

## MEADOWBANK DIVISION

# **Monitoring Program Summary Report**

May 2012

Type A Water License 2AM-MEA0815

# **Table of Contents**

| SECTION 1 •     | BACKGROUND       | 1 |
|-----------------|------------------|---|
| SECTION 2 •     | WATER MANAGEMENT | 2 |
| 2.1 WATER USAGE |                  | 2 |
|                 | MENT PLANTS      |   |
| 2.3 ATTENUATION | POND EFFLUENT    | 3 |
| SECTION 3 •     | SPILL MANAGEMENT | 4 |

## SECTION 1 • BACKGROUND

As required under Part I, Item 25 of Type A Water License 2AM-MEA0815, this report documents the water management and monitoring activity at the mine site for the month. This activity includes: water usage and sewage treatment plant discharge water quality.

Additionally, a summary of the AEM internal spill reporting for the month is included.

#### **SECTION 2 • WATER MANAGEMENT**

#### 2.1 WATER USAGE

Freshwater usage for May 2012 is summarized in Table 2.1 below. Freshwater usage for the month totals 93,567 m³. The consumption from the Freshwater Tank was 93,403 m³. The consumption of reclaim water in the mill was 224,223 m³.

Table2-1: Freshwater Usage (m3)

|                         | February |
|-------------------------|----------|
| Freshwater Storage Tank | 93,403   |
| Emulsion Plant          | 164      |
| Water Truck             | 0        |
| Total                   | 93,567   |

#### 2.2 SEWAGE TREATMENT PLANTS

Four water samples were taken at the effluents of the sewage treatment plants (STP) in through the month.

The Seprotech STP results are shown in Table 2.2.1 below; the LJ-Mix STP results are shown in Table 2.2.2 The results of the discharge show the system was working well.

**Table 2.2.1: Seprotech Effluent Results** 

| Date                    | Units      | 7-May-12 | 14-May-12 | 22-May-12 | 28-May-12 |
|-------------------------|------------|----------|-----------|-----------|-----------|
| Ammonia                 | mg N/L     | < 0.05   | < 0.05    | < 0.05    | < 0.05    |
| Ammonia-Ammonium        | mg N/L     | 6.4      | 7.0       | 5.5       | 6.1       |
| Total Kjeldahl Nitrogen | mg N/L     | 12       | 12        | 11        | 11        |
| BOD-5                   | mg/L       | 11       | 10        | 9         | 9         |
| COD                     | mg/L       | 61       | 49        | 49        | 58        |
| Total Suspended Solids  | mg/L       | 24       | 28        | 26        | 15        |
| Nitrate                 | mg N/L     | 22.3     | 21.9      | 21.5      | 22.3      |
| Nitrite                 | mg N/L     | 0.03     | 80.0      | 0.01      | 0.03      |
| Total Phosphorus        | mg/L       | 12.2     | 10.4      | 10        | 10.3      |
| pH *                    | units      | 5.10     | 5.40      | 4.60      | 4.20      |
| Fecal Coliform          | UFC/100 mL | 56       | 68        | 60        | 4         |
| Total Coliform          | UFC/100 mL | 900      | ***       | <100      | <1,000    |

<sup>\*\*\*:</sup> The great number of bacteria restrains distinction of total coliforms and atypical colony. Numbers of total coliforms may be misjudged; it is not mentioned.

Table 2.2.2: LJ-Mix Effluent Results

| Date                    | Units      | 7-May-12 | 14-May-12 | 22-May-12 | 28-May-12 |
|-------------------------|------------|----------|-----------|-----------|-----------|
| Ammonia                 | mg N/L     | < 0.05   | < 0.05    | < 0.05    | < 0.05    |
| Ammonia-Ammonium        | mg N/L     | 9.4      | 16.5      | 15.1      | 11.3      |
| Total Kjeldahl Nitrogen | mg N/L     | 19       | 23        | 23        | 18        |
| BOD-5                   | mg/L       | 10       | 22        | 21        | 15        |
| COD                     | mg/L       | 70       | 96        | 65        | 70        |
| Total Suspended Solids  | mg/L       | 23       | 41        | 41        | 15        |
| Nitrate                 | mg N/L     | 25.9     | 31.6      | 33.3      | 27.2      |
| Nitrite                 | mg N/L     | 0.18     | 0.08      | 0.04      | 0.13      |
| Total Phosphorus        | mg/L       | 12.7     | 12.9      | 9         | 10.8      |
| pH *                    | units      | 5.00     | 5.70      | 5.80      | 5.50      |
| Fecal Coliform          | UFC/100 mL | 24       | 900       | 300       | 24        |
| Total Coliform          | UFC/100 mL | <1,000   | 3,000     | 1,800     | 300       |

#### 2.3 ATTENUATION POND EFFLUENT

As of May 12, 2012 both water treatment plants were discharging effluent to the environment through the diffuser in Third Portage Lake.

Tree water samples were taken at the effluents of the water treatment plant (ST-9) through the month.

The Effluent results are shown in Table 2.3.1 below. On May 22, and May 29 2012 the aluminum concentration was 1.85 mg/L and 1.55 mg/L, respectively, exceeding the license limit of 1.5 mg/L as a maximum grab sample. The high value of aluminium came from the coagulant, used in the water treatment plant. An action is in place to optimize the addition of coagulant.

Table 2.3.1: ST-9 - Effluent Monitoring

| Date<br>Hour  | Max<br>grab<br>conc. | Units  |   | May 15<br>2012<br>9:00 |   | May 22<br>2012<br>9:30 |   | May 29<br>2012<br>9:00 | Monthly average | Max<br>avg.<br>conc. |
|---------------|----------------------|--------|---|------------------------|---|------------------------|---|------------------------|-----------------|----------------------|
| Ammonia (NH3) | 32                   | mg N/L |   | 0.09                   |   | 0.14                   |   | 0.08                   | 0.10            | 16                   |
| Chloride (CI) | 2000                 | mg/L   |   | 24.9                   |   | 35.7                   |   | 34.9                   | 31.8            | 1000                 |
| Cyanide Total | 1.0                  | mg/L   |   | 0.088                  |   | 0.133                  |   | 0.124                  | 0.115           | 0.5                  |
| Nitrate       | 40                   | mg N/L |   | 2.7                    |   | 2.3                    |   | 2.2                    | 2.4             | 20                   |
| pH**          | 6-9.0                |        |   | 7.69                   |   | 7.26                   |   | 6.8                    | 7.25            | 6-9.0                |
| C10-C50       | 6                    | mg/L   | < | 0.1                    | < | 0.1                    | < | 0.1                    | 0.1             | 3                    |
| TSS           | 30                   | mg/L   |   | 4                      |   | 19                     |   | 5                      | 9               | 15                   |
| Turbidity**   | 15                   | NTU    |   | 2.98                   |   | 4.57                   |   | 3.24                   | 3.60            | 15                   |

| aluminum (AI)           | 1.5    | mg/L |   | 1.01    |   | 1.85    |   | 1.55    | 1.47    | 1.5    |
|-------------------------|--------|------|---|---------|---|---------|---|---------|---------|--------|
| arsenic (As)            | 0.60   | mg/L | < | 0.005   |   | 0.0036  | < | 0.0005  | 0.0030  | 0.30   |
| cadmium (Cd)            | 0.004  | mg/L | < | 0.00002 |   | 0.00009 |   | 0.00003 | 0.00005 | 0.002  |
| copper (Cu)             | 0.2    | mg/L |   | 0.0048  |   | 0.0038  |   | 0.0030  | 0.0039  | 0.1    |
| mercury (Hg)            | 0.0008 | mg/L | < | 0.00001 | < | 0.00001 | < | 0.00001 | 0.00001 | 0.0004 |
| nickel (Ni)             | 0.4    | mg/L |   | 0.0144  |   | 0.0281  |   | 0.0228  | 0.0218  | 0.2    |
| lead (Pb)               | 0.20   | mg/L | < | 0.0003  | < | 0.0003  | < | 0.0003  | 0.0003  | 0.10   |
| zinc (Zn)               | 0.8    | mg/L |   | 0.003   |   | 0.01    |   | 0.002   | 0.005   | 0.4    |
| Dissolved aluminum (AI) | 1.0    | mg/L |   | 0.01    | < | 0.01    |   | 0.02    | 0.01    | 1.0    |

<sup>\*\*</sup> indicate the analysis was performed by the environmental department

## **SECTION 3** • SPILL MANAGEMENT

AEM has developed a system of tracking spills on-site. Table 3.1 summarizes the AEM internal spill reports for the month. Fourteen (14) spills occurred on site; four was reported to the GN spill hotline.

Table 3-1: Summary of AEM Internal Spill Reports

| Date of<br>Spill | Hazardous<br>Material | Quantity | Location                           | Cause of spill                   | Clean-up<br>action taken                              | Reported<br>to Spill<br>Hot Line |
|------------------|-----------------------|----------|------------------------------------|----------------------------------|-------------------------------------------------------|----------------------------------|
| 2-May-12         | Fuel                  | 150L     | Haul truck<br>refueling<br>station | Failed<br>component              | Contaminated soil taken to contaminated soil disposal | Yes                              |
| 3-May-12         | Fuel                  | 20L      | Haul truck refueling station       | Unreported                       | Contaminated soil taken to Hazmat area                | No                               |
| 5-May-12         | Fuel                  | 10L      | South pit view point               | Human error                      | Contaminated soil taken to Hazmat area                | No                               |
| 13-May-12        | coolant               | 40L      | FGL/Sana<br>Garage                 | Improper<br>working<br>procedure | Contaminated soil taken to Hazmat area                | No                               |

| 14-May-12 | hydraulic oil | 40L     | North pit                               | Human error                                                | Contaminated soil taken to Hazmat area                                             | No  |
|-----------|---------------|---------|-----------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------|-----|
| 15-May-12 | oil           | 80L     | FGL/Sana<br>Garage                      | Human error                                                | Contaminated soil taken to Hazmat area                                             | No  |
| 16-May-12 | oil           | 25L     | Hazmat<br>storage                       | Improper<br>working<br>procedure<br>and storage            | Contaminated soil taken to Hazmat area                                             | No  |
| 18-May-12 | sewage        | 24,750L | Outside<br>Sewage<br>treatment<br>plant | Failed component                                           | Sewage was vacuumed and contaminated soil was removed and both disposed to the TSF | Yes |
| 18-May-12 | diesel        | 400L    | Behind mill,<br>green tanks             | Overflowed due to expansion of the fuel by the temperature | Contaminated soil taken to contaminated soil disposal                              | Yes |
| 20-May-12 | diesel        | 85L     | Refueling<br>Station                    | Unreported                                                 | Contaminated soil taken to contaminated soil disposal                              | No  |
| 24-May-12 | hydraulic oil | 70L     | Bay goose<br>pit                        | Hydraulic<br>Hose broke                                    | Contaminated soil taken to Hazmat area                                             | No  |
| 24-May-12 | coolant       | 20L     | Truck shop inuksuk side                 | Failed component                                           | Contaminated soil taken to Hazmat area                                             | No  |
| 26-May-12 | CIP pulp      | 500L    | Mill                                    | The identification of the valves were reverse              | Vacuum the liquid and contaminated soil taken to TSF                               | Yes |
| 26-May-12 | oil           | 4L      | Site service parking                    | Failed component                                           | Contaminated soil taken to Hazmat area                                             | No  |