Appendix G12

Report: 2014 Air Quality and Dustfall Monitoring Report

MEADOWBANK GOLD PROJECT

2014 Air Quality and Dustfall Monitoring Report

In Accordance with NIRB Project Certificate No.004

Prepared by:
Agnico Eagle Mines Limited – Meadowbank Division

March, 2015

EXECUTIVE SUMMARY

The 2014 air quality and dustfall monitoring program at Meadowbank was conducted in support of the Air Quality and Dustfall Monitoring Plan - Version 2 (November, 2013).

The objective of the 2014 program was to measure dustfall, total suspended particulates (TSP), PM_{10} , $PM_{2.5}$ and NO_2 at four monitoring locations around the Meadowbank site. Locations were established in 2011 in consultation with Environment Canada.

Results obtained for the measured parameters were compared to Government of Nunavut (GN) Environmental Standards for Ambient Air Quality (October, 2011) for TSP, $PM_{2.5}$ and NO_2 ; BC Air Quality Objectives (August, 2013) for PM_{10} ; and Alberta Ambient Air Quality Guidelines (August, 2013) for dustfall. The Canadian Ambient Air Quality Standards for $PM_{2.5}$ (May, 2013) are also referenced.

Of 120 TSP samples obtained, one exceeded the relevant GN standard of 120 $\mu g/m^3$, with a concentration of 219 $\mu g/m^3$. This sample was obtained from DF-2, which is located immediately south (downwind) of the main mine plant area and adjacent to the TCG contractor area. Annual average TSP values at each station did not exceed the GN standard for that time period of 60 $\mu g/m^3$. For PM₁₀, four samples exceeded the BC Air Quality Objective of 50 $\mu g/m^3$ for the 24-h average, with values of 53, 63, 66 and 69 $\mu g/m^3$. For PM_{2.5}, one sample exceeded the GN standard of 30 $\mu g/m^3$ and the Canadian Ambient Air Quality Standard of 28 $\mu g/m^3$ for the 24-h average, with a concentration of 56 $\mu g/m^3$. No suspended particulates exceeded the relevant GN or Canadian standards for annual averages.

The Alberta recreational area guideline for dustfall was exceeded in 5 out of 44 samples, which is lower than 2013 (11 exceedances). The industrial area guideline was not exceeded in any sample.

The GN annual average standard for NO_2 of 32 ppb was not exceeded, with a maximum monthly average of 3.3 ppb.

Weather data collected onsite in 2014 are provided in Appendix A.

Estimated greenhouse gas emissions for the Meadowbank site as reported to Environment Canada's Greenhouse Gas Emissions Reporting Program in 2014 were 179,889 tonnes CO₂ equivalent. A year-over-year decline has been observed, with 195,686 tonnes in 2013 and 202,201 tonnes CO₂ equivalent in 2012.

A summary of incinerator stack testing results is provided. The result for mercury (average) was $64.09 \, \mu g/Rm^3 \, @11\%O_2$. This exceeded the Environment Canada guideline of $20 \, \mu g/Rm^3$. Although AEM has an alkaline battery recycling program whereby batteries are collected in numerous depots (and shipped south yearly), the investigation revealed that there could still be a significant volume of batteries disposed of with regular solid waste destined for the onsite incinerator. Alkaline batteries contain mercury, thus this would seem to be the most likely source. Incomplete combustion in the primary or secondary chamber may have been a small contributing factor on the dates of testing. By comparison the results for mercury in 2012 were <0.08 $\, \mu g/Rm^3 \, @11\%O_2$. As a result, AEM has implemented a comprehensive site wide information program to reinforce the requirements of the recycling program. This includes regular meetings with individual departments as well as placing information on the AEM intranet site. In addition stack testing will take place again in the summer of 2015.

Overall, there are no apparent trends towards increasing air quality concerns at the Meadowbank site.

TABLE OF CONTENTS

EXEC	JTIVE S	UMMARY	II
SECTI	ON 1 •	INTRODUCTION	1
1.1 1.2	•	ve	1 1 2
SECTI	ON 2 •	REGULATORY STANDARDS	4
SECTI	ON 3 •	MONITORING METHODS	5
3.1 3.2 3.3	Dustfal	M ₁₀ , PM _{2.5}	6
SECTI	ON 4 •	MONITORING RESULTS	7
4.1 4.2 4.3	Dustfal	M ₁₀ , PM _{2.5}	10
4.4			
SECTI	ON 6 •	GREENHOUSE GAS EMISSIONS	15
SECTI	ON 7 •	INCINERATOR STACK TESTING	16
SECTI	ON 8 •	MONITORING SUMMARY	17
8.1	8.1.1 8.1.2 8.1.3 8.1.4	rison to Regulatory Guidelines	17 17 17 17
8.2	Tempo	ral and Spatial Trends	17
SECTI	ON 9 •	ACTIONS	18
SECTI	ON 10 •	REFERENCES	25

APPENDICES

Appendix A: Appendix B: Appendix C: 2014 Weather Data

Laboratory Certificates Incinerator Stack Sampling Tests Report

LIST OF TABLES

Table 1. UTM coordinates and dates of measurement for the Meadowbank air quality and dustfall monitoring locations	1
Table 2. Government of Nunavut Environmental Standards for Ambient Air Quality (October, 2011) for the parameters of concern at Meadowbank. All values are for data normalized to standard conditions of 25°C and 101.3 kPa.	
LIST OF FIGURES	
Figure 1. Air quality and dustfall monitoring locations on the Meadowbank site	
ambient air quality. Figure 3. 24-h average concentration of airborne particulate matter less than 10 microns (PM ₁₀) at Meadowbank stations DF-1 and DF-2. Dashed line indicates the BC Air Quality Objective for this parameter.	
Figure 4. 24-average concentrations of airborne particulate matter less than 2.5 microns (PM _{2.5}) at Meadowbank stations DF-1 and DF-2. Dashed line indicates the 24-hr average GN standard for this parameter.	. •
Figure 5. Total 30-day-normalized dustfall at DF-1 – 4 at the Meadowbank site. Points represent start date of sample collection. Dashed line indicates the Alberta Environment Department's recreational area guideline of 0.53 mg/cm²/30d, and the dotted line indicates the industrial area guideline of 1.58 mg/cm²/30d	
Figure 6. Fixed (non-combustible) 30-day-normalized dustfall at DF-1 – 4 at the Meadowbank site. Points represent start date of sample collection.	
Figure 7. Monthly average concentration of NO ₂ at DF-1 and DF-2. Points represent start date of sample collection. Dashed line indicates GN standard for the annual average	

SECTION 1 • INTRODUCTION

1.1 OBJECTIVE

Since November, 2011, Agnico Eagle Mines Ltd. (AEM) has conducted outdoor dust and air quality monitoring at the Meadowbank site, near Baker Lake, Nunavut, as required under NIRB Project Certificate No. 004. Monitoring occurred in 2014 according to the Air Quality and Dustfall Monitoring Plan - Version 2 (November, 2013). The objective of this program is to monitor ambient air quality around the mine site perimeter, with the goal of verifying compliance with relevant environmental standards and mitigating potential environmental effects.

The parameters measured in 2014, in accordance with the Project Certificate, were suspended particulates (TSP, PM_{10} , $PM_{2.5}$), NO_2 and dustfall (settleable particulate matter). As described in the Air Quality and Dustfall Monitoring Plan, dustfall was measured approximately monthly and rates were normalized to 30 days; suspended particulates were measured over 24 h on a six day cycle; and NO_2 was measured over approximately one month periods.

This report also provides weather data as collected through the onsite weather station (Section 5), greenhouse gas emissions data as required by Environment Canada's Greenhouse Gas Emissions Reporting Program (GHGRP) (Section 6) and a summary of incinerator stack testing as conducted under Meadowbank's Incinerator Waste Management Plan (AEM, 2014) (Section 7).

1.2 MONITORING LOCATIONS

Monitoring locations were determined in consultation with Environment Canada in 2011. One station was moved in 2012 due to changes in the location of the Vault haul road (see 2012 Annual Report – Air Quality and Dust Monitoring Report). UTM coordinates are provided in Table 1, and locations are shown in relation to mine site features in Figure 1.

Table 1. UTM coordinates and dates of measurement for the Meadowbank air quality and dustfall monitoring locations.

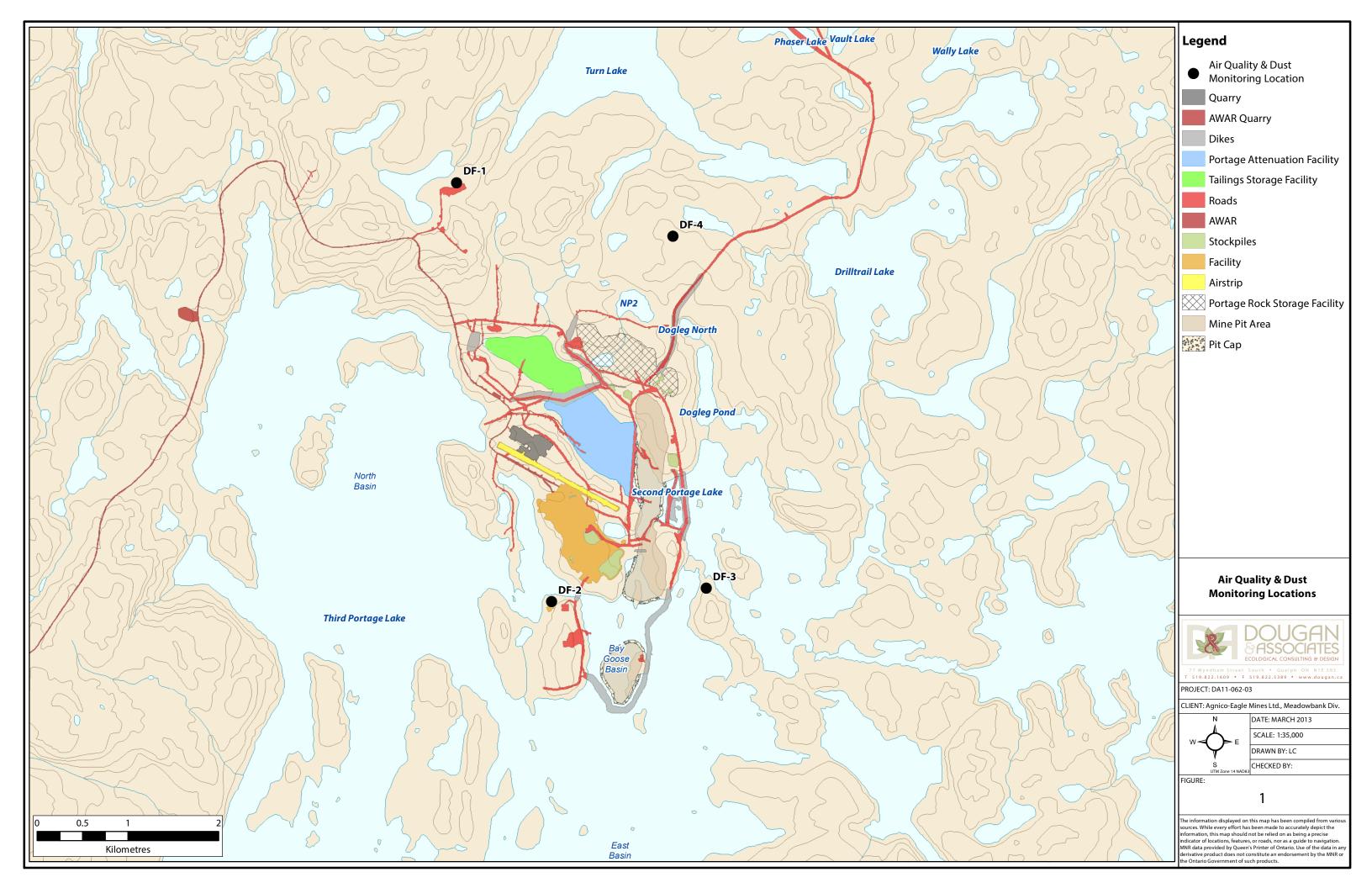
Monitoring Location	Measured Parameters	Easting	Northing
DF-1	TSP, PM ₁₀ , PM _{2.5} , NO ₂ , dustfall	636850	7217663
DF-2	TSP, PM ₁₀ , PM _{2.5} , NO ₂ , dustfall	637895	7213049
DF-3	Dustfall	639599	7213198
DF-4	Dustfall	639233	7217074

1.2.1 DF-1

Station DF-1 is located next to the explosive storage area (emulsion plant), and approximately 500 m north of the all-weather access road. All parameters (TSP, PM₁₀ and PM_{2.5}, NO₂ and dustfall) were monitored at this location from January through December, 2014.

1.2.2 DF-2

Station DF-2 is located at the northern corner of South Camp Island, near the TCG contractor area. PM_{10} and $PM_{2.5}$ were monitored from January through November, 2014, when a mechanical malfunction occurred with the instrument. TSP, NO_2 and dustfall were monitored from January through December, 2014.


1.2.3 DF-3

Station DF-3 is approximately 1,800 m east of the East Dike. Second Portage Lake is to the west and east. Dustfall only was monitored at this location from January through December, 2014.

1.2.4 DF-4

Station DF-4 is approximately 1,500 m southwest of Vault Pit. The original location of this monitoring station was chosen before the beginning of the construction of the Vault Road. Realignment of the road during construction placed the station within 10 feet of the road. Therefore, AEM re-positioned Station DF-4 approximately 480 m to the north-west on February 29, 2012 to be representative of the originally intended location relative to the road.

Dustfall only was monitored at this location from January through December, 2014.

SECTION 2 • REGULATORY STANDARDS

Data collected from the air quality and dustfall monitoring program at Meadowbank was compared to the available Government of Nunavut Environmental Standards for Ambient Air Quality (October, 2011). Standards for the measured parameters are provided in Table 2.

Table 2. Government of Nunavut Environmental Standards for Ambient Air Quality (October, 2011) for the parameters of concern at Meadowbank. All values are for data normalized to standard conditions of 25°C and 101.3 kPa.

Parameter	Time Frame	Standard	
i diametei	Time I fame	μg/m³	ppb
Fine Particulate Matter (PM2.5)	24-h average	30	
Total Suspended Particulate (TSP)	24-h average	120	
	Annual geometric mean	60	
Nitrogen Dioxide (NO ₂)	1-h average	400	213
	24-h average	200	106
	Annual arithmetic mean	60	32

In 2013, the Canadian Council of Ministers of the Environment adopted new Canadian Ambient Air Quality Standards ($PM_{2.5}$ and ozone only). Although these have not yet been incorporated into Nunavut's regulations, the published 24-h value for $PM_{2.5}$ of 28 μ g/m³ and annual average standard of 10 μ g/m³ are addressed here for reference.

No GN standard is available for coarse particulate matter (PM_{10}) so results were compared to the BC Air Quality Objective (August, 2013) of 50 $\mu g/m^3$.

Likewise, no standards for dustfall are available for Nunavut. Results of the dustfall analysis were compared to the Alberta Environment Department recreational area guideline (August, 2013) of 0.53 mg/cm²/30d and commercial/industrial guideline of 1.58 mg/cm²/30d, to provide context.

For all parameters and locations, trends over time were assessed.

SECTION 3 • MONITORING METHODS

3.1 TSP, PM₁₀, PM_{2.5}

In 2014, AEM field staff sampled suspended particulates (TSP, PM_{10} , $PM_{2.5}$) at the two locations previously described for 24-h periods every six days using Partisol Plus Model 2025 Sequential Air Samplers (TSP) and Partisol Plus Model 2025-D Dichotomous Sequential Air Samplers ($PM_{2.5}$ and $PM_{10-2.5}$). Partisol samplers draw in a stream of ambient air at a controlled flow rate, and particulates are collected on a pre-weighed filter supplied by an accredited laboratory. The exposed filter is then shipped back to the laboratory and re-weighed to measure the total accumulated particulates. Calculations for TSP, PM_{10} and $PM_{2.5}$ were performed according to the Partisol operating manual, as follows.

TSP is calculated as:

$$TSP = M_{TSP}/V$$

Where: TSP = mass concentration of particulates (µg/m³)

 M_{TSP} = final mass of TSP filter – initial mass of filter (µg/filter)

V = volume of air drawn in during the sampling period (~24 m³)

Since the dichotomous unit splits the intake air stream to determine $PM_{2.5}$ and PM_{coarse} ($PM_{10^-2.5}$), the volume of air is different for each filter. Calculations are performed as follows:

PM_{2.5} is calculated as:

$$PM_{2.5} = M_{2.5}/V_{2.5}$$

Where: $PM_{2.5} = mass$ concentration of particulates ($\mu g/m^3$)

 $M_{2.5}$ = final mass of PM_{2.5} filter – initial mass of filter (µg/filter)

 $V_{2.5}$ = volume of air drawn through the PM_{2.5} filter during the sampling period (~21.7 m³)

And PM_{coarse} is calculated as:

$$PM_{coarse} = M_{coarse}/V_{total} - PM_{2.5}(V_{coarse}/V_{total})$$

Where: $PM_{coarse} = mass$ concentration of particulates ($\mu g/m^3$)

M_{coarse} = final mass of PM_{coarse} filter – initial mass of filter (μg/filter)

V_{total} = total volume of air drawn into unit during sampling (~24m³)

V_{coarse} = volume of air drawn through the PM_{coarse} filter during the sampling period (~2.4 m³)

Concentration of PM₁₀ is then calculated as PM_{coarse} + PM_{2.5}.

For comparison to Government of Nunavut Ambient Air Quality Standards (2011), concentrations of particulates should be calculated using air volumes normalized to 25°C and 101.3kPA (standard temperature and pressure; STP). The Partisol instrument can calculate and store the V_{STD} value for

each filter's sampling period, but the default is to record the actual volume under ambient conditions (non-STP-normalized), as per the USEPA method. Since the default settings were not adjusted in 2014, standardized volumes were calculated from average temperature and pressure recorded by the unit during the sampling period, whenever possible. These values were available for all dates except February 10, 16 and 22 for the dichotomous unit. Estimates of suspended particulate concentrations using actual volumes are expected to be slightly conservative (higher than actual), since air temperatures are almost always colder than 25°C.

In addition, the air sampling unit is housed in an insulated container because winter temperatures inhibit operation. This is standard practice in northern climates. Since the unit's ambient temperature sensor is warmer than actual air temperature for much of the year, intake volumes are inflated compared to calculated volumes, resulting in conservative estimates of particulate concentrations.

3.2 DUSTFALL

Dustfall was collected in open vessels containing a purified liquid matrix over one month periods (approximately) at each of the four locations. Particles are deposited and retained in the liquid, which was then analyzed for total and fixed (non-combustible) dustfall. Calculated dustfall rates were normalized to 30 days (mg/cm²/30 days). Dustfall canisters were provided by and analyzed by an accredited laboratory.

3.3 NO₂

Concentrations of NO_2 by volume (ppb) were analyzed over one month periods (approximately 30 days) using a passive sampling device provided by Maxxam Analytics. No monitoring was proposed for other gaseous pollutants because of low concentrations predicted in pre-construction dispersion modelling (Cumberland, 2005).

The annual average NO₂ concentration by volume was calculated from the monthly data for comparison against the relevant standard.

SECTION 4 • MONITORING RESULTS

4.1 TSP, PM₁₀, PM_{2.5}

Sampling dates and 24-h average concentrations of TSP, PM₁₀ and PM_{2.5} are shown in Figures 2 – 4.

While data was unavailable for several months in 2013 due to maintenance requirements, AEM's Environmental Technicians are now able to provide onsite maintenance and calibration, so units were nearly fully operational in 2014.

A total of 2 filters were damaged in the instrument or during shipment and were not analyzed. This is a substantial improvement over the 12 filters damaged in 2013.

On August 3 and November 7, the instrument log indicated a power failure at DF-2. Since sample results are in line with others obtained, they were included in the dataset, but should be interpreted with caution.

Additionally, in 27 out of 51 samples at DF-1, and 10 out of 54 samples at DF-2, TSP results were lower than PM_{10} results. While not technically possible since PM_{10} is a subset of TSP, this has been observed by others with the same Partisol samplers over a similar range of concentrations (Doris North - Rescan, 2009). A similar frequency of exceedances was observed at DF-1 in 2013. Rescan (2009) indicated this was potentially due to a leak in the system, or laboratory measurement error. The samplers at Meadowbank undergo regular calibration, but considering the harsh operating conditions, an issue with the instrument is possible. Unlike previous years, the error occurred for a large range of TSP concentrations. While contamination of the travel blank occurred in 6 out of 12 shipments, no clear correlation with the TSP exceedances was observed. Efforts to determine the reason for this problem will continue, but since all results were lower than the GN standard, they are not handled separately in the dataset.

TSP concentrations were generally highest in April, with one exceedance of the GN 24-h standard of $120 \, \mu g/m^3$ at $219 \, \mu g/m^3$. The TSP standard is mainly based on potential for reduced visibility, soiling of structures and vehicles, and smothering of vegetation (not health concerns), so exceedance of one sample is not expected to result in measureable environmental impact. Additional actions were recommended to help reduce dust levels onsite in the 2013 report, and the maximum observed TSP concentration was reduced from $459 \, \mu g/m^3$.

The annual geometric mean concentrations of TSP at DF-1 and DF-2 were 6.5 and 12.8 $\mu g/m^3$, respectively. These estimates are well below the annual GN standard of 60 $\mu g/m^3$, and are similar to the values of 8 and 12 $\mu g/m^3$ obtained in 2012, and 4.6 and 14.0 $\mu g/m^3$ obtained in 2013.

The highest PM_{10} concentrations were observed at DF-2 between April and November. In total, four samples exceeded the BC Air Quality Objective of 50 μ g/m 3 for 24-h average PM_{10} , with values of 63 μ g/m 3 (DF-1), 53, 66 and 69 μ g/m 3 (DF-2). Average concentrations were 10 and 11 μ g/m 3 at DF-1 and DF-2, respectively.

One sample exceeded the GN standard of 30 $\mu g/m^3$ for 24-h average PM_{2.5}, and the Canadian Ambient Air Quality Standard of 28 $\mu g/m^3$, with a concentration of 56 $\mu g/m^3$. Annual average concentrations of PM_{2.5} were 1 and 5 $\mu g/m^3$ at DF-1 and DF-2, respectively, which are well below the Canadian Ambient Air Quality Standard for annual average PM_{2.5} of 10 $\mu g/m^3$.

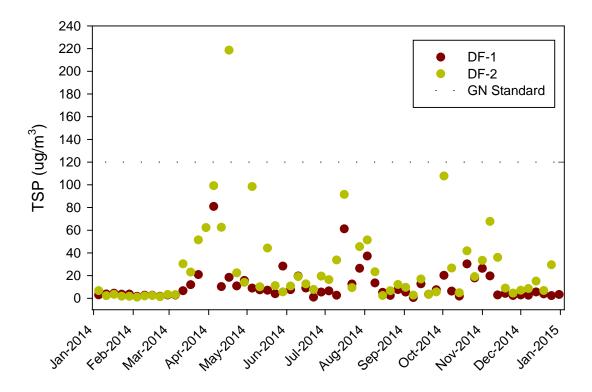


Figure 2. 24-h average concentrations of total suspended particulates (TSP) at Meadowbank stations DF-1 and DF-2. Dashed line indicates the 24-hr average GN standard for ambient air quality.

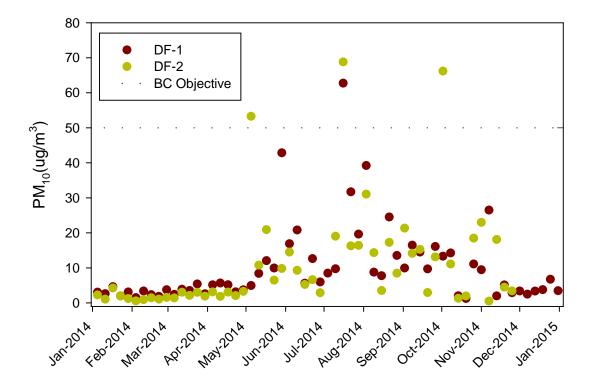


Figure 3. 24-h average concentration of airborne particulate matter less than 10 microns (PM_{10}) at Meadowbank stations DF-1 and DF-2. Dashed line indicates the BC Air Quality Objective for this parameter.

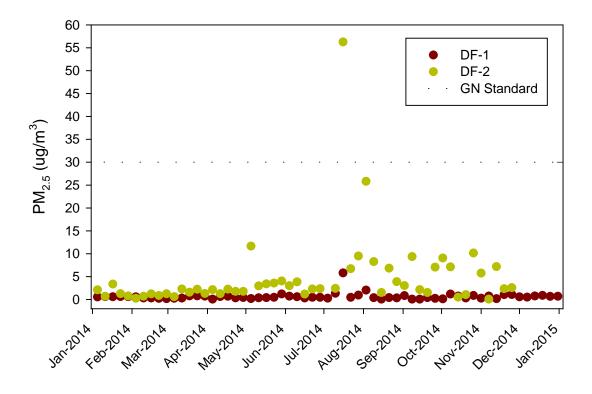


Figure 4. 24-average concentrations of airborne particulate matter less than 2.5 microns $(PM_{2.5})$ at Meadowbank stations DF-1 and DF-2. Dashed line indicates the 24-hr average GN standard for this parameter.

4.2 DUSTFALL

Results of the 2014 dustfall sampling program (30-day normalized rates of total and fixed dustfall) are provided in Figure 5 and 6. Fixed dustfall accounted for nearly all of total dustfall in most samples. Samples are plotted by the collection start date. To provide context, the Alberta Environment Department's recreational/residential and industrial/commercial area dustfall guidelines of 0.53 mg/cm²/30 days and 1.58 mg/cm²/30 days are indicated for total dustfall. These guidelines are to be used for airshed planning and management, as a general performance indicator, and to assess local concerns.

The recreational/residential area guideline was exceeded in 5 out of 44 samples, which is lower than 2013 (11 exceedances) and 2012 (10 exceedances). The industrial/commercial area guideline was not exceeded. While the applicability of these guidelines is not well defined, there are no recreational or residential users within vicinity of the mine site.

Although dustfall rates were typically lowest at DF-4, no other significant trends by location are apparent. Interestingly, dustfall peaks occurred particularly for DF-1 (near emulsion plant) in spring (April) and late fall (October). Relatively low dustfall values in May – September (as observed in

2013) may reflect increased efforts to manage dust on site roads through use of dust suppressants (calcium chloride application) and water trucks.

In 2013, recommendations were made to address issues of rust from the dustfall stands getting into samples. The stands were modified for 2014 by elevating the canisters compared to the metal holder, and no rust particles were observed in samples. In addition, recommendations were made in 2013 to revise airstrip watering procedures for maximum dust control. These were followed in 2014, and may have contributed to the reduction in the number of exceedances of the recreational area limit observed this year.

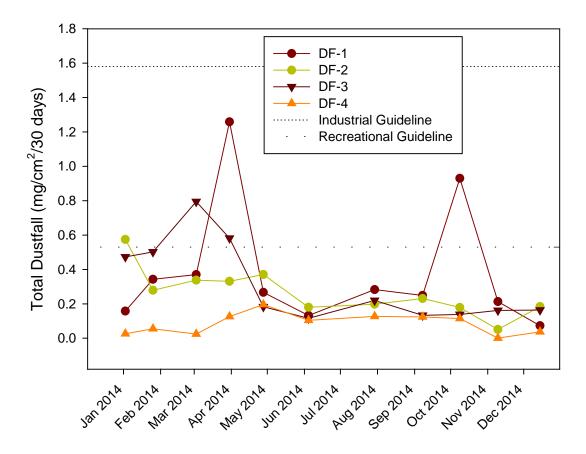


Figure 5. Total 30-day-normalized dustfall at DF-1 – 4 at the Meadowbank site. Points represent start date of sample collection. Dashed line indicates the Alberta Environment Department's recreational area guideline of 0.53 mg/cm²/30d, and the dotted line indicates the industrial area guideline of 1.58 mg/cm²/30d.

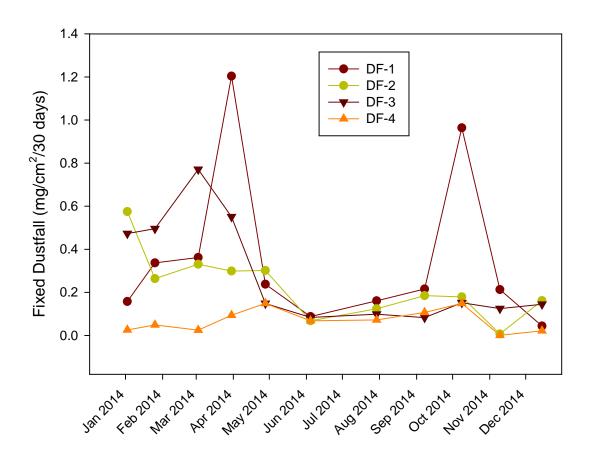


Figure 6. Fixed (non-combustible) 30-day-normalized dustfall at DF-1 – 4 at the Meadowbank site. Points represent start date of sample collection.

4.3 NO₂

Monthly-average NO_2 trends in 2014 are provided in Figure 7. Samples are referred to by the collection start date. One canister was lost in transit (September 7 – October 8). Concentrations of NO_2 vary between non-detect (<0.1) and 3.3 ppb. This maximum is slightly lower than the maximums of 5.3 and 6.8 ppb observed in 2013 and 2012, respectively. At most time points, concentrations are lower at DF-1 than DF-2. This is likely because DF-1 is further from the main camp area and there is generally less vehicular activity in the vicinity. No clear trends towards increasing or decreasing concentrations over time are evident.

Annual arithmetic mean concentrations were calculated for each station from the monthly-average values. The annual mean concentrations of NO₂ were 0.5 ppb and 1.9 ppb for DF-1 and DF-2, respectively (January 2, 2014 – January 18, 2015). These are both well below the Government of Nunavut Ambient Air Quality Standard of 32 ppb for the annual average.

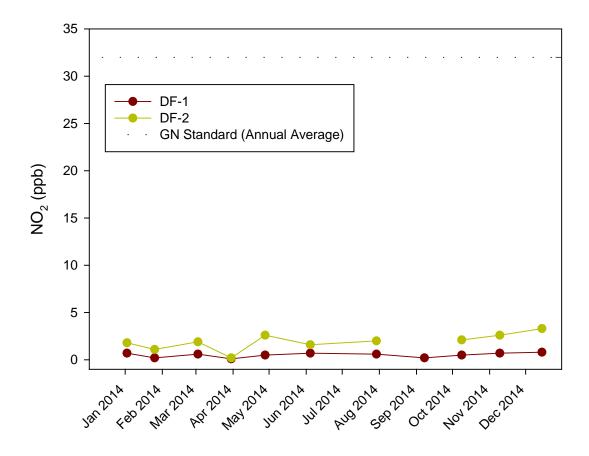


Figure 7. Monthly average concentration of NO₂ at DF-1 and DF-2. Points represent start date of sample collection. Dashed line indicates GN standard for the annual average.

4.4 QA/QC

QA/QC procedures in 2014 included the use of an accredited lab for sample preparation and analysis, and sample collection by appropriate personnel (trained by a professional air quality specialist).

AEM technicians are now trained to calibrate and maintain Partisol instruments on site, and travel blanks were used as part of particulate sample submissions. Several laboratory records indicated contamination of travel blanks up to 20 μ g/filter (MDL = 3 μ g/filter). Detections in travel blanks occurred in 6 out of 12 submissions. However, detections in laboratory blanks also occurred in at least 3 submissions. Since there were few exceedances of regulatory limits, the data was not handled separately. However, the laboratory will be contacted to review filter handling procedures and assess methods to reduce the possibility for contamination.

SECTION 5 • WEATHER DATA

Weather data for the dustfall and air quality monitoring periods was collected using the mine site's permanent weather station. Daily averages for wind speed, wind direction and temperature were available from this station.

Daily averages for wind speed, wind direction and temperature are provided in Appendix A.

SECTION 6 • GREENHOUSE GAS EMISSIONS

AEM is required by Environment Canada's Greenhouse Gas Emissions Reporting Program (GHGRP) to track greenhouse gas emissions based on annual fuel consumption, composition and the US EPA's AP-42 emission factors.

Estimated greenhouse gas emissions for the Meadowbank site as reported to Environment Canada's Greenhouse Gas Emissions Reporting Program in 2014 were 179,889 tonnes CO_2 equivalent. A year-over-year decline has been observed, with 195,686 tonnes in 2013 and 202,201 tonnes CO_2 equivalent in 2012.

SECTION 7 • INCINERATOR STACK TESTING

Incinerator stack testing is conducted under AEM's Incinerator Waste Management Plan (AEM, 2014), and results are summarized here. As per discussions with Environment Canada, incinerator stack testing is undertaken every two years. Prior to 2014, incinerator stack testing was completed by Exova Consultants on October 2012. Therefore, in accordance with AEM's Incinerator Waste Management Plan, stack testing was conducted from July 11 to July 13, 2014 by Exova. The "Stack sampling tests Report" is provided as Appendix C. Results from the testing indicated that the average (of 3 tests) measured mercury level (64.09 µg / Rm³ @ 11 % v/v O₂) exceeded the Environment Canada (EC) guideline (20 µg / Rm³ @ 11 % v/v O₂). Laboratory re-analysis confirmed these results. As a result an investigation with Meadowbank's Site Services Department was performed to determine the potential sources. Although AEM has an alkaline battery recycling program, the investigation revealed that there could still be a significant volume of batteries disposed of with regular solid waste destined for the onsite incinerator. Alkaline batteries contain mercury, thus this would seem to be the most likely source. In addition the incinerator may have been overloaded on the day of testing which would result in some incomplete combustion but this would not be considered as a major contributing factor. By comparison it should be noted that the 2012 result for mercury was <0.08 μg / Rm³ @ 11 % v/v O₂. The dioxin and furans results (53.6 pg TEQ / Rm³ @ 11 % v/v O2) are well below the EC guideline (80 pg TEQ / Rm³ @ 11 % v/v O₂).

As a result, AEM has implemented a comprehensive site wide information program to reinforce the requirements of the recycling program. This includes regular meetings with individual departments as well as placing information on the AEM intranet site. In addition stack testing will take place again in the summer of 2015.

SECTION 8 • MONITORING SUMMARY

8.1 COMPARISON TO REGULATORY GUIDELINES

8.1.1 Suspended Particulates (TSP, PM₁₀, PM_{2.5})

One sample exceeded the GN 24-h average TSP standard of 120 $\mu g/m^3$, with a concentration of 219 $\mu g/m^3$.

Four samples exceeded the BC Air Quality Objective of 50 μ g/m³ for 24-h average PM₁₀, with values of 53, 63, 66 and 69 μ g/m³.

One sample exceeded the GN standard of 30 $\mu g/m^3$ and the Canadian Ambient Air Quality Standard of 28 $\mu g/m^3$ for 24-h average PM_{2.5}, with a concentration of 56 $\mu g/m^3$.

No parameters exceeded the relevant GN or Canadian standards for annual averages.

8.1.2 Dustfall Guideline

The Alberta Environment Department's recreational area dustfall guideline was exceeded in 5 out of 44 samples, which is lower than previous years. No samples exceeded the industrial area guideline.

8.1.3 NO₂

The GN standard for NO₂ was not exceeded in 2014. The maximum one-month average concentration was nearly 10 times lower than the standard for the annual average.

8.1.4 Incinerator Emissions - Hg and Dioxin

Results from stack testing indicated that the average (of 3 tests) measured mercury level (64.09 μ g / Rm³ @ 11 % v/v O₂) exceeded the Environment Canada (EC) guideline (20 μ g / Rm³ @ 11 % v/v O₂). Laboratory re-analysis confirmed these results.

The dioxin and furans results (53.6 pg TEQ / Rm 3 @ 11 % v/v O2) are well below the EC guideline (80 pg TEQ / Rm 3 @ 11 % v/v O $_2$).

8.2 TEMPORAL AND SPATIAL TRENDS

For TSP, minimum concentrations generally occurred in winter (December – March), and relatively elevated concentrations tended to occur for shorter durations with reductions in particle size. In general, concentrations of suspended particulates were higher at DF-2, which is consistent with historical results and the placement of this station closer to the main site.

Dustfall at all stations was lowest in May - September, potentially as a result of spring precipitation and dust suppression during the summer months. Maximum concentrations continue to occur at DF-1, and minimum concentrations at DF-4.

Concentrations of NO_2 were always lower at DF-1 compared to DF-2, likely because DF-1 is more remote. No clear trends over the year were observed.

SECTION 9 • ACTIONS

The following actions were identified in 2013, and AEM's responses to each in 2014 are indicated below.

- The Partisol instrument should be set to record STP-normalized volume such that results can more readily be compared with GN standards. If this is not possible, recorded values of ambient average temperature and pressure will be downloaded for all sampling periods.
 - Complete values were downloaded.
- The Partisol instruments are now calibrated onsite so that they are operational throughout the year (not offline for several months at a time).
 - This practice has resulted in significant improvements in operation time, and will be continued.
- A review of Partisol filter cartridge handling procedures will be conducted to ensure minimal contamination during transport.
 - Despite an internal review of procedures, a number of trip blanks were still reported as above detection for particulates in 2014. However, several laboratory blanks were also above detection limits, so AEM will work with the contracted laboratory to determine whether further reductions in contamination are possible.
- Stands for the dustfall canisters will be cleaned and the canisters will be raised on the stand to reduce the possibility of rust deposition in the dustfall sample.
 - o Completed successfully no rust particulates identified in 2014.
- Calcium chloride solid flakes will be used instead of liquid CaCl as it has a longer lasting effect.
 - o Both products were used in 2014.
- Better timing and communication procedures with the water trucks will be implemented to ensure maximum mitigation of dust from the airstrip.
 - Completed successfully possible reason for generally lower dustfall rates compared to 2013, particularly in summer months.

The following actions will be implemented in 2015:

- AEM will continue to investigate potential reasons for why reported PM₁₀ values occasionally exceed TSP, and rectify if possible.
- The Partisol instrument should be set to record STP-normalized volume such that results can
 more readily be compared with GN standards. If this is not possible, recorded values of
 ambient average temperature and pressure will be downloaded for all sampling periods.
- All environment department technicians will be trained to audit the Partisol units to improve the frequency of maintenance.

- The analytical laboratory will be contacted to review of Partisol filter cartridge handling procedures to ensure minimal contamination, as measured through laboratory blanks and travel blanks.
- Information campaign will be undertaken to reinforce the battery recycling program at Meadowbank. Also stack testing of incinerator emissions will be undertaken to verify the source of the mercury exceedance.

SECTION 10 • REFERENCES

AEM, 2014. Meadowbank Gold Project Incinerator Waste Management Plan – Version 5. July, 2014.

AEM, 2012. 2011 Dust and Air Quality Monitoring Report. Meadowbank Gold Project. Prepared for Nunavut Impact Review Board.

Cumberland Resources Ltd. 2005. Meadowbank Gold Project Air Quality Impact Assessment Report.

Golder Associates Ltd. (Golder) 2008. Technical Memorandum. Addendum Report: Air Quality Monitoring Meadowbank Gold Project. Prepared for Agnico-Eagle Mines Ltd. May 16, 2008.

Rescan Environmental Services Ltd. (Rescan) 2009. Doris North Gold Mine Project: Air Quality Compliance Report for Section 4 Item 30 of the Project Certificate. Prepared for Hope Bay Mining Ltd. November, 2009.

AEM Meadowbank D	ivision
2014 Air Quality and Dustfall Monitoring F	Report

Appendix A

Weather Data

Table -Apx 1. Average temperature, wind speed and wind direction for all available dates in 2013 at the Meadowbank site.

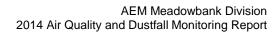
Date	Average Temperature (°C)	Minimum Temperature (°C)	Maximum Temperature (°C)	Wind Speed (m/s)	Wind Direction (deg.)
2014-01-01	-37.8	-39.0	-36.1	4.14	305
2014-01-02	-37.7	-38.6	-36.4	3.13	299
2014-01-03	-36.7	-38.4	-33.7	1.15	117
2014-01-04	-29.0	-33.8	-20.2	2.76	81
2014-01-05	-22.6	-28.5	-20.3	5.99	27
2014-01-06	-32.6	-36.1	-27.1	8.41	336
2014-01-07	-34.5	-36.1	-29.9	4.54	322
2014-01-08	-32.7	-34.7	-29.8	8.04	328
2014-01-09	-31.1	-33.7	-29.3	4.36	166
2014-01-10	-28.9	-31.3	-27.1	3.70	34
2014-01-11	-32.2	-35.0	-29.1	3.07	265
2014-01-12	-28.2	-31.8	-25.2	5.54	161
2014-01-13	-37.4	-39.3	-31.8	1.69	319
2014-01-14	-35.2	-39.2	-29.8	1.06	80
2014-01-15	-31.9	-38.0	-28.7	3.82	305
2014-01-16	-36.2	-38.9	-30.2	1.28	138
2014-01-17	-27.9	-34.2	-24.8	5.77	265
2014-01-18	-36.8	-38.6	-34.2	6.34	309
2014-01-19	-39.6	-41.9	-36.0	8.54	332
2014-01-20	-37.8	-40.7	-34.9	8.91	332
2014-01-21	-39.1	-39.9	-37.0	6.42	313
2014-01-22	-33.0	-37.8	-26.8	8.78	322
2014-01-23	-26.7	-30.6	-24.2	5.29	235
2014-01-24	-23.5	-29.5	-19.5	8.83	331
2014-01-25	-34.3	-36.5	-29.4	11.38	328
2014-01-26	-36.1	-37.5	-34.7	5.51	330
2014-01-27	-35.1	-37.0	-32.4	8.37	324
2014-01-28	-29.1	-32.5	-27.4	8.14	321
2014-01-29	-29.0	-31.3	-26.5	9.94	334
2014-01-30	-27.1	-31.6	-24.4	8.80	327
2014-01-31	-24.4	-30.7	-21.9	6.38	329
2014-02-01	-28.7	-31.3	-25.8	8.02	323
2014-02-02	-30.0	-31.9	-26.6	7.54	320
2014-02-03	-27.4	-30.9	-23.0	5.19	356
2014-02-04	-25.0	-27.1	-22.1	10.04	333
2014-02-05	-21.3	-25.2	-17.3	8.81	315
2014-02-06	-19.7	-23.8	-16.0	12.37	310

Date	Average Temperature	Minimum Temperature	Maximum Temperature	Wind Speed (m/s)	Wind Direction
2014-02-07	(° C) -27.3	(° C) -29.1	(°C) -22.8	6.79	(deg.) 336
2014-02-07	-28.1	-31.3	-24.2	9.89	336
2014-02-09	-28.7	-30.9	-26.7	7.12	314
2014-02-10	-31.6	-33.3	-29.2	2.94	257
2014-02-11	-30.5	-33.5	-28.8	2.94	173
2014-02-12	-36.5	-40.2	-32.0	1.43	272
2014-02-13	-36.8	-41.0	-32.5	1.42	174
2014-02-14	-32.2	-39.0	-29.5	1.63	319
2014-02-15	-39.3	-41.1	-35.9	1.62	335
2014-02-16	-36.5	-41.4	-29.8	2.97	159
2014-02-17	-26.1	-30.8	-21.5	7.12	151
2014-02-18	-32.8	-35.2	-30.4	4.57	324
2014-02-19	-29.9	-35.1	-27.1	2.43	138
2014-02-20	-27.4	-28.5	-25.8	2.82	127
2014-02-21	-27.2	-32.5	-23.4	2.50	354
2014-02-22	-30.9	-33.5	-27.6	3.78	360
2014-02-23	-33.2	-35.3	-31.4	6.93	324
2014-02-24	-32.2	-35.8	-26.9	7.01	295
2014-02-25	-34.5	-36.1	-32.8	12.18	321
2014-02-26	-34.9	-38.7	-32.7	10.77	320
2014-02-27	-37.3	-39.1	-35.3	12.85	330
2014-02-28	-33.8	-36.7	-30.7	5.69	6
2014-03-01	-34.5	-37.4	-30.6	12.18	325
2014-03-02	-32.5	-34.8	-30.8	10.48	334
2014-03-03	-32.9	-34.6	-31.1	6.95	318
2014-03-04	-28.9	-33.4	-22.9	4.61	311
2014-03-05	-22.8	-26.2	-19.1	4.91	287
2014-03-06	-21.1	-26.2	-19.0	6.06	298
2014-03-07	-29.2	-32.1	-26.2	3.37	270
2014-03-08	-28.3	-31.4	-24.6	5.78	271
2014-03-09	-30.4	-32.5	-28.6	4.23	279
2014-03-10	-32.2	-35.1	-26.6	1.40	319
2014-03-11	-36.0	-38.2	-34.1	6.75	323
2014-03-12	-33.4	-37.0	-30.3	3.80	274
2014-03-13	-31.7	-34.6	-26.5	0.70	342
2014-03-14	-33.5	-36.4	-30.8	2.23	349
2014-03-15	-34.2	-38.3	-29.6	3.25	307
2014-03-16	-31.1	-34.7	-26.6	2.00	243
2014-03-17	-28.4	-33.2	-23.4	5.35	108

Date	Average Temperature	Minimum Temperature	Maximum Temperature	Wind Speed (m/s)	Wind Direction
2014-03-18	(° C) -25.8	(°C) -30.6	(°C) -21.5	6.15	(deg.) 115
2014-03-10	-22.3	-25.2	-19.3	8.96	147
2014-03-19	-19.9	-23.4	-18.1	5.17	105
2014-03-20	-19.9	-31.4	-22.0	7.80	343
2014-03-21	-28.5	-31.4	-24.0	8.08	319
2014-03-22	-21.1	-32.2	-17.6	6.92	285
2014-03-24	-29.5	-32.7	-22.1	9.43	323
2014-03-24	-25.4	-27.9	-23.1	7.30	319
2014-03-25	-27.2	-29.5	-24.5	5.60	306
2014-03-27	-29.7	-31.9	-26.4	4.11	309
2014-03-28	-30.4	-35.0	-26.6	2.13	85
2014-03-29	-27.9	-32.0	-23.9	4.45	92
2014-03-30	-24.9	-28.6	-20.5	5.84	43
2014-03-31	-28.9	-31.6	-26.4	7.89	322
2014-04-01	-29.2	-33.9	-24.2	1.49	231
2014-04-02	-28.7	-32.2	-25.4	2.48	341
2014-04-03	-29.6	-33.5	-25.5	4.92	261
2014-04-04	-26.5	-30.7	-23.6	6.19	276
2014-04-05	-23.8	-29.7	-18.5	5.79	179
2014-04-06	-14.3	-19.2	-9.1	10.21	133
2014-04-07	-16.9	-25.3	-12.0	6.85	101
2014-04-08	-25.9	-28.5	-23.3	7.23	314
2014-04-09	-26.5	-29.8	-23.1	5.31	317
2014-04-10	-25.2	-28.7	-21.9	5.05	345
2014-04-11	-25.3	-29.0	-21.3	10.09	322
2014-04-12	-25.3	-27.0	-22.4	13.44	314
2014-04-13	-25.9	-28.9	-22.4	10.15	310
2014-04-14	-25.4	-29.3	-21.3	9.34	318
2014-04-15	-23.0	-27.8	-18.7	6.90	324
2014-04-16	-20.5	-24.5	-17.1	5.89	332
2014-04-17	-15.7	-20.5	-10.9	6.39	276
2014-04-18	-18.9	-23.2	-14.7	5.88	314
2014-04-19	-15.4	-24.6	-6.6	4.73	195
2014-04-20	-9.5	-14.7	-5.1	3.54	181
2014-04-21	-10.6	-16.7	-4.8	1.48	200
2014-04-22	-10.5	-15.1	-6.8	2.97	351
2014-04-23	-11.7	-17.7	-8.1	3.46	4
2014-04-24	-18.1	-22.4	-13.3	4.61	305
2014-04-25	-16.0	-21.6	-11.2	4.11	306

Date	Average Temperature (°C)	Minimum Temperature (°C)	Maximum Temperature (°C)	Wind Speed (m/s)	Wind Direction (deg.)
2014-04-26	-16.7	-22.1	-14.1	3.21	336
2014-04-27	-20.1	-26.3	-15.4	2.22	230
2014-04-28	-12.1	-21.2	-5.4	7.80	143
2014-04-29	-5.3	-7.1	-3.4	10.59	155
2014-04-30	-2.0	-5.1	0.6	3.44	178
2014-05-01	0.2	-2.6	3.4	4.48	207
2014-05-02	0.4	-3.5	3.9	3.59	109
2014-05-03	-4.6	-9.6	-0.8	6.73	45
2014-05-04	-9.6	-12.7	-6.0	8.11	360
2014-05-05	-7.7	-11.9	-2.9	6.80	17
2014-05-06	-5.2	-8.5	-0.6	5.62	27
2014-05-07	-6.0	-11.7	0.4	4.27	10
2014-05-08	-2.7	-8.1	1.9	2.04	71
2014-05-09	-2.5	-5.8	1.0	4.69	103
2014-05-10	-3.8	-5.8	-2.0	5.67	100
2014-05-11	-1.3	-4.5	3.0	3.78	90
2014-05-12	-4.0	-5.7	-1.7	3.53	156
2014-05-13	-3.1	-6.4	0.7	4.98	237
2014-05-14	-5.8	-7.7	-4.1	4.09	305
2014-05-15	-5.3	-10.2	0.9	2.47	267
2014-05-16	-3.4	-5.7	0.7	6.86	280
2014-05-17	-1.2	-5.2	3.5	6.19	256
2014-05-18	-5.7	-7.5	-4.1	7.47	348
2014-05-19	-5.3	-8.3	-1.6	3.54	245
2014-05-20	-1.6	-6.8	3.0	6.93	181
2014-05-21	-4.1	-6.8	0.3	4.79	334
2014-05-22	-3.2	-6.1	0.3	4.33	86
2014-05-23	0.6	-0.9	2.6	4.43	84
2014-05-24	2.0	0.7	3.8	3.43	96
2014-05-25	3.1	0.9	7.1	7.69	128
2014-05-26	0.7	-1.7	2.2	8.11	296
2014-05-27	1.6	-3.6	6.7	3.23	78
2014-05-28	4.7	0.6	11.6	4.65	115
2014-05-29	2.9	-2.1	8.5	3.05	24
2014-05-30	8.2	1.4	15.9	4.73	171
2014-05-31	5.0	1.8	7.8	6.94	115
2014-06-01	2.3	-1.6	5.9	9.51	14
2014-06-02	-2.2	-5.3	1.1	6.45	332
2014-06-03	-2.1	-4.3	1.1	4.74	16

Date	Average Temperature (°C)	Minimum Temperature (°C)	Maximum Temperature (°C)	Wind Speed (m/s)	Wind Direction (deg.)
2014-06-04	-2.8	-4.7	-0.8	9.75	284
2014-06-05	-2.4	-5.0	-0.1	8.28	314
2014-06-06	-0.7	-2.1	1.9	5.25	323
2014-06-07	2.6	-1.0	7.1	4.57	336
2014-06-08	3.6	0.1	8.0	6.46	12
2014-06-09	1.7	0.2	3.7	6.58	359
2014-06-10	2.4	-0.5	6.0	6.34	355
2014-06-11	5.4	-1.6	9.7	2.80	174
2014-06-12	7.4	3.1	10.9	3.03	169
2014-06-13	8.9	3.1	12.0	2.76	328
2014-06-14	8.6	3.5	13.2	1.66	146
2014-06-15	11.0	5.3	15.1	3.64	350
2014-06-16	9.7	7.4	12.7	4.08	84
2014-06-17	9.4	4.4	14.8	4.40	119
2014-06-18	10.3	4.6	16.0	4.62	143
2014-06-19	14.1	6.1	22.9	5.62	180
2014-06-20	16.6	8.4	24.4	3.96	198
2014-06-21	18.9	12.6	26.8	4.21	214
2014-06-22	9.2	5.3	13.7	8.27	343
2014-06-23	7.1	2.4	11.5	7.28	339
2014-06-24	9.6	3.2	16.2	5.72	315
2014-06-25	14.3	6.0	22.4	3.64	237
2014-06-26	16.7	8.4	23.0	3.38	97
2014-06-27	16.0	11.2	20.6	4.31	322
2014-06-28	11.3	5.5	15.8	3.31	51
2014-06-29	9.4	6.2	14.6	5.87	101
2014-06-30	9.3	6.3	12.1	4.86	96
2014-07-01	11.6	8.0	15.5	5.89	351
2014-07-02	12.0	6.6	17.4	7.15	346
2014-07-03	12.0	6.7	16.9	5.54	336
2014-07-04	13.0	7.5	17.5	3.37	5
2014-07-05	13.4	8.4	17.6	4.61	356
2014-07-06	14.2	7.5	20.6	3.16	304
2014-07-07	15.2	11.1	20.1	3.96	266
2014-07-08	9.7	6.1	13.7	8.24	332
2014-07-09	10.4	5.3	15.4	5.60	323
2014-07-10	12.3	6.7	16.6	4.15	325
2014-07-11	14.4	7.6	18.8	2.14	343
2014-07-12	12.9	8.9	15.7	4.06	98


Date	Average Temperature (°C)	Minimum Temperature (°C)	Maximum Temperature (°C)	Wind Speed (m/s)	Wind Direction (deg.)
2014-07-13	11.4	8.8	14.8	7.11	40
2014-07-14	15.7	10.7	20.5	3.37	68
2014-07-15	16.6	11.1	21.6	4.76	210
2014-07-16	18.2	13.1	23.7	2.83	241
2014-07-17	15.8	13.5	19.1	4.88	78
2014-07-18	11.4	9.4	14.0	8.75	268
2014-07-19	6.9	5.3	9.4	9.40	253
2014-07-20	7.3	5.4	10.2	8.33	280
2014-07-21	8.6	5.9	11.9	2.36	286
2014-07-22	10.4	8.6	12.8	3.93	339
2014-07-23	12.7	6.3	18.7	3.98	270
2014-07-24	14.1	8.7	19.6	2.61	322
2014-07-25	17.0	11.4	21.6	1.75	115
2014-07-26	17.0	13.3	20.4	4.48	134
2014-07-27	18.5	11.8	26.0	3.96	214
2014-07-28	16.5	11.9	20.5	2.78	360
2014-07-29	17.5	13.5	21.8	3.25	154
2014-07-30	18.5	14.6	24.8	4.27	158
2014-07-31	15.7	11.2	21.3	3.28	40
2014-08-01	19.5	13.9	25.7	5.62	144
2014-08-02	10.1	7.9	13.9	7.14	318
2014-08-03	13.0	8.0	17.0	6.13	195
2014-08-04	14.9	11.7	20.7	4.50	215
2014-08-05	11.9	9.6	13.6	3.69	312
2014-08-06	11.9	8.2	15.6	2.85	294
2014-08-07	10.4	7.8	12.9	6.40	352
2014-08-08	8.1	6.5	11.0	4.12	26
2014-08-09	7.3	5.2	9.8	7.49	317
2014-08-10	10.6	7.0	14.3	4.31	255
2014-08-11	12.2	7.8	17.1	2.70	235
2014-08-12	9.7	7.5	11.7	4.77	321
2014-08-13	9.8	6.7	13.4	4.80	292
2014-08-14	11.4	8.0	14.8	3.53	91
2014-08-15	10.2	4.2	12.9	6.64	26
2014-08-16	6.1	4.2	7.7	5.93	325
2014-08-17	7.4	4.5	11.0	2.47	63
2014-08-18	7.5	4.9	8.9	10.07	116
2014-08-19	3.8	2.0	5.5	14.73	321
2014-08-20	6.2	3.4	9.6	5.24	285

Date	Average Temperature	Minimum Temperature	Maximum Temperature	Wind Speed (m/s)	Wind Direction
2014-08-21	(°C) 7.0	(°C)	(°C) 8.2	4.23	(deg.) 128
2014-08-22	6.9	5.2	9.0	5.51	16
2014-08-23	6.2	4.3	8.2	4.90	343
2014-08-24	9.3	3.9	14.3	3.27	220
2014-08-25	10.7	5.1	15.5	6.29	211
2014-08-26	13.0	9.2	17.6	4.31	221
2014-08-27	12.6	10.0	16.2	5.41	178
2014-08-28	10.5	8.9	11.5	3.87	123
2014-08-29	7.1	5.9	9.0	6.52	324
2014-08-30	6.8	5.2	8.8	8.81	322
2014-08-31	8.0	5.9	11.1	6.38	321
2014-09-01	7.4	3.7	11.7	2.23	33
2014-09-02	9.3	5.1	13.0	2.37	72
2014-09-03	9.2	5.1	13.0	2.15	37
2014-09-04	10.1	5.3	14.4	1.13	337
2014-09-05	9.9	5.2	14.0	3.06	167
2014-09-06	4.8	2.3	8.6	7.26	305
2014-09-07	4.0	1.4	6.8	3.84	263
2014-09-08	2.8	0.3	4.5	3.68	97
2014-09-09	2.5	0.9	4.4	8.69	349
2014-09-10	2.5	0.8	4.5	9.50	338
2014-09-11	3.8	0.9	7.2	8.59	296
2014-09-12	-0.2	-1.7	1.2	3.98	350
2014-09-13	-0.8	-3.1	1.4	4.70	341
2014-09-14	1.8	-0.9	4.2	8.74	280
2014-09-15	-1.7	-3.0	-0.8	6.80	326
2014-09-16	-2.1	-3.9	-1.2	8.69	324
2014-09-17	-3.0	-4.4	-1.6	7.27	328
2014-09-18	-2.1	-3.6	-0.2	4.96	271
2014-09-19	-0.1	-1.8	1.3	7.99	114
2014-09-20	1.3	-0.1	3.7	4.64	21
2014-09-21	0.6	-0.8	2.1	4.71	268
2014-09-22	-3.6	-5.2	0.5	5.87	331
2014-09-23	-3.0	-5.9	0.2	3.59	198
2014-09-24	2.0	-1.0	5.4	8.77	167
2014-09-25	-0.6	-3.9	2.7	11.83	303
2014-09-26	-3.2	-4.5	-1.3	3.46	171
2014-09-27	0.5	-2.2	3.4	6.68	271
2014-09-28	-0.6	-2.8	1.8	5.96	289

Date	Average Temperature (°C)	Minimum Temperature (°C)	Maximum Temperature (°C)	Wind Speed (m/s)	Wind Direction (deg.)
2014-09-29	-4.5	-6.0	-2.5	5.05	294
2014-09-30	-6.9	-9.8	-4.4	7.38	49
2014-10-01	-7.7	-9.9	-6.0	4.85	73
2014-10-02	-7.3	-9.8	-5.1	6.09	66
2014-10-03	-6.1	-6.7	-5.5	6.24	30
2014-10-04	-6.4	-8.6	-4.9	5.51	8
2014-10-05	-5.9	-6.5	-5.0	4.29	26
2014-10-06	-4.4	-6.7	-1.0	8.57	24
2014-10-07	0.3	-1.0	1.3	5.05	59
2014-10-08	0.7	-0.2	2.2	3.31	65
2014-10-09	0.4	-1.3	1.2	2.90	29
2014-10-10	-3.8	-6.9	-1.3	3.69	15
2014-10-11	-2.8	-5.9	-1.6	5.34	326
2014-10-12	-5.6	-7.8	-3.4	5.77	360
2014-10-13	-5.4	-8.0	-3.8	2.52	29
2014-10-14	-4.3	-5.4	-3.1	3.98	294
2014-10-15	-4.6	-5.7	-3.6	4.29	306
2014-10-16	-5.6	-7.7	-3.7	4.33	347
2014-10-17	-5.0	-6.7	-3.9	5.70	324
2014-10-18	-6.9	-8.0	-5.5	3.03	23
2014-10-19	-5.8	-8.5	-2.3	8.61	139
2014-10-20	-3.8	-7.6	-2.0	4.07	285
2014-10-21	-9.3	-12.0	-6.2	3.33	91
2014-10-22	-0.9	-6.5	0.5	5.04	174
2014-10-23	-7.6	-13.6	-0.6	6.25	359
2014-10-24	-13.2	-16.6	-9.1	6.90	76
2014-10-25	-7.7	-9.4	-5.9	10.15	103
2014-10-26	-7.4	-8.4	-6.5	7.18	87
2014-10-27	-7.9	-10.5	-6.6	3.72	347
2014-10-28	-9.9	-12.4	-8.6	6.15	324
2014-10-29	-11.8	-13.6	-9.5	2.18	307
2014-10-30	-14.7	-21.0	-12.5	5.18	58
2014-10-31	-16.9	-22.1	-12.9	2.98	224
2014-11-01	-16.8	-19.5	-13.7	1.94	109
2014-11-02	-5.2	-15.5	-2.5	8.51	133
2014-11-03	-12.9	-20.1	-2.0	3.90	304
2014-11-04	-12.3	-18.0	-7.2	5.05	153
2014-11-05	-17.5	-21.7	-11.9	6.54	335
2014-11-06	-18.1	-20.4	-15.2	5.93	317

Date	Average Temperature	Minimum Temperature	Maximum Temperature	Wind Speed (m/s)	Wind Direction
	(°C)	(°C)	(°C)	` ,	(deg.)
2014-11-07	-19.8	-24.1	-15.2	4.90	171
2014-11-08	-9.2	-15.3	-4.3	7.03	88
2014-11-09	-9.7	-14.5	-5.2	10.44	15
2014-11-10	-14.7	-16.2	-12.1	8.10	11
2014-11-11	-17.9	-22.0	-12.8	8.05	352
2014-11-12	-20.8	-22.0	-19.7	5.34	301
2014-11-13	-20.0	-22.3	-16.7	4.11	260
2014-11-14	-23.9	-25.9	-16.7	7.89	333
2014-11-15	-25.9	-28.7	-24.2	5.93	319
2014-11-16	-24.1	-28.5	-18.8	4.51	337
2014-11-17	-20.1	-23.2	-16.1	7.93	330
2014-11-18	-16.6	-21.1	-12.7	2.46	231
2014-11-19	-19.1	-24.1	-14.5	8.34	341
2014-11-20	-24.9	-26.6	-23.4	8.10	320
2014-11-21	-26.9	-29.9	-23.2	5.57	305
2014-11-22	-30.1	-31.8	-28.9	3.08	287
2014-11-23	-31.6	-33.2	-30.4	4.39	295
2014-11-24	-30.9	-32.6	-29.5	2.91	288
2014-11-25	-31.9	-33.7	-28.9	4.66	309
2014-11-26	-28.6	-31.2	-26.5	6.99	306
2014-11-27	-25.8	-31.3	-22.7	7.15	270
2014-11-28	-30.9	-33.4	-27.1	5.62	292
2014-11-29	-27.8	-32.4	-24.9	3.94	272
2014-11-30	-30.6	-32.3	-28.7	2.47	105
2014-12-01	-33.8	-36.1	-31.4	2.58	302
2014-12-02	-31.6	-32.8	-30.6	2.14	131
2014-12-03	-35.4	-37.3	-31.8	3.62	340
2014-12-04	-35.8	-37.6	-33.9	3.68	286
2014-12-05	-32.0	-34.8	-29.1	3.69	117
2014-12-06	-35.1	-36.9	-34.0	5.72	330
2014-12-07	-29.3	-34.7	-24.5	8.12	287
2014-12-08	-25.7	-28.4	-23.8	8.78	301
2014-12-09	-29.5	-31.1	-27.8	2.51	249
2014-12-10	-20.2	-29.3	-14.2	9.23	143
2014-12-11	-20.0	-29.4	-11.8	8.48	325
2014-12-12	-30.3	-32.8	-23.6	5.79	344
2014-12-13	-19.1	-23.6	-17.1	6.13	76
2014-12-14	-19.8	-25.1	-16.6	4.37	354
2014-12-15	-21.9	-26.9	-21.1	3.94	337

Date	Average Temperature (°C)	Minimum Temperature (°C)	Maximum Temperature (°C)	Wind Speed (m/s)	Wind Direction (deg.)
2014-12-16	-27.8	-32.1	-21.0	2.83	142
2014-12-17	-16.4	-21.1	-13.6	5.70	250
2014-12-18	-16.7	-19.6	-13.8	1.62	91
2014-12-19	-20.6	-23.6	-14.0	2.05	69
2014-12-20	-18.8	-22.5	-17.5	2.86	105
2014-12-21	-15.0	-17.5	-14.0	2.27	159
2014-12-22	-17.5	-20.1	-15.0	4.24	24
2014-12-23	-23.0	-30.5	-17.7	3.84	354
2014-12-24	-27.5	-31.4	-23.2	3.20	86
2014-12-25	-20.8	-23.2	-18.5	9.11	94
2014-12-26	-22.3	-28.8	-18.9	6.19	54
2014-12-27	-29.0	-33.9	-26.0	5.05	351
2014-12-28	-33.5	-35.1	-31.1	4.53	308
2014-12-29	-31.1	-34.7	-25.5	7.74	314
2014-12-30	-29.5	-31.2	-27.1	11.38	308
2014-12-31	-22.7	-27.7	-19.5	4.40	282

2014 Laboratory Certificates

Your P.O. #: 90762

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/02/12

Report #: R1515247

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B408602 Received: 2014/02/04, 09:21

Sample Matrix: Filter # Samples Received: 26

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	26	N/A	2014/02/1	1 PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

This report has been generated and distributed using a secure automated process.

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		IP3359	IP3360	IP3361	IP3362	IP3363		
Sampling Date		2014/01/05	2014/01/11	2014/01/17	2014/01/23	2014/01/05		
	Units	PM2.5 RP2883	PM2.5 RP15512	PM2.5 RP10072	PM2.5 RP10332	PM2.5 RP903	RDL	QC Batch
PM2.5/10								
Particulate Matter	ug/filter	13	14	14	14	51	3	7378992

Maxxam ID		IP3364	IP3365	IP3366	IP3380	IP3381			
Sampling Date		2014/01/11	2014/01/17	2014/01/23	2014/01/05	2014/01/11			
	Units	PM2.5 RP 71616	PM2.5 RP890	PM2.5 RP17839	PM10 RP16554	PM10 RP90547	RDL	QC Batch	
PM2.5/10									
Particulate Matter	ug/filter	16	80	28	68	51	3	7378992	
RDL = Reportable Detection Limit									

Maxxam ID		IP3382	IP3383	IP3384	IP3385	IP3386	IP3403		
Sampling Date 2014/01/17 2014/01/23 2014/01/05 2014/01/11 2014/01/17 2014/01/23									
	Units	PM10 RP28672	PM10 RP10306	PM10 RP891	PM10 RP21384	PM10 RP4240	PM10 RP15503	RDL	QC Batch
PM2.5/10	<u> </u>	•	<u> </u>			<u> </u>		<u> </u>	·
Particulate Matter	ug/filter	107	35	10	10	32	20	3	7378992
i di ticalate Matter	46/111661	207		_	_				

Maxxam ID		IP3404	IP3405	IP3406	IP3407	IP3408	IP3409			
Sampling Date 2014/01/05 2014/01/11 2014/01/17 2014/01/23 2014/01/05 2014/01/11										
	Units	TSP RP10074	TSP RP14336	TSP RP87482	TSP RP10069	TSP RP89984	TSP RP37984	RDL	QC Batch	
PM2.5/10	·	•						<u> </u>		
Davida data Martina	/£:14.a.u	90	93	116	89	180	59	2	7378992	
Particulate Matter	ug/filter	80	93	110	69	100	33	,	7370332	

Maxxam ID		IP3410	IP3426	IP3510	IP3528				
Sampling Date		2014/01/17	2014/01/23						
	Units	TSP RP14087	TSP RP92738	TRIP BLANK RP22214	BLANK	RDL	QC Batch		
PM2.5/10									
Particulate Matter	ug/filter	91	45	<3	<3	3	7378992		
RDL = Reportable Detection Limit									

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7378992	SS6	Calibration Check	Particulate Matter	2014/02/11		100	%	N/A
Calibration	Check	:: A calibration standard	l analyzed at different times to eval	uate on-going calibration accu	racv.			

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Darren Funnell, Analyst I

Your P.O. #: 90762

Your Project #: 2014/01/02 - 2014/01/25 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/02/07

Report #: R1512442

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B408580 Received: 2014/02/04, 09:03

Sample Matrix: Air # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	4	2014/02/07	2014/02/07	PTC SOP-00180	
Total & Fixed Dustfall	4	2014/02/07	2014/02/07	PTC SOP-00180	AMD 32020
Exposure (Number of days)	4	2014/02/06	2014/02/06	PTC SOP-00146, PTC SOP-	
				00154, PTC SOP-00180	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

This report has been generated and distributed using a secure automated process.

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/02 - 2014/01/25

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		IP3235	IP3236	IP3237	IP3238		
Sampling Date		2014/01/02	2014/01/02	2014/01/02	2014/01/02		
	Units	1	2	3	4	RDL	QC Batch
Industrial							
Exposure	days	23	23	23	23	1	7374416
Dustfall Determination							
Total Dustfall	mg	10	36	30	2	1	7375148
Total Dustfall (30 day)	mg/cm2/30day	0.158	0.575	0.473	0.026	0.001	7375149
Total Fixed Dustfall	mg	10	36	30	2	1	7375148
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.158	0.575	0.473	0.026	0.001	7375149
RDL = Reportable Detection L	imit						

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/02 - 2014/01/25

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/02 - 2014/01/25

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7375148	OZ	Calibration Check	Total Dustfall	2014/02/07		101	%	N/A
7375148	ΟZ	Method Blank	Total Dustfall	2014/02/07	<1		mg	-
			Total Fixed Dustfall	2014/02/07	<1		mg	
7375148	ΟZ	RPD [IP3235-01]	Total Dustfall	2014/02/07	0		%	N/A
			Total Fixed Dustfall	2014/02/07	0		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Calibration Check: A calibration standard analyzed at different times to evaluate on-going calibration accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/02 - 2014/01/25

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Darren Funnell, Analyst I

Your P.O. #: 90762

Your Project #: 2014/01/02 - 2014/01/25 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/02/12

Report #: R1515335

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B408570 Received: 2014/02/04, 08:54

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2014/02/05	2014/02/12	PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1	2014/02/05	2014/02/05	PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service Email: LManchak@maxxam.ca

Email: LManchak@maxxam.ca Phone# (780) 378-8500

This report has been generated and distributed using a secure automated process.

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/02 - 2014/01/25

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		IP3193	IP3194		IP3195	
Sampling Date		2014/01/02	2014/01/02			
Sampling Date		11:46	10:20			
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch
n ·						
Passive Monitoring						
Calculated NO2	ppb	0.7	1.8	0.1		7372084
	ppb ppm	0.7	1.8	0.1	0.04	7372084 7372085

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/02 - 2014/01/25

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/02 - 2014/01/25

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed \	/alue	Recovery	Units	QC Limits
7372084	DF4	Calibration Check	Calculated NO2	2014/02/05		97	%	90 - 110
7372084	DF4	Spiked Blank	Calculated NO2	2014/02/05		101	%	90 - 110
7372084	DF4	Method Blank	Calculated NO2	2014/02/05	<0.1		ppb	

Calibration Check: A calibration standard analyzed at different times to evaluate on-going calibration accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/02 - 2014/01/25

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/03/20

Report #: R1537309

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B419036 Received: 2014/03/11, 11:00

Sample Matrix: Filter # Samples Received: 38

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	38	N/A	2014/03/2	0 PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.
Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		IZ2657	IZ2658	IZ2659	IZ2660	IZ2661				
Sampling Date		2014/01/29	2014/02/04	2014/02/10	2014/02/22	2014/02/28				
	Units	PM2.5 RP4242	PM2.5 RP93442	PM2.5 RP15505	PM2.5 RP27514	PM2.5 RP91293	RDL	QC Batch		
PM2.5/10										
Particulate Matter	ug/filter	14	13	7	5	4	3	7421789		
RDL = Reportable Detection Limit										

Maxxam ID		IZ2662	IZ2663	IZ2664	IZ2665	IZ2666				
Sampling Date		2014/02/04	2014/02/10	2014/02/16	2014/02/22	2014/02/28				
	Units	PM2.5 RP84364	PM2.5 RP926	PM2.5 RP15532	PM2.5 RP13795	PM2.5 RP46673	RDL	QC Batch		
PM2.5/10										
Particulate Matter	ug/filter	6	16	27	20	29	3	7421789		
RDL = Reportable Detection Limit										

Maxxam ID		IZ2667	IZ2668	IZ2669	IZ2670	IZ2671			
Sampling Date		2014/01/29	2014/02/04	2014/02/10	2014/02/16	2014/02/22			
	Units	PM10 RP15165	PM10 RP89952	PM10 RP84373	PM10 RP96713	PM10 RP15488	RDL	QC Batch	
PM2.5/10									
Particulate Matter	ug/filter	65	25	74	49	39	3	7421789	

Maxxam ID		IZ2672	IZ2673	IZ2674	IZ2675	IZ2676											
Sampling Date		2014/02/28	2014/01/29	2014/02/04	2014/02/10	2014/02/16											
	Units	PM10 RP15515	PM10 RP2876	PM10 RP22220	PM10 RP4238	PM10 RP83499	RDL	QC Batch									
PM2.5/10																	
Particulate Matter	ug/filter	95	13	8	7	8	3	7421789									
. articalate matter							RDL = Reportable Detection Limit										

Maxxam ID		IZ2677	IZ2678	IZ2679	IZ2680	IZ2702	IZ2703		
Sampling Date		2014/02/22	2014/02/28	2014/01/29	2014/02/04	2014/02/10	2014/02/16		
	Units	PM10 RP89985	PM10 RP16077	TSP RP930	TSP RP868	TSP RP15241	TSP RP4236	RDL	QC Batch
PM2.5/10									
PM2.5/10									
PM2.5/10 Particulate Matter	ug/filter	7	11	93	42	68	65	3	7421789

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		IZ2704	IZ2705	IZ2706	IZ2707		IZ2708	IZ2709		
Sampling Date		2014/02/22	2014/02/28	2014/01/29	2014/02/04		2014/02/10	2014/02/16		
	Units	TSP RP15511	TSP RP38948	TSP RP10073	TSP RP862	QC Batch	TSP RP27276	TSP RP90584	RDL	QC Batch
PM2.5/10										
Particulate Matter	ug/filter	45	76	43	23	7421789	51	58	3	7421790
RDL = Reportable Detection Limit										

Maxxam ID		IZ2710	IZ2711	IZ2723	IZ2724	IZ2777	IZ2804			
Sampling Date		2014/02/22	2014/02/28			2014/02/16	2014/01/29			
	Units	TSP RP29741	TSP RP9928	TRAVEL BLANK RP27518	LAB BLANK	PM2.5 RP89943	PM2.5 RP84123	RDL	QC Batch	
PM2.5/10										
Particulate Matter	ug/filter	36	86	<3	<3	7	17	3	7421790	
RDL = Reportable Detection Limit										

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

PM10 RP15165 (IZ2667) received to the Lab with small perforation on filter. SS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7421790	SS6	Calibration Check	Particulate Matter	2014/03/20		100	%	N/A
Calibration	n Check	:: A calibration standard	l analyzed at different times to eval	uate on-going calibration accu	racv.			

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/01/25 - 2014/03/02 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/03/13

Report #: R1532775

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B419022 Received: 2014/03/11, 10:48

Sample Matrix: Air # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	4	2014/03/13	2014/03/13	PTC SOP-00180	
Total & Fixed Dustfall	4	2014/03/13	2014/03/13	PTC SOP-00180	AMD 32020
Exposure (Number of days)	4	2014/03/13	3 2014/03/13	PTC SOP-00146, PTC SOP- 00154, PTC SOP-00180	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/25 - 2014/03/02

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		IZ2621	IZ2622	IZ2623	IZ2624		
Sampling Date		2014/01/25	2014/01/25	2014/01/25	2014/01/25		
	Units	1	2	3	4	RDL	QC Batch
Industrial							
Exposure	days	36	36	36	36	1	7414206
Dustfall Determination							
Total Dustfall	mg	34	27	49	5	1	7414203
Total Dustfall (30 day)	mg/cm2/30day	0.343	0.279	0.502	0.055	0.001	7414204
Total Fixed Dustfall	mg	33	26	49	5	1	7414203
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.337	0.264	0.496	0.049	0.001	7414204
RDL = Reportable Detection L	imit						

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/25 - 2014/03/02

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/25 - 2014/03/02

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7414203	OZ	Calibration Check	Total Dustfall	2014/03/13		101	%	N/A
7414203	ΟZ	Method Blank	Total Dustfall	2014/03/13	<1		mg	
			Total Fixed Dustfall	2014/03/13	<1		mg	
7414203	ΟZ	RPD [IZ2621-01]	Total Dustfall	2014/03/13	1.8		%	N/A
			Total Fixed Dustfall	2014/03/13	0		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Calibration Check: A calibration standard analyzed at different times to evaluate on-going calibration accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/25 - 2014/03/02

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Darren Funnell, Analyst I

Your P.O. #: 90762

Your Project #: 2014/01/25 - 2014/03/02 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/03/20

Report #: R1537286

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B419017 Received: 2014/03/11, 10:43

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2014/03/19	2014/03/20	PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1	2014/03/19	2014/03/19	PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/25 - 2014/03/02

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		IZ2611	IZ2612		IZ2613			
Sampling Date		2014/01/25	2014/01/25					
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch		
Passive Monitoring								
Calculated NO2	ppb	0.2	1.1	0.1		7421001		
NO2	ppm				0.06	7420997		
RDL = Reportable Detection Limit								

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/25 - 2014/03/02

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/25 - 2014/03/02

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed Va	lue Recovery	Units	QC Limits
7421001	DF4	Calibration Check	Calculated NO2	2014/03/19	98	%	90 - 110
7421001	DF4	Spiked Blank	Calculated NO2	2014/03/19	99	%	90 - 110
7421001	DF4	Method Blank	Calculated NO2	2014/03/19 <	0.1	ppb	

Calibration Check: A calibration standard analyzed at different times to evaluate on-going calibration accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/01/25 - 2014/03/02

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 82140

Your Project #: 2013/11/24 - 2014/01/02 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/01/20

Report #: R1503141

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B402315 Received: 2014/01/13, 09:08

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2014/01/19	2014/01/20	PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1	2014/01/19	2014/01/19	PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service Fmail: I Manchak@maxxam.ca

Email: LManchak@maxxam.ca Phone# (780) 378-8500

This report has been generated and distributed using a secure automated process.

Agnico Eagle Mines Ltd.

Client Project #: 2013/11/24 - 2014/01/02

Site Location: BAKER LAKE, NU

Your P.O. #: 82140

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		IK7614	IK7615		IK7616		
Compling Data		2013/11/24	2013/11/24				
Sampling Date		15:49	13:34				
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch	
Passive Monitoring							
Passive ivionitoring							
Calculated NO2	ppb	0.4	1.6	0.1		7354053	
	ppb ppm	0.4	1.6	0.1	0.05	7354053 7354051	

Agnico Eagle Mines Ltd.

Client Project #: 2013/11/24 - 2014/01/02

Site Location: BAKER LAKE, NU

Your P.O. #: 82140

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2013/11/24 - 2014/01/02

Site Location: BAKER LAKE, NU

Your P.O. #: 82140

QUALITY ASSURANCE REPORT

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed Value	Recovery	Units	QC Limits
7354053	OZ	Calibration Check	Calculated NO2	2014/01/19	99	%	90 - 110
7354053	ΟZ	Spiked Blank	Calculated NO2	2014/01/19	97	%	90 - 110
7354053	ΟZ	Method Blank	Calculated NO2	2014/01/19 <0.1		ppb	

Calibration Check: A calibration standard analyzed at different times to evaluate on-going calibration accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2013/11/24 - 2014/01/02

Site Location: BAKER LAKE, NU

Your P.O. #: 82140

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/04/21

Report #: R1554888

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B427196 Received: 2014/04/07, 14:20

Sample Matrix: Filter # Samples Received: 26

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	26	N/A	2014/04/1	5 PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		JG8913	JG8914	JG8915	JG8916	JG8917				
Sampling Date		2014/03/06	2014/03/12	2014/03/18	2014/03/24	2014/03/06				
	Units	PM2.5 RP10060	PM2.5 RP22215	PM2.5 RP13783	PM2.5 RP9906	PM2.5 RP10067	RDL	QC Batch		
PM2.5/10	PM2.5/10									
Particulate Matter	ug/filter	6	7	18	18	14	3	7453135		
RDL = Reportable Detection Limit										

Maxxam ID		JG8918	JG8919	JG8920	JG8923	JG8924					
Sampling Date		2014/03/12	2014/03/18	2014/03/24	2014/03/06	2014/03/12					
	Units	PM2.5 RP897	PM2.5 RP15486	PM2.5 RP84087	PM10 RP92785	PM10 RP15540	RDL	QC Batch			
PM2.5/10	PM2.5/10										
Particulate Matter	ug/filter	52	36	52	55	91	3	7453135			
RDL = Reportable Detection Limit											

Maxxam ID		JG8925	JG8926	JG8927	JG8928	JG8929				
Sampling Date		2014/03/18	2014/03/24	2014/03/06	2014/03/12	2014/03/18				
	Units	PM10 RP71615	PM10 RP17822	PM10 RP908	PM10 RP14085	PM10 RP15531	RDL	QC Batch		
PM2.5/10	·	•	•		•	•	<u> </u>			
Particulate Matter	ug/filter	71	120	21	24	17	3	7453135		
RDL = Reportable Detection Limit										

Maxxam ID		JG8930	JG8935	JG8936	JG8937	JG8938	JG8939				
Sampling Date		2014/03/24	2014/03/06	2014/03/12	2014/03/18	2014/03/24	2014/01/29				
	Units	PM10 RP27513	TSP RP10071	TSP RP17830	TSP RP27277	TSP RP26376	TSP RP15071	RDL	QC Batch		
PM2.5/10	PM2.5/10										
Particulate Matter	ug/filter	25	71	168	303	536	78	3	7453135		
RDL = Reportable Detection Limit											

Maxxam ID		JG8940	JG8941	JG8942	JG8947	JG8948			
Sampling Date		2014/02/04	2014/02/10	2014/02/16					
	Units	TSP RP19960	TSP RP40117	TSP RP54412	TRAVEL BLANK RP22621	LAB BLANK	RDL	QC Batch	
PM2.5/10									
Particulate Matter	ug/filter	764	580	1320	13	10	3	7453135	
RDL = Reportable Detection Limit									

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

TSP RP40117 (JG8941) received to the Lab with two small rips on filter. SS TSP RP26376 (JG8938) received to the Lab with visible particulate on filter. SS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your Project #: 2014/03/02 - 2014/03/30 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/04/16

Report #: R1553161

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B427195 Received: 2014/04/07, 14:18

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2014/04/15	2014/04/16	PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1	2014/04/15	2014/04/15	PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/02 - 2014/03/30

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		JG8910	JG8911		JG8912					
Campling Data		2014/03/02	2014/03/02							
Sampling Date		16:41	15:47							
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch				
Passive Monitoring										
Passive Monitoring										
Passive Monitoring Calculated NO2	ppb	0.6	1.9	0.1		7452926				
	ppb ppm	0.6	1.9	0.1	0.05	7452926 7452928				

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/02 - 2014/03/30

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/02 - 2014/03/30

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7452926	DF4	Spiked Blank	Calculated NO2	2014/04/15		100	%	90 - 110
7452926	DF4	Method Blank	Calculated NO2	2014/04/15	<0.1		ppb	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/02 - 2014/03/30

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your Project #: 2014/03/02 - 2014/03/30 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/04/21

Report #: R1554890

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B427192 Received: 2014/04/07, 14:16

Sample Matrix: Air # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	4	2014/04/16	2014/04/16	5 PTC SOP-00180	
Total & Fixed Dustfall	4	2014/04/16	2014/04/16	5 PTC SOP-00180	AMD 32020
Exposure (Number of days)	4	2014/04/09	2014/04/09	PTC SOP-00146, PTC SOP- 00154, PTC SOP-00180	-

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/02 - 2014/03/30

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		JG8887	JG8888	JG8889	JG8890		
Sampling Date		2014/03/02	2014/03/02	2014/03/02	2014/03/02		
	Units	1	2	3	4	RDL	QC Batch
Industrial							
Exposure	days	28	28	28	28	1	7446540
Dustfall Determination							
Total Dustfall	mg	28	26	61	2	1	7455231
Total Dustfall (30 day)	mg/cm2/30day	0.370	0.338	0.795	0.024	0.001	7455232
Total Fixed Dustfall	mg	28	25	59	2	1	7455231
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.362	0.331	0.771	0.024	0.001	7455232
RDL = Reportable Detection L	imit						

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/02 - 2014/03/30

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/02 - 2014/03/30

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7455231	OZ	Method Blank	Total Dustfall	2014/04/16	<1		mg	
			Total Fixed Dustfall	2014/04/16	<1		mg	
Method	Blank:	A blank matrix conta	ining all reagents used in the analytical p	rocedure. Used to identify lab	oratory conta	mination.		

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/02 - 2014/03/30

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your Project #: 2014/03/30 - 2014/04/27 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/05/07

Report #: R1563865

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B434626 Received: 2014/05/02, 09:06

Sample Matrix: Air # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	4	2014/05/07	2014/05/07	' PTC SOP-00180	
Total & Fixed Dustfall	4	2014/05/07	2014/05/07	7 PTC SOP-00180	AMD 32020
Exposure (Number of days)	4	2014/05/07	2014/05/07	PTC SOP-00146, PTC SOP- 00154, PTC SOP-00180	

 $^{^{}st}$ RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/30 - 2014/04/27

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		JN2074	JN2075	JN2076	JN2077		
Sampling Date		2014/03/30	2014/03/30	2014/03/30	2014/03/30		
	Units	1	2	3	4	RDL	QC Batch
Industrial							
Exposure	days	28	28	28	28	1	7477495
Dustfall Determination							
Total Dustfall	mg	96	25	44	10	1	7477492
Total Dustfall (30 day)	mg/cm2/30day	1.259	0.331	0.582	0.126	0.001	7477493
Total Fixed Dustfall	mg	92	23	42	7	1	7477492
Total Fixed Dustfall (30 day)	mg/cm2/30day	1.204	0.299	0.551	0.094	0.001	7477493
RDL = Reportable Detection L	imit						

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/30 - 2014/04/27

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/30 - 2014/04/27

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7477492	OZ	Method Blank	Total Dustfall	2014/05/07	<1		mg	
			Total Fixed Dustfall	2014/05/07	<1		mg	
Method I	Blank:	A blank matrix conta	ining all reagents used in the analytical p	procedure. Used to identify lab	oratory conta	mination.		

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/30 - 2014/04/27

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Darren Funnell, Analyst I

Your Project #: 2014/03/30 - 2014/04/27 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/05/12

Report #: R1565968

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B434624 Received: 2014/05/02, 09:03

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2014/05/08	2014/05/12	PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1	2014/05/08	2014/05/08	PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/30 - 2014/04/27

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		JN2070	JN2071		JN2072						
Sampling Date		2014/03/30	2014/03/30								
Sampling Date		11:34	10:30								
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch					
Passive Monitoring											
Passive Monitoring											
Calculated NO2	ppb	<0.1	0.2	0.1		7478577					
	ppb ppm	<0.1	0.2	0.1	0.10	7478577 7478683					

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/30 - 2014/04/27

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

No blanks returned. De	fault lab blank	used DF
------------------------	-----------------	---------

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/30 - 2014/04/27

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7478577	DF4	Spiked Blank	Calculated NO2	2014/05/08		100	%	90 - 110
7478577	DF4	Method Blank	Calculated NO2	2014/05/08	<0.1		ppb	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/03/30 - 2014/04/27

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/05/09

Report #: R1565217

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B434619 Received: 2014/05/02, 08:48

Sample Matrix: Filter # Samples Received: 25

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	25	N/A	2014/05/0	8 PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		JN2008	JN2009	JN2010	JN2011	JN2012					
Sampling Date		2014/03/30	2014/04/05	2014/04/11	2014/04/17	2014/03/30					
	Units	PM2.5 RP9918	PM2.5 RP28681	PM2.5 RP14339	PM2.5 RP22217	PM2.5 RP12397	RDL	QC Batch			
PM2.5/10											
Particulate Matter	ug/filter	17	<3	15	16	31	3	7479352			
RDL = Reportable Detection Limit											

Maxxam ID		JN2013	JN2014	JN2015	JN2016	JN2017					
Sampling Date		2014/04/05	2014/04/11	2014/04/17	2014/03/30	2014/04/05					
	Units	PM2.5 RP22198	PM2.5 RP903	PM2.5 RP87482	PM10 RP25442	PM10 RP17876	RDL	QC Batch			
PM2.5/10											
Particulate Matter	ug/filter	47	30	51	50	124	3	7479352			
RDL = Reportable Detection Limit											

Maxxam ID		JN2018	JN2019	JN2020	JN2021	JN2022					
Sampling Date		2014/04/11	2014/04/17	2014/03/30	2014/04/05	2014/04/11					
	Units	PM10 RP27431	PM10 RP15480	PM10 RP17813	PM10 RP22893	PM10 RP27282	RDL	QC Batch			
PM2.5/10											
Particulate Matter	ug/filter	134	116	19	29	18	2	7479352			
Particulate Matter	ug/IIIter	134	110	19	29	10	3	1413332			

Maxxam ID		JN2023	JN2024	JN2025	JN2026	JN2027	JN2028				
Sampling Date		2014/04/17	2014/03/30	2014/04/11	2014/04/17	2014/03/30	2014/04/05				
	Units	PM10 RP13064	TSP RP86155	TSP RP909	TSP RP92799	TSP RP17774	TSP RP841	RDL	QC Batch		
PM2.5/10											
Particulate Matter	ug/filter	26	1980	270	122	1630	2420	3	7479352		
RDL = Reportable Detection Limit											

Maxxam ID		JN2029	JN2030	JN2032	JN2033		
Sampling Date		2014/04/11	2014/04/17				
	Units	TSP RP876	TSP RP10064	TRAVEL BLANK RP27517	LAB BLANK	RDL	QC Batch
PM2.5/10							
Particulate Matter	ug/filter	1640	5500	4	<3	3	7479352
RDL = Reportable Detection	on Limit						

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

PM2.5 RP28681 (JN2009) received to the Lab with small perforation on filter. SS TSP RP841 (JN2028) received to the Lab with small perforation on filter and with visible particulate (grey powder) on filter. SS TSP RP010064 (JN2030) and TSP RP876 (JN2029) received to the Lab with visible particulate on filter. SS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Darren Funnell, Analyst I

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/06/23

Report #: R1590268

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B450096 Received: 2014/06/17, 09:53

Sample Matrix: Filter # Samples Received: 43

		Date	Date		
Analyses	Quantity	/ Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	42	N/A	2014/06/21	PTC SOP-00151	EPA 2.12 Monitoring
Mass Determination(ug/filter)	1	N/A	2014/06/23	PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		JW1325	JW1326	JW1327	JW1328	JW1329		
Sampling Date		2014/04/24	2014/04/30	2014/05/06	2014/05/12	2014/05/18		
	Units	PM2.5 RP10069	PM2.5 RP9903	PM2.5 RP22214	PM2.5 RP15070	PM2.5 RP4250	RDL	QC Batch
PM2.5/10								
Particulate Matter	ug/filter	8	9	4	8	9	3	7535260

Maxxam ID		JW1330	JW1331	JW1332	JW1333	JW1334		
Sampling Date		2014/05/24	2014/05/30	2014/04/24	2014/04/30	2014/05/06		
	Units	PM2.5 RP10079	PM2.5 RP917	PM2.5 RP76187	PM2.5 RP878	PM2.5 RP13270	RDL	QC Batch
PM2.5/10								
Particulate Matter	ug/filter	10	25	38	255	64	3	7535260
RDL = Reportable Detection L	imit							

Maxxam ID		JW1335	JW1336	JW1337	JW1338	JW1339		
Sampling Date		2014/05/12	2014/05/18	2014/05/24	2014/04/24	2014/04/30		
	Units	PM2.5 RP22210	PM2.5 RP15545	PM2.5 RP20564	PM10 RP4245	PM10 RP28690	RDL	QC Batch
PM2.5/10	<u> </u>		•				3	
Particulate Matter	ug/filter	75	75	84	72	80	3	7535260
RDL = Reportable Detection L	imit							

Maxxam ID		JW1340	JW1341	JW1342	JW1343	JW1344		
Sampling Date		2014/05/06	2014/05/12	2014/05/18	2014/05/24	2014/05/30		
	Units	PM10 RP27583	PM10 RP9933	PM10 RP9945	PM10 RP10344	PM10 RP91098	RDL	QC Batch
PM2.5/10								
•								
Particulate Matter	ug/filter	115	193	287	222	962	3	7535260

Maxxam ID		JW1345	JW1346	JW1347	JW1424	JW1425		
Sampling Date		2014/04/24	2014/04/30	2014/05/06	2014/05/12	2014/05/18		
	Units	PM10 RP22903	PM10 RP99742	PM10 RP93460	PM10 RP923	PM10 RP10348	RDL	QC Batch
PM2.5/10								
PM2.5/10 Particulate Matter	ug/filter	12	40	1040	194	438	3	7535260

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		JW1426	JW1427	JW1428	JW1429	JW1430		
Sampling Date		2014/05/24	2014/05/30	2014/04/24	2014/04/30	2014/05/06		
	Units	PM10 RP15541	PM10 RP4246	TSP RP925	TSP RP91117	TSP RP27516	RDL	QC Batch
PM2.5/10								
PM2.5/10 Particulate Matter	ug/filter	76	142	278	377	215	3	7535260

Maxxam ID		JW1435	JW1436	JW1437	JW1438	JW1439	JW1440		
Sampling Date		2014/05/12	2014/05/18	2014/05/24	2014/05/30	2014/04/24	2014/04/30		
	Units	TSP RP22896	TSP RP10066	TSP RP17815	TSP RP15564	TSP RP27590	TSP RP15236	RDL	QC Batch
	•	•	•						
PM2.5/10									
Particulate Matter	ug/filter	177	173	94	655	559	335	3	7535261

Maxxam ID		JW1441	JW1442	JW1443	JW1444	JW1447	JW1508		
Sampling Date		2014/05/06	2014/05/12	2014/05/18	2014/05/24	2014/05/30			
	Units	TSP RP14336	TSP RP44274	TSP RP22665	TSP RP907	TSP RP95651	TRAVEL BLANK RP9917	RDL	QC Batch
PM2.5/10									
Particulate Matter	ug/filter	2380	242	1080	259	129	18	3	7535261

Maxxam ID		JX3497		
Sampling Date		2014/04/24		
	Units	PM2.5 RP893	RDL	QC Batch
PM2.5/10		•	<u> </u>	
Particulate Matter	ug/filter	40	3	7535261
RDL = Reportable Detection	Limit			

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Darren Funnell, Analyst I

Your Project #: 2014/04/27 - 2014/06/04

Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/06/23

Report #: R1590398

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B448774 Received: 2014/06/12, 14:12

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2014/06/23	2014/06/23	PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1	2014/06/23	2014/06/23	PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Levi Manchak, Customer Servic Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/04/27 - 2014/06/04

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		JV2946	JV2947		JV2948	
Sampling Date		2014/04/27	2014/04/27			
		17:08	10:24			
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch
Passive Monitoring						
Passive Monitoring						
Passive Monitoring Calculated NO2	ppb	0.5	2.6	0.1		7536260
	ppb ppm	0.5	2.6	0.1	0.06	7536260 7536266

Agnico Eagle Mines Ltd.

Client Project #: 2014/04/27 - 2014/06/04

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Agnico Eagle Mines Ltd.

Client Project #: 2014/04/27 - 2014/06/04

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7536260	DF4	Spiked Blank	Calculated NO2	2014/06/23		107	%	90 - 110
7536260	DF4	Method Blank	Calculated NO2	2014/06/23	<0.1		ppb	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/04/27 - 2014/06/04

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/04/27 - 2014/06/04 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/06/18

Report #: R1587566

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B448769 Received: 2014/06/12, 14:09

Sample Matrix: Air # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	4	2014/06/18	2014/06/18	PTC SOP-00180	
Total & Fixed Dustfall	4	2014/06/18	2014/06/18	PTC SOP-00180	AMD 32020
Exposure (Number of days)	4	2014/06/17	2014/06/17	PTC SOP-00146, PTC SOP- 00154, PTC SOP-00180	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service Email: LManchak@maxxam.ca

Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/04/27 - 2014/06/04

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		JV2929	JV2930	JV2931	JV2932		
Sampling Date		2014/04/27	2014/04/27	2014/04/27	2014/04/27		
	Units	1	2	3	4	RDL	QC Batch
Industrial							
Exposure	days	38	38	38	38	1	7528913
Dustfall Determination							
Total Dustfall	mg	28	38	19	20	1	7530566
Total Dustfall (30 day)	mg/cm2/30day	0.267	0.371	0.183	0.196	0.001	7530567
Total Fixed Dustfall	mg	25	31	15	15	1	7530566
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.238	0.302	0.149	0.149	0.001	7530567
RDL = Reportable Detection L	imit						

Agnico Eagle Mines Ltd.

Client Project #: 2014/04/27 - 2014/06/04

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Agnico Eagle Mines Ltd.

Client Project #: 2014/04/27 - 2014/06/04

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7530566	OZ	Method Blank	Total Dustfall	2014/06/18	<1		mg	
			Total Fixed Dustfall	2014/06/18	<1		mg	
7530566	ΟZ	RPD [JV2929-01]	Total Dustfall	2014/06/18	2.2		%	N/A
			Total Fixed Dustfall	2014/06/18	5.0		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/04/27 - 2014/06/04

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Darren Funnell, Analyst I

Your P.O. #: 90762

Your Project #: 2014/06/04 - 2014/07/29 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/08/18

Report #: R1623068

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B467810 Received: 2014/08/07, 13:01

Sample Matrix: Air # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	4	2014/08/13	2014/08/13	PTC SOP-00180	
Total & Fixed Dustfall	4	2014/08/13	2014/08/13	PTC SOP-00180	AMD 32020
Exposure (Number of days)	4	2014/08/08	2014/08/08	PTC SOP-00146, PTC SOP- 00154, PTC SOP-00180	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/06/04 - 2014/07/29

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		KH0557	KH0558	KH0559	KH0561		
Sampling Date		2014/06/04	2014/06/04	2014/06/04	2014/06/04		
	Units	1	2	3	4	RDL	QC Batch
Industrial							
Exposure	days	55	55	55	55	1	7593437
Dustfall Determination							
Total Dustfall	mg	20	27	17	16	1	7599117
Total Dustfall (30 day)	mg/cm2/30day	0.132	0.180	0.116	0.104	0.001	7599118
Total Fixed Dustfall	mg	13	10	13	10	1	7599117
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.088	0.068	0.084	0.068	0.001	7599118
RDL = Reportable Detection L	imit						

Agnico Eagle Mines Ltd.

Client Project #: 2014/06/04 - 2014/07/29

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Agnico Eagle Mines Ltd.

Client Project #: 2014/06/04 - 2014/07/29

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7599117	OZ	Method Blank	Total Dustfall	2014/08/13	<1		mg	
			Total Fixed Dustfall	2014/08/13	<1		mg	
7599117	ΟZ	RPD [KH0557-01]	Total Dustfall	2014/08/13	3.0		%	N/A
			Total Fixed Dustfall	2014/08/13	0		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/06/04 - 2014/07/29

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/06/04 - 2014/07/29 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/08/15

Report #: R1622201

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B467801 Received: 2014/08/07, 12:56

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2014/08/11	2014/08/15	PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1	2014/08/11	2014/08/11	PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/06/04 - 2014/07/29

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		KH0505	KH0506		KH0507							
Campling Data		2014/06/04	2014/06/04									
Sampling Date		09:35	11:27									
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch						
Passive Monitoring												
Passive Monitoring												
Passive Monitoring Calculated NO2	ppb	0.7	1.6	0.1		7595843						
	ppb	0.7	1.6	0.1	0.08	7595843 7595847						

Agnico Eagle Mines Ltd.

Client Project #: 2014/06/04 - 2014/07/29

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Agnico Eagle Mines Ltd.

Client Project #: 2014/06/04 - 2014/07/29

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7595843	SS6	Spiked Blank	Calculated NO2	2014/08/11		98	%	90 - 110
7595843	SS6	Method Blank	Calculated NO2	2014/08/11	< 0.1		ppb	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/06/04 - 2014/07/29

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/08/22

Report #: R1626894

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B467757 Received: 2014/08/14, 12:17

Sample Matrix: Filter # Samples Received: 31

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	31	N/A	2014/08/2	2 PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		KH0255	KH0256	KH0257	KH0258	KH0259					
Sampling Date		2014/07/04	2014/07/10	2014/07/16	2014/07/22	2014/07/28					
	Units	PM2.5 RP13102	PM2.5 RP9932	PM2.5 RP22198	PM2.5 RP20606	PM2.5 RP876	RDL	QC Batch			
PM2.5/10											
Particulate Matter	ug/filter	6	28	120	10	20	3	7610432			
RDL = Reportable Detection Limit											

Maxxam ID		KH0260	KH0261	KH0262	KH0263	KH0264			
Sampling Date		2014/07/04	2014/07/10	2014/07/16	2014/07/22	2014/07/28			
	Units	PM2.5 RP19960	PM2.5 RP29748	PM2.5 RP28681	PM2.5 RP98002	PM2.5 RP15480	RDL	QC Batch	
PM2.5/10									
Particulate Matter	ug/filter	50	50	1160	142	198	3	7610432	
RDL = Reportable Detection Limit									

Maxxam ID		KH0268	KH0269	KH0270	KH0271	KH0272		
Sampling Date		2014/07/04	2014/07/10	2014/07/16	2014/07/22	2014/07/28		
	Units	PM10 RP15542	PM10 RP13291	PM10 RP27289	PM10 RP15521	PM10 RP4233	RDL	QC Batch
PM2.5/10	·		·				<u> </u>	
Particulate Matter	ug/filter	192	196	1320	736	437	3	7610432
i di ticulate iviattei	ug/ IIItCI	132				_		

Maxxam ID		KH0273	KH0274	KH0275	KH0276	KH0277	KH0282		
Sampling Date		2014/07/04	2014/07/10	2014/07/16	2014/07/22	2014/07/28	2014/07/04		
	Units	PM10 RP9937	PM10 RP90582	PM10 RP92799	PM10 RP9911	PM10 RP22217	TSP RP54425	RDL	QC Batch
PM2.5/10									
Particulate Matter	ug/filter	185	387	416	240	182	151	3	7610432
RDL = Reportable Detection Limit									

Maxxam ID		KH0283	KH0284	KH0285	KH0286	KH0287	KH0288		
Sampling Date		2014/07/10	2014/07/16	2014/07/22	2014/07/28	2014/07/04	2014/07/10		
	Units	TSP RP90254	TSP RP27510	TSP RP27431	TSP RP90540	TSP RP40117	TSP RP9943	RDL	QC Batch
PM2.5/10									
Particulate Matter	a/filtor	61	1400	295	612	384	780	3	7610432
Particulate Matter	ug/filter	01	1400	233	012	304	, 00		, 010 .01

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		KH0289	KH0290		KH0291	KH0296		
Sampling Date		2014/07/16	2014/07/22		2014/07/28			
	Units	TSP RP76151	TSP RP903	QC Batch	TSP RP87482	TRAVEL BLANK RP89966	RDL	QC Batch
PM2.5/10								
Particulate Matter	ug/filter	2110	221	7610432	1060	<3	3	7610433

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Sample KH0260-01: Sample container labeled as RP022207. Filter ID RP 19960.

Sample KH0262-01: Sample (KH0262) RP28681 is visibly darker. JP

Sample KH0270-01: Sample (KH0270) RP27289 is visibly darker. JP

Sample KH0271-01: Sample (KH0271) RP 15521 is visibly darker. JP

Sample KH0284-01: Sample (KH0284) RP27510 is visibly darker. JP

Sample KH0286-01: Sample (KH0286) RP90540 is visibly darker. JP

Sample KH0289-01: Sample (KH0289) RP76151 is visibly darker. JP

Sample KH0291-01: Sample (KH0291) RP87482 is visibly darker. JP

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/08/13

Report #: R1620829

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B467783 Received: 2014/08/07, 12:40

Sample Matrix: Filter # Samples Received: 31

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	31	N/A	2014/08/1	3 PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		KH0410	KH0411	KH0412	KH0413	KH0414	KH0415		
Sampling Date		2014/06/04	2014/06/10	2014/06/16	2014/06/22	2014/06/28	2014/06/04		
	Units	PM2.5 RP29749	PM2.5 RP920	PM2.5 RP9948	PM2.5 RP892	PM2.5 RP28643	PM2.5 RP1582	RDL	QC Batch
PM2.5/10									
PM2.5/10 Particulate Matter	ug/filter	16	13	7	10	10	66	3	7598965

Maxxam ID		KH0416	KH0417	KH0418	KH0419	KH0420		
Sampling Date		2014/06/10	2014/06/16	2014/06/22	2014/06/28	2014/06/04		
	Units	PM2.5 RP10071	PM2.5 RP87500	PM2.5 RP19960	PM2.5 RP22621	PM10 RP27721	RDL	QC Batch
PM2.5/10								
Particulate Matter	ug/filter	80	25	50	50	397	3	7598965

Maxxam ID		KH0421	KH0422	KH0423	KH0424	KH0425	KH0426				
Sampling Date		2014/06/10	2014/06/16	2014/06/22	2014/06/28	2014/06/04	2014/06/10				
	Units	PM10 RP2880	PM10 RP905	PM10 RP872	PM10 RP2875	PM10 RP28543	PM10 RP22216	RDL	QC Batch		
PM2.5/10	PM2.5/10										
Particulate Matter	ug/filter	485	126	297	130	287	134	3	7598965		
RDL = Reportable Detection Limit											

Maxxam ID		KH0427	KH0428	KH0429	KH0430	KH0431	KH0432		
Sampling Date		2014/06/16	2014/06/22	2014/06/28	2014/06/04	2014/06/10	2014/06/16		
	Units	PM10 RP915	PM10 RP9946	PM10 RP27513	TSP RP28672	TSP RP10060	TSP RP895	RDL	QC Batch
PM2.5/10									
Particulate Matter	ug/filter	99	110	18	186	468	213	3	7598965
RDL = Reportable Detection Limit									

Maxxam ID		KH0433	KH0434	KH0435	KH0436	KH0437	KH0438		
Sampling Date		2014/06/22	2014/06/28	2014/06/04	2014/06/10	2014/06/16	2014/06/22		
	Units	TSP RP82055	TSP RP54427	TSP RP27284	TSP RP9940	TSP RP10346	TSP RP15062	RDL	QC Batch
PM2.5/10									
Particulate Matter	ug/filter	24	128	261	444	300	188	3	7598965
i ai ticulate iviattei	ug/IIItei	24	120					_	

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		KH0439		KH0440		
Sampling Date		2014/06/28				
	Units	TSP RP84094	QC Batch	TRAVEL BLANK RP28670	RDL	QC Batch
PM2.5/10						
Particulate Matter	ug/filter	461	7598965	6	3	7598966
. a. t.caiate iviatte.	6/					

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/07/29 - 2014/09/07

Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/09/23

Report #: R1647470

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B482901 Received: 2014/09/18, 11:11

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2014/09/22	2014/09/23	PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1	2014/09/22	2014/09/22	PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/07/29 - 2014/09/07

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		KQ0027	KQ0028		KQ0029				
Compling Data		2014/07/29	2014/07/29						
Sampling Date		14:08	15:39						
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch			
Passive Monitoring									
Passive Monitoring									
Passive Monitoring Calculated NO2	ppb	0.6	2.0	0.1		7642973			
· ·	ppb ppm	0.6	2.0	0.1	0.07	7642973 7647936			

Agnico Eagle Mines Ltd.

Client Project #: 2014/07/29 - 2014/09/07

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Agnico Eagle Mines Ltd.

Client Project #: 2014/07/29 - 2014/09/07

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7642973	SS6	Spiked Blank	Calculated NO2	2014/09/22		99	%	90 - 110
7642973	SS6	Method Blank	Calculated NO2	2014/09/22	< 0.1		ppb	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/07/29 - 2014/09/07

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/07/29 - 2014/09/07 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/09/25

Report #: R1649084

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B482896 Received: 2014/09/18, 11:08

Sample Matrix: Air # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	4	2014/09/24	2014/09/24	PTC SOP-00180	
Total & Fixed Dustfall	4	2014/09/24	2014/09/24	PTC SOP-00180	AMD 32020
Exposure (Number of days)	4	2014/09/24	2014/09/24	PTC SOP-00146, PTC SOP- 00154, PTC SOP-00180	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/07/29 - 2014/09/07

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		KQ0007	KQ0008	KQ0009	KQ0010				
Sampling Date		2014/07/29	2014/07/29	2014/07/29	2014/07/29				
	Units	1	2	3	4	RDL	QC Batch		
Industrial									
Exposure	days	40	40	40	40	1	7651980		
Dustfall Determination									
Total Dustfall	mg	31	22	24	14	1	7651977		
Total Dustfall (30 day)	mg/cm2/30day	0.283	0.198	0.220	0.127	0.001	7651978		
Total Fixed Dustfall	mg	18	14	11	8	1	7651977		
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.161	0.124	0.099	0.072	0.001	7651978		
RDL = Reportable Detection Limit									

Agnico Eagle Mines Ltd.

Client Project #: 2014/07/29 - 2014/09/07

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Agnico Eagle Mines Ltd.

Client Project #: 2014/07/29 - 2014/09/07

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units	QC Limits
7651977	SSZ	Method Blank	Total Dustfall	2014/09/24	<1		mg	
			Total Fixed Dustfall	2014/09/24	<1		mg	
7651977	SSZ	RPD [KQ0007-01]	Total Dustfall	2014/09/24	2.2		%	N/A
			Total Fixed Dustfall	2014/09/24	0		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/07/29 - 2014/09/07

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/08/18 - 2014/09/19 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/10/16

Report #: R1663782 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B487284 Received: 2014/09/30, 11:08

Sample Matrix: Air # Samples Received: 41

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	5	2014/10/08	2014/10/08	PTC SOP-00180	
Determination of Dustfall-mg/cm2/30 days	12	2014/10/08	2014/10/10	PTC SOP-00180	
Determination of Dustfall-mg/cm2/30 days	12	2014/10/08	2014/10/14	PTC SOP-00180	
Determination of Dustfall-mg/cm2/30 days	12	2014/10/08	2014/10/15	PTC SOP-00180	
Total & Fixed Dustfall	5	2014/10/08	2014/10/08	PTC SOP-00180	AMD 32020
Total & Fixed Dustfall	12	2014/10/08	2014/10/10	PTC SOP-00180	AMD 32020
Total & Fixed Dustfall	12	2014/10/08	2014/10/14	PTC SOP-00180	AMD 32020
Total & Fixed Dustfall	12	2014/10/08	2014/10/15	PTC SOP-00180	AMD 32020
Exposure (Number of days)	41	2014/10/08	2014/10/08	PTC SOP-00146, PTC SOP- 00154, PTC SOP-00180	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/08/18 - 2014/09/19

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

Maxxam ID		KS7000	KS7001	KS7002	KS7003	KS7013	KS7014			
Sampling Date		2014/08/18	2014/08/18	2014/08/18	2014/08/18	2014/08/18	2014/08/18			
	Units	DF-T7	DF-V-S-50	DF-V-N-50	DF-18E-50A	DF-18E-50B	DF-18E-100A	RDL	QC Batch	
Industrial										
Exposure	days	32	32	31	31	31	31	1	7671254	
Dustfall Determination										
Total Dustfall	mg	10	260	49	67	59	39	1	7671574	
Total Dustfall (30 day)	mg/cm2/30day	0.110	3.030	0.576	0.789	0.704	0.462	0.001	7671576	
Total Fixed Dustfall	mg	7	250	46	65	57	38	1	7671574	
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.076	2.886	0.540	0.768	0.675	0.455	0.001	7671576	
RDL = Reportable Detection Limit										

Maxxam ID		KS7018	KS7019	KS7020	KS7021	KS7022	KS7023			
Sampling Date		2014/08/18	2014/08/18	2014/08/18	2014/08/18	2014/08/18	2014/08/18			
	Units	DF-18E-100B	DF-18E-150A	DF-18E-150B	DF-18E-300A	DF-18E-300B	DF-18W-150A	RDL	QC Batch	
Industrial										
Exposure	days	31	31	31	31	31	31	1	7671254	
Dustfall Determination										
Total Dustfall	mg	26	20	26	17	18	230	1	7671574	
Total Dustfall (30 day)	mg/cm2/30day	0.306	0.242	0.313	0.199	0.213	2.709	0.001	7671576	
Total Fixed Dustfall	mg	25	20	26	16	17	92	1	7671574	
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.299	0.242	0.313	0.192	0.199	1.088	0.001	7671576	
RDL = Reportable Detection Limit										

Maxxam ID		KS7024	KS7025	KS7026	KS7027	KS7029	KS7071			
Sampling Date		2014/08/18	2014/08/18	2014/08/18	2014/08/18	2014/08/18	2014/08/18			
	Units	DF-18W-150B	DF-18W-100A	DF-18W-100B	DF-18W-50A	DF-18W-50B	DF-1E	RDL	QC Batch	
Industrial										
Exposure	days	31	31	31	31	31	31	1	7671254	
Dustfall Determination										
Total Dustfall	mg	14	28	26	38	31	28	1	7671574	
Total Dustfall (30 day)	mg/cm2/30day	0.171	0.334	0.306	0.455	0.370	0.327	0.001	7671576	
Total Fixed Dustfall	mg	14	27	24	37	31	25	1	7671574	
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.164	0.320	0.284	0.434	0.363	0.291	0.001	7671576	
RDL = Reportable Detection Limit										

Agnico Eagle Mines Ltd.

Client Project #: 2014/08/18 - 2014/09/19

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

Maxxam ID		KS7072	KS7073	KS7074	KS7076	KS7077	KS7078			
Sampling Date		2014/08/18	2014/08/18	2014/08/18	2014/08/18	2014/08/18	2014/08/18			
	Units	DF-1W	DF-78E-50A	DF-78E-50B	DF-78E-100A	DF-78E-100B	DF-78E-150A	RDL	QC Batch	
Industrial										
Exposure	days	31	31	31	31	31	31	1	7671254	
Dustfall Determination										
Total Dustfall	mg	16	98	93	57	43	30	1	7671574	
Total Dustfall (30 day)	mg/cm2/30day	0.185	1.159	1.102	0.675	0.512	0.357	0.001	7671576	
Total Fixed Dustfall	mg	13	95	91	54	41	30	1	7671574	
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.149	1.123	1.074	0.640	0.483	0.357	0.001	7671576	
RDL = Reportable Detection Limit										

Maxxam ID		KS7080	KS7081	KS7083		KS7084	KS7086			
Sampling Date		2014/08/18	2014/08/18	2014/08/18		2014/08/18	2014/08/18			
	Units	DF-78E-150B	DF-78E-300A	DF-78E-300B	QC Batch	DF-78W-150A	DF-78W-150B	RDL	QC Batch	
Industrial										
Exposure	days	31	31	31	7671254	31	31	1	7671254	
Dustfall Determination										
Total Dustfall	mg	70	25	18	7671574	20	17	1	7671575	
Total Dustfall (30 day)	mg/cm2/30day	0.834	0.299	0.216	7671576	0.241	0.206	0.001	7671576	
Total Fixed Dustfall	mg	68	23	16	7671574	20	16	1	7671575	
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.806	0.277	0.191	7671576	0.232	0.192	0.001	7671576	
RDL = Reportable Detection Limit										

RDL = Reportable	Detection Limit
------------------	-----------------

Maxxam ID		KS7087		KS7088	KS7089	KS7090	KS7098				
Sampling Date		2014/08/18		2014/08/18	2014/08/18	2014/08/18	2014/08/18				
	Units	DF-78W-100A	QC Batch	DF-78W-100B	DF-78W-50A	DF-78E-50B	DF-EMR-S-50	RDL	QC Batch		
Industrial											
Exposure days 31 7671254 31 31 31 31 1 7671261											
Dustfall Determination											
Total Dustfall	mg	18	7671575	19	41	33	41	1	7671575		
Total Dustfall (30 day)	mg/cm2/30day	0.213	7671576	0.228	0.491	0.391	0.489	0.001	7671577		
Total Fixed Dustfall	mg	17	7671575	17	37	32	39	1	7671575		
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.199	7671576	0.199	0.441	0.384	0.464	0.001	7671577		
RDL = Reportable Detection Limit											

Agnico Eagle Mines Ltd.

Client Project #: 2014/08/18 - 2014/09/19

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

Maxxam ID		KS7099		KS7100	KS7101		KU8892			
Sampling Date		2014/08/18		2014/08/18	2014/08/18		2014/08/18			
	Units	DF-EMR-N-50	QC Batch	DF-C-1	DF-C-2	QC Batch	DUP 1	RDL	QC Batch	
Industrial										
Exposure	days	31	7671261	34	34	7671258	31	1	7671261	
Dustfall Determination										
Total Dustfall	mg	62	7671575	13	3	7671575	35	1	7671575	
Total Dustfall (30 day)	mg/cm2/30day	0.738	7671577	0.136	0.032	7671577	0.412	0.001	7671577	
Total Fixed Dustfall	mg	61	7671575	11	2	7671575	34	1	7671575	
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.722	7671577	0.117	0.026	7671577	0.405	0.001	7671577	
RDL = Reportable Detection Limit										

Maxxam ID		KU8893	KU8894		KU8895					
Sampling Date		2014/08/18	2014/08/18		2014/08/18					
	Units	DUP 2	DUP 3	QC Batch	DUP 4	RDL	QC Batch			
Industrial										
Exposure	days	31	31	7671261	31	1	7671270			
Dustfall Determination	•									
Total Dustfall	mg	30	22	7671575	19	1	7671575			
Total Dustfall (30 day)	mg/cm2/30day	0.355	0.257	7671577	0.228	0.001	7671577			
Total Fixed Dustfall	mg	29	20	7671575	18	1	7671575			
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.348	0.241	7671577	0.213	0.001	7671577			
RDL = Reportable Detection Limit										

Agnico Eagle Mines Ltd.

Client Project #: 2014/08/18 - 2014/09/19

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/08/18 - 2014/09/19

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery Units	QC Limits
7671574	OZ	Method Blank	Total Dustfall	2014/10/08	<1	mg	
			Total Fixed Dustfall	2014/10/08	<1	mg	
7671574	ΟZ	RPD [KS7014-01]	Total Dustfall	2014/10/10	1.6	%	N/A
			Total Fixed Dustfall	2014/10/10	3.2	%	N/A
7671574	ΟZ	RPD [KS7071-01]	Total Dustfall	2014/10/14	2.2	%	N/A
			Total Fixed Dustfall	2014/10/14	0	%	N/A
7671575	ΟZ	Method Blank	Total Dustfall	2014/10/10	<1	mg	
			Total Fixed Dustfall	2014/10/10	<1	mg	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/08/18 - 2014/09/19

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/09/24

Report #: R1648417

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B482904 Received: 2014/09/18, 11:14

Sample Matrix: Filter # Samples Received: 38

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	38	N/A	2014/09/2	4 PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

Maxxam ID		KQ0039	KQ0040	KQ0041	KQ0042	KQ0043		
Sampling Date		2014/08/03	2014/08/09	2014/08/15	2014/08/21	2014/08/27		
	Units	PM2.5 RP50778	PM2.5 RP71615	PM2.5 RP25442	PM2.5 RP27592	PM2.5 RP15531	RDL	QC Batch
PM2.5/10								
Particulate Matter	ug/filter	43	8	<3	9	7	3	7650755

Maxxam ID		KQ0044	KQ0045	KQ0046	KQ0047	KQ0048					
Sampling Date		2014/09/02	2014/08/03	2014/08/09	2014/08/15	2014/08/21					
	Units	PM2.5 RP13270	PM2.5 RP914	PM2.5 RP24935	PM2.5 RP86155	PM2.5 RP91098	RDL	QC Batch			
PM2.5/10											
Particulate Matter	ug/filter	18	532	177	33	149	3	7650755			
RDL = Reportable Detection Limit											

Maxxam ID		KQ0049	KQ0050	KQ0051	KQ0052	KQ0053		
Sampling Date		2014/08/27	2014/09/02	2014/08/03	2014/08/09	2014/08/15		
	Units	PM2.5 RP14316	PM2.5 RP22665	PM10 RP27805	PM10 RP15236	PM10 RP10074	RDL	QC Batch
PM2.5/10	-					·		
Particulate Matter	ug/filter	82	64	875	201	186	3	7650755

Maxxam ID		KQ0054	KQ0056	KQ0057	KQ0058	KQ0059	KQ0060		
Sampling Date		2014/08/21	2014/08/27	2014/09/02	2014/08/03	2014/08/09	2014/08/15		
	Units	PM10 RP27773	PM10 RP27587	PM10 RP896	PM10 RP2881	PM10 RP17815	PM10 RP28690	RDL	QC Batch
PM2.5/10									
Particulate Matter	ug/filter	586	311	216	180	164	52	3	7650755
RDL = Reportable Detection	imit								

Maxxam ID		KQ0061	KQ0062	KQ0063	KQ0064	KQ0065	KQ0066					
Sampling Date		2014/08/21	2014/08/27	2014/09/02	2014/08/03	2014/08/09	2014/08/15					
	Units	PM10 RP27516	PM10 RP10348	PM10 RP76204	TSP RP15533	TSP RP15564	TSP RP22903	RDL	QC Batch			
PM2.5/10	PM2.5/10											
Particulate Matter	ug/filter	270	116	436	869	321	125	3	7650755			

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

Maxxam ID		KQ0067	KQ0068		KQ0069	KQ0094	KQ0095	KQ0096		
Sampling Date		2014/08/21	2014/08/27		2014/09/02	2014/08/03	2014/08/09	2014/08/15		
	Units	TSP RP22896	TSP RP95651	QC Batch	TSP RP14336	TSP RP91301	TSP RP4248	TSP RP58031	RDL	QC Batch
PM2.5/10										
PM2.5/10										
PM2.5/10 Particulate Matter	ug/filter	60	179	7650755	128	1180	558	57	3	7650756

Maxxam ID		KQ0097	KQ0098	KQ0099	KQ0100	KQ0165					
Sampling Date		2014/08/21	2014/08/27	2014/09/02							
	Units	TSP RP44274	TSP RP921	TSP RP27515	TRAVEL BLANK RP87506	LAB BLANK	RDL	QC Batch			
PM2.5/10											
Particulate Matter	ug/filter	162	286	226	11	<3	3	7650756			
RDL = Reportable Detection L	RDL = Reportable Detection Limit										

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Sample KQ0042-01: Sample listed on COC as RP27593. Returned sample ID from stamped RP# is RP27592.

Sample KQ0060-01: Sample listed on COC as RP28669. Returned sample ID from stamped RP# is RP28690.

Results relate only to the items tested.

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your C.O.C. #: na

Attention:Levi Manchak

Maxxam Analytics From Edmonton Env to Bedford 9619 42 Ave Edmonton, AB T6E 5R2

Report Date: 2014/11/03

Report #: R3209543 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4K1524 Received: 2014/10/28, 10:00

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Reference
Total Metals Analysis by ICPMS	3	N/A	2014/11/0	3 CAM SOP-00447	EPA 6020 m

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Theresa Stephenson, Project Manager Email: TStephenson@maxxam.ca Phone# (905)817-5763

This report has been generated and distributed using a secure automated process.

Maxxam Analytics

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		YE5706	YE5707	YE5708		
Sampling Date		2014/09/07	2014/09/19	2014/09/18		
Sumpling Dute		15:45	15:45	15:45		
COC Number		na	na	na		
	Units	DF-3	DF-T7	DF-78E-102A	RDL	QC Batch
Metals						
Total Aluminum (Al)	ug/L	11	8.1	1600	5.0	3808759
Total Antimony (Sb)	ug/L	0.72	1.7	2.7	0.50	3808759
Total Arsenic (As)	ug/L	ND	ND	ND	1.0	3808759
Total Barium (Ba)	ug/L	ND	4.4	11	2.0	3808759
Total Beryllium (Be)	ug/L	ND	ND	ND	0.50	3808759
Total Bismuth (Bi)	ug/L	ND	ND	ND	1.0	3808759
Total Boron (B)	ug/L	10	ND	ND	10	3808759
Total Cadmium (Cd)	ug/L	ND	ND	ND	0.10	3808759
Total Calcium (Ca)	ug/L	230	490	2600	200	3808759
Total Chromium (Cr)	ug/L	ND	ND	14	5.0	3808759
Total Cobalt (Co)	ug/L	ND	ND	1.9	0.50	3808759
Total Copper (Cu)	ug/L	1800	2900	4400	1.0	3808759
Total Iron (Fe)	ug/L	170	ND	3100	100	3808759
Total Lead (Pb)	ug/L	ND	ND	0.75	0.50	3808759
Total Lithium (Li)	ug/L	ND	ND	ND	5.0	3808759
Total Magnesium (Mg)	ug/L	56	98	1500	50	3808759
Total Manganese (Mn)	ug/L	3.4	9.1	77	2.0	3808759
Total Molybdenum (Mo)	ug/L	ND	ND	ND	0.50	3808759
Total Nickel (Ni)	ug/L	ND	ND	5.1	1.0	3808759
Total Potassium (K)	ug/L	ND	250	660	200	3808759
Total Silicon (Si)	ug/L	ND	56	2000	50	3808759
Total Selenium (Se)	ug/L	ND	ND	ND	2.0	3808759
Total Silver (Ag)	ug/L	ND	ND	ND	0.10	3808759
Total Sodium (Na)	ug/L	100	140	180	100	3808759
Total Strontium (Sr)	ug/L	ND	2.6	11	1.0	3808759
Total Tellurium (Te)	ug/L	ND	ND	ND	1.0	3808759
Total Thallium (TI)	ug/L	ND	ND	ND	0.050	3808759
Total Tin (Sn)	ug/L	ND	ND	ND	1.0	3808759
Total Titanium (Ti)	ug/L	ND	ND	35	5.0	3808759
Total Tungsten (W)	ug/L	ND	ND	ND	1.0	3808759
Total Uranium (U)	ug/L	0.10	ND	1.5	0.10	3808759
Total Vanadium (V)	ug/L	ND	ND	3.1	0.50	3808759
Total Zinc (Zn)	ug/L	6.2	11	13	5.0	3808759
Total Zirconium (Zr)	ug/L	ND	ND	2.9	1.0	3808759
RDL = Reportable Detection	Limit			<u> </u>		

QC Batch = Quality Control Batch

ND = Not detected

Maxxam Analytics

GENERAL COMMENTS

Samples received at 16°C.	
Results relate only to the items tested.	

Maxxam Analytics

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
3808759	ADA	Matrix Spike	Total Aluminum (Al)	2014/11/03		NC	%	80 - 120
			Total Antimony (Sb)	2014/11/03		105	%	80 - 120
			Total Arsenic (As)	2014/11/03		97	%	80 - 120
			Total Barium (Ba)	2014/11/03		98	%	80 - 120
			Total Beryllium (Be)	2014/11/03		95	%	80 - 120
			Total Bismuth (Bi)	2014/11/03		97	%	80 - 120
			Total Boron (B)	2014/11/03		115	%	80 - 120
			Total Cadmium (Cd)	2014/11/03		101	%	80 - 120
			Total Calcium (Ca)	2014/11/03		NC	%	80 - 120
			Total Chromium (Cr)	2014/11/03		95	%	80 - 120
			Total Cobalt (Co)	2014/11/03		93	%	80 - 120
			Total Copper (Cu)	2014/11/03		97	%	80 - 120
			Total Iron (Fe)	2014/11/03		94	%	80 - 120
			Total Lead (Pb)	2014/11/03		95	%	80 - 120
			Total Lithium (Li)	2014/11/03		98	%	80 - 120
			Total Magnesium (Mg)	2014/11/03		NC	%	80 - 120
			Total Manganese (Mn)	2014/11/03		95	%	80 - 120
			Total Molybdenum (Mo)	2014/11/03		104	%	80 - 120
			Total Nickel (Ni)	2014/11/03		93	%	80 - 120
			Total Nickel (NI) Total Potassium (K)	2014/11/03		104	%	80 - 120
			Total Silicon (Si)	2014/11/03		97	% %	80 - 120
			Total Silicon (Si) Total Selenium (Se)	2014/11/03		97	% %	80 - 120
			, ,	2014/11/03		94	% %	
			Total Silver (Ag)					80 - 120
			Total Sodium (Na)	2014/11/03		NC	%	80 - 120
			Total Strontium (Sr)	2014/11/03		NC	%	80 - 120
			Total Tellurium (Te)	2014/11/03		102	%	80 - 120
			Total Thallium (TI)	2014/11/03		96	%	80 - 120
			Total Tin (Sn)	2014/11/03		89	%	80 - 120
			Total Titanium (Ti)	2014/11/03		98	%	80 - 120
			Total Tungsten (W)	2014/11/03		98	%	80 - 120
			Total Uranium (U)	2014/11/03		99	%	80 - 120
			Total Vanadium (V)	2014/11/03		94	%	80 - 120
			Total Zinc (Zn)	2014/11/03		96	%	80 - 120
			Total Zirconium (Zr)	2014/11/03		80	%	80 - 120
3808759	ADA	Spiked Blank	Total Aluminum (AI)	2014/11/03		96	%	80 - 120
			Total Antimony (Sb)	2014/11/03		102	%	80 - 120
			Total Arsenic (As)	2014/11/03		97	%	80 - 120
			Total Barium (Ba)	2014/11/03		95	%	80 - 120
			Total Beryllium (Be)	2014/11/03		94	%	80 - 120
			Total Bismuth (Bi)	2014/11/03		94	%	80 - 120
			Total Boron (B)	2014/11/03		97	%	80 - 120
			Total Cadmium (Cd)	2014/11/03		98	%	80 - 120
			Total Calcium (Ca)	2014/11/03		98	%	80 - 120
			Total Chromium (Cr)	2014/11/03		95	%	80 - 120
			Total Cobalt (Co)	2014/11/03		93	%	80 - 120
			Total Copper (Cu)	2014/11/03		94	%	80 - 120
			Total Iron (Fe)	2014/11/03		97	%	80 - 120
			Total Lead (Pb)	2014/11/03		95	%	80 - 120
			Total Lithium (Li)	2014/11/03		93	%	80 - 120
			Total Magnesium (Mg)	2014/11/03		97	%	80 - 120
			Total Manganese (Mn)	2014/11/03		96	%	80 - 120
			Total Molybdenum (Mo)	2014/11/03		101	%	80 - 120
			Total Nickel (Ni)	2014/11/03		93	%	80 - 120
			Total Potassium (K)	2014/11/03		105	%	80 - 120

Maxxam Analytics

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Total Silicon (Si)	2014/11/03		95	%	80 - 120
			Total Selenium (Se)	2014/11/03		97	%	80 - 120
			Total Silver (Ag)	2014/11/03		94	%	80 - 120
			Total Sodium (Na)	2014/11/03		100	%	80 - 120
			Total Strontium (Sr)	2014/11/03		95	%	80 - 120
			Total Tellurium (Te)	2014/11/03		99	%	80 - 120
			Total Thallium (TI)	2014/11/03		96	%	80 - 120
			Total Tin (Sn)	2014/11/03		102	%	80 - 120
			Total Titanium (Ti)	2014/11/03		96	%	80 - 120
			Total Tungsten (W)	2014/11/03		96	%	80 - 120
			Total Uranium (U)	2014/11/03		96	%	80 - 120
			Total Vanadium (V)	2014/11/03		94	%	80 - 120
			Total Zinc (Zn)	2014/11/03		97	%	80 - 12
			Total Zirconium (Zr)	2014/11/03		105	%	80 - 120
8808759	ADA	Method Blank	Total Aluminum (Al)	2014/11/03	5.4, RDL=5.0		ug/L	
			Total Antimony (Sb)	2014/11/03	ND,		ug/L	
			, , ,	, ,	RDL=0.50		O,	
			Total Arsenic (As)	2014/11/03	ND,		ug/L	
			rotal ruselile (ris)	2014/11/05	RDL=1.0		ug/ L	
			Total Barium (Ba)	2014/11/03	ND,		ug/L	
			Total Baridin (Ba)	2014/11/03	RDL=2.0		ug/ L	
			Total Dorullium (Da)	2014/11/02			/1	
			Total Beryllium (Be)	2014/11/03	ND,		ug/L	
					RDL=0.50			
			Total Bismuth (Bi)	2014/11/03	ND,		ug/L	
					RDL=1.0			
			Total Boron (B)	2014/11/03	13,		ug/L	
					RDL=10			
			Total Cadmium (Cd)	2014/11/03	ND,		ug/L	
					RDL=0.10			
			Total Calcium (Ca)	2014/11/03	ND,		ug/L	
					RDL=200			
			Total Chromium (Cr)	2014/11/03	ND,		ug/L	
					RDL=5.0		-	
			Total Cobalt (Co)	2014/11/03	ND,		ug/L	
				,,	RDL=0.50		6/ =	
			Total Copper (Cu)	2014/11/03	ND,		ug/L	
			rotal copper (ca)	2014/11/05	RDL=1.0		ug/ L	
			Total Iron (Fe)	2014/11/03	ND,		ug/L	
			rotariion (Fe)	2014/11/05	RDL=100		ug/L	
			-	2011/11/00			,,	
			Total Lead (Pb)	2014/11/03	ND,		ug/L	
					RDL=0.50			
			Total Lithium (Li)	2014/11/03	ND,		ug/L	
					RDL=5.0			
			Total Magnesium (Mg)	2014/11/03	ND,		ug/L	
					RDL=50			
			Total Manganese (Mn)	2014/11/03	ND,		ug/L	
					RDL=2.0		-	
			Total Molybdenum (Mo)	2014/11/03	ND,		ug/L	
			· , · · · · · · · · · · · · · · · · · ·	- 1-1-3	RDL=0.50		- Ui =	
			Total Nickel (Ni)	2014/11/03	ND,		ug/L	

Maxxam Analytics

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
	Init	QC Type	Parameter	Analyzed	Value	Recovery L	Jnits	QC Limits
			Total Potassium (K)	2014/11/03	ND, RDL=200	ı	ug/L	
			Total Silicon (Si)	2014/11/03	99, RDL=50	ı	ug/L	
			Total Selenium (Se)	2014/11/03	ND, RDL=2.0	1	ug/L	
			Total Silver (Ag)	2014/11/03	ND, RDL=0.10	1	ug/L	
			Total Sodium (Na)	2014/11/03	ND, RDL=100	1	ug/L	
			Total Strontium (Sr)	2014/11/03	ND, RDL=1.0	1	ug/L	
			Total Tellurium (Te)	2014/11/03	ND, RDL=1.0	1	ug/L	
			Total Thallium (TI)	2014/11/03	ND, RDL=0.050	1	ug/L	
			Total Tin (Sn)	2014/11/03	ND, RDL=1.0	1	ug/L	
			Total Titanium (Ti)	2014/11/03	ND, RDL=5.0	1	ug/L	
			Total Tungsten (W)	2014/11/03	ND, RDL=1.0	1	ug/L	
			Total Uranium (U)	2014/11/03	ND, RDL=0.10	1	ug/L	
			Total Vanadium (V)	2014/11/03	ND, RDL=0.50	1	ug/L	
			Total Zinc (Zn)	2014/11/03	ND, RDL=5.0	1	ug/L	
			Total Zirconium (Zr)	2014/11/03	ND, RDL=1.0	1	ug/L	
3808759	ADA	RPD	Total Aluminum (AI)	2014/11/03	1.5		%	20
			Total Cadmium (Cd)	2014/11/03	NC		%	20
			Total Chromium (Cr)	2014/11/03	NC		%	20
			Total Copper (Cu)	2014/11/03	4.2		%	20
			Total Iron (Fe)	2014/11/03	5.0		%	20
			Total Lead (Pb)	2014/11/03	5.1		%	20
			Total Nickel (Ni)	2014/11/03	NC		%	20
			Total Zinc (Zn)	2014/11/03	5.7		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Maxxam Analytics

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Your P.O. #: 90762

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/10/24

Report #: R1671148 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B493282 Received: 2014/10/16, 11:15

Sample Matrix: Filter # Samples Received: 32

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	32	N/A	2014/10/2	3 PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

Maxxam ID		KW4933	KW4934	KW4935	KW4936	KW4937					
Sampling Date		2014/09/08	2014/09/14	2014/09/20	2014/09/26	2014/10/02					
	Units	PM2.5 RP15500	PM2.5 RP82070	PM2.5 RP27293	PM2.5 RP919	PM2.5 RP13060	RDL	QC Batch			
PM2.5/10											
Particulate Matter	ug/filter	<3	<3	9	5	3	3	7689967			
RDL = Reportable Detection Limit											

Maxxam ID		KW4938	KW4939	KW4945	KW4946	KW4947					
Sampling Date		2014/09/08	2014/09/14	2014/09/20	2014/09/26	2014/10/02					
	Units	PM2.5 RP17880	PM2.5 RP10082	PM2.5 RP4234	PM2.5 RP22209	PM2.5 RP852	RDL	QC Batch			
PM2.5/10											
Particulate Matter	ug/filter	204	47	33	153	198	3	7689967			

Maxxam ID		KW4948	KW4949	KW4950	KW4951	KW4952	KW4953			
Sampling Date		2014/09/08	2014/09/14	2014/09/20	2014/09/26	2014/10/02	2014/09/08			
	Units	PM10 RP4214	PM10 RP10078	PM10 RP18848	PM10 RP877	PM10 RP9904	PM10 RP22200	RDL	QC Batch	
PM2.5/10										
PM2.5/10	•							•		
PM2.5/10 Particulate Matter	ug/filter	398	352	226	391	317	138	3	7689967	

Maxxam ID		KW4954	KW4955	KW4961	KW4962	KW4963	KW4964		
Sampling Date		2014/09/14	2014/09/20	2014/09/26	2014/10/02	2014/09/08	2014/09/14		
	Units	PM10 RP85911	PM10 RP10063	PM10 RP15485	PM10 RP10349	TSP RP13792	TSP RP865	RDL	QC Batch
PM2.5/10									
Particulate Matter	ug/filter	325	38	163	1410	16	311	3	7689967

Maxxam ID		KW4965	KW4966	KW4967	KW4968	KW4969	KW4970		
Sampling Date		2014/09/20	2014/09/26	2014/10/02	2014/09/08	2014/09/14	2014/09/20		
	Units	TSP RP17833	TSP RP90554	TSP RP20670	TSP RP16082	TSP RP1563	TSP RP15553	RDL	QC Batch
PM2.5/10									
Particulate Matter	ug/filter	84	184	484	66	412	83	3	7689967
i articulate iviattei	ug/ IIItCI	0-7	10.					_	

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

Maxxam ID		KW5195	KW5196		KW5239	KW5240			
Sampling Date		2014/09/26	2014/10/02						
	Units	TSP RP91292	TSP RP15546	QC Batch	TRAVEL BLANK RP22621	LAB BLANK	RDL	QC Batch	
PM2.5/10									
Particulate Matter	ug/filter	135	2610	7689967	20	<3	3	7689968	
RDL = Reportable Detection Limit									

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/09/07 - 2014/10/08 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/10/24

Report #: R1670998 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B493174 Received: 2014/10/16, 09:27

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2014/10/21	2014/10/24	PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1	2014/10/21	2014/10/21	PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/09/07 - 2014/10/08

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

Maxxam ID		KW4461	KW4462		KW4463				
Sampling Date		2014/09/07	2014/09/07						
Sampling Date		14:50	14:50						
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch			
Passive Monitoring									
Calculated NO2	ppb	0.2	MISSING	0.1		7686617			
	ppb ppm	0.2	MISSING	0.1	0.06	7686617 7686620			

Agnico Eagle Mines Ltd.

Client Project #: 2014/09/07 - 2014/10/08

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/09/07 - 2014/10/08

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7686617	SS6	Spiked Blank	Calculated NO2	2014/10/21		97	%	90 - 110
7686617	SS6	Method Blank	Calculated NO2	2014/10/21	< 0.1		ppb	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/09/07 - 2014/10/08

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/09/07 - 2014/10/08 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/10/24

Report #: R1670997 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B493162 Received: 2014/10/16, 09:10

Sample Matrix: Air # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	4	2014/10/20	2014/10/20	PTC SOP-00180	
Total & Fixed Dustfall	4	2014/10/20	2014/10/20	PTC SOP-00180	AMD 32020
Exposure (Number of days)	4	2014/10/20	2014/10/20	PTC SOP-00146, PTC SOP- 00154, PTC SOP-00180	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/09/07 - 2014/10/08

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

Maxxam ID		KW4413	KW4414	KW4415	KW4416					
Sampling Date		2014/09/07	2014/09/07	2014/09/07	2014/09/07					
	Units	1	2	3	4	RDL	QC Batch			
Industrial										
Exposure	days	31	31	31	31	1	7684495			
Dustfall Determination										
Total Dustfall	mg	21	20	11	11	1	7684492			
Total Dustfall (30 day)	mg/cm2/30day	0.249	0.231	0.133	0.124	0.001	7684493			
Total Fixed Dustfall	mg	18	16	7	9	1	7684492			
otal Fixed Dustfall (30 day) mg/cm2/30day		0.216	0.185	0.083	0.107	0.001	7684493			
RDL = Reportable Detection Limit										

Agnico Eagle Mines Ltd.

Client Project #: 2014/09/07 - 2014/10/08

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/09/07 - 2014/10/08

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units	QC Limits
7684492	SSZ	Method Blank	Total Dustfall	2014/10/20	<1		mg	4
			Total Fixed Dustfall	2014/10/20	<1		mg	
7684492	SSZ	RPD [KW4413-01]	Total Dustfall	2014/10/20	6.5		%	N/A
			Total Fixed Dustfall	2014/10/20	14		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/09/07 - 2014/10/08

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/10/08 - 2014/11/09

Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/11/24

Report #: R1688478 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4A3922 Received: 2014/11/14, 13:28

Sample Matrix: Air # Samples Received: 3

	Date	Date		
Analyses	Quantity Extract	ed Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2 2014/1	1/19 2014/11/2	4 PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1 2014/1	1/19 2014/11/1	9 PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/10/08 - 2014/11/09

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		LD4362	LD4363		LD4364	
Compling Data		2014/10/08	2014/10/08			
Sampling Date		15:50	16:53			
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch
Passive Monitoring						
Passive Monitoring Calculated NO2	ppb	0.5	2.1	0.1		7724365
	ppb ppm	0.5	2.1	0.1	0.04	7724365 7724368

Agnico Eagle Mines Ltd.

Client Project #: 2014/10/08 - 2014/11/09

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/10/08 - 2014/11/09

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7724365	SS6	Spiked Blank	Calculated NO2	2014/11/19		94	%	90 - 110
7724365	SS6	Method Blank	Calculated NO2	2014/11/19	<0.1		ppb	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/10/08 - 2014/11/09

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/10/08 - 2014/11/09 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/11/24

Report #: R1688497 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4A3929 Received: 2014/11/14, 13:34

Sample Matrix: Air # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	4	2014/11/24	2014/11/24	PTC SOP-00180	
Total & Fixed Dustfall	4	2014/11/24	2014/11/24	PTC SOP-00180	AMD 32020
Exposure (Number of days)	4	2014/11/24	2014/11/24	PTC SOP-00146, PTC SOP- 00154, PTC SOP-00180	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/10/08 - 2014/11/09

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		LD4396		LD4397	LD4398		LD4399		
Sampling Date		2014/10/08		2014/10/08	2014/10/08		2014/10/08		
	Units	1	RDL	2	3	RDL	4	RDL	QC Batch
Industrial									
Exposure	days	32	1	32	32	1	32	1	7729858
Dustfall Determination									
Total Dustfall	mg	81	3	16	12	2	10	1	7729855
Total Dustfall (30 day)	mg/cm2/30day	0.930	0.003	0.179	0.138	0.002	0.115	0.001	7729856
Total Fixed Dustfall	mg	84	3	16	13	2	13	1	7729855
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.964	0.003	0.179	0.152	0.002	0.149	0.001	7729856
RDL = Reportable Detection L	imit								

Agnico Eagle Mines Ltd.

Client Project #: 2014/10/08 - 2014/11/09

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/10/08 - 2014/11/09

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units	QC Limits
7729855	SSZ	Method Blank	Total Dustfall	2014/11/24	<1	·	mg	
			Total Fixed Dustfall	2014/11/24	<1		mg	
7729855	SSZ	RPD [LD4396-01]	Total Dustfall	2014/11/24	0		%	N/A
			Total Fixed Dustfall	2014/11/24	0		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/10/08 - 2014/11/09

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/11/24

Report #: R1688463 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4A3910 Received: 2014/11/14, 13:15

Sample Matrix: Filter # Samples Received: 32

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	32	N/A	2014/11/2	1 PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		LD4288	LD4289	LD4290	LD4291	LD4292		
Sampling Date		2014/10/08	2014/10/14	2014/10/20	2014/10/26	2014/11/01		
	Units	PM2.5 RP10346	PM2.5 RP9948	PM2.5 RP89937	PM2.5 RP2875	PM2.5 RP84094	RDL	QC Batch
PM2.5/10								
Particulate Matter	ug/filter	25	16	7	19	6	3	7727639
RDL = Reportable Detectio	n Limit							
·		·	·	·	·	·		·

Maxxam ID		LD4293	LD4294	LD4295	LD4296	LD4297		
Sampling Date		2014/10/08	2014/10/14	2014/10/20	2014/10/26	2014/11/01		
	Units	PM2.5 RP92715	PM2.5 RP9908	PM2.5 RP4242	PM2.5 RP10325	PM2.5 RP87500	RDL	QC Batch
PM2.5/10								
Particulate Matter	ug/filter	153	11	23	221	125	3	7727639

Maxxam ID		LD4298	LD4299	LD4300	LD4301	LD4302	LD4303		
Sampling Date		2014/10/08	2014/10/14	2014/10/20	2014/10/26	2014/11/01	2014/10/08		
	Units	PM10 RP15242	PM10 RP1582	PM10 RP889	PM10 RP892	PM10 RP9946	PM10 RP10071	RDL	QC Batch
PM2.5/10									
PM2.5/10 Particulate Matter	ug/filter	312	32	23	250	221	111	3	7727639

Maxxam ID		LD4304	LD4305	LD4306	LD4307	LD4308	LD4309		
Sampling Date		2014/10/14	2014/10/20	2014/10/26	2014/11/01	2014/10/08	2014/10/14		
	Units	PM10 RP15507	PM10 RP54427	PM10 RP22202	PM10 RP17814	TSP RP915	TSP RP872	RDL	QC Batch
PM2.5/10									
,									
Particulate Matter	ug/filter	20	24	226	429	149	45	3	7727639

Maxxam ID		LD4310	LD4311	LD4312	LD4313	LD4314	LD4315		
Sampling Date		2014/10/20	2014/10/26	2014/11/01	2014/10/08	2014/10/14	2014/10/20		
	Units	TSP RP15503	TSP RP895	TSP RP22216	TSP RP22668	TSP RP27284	TSP RP13258	RDL	QC Batch
PM2.5/10									
								_	7727620
Particulate Matter	ug/filter	732	434	633	346	115	1010	3	7727639

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		LD4316	LD4317		LD4318	LD4319		
Sampling Date		2014/10/26	2014/11/01					
	Units	TSP RP28672	TSP RP90576	QC Batch	TRAVEL BLANK RP15527	LAB BLANK	RDL	QC Batch
PM2.5/10								
· ···,								
Particulate Matter	ug/filter	460	802	7727639	<3	10	3	7727640

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: 2014/11/09 - 2014/12/14 Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2014/12/31

Report #: R1769919 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4B5020 Received: 2014/12/19, 10:25

Sample Matrix: Air # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Determination of Dustfall-mg/cm2/30 days	4	2014/12/31	2014/12/31	PTC SOP-00180	
Total & Fixed Dustfall	4	2014/12/31	2014/12/31	PTC SOP-00180	AMD 32020
Exposure (Number of days)	4	2014/12/31	2014/12/31	PTC SOP-00146, PTC SOP- 00154, PTC SOP-00180	

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/11/09 - 2014/12/14

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		LK2440	LK2441	LK2442	LK2443		
Sampling Date		2014/11/09	2014/11/09	2014/11/09	2014/11/09		
	Units	1	2	3	4	RDL	QC Batch
Industrial							
Exposure	days	35	35	35	35	1	7767812
Dustfall Determination							
Total Dustfall	mg	20	5	15	<1	1	7767809
Total Dustfall (30 day)	mg/cm2/30day	0.213	0.051	0.162	<0.001	0.001	7767810
Total Fixed Dustfall	mg	20	<1	12	<1	1	7767809
Total Fixed Dustfall (30 day)	mg/cm2/30day	0.213	0.007	0.125	<0.001	0.001	7767810
RDL = Reportable Detection L	imit						

Agnico Eagle Mines Ltd.

Client Project #: 2014/11/09 - 2014/12/14

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/11/09 - 2014/12/14

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7767809	SSZ	Method Blank	Total Dustfall	2014/12/31	<1		mg	
			Total Fixed Dustfall	2014/12/31	<1		mg	
Method	Blank:	A blank matrix conta	ining all reagents used in the analytical p	procedure. Used to identify labor	oratory conta	mination.		

Agnico Eagle Mines Ltd.

Client Project #: 2014/11/09 - 2014/12/14

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Carmen Toker, CT, Manager Air Laboratory Services

Your P.O. #: 90762

Your Project #: 2014/11/09 - 2014/12/14

Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2015/01/09

Report #: R1777694 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4B5015 Received: 2014/12/19, 10:22

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2015/01/08	2015/01/09	PTC SOP-00148	Passive NO2 in ATM
Raw NO2 Passive Analysis	1	2015/01/08	2015/01/08	PTC SOP-00148	Tang Passive NO2 in

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd.

Client Project #: 2014/11/09 - 2014/12/14

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		LK2409	LK2410		LK2411		
Sampling Date		2014/11/09	2014/11/09				
Sampling Date		11:21	14:50				
	Units	NO2: 1	NO2: 2	RDL	NO2: BLANK	QC Batch	
Passive Monitoring							
Passive Monitoring							
Passive Monitoring Calculated NO2	ppb	0.7	2.6	0.1		7773372	
	ppb ppm	0.7	2.6	0.1	0.06	7773372 7773375	

Agnico Eagle Mines Ltd.

Client Project #: 2014/11/09 - 2014/12/14

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.

Client Project #: 2014/11/09 - 2014/12/14

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7773372	SS6	Spiked Blank	Calculated NO2	2015/01/08		97	%	90 - 110
7773372	SS6	Method Blank	Calculated NO2	2015/01/08	<0.1		ppb	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Agnico Eagle Mines Ltd.

Client Project #: 2014/11/09 - 2014/12/14

Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Your P.O. #: 90762

Your Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Attention: MEADOWBANK ENVIRONMENT

Agnico Eagle Mines Ltd. Meadowbank Division 10200, Route du Preissac Rouyn-Noranda, QC CANADA JOY 1C0

Report Date: 2015/01/08

Report #: R1776688 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4B5008 Received: 2014/12/19, 10:13

Sample Matrix: Filter # Samples Received: 26

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Mass Determination(ug/filter)	26	N/A	2015/01/0	8 PTC SOP-00151	EPA 2.12 Monitoring

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Levi Manchak, Customer Service

Email: LManchak@maxxam.ca Phone# (780) 378-8500

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

RESULTS OF CHEMICAL ANALYSES OF FILTER

Maxxam ID		LK2367	LK2368	LK2369	LK2370	LK2371		
Sampling Date		2014/11/07	2014/11/13	2014/11/19	2014/11/25	2014/11/07		
	Units	PM2.5 RP15062	PM2.5 RP28643	PM2.5 RP19960	PM2.5 RP10069	PM2.5 RP905	RDL	QC Batch
PM2.5/10								
Particulate Matter	ug/filter	16	4	25	26	<3	3	7773351

Maxxam ID		LK2372	LK2373	LK2374	LK2377	LK2378		
Sampling Date		2014/11/13	2014/11/19	2014/11/25	2014/11/07	2014/11/13		
	Units	PM2.5 RP10060	PM2.5 RP76151	PM2.5 RP27511	PM10 RP28670	PM10 RP29749	RDL	QC Batch
PM2.5/10								
				_		• •	2	7773351
Particulate Matter	ug/filter	169	55	61	614	48	3	///3351

Maxxam ID		LK2379	LK2380	LK2381	LK2382	LK2383		
Sampling Date		2014/11/19	2014/11/25	2014/11/07	2014/11/13	2014/11/19		
	Units	PM10 RP24907	PM10 RP76202	PM10 RP9940	PM10 RP27721	PM10 RP9906	RDL	QC Batch
PM2.5/10	<u>·</u>		•			•		
Particulate Matter	ug/filter	109	51	10	303	61	3	7773351

Maxxam ID		LK2384	LK2387	LK2388	LK2389	LK2390	LK2391		
Sampling Date		2014/11/25	2014/11/07	2014/11/13	2014/11/19	2014/11/25	2014/11/07		
	Units	PM10 RP87482	TSP RP27513	TSP RP920	TSP RP22213	TSP RP29748	TSP RP2880	RDL	QC Batch
PM2.5/10									
Particulate Matter	ug/filter	28	468	78	111	65	1590	3	7773351

Maxxam ID		LK2392	LK2393	LK2394	LK2397	LK2398		
Sampling Date		2014/11/13	2014/11/19	2014/11/25				
	Units	TSP RP2882	TSP RP90582	TSP RP28644	TRAVEL BLANK RP15517	LAB BLANK	RDL	QC Batch
PM2.5/10								
Particulate Matter	ug/filter	937	230	117	11	5	3	7773351
RDL = Reportable Detection Limit								

Agnico Eagle Mines Ltd. Client Project #: PM2.5/10/TSP Site Location: BAKER LAKE, NU

Your P.O. #: 90762

GENERAL COMMENTS

TSP RP2882 (LK2392) received to the Lab with visible particulate on it. SS TSP RP90582 (LK2393) received to the Lab with rips on the filter. SS

Results relate only to the items tested.

Agnico Eagle Mines Ltd.
Client Project #: PM2.5/10/TSP
Site Location: BAKER LAKE, NU

Your P.O. #: 90762

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Linda Lin, Supervisor, Centre for Passive Sampling Technology

Appendix C

Incinerator Stack Sampling Tests Report

Exova Canada Inc. 1390, Hocquart Street St-Bruno-de-Montarville Quebec J3V 6E1 Canada

T:+1 (450) 441 5880 F:+1 (450) 441 4316 E: Reception.St-Bruno@exova.com

W: www.exova.com

Report Stack sampling tests

Stack sampling tests Outlet of the incinerator

Presented to: Agnico-Eagle Mines Ltd.

Our Reference: R14-034R01 (14-076-279748)

Date: August 4, 2014

Copy: 1 of 1

Version No.: 1

Page 1

Revision History

Version No:	Date of ré – issue:			
Reviewed by:	Approved by:			
Reason for the revision:				
Version No:	Date of ré – issue:			
Reviewed by:	Approved by:			
Reason for the revision:				

Document No.: R14-034R01

Author: Pierre Duguay, P. Eng.

Client: Agnico-Eagle Mines Ltd.

Page No.: 2 of 35 Version's date: August 2014

Version No.:

TABLE OF CONTENTS

1	S	UMMARY	5
		PURPOSES OF THE STUDY	
2	IN	NTRODUCTION	8
	2.22.32.4	OBJECTIVE AND TEST MATRIX SCHEDULE OF TEST WORK PROJECT PERSONNEL. PROCESS OPERATING CONDITIONS APPLICABLE STANDARDS	8 9 10
3	M	IETHODS	11
	3.2 3.3 3.4 3.5 3.6	SAMPLING METHODS SAMPLING ACCEPTANCE CRITERIA PARTICULATE MATTER (PM), HYDROGEN CHLORIDE AND METALS. SEMI-VOLATILE ORGANIC COMPOUNDS (SVOC). NITROGEN OXIDES (NO _X). GAS MOLECULAR WEIGHT. GAS TEMPERATURE, MOISTURE CONTENT AND FLOWRATE	11 12 14 17
4	S	AMPLED SOURCE	19
	4.2	OUTLET OF THE INCINERATOR SAMPLING EQUIPMENT QA/QC REPORT	19
5	T.	ABLES OF RESULTS	22
	APF	PENDIX 1 OUTLET OF THE INCINERATOR	

Document No.: R14-034R01

Author: Pierre Duguay, P. Eng.

Client: Agnico-Eagle Mines Ltd.

Page No.: 3 of 35 Version's date: August 2014

Version No.:

1

LIST OF TABLES

Table 1.1-1 – Overall Test Matrix	5
TABLE 1.1-2 – SAMPLING PROCEDURES	6
Table 1.2-1 – Summary of results	6
Table 1.2-2 – Summary of results (Cont'd)	
Table 2.1-1 – Overall Test Matrix	
Table 2.2-1 – Test schedule	
TABLE 2.3-1 – KEY PERSONNEL INVOLVED IN THE PROJECT	
TABLE 2.5-1 – APPLICABLE STANDARDS	
TABLE 3.1-1 - SAMPLING METHODS	
TABLE 3.2-1 – SAMPLING VALIDITY CRITERIA	
TABLE 3.3-1 - MAIN COMPONENTS OF THE SAMPLING SYSTEM - PM / HCL / METALS	
TABLE 3.3-2 — SAMPLE RECOVERY — PM / HCL / METALS	
TABLE 3.3-3 – SAMPLES ANALYSES – PM / METALS	
TABLE 3.4-1 - MAIN COMPONENTS OF THE SAMPLING SYSTEM - SVOC	
TABLE 3.4-2 – SAMPLE RECOVERY – SVOC	
TABLE 3.4-3 – SAMPLES ANALYSES – SVOC	
Table 3.6-1 – Specifications of the analyser used for gas molecular weight determination. Table 4.1-1 – Outlet of the incinerator	
TABLE 4.2-1 – SAMPLING EQUIPMENT FOR PM / HCL / METALS TRAIN	
TABLE 4.2-2 – SAMPLING EQUIPMENT FOR SVOC TRAIN	
TABLE 4.3-1 – GAS FLOW CONDITIONS	
TABLE 4.3-2 – SAMPLING EQUIPMENT AND PROCEDURES	
TABLE 4.3-3 – ISOKINETICITY	
LIST OF TABLES OF RESULTS	
# 1 : Detailed results of particulate matter (PM) and HCl emissions	23
# 2 : Summary results of metals emissions	24
# 3 : Detailed results of metals emissions – test # 1	27
# 4 : Detailed results of metals emissions – test # 2	28
# 5 : Detailed results of metals emissions – test # 3	29
# 6 : Summary results of SVOC emissions	30
# 7 : Detailed results of PCDD/F emissions – test # 1	
# 8 : Detailed results of PCDD/F emissions – test # 2	
# 9 : Detailed results of PCDD/F emissions – test # 3	02
# 10 : Detailed results of NO _x emissions	33

Document No.: R14-034R01

Author: Pierre Duguay, P. Eng.

Client: Agnico-Eagle Mines Ltd.

Page No.: 4 of 35 Version's date: August 2014

Version No.:

1 SUMMARY

Exova Canada Inc. was requested by **Agnico-Eagle Mines Itd. – Meadowbank Division** to sample atmospheric emissions at the outlet of the incinerator for its plant located in Baker Lake, Nunavut at the following address.

Agnico-Eagle Mines Ltd. - Meadowbank Division

P.O. Box 540, Baker Lake, Nunavut X0C 0A0

Contact: Mr. Jeffrey Pratt, Environmental coordinator

Telephone: (819) 759-3555, ext. 6728

Cell: (819) 856-1475

Email: Jeffrey.pratt@agnico-eagle.com

1.1 Purposes of the study

The tests were done to demonstrate the performance of the incinerator to meet the standards for mercury (Hg) and dioxins and furans (PCDD/F).

Field testing was carried out from July 11 to July 13, 2014 by a team of two technicians. Stack gas properties such as velocity, volumetric flow rates, temperature, moisture content, molecular weight and pressure were all measured concurrently to stack sampling. Three runs were performed for each contaminant with the exception that four grab samples were taken for the NO_x . The test matrix is shown in the following table.

Table 1.1-1 – Overall Test Matrix

Pollutants	Sampling methods		
Particulate matter (PM)	EPS 1/RM/8		
Anion - Hydrogen chloride (HCI)	EPS 1/RM/1		
Metals	EPA 29		
SVOC (PCDD/F)	EPS 1/RM/2		
Nitrogen oxides (NO _x)	EPS 1-AP-77-3		

The list of metals includes Al, Sb, As, Ba, Be, Bi, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, P, K, Se, Si, Ag, Na, Sr, Te, Tl, Sn, Ti, U, V, Zn.

The manual sampling procedure for the particulate matter / anion / metals (PAM) test and the semi-volatile organic compounds (SVOC) test were as shown in table 1.1-2 hereafter.

Document No.:R14-034R01Page No.:5 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

Table 1.1-2 – Sampling procedures

- and the second							
Sources	# of sampling points (total)	# of sampling points (per traverse)	Sampling time per point (min.)	Total sampling time (min)	Notes		
PAM # 1, 2, 3	36	18	5	180	Isokinetic adjustments each 5 minutes		
SVOC # 1, 2, 3 36		18	5	180	Isokinetic adjustments each 5 minutes		

1.2 Summary of results

All the tests results are summarized in the summary tables appearing below and on the next page and represent the average of three runs with the exception for the NO_x results that represent the average of four grab samples. Complete results of the sampling program are presented in section 5.0 of this report.

A comprehensive internal Quality Assurance/Quality Control (QA/QC) plan was designed and implemented by Exova regarding the gaseous emissions. The quality of the sampling data and results is good for all measurements. All the data are consistent and reliable.

The operating conditions were maintained stable throughout each day of the tests.

All computer print-outs, field data, analytical results and calibration reports are presented in appendix # 1.

For this project, the applicable standards are shown below with the tests results. The applicable standard for dioxins and furans (PCDD/F) was met during each test. The applicable standard for mercury (Hg) was met only during test # 3.

Table 1.2-1 - Summary of results

14010 Hz 1 Odininary of 1004110				
Contaminants	Average test results	Standards		
Mercury (Hg)	64.09 μg / Rm³ @ 11 % v/v O ₂	20 μg / Rm³ @ 11 % v/v O ₂		
Dioxins and furans (PCDD/F)	53.6 pg TEQ / Rm³ @ 11 % v/v O ₂	80 pg TEQ / Rm³ @ 11 % v/v O ₂		

R: Reference conditions, 25 °C, 101.3 kPa, dry basis.

Document No.:R14-034R01Page No.:6 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

Table 1.2-2 – Summary of results (Cont'd)

Parameters	Summary of results (PAM tests	SVOC tests	NO _x tests
Concentrations				
PM	(mg/Rm³)	28.2		
HCI	(mg/Rm³)	29.7		
Hg	(μg/Rm³)	29.9		
PCDD/F	(pg/Rm³ TEQ)		24.1	
NO _x	(mg/Rm³ - eq. NO₂)			< 5.6
Emission rates				
PM	(kg/h)	0.202		
HCI	(kg/h)	0.211		
Hg	(mg/h)	210.312		
PCDD/F	(ng/h TEQ)		163.8	
NO _x	(kg/h – eq. NO ₂)			< 0.038
Stack gas proper	ties			
Velocity	(m/s)	7.1	6.7	
Actual flow rate	(m³/h)	18591	17706	
Reference flow rat	e (Rm³/h)	7183	6848	6840
Temperature	(℃)	465	468	
Moisture	(% v/v, wet basis)	4.6	4.2	
Static pressure	(inch H ₂ O)	- 0.10	- 0.10	
O ₂	(% v/v, dry basis)	16.54	16.54	
CO ₂	(% v/v, dry basis)	3.11	3.11	
CO	(ppmv, dry basis)	3.7	3.7	
Average isokinetic	ity (%)	98.8	95.7	

R : Reference conditions, 25 $^{\circ}$ C, 101.3 kPa and dry basis.

Document No.: R14-034R01

Author: Pierre Duguay, P. Eng.

Client: Agnico-Eagle Mines Ltd.

Page No.: 7 of 35

Version's date: August 2014

Version No.:

2 INTRODUCTION

Exova Canada Inc. was requested by **Agnico-Eagle Mines Itd. – Meadowbank Division** to sample the atmospheric emissions at the outlet of an incinerator for its plant located in Baker Lake, Nunavut.

The report describes the purposes of the study, the field work schedule, the sampling location and the sampling methods employed. All the results are summarized in table form. All field data, analytical results and calibration reports are appended.

2.1 Objective and test matrix

A comprehensive stack testing program was adopted by Exova to determine qualitatively and quantitatively the contents of the stack emissions. Table # 2.1-1 shows the parameters measured during the test program. Three runs were performed for each contaminant during the sampling program with the exception that four grab samples were taken for the NO_x.

Table 2.1-1 – Overall Test Matrix

Pollutants	Sampling methods
Particulate matter (PM)	EPS 1/RM/8
Anion - Hydrogen chloride (HCI)	EPS 1/RM/1
Metals	EPA 29
SVOC (PCDD/F)	EPS 1/RM/2
Nitrogen oxides (NO _x)	EPS 1-AP-77-3

The list of metals includes Al, Sb, As, Ba, Be, Bi, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, P, K, Se, Si, Ag, Na, Sr, Te, Tl, Sn, Ti, U, V, Zn.

2.2 Schedule of test work

The sampling program was carried out from July 11 to July 13, 2014 by a team of two technicians. Table # 2.2-1 appearing in this section shows the test schedule.

Document No.:R14-034R01Page No.:8 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

Table 2.2-1 - Test schedule

Source	Date	Time	Tests
	July 11, 2014	12:59 – 16:35	PAM # 1 & SVOC # 1
	July 12, 2014	11:22 – 16:00	PAM # 2 & SVOC # 2
Outlet of the incinerator	July 12, 2014	17:34 – 17:36	NO _x # 1, 2
momorator	July 13, 2014	09:48 – 14:18	PAM # 3 & SVOC # 3
	July 13, 2014	15:15 – 18:30	NO _x # 3, 4

2.3 Project personnel

The following is a list of the direct contributors to this test program.

Table 2.3-1 – Key personnel involved in the project

Name	Experience and responsibilities

Agnico-Eagle Mines Ltd.

Mr. Jeffrey Pratt – Environmental coordinator

Project coordinator.

Exova Canada Inc.

- Mr. Simon Demers, Technician
 - ➢ SVOC and NO_x sampling.
- Mr. Sylvain Lapointe, Technician
 - > PAM sampling.
- Mr. Christian St-Pierre, Chemist
 - ➤ Analyses of PM and NO_x samples.
- Mr. Geneviève Sévigny, Chemist
 - Analyses of HCl and metals samples.
- Mr. Pierre Duguay, P.Eng. Supervisor
 - Report writing.
- Mr. Claude Bélanger, Chemist Operations manager
 - > Report verification.

Agat Laboratories

Mr. Marc-André Desjardins – Chemist

Analyses of SVOC samples.

Document No.:R14-034R01Page No.:9 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

2.4 Process operating conditions

Process operating conditions of the incinerator were under Agnico-Eagle's responsibility. The operating conditions were maintained stable throughout each day of the test program.

2.5 Applicable standards

For this project, the applicable standards are shown below.

Table 2.5-1 – Applicable standards

Contaminants	Standards
Mercury (Hg)	20 μg / Rm³ @ 11 % v/v O ₂
Dioxins and furans (PCDD/F)	80 pg TEQ / Rm³ @ 11 % v/v O ₂

R: Reference conditions, 25 °C, 101.3 kPa, dry basis.

Document No.: R14-034R01

Author: Pierre Duguay, P. Eng.

Client: Agnico-Eagle Mines Ltd.

Page No.: 10 of 35 Version's date: August 2014

Version No.:

3 METHODS

3.1 Sampling methods

The following sections give more details on the stack sampling methods used during the test program and their application.

Table 3.1-1 – Sampling methods

Parameters	Methods	Sampling duration (min.)
Manual sampling methods		
Temperature	Thermometer or thermocouple	Ponctual
Gas flow	EPS 1/RM/8, method B – Environment Canada	Ponctual
O ₂ , CO ₂ , CO	EPS 1/RM/8, method C - Environment Canada	Ponctual
Moisture content	EPS 1/RM/8, method D - Environment Canada	Ponctual
Particulate matter (PM)	EPS 1/RM/8, method E – Environment Canada	
Anions (HCI)	EPS 1/RM/1 – Environment Canada	180
Metals	Method 29 - USEPA	
SVOC	EPS 1/RM/2 – Environment Canada	180
NO _x	EPS 1-AP-77-3 – Environment Canada	2

3.2 Sampling acceptance criteria

Isokinetic sampling means that the linear velocity of the stack gases entering the nozzle of the sampling probe is equal to the stack gas velocity at the sampling point. Acceptance criteria for a sampling run related to the reference methods that are used are as in the following table.

Table 3.2-1 – Sampling validity criteria

Parameters / Methods	Acceptance criteria
PM / Anion / Metals / SPE 1/RM	/8 – Environment Canada & 29 - USEPA
Less than 10% of the	rised between 90 % and 110 % e sampled points out of the 90 % to 110 % range uration : 120 minutes blume : 2.80 Rm ³
SVOC / SPE 1/RM/2 – Environm	nent Canada
Less than 10% of the	rised between 90 % and 110 % as sampled points out of the 90 % to 110 % range are uration: 180 minutes ablume: 3.00 Rm ³

Document No.:R14-034R01Page No.:11 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

3.3 Particulate matter (PM), hydrogen chloride and metals

Particulate matter (PM), hydrogen chloride (HCI) and metals were sampled in accordance with the requirements of Environment Canada EPS 1/RM/8 sampling method entitled: "Reference methods for source testing: measurement of releases of particulate from stationary sources". This method was combined with Environment Canada EPS 1/RM/1 sampling method entitled: "Reference methods for source testing: measurement of releases of hydrogen chloride from stationary sources" and USEPA method 29 entitled "Metals emissions from stationary sources" in order to allow for anion and metals sampling. Sampling lasted 180 minutes and a minimal volume of at least 2.80 Rm³ was sampled for each run. Three PM / HCl / metals tests were conducted simultaneously to the SVOC tests during each run.

Particulate matter (PM), anion (HCI), and metals (including mercury) are sampled isokinetically using a single sampling train. This is recognized as the standard method for obtaining representative samples of particulate matter.

Two complete sampling trains were prepared for this project and were transported to the worksite. Sampling nozzles, pitot tubes, dry gas meters and orifice flow meters were calibrated in accordance with the Environment Canada testing code. A standard Method 5 sampling module was used, with a 5 foot probe with a glass liner. The sampling train was as follows.

Table 3.3-1 – Main components of the sampling system – PM / HCl / metals

Components	Description
Sampling probe	
A stainless steel no	ozzle of a precisely measured diameter to allow isokinetic sampling:

- a stainless steel water-cooled probe with a heated glass liner to avoid moisture condensation;
- this probe is fastened to an "S" type Pitot tube for gas velocity measurement and to a thermocouple for temperature measurement.

Sampling train

- A 0.3 μm porosity pre-weighted quartz filter mounted on an accurate holder and placed in a heated oven to avoid moisture condensation:
- eight impingers placed in series and containing:
- 100 ml demineralized water; # 1 and # 2:
- # 3 and # 4: 100 ml HNO₃ (5%) / H₂O₂ (10%) solution;
- #5: empty;
- #6 and #7: 100 ml KMnO₄ (4%) / H₂SO₄ (10%) solution;
- 200 a silica ael:
- the impingers are placed in an ice bath to condense all the flue gas moisture.

Control unit

- A diaphragm leak free vacuum pump;
- a dry gas meter;
- an orifice flow meter;
- probe and oven temperature controllers;
- temperature display (stack, gas meter, impingers, resin).

Document No.: R14-034R01 Page No.: 12 of 35 August 2014 Author: Pierre Duguay, P. Eng. Version's date: Client: Agnico-Eagle Mines Ltd. Version No.:

At the end of each sampling run the sampling train was brought back to the field laboratory to process with sample recovery. The procedure followed for sample recovery is as in the following table.

Table 3	Table 3.3-2 – Sample recovery – PM / HCl / metals	
Compo	nents	Description
Nozzle	Nozzle and probe	
>	The nozzle and probe are rinsed and brushed with acetone;	

- the rinses are kept in polyethylene with a Teflon lid;
- the nozzle and probe are rinsed and brushed with the HNO₃ 0.1 N solution;
- the rinses are kept in another polyethylene container with a Teflon lid.

Filter

- The filter is placed in a plastic petri dish;
- the pieces of the filter stuck to the rubber are carefully replaced with the filter.

Impingers # 1 and # 2

- The volume of solution is measured for moisture content determination;
- the solution is transferred in a polyethylene container with a Teflon lid;
- the glassware is rinsed with demineralized water;
- the rinses are added to the same container in which the impingers solution have been placed;
- the solution is acidified.

Impingers # 3 and # 4

- The volume of the solution is measured for moisture content determination:
- the solution is transferred in a polyethylene container with a Teflon lid;
- the glassware is rinsed with the HNO₃ solution;
- the rinses are added to the same container in which the impingers solution have been placed;
- the total volume of the solution is noted.

Impingers # 5, # 6 and # 7

- The volume of the solution is measured for moisture content determination;
- the solution is transferred in an amber glass container with a Teflon lid;
- the glassware is rinsed with the acidified permanganate solution;
- the rinses are added to the same container in which the impingers solution have been placed;
- the total volume of the solution is noted.

Impinger #8

> The silica gel is weighted in order to determine the moisture content.

Analyses of the different components of the sampling train were done as in the following table.

Exova performed the analyses for particulate matter on the probe wash and on the filter. Exova was responsible as well for the metals analyses.

Document No.: R14-034R01 Page No.: 13 of 35 Author: Pierre Duguay, P. Eng. Version's date: August 2014 Client: Agnico-Eagle Mines Ltd. Version No.:

Table 3.3-3 – Samples analyses – PM / metals

Description

Nozzle and probe

- Washing of the nozzle and probe are evaporated to dryness;
- The residue's weight is noted constitutes one part of the particulate matter.

Filter

- ➤ The filter is placed in a dessiccator for a period of 24 hours ;
- the filter is weighted and the weight is noted;
- the residue constitutes another part of the particulate matter.

Particulate matter and HNO₃ 0.1 N washings of probe-nozzle and filter holder front half

> particulate matter are combined with the HNO₃ washings for digestion and analysed for metals.

Impingers # 1 and # 2

Part of the acidified solution is taken and analysed for HCl and metals content.

Impingers # 3 and # 4

▶ Part of the HNO₃ solution is taken and analysed for metals content.

Impingers # 5, # 6 and # 7

Part of the acidified permanganate solution is taken and analysed for mercury content.

Impinger #8

No analysis is performed on this component.

3.4 Semi-volatile organic compounds (SVOC)

Semi-Volatile Organic Compounds (SVOC) are defined as organic compounds with boiling points greater than 100 °C. This class of compounds includes PCDD (PolyChlorinated Dibenzo p Dioxins), PCDF (PolyChlorinated DibenzoFurans), CP (ChloroPhenols), CB (ChloroBenzenes), PCB (PolyChlorinated Biphenyls) and PAH (Polycyclic Aromatic Hydrocarbons).

SVOCs were sampled in accordance with the requirements of Environment Canada EPS 1/RM/2 sampling method entitled: "Reference Method for Source Testing: Measurement of Releases of Selected Semi-volatile Organic Compounds from Stationary Sources ". For this project SVOCs included polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). Sampling lasted 180 minutes and a minimal volume of at least 3.00 Rm³ were sampled for each run. At the outlet of the incinerator, three SVOC tests were conducted.

Document No.:R14-034R01Page No.:14 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

Five (5) train glassware sets were cleaned and one common rinse was analyzed for proofing. Three (3) of these trains were used for testing, one (1) was used as field blank and the remaining one was kept as spares.

A standard Method 5 sampling module was used, with a 5 foot borosilicate lined (proofed) probe. Sampling nozzles, pitot tubes, dry gas meters and orifice flow meters are calibrated in accordance with the EPS testing code.

Sampling train was assembled every day for the test to be held on the same day. Two rinses (Acetone & Hexane – 3 times each) were done before each test. The sampling train was as in the following.

Table 3.4-1 – Main components of the sampling system – SVOC

Components	Description
0	

Sampling probe

- A stainless steel nozzle of a precisely measured diameter to allow isokinetic sampling;
- > a stainless steel water-cooled probe with a heated glass liner to avoid moisture condensation;
- this probe is fastened to an "S" type Pitot tube for gas velocity measurement and to a thermocouple for temperature measurement.

Sampling train

- A 0.3 μm porosity pre-weighted fiber glass filter mounted on an accurate holder and placed in a heated oven to avoid moisture condensation ;
- a condenser;
- a XAD-2 resin cartridge;
- a condensate trap ;
- three impingers placed in series and containing :
- # 1: 100 ml ethylene glycol;
- # 2 : empty :
- # 3: 200 g silica gel;
- the impingers are placed in an ice bath to condense all the flue gas moisture.

Control unit

- A diaphragm leak free vacuum pump;
- a dry gas meter;
- an orifice flow meter;
- probe and oven temperature controllers;
- temperature display (stack, gas meter, impingers, resin).

At the end of each sampling run the sampling train was brought back to the field laboratory to process with sample recovery. The procedure followed for sample recovery is as in the following table. Except for the filter, all the sampling train's components were first rinsed three times with acetone and then three times with hexane. After recovery was completed, all samples were clearly documented in lab journals, with each sample container clearly labelled, and stored in a refrigerator.

Document No.:R14-034R01Page No.:15 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

Along with one of the three SVOC tests, a blank train has been taken to the stack sampling site and left untouched for the duration of the test. At the end of the test, a volume of ambient air equal to the sum of all leak check volumes during the SVOC test was run through the blank train, according to the requirements of reference method EPS 1/RM/2.

The blank train was recovered in the field laboratory in the same manner as the compliance test trains. The field blank train has been analysed by Agat. Because they each constitute a part of the blank train, solvents, reactives, filters and the XAD-2 resin were not sampled and analysed as individual blanks. The train analysis was performed as per methods EPS 1/RM/3, EPS 1/RM/23 and NITEP/Mid Connecticut Combustion Test Methodology for Organic Analysis.

Table 3.4-2 - Sample recovery - SVOC

		Components	Description
--	--	------------	-------------

Nozzle, probe and front half of filter holder

- > Each component is rinsed three times and brushed with acetone and then three times with hexane;
- all the rinses are kept in amber glass container with a Teflon lid.

<u>Filter</u>

- > The filter is carefully removed from filter holder and deposited on a pre-cleaned aluminum foil;
- > the pieces of the filter stuck to the rubber are carefully replaced with the filter;
- > the filter is folded in half and placed in a pre-cleaned glass petri dish.

Back half of filter holder and condenser

- > The condenser is weighted in order to determine the moisture content:
- > each component is soaked 5 minutes each with acetone and hexane;
- > each component is rinsed three times with acetone and then three times with hexane;
- > all the rinses are kept in amber glass container with a Teflon lid.

Resin cartridge

- > The cartridge is weighted in order to determine the moisture content;
- both ends of the cartridge are sealed;
- > the whole tube is wrapped with an aluminum foil.

Condensate trap and impinger # 1

- Each component is weighted in order to determine the moisture content:
- the solution of each container is transferred into a pre-cleaned amber glass bottle;
- > each component is rinsed three times each with HPLC water :
- the rinses are added into the same container.

All back half glassware excluding resin cartridge

- Each component including connectors are rinsed three times each with acetone and hexane;
- > all the rinses are kept into a pre-cleaned glass amber bottle.

Impingers # 2 and # 3

Each component is weighted in order to determine the moisture content.

Document No.:R14-034R01Page No.:16 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

Procedures in Environment Canada's Reports EPS 1/RM/3 and EPS 1/RM/23 were followed by Agat. All glassware was rinsed (with acetone and hexane) on site prior to usage, as per EPS 1/RM/2. SVOC samples were treated as one combined extract per test. Front and back halves of the sampling trains were not analyzed separately. The following analyses were done by the laboratory.

Table 3.4-3 – Samples analyses – SVOC

Components	omponents Description						
<u>Proofing</u>							
> 1 analysis for PCD	D/F (1 combined proof rinse for all 5 trains glassware, XAD resin + filters).						

Laboratory blank

> 1 analysis as part of the lab internal quality control.

Field blank

> 1 analysis for PCDD/F.

Samples

> 3 analyses (1 analysis per train) for PCDD/F.

The proofing procedures detailed in Environment Canada's Report EPS 1/RM/2 entitled "Reference Method for Source Testing: Measurement of Releases of Selected Semi Volatile Organic Compounds from Stationary Sources" dated June 1989 were followed. These procedures have been carried out several times by the personnel assigned to this study.

Items cleaned by Exova: probe glass liners, all train glassware, petri dishes used for storing

filters, XAD-2 traps and sample containers.

Items cleaned by Agat: XAD-2 resin, glass wool and filters.

All solvents and reagents used in this project were supplied by Exova except for the Amberlite XAD-2 resin and glass wool which were supplied by Agat. Exova's and Agat's last rinsings were combined to produce 1 final sample for proofing. One proofing analysis was carried out by Agat.

3.5 Nitrogen oxides (NO_x)

Nitrogen oxides (NO_x) were measured at the stack outlet of the incinerator. The test consisted of taking four grab samples of combustion gas. The sampling method used was Environment Canada EPS 1-AP-77-3. Sampling components are:

Document No.:R14-034R01Page No.:17 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

Probe liner material: Borosilicate;

Filter: Glass wool at the probe tip;

Flask (2 L): 25 ml of absorbing solution (H_2O_2 / H_2SO_4) .

The glass wool used in the sampling train was discarded after the test. The stack gas stayed in contact with the absorbing solution in the flask overnight. All solvents and reagents used in this project were from a single batch. The NO_x present in the stack gas are converted to nitric acid by gas phase oxidation due to oxygen in the sample and the H_2O_2 / H_2SO_4 absorbing solution.

The NO_x sampling is not an isokinetic method. Each grab sample lasts about 2 minutes. If the gas stream at the stack is well mixed, the grab samples are then representative of the emissions at the time they are taken.

3.6 Gas molecular weight

Gas molecular weight was determined by measuring O₂, CO₂ and CO in accordance with the requirements of Environment Canada EPS 1/RM/8 sampling method entitled: "Reference methods for source testing: measurement of releases of particulate from stationary sources".

All system's components in contact with the stack gas were made of stainless steel. The gas composition at the sampling site was measured by connecting the analyser to the exhaust of the control unit. Specifications of the analyser are as in the following table.

Table 3.6-1 – Specifications of the analyser used for gas molecular weight determination

Pollutant	O_2	CO ₂	CO
Measuring principle	Electrochemical cell	Thermoconductivity cell	Electrochemical cell
Instrument	Nova 376	Nova 376	Nova 376
Measuring range	0 – 25 % v/v	0 – 20 % v/v	0 – 4 % v/v

3.7 Gas temperature, moisture content and flowrate

Gas temperature, flowrate, velocity and moisture content were measured at the sampling site according to "Reference methods for source testing: measurement of releases of particulate from stationary sources". Methods B and D, Environment Canada, December 1993, EPS 1/RM/8.

Document No.:R14-034R01Page No.:18 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

4 SAMPLED SOURCE

4.1 Outlet of the incinerator

Sampling was conducted at the outlet of the incinerator. A description of the sampling location is shown below.

Table 4.1-1 – Outlet of the incinerator

Parameter	Value
Stack inside diameter at the sampling site	38.0"
Length of sampling ports	10.0"
No. of straight duct diameters upstream from the sampling ports	5.0 D
No. of straight duct diameters downstream of the sampling ports	2.0 D
No. of sampling traverses	2
Total no. of sampling points per sampling traverse	18
Total no. of sampling points per test	36
Sampling time per point (minutes)	5

4.2 Sampling equipment

The sampling equipment used for particulate matter (PM) / hydrogen chloride (HCl) / metals testing and for SVOC testing is described in the following tables.

Table 4.2-1 – Sampling equipment for PM / HCl / metals train

Parameter	Test # 1	Test # 2	Test # 3
Sampling module	10	10	10
Gas meter factor (γ)	0.9622	0.9622	0.9622
Orifice factor (K _o)	0.9304	0.9304	0.9304
Probe	2' E (eau)	2' E (eau)	2' E (eau)
Pitot factor (Cv)	0.785	0.785	0.785
Nozzle (inches)	0.498	0.498	0.498

Document No.:R14-034R01Page No.:19 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

Table 4.2-2 – Sampling equipment for SVOC train

Parameter	Test # 1	Test # 2	Test # 3
Sampling module	8	8	8
Gas meter factor (γ)	0.9751	0.9751	0.9751
Orifice factor (K _o)	0.7201	0.7201	0.7201
Probe	2' F (eau)	2' F (eau)	2' F (eau)
Pitot factor (Cv)	0.785	0.785	0.785
Nozzle (inches)	0.498	0.498	0.498

4.3 QA/QC report

The following tables show the quality assurance / quality control parameters applied during the test program. These parameters deal with the gas flow conditions at the sampling location, the sampling equipment/procedures employed and the isokineticity of the tests. The value of each parameter is compared to a quality acceptance criterion formulated in the reference sampling methods.

Table 4.3-1 - Gas flow conditions

Parameter	Actual			Quality criteria
Duct diameter (inches)		38.0		≥ 12.0
Sampling cross-section (ft ²)		7.88		≥ 0.78
No. of duct diam. upstream		5.0 D		≥ 2.0 D
No. of stack diam. downstream		2.0 D		≥ 0.5 D
No. of sampling traverses		2		2 or more
Cyclonic flow		0°		≤ 15°
PM / HCI / metals tests	# 1	# 2	# 3	
Maximum stack gas velocity (ft/s)	26.5	26.6	27.4	≤ 100
Minimum stack gas velocity (ft/s)	18.4	19.3	18.1	≥ 10.0
Highest Ratio Vmax / Vmin	1.4	1.4	1.5	≤ 2.0
SVOC tests	# 1	# 2	# 3	
Maximum stack gas velocity (ft/s)	26.0	28.0	25.7	≤ 100
Minimum stack gas velocity (ft/s)	10.6	13.4	19.0	≥ 10.0
Highest Ratio Vmax / Vmin	2.5	2.1	1.4	≤ 2.0

All the quality criteria required by the reference sampling method were met except for the ratio Vmax / Vmin for the SVOC tests # 1 and 2. These deviations are acceptable since it was still possible to perform an isokinetic sampling using the same diameter for the nozzle.

Document No.:R14-034R01Page No.:20 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

Table 4.3-2 – Sampling equipment and procedures

PM / HCI / metals	Test # 1	Test # 2	Test # 3	Quality criteria
Filter enclosure temperature (^O F)	250	250	250	248 ± 25
Probe temperature (^O F)	250	250	250	248 ± 25
Maximum leak rate (cfm)	< 0.02	< 0.02	< 0.02	≤ 0.02
Nozzle diameter (in.)	0.498	0.498	0.498	≥ 0.188
Gas meter calibration factor	0.9622	0.9622	0.9622	$0.95 \le \gamma \le 1.05$
Sampling duration (min)	180	180	180	≥ 120
Gas sample volume (Rm ³)	3.794	3.540	3.621	≥ 2.80
svoc	Test # 1	Test # 2	Test # 3	Quality criteria
Filter enclosure temperature (^O F)	249	248	250	248 ± 25
Probe temperature (^O F)	249	248	249	248 ± 25
Resin XAD-2 temperature (^O F)	55	55	55	/ 60
Troom 70 tb 2 tomporatoro (1)	33	55	33	≤ 68
Maximum leak rate (cfm)	< 0.02	< 0.02	< 0.02	≤ 0.02
. , ,				
Maximum leak rate (cfm)	< 0.02	< 0.02	< 0.02	≤ 0.02
Maximum leak rate (cfm) Nozzle diameter (in.)	< 0.02 0.498	< 0.02 0.498	< 0.02 0.498	≤ 0.02 ≥ 0.188

All quality criteria required by the reference sampling method were met concerning the sampling equipment and procedures. No equipment failure, leaks or sample recovery problems were encountered during the testing program.

Table 4.3-3 – Isokineticity

PM / HCI / metals	Test # 1	Test # 2	Test # 3	Quality criteria
Average (%)	96.7	98.9	100.7	90 % ≤ Iso ≤ 110 %
> 110%	0 / 36	0 / 36	0 / 36	≤ 3 / 36
< 90%	0 / 36	0 / 36	0 / 36	
SVOC	Test # 1	Test # 2	Test # 3	Quality criteria
Average (%)	94.6	96.3	96.2	90 % ≤ Iso ≤ 110 %
> 110%	0 / 36	0 / 36	0 / 36	≤ 3 / 36
< 90%	0 / 36	0 / 36	0 / 36	

All quality criteria required by the reference sampling method were met concerning the isokineticity of the tests.

Document No.:R14-034R01Page No.:21 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

5 TABLES OF RESULTS

All the tests results are summarized in section 1.2 and represent the average of three runs with the exception for the NO_x results that represent the average of four grab samples.

Complete results for particulate matter (PM) and chlorhydric acid (HCl) are presented in table # 1. For metals, summary results are presented in table # 2 and detailed results are presented in tables 3 to 5.

For dioxins and furans (PCDD/F), summary results are presented in table # 6 and detailed results are presented in tables 7 to 9 with field blank results. The PCDD/PCDF tables of results give the analytical results in terms of international toxic equivalent (ITEQ) of the dioxin and furan congeners (expressed as 2, 3, 7, 8-T4CDD) as per method EPS 1/RM/2 requirements.

Results of PM / HCI / metals and SVOC include stack gas properties (velocity, flow, temperature, moisture, static pressure, molecular weight) measured during each test.

Complete results for nitrogen oxides (NO_x) are presented in table # 10.

```
# 1 : Detailed results of particulate matter (PM) and HCl emissions ; # 2 : Summary results of metals emissions ; # 3 : Detailed results of metals emissions — test # 1 ; # 4 : Detailed results of metals emissions — test # 2 ; # 5 : Detailed results of metals emissions — test # 3 ; # 6 : Summary results of SVOC emissions ; # 7 : Detailed results of PCDD/F emissions — test # 1 ; # 8 : Detailed results of PCDD/F emissions — test # 2 ; # 9 : Detailed results of PCDD/F emissions — test # 3 ; # 10 : Detailed results of NO_{x} emissions.
```

The quality of the sampling data and results is good for all measurements. All the data are consistent and reliable.

The operating conditions were maintained stable throughout each day of the test program.

The applicable standard for dioxins and furans (PCDD/F) was met during each test. The applicable standard for mercury (Hg) was met only during test # 3.

All computer print-outs, field data, analytical results and calibration reports are presented in appendix # 1.

Document No.:R14-034R01Page No.:22 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

TABLE # 1 OUTLET OF INCINERATOR SUMMARY OF ATMOSPHERIC EMISSIONS PARTICULATE MATTER - ANIONS

Test Date	1 11-Jul-14	2 12-Jul-14	3 13-Jul-14	AVERAGE
Time	12:59 - 16:35	11:22 - 16:00	09:48 - 14:18	
WEIGHT OF SAMPLE				
Particulate matter (mg)	97.53	123.56	87.37	
HCI (mg)	82.07	141.92	98.94	
GAS SAMPLE VOLUME (Rm³)	3.794	3.540	3.621	
CONCENTRATIONS				
Particulate matter (mg/Rm³)	25.7	34.9	24.1	28.2
Particulate matter (mg/Rm³ @ 11 % O2)	72.5	71.4	50.5	64.8
HCI (mg/Rm³)	21.6	40.1	27.3	29.7
HCI (ppmv)	14.5	26.9	18.3	19.9
EMISSION MASS FLOW RATES				
Particulate matter (kg/h)	0.196	0.242	0.169	0.202
HCI (kg/h)	0.165	0.278	0.191	0.211
		1	ı	
STACK GAS PROPERTIES				
VELOCITY (m/s)	6.9	7.2	7.1	7.1
VOLUMETRIC FLOW RATES				
m³/h (Actual conditions)	18046	18952	18776	18591
Rm³/h (Reference conditions)	7612	6942	6994	7183
TEMPERATURE (℃)	404	498	494	465
MOISTURE (% v/v, wet basis)	3.6	5.2	5.1	4.6
STATIC PRESSURE (" H2O)	-0.10	-0.10	-0.10	-0.10
GAS COMPOSITION (dry basis)				
O2 (% v/v)	17.39	16.06	16.17	16.54
CO2 (% v/v)	2.49	3.47	3.36	3.11
CO (ppmv)	6.4	2.0	2.6	3.7
			, ,	
AVERAGE ISOKINETICITY (%)	96.7	98.9	100.7	98.8

"R" or "Reference Conditions" at 25 °C, 101.3 kPa, dry basis.

Document No.:R14-034R01Page No.:23 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

TABLE # 2 OUTLET OF INCINERATOR RESULTS OF METALS ATMOSPHERIC EMISSIONS

Test	1	2	3	
Date	11-Jul-14	12-Jul-14	13-Jul-14	Average
Time	12:59 - 16:35	11:22 - 16:00	09:48 - 14:18	

Metals		Concentrations (μg/Rm³)						
Aluminum (Al)		69.58		21.75	1	17.12		36.15
Antimony (Sb)		6.04		3.47		4.23		4.58
Arsenic (As)		0.98		0.65		0.69		0.77
Baryum (Ba)		1.48		0.99		0.64		1.03
Beryllium (Be)	<	0.79	<	0.85	<	0.83	<	0.82
Bismuth (Bi)	<	1.32		1.41	<	1.38	<	1.37
Boron (B)	<	15.02		22.32	<	17.67	<	18.34
Cadmium (Cd)		0.98		1.13		1.44		1.18
Calcium (Ca)		234.05		222.03		130.90		195.66
Chromium (Cr)		4.67		5.45		6.27		5.46
Cobalt (Co)		4.48		1.61		0.52		2.21
Copper (Cu)		15.08		19.12		14.58		16.26
Iron (Fe)		50.08		38.98		31.21		40.09
Lead (Pb)		57.99		78.25		92.79		76.34
Lithium (Li)		2.56		3.31		2.57		2.81
Magnesium (Mg)		53.24		30.48		28.89		37.54
Manganese (Mn)		56.98		3.53		29.44		29.99
Mercury (Hg)		10.55		70.72		8.53		29.93
Molybdenum (Mo)		1.05		1.41		1.10		1.19
Nickel (Ni)		0.71		0.73		0.55		0.67
Phosphorus (P)	<	75.65	<	93.79	<	92.79	<	87.41
Potassium (K)		5693.20		8163.84		6517.54		6791.53
Selenium (Se)		0.24		0.34		0.41		0.33
Silicium (soluble in HNO3)		80.39		53.95		39.22		57.85
Silver (Ag)		0.66		1.24		0.47		0.79
Sodium (Na)		2952.03		5338.98		3590.17		3960.39
Strontium (Sr)		0.55		0.54		0.30		0.46
Tellurium (Te)	<	0.79	<	0.85	<	0.83	<	0.82
Thallium (TI)	<	0.79	<	0.85	<	0.83	<	0.82
Tin (Sn)		15.76		26.24		19.61		20.54
Titanium (Ti)		2.95		0.90		0.99		1.62
Uranium (U)	<	0.79	<	0.85	<	0.83	<	0.82
Vanadium (V)		0.13		0.08		0.14		0.12
Zinc (Zn)		142.33		144.92		146.92		144.72

"R" or "Reference Conditions" at 25 °C, 101.3 kPa, dry basis.

Document No.:R14-034R01Page No.:24 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014

TABLE # 2 (cont'd) OUTLET OF INCINERATOR RESULTS OF METALS ATMOSPHERIC EMISSIONS

Test	1	2	3	
Date	11-Jul-14	12-Jul-14	13-Jul-14	Average
Time	12:59 - 16:35	11:22 - 16:00	09:48 - 14:18	

Metals		Concentrations (μg/Rm³ @ 11 % O2)						
Aluminum (Al)		196.26		44.49		35.84		92.20
Antimony (Sb)		17.02		7.11		8.84		10.99
Arsenic (As)		2.75		1.33		1.45		1.84
Baryum (Ba)		4.16		2.02		1.33		2.50
Beryllium (Be)	<	2.23	<	1.73	<	1.73	<	1.90
Bismuth (Bi)	<	3.72		2.89	<	2.89	<	3.17
Boron (B)	<	42.37		45.65	<	36.99	<	41.67
Cadmium (Cd)		2.75		2.31		3.01		2.69
Calcium (Ca)		660.15		454.16		273.98		462.77
Chromium (Cr)		13.16		11.15		13.12		12.48
Cobalt (Co)		12.64		3.29		1.10		5.68
Copper (Cu)		42.52		39.12		30.52		37.39
Iron (Fe)		141.25		79.74		65.32		95.43
Lead (Pb)		163.55		160.05		194.22		172.61
Lithium (Li)		7.21		6.76		5.38		6.45
Magnesium (Mg)		150.17		62.35		60.46		90.99
Manganese (Mn)		160.73		7.22		61.62		76.52
Mercury (Hg)		29.76		144.65		17.86		64.09
Molybdenum (Mo)		2.97		2.89		2.31		2.72
Nickel (Ni)		2.01		1.50		1.16		1.56
Phosphorus (P)	<	213.36	<	191.83	<	194.22	<	199.80
Potassium (K)		16057.74		16698.77		13641.36		15465.96
Selenium (Se)		0.67		0.69		0.87		0.74
Silicium (soluble in HNO3)		226.74		110.36		82.08		139.73
Silver (Ag)		1.86		2.54		0.98		1.79
Sodium (Na)		8326.24		10920.65		7514.31		8920.40
Strontium (Sr)		1.56		1.10		0.64		1.10
Tellurium (Te)	<	2.23	<	1.73	<	1.73	<	1.90
Thallium (TI)	<	2.23	<	1.73	<	1.73	<	1.90
Tin (Sn)		44.46		53.68		41.04		46.39
Titanium (Ti)		8.33		1.85		2.08		4.09
Uranium (U)	<	2.23	<	1.73	<	1.73	<	1.90
Vanadium (V)		0.37		0.17		0.29		0.28
Zinc (Zn)		401.44		296.42		307.51		335.12

"R" or "Reference Conditions" at 25 °C, 101.3 kPa, dry basis.

Document No.:R14-034R01Page No.:25 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

TABLE # 2 (cont'd) OUTLET OF INCINERATOR RESULTS OF METALS ATMOSPHERIC EMISSIONS

Test	1	2	3	
Date	11-Jul-14	12-Jul-14	13-Jul-14	Average
Time	12:59 - 16:35	11:22 - 16:00	09:48 - 14:18	

Metals	Emission rates (μg/s)							
Aluminum (Al)		147.14		41.94		33.27		74.12
Antimony (Sb)		12.76		6.70		8.21		9.22
Arsenic (As)		2.06		1.25		1.34		1.55
Baryum (Ba)		3.12		1.91		1.23		2.09
Beryllium (Be)	<	1.67	<	1.63	<	1.61	<	1.64
Bismuth (Bi)	<	2.79		2.72	<	2.68	<	2.73
Boron (B)	<	31.77		43.03	<	34.34	<	36.38
Cadmium (Cd)		2.06		2.18		2.79		2.34
Calcium (Ca)		494.92		428.15		254.32		392.46
Chromium (Cr)		9.87		10.51		12.18		10.85
Cobalt (Co)		9.47		3.10		1.02		4.53
Copper (Cu)		31.88		36.88		28.33		32.36
Iron (Fe)		105.90		75.17		60.63		80.57
Lead (Pb)		122.62		150.89		180.28		151.26
Lithium (Li)		5.41		6.37		4.99		5.59
Magnesium (Mg)		112.58		58.77		56.12		75.83
Manganese (Mn)		120.50		6.81		57.20		61.50
Mercury (Hg)		22.31		136.36		16.58		58.42
Molybdenum (Mo)		2.23		2.72		2.15		2.37
Nickel (Ni)		1.50		1.42		1.07		1.33
Phosphorus (P)	<	159.96	<	180.85	<	180.28	<	173.69
Potassium (K)		12038.70		15742.31		12662.47		13481.16
Selenium (Se)		0.50		0.65		0.80		0.65
Silicium (soluble in HNO3)		169.99		104.04		76.19		116.74
Silver (Ag)		1.39		2.40		0.91		1.57
Sodium (Na)		6242.29		10295.15		6975.09		7837.51
Strontium (Sr)		1.17		1.03		0.59		0.93
Tellurium (Te)	<	1.67	<	1.63	<	1.61	<	1.64
Thallium (TI)	<	1.67	<	1.63	<	1.61	<	1.64
Tin (Sn)		33.33		50.60		38.09		40.68
Titanium (Ti)		6.24		1.74		1.93		3.31
Uranium (U)	<	1.67	<	1.63	<	1.61	<	1.64
Vanadium (V)		0.28		0.16		0.27		0.24
Zinc (Zn)		300.97		279.44		285.44		288.62

Document No.:R14-034R01Page No.:26 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014

Stack sampling tests Outlet of the incinerator

1

TABLE # 3

OUTLET OF INCINERATOR METALS EMISSIONS AT THE STACK

TEST #	1
DATE	11-Jul-14
TIME	12:59 - 16:35

		ANALYSES	C	ONCENTRATION		EMISSION	СС	ONCENTRATION
Metals		OF SAMPLE		(1)		RATE		(1)
				. /		(1)		` '
		μg		μg/Rm³		μg/s	ug/I	Rm³ @ 11 % O2
Aluminum (AI)		264.0		69.58		147.14		196.26
Antimony (Sb)		22.9		6.04		12.76		17.02
Arsenic (As)		3.7		0.98		2.06		2.75
Baryum (Ba)		5.6		1.48		3.12		4.16
Beryllium (Be)	<	3.0	<	0.79	<	1.67	<	2.23
Bismuth (Bi)	<	5.0	<	1.32	<	2.79	<	3.72
Boron (B)	<	57.0	<	15.02	<	31.77	<	42.37
Cadmium (Cd)		3.7		0.98		2.06		2.75
Calcium (Ca)		888.0		234.05		494.92		660.15
Chromium (Cr)		17.7		4.67		9.87		13.16
Cobalt (Co)		17.0		4.48		9.47		12.64
Copper (Cu)		57.2		15.08		31.88		42.52
Iron (Fe)		190.0		50.08		105.90		141.25
Lead (Pb)		220.0		57.99		122.62		163.55
Lithium (Li)		9.7		2.56		5.41		7.21
Magnesium (Mg)		202.0		53.24		112.58		150.17
Manganese (Mn)		216.2		56.98		120.50		160.73
Mercury (Hg)		40.03		10.55		22.31		29.76
Molybdenum (Mo)		4.0		1.05		2.23		2.97
Nickel (Ni)		2.7		0.71		1.50		2.01
Phosphorus (P)	<	287.0	<	75.65	<	159.96	<	213.36
Potassium (K)		21600.0		5693.20		12038.70		16057.74
Selenium (Se)		0.9		0.24		0.50		0.67
Silicium (soluble in HNO3)		305.0		80.39		169.99		226.74
Silver (Ag)		2.5		0.66		1.39		1.86
Sodium (Na)		11200.0		2952.03		6242,29		8326.24
Strontium (Sr)		2.1		0.55		1.17		1.56
Tellurium (Te)	<	3.0	<	0.79	<	1.67	<	2.23
Thallium (TI)	<	3.0	<	0.79	<	1.67	<	2.23
Tin (Sn)		59.8		15.76		33.33		44.46
Titanium (Ti)		11.2		2.95		6.24		8.33
Uranium (U)	<	3.0	<	0.79	<	1.67	<	2.23
Vanadium (V)		0.5		0.13		0.28		0.37
Zinc (Zn)		540.0		142.33		300.97		401.44

GAS SAMPLE VOLUME (Rm3):	3.794

STACK GAS PROPERTIES					
VELOCITY (m/s)	6.9				
VOLUMETRIC FLOW RATE					
m³/h (actual conditions)	18046				
Rm³/h (reference conditions)	7612				
GAS TEMPERATURE (°C)	404				
MOISTURE (% v/v wet basis)	3.6				
STATIC PRESSURE (inch H2O)	-0.10				
GAS COMPOSITION (dry basis)					
O2 (% v/v)	17.39				
CO2 (% v/v)	2.49				
CO (ppmv)	6.4				

 $⁽¹⁾ When an analysis is "<\!D.L.", the detection limit (D.L.) is used in the calculations of concentration and emission.$

Document No.:R14-034R01Page No.:27 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014

[&]quot;R" or "Reference Conditions" at 25°C, 101.3 kPa, dry basis.

AEM

OUTLET OF INCINERATOR METALS EMISSIONS AT THE STACK

TEST#	2
DATE	12-Jul-14
TIME	11:22 - 16:00

	Т	ANALYSES	co	NCENTRATION		EMISSION	CONG	CENTRATION
Metals		OF SAMPLE		(1)		RATE		(1)
						(1)		
		μg		μg/Rm³		μg/s	μg/Rn	n³ @ 11 % O2
Aluminum (Al)		77.0		21.75		41.94		44.49
Antimony (Sb)		12.3		3.47		6.70		7.11
Arsenic (As)		2.3		0.65		1.25		1.33
Baryum (Ba)		3.5		0.99		1.91		2.02
Beryllium (Be)	<	3.0	<	0.85	<	1.63	<	1.73
Bismuth (Bi)		5.0		1.41		2.72		2.89
Boron (B)		79.0		22.32		43.03		45.65
Cadmium (Cd)		4.0		1.13		2.18		2.31
Calcium (Ca)		786.0		222.03		428.15		454.16
Chromium (Cr)		19.3		5.45		10.51		11.15
Cobalt (Co)		5.7		1.61		3.10		3.29
Copper (Cu)		67.7		19.12		36.88		39.12
Iron (Fe)		138.0		38.98		75.17		79.74
Lead (Pb)		277.0		78.25		150.89		160.05
Lithium (Li)		11.7		3.31		6.37		6.76
Magnesium (Mg)		107.9		30.48		58.77		62.35
Manganese (Mn)		12.5		3.53		6.81		7.22
Mercury (Hg)		250.34		70.72		136.36		144.65
Molybdenum (Mo)		5.0		1.41		2.72		2.89
Nickel (Ni)		2.6		0.73		1.42		1.50
Phosphorus (P)	<	332.0	<	93.79	<	180.85	<	191.83
Potassium (K)		28900.0		8163.84		15742.31		16698.77
Selenium (Se)		1.2		0.34		0.65		0.69
Silicium (soluble in HNO3)		191.0		53.95		104.04		110.36
Silver (Ag)		4.4		1.24		2.40		2.54
Sodium (Na)		18900.0		5338.98		10295.15		10920.65
Strontium (Sr)		1.9		0.54		1.03		1.10
Tellurium (Te)	<	3.0	<	0.85	<	1.63	<	1.73
Thallium (TI)	<	3.0	<	0.85	<	1.63	<	1.73
Tin (Sn)		92.9		26.24		50.60	İ	53.68
Titanium (Ti)		3.2		0.90		1.74	İ	1.85
Uranium (U)	<	3.0	<	0.85	<	1.63	<	1.73
Vanadium (V)		0.3		0.08		0.16	İ	0.17
Zinc (Zn)		513.0		144.92		279.44		296.42

GAS SAMPLE VOLUME (Rm3):	3.540

STACK GAS PROPERTIES					
VELOCITY (m/s)	7.2				
VOLUMETRIC FLOW RATE					
m³/h (actual conditions)	18952				
Rm³/h (reference conditions)	6942				
GAS TEMPERATURE (°C)	498				
MOISTURE (% v/v wet basis)	5.2				
STATIC PRESSURE (inch H2O)	-0.10				
GAS COMPOSITION (dry basis)					
O2 (% v/v)	16.06				
CO2 (% v/v)	3.47				
CO (ppmv)	2.0				

 $⁽¹⁾ When an analysis is "<\!D.L.", the detection limit (D.L.) is used in the calculations of concentration and emission.$

Document No.:R14-034R01Page No.:28 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014

[&]quot;R" or "Reference Conditions" at 25°C, 101.3 kPa, dry basis.

TABLE # 5

OUTLET OF INCINERATOR METALS EMISSIONS AT THE STACK

TEST #	3
DATE	July 13, 2014
TIME	09:48 - 14:18

		ANALYSES	CO	NCENTRATION		EMISSION	CON	CENTRATION
Metals	OF SAMPLE			(1)		RATE	(1)	
						(1)		
		μg		μg/Rm³	μg/s		μg/Ri	m³ @ 11 % O2
Aluminum (Al)		62.0		17.12		33.27		35.84
Antimony (Sb)		15.3		4.23		8.21		8.84
Arsenic (As)		2.5		0.69		1.34		1.45
Baryum (Ba)		2.3		0.64		1.23		1.33
Beryllium (Be)	<	3.0	<	0.83	<	1.61	<	1.73
Bismuth (Bi)	<	5.0	<	1.38	<	2.68	<	2.89
Boron (B)	<	64.0	<	17.67	<	34.34	<	36.99
Cadmium (Cd)		5.2		1.44		2.79		3.01
Calcium (Ca)		474.0		130.90		254.32		273.98
Chromium (Cr)		22.7		6.27		12.18		13.12
Cobalt (Co)		1.9		0.52		1.02		1.10
Copper (Cu)		52.8		14.58		28.33		30.52
Iron (Fe)		113.0		31.21		60.63		65.32
Lead (Pb)		336.0	92.79			180.28		194.22
Lithium (Li)		9.3	2.57			4.99		5.38
Magnesium (Mg)		104.6		28.89	56.12			60.46
Manganese (Mn)		106.6		29.44		57.20		61.62
Mercury (Hg)		30.90		8.53		16.58		17.86
Molybdenum (Mo)		4.0		1.10		2.15		2.31
Nickel (Ni)		2.0		0.55		1.07		1.16
Phosphorus (P)	<	336.0	<	92.79	<	180.28	<	194.22
Potassium (K)		23600.0		6517.54		12662.47		13641.36
Selenium (Se)		1.5		0.41		0.80		0.87
Silicium (soluble in HNO3)		142.0		39.22		76.19		82.08
Silver (Ag)		1.7		0.47		0.91		0.98
Sodium (Na)		13000.0		3590.17		6975.09		7514.31
Strontium (Sr)		1.1		0.30		0.59		0.64
Tellurium (Te)	<	3.0	<	0.83	<	1.61	<	1.73
Thallium (TI)	<	3.0	<	0.83	<	1.61	<	1.73
Tin (Sn)	71.0			19.61		38.09		41.04
Titanium (Ti)		3.6		0.99		1.93		2.08
Uranium (U)	<	3.0	<	0.83	<	1.61	<	1.73
Vanadium (V)		0.5		0.14		0.27		0.29
Zinc (Zn)		532.0		146.92		285.44		307.51

GAS SAMPLE VOLUME (Rm3):	3.621

STACK GAS PROPERTIES	
VELOCITY (m/s)	7.1
VOLUMETRIC FLOW RATE	
m³/h (actual conditions)	18776
Rm³/h (reference conditions)	6994
GAS TEMPERATURE (°C)	494
MOISTURE (% v/v wet basis)	5.1
STATIC PRESSURE (inch H2O)	-0.10
GAS COMPOSITION (dry basis)	
O2 (% v/v)	16.17
CO2 (% v/v)	3.36
CO (ppmv)	2.6

 $⁽¹⁾ When an analysis is "<\!D.L.", the detection limit (D.L.) is used in the calculations of concentration and emission.$

Document No.:R14-034R01Page No.:29 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

[&]quot;R" or "Reference Conditions" at 25°C, 101.3 kPa, dry basis.

TABLE # 6 OUTLET OF INCINERATOR SUMMARY OF ATMOSPHERIC EMISSIONS SVOC

Test	1	2	3	
Date	11-Jul-14	12-Jul-14	13-Jul-14	Average
Time	12:59 - 16:35	11:22 - 16:00	09:48 - 14:18	_
	•	•		
Weight of sample				
PCDD/F (pg TEQ)	49.49	84.47	108.01	
Gas sample volume (Rm³)	3.449	3.349	3.290	
CONCENTRATIONS				
PCDD/F (pg/Rm³ TEQ)	14.3	25.2	32.8	24.1
PCDD/F (pg/Rm ³ TEQ @ 11 % O2)	40.5	51.6	68.7	53.6
MASS EMISSION RATE				
PCDD/F (ng/h TEQ)	102.2	171.0	218.1	163.8
STACK GAS PROPERTIES				
VELOCITY (m/s)	6.4	7.0	6.8	6.7
VOLUMETRIC FLOW RATES				
m³/h (Actual conditions)	16795	18462	17860	17706
Rm³/h (Reference conditions)	7122	6780	6643	6848
TEMPERATURE (°C)	403	499	501	468
MOISTURE (% v/v, wet basis)	3.2	4.9	4.4	4.2
STATIC PRESSURE (" H2O)	-0.10	-0.10	-0.10	-0.10
GAS COMPOSITION (dry basis)				
O2 (% v/v)	17.39	16.06	16.17	16.54
CO2 (% v/v)	2.49	3.47	3.36	3.11
CO (ppmv)	6.4	2.0	2.6	3.7
AVERAGE ISOKINETICITY (%)	94.6	96.3	96.2	95.7
ATENIAGE IOUNINE HOLL I (70)	37.0	30.0	30.2	33.1

"R" or "Reference Conditions" at 25 °C, 101.3 kPa, dry basis.

Document No.:R14-034R01Page No.:30 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

TABLE #7

OUTLET OF INCINERATOR EMISSIONS OF PCDD/PCDF

TEST # 1

PROJECT: R14-034

COMPANY: AGNICO-EAGLE MINES LTD, SITE: OUTLET OF INCINERATOR

DATE: July 11, 2014

GAS SAMPLE VOLUME: 3.449 km³ VOLUMETRIC FLOW RATE: 7122 km³/h OXYGEN (O2): 17.39 % v/v, dry basis

CONGENERS	ANALYSES (1) pg	В	LANK (2) pg	TOXIC (4) FACTOR	TEQ (3) pg	CONCENTRATIONS pg/Rm³ TEQ (3)	EMISSIONS (TEQ) pg/s (3)
2,3,7,8-T4CDF without DB-225	25.1	<	0.6	0.1	2.51	0.73	1.44
1,2,3,7,8-P5CDF	18.0	<	0.4	0.05	0.90	0.26	0.52
2,3,4,7,8-P5CDF	37.0	<	0.3	0.5	18.50	5.36	10.61
1,2,3,4,7,8-H6CDF	63.0	<	0.5	0.1	6.30	1.83	3.61
1,2,3,6,7,8-H6CDF	26.0	<	0.5	0.1	2.60	0.75	1.49
2,3,4,6,7,8-H6CDF	45.0	<	0.6	0.1	4.50	1.30	2.58
1,2,3,7,8,9-H6CDF	5.0	<	1.0	0.1	0.50	0.14	0.29
1,2,3,4,6,7,8-H7CDF	86.6	<	0.6	0.01	0.87	0.25	0.50
1,2,3,4,7,8,9-H7CDF	14.7	<	0.9	0.01	0.15	0.04	0.08
1,2,3,4,6,7,8,9-O8CDF	38.0		5.0	0.001	0.04	0.01	0.02
2,3,7,8-T4CDD	4.0	<	0.8	1	4.00	1.16	2.29
1,2,3,7,8-P5CDD	8.0	<	0.6	0.5	4.00	1.16	2.29
1,2,3,4,7,8-H6CDD	5.8	<	0.5	0.1	0.58	0.17	0.33
1,2,3,6,7,8-H6CDD	12.8	<	0.6	0.1	1.28	0.37	0.73
1,2,3,7,8,9-H6CDD	20.6	<	0.6	0.1	2.06	0.60	1.18
1,2,3,4,6,7,8-H7CDD	65.0		2.0	0.01	0.65	0.19	0.37
1,2,3,4,6,7,8,9-O8CDD	61.0		3.5	0.001	0.06	0.02	0.03
TOTAL PCDD/F (5)	535.6		10.5		49.49	14.35	28.39

HOMOLOGUOUS		ANALYSES pg	BLANK (2) pg		
T4CDF	1 [599.0		0.9	
P5CDF		361.0	<	0.4	
H6CDF		272.0	<	1.0	
H7CDF		151.0	<	0.9	
OCDF		38.0		5.0	
T4CDD		161.0		5.1	
P5CDD		188.0		4.1	
H6CDD		222.0		4.9	
H7CDD		154.0		2.0	
OCDD	l l	61.0		3.5	

NOTES : "R" or "Reference Conditions" correspond to 25 °C, 101.3 kPa, dry basis.

The sign "<" means that the analytical result is less than the detection limit (d.l.).

- (1) Analyzed by Agat Laboratories. Results ARE CORRECTED for the recovery of surrogates.
- (2) Field blank results are not substracted from the analytical results.
- (3) When an analytical result is given as < d.l., the d.l. provided by the laboratory is used in the calculations.
- (4) Toxicity factors of method EPS 1/RM/2 of Environment Canada.
- (5) When a congener is not detected, the d.l. provided by the laboratory is used in the calculations for total PCDD/F.

Document No.:R14-034R01Page No.:31 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

TABLES OF RESULTS

TABLE #8

OUTLET OF INCINERATOR EMISSIONS OF PCDD/PCDF

TEST # 2

PROJECT: R14-034

COMPANY: AGNICO-EAGLE MINES LTD, OUTLET OF INCINERATOR SITE:

July 12, 2014 DATE:

3.349 Rm³ GAS SAMPLE VOLUME: VOLUMETRIC FLOW RATE: 6780 Rm³/h OXYGEN (O2): 16.06 % v/v, dry basis

CONGENERS	ANALYSES (1)	В	LANK (2)	TOXIC (4)	TEQ (3)	CONCENTRATIONS pg/Rm³ TEQ	EMISSIONS (TEQ)
CONGENERS	pg (1)		pg (2)	FACTOR	pg	(3)	pg/s (3)
2,3,7,8-T4CDF without DB-225	37.9	<	0.6	0.1	3.79	1.13	2.13
1,2,3,7,8-P5CDF	28.0	<	0.4	0.05	1.40	0.42	0.79
2,3,4,7,8-P5CDF	68.7	<	0.3	0.5	34.35	10.26	19.32
1,2,3,4,7,8-H6CDF	118.0	<	0.5	0.1	11.80	3.52	6.64
1,2,3,6,7,8-H6CDF	46.1	<	0.5	0.1	4.61	1.38	2.59
2,3,4,6,7,8-H6CDF	71.9	<	0.6	0.1	7.19	2.15	4.04
1,2,3,7,8,9-H6CDF	4.1	<	1.0	0.1	0.41	0.12	0.23
1,2,3,4,6,7,8-H7CDF	176.0	<	0.6	0.01	1.76	0.53	0.99
1,2,3,4,7,8,9-H7CDF	20.9	<	0.9	0.01	0.21	0.06	0.12
1,2,3,4,6,7,8,9-O8CDF	62.0		5.0	0.001	0.06	0.02	0.03
2,3,7,8-T4CDD	7.0	<	0.8	1	7.00	2.09	3.94
1,2,3,7,8-P5CDD	13.0	<	0.6	0.5	6.50	1.94	3.66
1,2,3,4,7,8-H6CDD	9.0	<	0.5	0.1	0.90	0.27	0.51
1,2,3,6,7,8-H6CDD	19.0	<	0.6	0.1	1.90	0.57	1.07
1,2,3,7,8,9-H6CDD	16.0	<	0.6	0.1	1.60	0.48	0.90
1,2,3,4,6,7,8-H7CDD	87.8		2.0	0.01	0.88	0.26	0.49
1,2,3,4,6,7,8,9-O8CDD	108.0		3.5	0.001	0.11	0.03	0.06
TOTAL PCDD/F (5)	893.4		10.5		84.47	25.22	47.50

HOMOLOGUOUS		ANALYSES pg	BLANK (2) pg	
T4CDF	7 [1090.0		0.9
P5CDF		625.0	<	0.4
H6CDF		459.0	<	1.0
H7CDF		272.0	<	0.9
OCDF		62.0		5.0
T4CDD		182.0		5.1
P5CDD		202.0		4.1
H6CDD		262.0		4.9
H7CDD		214.0		2.0
OCDD		108.0		3.5

NOTES : "R" or "Reference Conditions" correspond to 25 $^{\circ}\text{C},\,101.3$ kPa, dry basis.

The sign "<" means that the analytical result is less than the detection limit (d.l.).

- (1) Analyzed by Agat Laboratories. Results ARE CORRECTED for the recovery of surrogates.
- (2) Field blank results are not substracted from the analytical results.
- (3) When an analytical result is given as < d.l., the d.l. provided by the laboratory is used in the calculations.
- (4) Toxicity factors of method EPS 1/RM/2 of Environment Canada.
- (5) When a congener is not detected, the d.l. provided by the laboratory is used in the calculations for total PCDD/F.

Document No.: R14-034R01 Page No.: 32 of 35 August 2014 Author: Pierre Duguay, P. Eng. Version's date: Client: Agnico-Eagle Mines Ltd. Version No.:

TABLE #9

OUTLET OF INCINERATOR EMISSIONS OF PCDD/PCDF

TEST # 3

PROJECT: R14-034

COMPANY: AGNICO-EAGLE MINES LTD, SITE: OUTLET OF INCINERATOR

DATE: July 13, 2014

GAS SAMPLE VOLUME: 3.290 km³ VOLUMETRIC FLOW RATE: 6643 km³/h OXYGEN (O2): 16.17 % v/v, dry basis

CONGENERS	ANALYSES (1) pg	В	LANK (2) pg	TOXIC (4) FACTOR	TEQ (3) pg	CONCENTRATIONS pg/Rm³ TEQ (3)	EMISSIONS (TEQ) pg/s (3)
2,3,7,8-T4CDF without DB-225	36.1	<	0.6	0.1	3.61	1.10	2.02
1,2,3,7,8-P5CDF	31.0	<	0.4	0.05	1.55	0.47	0.87
2,3,4,7,8-P5CDF	79.0	<	0.3	0.5	39.50	12.01	22.16
1,2,3,4,7,8-H6CDF	176.0	<	0.5	0.1	17.60	5.35	9.87
1,2,3,6,7,8-H6CDF	59.8	<	0.5	0.1	5.98	1.82	3.35
2,3,4,6,7,8-H6CDF	103.0	<	0.6	0.1	10.30	3.13	5.78
1,2,3,7,8,9-H6CDF	6.0	<	1.0	0.1	0.60	0.18	0.34
1,2,3,4,6,7,8-H7CDF	302.0	<	0.6	0.01	3.02	0.92	1.69
1,2,3,4,7,8,9-H7CDF	28.0	<	0.9	0.01	0.28	0.09	0.16
1,2,3,4,6,7,8,9-O8CDF	79.0		5.0	0.001	0.08	0.02	0.04
2,3,7,8-T4CDD	7.0	<	0.8	1	7.00	2.13	3.93
1,2,3,7,8-P5CDD	16.0	<	0.6	0.5	8.00	2.43	4.49
1,2,3,4,7,8-H6CDD	12.5	<	0.5	0.1	1.25	0.38	0.70
1,2,3,6,7,8-H6CDD	36.0	<	0.6	0.1	3.60	1.09	2.02
1,2,3,7,8,9-H6CDD	36.0	<	0.6	0.1	3.60	1.09	2.02
1,2,3,4,6,7,8-H7CDD	184.0		2.0	0.01	1.84	0.56	1.03
1,2,3,4,6,7,8,9-O8CDD	196.0		3.5	0.001	0.20	0.06	0.11
TOTAL PCDD/F (5)	1387.4		10.5		108.01	32.83	60.58

HOMOLOGUOUS	ANALYSES pg	BLANK (2) pg		
T4CDF	928.0	0.9		
P5CDF	756.0	< 0.4		
H6CDF	675.0	< 1.0		
H7CDF	443.0	< 0.9		
OCDF	79.0	5.0		
T4CDD	204.0	5.1		
P5CDD	392.0	4.1		
H6CDD	494.0	4.9		
H7CDD	452.0	2.0		
OCDD	196.0	3.5		

NOTES : "R" or "Reference Conditions" correspond to 25 °C, 101.3 kPa, dry basis.

The sign "<" means that the analytical result is less than the detection limit (d.l.).

- (1) Analyzed by Agat Laboratories. Results ARE CORRECTED for the recovery of surrogates.
- (2) Field blank results are not substracted from the analytical results.
- (3) When an analytical result is given as < d.l., the d.l. provided by the laboratory is used in the calculations.
- (4) Toxicity factors of method EPS 1/RM/2 of Environment Canada.
- (5) When a congener is not detected, the d.l. provided by the laboratory is used in the calculations for total PCDD/F.

Document No.:R14-034R01Page No.:33 of 35Author:Pierre Duguay, P. Eng.Version's date:August 2014Client:Agnico-Eagle Mines Ltd.Version No.:1

TABLE # 10

OUTLET OF INCINERATOR MANUAL SAMPLING - NOX

CALCULATIONS OF NITROGEN OXIDES EMISSIONS REFERENCE METHOD EPS 1-AP-77-3 - ENVIRONMENT CANADA

			_	_			
Test		1	2	3	4		
Date	201	14-07-12	2014-07-12	2014-07-13	2014-07-13	A۱	erage
Time		17:36	17:34	14:40	14:37		
			T				
Volumetric flowrate (Rm³/h)	┛┕	6861	6861	6819	6819	(6840
FIELD DATA	1						
Container #		G-11	G-12	G-11	G-12		
Volume of flask (ml)		2053.4	2055.6	2053.4	2055.6		
Initial atm. pressure (inch Hg)		29.97	29.97	30.22	30.22		
Final atm. pressure (inch Hg)		30.22	30.22	30.17	30.17		
Initial pres. of flask (inch Hg)		-24.0	-24.0	-24.0	-24.0		
Final pres. of flask (inch H2O)		-4.0	-11.0	-40.0	-14.5		
Initial temp. of flask (deg.F)		70.7	70.7	81.4	81.4		
Final temp. of flask (deg.F)		81.0	81.0	79.0	79.0		
Volume of solution (ml)		25	25	25	25		
Total μg NO2	_ <	4.0	4.0	12.0	14.0		
Reference volume of flask (ml)		1604.4	1571.5	1421.0	1549.4		
CONCENTRATIONS	1						
NOx in ppmv	<	1.3	1.4	4.5	4.8	<	3.0
NOx in mg/Rm³ (NO2 equiv.)	_ <	2.5	2.5	8.4	9.0	<	5.6
EMISSIONS	1 [
NOx in kg/h (NO2 equiv.)	<	0.017	0.017	0.057	0.062	<	0.038

Volumetric flowrates are taken from the daily average of the SVOC and PAM tests.

"R" or "Reference conditions" correspond at 25°C, 101.3 kPa, dry basis.

Document No.: R14-034R01

Author: Pierre Duguay, P. Eng.

Client: Agnico-Eagle Mines Ltd.

Page No.: 34 of 35 Version's date: August 2014

Version No.:

Report signatories and approval

Author

Pierre Duguay – P. Eng. - Supervisor

Approbation

Claude Belanger, themist – Operations Manager

Document No.:

R14-034R01

Author:

Pierre Duguay, P. Eng.

Client:

Agnico-Eagle Mines Ltd.

Page No.:

35 of 35

Version's date:

August 2014

Version No.:

1

APPENDIX 1 OUTLET OF THE INCINERATOR

PAM TESTS

DATA REDUCTION COMPUTER PRINT-OUTS	Pages A1-1 to A1-6
FIELD SAMPLING DATA SHEETS	Pages A1-7 to A1-21
SAMPLING EQUIPMENT CALIBRATION REPORTS	Pages A1-22 and A1-23

SVOC TESTS

DATA REDUCTION COMPUTER PRINT-OUTS	Pages A1-24 to A1-29
FIELD SAMPLING DATA SHEETS	Pages A1-30 to A1-42
SAMPLING EQUIPMENT CALIBRATION REPORTS	Pages A1-43 and A1-44

$\underline{\text{NO}_{x}}\underline{\text{TESTS}}$

FIELD SAMPLING DATA SHEET	Page A1-45
SAMPLING EQUIPMENT CALIBRATION REPORT	Page A1-46

ANALYTICAL REPORTS

CODIFICATION OF SAMPLES	Pages A1-47 to A1-51
SVOC PROOFING RESULTS	Pages A1-52 to A1-58
PM ANALYTICAL RESULTS	Page A1-59
HCI / METALS ANALYTICAL RESULTS	Pages A1-60 to A1-93
SVOC ANALYTICAL RESULTS	Pages A1-94 to A1-100
NO _x ANALYTICAL RESULTS	Page A1-101

Test	Date	Time	Filter	Probe	Cyclone	Vmeter	Dstack	Period
 			mg	mg	mg	ft³	inches	minutes
1	July 11, 2014	12:59 - 16:35	70.67	26.86		141.20	38.00	5

O2 (% v/v)	CO2 (% v/v)	CO (ppmv)	Vol. water	Pbar	Dnozzle	Cpitot	γ	Pstatic
Dry basis	Dry basis	Dry basis	mL	"Hg	inch	****		"H2O
17.39	2.49	6.4	104.2	29.74	0.498	0.785	0.9622	-0.10
SO2	H2							
	Λ	11						

Traverse #1										
Point	Tstack	ΔΡ	ΔΗ	Volume	Tinlet	Toutlet	Isokinetic	Velocity		
	°F	"H2O	"H2O	ft³	°F	°F	%	ft/s		
1	781	0.080	1.08	71.50	71	72	99.9	22.9		
	781	0.080	1.08	75.47	71	72				
2	784	0.080	1.08	75.47	74	71	93.3	22.9		
4 d - T	784	0.080	1.08	79.18	74	71				
3	788	0.080	1.08	79.18	76	72	96.7	23.0		
	788	0.080	1.08	83.03	76	72				
4	783	0.078	1.06	83.03	78	72	96.3	22.6		
ta di Tanan	783	0.078	1.06	86.83	78	72				
5	797	0.078	1.05	86.83	80	73	97.0	22.8		
and the	797	0.078	1.05	90.65	80	73				
6	801	0.085	1.14	90.65	82	75	97.6	23.8		
	801	0.085	1.14	94.67	82	75				
7	816	0.085	1.13	94.67	84	77	98.1	23.9		
400	816	0.085	1.13	98.70	84	77				
8	765	0.085	1.19	98.70	86	79	94.3	23.4		
	765	0.085	1.19	102.67	86	79				
9	761	0.100	1.40	102.67	86	80	97.1	25.4		
	761	0.100	1.40	107.11	86	80				
10	775	0.095	1.32	107.11	88	81	100.6	24.9		
	775	0.095	1.32	111.58	88	81				
11	756	0.095	1.34	111.58	89	82	96.0	24.7		
	756	0.095	1.34	115.89	89	82				
12	757	0.100	1.41	115.89	89	84	98.3	25.3		
- 77	757	0.100	1.41	120.42	89	84				
13	757	0.100	1.41	120.42	87	84	97.4	25.3		
	757	0.100	1.41	124.90	87	84				
14	733	0.100	1.44	124.90	88	84	94.6	25.1		
	733	0.100	1.44	129.30	88	84				
15	738	0.100	1.44	129.30	88	84	97.4	25.1		
	738	0.100	1.44	133.82	88	84				
16	747	0.100	1.43	133.82	88	85	95.1	25.2		
• •	747	0.100	1.43	138.22	88	85				
17	751	0.110	1.56	138.22	88	85	95.8	26.5		
	751	0.110	1.56	142.86	88	85				
18	725	0.110	1.60	142.86	88	86	97.3	26.2		
	725	0.110	1.60	147.63	88	86	1			

Average	768	0.092	1.287	76.13	84	79	96.8	24.4

			Tes	st #1, Travers	e #2			
Point	Tstack	ΔΡ	ΔΗ	Volume	Tinlet	Toutlet	Isokinetic	Velocity
	٩F	"H2O	"H2O	ft³	°F	۰F	%	ft/s
1	815	0.070	0.93	147.77	80	79	94.8	21.7
	815	0.070	0.93	151.30	80	79	94.0	21.7
2	813	0.070	0.93	151.30	79	79	95.1	21.7
2	813	0.070	0.93	154.84	79	79	93.1	21.7
3	813	0.070	0.93	154.84	/9 82	: 79	96.1	21.7
	813	0.070	0.94	158.43	82 82	79	90.1	21.7
4	823	Ł	0.86	156.43 158.43	82		96.5	21.0
4	823	0.065 0.065	0.86	150.43	82 82	79 79	90.5	21.0
5	814		1 1				95.9	20.9
.	814	0.065	0.87 0.87	161.89 165.35	84 84	80	90.9	20.9
6	832	0.060	0.07	165.35	85	80 81	96.3	20.2
. 0	832	1					90.3	20.2
-	794	0.060	0.79 0.82	168.67	85 ee	81	96.4	19.9
7	794	0.060 0.060	0.82	168.67 172.05	86	82	90.4	19.9
8	786	0.065	0.82	172.05	86 85	82 82	91.9	20.7
0		0.065	0.89			82	91.9	20.7
g	786	1 .		175.41	85 00	83	96.7	20.4
y	754	0.065	0.92	175.41	86		90.7	20.4
40	754 755	0.065	0.92 0.99	179.00	86	83	05.0	21.2
10		0.070		179.00	86	83	95.3	27.2
	755	0.070	0.99	182.67	86	83		
11	759	0.070	0.99	182.67	86	84	98.5	21.2
	759	0.070	0.99	186.46	86	84		
12	741	0.070	1.00	186.46	86	84	99.1	21.1
and in the term	741	0.070	1.00	190.30	86	84		
13	740	0.070	1.00	190.30	86	84	97.5	21.1
	740	0.070	1.00	194.08	86	84		
14	743	0.070	1.00	194.08	88	85	97.6	21.1
	743	0.070	1.00	197.87	88	85		
15	731	0.065	0.94	197.87	88	85	97.8	20.2
	731	0.065	0.94	201.55	88	85		
16	604	0.065	1.05	201.55	88	85	94.8	19.1
14 Maring 1981	604	0.065	1.05	205.32	88	85		
17	607	0.060	0.97	205.32	88	86	99.2	18.4
	607	0.060	0.97	209.11	88	86		
18	604	0.060	0.97	209.11	88	86	97.5	18.4
	604	0.060	0.97	212.84	88	86		<u> </u>
A.codom-	752	0.000	0.027	65.07	l os		DC E	1 20 5
Average	102	0.066	0.937	65.07	85	83	96.5	20.5
Aug Age4	760	0.079	1.112	141.20	0.5	0.4	00.7	1 00 5
Ave. test	1 /00	I 0.079	1 7.77Z	1 747.20	85	81	96.7	22.5

Velo	city		Volumetric flow rates			Temp	Moisture	
ft/s	m/s	ACFM	SDCFM	m³/h	Rm³/h	°F	°C	% v/v
22.5	6.9	10620	4480	18046	7612	760	404	3.6

Total part.	Gas sample volume		Verification of Isokinetic					
mg	SDCF		Nb readings Nb non iso Nb < 90% Nb > 110% Iso max. Iso min.					
97.53	133.98	3.794	36	0	0	0	100.6	91.9

Pstack	Pmeter	Md	Ms	Bwo	Ratio Vs max / Vs min	Vs max.	Vs min.
"Hg	"Hg	g/g-mole	g/g-mole	*****		ft/s	ft/s
29.73	29.82	29.09	28.69	0.036	1.4	26.5	18.4

F	articulate co	Emission ma	ass flow rate
gr/ACF	gr/SDCF	lb/h	kg/h
0.005	0.011	0.4	0.2

[&]quot;R" or "Reference Conditions" at 25°C, 101.3 kPa, dry basis.

Test	Date	Time	Filter	Probe	Cyclone	Vmeter	Dstack	Period
			mg	mg	mg	ft³	inches	minutes
2	July 12, 2014	11:22 - 16:00	85.38	38.18		132.90	38.00	5

O2 (% v/v)	CO2 (% v/v)	CO (ppmv)	Vol. water	Pbar	Dnozzle	Cpitot	γ	Pstatic
Dry basis	Dry basis	Dry basis	mL.	"Hg	inch			"H2O
16.06	3.47	2.0	142.1	29.89	0.498	0.785	0.9622	-0.10
SO2	H2							
7	^	11						

Traverse #1										
Point	Tstack	ΔΡ	ΔΗ	Volume	Tinlet	Toutlet	Isokinetic	Velocity		
	°F	"H2O	"H2O	ft³	۰F	°F	%	ft/s		
1	856	0.100	1.27	13.18	69	70	102.3	26.3		
•	856	0.100	1.27	17.50	69	70	702.0			
2	944	0.095	1.13	17.50	75	70	100.1	26.5		
	944	0.095	1.13	21.51	75	70				
3	954	0.095	1.13	21.51	77	70	100.7	26.6		
	954	0.095	1.13	25.54	77	70				
4	948	0.095	1.14	25.54	81	72	96.0	26.5		
	948	0.095	1.14	29.41	81	72				
5	943	0.090	1.09	29.41	83	73	98.7	25.8		
	943	0.090	1.09	33.30	83	73				
6	938	0.090	1.10	33.30	86	76	100.2	25.7		
Maria Maria	938	0.090	1.10	37.28	86	76				
7	936	0.090	1.10	37.28	87	77	99.9	25.7		
	936	0.090	1.10	41.26	87	77		į		
8	889	0.095	1.21	41.26	89	80	98.3	26.0		
	889	0.095	1.21	45.37	89	80				
9	890	0.095	1.21	45.37	89	81	99.0	26.0		
	890	0.095	1.21	49.51	89	81				
10	900	0.095	1.20	49.51	91	83	100.2	26.1		
1. 11.	900	0.095	1.20	53.70	91	83				
11	916	0.095	1.19	53.70	92	84	98.9	26.2		
41	916	0.095	1.19	57.82	92	84				
12	890	0.085	1.09	57.82°	94	86	101.4	24.6		
1 4 1.	890	0.085	1.09	61.87	94	86	·			
13	894	0.080	1.02	61.87	94	86	98.2	23.9		
B	894	0.080	1.02	65.67	94	86				
14	892	0.075	0.96	65.67	94	88	100.6	23.1		
	892	0.075	0.96	69.45	94	88				
15	885	0.075	0.97	69.45	94	88	97.4	23.0		
	885	0.075	0.97	73.12	94	88				
16	885	0.075	0.97	73.12	94	88	99.0	23.0		
	885	0.075	0.97	76.85	94	88				
17	872	0.060	0.79	76.85	96	91	94.7	20.5		
	872	0.060	0.79	80.07	96	91				
18	867	0.060	0.79	80.07	96	91	94.2	20.5		
	867	0.060	0.79	83.28	96	91		1		

			Te	st #2, Travers	se #2			
Point	Tstack °F	ΔP "H2O	ΔH "H2O	Volume ft³	Tinlet °F	Toutlet °F	Isokinetic %	Velocity ft/s
		11=+						
1	971	0.050	0.60	83.42	88	88	95.4	19.4
	971	0.050	0.60	86.25	88	88		
. 2	968	0.050	0.61	86.25	91	87	99.5	19.4
	968	0.050	0.61	89.21	91	87]	
3	972	0.050	0.61	89.21	95	89	100.4	19.4
	972	0.050	0.61	92.21	95	89		
4	961	0.050	0.61	92.21	94	89	98.8	19.3
_	961	0.050	0.61	95.17	94	89		
5	953	0.050	0.62	95.17	98	92	96.9	19.3
	953	0.050	0.62	98.10	98	92		
6	972	0.060	0.73	98.10	99	92	97.8	21.3
_	972	0.060	0.73	101.32	99	92		
7	921	0.060	0.76	101.32	100	95	97.8	20.9
	921	0.060	0.76	104.61	100	95		
8	907	0.060	0.77	104.61	100	95	101.4	20.8
	907	0.060	0.77	108.04	100	95		
9	909	0.075	0.96	108.04	100	96	99.5	23.3
	909	0.075	0.96	111.80	100	96		
10	918	0.075	0.96	111.80	101	. 96	98.1	23.3
	918	0.075	0.96	115.50	101	96		l
11	952	0.080	0.99	115.50	99	95	99.0	24.4
	952	0.080	0.99	119.30	99	95		
12	941	0.080	1.00	119.30	100	95	100.4	24.3
	941	0.080	1.00	123.17	100	95		
: 13	948	0.080	1.00	123.17	100	96	98.4	24.4
	948	0.080	1.00	126.96	100	96		
14	950	0.080	1.00	126.96	100	95	101.2	24.4
4-	950	0.080	1.00	130.85	100	95	400.0	
15	948	0.080	1.00	130.85	100	96	100.3	24.4
16	948	0.080	1.00	134.71	100	96	07.0	24.5
16	967	0.080	0.98 0.98	134.71	100	95 95	97.9	24.5
47	967	0.080		138.45	100	1	00.2	25.4
17	980 980	0.085	1.04 1.04	138.45	100	95 95	99.2	25.4
40		0.085	1.04	142.34 142.34	100		00.2	25.5
18	987 987	0.085 0.085	1.03	142.34	100	95 95	99.2	25.5
	301	1 0.000	1.03	140.22	טטו	1 90	<u> </u>	<u> </u>
Average	951	0.068	0.848	62.80	98	93	98.9	22.4
					·			
Ave. test	928	0.077	0.962	132.90	93	87	98.9	23.6
<u> </u>			,	<u> </u>	<u> </u>	<u> </u>	<u> </u>	

Velo	city		Volumetric	flow rates	Tem	Moisture		
ft/s	m/s	ACFM	SDCFM	m³/h	Rm³/h	۰F	°C	% v/v
23.6	7.2	11153	4085	18952	6942	928	498	5.2

Total part.	Gas samp	le volume	Verification of Isokinetic							
mg	SDCF	Rm³								
123.56	125.01	3.540	36	36 0 0 0 102.3 94.2						

Pstack	Pmeter	Md	Ms	Bwo	Ratio Vs max / Vs min	Vs max.	Vs min.
"Hg	"Hg	g/g-mole	g/g-mole	*****		ft/s	ft/s
29.88	29.96	29.20	28.62	0.052	1.4	26.6	19.3

F	articulate co	ncentrations		Emission ma	ass flow rate
gr/ACF	gr/SDCF	mg/Rm³	lb/h	kg/h	
0.006	0.015	35	0.5	0.2	

[&]quot;R" or "Reference Conditions" at 25°C, 101.3 kPa, dry basis.

Test	Date	Time	Filter	Probe	Cyclone	Vmeter	Dstack	Period
			mg	mg	mg	ft³	inches	minutes
3	July 13, 2014	09:48 - 14:18	55.79	31.58		134.05	38.00	5

O2 (% v/v)	CO2 (% v/v)	CO (ppmv)	Vol. water	Pbar	Dnozzle	Cpitot	γ	Pstatic
Dry basis	Dry basis	Dry basis	mL	"Hg	inch			"H2O
16.17	3.36	2.6	143.7	30.21	0.498	0.785	0.9622	-0.10
SO2	H2							
0	Λ	11						

			Tı	averse #1				
Point	Tstack	ΔР	ΔН	Volume	Tinlet	Toutlet	Isokinetic	Velocity
	°F	"H2O	"H2O	ft³	°F	°F	%	ft/s
1	868	0.070	0.89	46.36	75	75	101.1	22.0
- ,	868	0.070	0.89	49.94	75	75		
2	840	0.070	0.91	49.94	77	75	101.6	21.8
	840	0.070	0.91	53,58	77	75		
3	831	0.070	0.92	53.58	79	76	100.6	21.7
	831	0.070	0.92	57.21	79	76		
4	849	0.070	0.91	57.21	83	77	100.3	21.9
5.41	849	0.070	0.91	60.82	83	77		
5	855	0.070	0.91	60.82	86	78	99.9	21.9
	855	0.070	0.91	64.42	86	78		
6	914	0.065	0.81	64.42	87	80	102.1	21.6
	914	0.065	0.81	67.90	87	80		
7	925	0.065	0.81	67.90	89	82	101.6	21.7
	925	0.065	0.81	71.36	89	82		
8	931	0.065	0.81	71.36	90	82	100.8	21.7
1	931	0.065	0.81	74.79	90	82		
9	933	0.065	0.81	74.79	94	85	98.5	21.7
	933	0.065	0.81	78.16	94	85		
10	935	0.065	0.81	78.16	93	86	100.6	21.7
**	935	0.065	0.81	81.60	93	86		
11	945	0.070	0.86	81.60	93	87	102.0	22.6
es alle	945	0.070	0.86	85.21	93	87		
12	967	0.070	0.85	85.21	94	88	99.5	22.8
	967	0.070	0.85	88.71	94	88		
13	954	0.080	0.98	88.71	93	88	100.7	24.3
	954	0.080	0.98	92.51	93	88		
14	962	0.080	0.98	92.51	93	89	100.9	24.3
	962	0.080	0.98	96.31	93	89		
15	974	0.080	0.97	96.31	97	90	103.3	24.5
	974	0.080	0.97	100.20	97	90		
16	964	0.080	0.98	100.20	94	90	104.0	24.4
	964	0.080	0.98	104.12	94	90		
17	971	0.085	1.04	104.12	96	91	99.8	25.2
	971	0.085	1.04	108.00	96	91		
18	954	0.085	1.05	108.00	97	91	99.4	25.0
1	954	0.085	1.05	111.89	97	91		

			Te	st #3, Travers	se #2			
Point	Tstack	ΔΡ	ΔΗ	Volume	Tinlet	Toutlet	Isokinetic	Velocity
	°F	"H2O	"H2O	ft³	°F	°F	%	ft/s
1	791	0.050	0.69	112.05	85	86	101.1	18.1
•	791	0.050	0.69	115.23	85	86	70.71	
2	791	0.050	0.68	115.23	84	84	101.1	18.1
-	791	0.050	0.68	118.40	84	84	10	/ / /
3	792	0.050	0.69	118.40	86	85	99.9	18.1
: · · ·	792	0.050	0.69	121.54	86	85	55.5	, , , , ,
4	813	0.060	0.81	121,54	87	85	100.1	20.0
	813	0.060	0.81	124.96	87	85		
5	922	0.075	0.94	124.96	89	86	98.0	23.2
· -	922	0.075	0.94	128.56	89	86		
6	924	0.075	0.93	128.56	89	86	99.9	23.3
	924	0.075	0.93	132.23	89	86		
7	930	0.080	0.99	132.23	89	88	99.4	24.1
	930	0.080	0.99	136.00	89	88	'''	
8	914	0.080	1.01	136.00	91	88	102.4	23.9
·	914	0.080	1.01	139.91	91	88		
9	929	0.080	1.00	139.91	92	89	102.7	24.1
	929	0.080	1.00	143.82	92	89		1
10	926	0.085	1.06	143.82	92	90	100.2	24.8
	926	0.085	1.06	147.76	92	90		
11	978	0.090	1.09	147.76	92	91	101.7	26.0
	978	0.090	1.09	151.80	92	91		
12	977	0.090	1.09	151.80	93	91	100.0	26.0
**	977	0.090	1.09	155.78	93	91		
13	982	0.090	1.09	155.78	94	92	99.5	26.0
	982	0.090	1.09	159.74	94	92		
14	985	0.095	1.14	159.74	92	91	101.7	26.7
	985	0.095	1.14	163.88	92	91	1	
15	979	0.095	1.15	163.88	93	92	98.8	26.7
	979	0.095	1.15	167.92	93	92	00.0	
16	983	0.100	1.21	167.92	93	92	100.8	27.4
	983	0.100	1.21	172.14	93	92	1	
17	981	0.100	1.21	172.14	94	93	101.0	27.4
	981	0.100	1.21	176.38	94	93	1	
18	977	0.100	1.21	176.38	94	92	99.7	27.4
· · · · · · · · · · · · · · · · · · ·	977	0.100	1.21	180.57	94	92		
Average	921	0.080	0.999	68.52	91	89	100.4	23.9
					7			

Ave test	021	0.076	0.053	134.05	90	96	100.7	22.4
Ave. test	921	0.070	0.900	134.03	90	80	100.7	23.4

Velocity			Volumetric	flow rates	Temperature		Moisture	
ft/s	m/s	ACFM	SDCFM	m³/h	Rm³/h	°F	°C	% v/v
23.4	7.1	11050	4116	18776	6994	921	494	5.1

Total part.	Gas sample volume		Verification of Isokinetic						
mg	SDCF	Rm³	Nb readings	Nb non Iso	Nb < 90%	Nb > 110%	lso max.	Iso min.	
87.37	127.87	3.621	36	0	0	0	104.0	98.0	

Pstack	Pmeter	Md	Ms	Bwo	Ratio Vs max / Vs min	Vs max.	Vs min.
"Hg	"Hg	g/g-mole	g/g-mole		******	ft/s	ft/s
30.20	30.28	29.18	28.61	0.051	1.5	27.4	18.1

F	Particulate co	Emission mass flow rate			
gr/ACF	gr/SDCF	mg/m³	mg/Rm³	lb/h	kg/h
0.004	0.011	9	24	0.4	0.2

[&]quot;R" or "Reference Conditions" at 25°C, 101.3 kPa, dry basis.

Company:		Acres of the			Control:	0.685 #	CC36.= X	cc		Ko = . "33	\$30H	Duct:	Dia ("): %%	00 (0 ₁	Port (")	0/
Cit Cit	1 8					# \$ 12 12 12 1	7. 3	N N				Diameter:	Bef: 🛫 🖘		After: ≥ங	A
Date:			Project: R			۳ <u>/</u> #	Dn = .49 %		Box:#			Sheet:	a).mes	of 3		
Site:	0000	1	Ž		sed	<u>e</u>	%					Leak before;	0 6000	"H2O @	<i>b</i>	유 L
Test	2					Pbar ("Hg) ≕	= 219.80		Pstat ("H2O)		D	Leak after:		"H2O @		"Hg
		j			0 0000		Ten	Temperature	e.		/2001 IB	031 %		Ga	Gases	
Point	Time	<u>.</u>	4	⊑ ∢	Nolume	Tmi	Tmo		(1)	Oven	V d'oduill	200	05		00	Š
		(°F)	(" H2O)	(" H2O)	(ff³)	(°F)	(°F)	(°F)	(°F)	(°F)	(" Hg)	(%)	(%)	(%)	(% / xwdd)	ppmv
,,,,,,,,	80.0	187	OŠO	**************************************	41.50	7	a		0000	ass.	0,7	1707				
		Z	0%0	%0 <i>" </i>		T	7		Singer	vestatio						
(*1	10:01	1887	0%0	1,08	13.85S.	nr.			nicone (FF)	Contraction of	0.4.	0				
		150	10%0	1,0%	thist	A.	T		1000 Years	ng(X)gadhir						
4J	60.00	× × × × × × × × × × × × × × × × × × ×	980	1.03	31.18	9£	C m		************	-0150-77 W	្	10				
		K K T	980/	7,08		_D	4			irrayyy						
J		78.3	\$L0.	301	33.03	78	4			ALONEA ISL	0.0	181				
		632	\(\frac{1}{2}\)	<i>30//</i>		25	and and		Haricathea	contract)						
V	61.43	*	8 C	1.05	56,23	æ	43		:	22547500000	0.10	28,3				
		4	850	S		Q	5		*********	*******						
نُسد	7000	- G	SXQ	pr.) . 1	70,65	00 (1)	lo Tr			52777.74	o.	767	3.5	\alpha \frac{1}{2}	7.0	
		-0%	o. NXO	30/		£7	jo Tr		v codebu	SC+ADADORA						
+	(3:30	98	NX O	(11)	94,67	75.0	r Tr			· econol	0 V2	0 0				
		18	1200	(III		78	4		-//4-7-7-7-8	*******						
50°	P.S. C.	NAT OF	S&O	5	98,70	N/S	8		,,	mer	o.		7 Č	2,5	7	
		Sat	,08S	119		É	6		arisacin's	nwam .			Ī			
ڻ آ	13. 5°	196	100	Ohil	103.kg	360	£			- re-encedo	଼	% %				
ط			007	1,40		8	R									
9	12. 4.6.		0,95	E .	103,11	88	3			,,,,,,O.	0 1/2	1080V				
<u> </u>		10	O.S.	1123		838	50		erenero).	1940244						
متعود در مدير	5	75.6	6,095	F-61	11158	88	Ş		-50000		0 V)					
ļ		255)SPO,	134		S	3		n. e y conso	vagastabS						
	18.5	to C	31	141	15,69	50	20			2	٥٠	S. W.S.				
		787	0011	1,41		60	- J.		>	>						
							Constant =>		K = 3\;	000		A%= &	2/4	<u> </u>		
n i				_												

∐ ∫Sampler:

						7							. Ref. ⋄		. 1	
	THE RESERVE AS A SECTION AS A S	Sec.			Probe :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	וו כל	in Ž		•		Ulameter:		C. Carlo	AITET. 2	a
] [.	7-4-3		/ Project: R		 	# 1/2°	E U	.>o	Box:#			Sheet:	C.	of 🗈		
١,	. Ci	Laciospace.			Şupposed moisture % = ≲⅓.	moisture	% = %. ⁷ .					Leak before: ⇔ા⇔≲್	Score		2	"Hg
lest:	Ho Frank	7			Pressure :	Pbar ("Hg) =	- 29 Ko	o	Pstat ("H2O) = (/)) =(C	2	Leak after:		"H20 @		"Hg
		TS	₽₽	H▼	Volume	H	Ter T	Temperature	Fe F		Vacuum	OSI %	8		Gases	2
Point	Time	(J.)	(" H2O)	(" H2O)	(ft²)	rmi (°F)	(°F)	(°F)	Probe (°F)	(°F)	(" Hg)	(%)	Z (%)	3 (%)	(% / xwdd)	NOX ppmv
[2]	4	T I	au.	177	Ch.OCI	t of	T.X		0	ONG	Q.g					
	70:00	14	8			87	7,8		section of the sectio	_{(FE} COOTA)						
	4	133	001	ha!	ON MEN	\$0 \$0 \$0	178		waterwitten		0.9	~? %				
	10:12		001	1,444		% %	24		9/20 ₁₀ -1	× 200000						
1		77 26 26	001	mi!	37.7%	0 0 0 0	78		Sec.	COOPERS)	O.	\(\frac{1}{2}\)				
1	60:17	28.5	00	TH		88	T		ester practice	eoszenes						
	and the state of	the	000	Shill.	133,22	0 0 0 0	N 36		,,,ess:::0	**************************************	0	r.	æ		ā	
	7	The State of the S	00!	5.h!		7K 206	V)		ST-510/A	tracistra.						
7	かれて	N	OII.	9S/	E	98 98	200		an property and the	Dynamic (0	5				
╁	Q	V	-	30.		S	V3 30		-congress	- Caracara						
		12	S	991	SR. CH	\$\$ \$\$.g 00		4)	1)	O.	0				
	10:5		0	09/	SYLH	G G	F)									
1000	V.C	VX	0.0	S.	TT 17	0%	5		086	Seo	And a faithful or market and a second second second second	And the second s			and the same of th	An activities of the contract
		S	0.0	(M.2)		30 0	75		60mine	التعربي	0	Ş O				
~ B	0:10	Sis	000	93	S1.35	P. S. C.	S.		<i>-</i>		O	6 J				
<u> </u>		200	O.CO!	19.30		6			~~~	~>>>						
	V:10		OK.07	().		Ç	5				Ø.	98	Q Ć	(T	Ð	
	,	813	010	gif		83			CATALOGY.							
J. Sand	%: %:	833	SOO	1990	S8.45	B				**********	Ø.	7. 000				
			Soor	186		63	5		gangerida	*********			_			
30	Sec	A.A.	Sao	187	68119	7,6	8				0.00					
		Sid	1005	- B		- 60°	90 O			,useons						
.0	2.5	433	gao.		20	0	T.		-/	<u>,,,</u>	0	20 5				
		CS &	9	179		0C	50		>							
							Constant =>	↓ 11	K= 3	0		A% = \\C	109,2k			

D Sampler.

Company			12/11		Control	# <%\\\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8		= 0X	. S. 20 1. 2	Duct:	Dia ("): ≥ 📽	Das Mil	Port (") /ख	p
.: Cit∕						#3E(- S					Diameter:	Bef: 📚	a	After: ১৯	
Date:	ブラクラ		Project: R		١	# 4/2"	- H		Box:#			Sheet:	a	of 🗝		
Site:		1			Supposed	moisture % ==						Leak before:	***	"H2O @	Œ)	"Hg
Test:	1	Total Control			Pressure:	Pbar ("Hg) =	্ৰে		Pstat ("H2O)	J. D = (0	k.	Leak after: ತ್ರಿತಂತ್ರಶ	9,0000	"H20 @	0/10	上 引
							Ter	Temperature	e			2	L	Ó	Gases	
Point	Time	S L	d◀	∓ ▼	Volume	Tmi	Tmo	Timp	Probe	Oven	vacuum	% S	05	C02	8	Ň
		(°F)	(" H2O)	(" H2O)	(ft³)	(°F)	(°F)	(%F)	(%F)	(%F)	(" Hg)	(%)	(%)	(%)	(% / xwdd)	ppmv
ergin. Superu	100.10	TO THE	odo	S	168.67	30	76		250	್ಲಿ	0.8.	98.3	Q.E.	2,5	o	
		75	090	42		S.	\Z.			parte						
₩	12 12 12	\$\$	100	, KO	20°CL	82	C.		vocano.	71000	-8.03	33.6				
		1 K) V	,KS		85	43		20 CAS	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
g-ar	V	D			INSE/	200			nomner	rances	7.0	98°5				
		I	1/20	S		00	S.		**************************************	******						
	S.	2	Q.	99	179,00	%.	83		OACHASSAS	e Composite	۳٩,٥	73.3				
Ì		Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan	0.70	विव		Ð.	/A		***************************************	***************************************						
النصور العاملية العاملية	No.	6V.	OF O	1 99	43.631	S.	李子			rv.v.00000	Q	/care, 4				
	2	in the	010	0,		Š	20.4		endocard (C	08504000						
S	8	Ī	27.0	1,000	186,4k	S	778			29.3111×111	0.5	100,0	70°	(4 L	ø	
		Ţ	0000	/.cc		A.	. Ta		~~~	,,,,,rao						
	8:0	94	070	4,00	180,30	300	7%				0%	? Z				
		ON.	ot.oʻ	1,00		80	N.			dercons.						
7	O I: Q	SAC	20.	1,05	19403	Ŕ	22			*****	O T	200				
		Sht	0,00	1,00		Že Že	V2		~~~							
5	Stal	H54 [3]	Nec	1485	193,83	88 80 80 80 80 80 80 80 80 80 80 80 80 8	15 K		remone es	· ministra es	ું.	4.65				
			200	1105 94		55 55	1000 1000 1000 1000 1000 1000 1000 100		**********	******						
-2	9:39	Ţ,	1300	105	201.55	B	Ŋ			Nimotega.	0.0	S S	C	Q Ca	o	
		700	1 000	Soil		20	'n		Ningegy)	named Selection of the						
4	56.0	203	000	197	205,32.	ÇÇ Ø	å				0	0110/				
		404	000	1 10		SS.	Ą		NAME OF THE PERSON OF THE PERS	chrocoper						
20	C.31	4004	10kg	to.	309,11	SS.	Ŕ		a de la constante de la consta	4)	ं हैं					
ک نزرہ	56.5	グロジ	0,40	97	312,84	888	Sols									
4							Constant =>		K = 31.50	0		A%= 1eg	109,3k			
F				-										1		

∃ Sampler:

Sampler assistant:

S)

WEIGHT SHEET

Company	Agnico-Eagle
Location	Baker Lake
Date	<u> </u>
Site	Outlet incinerator
Train #	13
Test #	1 PAM

	DATA
Pbar: 29,	74 po.Hg
	02 % 17,39
G	CO ₂ % 2,49
\mathbf{A}	CO ppm 6.4
Z	CO %

	No.	W Final (g)	eight Initial (g)	Weight Particulates
Filter	Q-432		046339	
Probe wash				
Cyclone				
			Weight (g)	

Impi	ngers	Final weight	Initial weight	Water weight
1	H2O	540,1	510.7	29,4
2	H2O	542.3	512.3	<u> </u>
3	HNO ₃ 5%/H ₂ O ₂ 10%	607.8	5927	15.1
4	HNO ₃ 5% /H ₂ O ₂ 10 %	570,5	2626	4.9
5	Empty	47016	4698	0,8
6	KMnO ₄ 4%/ H ₂ SO ₄ 10%	586,2	586.0	ص, <u>ک</u>
7	KMnO ₄ 4%/ H ₂ SO ₄ 10%	624,7	9	-1.4
8	Silica gel	689,3	١.٢٧)	a5,2
			Final weight	104,2

Preparation	Prepared by	Recovered by	Approved by
Date	11-7-14	11-07-1-	
On site	S. Demen	5. Domals	
Laboratory			

Gestion des volumes des Barboteurs

Barboteur #	Volume d Conden		Volume de solution Initiale	Total	Code
1	29,4	mL	+ 100 mL	129,4 mL ⁽¹⁾	
2	30,0	mL	+ 100 mL	130,0 mL ⁽²⁾	
Rincage (poids)		g	g	ル つ mL ⁽³⁾	1 g d'eau = 1 mL
Sous-total (1+2+3)				$278.3 \mathrm{mL}^{(4)}$	
Aliquot (Contenant	3B)			(-) 100 mL ⁽⁵⁾	
Volume final (4-5)				178,3 mL ⁽⁶⁾	
Divise par 20				divise par 20 (7)	
Volume d'acide HNC	3 conc. à aj	outer		9,0 mL ⁽⁸⁾	
Volume final (5+6+8) (Contena	nt 3A)		3 87.3mL ⁽⁹⁾	
3	15.1	mL	+ 100 mL	\\5\\ mL ⁽¹⁰⁾	
4	4,9	mL	+ 100 mL	/04/2/mL(11)	
Rincage (poids)		g	g	∂6√ mL ⁽¹²⁾	
Total (10 + 11 + 12)	(Contenant	t 4)		246 mL(13)	\\JUIL14-A\$-PAM-INC-(3+4-RM)-14034.67
5	0,8	mL	+ 0 mL	018n mL(14)	
Rincage (poids)		g	g	14,9 mL ⁽¹⁵⁾	
Total (14 + 15) (Cor	ntenant 5 A)		/5,7 mL ⁽¹⁶⁾	\\JUIL14-A 3 -PAM-INC-(5)-14034.68
			y		
6	一生井。	$\lambda_{ m mL}$	+ 100 mL	/00, LmL(17)	
7	-1.4	mL	+ 100 mL	98.6 mL ⁽¹⁸⁾	
Rincage (KMnO ₄)		g	g	21, 3 mL(19)	g KMnO ₄ / 1.124 g/mL = mL KMnO ₄
Rincage (H ₂ O)		g	g	43./ mL ⁽²⁰⁾	
Total (17 + 18 + 19+	20) (Cont	enant	5 B)	263.2 mL ⁽²¹⁾	

Company	. Aue				Control	W. S. #	C = λ	-		Ko = % % %	77	Duct	Dia ("):	(11): 3.8%	Port (") ,	8
Ċį	7				Probe:	#2E1. (OV = . 7k5	CV = . 1/2					Diameter:	Bef: S	00	After: ೩∆	
Date:	100		Project: R			# V2	์ Dn =.๔%%		Box : #			Sheet :	, constant	of ?		
Site:	The Carre	Incinatalane			Supposed moisture % =	moisture	KS = %	,				Leak before:జ, ಎಂ≲ು	- 1	"H20 @		"Hg
Test:	7 6 4	Motorsk			Pressure:	Pbar ("Hg) =	- 29.80		Pstat ("H2O) =) = Q.K	٥	Leak after:		"H2O @		"Hg
	L	Z.L	4 ₽	I	Volume		Ter	Temperature	-		Vacuum	% ISO		Ö	Gases	1
Point	Time) [; i		(#4)	E (L mo	dmiT	Probe (°E)	Oven (*)	(E)	(%)	055	36		NCX Substitution
		()	(חבח)	(PZD)	(11)	(7 1	(8)	('0')	(0/)	(0/)	(b) (Aladd)	2
	CO	00 (V)	¢0/.		13.14	P.	Q		SSE	020	0.2	703.4				
		100	00 <i>)</i>	401		9	္		onnosses	person						
Ó			2602	1,13	NSO.	SE	္န		**********	**************************************	0.2	1001	r W	50 50	pΓ	
		The second	.095	2		78	<u>ې</u>		5,6 5371 91	nennous						
r A		To	Sooi				Q.		ween,	202400	0,00	/00 B				
		Ţ	.095	113		andre Impo	o r			Search a						
ブ		SAS	2601	111	42.54 35.54	Ã	Č		Mary Mary	*******	0,00	0	1513	60	-VACYS	
		25	Eloo!			- F	C		TORRAN V	ggggadyadd.						
jo	11:43	C.M.S	0,00	501	14.96	Z			*****		0	1.86				
		5	Ş	i On		5	ing.		Artingge.	тоож						
		928	0601	OI.	33,30	839	4			77100025	o V	100,3				
		366	040	lilo			4		PHASSASAS	Messam						
4		A.S	0 0 0	1,10	STEC	\$0 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	in the second				0,0	\00°C				
		126	040	011		C-0	Labor Jaga		27700200	~~~~						
3 0	40	\\$\%	200		NE'IH	€ \$	% 0			weeken be	٠.ه ن	ARBITA SIL	5	S M	2	
		688	,095	131		্র ১৩	XX			ese santa		73/26				
(Ta	(3.0)	200	is.		42.24	50	T.		· · · · · · · · · · · · · · · · · · ·	******	ंक	0 // 10				
		820	500			Ş	5 0		2224	easure.						
9	13:04	300	.0955	Q.	49.21	Ţ	~? ~?		***********	MATOLONICO DO	0.0	1001				
		300	Ş	130		~~~ ~	γΛ «Å		resoccio de	opposite the same of the same				- 1		
nessent.	Cire	9	300.	139	23.70	Con Con	17.50		9000000		٥٠٥		0.9		J	
		Š	. Col	6		6	7,00		pingenic de							
Ġ	7	890	.s.	57.633.	THES.	7	660		1>	1>	9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				T
		01.39	Sko.	100		7	Ş									
							Constant =>		K = 233.5	50		A% = 10%	W.			
6				-												

Sampler.

The color Project Probe #12 Dismeter Dismeter Project #12 Dismeter Dismeter Dismeter Dismeter Discount Project Project #12 Dismeter Discount Dismeter Dismeter Discount Dismeter Discount Dismeter Discount Dismeter Discount Dismeter	Company			á		Control:	078%#	(C) 46 X		<u> </u>	Ko = . \$30 €	700	Duct:	Dia ("): 🖔 🗞	30	Port (") 10	0
Image: House Mozzle H V2 Die 43% BOX : H Sheet	a portion			0			#26(6021)	Cv = 785					Diameter:	Bef: 🐾	^	After: 🐾 🛚	ņ
Care Care				oject: R		Nozzle :	** 1/3°°	Dn = .५९%		# : xo			Sheet: ;	·~	ή N		
Time TS APP AP Wolume Tm Tmo Period Wolume Wall Wolume Tm Tmo Period Wall Wolume Tm Tmo Period Wall	g	100				Supposed	moisture						Leak before:	. ososo	H20 @	b	"Hg
Time TS AP AH Volume Tm Tmo Timp Probe Over Wilson Wilson Over O		Y Ca				Pressure:	Pbar ("Hg)		ď	stat ("H2O		Ω	Leak after: 🌣	- 00000	H20 @	o J	"Hg
Time	$oxed{f f eta}$		O.F			1,7		Temp	erature	a		\ (Sec. 11.50)\	001 /6		ඊ	ses	
Caraca Caraca Caraca Los Caraca Cara		Time	2	₹	□	Nolume	Tmi		_		Oven	Vacuum) 	02	C02	- 8	Š
Right Concerning Right St.			(°F)	(" H2O)	(" H2O)	(ft³)	(°F)	_		(°F)	(°F)	(" Hg)	(%)	(%)	(%)	(% / xwdd)	ppmv
13.33 29.34 .0 km 10.3 .9 km 28 b. c .2 km		d	75%	340	To:	7	J'e	Ŕ	, 3		3	16.0	ر جي جي				
18:34 29:34 19:45 19:4			150	ó.	601		gul	K/2		genesa	, www.ect						
13.34			C S	i i	Ale:	7400	76	\ \ \ \		5-300-VE	perous		- 100/				
13.33 5855 1075 1974 1945 94 88 108 108 1975 1974 1974 1974 1975	_		Ğ	Z.O.	.વુહ		7	.X.		- AMDE	Persone						
12.97 28.55 1.075 1.94 88.5 1.00 1.94 88.5 1.00 1.94 88.5 1.00 1.94 88.5 1.00 1.94 88.5 1.00 1.94 88.5 1.00 1.94 88.5 1.00 1.94 88.5 1.00 1.94 1.00		400	S S S S S S S S S S S S S S S S S S S	200	to,	57.45	76	% %		esement.	*angology	0.9	12				
12.47	L		1/1 00 90	, 13	46,)(0)(0		sannik ni	*ley-fisser						
3.43	,		X N	la R	rh or	73.13	J. C.	3 0 30		miem _i ,	comercia	0·9					
13.47	<u> </u>		70 70	let o	15		Quee Inches)/C (%)		watan	**********						
13.47 (b.7 17) (b.0 17) (b.0 17) (b.0 17) (b.2 1	1	4		O@C \		76.23	g G	j.		vaver	como	0.4	8 8 8				
Sbrt Onco 19 Sp. or 1 -b.o 74/3 8 Sbrt Jose 10 11 0 53,23 9 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 <t< td=""><td>_</td><td></td><td></td><td>Q Q</td><td>5</td><td></td><td></td><td>or or</td><td></td><td>***********</td><td>renoopsis</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	_			Q Q	5			or or		***********	renoopsis						
Sept John The Share Sept Se		7		Ç	OF PROPERTY.	40.0%	S	ō		Crock	en esta	Q.q.					
131 1050 160 55,4% 88 88 80 40 75,5 66,5 3.3 32		400	\$ 50 \$0	0000	8	A3.28	9	5	d	>	3	3884400	in the second				The state of the s
914 JOSO JAD 918 82 62 79,6 914 JOSO JAD 91 93 61 79,6 915 JAD MAC 91 83 6 6 79,6 915 JAD MAC 92 83 6 6 70,0 915 JAD 92 83 92 6 71,0 71,0 915 JAD 92 92 6 71,0 71,0 71,0 915 JAD 92 72 72 74 74,0 74,0 915 JAD PA 92 74 74,0 74,0 74,0 915 JAD PA 92 74 74,0 74,0 74,0 915 JAD PA PA PA PA PA PA PA 915 JAD PA PA PA PA PA PA PA <	Nonesta	08.4	5	SS	ÇN.	23.43	Š	\$60 \$60	0, 70		H	- P	256	\neg	(%)	E	
1050 161 86.435 71 874 1 16.00 79% 1 1 1 1 1 1 1 1 1	ŀ	,		020	3		90 90	,0 0,0		'Mchesta	erenson						
1		N. J.	35	1050	16.3	Spas	6	4		Cleman,	(my/211)	0	3%6				
13			3	080	Q		Sports 	Ç		×5000	No.						
13.6 10.50 16.1 13.6 14.1		ONG	678	080/	i a	89.21	S	60		· · · · · · · · · · · · · · · · · · ·	7 vaseav 7	0.9	/00 km				
45			6	1050		•	P	\$** \$**			1000011744						
453 / voso / b3		Shu	Tal.	3000	100	92,21	7	S OX		nerre ages	NV21/6303	0.3	Q (Z)				
455	ł		S	ose,	197		94	J 30		\$18881ET	reseas; c						
1050 164 12 14 15 15 15 15 15 15 15	- Miles	034	SS.	1050	401	93,17	38	C S		SOUTH OF THE PERSON OF THE PER	***************************************	0.4					
イネユ			E.S.	10%0	631		92	Ch		ea (1884)							
ネシ / クムトの / 子子 72 1	ares and	4555	G J	୍ବ୍ଦ		98.10	56	25		-1>	\dashv		1 1 1 1 1 1				
Constant => K = 払い気も A% = /あず, 3			472	0407				92									
								Constant =		II	20		A% = /⊘	34.9			

'Sampler:

Document: \\B15922\partage\\Partage\\Partage\\NOUVEAU - CLAUDE\\Document de terrain\\Feuille échantillonnage - données brutes rv16oct09.x\s

Company	l.,				Control:	#	li ≻			Ko = 9200	75	Duct:	Dia ("):	-90 24°)	Port (") 🔊	
Cit Cit	2	J.)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3					Diameter:	Bef: 🖘 🖒	D	After: 🍙 🖍	
Date:	71-1-0		Project: R			# 1/2"	_ uC		Box:#			Sheet:	(V)	of 3		
Site:		The rest tour			ed	moisture	.S = %	2.5				ore:		"H2O @		"Hg
Test:	1 1 1 1 1	Motory			Pressure :	: Pbar ("Hg) = ಸ್ವಿಕ್ಕ್ರಿಚೀ	=25.3%		Pstat ("H2O) = ~ (j./ (<u>)</u>)= -(J.)	Ç	Leak affer: க _{. A க} ்	တစ္မာလ	"H2O @	(ev.	"Hg
		TS	d▼	H▼	Volume		iə_	Temperature	e c	(Vacuum	OSI %		Ğ G	Gases	
Point	ime I	(°F)	(" H2O)	(" H2O)	(ft³)	اسا (۴۶)	(°F)	(°F)	Probe (°F)	Oven (°F)	(" Hg)	(%)	(%)	7 (%)	(ppmv / %)	NOX bbmv
tops bosses	00%	T	SAC	\	6	00/	h		880	ose.	0 %	0	13,6	s C	0	
		921	090			700	20									
₈ Ω	No. o.	tos	Color	of the last	104101	700	32		go/NUS	in month No.	O'T.	S 1/9/				
		10	0,0	4		/00	20		sjansjejar	pizmb ^o ceego						
O.	Sic	909	210	Alc	40'80/	<i>aoy</i>	36		000000	22000,756	0.8	966				
		409	260	96		700	\$		+ressone.	de de la comp						
2	io	2 2 2	S.O.	Ale	111.80	10/	N.		Throny,		-8.0	£186				
		51°	eas:	96		101	9		wetonom.	********						
renes/Ch	2	7	0%0	<u>a.</u>	115,50	િન	12		DAY-MINISTERNA	None	ೆಕ್ಕಿ	l'ibb	Ţ	8.8	đ	
		000	380	. g.		5	200		Name of the last o	MARCON FOR						
S	120,021	1	0301	00//	96.811	001	12		*********************	07/17/4/3/1	\$0 00 00	10015				
			0%0/	1,00		/00/	72		nchejourn.	********						
	og:ss	A PA	0801	00"	12217	300	Ş		*******		0,6,	78.5				
		944	10%0	00		00)	2		5011300-00	Mingragia e s						
	\$:5	950	2,807	8	Bogo	00/	30		0000000	C-07/2004	ৃ	(0)13				
		150	10%6	1.00		700	55		Memoria	,,,,,,,,,,						
ņ	On St	37,5	OK Q	1,00	130,455	00/	ē.			unoticht es	0.0	J.00/				
		376	080	1,00		00)	a			er-weige						
2	27:52	* 96	0,3,0,1	192	154,71	(00)	- S		eusan		-10,c	980				
		\$ \$ \$	0%0	S. C.		00/	2°.		91-50829377KW	biograms)						
A STATE OF THE PARTY OF THE PAR	Si.Si	986	2801	1. Par	134,45	000	2		***************************************	***	0.0	99,3				
		040	_S80'	2		00,	42		spanner &	-wasanga						
Ł	25:51	487	10.45	9	42.54	100	12		The same of the sa		0.0					
100	16:00	98 8	10%0	501	146,22	/oc	92									
			5				Constant =>		K= 31,50	20		A% = 10% 36	36			

r Sampler.

S DEMOS

WEIGHT SHEET

Company	Agnico-Eagle
Location	Baker Lake
Date	12 / 07 / 2014
Site	Outlet incinerator
Train #	13
Test #	д РАМ

	DATA
Pbar: 29	-83 po.Hg
	O2 % 16,06
G	CO ₂ % 3,47
A	CO ppm ZO
Z	CO %

	No.	Final (g)	Weight Initial (g)	Weight Particulates
Filter	Q-431		0.46686	
Probe wash				
Cyclone				
			Weight (g)	

Impir	ngers	Final weight	Initial weight	Water weight
1	H2O	567,5	509,7	57,8
2	H2O	557,7	518,6	39,/
3	HNO ₃ 5% /H ₂ O ₂ 10 %	6/0,9	595,3	15.6
4	HNO ₃ 5% /H ₂ O ₂ 10 %	569,4	2921	4,3
5	Empty	471.9	470.3	1.6
6	KMnO ₄ 4%/ H ₂ SO ₄ 10%	589.0	587,8	1,2
7	KMnO ₄ 4%/ H ₂ SO ₄ 10%	630,8	631.9	-1,1
8	Silica gel	688,7	665.1	23,6
			Final weight	142.1

Preparation	Prepared by	Recovered by	Approved by
Date	3-L	5.L	
On site	12-7-14	12-07-14	
Laboratory			

Gestion des volumes des Barboteurs

Barboteur #	Volume o Conder		Volume de solution Initiale	Total	Code
1	57.8	mL	+ 100 mL	/57.8 mL ⁽¹⁾	
2	39.1	mL	+ 100 mL	/39./ mL ⁽²⁾	
Rincage (poids)		g	g	34 , $mL^{(3)}$	1 g d'eau = 1 mL
Sous-total (1+2+3)				3入 mL ⁽⁴⁾	
Aliquot (Contenant	3B)			(-) 100 mL ⁽⁵⁾	
Volume final (4-5)				∂∂/ mL ⁽⁶⁾	
Divise par 20				divise par 20 (7)	
Volume d'acide HNC	3 conc. à aj	outer		//o5 mL ⁽⁸⁾	
Volume final (5+6+8) (Contena	nt 3A)		231 332mL ⁽⁹⁾	JUIL14-A2-PAM-INC-(1+2-M1)-14034.55 JUIL14-A2-PAM-INC-(1+2-M2)-14034.56
3	15.6	mL	+ 100 mL	/15.6 mL (10)	
4	4,3	mL	+ 100 mL	/04.3 mL(11)	
Rincage (poids)		g	g	31-3 mL ⁽¹²⁾	
Total (10 + 11 + 12)	(Contenant	(4)		み51.み mL ⁽¹³⁾	12_JUIL14-A2-PAM-INC-(3+4-RM)-14034.57
5	1,6	mL	+ 0 mL	/,6 mL ⁽¹⁴⁾	
Rincage (poids)		g	g	/8/9 mL ⁽¹⁵⁾	
Total (14 + 15) (Cor	itenant 5 A)		20,5 mL(16)	12_JUIL14-A2-PAM-INC-(5)-14034.58
6	1,2	mL	+ 100 mL	/0/12 mL ⁽¹⁷⁾	-
7	-1.1	mL	+ 100 mL	%፣ ካ mL ⁽¹⁸⁾	
Rincage (KMnO ₄)		g	ත	33.6 mL ⁽¹⁹⁾	g KMnO ₄ / 1.124 g/mL = mL KMnO ₄
Rincage (H ₂ O)		g	g	47.3 mL ⁽²⁰⁾	
Total (17 + 18 + 19+	20) (Conte	enant 5	5 B)	281 mL ⁽²¹⁾	

Company:					Control:	OF SERVICE		- T		Ko = ⊘2	70%	Duct:	Dia ("):	%) 30	Port (")	9 /
City	- S	1	OY.			#25	=	10				Diameter:	Bef: ≲	0	After: 🖎	Λ
Date:	~~? ?		Project: R			۳, #	Dn = . ৭৭%		Box:#			Sheet:		of 18		
Site:		1			8	moisture %	%= 2.7	7.				Leak before:	\$0000	"H2O @	<u>1</u>	ᇍ
Test:	0	Holans.			Pressure:	Pbar ("Hg) =	= ३९.४७		Pstat ("H2O) =	0) = (0	0	Leak after:		"H2O @		"Hg
					-		Ten	Temperature	ē			2		Ga	Gases	
Point	Time	S		⊥	Volume	Tmi	Tmo	Timp	Probe	Oven	vacuum	<u>0</u>	05	C02	8	Š
		(°F)	(" H2O)	(" H2O)	(fft³)	(%F)	(°F)	(%F)	(°F)	(°F)	(" Hg)	(%)	(%)	(%)	(% / xwdd)	bpmv
	ST: 5	X0.82	of or	(X)	46.36	Y.	ş		380	920	o;	% % %				
		35 SA	OLO!	6		Ŋ	in Si		percon.	744						
CZ.	i vi	01% 01%	94.01] b'	पष्जन	Ā	K		p:::00.00/j\f	_{per} steniu e	0.7.	1012				
		840	07.0	191		رن ښ	SC			1070au						
d^)	O.		9.0	CO.	53,58	79	P		Monto go	(w)()***	0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
		833	0.0	193		79	E. C.			~0002						
Ť	(0:0)	676	or o	187	57,21	22	il.			experies.	-4.0	\@O, ©				Į.
		6H8	010	191		23	A		100.000 Oc.	Elmah (744)		1				
	00.00	1	0£01	7 kg 8	TS '07	× 65	78		T0303936+0	and all a	-4.0	9910				
		(1) (0)	360,	196		Ş,ŞQ	Jo Sp		~~~~	sessystowy						
٥	0	T	100 Q	181	64,43	t X	90		www.co.	· · · · · · · · · · · · · · · · · · ·	0.77	1.01.8				
		7	10,50	30		4	0		00000000	e (1550-julyy)						
1	<u>×</u>		Sac	123	01.12	25	76			77,000	0.	2707				
		23.6	SAO	181		5	~ ~		nat a patient	SHizor.						
J.	(C) (C)	50	10 s	\&\	46.15	30	cs.		lagenci (A) de en Val		0,1	\\ 8				
		(O)	1000	181		್ಯ	90 (4		well the said							
5	0.08	Erb	2001	121	る社、科学	70	190			, concent	0.79.	680				
		CC.	\\$00.			Jan.	Z			cartifate						
2	A. O.	935	\\$9\Q'	181	76.16	43	\$		······································	m og Valleti	0,00	(00/3				
		123	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	101		6	8		-586 D.T.	(vivon)X						
arakerin Marinas	10:38	1275	04.0	99	55.60	E. P.	83		v45:00m	Maries	~ ~ ~ ~ ~ ~	\$ 101				
		345	010	S		28	120		,-200 0	Pleane						
Ċ	67.0	196	06.00	.82.	35 D	H	90 90		N. Parker	American and a	O.	Ğ	42			
		42	010	188		gy	XX.			,						
] p							Constant =>		K= 3	S.		A%= /ःः	109;28e			
1				-												

Sampler:

Exova Canada Inc. 1390 Rue Hocquart St-Bruno-de-Montarville Québec Canada J3V 6E1

SAMPLING DATA SHEET - MANUAL SAMPLING

Company	. //46				Control	9 8 7 1	X = Y	22		Ko =	704	Duct	Dia ("):	,30 ~73	Port (") /	0
- - -	,				Probe:) = A					Diameter:	Bef		After: 🏖 🔊	
Date	71-50-6		Project: R		 	77.#	Dn = 4 %		Box:#			Sheet:	(a)	of ঙ		
Site:	Tweet	1			Supposed moisture % =	moisture	% = \$7.	. •				Leak before: 🕲	0000	"H2O @	3/-	'Hg
Test:	7 1	Horne			Pressure:	Pbar ("Hg)	= Do Ko		Pstat ("H2O) =	0!=(Leak after:		"H20 @		"Hg
							Ter	emperature	a.					Ö	Gases	
Point	Time	Z_	₽P	⊥ ▼	Volume	Tmi	Tmo	Timp	Probe	Oven	Vacuum	OSI %	05	C02	00	XON
		(°F)	(" H2O)	(" H2O)	(ff³)	(%F)	(%F)	(°F)	(°F)	(°F)	(" Hg)	(%)	(%)	(%)	(% / xwdd)	ppmv
2	ST.O.	158	0.00	ر ا ا	88.71	93	88		32.00	000	0 00	h/00/	019/	7.0	eO.	
		100 100 100 100 100 100 100 100 100 100	ő CXC	35°		93	88			Meeting						Ī
	S.S.	(%) (%)	0%0	93	93.51	50	58		sconsern &		ं १/)	7007				
			, 0%0	38.		93	800		sentore.	77970230						
1/2	\$V:5	AT P	0%01	40	16.30		0		24,000001	···· Clioyy	0,4	63.3				
		1700	0%0	1		40			ellengyddag.	come.						
ر الراب المابعة	50:	7	5 X X	\$ \$ \$ \$	100,30	MG	90		***************************************		0,0	103.h				
		3	0%0	3º		ħö	ે		oumove.	**************************************						
74	11:04	17.6	, č	70.7	61.40/	9	Ç.,		SENT-USERN	anno de la constitución de la co	O.	2166	0.9/	an an	0	
	5 9	To the second	N O	70%		96	4		·/************************************	agazasta.						
×	1.00	7 7 8	V	2	10%,00	* *	o o		S. C. C. C. C. C. C. C. C. C. C. C. C. C.	general services	ं,	<u>्</u>				
400	10 page 10 10 10 10 10 10 10 10 10 10 10 10 10	TOS	1200	20 20	111.83	4.6	S		,		To the second se					No. of Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street,
	2		SS.O.	5	Sorti	Z	210		Q K		S	0000				
-		Ţ	0000			Z	200		~	whose						
C	0.03	Ä	S	50)	116.25	200	7.50			AL STREET	O.J	× 00 /				
		Ŧ	000	, koš		24	1		escripto de la	(EDOU)						
(A)	80°	Con	020		118140	81,	N			***********	0.9	726	70%	i,	c43	
		Ø.	OSC	50		85	2		ēlīn, ezv	>>>>						
Ţ	ું છે.	SIS	0000	131	12154	4	S		Warespe	···esmale,	o.ej.	7 E				
		518	0%0	18		5	V.		************	roncorti.\						
S.	30.6	Q.	10,10	F-10-1	BUMB	1	9				0	- C	1/2 S	4	9	
		Co.	250	194		50	667		N/ver/stage	,c:>>>						
, make	04.61	700	250	65.	126,56	S.	\$6 \$0		**************************************		0,4					
		かんし	Sto	5		80	Ź		2/10/2	17						
							Constant =>		K = <i>S</i> /. ₹	00		A%=/0%36	38			
A				2										1		

と Sampler:

Exova Canada Inc. 1390 Rue Hocquart St-Bruno-de-Montarville Québec Canada J3V 6E1

SAMPLING DATA SHEET - MANUAL SAMPLING

Company			***************************************		Control:	* Q. R. Y.	<×	4		%. = 0X	1300 E	Duct:	Dia ("): 3&	W W	Port (")	Ç
Sit	5					#25%	, = V	10 20				Diameter:	Bef:	0 53	After: 🧣 🦠	si,
Date	~~c	_	Project: R		١.,	% *	u_	30	Box:#			Sheet: 💲	য়েকি	of 💸		
Site	247				g	18	= %	10				Leak before:		"H2O @	0	"Hg
Test:	7	Metano			1 .	: Pbar ("Hg) =	E		Pstat ("H2O) =	= ((0	Leak after:		"H2O @	0	"Hg
		TS	d▼	H	Volume	-	Ten	15-	g (Vacuum	OSI %	-	ğ Z	Gases	Š
Point	Lime	(°F)	(" H2O)	(" H2O)	(ft³)	"m (°F)	(°F)	(°F)	Probe (°F)	(°F)	(" Hg)	(%)	(%)	(%)	(% / xmdd)	_
	13.8%	gro	0%0	001	(Salas	80	X		926	9	0.00	99,1				
		000	0%0	lolo!		Þ	28		COMP	-21-22						
Ş		T	Q.O.	101	13/5,00	1	28			,,,,,,	180	\@3\c				
)	to 1 lo	10%0	1.01		Œ.	% %		e5×10×1	***			ļ	ļ	_	
Œ.	13.88s	929	, O%C	S	139,91	್ಟರ	\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18.0	103,4	9	70°	Ţ	
		939	080	001		C b	60	1		.c						
2	15 XX	dilb	2801	%0 T	(%'Gh/	93	% 0				~8.0	23				
		926	1085	1,01		32	\ \ \		37033113					Q		
J. S. S. S. S. S. S. S. S. S. S. S. S. S.	百%	2016	0601	/ow	M7,76	Ç	<u></u>			~~~	0,80	61.3		vi V	Ĵ	
	A	22	0%0	100		C S	1			Zinillia .						
S	7.4°	45	060,	1,09	181.30	€ (C)	Ō				-8,0	2016				
		7	0601	(00)		93	7		~~~							
0	1.6.4.S	982	0690	601	155178	75	€ 5		***************************************		18.0	g 1				
		682	080'	1001		<u>T</u>	G		Secretary to							
1	E 33	985	,095°	<u> </u>	17.60	Cb	् र्		(residente de	President de		2012				
		985	,0%(S			(5			mere/eposit						
	(1) (1) (2)	bkb	1,0955		755.88	.A	É		pa.ganero = 2		8.0	7				
		ddd	1095	101		e	do C								,	
Z	(8) T	983	00[:	121	167,93	d'S	200			**********	0.8	දැකා	ğ		C	
		€ 59 5	001	131		5	C.									
Ç.	£0.0	185	935	181	412	व्य	ر د د				200	700 VS				
2		(%) (5)	S			de.	5		ym2246	enimply.			_			
\$	1	5	7001	131	176.0K	7	43		1>		0	200				
	79. T.	447	001		Thank-	75	0,3)						
					\$6.53 \$7.50		Constant =>		K= 3\.∈	O V		A% = 109,36	136			
A		6	g good of the second	-										1		

Sampler.

WEIGHT SHEET

Company	Agnico-Eagle
Location	Baker Lake
Date	<u>/3_/_07_/2014</u>
Site	Outlet incinerator
Train #	
Test#	3 PAM

	DATA .
Pbar: 30,	Z∤ po.Hg
	O2 % 16,17
G	CO ₂ % 3,36
Α	CO ppm Z, G
· Z.	CO %


	No.	Final (g)	Weight Initial (g)	Weight Particulates
Filter	Q-430		151478	
Probe wash				
Cyclone				
			Weight (g)	

Impir	igers	Final weight	Initial weight	Water weight
1	H2O	55216	503.4	49,2
2	H2O	560,6	29014	40.2
3	HNO ₃ 5% /H ₂ O ₂ 10 %	७ १५,७	594.8	19.8
4	HNO ₃ 5% /H ₂ O ₂ 10 %	572.2	565,3	6.9
5	Empty	471.6	468,6	3,0
6	KMnO ₄ 4%/ H ₂ SO ₄ 10%	5565	584,9	1.9
7	KMnO ₄ 4%/ H ₂ SO ₄ 10%	636.1	638,9	-2.8
8	Silica gel	689,6	6641	25.5
			Final weight	1437

Preparation	Prepared by	Recovered by	Approved by
Date	13-07-H	13-07-14	
On site	5 2	51	
Laboratory			

Gestion des volumes des Barboteurs

Barboteur #	Volume d Conden	- 1	Volume de solution Initiale	Total	Code
1	49.7	mL	+ 100 mL	149,2mL(1)	
2	40,2	mL	+ 100 mL	/40,2 mL ⁽²⁾	
Rinçage (poids)		g	g	36,9 mL ⁽³⁾	1 g d'eau = 1 mL
Sous total (1+2+3)				376,3 mL(4)	
Aliquot (Contenant 3B)				(-) 100 mL ⁽⁵⁾	<u>\3_</u> JUIL14-A 3 -PAM-INC-(1+2-A)-14034.44
Volume final (4-5)				225. VmL(6)	
Divise par 20				divise par 20 (7)	
Volume d'acide HNC) ₃ conc. à aj	outer		<i>II</i> mL ⁽⁸⁾	
Volume final (5+6+8) (Contenant 3A)				336,4 mL ⁽⁹⁾	
3	19,8	mL	+ 100 mL	//9,8 _{mL(10)}	
4	6.9	mL	+ 100 mL	106.9 mL(11)	
Rinçage (poids)		g	g	33.6 mL ⁽¹²⁾	
Total (10 + 11 + 12)	(Contenant	t 4)		860.3 mL(13)	<u>3</u> JUIL14-A-F-PAM-INC-(3+4-RM)-14034.47
	1		·		
5	3	mL	+ 0 mL	20 3, ○ mL ⁽¹⁴⁾	
Rinçage (poids)		g	g	9.4 mL ⁽¹⁵⁾	
Total (14 + 15) (Co.	ntenant 5 A	<u>.) </u>		mL(16)	
H				Ţ·	
6	1,9	mL	+ 100 mL	101.9 mL ⁽¹⁷⁾	
7	-2.8	mL	+ 100 mL	97.2 mL ⁽¹⁸⁾	
Rinçage (KMnO ₄)		g	g	39 // mL ⁽¹⁹⁾	g KMnO ₄ / 1.124 g/mL = mL KMnO ₄
Rinçage (H ₂ O)		g	g	665mL(20)	
Total (17 + 18 + 19+	20) (Cont	enant :	5 B)	304,7 mL ⁽²¹⁾	JUIL14-A-3-PAM-INC-(6+7)-14034.49

A1-2

Date d'émission: 06/06/14

CALIBRATION OF SAMPLING MODULE

Module Identification: Inventory number:	SB_10
Atmospheric pressure ("Hg):	29.90

Responsable calibration:	Sylvain Lapointe
Responsable data entry:	Simon Demers
Calibration date:	15-Jan-14
Next calibration date:	15-Jan-15

del.H	Vw	Vd	Tw	Tdo	Td	time	del.m	factor
in.H2O	ft³	₽³	deg.F	deg.F	deg.F	min.	in.H2O	count.
1.0	5.00	5.34	71.60	89.00	89.75	6.98	-0.30	0.9992
1.0	5.00	5.35	71.60	89.00	89.80	6.96	-0.30	1.0006
1.5	5.00	5.33	71.60	89.50	89.75	5.63	-0.42	1.0006
1.5	5.00	5.34	71.60	89.50	89.80	5.63	-0.42	1.0006
2.0	5.00	5.34	71.60	88.00	88.80	4.90	-0.51	1.0006
2.0	5.00	5.34	71.60	89.00	89.25	4.90	-0.51	1.0006
2.5	9.00	9.57	71.60	87.50	87.75	7.90	-0.52	1.0006
2.5	10.00	10.65	71.60	87.00	88.75	8.78	-0.52	1.0006
3.0	10.00	10.71	71.60	87.00	89.75	8.06	-0.62	1.0006
3.0	13.00	13.95	71.60	88.00	90.75	10.48	-0.62	1.0006

del.H	Vwc	K	del.H@	Qm	Ko	gamma	Acceptal	oility criteria
in.H2O	ft³		in.H2O	cfm			1.50%	yes/no
1,0	5.00	0.7954	1.05	0.7368	0.9263	0.9639	0.17	yes
1.0	5.00	0.7954	1.04	0.7400	0.9303	0.9641	0.19	yes
1.5	5.00	0.9740	1.02	0.9142	0.9386	0.9661	0.41	yes
1.5	5.00	0.9740	1.02	0.9142	0.9386	0.9644	0.23	yes
2.0	5.00	1.1225	1.04	1.0461	0.9319	0.9613	0.10	yes
2.0	5.00	1.1235	1.03	1.0480	0.9328	0.9621	0.02	yes
2.5	9.01	1.2536	1.04	1.1654	0.9296	0.9624	0.02	yes
2.5	10.01	1.2531	1.04	1.1640	0.9289	0.9627	0.05	yes
3.0	10.01	1.3718	1.05	1.2661	0.9229	0.9576	0.48	yes
3.0	13.01	1.3731	1.05	1.2682	0.9236	0.9576	0.48	yes
AV	/ERAGE		1.04	1.0263	0.9304	0.9622		

Reference method 1/RM/8

Document : Cal2014 Contrôle SB_10.xls

Probe Identification: Inventory number		2E EAU QUARTZ 0		ate chnician responsable ing technician responsable	6-mars- S.Saake S.Saake
Barometric p Ambiant tem		29.76 "Hg 73.0 of	Ms :	28.73	
NOZZLES	SCALE	PITOT	PITOT	Vs	Cv
		REFERENCE	"S" TYPE	£41-	
		del p	đel p	ft/s	
		0.75	1 020	57 400	0.010
	1 2	0.725	1.030	57.489	0.839
WITHOUT	3	0,523	0.757	48.795	0.831
NOZZLE	4	0.360 0.230	0.524 0.338	40.510 32.343	0.829
NUZZEE	5	0.128	0.338	24.121	0.824 0.809
	6	0.059	0.089	16.326	0.811
	1	0.715	1.045	57.087	0.827
	2	0.520	0.763	48.651	0.825
Dia. 1/8	3	0.356	0.530	40.290	0.820
No. 3	4	0.228	0.343	32.195	0.815
	5	0.126	0.197	23.950	0.800
	6	0.058	0.091	16.214	0.798
***************************************	1	0.717	1 0.45	gq 1c1	0.000
	2	0.717 0.518	1.045 0.758	57.151 48.561	0.828 0.826
Dia. 3/16	3	0.357	0.527	40.319	
No. 3	4	0.226	0.342	32.081	0.823 0.813
110. 5	5	0.124	0.196	23.788	0.796
	6	0.059	0.090	16.340	0.809
	1	0.714	1.054	57.043	0.823
	2	0.520	0.770	48.651	0.822
Dia. 1/4	3	0.355	0.532	40.240	0.817
No. 3	4	0.227	0.339	32.131	0.817
	5	0.127	0.195	24.026	0.806
	6	0.057	0.089	16.129	0.802
	1	0.718	1.049	57.187	0.827
	2	0.518	0.771	48.566	0.819
Dia. 5/16	3	0.353	0.529	49.086	0.817
No. 3	4	0.228	0.342	32.216	0.816
	5	0.127	0.197	24.064	0.804
	6	0.057	0.089	16.172	0.804
	1	0.716	1.084	57.115	0.813
	2	0.516	0.783	48.477	0.811
Dia. 3/8	3	0.356	0.541	40.296	0.812
No. 3	4	0.226	0.348	32.081	0.806
	5	0.125	0.198	23.874	0.796
	6 	0.058	0.090	16.200	0.800
	1	0.721	1.086	57.306	0.815
	2	0.517	0.783	48.543	0.813
Dia. 7/16	3	0.356	0.540	40.245	0.811
No. 3	4	0.227	0.349	32.138	0.806
	5	0.126	0.199	23.960	0.797
	6	0.057	0.090	16.129	0.796
	1	0.716	1.101	57.103	0.806
	2	0.517	0.794	48.519	0.807
Dia. 1/2	3	0.356	0.555	40.268	0.801
No. 3	4	0.226	0.356	32.110	0.798
=	5	0.126	0.201	23.960	0.791
	6	0.056	0.091	16.002	0.785

NOTICE: Shows the average of three reading taken during calibration.

Test	Date 	Time	Filter ma	Probe ma	Cyclone ma	Vmeter ft³	Dstack inches	Period minutes
1	July 11, 2014	12:59 - 16:35				125.30	38.00	5

02 (% v/v)	CO2 (% v/v)	CO (ppmv)	Vol. water	Pbar	Dnozzle	Cpitot	γ	Pstatic
Dry basis	Dry basis	Dry basis	mL	"Hg	inch		,,,,,,	"H2O
17.39	2.49	6.4	85.2	29.74	0.498	0.785	0.9751	-0.10
SO2	H2		· · · · · · · · · · · · · · · · · · ·					
0	0	71						

,,,,,,,,			T	raverse #1				
Point	Tstack	ΔΡ	ΔН	Volume	Tinlet	Toutlet	Isokinetic	Velocity
	°F	"H2O	"H2O	ft³	۰F	°F	%	ft/s
				***			05.4	20.6
1	782	0.065	1.44	79.44	64	64	95.1	20.6
	782	0.065	1.44	82.76	64	64	04.6	24.4
2	784	0.070	1.55	82.76	65	65	91.6	21.4
1 1 <u>2</u> 1 2 1	784	0.070	1.55	86.08	65	65		04.5
3	788	0.070	1.55	86.08	68	65	97.2	21.5
	788	0.070	1.55	89.61	68	65		
4	783	0.070	1.56	89.61	69	66	99.9	21.4
4 (4) 4 (4) (5)	783	0.070	1.56	93.25	69	66		
5	797	0.070	1.55	93.25	73	67	99.7	21.5
and the Mary	797	0.070	1.55	96.88	73	67	İ	1
6	801	0.080	1.77	96.88	78	68	92.4	23.1
He will be	801	0.080	1.77	100.49	78	68		
7	816	0.075	1.65	100.49	80	70	96.1	22.5
r se villeg Mig	816	0.075	1.65	104.12	80	70		
8	765	0.065	1.50	104.12	83	71	99.1	20.5
	765	0.065	1.50	107.69	83	71		
9	761	0.070	1.62	107.69	82	73	95.6	21.2
重点 海绵特别	761	0.070	1.62	111.27	82	73		
10	775	0.070	1.60	111.27	82	74	95.7	21.3
	775	0.070	1.60	114.84	82	74		
11	756	0.065	1.52	114.84	86	77	96.8	20.4
	756	0.065	1.52	118.37	86	77		
12	757	0.070	1.63	118.37	86	76	92.9	21.2
	757	0.070	1.63	121.88	86	76		
13	757	0.070	1.63	121.88	81	78	93.5	21.2
	757	0.070	1.63	125.40	81	78		
14	733	0.070	1.66	125.40	83	77	91.7	21.0
	733	0.070	1.66	128.89	83	77		
15	738	0.070	1.65	128.89	80	78	94.4	21.0
	738	0.070	1.65	132.47	80	7 8	1	
16	747	0.070	1.64	132.47	79	78	93.8	21.1
10	747	0.070	1.64	136.01	79	78		~
17	740	0.060	1.41	136.01	79	78	93.5	19.5
<i></i>	740	0.060	1.41	139.29	79	78	33.0	1 75.5
40		0.060	1.43	139.29	78	78	94.2	19.4
18	725 725	0.060	1.43	139.29	78	78	34.4	15.4
	/20	עסט.ט	1.43	142.01	/0	70		

Average	767	0.069	1.576	63.17	78	72	95.2	21.1

			Tes	st #1, Travers	e #2			
Point	Tstack	ΔР	ΔH	Volume	Tinlet	Toutlet	Isokinetic	Velocity
	°F	"H2O	"H2O	ft³	°F	۰F	%	ft/s
1	815	0.100	2.19	142.72	71	71	92.8	25.9
•	815	0.100	2.19	146.73	71	71	52.5	
2	813	0.100	2.19	146.73	72	72	92.3	25.9
-	813	0.100	2.19	150.73	72	72	02.0	
3	813	0.100	2.19	150.73	72	71	93.8	25.9
•	813	0.100	2.19	154.79	72	71		
4	823	0.100	2.18	154.79	76	72	93.4	26.0
, i T	823	0.100	2.18	158.84	76	72	1	
5	815	0.100	2.22	158.84	84	73	92.6	25.9
, Y	815	0.100	2.22	162.90	84	73		
6	792	0.085	1.92	162.90	83	76	93.4	23.7
•	792	0.085	1.92	166.72	83	76	1	
7	797	0.080	1.80	166.72	83	77	94.6	23.0
	797	0.080	1.80	170.47	83	77	5-7.0	-0,0
8	786	0.080	1.82	170.47	83	76	95.0	22.9
	786	0.080	1.82	174.25	83	76	33.0	12.3
9	755	0.035	1.76	174.25	85	79	94.2	21.9
	755	0.075	1.76	177.94	85	79	34.4	1 21.3
10	753	0.070	1.64	177.94	85	80	94.4	21.2
10	753	0.070	1.64	181.52	85 85	80	37.7	
11	740	0.060	1.42	181.52	85	81	94.7	19.5
	740	0.060	1.42	184.87	85	81	34.7	,3.5
40	741	0.060	1.42	184.87	85	81	93.9	19.5
12	The state of the s	0.060	1.42	188.19	85	81	33.9	19.5
40	741		1.19	i	85	82	93.6	17.8
13	737	0.050		188.19		1	93.0	17.0
e file green	737	0.050	1.19	191.22	85	82	00.4	17.8
14	742	0.050	1.19	191.22	86	82	93.4	77.8
A	742	0.050	1.19	194.24	86	82		
15	731	0.050	1.20	194.24	87	85	93.3	17.7
	731	0.050	1.20	197.28	87	85		4=0
16	604	0.040	1.08	197.28	88	84	94.9	15.0
	604	0.040	1.08	200.21	88	84		,,,
17	607	0.030	0.80	200.21	88	83	95.2	13.0
Haristan	607	0.030	0.80	202.75	88	83	000	1
18	604	0.020	0.54	202.75	87	84	96.2	10.6
	604	0.020	0.54	204.85	87	84		1
A	740	0.000	1.597	62.13	83	78	94.0	20.7
Average	748	0.069	1.59/	02.73	03	1 /0	j 34.U	20.7
Ave. test	758	0.069	1.586	125.30	80	75	94.6	20.9

Velo	city		Volumetric	~		Temp	perature	Moisture
ft/s	m/s	ACFM	SDCFM	m³/h	Rm³/h	°F	°C	% v/v
20.9	6.4	9884	4191	16795	7122	758	403	3.2

Total part.	······	le volume		Verification of Isokinetic				
mg	SDCF	1	Nb readings		Nb < 90%	Nb > 110%	Iso max.	Iso min.
0	121.80	3.449	36	0	0	0	99.9	91.6

Pstack	Pmeter	Md	Ms	Bwo	Ratio Vs max / Vs min	Vs max.	Vs min.
"Hg	"Hg	g/g-mole	g/g-mole		-4	ft/s	ft/s
29.73	29.86	29.09	28.73	0.032	2.5	26.0	10.6

	Particulate co	;	Emission ma	ass flow rate	
gr/ACF	gr/SDCF	mg/Rm³	lb/h	kg/h	
0.000	0.000	0	0	0.0	0.0

[&]quot;R" or "Reference Conditions" at 25°C, 101.3 kPa, dry basis.

Test	Date	Time	Filter	Probe	Cyclone	Vmeter	Dstack	Period
			mg	mg	mg	ft³	inches	minutes
2	July 12, 2014	11:22 - 16:00				123.01	38.00	5

O2 (% v/v)	CO2 (% v/v)	CO (ppmv)	Vol. water	Pbar	Dnozzie	Cpitot	γ	Pstatic
Dry basis	Dry basis	Dry basis	mL	"Hg	inch		***	"H2O
16.06	3.47	2.0	- 125.9	29.89	0.498	0.785	0.9751	-0.10
SO2	H2							
0	0	1						

	Traverse #1											
Point	Tstack	ΔΡ	ΔΗ	Volume	Tinlet	Toutlet	Isokinetic	Velocity				
	°F	"H2O	"H2O	ft³	°F	<u>°</u> F	%	ft/s				
1	836	0.090	1.91	4.96	64	64	93.3	24.8				
• • • • • •	836	0.090	1.91	8.64	64	64	00.0					
2	830	0.050	1.05	8.64	66	66	103.5	18.4				
- - .	830	0.050	1.05	11.71	66	66	, , , , ,					
3	850	0.050	1.06	11.71	68	65	101.2	18.6				
-	850	0.050	1.06	14.69	68	65		10.0				
4	879	0.050	1.04	14.69	74	65	101.4	18.8				
	879	0.050	1.04	17.66	74	65	,,,,,	1010				
5	885	0.060	1.27	17.66	81	69	97.1	20.6				
-	885	0.060	1.27	20.80	81	69]					
6	884	0.060	1.26	20.80	83	71	98.5	20.6				
Yana Bayesa	884	0.060	1.26	24.00	83	71	30.0	2.0.0				
7	883	0.060	1.27	24.00	86	73	98.1	20.6				
A STATE OF THE STA	883	0.060	1.27	27.20	86	73	30.1	20,0				
8	919	0.070	1.45	27.20	89	76	97.0	22.5				
·	919	0.070	1.45	30.59	89	76	37.0	22.0				
9	921	0.070	1.45	30.59	90	79	95.8	22.5				
	921	0.070	1.45	33.95	90	79	33.0	22.5				
10	924	0.070	1.45	33.95	90	79	97.6	22.6				
	924	0.070	1.45	37.37	90	79	37.0	22.0				
11	940	0.070	1.43	37.37	91	79 80	96.9	22.7				
	940	0.070	1.43	40.75	91	80	30.9	22.7				
12	956	0.080	1.62	40.75	93	82	97.6	24.4				
12	956	0.080	1.62	44.38	93	82	97.0	24.4				
13	958	0.080	1.62	44.38	94	83	97.4	24.4				
13	958	0.080	1.62	48.01	94	83	97.4	24.4				
14	963	0.080	1.62	48.01	93	85	97.3	24.5				
14	963	0.080	1.62	51.63	93	85	97.3	24.5				
	1	0.080	•	51.63			95.4	24.4				
15	957	E.	1.63		93	85 85	95.4	24.4				
46	957	0.080	1.63	55.19	93	85 86	044	040				
16	935	0.080	1.65	55.19	93	86	94.4	24.2				
	935	0.080	1.65	58.74	93	86	00.4	1 242				
17	938	0.080	1.65	58.74	94	87	96.4	24.3				
	938	0.080	1.65	62.37	94	87	25.0	20.5				
18	937	0.075	1.55	62.37	93	87	95.2	23.5				
<u> </u>	937	0.075	1.55	65.84	93	87		<u> </u>				

		·····	Te	st #2, Travers	e #2			
Point	Tstack	ΔΡ	ΔΗ	Volume	Tinlet	Toutlet	Isokinetic	Velocity
	°F	"H2O	"H2O	ft³	۴	°F	%	ft/s
1	1030	0.080	1.53	66.05	82	82	96.6	25.0
-	1030	0.080	1.53	69.52	82	82	00.0	20.0
2	1035	0.100	1.90	69.52	83	82	97.0	28.0
_	1035	0.100	1.90	73.41	83	82	1 07.0	20.0
3	1033	0.095	1.82	73.41	89	84	95.7	27.3
-	1033	0.095	1.82	77.18	89	84	1	}
4	1034	0.090	1.74	77.18	93	86	95.5	26.6
	1034	0.090	1.74	80.86	93	86		
5	1040	0.090	1.73	80.86	96	86	95.6	26.6
	1040	0.090	1.73	84.55	96	86		
6	999	0.090	1.79	84.55	98	89	95.2	26.3
	999	0.090	1.79	88.29	98	89]	
7	975	0.095	1.92	88.29	99	89	95.5	26.8
	975	0.095	1.92	92.18	99	89		
8	975	0.095	1.92	92.18	99	89	95.3	26.8
	975	0.095	1.92	96.06	99	89		
9	974	0.095	1.92	96.06	98	88	95.4	26.8
. .	974	0.095	1.92	99.94	98	88	""	
10	973	0.090	1.82	99.94	98	88	95.4	26.0
	973	0.090	1.82	103.72	98	88	***	20.0
11	926	0.070	1.46	103.72	98	87	94.6	22.6
3 T	926	0.070	1.46	107.08	98	87	37,0	
12	923	0.070	1.47	107.08	98	88	95.5	22.6
	923	0.070	1,47	110.48	98	88	30.0	1 22.0
13	928	0.070	1.46	110.48	99	88	94.8	22.6
	928	0.070	1.46	113.85	99	88	37.0	
14	926	0.060	1.26	113.85	99	88	95.6	20.9
rent Thu	926	0.060	1.26	117.00	99	88	30.0	
15	922	0.060	1.26	117.00	98	88	92.8	20.9
- T	922	0.060	1.26	120.06	98	88	32.0	10.3
16	946	0.050	1.03	120.06	98	88	92.8	19.2
	946	0.050	1.03	122.83	98	88	32.0	19.2
17	750	0.045	1.08	122.83	98	89	94.9	16.9
	750	0.045	1.08	125.73	98 -	89	7.5	'0,3
18	675	0.030	0.77	125.73	98	89	95.0	13.4
	675	0.030	0.77	128.18	98	89	55.5	1
		-			· ···			
Average	948	0.076	1.549	62.13	96	87	95.2	23.6
Ave. test	929	0.073	1.496	123.01	90	82	96.3	23.0

Ave. test	929	0.073	1.496	123.01	90	82	96.3	23.0

Velo	city	Volumetric flow rates						Moisture
ft/s	m/s	ACFM	SDCFM	m³/h	Rm³/h	°F	ן "נ" ן	% v/v
23.0	7.0	10865	3990	18462	6780	929	499	4.9

	000 00111,01	e volume		Verification of Isokinetic						
mg	SDCF	Rm³	Nb readings		Nb < 90%	Nb > 110%	iso max.	Iso min.		
0.00	118.27	3.349	36	0	. 0	0	103.5	92.8		

Pstack	Pmeter	Md	Ms	Bwo	Ratio Vs max / Vs min	Vs max.	Vs min.
"Hg	"Hg	g/g-mole	g/g-mole			ft/s	ft/s
29.88	30.00	29.20	28.65	0.049	2.1	28.0	13.4

J		ncentrations	•	Emission m	ass flow rate
gr/ACF	gr/SDCF	mg/m³	mg/Rm³	lb/h	kg/h
0.000	0.000	0	0	0.0	0.0

[&]quot;R" or "Reference Conditions" at 25°C, 101.3 kPa, dry basis.

Test	Date	Time	Filter	Probe	Cyclone	Vmeter	Dstack	Period
			mg	mg	mg	ft³	inches	minutes
3	July 13, 2014	09:48 - 14:18				118.75	38.00	5

O2 (% v/v)	CO2 (% v/v)	CO (ppmv)	Vol. water	Pbar	Dnozzie	Cpitot	γ	Pstatic
Dry basis	Dry basis	Dry basis	mL	"Hg	inch		****	"H2O
16.17	3.36	2.6	110.4	30.21	0.498	0.785	0.9751	-0.10
SO2	H2							
0	0	1						

			7	raverse #1				
Point	Tstack	ΔΡ	ΔΗ	Volume	Tinlet	Toutlet	Isokinetic	Velocity
	°F	"H2O	"H2O	ft³	°F	°F	%	ft/s
1	945	0.080	1.58	48.75	67	68	97.0	24.2
	945	0.080	1.58	52.24	67	68	97.0	24.2
2	945	0.085	1.68	52.24	73	67	96.1	24.9
	945	0.085	1.68	55.82	73	67	30.7	24.3
3	926	0.075	1.50	55.82	72	67	95.7	23.2
•	926	0.075	1.50	59.19	72	67	33.7	23.2
4	945	0.075	1.49	59.19	77	69	98.3	23.4
1	945	0.075	1.49	62.65	77	69	30.3	23.4
5	951	0.090	1.79	62.65	80	69	94.4	25.7
A. 18.2	951	0.090	1.79	66,29	80	69	37.7	20.7
6	914	0.070	1.44	66.29	84	72	96.2	22.4
	914	0.070	1.44	69.63	84	72	30.2	22.4
7	914	0.065	1.34	69.63	85	72	96.5	21.5
	914	0.065	1.34	72.86	85	72	30.5	27.5
8	925	0.065	1.33	72.86	89	75	95.3	21.6
	925	0.065	1.33	76.06	89	75	30.0	27.0
9	927	0.065	1.33	76.06	89	75	94.8	21.6
	927	0.065	1.33	79.24	89	75	34.0	27.0
10	923	0.070	1.44	79.24	91	77	98.6	22.4
	923	0.070	1.44	82.69	91	77	30.0	22.4
11	926	0.070	1.44	82.69	91	78	97.2	22.5
	926	0.070	1.44	86.09	91	78	37.2	22.5
12	928	0.070	1.44	86.09	91	79	98.0	22.5
	928	0.070	1.44	89.52	91	79	30.0	22.9
13	897	0.060	1.27	89.52	93	81	97.9	20.6
	897	0.060	1.27	92.74	93	81	37.3	20.0
14	890	0.060	1.28	92.74	94	82	97.8	20.5
	890	0.060	1.28	95.97	94	82	37.0	2.0.5
15	892	0.060	1.28	95.97	94	82	98.2	20.5
	892	0.060	1.28	99.21	94	82	30.2	20.5
16	890	0.060	1.28	99.21	96	84	94.7	20.5
	890	0.060	1.28	102.35	96	84	34./	20.5
17	893	0.060	1.28	102.35	96	85	96.8	20.5
	893	0.060	1.28	105.56	96	85	30.0	20.5
18	883	0.060	1.29	105.56	95	85	96.3	20.5
	883	0.060	1.29	103.36	95	85	30.3	20.5
	, 000	1 0,000	****	100.70	. 30			<u> </u>
Average	917	0.069	1,416	60.01	87	76	96.7	22.2

			Te	est #3, Travers	e #2			
Point	Tstack °F	ΔP "H2O	ΔH " H2O	Volume ft³	Tinlet °F	Toutlet °F	Isokinetic %	Velocity ft/s
1	960	0.075	1.49	108.91	76	76	95.7	23.5
	960	0.075	1.49	112.28	76	76		
2	969	0.075	1.47	112.28	75	76	95.5	23.6
	969	0.075	1.47	115.63	75	76		
3	966	0.080	1.58	115.63	77	76	97.2	24.3
. * .	966	0.080	1.58	119.16	77	76		
. , 4	969	0.075	1.48	119.16	79	77	95.4	23.6
4	969	0.075	1.48	122.52	79	77		
·· 5	966	0.075	1.49	122.52	82	78	97.2	23.6
	966	0.075	1.49	125.96	82	78		
6	964	0.075	1.50	125.96	85	77	96.4	23.6
	964	0.075	1.50	129.38	85	77		
7	967	0.075	1.49	129.38	84	80	96.0	23.6
	967	0.075	1.49	132.79	84	80		
8	964	0.080	1.50	132.79	87	79	92.7	24.3
14. 化铁铁矿	964	0.080	1.50	136.20	87	79		
9	967	0.075	1.50	136.20	87	81	96.2	23.6
⁵	967	0.075	1.50	139.63	87	81		1
10	963	0.075	1.51	139.63	88	81	96.0	23.5
	963	0.075	1.51	143.06	88	81		-
11	960	0.080	1.61	143.06	89	82	96.5	24,3
t transfer	960	0.080	1.61	146.63	89	82		
12	926	0.060	1.24	146.63	88	84	95.4	20.8
e e e e e	926	0.060	1.24	149.73	88	84		
13	930	0.060	1.24	149.73	88	84	96.2	20.8
	930	0.060	1.24	152.85	88	84	1 ***	
14	930	0.060	1.24	152.85	89	85	96.0	20.8
r. Hara	930	0.060	1.24	155.97	89	85		
15	924	0.055	1.14	155.97	90	86	95.4	19.9
	924	0.055	1.14	158.95	90	86	1	/5.0
16	918	0.055	1.15	158.95	92	86	95.3	19.8
1 11 12	918	0.055	1.15	161.94	92	86	1	
17	933	0.050	1.03	161.94	91	87	96.4	19.0
	933	0.050	1.03	164.81	91	87]	
18	926	0.050	1.04	164.81	90	87	95.3	19.0
	926	0.050	1.04	167.65	90	87		
	-		***************************************					·
Average	950	0.068	1.372	58.74	85	81	95.8	22.3
N	_							
Ave. test	934	0.069	1.394	118.75	86	79	96.2	22.2

Velo	city		Volumetrio	: flow rates		Temp	perature	Moisture
ft/s	m/s	ACFM	SDCFM	m³/h	Rm³/h	°F	°C	% v/v
22.2	6.8	10511	3910	17860	6643	934	501	4.4

Total part.	Gas samp	le volume				of Isokinetic	;	
mg	SDCF			Nb non Iso	Nb < 90%	Nb > 110%	Iso max.	lso min.
0.00	116.18	3.290	36	0	0	0	98.6	92.7

IE II	Pmeter	Md	Ms	Bwo	Ratio Vs max / Vs min	Vs max.	Vs min.
"Hg	"Hg	g/g-mole	g/g-mole			ft/s	ft/s
30.20	30.31	29.18	28.70	0.044	1.4	25.7	19.0

	Particulate co		1	Emission ma	ass flow rate
gr/ACF	gr/SDCF	mg/m³	mg/Rm³	lb/h	kg/h
0.000	0.000	0	0	0.0	0.0

[&]quot;R" or "Reference Conditions" at 25°C, 101.3 kPa, dry basis.

01 ("Hg	#Hg	×ON —	%) ppmv																								
Porte (")	(G) \(\text{SZ} \)	(D)	Gaz CO	(% / xmdd)											J.O.						〇 匹							
. 38 °	"H20	"H2O ((%)											7.3													
Dia ("):	0.00.0		02	(%)											5/tJ						17 tu							
Conduit: Diamètre: Feuille :	Fuite Avant:	Fuite Après:	OSI %	(%)	1.5%		93.5		99.3		<u>್ರ</u>		101,8		SHE		92.1		70		9		(C)		686		6. Hg	
\$05E.0		0.10	Vacuum	(" Hg)	O.T.		0,		0.6		0,6-		0,2-		ر گ آن		0.8		0,00		0,0,1		0,6		0,6,		0,0-	
0) H	Four	(°F)	150		147		57		242		275		り上が		たらで		530		251		SHE		X+13		シーズ	
K Caisson #		Pstat ("H2O)	re Sonde	(°F)	0350		777		9		250		242		2HB		1500		250		SIC		7		2512		HALLE	
			Température	(°F)	52												58											
$\begin{array}{c c} X = & \\ \hline & \\ CV = & \\ \hline \\ & \\ \end{array}$) - 11	= (Te Tmo	(°F)	J	Ĭ	9	(N	G.5	GS	9 C	9	6	F 9	68	88	70	70	i tr	1	11 2	73	Ţ	SF	5	4	ĴĘ	j
# # \$ \$ \$ # # # \$ \$ \$	% epsoddns	Pbar ("Hg)	Tmi	(°F)	(g ⁴ -4	Z	S	5	89	(0.1%)	83	S	EL.	43	XF	78	280	08	83	83	20	X	C%	82	938	2.C	26	×
Contrôle: Sonde: Buse:	Jiř.	Pression:	Volume	(pi³)	たからた		9 E. E.S		80.08		39.68		20EP		381916		100 /19		104-13		(0구, 6억		£ 5.111		しる。から		118.37	
			H◀	(" H2O)	1 hustens	1,54	1.55	1.55	1,55	1,55	25	1,56	25	1.555	ナバー	たた。し	cs.	1,65	1.50	1.50	().	1.62	09:	09 - -	CS'	Q S.	1.63	<i>d</i>
S Coc 10	Jot. 11 № 2× €		d▼	(" H2O)	0.00.5	2.00.0	0.030	0.670	00.0	0.0	OF 0, 0	0000	0,00	0 to 0	୍ଷ ୍ଟେପ୍	20000000000000000000000000000000000000	S.F.O. 0	SE0.0	5000	0.065	0.0	0,070	0F0.0	0.070	S.0.0		0000	
1 C 0 P) 3	Scoc	TS	(°F)	C 8F	187	シタナ	TSt.	788	788	783	284	CS.		801	801	S 70	<u>8</u>	19 ct	SOE	196	196	SEE	いたけ	N.	954		777
A .	5 5 6	ţţ	Heure		P2:59		HO:E!		12:09		13:14		13:19		13: 2m		(3:78)		13:21		\c2:€)		13:14		13:45		13:81	
Compagnie Endroit:	Site:	Essai:	Point				1		M		Berry		S		J		L. dan		Ø		55		0		مدين سانت		4	

立 Échantillonneur:

Assistant à l'échantillonneur:

Document: T:\Partage\NOUVEAU - CLAUDE\Document de terrain\Feuille échantillonnage - données brutes rv16oct09.xls

Compagnie	. eign	6	0		Contrôle:	\$ */ #	 		×	Ko = α	0 0 C C C	Conduit:	Dia ("):	, × &	Porte (")	10 W
Endroit						\$\langle #	ا د	0,785				Diamètre:	Av:		Ap:	00
Date:	-to-11	J. Pr	Projet: R		Buse:		**	1 1	Caisson#	‡		Feuille:	175	~		
Site:	[-]	Minasa Kovi	- 40 V-V		lité s	npposée		5%				Fuite Avant:		"H20 @		"Hg
Essai:					Pression:	Pbar ("Hg) ≖	Ħ	a.	Pstat ("H2O) =	ą	0,.0	Fuite Après:		, H.ZO (@		Hg.
100		TS	₽₽	H▼	Volume	- ia	Ten Tmo	Ib —	e apudo e apudo	T.	Vacuum	OSI %	00	9 00	Gaz I CO	Č
	ם חם בו	(°F)	(" H2O)	(" H2O)	(pi³)	(°F)		(%)	(°F)	(°F)	(" Hg)	(%)	(%)	(%)	(% / xwdd)	
2	13:59	t t	0,000	(9)	121.88	K)	¥.	r T	I		ر د د	45,6				
		£8±		(0)		81	748									
êmy j	る。こ	とをた		1,00	OLSA	18	r		718	I	0,5	93.S				
		733	0,00). (C		83	A. C.									
-	(M:0%)	428	050.0	1,65	128.89	20	78	' '	250	787	0,5-	J				
		728	0000	1,65		20	78					ı				
9	ブン・オー	かっ け	0.0	ょ	£47(E)	\ot_	7.8		SNG.	THE	0,6"	85.T	12.2	2.7	Ċ,	
		けっさ	0.000	3		Sot.	78									
#	(1-4; (d)	27.4	030,0	147	136,01	Sept.	K.		250	27-16	0 6 1	9/5,6				
		04	0900	1471		Set	138 T				1					
ž	本意	VA It	00000	PH!	139,29	H	7t	*	750	2.4.5	-10.0					
S. S.		いるす	0300		(9) (PL)	8£	35		The same of the sa					And the second s	* Amenical primary	
	v				erittering of the market of the second											
								7				* 6 2 - VO V				
Ĥ							Constante =>	- 11	K = X	7. J.		A% = 110	-			

Échantillonneur:

V 200000 V

Assistant à l'échantillonneur.

Compagnie:	Contrôle: # <pre>#</pre> <pre>A</pre> <pre>Y = 0.9363</pre> <pre>Ko = 0,7304</pre>	Ko = ๑,ラネ☆♪ Conduit: Dia("): ℨვ∵ Porte(") ∖๑゚
	Sonde: # ∑ệ Cv = ◌, ⊐≲≲`	Diamètre: Av: S∆ Ap: ≫⇔
Date: ハーウネ・パー / Projet: R	Buse: #ಝ್ಸ್ನ್ನ್ Dn = ್ರ.ಓ್ಸ್ಸ್ನ್ Caisson #	Feuille: 3 de 4
Site:	Humidité supposée % = \$3%	Fuite Avant: ゎ,๑๑ ៶ౢ "H2O @ ヽ゚ゔ、"Hg
Essai:	Pression: Pbar ("Hg) = Pstat ("H2O) = 100	Fuite Après: "H2O @ "Hg

		Ç	٥	- *	1/0 1,1000		Ter	Température	re		W 100/1	001 /6		9	Gaz	
Point	Heure	<u>n</u>	<u>↓</u>	⊑	Acidine	H H	Tmo	Timp	Sonde	Four	Vacuum	000	05	C02		Š
	15:05	(°F)	(" H2O)	(" H2O)	(pi³)	(°F)	(°F)	(°F)	(°F)	(°F)	(" Hg)	(%)	(%)	(%)	(% / xwdd)	bpmv
	8778	(A) (A)	001.0	67.0	(t) (t)	F	T		1. C	190	0.11	0,4,6				
	为	18/18/18	0010	6		7	i d									
4	01:51	518	001.0	4	SE. 91-1	L.	CF.	26	J so	253	0111 -	1:45				
		810	0,100	81.0		(F	7									
W,	2:15	213	001,0	7 , (9	150,73	A	Ì		100	J. M.S.	- (J.O	9.5.6	9,E	d	C	
		213	001.0	\\'\'\		T C	7									
gerney.	0C:S1	828	00)'0	2118	Pt. 128	-dc	4		020	と大	0 C) -	886				
			0)100	2,1%)E	CE.									
M	N. V.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20,10	7.7	58.82	Ĭ	4		240	245	-12.0	7,17				
		N. N	00%0	44		T	24									
Ì	08:3		0,0%5	15.	00,00	83	9E		262	44	0.5)~	95.3				
		15 C	0.085	(6.)		23	2									
(†	S.5.S	けるか	0,020	0%'	べたっつつ	83	t- t-		これの	75.7	-13,0	N615"	0 77	ار ار	0	
		たらた	0.800	1.80		83	f. 4.									
ηQ	OT:S	986	0,080	1,82	t HOEL	83	35		5	243	- 13.0	0, F.				
		98£	0000	1.87		83	<u>ع</u>									
100	ST; S1	SIST	SF0'0)£'	SOLT	8	ŕ	S 5	N. A.	750	-130	7.30				
		SSE.	2400	9K'		X.S	100									
0	05:31	75×	0 F 0'0	J-0, I	で、た	SS	08		STA	255	0.00	E () () ()				
		753	060.0	191		\ \ \	80									
-	15:55	Sht	090'0		181.53	85	×	,		157	- 13.0	S. (2)				
		ONT	00000	(J.)		85	X									
4	00:2	171	090'0	CJ.	184.87	&s	N	-	3778	X-18	0.5)-		13.1	2:7		
		174	00000	(ガー		85	8									
							Constante	<u> </u>	 .∖	37.48		○\\ = % ∀	ام. ا			

立 Echantillonneur:

Assistant à l'échantillonneur:

Endroit: Date: ハ〜♂ゴーゲ Site: ☐ Essai: ☐)<														,a. ~'
* `	Y	Ko		Sonde:	<i>u</i> (#	ا 5	ام.				Diamètre:	Ä		Ap:	9
pure summer) Jones	Projet: R		Buse:	# Down to	0	- 1	Caisson #	#		Feuille:	3	de L		
resi	A C.	1000		Humidité supposée % = Pression: Pbar ("Ho) =	upposée %	" "	, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Pstat ("H2O) =	1	(Fuite Avant: Fuite Après: ⊘.og t	1	"H2O @	200	BH PH
)			1 1	(G)				Ш	ď)		,	Ŝ
Heilre	TS	d▼	н▼	Volume	l imT	Ter Tmo	5-	e Sonde	Four	Vacuum	OSI %	02	CO2	Gaz co	Š
5	(°F)	(" H2O)	(" H2O)	(pi³)	(°F)	(°F)	(%)	(°F)	(°F)	(" Hg)	(%)	(%)	(%)	(% / nmdd)	bpmv
10:05	F 2 F	0.050	5	(s). (s)	2,8	R		745	0%7	0 H -	Q5,74				
	C 54 £	0.0 5 0	1,19		25	Z									
10:10	(1**-	0.020	1.19	191.32	%	7.2	2 22	180	10-17	01 PM -	N. S. S.				
	C+t	050,0	1.15		X,	X									
16:15	CEL	050,0	(,30	1941.24	t.X	8.5		Samuel Control	150	Q I	5.3				
	152	020,0	1,20		4.8	85									
90:3	To 5	0500	\$0.	197,58	88	5	, ,) \SE	140	- 15.0	\.t.s	192	2,6	0	
	jog		108		88	リス									
	T 05	050.0	0.80	12,000	88	₹X	```	250	256	O.S.) -	T, t.l.				
	109	0030	0,80		88	83									
V4:30	10°0	0000	my5", 0	257500	7.8	8F.		6 I	989	0·S! -	98.5"				
5.50	709	0000	15.0	204.25	ĘX	1-7%									
		A COLUMN TO THE PARTY OF THE PA	A comment of the second second second second second second second second second second second second second se	The state of the s	and the second second	A CONTRACTOR OF THE STREET, AND ADDRESS OF THE STREET, AND ADDRESS OF THE STREET, AND ADDRESS OF THE STREET,	A CONTRACTOR AND A STATE OF THE		Opposition of the San			And the Real of State	Commence of the second second second	A Company of the Comp	
						Constante =>		K=	S L N		○\\ = % ∀	06.0			

Drangers Échantillonneur:

Assistant à l'échantillonneur:

WEIGHT SHEET

Company	Agnico-Eagle
Location	Baker Lake
Date	\\ / 07 /2014
Site A. S. A	Incinerateur
Train#	1 (svoc-)
Test #	AI (PCDD/DF)

. 7.	DATA
Pbar: 2의	. 74 po.Hg
	O ₂ % 17, 39
G_{i}	CO ₂ % 2,49
Α	CO ppm 6.4
Z	CO %

ITEM	Final weight	Initial weight	Water weight
Cooler	119.3	119.2	0.1
XAD-2 resin	233,0	234.2	-1.3
Water trap	300,1	262.9	3 4 , 9
Impinger #1	6542	617.6	36.6
Impinger #2	523.5	224.9	- 1,64
Impinger #3 (silica gel)	719,1	705.2	13.9
Marine and the second		Final weight	85,2

Preparation	Prepared by	Recovered	Approved by
Date		11-07-14	11-60-11
Laboratory			
On sife		5 Damers	5. Dames

0

DONNÉES DE TERRAIN - ÉCHANTILLONNAGE MANUEL

	2	9	"Hg	"Hg	2	ppmv																												
	() (1)	AD (1)	: '		Gaz	(% / xmdd)			Ş				-								دنو						1							Dernière modification: 2014-06-13
1	X	ge S		"H20 @	0 50	(%)			80				6,6								و.						in D			227		_		odification:
1		`. ≩ -	0 8000		-	(%)			リジ				17. S								6.5						16.0				ীত			ernière mo
	Conduit:	Diametre: Feuille:		Fuite Après:	OSI %	(%)	63.0		8:401		7.101		ा १		Ses.		680		784		23.3		100						N I N		A% = 110			Ц
	0.1204			S.10	Vacuum	(" Hg)	0.15.		01-		- 4.0		Q // .		٠, كا ان		Q' E		0,7		Q F-		0,F .		0,87		0 0		28.0		€.			16oct09.xls
	<i>⊘</i> = 0	#		0) == -	i	rour (°F)	17.77		238		100 K		17		なれる		233		576		Q 1/3		14		588		22		SH		1140		neur:	s brutes rv'
		Caisson #		Pstat ("H2O)	J. J.	Sonde (°F)	たられ		SHE		67-70		348		とれる	,	とりど		250		\$7.50		3 H		FJA		250		731		K =	% † ;	Assistant à l'échantillonneur.	e - donnée:
	4014	CV = C 1785	1.5		empérature	(°F)	77 13																D S								ante =>	warin	ant à l'éc	antillonnage
	○ <u>-</u> ~		= % =	a) =	<u> </u> " -	.mo (°F)	753	49	3	ઝ	S	65	S	S	S	5	12	F		9	ી	J T	6	ST T	E.	\$	R	8	()	X	Constante		Assist	euille écha
	# 36 3	W()#	enpposé(Pbar ("Hg)		'm' (³F)	73	F	<i>9</i>	3	୯୪	6,8	4,4	J	18	18	83	XX	% %	× 5	8	83	96	္တ	9	<u></u>	`	õ	93	SS		6.4	ı	le terrain∖F
	Contrôle:	Sonde: Buse:	Humidité supposée %	Pression:	Volume	(pi³)	36.17	2	8. CL.		121		1841 (SP)		30'E		Jo. 30		00' FX		or Le		30.50		35.55		53.33		SE. 37			S. S. S.		=\Document c
					₽¥	(" H2O)	10	8-	1.0.5	Los	1.06	J. 0.	ا, هرم	1,0'	601	100	<u>ಿ</u> ದ್.	%: -	+X:-	tc"	1,45	1,45	ξ ,	ر ا	ペナ.一	√) J. —	1,43	1,43	<u>ሮግባ</u>	ત <u>ું</u>	00-4-00	STORK K	<u> </u>	AU - CLAUDI
		Projet R	1 L4 0	3	Δ₽	(" H2O)	800	60,0	0.05	0.05	50,0	SO.0	S.0.5	50.0	20.0		90°0	900	90.0	∿ 0.0	t-0.0	6.07	6.07	L 0,0	F00	F 0, 0	50.0	FOO	80.0	80.0	ئ ئ	· V)	3	Document: T:\Partage\NOUVEAU - CLAUDE\Document de terrain\Feuille échantillonnage - données brutes v16oct09.xls
	12. CO	(1)	30.00	1 SC & C	TS	(%F)	0 20		830	850	550	850	8-40	X X	333	288	788 7	222	283		अ (व	ल्/।य	931	921	りんし	しょう	OFTE	ONE	956	986		\$ 100 TA		ocument: T:\P
	gnie:		>	1 3		Heure	(0.11		= 2		11:32		11:37		CH://		F. J. 7.1		45:N		11:53		Co:C		F0.01		€1:€1		100		∥ '	722	Échantillonneur:	ă
	Compagnie	Endroit:	Site:	Essai:		Point			1		حر		7		N		ی		Ļ		K		8		္		11		<u></u>		41 °	* A	Échani	35

		-			Contrôlo:	•	\(\frac{1}{2}\)	YUT		χ Π Ο	335 A Conduit	Conduit.	Dia ("):	# () #	Porte (")	ي ،
Corribagine	igne .	4000	ر د د د	3		2000) [1000		2	\$ 2.5	Diamètre.	11	9 /	An:	2
Date		֖֖֖֖֓֞֞֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	Projet: R					787	Caisson #	#		Feuille:	1			
Site :	3	1	r 1	-	lité	supposée	= %	1				Fuite Avant:		"H20 @		"Hg
Essai:		1000 E	200		Pression:	Pbar ("Hg)	=		Pstat ("H2O)	11	0.10	Fuite Après:	¥	"H2O @		"Hg
		٦٢	d▼	HV	Volume		Ter	1	e)		Vacuum	OSI %		Gaz		
Point	Heure	∑ (£	(" H2O)	(" H2O)	(pig)	Tm. (P°)	Tmo (°F)	Timp (°F)	Sonde (°F)	Four (°F)	(" Hg)	(%)	~~ % ~	~~~ % %)	(% / xwdd)	XOX bpmv
عا	Colo	್ ರ	80.0	(2)	& t 177	J 3	e X	n I	R	057	. Q.O	K'L'E				
	I Car all out	8/8	1000	(3)		J.	× ×									
ב	17:37	7,76	× 5. 0		(48.6)	F. 4.3	×5		74.7	280	-80	5.47				
		790	80.0	() -		93	28									
v'	CE:2-	483	80.0	1.G3	51.63	44	5%	7	156	いなが	0/6-	t.50				
		623	\$0.0	(S)		93	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
57	L. 5.7	935	80.0	1,65	55.19	93	36	2	SSC	250	-9.0	<u>ر</u> ر				
		23.3	0 0 %	:591		03	8C									
۴	C47C1	95.6	\$0.0	3	76.82	77	LEX.	7		750	-9.0	F. 3				
		938	80.0	1001 1		5	4									
-3	5:0	┖		(35)	F5.60	ગુર	ĽX		250	1 Jan 1	0,6-	35.5				
	-	٥	24.00	S S S S S S S S S S S S S S S S S S S	65.34	66	87					A CONTRACTOR OF THE PROPERTY O				
		050	0.0%0	1.53	(JOS)	(T)	SS	55	75-17	くろと	0,6	89				
		1030	0%0°0	1.53		C8	82									
d	14:35	।७३८.	001,0	1.93	63.63	83	23		7		0.0/-	(O)	S 3	7	d	
		1025	0.130	े.०,०		83	Q			-						
M	OH: 17	1033	8.00g	1.82	13241	83	Z	ľ	37-X3	F	0.0	6.50				
		ଅଟେ	20.0	L.83.1		89	₹							1		
J	Sh:4	1001	040.0	17,E'(77.18	व र	3,6	ני	8-18	(%)	- 10°	155				
		10,7,00	0000	1.75		93	86									
v	(4:50	1000	00.0	1.73	30.86	9	, S		ST.	57-10	0.01	96.39				
		07-57		1.73		7	X									
J	ング・エー	666	0.03C	1, 183	84,55	જુ	38		250	727	0.01					
		15/5/6	080.0	ζ. - -		9 8	N. N.									
							Constante =>		€ = X	ST 55		A% = \\0	0			

日 |Echantillonneur. |と

Assistant à l'échantillonneur:

			7					······································	- 7	7	T		7		1	1	T	1	Т	T	T	7	T	<u>7</u>	T		ī	T	T	\neg	
.0.	0		"Hg	F.		NOX bpmv																									
Porte (") \o.'`	Ap: 🗅	<i>(</i> ^		5	Gaz	(% / xmdd)	0								æ																
.58	30	I	"H20 @	"H2O @) (%)	2.9								3,2																
Dia ("):	Av:	۲Ą		00000	-	(%)	1.2.1								16, 4j																0
Conduit:	Diamètre:	Feuille:	Fuite Avant:	Fuite Après:	osi %	(%)	95.7		95.5		9.5¢		75.1		617		3 5 8		7.5%		95.9		73.1		63.50		38.8		556		A% = \\O
Ko = o = o X	1 1			01.0	Vacuum	(" Hg)	0.01.		- 11.o		-11.0		-11.0		-1:0		ಿ.ದ(୍ର ଅ -		0.0-		-13.0		-13.0		~ 13.0		-13.०		
Xo ⊪		#		1	1	rour (°F)	252		SSC.		SEC		1		4		555		1.50		576	•	270		F.75		731		28.5		RT. C
		Caisson#		Pstat ("H2O) =	9 (Sonde (°F)	21-19		346		2-18		たいつ		2CS		Ky &		250		270		45.3		156		050		アプラ	- 11	K= N
976 P		200				(°F)	56												54												
É	19	.Dn = 0.	11	=	Tel	1mo (°F)	8	18	\ <u>\</u> X	8	88	88	88	98	18	128	88	38	88	88	88	8	Ϋ́N	% ₩	38	X	Sa	8	88	38	Constante =>
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	475#	= ua~~~~~	% epsoddns	Pbar ("Hg)		Imi (°F)	وه	gg	649	عاطا	57	28	8 8	N.	એ&	Sto	४५	86	عاديا	5	49	5	8/2	ઇ	8,6	86	Sto	70/2	85	3/8	
Contrôle:		Buse:	ŵ		Volume	(pi³)	14.XX		81.CE		96. De		16.66		R3.72		167.08		SHOIL		113.85		17.00		30.06		122.23		125.73	123.18	
					1	(" H2O)	C.P.	46.	60.	(6)	66.7	(8)	(X)	687	35	347	(T)-	F. F. T	ا الم الم	ીમા	. DC	1,26	1.36	34	58 <u>'</u>	80.	1.08	80.	K.6.0	\$ 777	
9 2 2	La Ko	Projet: R	137.35	Sooc	d▼	(" H2O)	5000	0 6395	780.0	5/00.0			্ত ত ত	0,00	0€0, p	0.070	0 FC. 0	~	0.00	3000	030.0	00000	0900	000	0000	0.000	V J 0 0			I ~1	
7 C. W. J. C.	13. XX	-	1. No. 15 856 78	Ś	TS	(%F)	9566	54.6	シボる	Sto	1746	I	9.77.9	523	I		933	200	SC.F.	800	300	320	60	てある	3/7/6	3/76	25.0	1,000	STO	343	
ianie :) · :	Food				Heure	0 C: W.		V (2) V (1)		15:10		\$1:5	1	04:8		1000		15:30		5000		OF IS		ンプン				(5:55	00:00	
Compagnie	Endroit	Date:	Site:	Essai:		Point	<u>, 1</u>		κQ		5		0		=		<u>d</u>		13		- Comm		75		<u>5</u>)	C		8	200	(

立 Échantillonneur: 込

S. Damar S

Assistant à l'échantillonneur:

WEIGHT SHEET

Company	Agnico-Eagle
Location	Baker Lake
Date	12 / 07 / 2014
Site	Incinerateur
Train #	1 (svoc-)
Test #	A2 (PCDD/DF)

	DATA
Pbar: 29	3,89 po.Hg
	02 % 16,06
G	CO ₂ % 3,47
A	CO ppm 2,0
Z	CO %

ITEM	Final weight	Initial weight	Water weight
Cooler	Iala	120,0	0,6
XAD-2 resin	197,7	194,1	3,-6
Water trap	364.8	285.3	79,5
Impinger #1	636.1	608.5	27,6
Impinger #2	476.3	476.7	-0,4
Impinger #3 (silica gel)	3.FIF	702.8	15,0
		Final weight	125,9

Preparation	Prepared by	Recovered	Approved by
Date	12-07-14	D.07.14	
Laboratory			
On site	5. Dama: S	5 Demacs	

Compagnia	. ejub	· V	9		Contrôle:	米	S <	2 7 1 K 2		Ko = ○	1201	Conduit:	Dia (");	.3.	Porte (")	70.
Fndroit					1	14		K K K				Diamètre:	Av:	0	Ap:	9
Date:	70.4	1	Projet: R			# nd + ******	2		Caisson #	‡		Feuille:		de 3	^	
	7		- Assertan		lité si	apsoddr		\$\ \$\ \$\				Fuite Avant: ๑ .๑๑≲೯೨		"H2O @	?	"Hg
Essai:		5	\$00C		Pression:	Pbar ("Hg) =	Н	ď.	Pstat ("H2O) =	<i>'</i>	0.0	Fuite Après:		"H2O @		"Hg
							Ten	empérature	٩			(S	Gaz	
Point	Heure	SL	Д ⋖	¥▼	Volume	E H	Tmo	Timp 8	Sonde	Four	Vacuum	081%	02		00	Ň
2		(°F)	(" H2O)	(" H2O)	(pi³)	(°F)	(°F)	(°F)	(°F)	(°F)	(" Hg)	(%)	(%)		(% / xwdd)	bpmv
	87:6	5445	0,0%0	58	48.75	ŗ	89	. 25	X	253	0,6	6.50				
		SHS	0.020	1,58		7 9	% 9									
4	55.5	S	280.0	1.02	52.22	7.	r.9	* 8	0 % (2000	0,81	8 3				
		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	V 80.0	Š		43	G									
ď	\$ S. 6	37.6	SEOS	05	SS.82	4	E D	• 1	787	25.5	0	0,9				
		9	\n \n \n \n \n	0		1	C									
J	10:03	SIS	0.0 0.0 0.0	10 mg	59.19	T	56	•	250		O.	i/i				
		NI	2000	J. J.		t	3									
1/	16:02	15	0	Ą	62,65	30	5	1 16	W	124	0,0	. J.				
		V. 8	0000	6		80	5									
Ĉ	50:03 13:03	Ţ	900	J	67:33	J	CE	2 9		Z	0,6,	\$ 5 g				
		J	000	J J		58	72									
T		I	18 70 0	J.	ED. 69	88	4	, ,	243	725	0,01-	(1.00 (1.00				
		I	5000 0	I		285	4									
K	50.23	SICO	59000	1,33	72.8G	8	7	3 %	181	342	0.01	9				
		5	\$ 0.0			X	3,									
6	5.28	r	2000		F6.06	200	4	* 8	100	09%	0,0/-	0.00				
		(T)	130.0	Z.		S	7. 1.									
Ç	53:52	6	3	J.	77.8	16	CF	, 2C	2000	J. E. J. J.	0	5 52 5				
		3	0	3		16	**									
=	44:0	5 6	0000	Brown Brown	\$ 9% CX	1	W T	2 3	740	250	0.0	Ţ				
		5		Į Į		6	8±									
4	070	3	0.0	7.	8°C 0	5	F	3 8	250	7	0.017		0 %	13 cm	1	
		\$Z\$		typy!		6	4					- 11				
							Constante =>		K= Σ	2,48		A% = \10	ر الم			

Échantillonneur:

Assistant à l'échantillonneur:

Document: T./Partage/NOUVEAU - CLAUDE/Document de terrain\Feuille échantillonnage - données brutes rv16oct09.xls

Compagnie	anie :		9		Contrôle:	[X] 	√ () = X			Ko = ⊘	FORCE O	Conduit:	Dia ("):	ź K	Porte (")	10/
Endroit :			100 X		Sonde:	υ Π #	= >	امدا					Av:	Ou	Ap: 🏖	1
Date:	10.0		Projet: R		Buse:	#Q~	್ ⊔O	(A)	Caisson #	#		Feuille:	d		7	
		500	していること	•	Humidité supposée	apposée	= %	?; 				Fuite Avant:				"Hg
Essai:		S	Suac		Pression:	Pbar ("Hg) ≕	#	3	Pstat ("H2O)	0 = (0	0110	Fuite Après:	00000	"H2O @	6	"Hg
point	E E	TS	4₽	₽¥	Volume	T	Ter Tmo	Fempérature	re Sonde	Four	Vacuum	0SI %	02	G C02	Gaz CO	Š
=	o non	(°F)	(" H2O)	(" H2O)	(pi³)	(°F)	(°F)		(°F)	(°F)	(" Hg)	(%)	(%)	(%)	(% / xwdd)	
47	87:01	T 30	0,000	1.00	89.52	E-1	$\bar{\infty}$	r S	634	250	0.11-	98.3				
		85	0,000	1,47		N	Ś									
	\$5:0	0/8	0,00,0	32	It. C	Ţ	C X	3	th X	187	0.1-	G S				
		890	0.000	128		Ţ	(K)									
S	1 1 1 1	1	00000	1,22	FP. 89	* S	(8)		250	250	0:17	J. 3				
		d		1,28		J	4									
G	1103 203	8	030	85.1	12, 09	S. A.	St.		25.0	280	0111	9.5.0				
		\$ \$ \$	0 9 0	85,1		9	R									
Com.	80:17	Š	0000	87 I	102.35	3	28		(1/	253	0	O. C.	16.0	33	0	
		2	0900	1.28		Q '0	80									
	2:1	XX3	000000	1,29	05.20	SE	85		MIK	250	0:17	T. 2				
	\$: : :	N N	0900	601	102.76	O]	\ \ \ \ \		Order power to a second						CONTRACTOR CONTRACTOR	r
>	242	09)6	() (O) (O)	Sty.	108.91	<u>عاد</u>	و 11	N I	155	030	0.11	8				
		3	0.07S	JO 871		9¢	9									
		5	240.0	EM!	112.23	t,	Ę		0000	# **	0	% %				
		5	540.0	£17.1		Y V	76									
A	12:58	998	6,80,0	1,58	15.63	C.	S		157	7	0,7	I.	I 2	~ ~	1	
		3	0,0%0	85'		T	J D									
J	C C	5	STO	871	119.16	G	(t		050	727	0	9				
		5	VI 0.	N J.		4	t									
	3:08	8	St.0.0	Approx.	122 Sep	KZ	35		the the the	220	0,0	J.	16,5	3.2		
		300	V#10:0	5		83	4									
٩	13:13	- Te	250,0	1.58	28:26	SW	4		1	250	0.4					
		J 5	5,000	000		82	1									
							Constante =>		X - 			A% = 110	25.5			

D Échantillonneur:

Assistant à l'échantillonneur:

Jump	. 0,000	,	, ,		Contrôle:	Ø Ø ⊅#	S. C	1000 C	¥	Ko = Q TOO		Conduit:	Dia ("):	. 7%	Porte (")	•01
Fodroit.	- All 4			-		1	0 = >	1 / X)		Diamètre:	Av:	0	Ap:	C_{i}
			oiet: R		Buse:	1 34		S	Caisson #			Feuille:	L	1	e^^	
Site .			200		Humidité supposée % =	apposée						Fuite Avant:		"H2O @		"Hg
Essai:	*	N A			Pression:	Pbar ("Hg) =	II		Pstat ("H2O) =	3	0,0	Fuite Après:	0,000.0	"H2O @	57	"Hg
		Н					ľ								-0	
Point	H	TS	Δ◀	▼	Volume	Ξ	Tmo -	emperature Timp S	onde	Four	Vacuum	OSI %	02		CO (CO	Ň
5		(°F)	(" H2O)	(" H2O)	(pi³)	(°F)				(°F)	(" Hg)	(%)	(%)	(%)	(% / xwdd)	ppmv
Ħ	\$ 1:50 \$ 1 : 10	7	Sto.0	1 Cut ch	129.38	Į	R	55 2	000	4	0.61	96				
			2.4°0.0	litta		K.	X .		_	\dashv						
×	3:0	J	0800	1.50	133 JA	/t K	St.		240	222	01	90,0				
		J	080.0	0		X +	1									
6	\$ C	L,	10.0	os;	136,20	87	- X	a	247	3	-120	3/45	Q Q	3,6 Ö	T	
		╙	Stoio	S S S		87	N									
S	4		0		(39.03)	XX	X	(1)		242	-(20	000				
		5	1000	1		88	8			·						
ege ege	201:1	0,3	0 %00	Ē	10°C	St.	82	(0)	. 156	1 Carpon	0,5	1	16,2	3.5	J	
		5	0000	3		Sa	CS									
	7:43		0000	7	MG.G3	XX	Į	, and	Some	150	0.0	4.24				
		3	0300	J		SK	J.									
Ĺ	XXXX	(M)		Ā	(A. (A.)	W.		55	200	+ 5	0.51	96.5				
		000	0900	J		Z Z	78									
of Court	\$.55 \$.55	000	• ~		\S\.	S.	88	<i>§ §</i>		4.50	0.5					
1		0	0,000	れ		8	X									
٧ <u>)</u>		Ľ.,	0,0		T. P. S. S. J.	040	ŠČ	€ 5		03/	0	P				
		IAS	2000			Ç	SS									
۵ ا	60.4	13A			56.851	, Co	%	<i>(</i> 0)		26.5	75.0		16.1	3,5	d	
		50°				6	S X									
	10.08	640	0%0°0	50.	16.19	1/6	C [†]	14		570	0.0					
,	1	5	0.00			E/o	K									
7	1		050.0	70.	18.13	Q.b	&	()	J.		0.0	9				
2	11:13		0000		1(7.65	0	4			- 16						
 	11	1					Constante =>	Ke => K		X J		A% = 110	8			

Échantillonneur:

Assistant à l'échantillonneur:

WEIGHT SHEET

Company	Agnico-Eagle
Location	Baker Lake
Date	13 / 07 / 2014
Site	Incinerateur
Train #	1 (SVOC-)
Test #	3 (PCDD/DF)

	DATA	A.
Pbar: 30,	21	po.Hg
	O_2	% 16, 17
G	CO ₂	% 3,36
A	СО	ppm 2,6
Z	СО	%

ITEM	Final weight	Initial weight	Water weight
Cooler	1.81	IA.S	0,6
XAD-2 resin	237,9	236.5	1,4
Water trap	325.9	226-2	69,7
Impinger #1	652.8	628.9	23,9
Impinger #2	0,624	408.2	-7,2
Impinger #3 (silica gel)	718.8	702.8	16,0
		Final weight	110,4

Preparation	Prepared by	Recovered	Approved by
Date	13-07-14	13-07-14	
Laboratory			
On site	S. Domers	S. Denso	

CALIBRATION OF SAMPLING MODULE

Module Identification:	SB_8
Inventory number:	0
Atmospheric pressure ("Hg):	29.90

Responsable calibration:	B.Bouchard	
Responsable data entry:		(
Calibration date:	25-févr-14	
Next calibration date:	25-févr-15	

del.H	Vw	Vd	Tw	Tdo	Td	time	del.m	factor
in.H2O	U3	ft³	deg.F	deg.F	deg.F	min.	in.H2O	count.
1.0	5.00	5.07	71.0	72.0	72.5	8.82	-0.30	1.0034
1.0	5.00	5.10	71.0	70.0	73.0	8.82	-0.30	1.0034
2.0	5.00	5.12	71.0	70.0	72.5	6.20	-0.50	1.0034
2.0	5.00	5.14	71.0	70.5	74.3	6.20	-0.50	1.0034
3.0	5.00	5.13	70.0	70.0	74.8	5.13	-0.70	1.0034
3.0	5.00	5.16	70.0	70.5	75.5	5.15	-0.70	1.0034
4.0	10.00	10.38	70.0	71.5	77.5	8.92	-0.10	1.0034
4.0	10.00	10.37	70.0	71.5	78.3	8.92	-0.10	1.0034
5.0	10.00	10.40	70.0	71.5	78.5	7.95	-1.40	1.0034
5.0	10.00	10.40	70.0	71.5	78.3	7.95	-1.40	1.0034

del.H	Vwc	K	del.H@	Qm	Ko	gamma	Accepta	bility criteria
in.H2O	ft³		in.H2O	cfm			1.50%	yes/no
1.0	5.02	0.7830	1.74	0.5681	0.7255	0.9892	1.45	yes
1.0	5.02	0.7815	1.73	0.5659	0.7241	0.9843	0.95	yes
2.0	5.02	1.1039	1.71	0.8027	0.7272	0.9766	0.16	yes
2.0	5.02	1.1044	1.71	0.8035	0.7275	0.9760	0.10	yes
3.0	5.02	1.3503	1.75	0.9691	0.7177	0.9778	0.28	yes
3.0	5.02	1.3510	1.76	0.9663	0.7153	0.9735	0.16	yes
4.0	10.03	1.5595	1.75	1.1168	0.7161	0.9706	0.46	yes
4.0	10.03	1.5595	1.75	1.1168	0.7161	0.9728	0.23	yes
5.0	10.03	1.7415	1.74	1.2460	0.7155	0.9650	1.03	yes
5.0	10.03	1.7415	1.74	1.2460	0.7155	0.9646	1.07	yes
A	AVERAGE		1.74	0.9401	0.7201	0.9751		

Reference: Method 1/RM/8

Document : Cal2014 Contrôle SB_8.xls

Probe Identifi Inventory nur		2F EAU QUARTZ		ate echnician responsable ing technician responsable	6-mars-14 S.Saake S.Saake
Barometric pr Ambiant temp		29.76 "Hg 73.0 oF	Ms:	28.73	
NOZZLES	SCALE	PITOT REFERENCE	PITOT "S" TYPE	Vs	Cv
		del p	del p	ft/s	
		0.720	1.054	57.266	0.026
	1 2	0.720 0.521	1.054 0.735	57.266 48.721	0.826 0.842
WITHOUT	3	0.357	0.539	40.341	0.814
NOZZLE	4	0.229	0.348	32.329	0.812
	5	0.128	0.196	24.168	0.808
	6	0.060	9.088	16.589	0.828
	1	0.715	1.045	57.087	0.827
	2	0.520	0.763	48.651	0.825
Dia. 1/8	3	0,356	0.530	40.290	0.820
No. 3	4	0.228	0.343	32.195	0.815
	5	0.126	0.197	23.950	0.800
	6	0.058	0.091	16.214	0.798
	1	0.717	1.045	57.151	0.828
	2	0.518	0.758	48.561	0.826
Dia. 3/16	3	0.357	0.527	40.319	0.823
No. 3	4	0.226	0.342	32.081	0.813
	5	0.124	0.196	23.788	0.796
	6	0.059	0.090	16.340	0.809
	1	0.714	1.054	57.043	0.823
	2	0.520	0.770	48.651	0.822
Dia. 1/4	3	0.355	0.532	40.240	0.817
No. 3	4	0.227	0.339	32.131	0.817
	5	0.127	0.195	24.026	0.806
	6	0.057	0.089	16.129	0.802
	1	0.718	1.049	57.187	0.827
	2	0.518	0.771	48.566	0.819
Dia. 5/16	3	0.353	0.529	40.086	0.817
No. 3	4	0.228	0.342	32.216	0.816
	5	0.127	0.197	24.064	0.804
	6	0.057	0.089	16.172	0.804
	1	0.716	1.084	57.115	0.813
	2	0.516	0.783	48.477	0.811
Dia. 3/8	3	0.356	0.541	40.296	0.812
No. 3	4 5	0.226	0.348 0.198	32.081	0.806
	6	0.125 0.058	0.090	23.874 16.200	0.796 0.800
	_				
	1	0.721	1.086	57.306	0.815
Dia. 7/16	2	0.517	0.783	48.543	0.813
No. 3	3 4	0.356 0.227	0.540 0.349	40.245 32.138	0.811 0.806
.104 5	5	0.126	0.199	23.960	0.797
	6	0.057	0.090	16.129	0.796
	1	0.716	1.101	57.103	0.806
	2	0.517	0.794	48.519	0.807
Dia. 1/2	3	0.356	0.555	40.268	0.801
No. 3	4	0.226	0.356	32.110	0.798
	5	0.126	0.201	23.960	0.791
	6	0.056	0.091	16.002	0.785

NOTICE: Shows the average of three reading taken during calibration.

Exova Canada Inc. 1390 Rue Hocquart St-Bruno-de-Montarville Québec Canada J3V 6E1

MÉTHODE ENVIRONNEMETN CANADA EPS-1-AP-77-3 ÉCHANTILLONNAGE DES OXIDES D'AZOTE DONNÉES DE CHANTIER

USINE:

Incinérateur Source: __

DIT - 03工 Projet:

ENDROIT: Baker Lake

200 12-13-14 milet DATE:

SCHE PS TECHNICIEN

Ballon	Heure	Vol. solution	Pbar initiale	Temps initial	Vide initial	Pbar finale	Temp. finale	Pression finale
12-00-2014		E	ĜН,	± ,ø₀	θH,	б Н ,	⇒ 2 ′₀	O ^z H,
	92:4	22	29.97	70,7	¥2-	30.22	0730	0
2		ro ro	76.62	70,77	124	22.08	○ ⊗	0 11 -
12.NO.2014				•				
6-11	14 3 HO	25	30.22	; ;	77	30, 17	0,87	0;0
51+3	48:HI	25	30.22	- T	7.7	36,17	0,62	SI

10/09/2010

Date d'impression: 2014-07-16

Technicien responsable:	Sy. La.
Date de l'étalonnage:	11-mars-14

	Poid	is	Volume du ballon
Numéro du ballon	Vide	Plein d'eau	voiume du banon
G-1			
G-2	538.36	2589.36	2051.00
G-3	573.87	2602.81	2028.94
G-4	513.45	2569.89	2056.44
G-5	581.13	2606.41	2025.28
G-6			
G-7	497.07	2567.94	2070.87
G-8			
G-9	858.73	2833.89	1975.16
G-10	471.42	2536.08	2064.66
G-11	469.35	2522.74	2053.39
G-12	481.83	2537.45	2055.62
G-20			
G-21	455.73	2538.80	2083.07

Émis par: Christian St-Pierre

Rapport des codes d'échantillons

Code échantillon	Projet	Date	Site de prélèvement	Test (description)	Paramètres
14034-4004	R14-034	16-juil-14	Incinerateur	Test #A1 SVOC (FH) 14034.1	PCDD/DF
14034-4005	R14-034	16-juil-14	Incinerateur	Test #A1 SVOC (F) 14034.2	PCDD/DF
14034-4006	R14-034	16-juil-14	Incinerateur	Test #A1 SVOC (X) 14034.3	PCDD/DF
14034-4007	R14-034	16-juil-14	Incinerateur	Test #A1 SVOC (FCR) 14034.4	PCDD/DF
14034-4008	R14-034	16-juil-14	Incinerateur	Test #A1 SVOC (C1) 14034.5	PCDD/DF
14034-4009	R14-034	16-juil-14	Incinerateur	Test #A1 SVOC (GR) 14034.7	PCDD/DF
14034-4010	R14-034	16-juil-14	Incinerateur	Test #A2 SVOC (FH) 14034.10	PCDD/DF
14034-4011	R14-034	16-juil-14	Incinerateur	Test #A2 SVOC (F) 14034.11	PCDD/DF
14034-4012	R14-034	16-juil-14	Incinerateur	Test #A2 SVOC (X) 14034.12	PCDD/DF
14034-4013	R14-034	16-juil-14	Incinerateur	Test #A2 SVOC (FCR) 14034.13	PCDD/DF
14034-4014	R14-034	16-juil-14	Incinerateur	Test #A2 SVOC (C1) 14034.14	PCDD/DF
14034-4015	R14-034	16-juil-14	Incinerateur	Test #A2 SVOC (GR) 14034.16	PCDD/DF
14034-4016	R14-034	16-juil-14	Incinerateur	Test #A3 SVOC (FH) 14034.20	PCDD/DF
14034-4017	R14-034	16-juil-14	Incinerateur	Test #A3 SVOC (F) 14034.21	PCDD/DF
14034-4018	R14-034	16-juil-14	Incinerateur	Test #A3 SVOC (X) 14034.22	PCDD/DF
14034-4019	R14-034	16-juil-14	Incinerateur	Test #A3 SVOC (FCR) 14034.23	PCDD/DF

16 juillet 2014

	٠,
ľ	ō
ļ	Ŋ
1	9
١	_
ı	ż
•	_

Code échantillon	Projet	Date	Site de prélèvement	Test (description)	Paramètres
14034-4020	R14-034	16-juil-14	Incinerateur	Test #A3 SVOC (C1) 14034.24	PCDD/DF
14034-4021	R14-034	16-juil-14	Incinerateur	Test #A3 SVOC (GR) 14034.26	PCDD/DF
14034-4022	R14-034	16-juil-14	Incinerateur	Test #A3 SVOCBT (FH) 14034.30	PCDD/DF
14034-4023	R14-034	16-juil-14	Incinerateur	Test #A3 SVOCBT (F) 14034.31	PCDD/DF
14034-4024	R14-034	16-juil-14	Incinerateur	Test #A3 SVOCBT (X) 14034.32	PCDD/DF
14034-4025	R14-034	16-juil-14	Incinerateur	Test #A3 SVOCBT (FCR) 14034.33	PCDD/DF
14034-4026	R14-034	16-juil-14	Incinerateur	Test #A3 SVOCBT (C1) 14034.34	PCDD/DF
14034-4027	R14-034	16-juil-14	Incinerateur	Test #A3 SVOCBT (GR) 14034.35	PCDD/DF

16 juillet 2014

Émis par: Christian St-Pierre

Rapport des codes d'échantillons

Code échantillon	Projet	Dafe	Site de prélèvement	Test (description)	Paramètres
14034-4128	R14-034	28-juil-14	Incinérateur	Test #1 Filtre	Part., Métaux, Hg
14034-4129	R14-034	28-juil-14	Incinérateur	Test #1 Lav-sonde (ace)	Part., Métaux, Hg
14034-4130	R14-034	28-juil-14	Incinérateur	Test #1 Lav-sonde (HNO3 0.1N)	Métaux, Hg
14034-4131	R14-034	28-juil-14	Incinérateur	Test #1 Aliquot	HCl
14034-4132	R14-034	28-juil-14	Incinérateur	Test #1 Imp 1-2	Métaux, Hg
14034-4133	R14-034	28-juil-14	Incinérateur	Test #1 Imp 3-4	Métaux, Hg
14034-4134	R14-034	28-juil-14	Incinérateur	Test #1 Imp 5	Нg
14034-4135	R14-034	28-juil-14	Incinérateur	Test #1 Imp 6-7	Hg
14034-4136	R14-034	28-juil-14	Incinérateur	Test #2 Filtre	Part., Métaux, Hg
14034-4137	R14-034	28-juil-14	Incinérateur	Test #2 Lav-sonde (ace)	Part., Métaux, Hg
14034-4138	R14-034	28-juil-14	Incinérateur	Test #2 Lav-sonde (HNO3 0.1N)	Métaux, Hg
14034-4139	R14-034	28-juil-14	Incinérateur	Test #2 Aliquot	HCI
14034-4140	R14-034	28-juil-14	Incinérateur	Test #2 lmp 1-2	Métaux, Hg
14034-4141	R14-034	28-juil-14	Incinérateur	Test #2 lmp 3-4	Métaux, Hg
14034-4142	R14-034	28-juil-14	Incinérateur	Test #2 lmp 5	Hg
14034-4143	R14-034	28-juil-14	Incinérateur	Test #2 Imp 6-7	Hg

28 juillet 2014

Code échantillon	Projet	Date	Site de prélèvement	Test (description)	Paramètres
14034-4144	R14-034	28-juil-14	Incinérateur	Test #3 Filtre	Part., Métaux, Hg
14034-4145	R14-034	28-juil-14	Incinérateur	Test #3 Lav-sonde (ace)	Part., Métaux, Hg
14034-4146	R14-034	28-juil-14	Íncinérateur	Test #3 Lav-sonde (HNO3 0.1N)	Métaux, Hg
14034-4147	R14-034	28-juil-14	Incinérateur	Test #3 Aliquot	HCI
14034-4148	R14-034	28-juil-14	Incinérateur	Test #3 Imp 1-2	Métaux, Hg
14034-4149	R14-034	28-juil-14	Incinérateur	Test #3 Imp 3-4	Métaux, Hg
14034-4150	R14-034	28-juil-14	Incinérateur	Test #3 Imp 5	Hg
14034-4151	R14-034	28-juil-14	Incinérateur	Test #3 Imp 6-7	Hg
14034-4152	R14-034	28-juil-14	Incinérateur	Blanc filtre	Métaux, Hg
14034-4153	R14-034	28-juil-14	Incinérateur	Blanc HNO3 0.1N	Métaux, Hg
14034-4154	R14-034	28-juil-14	Incinérateur	Blanc eau	HCI
14034-4155	R14-034	28-juil-14	Incinérateur	Blanc H2O2/HNO3	Métaux, Hg
14034-4156	R14-034	28-juil-14	Incinérateur	Blanc KMnO4/H2SO4	Hg

Rapport des codes d'échantillons

Code échantillon Projet	Projet	Date	Site de prélèvement	Test (description)	Paramètres
14034-4185	R14-034	29-juil-14	Incinérateur	Test #1 Ballon G-11	×ON
14034-4186	R14-034	29-juil-14	Incinérateur	Test #1 Ballon G-12	NOx
14034-4187	R14-034	29-juil-14	Incinérateur	Test #2 Ballon G-11	NOx
14034-4188	R14-034	29-juil-14	Incinérateur	Test #2 Ballon G-12	NOx

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agailabs.com

CLIENT NAME: EXOVA

1390 RUE HOCQUART

ST-BRUNO DE DE MONTARVILLE, QC J3V6E1

(450) 441-5880

ATTENTION TO: CHRISTIAN ST-PIERRE

PROJECT: R14-034

AGAT WORK ORDER: 14M848982

ULTRA TRACE REVIEWED BY: Philippe Morneau, chimiste

DATE REPORTED: 2014-06-18

VERSION*: 1

PAGES (INCLUDING COVER): 7

Should you require any information regarding this analysis please contact your client services representative at (514) 337-1000

	NOTES
ļ	
	A1-52

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

THOTEC

勇勇有了 Laboratories

CLIENT NAME: EXOVA

SAMPLED BY:

Certificate of Analysis

AGAT WORK ORDER: 14M848982 PROJECT: R14-034

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)3337-1000 FAX (514)3333-3046 http://www.agattabs.com

ATTENTION TO: CHRISTIAN ST-PIERRE

SAMPLING SITE:

		DA TE DEDODTED: 3044.08-49	DATE REPORTED: 2014-00-10
Dioxins & Furans - Air (Sampling Train - NATO 1988)	Total Control of the	the state of the s	TE RECEIVED: 2014-06-06

DATE RECEIVED: 2014-06-06					DATE REPORTED: 2014-06-18
	S	SAMPLE DESCRIPTION	CRIPTION: PF	: PROOF R14-034	The state of the s
	·	SAMF	SAMPLE TYPE:	Liquid	
		DATES	DATE SAMPLED:	2014-06-06	
Parameter	rii R	6/8	RDL.	5450041	A THE PARTY OF THE
2.3.7.8-TCDD (ppq)	- Bd		0.5	<0.5	
1.2.3.7.8 PeCDD (ppq)	D.		0.5	<0.5	
1,2,3,4,7,8 HxCDD (ppq)	g.		8:0	8.0>	
1,2,3,6,7,8 HxCDD (ppq)	бd		0.8	×0.8	
1,2,3,7,8,9 HxCDD (ppq)	δd		0.8	8.0>	
1,2,3,4,6,7,8 HpCDD (ppq)	82		1 .5	<1.5	
OCDD (ppq)	Вd		-	₹	
2,3,7,8 TCDF (ppq)	Бd		0.4	<0.4	
1,2,3,7,8 PeCDF (ppq)	Бd		0.4	<0.4	
2,3,4,7,8-PeCDF (ppq)	бd		0.4	<0.4	
1,2,3,4,7,8 HxCDF (ppq)	Đđ.		0.5	<0,5	
1,2,3,6,7,8 HxCDF (ppq)	Бd		0.5	<0.5	
2,3,4,6,7,8-HxCDF (ppq)	Бd		9.0	~0.6	
1,2,3,7,8,9 HxCDF (ppq)	Бd		Υ-	₹	
1,2,3,4,6,7,8 HpCDF (ppq)	Đđ.		2.0	<0.7	
1,2,3,4,7,8,9 HpCDF (ppq)	Вd		τ-	₹	
OCDF (ppq)	Бd		1,5	<4,5	
Total Tetrachlorodibenzodioxins	Бd		9,0	<0.5	
Total Pentachlorodibenzodioxins	Бd		9.0	<0.5	
Total Hexachlorodibenzodioxins	Sid.		8.0	1.3	
Total Heptachlorodibenzodioxins	Бd		-	-	
Total PCDDs	8		1,5	ო	
Total Tetrachlorodibenzofurans	δd		0.4	4.0	
Total Pentachlorodibenzofurans	Вd		0.4	4.0>	
Total Hexachlorodibenzofurans	Đđ		-	₹	
Total Heptachlorodibenzofurans	6		7.5	<1,5	
Total PCDFs	Бd		1,5	<u>۸</u> ئة	
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ			0	A CANADA AND AND AND AND AND AND AND AND AN

Certified By:

AGAT Laboratories' procedure for signatures and signatures adheres strictly to the requirements of accreditation ISO 17025.2005 as required by CALA, SOC and MDDEFP where applicable. All electronic signatures on AGAT certificates are password protected and all signatures and are approved by CALA, SOC and MDDEFP.

AGAT Laboratories

Certificate of Analysis

AGAT WORK ORDER: 14M848982

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

CLIENT NAME: EXOVA

SAMPLED BY:

PROJECT: R14-034

ATTENTION TO: CHRISTIAN ST-PIERRE SAMPLING SITE:

			Dioxins		& Furans - Air (Sampling Train - NATO 1988)	
DATE RECEIVED: 2014-06-06				A A A A A A A A A A A A A A A A A A A		DATE REPORTED: 2014-06-18
	ZS.	MPLE DES	CRIPTION: P	SAMPLE DESCRIPTION: PROOF R14-034		
		SAM	SAMPLE TYPE:	Liquid		
***************************************		DATE	DATE SAMPLED:	2014-06-06		
Parameter	Unit	G/S	RDL	5450041		
1,2,3,7,8-Penta CDD (TEF 0.5)	TEQ			0		
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ			0		
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ			0		
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ			0		
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ			O		
Octa CDD (TEF 0.001)	TEQ			0		
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ			O		
1,2,3,7,8-Penta CDF (TEF 0.05)	TEQ			0		
2,3,4,7,8-Penta CDF (TEF 0.5)	TEQ			0		
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ			0		
1,2,3,6,7,8-Hexa CDF (TEF 0,1)	TEQ			0		
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ			0		
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ			0		
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ			0		
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ			0		
Octa CDF (TEF 0.001)	TEQ			0		
Total PCDDs & PCDFs (TEQ)				0		

Certified By:

AGAT Laboratories' procedure for signatures and signatories adheres strictly to the requirements of accreditation ISO 17025.2005 as required by CALA, SCC and MDDEFP where applicable. All electronic signatures on AGAT certificates are password protected and all signatures and are approved by CALA, SCC and MDDEFP.

引写用 Laboratories

CLIENT NAME: EXOVA

SAMPLED BY:

Certificate of Analysis

AGAT WORK ORDER: 14M848982 PROJECT: R14-034

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (51)337-1000 FAX (514)333-3046 http://www.agatlabs.com ATTENTION TO: CHRISTIAN ST-PIERRE

SAMPLING SITE:

		Dioxins	ns & Furans - Air (Sampling Train - NATO 1988)	1.
DATE RECEIVED: 2014-06-06				DATE REPORTED: 2014-06-18
	6	SAMPLE DESCRIPTION: PF	PROOF R14-034	
		SAMPLE TYPE:	Liquid	
		DATE SAMPLED:	2014-06-06	
Surrogate	Unit	Acceptable Limits	5450041	
13C-2378-TCDF	%	30-140	93	
13C-12378-PeCDF	%	30-140	66	
13C-23478-PeCDF	%	30-140	94	
13C-123478-HxCDF	%	30-140	80	
13C-123678-HxCDF	%	30-140	73	
13C-234678-HxCDF	%	30-140	74	
13C-123789-HxCDF	%	30-140	59	
13C-1234678-HpCDF	%	30-140	100	
13C-1234789-HpCDF	%	30-140	95	
13C-2378-TCDD	%	30-140	75	
13C-12378-PeCDD	%	30-140	98	
13C-123478-HxCDD	%	30-140	81	
13C-123678-HxCDD	%	30-140	74	
13C-1234678-HxCDD	%	30-140	87	
13C-OCDD	%	30-140	63	

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments: 5450041

Le lab blank was subtracted from the sample results. The results in Total pg correspond to the composite of all parts of the sampling train.

Page 4 of 7

Certified Bv.:

AGAT Laboratories' procedure for signatures and signatories adheres strictly to the requirements of accreditation ISO 17025, 2005 as required by CALA, SCC and MDDEFP where applicable. All electronic signatures on AGAT certificates are password protected and all signatures on AGAT certificates are password protected and all signatures on AGAT certificates are password protected and all signatures on AGAT certificates are password protected and all signatures on AGAT certificates are password protected and all signatures and are approved by CALA, SCC and MDDEFP.

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: EXOVA PROJECT: R14-034 SAMPLED BY: AGAT WORK ORDER: 14M848982 ATTENTION TO: CHRISTIAN ST-PIERRE SAMPLING SITE:

			UI	tra T	race	Anal	ysis								
RPT Date: 2014-06-18			С	UPLICATI	E	REFE	RENCE	MATER	IAL	METH	OD BL	NK	MATE	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method	Measure		ptable nits	Recovery	13-	ptable nits	Recovery		ptable nits
(1100 1100 1200		ld		·		Blank	d Value	Lower	Upper	-	Lower	Upper		Lower	Пррег
Dioxins & Furans - Air (Sampli	ng Train - NA	TO 1988)													
2,3,7,8-TCDD (ppq)	1	NA	NΑ	NA	0.0%	< 0.3	NΑ	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,7,8 PeCDD (ppq)	1	NA	NA	NA	0.0%	< 0.4	NA	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,4,7,8 HxCDD (ppq)	1	NA	NA	NA	0.0%	< 1	NA	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,6,7,8 HxCDD (ppq)	1	NΑ	NA	NA	0.0%	< 0.7	NA	70%	130%	NΑ	70%	130%	NA	70%	130%
1,2,3,7,8,9 HxCDD (ppq)	1	NA	NA	NA	0.0%	< 1	NA	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,4,6,7,8 HpCDD (ppq)	1	NA	NA	NA	0.0%	< 1.5	NA	70%	130%	NA	70%	130%	NA	70%	130%
OCDD (ppq)	1	NA	NA	NA	0.0%	5.7	NA	70%	130%	NA	70%	130%	NA	70%	130%
2,3,7,8 TCDF (ppq)	1	NA	NA	NA	0.0%	< 0.2	NA	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,7,8 PeCDF (ppq)	1	NA	NA	NA	0.0%	< 0.3	NA	70%	130%	NA	70%	130%	NA	70%	130%
2,3,4,7,8-PeCDF (ppq)	1	NA	NA	NA	0.0%	< 0.3	NA	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,4,7,8 HxCDF (ppq)	1	NA	NA	NΑ	0.0%	< 0.3	NΑ	70%	130%	NA	70%	130%	NΑ	70%	130%
1,2,3,6,7,8 HxCDF (ppq)	1	NA	NA	NA	0.0%	< 0.3	NA	70%	130%	NA	70%	130%	NA	70%	130%
2,3,4,6,7,8-HxCDF (ppq)	1	NA	NA	NA	0.0%	< 0.8	NA	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,7,8,9 HxCDF (ppq)	1	NA	NA	NΑ	0.0%	< 1	NA	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,4,6,7,8 HpCDF (ppq)	1	NA	NA	NA	0.0%	< 0.4	NA	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,4,7,8,9 HpCDF (ppq)	1	NA	NA	NA	0.0%	< 0.5	ΝA	70%	130%	NA	70%	130%	ΝA	70%	130%
OCDF (ppq)	1	NA	NA	NA	0.0%	< 1.5	NA	70%	130%	NA	70%	130%	NA	70%	130%

Certified By:

A1-56

AGAT Laboratories' procedure for signatures and signatories adheres strictly to the requirements of accreditation ISO 17025:2005 as required by CALA, SCC and MDDEFP where applicable. All electronic signatures on AGAT certificates are password protected and all signatories meet their regional and scope of accreditation requirements and are approved by CALA, SCC and MDDEFP.

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

Method Summary

CLIENT NAME: EXOVA PROJECT: R14-034 AGAT WORK ORDER: 14M848982 ATTENTION TO: CHRISTIAN ST-PIERRE

SAMPLED BY:				SAMPLING SITE:	,
PARAMETER	DATE PREPARED	DATE ANALYZED	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ultra Trace Analysis					
2,3,7,8-TCDD (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,7,8 PeCDD (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
1,2,3,4,7,8 HxCDD (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
1,2,3,6,7,8 HxCDD (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
1,2,3,7,8,9 HxCDD (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
1,2,3,4,6,7,8 HpCDD (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
OCDD (ppg)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
2,3,7,8 TCDF (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
1,2,3,7,8 PeCDF (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
2,3,4,7,8-PeCDF (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
1,2,3,4,7,8 HxCDF (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
1,2,3,6,7,8 HxCDF (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
2,3,4,6,7,8-HxCDF (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
1,2,3,7,8,9 HxCDF (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
1,2,3,4,6,7,8 HpCDF (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
1,2,3,4,7,8,9 HpCDF (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
OCDF (ppq)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
Total Tetrachlorodibenzodioxins	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
Total Pentachlorodibenzodioxins	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
Total Hexachlorodibenzodioxins	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
Total Heptachlorodibenzodioxins	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
Total PCDDs	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
Total Tetrachlorodibenzofurans	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
Total Pentachlorodibenzofurans	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
Total Hexachlorodibenzofurans	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
Total Heptachlorodibenzofurans	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
Total PCDFs	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
2,3,7,8-Tetra CDD (TEF 1.0)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,7,8-Penta CDD (TEF 0.5)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
Octa CDD (TEF 0.001)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
, ,	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
2,3,7,8-Tetra CDF (TEF 0.1)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,7,8-Penta CDF (TEF 0.05) 2,3,4,7,8-Penta CDF (TEF 0.5)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	2014-06-13	2014-06-18	HR_151-5400	EPA 1613/EPA Method 23	
1,2,3,4,7,6-Hexa CDF (TEF 0.1)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
2,3,4,6,7,8-Hexa CDF (TEF 0.1)		2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	2014-06-13		HR-151-5400	EPA 1613/EPA Method 23	
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	2014-06-13	2014-06-18		EPA 1613/EPA Method 23	
Octa CDF (TEF 0.001)	2014-06-13	2014-06-18 2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
Total PCDDs & PCDFs (TEQ)	2014-06-13		HR-151-5400	EPA 1613/EPA Method 23	
13C-2378-TCDF	2014-06-13	2014-06-18	HR-151-5400		
13C-12378-PeCDF	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
13C-23478-PeCDF	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	
13C-123478-HxCDF	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	D LIKING

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agailabs.com

Method Summary

CLIENT NAME: EXOVA PROJECT: R14-034 SAMPLED BY: AGAT WORK ORDER: 14M848982 ATTENTION TO: CHRISTIAN ST-PIERRE

SAMPLING SITE:

21 MM ARE WI.				*	
PARAMETER	DATE PREPARED	DATE ANALYZED	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
13C-123678-HxCDF	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-234678-HxCDF	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-123789-HxCDF	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-1234678-HpCDF	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-1234789-HpCDF	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-2378-TCDD	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-12378-PeCDD	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-123478-HxCDD	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-123678-HxCDD	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-1234678-HxCDD	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-OCDD	2014-06-13	2014-06-18	HR-151-5400	EPA 1613/EPA Method 23	HRMS

1:+1 (450) 441-5880 F:+1 (450) 441-4316 E:sales@exova.com W:www.exova.com

Certificat d'analyses

Agnico-Eagle Mines Ltd, Meadowbank Division

Baker Lake, Nunavut Stack sampling Project R14-034

Samples		Laboratory Number	Particle Matters (g)
Detection l	imit		0.00004
Incinerator			
Test #1	Filter	14034-4128	0.07067
	Front wash	14034-4129	0.02686
Total			0.09753
Test #2	Filter	14034-4136	0.08538
	Front wash	14034-4137	0.03818
Total			0.12356
Test #3	Filter	14034-4144	0.05579

Note: This report should not be reproduced, totally or partially, without written laboratory authorization.

Reception date : July 28th, 2014

Date of analysis : July 29th, 2014

Front wash

Front wash blank (has not been subtracted from results)

Total

Report date: July 30th, 2014 Reference method: A-01

File number: R14034-01 version 1

Christien St. Pierre 2003-107

0.03158

0.08737

0.00205

Christian St-Pierre, B. Sc. Chemist

Page 1 de 1

14034-4145

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E:ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 1:+1 (514) 697-3273 F:+1 (514) 697-2090 E: ventes@exova.com W: www.exova.com

Certificate of Analysis

	-	est number:	14-611972 2014-07-29	1,4,10,100,11
		received. Certificate Issued:	2014-07-29	
	-	cate Version:	1	
	4 4	Official Certificate of Analysis	, :	
		Preliminary Certificate of Ana		
		C	lient	
Exova				
1390 rue Hocquart St-Bruno, Québec, Canad J3V 6E1 Telephone: (450) 441-5 Fax: (450) 441-4	880			
P.O. Number		Your project ID).	Project Manager
NA		R14-034		M. Christian St-Pierre
		Com	ıments	
This certificate replaces a	nd invalidate	is the preliminary version of the cert	ificate (COA 609943).	
soyez avisé que tout usag	able .ITÉ : Ce do :e, reproduc	cument est à l'usage exclusif du rec tion, ou distribution de ce document	est strictement interdit. Si vou	entiel. Si vous n'êtes pas le destinataire, is avez reçu ce document par erreur, veuillez ddressee only and is considered confidential.

A1-60

Certificate of Analysis No. 610223 - Revision 1 - Page 1 of 21

Terms and conditions: http://www.exova.ca/terms&conditions

Sans Frais: +1 (866) 365-2310 1:+1 (418) 878-4927 F:+1 (418) 878-7185 E:ventes@exova.com W:www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 I : +1 (514) 697-3273 F; +1 (514) 697-2090 E: ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova	1.00.00		Request Nu	mber:	14-611972
P.O. Number	Your Project	ID.		Project Man	ager
NA	R14-034			M. Christian S	t-Pierre
			Sam	ple(s)	
	Lab. No.	2635988	2635994	2636004	2636008
	Your Reference	14034-4134 (15mL)+4135 (263mL)	14034-4142 (20mL)+4143 (281mL)	14034-4150 (12mL)+4151 (304mL)	14034-4156 (100mL)
	Matrix	Air	Air	Air	Air
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank
	Date sampled	2014-07-11	2014-07-12	2014-07-13	2014-07-13
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Parameter(s) Method Reference					
Mercury (subcontract)	Preparation	٠	-	_	-
(Analysis done by sub-contracting)	Analysis	-	-	-	-
	Sequential No.	NA	NA	NA	NA -
Mercury		<annexe></annexe>	<annexe></annexe>	<annexe></annexe>	<annexe></annexe>

Terms and conditions: http://www.exova.ca/terms&conditions

Sans Frais: +1 (866) 365-2310 1: +1 (418) 878-4927 F: +1 (418) 878-7185 E: ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W:www.exova.com

Certificate of Analysis

Client: Exova			Request Nu	mber:	14-611972
P.O. Number	Your Project	ID.		Project Man	ager
NA	R14-034			M. Christian S	t-Pierre
			Samı	ole(s)	
	Lab. No.	2635980	2635991	2635996	2636006
	Your Reference	14034-4131 (278mL)	14034-4139 (321mL)	14034-4147 (326mL)	14034-4154 (128mL)
		#1	# 2	#3	Blanc
	Matrix	Air	Air	Air	Air
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank
	Date sampled	2014-07-11	2014-07-12	2014-07-13	2014-07-13
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Parameter(s) Method Reference					
Chlorides (IC)	Preparation	2014-07-30	2014-07-30	2014-07-30	2014-07-30
Anions by ion chromatography. (Non Accredited)	Analysis	2014-07-30	2014-07-30	2014-07-30	2014-07-30
E-A-EN-ÉN-CHI-PC-MD028 (ŘEF MA300-IONS 1.1 CEAEQ)	Sequential No.	471987	471987	471987	471987
Chloride	μg	79800	138000	96200	< 1280

Terms and conditions: http://www.exova.ca/terms&conditions

Sans Frais: +1 (866) 365-2310 1: +1 (418) 878-4927 F: +1 (418) 878-7185 E: venfes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 F: +1 (514) 697-3273 F: +1 (514) 697-2090 E: ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Nu	mber:	14-611972				
P.O. Number	Your Project	oject ID. Project			nager				
NA NA	R14-034			M. Christian S	t-Pierre				
L		Sample(s)							
	Lab. No.	2635985	2635986	2635992	2635993				
	Your Reference	14034-4132 (287mL)	14034-4133 (246mL)	14034-4140 (332mL)	14034-4141 (251mL)				
		ät			# 2.				
	Matrix	Air	Air	Air	Air				
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno				
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank				
		Imp 1-2	Imp 3.4	Impi-2	Imp 3-2				
	Date sampled	2014-07-11	2014-07-11	2014-07-12	2014-07-12				
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Parameter(s) Melhod Reference									
Aluminum (Al)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,C8	•	471911	471911	471911	471911				
Aluminum	μg	< 29	26	< 33	< 25				
Antimony (Sb)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CE	(AEQ) Sequential No.	471911	471911	471911	471911				
Antimony	μg	< 3	< 2	< 3	< 3				
Arsenic (As)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
E-A-EN-EN-CHI-PC-MD017 (REF:MA:200-Mét1.2,CE	Sequential No.	471911	471911	471911	471911				
Arsenic	μg	< 3	< 2	< 3	< 3				
Baryum (Ba)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited) E-A-EN-EN-CH}-PC-MD017 (REF:MA.200-Mét1.2,CB	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
•	Sequential (40.	471911	471911	471911	471911				
3arium	μg	< 29 2014-07-29	< 25 2014-07-29	< 33 2014-07-29	< 25 2014-07-29				
Beryllium (Be)	Preparation	2014-07-29		2014-07-29	2014-07-29				
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,C8	Analysis EAEQ) Sequential No.	471911	2014-07-29 471911	471911	471911				
Beryllium	Ocquentia No.	< 3	< 2	< 3	< 3				
Bismuth (Bi)	μg Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
, ,	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CE		471911	471911	471911	471911				
Bismuth	μg	< 3	< 2	< 3	< 3				
Boron (B)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CE	EAEQ) Sequential No.	471911	471911	471911	471911				
Boron	μg	< 57	< 49	< 66	< 50				

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 4 of 21

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E:ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

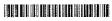
Certificate of Analysis

Client: Exova			Request Nu	ımper:	14-611972	
P.O. Number	Your Project	Your Project ID.		Project Mar	- Vlanager	
NA NA	R14-034			M. Christian S	t-Pierre	
L. Comments of the Comments of			Sam	ple(s)		
	Lab. No.	2635985	2635986	2635992	2635993	
	Your Reference	14034-4132 (287mL)	14034-4133 (246mL)	14034-4140 (332mL)	14034-4141 (251mL)	
		:47	* Attenues	性	2	
	Matrix	Air	Air	Air	Air	
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank	
	•	Imp 1-2	Imp 3-4	Imp 1-2	Imp 3.4	
	Date sampled	2014-07-11	2014-07-11	2014-07-12	2014-07-12	
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Parameter(s) Melhod Reference						
Cadmium (Cd)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHI-PC-MD017 (REF;MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	471911	
Cadmium	þд	< 1.4	< 1.2	< 1.7	< 1.3	
Calcium (Ca)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	471911	
Calcium	ha	78	180	< 66	175	
Chromium (Cr)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF;MA,200-Mét1,2,CEAEQ)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Chromium	Sequential No.	471911	471911 < 2	471911	471911	
	μg Preparation	< 3 2014-07-29	2014-07-29	< 3 2014-07-29	< 3 2014-07-29	
Cobalt (Co)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Seguential No.	471911	471911	471911	471911	
Cobalt	рд	< 3	< 2	< 3	< 3	
Copper (Cu)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Met1.2,CEAEQ)	Sequential No.	471911	471911	471911	471911	
Copper	μg	< 3	< 2	< 3	< 3	
Iron (Fe)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	471911	
Iron	μg	< 144	< 123	< 166	< 126	
Lead (Pb)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Lead	Sequential No. µg	471911 < 3	471911 < 2	471911 < 3	471911 < 3	

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 5 of 21

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E:ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E: ventes@exova.com W: www.exova.com



Certificate of Analysis

Client: Exova			Request Nu	mber:	14-611972				
P.O. Number	Your Projec	Your Project ID.		Project Mar	lanager				
NA	R14-034			M. Christian S	t-Pierre				
		Sample(s)							
	Lab. No.	2635985	2635986	2635992	2635993				
	Your Reference	14034-4132 (287mL)	14034-4133 (246mL)	14034-4140 (332mL)	14034-4141 (251mL)				
		#	<u>t. 1</u>	*	1 2				
	Matrix	Air	Air	Air	Air				
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno				
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank				
		Imp 1-2	Imp3-4	Imp1-2	Imp 3-				
	Date sampled	2014-07-11	2014-07-11	2014-07-12	2014-07-12				
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Parameter(s) Method Reference									
Lithium (Li)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAI	EQ) Sequential No.	471911	471911	471911	471911				
ithium	μg	< 3	< 2	< 3	< 3				
Magnesium (Mg)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAI	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
·	ocquerniai i io.	471911 6	471911 39	471911 5	471911 34				
Magnesium	μg Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Manganese (Mn)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEA	-	471911	471911	471911	471911				
Manganese	рg	< 3	211	< 3	6				
Mercury (Hg)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
E-A-EN-ÉN-CHÌ-PC-MD017 (RÉF:MA.200-Mét1.2,CEA	EQ) Sequential No.	471911	471911	471911	471911				
Mercury	þg	< 0.3	< 0.2	< 0.3	< 0.3				
Molybdenum (Mo)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEA	Analysis EQ) Sequential No.	2014-07-29 471911	2014-07-29 471911	2014-07-29 471911	2014-07-29 471911				
Molybdenum	μg	< 3	< 2	< 3	< 3				
Nickel (Ni)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited) E-A-En-En-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEA	Analysis (EQ) Sequential No.	2014-07-29 471911	2014-07-29 471911	2014-07-29 471911	2014-07-29 471911				
Nickel	μд	< 3	< 2	< 3	< 3				
Phosphorus (P)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29				
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEA	(EQ) Sequential No.	471911	471911	471911	471911				
Phosphorus	μg	< 287	< 246	< 332	< 251				

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 6 of 21

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Nu	mber:	14-611972
P.O. Number	Your Project	ID.		Project Man	ager
NA	R14-034				
			Sam	ple(s)	
	Lab. No.	2635985	2635986	2635992	2635993
	Your Reference	14034-4132 (287mL)	14034-4133 (246mL)	14034-4140 (332mL)	14034-4141 (251mL)
		<u></u>	. 1		本こ
	Matrix	Air	Air	Air	Air
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank
		Imp 1-2	Imp 3-4	Imp 1-2	Imp 3.4
	Date sampled	2014-07-11	2014-07-11	2014-07-12	2014-07-12
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Parameter(s) Method Reference					
Potassium (K)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)) Sequential No.	471911	471911	471911	471911
Potassium	μg	< 1440	< 1230	< 1660	< 1260
Selenium (Se)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
E-A-EN-EN-CHI-PC-MD017 (REF:MA:200-Mét1.2,CEAEQ) Sequential No.	471911	471911	471911	471911
Selenium	hã	< 3	< 2	< 3	< 3
Silicon extractable (Si)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited)	. Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
E-A-EN-EN-CHI-PC-MD017 (REF:MA:200-Mét1:2,CEAEQ	ocquentian 140.	471911	471911	471911	471911
Silicium	hâ	< 144	< 123	< 166	< 126
Silver (Ag)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
	Ocquemai 110.	471911	471911	471911	471911
Silver	μg	< 1.4	< 1.2	< 1.7	< 1.3
Sodium (Na)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited) E-A-EN-EN-CHt-PC-MD017 (REF:MA.200-Mét1.2,CEAEC	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
•	- Ocquentian No.	471911 < 1440	471911 < 1230	471911 < 1660	471911 < 1260
Sodium	μg Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Strontium (Sr)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)		2014-07-29 471911	2014-07-29 471911	471911	471911
Strontium	pg .	< 3	< 2	< 3	< 3
Tellurium (Te)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
• •	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA,200-Mét1.2,CEAEC		471911	471911	471911	471911
Tellurium	μg	< 3	< 2	< 3	< 3

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 7 of 21

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Ciaire Québec Canada H9R 1E6 I:+1 (514) 697-3273 F:+1 (514) 697-2090 E: ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Nu	mber:	14-611972
P.O. Number	Your Project	ID.		Project Man	ager
NA	R14-034			M. Christian S	t-Pierre
1			Sam	ple(s)	
	Lab. No.	2635985	2635986	2635992	2635993
	Your Reference	14034-4132 (287mL)	14034-4133 (246mL)	14034-4140 (332mL)	14034-4141 (251mL)
		<u>-:}</u> 4	1	4	: 2
	Matrix	Air	Air	Аiг	Air
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank
		Imp 172	Imp 3-4	Impi-2	Imp 3-1
	Date sampled	2014-07-11	2014-07-11	2014-07-12	2014-07-12
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Parameter(s) Mathod Reference					
Fhallium (TI)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CE	,	471911	471911	471911	471911
Thallium	μg	< 3	< 2	< 3	< 3
Tin (Sn)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Wetals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Met1.2,CE	(AEQ) Sequential No.	471911	471911	471911	471911
Γin	μg	< 3	21	< 3	24
Fitanium (Ti)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
E-A-EN-ÉN-CHÌ-PC-MD017 (REF:MA.200-Mét1.2,CE	(AEQ) Sequential No.	471911	471911	471911	471911
Titanium	рц	< 3	< 2	< 3	< 3
Uranium (U)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
E-A-EN-ÉN-CHÌ-PC-MD017 (REF:MA.200-Met1.2,CE	(AEQ) Sequential No.	471911	471911	471911	471911
Uranium	μg	< 3	< 2	< 3	< 3
Vanadium (V)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
E-A-EN-ÉN-CHÌ-PC-MD017 (REF:MA,200-Mét1.2,CE	EAEQ) Sequential No.	471911	471911	471911	471911
Vanadium	µg	< 3	< 2	< 3	< 3
Zinc (Zn)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29
E-A-EN-ÉN-CHÍ-PC-MD017 (REF:MA.200-Mét1.2,CE	EAEQ) Sequential No.	471911	471911	471911	471911
Zinc	hđ	< 20	< 17	< 23	< 18

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 8 of 21

Sans Frais: +1 (866) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 E; venfes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 I:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W:www.exova.com

Certificate of Analysis

Client: Exova			Request Nu	mber:	14-611972	
P.O. Number	Your Project	t ID.		Project Manager		
NA	R14-034			M. Christian	St-Pierre	
			Sam	ple(s)		
	Lab. No.	2635997	2635998	2636007		
	Your Reference	14034-4148 (336mL)	14034-4149 (260mL)	14034-4155 (100mL)		
		#	3	Blan	K	
	Matrix	Air	Air	Air		
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Brun	0	
	Site sampled	Meadowbank	Meadowbank	Meadowbank	:	
		Imp 1-2	Imp 3-4	The second secon		
	Date sampled	2014-07-13	2014-07-13	2014-07-13		
	Date received	2014-07-29	2014-07-29	2014-07-29		
Parameter(s) Method Reference						
Aluminum (Al)	Preparation	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29		
-A-EN-ÉN-CHÌ-PC-MD017 (REF:MA.200-Mèt1.2,CEAEQ)	Sequential No.	471911	471911	471911		
Aluminum	hā	< 34	< 26	< 10		
Antimony (Sb)	Preparation	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	1	
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Ooquomia. (10)	471911	471911	471911		
Antimony	hâ	< 3	< 3	< 1		
Arsenic (As)	Preparation	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis	2014-07-29	2014-07-29	2014-07-29 471911	,	
	Ooquomam	471911 < 3	471911 < 3	47 1911 < 1		
Arsenic	μg Preparation	2014-07-29	2014-07-29	2014-07-29		
Baryum (Ba)	Analysis	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	•	471911	471911	471911		
Barium	μg	< 34	< 26	< 10		
Beryllium (Be)	Preparation	2014-07-29	2014-07-29	2014-07-29)	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29)	
E-A-EN-ÉN-CHÌ-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911		
Beryllium	þд	< 3	< 3	< 1		
Bismuth (Bi)	Preparation	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis Sequential No.	2014-07-29 471911	2014-07-29 471911	2014-07-29 471911	€	
Bismuth	μg	< 3	< 3	< 1		
Boron (B)	Preparation	2014-07-29	2014-07-29	2014-07-2	9	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis) Sequential No.	2014-07-29 471911	2014-07-29 471911	2014-07-29 471911	9	
Boron	, оедавлал но. µg	< 67	< 52	< 20		

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 9 of 21

Sans Frais: +1 (866) 365-2310 T; +1 (418) 878-4927 F: +1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Nu	mber:	14-611972
P.O. Number	Your Projec	t ID.		Project Ma	anager
NA	R14-034			M. Christian	St-Pierre
			Sam	ple(s)	
	Lab. No.	2635997	2635998	2636007	
	Your	14034-4148	14034-4149	, 14034-4155	
	Reference	(336mL)	(260mL)	(100mL)	
		#	3	Blan	K
	Matrix	Air	Air	Air	
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Brund	
	Site sampled	Meadowbank	Meadowbank	Meadowbank	
		Imp 1-2	Imp 3-4		
	Date sampled	2014-07-13	2014-07-13	2014-07-13	
	Date received	2014-07-29	2014-07-29	2014-07-29	
Parameter(s) Aethod Reference					
Cadmium (Cd)	Preparation	2014-07-29	2014-07-29	2014-07-29	
fetals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ	Sequential No.	471911	471911	471911	
Cadmium	hд	< 1.7	< 1.3	< 0.5	
Calcium (Ca)	Preparation	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-OHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEC	Sequential No.	471911	471911	471911	
Calcium	μg	< 67	145	< 20	
Chromium (Cr)	Preparation	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEC	Sequential No.	471911	471911	471911	
Chromium	μg	< 3	< 3	< 1	
Cobalt (Co)	Preparation	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEG	Analysis	2014-07-29	2014-07-29	2014-07-29	
•	Dequential 110.	471911	471911 < 3	471911 < 1	
Cobalt	μg Preparation	< 3 2014-07-29	2014-07-29	2014-07-29	
Copper (Cu)	Analysis	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEC		471911	471911	471911	
Copper	μg	< 3	< 3	< 1	
ron (Fe)	Preparation	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
vietals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEC	-	471911	471911	471911	
Iron	μg	< 168	< 130	< 50	
Lead (Pb)	Preparation	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CH3-PC-MD017 (REF:MA.200-Mét1.2,CEAEC	Sequential No.	471911	471911	471911	
Lead	μg	< 3	< 3	< 1	

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 10 of 21

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova	Request Number: 14-6119				
P.O. Number	Your Project	ID.		Project Ma	nager
NA	R14-034			M. Christian	St-Pierre
The state of the s			Sam	ple(s)	
	Lab. No.	2635997	2635998	2636007	
	Your	14034-4148	14034-4149	14034-4155	
	Reference	(336mL)	(260mL)	(100mL)	
		本	3	Blank	
	Matrix	Air	Air	Air	
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	
	Site sampled	Meadowbank	Meadowbank	Meadowbank	
	ä	Emp 1-2	Imp 3-4		
	Date sampled	2014-07-13	2014-07-13	2014-07-13	
	Date received	2014-07-29	2014-07-29	2014-07-29	
Parameter(s) fethod teference					
.ithium (Li)	Preparation	2014-07-29	2014-07-29	2014-07-29	
letals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
ithium	μg	< 3	< 3	< 1	
//agnesium (Mg)	Preparation	2014-07-29	2014-07-29	2014-07-29	
letals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
Magnesium	μg	6	33	< 1	
Manganese (Mn)	Preparation	2014-07-29	2014-07-29	2014-07-29	
letals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
langanese	μg	97	5	< 1	
lercury (Hg)	Preparation	2014-07-29	2014-07-29	2014-07-29	
letats by ICP (not accredited) -A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis	2014-07-29	2014-07-29	2014-07-29	
·	Sequential No.	471911	471911	471911	
Aercury	µg Proporation	< 0.3 2014-07-29	< 0.3 2014-07-29	< 0.1 2014-07-29	
Molybdenum (Mo)	Preparation Analysis		2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis Sequential No.	2014-07-29 471911	2014-07-29 471911	2014-07-29 471911	
Molybdenum	μg	47 1911 < 3	4/1911 < 3	471911 < 1	
lickel (Ni)	Preparation	2014-07-29	2014-07-29	2014-07-29	
tetals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
lickel	μg	< 3	< 3	< 1	
Phosphorus (P)	Preparation	2014-07-29	2014-07-29	2014-07-29	
letals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-ÉN-CHÌ-PC-MD017 (RÉF:MA.200-Mél1.2,CEAEQ)	Sequential No.	471911	471911	471911	
Phosphorus	μg	< 336	< 260	< 100	

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 11 of 21

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E:ventes@exova.com W:www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 156 1:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Nu	mber:	14-611972
P.O. Number	Your Projec	t ID.		Project Ma	nager
NA	R14-034			M. Christian S	St-Pierre
			Sam	ple(s)	
	Lab. No.	2635997	2635998	2636007	
	Your	14034-4148	14034-4149	14034-4155	
	Reference	(336mL)	(260mL)	(100mL)	
		సిటీ	£.3	Blank	
	Matrix	Air	Air	Air	
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	
	Site sampled	Meadowbank	Meadowbank	Meadowbank	
		Imp 1-2	Imp 3-4		
	Date sampled	2014-07-13	2014-07-13	2014-07-13	
	Date received	2014-07-29	2014-07-29	2014-07-29	
Parameter(s) letitod leference					
Potassium (K)	Preparation	2014-07-29	2014-07-29	2014-07-29	A HARRIOT AND ENGINEERS
, ,	Analysis	2014-07-29	2014-07-29	2014-07-29	
etals by ICP (not accredited) -A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
otassium	µg	< 1680	< 1300	< 500	
Selenium (Se)	Preparation	2014-07-29	2014-07-29	2014-07-29	
etals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
elenium	µg	< 3	< 3	< 1	
ilicon extractable (Si)	Preparation	2014-07-29	2014-07-29	2014-07-29	
letals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
illicium	μg	< 168	< 130	< 50	
ilver (Ag)	Preparation	2014-07-29	2014-07-29	2014-07-29	
tetals by ICP (not accredited) A-EN-EN-CHI-PC-MD017 (REF:MA:200-Mét1.2,CEAEQ)	Analysis	2014-07-29	2014-07-29	2014-07-29	
·	Sequential No.	471911	471911	471911	
ilver	μg Preparation	< 1.7 2014-07-29	< 1.3 2014-07-29	< 0.5 2014-07-29	
Sodium (Na)	Analysis	2014-07-29	2014-07-29	2014-07-29	
fetals by ICP (not accredited) A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
Sodium	hâ	< 1680	< 1300	< 500	
Strontium (Sr)	Preparation	2014-07-29	2014-07-29	2014-07-29	
letals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)		471911	471911	471911	
Strontium	μg	< 3	< 3	< 1	
Fellurium (Te)	Preparation	2014-07-29	2014-07-29	2014-07-29	
tetals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-ÈN-CHÌ-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Jequential No.	471911	471911	471911	
Tellurium	μg	< 3	< 3	< 1	

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 12 of 21

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 I:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Nu	mber:	14-611972
P.O. Number	Your Project	ID.		Project Mar	nager
NA NA	R14-034			M. Christian S	t-Pierre
			Sam	ple(s)	
	Lab. No.	2635997	2635998	2636007	
	Your Reference	14034-4148 (336mL)	14034-4149 (260mL)	14034-4155 (100mL)	
		# 2		Blank	
	Matrix	Air	Air	Air	
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	
	Site sampled	Meadowbank	Meadowbank	Meadowbank	
		Imp 1-2	Imp 3-4		
	Date sampled	2014-07-13	2014-07-13	2014-07-13	
	Date received	2014-07-29	2014-07-29	2014-07-29	
Parameter(s) Jelhod Reference					
Thallium (TI)	Preparation	2014-07-29	2014-07-29	2014-07-29	
letals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
Thallium Thallium	hâ	< 3	< 3	< 1	
Fin (Sn)	Preparation	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-ÉN-CHÍ-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
in	hâ	< 3	22	3	
նtanium (Ti)	Preparation	2014-07-29	2014-07-29	2014-07-29	
fetals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
-A-EN-ÉN-CHÍ-PC-MD017 (REF:MA,200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
litanium	hâ	< 3	< 3	< 1	
Jranium (U)	Preparation	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471911	471911	471911	
Jranium	μg	< 3	< 3	< 1	
/anadium (V)	Preparation	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis Sequential No.	2014-07-29 471911	2014-07-29 471911	2014-07-29 471911	
Vanadium	hа	< 3	< 3	< 1	
Zinc (Zn)	Preparation	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis Seguential No.	2014-07-29 471911	2014-07-29 471911	2014-07-29 471911	
·	µg	< 24	< 18	< 7	

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 13 of 21

Sans Frais: +1 (866) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 E: venfes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E: ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Number: 14-611972				
P.O. Number	Your Projec	t ID.		Project Man	ager		
NA NA	R14-034	•	M. Christian St-Pierre				
		Sample(s)					
	Lab. No.	2635977	2635989	2635995	2636005		
	Your Reference	14034- 4128+4129+4130	14034- 4136+4137+4138	14034- 4144+4145+4146	14034-4152+4153		
		进)	#2	#3	Blank		
	Matrix	Air	Air	Air	Air		
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno		
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank		
		F+P	F+P	F+P	F+P		
	Date sampled	2014-07-11	2014-07-12	2014-07-13	2014-07-13		
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Parameter(s) Welfind Reference							
Aluminum (Al)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909		
Aluminum	μg	238	77	62	< 10		
Antimony (Sb)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909		
Antimony	μg	22.9	12.3	15.3	< 0.5		
Arsenic (As)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-M6t1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909		
Arsenic	μg	3.7	2.3	2.5	< 0.5		
Baryum (Ba)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Coquerna 110.	471909	471909	471909	471909		
Barium	μg	5.6	3.5	2.3	< 0.5		
Beryllium (Be)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
	7,1	471909 < 0.2	471909 < 0.2	471909 < 0.2	471909 < 0.2		
Beryllium	μg Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Bismuth (Bi)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)			471909	471909	471909		
Bismuth	ha ha	< 5	5	< 5	< 5		
Boron (B)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)		471909	471909	471909	471909		
Boron	μg	< 20	79	< 20	< 20		

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 14 of 21

Sans Frais: +1 (865) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova		Request Number: 14-611972					
P.O. Number	Your Projec	t ID.		Project Manager			
NA	R14-034 M. Christian S				-Pierre		
Tanana	Sample(s)						
	Lab. No.	2635977	2635989	2635995	2636005		
	Your Reference	14034- 4128+4129+4130	14034- 4136+4137+4138	14034- 4144+4145+4146	14034-4152+4153		
		esti (进之	# 3	Blank		
	Matrix	Air	Air	Air	Air		
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno		
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank		
		F+P	ともも	F+P	F+P		
	Date sampled	2014-07-11	2014-07-12	2014-07-13	2014-07-13		
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Parameter(s) Method Reference							
Cadmium (Cd)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909		
Cadmium	ha	3.7	4.0	5.2	< 0.5		
Calcium (Ca)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Wetals by ICP(not accredited) E-A-EN-EN-CHI-PC-M0017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis	2014-07-29	2014-0 7- 29	2014-07-29	2014-07-29		
	Sequential No.	471909	471909	471909	471909		
Calcium	µg	630	611	329	61		
Chromium (Cr)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF;MA,200-Mét1,2,CEAEQ)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Chromium	Sequential No.	471909 17.7	471909 19.3	471909 22.7	471909 < 0.5		
Cobalt (Co)	μg Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909		
Cobalt	μg	17.0	5.7	1.9	0.6		
Copper (Cu)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-ÉN-CHÌ-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909		
Copper	μg	57.2	67.7	52.8	< 0.5		
ron (Fe)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909		
ron	μg	190	138	113	3.6		
Lead (Pb)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis Sequential No.	2014-07-29 471909	2014-07-29 471909	2014-07-29 471909	2014-07-29 471909		
_ead	μg	220	277	336	< 0.5		

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 15 of 21

Sons Frais: +1 (865) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 E: ventes@exova.com

W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 I:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Number: 14-6		14-611972		
P.O. Number	Your Project	t ID.	Project Man		ager		
NA NA	R14-034			M. Christian St	-Pierre		
	Sample(s)						
	Lab. No.	2635977	2635989	2635995	2636005		
	Your	14034-	14034-	14034-	14034-4152+4153		
	Reference	4128+4129+4130	4136+4137+4138	4144+4145+4146	Blank		
		# (中に	# 3	Dianti		
	Matrix	Air	Air	Air	Air		
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno		
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank		
		F+P	F+P	F+P	F+P		
	Date sampled	2014-07-11	2014-07-12	2014-07-13	2014-07-13		
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Parameter(s) Welhod Reference							
_ithium (Li)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Met1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909		
ithium	þg	9.7	11.7	9.3	< 0.5		
Wagnesium (Mg)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-EN-CHI-PC-MD017 (REF:MA:200-Mét1:2,CEAEQ)	Sequential No.	471909	471909	471909	471909		
Magnesium	hâ	157	68.9	65.6	4.1		
Manganese (Mn)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29 471909		
E-A-EN-ÉN-CHÌ-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909 5.2	471909 6.5	471909 4 ₋ 6	0.4		
Manganese	μg	5.2 2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Mercury (Hg)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis Seguential No.	471909	471909	471909	471909		
Mercury	ha	< 0.1	< 0.1	< 0.1	< 0.1		
Molybdenum (Mo)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Met1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909		
Molybdenum	μg	4	5	4	< 1		
Nickel (Ni)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
E-A-EN-ÉN-CHÌ-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.		471909	471909	471909		
Nickel	рg	2.7	2.6	2.0	< 0.5 2014-07-29		
Phosphorus (P)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29		
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis Sequential No.	2014-07-29 . 471909	2014-07-29 471909	2014-07-29 471909	471909		
Phosphorus	μg	< 100	< 100	< 100	< 100		

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 16 of 21

Sans Frais: +1 (866) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Ciaire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Number: 14-61197			
P.O. Number	Your Projec	t ID.		Project Manager		
NA	R14-034			M. Christian St	-Pierre	
			Sam	mple(s)		
	Lab. No.	2635977	2635989	2635995	2636005	
	Your	14034-	14034-	14034-	14034-4152+4153	
	Reference	4128+4129+4130	4136+4137+4138	4144+4145+4146	Dick	
		拉「	本 2	43	Blank	
	Matrix	Air	Air	Air	Air	
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank	
		FTP	FtP	FOP	F+P	
	Date sampled	2014-07-11	2014-07-12	2014-07-13	2014-07-13	
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Parameter(s) Method Reference						
Potassium (K)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Potassium	μg	21600	28900	23600	< 25	
Selenium (Se)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Selenium	hã	0.9	1.2	1.5	< 0.5	
Silicon (Si)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-2 9	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Silicon	µg	305	191	142	37	
Silver (Ag)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-M0017 (REF:MA.200-Mét1,2,CEAEQ)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Silver	Sequential No.	471909	471909	471909	471909	
Sodium (Na)	μg Preparation	2.5 2014-07-29	4.4 2014-07-29	1.7 2014-07-29	< 0.5 2014-07-29	
` '	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Sodium	hā	11200	18900	13000	< 25	
Strontium (Sr)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Strontium	þg	2.1	1.9	1.1	< 0.5	
Tellurium (Te)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Tellurium	μg	< 1	< 1	< 1	< 1	

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 17 of 21

Sans Frais: +1 (866) 365-2310 1: +1 (418) 878-4927 F: +1 (418) 878-7185 E: venfes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 I:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Number: 14-61197			
P.O. Number	Your Projec	t ID.	Project Manager			
NA	R14-034			M. Christian St	-Pierre	
	- DAMETTI - TITLE		Sample(s)			
	Lab. No.	2635977	2635989	2635995	2636005	
	Your Reference	14034~ 4128+4129+4130	14034- 4136+4137+4138	14034- 4144+4145+4146	14034-4152+4153	
		# \	#2	#3	Biank	
	Matrix	Air	Air	Air	Air	
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank	
		FtP	F+P	FTP	F+P	
	Date sampled	2014-07-11	2014-07-12	2014-07-13	2014-07-13	
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Parameter(s) ^{Method}						
Reference	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Thallium (TI)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA,200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Thallium	μд	< 3	< 3	< 3	< 3	
Tin (Sn)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Tin	μg	38.8	68.9	49.0	< 0.5	
Titanium (Ti)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-ÉN-CHÌ-PC-MD017 (RÉF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Titanium	hã	11.2	3.2	3.6	< 0.5	
Uranium (U)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-EN-CHİ-PC-MD017 (REF:MA.200-Met1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Uranium	μg	< 0.5	< 0.5	< 0.5	< 0.5	
Vanadium (V)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited)	Analysis	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
E-A-EN-ÉN-CHÌ-PC-MD017 (ŘEF:MA.200-Mét1.2,CEAEQ)	Sequential No.	471909	471909	471909	471909	
Vanadium (V)	hд	0.5	0.3	0.5	< 0.1	
Zinc (Zn)	Preparation	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Metals by ICP (not accredited) E-A-EN-EN-CHI-PC-MD017 (REF:MA.200-Mét1.2,CEAEQ)	Analysis Seguential No.	2014-07-29 471909	2014-07-29 471909	2014-07-29 471909	2014-07-29 471909	
Zinc	Sequential No.	47 1909	41 1303	411203	47 1000	

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 18 of 21

Sans Frais: +1 (866) 365-2310 1: +1 (418) 878-4927 F: +1 (418) 878-7185 E: venfes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 1:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client: Exova			Request Nu	mber:	14-611972
P.O. Number	Your Project		Project Manager		
NA NA	R14-034			M. Christian S	t-Pierre
			Sam	ple(s)	
	Lab. No.	2635980	2635985	2635986	2635991
	Your Reference	14034-4131 (278mL)	14034-4132 (287mL)	14034-4133 (246mL)	14034-4139 (321mL)
	Matrix	Air	Air	Air	Air
	Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno
	Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank
	Date sampled	2014-07-11	2014-07-11	2014-07-11	2014-07-12
	Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29
Parameter(s) Method					
Reference Volume	Preparation	1961: 1965: 1966: 1966: 1966: 1966: 1966: 1966: 1966: 1966: 1966: 1966: 1966: 1966: 1966: 1966: 1966: 1966: 19 -	# #1 [2 2] 1266 1244 1246 1246 1246 1246 1246 1246	- -	= plaket plant part per musikusi.
Not applicable	Analysis	**	-	-	-
	Sequential No.	NA	NA	NA	NA
Volume	mL	278	287	246	321

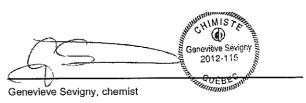
Sans Frais: +1 (866) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 E: ventes@exova.com

W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificate of Analysis

Client:	Exova			Request Nu	mber:	14-611972	
P.	.O. Number	Your Project	ID.		Project Man	ager	
	NA	R14-034			M. Christian S	t-Pierre	
L				Sample(s)			
		Lab. No.	2635992	2635992 2635993		2635997	
		Your Reference	14034-4140 (332mL)	14034-4141 (251mL)	14034-4147 (326mL)	14034-4148 (336mL)	
		Matrix	Air	Air	Air	Air	
		Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	
		Site sampled	Meadowbank	Meadowbank	Meadowbank	Meadowbank	
		Date sampled	2014-07-12	2014-07-12	2014-07-13	2014-07-13	
		Date received	2014-07-29	2014-07-29	2014-07-29	2014-07-29	
Parame	ter(s)						
Method Reference							
Volume	teritorii printorio del propositorio	Preparation			= 	-	
Not applicable	le	Analysis	-	-	-	•	
		Sequential No.	NA	NA	NA	NA	
Volume		mL	332	251	321	336	


Sans Frais: +1 (865) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 I : +1 (514) 697-3273 F : +1 (514) 697-2090 E : ventes@exova.com W: www.exova.com

Certificate of Analysis

Client:	Exova			Request Nu	mber:	14-611972
P	.O. Number	Your Project	ID.		Project Ma	nager
	NA	R14-034			M. Christian	St-Pierre
L				Sam	ple(s)	
		Lab. No.	2635998	2636006	2636007	
		Your Reference	14034-4149 (260mL)	14034-4154 (128mL)	14034-4155 (100mL)	
		Matrix	Air	Аіг	Air	
		Sampled by	Exova St-Bruno	Exova St-Bruno	Exova St-Bruno	
		Site sampled	Meadowbank	Meadowbank	Meadowbank	
		Date sampled	2014-07-13	2014-07-13	2014-07-13	
		Date received	2014-07-29	2014-07-29	2014-07-29	
Parame Method Reference	ter(s)					
Volume	i in August and a training in the Arthur Archard and Arthur Archard (in Archard Archard Archard Archard Archard Archard Archard	Preparation	= 	The state of the second	*	
Not applicable	le	Analysis		**	-	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Sequential No.	NA	NA	NA	
Volume		mL	260	128	100	

Note 1: Results and comments, if any, relate only to samples submitted for analysis at the Pointe-Claire laboratory.

Terms and conditions: http://www.exova.ca/terms&conditions

Certificate of Analysis No. 610223 - Revision 1 - Page 21 of 21

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W:vww.exova.com

Certificat d'analyses

Client: Exova			Request Nu	mber:	14-611972
P.O. Number	Your Project	ID.		Project Ma	anager
NA NA	R14-034			M. Christian	St-Pierre
	Quality Con	trol Resu	Its (CQ)		
				Cert	ified Control
Parameters (Sequential ID No.)	Units	RDL	Blank	Result	Expected Range
Chlorides (IC) Sequential ID No.: 471987					
Chloride	μg	< 100	< 100	479	446 - 604
Silver (Ag) Sequential ID No.: 471911			••••		
Silver	μg	< 0.5	< 0.5	103	80 - 120
Silver (Ag) Sequential ID No.: 471909					
Silver	hâ	< 0.5	< 0.5	NA	NA
Aluminum (Al) Sequential ID No.: 471911					
Aluminum	μg	< 10	< 10	101	80 - 120
Aluminum (Al) Sequential ID No.: 471909					
Aluminum	þg	< 10	< 10	NA	NA
Arsenic (As) Sequential ID No.: 471911					
Arsenic	μg	< 1	< 1	91	80 - 120
Arsenic (As) Sequential ID No.: 471909					
Arsenic	μд	< 0.5	< 0.5	NA	NA
Baryum (Ba) Sequential ID No.: 471911					
Barium	µg	< 10	< 10	105	80 - 120
Baryum (Ba) Sequential ID No.: 471909					
Barium	hâ	< 0.5	< 0.5	NA	NA
Boron (B) Sequential ID No.: 471911					
Boron	μg	< 20	< 20	99	80 - 120
Beryllium (Be) Sequential ID No.: 471911					
Beryllium	μg	< 1	< 1	81	80 - 120
Beryllium (Be) Sequential ID No.: 471909					
Beryllium	hã	< 0.2	< 0.2	NA	NA

RDL: Reported Detection Limit

Appendix 1 of Certificate no.610223 - Page 1 of 6

Sans Frais: +1 (866) 365-2310 I : +1 (418) 878-4927 F : +1 (418) 878-7185 E : ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificat d'analyses

Client: Exova			Request Nu	mber:	14-611972
P.O. Number	Your Project	D.		Project Ma	anager
NA	R14-034			M. Christian	St-Pierre
	Quality Cont	rol Result	s (CQ)		
3					ified Control
Parameters Sequential ID No.)	Units	RDL	Blank	Result	Expected Range
Boron (B) Sequential ID No.: 471909					
Boron	μg	< 20	< 20	NA	NA NA
Bismuth (Bi) Sequential ID No.: 471911					
3ismuth	μg	< 1	< 1	103	80 - 120
Bismuth (Bi) Sequential ID No.: 471909					
Bismuth	μg	< 5	< 5	NA	NA
Calcium (Ca) Sequential ID No.: 471911					
Calcium	μg	< 20	< 20	507	400 - 600
Calcium (Ca) Sequential ID No.: 471909					
Calcium	μg	< 1	< 1	NA	NA
Cadmium (Cd) Sequential ID No.: 471911					
Cadmium	μg	< 0.5	< 0.5	93.9	80 - 120
Cadmium (Cd) Sequential ID No.: 471909					
Cadmium	μg	< 0.5	< 0.5	NA	NA
Cobalt (Co) Sequential ID No.: 471911					
Cobalt	μg	< 1	< 1	91	80 - 120
Cobalt (Co) Sequential ID No.: 471909					
Cobalt	µg	< 0.5	< 0.5	NA	NA NA
Chromium (Cr) Sequential ID No.: 471911					
Chromium	hã	< 1	< 1	86	80 - 120
Chromium (Cr) Sequential ID No.: 471909					
Chromium	μg	< 0.5	< 0.5	NA	NA
Copper (Cu) Sequential ID No.: 471911					
Copper	рg	< 1	< 1	90	80 - 120
DDL - Deported Detection Limit			A dts	. 4 -5 0-466-4-	no 610223 - Page 2 d

RDL: Reported Detection Limit

Appendix 1 of Certificate no.610223 - Page 2 of 6

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificat d'analyses

Client: Exova		Request Number:		14-611972		
P.O. Number	Your Project ID. R14-034			Project Manager		
NA				M. Christian	St-Pierre	
	Quality Cont	rol Result	ts (CQ)			
				Certi	fied Control	
Parameters Sequential ID No.)	Units	RDL	Blank	Result	Expected Range	
Copper (Cu) Sequential ID No.: 471909						
Copper	рд	< 0.5	< 0.5	NA	NA	
ron (Fe) Sequential ID No.; 471911						
ron	μg	< 50	< 50	98	80 - 120	
ron (Fe) Sequential ID No.: 471909						
ron	μg	< 0.5	< 0.5	NA	NA	
Mercury (Hg) Sequential ID No.: 471911						
Mercury	hã	< 0.1	< 0.1	4.8	4 - 6	
Mercury (Hg) Sequential ID No.: 471909						
Mercury	ha	< 0.1	< 0.1	NA	NA	
Potassium (K) Sequential ID No.: 471911						
Potassium	μg	< 500	< 500	491	400 - 600	
Potassium (K) Sequential ID No.: 471909						
Potassium	μg	< 25	< 25	NA	NA	
Lithium (Li) Sequential ID No.: 471911						
Lithium	μg	< 1	< 1	81	80 - 120	
Lithium (Li) Sequential ID No.: 471909						
Lithium	Pa	< 0.5	< 0.5	NA	NA	
Magnesium (Mg) Sequential ID No.: 471911						
Magnesium	μg	< 1	< 1	506	400 - 600	
Magnesium (Mg) Sequential ID No.: 471909						
Magnesium	μg	< 0.5	< 0.5	NA	NA	
Manganese (Mn) Sequential ID No.: 471911						
Manganese	μg	< 1	< 1	85	80 - 120	

RDL: Reported Detection Limit

Appendix 1 of Certificate no.610223 - Page 3 of 6

This certificate must not be reproduced, except in its entirety, without written consent from the laboratory. The official version of this certificate is protected and cannot be modified. The above-mentioned samples will be retained for a period of 30 days following the issue of this certificate with the exception of microbiology samples or as instructed by the client.

Results pertain only to the samples submitted for analysis.

Sans frais: +1 (866) 365-2310 I:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificat d'analyses

Client: Exova		Request Number: Your Project ID. Project			14-611972
P.O. Number	Your Project				anager
NA	R14-034			M. Christian	St-Pierre
	Quality Con	trol Result	s (CQ)		
Devementare				Cert	ified Control
Parameters (Sequential ID No.)	Units	RDL	Blank	Result	Expected Range
Manganese (Mn) Sequential ID No.: 471909					
Manganese	μg	< 0.25	< 0.3	NA	NA
Molybdenum (Mo) Sequential ID No.: 471911					
Molybdenum	μg	< 1	< 1	98	80 - 120
Molybdenum (Mo) Sequential ID No.: 471909					
Molybdenum	þд	< 1	< 1	NA	NA
Sodium (Na) Sequential ID No.: 471911					
Sodium	μg	< 500	< 500	494	400 - 600
Sodium (Na) Sequential ID No.: 471909					
Sodium	μg	< 25	< 25	NA	NA
Nickel (Ni) Sequential ID No.: 471911					
Nickel	μg	< 1	< 1	88	80 - 120
Nickel (Ni) Sequential ID No.: 471909					
Nickel	hâ	< 0.5	< 0.5	NA	NA
Phosphorus (P) Sequential ID No.: 471911					
Phosphorus	þg	< 100	< 100	98	80 - 120
Lead (Pb) Sequential ID No.: 471911					
Lead	μg	< 1	< 1	98	80 - 120
Lead (Pb) Sequential ID No.: 471909					
Lead	μg	< 0.5	< 0.5	NA	NA
Phosphorus (P) Sequential ID No.: 471909					
Phosphorus	μg	< 100	< 100	NA	NA
Antimony (Sb)					

Sequential ID No.: 471911

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W:www.exova.com

Client: Exova			Request Nu	ımber:	14-611972
P.O. Number	Your Project	ID.		Project Ma	nager
NA	R14-034			M. Christian	St-Pierre
	Quality Con	trol Resu	Its (CQ)		
D				Certi	fied Control
Parameters (Sequential ID No.)	Units	RDL	Blank	Result	Expected Range
Antimony	hā	< 1	< 1	95	80 - 120
Antimony (Sb) Sequential ID No.: 471909					
Antimony	þg	< 0.5	< 0.5	NA	NA
Selenium (Se) Sequential ID No.: 471911					
Selenium	þд	< 1	< 1	91	80 - 120
Selenium (Se) Sequential ID No.: 471909					
Selenium	μg	< 0.5	< 0.5	NA	NA
Silicon extractable (Si) Sequential ID No.: 471911					
Silicium	þд	< 50	< 50	486	400 - 600
Silicon (Si) Sequential ID No.: 471909					
Silicon	μg	< 1	< 1	NA	NA
Tin (Sn) Sequential ID No.: 471911					
Tin	μд	< 1	< 1	86	80 - 120
Tin (Sn) Sequential ID No.: 471909					
Tin	μg	< 0.5	< 0.5	NA	NA NA
Strontium (Sr) Sequential ID No.: 471911					
Strontium	µg	< 1	< 1	105	80 - 120
Strontium (Sr) Sequential ID No.: 471909					
Strontium	μg	< 0.5	< 0.5	NA	NA
Tellurium (Te) Sequential ID No.: 471911					
Tellurium	μg	< 1	< 1	85	80 - 120
Tellurium (Te) Sequential ID No.: 471909					
Tellurium	þg	< 1	< 1	NA	NA

Sans Frais: +1 (866) 365-2310 T: +1 (418) 878-4927 F: +1 (418) 878-7185 E: ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 I:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W:vvvvv.exova.com

Client: Exova			Request Nu	ımber:	14-611972
P.O. Number	Your Project	ID.		Project Ma	ınager
NA NA	R14-034			M. Christian	St-Pierre
	Quality Con	trol Resul	ts (CQ)		
Parameters (Sequential ID No.)	Units	RDL	Blank	Certi Result	fied Control Expected Range
Fitanium (Ti) Sequential ID No.: 471911					
Titanium	μg	< 1	< 1	93	80 - 120
Titanium (Ti) Sequential ID No.: 471909					•••••
Titanium	μg	< 0.5	< 0.5	NA	NA
Thallium (TI) Sequential ID No.: 471911					
Thallium	рg	< 1	< 1	102	80 - 120
Thallium (TI) Sequential ID No.: 471909					
Thailium	μg	< 2.5	< 3	NA	NA
Uranium (U) Sequential ID No.: 471911					
Uranium	ha	< 1	< 1	93	80 - 120
Uranium (U) Sequential ID No.: 471909					
Uranium	þд	< 0.5	< 0.5	NA	NA
Vanadium (V) Sequential ID No.: 471911					
Vanadium	þg	< 1	< 1	88	80 - 120
Vanadium (V) Sequential ID No.: 471909					
Vanadium (V)	μg	< 0.1	< 0.1	NA	NA
Zinc (Zn) Sequential ID No.: 471911					
Zinc	þg	< 7	< 7	91	80 - 120
Zinc (Zn) Sequential ID No.: 471909					
Zinc	μg	< 0.5	< 0.5	NA	NA

Sans Frais: +1 (866) 365-2310 1: +1 (418) 878-4927 F: +1 (418) 878-7185 E: ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Client: Exova		Request Number:	14-611972
P.O. Number	Your Project ID.	Project N	Nanager
NΔ	R14-034	M Christia	n St-Pierre

Qualit	v Cont	rol Res	ulte	Dart 2
UJIIAIII	V C.OHI	roi Res		Par /

	Quanty Control It				
Parameters			Duplicate		
(Sequential ID No.)	Units	Value 1	Value 2	Difference (%)	
Aluminum (Al)					
Sequential ID No: 471911	(Sample no)		(2635985)		
Aluminum	μg	< 29	< 29	-	
Antimony (Sb)					
Sequential ID No: 471911	(Sample no)		(2635985)		
Antimony	hâ	< 3	< 3	<u>-</u>	
Arsenic (As)					
Sequential ID No: 471911	(Sample no)		(2635985)		
Arsenic	hâ	< 3	< 3	•	
Baryum (Ba)					
Sequential ID No: 471911	(Sample no)		(2635985)		
Barium	hâ	< 29	< 29	-	
P					
Beryllium (Be)	(Cample no)		(2635985)		
Sequential ID No: 471911 Beryllium	(Sample no)	< 3	(2033903)	~	
	hâ				
Bismuth (Bi)			/		
Sequential ID No: 471911	(Sample no)	. •	(2635985)		
Bismuth	hâ	< 3	< 3	- 	
Boron (B)					
Sequential ID No: 471911	(Sample no)		(2635985)		
Boron	hâ	< 57	< 57	-	
Cadmium (Cd)					
Sequential ID No: 471911	(Sample no)		(2635985)		
Cadmium	μg	< 1.4	< 1.4	-	
Calcium (Ca)					
Sequential ID No: 471911	(Sample no)		(2635985)		
Calcium	µg	78	76	2.6	
	. 4			******	
Chlorides (IC)	(Comple - 1)		(2825000)		
Sequential ID No: 471987	(Sample no)	70000	(2635980)	2.4	
Chloride	μg	79800 	82300	3.1	
Chromium (Cr)					
Sequential ID No: 471911	(Sample no)		(2635985)		
Chromium	μg	< 3	< 3		

Sans Frais: +1 (866) 365-2318 1:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W:vww.exova.com

Client: Exova		Request Number:	14-611972
P.O. Number	Your Project ID.		Manager
NA	R14-034		n St-Pierre

Quality	Control	Results	- Part 2
---------	---------	---------	----------

	Quality Control in	Courts - r a		
Parameters			Duplicate	
Parameters (Sequential ID No.)	Units	Value 1	Value 2	Difference (%)
Cobalt (Co) Sequential ID No: 471911 Cobalt	(Sample no) µg	< 3	(2635985) < 3	-
Copper (Cu) Sequential ID No: 471911 Copper	(Sample no) µg	< 3	(2635985) < 3	-
Iron (Fe) Sequential ID No: 471911 Iron	(Sample no) µg	< 144	(2635985) < 144	-
Lead (Pb) Sequential ID No: 471911 Lead	(Sample no) µg	< 3	(2635985) < 3	·
Lithium (Li) Sequential ID No: 471911 Lithium	(Sample no) µg	< 3	(2635985) < 3	<u>-</u>
Magnesium (Mg) Sequential ID No: 471911 Magnesium	(Sample no) µg	6	(2635985) 5	18.2
Manganese (Mn) Sequential ID No: 471911 Manganese	(Sample no) µg	< 3	(2635985) < 3	-
Mercury (Hg) Sequential ID No: 471911 Mercury	(Sample no) µg	< 0.3	(2635985) < 0.3	_
Molybdenum (Mo) Sequential ID No: 471911 Molybdenum	(Sample no) μg	< 3	(2635985) < 3	
Nickel (Ni) Sequential ID No: 471911 Nickel	(Sample no) µg	< 3	(2635985) < 3	-
Phosphorus (P) Sequential ID No: 471911 Phosphorus	(Sample no) μg	< 287	(2635985) < 287	-

Sans Frais: +1 (866) 365-2310 T:+1 (418) 878-4927 F:+1 (418) 878-7185 E:ventes@exova.com W: www.exova.com Exova 121 Boulevard Hymus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

Certificat d'analyses

Sequential ID No: 471911

Sequential ID No: 471911

Titanium

Uranium

Uranium (U)

Client: Exova		Request Number:	14-611972
P.O. Number	Your Project ID.	Project	Manager
NΔ	R14-034	M. Christia	n St-Pierre

Quality Control Results - Part 2

Parameters			Duplicate	
(Sequential ID No.)	Units	Value 1	Value 2	Difference (%)
Potassium (K)			(0005005)	
Sequential ID No: 471911	(Sample no)		(2635985)	
Potassium	þд	< 1440	< 1440	-
Selenium (Se)				
Sequential ID No: 471911	(Sample no)		(2635985)	
Selenium	hâ	< 3	< 3	-
Silicon extractable (Si)				
Sequential ID No: 471911	(Sample no)		(2635985)	
Silicium	þg	< 144	< 144	-
Silver (Ag)				
Sequential ID No: 471911	(Sample no)		(2635985)	
Silver	µg	< 1.4	< 1.4	-
Sodium (Na)	**************************************			
Sequential ID No: 471911	(Sample no)		(2635985)	
Sodium	μg	< 1440	< 1440	<u>.</u>
Strontium (Sr)				
Sequential ID No: 471911	(Sample no)		(2635985)	
Strontium	μg	< 3	< 3	
Tellurium (Te)				
Sequential ID No: 471911	(Sample no)		(2635985)	
Tellurium	μg	< 3	< 3	-
Thallium (TI)				
Sequential ID No: 471911	(Sample no)		(2635985)	
Thallium	μg	< 3	< 3	
Tin (Sn)				
Sequential ID No: 471911	(Sample no)		(2635985)	
Tin	µg	< 3	< 3	~
Titanium (Ti)				
	, a		(0005005)	

(2635985)

(2635985)

< 3

(Sample no)

(Sample no)

μg

< 3

< 3

Sans Frais: +1 (866) 365-2310 1:+1 (418) 878-4927 F:+1 (418) 878-7185 E: ventes@exova.com W: www.exova.com

Exova 121 Boulevard Hyrnus Pointe-Claire Québec Canada H9R 1E6 T:+1 (514) 697-3273 F:+1 (514) 697-2090 E:ventes@exova.com W: www.exova.com

(2635985)

< 20

Certificat d'analyses

Sequential ID No: 471911

Client: Exova		Red	luest Number:	14-611972
P.O. Number	Your Project ID.		Project	Manager
NA .	R14-034		M. Christia	n St-Pierre
	Quality Control I	Results - Pa	art 2	
Doromotoro			Duplicate	
arameters Sequential ID No.)	Units	Value 1	Value 2	Difference (%)
/anadium (V)			(262509#)	
Sequential ID No: 471911	(Sampie no)		(2635985)	
Vanadium	μg	< 3	< 3	-
Zine (Zn)	*****		***********	

< 20

(Sample no)

μg

2350, Chemin du Lac Longueuil, Québec J4N 1G8 Tél. (514) 332-6001 Téléc. (514) 332-5066

740, Galt Ouest, 2e étage

Sherbrooke, Québec J1H 1Z3

Tél. (819) 566-8855 Téléc. (819) 566-0224

3705, boul. Industriel

Sherbrooke, Québec J1 L 1X8

Tél. (819) 566-8855 Téléc. (819) 566-0224

Annexe au certificat d'analyses

M902978 version 1

Description	Unités	Limite de	Blanc	Matériaux o	de référence	Récu	oération	Dup	dicata
		détection	•	% obtenu	limites (%)	% obtenu	limites (%)	% écart	limites (%)
							Date	d'analyse: :	2014-07-30
		3 46 4 0 / 11 0	F_032				No	séquence:	CS435719
Méthode d'analyse: Vapeur fro	de et AA / MA.20	3-119 1.V 11EO	L-002						
Méthode d'analyse: Vapeur fro	de et AA / MA.20:	Blan					-		-

2350, Chemin du Lac Longueuil, Québec J4N 1G8 Tél. (514) 332-6001 Télèc. (514) 332-5066

740, Galt Ouest, 2e étage . Sherbrooke, Québec J1H 1Z3 Tél. (819) 566-8855 Téléc. (819) 566-0224 3705, boul. Industriel
) Sherbrooke, Québec J1L 1X8
Tél. (819) 566-8855 Télèc. (819) 566-0224

Certificat d'analyse

No M902978, version 1

Émis le: 2014-07-31

Client: EXOVA (Pte-Claire)

Mme Geneviève Ségigny 121, boul. Hymus Pointe-Claire, Québec

H9R 1E6

No client: 10596 Tél.: 514-697-3273

Téléc.:

No projet: 16404

Bon de commande: CT-046116

No dossier MDDEFP:

Projet: Analyse d'extrait pour le mercure Sous-projet: Analyse pour le mercure Nature de l'échantillon: Air

No éch.	/ Description	Résultat	Unité	Norme	Analysé le
2323335	/ 2635988 Prélevé le: 2014-07-11 Par: Client	Reçu le: 2014-07-30			
	Mercure (Hg)	0.1440	mg/L	40,03 jug	2014-07-30
Remarques:	Les résultats sont exprimés en ug total.	278 m	1	- 0	
2323336	/ 2635994				
	Prélevé le: 2014-07-11 Par: Client	Reçu le: 2014-07-30		1	
	Mercure (Hg)	0.8317	mg/L	250.34 Mg	2014-07-30
Remarques:	Les résultats sont exprimés en ug total.	301 ml	-		
2323339	/ 2636004				
	Prélevé le: 2014-07-11 Par: Client	Reçu le: 2014-07-30			
	Mercure (Hg)	0.0978	mg/L	30.90 mg	2014-07-30
Remarques:	Les résultats sont exprimés en ug total.	316 mL		<u> </u>	
2323342	/ 2636008				
	Prélevé le: 2014-07-11 Par: Client	Reçu le: 2014-07-30			
	Mercure (Hg)	<0.02	mg/L	Z 2.00 µg	2014-07-30
Remarques:	Les résultats sont exprimés en ug total.	100 ml		∀	
Méthode d'a	analyse Description		Réf	érence externe	Procédure interne
Mercure	Vapeur froid	e et AA	MA	.203-Hg 1.0	ILCE-032

- Ce certificat ne doit pas être reproduit, sinon en entier, sans l'autorisation écrite des Laboratoires d'analyses S.M. inc.

- (PNA) indique un Paramètre Non Accrédité.

⁻ Les résultats ne se rapportent qu'aux objets soumis à l'essai.

Certificat d'analyse (suite)

No M902978, version 1

Émis le: 2014-07-31

CATALONS France Luneau, Chimiste, chargée de projet 993-133

Denise Arbic, Chimiste, Chell de selvice 94

Nader Daoud, Chimiste, super

(1) Nader Daoud seur 89-105

Pures

⁻ Ce certificat ne doit pas être reproduit, sinon en entier, sans l'autorisation écrite des Laboratoires d'analyses S.M. inc.

⁻ Les résultats ne se rapportent qu'aux objets soumis à l'essai. - (PNA) indique un Paramètre Non Accrédité.

NOM DU CLIENT: EXOVA

1390 RUE HOCQUART

ST-BRUNO DE DE MONTARVILLE, QC J3V6E1

(450) 441-5880

À L'ATTENTION DE: Claude Bélanger

N° DE PROJET: R14-034

N° BON DE TRAVAIL: 14M865864

HAUTE RÉSOLUTION VÉRIFIÉ PAR: Marc-André Desjardins, chimiste

DATE DU RAPPORT: 2014-08-01

VERSION*: 1

NOMBRE DE PAGES: 7

Si vous désirez de l'information concernant cette analyse, S.V.P. contacter votre chargé de projets au (514) 337-1000.

	 	 ······································			$\overline{}$
*NOTES					- 1
[NOTES					- 1
					ĺ
1					
I .					
t control of the cont					
1					
1					
					, ,
					- 1
l .					- 1
I .					
E .					
· ·					
1					
					- 1
					- 1
1					
l .					
1					
1					
1					
1					
1					
1					
1			- (11 (2)	
1			37	91-91	****
1			1		8
l .					

Nous disposerons des échantillons dans les 30 jours suivants les analyses. S.V.P. Contactez le laboratoire si vous désirez avoir un délai d'entreposage.

用同用T Laboratoires

NOM DU CLIENT: EXOVA

PRÉLEVÉ PAR:

Certificat d'analyse

N° BON DE TRAVAIL: 14M865864

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

N° DE PROJET: R14-034

À L'ATTENTION DE: Claude Bélanger

LIEU DE PRÉLÈVEMENT:

1.0.00001		Dį	Dioxines et 1	furanes - Air	(train d'	furanes - Air (train d'échantillonnage - OTAN 1988)	ge - OTA	N 1988)			
DATE DE RÉCEPTION: 2014-07-17	7							DA	TE DU RAI	DATE DU RAPPORT: 2014-08-01	
- Landerson - Land				14034-	E CONTRACTOR DE	14034-		14034-		14034-	
			4	4004+4005+400		4010+4011+401		4016+4017+401		4022+4023+402	
			9	6+4007+4008+4		2+4013+4014+4		8+4019+4020+4		4+4025+4026+4	
<u>a</u>	ENTIFICA	IDENTIFICATION DE L'ÉCHANTILLON:		600		015		021		027	
!			MATRICE:	Ean		Eau		Eau		Eau	
	DA.	DATE D'ÉCHANTILLONNAGE:	LONNAGE	2014-07-16		2014-07-16		2014-07-16		2014-07-16	
Paramètre	Unités	C/N	LDR	5595856	LDR	5595877	LDR	5595923	LDR	5595924	
2.3.7.8-TCDD (not total)	Ba		2	4	-	7	2	7	0.8	<0.8	
1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	. <u>5</u>		ო	 80	τ	13	-	16	9.0	9.0>	
1.2.3.4.7.8 HxGDD (not total)	2 8		0.8	5.8	τ-	တ	0.9	12.5	0.5	<0,5	
1.2.3.6.7.8 HXCDD (pg total)	2 8		0.8	12.8	4~	19	~	36	9.0	9.0>	
1.2.3.7.8.9 HxCDD (pg total)	8		0.8	20.6	τ-	16	***	36	9.0	9.0>	
1.2.3.4.6.7.8 HpCDD (pg total)	0d		-	65	9.0	87.8	2	184	4	8	
OCDD (na total)	8		-	61	-	108	-	196	6.0	3.5	
2.3.7.8 TCDF (pg total)	8		0.5	25.1	4.0	37.9	0.5	36.1	9,0	<0.6	
1.2.3.7.8 PeCDF (no total)	2 2		2	18	-	28	7	31	0.4	4.0^	
2.3.4.7.8-PeCDF (pg total)	8	÷	ю	37	6.0	68.7	7	79	0.3	<0.3	
1.2.3.4.7.8 HxCDF (pg total)	2		2	63	9.0	118	6.0	176	0.5	<0.5	
1.2.3.6.7.8 HxCDF (no total)	8		₩	56	9.0	46.1	0.8	59.8	0.5	<0.5	
2.3.4.6.7.8-HxCDF (pg total)	8		2	45	9.0	71.9	0.9	103	0.6	9:0>	
1 2 3 7 8 9 HxCDF (pg total)	8		2	cs	0.8	4.1	-	φ	4	₹	
1,2,3,4,6,7,8 HpCDF (pg total)	<u> </u>		9.0	86.6	0.7	176	-	302	9,0	9.0>	
1,2,3,4,7,8,9 HpCDF (pg total)	Ö.		0.8	14.7	6.0	20.9	_	28	6.0	6.0>	
OCDF (pg total)	Б		-	38	-	62	-	79	-	2	
Sommation des Tétrachlorodibenzodioxines	图			161	4~	182	03	204	0.8	5.1	
Sommation des Pentachlorodibenzodioxines	E.		ო	188	-	202	€	392	9.0	£.4	
Sommation des Hexachlorodibenzodioxines	ĝ		8.0	222	-	262	-	494	9:0	Q.4	
Sommation des	ő		-	154	8.0	214	7	452	-	2	
neplacification des PCDDs	8		က	786	-	968	2	1740	+	19	

Certifié par:

Page 2 de 7 La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025;2005 comme le requient, torsque applicable, CALA, CCN et MDDEFP. Toutes les signatures sur les certificats d'ACCRéditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDEFP.

A1-95

用写用 Laboratoires

Certificat d'analyse

N° BON DE TRAVAIL: 14M865864 N° DE PROJET: R14-034

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: EXOVA

PRÉLEVÉ PAR:

À L'ATTENTION DE: Claude Bélanger LIEU DE PRÉLÈVEMENT:

Dioxines et furanes - Air (train d'échantillonnage - OTAN 1988)

		2	DIOMINES EL	ייר - כפוופוח	(saging	Idialies - Ali (dalil d'echallullulliage - OTAN 1900)		1000		
DATE DE RÉCEPTION: 2014-07-17	7-17							PA	TE DU RAI	DATE DU RAPPORT: 2014-08-01
***************************************				14034-		14034-		14034-		14034-
			4	4004+4005+400		4010+4011+401		4016+4017+401		4022+4023+402
			Ψ	6+4007+4008+4		2+4013+4014+4		8+4019+4020+4		4+4025+4026+4
	IDENTIFICATION DE L'ÉCHANTILLON:	ON DE L'ÉCH	ANTILLON:	600		015		021		027
			MATRICE:	Eau		Ëan		Ean		Eau
	DATE	DATE D'ÉCHANTILLONNAGE:	LONNAGE:	2014-07-16		2014-07-16		2014-07-16		2014-07-16
Paramètre	Unités	C/N	LDR	5595856	LDR	5595877	LDR	5595923	LDR	5595924
Sommation des Tétrachlorodibenzofuranes	δd		0,5	599	0.4	1090	0.5	826	9.0	6.0
Sommation des Pentachlorodibenzofuranes	. Bd		ဗ	361	-	625	2	756	0.4	4 .0>
Sommation des Hexachlorodibenzofuranes	Бd		7	272	0.8	459	les.	675	-	₽
Sommation des Heptachlorodibenzofuranes	bd.		0.8	151	6.0	272	-	443	0.9	6.0>
Sommation des PCDFs	Бd		ღ	1420	-	2510	7	2880	₩~	9
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ			3.94		7.22		6,74		0
1,2,3,7,8-Penta CDD (TEF 0.5)	TEO			4.03		6,47		7.85		0
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ			0.582		0.924		1.25		0
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ			1.28		1.87		3.59		0
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ			2.06		1.62		3.59		0
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ			0.653		0.878		1.84		0.0146
Octa CDD (TEF 0.001)	TEQ			0.0615		0.108		0.196		0.00346
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ			2.51		3.79		3.61		0
1,2,3,7,8-Penta CDF (TEF 0.05)	TEO			0.905		1,41		1,55		0
2,3,4,7,8-Penta CDF (TEF 0.5)	TEQ			18.5		34.4		39.4		0
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ			6.27		11.8		17.6		0
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ			2.63		4.61		5.98		0
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ			4.52		7.19		10,3		0
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ			0.524		0.412		0.626		0
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ			0.866		1.76		3.02		0
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ			0.147		0.209		0.276		0
Octa CDF (TEF 0.001)	TEQ			0.0376		0.0623		0.0785		0.00460

Certifié par:

La procédure des Laboratories AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025-2005 comme le requient, torsque applicable, CALA, CCN et MDDEFP. Toutes les signatures sur les certificats des formaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDEFP.

A1-96

用何用 Laboratoires

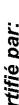
Certificat d'analyse

N° BON DE TRAVAIL: 14M865864 N° DE PROJET: R14-034

CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com 9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC

NOM DU CLIENT: EXOVA

PRÉLEVÉ PAR:


À L'ATTENTION DE: Claude Bélanger

LIEU DE PRÉLÈVEMENT:

		Dioxines et	furanes - Air	(train d'	furanes - Air (train d'échantillonnage - OTAN 1988)	ge - OTA	N 1988)		***************************************	at the same of the
DATE DE RÉCEPTION: 2014-07-17	12 11						, PQ	TE DU RAPI	DATE DU RAPPORT; 2014-08-01	
			14034-		14034-		14034-		14034-	
			4004+4005+400		4010+4011+401		4016+4017+401		4022+4023+402	
			6+4007+4008+4		2+4013+4014+4		8+4019+4020+4		4+4025+4026+4	
	DENTIFICATION	IDENTIFICATION DE L'ÉCHANTILLON:	600		015		021		027	
		MATRICE:	Eau		Еап		Eau		Eau	
	DATED	DATE D'ÉCHANTILLONNAGE:	2014-07-16		2014-07-16		2014-07-16		2014-07-16	
Paramètre	Unités	C/N LDR	5595856	LDR	5595877	LDR	5595923	LDR	5595924	
Sommation des PCDDs et PCDFs			49.5		84.7		107		0.0227	
Étalon de recouvrement	Unités	Limites								
13C-2378-TCDF	%	30-140	85	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	88		85		68	
13C-12378-PeCDF	%	30~140	91		88		06		92	
13C-23478-PeCDF	%	30~140	95		112		96		102	
13C-123478-HxCDF	%	30-140	71		73		29		71	
13C-123678-HxCDF	%	30-140	88		70		73		76	
13C-234678-HxCDF	%	30-140	74		77		99		70	
13C-123789-HxCDF	%	30-140	9/		74		74		74	
13C-1234678-HpCDF	%	30-140	69		90		99		70	
13C-1234789-HpCDF	%	30-140	9/		99		73		79	
13C-2378-TCDD	%	30-140	83		84		83		86	
13C-12378-PeCDD	%	30-140	98		117		104		109	
13C-123478-HxCDD	%	30-140	87		78		83		81	
13C-123678-HxCDD	%	30-140	85		82		74		86	
13C-1234678-HXCDD	%	30-140	11		99		20		92	
13C-OCDD	%	30-140	69		57		63		63	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes

5595856-5595924 Le blanc a été soustrait de l'échantillon. Le résultat en pg total correspond au composite de chacune des parties du train d'échantillonnage.

Certifié par:

La procédure des Laboratoires AGAT concernant les signataires se conforme atriclement aux exigences d'accréditation ISO 17025.2005 comme le requiert, lorsque applicable, CALA, CCN et MDDEFP. Toules les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDEFP.

Contrôle de qualité

NOM DU CLIENT: EXOVA N° DE PROJET: R14-034 PRÉLEVÉ PAR:

LIEU D

N° BON DE TRAVAIL: 14M865864 À L'ATTENTION DE: Claude Bélanger

LIEU DE PRÉLÈVEMENT:

FILLLYL FAIL,								JEU L	JE PRI	ELEVEIN	ENI;				
		·	Anal	lyse l	haute	résc	olutio	n							
Date du rapport: 2014-08-01			0	UPLICAT	`A	MATÉR	IAU DE R	ÉFÉRE	NCE	BLANC	FOR	lifiÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.		nites
	<u> </u>					méthode	, , , , , , , , , , , , , , , , , , ,	Inf.	Sup.	io riocapi	Inf.	Sup.	, noodp	Inf.	Sup.
Dioxines et furanes - Air (train d'	échantillo	nnage - OT	AN 1988)						•				•		
2,3,7,8-TCDD (pg total)	1	NA	NA	NA	0.0	< 1	130%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,7,8 PeCDD (pg total)	1	NA	NA	NA	0.0	< 1	111%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,4,7,8 HxCDD (pg total)	1	NA	NA	NA	0.0	< 0.9	109%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,6,7,8 HxCDD (pg total)	1	NA	NA	NA	0.0	< 0.9	110%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,7,8,9 HxCDD (pg total)	1	NA	NA	NA	0.0	< 0.9	106%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,4,6,7,8 HpCDD (pg total)	1	NA	NA	NA	0.0	< 1	110%	70%	130%	NA	70%	130%	NA	70%	130%
OCDD (pg total)	1	NA	NA	NA	0.0	< 2	106%	70%	130%	NA	70%	130%	NA	70%	130%
2,3,7,8 TCDF (pg total)	1	NA	NA	NA	0.0	< 0.8	118%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,7,8 PeCDF (pg total)	1	NA	NA	NA	0.0	< 0.6	111%	70%	130%	NA	70%	130%	NA	70%	130%
2,3,4,7,8-PeCDF (pg total)	1	NA	NA	NA	0.0	< 0.6	111%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,4,7,8 HxCDF (pg total)	1	NA	NA	NA	0.0	< 0.4	122%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,6,7,8 HxCDF (pg total)	1	NA	NA	NA	0.0	< 0.3	108%	70%	130%	NA	70%	130%	NA	70%	130%
2,3,4,6,7,8-HxCDF (pg total)	1	NA	NA	NA	0.0	< 0.4	121%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,7,8,9 HxCDF (pg total)	1	NA	NA	NA	0.0	< 0.6	127%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,4,6,7,8 HpCDF (pg total)	1	NA	NA	NA	0.0	< 1	122%	70%	130%	NA	70%	130%	NA	70%	130%
1,2,3,4,7,8,9 HpCDF (pg total)	1	NA	NA	NA	0.0	< 1	127%	70%	130%	NA	70%	130%	NA	70%	130%
OCDF (pg total)	1	NA	NA	NA	0.0	< 2	112%	70%	130%	NA	70%	130%	NA	70%	130%

Painthold Cayondus

A1-98

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDEFP. Toutes les signatures sur les certificats d'AGAT sont protègées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDEFP.

Sommaire de méthode

NOM DU CLIENT: EXOVA N° DE PROJET: R14-034

N° BON DE TRAVAIL: 14M865864 À L'ATTENTION DE: Claude Bélanger

PRÉLEVÉ PAR: LIEU DE PRÉLÈVEMENT: TECHNIQUE RÉFÉRENCE DE **PARAMÈTRE** PRÉPARÉ LE ANALYSÉ LE AGAT P.O.N. LITTÉRATURE ANALYTIQUE Analyse haute résolution 2,3,7,8-TCDD (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,7,8 PeCDD (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,4,7,8 HxCDD (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,6,7,8 HxCDD (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,7,8,9 HxCDD (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,4,6,7,8 HpCDD (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS OCDD (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 2,3,7,8 TCDF (pg total) 2014-07-28 2014-07-31 EPA 1613/EPA Method 23 HRMS HR-151-5400 1,2,3,7,8 PeCDF (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 2,3,4,7,8-PeCDF (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1.2.3.4.7.8 HxCDF (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/FPA Method 23 HRMS 1,2,3,6,7,8 HxCDF (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 2,3,4,6,7,8-HxCDF (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRM\$ 1,2,3,7,8,9 HxCDF (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRM\$ 1,2,3,4,6,7,8 HpCDF (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,4,7,8,9 HpCDF (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS OCDF (pg total) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Sommation des 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Tétrachlorodibenzodioxines Sommation des 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Pentachlorodihenzodioxines Sommation des 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Hexachlorodibenzodioxines Sommation des 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Heptachlorodibenzodioxines Sommation des PCDDs 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Sommation des 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Tétrachlorodibenzofuranes Sommation des 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Pentachlorodibenzofuranes Sommation des 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Hexachlorodibenzofuranes Sommation des 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Heptachlorodibenzofuranes Sommation des PCDFs 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 2,3,7,8-Tetra CDD (TEF 1.0) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,7,8-Penta CDD (TEF 0.5) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,4,7,8-Hexa CDD (TEF 0.1) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,6,7,8-Hexa CDD (TEF 0.1) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,7,8,9-Hexa CDD (TEF 0.1) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,4,6,7,8-Hepta CDD (TEF 0.01) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS Octa CDD (TEF 0.001) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 2,3,7,8-Tetra CDF (TEF 0.1) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,7,8-Penta CDF (TEF 0.05) 2014-07-28 2014-07-31 HR-151-5400 FPA 1613/EPA Method 23 HRMS 2,3,4,7,8-Penta CDF (TEF 0.5) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/FPA Method 23 HRMS 1,2,3,4,7,8-Hexa CDF (TEF 0.1) 2014-07-28 2014-07-31 HR 151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,6,7,8-Hexa CDF (TEF 0.1) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 2,3,4,6,7,8-Hexa CDF (TEF 0.1) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 HRMS 1,2,3,7,8,9-Hexa CDF (TEF 0.1) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/EPA Method 23 1,2,3,4,6,7,8-Hepta CDF (TEF 0.01) 2014-07-28 2014-07-31 HR-151-5400 EPA 1613/FPA Method 23 HRMS Al -90

2014-07-28

2014-07-31

1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)

EPA 1613/EPA Method 23 HRMS

HR-151-5400

Sommaire de méthode

NOM DU CLIENT: EXOVA N° DE PROJET: R14-034 PRÉLEVÉ PAR: N° BON DE TRAVAIL: 14M865864 À L'ATTENTION DE: Claude Bélanger

LIEU DE PRÉLÈVEMENT:

THE EVEL PRIX.			LILO DE FILLE VALUETA.		
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Octa CDF (TEF 0.001)	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
Sommation des PCDDs et PCDFs (TEQ)	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-2378-TCDF	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-12378-PeCDF	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-23478-PeCDF	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-123478-HxCDF	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-123678-HxCDF	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-234678-HxCDF	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-123789-HxCDF	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-1234678-HpCDF	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-1234789-HpCDF	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-2378-TCDD	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-12378-PeCDD	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-123478-HxCDD	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-123678-HxCDD	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-1234678-HxCDD	2014-07-28	2014-07-31	HR-151-5400	EPA 1613/EPA Method 23	HRMS
13C-OCDD	2014-07-28	2014-07-31	HR-151-5400	CEAEQ MA.400 - DF 1.0	HRMS

T: +1 (450) 441-5880 F: +1 (450) 441-4316 E: sales@exova.com W: www.exova.com

Certificat d'analyses

Agnico-Eagle Mines Ltd, Meadowbank Division

Baker Lake, Nunavut Stack sampling Project R14-034

Samples	Laboratory	NOx
•	Number	(µg)

I	1
li	I
	1 1
Dotaction limit	1 44 31
II DECENDE BIBLE	· • • • • • • • • • • • • • • • • • • •
D O TO THE THE TAXABLE PROPERTY OF TAXABLE PROPERTY OF	

Incinerator			
Test #1	Flask G-11	14034-4185	< 4
Test #1	Flask G-12	14034-4186	4
Test #2	Flask G-11	14034-4187	12
Test #2	Flask G-12	14034-4188	14

Note: This report should not be reproduced, totally or partially, without written laboratory authorization.

Reception date: July 29th, 2014 Date of analysis: July 31th, 2014

Report date: August 01st, 2014 Reference method: non accredited File number: 14034-02 version 1 Oussec

Christian St-Pierre, B. Sc. Chemist

Page 1 de 1