis and Chain of Custody Record 889 Montée de Liesse, Ville St-Laurent, Québec H4T 1P5 Telephone: (514) 448-9001 Fax: (514) 448-9199 Toll Free: 1-877-4MA-XXAM (462-9926) 2690 Avenue Dalton, Sainte-Foy, Québec G1P 3S4 Telephone: (418) 658-5784 Fax: (418) 658-6594 737 boul. Barette, Chicoutimi, Québec G7J 4C4 Telephone: (418) 543-3788 Fax: (418) 543-8994 www.maxxamanalytics.com Invoice Information Report Information (if differs from invoice) Order No.: Project / Site: Company Name: Company Name: Quotation No.: Project No .:_ Address: Address: Contact Nar Telephone Telephone: Fax: Fax: MAH NO2 155 Sampler: VOC (EPA 624) BTEX Sampler: 0.5 G Tot I hereby acknowledge the understanding and acceptance of Maxxam's terms and conditions as listed on the back of this form. CI Sample Sample Identification Sampling To be of Water filtered (sampling point) (date / time) samples Soll Type Other BH-48 (100-140) Mar. 3/14 BH-49 (40-70) BH-49 (70-100) BH-50 (0-40) xx BH-50 (70-100) BH-51 (100-133) XX BH-52 (300-350) LEGEND: " Metals 13 elements (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn),
" Metals 16 elements (Al, Sb, Ag, As, Ba, Cd, Cr, Co, Cu, Mn, Mo, Ni, Pb, Se, Na, Zn). Types of Water: G = Groundwater P = Potable LW = Liquid Waste Turnaround Time: 24h 48h 72h Regular Date: General Condition at Reception: Sur = Surface E = Effluent C = Catchment Unless clearly identified all water samples received at Maxxam analytics will Applicable Regulations: (To complete) be treated as non-potable and will not be subject to the requirements under the Quebec Drinking Water Regulation. Chain of Custody Remarks: Relinquished by: Received by: Relinquished by: Number of coolers: Temperature upon reception: Courier (Specify): Sample Transport: By Client MAXXAM Personnel

KEENVCOCFORMOE - Saint-Laurent - 07/09

WHITE: MAXXAM ANALYTICS INC

BLUE: INVOICING

YELLOW: RETURN TO CLIENT WITH FINAL REPORT

PINK: CLIENT

Maxxar	N	26	90 Aver	ée de Liesse, Ville St- nue Dalton, Sainte-Fo Barette, Chicoutimi, (y, Québe	c G1P 3			Telep Telep	hone: hone: hone: //max	(418) (418)	658-5 543-3	5784 3788	Fax	(418)	448-9 658-6 543-8	199 594			500									of_3
Invoice Information		Repor	t Info	rmation (if differs	from ir	voice)		dor	No.												Proio	at / !	Olana						
Company Name:		Comp	any N	lame:				der											-				Site:	100	111	10	2	17	0 -/
Address:		Addre	SS!	1			Q	uota	ion	No.:							_	-	-	-	roje	ct N	0.:_	-1	9)2(4	2-0
Same a	8	11	4											П		NO2 + NO3													
Contact Name:		Conta	ct Na	me:										Į,		I/Oz								parties,				ĺ	
Telephone:		Teleph	none:											16 ele, water***		NOS								THM	24-7				
Fax:		Fax:							LIAH	2				2	Others	72					TOC				TOTAL-PC				0
Sampler:		Samp	ler:							Phenols (Coloc)			b, Zn)	-Los		NO		TSS	成和	Free CII	(Albid			INOR.		EPA 8330		3	4
I hereby acknowledge the unders and conditions as listed on the ba		ng and	accep	stance of Maxx	kam's t	terms		0 & G Tot.	D BTEX		N 10	(GC-H2)	J, Cr, Cu, NE, P	abon - 13 ele	Selenium-soil	30;	P-Tot.	Conductivity	Total Sulptur (S)	OxCH	COD Turbidity	ONIA ONIA	ANT. 11		COLIF (Fet.)			Tol	3
Sample Identification (sampling point)	Soll	Sample Water Type		Sampling (date / time)	To be filtered	Number of samples	PH (Ce-Ce)	0 & 6 Min.	VOC (EPA 624)	Phenols (GC/MS)	РАН	PCB (Congeners) (GC-MS)	Heavy Metals (Cd, Cr, Cu, Ni, Pb, Zn)	Metals ICP regulation - 13 elesoil**	Mercury	F 0 0 0	TYON THE	pH Cond	Suffice (SHz)	Tot-Cal	BODs CC	RDS RAM	CUM AST. 10	Potable Water: ORG.	COLF (Fec.)	Explosive EPA 8095	Other (specify):	Cr	CA
MW-01 (400-450	X			Mar 4/14																								X	+
MW-03 (400-450	1			U.		1																						k,	X
MW-04 (70-91)				Mar. 5/1	4	1																						X	X
MW-05 (70-100)				1		1																						×	x
MW-06 (70-122)					-1800	l																		1,50				8	X
MW-07 (40-70)	П					1																						-	k
MW-08 (40-70)						1																							k
MW-08 (70-100)	V			J		1																						X	X
7 (10 - 08 (1- 100)																													
LEGEND: ** Metals 13 elements (Ag *** Metals 16 elements (Al,	As, B	a, Cd, C	o, Cr, (Cu, Sn, Mn, Mo, Cr, Co, Cu, Mn, N	Ni, Pb, Io, Ni,	Zn), Pb, Se,	Na,	Zn).																					
Types of Water: G = Groundwater Sur = Surface	P = 1	Potable	LW		Turna	around T	īme:	AC.						F	10.00		Da		oluti	00.10		Ge	enera 1	al Co	ondit	ion a	at Re	есер	tion:
Applicable Regulations:		(To cor	mplete)	be t	reated :	as no	on-po	otab	le an	d wil	not	be s	subje	ect to	the	requ	irem	ents	unc	ler					/			
Chain of Custody		100	,			Quebec	-		-	_	_	_		_				-				Re	emar		6		W	_	
Relinquished by: Type (bearley	Ty	ul	ten	Date: 20/4/	5/14	Time:	18	24	1	Red	eive			1_		+		^	0	1		116	nidi	NO.					
Relinquished by:				Date: 20/4/	03/10)Time:	08	-0	0	Red	eive	d by:	CA	47,	AL	Ny	9	150	Ll	16	A								
Number of coolers: 2				Temperature u	pon rec	eption:		2	P		2	V		2	7	1	0	1	0	1	3								
Sample Transport: By Clie	ent	☐ MA	XXAN	1 Personnel	Q Co	ourier (Spec	cify):																					

BLUE: INVOICING

YELLOW: RETURN TO CLIENT WITH FINAL REPORT

KEENVCOCFORMOE - Saint-Lourent - 07/09

PINK: CLIENT

Analytical Report

Company: Agnico Eagle Division Meadowbank

Client: M. Stéphane Robert Address: General Delivery

Baker Lake Nunavut X0C 0A0

Phone: (604) 677-0689 (--) Fax: (604) 677-0687

Lab number: V-32662

Sampling location: BH-11 Sampling date: February 22, 2014

Sample name: BH-11 Sampling hour: N/D

Sampled by: Tom Thomson / Tyrel Date received: February 26, 2014

Matrix: Water

Drinking water distribution:

Reported on: February 28, 2014

Unless otherwise stated, all samples were received in acceptable condition.

Results relate only to the sample tested.

All samples will be disposed of after 30 days following analysis.

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

F-02-06

Analytical Report

Lab number: V-32662 Sample name: BH-11

Sampling date: February 22, 2014

Sampling location:		Sampling date: 1 ebidary 22, 2014 Sampling hour: N/D									
Parameter	Result	Method name	Analysis date								
Total Cyanide (CNt)	1.76 mg/L	M-CN-1.0	February 26, 2014								
Cyanide W.A.D.	1.48 mg/L	Sous-traitance\Multilab Direct	February 26, 2014								
Oyamac W.A.D.	1.40 mg/L	Cous traitance (Martinas Birect	1 Coldary 20, 2014								

Detection limit

Lab number: V-32662 Sample name: BH-11 Sampling location: BH-11

Sampling date: February 22, 2014

Sampling hour: N/D

Parameter	Value Unit	Method	Accreditation
Total Cyanide (CNt)	0.005 mg/L	M-CN-1.0	Yes
Cyanide W.A.D.	0.005 mg/L	Sous-traitance	Yes

Quality control Report

Lab number:V-32662Sample name:BH-11Sampling date:February 22, 2014Sampling location:BH-11Sampling hour:N/D

Parameter		
Total Cyanide (CNt) mg/L	Blank < 0.005	
	Standard name DMR-0025-2014-7	
	Result 0.0800	
	Accuracy 98.2%	
	Limit 0.0693 - 0.0937	
		_

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

Additional information

Lab number: V-32662
Sample name: BH-11
Sampling location: BH-11
Sampling hour: N/D
Sampling hour: N/D

Sampling 1000		Camping near. 14,2	
There was no bottle f	or the analysis of pH.		
Lab method	Method reference		
M-CN-1.0	MA.300-CN 1.2		

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

Analytical Report

Company: Agnico Eagle Division Meadowbank

Client: M. Stéphane Robert Address: General Delivery

Baker Lake Nunavut X0C 0A0

Phone: (604) 677-0689 (--) Fax: (604) 677-0687

Lab number: V-32663

Sampling location: BH-22 Sampling date: February 23, 2014

Sample name: BH-22 Sampling hour: N/D

Sampled by: Tom Thomson / Tyrel Date received: February 26, 2014

Matrix: Water

Drinking water distribution:

Reported on: February 28, 2014

Unless otherwise stated, all samples were received in acceptable condition.

Results relate only to the sample tested.

All samples will be disposed of after 30 days following analysis.

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

125, boul Industriel Rouyn-Noranda (Québec) J9X 6P2 Tél: (819) 797-0550 Fax:(819) 797-2155 Courriel:

multilab@cablevision.qc.ca

F-02-06

Analytical Report

Lab number: V-32663 Sample name: BH-22

Sampling date: February 23, 2014

Sampling location: BH-22		Sampling hour: N/D	
er	Result	Method name	

Parameter	Result	Method name	Analysis date
Total Cyanide (CNt)	24.59 mg/L	M-CN-1.0	February 26, 2014
Cyanide W.A.D.	10.6 mg/L	Sous-traitance\Multilab Direct	February 26, 2014

Detection limit

Lab number: V-32663 Sample name: BH-22 Sampling location: BH-22

Sampling date: February 23, 2014

Sampling hour: N/D

Parameter	Value Unit	Method	Accreditation					
otal Cyanide (CNt)	0.005 mg/L	M-CN-1.0	Yes					
Cyanide W.A.D.	0.005 mg/L	Sous-traitance	Yes					

Quality control Report

Lab number:V-32663Sample name:BH-22Sampling location:BH-22BH-22Sampling hour:N/D

Parameter		
Total Cyanide (CNt) mg/L	Blank <0.005	
	Standard name DMR-0025-2014-7	
	Result 0.0800	
	Accuracy 98.2%	
	Limit 0.0693 - 0.0937	

Additional information

Lab number: V-32663
Sample name: BH-22
Sampling location: BH-22
Sampling hour: N/D
Sampling hour: N/D

There was no bottle	for the analysis of pH.	
Lab method	Method reference	=
M-CN-1.0	MA.300-CN 1.2	

Analytical Report

Company: Agnico Eagle Division Meadowbank

Client: M. Stephane Robert Address: General Delivery

Baker Lake Nunavut X0C 0A0

Phone: (604) 677-0689 (--) Fax: (604) 677-0687

Lab number: V-32758

Sampling location: BH-47 Sampling date: March 03, 2014

Sample name: BH-47 Sampling hour: N/D

Sampled by: Tyrel Hemsley Date received: March 07, 2014

Matrix: Waste Water

Drinking water distribution:

Reported on: March 10, 2014

Unless otherwise stated, all samples were received in acceptable condition.

Results relate only to the sample tested.

All samples will be disposed of after 30 days following analysis.

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

This report shall not be reproduced except in full without the written authority of the laboratory.

multilab@cablevision.qc.ca

F-02-06

Analytical Report

Lab number: V-32758 Sample name: BH-47

Sampling date: March 03, 2014

Sampling location:		Sampling date: March 03, 2014 Sampling hour: N/D						
Parameter	Result	Method name	Analysis date					
Cyanide W.A.D.	0.101 mg/L	Sous-traitance\Multilab Direct	March 07, 2014					
Total Cyanide (CNt)	1.05 mg/L	M-CN-1.0	March 07, 2014					
, and a second	J. J.		, ,					

Detection limit

Lab number: V-32758 Sample name: BH-47

Sampling date: March 03, 2014

Sample harrie.		Sampling date: March 03, 2014									
Sampling location: Parameter	Value Unit	Method	Accreditation								
Cyanide W.A.D.	0.005 mg/L	Sous-traitance	Yes								
Total Cyanide (CNt)		M-CN-1.0	Yes								
Total Cyanide (CNt)	0.005 mg/L	IVI-CIN-1.0	162								

Quality control Report

Lab number: V-32758
Sample name: BH-47
Sampling location: BH-47
Sampling location: BH-47
Sampling hour: N/D

Parameter		· •
Total Cyanide (CNt) mg/L	Blank <0.005	
, , ,	Standard name DMR-0025-2014-7	
	Result 0.0820	
	Accuracy 99.4%	
	Limit 0.0693 - 0.0937	

Additional information

Lab number: V-32758
Sample name: BH-47
Sampling location: BH-47
Sampling location: BH-47
Sampling hour: N/D

Lab method	Method reference
M-CN-1.0	MA.300-CN 1.2

APPENDIX B

BOREHOLE NOTES AND MONITORING WELL LOGS

MEAD	OWBANK ASS	SAY ROAD SEE	AGNICO EAGI	ΕN	/INES	SLIMIT	ED	PRC	PROJECT NO BOREHOLE NO.										
				DRILL: DOWN HOLE HAMMER - AIR ROTARY								E14103172-01.002-MW-01							
MEAD	OWBANK. NU	<u> </u>																	
SAMP	LE TYPE	DISTURBED	NO RECOVE	RY 🔀 SPT			_	CASING			LBY TUBE								
BACK	FILL TYPE	BENTONITE	PEA GRAVE	L SLOUG	Н		GF	ROUT		DRIL	LL CUTTINGS SAND								
					Щ	ËNT													
Depth (m)		S	OIL			INO					STANDAI 20	RD PEN 40	IETRATION 60 80	I (N) ■	(#)				
epth			RIPTION		닐	REO					♦UNC. COMF	(kPa) ◆	Depth (ft)						
ă		DLOO	I II II OI V		SAMPLE TYPE	MOISTURE CONTENT	PLAST	TC M	.C.	LIQUID	50 ▲ POC	100 KET P	150 20 EN. (kPa)		ă				
	FII.1 (တ	§ S	20	40	60	80	100	200	300 40						
_ 0	FILL - grey, froz	zen to 1.90 metres													0 -				
-															-				
_															_				
-															-				
_ 1										<u>.</u>					-				
-															_				
-															5_				
-															5_				
-															_				
_ 2															-				
-															-				
-																			
_															-				
															-				
_ 3															10				
L I															-				
_															-				
-															-				
- ,															-				
_ 4															_				
-															-				
<u> </u>												į į			15				
- 1															-				
_ _ 5												: :			-				
E i	BEDROCK														-				
[END OF BORE	HOLE (5.23 metre	s)												-				
- 1	ivioriitoring we	en mstaneu to 3.23 m	lettes												_				
- 1															_				
6															-				
-															20				
-															_				
-							1								-				
															-				
_ 7							.								_				
F															-				
- 7.5														:	25_				
	TETP	A TECH EB	Δ			L	OGGE	D BY:	TH		CC	MPL	ETION D	EPTH: 5.	23 m				
	t i i i k	A LECH EB				F	REVIEW DRAWIN	IED B	<u>Y: MB</u>		CC	OMPLI ge 1 d	ETE: 14/	03/04					
						1 L	∕1 \/ \/\/\	VU IVU			ıra	ut i (ווע						

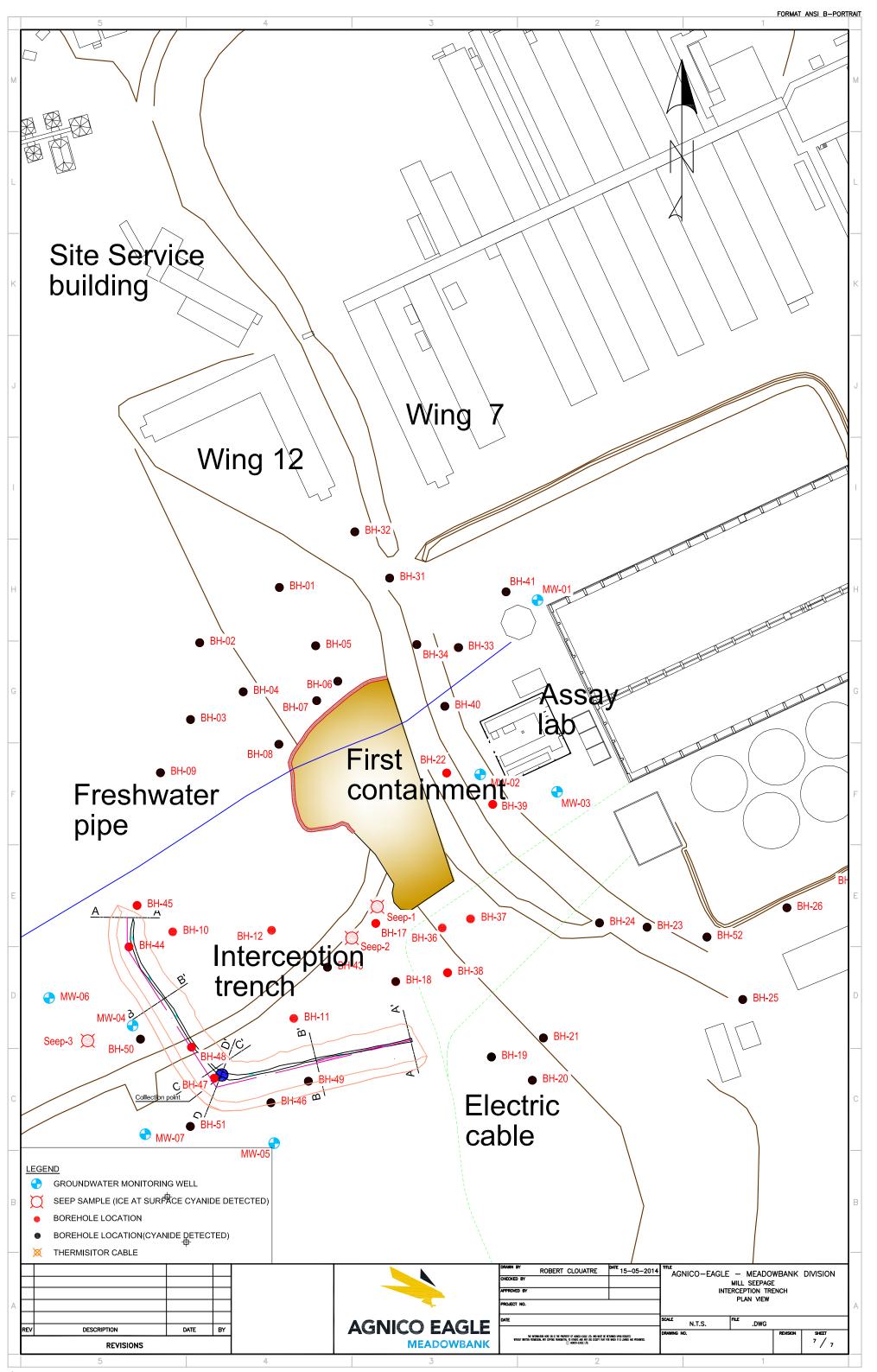
MEA	DOWBANK A	SSAY ROAD SEE	AGNICO EAGL	ΕN	/INES	SLIMI	ΈD		PROJECT NO BOREHOLE NO.											
				DRILL: DOWN	HC	LE H	AMME	R - /	AIR R	OTAR	Υ	E14103172-01.002-MW-02								
MEA	DOWBANK. N	IU																		
SAM	PLE TYPE	DISTURBED	NO RECOVE	RY SPT			A	-CASII	NG		SHEL	BY TUBE CORE								
BAC	KFILL TYPE	BENTONITE	PEA GRAVE	L SLOUG	Н		G G	ROUT		Z	DRIL	L CUTTIN	CUTTINGS SAND							
					ш	L L														
Œ		_	· OII			IL NC						STANDA	RD PEI	NETRAT	ION (N)	MW 02	Œ			
Depth (m)			SOIL		Ш	Ä						20 UNC. COM	40	60	80 CTH (kPa)		Depth (ft)			
_ 		DESC	RIPTION		SAMPLE TYPE	MOISTURE CONTENT	PLAS	TIC	M.C.	LIQ		50	100	150	200		De			
					Ś	MO	2	0 4	10	60 8		100	200	PEN. (kl 300	-a) ▲ 400					
_ 0	FILL - frozen	to 2.40 metres					1		: :								0 _			
E																	_			
_																	_			
_								:									_			
_ 1																	_			
_																				
_																	_			
_							1	!									5			
-																				
_ 2							ļ <u>.</u>		<u>.</u>								_			
Ė																	_			
-																				
_																	_			
F																	_			
_ 3																	10			
F																	_			
E							l. <u>i</u>		: :							. = .				
_	- water at i	nstallation													: :	* = * :	_			
<u>-</u>																	-			
_ 4																				
_																* = * :	_			
_									<u>.</u>								- 15			
F																	_			
_ _ 5							:								: :	· - ·	_			
																	_			
_																				
_																				
6									<u>.</u>						;;.		20			
-																	20			
Ė																				
F	BEDROCK	DELIGIE (0.50)	,				1										-			
F	slough - 5.4	REHOLE (6.50 metre																		
_ 7	Monitoring	well installed to 5.43 r	netres				ļ <u>.</u>		<u>.</u>											
E																	-			
7.5																	 25_			
	TETE	RA TECH EE	BA			L	OGGE	D B	/: TH	AD.		CC	OMPL	ETIO	V DEP	TH: 6.5	i m			
REVIEWED BY: MB COMPLETE: 14/03/04 DRAWING NO: Page 1 of 1																				

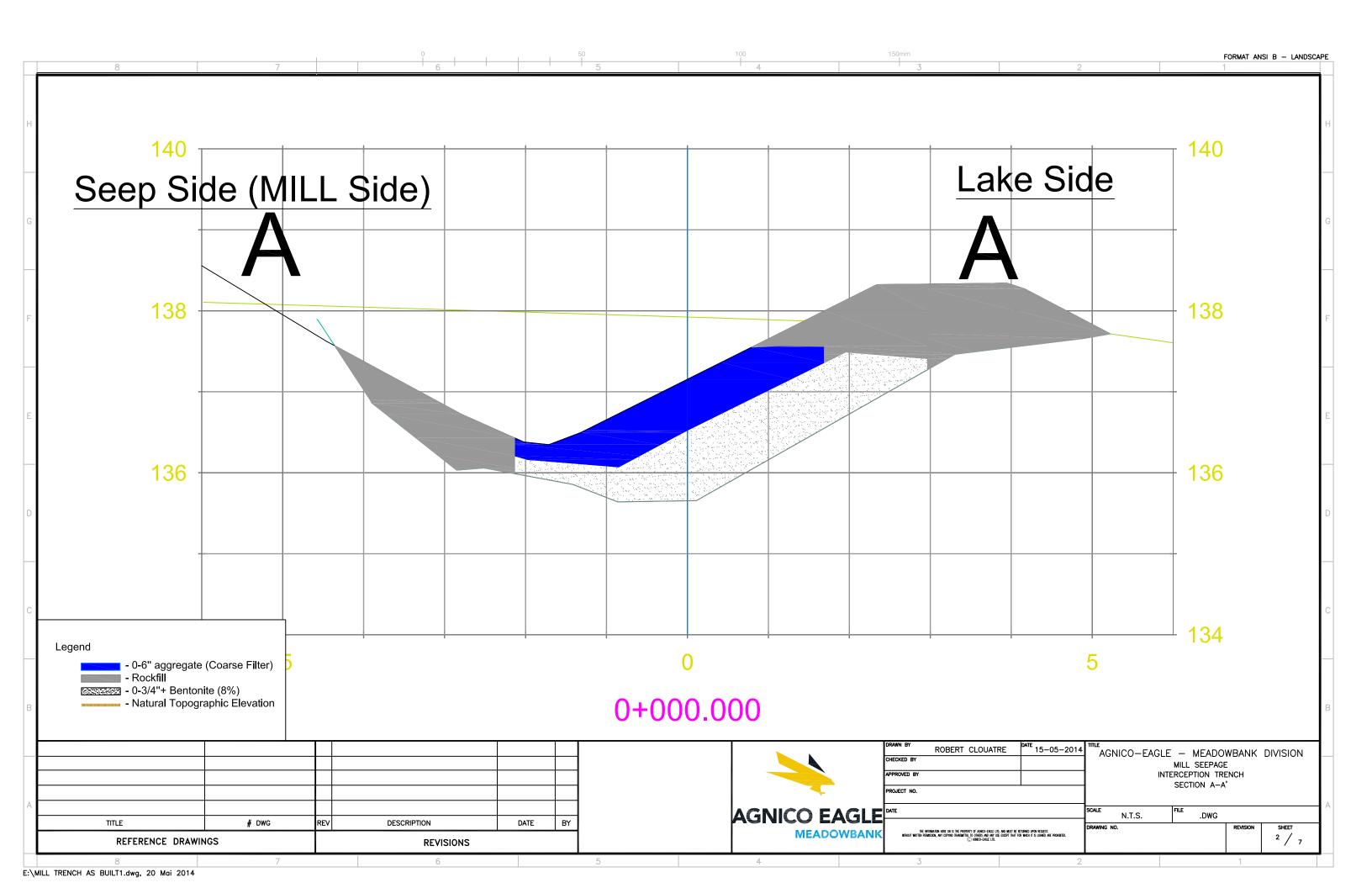
MEAD	OOWBANK ASSAY	AGNICO EAGLE MINES LIMITED										PROJECT NO BOREHOLE NO.										
				DRILL: DOWN	N HC)LE H	AMN	/IER	- Al	R RC	TAR	Υ		E14103172-01.002-MW-03								
	OOWBANK. NU										П	П										
		ISTURBED	NO RECOVE	_=				A-CA		3				BY TUBE CORE								
BACK	(FILL TYPE B	ENTONITE	PEA GRAVEL	_ SLOUC	Т	—	٥٠	GRO	UT			DRI	LL CUTTINGS SAND									
Depth (m)			OIL		SAMPLE TYPE	MOISTURE CONTENT								20	40	60	TION (N 80	Σ	Depth (ft)			
Depl		DESCI	RIPTION		MPL	T PLASTIC M.C.						◆UNC. COMPRESSIVE STRENGTH (kPa) ◆ QUID 50 100 150 200						a) \	Depl			
					SA	MOIS	-	20	40	•	60 80			POC	KET F 200	PEN. (k	Pa) ▲ 400					
0	FILL - grey, frozen f	o 2.70 metres				_		20	40					100	200	300	400		0_			
-																						
<u> </u>																			-			
_																			_			
_ 1												: :				: :			-			
-							:	:			:		:						_			
F																			_ 5			
E								:			:								_			
-																			-			
_ 2										••••••									_			
F							:	:			:		:						-			
E																: :			_			
								:			:		:									
_ 3							; .		: : :	;	;					: :	;;		10			
_								:			:								_			
F							:	:			:		:		:				_			
Ē											:								_			
- ,							:	:			:		:						-			
_ 4							1												_			
F							:	:			:		:						_			
																			15			
_								:											-			
_ 5								. <u> </u>								: :			_			
-																		* - * · · · · · · · · · · · · · · · · ·	_			
E	BEDROCK END OF BOREHOL	F (5.29 metres	(2									: : :				: : : : : : : : : : : : : : : : : : : :			_			
_	Monitoring well in	stalled to 5.29 m	netres																_			
_ 6							:	:			:		:									
- 0																			20			
							:	:			:		:						_			
_																	;;		_			
-																			_			
_ 7							<u>;</u> .									: :			_			
<u> </u>											:								-			
7.5								:		: :	<u> </u>								25_			
-	TETRA	TECH EB	Α				OGO				D.			COMPLETION DEPTH: 5.29 m COMPLETE: 14/03/04								
	REVIEWED BY: MB DRAWING NO:											Pa	ge 1	of 1	14/03	/ U '1						

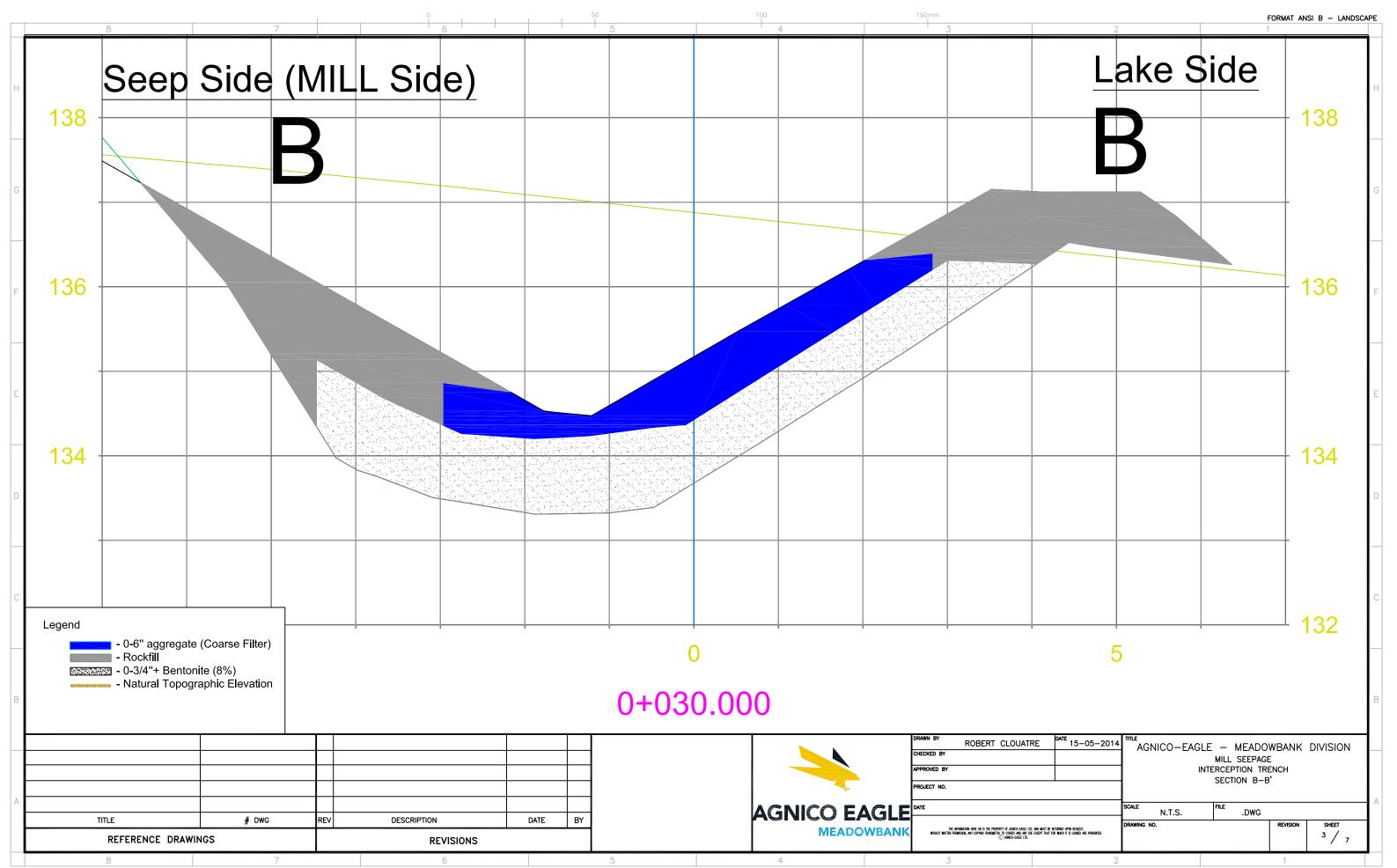
MEAD	OOWBANK ASSAY ROAD SEEPAGE	AGNICO EAGL	NICO EAGLE MINES LIMITED											PROJECT NO BOREHOLE NO.						
		DRILL: DOWN	HC	LE H	AMN	ИER	! - A	IR R	ROT	ARY		E14103172-01.002-MW-04								
	DOWBANK. NU	<u> </u>																		
	PLE TYPE DISTURBED NO RECOV						ASIN	IG				BY TU								
BACK	FILL TYPE BENTONITE PEA GRAV	EL SLOUG	Н		6	GRO	TUC			<u>// [</u>	DRILL CUTTINGS SAND									
(m)	SOIL		SAMPLE TYPE	MOISTURE CONTENT								ISTAN	DARD F	ENETF	OITAS		MW04	(ff.)		
Depth (m)	DESCRIPTION		님	JRE (UNC. CO	OMPRES:	SIVE STF	RENGTH	H (kPa) ◀		Depth (ft)		
ے ا	DECORN HOW		Y AM	PLASTIC M.C. L								50 ▲ P	100 OCKE	150 PFN) 20 (kPa)) <u>0</u>		ă		
_ 0	TUNDRA - undisturbed soil, reddish brown, frozen		0)	Σ	<u> </u>	20	4	0	60	80		100						0		
F "	TONDRA - unaisturbed soil, readish brown, irozen					:		:										٠ -		
-						:		:										_		
-					1 :	:		:												
-						:		:										-		
_ 1	BEDROCK																	_		
-	END OF BOREHOLE (1.03 metres) Monitoring well installed to 1.03 metres																	_		
F						:		:										_		
-								:										5		
-						:		:										_		
_ 2																		_		
F						:		:												
F						:		:										_		
_																		-		
E						:		:										_		
_ 3					; .													10		
Ŀ						:		:										-		
_																		_		
L						:		:										_		
<u>-</u>						:		:										-		
_ 4					· · · · ·															
ļ.						:		:										_		
L																		- 15		
-						:		:										-		
- - _ 5						:		:										_		
- 3									. []							: : ! : :		_		
F						:		:												
_																		_		
-						:		:										_		
6						:		:										_		
F								:										20		
F						:		:										-		
-							· :											_		
L						:		:										_		
_ 7																		_		
E						:												_		
<u> </u>																				
7.5			Ш	L	OG(GED	BY	TH:	<u>-:</u> 		<u>l.</u>	1	COMF	LETI	ON I	DEP1	<u> </u> ГН: 1.(25_)3 m		
	TETRA TECH EBA			R	EVI	EWI	ED E	3Y: I				(COMF	PLETE	E: 14					
					RAV	NIN	GΝ	0:					Page	1 of 1						

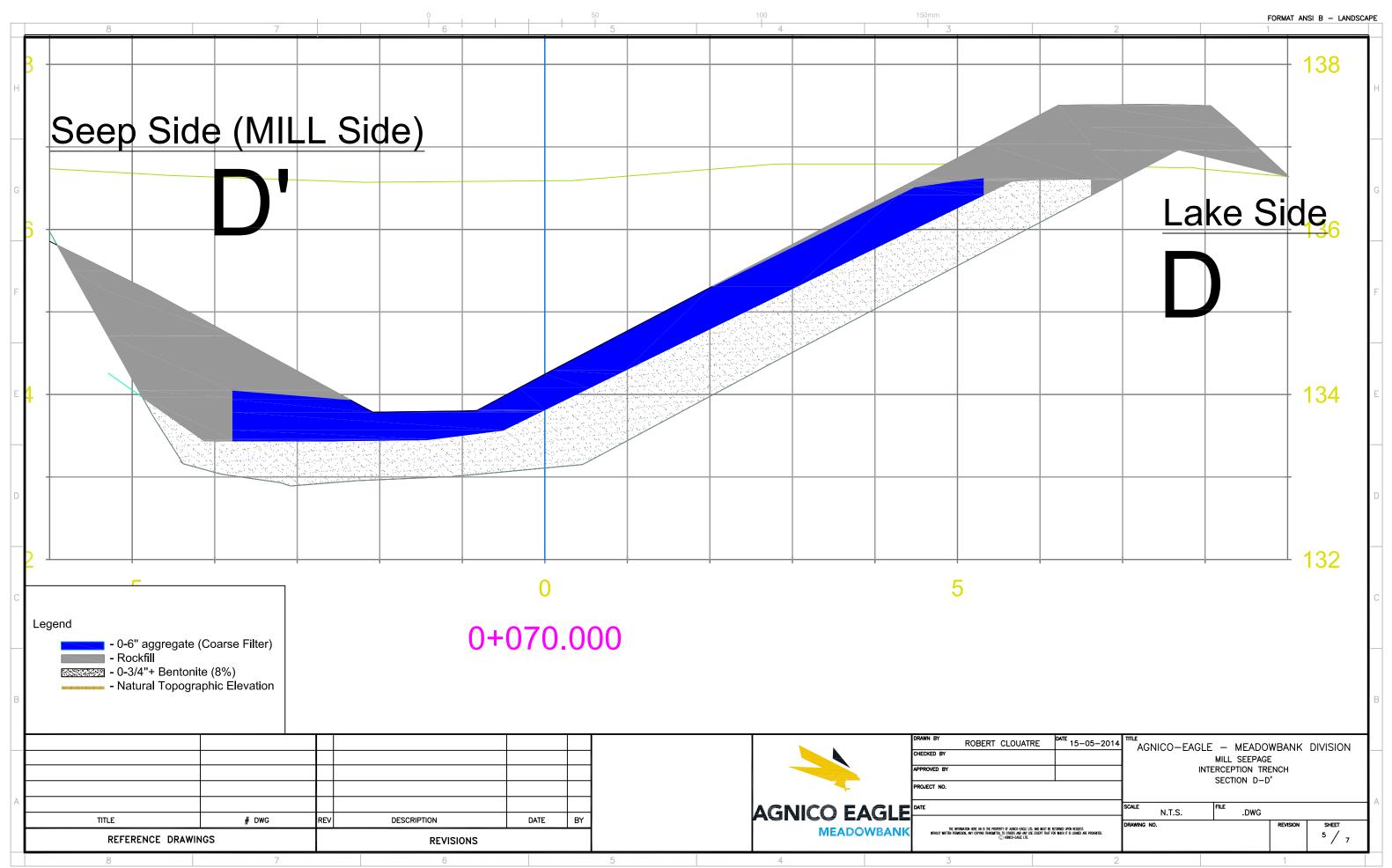
MEAD	OWBANK A	AGNICO EAGL	IICO EAGLE MINES LIMITED										PROJECT NO BOREHOLE NO.									
				DRILL: DOWN	IHC)LE H	IAMN	/IER	- AIR	RO	TARY		E14103172-01.002-MW-05									
MEAD	OWBANK. N	IU																				
SAMP	LE TYPE	DISTURBED	NO RECOVE	RY 🔀 SPT				A-CA	SING			SHEL	LBY TUBE CORE									
BACK	FILL TYPE	BENTONITE	PEA GRAVEL	_ SLOUG	H		.0.	GRO	JT			DRIL	L CUT	TINGS	NGS SAND							
					ш	L																
Œ		C	ΟII		F	I NC							STAN	IDARD F	PENET	RATIO	N (N)	MW 05	Œ			
Depth (m)			OIL		Щ	Ä							20	OMPRES) 8			Depth (ft)			
		DESCR	RIPTION		SAMPLE TYPE	MOISTURE CONTENT	PLA	STIC	M.	C.	LIQUI		50	100) 15	0 2	00		De			
					Ś	Ø		20	40	60	•		▲ F	OCKE 0 200	1 PEN) 30	. (кРа 0 <u>4</u>) A 00					
_ 0	TUNDRA - ui	ndisturbed soil, reddish				1		:		: :	:	: :	: :		:			0 _				
F									:							:			_			
F																			-			
E									:							:						
[L 1									:							:			_			
_	BEDROCK				П													- ·	-			
E		REHOLE (1.32 metres	.)		-				:				: :		: :			<u> </u>				
- 1	Monitoring	well installed to 1.32 m	etres													j			5			
_									:							:			-			
_ 2							1					. <u>.</u>										
- 1									:							:			_			
_									:										-			
_							<u>.</u> .									j :						
_									:										_			
_ 3							1			.;;.					;;		: : ;	.	- 10			
									:							:			10			
_									:							:						
_							1					· : · · · · ·				: :	: :		-			
-									:							:			_			
_ 4																		.,	_			
_									:				: :		: :				-			
-																						
-							1												15			
-																			-			
_ 5							1			<u>.</u>		. <u>.</u>							_			
-																			_			
-									:							:			-			
-							1									· · · · · · · · · · · · · · · · · · ·						
F																			_			
_ 6																· •	: : } !		20			
F									:							:						
F									:							:			_			
<u> </u>																			-			
E									:													
_ 7							<u>:</u> .								;;				_			
<u> </u>							;		:										+			
7.5									:				: :	: :	: :	:			25_			
	TETE	A TECH ER	Δ				OGC						\Box	COM	PLET	ION	DEP	ГН: 1.3	2 m			
	TETRA TECH EBA REVIEWED BY: MB COMPLETE: 14/03/05 DRAWING NO: Page 1 of 1																					

MEA	DOWBANK A	SSAY ROAD SEEI	PAGE	AGNICO EAGL	ΕN	/INE	S LIM	IITED)				PF	ROJE	CT NO) B	ORE	HOLE	NO.
				DRILL: DOWN	IHC)LE H	IAMN	1ER	- AIR	RO	TARY			E14	10317	2-01.	002-	MW-0	6
MEA	DOWBANK. N	IU																	
SAMI	PLE TYPE [DISTURBED	NO RECOVER	RY 🔀 SPT				A-CA	SING			SHEL	BY TU	JBE	C	ORE			
BAC	KFILL TYPE [BENTONITE	PEA GRAVEL	. SLOUG	H		.0.	GRO	JT			DRILI	L CUT	TINGS	∴∴ S	SAND			
					ш	L N													
Œ		C	ΟII		SAMPLE TYPE	MOISTURE CONTENT							STAN	DARD P	ENETR	ATION	(N)	90 MW	Œ
Depth (m)			OIL		Щ	Ä							20	0 40 OMPRESS		80 ENGTH		- 1	Depth (ft)
		DESCR	RIPTION		MP	STUF	PLA	STIC	M.	C.	LIQUI		50	100	150	200)	П	De
					Ś	Ø		20	40	60	•		▲P	OCKET 0 200	PEN. 300	(kPa) 400	^		
_ 0	TUNDRA - ui	ndisturbed soil, reddish	brown, frozen				1	: :	:		: :	:	: :	: :		: :			0_
F									:										_
_										: : :									-
E									:										
E 1									:										-
F																			-
E	BEDROCK	DELIGIE (4.00	,		П														
E	END OF BOI	REHOLE (1.36 metres well installed to 1.36 m	s) etres											- ! - ! -					5
F									:								:		-
_ 2							l. į.												
L									:										_
L									:										-
_							<u>.</u> .												_
L									:					: :			:		_
_ 3																			_ 10
L																			10
									:								:		_
_																			-
_									:										
_ 4																			_
_									:										-
-									:								:		
_																			15
_									:										-
_ 5																			_
-									:										_
-									:										-
_							1							!					_
F									:										-
6																			20
F									:										
F									:										-
F									:										-
F									:										_
_ 7										: . :									_
Ė									:										-
7.5									:				<u>:</u>		: :		:		 25_
		RA TECH EB	Δ				OGC							COMF	LETI	ON D	EPT	H: 1.3	
	נייי נד	A IECH ED.	^				REVIE				3			COMF Page [*]		:: 14/	U3/0)	


MEADOWBANK ASSAY ROAD SEEPAGE AGNICO EAG					LE N	/INE	S LIN	IITE)				PROJECT NO BOREHOLE NO. E14103172-01.002-MW-07						
				DRILL: DOWN	I HC)LE H	HAMN	/IER	- AIF	RC	TAR\	1		E141	0317	2-01.0)02-M\	N-07	7
MEAD	OWBANK. N	IU																	
SAMP	PLE TYPE	DISTURBED	NO RECOVE	RY 🔀 SPT				A-CA	SING			SHEL	BY TU	IBE	С	ORE			
BACK	FILL TYPE	BENTONITE	PEA GRAVEI	_ SLOUG	H		0	GRO	JT			DRIL	L CUT	TINGS	÷÷; S	AND			
					ш	L N													
Œ		C	ΟII		F) SNT							STANI	DARD PI	ENETR	ATION (N) 🔳 🚦	MWU/	(#)
Depth (m)			OIL		Щ	Æ C							20	40 OMPRESS	ME STR	80_ =NGTH /k		2	Depth (ft)
å		DESCI	RIPTION		SAMPLE TYPE	MOISTURE CONTENT	PLA	STIC	M	.C.	LIQL		50	100	150	200		7	De
					Ŝ	MOI		20	40	60	•		100	OCKET) 200	300	(кРа) ▲ 400	`		
_ 0	TUNDRA - u	ndisturbed soil, reddish	brown, frozen						:	: :		:	: :	: :				۰	0 _
F																	•	°°	_
_																			-
L																		- 00	
_ 1																			_
-									:									=	-
-									:										
_	BEDROCK													- ! - ! - !				÷	5
_	END OF BOR	REHOLE (1.62 metres well installed to 1.62 m	s) netres						:										_
_ 2	Mornicorning	Won indicated to 1.52 in													.;;				_
-									:										-
-									:					: :					
_																			_
_																			-
_ 3								;;				į				ij			10
-									i										_
-																			_
-																			
-																			_
_ 4															<u>.</u>				_
-									i										
-									:			:							4
_																			15
F																			
_ 5										·}··}				- ! - ! - !	.jj	<u>.</u>			-
E																			-
_																			
-									:										4
_									:										-
6														- ! - ! - !					20
_									:										-
_												į							-
_									:										_
									:										-
_ 7							1			: :									
									:										
7.5						<u> </u>	000	: :	<u>:</u>		: :		; ; - ;	201:-)	<u> </u>	1.00	25_
	L TETE	RA TECH EB	Α				LOGO REVII				R			COMP COMP	LETE	<u>N DE</u> ۱۸۱۰	3/05 3/05	1.63	s m
							DRAV				ט			Page 1		. 14/0	3/03		


MEAD	OWBANK A	SSAY ROAD SEEI	PAGE	AGNICO EAGL	ΕN	IINES	S LIM	ITED)				PI	ROJE	CT N	Э E	BORE	HOLE	NO.
				DRILL: DOWN	HC	LE H	IAMN	1ER	- AIR	RO	TARY			E14	1031	72-01	1.002	-MW-0	8
MEAD	OWBANK. N	IU																	
SAMP	LE TYPE	DISTURBED	NO RECOVE	RY 🔀 SPT				A-CA	SING			SHEL	BY TU	JBE		CORE			
BACK	FILL TYPE	BENTONITE	PEA GRAVEL	_ SLOUG	Н		.0	GRO	JT			DRILI	L CUT	TINGS	* * * * ;	SAND			
					Щ	ΞNΤ													
Œ		C	ΟII			IL NC							STAN	IDARD F	ENET	RATIO	N (N)	MW08	Œ
Depth (m)			OIL		Ш	Ä.							20	OMPRES	60 SIVE STI	8 PENICTI	0 1 (kPa) 4		Depth (ft)
e		DESCR	RIPTION		SAMPLE TYPE	MOISTURE CONTENT	PLA	STIC	M.	C.	LIQUI		50	100) 15	0 20	00		De
					Ś	MO		20	40	60			10	OCKE 0 200) 30	(кРа) 0 40	00		
_ 0	TUNDRA - ui	ndisturbed soil, reddish	brown, frozen				1		:		: :		: :	: :			:	• •	0 _
[:										_
_																			-
_									:										_
_ 1										<u>.</u>		. <u>;</u>							-
_	BEDROCK								:										_
_		REHOLE (1.33 metres	4)						:									<u> </u>	
_	Monitoring	REHOLE (1.33 metres well installed to 1.33 m	etres							} -									5
_									:										-
_ 2							1			; <u>;</u> .									_
-									:					: :					-
- 1									:										
-							1					. ;							_
_									:			:					:		-
_ 3										<u> </u>									10
-									:			:							_
-									:										
_																			
-									:			:					:		4
_ 4																			_
-																			
-									:										_
_									:										15
									:										
_ 5							1												4
_									:			:							-
_							1		 	: : : . : :									
_																			-
																			-
6 _							1												20
_									:			:							-
_										ļļ.									-
									:										
- - 7									:										-
F'							:												
-									:										
7.5						1	000)FD	DV: 7	FLJ	: :	<u>:</u>].	<u> </u>	COM)	- LAO	ייייי	 	25_
	⊢] TETF	RA TECH EB	A				OGC REVIE				3			COME	LE I	<u>UN I</u> =: 14	/03/0 7E7	H: 1.3	S IU
							RAV							Page			,00,0		


APPENDIX C


INTERCEPTION TRENCH AS-BUILT DRAWINGS

APPENDIX D JOB HAZARD ANALYSIS

JOB HAZARD ANALYSIS WORKSHEET

Form

FACILITY / SITE:	Meadowbank	DATE:	09-02-2014
DEPARTMENT:	ENG/ENV/MINE/SITE SERVICE/ ELEC	REVIEW DATE(S):	As needed
JOB BEING ANALYSED:	Drilling Investigation – Assay Road Leakage	TEAM LEADER:	Tom Thomson/ Ryan VanEngen/ Jeff Pratt

Step	Describe Job Steps	Hazards/Potential Incidents	Risk Control Methods Required
_	List the natural steps of the job (not too broad and not too fine)	What can happen at each step? Can an employee be struck by/caught on/contacted by/struck against/contact with/caught between?	Describe how hazards will be managed or removed. Consider elimination/substitution, engineering controls, administrative controls, personal protective equipment.
1	Check the bootlegs before stake out of the holes.	1.1 Hit an old drilled hole.	1.1 Surveyor will validate the position of the holes to be drilled to ensure that there are no old holes in the vicinity of them. If yes, the regulation 14.52 of the mine act should then be apply (No drilling to be conducted within 1 m. of a bootleg)
2	Remove snow from drill locations.	2.1 Get equipment stuck, in deep snow	2.1 Site Services will remove snow a day or two prio to the drill program along mill, leach pad and tundro
		2.2 Slip, trips, and Falls in deep snow.	locations. 2.2 ensure stable footing and use proper ppe
3	Close the Road.	3.1 Equipment going through the road while drilling.	3.1 Site service will close the road before staking out the holes. Site service will send an e-mail to all
		3.2 Access for emergency vehicles in assay lab and mill	Meadowbank about the closure of the road. 3.2 Pick up trucks w keys will be placed and red-tap will be installed to indicate road closure.
4	Stake out the holes and electrical cables (surveyor)	4.1 Slips Trips and Falls	4.1 Watch footing.
		4.2 Weather – dress accordingly and take necessary breaks to warm up	4.2 See Cold weather Manual.
5	Power off on electrical cable close to the drilling area	5.1 Electrocution - death	5.1 Power will be shut-off by electrical group and the Driller will lockout the power supply before drilling.
		5	*NOTE: If electrical group is unavailable to shut off power, drilling in the vicinity of power lines will

Form

			not occur.
			Drilling in vicinity of electrical lines will be put off
			until February 24 th . Electrical department is aware
			of the plan and will assist Environment on February
			24 th with power shut down
6	Drilling	6.1 Dust and potential exposure to CN gases and	6.1 Wear dust mask at all time when close to the
		liquids	drill (within 10 meters) and ensure multi gas vapour
			cartridges are used; wear Tyvek suits, nitrile gloves
		6.2 Electrical cables and building	and goggles at all times; use mill decontamination
			area at all times; no eating or drinking while near
		6.3 Communication cable	the contamination site. Be sure to take your time
			and stay warm under cold conditions - use
		6.4 Grounding cable	decontamination for warming up.
			Wash-up after work is complete.
		6.5 Noise	
			6.2 Underground electrical cable to be stake-out by
		6.6 Working outside mill doors	surveyor. Power cable to be power-off before
			drilling. Minimal distance between a hole and an
			electrical cable fix at 3 meters. Before starting
			drilling, the Environmental Technician in charge will
			have to wait for the confirmation from the electrical
			group that the power has been shut down and
			driller is locked out the power supply. All work near
			electrical cable will be completed on February 24th
		*1	6.3 Minimal distance between a hole and a
			communication cable fix at 3 meters.
ı			
			6.4 Minimal distance between a hole and a
			grounding cable fix at 3 meters if possible but must
			be greater than 1.5 meters.
			6.5 Wear hearing protection at all time when close

JOB HAZARD ANALYSIS WORKSHEET

Form

7	Moving the drill in between each holes Environment technician drilling follow-up	7.1 Collision in between drill and Environment technician 7.2 Overhead collisions and drill mast balance issues 8.1 Heavy equipment running (drill) that could injure the Environment Technician.	to the drill (within 10 meters) 6.6 When drilling outside any of the access doors to the mill the inside of the man door or overhead door will need to be taped off with RED DANGER TAPE, so no one exits the door. This will be completed and coordinated with Mill employees. 7.1 Always have a good communication between the driller and the Environment Technician when moving. Communication will be on Surface Channel 5 or with loud verbal communication. Environment technician should always be at a minimal distance of 10 meters of the drill when moving. 7.2 Ensure mast of drill is in a safe position while moving. 8.1 Always keep a minimal distance of 5 meters from the drill when drilling. Always have good communication between the driller and the Environment Technician when drilling. Communication will be on Surface Channel 5 or loud
9	Sample of water/cuttings (Environment Technician)	9.1 Heavy equipment running (drill) that could injure the Environment Technician. 9.2 DUST 9.3 CN gases or liquid contaminate exposure	9.1 The drill must stop any activity when the Environment Technician will perform his sampling. Always have a good communication between the driller and the Environment Technician when drilling. Communication will be on Channel 5. 9.2 Fine samples will contain dust that could potentially contain Asbestos, so a half mask must be worn when sampling.

MEADOWBANK

JOB HAZARD ANALYSIS WORKSHEET

Form

			9.3 Use Tyvek suit at all times, nitrile gloves, goggles and face mask with multi gas vapour cartridges. Be sure to use decontamination area and wash up after work is completed.
10	Fill-up of the holes with steaming	10.1 Heavy equipment running (loader);	10.1 A spotter should be there at all time when the loader will perform is job. The Road will remain
1		10.2 Lifting and digging with hand held shovel	closed at that time as well.
			10.2 Use proper techniques for shoveling and stay
			within your means. If needed a loader could be
			made available around the mill. On the tundra, it is
			preferable to complete the filling by hand to avoid disturbing the tundra.
11	Turning power back after drilling near electrical cable is completed	11.1 Electrical hazard	11.1 Before putting the power back, the Environmental Technician in charge will advise the electrical group that the drilling is completed in the vicinity of the electrical cable. The driller will then remove lock from lock out.
12	Keep departments aware of drilling plan	12.1 Create a busy work area with too many groups working in one area.	12.1 Relay work locations at morning management meeting to all departments.
		12.2 Create a stop in production for mill if certain	12.2 Attend Mill marning meeting 7:15 a.m. in mill
		areas are blocked off and they cannot plan around it.	beardroom to relay the drill locations for the days

JOB HAZARD ANALYSIS WORKSHEET

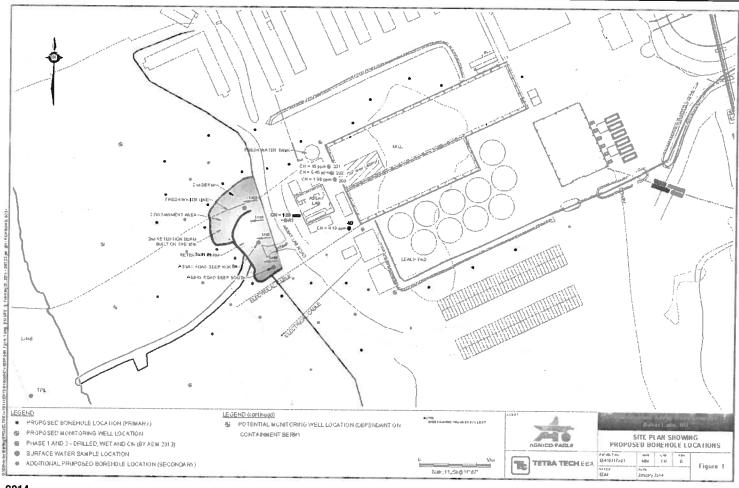
Form

DRAFT Rev 0

MEADOWE	DMIAK			
Permits Required (ch	eck all that apply)			
LOTO: X Hot work Electrical Work	Confined Space Pre Excavation Lift Permit	Review Drilling pattern and	follow it. Meet with Mill and	d Electrical department.
PPE (check all that ap	oply)			
Safety Glasses X Hardhat X Gloves X Kevlar Gloves Chemical gloves Apron Goggles	Safety Boots Face shield Welding helmet Earplugs X Ear muffs Chemical clothing Respirator X	Tyvek suits		
Emergency Information	on:	Half mask respirator with P1	100 filters if exposed to dus	gg as 1965
Evacuation Assembly Location of Eyewash/s Emergency phone n First aid lo	y Point: Arctic corric shower: umber: 6911		to Channel 3 "Code 1, Code	e 1, Code 1"
Note: LOTO acronym	for Lock out tag o	ut		
Team Member	Tom Th	oneson	Signature	
Team Member	Tyrel Her	~s/ey	Signature	Juse Hemsly Feb 21/14
Team Member	you lovering	<u>C'</u>	Signature	180 lan
Team Member	STEPHEN Y	otviù	Signature	The Control of the Co
Team Member	Douglas F	icard	Signature	(Card Scard
Team Member	Martin Thence	ault	Signature	7
	Médérick Gas	mon		Might

February 21, 2014

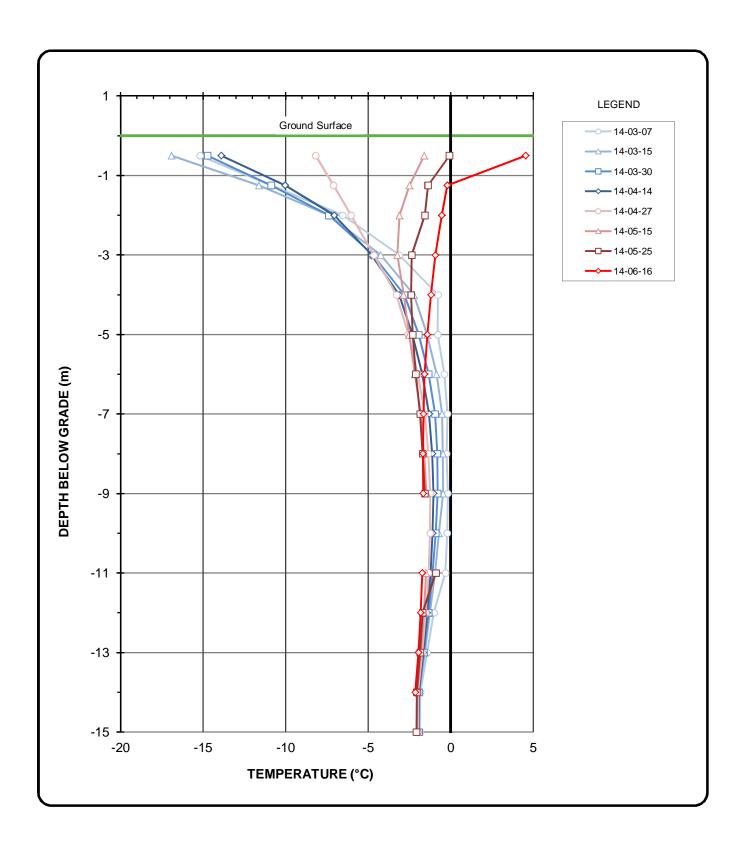
Note: All printed copies of this document are uncontrolled.


Page 5 of 6

Form

Team Member		Signature	
Supervisor	Page Pyl	N VINENGEN Signature	83
H&S Coordinator		Signature	
H&S Superintendent		Signature	

APPENDIX E GROUND TEMPERATURE DATA



•		pject: GTC Fabrication pject No.: E14103172-01			Thermistor String No.: 2496								
-	ient: Agnico-Eagle Mines Limited			Client St	ring No.:								
tention:	Agnico-Eagle Mines	Limited		Location	of Installa	ation:							
				Calibration	on Temp.	0.02							
mail:				Date of 0	18, 2014								
Depth Thermis		Plug	Calibra	ation Resi (kΩ)	stance	Tomporature (00)	Calibration Factor						
(meter		Letter	Trial	Trial Tri		Temperature (°C)	(°C)						
			1	2 3									
0.5	Black	А	16.31	16.32	16.32	0.00	0.02						
1.25		В	16.29	16.30	16.30	0.03	-0.01						
2.0	Tan	С	16.32	16.32	16.32	0.00	0.02						
3.0	Grey	D	16.33	16.34	16.34	-0.02	0.04						
4.0	Red	E	16.34	16.34	16.34	-0.02	0.04						
5.0	Brown	F	16.34	16.35	16.35	-0.03	0.05						
6.0	Pink	G	16.30	16.31 16.31		0.02	0.00						
7.0	Blue	Н	16.32	16.32	16.32	0.00	0.02						
8.0	Green	J	16.29	16.30	16.30	0.03	-0.01						
9.0	9.0 Yellow	K	16.37	16.38	16.38	-0.07	0.09						
10.0	Silver	L	16.31	16.31	16.31	0.02	0.00						
11.0	Orange	N	16.33	16.34	16.34	-0.02	0.04						
12.0	Orange/White	P	16.31	16.32	16.32	0.00	0.02						
13.0	Black/White	R	16.30	16.30	16.30	0.03	-0.01						
14.0	Brown/White	S	16.30	16.31	16.31	0.02	0.00						
15.0	Red/White	Т	16.35	16.35	16.35	-0.03	0.05						
	White	М											

Shipped by:

W/B Number:

APPENDIX F

CONSTANT HEAD PERMEABILITY TEST RESULTS, 20 MM CRUSHED AGGREGATE/8% BENTONITE

CONSTANT HEAD HYDRAULIC CONDUCTIVITY TEST REPORT

ASTM D5084

Project:

Assay Road Seepage Trench

Test No.:

P-1

Project No.: E14103172-01.003

Sample No.:

Client:

Agnico-Eagle Mines Ltd.

Sample Depth:

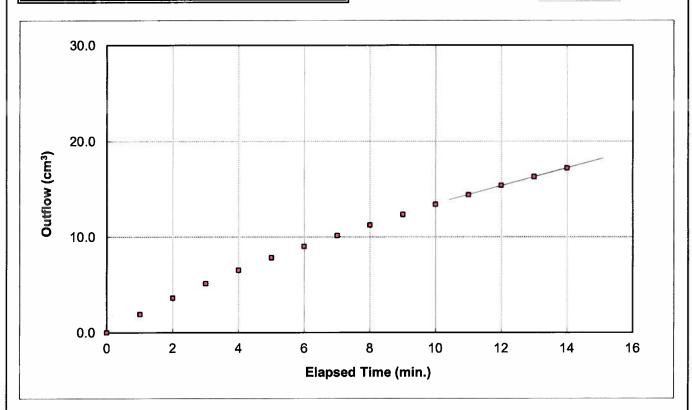
Attention:

Date Tested:

May 20, 2014

Tested By:

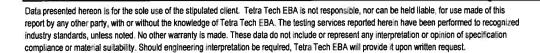
SK


Soil Description: SAND & GRAVEL, 20 mm max., some silt with 8% bentonite

Initial	Final
minual	i ii icii

			i iiiai
	Moisture Content (%)	3.7	12.7
	Dry Density (kg/m3)	1875	1875
	Compaction SPD (if applicable)	NA	NA

Hydraulic Conductivity $\mathbf{k_{20}} =$	2.2E-05	cm/sec


Sample Height =	17.02	cm
Sample Diameter =	9.86	cm
Head Differential =	15	kPa
Flow Q =	0.016	cm³/sec
Hydraulic Gradient i =	8.99	
Area of Sample A =	76.28	cm ²
Slope =	0.015	cm ³ /sec

Remarks:

Sample remolded at moisture content as received

Reviewed By: National

APPENDIX G

TETRA TECH EBA GENERAL TERMS AND CONDITIONS

GENERAL CONDITIONS

GEOTECHNICAL REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This geotechnical report pertains to a specific site, a specific development and a specific scope of work. It is not applicable to any other sites nor should it be relied upon for types of development other than that to which it refers. Any variation from the site or development would necessitate a supplementary geotechnical assessment.

This report and the recommendations contained in it are intended for the sole use of Tetra Tech EBA's Client. Tetra Tech EBA does not accept any responsibility for the accuracy of any of the data, the analyses or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than Tetra Tech EBA's Client unless otherwise authorized in writing by Tetra Tech EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of Tetra Tech EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where Tetra Tech EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed Tetra Tech EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by Tetra Tech EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of Tetra Tech EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except Tetra Tech EBA. Tetra Tech EBA's instruments of professional service will be used only and exactly as submitted by Tetra Tech EBA.

Electronic files submitted by Tetra Tech EBA have been prepared and submitted using specific software and hardware systems. Tetra Tech EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, Tetra Tech EBA has not been retained to investigate, address or consider and has not investigated, addressed or considered any environmental or regulatory issues associated with development on the subject site.

4.0 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. Tetra Tech EBA does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

5.0 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

6.0 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historic environment. Tetra Tech EBA does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional investigation and review may be necessary.

7.0 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

8.0 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

9.0 INFLUENCE OF CONSTRUCTION ACTIVITY

There is a direct correlation between construction activity and structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques are known.

10.0 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, as well as the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

11.0 DRAINAGE SYSTEMS

Where temporary or permanent drainage systems are installed within or around a structure, the systems which will be installed must protect the structure from loss of ground due to internal erosion and must be designed so as to assure continued performance of the drains. Specific design detail of such systems should be developed or reviewed by the geotechnical engineer. Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function.

12.0 BEARING CAPACITY

Design bearing capacities, loads and allowable stresses quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition assumed. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions assumed in this report in fact exist at the site.

13.0 SAMPLES

Tetra Tech EBA will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.

14.0 INFORMATION PROVIDED TO TETRA TECH EBA BY OTHERS

During the performance of the work and the preparation of the report, Tetra Tech EBA may rely on information provided by persons other than the Client. While Tetra Tech EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, Tetra Tech EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

