

Azimuth Consulting Group Inc. 218 – 2902 West Broadway Vancouver, BC Canada V6K 2G8

Phone: 604-321-4180 www.azimuthgroup.ca

Technical Memorandum

Predictive effects assessment for fish in the pits at Meadowbank during closure

Client: Agnico Eagle Mines Limited – Meadowbank Division

Project: Risks to fish from exposure to tailings and porewater during post-closure

Prepared by: Eric Franz (MSc), Jenna Keen (MET, RPBio), Marianna DiMauro (MRM, RPBio)

Reviewed by: Ryan Hill (MRM, RPBio)

Date: November 13, 2024 (Final)

NOTICE TO READER

This report was prepared by Azimuth Consulting Group Inc. (Azimuth), for the use of Agnico Eagle Mines Ltd., who has been party to the development of the scope of work for this project and understands its limitations. The extent to which previous investigations were relied on is detailed in the report.

In providing this report and performing the services in preparation of this report Azimuth accepts no responsibility in respect of the site described in this report or for any business decisions relating to the site, including decisions in respect of the management, purchase, sale or investment in the site.

This report and the assessments and recommendations contained in it are intended for the sole and exclusive use of Agnico Eagle.

Any use of, reliance on, or decision made by a third party based on this report, or the services performed by Azimuth in preparation of this report is expressly prohibited, without prior written authorization from Azimuth. Without such prior written authorization, Azimuth accepts no liability or responsibility for any loss, damage, or liability of any kind that may be suffered or incurred by any third party as a result of that third party's use of, reliance on, or any decision made based on this report or the services performed by Azimuth in preparation of this report.

The findings contained in this report are based, in part, upon information provided by others. In preparing this report, Azimuth has assumed that the data or other information provided by others is factual and accurate. If any of the information is inaccurate, site conditions change, new information is discovered, and/or unexpected conditions are encountered in future work, then modifications by Azimuth to the findings, conclusions and recommendations of this report may be necessary.

In addition, the conclusions and recommendations of this report are based upon applicable legislation existing at the time the report was drafted. Changes to legislation, such as an alteration in acceptable limits of contamination, may alter conclusions and recommendations.

This report is time-sensitive and pertains to a specific site and a specific scope of work. It is not applicable to any other site, development or remediation other than that to which it specifically refers. Any change in the site, remediation or proposed development may necessitate a supplementary investigation and assessment.

This report is subject to copyright. Reproduction or publication of this report, in whole or in part, without Agnico's prior written authorization, is not permitted.

TABLE OF CONTENTS

1	INTR	ODUCTIO	N	1
	1.1	Backgro	und	1
	1.2	Objectiv	e and Scope	1
	1.3	Approac	ch	2
		1.3.1	Lines of Evidence	2
		1.3.2	Protection Goal for Fish in the Pits	4
2	CONG	CEPTUAL I	MODEL OF EXPOSURE	7
	2.1	Goose P	it and Portage Pit as Potential Aquatic Habitat for Fish	8
		2.1.1	Pit Morphology and Habitat Suitability	8
		2.1.2	Stratification and Dissolved Oxygen	8
		2.1.3	Habitat Quality of the Tailings	9
	2.2	Life Hist	ory and Habitat Preferences for Resident Fish Species	14
3	PARA	METERS (OF POTENTIAL CONCERN IN POREWATER	17
4	PRED	ICTIVE EF	FECTS ASSESSMENT	19
	4.1	LOE 1: P	orewater Chemistry Compared to Toxicity Thresholds for Fish	19
		4.1.1	Ammonia	19
		4.1.2	Cyanide	22
		4.1.3	Sulphate	25
		4.1.4	Arsenic	26
		4.1.5	Cobalt	28
		4.1.6	Selenium	30
	4.2	LOE 2: L	aboratory Toxicity Tests	32
		4.2.1	Fathead Minnow: 7-day test for survival and growth	33
		4.2.2	Fathead Minnow: 96-hour test for survival	33
		4.2.3	Rainbow Trout: 96-hour test for survival	35
		4.2.4	Summary	36
	4.3	Summar	ry and Conclusions	38
5	REFF	RENCES		39

LIST OF FIGURES

Figure 1-1.	Meadowbank Mine Footprint (2021)5
Figure 1-2.	Proposed approach for identifying conditions in the pits where risk management measures may be warranted after re-flooding.
Figure 2-1.	Aerial photograph of Goose Pit prior to tailings deposition (top) and the porewater
	sampling locations, 2022-2024 (bottom)
Figure 2-2.	Simulated dissolved oxygen concentrations over 24 years after Goose Pit is reconnected
	with Third Portage Lake (AtkinsRéalis, 2024b)
Figure 2-3.	Factors influencing fish exposure to contaminated sediment
Figure 4-1.	Relative Performance Index from Leduc et al. (1982) showing the combined sublethal effects of free cyanide (adapted from B.C. ENV, 2021)
LIST O	F TABLES
Table 2-1.	Habitat characteristics of the tailings samples collected from Goose Pit in 2022 and 2023. 13
Table 2-2.	Habitat and substrate preferences for resident fish species in Third Portage Lake (from Richardson et al., 2001)
Table 3-1.	Summary of parameters of potential concern (POPC) in porewater samples collected from
	Goose Pit in 2022-2024
Table 4-1.	Un-ionized ammonia LC50 results for freshwater fish species in Canada (adapted from EC and HC, 2001)
Table 4-2.	Modelled average sulphate effect concentrations for the 21-day Rainbow Trout eyed-egg test (adapted from B.C. ENV, 2013)
Table 4-3.	Arsenic toxicity data for cold water fish species (adapted from Lepper et al. 2007) 28
Table 4-4.	Relevant data on effects to fish from aqueous exposure to cobalt
Table 4-5.	Results of the 7-day Fathead Minnow survival and growth test
Table 4-6.	Results of the 96-hour Fathead Minnow test with and without pH adjustment
Table 4-7.	Results of the 96-hour Rainbow Trout test with and without pH adjustment
Table 4-8.	Concentrations of parameters of potential concern in reclaim water from the 96-hour Rainbow Trout test compared to concentrations in porewater samples from Goose Pit 37

LIST OF APPENDICES

Appendix A Porewater and Tailings Chemistry Results

Appendix B Analytical Laboratory Reports

Appendix B-1 Laboratory Reports for the Porewater Samples

Appendix B-2 Laboratory Reports for the Tailings Samples

Appendix B-3 Fathead Minnow Toxicity Test Results (May 2023)

Appendix B-4 Rainbow Trout Toxicity Test Results (September 2024)

Appendix C AtkinsRéalis. 1D Tailings Consolidation Modelling of Goose Pit. Technical Note. April 30, 2024

Appendix D AtkinsRéalis. Preliminary Goose Pit Hydrodynamic Water Quality Forecast – Water quality profile for simulation 3B-2 at the end of closure (November 2043)

1 INTRODUCTION

1.1 Background

The Nunavut Water Board (NWB) granted Agnico Eagle Mines Ltd (Agnico Eagle) authorization to dispose of tailings from the Whale Tail Pit deposits into Goose Pit and Portage Pit on May 24, 2019 (Figure 1-1). One of the conditions of the updated Water Licence was for Agnico Eagle to review mitigation options to protect against impacts to water quality and aquatic life from contaminants in the tailings. Agnico Eagle hired Azimuth Consulting Group Inc. (Azimuth) to support closure planning. The first step in the process involved identifying under what conditions mitigation options may be considered to protect aquatic life. The first deliverable under this scope of work was a technical memorandum that summarized comments from the agencies during the permitting process in 2018 and 2019 (Azimuth, 2022). That memorandum also included chemistry data from surface water, tailings, and porewater sampling programs that were conducted in 2022. The key outcome from that scope of work was a framework to help guide closure planning. The framework is presented in Figure 1-2.

1.2 Objective and Scope

The objective of this deliverable is to assess if fish are at risk from exposure to contaminants in the tailings in the pits at Meadowbank after the dikes are breached and the pits are connected to Third Portage Lake. Effects to fish habitat would normally be considered in an ecological risk assessment. However, habitat in the pits was assigned zero value in the No-Net Loss Plan (NNLP) Addendum (Agnico Eagle, 2020)¹. Because habitat in the pits is not expected to support fish productivity under the NNLP, the effects assessment focused on potential effects to fish from direct or indirect exposure to contaminants in the tailings (see scenario 3b and scenario 3c in **Figure 1-2**). Potential effects to fish from surface water exposure (scenario 1) are being evaluated as part of a separate scope of work which includes updated water quality predictions and site-specific water quality objectives for closure. Risks to periphyton and benthic invertebrate communities (scenario 3a) were not evaluated because the depositional areas of the pits were assigned zero habitat value in the NNLP Addendum (Agnico Eagle, 2020). Ultimately, the risk assessment findings will help support refinement of the Final Closure Plan, specifically, whether a non-acid generator (NAG) rockfill cover is needed to protect fish from exposure to contaminants in the tailings.

¹ Habitat losses associated with the pits will be offset by enhancing Arctic Grayling spawning habitat in local streams.

1

1.3 Approach

We used the following approach to evaluate potential effects to fish inhabiting the pits during postclosure:

- First, we describe the *expected* conditions in the pits at closure and habitat preferences for fish species in Third Portage Lake. Characterizing the expected conditions in the pits and habitat preferences for the various fish species in Third Portage Lake is an important aspect of the conceptual exposure model (Section 2).
- Second, we identified parameters of potential concern (POPC) in porewater by comparing measured concentrations against relevant water quality guidelines (WQGs) in Canada (Section 3).
- Lastly, we used the two lines of evidence porewater chemistry compared to toxicity thresholds and laboratory toxicity tests to provide an overall assessment of whether contaminants in the tailings pose a risk to the viability of fish populations in Third Portage Lake (Section 4).

1.3.1 Lines of Evidence

In ecological risk assessment, lines of evidence (LOEs) are pairings of exposure and effects measures that are used to evaluate the receptor (e.g., fish) and attribute being protected (e.g., viability of the population). For species without a special conservation status, which is the case for fish species in Third Portage Lake, we want to ensure that contaminants do not impair the population's ability to sustain itself over the long term. We assume that assessing biological endpoints at the organism level (e.g., survival, growth and reproduction) will protect population-level attributes (e.g., fish abundance).

Lines of evidence that measure biological endpoints for the population/community on-site are typically given more weight in a risk assessment because they are more ecologically relevant than laboratory toxicity tests or chemistry-based lines of evidence. However, it is not always possible to directly assess the population or community of interest, which is the case when the risk assessment is for future conditions. To assess risks to fish exposed to tailings during post-closure, we relied on two LOEs:

(1) porewater chemistry compared to toxicity thresholds and (2) laboratory toxicity tests with Fathead Minnow and Rainbow Trout. Each LOE has advantages and disadvantages, but they provide complementary information for assessing the risk to fish exposed to tailings in the pits. An overview of each LOE is provided below.

Porewater Chemistry Compared to Toxicity Thresholds in the Literature

This LOE compared porewater chemistry results for the short-list of parameters that exceeded WQGs to toxicity benchmarks specific to fish. WQGs are a useful starting point for identifying POPC, but it is the underlying fish toxicity data that are relevant to assessing effects and not the WQG values themselves.

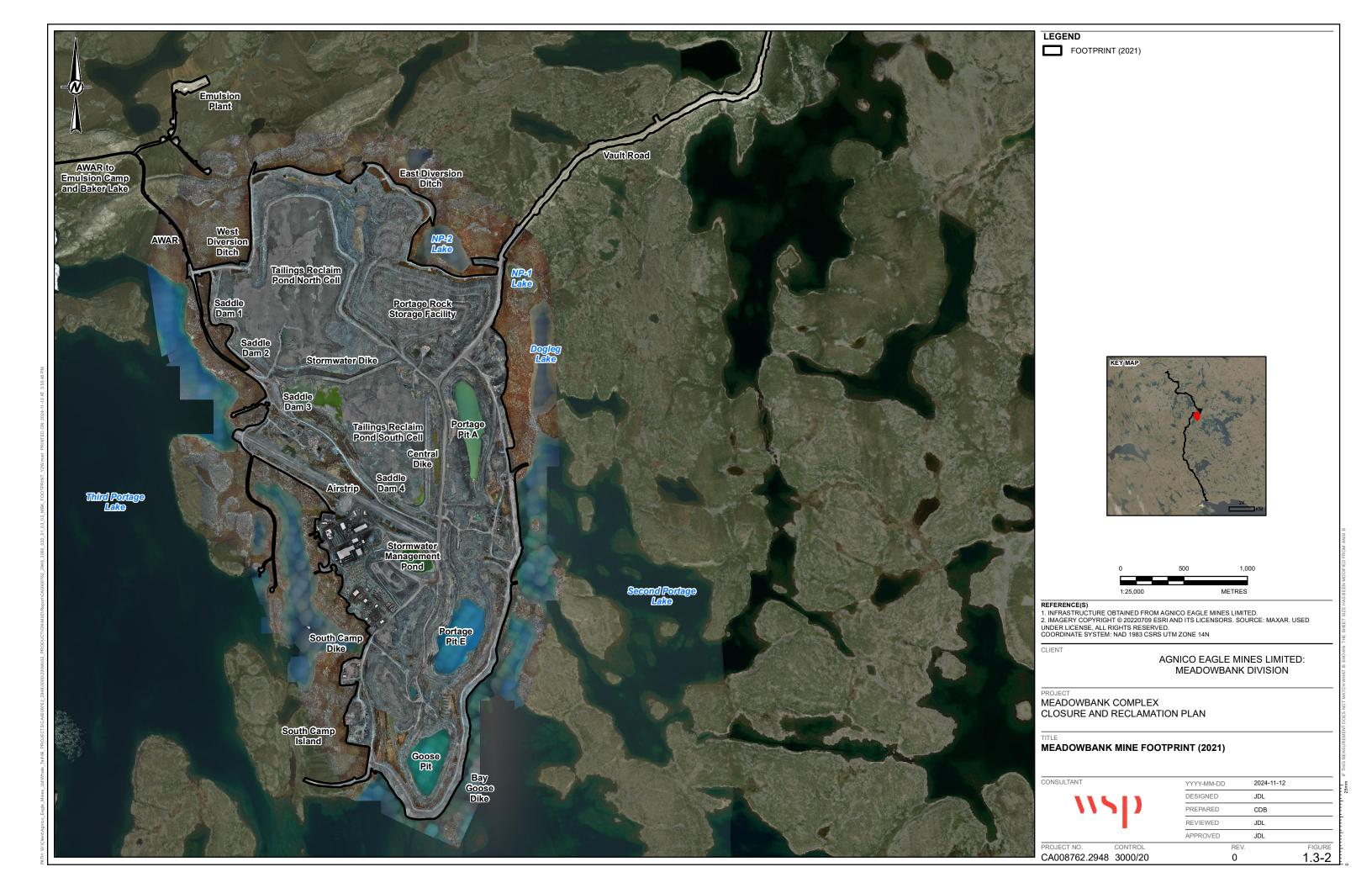
Short-term (acute) and long-term (chronic) toxicity data were considered in the assessment, but we put more emphasis on the acute toxicity test results because we expect fish will only be transiently exposed to contaminants in the porewater given the low habitat value of the tailings. Toxicity data for sensitive life stages for cold water species were given priority in the effects assessment. Overall, results from this LOE were given a lower weighting than the results from the laboratory toxicity tests because thresholds in the literature provide limited information on the potential effects to fish on a site-specific basis. For example, it is possible to exceed thresholds in the literature but not have an adverse effect because of site-related factors that modify the bioavailability of contaminants or because resident species have adapted to higher exposure conditions.

Laboratory Toxicity Tests

Laboratory toxicity tests are often used to assess risk to aquatic receptors under future conditions. Data obtained from highly controlled laboratory studies on standardized species are generally assumed to be reproducible and of high quality. There are, however, some uncertainties regarding porewater toxicity testing that need to be acknowledged. First, conditions in the laboratory are not representative of actual conditions that fish will be exposed to in the pits. A variety of physical, chemical, and biological factors have the potential to influence the bioavailability and toxicity of contaminants in porewater, and mimicking those conditions in the laboratory is not feasible. Second, the species used in toxicity testing are frequently chosen because they are amenable to maintenance and use under controlled laboratory conditions and not because they are representative of species in the wild (Rohr et al., 2016). Indeed, the lack of standardized test methods for Arctic species is one of the main uncertainties in assessing contaminant-related risks in northern ecosystems (Eldridge et al., 2022).

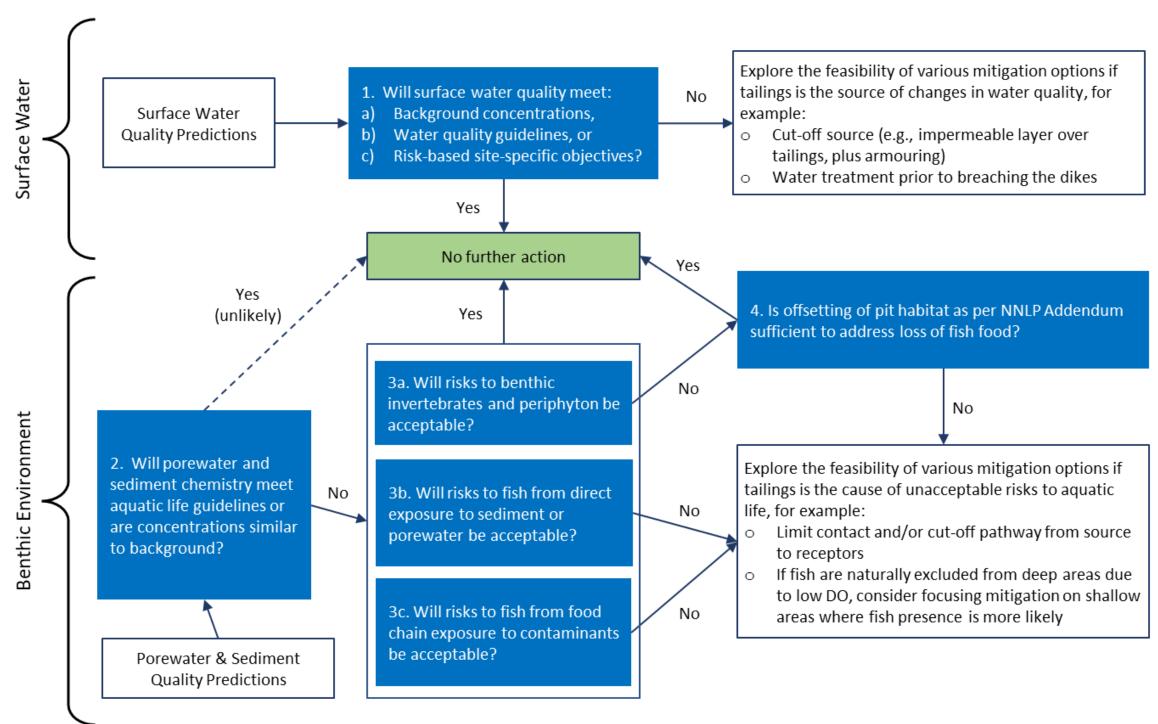
We acknowledge that there are uncertainties about the ecological relevance of the porewater tests for assessing risks to fish. That said, laboratory toxicity tests with standard test species are the most relevant, practical, and cost-effective LOE for assessing future risks to fish. To account for some of the uncertainty regarding the sensitivity of different fish species to contaminants in porewater, laboratory tests were conducted on two species: Fathead Minnow (*Pimephales promelas*) and Rainbow Trout (*Oncorhynchus mykiss*). Two Fathead Minnow tests were conducted in May 2023: a 7-day test for effects on survival and growth and a 96-hour single concentration test to verify that un-ionized ammonia was the cause of mortality. A 96-hour single-concentration test with Rainbow Trout was conducted in September 2024 to provide information about the sensitivity of salmonids to POPC.

Because of practical constraints around extracting enough porewater to meet the volume requirements for laboratory toxicity tests, the laboratory toxicity tests were conducted using reclaim water from Goose Pit as a surrogate media for porewater. AtkinsRéalis (2024b) reviewed porewater and surface water chemistry results from Goose Pit and concluded that the concentrations of most parameters were



similar between porewater and surface water at depth, except for magnesium and nitrate (higher in porewater compared to surface water) and alkalinity, arsenic, and selenium (lower in porewater compared to surface water). Overall, reclaim water was considered a reasonable surrogate for assessing potential effects to fish from short-term exposure to POPC. Chemistry results for the reclaim water samples used in the toxicity tests are provided in **Appendix A**.

1.3.2 Protection Goal for Fish in the Pits


Interpreting the results of a risk assessment is easier if protection goals and acceptable effect levels are clearly articulated. A *protection goal* is a narrative statement that defines the level of protection for a receptor of concern. Fisheries and Oceans Canada (DFO) approved the offsetting plan to compensate for the loss of habitat within the surface area of the pits, so from a regulatory perspective, there is no expectation that the pits will provide habitat to support fish. Based on our review of the comments from the agencies, protecting fish populations against short-term effects to survival is a defensible goal for two reasons. First, there is abundant spawning, rearing, and overwintering habitat throughout Third Portage Lake to support the long-term viability of Lake Trout and other resident species. Second, none of the fish species in Third Portage Lake have special conservation status that would require protection at the level of individual organisms (i.e., to live, reproduce, and thrive). Furthermore, we note that fish use of the pits will likely be limited compared to the rest of Third Portage Lake due to habitat quality considerations discussed in Section 2.

Predictive Effects Assessment for Fish in the Pits

Figure 1-2. Proposed approach for identifying conditions in the pits where risk management measures may be warranted after re-flooding.

2 CONCEPTUAL MODEL OF EXPOSURE

This section describes the expected conditions in the depositional areas of Goose Pit and Portage Pit after the Bay-Goose and South Camp Dikes are breached and the pits are reconnected to Third Portage Lake. Characterizing the conditions in the pits during closure is important for determining the likelihood that resident fish species will use the pits during closure. Assumptions about future conditions in the pits are based on information presented in the NNLP Addendum (Agnico Eagle, 2020), the in-pit tailings consolidation model (AtkinsRéalis, 2024a), and from the hydrodynamic water quality model for Goose Pit (AtkinsRéalis, 2024b [draft]). Based on the available information, we've assumed that the following conditions will characterize Goose Pit and Portage Pit during closure:

- Surface water quality in the pits will be protective of aquatic life (i.e., concentrations similar to background and/or less than CCME aquatic life or site-specific water quality objectives).
- At least 8 m of water will cover the in-pit tailings following reflooding. As part of the
 hydrodynamic water quality forecast for Goose Pit, AtkinsRéalis simulated changes in water
 quality under two scenarios where tailings were deposited to elevations of 114 masl (8 m) and 126
 masl (20 m) (AtkinsRéalis, 2024b). We adopted the 8 m cover scenario for assessing risks to fish
 because the model indicated dissolved oxygen (DO) concentrations may not be a limiting factor
 for fish inhabiting the benthic zone.
- At closure, the rate of porewater flux from tailings to the surface water will be negligible. This
 assumption is based on modelling completed by AtkinsRéalis (2024a) that showed tailings
 consolidation occurs in the first 2-3 years after deposition (max flux rate of 0.004 m³/s to 0.007
 m³/s depending on the model). After 2-3 years, the flux rate of porewater to the overlying water
 decreased to nil (zero) in the model.
- The chemistry of the tailings deposited to Goose Pit and Portage Pit in the future will be similar to current conditions based on samples collected in 2022 and 2023. This assumes that the underlying geology of the ore at Whale Tail is relatively homogenous in terms of the POPC concentrations. Therefore, current tailings and porewater chemistry data from Goose Pit are a reasonable estimate of future conditions if Agnico Eagle decides to utilize the available storage capacity in Goose Pit and Portage Pit.
- Primary productivity in Third Portage Lake is naturally low. Therefore, it could take decades or longer for a functionally diverse and abundant benthic invertebrate community to form in the pits.

• Fish are unlikely to forage on or seek cover near the tailings because of poor habitat quality.

Therefore, incidental ingestion and direct contact with contaminants in the tailings are considered insignificant exposure pathways for free-swimming fish.

2.1 Goose Pit and Portage Pit as Potential Aquatic Habitat for Fish

2.1.1 Pit Morphology and Habitat Suitability

The morphology of Goose Pit and Portage Pit is one of the factors that will dictate fish occupancy and exposure to contaminants at various life stages and times of year. Pit lakes are characterized by high depth-to-surface area ratios, steep sides, and flat benthic surfaces. As shown in **Figure 2-1**, there is sparse littoral habitat within Goose Pit. The lack of complex habitat will likely be a barrier for fish use of the pits during closure because the dominant fish species in Third Portage Lake require variable coarse substrates along shorelines or shoals for spawning, foraging, and refuge (Richardson et al., 2001).

Although the quality of littoral habitat within the boundaries of Goose Pit and Portage Pit is sparse, areas of Third Portage Lake that were dewatered but are outside the perimeter of Goose Pit and Portage Pit E will likely function as productive fish habitat during closure (see **Figure 2-1**). Offsetting calculations in the NNLP Addendum estimated that re-flooding of the area around Goose Pit and Portage Pit and habitat improvements such as boulder gardens and shoals would create 94.2 habitat units (HU) (Agnico Eagle, 2020). The 94.2 HU were excluded from the offset calculation because of uncertainty about whether the re-flooded areas of Second and Third Portage Lakes would serve as productive fish habitat. Regardless of whether these re-flooded areas will provide fish habitat at closure, based on the morphology of the pits, there is a low likelihood that fish will occupy areas of Goose Pit and Portage Pit where tailings were deposited for prolonged periods.

2.1.2 Stratification and Dissolved Oxygen

One of the significant findings from the 2022 water sampling program in Goose Pit was that DO concentrations are routinely below 2-3 mg/L throughout most of the water column during the open water and winter seasons. Subsequent monitoring programs in 2023 and 2024 confirmed no seasonal turnover, and Goose Pit remained hypoxic year-round below 10 m. If low DO concentrations at depth are expected to persist after the dikes are breached, then fish are unlikely to come in direct contact with POPCs in tailings or porewater. Studies looking at the effects of low DO on Rainbow Trout show growth can be affected when concentrations fall below 4.9 mg/L and asphyxiation occurs at 4 mg/L or below (Léger et al., 2021). The greater the depth of hypoxia in the water column, the more likely that fish will avoid these areas in favor of Third Portage Lake where DO concentrations are fully saturated year-round.

To provide clarity about the potential for anoxia to persist at closure, AtkinsRéalis (2024b) modelled changes in DO after the dikes are breached. For this scope of work, we focused on the two simulations where the final tailings elevation is 126 masl (8 m of overlying water). One simulation assumed 1 m of reclaim water over the tailings before re-flooding (simulation 3B-2); the second simulation assumed 5 m of reclaim water over the tailings before re-flooding (simulation 3B-1). The volume of reclaim water at the start of re-flooding can influence mixing because of density differences between reclaim water (high total dissolved solids [TDS] concentrations) and surface water from Third Portage Lake. Both simulations were run for 24 years. The results of the first simulation with 1 m of reclaim water indicated density differences between surface water from Third Portage Lake (top) and reclaim water with high TDS (bottom) is not sufficient to maintain stratification over the long term. However, only the top 2 m of overlying water was fully oxygenated after 20 years (top panel in Figure 2-2). Except for fall turnover, the predicted concentration of DO at depth is less than 4 mg/L after 20 years. The simulation with 5 m of reclaim water at the start of re-flooding indicated conditions would remain stratified after 24 years. In this simulation, there was no indication that fall turnover would result in higher DO concentrations at depth (bottom panel in Figure 2-2). The authors noted that groundwater infiltration could result in the breakdown of stratification after several decades. For the risk assessment, we conservatively assumed that hypoxia will not be a barrier to fish transiently inhabiting the depositional areas in the future given the uncertainty about the duration of stratification and low DO conditions in the pits.

2.1.3 Habitat Quality of the Tailings

Approximately 2.7 Mt of tailings (in dry weight) were deposited in Goose Pit from July 2019 to August 2020 (AtkinsRéalis, 2024b). Tailings were collected from five locations in Goose Pit in 2022 and 2023 and submitted for metals, particle size, and organic carbon analyses. The first sampling program in August 2022 targeted areas around the perimeter of Goose Pit in water depth ranging between 9 m and 23 m (BG stations in **Figure 2-1**). In 2023, tailings were collected from three locations around the perimeter that were sampled in 2022 (BG-1, BG-4, and BG-5) and two deeper locations: ST-20i and ST-20ii. The physical characteristics of the tailings are presented in **Table 2-1**. Roughly 75 to 85 % of the tailings are fine particles in the 4 to 63 μ m range (silt). Clay (< 4 μ m) comprises between 13 to 23 % of the tailings. A small fraction of the tailings at ST-20ii was comprised of sand (< 2 mm). This location was closest to where tailings were deposited over the wall of the pit, and coarser material would have likely settled in this area.

Organic carbon content ranged from 0.17 to 0.41%. By comparison, average organic carbon content was 3.2 % (range 2.8-3.6%) for the five samples collected from the East Basin of Third Portage Lake in 2023 (Azimuth, 2024). The amount of organic carbon in the tailings was predictably low considering tailings were actively deposited in Goose Pit until August 2020 and the low natural rate of primary productivity.

The tailings samples had relatively low moisture content (26 to 40%). Low moisture content in the tailings samples is consistent with the consolidation model that showed porewater flux would decrease to nil (zero) 2-3 years after tailings deposition ceased.

Figure 2-1. Aerial photograph of Goose Pit prior to tailings deposition (top) and the porewater sampling locations, 2022-2024 (bottom).



Note: Porewater samples were collected at BG-1 to BG-5 in 2022. Porewater samples were collected at ST-20i, ST-20ii, BG-1, BG-4, and BG-5 in 2023 and 2024. The red star indicates the location of where tailings were deposited over the wall of Goose Pit.

Figure 2-2. Simulated dissolved oxygen concentrations over 24 years after Goose Pit is reconnected with Third Portage Lake (AtkinsRéalis, 2024b).

Simulation 3 – B2: 1 m of reclaim water over the tailings before reflooding; 8 m water cover.

Simulation 3 – B1: 5 m of reclaim water over the tailings before reflooding; 8 m water cover.

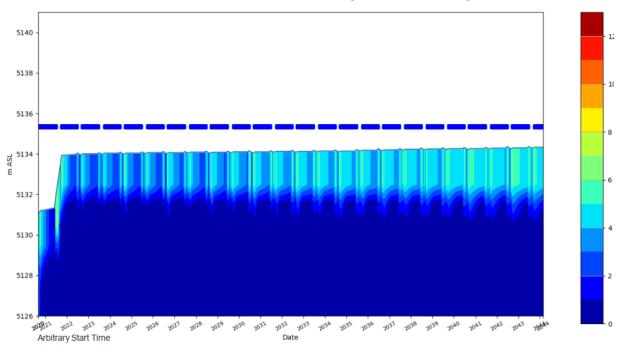


Table 2-1. Habitat characteristics of the tailings samples collected from Goose Pit in 2022 and 2023.

	God	ose Pit Ta	ilings Saı	mples - 2	022	Goose Pit Tailings Samples - 2023					
Client Sample ID	BG-1	BG-2	BG-3	BG-4	BG-5	BG-1	BG-4	BG-5	ST-20i	ST-20ii	
Date Sampled	12-Aug	21-Aug	21-Aug	21-Aug	21-Aug	23-Aug	23-Aug	23-Aug	23-Aug	23-Aug	
Moisture	26.4	26.4	28.2	29.1	40.3	39.1	36.4	34.5	36.8	32.3	
рН	8.30	8.57	8.40	8.42	8.32	9.59	8.41	8.37	8.56	8.46	
Clay (<4 µm)	13.3	18.3	19.3	19.9	22.1	22.7	22.5	22.4	14.5	15.1	
Silt (4-63 μm)	86.4	81.7	80.6	79.9	77.6	77.1	77.2	77.2	84.4	80.2	
Sand 63 µm-2mm)	<1	<1	<1	<1	<1	<1	<1	<1	1.1	4.7	
TOC (%)	0.41	0.28	0.35	0.24	0.23	0.21	0.17	0.16	0.34	0.314	

2.2 Life History and Habitat Preferences for Resident Fish Species

This review aims to identify the species and life stages potentially exposed to contamination in the tailings based on their life history. Assessing the potential impacts of contaminant exposure in wild fish populations is challenging, partly because natural fluctuations in fish populations can be attributed to complex interactions between multiple abiotic and biotic factors (**Figure 2-3**, from Edwards, 2019). Conceptually, species with smaller home ranges that are primarily benthic and prefer silt/clay habitat would – if using the pits – be more exposed to contaminants in the tailings compared to species and life stages that are pelagic and forage over a wide area. Ultimately, the effects on fish will depend on the concentration of the contaminant, exposure duration, pathway, environmental conditions, and attributes of the individual fish including its age and feeding habits (Jezierska and Witeska, 2006).

The fish community in Third Portage Lake is comprised of the following species: Lake Trout, Round Whitefish, Arctic Char, Burbot, Ninespine Stickleback, and Slimy Sculpin. Lake Trout is the dominant species in Third Portage Lake, followed by Round Whitefish and Arctic Char (Cumberland, 2005). Burbot, Ninespine Stickleback, and Slimy Sculpin comprise a small proportion of fish biomass in lakes around the Mine including Third Portage Lake (Azimuth, 2005a). A comprehensive overview of the productivity of the project lakes was included in the *Baseline Aquatic Ecosystem Report* for the Environmental Assessment (Azimuth, 2005a). The findings from the baseline fisheries assessment indicated that spawning, nursery, foraging, and overwintering habitat were abundant and were not limited in any of the lakes. The authors concluded that productivity in the study area lakes around Meadowbank is limited by nutrient availability and not by habitat. Although there is no expectation that the pits will contain fish habitat (as per the NNLP; see **Section 1.2**), there may be useable habitat in the pits and fish presence could therefore be expected.

Figure 2-3. Factors influencing fish exposure to contaminated sediment.

Note: this figure was presented in the plenary session on fish behavior in the Fish Sediment Exposure Workshop (Edwards, 2019).

Richardson et al. (2001) conducted a literature review on the lake habitat preferences and life histories of freshwater fish species that occur in the Northwest Territories and Nunavut. Four distinct life stages were included in the assessment: spawning (eggs), young-of-the-year, (YOY), juveniles, and adults. Habitat requirements were reported on the basis of three physical habitat features: water depth, substrate type, and structure/cover. Each life stage was given a rating based on the frequency of association ranging from not associated (blank) to almost always associated (high). The ratings for each species and life stage are summarized in **Table 2-2**.

Based on our review of physical habitat preferences for each species, Ninespine Stickleback is the only species that could potentially use the tailings based on the high association ratings for water depth between 5-10 m and fine sediment (silt and clay). This assessment is based on physical features alone and does not consider whether there would be food available or vegetative cover, which is a key habitat requirement throughout all life history stages for Ninespine Stickleback (**Table 2-2**). Large-bodied species prefer coarse substrate during their free-swimming life history and are unlikely to inhabit the depositional areas for prolonged periods.

Meadowbank Complex Predictive Effects Assessment for Fish in the Pits

Table 2-2. Habitat and substrate preferences for resident fish species in Third Portage Lake (from Richardson et al., 2001)

	Lake	Trout			Round \	Whitefish		Α	rctic Cha	r (residei	nt)		Bur	Burbot Slimy Sculpin				Ninespine Stickleback					
S	YOY	J	Α	S	YOY	J	Α	S	YOY	J	Α	S	YOY	J	Α	S	YOY	J	Α	S	YOY	J	Α
				•	•			•							•	•				•			
Н	L	L		Н	Н	Н	Н	L	L	L	Н	Н	Н	Н		Н	Н	Н	Н	Н	Н		Н
Н	М	М	М	М	Н	Н	Н	М	L	L	Н	Н	Н	Н		Н	Н	Н	Н	L	Н		Н
Н	Н	Н	М	М				Н	L	L	Н		Н	Н	L	М	Н	Н	Н	L	Н		Н
Н	Н	Н	М	L			Н	Н	L	Н	Н	L	L	L	L	М	Н	Н	Н	L	М		М
Н	Н	Н	Н	L			Н	М	Н	Н	Н	L	L	L	Н	М	Н	Н	Н	L	М		М
L										L					Н								
Н	Н	Н	Н	L	L	L	L		Н	Н	Н		Н	Н	Н	Н	Н						
Н	Н	Н	Н	М	Н			L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н			Н
Н	Н	Н	Н	М	Н			Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н			Н
Н				Н	Н			Н				Н	Н	Н	Н	Н	Н	Н	Н	L			L
L	М			L								Н	L	L	L	Н	Н			М	L		L
L				L				L				L			L	М				Н	Н		
L								L				L				М				Н	Н		
L								L				L				М	М			Н	Н		Н
			L					L	L	Н	Н		М										
Н			Н																				
L								L		Н			М	М	М								
				L						Н			М	М	М								
													М	М	М								
	Н	Н							Н	Н			М	М	М	Н							
 Lake trouinshore a sand, silt No prefefor adult seek coo 	and wood ut typically areas of lak t, and detrif rence for s lake trout, ler deeper	y debris spawn in sh es that are tus ubstrate wa and in gen	nallow free of as found eral they	gravel a • Young r found of substra	and rubble so round white over rock, sa	ubstrates fish are mo	st often	benthic avoiding habitats large co predato • Young-cover ar cobble s • As juver benthic • Adults in pelagic l	areas of lak g littoral and s which are inspecifics a ors of-the-year a mongst bou substrates a niles mature to pelagic h make season habitats in t	ces at depth d shallow b often occup and potentia and juvenila and juvenila alder, rubble as well as in e, they shift nabitats nal habitat:	as > 5 m enthic pied by al es seek e and vegetation from	• Burbot a spawn o	rations are are broadca ver sand, g	high ist spawnei ravel or rul	rs, and bble	 on the under side of stones and logs in shallow water < 1.5 m deep Slimy sculpin prefer areas with current 			d logs in	 Males ty weeds it Adult sti oxygen a water at 	out all life hypically buil n densely voicklebacks a and may als reas over sa	d their nest d their nest egetated ar re tolerant to frequent nd and gra	es ts amongst reas of low open vel
	H H H H H H H H H H H H H H H H H H H	H L H M H H H H H H H H H H H H H H H H H H	H L L H M M H L M L L L L L L L L L L L L L L L L L L	H L L L H M M M M M M M M M M M M M M M	H L L H H M M M M M M M M M M M M M M M	S YOY J A S YOY H L L H H H H M M M M M H H H H H M L H H H H H L H H H H H L H H H H H H H	S YOY J A S YOY J H L L H H H H H H H H M M M H H H H H H H H L L L H H H H H H L L L L	S YOY J A S YOY J A H L L H H H H H H M M M M H H H H H H H H H M L H H H H H H H H L L L L H H H H H H H	H L L L H H H H L L H M M M M H H H M M M H H H H	S YOY J A S YOY J A S YOY H L L H H H H H L L H H M M M M H H H H L H H H L H H H H H L H H H H H	H L L H H H H L L L L L H H H H L L L L	S YOY J A YOY	S YOY J A S	S YOY J A S YOY J A S YOY J A S YOY H L L L H H H H H H L L L H H H H H H	Note	No preference for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler for substrate was found for adult lake trout, and in general they seek cooler deeper waters in the summer (i.e., > 10 m) - Adults make seasonal habitat shift so plengtic habitats in the summer to feed	No. No.	No. No.	Nov J A S YOY J S S S S S S S S S	No	No	No	NOY J A S YOY J

Notes:

Life stages

S = spawning, YOY = young-of-the-year, J = juvenile, A = adult

Habitat ratings for each life stage:

blank (not associated); L = low (species is infrequently associated); M = moderate (species is frequently associated); H = high (species is nearly always associated)

Cover:

Overhead = riparian cover overhanging the littoral zone, undercut banks and woody debris at the surface of the water

In-situ = rocks and boulders on sand/gravel substrates, submerged woody debris, etc.

3 PARAMETERS OF POTENTIAL CONCERN IN POREWATER

Parameters of potential concern (POPC) are chemicals that exceed numeric guidelines intended to broadly protect aquatic organisms in freshwater environments. The initial list of POPCs included parameters in porewater that exceeded the most recent chronic federal freshwater aquatic life guidelines (WQGs) from Canadian Council of Ministers of the Environment (CCME) or Environment and Climate Change Canada (ECCC). Chronic (30-day average) WQGs from B.C. were adopted for parameters without federal guidelines (e.g., sulphate) or if federal WQGs were outdated (e.g., molybdenum and selenium). The WQGs used in this assessment are provided in **Table A-1** to **Table A-3** along with the porewater chemistry results from 2022-2024. Chemistry results from the bulk tailings samples were not used to identify POPCs in sediments because there are no federal or provincial sediment quality criteria based on toxicity studies with fish. The CCME sediment quality guidelines were derived based on whole-sediment toxicity tests with *Hyalella azteca*. For completeness, chemistry results for the tailings samples from Goose Pit are provided in **Table A-4**.

The following parameters exceeded the selected WQGs in at least one porewater sample from Goose Pit in 2022-2024: ammonia, nitrite, sulphate, cyanide (free), arsenic, cobalt, selenium, and silver. Nitrite and silver were not carried forward as POPCs because there was only one marginal exceedance for each parameter. For nitrite, 9 of the 10 samples were below detection (0.02 mg/L). The concentration of silver was less than the detection limit (0.02 μ g/L) in 13 of 15 samples (Table 3-1).

The porewater POPCs carried forward in this assessment include ammonia, cyanide, sulphate, arsenic, cobalt, and selenium.

Table 3-1. Summary of parameters of potential concern (POPC) in porewater samples collected from Goose Pit in 2022-2024.

			P	OPC and correspond	ding guidelines for prot	ection of freshwa	ater aquatic life		
Year	Sample ID	Ammonia (mg/L)	Nitrite (mg/L)	Sulphate (mg/L)	Free Cyanide (µg/L)	Arsenic (μg/L)	Cobalt (µg/L)	Selenium (μg/L)	Silver (μg/L)
rear	Sample 1D	CCME 2010	CCME 1987	BC ENV 2013	CCME 1987	CCME 1997	ECCC 2017	BC ENV 2014	CCME 2015
		0.855	0.06	429	5	5	1.8	2	0.25
	BG-1	NA	NA	NA	NA	689	23.5	20.4	0.071
	BG-2	NA	0.0747	1180	NA	636	42.8	24.7	0.418
2022	BG-3	NA	<0.02	1170	NA	439	47.6	9.48	<0.02
	BG-4	NA	<0.02	1040	NA	235	67.0	3.34	<0.02
	BG-5	NA	<0.02	1070	NA	385	131	5.98	<0.02
	BG-1	NA	NA	NA	NA	216	44.8	5.80	<0.02
	BG-4	NA	NA	NA	NA	346	43.9	7.95	<0.02
2023	BG-5	NA	NA	NA	NA	603	43.2	14.7	<0.02
	PW_ST-20i	NA	NA	NA	NA	158	62.0	2.77	<0.02
	PW_ST-20ii	NA	NA	NA	NA	347	81.6	6.96	<0.02
	PW-BG-1	28.3	<0.02	1270	3.6	610	40.8	6.18	<0.02
	PW-BG-4	23.5	<0.02	1200	5.4	235	69.0	2.53	<0.02
2024	PW-BG-5	26.4	<0.02	1290	14.6	177	47.3	7.37	<0.02
	PW-ST-20i	28.5	<0.02	1220	8.0	346	47.8	13.8	<0.02
	PW-ST-20ii	17.7	<0.02	1240	2.1	423	33.0	1.84	<0.02
								T	
	Count	5	9	9	5	15	15	15	15
	Count < DL	0	8	0	0	0	0	0	13
	Count > FWAL	5	1	9	3	15	15	14	1
Averag	e Concentration	24.9	see median	1187	6.7	390	55.0	8.92	see median
Media	n Concentration	26.4	<0.02	1200	5.4	347	47.3	6.96	<0.02
Max Scr	eening Quotient	33	1.2	3.0	2.9	138	73	12	1.7
Min Scr	eening Quotient	21	1.2	2.4	0.4	32	13	0.9	0.3

Notes

NA = not analyzed. Not enough volume of porewater was extracted from tailings samples in 2022 and 2023 to analyze the full suite of parameters (i.e., major ions, nutrients, cyanide species, and metals). Metals were prioritized for analysis followed by nutrients and conventional parameters.

Screening quotients = porewater concentration \div the water quality guideline.

Shaded values exceed the chronic freshwater aquatic life guidelines.

4 PREDICTIVE EFFECTS ASSESSMENT

4.1 LOE 1: Porewater Chemistry Compared to Toxicity Thresholds for Fish

This LOE compares porewater chemistry results from Goose Pit in 2022-2024 to toxicity thresholds for fish. For each POPC, we summarized the concentrations measured in porewater samples from Goose Pit, provided an overview of the WQG used for screening, and compared the measured concentrations against toxicity thresholds for fish. Underlying toxicity data were sourced from the WQGs. If WQGs are recent and comprehensive, they are a convenient starting point for literature-based evaluations because the process for deriving guidelines involves rigorous data quality screening.

4.1.1 Ammonia

Ammonia exists in two forms in aquatic environments: un-ionized ammonia (NH₃) and ionized ammonia (NH₄⁺). Un-ionized ammonia is more toxic than ionized ammonia because it can permeate the gills of fish and other aquatic organisms. Ammonia toxicity in fish primarily arises from its ability to impair nitrogen excretion. Ammonia normally diffuses across the gills into the water, but when external concentrations are high, this gradient is reversed, and ammonia accumulates in the blood, causing hyperammonemia (Randall and Tsui, 2002). This condition leads to increased blood pH (alkalosis), disrupting normal metabolic processes and reducing the oxygen-carrying capacity of the blood. Chronic ammonia exposure in aquatic organisms can impair growth, reproduction, and immune function, leading to increased mortality (CCME, 2010).

Exposure Data

The concentration of total ammonia (as N) ranged from 17.7 to 28.5 mg/L in the five porewater samples collected from Goose Pit in August 2024. We converted total ammonia (as N) concentrations to unionized ammonia (mg NH₃/L) because the toxicity test results referenced in the CCME WQG are expressed in mg NH₃/L. The percentage of un-ionized ammonia at different pH and water temperatures is provided in Table 3 in the WQG factsheet (CCME, 2010). We assumed porewater has a relatively constant temperature of 0-5°C and that laboratory pH is a reliable estimate of *in-situ* porewater pH. Laboratory pH readings from 2022 and 2024 indicate porewater in Goose Pit is slightly alkaline (7.5 to 8). At pH 7.5 and 0°C, only 0.26% of the total ammonia is present as un-ionized ammonia. The percentage of un-ionized ammonia increases to 1.23% at pH 8 and 5°C. If we conservatively assume un-ionized ammonia represents 2% of the total ammonia concentration measured in the porewater samples, unionized ammonia concentrations in the porewater samples collected in 2024 would have ranged from 0.35 mg/L to 0.57 mg/L.

Water Quality Guideline and Relevant Toxicity Data

Porewater chemistry data were screened against the chronic CCME WQG (2010). The CCME WQG was derived from a species sensitivity distribution (SSD) curve using chronic EC20 data from five aquatic invertebrate studies, 22 fish studies, and one amphibian study (Environment Canada and Health Canada [EC and HC], 2001). The three most sensitive species were *Hyalella azteca* (28-d partial life cycle test; EC20 = 0.051 mg NH₃/L), Sockeye salmon (62-d EC20 for hatching success; EC20 = 0.057 mg NH₃/L), and Rainbow Trout (early life stage survival²; EC20 = 0.09 mg NH₃/L). Based on the 28 studies included in the SSD, un-ionized ammonia concentrations of 0.041 mg/L (95% confidence intervals 0.019 and 0.063 mg NH₃/L) could result in a 20% reduction in growth or reproduction for 5% of the invertebrate, fish and amphibian species in an aquatic community. Incidentally, the 5th percentile concentration from the SSD was nearly identical to the effect threshold for tissue-related effects in Rainbow Trout, which was the most sensitive species and endpoint reviewed for the CCME WQG. During the four-month study, fish were exposed to un-ionized ammonia ranging from 0.01 to 0.07 mg/L. Concentrations greater than 0.04 mg NH₃/L were correlated with pathological lesions on the gills and kidney tissue degradation. Instead of applying a safety factor to this study, CCME adopted the lower 95th confidence interval of 0.019 mg/L from the SSD as the chronic WQG.

Acute toxicity data for freshwater fish species was also included in the ammonia assessment report (EC and HC, 2001). The acute LC50 results for species found in Canada are provided in **Table 4-1**. The data were based on studies originally included in the U.S. Environmental Protection Agency (U.S. EPA; 1985). Rainbow Trout were the fourth most sensitive species, with a geometric mean of 0.48 mg NH₃/L from 112 studies (min LC50 = 0.158 mg NH₃/L; max LC50 = 1.09 mg NH₃/L). Char, represented by Brook Trout (*Salvelinus fontinalis*), were less sensitive to un-ionized ammonia than *Oncorhynchus* species with an LC50 of 1.0 mg NH₃/L (**Table 4-1**). Lake Trout LC50 data from 1992 were included in the 2013 update to the U.S. EPA ambient aquatic life criteria (U.S. EPA, 2013). The updated U.S. EPA criteria normalized the LC50 data to pH 7 and expressed concentrations in total ammonia nitrogen (TAN). The species mean acute values for Brook Trout and Lake Trout were 156.3 and 159.3 mg TAN/L, indicating Brook Trout and Lake Trout show similar sensitivity to the effects of ammonia under short-term exposure conditions.

Risk Conclusion

Current concentrations of un-ionized ammonia in full-strength porewater (0.35 to 0.57 mg/L) are high enough to cause effects on survival for fish that transiently inhabit the bottom of the pits. However, there is low likelihood that free-swimming fish will be directly exposed to full strength porewater at the water-sediment interface given the habitat preferences of resident fish species in Third Portage Lake

² Geometric mean from four studies. Min EC20 = 0.018 mg NH₃/L; max EC20 = 0.181 mg NH₃/L. See Table 6 in EC and HC, 2001.

20

and the effect of dilution (i.e., porewater has a negligible effect on surface water quality in Goose Pit [AtkinsRéalis, 2024b]). In the Goose Pit hydrodynamic model for simulation 3-B2 (final water cover depth of 8 m), the predicted concentration of total ammonia at the end of closure (November 2043) is 0.5 mg/L (Appendix D). Approximately 1.23% of total ammonia occurs in the un-ionized form at pH 8 and a water temperature of 5°C (estimated conditions at depth during closure). Under these conditions, the concentration of un-ionized ammonia at closure would be approximately 0.006 mg NH₃/L. If we conservatively assume 1:10 dilution of porewater (0.57 mg/L) with surface water (0.006 mg/L), the predicted un-ionized ammonia concentration at the sediment-water interface is 0.062 mg/L. At this concentration, we would not expect un-ionized ammonia to cause effects to survival for fish transiently coming in contact with the tailings. Porewater will likely be diluted more than 1:10 in the benthic zone that could plausibly be occupied by fish after the dikes are breached, which will provide an added level of protection for fish.

Table 4-1. Un-ionized ammonia LC50 results for freshwater fish species in Canada (adapted from EC and HC, 2001).

			LC50 (mg NH₃/L)					
Common name	Species name	No. of studies	Geometric Mean	Minimum	Maximum			
White perch	Morone americana	2	0.279	0.150	0.520			
Mountain whitefish	Prosopium williamsoni	3	0.289	0.143	0.473			
Chinook salmon	Oncorhynchus tshawytscha	3	0.442	0.399	0.476			
Rainbow trout	Oncorhynchus mykiss	112	0.481	0.158	1.090			
Pumpkinseed	Lepomis gibbosus	4	0.489	0.140	0.860			
Coho salmon	Oncorhynchus kisutch	8	0.520	0.272	0.880			
Cutthroat trout	Oncorhynchus clarki	4	0.642	0.520	0.800			
Brown trout	Salmo trutta	3	0.657	0.597	0.701			
Mountain sucker	Catostomus platyrhynchus	3	0.685	0.668	0.819			
Walleye	Stizostedion vitreum	4	0.706	0.510	1.100			
Golden shiner	Notemigonus crysoleucas	1	0.720	-	-			
Golden trout	Oncorhynchus aguabonita	1	0.755	-	-			
Brook trout	Salvelinus fontinalis	2	1.005	0.962	1.050			
Smallmouth bass	Micropterus dolomieu	4	1.105	0.690	1.780			
Largemouth bass	Micropterus salmoides	2	1.304	1.000	1.700			
Fathead minnow	Pimephales promelas	45	1.344	0.240	3.440			
White sucker	Catostomus commersoni	7	1.349	0.760	2.220			
Mottled sculpin	Cottus bairdi	1	1.390	-	-			
Bluegill	Lepomis macrochirus	15	1.406	0.260	2.970			
Spotfin shiner	Cyprinella spiloptera	3	1.479	1.200	1.620			
Channel catfish	Ictalurus punctatus	14	1.707	0.500	4.200			
Stoneroller	Comostoma anonalum	1	1.720	-	-			
Green sunfish	Lepomis cyanellus	6	1.860	0.590	2.110			

4.1.2 Cyanide

Cyanides are organic and/or inorganic compounds that contain the cyano group (CN). Cyanide can occur in various forms in aquatic environments, and each form has unique chemical properties that influence toxicity to aquatic organisms. The form of cyanide in water is largely dependent upon pH but is also influenced by temperature, dissolved oxygen, salinity, and the presence of other ions (B.C. ENV, 2021). The following information describing the relevant cyanide species in aquatic environments was adapted from the B.C. WQG (B.C. ENV, 2021).

- Cyanide ion refers to the single free anion CN⁻. Chemically, CN⁻ behaves similarly to the halide ions chloride (Cl⁻), fluoride (F⁻), and iodide (I⁻).
- Molecular cyanide refers to cyanide in the form of the uncharged, undissociated molecule (HCN).
 HCN is infinitely soluble in water. Because of its volatility, HCN tends to vaporize into the atmosphere.
- Free cyanide refers to the sum of molecular cyanide and the cyanide ion (HCN+CN⁻). Equilibrium between the two forms is dependent mainly upon pH and, to a lesser degree, upon temperature. Under normal conditions in freshwater systems, free cyanide is mostly in the form of HCN.
- Cyanate compounds contain the OCN group. Cyanates are produced when alkaline wastewater containing cyanide is treated with chlorine. Cyanate is considerably less toxic than HCN.
- Thiocyanate compounds contain the -SCN group. Thiocyanate is considerably less toxic than HCN.

HCN and CN⁻ are the principal toxic forms of cyanide that are relevant for aquatic life (B.C. ENV, 2021). HCN is more toxic because it is able to cross biological membranes. Inside the cell, cyanide causes toxicity by binding to iron and inhibiting cellular respiration.

Exposure Data

There was not enough porewater in the tailings samples collected and processed in 2022 and 2023 to analyze for the full suite of parameters, including cyanide species. A greater mass of tailings was collected in 2024, which yielded a higher volume of porewater. Free cyanide (HCN) concentrations ranged from 2.1 μ g/L to 15 μ g/L in the five porewater samples collected in 2024 (three samples exceeded the CCME chronic WQG). Total cyanide concentrations ranged from 85 μ g/L to 245 μ g/L.

Water Quality Guideline and Relevant Toxicity Data

The CCME WQG of 5 μ g/L applies to free cyanide. CCME did not produce a fact sheet for cyanide. Instead, the CCME WQG refers to the original WQG included in the Canadian Council of Resource and Environment Ministers (CCREM) 1987 report. That document referenced toxicity tests that were used to derive the 1984 U.S. EPA acute and chronic criteria of 22 μ g/L and 5.2 μ g/L, respectively. Ultimately, the Ontario Ministry of Environment guideline of 5 μ g/L was adopted based on "more recent literature".

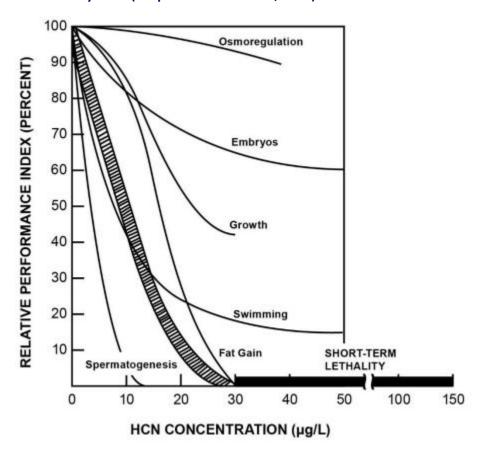
Information on the recent literature was not provided in CCREM (1987), so our review focused on studies that were cited in technical guidance from the U.S. EPA (1984) and B.C. ENV (2021, reformatted from 1988).

Rainbow Trout were the most sensitive of the 10 freshwater fish species used to derive the U.S. EPA criteria. The species mean acute value (SMAV³) was 44.73 μ g/L based on 11 tests. Brook Trout (char) were the next most sensitive species (SMAV = 85.80 μ g/L; N = 20), followed by Yellow Perch (SMAV = 92.64 μ g/L; N = 9) (U.S. EPA, 1984). The SMAV for Rainbow Trout was adopted as the final acute value (FAV) rather than using the 5th percentile from the four most sensitive genus mean acute values because Rainbow Trout is an important recreational and commercial species. The FAV of 44.73 μ g/L is divided by two to determine the criterion maximum concentration (CMC), commonly referred to as the "acute criterion". There were insufficient data to derive a chronic criterion using the same methods as CMC; therefore, the chronic criterion of 5.2 μ g/L was derived by dividing the FAV (44.73 μ g/L) by the acute-to-chronic ratio (ACR) of 8.568⁴.

Among different life stages, juvenile fish are more sensitive than embryos/sac-fry. The LC50s (as CN) range from 105 to 507 µg/L for sac-fry compared to approximately 50 to 150 µg/L for swim-up and juvenile fish (B.C. ENV, 2021). Greater sensitivity to cyanide for free-swimming life stages is consistent with the route of exposure (gill) and mode of toxicity (inhibition of cellular respiration). There is also evidence that cyanide toxicity depends on water temperature. A study conducted by Kovacs and Leduc (1982) exposed juvenile Rainbow Trout to HCN at 6, 12, and 18°C in flow-through bioassays, and the 96-hour LC50s were 27 µg/L at 6°C, 40 µg/L at 12°C, and 65 µg/L at 18°C. The lowest no observed effect concentration (NOEC) reported in the same study was 17 µg/L at 6°C (U.S. EPA, 1984). Most acute toxicity tests are conducted in water that is not representative of conditions in northern freshwater environments, so the findings from Kovacs and Leduc (1982) are particularly relevant for assessing risks to fish inhabiting the pits.

The technical appendix to the B.C. WQG included a compilation of guidelines, criteria, and standards from various jurisdictions. The maximum acceptable levels to protect freshwater aquatic life from the long-term effects of cyanide was fairly consistent at about 5 μ g/L (B.C. ENV, 2021). B.C. ENV adopted 5 μ g/L as the chronic WQG based on the 30-day period the average concentration (a minimum of 5 weekly samples). B.C. ENV concluded that cyanide concentrations below 5 μ g/L would result in relatively minor impairment of freshwater fish based on studies used to derive the U.S. EPA (1984) criteria. B.C.

⁴ To derive a chronic criterion using an ACR, chronic toxicity test data for longer-term survival, growth, or reproduction must be available for at least three taxa. Chronic toxicity data from four species were used to calculate the ACR of 8.568: *Gammarus* (amphipod), Brook Trout, Fathead Minnow, and Bluegill Sunfish.


³ The species mean acute value is the geometric mean of available 48 to 96-hr LC/EC50s for each species.

ENV also cited the "Relative Performance Index" (Leduc et al., 1982) as justification for the 5 μ g/L chronic WQG. The Relative Performance Index attempted to quantify the cumulative sublethal effects to fish from chronic exposure to cyanide. The authors concluded that fish exposed to 10 μ g/L free cyanide for 20 to 30 days at 10 to 13°C would see a 50% reduction in "relative performance", but 3 to 5 μ g/L free cyanide would result in relatively minimal impairment (B.C. ENV, 2021).

Risk Conclusion

At free cyanide concentrations from 3 to 15 μ g/L, fish transiently in contact with the tailings are at low risk of acute and chronic effects from exposure to cyanide in porewater. Ignoring dilution at the sediment-water interface, the maximum concentration of free cyanide measured in porewater was less than the 96-hour NOEC of 17 μ g/L for Rainbow Trout at 6°C. Assuming some degree of dilution of porewater at the sediment-water interface, free cyanide concentrations are unlikely to exceed 5 μ g/L.

Figure 4-1. Relative Performance Index from Leduc et al. (1982) showing the combined sublethal effects of free cyanide (adapted from B.C. ENV, 2021).

4.1.3 Sulphate

Exposure Data

Sulphate concentrations in the nine porewater samples ranged from 1,040 to 1,290 mg/L (N = 4 in 2022 and N = 5 in 2024). The average sulphate concentration in the 9 samples was 1,187 mg/L. Water hardness in the porewater samples ranged from approximately 550 mg/L to 800 mg/L.

Water Quality Guideline and Relevant Toxicity Data

British Columbia is the only jurisdiction in Canada with a WQG for sulphate. The B.C. WQG for sulphate was updated in 2013 and incorporated hardness as a modifying factor between hardness concentrations of 0 and 250 mg/L. The B.C. WQGs are 128, 218, 309 and 429 mg/L for hardness conditions ranging from 0 to 30, 31 to 75, 76 to 180, and 180 to 250 mg/L, respectively. The B.C. WQG for the different hardness ranges correspond to the LC20 results from a 21-day Rainbow Trout early life stage development test with a two-fold safety factor applied (B.C. ENV, 2013; **Table 4-2**). A sulphate WQG was not established for hardness exceeding 250 mg/L because there were insufficient data to support its calculation at higher hardnesses. The text of the WQG indicated that: "It is recommended that additional toxicity testing on several species is required if natural background water hardness is greater than 250 mg/L".

Table 4-2. Modelled average sulphate effect concentrations for the 21-day Rainbow Trout eyed-egg test (adapted from B.C. ENV, 2013).

Species and Endpoint	Water Hardness		ect Concentrations i ence intervals in pa	-
	(mg/L)	EC10	EC20	EC50
	6	176 (161 – 192)	255 (238 – 274)	484 (459 – 511)
Rainbow Trout 21-day early life stage survival	50	315 (290 – 341)	435 (408 – 464)	761 (724 – 799)
(eyed egg to alevin)	100	444 (409 – 482)	618 (580 – 659)	1,093 (1,037 – 1,151)
	250	654 (615 – 695)	857 (819 to 896)	1,379 (1,329 to 1,433)

B.C. ENV also reviewed other sulphate toxicity tests as part of the WQG update. Elphick et al (2011) conducted 7-day tests with Fathead Minnow (growth and survival) in water with hardness of 40, 80, 160, and 320 mg/L. In the very hard water treatment (320 mg/L), the LC10 for early life Fathead Minnow survival was 2,516 mg/L (CI = 1,548 to 4,089). The LC25 for larval Fathead Minnow survival was 6,376 mg/L (lower CI = 2,910; upper confidence interval was not calculated because extrapolation was outside the dataset). The LC50 for effects to growth (dry weight biomass) was 4,304 mg/L (lower CI = 1,584).

Other than the toxicity data reviewed in the B.C. WQG, there are few data on the toxicity of sulphate to fish. The technical appendix for the B.C. WQG referenced a study by Mount et al. (1997) that daphnids

and Fathead Minnow are relatively tolerant to sulphate compared to other major ions (potassium > bicarbonate = magnesium > chloride > sulphate). In that same study, the 96-hour LC50 for Fathead Minnow was 7,960 (6,800–10,000) mg/L (B.C. ENV, 2013).

Risk Conclusion

Sulphate concentrations in undiluted porewater were in the range of 1,000 to 1,300 mg/L. These concentrations are roughly 6- to 8-fold lower than the 96-hour LC50 for Fathead Minnow. Based on the available acute toxicity data, early life stages of resident fish species are at low risk of mortality when exposed to undiluted porewater for short periods.

Early life stages of the resident fish species are unlikely to be exposed to full strength porewater based on habitat preferences (Section 2.2). Dilution will also result in lower exposure for fish transiently inhabiting the sediment-water interface. At closure, the concentration of sulphate at depth in Goose Pit is predicted to be 200 mg/L (AtkinsRéalis, 2024b). Using a very conservative dilution scenario of one-part porewater (1,300 mg/L) to 10 parts surface water (200 mg/L), sulphate concentrations at the sediment-water interface would equal 310 mg/L. Dilution will likely be greater than 1:10 based on results of the consolidation model (AtkinsRéalis, 2024a). Therefore, sulphate concentrations at the sediment-water interface are unlikely to exceed the EC20 for early life stage Rainbow Trout survival (857 mg/L). A 20 % effect is widely considered the lowest level that can be reliably distinguished from controls using commonly available statistical methods (Gensemer et al., 2006). An EC20 is also the recommended level of protection for common aquatic species or communities in ecological risk assessment guidance published by B.C. ENV (2023).

4.1.4 Arsenic

Exposure Data

Dissolved arsenic concentrations ranged from 160 to 690 mg/L in the 15 samples collected from 2022 to 2024. The average arsenic concentration for the 15 samples was 0.39 mg/L.

Porewater samples were not collected for arsenic speciation due to limited sample volume and the need to prioritize analyzing other parameters. However, arsenic speciation analysis was conducted on surface water samples from Goose Pit (ST-20i) in April 2024. Arsenate (AsV) was the only form of arsenic detected at 2 m (420 μ g/L) and 9 m (428 μ g/L), but near the bottom of the pit (38 m), arsenite (AsIII) was the dominant species (69%; 477 μ g/L) compared to arsenate (31%, 219 μ g/L). The higher proportion of arsenite at depth is due to low oxygen conditions, which favor the reduction of arsenate to arsenite. Of the two arsenic species, arsenite is more mobile and toxic (Kumari et al., 2017). Our assumption is the low oxygen environment in the benthic zone would also lead to a higher proportion of arsenite in porewater compared to arsenate.

Water Quality Guideline and Relevant Toxicity Data

The CCME WQG of 5 μ g/L is based on an EC50 of 50 μ g/L for effects to *Scenedesmus* (green algae) growth (CCME, 2001). A 10-fold safety factor was applied to lower the CCME WQG to 5 μ g/L. Compared to algae and invertebrates, fish are relatively tolerant to the effects of arsenic from surface water exposure. The following toxicity data for fish were included in the CCME factsheet: a 28-d LC50 of 550 μ g/L for Rainbow Trout, a 7-day lowest observed effect concentration (LOEC) of 500 μ g/L for climbing perch (*A. testudineus*), and a 7-day LOEC of 970 μ g/L for catfish (*Clarias batrachus*). Other relevant arsenic toxicity data, presented in **Table 4-3**, were obtained from a pre-consultation report prepared by the United Kingdom Technical Advisory Group in 2007 as part of the derivation process for predicted no-effect concentrations (Lepper et al., 2007). The 96-hour LC50s for Rainbow Trout and Fathead Minnow based on exposure to arsenite were 12,100 μ g/L and 12,600 μ g/L, respectively. Arctic Grayling are more sensitive to the effects of arsenic based on an LC50 for arsenate of 4,760 μ g/L.

As part of the consultation report prepared by Lepper et al (2007), the authors reviewed toxicity studies on coal fly ash from the late 1970's that were cited in the CCME WQG. The technical experts concluded that the data derived from these studies, including the Rainbow Trout 28-d LC50 of 550 μ g/L cited in the CCME WQG, was not reliable for setting predicted no-effect concentrations.

Risk Conclusion

Arsenic concentrations in porewater samples from Goose Pit (160 to 690 μ g/L) are less than concentrations associated with short-term effects on survival for cold water species (LC50s between 4,760 and 12,600 μ g/L). Under longer exposure conditions (28-d), no effect to juvenile Rainbow Trout survival was observed at arsenic (as arsenite) concentrations as high as 961 μ g/L, which was the highest concentration in the study (Spehar et al., 1980). Based on the available laboratory toxicity data, arsenic concentrations in undiluted porewater are not expected to cause effects to the survival of early life stage fish under short-term or long-term exposure conditions.

Table 4-3. Arsenic toxicity data for cold water fish species (adapted from Lepper et al. 2007).

Fish Species	Endpoint	Duration	Effect Conc. (μg/L)	Test Substance	Test Conditions	
Coho salmon	Significant reduction in migration success	6 months	LOEC = 300	As ₂ O ₃ (III)	pH 8.2; 3.8–13.8°C; hardness 69 mg/L;	
Rainbow trout	Mortality	28 days	NOEC = 961 (unbounded)	As ₂ O ₃ (III)	pH 6.9–7.3; 14–16°C; hardness 42–45 mg/L	
Rainbow trout	Mortality (egg)	28 days	LC10 = 134 LC50 = 540	AsNaO ₂ (III)	pH 7.2–7.8; 12–13°C; hardness 93–105 mg/L	
Fathead Minnow	Growth ELS test	30 days	NOEC = 530 LOEC = 1,500	As ₂ O ₅ (V)	pH 6.9–7.8; 25°C; hardness 45–48 mg/L;	
Fathead Minnow	Growth	29 days	NOEC = 2,130 LOEC = 4,300	AsNaO ₂ (III)	pH 7.2-8.1; 23–25.8°C; hardness 46–50 mg/L;	
Fathead Minnow	Mortality/growth/reproduction	32 days	MATC = 3,330	AsNaO ₂ (III)	pH 7.4; 25°C; hardness 43.9 mg/L	
Fathead Minnow	Weight/no. of young per female	32 days	EC50 = 7,080	AsNaO ₂ (III)	pH 7.4; 25°C; hardness 43.9 mg/L	
Arctic grayling	Mortality (juvenile)	96 hours	LC50 = 4,760	As ₂ O ₅ (V)	pH 7.1–8; 12°C; hardness 41.3 mg/L;	
Rainbow trout	Mortality	96 hours	LC50 = 12,100	As ₂ O ₃ (III)	pH 8.4; 12°C; hardness 250 mg/L	
Fathead Minnow	Mortality	96 hours	LC50 = 12,600	AsNaO ₂ (III)	pH 7.4; 25°C; hardness 43.9 mg/L	

Notes

Refer to Lepper et al. (2017) for original study references for these toxicity data.

NOEC = no observed effect concentration; LOEC = lowest observed effect concentration; MATC = maximum acceptable toxicant concentration.

4.1.5 Cobalt

Exposure Data

Dissolved cobalt concentrations ranged from 24 to 131 μ g/L in the 15 samples collected from 2022 to 2024. The average concentration across all 15 samples was 55 μ g/L (**Table 3-1**).

Water Quality Guideline and Relevant Toxicity Data

Environment and Climate Change Canada (ECCC 2017; ECCC and HC 2017a) developed a long-term (chronic) WQG for dissolved cobalt in freshwater using a species sensitivity distribution (SSD) method. Thirteen toxicity values were included in the SSD: three fish, six invertebrates and four plant/algae species. The three fish species were Rainbow Trout, Fathead Minnow, and Zebrafish (*Brachydanio rerio*). The ECCC WQG incorporated the modifying effect of hardness on cobalt toxicity using a In-In regression model. The WQG is valid between hardness 52 and 396 mg/L. Over this hardness range, the WQG ranges from 0.78 to 1.80 µg/L. Under chronic exposure conditions, fish are less sensitive than other receptor

groups. *Hyalella azteca* was the most sensitive species. Rainbow Trout was the least sensitive aquatic species in the SSD with an 81-day EC10 for effects to growth of 2,049 μ g/L (ECCC, 2017).

Data on the toxicity of cobalt to 12 aquatic species was recently published by Stubblefield et al. in 2020. The purpose of this study was to produce freshwater cobalt toxicity data that could be used by both the European Union and the United States to develop predicted no-effect concentrations (Europe) and water quality criteria (U.S.). The SSD approach was used to derive acute and chronic effect concentrations similar to ECCC (2017). The acute and chronic SSDs included toxicity test results for Rainbow Trout, Fathead Minnow, and Zebrafish, and the chronic toxicity data for Rainbow Trout and Fathead Minnow came from the same study (Parametrix, 2010) that was included in the ECCC WQG. One of the interesting findings was that fish are comparatively more sensitive to cobalt than other aquatic receptors under short-term exposure (i.e., 96-hour). Of the 11 species included in the acute SSD, Rainbow Trout was the most sensitive non-plant species with an LC50 of 1,512 µg/L (95% CI = 1,343—1,704). Lemna minor (duckweed) and Pseudokirchneriella subcapitata (green algae) ranked first and second for acute (short-term) effects to growth. The discrepancy between acute and chronic sensitivities for Rainbow Trout is likely due, at least in part, to differences in life-stage sensitivities. The acute test was performed with juvenile Rainbow Trout, whereas the chronic test was conducted with newly fertilized eggs.

Acute and chronic toxicity test results that were reported in EC and HC (2017) and Stubblefield et al. (2020) are provided in **Table 4-4**. Rainbow Trout and Fathead Minnow are cold water species, so the results for these species are the most relevant for comparing against measured cobalt concentrations in porewater samples from Goose Pit.

Risk Conclusion

The maximum porewater concentration measured in Goose Pit of 131 μ g/L is approximately 2.5 times lower than the 28-day EC10 of 336 μ g/L for effects to growth for early life stage Fathead Minnow, which was the most sensitive fish chronic endpoint included in the review by EC and HC (2017a). Compared to the most sensitive acute endpoint (Rainbow Trout LC50 = 1,500 μ g/L), cobalt concentrations in undiluted porewater are more than 10-fold lower than concentrations associated with effects on survival. Assuming current concentrations of cobalt in porewater are representative of future conditions, early life stages of fish are not at risk of effects on survival or growth.

Table 4-4. Relevant data on effects to fish from aqueous exposure to cobalt.

Reported in	Species	Test Duration a	and Endpoint	Life Stage	Effect Conc. (μg/L) (95% confidence intervals)
EC and HC (2017)	Rainbow trout	81-d EC10	Biomass	Embryo-larval	2,049 [a,b]
	Fathead minnow	34-d EC10	Survival	Larval	339 [a,b]
		28-d EC10	Growth	Larval	336 [b]
	Zebrafish	MATC 16-d	Survival	Embryo-larval	340 [a,b]
		33-d EC10	Biomass	Embryo-larval	1,016 [b]
Stubblefield et al. (2020)	Rainbow trout	96-h LC50	Survival	Juvenile	1,512 (1,343–1,704)
		81-d EC10	Biomass	Embryo-larval	2,171 (1,658–2,842) [c]
		81-d EC20	Biomass	Embryo-larval	2,495 (1,995–3,120)
	Fathead minnow	96-h LC50	Survival	Larval	3,090 (2,720–3,520)
		96-h LC50	Survival	Juvenile	54,100 (45,500–64,300)
		34-d EC10	Survival	Embryo-larval	351.4 (210.6–586.5) [c]
		34-d EC20	Survival	Embryo-larval	409.0 (268.1–623.9)
	Zebrafish	34-d EC10	Survival	Embryo-larval	1,085 (569–2,068) [c]
		33-d EC20	Biomass	Embryo-larval	1,593 (946–2,682)

Notes

Refer to EC and HC (2017) and Stubblefield et al. (2020) for original study references for these toxicity data.

- [a] These studies were included in the SSD for the ECCC WQG.
- [b] Effect concentrations are normalized to 100 mg/L hardness.
- [c] EC10 results in Stubblefield et al. (2020) were also reported in EC and HC (2017). The ECxx values were not normalized to 100 mg/L. MATC = maximum acceptable toxicant concentration.

4.1.6 Selenium

Exposure Data

Dissolved selenium concentrations ranged from 1.8 to 25 μ g/L in the 15 porewater samples collected from 2022 to 2024. The average concentration across all 15 samples was 8.9 μ g/L (**Table 3-1**).

The selenium concentration in the bulk tailings samples from Goose Pit ranged from 0.40 to 0.86 μ g/g (average 6.2 μ g/g; **Table A-2**). We included the selenium concentration data for the tailings samples from Goose Pit because B.C. ENV has a "sediment alert concentration" that is meant to provide an early indication of increased risk of impacts to aquatic organisms.

Relevant Information on Selenium Toxicity for Fish

An extensive amount of research has been published in the last 30 years regarding the effects of selenium in freshwater ecosystems. A thorough overview of the literature was conducted by ECCC and

Health Canada in 2017 as a precursor to derivation of the federal WQG in August 2022 (ECCC and HC, 2017b). The key aspects of selenium ecotoxicology for fish that are relevant for this scope of work are as follows:

- Selenium is an essential micronutrient for all vertebrates, including fish. However, there is a
 narrow range between essentiality and toxicity of selenium for fish. Freshwater fish are
 generally considered the most sensitive receptor to adverse effects of selenium.
- Fish accumulate selenium almost entirely from their diet. Inorganic forms of selenium (selenate and selenite) are taken up by microbes and primary producers that form the base of aquatic food webs. These organisms convert selenium into organic forms, which are transferred to successive trophic levels.
- Selenium is maternally transferred to the eggs during development. The most sensitive life stages are egg and larvae and the most common effects are reduced hatching and increased incidence of deformities and edema.

Selenium Guidelines

Selenium concentrations in reproductive tissue (egg or ovary) provide the most accurate data for assessing risks to fish. For this reason, ECCC, B.C. ENV, and the U.S. EPA have all adopted tissue-based guidelines/criteria for assessing risks to fish. In 2022, ECCC derived federal tissue guidelines for egg/ovary (14.7 μ g/g dry weight) and whole-body fish tissue (6.7 μ g/g dry weight). The guidelines were derived using the SSD approach based on early life stage effects (e.g., EC10 values for hatching success, edema, deformities) for 11 species. Whole-body tissue concentrations were extrapolated from the early life stage results using species-specific egg-ovary to whole-body conversion factors developed by the U.S. EPA. For more information on the fish tissue guidelines derivation, please refer to ECCC (2022).

ECCC did not derive a WQG for selenium because the bioaccumulation and toxicity of selenium to organisms is difficult to accurately predict from the concentration of selenium in water (B.C. ENV, 2014). However, ECCC noted that water quality guidelines from B.C ENV (2014) and U.S. EPA (2016) could be used to assess risks to aquatic life when fish tissue chemistry data are unavailable. The B.C. WQG of 2 μ g/L was originally derived in 2001 based on applying an uncertainty factor of 5 to a concentration of 10 μ g/L, which represented a LOEC for several fish species and an EC50 for *Daphnia magna*. B.C. ENV validated the WQG of 2 μ g/L in 2014 and concluded that it is protective of very sensitive environments and/or species.

In addition to the tissue-based guidelines that B.C. ENV derived in 2014, the 2001 interim sediment quality guideline of 2 μ g/g⁵ was adopted as an "alert concentration" (B.C. ENV, 2014). Full or interim sediment quality guidelines were not approved in the 2014 ambient WQG update because of insufficient data and uncertainty about the level of protection for fish and birds. Ultimately, the alert concentration of 2 μ g/g was considered protective of the most sensitive organisms and therefore suitable for identifying increased risk of impacts to aquatic organisms.

Risk Conclusions

Fish are at low risk of adverse effects from selenium in porewater and tailings for the following reasons. First, the selenium concentrations in porewater and tailings are relatively low compared to concentrations associated with potential effects on fish. The average porewater selenium concentration (8.9 μ g/L) exceeds the B.C. ENV WQG of 2 μ g/L. However, selenium concentrations in the tailings samples from Goose Pit ranged from 0.40 to 0.86 μ g/g (**Table A-4**), which is less than the B.C. ENV alert concentration of 2 μ g/. The sediment alert concentration is considered protective of sensitive receptors (i.e., fish and birds) in most aquatic environments (BC ENV, 2014).

It is unlikely that the tailings will support a functionally diverse and abundant benthic invertebrate community in the foreseeable future. Therefore, even if elevated porewater selenium concentrations result in the enrichment of selenium in the benthic food web in Goose Pit and Portage Pit, the low rate of primary and secondary productivity will mean a low dose of selenium based on limited food availability. As noted in the Environmental Assessment (Azimuth, 2005b), "productivity of fish in the project lakes in the Meadowbank region is limited by nutrient availability and [. . .] existing habitat could support many more fish than currently exist if there was the food base to support them." Lake Trout and other large-bodied species forage throughout Third Portage Lake, so the dose of selenium from prey originating in the pits will ultimately be diluted with prey items from other areas of Third Portage Lake.

4.2 LOE 2: Laboratory Toxicity Tests

This LOE evaluates the effects on fish from direct exposure to contaminants in porewater. Water toxicity tests were conducted using Fathead Minnow and Rainbow Trout. Methods and results for each test are discussed below. The lab reports from Nautilus Environmental are provided in **Appendix B-3** (Fathead Minnow) and **Appendix B-4** (Rainbow Trout).

⁵ Based on the average of 5 samples collected within an area.

4.2.1 Fathead Minnow: 7-day test for survival and growth

Reclaim water from Goose Pit was collected through the ice between 2 and 3 m at ST-20ii on May 8, 2024, and was sent to Nautilus Environmental (Burnaby, B.C.) for toxicity testing with Fathead Minnow. Water was also collected from the same depth and sent to ALS Environmental (Burnaby, B.C.). The 7-day test for effects on early life stage Fathead Minnow survival and growth was carried out according to the standard protocol (Environment Canada, 2011). Survival and dry weight were measured in each of the treatments (dilutions) at the end of the test and the results were used to calculate the median lethal concentration (7-day LC50) and concentrations which inhibited growth (7-day IC25 and IC50). No quality control issues were reported in the test and the results are considered accurate and reliable.

Mortality was 100 % in undiluted reclaim water and all of the fish perished within the first 48 hours. No effects on survival or growth were observed in any of the other treatments compared to the laboratory control (**Table 4-5**). The concentration of reclaim water associated with a 50% reduction in survival was 69.1 %. The IC50 for effects on growth was 67.4%, which indicates survival was just as sensitive an endpoint as growth.

After reviewing the water chemistry data, senior project advisors at Nautilus concluded that the cause of mortality was likely un-ionized ammonia based on the total ammonia concentration of 31.3 mg/L in the reclaim water sample and the pH of the water ($^{\sim}8$). Based on the test conditions (25 $^{\circ}$ C and pH = 8), the predicted concentration of un-ionized ammonia in the undiluted sample of reclaim water was 1.68 mg/L, which corresponds to an LC50 of 1.16 mg/L (**Table 4-5**). The 7-day LC50 value reported here is similar to the 96-hour LC50 value of 1.34 mg/L reported in EC and HC (2001; **Table 4-1**).

4.2.2 Fathead Minnow: 96-hour test for survival

After reviewing the 7-day Fathead Minnow results, a second 96-hour Fathead Minnow test was conducted using the same batch of water to verify that un-ionized ammonia was the cause of mortality in the 7-day test. The 96-hour test included two treatments: (1) an undiluted sample prepared the same as the 100 % treatment from the 7-day test and (2) a treatment where the pH was artificially lowered and stabilized at 7.1 (\pm 0.3). The pH of the water in this treatment was lowered by pumping mixed air containing 1.0 to 1.5 % CO₂ into the headspace of a semi-enclosed chamber for the duration of the test. This is a standard method for reducing the toxicity of un-ionized ammonia. No quality control issues were reported in the test and the results were considered accurate and reliable.

The pH adjustment and stabilization test confirmed that un-ionized ammonia in undiluted reclaim water is toxic to larval Fathead Minnow (**Table 4-6**). In the 100 % treatment without pH adjustment, the mortality rate was 100 % after 48 hours in 3 of the 4 replicates, and only two fish survived in the fourth replicate at the end of the 96-hour test. When the pH of the water was lowered to 7.1, Fathead Minnow survival increased to 95% at the end of 96-hour test.

Table 4-5. Results of the 7-day Fathead Minnow survival and growth test.

	Mear	ı ± SD	Total Ammonia	Un-ionized
Dilution Series (%)	7-day Survival (%)	7-day Biomass	(mg/L as N)	Ammonia (mg/L as N)
Laboratory Control	100 ± 0.0	0.70 ± 0.05	not analyzed	not analyzed
1.56	100 ± 0.0	0.74 ± 0.01	0.49	0.026
3.12	100 ± 0.0	0.89 ± 0.01	0.98	0.053
6.25	100 ± 0.0	0.76 ± 0.02	1.96	0.11
12.5	100 ± 0.0	0.75 ± 0.03	3.91	0.21
25	96.7 ± 6.0	0.75 ± 0.06	7.83	0.42
50	100 ± 0.0	0.68 ± 0.11	15.7	0.84
100	0.0 ± 0.0	0.0 ± 0.00	31.3 (measured)	1.68 ^[a]
LC50 (95% CI)	69.1 (66.0 – 72.3)		21.6	1.16
IC25 (95 % CI)		55.2 (46.5 – 62.9)	17.3	0.93
IC50 (95% CI)		67.4 (60.2 – 73.5)	21.1	1.13

Notes:

[a] According to CCME (2010), un-ionized ammonia accounts for 5.38% of the total ammonia concentration at water temperature of 25°C and pH = 8 (test conditions for the Fathead Minnow tests). 31.3 mg/L total ammonia x 5.38% = 1.68 mg NH₃/L. pH drifted from 8 to 7.5 between water changes (**Appendix B-3**).

Table 4-6. Results of the 96-hour Fathead Minnow test with and without pH adjustment.

pH Adjustment	Concentration (v/v)	96-hour Survival (%)
No	Laboratory Control	100 ± 0.0
No	100	5.0 ± 10.0
Yes	Laboratory Control	97.5 ± 5.0
Yes	100	95.0 ± 5.8

4.2.3 Rainbow Trout: 96-hour test for survival

Additional toxicity testing with Rainbow Trout was conducted in September 2024. The 96-hour Rainbow Trout toxicity test was undertaken to validate the Fathead Minnow test results and compare the relative sensitivity of the two species to reclaim water (surrogate for porewater). Reclaim water was collected on August 10, 2024, from 7 m below the surface at ST-20ii and sent to Nautilus Environmental (Puslinch, Ontario). Water was collected from the same depth and sent to ALS Environmental for chemistry analyses. The 96-hour test used the same method for adjusting and stabilizing pH as the Fathead Minnow Test. The 96-hour Rainbow Trout method uses swim-up fry that have been actively feeding for at least two weeks. Other than the delay between sample collection and test initiation, no quality control issues were identified that have the potential to affect the accuracy and reliability of the toxicity test results. The results of the Rainbow Trout test are provided in **Table 4-7** along with the *in-situ* water quality results collected during the test.

Because of uncertainty about the effect of the extended hold time on the concentrations of POPC, particularly ammonia, we instructed the lab to submit a subsample of water from each test to ALS Environmental for analysis. The results for the sample collected on August 10 and the samples collected by Nautilus in mid-September are provided in **Table 4-8**. Ammonia concentrations were roughly 10 mg/L higher in the samples collected from the test vessels compared to the concentration measured in the sample on August 10 (27 mg/L). The concentrations of sulphate, arsenic, and cobalt in the samples collected by Nautilus were approximately 20 to 30% higher in the samples collected in mid-September compared to results for the sample collected on August 10. The difference in concentration between the two sets of samples could be related to sample handling procedures; field-collected samples were processed immediately whereas the water sent to Nautilus was stored in plastic pails at 4°C for approximately three weeks before the tests. The most important consideration for the risk assessment is that conditions in the laboratory did not underestimate exposure compared to measured porewater concentrations from Goose Pit. The concentrations of cyanide, sulphate, and arsenic in the reclaim water samples were within the range of concentrations measured in porewater; the concentrations of ammonia and cobalt were higher in the reclaim water compared to porewater (**Table 4-8**).

Survival was 100% in the standard 96-hour test and the pH adjustment + stabilization test and no impaired fish were observed in any of the treatments. The results of the standard Rainbow Trout test were somewhat surprising because the predicted concentration of un-ionized ammonia was 1.0 mg/L⁶, which is close to the upper limit of 96-hour LC50 values for Rainbow Trout (**Table 4-1**). The pH of the

⁶ At 15°C and pH 8, un-ionized ammonia accounts for 2.67% of the total ammonia in solution (CCME, 2010). 2.67% of 37 mg/L total ammonia equals 0.99 mg NH₃/L.

35

reclaim water was 7.2 at the start of the standard test, so it is plausible that un-ionized ammonia may have comprised a smaller percentage of total ammonia during the first few hours of the test.

4.2.4 Summary

The results from the Fathead Minnow test indicate early life stage fish may be at an increased risk of mortality from exposure to un-ionized ammonia, but only under the highly unlikely scenario of continuous, short-term (1-2 day) exposure to marginally diluted or undiluted porewater (i.e., the LC50 for survival was 69.1%). When test conditions were altered to lower the toxicity of ammonia, Fathead Minnow survival in the full-strength test was similar to the laboratory control treatment.

No reduction in Rainbow Trout survival was observed when early life stage fish were exposed to full-strength reclaim water collected in August 2024. The concentration of total ammonia in this test was approximately 37 mg/L. There is some uncertainty about the concentration of un-ionized ammonia at the beginning of the test. Notwithstanding the uncertainty about un-ionized ammonia, the fact that survival was 100 % in the single concentration test after 96-hours indicates early life stage salmonids are at low risk of effects to survival if future porewater quality is similar to reclaim water quality in August 2024 (Table A-5).

Table 4-7. Results of the 96-hour Rainbow Trout test with and without pH adjustment.

Test	Treatment	Survival (%) at 96-hours	Parameter	0 hr	24 hr	48 hr	72 hr	96 hr
			Temp (°C)	14	15	15	15	15
	Full strength	100%	DO (mg/L)	8.4	-	-	-	9.3
	water	100%	рН	7.2	8	7.8	7.9	7.8
Without pH			Sp Cond (μS/cm)	2406	-	-	-	2415
Adjustment	Lab Control		Temp (°C)	14	15	15	15	15
		100%	DO (mg/L)	9.7	-	-	-	9.6
		100%	рН	8	8.2	8.1	8.1	8
			Sp Cond (μS/cm)	741	-	-	-	710
			Temp (°C)	14	15	15	15	15
	Full strength	100%	DO (mg/L)	8.4	-	-	-	9.1
	water	100%	рН	7.2	7.2	7.3	7.1	7.3
With pH			Sp Cond (μS/cm)	2400	-	-	-	2418
Adjustment	Lab Control		Temp (°C)	14	15	15	15	15
		100%	DO (mg/L)	9.7	-	-	-	9.6
		100%	рН	8	8.1	8.1	8	8
			Sp Cond (μS/cm)	741	-	-	-	719

Table 4-8. Concentrations of parameters of potential concern in reclaim water from the 96-hour Rainbow Trout test compared to concentrations in porewater samples from Goose Pit.

Sample Date	Aug 10, 2024	Sept 9, 2024	Sept 1	3, 2024	2022-2024
РОРС	Reclaim water collected from ST-20ii (7 m)	Water collected at the start of the 96-h test	Standard protocol; water collected at the end of the 96-h test	pH adjustment + stabilization; water collected at the end of the 96-h test	Mean concentration in porewater (min – max)
Ammonia (as N; mg/L)	27.0	37.0	37.0	39.2	24.9 (17.7-28.5)
Cyanide (free; mg/L)	<0.005	0.0046	0.0031	0.0031	0.0067 (0.0021-0.015)
Sulphate (mg/L)	840	1,030	1,040	1,040	1,187 (1,040-1,290)
Arsenic (D) (mg/L)	0.265	0.339	0.332	0.326	0.39 (0.16-0.69)
Cobalt (D) (mg/L)	0.205	0.272	0.268	0.270	0.055 (0.024-0.131)

4.3 Summary and Conclusions

Results from the two lines of evidence indicate that fish are at low risk of effects on survival from transient, short-term exposure to contaminants in porewater. Our assessment is based on the following considerations:

- Under natural conditions, free-swimming life stages for most species are not likely exposed to
 undiluted porewater in the tailings based on (1) some degree of dilution at the sediment-water
 interface (conservatively assumed 1:10 for this report), and (2) habitat preferences/movement.
 Slimy Sculpin and Ninespine Stickleback are the only resident species that may live in close contact
 with sediment for parts of their life history. However, neither species is prone to inhabiting areas
 where fine particles are the dominant substrate.
- No effects to Rainbow Trout survival were observed compared to the laboratory control when juvenile fish were exposed to full-strength reclaim water for 96 hours.
- Fathead Minnow showed an increased risk of mortality when exposed to full-strength reclaim
 water (a surrogate for porewater) for 24 to 48 hours. When the concentration of reclaim water
 was diluted to approximately 50%, no effects to Fathead Minnow survival or growth were
 detected compared to laboratory controls.
- Indirect effects on individual fish from dietary exposure within the pits are unknown but unlikely,
 given that the benthic area is expected to remain devoid of a functional lower trophic level
 aquatic community for decades or longer. Even if a functional benthic community is established on
 the tailings, benthic fish/life histories are not expected to forage exclusively within the surface
 area of the tailings.

Based on the available information, rockfill cover over the tailings is not required to mitigate risks to fish using the pits post-closure after the dikes are breached. Fish are unlikely to come in direct contact with the tailings because the tailings offer poor habitat for foraging and cover. Furthermore, AtkinsRéalis (2024a) predicted that flux of porewater to the overlying water would be negligible after the initial consolidation period (2-3 years). If porewater advection to surface water is nil, then there is no need to promote porewater dilution, especially given the concentrations of POPC in porewater are generally below concentrations associated with short-term effects to survival.

5 REFERENCES

- Agnico Eagle. 2020. Addendum to the 2012 No Net Loss Plan for the Meadowbank Site: Implementation of Contingency Option 3 Construction of Arctic Grayling Spawning Pads. Version 1. December 2020.
- Agnico Eagle. 2020. Meadowbank Pore Water Quality Monitoring Program, version 2. Appendix 23 to the Meadowbank Complex 2019 Annual Report. March 2020.
- AtkinsRéalis. 2024a. 1D Tailings Consolidation Modelling of Goose Pit. Technical Note. April 30, 2024.
- AtkinsRéalis. 2024b. Goose Pit Hydrodynamic Water Quality Forecast. Preliminary Report. October 16, 2024.
- Azimuth. 2022. Conditions where mitigation may be required to minimize impacts to aquatic life from disposal of tailings in Goose Pit and Portage Pits. Technical Memorandum prepared for Agnico Eagle Mines Ltd Meadowbank Division. December 2022.
- Azimuth. 2005a. Baseline Aquatic Ecosystem Report. Meadowbank study area lakes, Nunavut. Prepared by Azimuth Consulting Group for Cumberland Resources. October 2005.
- Azimuth. 2005b. Aquatic Ecosystem/Fish Habitat Assessment. Meadowbank study area lakes, Nunavut. Prepared by Azimuth Consulting Group for Cumberland Resources. October 2005.
- B.C. ENV (B.C. Ministry of Environment and Climate Change Strategy). (2023). Protocol 1 for Contaminated Sites. Detailed Risk Assessment. Version 4. March 20, 2023.
- B.C. ENV (B.C. Ministry of Environment and Climate Change Strategy). 2021. Cyanide Water Quality Guidelines (Reformatted from: British Columbia Ministry of Environments and Parks, 1988. Water quality criteria for cyanide). Water Quality Guideline Series, WQG-11. Prov. B.C., Victoria B.C.
- B.C. ENV (B.C. Ministry of Environment). 2014. Ambient Water Quality Guidelines for Selenium Technical Report Update. Water Protection and Sustainability Branch. Environmental Sustainability and Strategic Policy Division.
- B.C. ENV (B.C. Ministry of Environment). 2013. Ambient Water Quality Guidelines For Sulphate Technical Appendix Update. Water Protection and Sustainability Branch. Environmental Sustainability and Strategic Policy Division.
- CCME (Canadian Council of Ministers of the Environment). 2010. Canadian Water Quality Guidelines for the Protection of Aquatic Life Ammonia.
- CCME (Canadian Council of Ministers of the Environment). 2001. Canadian Water Quality Guidelines for the Protection of Aquatic Life Arsenic.
- CCREM (Canadian Council of Resource and Environment Ministers). 1987. Canadian water quality guidelines. Prepared by the Task Force on Water Quality Guidelines.
- Edwards, D.A. 2019. Fish Sediment Exposure Workshop Summary of the proceedings from the Sediment Management Working Group workshop on May 30-31, 2018.

- Eldridge, R.J., de Jourdan, B.P. and Hanson, M.L., 2022. A critical review of the availability, reliability, and ecological relevance of Arctic species toxicity tests for use in environmental risk assessment. Environmental Toxicology and Chemistry, 41(1), pp.46-72.
- Environment Canada. 2012. Federal Contaminated Sites Action Plan (FCSAP) Ecological Risk Assessment Guidance. Report prepared for Environment Canada by Azimuth Consulting Group Inc.
- Environment Canada. 2011. Biological test method: test of larval growth and survival using fathead minnows. Environmental Protection Series, Report EPS 1/RM/22, February 2011. Environment Canada, Environmental Protection, Conservation and Protection, Ottawa, ON. 73 pp.
- Environment Canada. 2008. Procedure for pH stabilization during the testing of acute lethality of wastewater effluent to rainbow trout. Environmental Protection Series. Report EPS 1/RM/50. Environment Canada, Science and Technology Branch, Environmental Science and Technology Centre, Ottawa, ON.
- EC and HC (Environment Canada and Health Canada). 2001. Ammonia in the Aquatic Environment. Priority Substances List Assessment Report. Canadian Environmental Protection Act, 1999.
- ECCC and HC (Environment and Climate Change Canada, and Health Canada). 2017. Screening assessment: cobalt and cobalt-containing substances. May 2017.
- ECCC and HC (Environment and Climate Change Canada and Health Canada). 2017. Screening Assessment: Selenium and its Compounds. December 2017.
- ECCC (Environment and Climate Change Canada). 2022. Federal environmental quality guidelines: selenium. August 2022.
- ECCC (Environment and Climate Change Canada). 2017. Federal environmental quality guidelines: cobalt. May 2017.
- Gammons, C.H., Harris, L.N., Castro, J.M., Cott, P.A. and Hanna, B.W., 2009. Creating lakes from open pit mines: processes and considerations, emphasis on northern environments. Can. Tech. Rep. Fish. Aguat. Sci. 2826: iX + 106 p.
- Gensemer, R.W., DeForest, D.K., Cardwell, R.D., Dzombak, D., Santore, R. and Stewart, M., 2006. Reassessment of cyanide ambient water quality criteria: An integrated approach to the protection of the aquatic environment. Water Environment Foundation, WEFTEC, 6, pp.5709-5718.
- Jezierska, B. and Witeska, M., 2006. The metal uptake and accumulation in fish living in polluted waters. In Soil and water pollution monitoring, protection and remediation (pp. 107-114). Springer Netherlands.
- Kovacs, T.G. and Leduc, R., 1982. Effects of pH and temperature on the toxicity of cyanide to rainbow trout. Environmental Pollution, 29(3), pp.179-188.
- Kumari, B., Kumar, V., Sinha, A.K., Ahsan, J., Ghosh, A.K., Wang, H. and DeBoeck, G., 2017. Toxicology of arsenic in fish and aquatic systems. Environmental chemistry letters, 15, pp.43-64.
- Leduc, G., Pierce, R. C., and McCracken, I. R. 1982. The Effects of Cyanides on Aquatic Organisms with Emphasis Upon Freshwater Fishes. National Research Council Canada No. 19246. Associate Committee on Scientific Criteria for Environmental Quality, Ottawa.

- Léger, J.A., Athanasio, C.G., Zhera, A., Chauhan, M.F. and Simmons, D.B., 2021. Hypoxic responses in Oncorhynchus mykiss involve angiogenesis, lipid, and lactate metabolism, which may be triggered by the cortisol stress response and epigenetic methylation. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 39, p.100860.
- Lepper P, Sorokin N, Maycock D, Crane M, Atkinson C, Hope S-J, Comber S. 2007. Preconsultation report: Proposed EQS for water framework directive annex VIII substances: arsenic (total dissolved). Science report: SC040038/SR3. SNIFFER Report: WFD52(iii). (Environment Agency: Bristol, UK) p. 91. Available at:
 - https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291226/scho0407blvu-e-e.pdf
- Lund, M.A. and Blanchette, M.L., 2023. Closing pit lakes as aquatic ecosystems: Risk, reality, and future uses. Wiley Interdisciplinary Reviews: Water, 10(4), p.e1648.
- Randall, D.J. and Tsui, T.K.N., 2002. Ammonia toxicity in fish. Marine pollution bulletin, 45(1-12), pp.17-23.
- Richardson, E. S., Reist, J. D., & Minns, C. K. 2001. Life history characteristics of freshwater fishes occurring in the Northwest Territories and Nunavut, with major emphasis on lake habitat requirements. Fisheries and Oceans.
- Rohr, J.R., Salice, C.J. and Nisbet, R.M., 2016. The pros and cons of ecological risk assessment based on data from different levels of biological organization. Critical Reviews in Toxicology, 46(9), pp.756-784.
- Spehar, R.L., Fiandt, J.T., Anderson, R.L. and DeFoe, D.L., 1980. Comparative toxicity of arsenic compounds and their accumulation in invertebrates and fish. Archives of environmental contamination and toxicology, 9, pp.53-63.
- Stubblefield, W.A., Van Genderen, E., Cardwell, A.S., Heijerick, D.G., Janssen, C.R. and De Schamphelaere, K.A., 2020. Acute and chronic toxicity of cobalt to freshwater organisms: using a species sensitivity distribution approach to establish international water quality standards. Environmental toxicology and chemistry, 39(4), pp.799-811.
- Uddin, M.H., Ritu, J.R., Putnala, S.K., Rachamalla, M., Chivers, D.P. and Niyogi, S., 2024. Selenium toxicity in fishes: A current perspective. Chemosphere, p.143214.
- U.S. EPA (United States Environmental Protection Agency). Water Quality Criteria for Cyanide. Office of Water, 1984.

APPENDIX A POREWATER AND TAILINGS CHEMISTRY RESULTS

Table A-1. Porewater chemistry results, 2022

Media and Year									Porewater - 2022		
Sample ID					Aquat	ic Life Guideline - Long Term Chronic ^[a]	BG-1	BG-2	BG-3	BG-4	BG-5
Sampling Depth	1						top 3-5 cm	top 3-5 cm	top 3-5 cm	top 3-5 cm	top 3-5 cm
Water Depth at Station (m)	Lowest Detection	Units					23	16	10	9	16
Date Sampled	Limit	Units	Value	Source	Year	Notes	12-Aug-22	21-Aug-22	21-Aug-22	21-Aug-22	21-Aug-22
Lab Sample ID	Lillit						VA22B9759- 011	VA22B9759012	VA22B9759013	VA22B9759014	VA22B9759015
Physical Tests							-				
Conductivity	2	μS/cm					NA	NA	NA	NA	NA
Alkalinity - Bicarbonate	1	mg/L					NA	49	110	116	104
Alkalinity - Carbonate	1	mg/L					NA	<1	<1	<1	<1
Alkalinity - Hydroxide	1	mg/L					NA	<1	<1	<1	<1
Alkalinity - Total (as CaCO ₃)	1	mg/L					NA	49	110	116	104
Hardness (as CaCO₃), dissolved	0.6	mg/L					705	681	633	551	629
Turbidity	0.1	NTU					NA	NA	NA	NA	NA
pH (Laboratory)	0.1	pH units	6.5-9.0	CCME	1987		NA	7.53	7.94	7.98	7.92
Anions and Nutrients (mg/L)		units									
Ammonia (as N)	0.005	mg/L	0.855	ССМЕ	2010	WQG is for pH = 8.0 and temperature = 10 °C; converted to ammonia (as N) using the formula in the fact sheet	NA	NA	NA	NA	NA
Bromide	0.05	mg/L				converted to animonia (as N) using the formula in the fact sheet	NA	<1	1.24	1.06	1.03
Chloride	0.1	mg/L	120	CCME	2011		NA	100	95	83.7	81.1
Fluoride	0.4	mg/L	0.12	CCME	2002		NA	<0.4	<0.4	<0.4	<0.4
Nitrate (as N)	0.4	mg/L	3	CCME	2012		NA	0.926	<0.1	<0.1	1.05
Nitrite (as N)	0.02	mg/L	0.06	CCME	1987		NA	0.0747	<0.02	<0.02	<0.02
Ortho Phosphate (as P)	0.001	mg/L	0.00	CCIVIL	1307		NA	NA	NA	NA	NA
Phosphorus (P) - Total Diss.	0.001	mg/L					NA	NA	NA	NA	NA
Reactive Silica (as SiO ₂)	0.002	mg/L					NA	NA	NA	NA	NA
Reactive Sinca (as SiO2)	0.5					WQG applies when hardness is 181 - 250 mg/L; For hardness > 250	INA	IVA	INA	IVA	
Sulphate (SO ₄)	0.3	mg/L	429	BC ENV	2013	mg/L WQG needs to be determined based on site water	NA	1180	1170	1040	1070
Cyanides (mg/L)					ı		Т	T	T	T	_
Free Cyanide	0.001	mg/L	0.005	CCME	1987		NA	NA	NA	NA	NA
Total Cyanide	0.001	mg/L					NA	NA	NA	NA	NA
Total Cyanate (CNO-)	0.2	mg/L					NA	NA	NA	NA	NA
Thiocyanate	0.5	mg/L					NA	NA	NA	NA	NA
Organic / Inorganic Carbon (mg/L)					ı		T		1	1	T
Dissolved Organic Carbon	0.5	mg/L					25.9	30.3	24.9	20.6	12.2
Dissolved Metals (mg/L) Aluminum	0.001	mg/L	2.0	ECCC	2024	FWQG (μ g/L) = exp([0.645 × ln(DOC)] + [2.255 × ln(hardness)] + [1.995 × pH] + [-0.284 × (ln(hardness) × pH)] -9.898) WQG applies to the total fraction valid for water between hardness 10 and 430 mg/L, pH 6 and 8.7, and DOC 0.08 and 12.3 mg/L	0.0169	0.0115	0.01	0.0131	0.012
h	2.55-:					Value is for pH = 8.0, DOC = 12.3 mg/L, and hardness = 430 mg/L		2.2.5	0.00.0	0.000	
Antimony	0.0001	mg/L	0.07	BC ENV	2023		0.0104	0.0133	0.0242	0.0381	0.0208
Arsenic	0.0001	mg/L	0.005	CCME	1997		0.689	0.636	0.439	0.235	0.385
Barium	0.0001	mg/L	1	BC ENV	2017		0.0197	0.0224	0.0252	0.0213	0.0302
Beryllium	0.0001	mg/L	0.00013	BC ENV	2000		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth	0.00005	mg/L		1			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Boron	0.01	mg/L	1.5	CCME	2009		0.226	0.308	0.282	0.202	0.214

Table A-1. Porewater chemistry results, 2022

Media and Year									Porewater - 2022		
Sample ID					Aquati	c Life Guideline - Long Term Chronic ^[a]	BG-1	BG-2	BG-3	BG-4	BG-5
Sampling Depth							top 3-5 cm	top 3-5 cm	top 3-5 cm	top 3-5 cm	top 3-5 cm
Water Depth at Station (m)	Lowest	l lucito					23	16	10	9	16
Date Sampled	Detection	Units	Value	Source	Year	Notes	12-Aug-22	21-Aug-22	21-Aug-22	21-Aug-22	21-Aug-22
Lab Sample ID	Limit						VA22B9759- 011	VA22B9759012	VA22B9759013	VA22B9759014	VA22B9759015
Cadmium	0.000005	mg/L	0.00037	CCME	2014	WQG applies at hardness > 280 mg/L	0.000116	<0.000155	<0.0001	<0.00015	<0.000065
Calcium	0.05	mg/L	0.00037	CCIVIL	2014	Wed applies at haraness > 200 mg/ E	233	232	217	189	222
Cesium	0.00001	mg/L					0.000046	0.000049	0.000028	0.00003	0.000072
Chromium	0.0005	mg/L	0.005	ECCC	2018	CCME 1997 WQG for CrVI = 0.001 mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Cobalt	0.0001	mg/L	0.0018	ECCC	2017	WQG = exp((0.414[ln(hardness)] – 1.887); valid for water with hardness between 52-396 mg/L	0.0235	0.0428	0.0476	0.067	0.131
Copper	0.0002	mg/L	0.045 - 0.14	ECCC	2021	Biotic ligand model	0.066	0.0649	0.00518	0.00349	0.0009
Iron	0.002	mg/L	0.76	ECCC	2024	Guideline for water with pH = 8 and DOC = 10.8 mg/L	<0.02	<0.02	0.022	<0.02	0.021
Lead	0.00005	mg/L	0.02 - 0.034	BC ENV	2024	WQG (μ g/L) = exp(0.514 [ln(DOC)] + 0.214[ln(hardness)] + 0. 4354)/1000; WQG applies to the dissolved fraction	0.0013	0.0008	0.0001	0.0011	0.00050
Lithium	0.001	mg/L					0.0054	0.0074	0.0058	0.0139	0.0104
Magnesium	0.005	mg/L					30	24.8	22.2	19.3	18.2
Manganese	0.0001	mg/L	0.32 - 0.86	CCME	2019	WQG is pH and hardness-dependent	0.104	0.0819	0.086	0.0889	0.0831
Mercury	0.000005	mg/L	0.000020	BC ENV	2021	CCME 2003 WQG = 0.000026 mg/L	<0.000025	<0.000005	<0.000005	<0.000005	<0.000005
Molybdenum	0.00005	mg/L	7.6	BC ENV	2021		0.106	0.108	0.0923	0.0869	0.1
Nickel	0.0005	mg/L	0.15	CCME	1987	WQG when hardness > 180 mg/L	0.0266	0.0345	0.0531	0.0427	0.0282
Phosphorus	0.05	mg/L				3,	<0.1	<0.1	<0.1	<0.1	<0.1
Potassium	0.05	mg/L					175	150	142	128	139
Rubidium	0.0002	mg/L					0.106	0.0742	0.0883	0.0731	0.0741
Selenium	0.00005	mg/L	0.002	BC ENV	2014	CCME 1987 WQG = 0.001 mg/L	0.020	0.025	0.0095	0.0033	0.0060
Silicon	0.05	mg/L				· 5.	4.39	4.2	5.14	4.6	5.14
Silver	0.00001	mg/L	0.00025	CCME	2015	WQG applies to total (unfiltered) fraction	0.000071	0.000418	<0.00002	<0.00002	<0.00002
Sodium	0.05	mg/L					273	237	230	197	216
Strontium	0.0002	mg/L	2.5	ECCC	2020		0.714	0.649	0.681	0.619	0.703
Sulfur	0.5	mg/L					535	467	446	350	408
Tellurium	0.0002	mg/L					< 0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Thallium	0.00001	mg/L	0.0008	CCME	1999		0.000028	0.000033	<0.00002	<0.00002	<0.00002
Thorium	0.0001	mg/L					<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tin	0.0001	mg/L					0.00241	0.00096	0.0002	<0.0002	<0.0002
Titanium	0.0003	mg/L					< 0.0006	<0.0006	<0.0006	<0.0006	<0.0006
Tungsten	0.0001	mg/L					0.00224	0.00339	0.00337	0.00335	0.0044
Uranium	0.00001	mg/L	0.015	CCME	2011		0.00377	0.00316	0.0141	0.011	0.0079
Vanadium	0.0005	mg/L	0.12	ECCC	2016		< 0.001	<0.001	<0.001	<0.001	<0.001
Zinc	0.001	mg/L	0.17 - 0.29	ССМЕ	2018	WQG = exp(0.947[ln(hardness)] - 0.815[pH] + 0.398[ln(DOC)] + 4.625). The WQG equation is valid between hardness 23.4 and 399 mg CaCO ₃ /L, pH 6.5 and 8.13 and DOC 0.3 - 22.9 mg/L.	0.0047	0.0024	<0.002	<0.002	<0.002
Zirconium	0.0002	mg/L				. , ,	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
· · · · · · · · ·	3.000=		I .	l	İ	I				300.	

[a] CCME (Canadian Council of Ministers of the Environment) Canadian Water Quality Guidelines for the Protection of Aquatic Life. FEQG (Federal Environmental Quality Guidelines). BC MOE (British Columbia Ministry of Environment and Climate Change Strategy). Shaded and bold values exceed the Aquatic Life Guideline.

Italicized numbers are below detection limits.

NA = not analyzed

Table A-2. Porewater chemistry results, 2023

Table A-2. Porewater cher Media and Year		2023							Porewater - 2023		
Sample ID					Aguat	ic Life Guideline - Long Term Chronic ^[a]	BG-1	BG-4	BG-5	PW_ST-20i	PW_ST-20ii
Sampling Depth		-			Aquat	ic the duidenne - tong rerm chronic.	top 3-5 cm	top 3-5 cm	top 3-5 cm	top 3-5 cm	top 3-5 cm
Water Depth at Station (m)	Lowest						27	13	12	44	32
Date Sampled	Detection	Units	Value	Source	Year	Notes	23-Aug-23	23-Aug-23	23-Aug-23	23-Aug-23	23-Aug-23
Date Sampled	Limit		Value	Source	I Cai	Notes	VA23C0590-	VA23C0590-	VA23C0590-	VA23C0590-	VA23C0590-
Lab Sample ID							001	002	003	004	005
Physical Tests							001	002	003	004	003
Conductivity	2	μS/cm					NA	NA	NA	NA	NA
Alkalinity - Bicarbonate	1	mg/L					NA	NA	NA	NA	NA
Alkalinity - Carbonate	1	mg/L					NA	NA	NA	NA	NA
Alkalinity - Hydroxide	1	mg/L					NA	NA	NA	NA	NA
Alkalinity - Trydroxide Alkalinity - Total (as CaCO ₃)	1	mg/L		+			NA	NA	NA	NA	NA
Hardness (as CaCO ₃), dissolved	0.6	mg/L		1			732	768	682	663	640
Turbidity	0.0	NTU		1			NA	NA	NA	NA	NA
raibiaity	0.1	pH					N/A	NA.	INA	IVA	IVA
pH (Laboratory)	0.1	units	6.5-9.0	CCME	1987		NA	NA	NA	NA	NA
Anions and Nutrients (mg/L)											
Ammonia (as N)	0.005	mg/L	0.855	CCME	2010	WQG is for pH = 8.0 and temperature = 10 °C;	NA	NA	NA	NA	NA
				-		converted to ammonia (as N) using the formula in the fact sheet					
Bromide	0.05	mg/L					NA	NA	NA	NA	NA
Chloride	0.1	mg/L	120	CCME	2011		NA	NA	NA	NA	NA
Fluoride	0.4	mg/L	0.12	CCME	2002		NA	NA	NA	NA	NA
Nitrate (as N)	0.1	mg/L	3	CCME	2012		NA	NA	NA	NA	NA
Nitrite (as N)	0.02	mg/L	0.06	CCME	1987		NA	NA	NA	NA	NA
Ortho Phosphate (as P)	0.001	mg/L					NA	NA	NA	NA	NA
Phosphorus (P) - Total Diss.	0.002	mg/L					NA	NA	NA	NA	NA
Reactive Silica (as SiO ₂)	0.5	mg/L					NA	NA	NA	NA	NA
Sulphate (SO ₄)	0.3	mg/L	429	BC ENV	2013	WQG applies when hardness is 181 - 250 mg/L; For hardness > 250 mg/L WQG needs to be determined based on site water	NA	NA	NA	NA	NA
Cyanides (mg/L)		1			I	0, 4	-II				
Free Cyanide	0.001	mg/L	0.005	CCME	1987		NA	NA	NA	NA	NA
Total Cyanide	0.001	mg/L					NA	NA	NA	NA	NA
Total Cyanate (CNO-)	0.2	mg/L					NA	NA	NA	NA	NA
Thiocyanate	0.5	mg/L					NA	NA	NA	NA	NA
Organic / Inorganic Carbon (mg/L)		6/ =		<u> </u>	<u>I</u>		1 22 2				
Dissolved Organic Carbon	0.5	mg/L					29.7	27.5	25.1	15.3	10.8
Dissolved Metals (mg/L)	0.0	6/ =			<u> </u>						
Aluminum	0.001	mg/L	1.7	ECCC	2024	FWQG (μ g/L) = exp([0.645 × ln(DOC)] + [2.255 × ln(hardness)] + [1.995 × pH] + [-0.284 × (ln(hardness) × pH)] -9.898) WQG applies to the total fraction valid for water between hardness 10 and 430 mg/L, pH 6 and 8.7, and DOC 0.08 and 12.3 mg/L Value is for pH = 8.0, DOC = 12.3 mg/L, and hardness = 430 mg/L	0.0105	0.0069	0.012	0.011	0.0114
Antimony	0.0001	mg/L	0.07	BC ENV	2023	<u>.</u>	0.0266	0.00608	0.0202	0.0184	0.0115
Arsenic	0.0001	mg/L	0.005	CCME	1997		0.216	0.346	0.603	0.158	0.347
Barium	0.0001	mg/L	1	BC ENV	2017		0.0223	0.0228	0.0206	0.0224	0.0221
Beryllium	0.0001	mg/L	0.00013	BC ENV	2000		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Bismuth	0.00005	mg/L					<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Boron	0.01	mg/L	1.5	CCME	2009		0.231	0.24	0.287	0.192	0.212

Table A-2. Porewater chemistry results, 2023

Media and Year							Porewater - 2023				
Sample ID					Aquati	c Life Guideline - Long Term Chronic ^[a]	BG-1	BG-4	BG-5	PW_ST-20i	PW_ST-20ii
Sampling Depth	Laurant						top 3-5 cm	top 3-5 cm	top 3-5 cm	top 3-5 cm	top 3-5 cm
Water Depth at Station (m)	Lowest	Linita					27	13	12	44	32
Date Sampled	Detection Limit	Units	Value	Source	Year	Notes	23-Aug-23	23-Aug-23	23-Aug-23	23-Aug-23	23-Aug-23
	Limit						VA23C0590-	VA23C0590-	VA23C0590-	VA23C0590-	VA23C0590-
Lab Sample ID							001	002	003	004	005
Cadmium	0.000005	mg/L	0.00037	CCME	2014	WQG applies at hardness > 280 mg/L	<0.000425	<0.000075	<0.00066	<0.000085	< 0.000335
Calcium	0.05	mg/L					235	262	227	213	219
Cesium	0.00001	mg/L					0.000024	0.000031	0.000044	0.000031	0.000046
Chromium	0.0005	mg/L	0.005	ECCC	2018		< 0.0002	<0.0002	<0.0002	<0.0002	< 0.0002
Cobalt	0.0001	mg/L	0.0018	ECCC	2017	WQG = exp((0.414[In(hardness)] – 1.887); valid for water with hardness between 52-396 mg/L	0.0448	0.0439	0.0432	0.062	0.0816
Copper	0.0002	mg/L	0.045 - 0.14	ECCC	2021	Biotic ligand model	0.00133	0.00057	0.012	0.00084	0.00247
Iron	0.01	mg/L	0.76	ECCC	2024	Guideline for water with pH = 8 and DOC = 10.8 mg/L	0.036	0.119	<0.02	<0.02	< 0.02
Lead	0.00005	mg/L	0.02 - 0.034	BC ENV	2024	WQG (μ g/L) = exp(0.514 [ln(DOC)] + 0.214[ln(hardness)] + 0. 4354)/1000; WQG applies to the dissolved fraction	0.00063	0.00022	0.0026	0.0004	0.0045
Lithium	0.001	mg/L					0.0064	0.0044	0.0085	0.0109	0.0149
Magnesium	0.005	mg/L					35.3	27.6	28.1	31.9	22.7
Manganese	0.0001	mg/L	0.32 - 0.86	CCME	2019	WQG is pH and hardness-dependent	0.113	0.155	0.0752	0.137	0.126
Mercury	0.000005	mg/L	0.000020	BC ENV	2021	CCME 2003 WQG = 0.000026 mg/L	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Molybdenum	0.00005	mg/L	7.6	BC ENV	2021		0.127	0.236	0.106	0.132	0.104
Nickel	0.0005	mg/L	0.15	CCME	1987	WQG when hardness > 180 mg/L	0.0675	0.033	0.0335	0.0654	0.0663
Phosphorus	0.05	mg/L				3,	<0.1	<0.1	<0.1	<0.1	<0.1
Potassium	0.05	mg/L					153	129	143	140	132
Rubidium	0.0002	mg/L					0.107	0.0611	0.0924	0.0724	0.0753
Selenium	0.00005	mg/L	0.002	BC ENV	2014	CCME 1987 WQG = 0.001 mg/L	0.0058	0.0080	0.015	0.0028	0.0070
Silicon	0.05	mg/L				5.	4.21	4.37	4.68	4.95	4.91
Silver	0.00001	mg/L	0.00025	CCME	2015	WQG applies to total (unfiltered) fraction	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Sodium	0.05	mg/L					275	252	238	231	222
Strontium	0.0002	mg/L	2.5	ECCC	2020		0.764	0.764	0.674	0.774	0.714
Sulfur	0.5	mg/L					496	462	436	427	411
Tellurium	0.0002	mg/L					< 0.0004	<0.0004	< 0.0004	<0.0004	<0.0004
Thallium	0.00001	mg/L	0.0008	CCME	1999		<0.00002	<0.00002	0.000023	<0.00002	0.000034
Thorium	0.0001	mg/L					<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tin	0.0001	mg/L					0.00046	0.00033	<0.0002	<0.0002	<0.0002
Titanium	0.0003	mg/L					<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
Tungsten	0.0001	mg/L					0.00217	0.0033	0.00278	0.00189	0.00374
Uranium	0.00001	mg/L	0.015	CCME	2011		0.0138	0.0108	0.00706	0.0132	0.0103
Vanadium	0.0005	mg/L	0.12	ECCC	2016		<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	0.001	mg/L	0.17 - 0.29	CCME	2018	WQG = $\exp(0.947[\ln(\text{hardness})] - 0.815[pH] + 0.398[\ln(DOC)] + 4.625)$. The WQG equation is valid between hardness 23.4 and 399 mg $CaCO_3/L$, pH 6.5 and 8.13 and DOC 0.3 - 22.9 mg/L.	0.0035	<0.002	0.0034	<0.002	0.0023
			i .	1	1	1 00000, -, pri 0.0 dila 0.10 dila 0.00 0.0 22.0 lilb/ Li	i i	i	i .	1	i e

[a] CCME (Canadian Council of Ministers of the Environment) Canadian Water Quality Guidelines for the Protection of Aquatic Life. FEQG (Federal Environmental Quality Guidelines). BC MOE (British Columbia Ministry of Environment and Climate Change Strategy). Shaded and bold values exceed the Aquatic Life Guideline.

Italicized numbers are below detection limits.

NA = not analyzed

Table A-3. Porewater chemistry results, 2024

Det Sampled Lab Sample ID Physical Tests Conductivity Alkalinity - Bicarbonate Alkalinity - Carbonate Alkalinity - Hydroxide Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity	owest etection Limit 2 1 1 1 0.6	Units μS/cm mg/L mg/L mg/L mg/L	Value	Source	Aquati Year	c Life Guideline - Long Term Chronic ^[a] Notes	PW-BG-1 top 3-5 cm 30 10-Aug-2024 VA24C2005- 003	PW-BG-4 top 3-5 cm 19 10-Aug-2024 VA24C2005- 004	PW-BG-5 top 3-5 cm 44 10-Aug-2024 VA24C2005-	PW-ST-20i top 3-5 cm 48 11-Aug-2024 VA24C2005-	PW-ST-20ii top 3-5 cm 38 10-Aug-2024 VA24C2005-
Water Depth at Station (m) Date Sampled Lab Sample ID Physical Tests Conductivity Alkalinity - Bicarbonate Alkalinity - Carbonate Alkalinity - Hydroxide Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity	tection Limit 2 1 1 1 1	μS/cm mg/L mg/L mg/L	Value	Source	Year	Notes	30 10-Aug-2024 VA24C2005-	19 10-Aug-2024 VA24C2005-	44 10-Aug-2024 VA24C2005-	48 11-Aug-2024 VA24C2005-	38 10-Aug-2024
Det Sampled Lab Sample ID Physical Tests Conductivity Alkalinity - Bicarbonate Alkalinity - Carbonate Alkalinity - Hydroxide Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity	tection Limit 2 1 1 1 1	μS/cm mg/L mg/L mg/L	Value	Source	Year	Notes	10-Aug-2024 VA24C2005-	10-Aug-2024 VA24C2005-	10-Aug-2024 VA24C2005-	11-Aug-2024 VA24C2005-	10-Aug-2024
Lab Sampled Lab Sample ID Physical Tests Conductivity Alkalinity - Bicarbonate Alkalinity - Carbonate Alkalinity - Hydroxide Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity	2 1 1 1	μS/cm mg/L mg/L mg/L	Value	Source	Year	Notes	VA24C2005-	VA24C2005-	VA24C2005-	VA24C2005-	
Physical Tests Conductivity Alkalinity - Bicarbonate Alkalinity - Carbonate Alkalinity - Hydroxide Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity	1 1 1 1	mg/L mg/L mg/L									VA24C2005-
Physical Tests Conductivity Alkalinity - Bicarbonate Alkalinity - Carbonate Alkalinity - Hydroxide Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity	1 1 1 1	mg/L mg/L mg/L							005	001	002
Conductivity Alkalinity - Bicarbonate Alkalinity - Carbonate Alkalinity - Hydroxide Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity	1 1 1 1	mg/L mg/L mg/L				·					
Alkalinity - Bicarbonate Alkalinity - Carbonate Alkalinity - Hydroxide Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity	1 1 1 1	mg/L mg/L mg/L					3090	2940	3050	3040	2900
Alkalinity - Carbonate Alkalinity - Hydroxide Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity	1	mg/L mg/L					87.8	89	86	112	54.9
Alkalinity - Hydroxide Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity	1	mg/L					<1	<1	<1	<1	<1
Alkalinity - Total (as CaCO ₃) Hardness (as CaCO ₃), dissolved Turbidity							<1	<1	<1	<1	<1
Hardness (as CaCO ₃), dissolved Turbidity							87.8	89	86	112	54.9
Turbidity	0.0	mg/L					684	803	693	707	762
,	0.1	NTU					0.12	0.4	0.29	0.28	0.54
	0.1	pH					0.12	0.4	0.23	0.28	0.54
pH (Laboratory)	0.1	units	6.5-9.0	CCME	1987		8.11	8.11	8.08	8.19	7.88
Anions and Nutrients (mg/L)	1			- L	1	-					
, ,	0.005	mg/L	0.855	CCME	2010	WQG is for pH = 8.0 and temperature = 10 °C;	28.3	23.5	26.4	28.5	17.7
· '		_				converted to ammonia (as N) using the formula in the fact sheet				.4	
	0.05	mg/L	400	00145	2011		<1	<1	1.15	<1	<1
	0.1	mg/L	120	CCME	2011		97.7	97.7	98.1	97.4	94.4
	0.4	mg/L	0.12	CCME	2002		<0.4	< 0.4	<0.4	<0.4	< 0.4
	0.1	mg/L	3	CCME	2012		<0.1	<0.1	<0.1	<0.1	<0.1
` '	0.02	mg/L	0.06	CCME	1987		<0.02	<0.02	< 0.02	<0.02	< 0.02
	0.001	mg/L					0.0079	0.003	0.0038	0.0074	0.0045
1 , , ,	0.002	mg/L					0.015	0.0079	0.0108	0.0174	0.0154
Reactive Silica (as SiO ₂)	0.5	mg/L					12	11.1	12.3	13	8.27
Sulphate (SO ₄)	0.3	mg/L	429	BC ENV	2013	WQG applies when hardness is 181 - 250 mg/L; For hardness > 250 mg/L WQG needs to be determined based on site water	1270	1200	1290	1220	1240
Cyanides (mg/L)	<u> </u>	I				0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,					
	0.001	mg/L	0.005	CCME	1987		0.0036	0.0054	0.0146	0.008	0.0021
	0.001	mg/L					0.0847	0.245	0.112	0.223	0.129
	0.2	mg/L					<2	<2	<2	3.6	<2
, , ,	0.5	mg/L					95.8	69.3	87.3	95.8	69.4
Organic / Inorganic Carbon (mg/L)		6/ =		I	<u> </u>				2772	55.5	
	0.5	mg/L					22.3	19.8	28	23.5	18.7
Dissolved Metals (mg/L)	0.0	6/ =									
	0.001	mg/L	1.7	ECCC	2024	FWQG (μ g/L) = exp([0.645 × ln(DOC)] + [2.255 × ln(hardness)] + [1.995 × pH] + [-0.284 × (ln(hardness) × pH)] -9.898) WQG applies to the total fraction valid for water between hardness 10 and 430 mg/L, pH 6 and 8.7, and DOC 0.08 and 12.3 mg/L Value is for pH = 8.0, DOC = 12.3 mg/L, and hardness = 430 mg/L	0.0129	0.011	0.0086	0.0132	0.0104
Antimony	0.0001	ma/l	0.07	BC ENV	2023	value is for μπ – 6.0, DOC – 12.3 mg/L, and fidiumess – 430 mg/L	0.0111	0.0133	0.0243	0.0242	0.00494
		mg/L		+	1997		0.0111				
	0.0001	mg/L	0.005	CCME			0.61	0.235	0.177	0.346	0.423
	0.0001	mg/L	1 0 00013	BC ENV	2017		0.0236	0.0259	0.0209	0.0212	0.0255
,	0.0001	mg/L	0.00013	BC ENV	2000		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	0.01	mg/L mg/L	1.5	CCME	2009		<0.0001 0.317	<0.0001 0.304	<0.0001 0.241	<0.0001 0.267	<0.0001 0.215

Table A-3. Porewater chemistry results, 2024

Media and Year									Porewater - 2024		
Sample ID					Aquati	c Life Guideline - Long Term Chronic ^[a]	PW-BG-1	PW-BG-4	PW-BG-5	PW-ST-20i	PW-ST-20ii
Sampling Depth							top 3-5 cm	top 3-5 cm	top 3-5 cm	top 3-5 cm	top 3-5 cm
Water Depth at Station (m)	Lowest Detection	Units					30	19	44	48	38
Date Sampled	Limit	Units	Value	Source	Year	Notes	10-Aug-2024	10-Aug-2024	10-Aug-2024	11-Aug-2024	10-Aug-2024
	Lilling						VA24C2005-	VA24C2005-	VA24C2005-	VA24C2005-	VA24C2005-
Lab Sample ID							003	004	005	001	002
Cadmium	0.000005	mg/L	0.00037	CCME	2014	WQG applies at hardness > 280 mg/L	0.000106	<0.000045	<0.00004	<0.000045	<0.000085
Calcium	0.05	mg/L					228	261	235	239	271
Cesium	0.00001	mg/L					0.000034	< 0.00002	0.000032	0.000034	0.00005
Chromium	0.0005	mg/L	0.005	ECCC	2018		< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002
Cobalt	0.0001	mg/L	0.0018	ECCC	2017	WQG = exp((0.414[In(hardness)] – 1.887); valid for water with hardness between 52-396 mg/L	0.0408	0.069	0.0473	0.0478	0.033
Copper	0.0002	mg/L	0.045 - 0.14	ECCC	2021	Biotic ligand model	0.00487	0.00051	0.00226	<0.0004	0.00046
Iron	0.01	mg/L	0.76	ECCC	2024	Guideline for water with pH = 8 and DOC = 10.8 mg/L	0.023	0.078	0.034	0.097	0.053
Lead	0.00005	mg/L	0.02 - 0.034	BC ENV	2024	WQG (μ g/L) = exp(0.514 [ln(DOC)] + 0.214[ln(hardness)] + 0. 4354)/1000; WQG applies to the dissolved fraction	<0.0001	<0.0001	<0.0001	<0.0001	0.00017
Lithium	0.001	mg/L				, , , , ,	0.0098	0.0048	0.0054	0.004	0.0044
Magnesium	0.005	mg/L					27.8	36.7	25.7	26.7	20.8
Manganese	0.0001	mg/L	0.32 - 0.86	CCME	2019	WQG is pH and hardness-dependent	0.089	0.142	0.0771	0.09	0.0643
Mercury	0.000005	mg/L	0.000020	BC ENV	2021	CCME 2003 WQG = 0.000026 mg/L	<0.00005	<0.00005	<0.00005	<0.00005	<0.0005
Molybdenum	0.00005	mg/L	7.6	BC ENV	2021	U,	0.0778	0.126	0.149	0.151	0.166
Nickel	0.0005	mg/L	0.15	CCME	1987	WQG when hardness > 180 mg/L	0.0454	0.0546	0.0464	0.0339	0.0097
Phosphorus	0.05	mg/L				G,	<0.1	<0.1	<0.1	<0.1	<0.1
Potassium	0.05	mg/L					168	147	136	145	135
Rubidium	0.0002	mg/L					0.142	0.0688	0.0621	0.102	0.0552
Selenium	0.00005	mg/L	0.002	BC ENV	2014	CCME 1987 WQG = 0.001 mg/L	0.0062	0.0025	0.0074	0.014	0.0018
Silicon	0.05	mg/L					5.46	5.35	4.7	4.73	3.62
Silver	0.00001	mg/L	0.00025	CCME	2015	WQG applies to total (unfiltered) fraction	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Sodium	0.05	mg/L					251	251	244	254	246
Strontium	0.0002	mg/L	2.5	ECCC	2020		0.794	0.891	0.787	0.803	0.956
Sulfur	0.5	mg/L					448	482	427	442	447
Tellurium	0.0002	mg/L					<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Thallium	0.00001	mg/L	0.0008	CCME	1999		0.000027	<0.00002	<0.00002	<0.00002	<0.00002
Thorium	0.0001	mg/L					<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tin	0.0001	mg/L					<0.0002	0.0004	0.00035	0.00077	<0.0002
Titanium	0.0003	mg/L					<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
Tungsten	0.0001	mg/L					0.00197	0.00198	0.00349	0.00503	0.00151
Uranium	0.00001	mg/L	0.015	CCME	2011		0.00715	0.00794	0.00674	0.012	0.00186
Vanadium	0.0005	mg/L	0.12	ECCC	2016		<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	0.001	mg/L	0.17 - 0.29	CCME	2018	WQG = exp(0.947[ln(hardness)] - 0.815[pH] + 0.398[ln(DOC)] + 4.625). The WQG equation is valid between hardness 23.4 and 399 mg CaCO ₃ /L, pH 6.5 and 8.13 and DOC 0.3 - 22.9 mg/L.	<0.002	<0.002	<0.002	<0.002	<0.002
Zirconium	0.0002	mg/L				Caco ₃ / L, pri 0.3 and 0.13 and DOC 0.3 - 22.3 mg/L.	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
ZIICOIIIUIII	0.0002	IIIg/L]	l .	l .		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004

[a] CCME (Canadian Council of Ministers of the Environment) Canadian Water Quality Guidelines for the Protection of Aquatic Life. FEQG (Federal Environmental Quality Guidelines). BC MOE (British Columbia Ministry of Environment and Climate Change Strategy). Shaded and bold values exceed the Aquatic Life Guideline.

Italicized numbers are below detection limits.

NA = not analyzed

Table A-4. Tailings chemistry results from Goose Pit, 2022 and 2023

						Goose Pi	t Tailings Samp	les - 2022	
Client Sample ID	Lowest Detection Limit	Units	CCME Sediment C	Quality Guidelines ^[a]	BG-1	BG-2	BG-3	BG-4	BG-5
Date Sampled			ISQG	PEL	12-Aug-22	21-Aug-22	21-Aug-22	21-Aug-22	21-Aug-22
Physical Tests	T	ı		T		T	T	T	
Moisture	0.25	%	-	-	26.4	26.4	28.2	29.1	40.3
pH	0.1	pH units	-	-	8.3	8.57	8.4	8.42	8.32
Particle Size & Total Organic		%		<u> </u>	12.2	10.2	10.2	10.0	22.1
Clay (<4 um)	1		-	-	13.3	18.3	19.3	19.9	22.1
Silt (4-63 um)	1	%	-	-	86.4	81.7	80.6	79.9	77.6
Sand (63 um - 2mm)	1	%	-	-	<1.0	<1.0	<1.0	<1.0	<1.0
Total organic carbon	0.114	%	-	-	0.413	0.283	0.351	0.238	0.232
Metals		/1		<u> </u>	20500	24000	22200	20200	20500
Aluminum	50	mg/kg	-	-	29500	31900	32200	29200	28600
Antimony	0.1	mg/kg	-	-	2.09	2.23	2.14	2.51	2.08
Arsenic*	0.36	mg/kg	5.9	17	1060	903	855	624	811
Barium	0.5	mg/kg	-	-	135	120	128	109	116
Beryllium	0.1	mg/kg	-	-	0.83	0.76	0.79	0.64	0.65
Bismuth	0.2	mg/kg	-	-	0.32	0.3	0.31	0.25	0.28
Boron	5	mg/kg	-	-	5.9	6.6	6.3	5.5	6
Cadmium*	0.02	mg/kg	0.6	3.5	0.858	0.732	0.803	0.134	0.401
Calcium	50	mg/kg	-	-	20800	21800	21300	19300	17200
Chromium*	1.8	mg/kg	37.3	90	1100	1350	1360	1230	1120
Cobalt	0.1	mg/kg	-	-	28.4	33.2	30.2	36.5	28.7
Copper*	0.5	mg/kg	35.7	197	468	384	1300	143	140
Iron	50	mg/kg	-	-	81000	85100	86400	85900	82700
Lead	0.5	mg/kg	35	91.3	143	162	171	92.3	163
Lithium	2	mg/kg	-	-	24.5	27.5	26.2	25	24.7
Magnesium	20	mg/kg	-	-	29600	31500	32500	25200	27200
Manganese	1	mg/kg	-	-	2160	2540	2560	2550	2330
Mercury	0.005	mg/kg	0.17	0.486	< 0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum	0.1	mg/kg	-	-	1.82	1.62	1.73	1.44	1.77
Nickel	0.5	mg/kg	-	-	424	537	514	551	464
Phosphorus	50	mg/kg	-	-	534	421	418	407	397
Potassium	100	mg/kg	-	-	12600	12800	12400	11200	10800
Selenium	0.2	mg/kg	-	-	0.63	0.5	0.7	0.65	0.56
Silver	0.1	mg/kg	-	-	0.73	0.56	1.2	0.05	0.23
Sodium	50	mg/kg	-	-	419	423	401	447	490
Strontium	0.5	mg/kg	-	-	62.6	54.2	55.2	43.6	43.8
		t			1	1	1	1	
Sulfur	1000	mg/kg	-	-	8000	8400	7800	8400	8100
Thallium	0.05	mg/kg	-	-	0.494	0.471	0.482	0.428	0.425

	Goose Pit	Tailings Samp	les - 2023	
BG-1	BG-4	BG-5	ST-20i	ST-20ii
23-Aug-23	23-Aug-23	23-Aug-23	23-Aug-23	23-Aug-23
	T	T	1	1
39.1	36.4	34.5	36.8	32.3
9.59	8.41	8.37	8.56	8.46
22.7	22.5	22.4	14.5	15.1
77.1	77.2	77.2	84.4	80.2
<1	<1	<1	1.1	4.7
0.209	0.168	0.158	0.339	0.314
	T	T	<u> </u>	1
33900	31000	30700	26900	27000
5.96	2.47	2.3	2.16	2.5
796	691	856	1240	1280
189	114	115	115	110
0.7	0.71	0.61	0.7	0.63
0.7	0.25	0.25	0.27	0.3
15.6	5.7	5.1	5.1	5.5
1.05	0.168	0.271	0.751	0.632
26400	21800	20000	21400	22200
1440	1360	1340	1010	1120
32.3	37.5	40.1	34.6	42.3
332	127	126	236	190
88400	91000	83700	75300	81800
216	101	115	97.6	122
23.4	24.8	24	20.1	20.7
32100	27800	28600	28000	26500
2800	3140	2900	2160	2480
<0.005	<0.005	<0.005	<0.005	<0.005
2.34	1.63	1.51	1.48	1.73
577	629	622	483	577
663	404	414	494	404
11900	11000	10900	10200	9440
0.4	0.5	0.79	0.61	0.86
0.7	0.31	0.27	0.56	0.6
1050	615	503	414	463
65.9	54.6	47.6	66.9	64.3
8000	8900	8700	9500	12100
0.45	0.427	0.409	0.414	0.415

Table A-4. Tailings chemistry results from Goose Pit, 2022 and 2023

Tubic 71 Tulling	55 chemistry results from	1 00030 1 10,							
						Goose Pi	t Tailings Samp	les - 2022	
Client Sample ID	Lowest Detection Limit	Units	CCME Sediment (Quality Guidelines ^[a]	BG-1	BG-2	BG-3	BG-4	BG-5
Date Sampled			ISQG	PEL	12-Aug-22	21-Aug-22	21-Aug-22	21-Aug-22	21-Aug-22
Tin	2	mg/kg	-	-	<2	<2	<2	<2	<2
Titanium	1	mg/kg	-	-	1230	1250	1300	1140	1100
Tungsten	0.5	mg/kg	-	-	6.1	7.81	6.89	5.97	4.95
Uranium	0.05	mg/kg	-	-	0.845	0.671	0.73	0.697	0.815
Vanadium	0.2	mg/kg	-	-	81.5	91.4	93.3	79.8	76.8
Zinc	2	mg/kg	123	315	62.6	59.4	60.2	55.8	58.4
Zirconium	1	mg/kg	-	-	11	7.6	8.5	7.5	8.7

	Goose Pit Tailings Samples - 2023											
BG-1	BG-4	BG-5	ST-20i	ST-20ii								
23-Aug-23	23-Aug-23	23-Aug-23	23-Aug-23	23-Aug-23								
3.2	<2	<2	<2	<2								
1480	1340	1260	1110	1130								
8.09	6.25	4.25	5.5	7.28								
0.885	0.719	0.682	0.732	0.755								
96.6	89.4	86	76.1	77.4								
160	58.5	55.4	55.9	56.6								
7.4	7.1	5.3	7.2	6.8								

Bold values exceed the ISQG

Shaded and bold values exceed the PEL

Italicized numbers are below detection limits.

[[]a] CCME (Canadian Council of Ministers of the Environment) Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, 1999, updated in 2002.

ISQG = interim sediment quality guideline; PEL = probable effect level

Table A-5. Chemistry results from the reclaim water samples submitted for toxicity testing compared to porewater chemistry results from Goose Pit.

Media Sample ID	Detection	Unite	Reclaim Water for the RBT Test	Reclaim Water for the FHM Test	Goose Pit Porev	vater Chemistry		
	Limit	Units						
Sampling Depth Date Sampled	_				Minimum	Maximum		
<u> </u>			10-Aug-2024	0-1V1dy-23	Willilliam	Iviaxiiiiuiii		
Physical Tests	2	C./cm	1040	2200	2000	3000		
Conductivity	2	•	the RBT Test ST-20i B ST-20i A Goose Pit Porewat 7 m 2 m 10-Aug-2024 8-May-23 Minimum 1940 2290 2900 2900 91.8 122 49 41 41 <1.0		3090			
Alkalinity - Bicarbonate	1		10-Aug-2024 8-May-23 Minimum 1940 2290 2900 91.8 122 49 <1.0			116		
Alkalinity - Carbonate	1	mg/L	<1.0	<1	<1	<1		
Alkalinity - Hydroxide	1	mg/L	<1.0	<1	<1	<1		
Alkalinity - Total (as CaCO₃)	1	mg/L	91.8	122	49	116		
Hardness (as CaCO₃), dissolved	0.6	mg/L	466	611	551	803		
Total Dissolved Solids	3	mg/L	1490	1670	na	na		
Total Suspended Solids	1		6.8	5	1.8	2.6		
Turbidity	0.1					0.54		
	0.1					8.19		
pH (Laboratory)	0.1	ph units	0.13	7.02	7.55	6.19		
Anions and Nutrients (mg/L)				<u> </u>				
Ammonia (as N)	0.005		27	31.3	17.7	28.5		
Bromide	0.05	the RBT Test the FHM Test ST-20IB ST-20II A 7 m 2 m 10-Aug-2024 8-May-23 μS/cm 1940 2290 mg/L 91.8 122 mg/L 41.0 <1		<1	1.03	1.24		
Chloride	0.1	mg/L	mg/L 466 611 mg/L 1490 1670 mg/L 6.8 5 NTU 2.66 3.09 pH units 8.13 7.82 mg/L 27 31.3 mg/L 0.911 <1		81.1 100			
Fluoride	0.02	mg/L	0.276	<0.4	<0.4	<0.4		
Nitrate (as N)	0.005		0.0811	0.106	0.926	1.05		
Nitrite (as N)	0.001					0.0747		
· · · · · · · · · · · · · · · · · · ·	0.001					0.0079		
Ortho Phosphate (as P)								
Phosphorus (P) - Total Diss.	0.002					0.0174		
Reactive Silica (as SiO ₂)	0.5			_		13		
Sulphate (SO ₄)	0.3	mg/L	840	902	1040	1290		
Cyanides (mg/L)								
Free Cyanide	0.001	mg/L	<0.0050	0.0041	0.0021	0.0146		
Total Cyanide	0.001	mg/L	0.0495	0.253	0.0847	0.245		
Total Cyanate (CNO-)	0.25		<2.00	na	3.6	3.6		
	20					95.8		
Thiocyanate	20	IIIg/ L	12	IIa	03.3	33.8		
Organic / Inorganic Carbon (mg/L)								
Dissolved Organic Carbon	0.5	mg/L	7.47	9.72	10.8	30.3		
Dissolved Metals (mg/L)				T				
Aluminum	0.001	mg/L	0.0094	0.0111	0.0069	0.0169		
Antimony	0.0001	mg/L	0.00837	0.0144	0.00494	0.0381		
Arsenic	0.0001	mg/L	0.265	0.511	0.158	0.689		
Barium	0.0001	mg/L	0.0374	0.0498	0.0197	0.0302		
Beryllium	0.0001		<0.000100		<0.0001	<0.0001		
Bismuth	0.00005		1			<0.0001		
Boron	0.01					0.317		
Cadmium	0.000005					0.000116		
Calcium	0.05	mg/L	167	225	189	271		
Cesium	0.00001	mg/L	0.000528	0.0003	0.000024	0.000072		
Chromium	0.0005	mg/L	<0.00010	<0.0002	<0.0002	<0.0002		
Cobalt	0.0001	mg/L	0.205	0.327	0.0235	0.131		
Copper	0.0002		0.00722	0.00488	0.00046	0.066		
Iron	0.01					0.119		
Lead	0.00005					0.0045		
						0.0043		
Lithium	0.001							
Magnesium	0.005					36.7		
Manganese	0.0001					0.155		
Mercury	0.000005	mg/L	<0.000050	<0.00005	<0.00005	<0.00005		
Molybdenum	0.00005	mg/L	0.0627	0.0849	0.0778	0.236		
Nickel	0.0005	mg/L	0.0667	0.0742	0.0097	0.0675		
Phosphorus	0.05	mg/L	<0.050	<0.1	0	0		
Potassium	0.05	mg/L	75.8	95.7	128	175		
	0.0002		0.0333	0.0428	0.0552	0.142		
Rubidium		mg/L						
Selenium	0.00005	mg/L	0.0249	0.0342	0.00184	0.0247		
Silicon	0.05	mg/L	2.9	3.6	3.62	5.46		
Silver	0.00001	mg/L	<0.000010	<0.00002	<0.00002	0.000418		
Sodium	0.05	mg/L	156	192	197	275		
Strontium	0.0002	mg/L	0.564	0.611	0.619	0.956		
Sulfur	0.5	mg/L	291	398	350	535		
Juliui	0.5	1118/ L	<0.00020	<0.0004	<0.0004	333		

*AZIMUTH

Table A-5. Chemistry results from the reclaim water samples submitted for toxicity testing compared to porewater chemistry results from Goose Pit.

Media	Detection		Reclaim Water for the RBT Test	Reclaim Water for the FHM Test	Goose Pit Porewater Chemistry			
Sample ID	Limit	Units	ST-20i B	ST-20ii A	Goode Filt Forest	rater enemistry		
Sampling Depth	Liiiit		7 m	2 m				
Date Sampled			10-Aug-2024	8-May-23	Minimum	Maximum		
Thallium	0.00001	mg/L	0.000011	<0.00002	<0.00002	0.000034		
Thorium	0.0001	mg/L	<0.00010	<0.0002	<0.0002	<0.0002		
Tin	0.0001	mg/L	<0.00010	<0.0002	0.0002	0.00241		
Titanium	0.0003	mg/L	<0.00030	<0.0006	<0.0006	<0.0006		
Tungsten	0.0001	mg/L	0.00433	0.00649	0.00151	0.00503		
Uranium	0.00001	mg/L	0.00805	0.00752	0.00186	0.0141		
Vanadium	0.0005	mg/L	<0.00050	<0.001	<0.001	<0.001		
Zinc	0.001	mg/L	<0.0010	<0.002	<0.002	0.0047		

S.AZIMUTH 53

APPENDIX B

ANALYTICAL LABORATORY REPORTS

Appendix B-1 Laboratory Reports for the Porewater Samples

CERTIFICATE OF ANALYSIS

Work Order : VA22B9759-AB

Amendment : 1

Client : Azimuth Consulting Group Inc.

Contact : Marianna DiMauro

Address : # 218 - 2902 West Broadway

Vancouver BC Canada V6K 2G8

Telephone : ---

Project : Meadowbank CREMP Surfacewater

PO : ----C-O-C number : ----

 Sampler
 : --

 Site
 : --

 Quote number
 : Q39503

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 5

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 24-Aug-2022 11:00

Date Analysis Commenced : 31-Aug-2022

Issue Date : 27-Sep-2022 15:30

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anshim Anshim	Lab Assistant	Metals, Burnaby, British Columbia
Caitlin Macey	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Sukhman Khosa	Lab Assistant	Metals, Burnaby, British Columbia

Page : 2 of 5

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
VA22B9759-011	BG-1	Sample 11: Water sample for dissolved mercury analysis was not submitted in glass or PTFE container with HCl preservative. Results
		may be biased low.
VA22B9759-012	BG-2	Samples 12-15: Water samples for dissolved mercury analysis was not submitted in glass or PTFE container with HCl preservative.
		Results may be biased low.
VA22B9759-013	BG-3	Samples 12-15: Water samples for dissolved mercury analysis was not submitted in glass or PTFE container with HCl preservative.
		Results may be biased low.
VA22B9759-014	BG-4	Samples 12-15: Water samples for dissolved mercury analysis was not submitted in glass or PTFE container with HCl preservative.
		Results may be biased low.
VA22B9759-015	BG-5	Samples 12-15: Water samples for dissolved mercury analysis was not submitted in glass or PTFE container with HCl preservative.
		Results may be biased low.

Qualifiers

Qualifier	Description
DLA	Detection Limit adjusted for required dilution.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.

Page : 3 of 5

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

DLM Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,

colour, turbidity).

Page : 4 of 5

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Results

Sub-Matrix: Water		CI	ient sample ID	BG-1	BG-2	BG-3	BG-4	BG-5
(Matrix: Water)								
		Client samp	ling date / time	12-Aug-2022	21-Aug-2022	21-Aug-2022	21-Aug-2022	21-Aug-2022
Analyte CAS Numbe	Method	LOR	Unit	VA22B9759-011	VA22B9759-012	VA22B9759-013	VA22B9759-014	VA22B9759-015
one number				Result	Result	Result	Result	Result
Physical Tests								
alkalinity, bicarbonate (as CaCO3)	E290	1.0	mg/L		49.0	110	116	104
alkalinity, carbonate (as CaCO3)	E290	1.0	mg/L		<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as CaCO3)	E290	1.0	mg/L		<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)	E290	1.0	mg/L		49.0	110	116	104
hardness (as CaCO3), dissolved	EC100	0.60	mg/L	705	681	633	551	629
pH	E108	0.10	pH units		7.53	7.94	7.98	7.92
Anions and Nutrients								
bromide 24959-67-9	E235.Br-L	0.050	mg/L		<1.00 DLDS	1.24	1.06	1.03
chloride 16887-00-6	E235.CI	0.50	mg/L		100	95.0	83.7	81.1
fluoride 16984-48-8	E235.F	0.020	mg/L		<0.400 DLDS	<0.400 DLDS	<0.400 DLDS	<0.400 DLDS
nitrate (as N) 14797-55-8	E235.NO3-L	0.0050	mg/L		0.926	<0.100 DLDS	<0.100 DLDS	1.05
nitrite (as N) 14797-65-0	E235.NO2-L	0.0010	mg/L		0.0747	<0.0200 DLDS	<0.0200 DLDS	<0.0200 DLDS
sulfate (as SO4) 14808-79-8	E235.SO4	0.30	mg/L		1180	1170	1040	1070
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]	E358-L	0.50	mg/L	25.9	30.3	24.9	20.6	12.2
Dissolved Metals								
aluminum, dissolved 7429-90-5	E421	0.0010	mg/L	0.0169	0.0115	0.0100	0.0131	0.0120
antimony, dissolved 7440-36-0	E421	0.00010	mg/L	0.0104	0.0133	0.0242	0.0381	0.0208
arsenic, dissolved 7440-38-2	E421	0.00010	mg/L	0.689	0.636	0.439	0.235	0.385
barium, dissolved 7440-39-3	E421	0.00010	mg/L	0.0197	0.0224	0.0252	0.0213	0.0302
beryllium, dissolved 7440-41-7	E421	0.000100	mg/L	<0.000100 DLA				
bismuth, dissolved 7440-69-9	E421	0.000050	mg/L	<0.000100 DLA				
boron, dissolved 7440-42-8	E421	0.010	mg/L	0.226	0.308	0.282	0.202	0.214
cadmium, dissolved 7440-43-9	E421	0.0000050	mg/L	0.000116	<0.000155 DLM	<0.000100 DLM	<0.000150 DLM	<0.0000650 DLM
calcium, dissolved 7440-70-2	E421	0.050	mg/L	233	232	217	189	222
cesium, dissolved 7440-46-2	E421	0.000010	mg/L	0.000046	0.000049	0.000028	0.000030	0.000072
chromium, dissolved 7440-47-3	E421	0.00050	mg/L	<0.00050 DLA				
cobalt, dissolved 7440-48-4	E421	0.00010	mg/L	0.0235	0.0428	0.0476	0.0670	0.131
copper, dissolved 7440-50-8	E421	0.00020	mg/L	0.0660	0.0649	0.00518	0.00349	0.00090
iron, dissolved 7439-89-6	E421	0.010	mg/L	<0.020 DLA	<0.020 DLA	0.022	<0.020 DLA	0.021
lead, dissolved 7439-92-1	E421	0.000050	mg/L	0.00131	0.000751	0.000106	0.00112	0.000499

Page : 5 of 5

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	BG-1	BG-2	BG-3	BG-4	BG-5
(Matrix: Water)									
			Client samp	ling date / time	12-Aug-2022	21-Aug-2022	21-Aug-2022	21-Aug-2022	21-Aug-2022
Analyte	CAS Number	Method	LOR	Unit	VA22B9759-011	VA22B9759-012	VA22B9759-013	VA22B9759-014	VA22B9759-015
					Result	Result	Result	Result	Result
Dissolved Metals									
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0054	0.0074	0.0058	0.0139	0.0104
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	30.0	24.8	22.2	19.3	18.2
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.104	0.0819	0.0860	0.0889	0.0831
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000250 DLM	<0.0000050	<0.0000050	<0.0000050	<0.000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.106	0.108	0.0923	0.0869	0.100
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.0266	0.0345	0.0531	0.0427	0.0282
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.100 DLA	<0.100 DLA	<0.100 DLA	<0.100 DLA	<0.100 DLA
potassium, dissolved	7440-09-7	E421	0.050	mg/L	175	150	142	128	139
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.106	0.0742	0.0883	0.0731	0.0741
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.0204	0.0247	0.00948	0.00334	0.00598
silicon, dissolved	7440-21-3	E421	0.050	mg/L	4.39	4.20	5.14	4.60	5.14
silver, dissolved	7440-22-4	E421	0.000010	mg/L	0.000071	0.000418	<0.000020 DLA	<0.000020 DLA	<0.000020 DLA
sodium, dissolved	7440-23-5	E421	0.050	mg/L	273	237	230	197	216
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.714	0.649	0.681	0.619	0.703
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	535	467	446	350	408
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00040 DLA	<0.00040 DLA	<0.00040 DLA	<0.00040 DLA	<0.00040 DLA
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000028	0.000033	<0.000020 DLA	<0.000020 DLA	<0.000020 DLA
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00020 DLA	<0.00020 DLA	<0.00020 DLA	<0.00020 DLA	<0.00020 DLA
tin, dissolved	7440-31-5	E421	0.00010	mg/L	0.00241	0.00096	0.00020	<0.00020 DLA	<0.00020 DLA
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00060 DLA	<0.00060 DLA	<0.00060 DLA	<0.00060 DLA	<0.00060 DLA
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	0.00224	0.00339	0.00337	0.00335	0.00440
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00377	0.00316	0.0141	0.0110	0.00790
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00100 DLA	<0.00100 DLA	<0.00100 DLA	<0.00100 DLA	<0.00100 DLA
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0047	0.0024	<0.0020 DLA	<0.0020 DLA	<0.0020 DLA
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00040 DLA	<0.00040 DLA	<0.00040 DLA	<0.00040 DLA	<0.00040 DLA
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	_	Field	Field	Field	Field	Field
			1						

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL REPORT

Work Order :VA22B9759-AB

Amendment :

Client : Azimuth Consulting Group Inc.

Contact : Marianna DiMauro

Address :# 218 - 2902 West Broadway

Vancouver BC Canada V6K 2G8

Telephone : ---

Project : Meadowbank CREMP Surfacewater

PO : ---C-O-C number : ---Sampler : ---Site : ----

Quote number : Q39503
No. of samples received : 5

No. of samples analysed : 5

Page : 1 of 18

Laboratory : Vancouver - Environmental

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 24-Aug-2022 11:00

Date Analysis Commenced : 31-Aug-2022

Issue Date : 27-Sep-2022 15:30

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anshim Anshim	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Caitlin Macey	Team Leader - Inorganics	Vancouver Inorganics, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Vancouver Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia
Sukhman Khosa	Lab Assistant	Vancouver Metals, Burnaby, British Columbia

Page : 2 of 18

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 18

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Physical Tests (QC	Lot: 654207)												
VA22C2182-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	104	99.7	4.32%	20%			
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	104	99.7	4.32%	20%			
Physical Tests (QC	Lot: 654208)							I .					
VA22C2182-001	Anonymous	pH		E108	0.10	pH units	8.08	8.07	0.0991%	4%			
Anions and Nutrien	ts (QC Lot: 654210)												
VA22B9759-012	BG-2	fluoride	16984-48-8	E235.F	0.400	mg/L	<0.400	<0.400	0	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 654211)												
VA22B9759-012	BG-2	chloride	16887-00-6	E235.CI	10.0	mg/L	100	102	1.90%	20%			
Anions and Nutrien	ts (QC Lot: 654212)												
VA22B9759-012	BG-2	bromide	24959-67-9	E235.Br-L	1.00	mg/L	<1.00	1.45	0.446	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 654213)												
VA22B9759-012	BG-2	nitrate (as N)	14797-55-8	E235.NO3-L	0.100	mg/L	0.926	0.946	0.0203	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 654214)												
VA22B9759-012	BG-2	nitrite (as N)	14797-65-0	E235.NO2-L	0.0200	mg/L	0.0747	0.0710	0.0037	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 654215)												
VA22B9759-012	BG-2	sulfate (as SO4)	14808-79-8	E235.SO4	6.00	mg/L	1180	1210	2.17%	20%			
Organic / Inorganic	Carbon (QC Lot: 629	1402)											
FJ2202341-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.55	1.74	0.19	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 654	1838)											
VA22B9759-012	BG-2	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	30.3	31.4	3.46%	20%			
Dissolved Metals (QC Lot: 626187)												
CG2211434-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR			
Dissolved Metals (QC Lot: 631469)												
VA22B7110-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	178 μg/L	0.199	11.1%	20%			
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.20 μg/L	0.00020	0.000003	Diff <2x LOR			
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.62 μg/L	0.00060	0.00003	Diff <2x LOR			
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	498 μg/L	0.486	2.46%	20%			
		beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR			
			1	The second secon			The second secon	I .	1	The second secon			

Page : 4 of 18

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Dissolved Metals (QC	Client sample ID C Lot: 631469) - contin		CAS Number	Method	LOR	Unit	Original	Duplicate	RPD(%) or	Duplicate	Qualifier
	,						Result	Result	Difference	Limits	
/A22B7110-001	Anonymous										
		boron, dissolved	7440-42-8	E421	0.010	mg/L	75 μg/L	0.074	0.002	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0984 µg/L	0.000112	12.4%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	185000 µg/L	182	1.69%	20%	
		cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.011 μg/L	0.000012	0.000001	Diff <2x LOR	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	0.51 μg/L	<0.00050	0.00001	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	1.33 µg/L	0.00136	2.50%	20%	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	2.26 µg/L	0.00239	5.67%	20%	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	254 μg/L	0.256	0.835%	20%	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.113 μg/L	0.000115	0.000002	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	15.2 μg/L	0.0145	4.42%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	62800 µg/L	63.1	0.413%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	623 µg/L	0.618	0.785%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	2.96 µg/L	0.00305	2.92%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	7.33 µg/L	0.00730	0.386%	20%	
		phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<50 μg/L	<0.050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	7640 µg/L	7.54	1.36%	20%	
		rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	1.02 µg/L	0.00104	0.00002	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.181 μg/L	0.000175	0.000006	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	11500 µg/L	11.6	1.23%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.010 µg/L	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	53400 μg/L	53.0	0.760%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	613 µg/L	0.626	2.20%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	9700 μg/L	9.63	0.723%	20%	
		tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.20 μg/L	<0.00020	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.035 μg/L	0.000033	0.000002	Diff <2x LOR	
		thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.10 μg/L	<0.00010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.10 μg/L	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	9.30 μg/L	0.00841	10.1%	20%	
		tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.10 μg/L	<0.00010	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	3.17 μg/L	0.00308	2.76%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	1.02 µg/L	0.00103	0.00001	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	3.2 μg/L	0.0031	0.00007	Diff <2x LOR	
		zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	0.2 μg/L 0.44 μg/L	0.00050	0.00005	Diff <2x LOR	
in a least Matala (Of	C. I4: CC0700)				3.00023		3 ۲۵	0.0000	0.0000		
issolved Metals (QC A22B9759-012	BG-2	aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	0.0115	0.0101	0.0014	Diff <2x LOR	

Page : 5 of 18

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Dissolved Metals (QC Lot: 660708) - continued											
/A22B9759-012	BG-2	antimony, dissolved	7440-36-0	E421	0.00020	mg/L	0.0133	0.0132	1.12%	20%	
		arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	0.636	0.652	2.53%	20%	
		barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.0224	0.0233	4.02%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.020	mg/L	0.308	0.313	1.59%	20%	
		cadmium, dissolved	7440-43-9	E421	0.000155	mg/L	<0.000155	<0.000155	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.100	mg/L	232	233	0.375%	20%	
		cesium, dissolved	7440-46-2	E421	0.000020	mg/L	0.000049	0.000047	0.000002	Diff <2x LOR	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00020	mg/L	0.0428	0.0445	3.88%	20%	
		copper, dissolved	7440-50-8	E421	0.00040	mg/L	0.0649	0.0674	3.73%	20%	
		iron, dissolved	7439-89-6	E421	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000100	mg/L	0.000751	0.000745	0.000006	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0020	mg/L	0.0074	0.0076	0.0002	Diff <2x LOR	
	magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	24.8	25.5	2.70%	20%		
		manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.0819	0.0849	3.58%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.108	0.108	0.366%	20%	
		nickel, dissolved	7440-02-0	E421	0.00100	mg/L	0.0345	0.0355	2.86%	20%	
		phosphorus, dissolved	7723-14-0	E421	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.100	mg/L	150	155	3.22%	20%	
		rubidium, dissolved	7440-17-7	E421	0.00040	mg/L	0.0742	0.0760	2.40%	20%	
		selenium, dissolved	7782-49-2	E421	0.000100	mg/L	0.0247	0.0242	2.02%	20%	
		silicon, dissolved	7440-21-3	E421	0.100	mg/L	4.20	4.36	3.62%	20%	
		silver, dissolved	7440-22-4	E421	0.000020	mg/L	0.000418	0.000412	1.53%	20%	
		sodium, dissolved	7440-23-5	E421	0.100	mg/L	237	246	3.92%	20%	
		strontium, dissolved	7440-24-6	E421	0.00040	mg/L	0.649	0.664	2.19%	20%	
		sulfur, dissolved	7704-34-9	E421	1.00	mg/L	467	474	1.62%	20%	
		tellurium, dissolved	13494-80-9	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000020	mg/L	0.000033	0.000032	0.0000007	Diff <2x LOR	
		thorium, dissolved	7440-29-1	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00020	mg/L	0.00096	0.00096	0.000002	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		tungsten, dissolved	7440-33-7	E421	0.00020	mg/L	0.00339	0.00355	4.43%	20%	
		uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.00316	0.00311	1.52%	20%	

Page : 6 of 18

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (Dissolved Metals (QC Lot: 660708) - continued										
VA22B9759-012	BG-2	vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0020	mg/L	0.0024	0.0022	0.0002	Diff <2x LOR	
		zirconium, dissolved	7440-67-7	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 667376)											
VA22B9759-012	BG-2	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Page : 7 of 18

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 654207)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 654210)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 654211)					
chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 654212)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 654213)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 654214)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 654215)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Organic / Inorganic Carbon (QCLot: 629	1402)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 654	1838)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Dissolved Metals (QCLot: 626187)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 631469)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cesium, dissolved	7440-46-2 E421	0.00001	mg/L	<0.000010	

Page : 8 of 18

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 631469	e) - continued				
chromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	<0.050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
rubidium, dissolved	7440-17-7 E421	0.0002	mg/L	<0.00020	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
tellurium, dissolved	13494-80-9 E421	0.0002	mg/L	<0.00020	
hallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
thorium, dissolved	7440-29-1 E421	0.0001	mg/L	<0.00010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
tungsten, dissolved	7440-33-7 E421	0.0001	mg/L	<0.00010	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
zirconium, dissolved	7440-67-7 E421	0.0002	mg/L	<0.00020	
Dissolved Metals (QCLot: 660708	3)				
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	

Page : 9 of 18

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Sub-Matrix: Water

Analysia	CAS Number Method	LOR	Unit	D#	Qualifier
Analyte Discolved Motels (OCL et: 660709)		LOR	OIII.	Result	Qualifier
Dissolved Metals (QCLot: 660708) boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cesium, dissolved	7440-46-2 E421	0.00001	mg/L	<0.000010	
chromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.00010	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	<0.050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
rubidium, dissolved	7440-17-7 E421	0.0002	mg/L	<0.00020	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.00050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
tellurium, dissolved	13494-80-9 E421	0.0002	mg/L	<0.00020	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.00010	
thorium, dissolved	7440-29-1 E421	0.0001	mg/L	<0.00010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
tungsten, dissolved	7440-33-7 E421	0.0001	mg/L	<0.00010	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.00010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
zirconium, dissolved	7440-67-7 E421	0.0002	mg/L	<0.00020	
Dissolved Metals (QCLot: 667376)			<u> </u>		
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
,, 4,000,704			J· =		

Page : 10 of 18

Page : 11 of 18

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 654207)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	110	85.0	115	
Physical Tests (QCLot: 654208)								
pH	E108		pH units	7 pH units	99.5	98.0	102	
Anions and Nutrients (QCLot: 654210)	E005 E	0.00				00.0	440	
fluoride 16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 654211)	Eggs Ol	0.5				00.0	440	
chloride 16887-00-6	E235.CI	0.5	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 654212)	E005 Pa I	0.05			400	05.0	445	
bromide 24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	103	85.0	115	
Anions and Nutrients (QCLot: 654213)	Eggs NOO I	0.005		2.5 #	400	00.0	440	l
	E235.NO3-L	0.005	mg/L	2.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 654214)	E225 NO2 I	0.004	me!	25 "	400	00.0	140	
	E235.NO2-L	0.001	mg/L	0.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 654215)	E005 004	0.0	//			00.0	440	
sulfate (as SO4) 14808-79-8	E235.SU4	0.3	mg/L	100 mg/L	104	90.0	110	
Organic / Inorganic Carbon (QCLot: 629402)								
	E358-L	0.5	mg/L	8.57 mg/L	97.4	80.0	120	
Organic / Inorganic Carbon (QCLot: 654838)								
	E358-L	0.5	mg/L	8.57 mg/L	109	80.0	120	
mercury, dissolved 7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	99.2	80.0	120	
Dissolved Metals (QCLot: 631469)								
aluminum, dissolved 7429-90-5		0.001	mg/L	2 mg/L	95.0	80.0	120	
antimony, dissolved 7440-36-0		0.0001	mg/L	1 mg/L	104	80.0	120	
arsenic, dissolved 7440-38-2	E421	0.0001	mg/L	1 mg/L	102	80.0	120	
barium, dissolved 7440-39-3		0.0001	mg/L	0.25 mg/L	97.1	80.0	120	
beryllium, dissolved 7440-41-7		0.00002	mg/L	0.1 mg/L	96.5	80.0	120	
bismuth, dissolved 7440-69-9		0.00005	mg/L	1 mg/L	104	80.0	120	
boron, dissolved 7440-42-8		0.01	mg/L	1 mg/L	95.3	80.0	120	
cadmium, dissolved 7440-43-9		0.000005	mg/L	0.1 mg/L	100	80.0	120	
calcium, dissolved 7440-70-2		0.05	mg/L	50 mg/L	102	80.0	120	
cesium, dissolved 7440-46-2	E421	0.00001	mg/L	0.05 mg/L	101	80.0	120	

Page : 12 of 18

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 631469) - conti	nued										
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	102	80.0	120			
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	101	80.0	120			
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	101	80.0	120			
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	100	80.0	120			
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	103	80.0	120			
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	103	80.0	120			
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	97.2	80.0	120			
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	100	80.0	120			
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	103	80.0	120			
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120			
phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	95.9	80.0	120			
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	104	80.0	120			
rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	101	80.0	120			
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	102	80.0	120			
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	105	80.0	120			
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	97.3	80.0	120			
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	102	80.0	120			
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	107	80.0	120			
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	94.3	80.0	120			
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	95.3	80.0	120			
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	105	80.0	120			
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	100	80.0	120			
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	97.5	80.0	120			
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	94.8	80.0	120			
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	96.6	80.0	120			
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	105	80.0	120			
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	103	80.0	120			
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	101	80.0	120			
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	99.0	80.0	120			
Dissolved Metals (QCLot: 660708)											
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	100	80.0	120			
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	100	80.0	120			
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	97.2	80.0	120			
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	97.3	80.0	120			
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	102	80.0	120			
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	99.9	80.0	120			
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	93.9	80.0	120			

Page : 13 of 18

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 660708) - co	ontinued										
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	98.4	80.0	120			
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	98.2	80.0	120			
cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	94.6	80.0	120			
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	98.8	80.0	120			
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	96.4	80.0	120			
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	95.8	80.0	120			
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	93.2	80.0	120			
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	97.9	80.0	120			
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	108	80.0	120			
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	95.8	80.0	120			
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	100	80.0	120			
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	96.9	80.0	120			
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	96.3	80.0	120			
phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	99.4	80.0	120			
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	99.4	80.0	120			
rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	99.2	80.0	120			
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	101	80.0	120			
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	101	80.0	120			
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	93.2	80.0	120			
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	98.2	80.0	120			
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	94.9	80.0	120			
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	90.0	80.0	120			
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	93.6	80.0	120			
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	99.8	80.0	120			
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	86.8	80.0	120			
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	99.0	80.0	120			
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	92.1	80.0	120			
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	96.6	80.0	120			
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	98.0	80.0	120			
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.3	80.0	120			
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	96.0	80.0	120			
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	92.3	80.0	120			
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	97.4	80.0	120			

Page : 14 of 18

Page : 15 of 18

Work Order : VA22B9759-AB Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water								e (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
Anions and Nutr	ients (QCLot: 654210)									
VA22B9759-013	BG-3	fluoride	16984-48-8	E235.F	21.0 mg/L	20 mg/L	105	75.0	125	
Anions and Nutr	ients (QCLot: 654211)									
VA22B9759-013	BG-3	chloride	16887-00-6	E235.Cl	2090 mg/L	2000 mg/L	104	75.0	125	
Anions and Nutr	ients (QCLot: 654212)									
VA22B9759-013	BG-3	bromide	24959-67-9	E235.Br-L	10.8 mg/L	10 mg/L	108	75.0	125	
nions and Nutr	ients (QCLot: 654213)								I	
VA22B9759-013	BG-3	nitrate (as N)	14797-55-8	E235.NO3-L	52.6 mg/L	50 mg/L	105	75.0	125	
Anions and Nutr	ients (QCLot: 654214)									
VA22B9759-013	BG-3	nitrite (as N)	14797-65-0	E235.NO2-L	10.2 mg/L	10 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 654215)			EEGGTGE E		10 1119/2	.02	7 0.0	.25	
VA22B9759-013	BG-3	sulfate (as SO4)	14808-79-8	E235.SO4	2050 mg/L	2000 mg/L	103	75.0	125	
	nic Carbon (QCLot: 62	, ,	14000-79-0	E233.3O4	2030 Hig/L	2000 Hig/L	103	75.0	125	
FJ2202341-002	Anonymous			5050	5.05 (1)	- "			400	
	•	carbon, dissolved organic [DOC]		E358-L	5.65 mg/L	5 mg/L	113	70.0	130	
	nic Carbon (QCLot: 65					I				
VA22B9759-013	BG-3	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	
Dissolved Metals	(QCLot: 626187)									
CG2211434-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.000100 mg/L	0.0001 mg/L	100	70.0	130	
Dissolved Metals	(QCLot: 631469)									
VA22B7110-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.211 mg/L	0.2 mg/L	105	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0200 mg/L	0.02 mg/L	100	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0207 mg/L	0.02 mg/L	103	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0402 mg/L	0.04 mg/L	100	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00812 mg/L	0.01 mg/L	81.2	70.0	130	
		boron, dissolved	7440-42-8	E421	ND mg/L	0.1 mg/L	ND	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00381 mg/L	0.004 mg/L	95.3	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, dissolved	7440-46-2	E421	0.0100 mg/L	0.01 mg/L	100	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0391 mg/L	0.04 mg/L	97.8	70.0	130	
	I	cobalt, dissolved	7440-48-4	E421	0.0184 mg/L	0.02 mg/L	92.1	70.0	130	

Page : 16 of 18

Sub-Matrix: Water	x: Water					Matrix Spike (MS) Report				
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 631469) -	continued								
/A22B7110-002	Anonymous	copper, dissolved	7440-50-8	E421	0.0176 mg/L	0.02 mg/L	87.8	70.0	130	
		iron, dissolved	7439-89-6	E421	1.81 mg/L	2 mg/L	90.6	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0180 mg/L	0.02 mg/L	89.9	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.102 mg/L	0.1 mg/L	102	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0212 mg/L	0.02 mg/L	106	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0359 mg/L	0.04 mg/L	89.8	70.0	130	
		phosphorus, dissolved	7723-14-0	E421	10.4 mg/L	10 mg/L	104	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130	
		rubidium, dissolved	7440-17-7	E421	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0420 mg/L	0.04 mg/L	105	70.0	130	
		silicon, dissolved	7440-21-3	E421	ND mg/L	10 mg/L	ND	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00391 mg/L	0.004 mg/L	97.7	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	22.0 mg/L	20 mg/L	110	70.0	130	
		tellurium, dissolved	13494-80-9	E421	0.0379 mg/L	0.04 mg/L	94.8	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00360 mg/L	0.004 mg/L	90.1	70.0	130	
		thorium, dissolved	7440-29-1	E421	0.0201 mg/L	0.02 mg/L	100	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0190 mg/L	0.02 mg/L	95.2	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0414 mg/L	0.04 mg/L	103	70.0	130	
		tungsten, dissolved	7440-33-7	E421	0.0190 mg/L	0.02 mg/L	95.2	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00389 mg/L	0.004 mg/L	97.4	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.104 mg/L	0.1 mg/L	104	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.371 mg/L	0.4 mg/L	92.9	70.0	130	
		zirconium, dissolved	7440-67-7	E421	0.0427 mg/L	0.04 mg/L	107	70.0	130	
ssolved Metals	(QCLot: 660708)									
A22B9759-013	BG-3	aluminum, dissolved	7429-90-5	E421	0.382 mg/L	0.4 mg/L	95.5	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0388 mg/L	0.04 mg/L	97.0	70.0	130	
		arsenic, dissolved	7440-38-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130	
		barium, dissolved	7440-39-3	E421	0.0386 mg/L	0.04 mg/L	96.6	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0787 mg/L	0.08 mg/L	98.4	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0173 mg/L	0.02 mg/L	86.5	70.0	130	
		boron, dissolved	7440-42-8	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
	T	cadmium, dissolved	7440-43-9	E421	0.00750 mg/L	0.008 mg/L	93.8	70.0	130	

Page

: 17 of 18 : VA22B9759-AB Amendment 1 Work Order : Azimuth Consulting Group Inc. Client Project : Meadowbank CREMP Surfacewater

Sub-Matrix: Water	ıb-Matrix: Water					Matrix Spike (MS) Report					
					Spi	ke	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
	(QCLot: 660708) -	continued									
VA22B9759-013	BG-3	calcium, dissolved	7440-70-2	E421	ND mg/L	8 mg/L	ND	70.0	130		
		cesium, dissolved	7440-46-2	E421	0.0182 mg/L	0.02 mg/L	90.9	70.0	130		
		chromium, dissolved	7440-47-3	E421	0.0757 mg/L	0.08 mg/L	94.7	70.0	130		
		cobalt, dissolved	7440-48-4	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		copper, dissolved	7440-50-8	E421	0.0360 mg/L	0.04 mg/L	90.1	70.0	130		
		iron, dissolved	7439-89-6	E421	3.70 mg/L	4 mg/L	92.4	70.0	130		
		lead, dissolved	7439-92-1	E421	0.0354 mg/L	0.04 mg/L	88.6	70.0	130		
		lithium, dissolved	7439-93-2	E421	0.202 mg/L	0.2 mg/L	101	70.0	130		
		magnesium, dissolved	7439-95-4	E421	ND mg/L	2 mg/L	ND	70.0	130		
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		molybdenum, dissolved	7439-98-7	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		nickel, dissolved	7440-02-0	E421	0.0719 mg/L	0.08 mg/L	89.9	70.0	130		
		phosphorus, dissolved	7723-14-0	E421	19.2 mg/L	20 mg/L	96.2	70.0	130		
		potassium, dissolved	7440-09-7	E421	ND mg/L	8 mg/L	ND	70.0	130		
		rubidium, dissolved	7440-17-7	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		selenium, dissolved	7782-49-2	E421	0.0808 mg/L	0.08 mg/L	101	70.0	130		
		silicon, dissolved	7440-21-3	E421	20.2 mg/L	20 mg/L	101	70.0	130		
		silver, dissolved	7440-22-4	E421	0.00768 mg/L	0.008 mg/L	96.0	70.0	130		
		sodium, dissolved	7440-23-5	E421	ND mg/L	4 mg/L	ND	70.0	130		
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		sulfur, dissolved	7704-34-9	E421	ND mg/L	40 mg/L	ND	70.0	130		
		tellurium, dissolved	13494-80-9	E421	0.0744 mg/L	0.08 mg/L	93.0	70.0	130		
		thallium, dissolved	7440-28-0	E421	0.00697 mg/L	0.008 mg/L	87.1	70.0	130		
		thorium, dissolved	7440-29-1	E421	0.0374 mg/L	0.04 mg/L	93.6	70.0	130		
		tin, dissolved	7440-31-5	E421	0.0387 mg/L	0.04 mg/L	96.7	70.0	130		
		titanium, dissolved	7440-32-6	E421	0.0757 mg/L	0.08 mg/L	94.6	70.0	130		
		tungsten, dissolved	7440-33-7	E421	0.0370 mg/L	0.04 mg/L	92.5	70.0	130		
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.008 mg/L	ND	70.0	130		
		vanadium, dissolved	7440-62-2	E421	0.198 mg/L	0.2 mg/L	99.0	70.0	130		
		zinc, dissolved	7440-66-6	E421	0.746 mg/L	0.8 mg/L	93.2	70.0	130		
		zirconium, dissolved	7440-67-7	E421	0.0796 mg/L	0.08 mg/L	99.4	70.0	130		
issolved Metals	(QCLot: 667376)										
VA22B9759-013	BG-3	mercury, dissolved	7439-97-6	E509	0.0000867 mg/L	0.0001 mg/L	86.7	70.0	130		

Page : 18 of 18

ALS Canada Ltd.

Address

Quote number

CERTIFICATE OF ANALYSIS

Work Order : **VA23C0590** Page : 1 of 4

Client : Azimuth Consulting Group Inc. Laboratory : ALS Environmental - Vancouver

Contact : Marianna DiMauro Account Manager : Brent Mack

: # 218 - 2902 West Broadway Address : 8081 Lougheed Highway

Vancouver BC Canada V6K 2G8 Burnaby BC Canada V5A 1W9

Telephone : ---- Telephone : 778-370-3279

Project : Meadowbank CREMP Surfacewater Date Samples Received : 31-Aug-2023 11:00

Project : Meadowbank CREMP Surfacewater Date Samples Received : 31-Aug-2023 11:00
PO : ---- Date Analysis Commenced : 03-Sep-2023

C-O-C number : ---- Issue Date : 08-Sep-2023 16:12 Sampler : ----

Site :---

No. of samples received : 5
No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: Q39503

General Comments

Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Sam Silveira	Lab Assistant	Metals, Burnaby, British Columbia
Sukhman Khosa	Lab Assistant	Metals, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Page : 2 of 4

Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLA	Detection Limit adjusted for required dilution.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Page : 3 of 4 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	BG-1	BG-4	BG-5	PW_ST-20i	PW_ST-20ii
(Matrix: Water)									
				ling date / time	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00
Analyte	CAS Number	Method/Lab	LOR	Unit	VA23C0590-001 Result	VA23C0590-002 Result	VA23C0590-003 Result	VA23C0590-004 Result	VA23C0590-005 Result
Physical Tests					Result	Result	Result	Result	Result
Hardness (as CaCO3), dissolved		EC100/VA	0.60	mg/L	732	768	682	663	640
Organic / Inorganic Carbon									
Carbon, dissolved organic [DOC]		E358-L/VA	0.50	mg/L	29.7	27.5	25.1	15.3	10.8
Dissolved Metals									
Aluminum, dissolved	7429-90-5	E421/VA	0.0010	mg/L	0.0105	0.0069	0.0120	0.0110	0.0114
Antimony, dissolved	7440-36-0	E421/VA	0.00010	mg/L	0.0266	0.00608	0.0202	0.0184	0.0115
Arsenic, dissolved	7440-38-2	E421/VA	0.00010	mg/L	0.216	0.346	0.603	0.158	0.347
Barium, dissolved	7440-39-3	E421/VA	0.00010	mg/L	0.0223	0.0228	0.0206	0.0224	0.0221
Beryllium, dissolved	7440-41-7	E421/VA	0.000100	mg/L	<0.000200 DLA				
Bismuth, dissolved	7440-69-9	E421/VA	0.000050	mg/L	<0.000100 DLA				
Boron, dissolved	7440-42-8	E421/VA	0.010	mg/L	0.231	0.240	0.287	0.192	0.212
Cadmium, dissolved	7440-43-9	E421/VA	0.0000050	mg/L	<0.000425 DLM	<0.0000750 DLM	<0.000660 DLM	<0.0000850 DLM	<0.000335 DLM
Calcium, dissolved	7440-70-2	E421/VA	0.050	mg/L	235	262	227	213	219
Cesium, dissolved	7440-46-2	E421/VA	0.000010	mg/L	0.000024	0.000031	0.000044	0.000031	0.000046
Chromium, dissolved	7440-47-3	E421.Cr-L/VA	0.00010	mg/L	<0.00020 DLA				
Chromium, dissolved	7440-47-3	E421/VA	0.00050	mg/L	<0.00100 DLA				
Cobalt, dissolved	7440-48-4	E421/VA	0.00010	mg/L	0.0448	0.0439	0.0432	0.0620	0.0816
Copper, dissolved	7440-50-8	E421/VA	0.00020	mg/L	0.00133	0.00057	0.0120	0.00084	0.00247
Iron, dissolved	7439-89-6	E421/VA	0.010	mg/L	0.036	0.119	<0.020 DLA	<0.020 DLA	<0.020 DLA
Lead, dissolved	7439-92-1	E421/VA	0.000050	mg/L	0.000625	0.000216	0.00260	0.000446	0.00445
Lithium, dissolved	7439-93-2	E421/VA	0.0010	mg/L	0.0064	0.0044	0.0085	0.0109	0.0149
Magnesium, dissolved	7439-95-4	E421/VA	0.0050	mg/L	35.3	27.6	28.1	31.9	22.7
Manganese, dissolved	7439-96-5	E421/VA	0.00010	mg/L	0.113	0.155	0.0752	0.137	0.126
Mercury, dissolved	7439-97-6	E509/VA	0.0000050	mg/L	<0.0000500 DLM				
Molybdenum, dissolved	7439-98-7	E421/VA	0.000050	mg/L	0.127	0.236	0.106	0.132	0.104
Nickel, dissolved	7440-02-0	E421/VA	0.00050	mg/L	0.0675	0.0330	0.0335	0.0654	0.0663
Phosphorus, dissolved	7723-14-0	E421/VA	0.050	mg/L	<0.100 DLA				
Potassium, dissolved	7440-09-7	E421/VA	0.050	mg/L	153	129	143	140	132
Rubidium, dissolved	7440-17-7	E421/VA	0.00020	mg/L	0.107	0.0611	0.0924	0.0724	0.0753

Page : 4 of 4 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Results

Sub-Matrix: Water			Client sample ID	BG-1	BG-4	BG-5	PW_ST-20i	PW_ST-20ii
(Matrix: Water)								
		Client sa	mpling date / time	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00
Analyte	CAS Number Mo	ethod/Lab LOR	Unit	VA23C0590-001	VA23C0590-002	VA23C0590-003	VA23C0590-004	VA23C0590-005
				Result	Result	Result	Result	Result
Dissolved Metals								
Selenium, dissolved	7782-49-2 E421/V/	0.000050	mg/L	0.00580	0.00795	0.0147	0.00277	0.00696
Silicon, dissolved	7440-21-3 E421/V/	A 0.050	mg/L	4.21	4.37	4.68	4.95	4.91
Silver, dissolved	7440-22-4 E421/V/	A 0.000010	mg/L	<0.000020 DLA				
Sodium, dissolved	7440-23-5 E421/V/	A 0.050	mg/L	275	252	238	231	222
Strontium, dissolved	7440-24-6 E421/V/	0.00020	mg/L	0.764	0.764	0.674	0.774	0.714
Sulfur, dissolved	7704-34-9 E421/V/	0.50	mg/L	496	462	436	427	411
Tellurium, dissolved	13494-80-9 E421/V/	0.00020	mg/L	<0.00040 DLA				
Thallium, dissolved	7440-28-0 E421/V/	A 0.000010	mg/L	<0.000020 DLA	<0.000020 DLA	0.000023	<0.000020 DLA	0.000034
Thorium, dissolved	7440-29-1 E421/V/	A 0.00010	mg/L	<0.00020 DLA				
Tin, dissolved	7440-31-5 E421/V/	A 0.00010	mg/L	0.00046	0.00033	<0.00020 DLA	<0.00020 DLA	<0.00020 DLA
Titanium, dissolved	7440-32-6 E421/V/	0.00030	mg/L	<0.00060 DLA				
Tungsten, dissolved	7440-33-7 E421/V/	A 0.00010	mg/L	0.00217	0.00330	0.00278	0.00189	0.00374
Uranium, dissolved	7440-61-1 E421/V/	A 0.000010	mg/L	0.0138	0.0108	0.00706	0.0132	0.0103
Vanadium, dissolved	7440-62-2 E421/V/	A 0.00050	mg/L	<0.00100 DLA				
Zinc, dissolved	7440-66-6 E421/V/	A 0.0010	mg/L	0.0035	<0.0020	0.0034	<0.0020 DLA	0.0023
Zirconium, dissolved	7440-67-7 E421/V/	A 0.00020	mg/L	<0.00040 DLA				
Dissolved mercury filtration location	EP509/\	/A -	-	Field	Field	Field	Field	Field
Dissolved metals filtration location	EP421/\	/A -	-	Field	Field	Field	Field	Field

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **VA23C0590** Page : 1 of 7

Client : Azimuth Consulting Group Inc. Laboratory : ALS Environmental - Vancouver

Contact : Marianna DiMauro Account Manager : Brent Mack

Address :# 218 - 2902 West Broadway Address :8081 Lougheed Highway

Vancouver BC Canada V6K 2G8 Burnaby, British Columbia Canada V5A 1W9

Telephone :--- Telephone : 778-370-3279

Project : Meadowbank CREMP Surfacewater Date Samples Received : 31-Aug-2023 11:00
PO : ---- Issue Date : 08-Sep-2023 16:12

 C-O-C number
 :---

 Sampler
 :---

 Site
 :---

 Quote number
 : Q39503

 No. of samples received
 :5

No. of samples analysed :5

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page : 3 of 7 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Εν	/aluation: 🗴 =	Holding time exce	edance ; •	✓ = Within	Holding Tir
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
BG-1	E421.Cr-L	23-Aug-2023	03-Sep-2023	180	12	✓	04-Sep-2023	180	13 days	✓
				days	days			days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
BG-4	E421.Cr-L	23-Aug-2023	03-Sep-2023	180	12	✓	04-Sep-2023	180	13 days	✓
				days	days			days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
BG-5	E421.Cr-L	23-Aug-2023	03-Sep-2023	180	12	✓	04-Sep-2023	180	13 days	✓
				days	days			days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
PW_ST-20i	E421.Cr-L	23-Aug-2023	03-Sep-2023	180	12	✓	04-Sep-2023	180	13 days	✓
				days	days			days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
PW_ST-20ii	E421.Cr-L	23-Aug-2023	03-Sep-2023	180	12	✓	04-Sep-2023	180	13 days	✓
				days	days			days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS							•			
Glass vial dissolved (hydrochloric acid)										
BG-1	E509	23-Aug-2023	06-Sep-2023	28	14	✓	06-Sep-2023	28 days	14 days	✓
				days	days					
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
BG-4	E509	23-Aug-2023	06-Sep-2023	28	14	✓	06-Sep-2023	28 days	14 days	✓
				dave	dave				1	

Page 4 of 7 VA23C0590 Work Order :

Azimuth Consulting Group Inc. Meadowbank CREMP Surfacewater Client Project

Matrix: Water					Ev	/aluation: × = ∣	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
BG-5	E509	23-Aug-2023	06-Sep-2023	28	14	✓	06-Sep-2023	28 days	14 days	✓
				days	days					
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
PW_ST-20i	E509	23-Aug-2023	06-Sep-2023	28	14	✓	06-Sep-2023	28 days	14 days	✓
				days	days					
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
PW_ST-20ii	E509	23-Aug-2023	06-Sep-2023	28	14	✓	06-Sep-2023	28 days	14 days	✓
_		_		days	days					
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
BG-1	E421	23-Aug-2023	03-Sep-2023	180	12	1	05-Sep-2023	180	13 days	✓
		Ĭ	·	days	days		· ·	days	,	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS				,	,			,		
HDPE - dissolved (lab preserved)										
BG-4	E421	23-Aug-2023	03-Sep-2023	180	12	✓	05-Sep-2023	180	13 days	✓
				days	days			days	,-	
Discrete d Mattella a Discrete ad Mattella in Mattella in ODG (ODMO				dayo	dayo			dayo		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS HDPE - dissolved (lab preserved)										
BG-5	E421	23-Aug-2023	03-Sep-2023	180	12	√	05-Sep-2023	180	13 days	1
50 0		207.09 2020	00 COP 2020	days	days		00 00p 2020	days	10 dayo	
Direct of the Charles				days	days			days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) PW ST-20i	E421	23-Aug-2023	03-Sep-2023	400	40	✓	05-Sep-2023	180	13 days	✓
FW_31-201	L421	23-Aug-2023	03-3ep-2023	180	12	, ,	03-3ep-2023		15 days	•
				days	days			days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS				I	I			I		
HDPE - dissolved (lab preserved)	E404	00 4 0000	00.0 0000	16-		,	05.0 0000	16-	40 4	,
PW_ST-20ii	E421	23-Aug-2023	03-Sep-2023	180	12	✓	05-Sep-2023	180	13 days	✓
				days	days			days		
Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Leve	1)									
Amber glass dissolved (sulfuric acid)										
BG-1	E358-L	23-Aug-2023	07-Sep-2023	28	15	✓	07-Sep-2023	28 days	16 days	✓
				days	days					

Page : 5 of 7
Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: ★ = Holding time exceedance; ✓ = Within Holding Time

							Trending time exteet			
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve)									
Amber glass dissolved (sulfuric acid)										
BG-4	E358-L	23-Aug-2023	07-Sep-2023	28	15	✓	07-Sep-2023	28 days	16 days	✓
				days	days					
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve)				•					
Amber glass dissolved (sulfuric acid)										
BG-5	E358-L	23-Aug-2023	07-Sep-2023	28	15	✓	07-Sep-2023	28 days	16 days	✓
				days	days					
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve										
Amber glass dissolved (sulfuric acid)										
PW_ST-20i	E358-L	23-Aug-2023	07-Sep-2023	28	15	✓	07-Sep-2023	28 days	16 days	✓
				days	days					
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve)									
Amber glass dissolved (sulfuric acid)										
PW_ST-20ii	E358-L	23-Aug-2023	07-Sep-2023	28	15	✓	07-Sep-2023	28 days	16 days	✓
				days	days					

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 6 of 7 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	n: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	1116673	1	16	6.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1120674	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1116674	2	20	10.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1122901	1	17	5.8	5.0	✓
Laboratory Control Samples (LCS)							
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	1116673	1	16	6.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1120674	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	1116674	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1122901	1	17	5.8	5.0	✓
Method Blanks (MB)							
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	1116673	1	16	6.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1120674	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1116674	2	20	10.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1122901	1	17	5.8	5.0	√
Matrix Spikes (MS)							
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	1116673	1	16	6.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1120674	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1116674	2	20	10.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1122901	1	17	5.8	5.0	✓

Page : 7 of 7 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Organic Carbon by Combustion (Low Level)	E358-L ALS Environmental - Vancouver	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Dissolved Metals in Water by CRC ICPMS	E421 ALS Environmental - Vancouver	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L ALS Environmental - Vancouver	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Dissolved Mercury in Water by CVAAS	E509 ALS Environmental - Vancouver	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 ALS Environmental - Vancouver	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Dissolved Organic Carbon for Combustion	EP358 ALS Environmental - Vancouver	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Dissolved Metals Water Filtration	EP421 ALS Environmental - Vancouver	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 ALS Environmental - Vancouver	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HCl.

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order :VA23C0590

Client : Azimuth Consulting Group Inc.

Contact : Marianna DiMauro

Address :# 218 - 2902 West Broadway

Vancouver BC Canada V6K 2G8

Telephone :

Project : Meadowbank CREMP Surfacewater

PO : ---C-O-C number : ---Sampler : ----

Site ----

Quote number : Q39503
No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 10

Laboratory ; ALS Environmental - Vancouver

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 31-Aug-2023 11:00
Date Analysis Commenced : 03-Sep-2023

Issue Date : 08-Sep-2023 16:12

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Sam Silveira	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Sukhman Khosa	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 10 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 10 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Organic / Inorganic	Carbon (QC Lot: 112	22901)									
VA23C0582-001	Anonymous	Carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.27	2.34	0.07	Diff <2x LOR	
Dissolved Metals (QC Lot: 1116673)										
VA23C0550-001	Anonymous	Chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 1116674)										
/A23C0550-001	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0023	0.0024	0.00003	Diff <2x LOR	
/A23C0550-001	Anonymous	Antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00021	0.00022	0.000008	Diff <2x LOR	
		Barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.00274	0.00286	4.60%	20%	
		Beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		Cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		Calcium, dissolved	7440-70-2	E421	0.050	mg/L	2.29	2.36	2.93%	20%	
		Cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00040	0.00040	0.000008	Diff <2x LOR	
		Iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		Lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Lithium, dissolved	7439-93-2	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		Magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	0.939	0.962	2.39%	20%	
		Manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00108	0.00110	1.81%	20%	
		Molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000088	0.000099	0.000012	Diff <2x LOR	
		Nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		Potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.510	0.526	2.92%	20%	
		Rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00071	0.00075	0.00004	Diff <2x LOR	
		Selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Silicon, dissolved	7440-21-3	E421	0.050	mg/L	0.076	0.087	0.011	Diff <2x LOR	
		Silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	

Page : 4 of 10 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Sub-Matrix: Water							Labora	tory Duplicate (DU	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 1116674) - conti	nued									
VA23C0550-001	Anonymous	Sodium, dissolved	7440-23-5	E421	0.050	mg/L	1.02	1.04	2.44%	20%	
		Strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0106	0.0105	1.06%	20%	
		Sulfur, dissolved	7704-34-9	E421	0.50	mg/L	1.44	1.53	0.09	Diff <2x LOR	
		Tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		Tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000032	0.000032	0.0000005	Diff <2x LOR	
		Vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		Zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 1120674)										
VA23C0552-013	Anonymous	Mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Page : 5 of 10 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Organic / Inorganic Carbon (QCLot: 11	22901)				
Carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Dissolved Metals (QCLot: 1116673)					
Chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 1116674)					
Aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
Antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
Arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
Barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
Beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
Bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
Boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
Cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
Calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
Cesium, dissolved	7440-46-2 E421	0.00001	mg/L	<0.000010	
Chromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
Cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
Copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
Iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
Lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
Lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
Magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
Manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
Molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
Nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
Phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	<0.050	
Potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
Rubidium, dissolved	7440-17-7 E421	0.0002	mg/L	<0.00020	
Selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
Silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
Silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
Sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
Strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	

Page : 6 of 10 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 1116674)	- continued					
Sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
Tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	<0.00020	
Thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
Thorium, dissolved	7440-29-1	E421	0.0001	mg/L	<0.00010	
Tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
Titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
Tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	<0.00010	
Uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
Vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
Zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	<0.00020	
Dissolved Metals (QCLot: 1120674)						
Mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	

Page : 7 of 10 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co	ontrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Organic / Inorganic Carbon (QCLot: 112290	01)							
Carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	8.57 mg/L	96.2	80.0	120	
Dissolved Metals (QCLot: 1116673)								
Chromium, dissolved	7440-47-3 E421.Cr-	L 0.0001	mg/L	0.25 mg/L	95.7	80.0	120	
Dissolved Metals (QCLot: 1116674)								
Aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	102	80.0	120	
Antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	96.9	80.0	120	
Arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	105	80.0	120	
Barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	103	80.0	120	
Beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	100	80.0	120	
Bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	97.5	80.0	120	
Boron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	95.4	80.0	120	
Cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	100	80.0	120	
Calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	99.5	80.0	120	
Cesium, dissolved	7440-46-2 E421	0.00001	mg/L	0.05 mg/L	99.2	80.0	120	
Chromium, dissolved	7440-47-3 E421	0.0005	mg/L	0.25 mg/L	95.7	80.0	120	
Cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	101	80.0	120	
Copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	97.1	80.0	120	
Iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	101	80.0	120	
Lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	98.6	80.0	120	
Lithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	98.6	80.0	120	
Magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	99.1	80.0	120	
Manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	98.8	80.0	120	
Molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	100	80.0	120	
Nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	98.6	80.0	120	
Phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	10 mg/L	106	80.0	120	
Potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	102	80.0	120	
Rubidium, dissolved	7440-17-7 E421	0.0002	mg/L	0.1 mg/L	101	80.0	120	
Selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	100	80.0	120	
Silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	107	80.0	120	
Silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	92.8	80.0	120	
Sodium, dissolved	7440-23-5 E421	0.05	mg/L	50 mg/L	101	80.0	120	
Strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	97.8	80.0	120	

Page : 8 of 10 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report							
	Spike	Recovery (%)	Recovery	Limits (%)									
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Dissolved Metals (QCLot: 1116674) -	continued												
Sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	105	80.0	120					
Tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	100	80.0	120					
Thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	101	80.0	120					
Thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	98.7	80.0	120					
Tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	99.7	80.0	120					
Titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	104	80.0	120					
Tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	95.6	80.0	120					
Uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	100	80.0	120					
Vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.6	80.0	120					
Zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	99.3	80.0	120					
Zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	95.5	80.0	120					
Mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	98.9	80.0	120					

Page : 9 of 10 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water						Matrix Spike (MS) Report								
						ike	Recovery (%)	Recovery Limits (%)						
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
Organic / Inorga	nic Carbon (QCLot: '	1122901)												
VA23C0582-002	Anonymous	Carbon, dissolved organic [DOC]		E358-L	4.92 mg/L	5 mg/L	98.4	70.0	130					
Dissolved Metals	s (QCLot: 1116673)													
VA23C0550-002	Anonymous	Chromium, dissolved	7440-47-3	E421.Cr-L	0.0384 mg/L	0.04 mg/L	96.0	70.0	130					
issolved Metals	s (QCLot: 1116674)													
/A23C0550-002	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.197 mg/L	0.2 mg/L	98.6	70.0	130					
		Molybdenum, dissolved	7439-98-7	E421	0.0192 mg/L	0.02 mg/L	95.9	70.0	130					
VA23C0550-002	Anonymous	Antimony, dissolved	7440-36-0	E421	0.0188 mg/L	0.02 mg/L	93.8	70.0	130					
		Arsenic, dissolved	7440-38-2	E421	0.0199 mg/L	0.02 mg/L	99.3	70.0	130					
		Barium, dissolved	7440-39-3	E421	0.0201 mg/L	0.02 mg/L	101	70.0	130					
		Beryllium, dissolved	7440-41-7	E421	0.0403 mg/L	0.04 mg/L	101	70.0	130					
		Bismuth, dissolved	7440-69-9	E421	0.00931 mg/L	0.01 mg/L	93.1	70.0	130					
		Boron, dissolved	7440-42-8	E421	0.093 mg/L	0.1 mg/L	93.2	70.0	130					
		Cadmium, dissolved	7440-43-9	E421	0.00399 mg/L	0.004 mg/L	99.7	70.0	130					
		Calcium, dissolved	7440-70-2	E421	3.93 mg/L	4 mg/L	98.3	70.0	130					
		Cesium, dissolved	7440-46-2	E421	0.00983 mg/L	0.01 mg/L	98.3	70.0	130					
		Chromium, dissolved	7440-47-3	E421	0.0384 mg/L	0.04 mg/L	96.0	70.0	130					
		Cobalt, dissolved	7440-48-4	E421	0.0199 mg/L	0.02 mg/L	99.6	70.0	130					
		Copper, dissolved	7440-50-8	E421	0.0192 mg/L	0.02 mg/L	95.8	70.0	130					
		Iron, dissolved	7439-89-6	E421	1.89 mg/L	2 mg/L	94.4	70.0	130					
		Lead, dissolved	7439-92-1	E421	0.0189 mg/L	0.02 mg/L	94.7	70.0	130					
		Lithium, dissolved	7439-93-2	E421	0.0983 mg/L	0.1 mg/L	98.3	70.0	130					
		Magnesium, dissolved	7439-95-4	E421	0.924 mg/L	1 mg/L	92.4	70.0	130					
		Manganese, dissolved	7439-96-5	E421	0.0196 mg/L	0.02 mg/L	98.3	70.0	130					
		Nickel, dissolved	7440-02-0	E421	0.0398 mg/L	0.04 mg/L	99.6	70.0	130					
		Phosphorus, dissolved	7723-14-0	E421	9.97 mg/L	10 mg/L	99.7	70.0	130					
		Potassium, dissolved	7440-09-7	E421	3.90 mg/L	4 mg/L	97.4	70.0	130					
		Rubidium, dissolved	7440-17-7	E421	0.0189 mg/L	0.02 mg/L	94.6	70.0	130					
		Silicon, dissolved	7440-21-3	E421	9.90 mg/L	10 mg/L	99.0	70.0	130					
		Silver, dissolved	7440-22-4	E421	0.00383 mg/L	0.004 mg/L	95.8	70.0	130					
		Sodium, dissolved	7440-23-5	E421	1.93 mg/L	2 mg/L	96.5	70.0	130					
	I	Strontium, dissolved	7440-24-6	 E421	0.0195 mg/L	0.02 mg/L	97.5	70.0	130					

Page : 10 of 10 Work Order : VA23C0590

Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Sub-Matrix: Water						Matrix Spike (MS) Report								
					Spi	ke	Recovery (%)	Recovery	Limits (%)					
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
Dissolved Metals	(QCLot: 1116674) - c	ontinued												
VA23C0550-002	Anonymous	Sulfur, dissolved	7704-34-9	E421	19.4 mg/L	20 mg/L	97.1	70.0	130					
		Tellurium, dissolved	13494-80-9	E421	0.0414 mg/L	0.04 mg/L	103	70.0	130					
		Thallium, dissolved	7440-28-0	E421	0.00384 mg/L	0.004 mg/L	96.0	70.0	130					
		Thorium, dissolved	7440-29-1	E421	0.0203 mg/L	0.02 mg/L	102	70.0	130					
		Tin, dissolved	7440-31-5	E421	0.0193 mg/L	0.02 mg/L	96.5	70.0	130					
		Titanium, dissolved	7440-32-6	E421	0.0398 mg/L	0.04 mg/L	99.5	70.0	130					
		Tungsten, dissolved	7440-33-7	E421	0.0181 mg/L	0.02 mg/L	90.3	70.0	130					
		Uranium, dissolved	7440-61-1	E421	0.00381 mg/L	0.004 mg/L	95.2	70.0	130					
		Vanadium, dissolved	7440-62-2	E421	0.0976 mg/L	0.1 mg/L	97.6	70.0	130					
		Zinc, dissolved	7440-66-6	E421	0.403 mg/L	0.4 mg/L	101	70.0	130					
		Zirconium, dissolved	7440-67-7	E421	0.0393 mg/L	0.04 mg/L	98.3	70.0	130					
Dissolved Metals	(QCLot: 1120674)													
VA23C0552-014	Anonymous	Mercury, dissolved	7439-97-6	E509	0.0000996 mg/L	0.0001 mg/L	99.6	70.0	130					

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

COC#	

(ALS)	Environme	ntal		1.		<u> </u>	alsglopal.com										гау	,c _		JT _	1	
Report To					Report Fo	rmat / Distribu	tion		Serv	ice Re	que	sted	Rush	for ro	utine a	ınalysi	s subj	ect to a	availat	bil ity)		
Company:	npany: Azimuth Consulting Group			✓ Standard] Other			Regular (Standard Turnaround Times - Business Days)														
Contact:	Marianna DiMauro			· ·	✓ PDF	✓ Excel	Digital	Fax	OPr	iority (2	-4 Bus	siness (Days) -	50% 9	Surchar	ge - Co	ontact A	LS to C	Confirm	TAT		
Address:	218-2902 West Bro	adway			Email 1;	mdimauro@azi	imuthgroup.ca, e	franz@azimuthgro	○ En	nergeno	y (1-2	Bus. [ays) -	100%	Surcha	rge - C	ontact	ALS to	Confir	n TAT		
	Vancouver, BC V6	<2G8			Email 2:	marie-pier.mari	cil@agnicoeagle.	com	()Sa	me Day	or W	eekend	Emerg	ency -	Conta	ct ALS	to Conf	irm TA	Ţ	-		
Phone:	604-730-1220	Fax:			Email 3:	meadowbank.e	nvironment@agr	nicoeagle.com					Α	nalys	sis Re	ques	it ::			* .		
Invoice To	Same as Report?	✓ Yes	☐ No		Client / Pr	roject Informati	on '		Ple	ase in	dicat	e belo	w Fill	ered	, Pres	ervec	or bo	th (F,	P , F/	/P)		
Hardcopy of I	Invoice with Report?	Yes	✓ No	•	Job #:	Meadowbank C	CREMP - Surface	water			P	F/P	P.		F	Ρ	F/P (F	F/P f	F]		
Company:			· · · · · · · · · · · · · · · · · · ·		PO / AFE:						Ъ			,		**:				<u> </u>	:	
Contact:					LSD:				se		Total		<u>§</u>		ర	·	.		ation	ciati		
Address:								1	notes		i		3		Low			spec				
Phone:		Fax:		•	Quote #:	Q39503			see	»	Α̈́		2	Low Cr	∘ర	ı	اج		is si	E.	ıtair	
	Vork Order # _ b use only)				ALS Contact:	Brent Mack	Sampler:	10	Conventionals**	v, TDS-Low	ımonia,		F-CN (Low), Free CN (Low)	Total Metals & L	Dissolved Metals	Mercury	Dissolved Mercury	yll-a	d Arsen	d Selen	Number of Containers	
Sample		Sample I	dentification			Date	Time		vent	TSS-Low,	Ā		흴	₹	oke	₹	olve	Chlorophyll	olve	oke	ъ	
#	† (Th	is description wi		report)		(dd-mmm-yy)	(hh:mm)	Samile Type	ő	SS	Toc,		힏	Fota)issi	Total	Diss	릙	Diss	Dissolv		
	BG-1		*:.		1	23-Aug-23		Surfact Vater				X			X		х	-			3	
	BG-4		: .			23-Aug-23		Surface Vater				Х		-	·X		х		\neg		3	
·	BG-5		In the state of th			23-Aug-23		Surface Water	-			X			х	٠.	Х		$\neg \uparrow$. 3 .	
	PW_ST-20i		:			23-Aug-23	· · ·	Surfact Water		7		Х			Х		Х	. ::			3	
	PW-ST-20ii		Environme	ental Divisi	ion	23-Aug-23		Surface Vater				Х		·	Х		Х				3	
			Vancouver	•				 			. :								\Box			
				er Reference			-	 	-	-					· .	\Box	. 1		- 1			
 			VA2	3C059	90 _		-	† <u> </u>		-				-	·				-			
<u> </u>				IN A BUS			<u>;:</u>	<u> </u>								احظا		\dashv	 ∤	\rightarrow	·	
																· ·	ot	\longrightarrow				
								7						• :		[']						
								1	 					•								
 ·	· · · · · · · · · · · · · · · · · · ·	·	MIII 44.34		• • • • • • • • • • • • • • • • • • •		1	ļ	+						 				一十	•		
	Created Inch		Telephone: +1	604 253 4188	CN	TE Englishment of the	Agustia Life/DC	CSP Commod		<u> </u>	4 N			/ Un	-orde		etails					
	Special Inst	iuctions / i				E-Freshwater /	Aquatic Lile/BC	CSR - Commerc	al/AB	i Her	1 - 14	atura	i, etc,	7 Ha	Zaiuc	Jus D	Ctans			-		
*Convention	als includes: Alk Spe	ecies, pH, EC, Ti	urhidity Conduc	ctivity Anion	s (F. NO2	NO3 Br SO4).	low-level Chlorid	e. Silicate. TD-lɔ	and C	htho-F	Ω4.	Note	these	аге г	oorew	/ater s	ample	es.			: .	
Comonicon	· · · · · · · · · · · · · · · · · · ·	, o. o. o. p. t., 20, 11						Please fill in th							90.0			7				
	•	By the use o						Conditions asip					e Exc	el tal	b.				•			
	Also provided or				addresses	s, phone numb	ers and sample	container / pre s								ımon	analy	/ses.				
	SHIPMENT RELE	ASE (client use))		SHIP	MENT RECEPT	ION (lab use only	()			S	HIPM	ENT '	√ERI	FICA	LION	(lab u	se on				
Released by	·:	Date (dd-mmm-yy)	Time (hh-mm)	Received	J.C	Date:	Time:	Temperature: \	Ver	ified b	y:		Date	e:		Tim	e:	7		ervation/ No?		
Marianna DiN	∕/auro	25-Aug-23	7:00		My	Q7/3	1/m	9(-	1									1		s add		

ice packs

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : **VA24C2005** Page : 1 of 9

Amendment : 1

Client : Azimuth Consulting Group Inc. Laboratory : ALS Environmental - Vancouver

Contact : Eric Franz Account Manager : Brent Mack

Address : # 218 - 2902 West Broadway Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

: 604 730 1220 Telephone : 778-370-3279

: Meadowbank CREMP Surfacewater Date Samples Received : 27-Aug-2024 12:20

PO : --- Date Analysis Commenced : 28-Aug-2024

C-O-C number : ---- Issue Date : 18-Sep-2024 08:29
Sampler : FQS, NS, OJ

Site : ----

Quote number : VA19-ACGI100-005 (Q39503)

Vancouver BC Canada V6K 2G8

No. of samples received : 34
No. of samples analysed : 18

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Telephone

Project

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Brieanna Allen	Production/Validation Manager	Inorganics, Burnaby, British Columbia	
Cindy Tang	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia	
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia	
Daniela Ruiz	Account Manager Assistant	Administration, Burnaby, British Columbia	
Ghazaleh Khanmirzaei	Analyst	Metals, Burnaby, British Columbia	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Maya Urquhart	Lab Analyst	Metals, Burnaby, British Columbia	
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	
Nik Perkio	Senior Analyst	Inorganics, Waterloo, Ontario	
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia	

Page : 2 of 9

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
μg/L	micrograms per litre
μg/sample	micrograms per sample
μS/cm	microsiemens per centimetre
L	litres
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

Amendment (18-09-2024): This report has been amended and re-released to allow the reporting of additional analytical data.

Qualifiers

Qualifier	Description
DLA	Detection Limit adjusted for required dilution.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

>: greater than.

Page : 3 of 9

DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
DTMF	Dissolved concentration exceeds total for field-filtered metals sample. Metallic
	contaminants may have been introduced to dissolved sample during field filtration.
DTSE	Dissolved Se concentration exceeds total. Positive bias on D-Se suspected due to
	signal enhancement from volatile selenium species. Contact ALS if an alternative test
	to address this interference is needed.
SFT	Sample was filtered due to turbidity interference. Result reflects soluble analyte
	concentration.

Page : 4 of 9

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	PW-ST-20i	PW-ST-20ii	PW-BG-1	PW-BG-4	PW-BG-5
(Matrix: Water)									
			Client samp	ling date / time	11-Aug-2024 10:35	10-Aug-2024 10:40	10-Aug-2024 10:45	10-Aug-2024 10:50	10-Aug-2024 10:55
Analyte	CAS Number	Method/Lab	LOR	Unit	VA24C2005-001	VA24C2005-002	VA24C2005-003	VA24C2005-004	VA24C2005-005
					Result	Result	Result	Result	Result
Physical Tests		E290/VA	4.0		112	54.9	87.8	89.0	86.0
Alkalinity, bicarbonate (as CaCO3)			1.0	mg/L					
Alkalinity, carbonate (as CaCO3)		E290/VA	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, hydroxide (as CaCO3)		E290/VA	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, total (as CaCO3)		E290/VA	1.0	mg/L	112	54.9	87.8	89.0	86.0
Conductivity		E100/VA	2.0	μS/cm	3040	2900	3090	2940	3050
Hardness (as CaCO3), dissolved		EC100/VA	0.60	mg/L	707	762	684	803	693
Hardness (as CaCO3), from total Ca/Mg		EC100A/VA	0.60	mg/L	694	746	693	764	755
pH		E108/VA	0.10	pH units	8.19	7.88	8.11	8.11	8.08
Solids, total suspended [TSS]		E160-L/VA	1.0	mg/L	1.8	2.0	<1.0	2.6	1.8
Turbidity		E121/VA	0.10	NTU	0.28	0.54	0.12	0.40	0.29
Anions and Nutrients									
Ammonia, total (as N)	7664-41-7		0.0050	mg/L	28.5	17.7	28.3	23.5	26.4
Bromide		E235.Br-L/VA	0.050	mg/L	<1.00 DLDS	<1.00 DLDS	<1.00 DLDS	<1.00 DLDS	1.15
Chloride		E235.CI-L/VA	0.10	mg/L	97.4	94.4	97.7	97.7	98.1
Cyanate	88402-73-7		0.20	mg/L	3.60	<2.00 DLHC,	<2.00 DLHC, DLM	<2.00 DLHC,	<2.00 DLHC, DLM
Fluoride	16984-48-8	E235.F/VA	0.020	mg/L	<0.400 DLDS				
Nitrate (as N)	14797-55-8	E235.NO3-L/V	0.0050	mg/L	<0.100 DLDS				
Nitrite (as N)	14797-65-0	E235.NO2-L/V	0.0010	mg/L	<0.0200 DLDS				
Phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U/VA	0.0010	mg/L	0.0074	0.0045	0.0079	0.0030	0.0038
Phosphorus, total dissolved	7723-14-0		0.0020	mg/L	0.0174	0.0154	0.0150	0.0079	0.0108
Silicate (as SiO2)	7631-86-9		0.50	mg/L	13.0	8.27	12.0	11.1 ^{SFT}	12.3
Sulfate (as SO4)		E235.SO4/VA	0.30	mg/L	1220	1240	1270	1200	1290
Cyanides									
Cyanide, free		E339-L/VA	0.0010	mg/L	0.0080	0.0021	0.0036	0.0054	0.0146
Cyanide, strong acid dissociable (Total)		E333-L/VA	0.0010	mg/L	0.223	0.129	0.0847	0.245	0.112
Thiocyanate	302-04-5	E344/VA	0.50	mg/L	95.8	69.4	95.8	69.3	87.3
Organic / Inorganic Carbon									
Carbon, dissolved organic [DOC]		E358-L/VA	0.50	mg/L	23.5	18.7	22.3	19.8	28.0

Page : 5 of 9

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Results

Sub-Matrix: Water		Cl	ient sample ID	PW-ST-20i	PW-ST-20ii	PW-BG-1	PW-BG-4	PW-BG-5
(Matrix: Water)		OII.	o campio ib	. 11-01-201	. 11-01-2011	1 11-50-1	1 11-50-4	1 11-20-3
(Matrix: water)								
		Client samp	ling date / time	11-Aug-2024	10-Aug-2024	10-Aug-2024	10-Aug-2024	10-Aug-2024
				10:35	10:40	10:45	10:50	10:55
Analyte	CAS Number Method/Lab	LOR	Unit	VA24C2005-001	VA24C2005-002	VA24C2005-003	VA24C2005-004	VA24C2005-005
				Result	Result	Result	Result	Result
Total Metals	7400 00 5 5 6 700 / 4	0.0030		0.0158	0.0272	0.0306	0.0334	0.0114
Aluminum, total	7429-90-5 E420/VA		mg/L					
Antimony, total	7440-36-0 E420/VA	0.00010	mg/L	0.0190	0.00538	0.0107	0.00960	0.0107
Arsenic, total	7440-38-2 E420/VA	0.00010	mg/L	0.502	0.316	0.585	0.219	0.241
Barium, total	7440-39-3 E420/VA	0.00010	mg/L	0.0270	0.0276	0.0256	0.0261	0.0289
Beryllium, total	7440-41-7 E420/VA	0.000100	mg/L	<0.000100 DLA	<0.000100 <0.000100 DLA	<0.000100 <0.000100 DLA	<0.000100 <0.000100 DLA	<0.000100 <0.000100 DLA
Bismuth, total	7440-69-9 E420/VA	0.000050	mg/L					
Boron, total	7440-42-8 E420/VA	0.010	mg/L	0.275	0.223	0.316	0.273	0.294
Cadmium, total	7440-43-9 E420/VA	0.0000050	mg/L	<0.000100 DLM	<0.000165 DLM	0.000139	<0.000130 DLM	<0.000100 DLM
Calcium, total	7440-70-2 E420/VA	0.050	mg/L	228	262	227	246	248
Cesium, total	7440-46-2 E420/VA	0.000010	mg/L	<0.000020 DLA	0.000040	0.000021	<0.000020 DLA	0.000033
Chromium, total	7440-47-3 E420.Cr-L/VA	0.00010	mg/L	<0.00020 DLA	0.00056	<0.00020 DLA	0.00068	<0.00020 DLA
Chromium, total	7440-47-3 E420/VA	0.00050	mg/L	<0.00100 DLA	<0.00100 DLA	<0.00100 DLA	<0.00100 DLA	<0.00100 DLA
Cobalt, total	7440-48-4 E420/VA	0.00010	mg/L	0.0594	0.0327	0.0476	0.0586	0.0390
Copper, total	7440-50-8 E420/VA	0.00050	mg/L	0.00222	<0.00100 DLA	0.00517	0.00278	0.00226
Iron, total	7439-89-6 E420/VA	0.010	mg/L	0.090	0.080	<0.020 DLA	0.130	0.036
Lead, total	7439-92-1 E420/VA	0.000050	mg/L	<0.000100 DLA	0.000180	<0.000100 DLA	<0.000100 DLA	<0.000100 DLA
Lithium, total	7439-93-2 E420/VA	0.0010	mg/L	0.0039	0.0050	0.0086	0.0055	0.0062
Magnesium, total	7439-95-4 E420/VA	0.0050	mg/L	30.4	22.2	30.6	36.4	32.9
Manganese, total	7439-96-5 E420/VA	0.00010	mg/L	0.138	0.0931	0.122	0.132	0.184
Mercury, total	7439-97-6 E508/VA	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
Molybdenum, total	7439-98-7 E420/VA	0.000050	mg/L	0.176	0.192	0.0774	0.121	0.157
Nickel, total	7440-02-0 E420/VA	0.00050	mg/L	0.0368	0.0253	0.0487	0.0484	0.0494
Phosphorus, total	7723-14-0 E420/VA	0.050	mg/L	<0.100 DLA	<0.100 DLA	<0.100 DLA	<0.100 DLA	<0.100 DLA
Potassium, total	7440-09-7 E420/VA	0.050	mg/L	143	137	176	139	150
Rubidium, total	7440-17-7 E420/VA	0.00020	mg/L	0.0983	0.0609	0.153	0.0768	0.0713
Selenium, total	7782-49-2 E420/VA	0.000050	mg/L	0.0244	0.00144	0.00437	0.00701	0.00887
Silicon, total	7440-21-3 E420/VA	0.10	mg/L	6.52	4.10	5.93	5.71	6.24
Silver, total	7440-22-4 E420/VA	0.000010	mg/L	<0.000020 DLA	<0.000020 DLA	<0.000020 DLA	<0.000020 DLA	<0.000020 DLA
Sodium, total	7440-23-5 E420/VA	0.050	mg/L	260	238	258	250	252
Strontium, total	7440-24-6 E420/VA	0.00020	mg/L	0.819	1.00	0.778	0.815	0.895

Page : 6 of 9

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Results

Sub-Matrix: Water		CI	ient sample ID	PW-ST-20i	PW-ST-20ii	PW-BG-1	PW-BG-4	PW-BG-5
(Matrix: Water)								
		Client samp	ling date / time	11-Aug-2024 10:35	10-Aug-2024 10:40	10-Aug-2024 10:45	10-Aug-2024 10:50	10-Aug-2024 10:55
Analyte	CAS Number Method/Lab	LOR	Unit	VA24C2005-001	VA24C2005-002	VA24C2005-003	VA24C2005-004	VA24C2005-005
				Result	Result	Result	Result	Result
Total Metals	7704-34-9 E420/VA	0.50	m a /l	504	510	504	516	524
Sulfur, total Tellurium, total		0.00020	mg/L	<0.00040 DLA	<0.00040 DLA	<0.00040 DLA	<0.00040 DLA	<0.00040 DLA
Thallium, total	13494-80-9 E420/VA 7440-28-0 E420/VA	0.00020	mg/L	<0.00040	<0.00040	0.00040	<0.00040	<0.00040
,	· · · · · · · · · · · · · · · · · · ·	0.000010	mg/L	<0.00020 DLA	<0.00020 DLA	<0.00028 CO.00020 DLA	<0.00020 DLA	<0.00020 CLA
Thorium, total	7440-29-1 E420/VA 7440-31-5 E420/VA	0.00010	mg/L	0.00020	0.00075	<0.00020 DLA	<0.00020	0.00020
Tin, total Titanium, total	7440-31-3 E420/VA 7440-32-6 E420/VA	0.00010	mg/L	<0.00044	0.00073	<0.00020	0.00083	<0.00023
Tungsten, total	7440-32-6 E420/VA 7440-33-7 E420/VA	0.00030	mg/L	0.00369	0.00142	0.00183	0.00283	0.00208
Uranium, total	7440-33-7 E420/VA 7440-61-1 E420/VA	0.00010	mg/L	0.00309	0.00142	0.00784	0.00283	0.00208
Vanadium, total	7440-61-1 E420/VA 7440-62-2 E420/VA	0.00050	mg/L	<0.00100 DLA	<0.00233	<0.00100 DLA	<0.00943	<0.00309 DLA
Zinc, total	7440-66-6 E420/VA	0.0030	mg/L mg/L	<0.00100	<0.00100	<0.00100 DLA	<0.0060 DLA	<0.0060 DLA
Zirc, total Zirconium, total	7440-66-6 E420/VA 7440-67-7 E420/VA	0.0030	mg/L	<0.0000 DLA	<0.00040 DLA	<0.00040 DLA	<0.0000 DLA	<0.0000 DLA
	7440-07-7	0.00020	IIIg/L	10.00040	10.00040	10.00040	10.00040	٧٥.٥٥٥
Dissolved Metals Aluminum, dissolved	7429-90-5 E421/VA	0.0010	mg/L	0.0132	0.0104	0.0129	0.0110	0.0086
Antimony, dissolved	7440-36-0 E421/VA	0.0010	mg/L	0.0242	0.00494	0.0123	0.01133 DTMF	0.0243 DTMF
Arsenic, dissolved	7440-38-2 E421/VA	0.00010	mg/L	0.346	0.423	0.610	0.235	0.177
Barium, dissolved	7440-39-3 E421/VA	0.00010	mg/L	0.0212	0.0255	0.0236	0.0259	0.0209
Beryllium, dissolved	7440-41-7 E421/VA	0.00010	mg/L	<0.00100 DLA	<0.000100 DLA	<0.000100 DLA	<0.000100 DLA	<0.000100 DLA
Bismuth, dissolved	7440-69-9 E421/VA	0.000100	mg/L	<0.000100 DLA	<0.000100 DLA	<0.000100 DLA	<0.000100 DLA	<0.000100 DLA
Boron, dissolved	7440-42-8 E421/VA	0.010	mg/L	0.267	0.215	0.317	0.304	0.241
Cadmium, dissolved	7440-43-9 E421/VA	0.0000050	mg/L	<0.0000450 DLM	<0.0000850 DLM	0.000106	<0.0000450 DLM	<0.0000400 DLM
Calcium, dissolved	7440-70-2 E421/VA	0.050	mg/L	239	271	228	261	235
Cesium, dissolved	7440-46-2 E421/VA	0.000010	mg/L	0.000034 DTMF	0.000050	0.000034	<0.000020 DLA	0.000032
Chromium, dissolved	7440-47-3 E421.Cr-L/VA	0.00010	mg/L	<0.00020 DLA	<0.00020 DLA	<0.00020 DLA	<0.00020 DLA	<0.00020 DLA
Chromium, dissolved	7440-47-3 E421/VA	0.00050	mg/L	<0.00100 DLA	<0.00100 DLA	<0.00100 DLA	<0.00100 DLA	<0.00100 DLA
Cobalt, dissolved	7440-48-4 E421/VA	0.00010	mg/L	0.0478	0.0330	0.0408	0.0690	0.0473
Copper, dissolved	7440-50-8 E421/VA	0.00020	mg/L	<0.00040 DLA	0.00046	0.00487	0.00051	0.00226
Iron, dissolved	7439-89-6 E421/VA	0.010	mg/L	0.097	0.053	0.023	0.078	0.034
Lead, dissolved	7439-92-1 E421/VA	0.000050	mg/L	<0.000100 DLA	0.000170	<0.000100 DLA	<0.000100 DLA	<0.000100 DLA
Lithium, dissolved	7439-93-2 E421/VA	0.0010	mg/L	0.0040	0.0044	0.0098	0.0048	0.0054
Magnesium, dissolved	7439-95-4 E421/VA	0.0050	mg/L	26.7	20.8	27.8	36.7	25.7
magnesiam, aissoivea	1439-93-4	0.0000	mg/L	20.1	20.0	21.0	00.7	20.1

Page : 7 of 9

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Results

Analytical Results								
Sub-Matrix: Water		CI	lient sample ID	PW-ST-20i	PW-ST-20ii	PW-BG-1	PW-BG-4	PW-BG-5
(Matrix: Water)								
		Client samp	lling date / time	11-Aug-2024 10:35	10-Aug-2024 10:40	10-Aug-2024 10:45	10-Aug-2024 10:50	10-Aug-2024 10:55
Analyte	CAS Number Method/Lab	LOR	Unit	VA24C2005-001	VA24C2005-002	VA24C2005-003	VA24C2005-004	VA24C2005-005
				Result	Result	Result	Result	Result
Dissolved Metals								
Manganese, dissolved	7439-96-5 E421/VA	0.00010	mg/L	0.0900	0.0643	0.0890	0.142	0.0771
Mercury, dissolved	7439-97-6 E509/VA	0.0000050	mg/L	<0.0000500 DLM				
Molybdenum, dissolved	7439-98-7 E421/VA	0.000050	mg/L	0.151	0.166	0.0778	0.126	0.149
Nickel, dissolved	7440-02-0 E421/VA	0.00050	mg/L	0.0339	0.00970	0.0454	0.0546	0.0464
Phosphorus, dissolved	7723-14-0 E421/VA	0.050	mg/L	<0.100 DLA				
Potassium, dissolved	7440-09-7 E421/VA	0.050	mg/L	145	135	168	147	136
Rubidium, dissolved	7440-17-7 E421/VA	0.00020	mg/L	0.102	0.0552	0.142	0.0688	0.0621
Selenium, dissolved	7782-49-2 E421/VA	0.000050	mg/L	0.0138	0.00184	0.00618 DTSE	0.00253	0.00737
Silicon, dissolved	7440-21-3 E421/VA	0.050	mg/L	4.73	3.62	5.46	5.35	4.70
Silver, dissolved	7440-22-4 E421/VA	0.000010	mg/L	<0.000020 DLA				
Sodium, dissolved	7440-23-5 E421/VA	0.050	mg/L	254	246	251	251	244
Strontium, dissolved	7440-24-6 E421/VA	0.00020	mg/L	0.803	0.956	0.794	0.891	0.787
Sulfur, dissolved	7704-34-9 E421/VA	0.50	mg/L	442	447	448	482	427
Tellurium, dissolved	13494-80-9 E421/VA	0.00020	mg/L	<0.00040 DLA				
Thallium, dissolved	7440-28-0 E421/VA	0.000010	mg/L	<0.000020 DLA	<0.000020 DLA	0.000027	<0.000020 DLA	<0.000020 DLA
Thorium, dissolved	7440-29-1 E421/VA	0.00010	mg/L	<0.00020 DLA				
Tin, dissolved	7440-31-5 E421/VA	0.00010	mg/L	0.00077 DTMF	<0.00020 DLA	<0.00020 DLA	0.00040 DTMF	0.00035
Titanium, dissolved	7440-32-6 E421/VA	0.00030	mg/L	<0.00060 DLA				
Tungsten, dissolved	7440-33-7 E421/VA	0.00010	mg/L	0.00503 DTMF	0.00151	0.00197	0.00198	0.00349 DTMF
Uranium, dissolved	7440-61-1 E421/VA	0.000010	mg/L	0.0120	0.00186	0.00715	0.00794	0.00674
Vanadium, dissolved	7440-62-2 E421/VA	0.00050	mg/L	<0.00100 DLA				
Zinc, dissolved	7440-66-6 E421/VA	0.0010	mg/L	<0.0020 DLA				
Zirconium, dissolved	7440-67-7 E421/VA	0.00020	mg/L	<0.00040 DLA				
Dissolved mercury filtration location	EP509/VA	-	-	Field	Field	Field	Field	Field
Dissolved metals filtration location	EP421/VA	-	-	Field	Field	Field	Field	Field

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 8 of 9

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	ST-20i-A	ST-20i-B	ST-20i-C	ST-20i-E	ST-20ii-A
(Matrix: Water)									
			Client samp	ling date / time	10-Aug-2024 00:00	10-Aug-2024 00:00	10-Aug-2024 00:00	10-Aug-2024 00:00	10-Aug-2024 00:00
Analyte	CAS Number	Method/Lab	LOR	Unit	VA24C2005-006	VA24C2005-007	VA24C2005-008	VA24C2005-010	VA24C2005-011
					Result	Result	Result	Result	Result
Field Tests									
Sampling volume, field		EF003/VA	0.010	L	0.250	0.250	0.250	0.250	0.250
Plant Pigments									
Chlorophyll a	479-61-8	EC870A/VA	0.010	μg/L	4.52	6.12	2.46	0.512	6.68
Chlorophyll a	479-61-8	E870A/VA	0.0020	µg/sample	1.13	1.53	0.614	0.128	1.67

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	ST-20ii-B	ST-20ii-C	ST-20ii-D	ST-20ii-E	Pit-A-A
(Matrix: Water)									
			Client samp	ling date / time	10-Aug-2024 00:00	10-Aug-2024 00:00	10-Aug-2024 00:00	10-Aug-2024 00:00	19-Aug-2024 00:00
Analyte	CAS Number	Method/Lab	LOR	Unit	VA24C2005-012	VA24C2005-013	VA24C2005-014	VA24C2005-015	VA24C2005-031
					Result	Result	Result	Result	Result
Field Tests									
Sampling volume, field		EF003/VA	0.010	L	0.250	0.250	0.250	0.250	0.250
Plant Pigments									
Chlorophyll a	479-61-8	EC870A/VA	0.010	μg/L	7.68	4.48	2.50	5.20	120
Chlorophyll a	479-61-8	E870A/VA	0.0020	µg/sample	1.92	1.12	0.624	1.30	30.1

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 9 of 9

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	Pit-A-B	Pit-A-C	ALS-TB	
(Matrix: Water)								
			Client samp	ling date / time	19-Aug-2024 00:00	19-Aug-2024 00:00	19-Aug-2024 00:00	
Analyte	CAS Number	Method/Lab	LOR	Unit	VA24C2005-032	VA24C2005-033	VA24C2005-034	
					Result	Result	Result	
Field Tests								
Sampling volume, field		EF003/VA	0.010	L	0.250	0.250		
Anions and Nutrients								
Cyanate	88402-73-7	E343/WT	0.20	mg/L			<0.20	
Cyanides								
Cyanide, free		E339-L/VA	0.0010	mg/L			<0.0010	
Cyanide, strong acid dissociable (Total)		E333-L/VA	0.0010	mg/L			<0.0010	
Thiocyanate	302-04-5	E344/VA	0.50	mg/L			<0.50	
Plant Pigments								
Chlorophyll a	479-61-8	EC870A/VA	0.010	μg/L	1.96	1.30		
Chlorophyll a	479-61-8	E870A/VA	0.0020	μg/sample	0.491	0.324		

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **VA24C2005** Page : 1 of 27

Amendment :1

Client : Azimuth Consulting Group Inc. Laboratory : ALS Environmental - Vancouver

Contact : Eric Franz Account Manager : Brent Mack

:# 218 - 2902 West Broadway Address :8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

 Telephone
 :604 730 1220
 Telephone
 :778-370-3279

 Project
 : Meadowbank CREMP Surfacewater
 Date Samples Received
 : 27-Aug-2024 12:20

 PO
 : --- Issue Date
 : 18-Sep-2024 08:30

C-O-C number

Sampler : FQS, NS, OJ

Site :---

Quote number : VA19-ACGI100-005 (Q39503)

No. of samples received :34
No. of samples analysed :18

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

Vancouver BC Canada V6K 2G8

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur.

Page : 3 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: × =	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (lab preserved)										
PW-ST-20i	E298	11-Aug-2024	29-Aug-2024	3 days	18	*	31-Aug-2024	28 days	2 days	✓
					days	EHTR				
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (lab preserved)										
PW-BG-1	E298	10-Aug-2024	29-Aug-2024	3 days	19	*	31-Aug-2024	28 days	2 days	✓
					days	EHTR				
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (lab preserved)										
PW-BG-4	E298	10-Aug-2024	29-Aug-2024	3 days	19	×	31-Aug-2024	28 days	2 days	✓
					days	EHTR				
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (lab preserved)										
PW-BG-5	E298	10-Aug-2024	29-Aug-2024	3 days	19	*	31-Aug-2024	28 days	2 days	✓
					days	EHTR				
Anions and Nutrients : Ammonia by Fluorescence										
HDPE										
PW-ST-20ii	E298	10-Aug-2024	29-Aug-2024	3 days	19	*	31-Aug-2024	28 days	2 days	✓
					days	EHTR				
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
PW-ST-20i	E235.Br-L	11-Aug-2024	29-Aug-2024	28	18	✓	29-Aug-2024	28 days	18 days	✓
				days	days					
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
PW-BG-1	E235.Br-L	10-Aug-2024	29-Aug-2024	28	19	✓	29-Aug-2024	28 days	19 days	✓
				days	days					

Page 4 of 27

Work Order : VA24C2005 Amendment 1 Azimuth Consulting Group Inc. Meadowbank CREMP Surfacewater Client Project

Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE PW-BG-4 E235.Br-L 10-Aug-2024 29-Aug-2024 28 19											
Container / Client Sample ID(4)	Matrix: Water					Ev	/aluation: ≭ =	Holding time excee	edance ; •	✓ = Within	Holding Ti
Container / Client Sample ID(4) Preparation Preparat	Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pi	eparation			Analys	sis	
Anions and Nutrients : Bromide in Water by IC (Low Leve) HDPE PW-BG-4 E235.Br-L 10-Aug-2024 29-Aug-2024 28 19				Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
HOPE PW-BG-4 E235.Br-L 10-Aug-2024 28 - 19					Rec	Actual			Rec	Actual	
PW-BG-4 E235.Br-L 10-Aug-2024 28-Aug-2024 28 days 48 d	Anions and Nutrients : Bromide in Water by IC (Low Level)										
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE PW-BG-5 E235.Br-L 10-Aug-2024 29-Aug-2024 29-Aug-2024 29-Aug-2024 28	HDPE										
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE PW-BG-5 E235.Br-L 10-Aug-2024 29-Aug-2024 28 19	PW-BG-4	E235.Br-L	10-Aug-2024	29-Aug-2024	28	19	✓	29-Aug-2024	28 days	19 days	✓
HDPE PW-BG-5					days	days					
## PW-BG-5 E235.Br-L 10-Aug-2024 29-Aug-2024 28 19	Anions and Nutrients : Bromide in Water by IC (Low Level)										
Anions and Nutrients : Bromide in Water by IC (Low Level) ### PW-ST-20ii E235.Br-L 10-Aug-2024 29-Aug-2024 28 19 19 29-Aug-2024 28 days 19 days											
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE PW-ST-20ii E235.Br-L 10-Aug-2024 29-Aug-2024 28	PW-BG-5	E235.Br-L	10-Aug-2024	29-Aug-2024	28	19	✓	29-Aug-2024	28 days	19 days	✓
## PPE PW-ST-20ii					days	days					
PW-ST-20 E235.Br-L 10-Aug-2024 29-Aug-2024 28 19 days 29-Aug-2024 28 days 19 days 29-Aug-2024 28 days 19 days 29-Aug-2024 28 days 29-Aug-2024	Anions and Nutrients : Bromide in Water by IC (Low Level)										
Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE PW-ST-20i PW-BG-1 E235.CI-L 11-Aug-2024 29-Aug-2024 29-Aug-2024 29-Aug-2024 28 days days 48 days 48 days days 48 da							,				
Anions and Nutrients : Chloride in Water by IC (Low Level) ##PPE PW-ST-20i Anions and Nutrients : Chloride in Water by IC (Low Level) ##PPE PW-BG-1 Anions and Nutrients : Chloride in Water by IC (Low Level) ##PPE PW-BG-4 Anions and Nutrients : Chloride in Water by IC (Low Level) ##PPE PW-BG-4 ##PPE PW-BG-4 ##PPE PW-BG-4 ##PPE PW-BG-5 ##PPE PW-BG-5 ##PPE PW-BG-6 ##PP	PW-ST-20ii	E235.Br-L	10-Aug-2024	29-Aug-2024		-	✓	29-Aug-2024	28 days	19 days	✓
## PW-ST-201					days	days					
PW-ST-20i											
Anions and Nutrients : Chloride in Water by IC (Low Level) ### PW-BG-1 Anions and Nutrients : Chloride in Water by IC (Low Level) #### PW-BG-1 E235.CI-L 10-Aug-2024 29-Aug-2024 28		E005 011	44 4 0004				,	00.4		40.1	,
Anions and Nutrients : Chloride in Water by IC (Low Level) E235.Cl-L 10-Aug-2024 29-Aug-2024 29-Aug-2024 28	PW-S1-20i	E235.CI-L	11-Aug-2024	29-Aug-2024			*	29-Aug-2024	28 days	18 days	✓
HDPE PW-BG-1 10-Aug-2024 29-Aug-2024 28 19 days 29-Aug-2024 28 days 19 days 29-Aug-2024 28 days 19 days 29-Aug-2024 28 days 29-Aug-2024 days 29-Aug-2024 days 29-Aug-2024 days 29-Aug-2024 days days 29-Aug-2024 days					days	days					
PW-BG-1					<u> </u>	<u> </u>					
Anions and Nutrients : Chloride in Water by IC (Low Level) #DPE PW-BG-4 Anions and Nutrients : Chloride in Water by IC (Low Level) #DPE PW-BG-5 E235.CI-L 10-Aug-2024 29-Aug-2024 29		E00E OL I	40 4 2024	20 4 2024			,	20 4 2024	00 4	40 -	✓
Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE PW-BG-4 Anions and Nutrients : Chloride in Water by IC (Low Level) E235.Cl-L 10-Aug-2024 29-Aug-2024 28	PW-BG-1	E235.CI-L	10-Aug-2024	29-Aug-2024			Y	29-Aug-2024	28 days	19 days	•
HDPE PW-BG-4 E235.CI-L 10-Aug-2024 29-Aug-2024 28					days	days					
PW-BG-4 E235.Cl-L 10-Aug-2024 29-Aug-2024 28	• ,						l e				
Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE PW-BG-5 E235.CI-L 10-Aug-2024 29-Aug-2024 29-Aug-2024 29-Aug-2024 20 days 4 29-Aug-2024 29-Aug-20		E235 CLI	10 Aug 2024	20 Aug 2024	20	40	1	20 Aug 2024	20 days	10 dovo	✓
Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE PW-BG-5 E235.CI-L 10-Aug-2024 29-Aug-2024 29-Aug-2024 28 19 4 29-Aug-2024 28 days 19 days Anions and Nutrients : Chloride in Water by IC (Low Level)	PW-DG-4	L233.GI-L	10-Aug-2024	29-Aug-2024		-	,	29-Aug-2024	20 uays	19 days	•
HDPE E235.CI-L 10-Aug-2024 29-Aug-2024 28 days 19 days ✓ 29-Aug-2024 28 days 19 days Anions and Nutrients : Chloride in Water by IC (Low Level)					uays	uays					
PW-BG-5 E235.Cl-L 10-Aug-2024 29-Aug-2024 28					<u> </u>	<u> </u>		<u> </u>			
Anions and Nutrients : Chloride in Water by IC (Low Level)		E235 CLI	10 Aug 2024	20 Aug 2024	20	40	1	20 Aug 2024	28 days	10 days	1
Anions and Nutrients : Chloride in Water by IC (Low Level)	FW-DG-3	E233.CI-L	10-Aug-2024	29-Aug-2024			,	29-Aug-2024	20 uays	19 uays	•
					uays	uays					
						I		1			
	HDPE	E235 CL	10 Aug 2024	20 Aug 2024	20	10		20 Aug 2024	28 days	10 days	1
20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	L AA-O I - 7011	E233.UI-L	10-Aug-2024	29-Aug-2024			•	29-Aug-2024	20 uays	19 uays	•
					uays	uays					
Anions and Nutrients : Cyanate by Ion Selective Electrode								<u> </u>			
UV-inhibited HDPE - total (sodium hydroxide) E343 19-Aug-2024 11-Sep-2024 14 days 23 days	· · · · · · · · · · · · · · · · · · ·	E3/13	19-Δυσ-2024					11 Sep 2024	14 days	23 days	×
ALS-TB E343 19-Aug-2024 11-Sep-2024 14 days 23 days	ALO-10	2040	13-Aug-2024					11-36p-2024	14 days	25 uays	EHT

Page : 5 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: ★ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						- Caracata Cara	Holding time exce	, ,	**********	riolaning in
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Cyanate by Ion Selective Electrode										
UV-inhibited HDPE - total (sodium hydroxide)										
PW-ST-20i	E343	11-Aug-2024					11-Sep-2024	14 days	31 days	3 0
										EHTR
Anions and Nutrients : Cyanate by Ion Selective Electrode										
UV-inhibited HDPE - total (sodium hydroxide)										
PW-BG-1	E343	10-Aug-2024					11-Sep-2024	14 days	32 days	*
										EHTR
Anions and Nutrients : Cyanate by Ion Selective Electrode										
UV-inhibited HDPE - total (sodium hydroxide)										
PW-BG-4	E343	10-Aug-2024					11-Sep-2024	14 days	32 days	×
		, i					·		,	EHTR
Anions and Nutrients : Cyanate by Ion Selective Electrode										
UV-inhibited HDPE - total (sodium hydroxide)							I			
PW-BG-5	E343	10-Aug-2024					11-Sep-2024	14 days	32 days	×
1 W-50-0		107149 2021					11 Cop 2021	1 i dayo	oz dayo	EHTR
A translation of the control of the										
Anions and Nutrients : Cyanate by Ion Selective Electrode					I	l	I			
UV-inhibited HDPE - total (sodium hydroxide) PW-ST-20ii	E343	10-Aug-2024					11-Sep-2024	14 days	32 days	*
FW-31-2011	L343	10-Aug-2024					11-3ep-2024	14 days	32 days	EHTR
										LIIIIX
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Lo	evel 0.001 mg/L)				<u> </u>					
HDPE	E378-U	11-Aug-2024	20 4 2024	0 -1	40	*	20 4 2024	0 -1	10 -1	*
PW-ST-20i	E376-U	11-Aug-2024	29-Aug-2024	3 days	18	EHTR	29-Aug-2024	3 days	18 days	EHTR
					days	EHIK				EHIK
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Lo	evel 0.001 mg/L)									
HDPE										
PW-BG-1	E378-U	10-Aug-2024	29-Aug-2024	3 days	19	*	29-Aug-2024	3 days	19 days	30
					days	EHTR				EHTR
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Lo	evel 0.001 mg/L)									
HDPE										
PW-BG-4	E378-U	10-Aug-2024	29-Aug-2024	3 days	19	30	29-Aug-2024	3 days	19 days	*
					days	EHTR				EHTR
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Lo	evel 0.001 mg/ <u>L</u>)			i i						
HDPE										
PW-BG-5	E378-U	10-Aug-2024	29-Aug-2024	3 days	19	*	29-Aug-2024	3 days	19 days	×
	1	1		1	days	EHTR	I			EHTR

Page : 6 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					L\	raiuation. * =	Holding time exce	cuance,	• - vviti iii i	Holding Tilli
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding Rec	7 Times	Eval	Analysis Date	Holding Rec	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001 mg/L)									
HDPE PW-ST-20ii	E378-U	10-Aug-2024	29-Aug-2024	3 days	19 days	* EHTR	29-Aug-2024	3 days	19 days	x EHTR
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
PW-ST-20i	E235.F	11-Aug-2024	29-Aug-2024	28 days	18 days	✓	17-Sep-2024	28 days	37 days	# EHT
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
PW-BG-1	E235.F	10-Aug-2024	29-Aug-2024	28 days	19 days	✓	17-Sep-2024	28 days	38 days	# EHT
Anions and Nutrients : Fluoride in Water by IC										
HDPE PW-BG-4	E235.F	10-Aug-2024	29-Aug-2024	28 days	19 days	✓	17-Sep-2024	28 days	38 days	* EHT
Anions and Nutrients : Fluoride in Water by IC										
HDPE PW-BG-5	E235.F	10-Aug-2024	29-Aug-2024	28 days	19 days	1	17-Sep-2024	28 days	38 days	x EHT
Anions and Nutrients : Fluoride in Water by IC										
HDPE PW-ST-20ii	E235.F	10-Aug-2024	29-Aug-2024	28 days	19 days	✓	17-Sep-2024	28 days	38 days	x EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE PW-ST-20i	E235.NO3-L	11-Aug-2024	29-Aug-2024	3 days	18 days	* EHTR	29-Aug-2024	3 days	18 days	x EHTR
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE PW-BG-1	E235.NO3-L	10-Aug-2024	29-Aug-2024	3 days	19 days	* EHTR	29-Aug-2024	3 days	19 days	* EHTR
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE PW-BG-4	E235.NO3-L	10-Aug-2024	29-Aug-2024	3 days	19 days	# EHTR	29-Aug-2024	3 days	19 days	# EHTR

Page : 7 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

									Holding Time
Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
		Preparation Date	Holding Rec	7 Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
		24.0							
E235.NO3-L	10-Aug-2024	29-Aug-2024	3 days	19 days	* EHTR	29-Aug-2024	3 days	19 days	* EHTR
E235.NO3-L	10-Aug-2024	29-Aug-2024	3 days	19 days	* EHTR	29-Aug-2024	3 days	19 days	# EHTR
E235.NO2-L	11-Aug-2024	29-Aug-2024	3 days	18 days	* EHTR	29-Aug-2024	3 days	18 days	* EHTR
E235.NO2-L	10-Aug-2024	29-Aug-2024	3 days	19 days	* EHTR	29-Aug-2024	3 days	19 days	x EHTR
E235.NO2-L	10-Aug-2024	29-Aug-2024	3 days	19 days	* EHTR	29-Aug-2024	3 days	19 days	* EHTR
E235.NO2-L	10-Aug-2024	29-Aug-2024	3 days	19 days	* EHTR	29-Aug-2024	3 days	19 days	* EHTR
E235.NO2-L	10-Aug-2024	29-Aug-2024	3 days	19 days	* EHTR	29-Aug-2024	3 days	19 days	* EHTR
E392	11-Aug-2024					30-Aug-2024	28 days	19 days	✓
E392	10-Aug-2024					30-Aug-2024	28 days	20 days	✓
	E235.NO3-L E235.NO2-L E235.NO2-L E235.NO2-L E235.NO2-L E235.NO2-L	E235.NO3-L 10-Aug-2024 E235.NO2-L 11-Aug-2024 E235.NO2-L 10-Aug-2024 E235.NO2-L 10-Aug-2024 E235.NO2-L 10-Aug-2024 E235.NO2-L 10-Aug-2024	E235.NO3-L 10-Aug-2024 29-Aug-2024 E235.NO2-L 11-Aug-2024 29-Aug-2024 E235.NO2-L 10-Aug-2024 29-Aug-2024 E235.NO2-L 10-Aug-2024 29-Aug-2024 E235.NO2-L 10-Aug-2024 29-Aug-2024 E235.NO2-L 10-Aug-2024 29-Aug-2024 E392 11-Aug-2024	Preparation Date Holding Rec E235.NO3-L 10-Aug-2024 29-Aug-2024 3 days E235.NO3-L 10-Aug-2024 29-Aug-2024 3 days E235.NO2-L 11-Aug-2024 29-Aug-2024 3 days E235.NO2-L 10-Aug-2024 29-Aug-2024 3 days E392 11-Aug-2024	Preparation Date Holding Times Rec Actual	Preparation Date Holding Times Rec Actual Eval Rec Actual Rec Ac	Preparation Date Holding Times Eval Analysis Date Rec Actual	Preparation Date Holding Times Eval Analysis Date Holding Rec Actual	Preparation Date Holding Times Rec Actual Analysis Date Holding Times Rec Actual

Page : 8 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						raiuation. * =	uation: × = Holding time exceedance; ✓ = Within Hold			
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
PW-BG-4	E392	10-Aug-2024					30-Aug-2024	28 days	20 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
PW-BG-5	E392	10-Aug-2024					30-Aug-2024	28 davs	20 days	✓
		Ü					Ĭ			
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE	<u> </u>						I			
PW-ST-20ii	E392	10-Aug-2024					30-Aug-2024	28 davs	20 days	✓
A transmitted to the first three to the										
Anions and Nutrients : Sulfate in Water by IC										
HDPE	E235.SO4	11-Aug-2024	20 Aug 2024		40	√	29-Aug-2024	20 days	10 days	√
PW-ST-20i	E235.304	11-Aug-2024	29-Aug-2024	28	18	•	29-Aug-2024	20 days	18 days	•
				days	days					
Anions and Nutrients : Sulfate in Water by IC					ı					
HDPE	E005.004	40.4 0004	00.4			,		00.1	40.1	,
PW-BG-1	E235.SO4	10-Aug-2024	29-Aug-2024	28	19	✓	29-Aug-2024	28 days	19 days	✓
				days	days					
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
PW-BG-4	E235.SO4	10-Aug-2024	29-Aug-2024	28	19	✓	29-Aug-2024	28 days	19 days	✓
				days	days					
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
PW-BG-5	E235.SO4	10-Aug-2024	29-Aug-2024	28	19	✓	29-Aug-2024	28 days	19 days	✓
				days	days					
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
PW-ST-20ii	E235.SO4	10-Aug-2024	29-Aug-2024	28	19	✓	29-Aug-2024	28 days	19 days	✓
		Ĭ	Ü	days	days					
Anions and Nutriants - Total Dissolved Bhoopharus by Colourimetry (0.002 mg/l)				.,-	,-					
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid)										
PW-ST-20i	E375-T	11-Aug-2024	29-Aug-2024	28	18	√	31-Aug-2024	28 days	20 days	✓
1 17-01-201	2070-1	11-7 tag-2024	20-Aug-2024			•	01-Aug-2024	20 days	20 days	•
				days	days					

Page : 9 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: × = Holding time exceedance: ✓ = Within Holding Time

Matrix: Water					Εν	/aluation: 🗴 =	Holding time exceed	edance ; ·	✓ = Within	Holding Ti
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid)										
PW-BG-1	E375-T	10-Aug-2024	29-Aug-2024	28	19	✓	31-Aug-2024	28 days	21 days	✓
				days	days					
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid)										
PW-BG-4	E375-T	10-Aug-2024	29-Aug-2024	28	19	✓	31-Aug-2024	28 days	21 days	✓
				days	days					
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid)										
PW-BG-5	E375-T	10-Aug-2024	29-Aug-2024	28	19	✓	31-Aug-2024	28 days	21 days	✓
				days	days					
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid)										
PW-ST-20ii	E375-T	10-Aug-2024	29-Aug-2024	28	19	✓	31-Aug-2024	28 days	21 days	✓
				days	days					
Cyanides : Free Cyanide (Low Level)										
UV-inhibited HDPE - total (sodium hydroxide)										
ALS-TB	E339-L	19-Aug-2024	01-Sep-2024	14	13	✓	01-Sep-2024	14 days	13 days	✓
				days	days					
Cyanides : Free Cyanide (Low Level)										
UV-inhibited HDPE - total (sodium hydroxide)										
PW-ST-20i	E339-L	11-Aug-2024	30-Aug-2024	14	19	*	30-Aug-2024	14 days	19 days	æ
				days	days	EHTR				EHTR
Cyanides : Free Cyanide (Low Level)										
UV-inhibited HDPE - total (sodium hydroxide)										
PW-BG-1	E339-L	10-Aug-2024	30-Aug-2024	14	20	*	30-Aug-2024	14 days	20 days	*
				days	days	EHTR				EHTR
Cyanides : Free Cyanide (Low Level)										
UV-inhibited HDPE - total (sodium hydroxide)										
PW-BG-4	E339-L	10-Aug-2024	30-Aug-2024	14	20	×	30-Aug-2024	14 days	20 days	sc
				days	days	EHTR				EHTR
Cyanides : Free Cyanide (Low Level)										
UV-inhibited HDPE - total (sodium hydroxide)										
PW-BG-5	E339-L	10-Aug-2024	30-Aug-2024	14	20	×	30-Aug-2024	14 days	20 days	*
				days	days	EHTR				EHTR
		1		1						

Page : 10 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						aluation: × = Holding time exceedance ; ✓ = Within Hold				Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Cyanides : Free Cyanide (Low Level)										
UV-inhibited HDPE - total (sodium hydroxide)										
PW-ST-20ii	E339-L	10-Aug-2024	30-Aug-2024	14	20	se .	30-Aug-2024	14 days	20 days	30
				days	days	EHTR				EHTR
Cyanides : Thiocyanate by Colourimetry										
HDPE (nitric acid)										
ALS-TB	E344	19-Aug-2024					29-Aug-2024	14 days	10 days	✓
Cyanides : Thiocyanate by Colourimetry										
HDPE (nitric acid)										
PW-ST-20i	E344	11-Aug-2024					29-Aug-2024	14 days	18 days	×
										EHTR
Cyanides : Thiocyanate by Colourimetry										
HDPE (nitric acid)										
PW-BG-1	E344	10-Aug-2024					29-Aug-2024	14 days	19 days	×
								_		EHTR
Cyanides : Thiocyanate by Colourimetry										
HDPE (nitric acid)										
PW-BG-4	E344	10-Aug-2024					29-Aug-2024	14 days	19 days	sc sc
		Ü					Ĭ	,		EHTR
Cyanides : Thiocyanate by Colourimetry										
HDPE (nitric acid)										
PW-BG-5	E344	10-Aug-2024					29-Aug-2024	14 davs	19 days	se .
50 0		. 5							,-	EHTR
Cumides This counts by Calaurimetry										
Cyanides : Thiocyanate by Colourimetry HDPE (nitric acid)										
PW-ST-20ii	E344	10-Aug-2024					29-Aug-2024	14 days	19 days	×
1 17 01 201		107149 2021					207.09 202.		.o aayo	EHTR
Consider a Tatal Consider (Level 1998)										
Cyanides: Total Cyanide (Low Level)				I			I			
UV-inhibited HDPE - total (sodium hydroxide) ALS-TB	E333-L	19-Aug-2024	01-Sep-2024	14	13	√	01-Sep-2024	14 dave	13 days	✓
ALG-1B	L333-L	19-Aug-2024	01-06p-2024			Ť	01-0ep-2024	14 days	15 days	•
				days	days					
Cyanides : Total Cyanide (Low Level)										
UV-inhibited HDPE - total (sodium hydroxide)	E222 I	11 Au = 2004	20 A 2024			4-	20 4 2004	44	40 -	
PW-ST-20i	E333-L	11-Aug-2024	30-Aug-2024	14	19	# FUTD	30-Aug-2024	14 days	19 days	# FUTD
				days	days	EHTR				EHTR

Page 11 of 27

VA24C2005 Amendment 1 Work Order : Azimuth Consulting Group Inc. Meadowbank CREMP Surfacewater Client Project

Matrix: Water						aluation: × =	Holding time exce			Holding Tii
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Cyanides : Total Cyanide (Low Level)										
UV-inhibited HDPE - total (sodium hydroxide)										
PW-BG-1	E333-L	10-Aug-2024	30-Aug-2024	14	20	*	30-Aug-2024	14 days	20 days	3¢
				days	days	EHTR				EHTR
Cyanides : Total Cyanide (Low Level)										
UV-inhibited HDPE - total (sodium hydroxide)		I					<u> </u>			
PW-BG-4	E333-L	10-Aug-2024	30-Aug-2024	14	20	×	30-Aug-2024	14 days	20 days	*
55		10119	g	days	days	EHTR			,-	EHTR
				days	days					
Cyanides : Total Cyanide (Low Level)		1			1					
UV-inhibited HDPE - total (sodium hydroxide)	F000 I	40. 4 0004	00 4 0004			4-	00.40004	44 1	00.1	
PW-BG-5	E333-L	10-Aug-2024	30-Aug-2024	14	20	*	30-Aug-2024	14 days	20 days	30
				days	days	EHTR				EHTR
Cyanides : Total Cyanide (Low Level)										
UV-inhibited HDPE - total (sodium hydroxide)										
PW-ST-20ii	E333-L	10-Aug-2024	30-Aug-2024	14	20	×	30-Aug-2024	14 days	20 days	*
				days	days	EHTR				EHTR
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
PW-ST-20i	E421.Cr-L	11-Aug-2024	31-Aug-2024	180	20	✓	01-Sep-2024	180	21 days	✓
		9	3 3	days	days		' '	days		
D'and a late of the Draw Late of the Color o				uayo	aayo			aayo		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)	E421.Cr-L	10-Aug-2024	24 Aug 2024	400	0.4	✓	01 Can 2024	400	20 days	1
PW-BG-1	E421.01-L	10-Aug-2024	31-Aug-2024	180	21	•	01-Sep-2024	180	22 days	•
				days	days			days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
PW-BG-4	E421.Cr-L	10-Aug-2024	31-Aug-2024	180	21	✓	01-Sep-2024	180	22 days	✓
				days	days			days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)							1			
PW-BG-5	E421.Cr-L	10-Aug-2024	31-Aug-2024	180	21	✓	01-Sep-2024	180	22 days	✓
			Ĭ	days	days		·	days		
Discharge Piccharge Communication					,-					
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)							I			
HDPE - dissolved (lab preserved)	E421.Cr-L	10 Aug 2024	24 Aug 2024	400		✓	04 Can 2024	400	22 days	1
PW-ST-20ii	E421.Uf-L	10-Aug-2024	31-Aug-2024	180	21	∀	01-Sep-2024	180	22 days	∀
	1			days	days			days		

Page

12 of 27 VA24C2005 Amendment 1 Work Order : Azimuth Consulting Group Inc. Meadowbank CREMP Surfacewater Client Project

Matrix: Water					E	/aluation: <mark>≭</mark> =	Holding time excee	edance ; •	/ = Within	Holding Tim
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)		, ,	Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
,			Date	Rec	Actual		7	Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS			Date	7.00	7.000			7.00	710100	
Glass vial - dissolved (lab preserved)							I			
PW-ST-20i	E509	11-Aug-2024	04-Sep-2024	28	24	1	04-Sep-2024	28 days	24 days	1
1 17 51 201		g	0 . GSP 202 .	days	days		0.000 202.	20 44,0	,	
Dissolved Metals : Dissolved Mercury in Water by CVAAS				days	days					
Glass vial - dissolved (lab preserved)				I	<u> </u>					
PW-BG-1	E509	10-Aug-2024	04-Sep-2024	00	05	√	04-Sep-2024	28 days	25 days	✓
PW-BG-1	L309	10-Aug-2024	04-3ep-2024	28	25	•	04-3ep-2024	20 days	25 days	•
				days	days					
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial - dissolved (lab preserved)										
PW-BG-4	E509	10-Aug-2024	04-Sep-2024	28	25	✓	04-Sep-2024	28 days	25 days	✓
				days	days					
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial - dissolved (lab preserved)										
PW-BG-5	E509	10-Aug-2024	04-Sep-2024	28	25	✓	04-Sep-2024	28 days	25 days	✓
				days	days					
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial - dissolved (lab preserved)										
PW-ST-20ii	E509	10-Aug-2024	04-Sep-2024	28	25	✓	04-Sep-2024	28 days	25 days	✓
				days	days					
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS				,	,					
HDPE - dissolved (lab preserved)							1			
PW-ST-20i	E421	11-Aug-2024	31-Aug-2024	180	20	✓	02-Sep-2024	180	22 days	1
1 ***-01-201			017449 2021	days	days		02 GGP 2021	days	LL days	
				uays	uays			uays		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)	E404	40.4 0004	04.4. 0004						00.1	,
PW-BG-1	E421	10-Aug-2024	31-Aug-2024	180	21	✓	02-Sep-2024	180	23 days	✓
				days	days			days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
PW-BG-4	E421	10-Aug-2024	31-Aug-2024	180	21	✓	02-Sep-2024	180	23 days	✓
				days	days			days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS					1					
HDPE - dissolved (lab preserved)							I			
PW-BG-5	E421	10-Aug-2024	31-Aug-2024	180	21	✓	02-Sep-2024	180	23 days	✓
			Ĭ	days	days		I '	days		
<u>I</u>				aays	aayo			aays		

Page 13 of 27

VA24C2005 Amendment 1 Work Order: Client Azimuth Consulting Group Inc. **Project** Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time Analyte Group : Analytical Method Extraction / Preparation Analysis Sampling Date Method Container / Client Sample ID(s) Eval Preparation Holding Times Eval Analysis Date **Holding Times** Rec Rec Actual Actual Date Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE - dissolved (lab preserved) E421 10-Aug-2024 31-Aug-2024 02-Sep-2024 23 days 1 PW-ST-20ii 21 180 180 days days days Field Tests: Field Volume (L) Opaque HDPE tube Pit-A-A EF003 19-Aug-2024 10-Sep-2024 22 days Field Tests: Field Volume (L) Opaque HDPE tube Pit-A-B EF003 19-Aug-2024 10-Sep-2024 22 days Field Tests : Field Volume (L) Opaque HDPE tube EF003 19-Aug-2024 Pit-A-C 10-Sep-2024 22 days Field Tests: Field Volume (L) Opaque HDPE tube ST-20i-A EF003 10-Aug-2024 10-Sep-2024 31 days Field Tests: Field Volume (L) Opaque HDPE tube EF003 10-Aug-2024 10-Sep-2024 ST-20i-B ----31 days ----Field Tests : Field Volume (L) Opaque HDPE tube ST-20i-C EF003 10-Aug-2024 10-Sep-2024 31 days Field Tests : Field Volume (L) Opaque HDPE tube ST-20i-E EF003 10-Aug-2024 10-Sep-2024 31 days Field Tests: Field Volume (L) Opaque HDPE tube EF003 10-Aug-2024 ST-20ii-A 10-Sep-2024 31 days

Page : 14 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: ★ = Holding time exceedance; ✓ = Within Holding Time

Method Sampling Date Extraction / Proparation Consider of Claim Sample Digot Date Proparation Propar	Matrix: Water						aluation. × =	ation: × = Holding time exceedance ; √ = Within Hol			
Field Tests : Field Volume (J)	Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Field Tests : Field Volume (L)	Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
Digraph HDPE tube ST-20 -B EF003 10-Aug-2024 10-Sep-2024 31 days				Date	Rec	Actual			Rec	Actual	
ST-20 - B EF003 10-Aug-2024 10-Sep-2024 31 days	Field Tests : Field Volume (L)										
Field Tests : Field Volume (L)	Opaque HDPE tube										
Common Common Carbon Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 19 4 30-Aug-2024 28 days 20 days 4 29-Aug-2024 29 4 29-Aug-2024 29 4	ST-20ii-B	EF003	10-Aug-2024					10-Sep-2024		31 days	
Comparing HDPE tube ST-20 -C EF003 10-Aug-2024 10-Sep-2024 31 days State St											
ST-20 -C ST-2	Field Tests : Field Volume (L)										
ST-20II-C	• • • • • • • • • • • • • • • • • • • •										
Description Part Description Descrip		EF003	10-Aug-2024					10-Sep-2024		31 days	
Copanic HOPE tube ST-20it-D Copanic Carbon to Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 19 4 30-Aug-2024 28 days 20 days 4 29-Aug-2024 29-Aug-2024 28 19 4 30-Aug-2024 28 days 20 20 30-Aug-2024 28 days 20 30-Aug-2024 28 days 20 30-Aug-2024 28 days 30-Aug-2024 30-Aug-202			Ü					'			
Copanic HOPE tube ST-20it-D Copanic Carbon to Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 19 4 30-Aug-2024 28 days 20 days 4 29-Aug-2024 29-Aug-2024 28 19 4 30-Aug-2024 28 days 20 20 30-Aug-2024 28 days 20 30-Aug-2024 28 days 20 30-Aug-2024 28 days 30-Aug-2024 30-Aug-202	Field Tests : Field Volume (I.)										
ST-20 -D		<u> </u>						<u> </u>			
Field Tests : Field Volume (L) Organic PIDE tube ST-201E EF003 10-Aug-2024 To-Aug-2024		EF003	10-Aug-2024					10-Sep-2024		31 days	
Opaque HDPE tube ST-20i+E EF003 10-Aug-2024 10-Sep-2024 31 days Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 11-Aug-2024 29-Aug-2024 28 days 18 days ✓ 30-Aug-2024 28 days 19 days ✓ Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 days 19 days ✓ 30-Aug-2024 28 days 20 days ✓ Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 days 19 days ✓ 30-Aug-2024 28 days 20 days ✓ Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 days 19 days ✓ 30-Aug-2024 28 days 20 days ✓ Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 days 4 days 30-Aug-2024 28 days 20 days			. 5					, ,			
Comparing HDPE tube ST-20il-E EF003 10-Aug-2024 10-Sep-2024 31 days	Field Tests : Field Volume (L.)										
ST-20 -	• • • • • • • • • • • • • • • • • • • •										
Companie Carbon : Dissolved Organic Carbon by Combustion (Low Level) PW-ST-20i E358-L 11-Aug-2024 29-Aug-2024 28 18 4 30-Aug-2024 28 days 4 30-Aug-2024 28	···	FF003	10-Aug-2024					10-Sen-2024		31 days	
Amber glass dissolved (sulfuric acid) PW-ST-20i Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-1 E358-L 10-Aug-2024 29-Aug-2024 29-Aug-2024 28	01-20I-E	2, 000	10 / 109 202 1					10-00p-2024		or days	
Amber glass dissolved (sulfuric acid) PW-ST-20i Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-1 E358-L 10-Aug-2024 29-Aug-2024 29-Aug-2024 28											
PW-ST-20i		l) I			I						
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 days 19 days ✓ 30-Aug-2024 28 days 20 days ✓ Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-4 E358-L 10-Aug-2024 29-Aug-2024 28 days 19 days ✓ 30-Aug-2024 28 days 20 days ✓ Organic / Inorganic Carbon : Dissolved (sulfuric acid) PW-BG-4 E358-L 10-Aug-2024 29-Aug-2024 28 days 19 days ✓ 30-Aug-2024 28 days 20 days ✓ Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 days 19 days ✓ 30-Aug-2024 28 days 20 days ✓ Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 days 19 days ✓ 30-Aug-2024 28 days 20 days ✓ Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) 29-Aug-2024	· · · · · · · · · · · · · · · · · · ·	E250 I	11 Aug 2024	20 Aug 2024	00	40	1	20 Aug 2024	20 days	10 dovo	1
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-1 Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L Double of the property of the proper	PW-S1-201	E330-L	11-Aug-2024	29-Aug-2024			•	30-Aug-2024	20 uays	19 days	•
Amber glass dissolved (sulfuric acid) PW-BG-1 Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-4 Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)					days	days					
PW-BG-1 Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-4 PW-BG-4 PW-BG-5 E358-L 10-Aug-2024 29-Aug-2024 28		l)									
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-4 Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-5 E358-L 10-Aug-2024 29-Aug-2024 29-Aug-2024 29-Aug-2024 28		F050.	40.4 0004				,				,
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-4 Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-5 E358-L 10-Aug-2024 29-Aug-2024 28	PW-BG-1	E358-L	10-Aug-2024	29-Aug-2024		-	✓	30-Aug-2024	28 days	20 days	✓
Amber glass dissolved (sulfuric acid) PW-BG-4 Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 days 20 days Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)					days	days					
PW-BG-4 Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28	Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	l)									
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) E358-L 10-Aug-2024 29-Aug-2024 28 days days days days days days days days	· · · · · · · · · · · · · · · · · · ·										
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) PW-BG-5 E358-L 10-Aug-2024 29-Aug-2024 29-Aug-2024 28	PW-BG-4	E358-L	10-Aug-2024	29-Aug-2024	28	19	✓	30-Aug-2024	28 days	20 days	✓
Amber glass dissolved (sulfuric acid) PW-BG-5 Corganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 10-Aug-2024 29-Aug-2024 29-Aug-2024 28					days	days					
PW-BG-5 E358-L 10-Aug-2024 29-Aug-2024 28	Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid)	Amber glass dissolved (sulfuric acid)										
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid)	PW-BG-5	E358-L	10-Aug-2024	29-Aug-2024	28	19	✓	30-Aug-2024	28 days	20 days	✓
Amber glass dissolved (sulfuric acid)					days	days					
Amber glass dissolved (sulfuric acid)	Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve)									
		ĺ									
PW-ST-20ii	PW-ST-20ii	E358-L	10-Aug-2024	29-Aug-2024	28	19	✓	30-Aug-2024	28 days	20 days	✓
days days				<u> </u>		-					

Page : 15 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water								ion. × - Holding time exceedance , v - within Holdi			
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual		-	Rec	Actual		
Physical Tests : Alkalinity Species by Titration											
HDPE											
PW-ST-20i	E290	11-Aug-2024	29-Aug-2024	14	18	×	31-Aug-2024	14 days	20 days	×	
				days	days	EHTR				EHTR	
Physical Tests : Alkalinity Species by Titration											
HDPE											
PW-BG-1	E290	10-Aug-2024	29-Aug-2024	14	19	3E	31-Aug-2024	14 days	21 days	30	
				days	days	EHTR				EHTR	
Physical Tests : Alkalinity Species by Titration											
HDPE											
PW-BG-4	E290	10-Aug-2024	29-Aug-2024	14	19	*	31-Aug-2024	14 days	21 days	*	
				days	days	EHTR				EHTR	
Physical Tests : Alkalinity Species by Titration											
HDPE											
PW-BG-5	E290	10-Aug-2024	29-Aug-2024	14	19	×	31-Aug-2024	14 days	21 days	30	
				days	days	EHTR				EHTR	
Physical Tests : Alkalinity Species by Titration											
HDPE											
PW-ST-20ii	E290	10-Aug-2024	29-Aug-2024	14	19	*	31-Aug-2024	14 days	21 days	3 0	
				days	days	EHTR				EHTR	
Physical Tests : Conductivity in Water											
HDPE											
PW-ST-20i	E100	11-Aug-2024	29-Aug-2024	28	18	✓	31-Aug-2024	28 days	20 days	✓	
				days	days						
Physical Tests : Conductivity in Water											
HDPE											
PW-BG-1	E100	10-Aug-2024	29-Aug-2024	28	19	✓	31-Aug-2024	28 days	21 days	✓	
				days	days						
Physical Tests : Conductivity in Water											
HDPE											
PW-BG-4	E100	10-Aug-2024	29-Aug-2024	28	19	✓	31-Aug-2024	28 days	21 days	✓	
				days	days						
Physical Tests : Conductivity in Water											
HDPE											
		1		1	I .		I	1	04.1	,	
PW-BG-5	E100	10-Aug-2024	29-Aug-2024	28	19	✓	31-Aug-2024	28 days	21 days	✓	

Page 16 of 27

Work Order : VA24C2005 Amendment 1 Azimuth Consulting Group Inc. Meadowbank CREMP Surfacewater Client Project

Matrix: Water					E	valuation: 🗴 =	Holding time exce	edance ; •	✓ = Withir	Holding Tim
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	1
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
PW-ST-20ii	E100	10-Aug-2024	29-Aug-2024	28	19	1	31-Aug-2024	28 days	21 days	✓
				days	days					
Physical Tests : pH by Meter										
HDPE				T						
PW-ST-20i	E108	11-Aug-2024	29-Aug-2024	0.25	428 hrs	se .	31-Aug-2024	0.25	480 hrs	×
		Ŭ	Ü	hrs		EHTR-FM	, and the second	hrs		EHTR-FN
Dhosiad Tasta will be Mater								10		
Physical Tests : pH by Meter HDPE				T	T T	I	I	I		
PW-BG-1	E108	10-Aug-2024	29-Aug-2024	0.25	451 hrs	*	31-Aug-2024	0.25	504 hrs	×
FVV-DG-1	L100	10-Aug-2024	29-Aug-2024		4311113	EHTR-FM	31-Aug-2024		304 1113	EHTR-FM
				hrs		ENTR-FIVE		hrs		ENTR-FIV
Physical Tests : pH by Meter										
HDPE										
PW-BG-4	E108	10-Aug-2024	29-Aug-2024	0.25	451 hrs	*	31-Aug-2024	0.25	504 hrs	*
				hrs		EHTR-FM		hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
PW-BG-5	E108	10-Aug-2024	29-Aug-2024	0.25	451 hrs	×	31-Aug-2024	0.25	504 hrs	*
				hrs		EHTR-FM		hrs		EHTR-FN
Physical Tests : pH by Meter										
HDPE										
PW-ST-20ii	E108	10-Aug-2024	29-Aug-2024	0.25	452 hrs	se .	31-Aug-2024	0.25	504 hrs	æ
· · · · · · · · · · · · · · · · · · ·		Ŭ	3 3	hrs		EHTR-FM		hrs		EHTR-FM
Physical Tasks (TOO by Organizator (Law Laws))										
Physical Tests : TSS by Gravimetry (Low Level)					I	I	I	I		
HDPE PW-ST-20i	E160-L	11-Aug-2024					30-Aug-2024	7 days	19 days	×
PVV-31-20I	E100-L	11-Aug-2024					30-Aug-2024	7 uays	19 uays	EHTR
										ENIK
Physical Tests : TSS by Gravimetry (Low Level)						1				
HDPE										
PW-BG-1	E160-L	10-Aug-2024					30-Aug-2024	7 days	20 days	x
										EHTR
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
PW-BG-4	E160-L	10-Aug-2024					30-Aug-2024	7 days	20 days	×
										EHTR

Page : 17 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						/alualion. ^ =	aluation: × = Holding time exceedance ; ✓ = Within Hold			
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
PW-BG-5	E160-L	10-Aug-2024					30-Aug-2024	7 days	20 days	*
										EHTR
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
PW-ST-20ii	E160-L	10-Aug-2024					30-Aug-2024	7 days	20 days	×
										EHTR
Dhysical Tasta : Turbidity by Naphalamatry										
Physical Tests : Turbidity by Nephelometry HDPE							1			
PW-BG-1	E121	10-Aug-2024					28-Aug-2024	3 days	18 days	×
1 11 20 1		107149 2021					2071.09 2021	o aayo	.o aayo	EHTR
										LITTI
Physical Tests : Turbidity by Nephelometry				<u> </u>	<u> </u>	<u> </u>		I		
HDPE PW-BG-4	E121	10-Aug-2024					20 Aug 2024	2 401/0	18 days	×
PW-BG-4	EIZI	10-Aug-2024					28-Aug-2024	3 days	To days	EHTR
										ENIK
Physical Tests : Turbidity by Nephelometry										
HDPE	F404	40.4 0004					00.4 000.4			
PW-BG-5	E121	10-Aug-2024					28-Aug-2024	3 days	18 days	*
										EHTR
Physical Tests : Turbidity by Nephelometry										
HDPE										
PW-ST-20i	E121	11-Aug-2024					28-Aug-2024	3 days	18 days	*
										EHTR
Physical Tests : Turbidity by Nephelometry										
HDPE										
PW-ST-20ii	E121	10-Aug-2024					28-Aug-2024	3 days	19 days	×
										EHTR
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered µg)										
Opaque HDPE tube										
Pit-A-B	E870A	19-Aug-2024	04-Sep-2024	28	17	✓	04-Sep-2024	28 days	0 days	✓
				days	days					
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered μg)										
Opaque HDPE tube									1	
Pit-A-C	E870A	19-Aug-2024	04-Sep-2024	28	17	✓	04-Sep-2024	28 days	0 days	✓
			5. 55p 202 T	days	days		0 . 25p 202 t			
				uays	uays					

Page : 18 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water					Εν	/aluation: 🗴 =	Holding time excee	edance ; 🛚	/ = Within	Holding Tim
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered µg)										
Opaque HDPE tube Pit-A-A	E870A	19-Aug-2024	05-Sep-2024	28 days	17 days	1	06-Sep-2024	28 days	1 days	√
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered μg)										
Opaque HDPE tube ST-20i-A	E870A	10-Aug-2024	04-Sep-2024	28 days	26 days	1	04-Sep-2024	28 days	0 days	✓
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered µg)										
Opaque HDPE tube ST-20i-B	E870A	10-Aug-2024	04-Sep-2024	28 days	26 days	✓	04-Sep-2024	28 days	0 days	✓
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered μg)										
Opaque HDPE tube ST-20i-C	E870A	10-Aug-2024	04-Sep-2024	28 days	26 days	✓	04-Sep-2024	28 days	0 days	✓
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered µg)										
Opaque HDPE tube ST-20i-E	E870A	10-Aug-2024	04-Sep-2024	28 days	26 days	✓	04-Sep-2024	28 days	0 days	✓
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered µg)										
Opaque HDPE tube ST-20ii-B	E870A	10-Aug-2024	04-Sep-2024	28 days	26 days	✓	04-Sep-2024	28 days	0 days	√
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered µg)										
Opaque HDPE tube ST-20ii-C	E870A	10-Aug-2024	04-Sep-2024	28 days	26 days	1	04-Sep-2024	28 days	0 days	✓
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered μg)										
Opaque HDPE tube ST-20ii-D	E870A	10-Aug-2024	04-Sep-2024	28 days	26 days	✓	04-Sep-2024	28 days	0 days	✓
Plant Pigments : Chlorophyll-a by Fluorometry (Field Filtered μg)										
Opaque HDPE tube ST-20ii-E	E870A	10-Aug-2024	04-Sep-2024	28 days	26 days	✓	04-Sep-2024	28 days	0 days	√

Page 19 of 27

Glass vial - total (lab preserved)

PW-BG-4

Work Order · VA24C2005 Amendment 1 Client Azimuth Consulting Group Inc. Meadowbank CREMP Surfacewater **Project**

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analysis Analyte Group: Analytical Method Method Sampling Date Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual Date Plant Pigments: Chlorophyll-a by Fluorometry (Field Filtered µg) Opaque HDPE tube E870A 10-Aug-2024 06-Sep-2024 1 ST-20ii-A 05-Sep-2024 28 days 1 days 28 26 days days Total Metals: Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) PW-ST-20i E420.Cr-L 11-Aug-2024 03-Sep-2024 180 23 1 03-Sep-2024 180 23 days ✓ days days days Total Metals: Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) E420.Cr-L 10-Aug-2024 03-Sep-2024 1 03-Sep-2024 24 days 1 PW-BG-1 180 180 24 days days davs Total Metals: Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) E420.Cr-L 1 PW-BG-4 10-Aug-2024 03-Sep-2024 180 24 03-Sep-2024 180 24 days 1 days days days Total Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) PW-BG-5 E420.Cr-L 10-Aug-2024 03-Sep-2024 1 03-Sep-2024 ✓ 24 days 180 24 180 days days days Total Metals: Total Chromium in Water by CRC ICPMS (Low Level) HDPE - total (lab preserved) E420.Cr-L 10-Aug-2024 1 1 PW-ST-20ii 03-Sep-2024 180 24 03-Sep-2024 180 24 days days days days Total Metals : Total Mercury in Water by CVAAS Glass vial - total (lab preserved) PW-ST-20i E508 11-Aug-2024 04-Sep-2024 1 04-Sep-2024 28 days 24 days 28 24 days days Total Metals : Total Mercury in Water by CVAAS Glass vial - total (lab preserved) 04-Sep-2024 28 days 25 days PW-BG-1 E508 10-Aug-2024 04-Sep-2024 28 25 1 ✓ days days Total Metals : Total Mercury in Water by CVAAS

10-Aug-2024

04-Sep-2024

28

days

25

days

1

04-Sep-2024

E508

1

28 days 25 days

Page : 20 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

iatrix: water					L.	aldation. • =	ation: x = Holding time exceedance; v = within Hol			
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation			Analy	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holdin	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
PW-BG-5	E508	10-Aug-2024	04-Sep-2024	28	25	✓	04-Sep-2024	28 days	25 days	✓
				days	days					
otal Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)						,				,
PW-ST-20ii	E508	10-Aug-2024	04-Sep-2024	28	25	✓	04-Sep-2024	28 days	25 days	✓
				days	days					
otal Metals : Total Metals in Water by CRC ICPMS					1					
HDPE - total (lab preserved) PW-ST-20i	E420	11-Aug-2024	03-Sep-2024	400	00	√	04-Sep-2024	400	24 days	1
PVV-51-20I	E420	11-Aug-2024	03-3ep-2024	180 days	23 days	•	04-3ep-2024	180 days	24 days	•
				uays	uays			uays		
Total Metals : Total Metals in Water by CRC ICPMS HDPE - total (lab preserved)					I					
PW-BG-1	E420	10-Aug-2024	03-Sep-2024	180	24	✓	04-Sep-2024	180	25 days	1
1 W-50-1	2.23	107149 2021	00 00p 202 i	days	days		01 000 2021	days	20 dayo	
otal Metals : Total Metals in Water by CRC ICPMS					, -					
HDPE - total (lab preserved)							<u> </u>			
PW-BG-4	E420	10-Aug-2024	03-Sep-2024	180	24	✓	04-Sep-2024	180	25 days	✓
				days	days			days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
PW-BG-5	E420	10-Aug-2024	03-Sep-2024	180	24	✓	04-Sep-2024	180	25 days	✓
				days	days			days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
PW-ST-20ii	E420	10-Aug-2024	03-Sep-2024	180	24	✓	04-Sep-2024	180	25 days	✓
				days	days			days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

Rec. HT: ALS recommended hold time (see units).

Page : 21 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	1622582	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	1623884	1	19	5.2	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	1622586	1	19	5.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	1622590	1	10	10.0	5.0	✓
Conductivity in Water	E100	1622583	1	20	5.0	5.0	✓
Cyanate by Ion Selective Electrode	E343	1645308	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	1624653	1	10	10.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1632890	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1624652	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1623887	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	1622593	1	17	5.8	5.0	✓
Fluoride in Water by IC	E235.F	1656366	1	5	20.0	5.0	1
Free Cyanide (Low Level)	E339-L	1626581	3	25	12.0	5.0	✓
litrate in Water by IC (Low Level)	E235.NO3-L	1622587	1	19	5.2	5.0	✓
litrite in Water by IC (Low Level)	E235.NO2-L	1622588	1	20	5.0	5.0	✓
pH by Meter	E108	1622581	1	19	5.2	5.0	✓
Reactive Silica by Colourimetry	E392	1626576	1	20	5.0	5.0	√
Sulfate in Water by IC	E235.SO4	1622589	1	20	5.0	5.0	✓
Thiocyanate by Colourimetry	E344	1623485	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	1624610	1	5	20.0	5.0	✓
Total Cyanide (Low Level)	E333-L	1626582	3	48	6.2	5.0	1
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	1623885	1	14	7.1	5.0	✓
Total Mercury in Water by CVAAS	E508	1631157	2	28	7.1	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1624609	1	20	5.0	5.0	✓
urbidity by Nephelometry	E121	1622461	2	40	5.0	5.0	✓
aboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	1622582	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	1623884	1	19	5.2	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	1622586	1	19	5.2	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	1622590	1	10	10.0	5.0	√
Chlorophyll-a by Fluorometry (Field Filtered µg)	E870A	1632527	2	30	6.6	5.0	<u>√</u>
Conductivity in Water	E100	1622583	1	20	5.0	5.0	√
Cyanate by Ion Selective Electrode	E343	1645308	1	20	5.0	5.0	<u> </u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	1624653	1	10	10.0	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	1632890	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	1624652	1	20	5.0	5.0	1

Page : 22 of 27

Total Cyanide (Low Level)

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Method QC Lot # QC Regular Expected Evaluation Actual Analytical Methods Laboratory Control Samples (LCS) - Continued Dissolved Organic Carbon by Combustion (Low Level) 1623887 17 5.8 5.0 E358-L Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L) 1622593 17 5.8 5.0 1 E378-U Fluoride in Water by IC 1656366 5 20.0 5.0 E235.F 1 1 Free Cyanide (Low Level) 3 25 12.0 5.0 1626581 E339-L 1 Nitrate in Water by IC (Low Level) 1622587 19 5.2 5.0 E235.NO3-L Nitrite in Water by IC (Low Level) 1622588 1 20 5.0 5.0 E235.NO2-L 1 pH by Meter 1622581 1 19 5.2 5.0 E108 Reactive Silica by Colourimetry 1626576 5.0 5.0 E392 1 Sulfate in Water by IC 1622589 1 20 5.0 5.0 E235.SO4 1 Thiocyanate by Colourimetry 1623485 1 20 5.0 5.0 E344 1 Total Chromium in Water by CRC ICPMS (Low Level) E420.Cr-L 1624610 5 20.0 5.0 ✓ Total Cyanide (Low Level) E333-L 1626582 3 48 6.2 5.0 ✓ Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) E375-T 1623885 1 14 7.1 5.0 1 Total Mercury in Water by CVAAS 2 28 7.1 5.0 E508 1631157 1 Total Metals in Water by CRC ICPMS E420 1624609 20 5.0 5.0 ✓ TSS by Gravimetry (Low Level) 2 28 7.1 5.0 E160-L 1626703 Turbidity by Nephelometry 1622461 2 40 5.0 5.0 E121 1 Method Blanks (MB) Alkalinity Species by Titration E290 1622582 1 20 5.0 5.0 Ammonia by Fluorescence E298 1623884 1 19 5.2 5.0 ✓ Bromide in Water by IC (Low Level) E235.Br-L 1622586 1 19 5.2 5.0 Chloride in Water by IC (Low Level) 1622590 10 10.0 5.0 E235.CI-L 1 ✓ Chlorophyll-a by Fluorometry (Field Filtered µg) 1632527 2 30 5.0 E870A 66 1 Conductivity in Water 1622583 20 5.0 5.0 E100 20 5.0 Cyanate by Ion Selective Electrode 1645308 1 5.0 E343 1 Dissolved Chromium in Water by CRC ICPMS (Low Level) 1624653 10 10.0 5.0 E421.Cr-L Dissolved Mercury in Water by CVAAS 1632890 20 5.0 5.0 E509 1 Dissolved Metals in Water by CRC ICPMS 1624652 1 20 5.0 5.0 E421 ✓ Dissolved Organic Carbon by Combustion (Low Level) 1623887 1 17 5.8 5.0 E358-L ✓ Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L) 1622593 17 5.8 5.0 E378-U 1 Fluoride in Water by IC 1656366 1 5 20.0 5.0 E235.F 1 25 12.0 Free Cyanide (Low Level) 1626581 3 5.0 1 E339-L Nitrate in Water by IC (Low Level) 1622587 1 19 5.2 5.0 E235.NO3-L 1 Nitrite in Water by IC (Low Level) 1622588 20 5.0 5.0 E235.NO2-L ✓ Reactive Silica by Colourimetry 1626576 1 20 5.0 5.0 E392 Sulfate in Water by IC E235.SO4 1622589 1 20 5.0 5.0 ✓ Thiocyanate by Colourimetry 1623485 20 5.0 5.0 E344 1 Total Chromium in Water by CRC ICPMS (Low Level) 1624610 5 20.0 5.0 E420.Cr-L

E333-L

1626582

3

48

6.2

5.0

Page : 23 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Method E375-T	QC Lot #	Co QC	unt Regular	Actual	Frequency (%) Expected	Evaluation
E375-T		QC	Regular	Actual	Expected	Evaluation
	1000005				Exposion	Lvaluation
	1000005					
	1623885	1	14	7.1	5.0	✓
E508	1631157	2	28	7.1	5.0	✓
E420	1624609	2	20	10.0	5.0	✓
E160-L	1626703	2	28	7.1	5.0	√
E121	1622461	2	40	5.0	5.0	✓
E298	1623884	1	19	5.2	5.0	✓
E235.Br-L	1622586	1	19	5.2	5.0	✓
E235.CI-L	1622590	1	10	10.0	5.0	✓
E343	1645308	1	20	5.0	5.0	✓
E421.Cr-L	1624653	1	10	10.0	5.0	✓
E509	1632890	1	20	5.0	5.0	✓
E421	1624652	1	20	5.0	5.0	✓
E358-L	1623887	1	17	5.8	5.0	✓
E378-U	1622593	1	17	5.8	5.0	✓
E235.F	1656366	1	5	20.0	5.0	✓
E339-L	1626581	3	25	12.0	5.0	✓
E235.NO3-L	1622587	1	19	5.2	5.0	✓
E235.NO2-L	1622588	1	20	5.0	5.0	✓
E392	1626576	1	20	5.0	5.0	✓
E235.SO4	1622589	1	20	5.0	5.0	✓
E344	1623485	1	20	5.0	5.0	✓
E420.Cr-L	1624610	1	5	20.0	5.0	✓
E333-L	1626582	3	48	6.2	5.0	✓
E375-T	1623885	1	14	7.1	5.0	✓
E508	1631157	2	28	7.1	5.0	✓
E420	1624609	2	20	10.0	5.0	✓
	E160-L E121 E298 E235.Br-L E235.Cl-L E343 E421.Cr-L E509 E421 E358-L E378-U E235.F E339-L E235.NO3-L E235.NO2-L E392 E235.SO4 E344 E420.Cr-L E333-L E375-T E508	E420 1624609 E160-L 1626703 E121 1622461 E298 1623884 E235.Br-L 1622586 E235.Cl-L 1622590 E343 1645308 E421.Cr-L 1624653 E509 1632890 E421 1624652 E358-L 1623887 E378-U 1622593 E235.F 1656366 E339-L 1626581 E235.NO3-L 1622587 E235.NO2-L 1622588 E392 1626576 E235.SO4 1622589 E344 1623485 E420.Cr-L 1624610 E333-L 162682 E375-T 1623885 E508 1631157	E420 1624609 2 E160-L 1626703 2 E121 1622461 2 E298 1623884 1 E235.Br-L 1622586 1 E235.Cl-L 1622590 1 E343 1645308 1 E421.Cr-L 1624653 1 E509 1632890 1 E421 1624652 1 E358-L 1623887 1 E378-U 1622593 1 E235.F 1656366 1 E339-L 1626581 3 E235.NO3-L 1622587 1 E235.NO2-L 1622588 1 E392 1626576 1 E344 1622589 1 E344 1623485 1 E420.Cr-L 1624610 1 E333-L 1626582 3 E375-T 1623885 1 E508 1631157 2	E420 1624609 2 20 E160-L 1626703 2 28 E121 1622461 2 40 E298 1623884 1 19 E235.Br-L 1622586 1 19 E235.Cl-L 1622590 1 10 E343 1645308 1 20 E421.Cr-L 1624653 1 10 E509 1632890 1 20 E421 1624652 1 20 E358-L 1623887 1 17 E378-U 1622593 1 17 E235.F 1656366 1 5 E339-L 1626581 3 25 E235.NO3-L 1622587 1 19 E235.NO2-L 1622588 1 20 E392 1626576 1 20 E344 1623485 1 20 E344 1623485 1 20 E333-L 1626582 3 48 E375-T 162	E420 1624609 2 20 10.0 E160-L 1626703 2 28 7.1 E121 1622461 2 40 5.0 E298 1623884 1 19 5.2 E235.Br-L 1622586 1 19 5.2 E235.Cl-L 1622590 1 10 10.0 E343 1645308 1 20 5.0 E421.Cr-L 1624653 1 10 10.0 E509 1632890 1 20 5.0 E421 1624652 1 20 5.0 E358-L 1623887 1 17 5.8 E378-U 1622593 1 17 5.8 E235.F 1656366 1 5 20.0 E339-L 1626581 3 25 12.0 E235.NO3-L 1622588 1 20 5.0 E392 1626576 1 20	E420 1624609 2 20 10.0 5.0 E160-L 1626703 2 28 7.1 5.0 E121 1622461 2 40 5.0 5.0 E298 1623884 1 19 5.2 5.0 E235.Br-L 1622586 1 19 5.2 5.0 E235.Cl-L 1622590 1 10 10.0 5.0 E343 1645308 1 20 5.0 5.0 E421.Cr-L 1624653 1 10 10.0 5.0 E509 1632890 1 20 5.0 5.0 E421 1624652 1 20 5.0 5.0 E338-L 1623887 1 17 5.8 5.0 E335-F 1656366 1 5 20.0 5.0 E339-L 1626581 3 25 12.0 5.0 E335-NO3-L 1622587 1 19

Page : 24 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	ALS Environmental -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Vancouver			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 \pm 5°C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
	Vancouver			
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	ALS Environmental -			
	Vancouver			
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	ALS Environmental -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Vancouver			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	ALS Environmental -			
	Vancouver			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	ALS Environmental -			
	Vancouver			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			

Page : 25 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	ALS Environmental -			alkalinity values.
	Vancouver			
Ammonia by Fluorescence	E298	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	ALS Environmental -			This method is approved under US EPA 40 CFR Part 136 (May 2021)
	Vancouver			, , , ,
Total Cyanide (Low Level)	E333-L	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis.
	ALS Environmental -			
	Vancouver			Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up to 0.5% of SCN concentration).
Free Cyanide (Low Level)	E339-L	Water	ASTM D7237 (mod)	Free Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line gas diffusion followed by colourmetric analysis.
	ALS Environmental - Vancouver			anaoon long 2, cocamicalo analysis.
Cyanate by Ion Selective Electrode	E343	Water	APHA 4500-CN L	This analysis is carried out using procedures adapted from APHA method 4500-CN
-,	2010		(mod)	"Cyanide". Cyanate is determined by the Cyanate hydrolysis method using an ammonia
	ALS Environmental -		(54)	selective electrode
	Waterloo			
Thiocyanate by Colourimetry	E344	Water	APHA 4500-CN M	Thiocyanate is determined by the ferric nitrate colourimetric method. Water samples
	ALS Environmental -		(mod)	containing high levels of hexavalent chromium, cyanide (together with sulfide), reducing agents, or hydrocarbons may cause negative or positive interferences with this
	Vancouver			method.
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
(LOW Level)	ALS Environmental -			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion
	Vancouver			with infrared detection of CO2. NPOC does not include volatile organic species that are
	Vallocavol			purged off with IC. For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Dissolved Phosphorus by Colourimetry	E375-T	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer
(0.002 mg/L)				after filtration through a 0.45 micron filter followed by heated persulfate digestion of the
	ALS Environmental -			sample.
	Vancouver			

Page : 26 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Orthophosphate by Colourimetry	E378-U	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab
(Ultra Trace Level 0.001 mg/L)				or field filtered through a 0.45 micron membrane filter.
	ALS Environmental -			Field Elleration in accommodated to accommodate and the second conditions of the second
	Vancouver			Field filtration is recommended to ensure test results represent conditions at time of sampling.
Reactive Silica by Colourimetry	E392	Water	APHA 4500-SiO2 E	Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue
The decire of th	L392		(mod)	colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above
	ALS Environmental -		(52)	100 mg/L is a negative interference on this test
	Vancouver			
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
			(mod)	Collision/Reaction Cell ICPMS.
	ALS Environmental -			
	Vancouver			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low	E420.Cr-L	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Level)	ALS Environmental -		(mod)	Collision/Reaction Cell ICPMS.
	Vancouver			
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by
	ALS Environmental -		6020B (mod)	Collision/Reaction Cell ICPMS.
	Vancouver			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
	74.1004701			by this method.
Dissolved Chromium in Water by CRC ICPMS	E421.Cr-L	Water	APHA 3030 B/EPA	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by
(Low Level)			6020B (mod)	Collision/Reaction Cell ICPMS
	ALS Environmental -			
	Vancouver			
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	ALS Environmental -			
	Vancouver			
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation
			1631E (mod)	using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	ALS Environmental -			CVAAS.
	Vancouver	\\/-t	EDA 445.0 (
Chlorophyll-a by Fluorometry (Field Filtered	E870A	Water	EPA 445.0 (mod)	Chlorophyll-a is determined by solvent extraction followed with analysis by fluorometry
ha)	ALS Environmental -			using the non-acidification procedure. Sampling volume not provided by client.
	Vancouver			
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
				Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	ALS Environmental -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Vancouver			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations.

Page : 27 of 27

Work Order : VA24C2005 Amendment 1
Client : Azimuth Consulting Group Inc.
Project : Meadowbank CREMP Surfacewater

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and
	20100/1			Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	ALS Environmental -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Vancouver			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations. Hardness from total Ca/Mg is
				normally comparable to Dissolved Hardness in non-turbid waters.
Chlorophyll-a by Fluorometry (Field Filtered	EC870A	Water	CALC	Convert results to sample concentration based on field information.
μg/L)				
	ALS Environmental -			
	Vancouver			
Field Volume (L)	EF003	Water		Field measurement of sampling volume provided by client and recorded on ALS report
				may affect the validity of results.
	ALS Environmental -			
	Vancouver			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	ALS Environmental -			
	Vancouver			
Preparation for Dissolved Organic Carbon for	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Combustion				
	ALS Environmental -			
	Vancouver	14/	4 DUI 4 4500 D E (1)	
Digestion for Dissolved Phosphorus in water	EP375	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a
				persulfate digestion reagent.
	ALS Environmental -			
Dissolved Metals Water Filtration	Vancouver	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Metals Water Filtration	EP421	water	APHA 3030B	water samples are intered (0.45 um), and preserved with fixeos.
	ALS Environmental -			
	Vancouver			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCI.
Discourse moreary tracer t made on	LI 303	77410.	7.1.1.1.00002	Trails samples als melea (cris am), and preserved marries
	ALS Environmental -			
	Vancouver			
Chlorophyll-a Extraction (Field Filtered)	EP870A	Water	EPA 445.0 (mod)	Chlorophyll-a solvent extraction.
	ALS Environmental -			
	Vancouver			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : VA24C2005 Page : 1 of 21

Amendment :

Client : Azimuth Consulting Group Inc. Laboratory : ALS Environmental - Vancouver

Contact : Eric Franz Account Manager : Brent Mack

Address :# 218 - 2902 West Broadway Address :8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

:604 730 1220 Telephone :778-370-3279

: Meadowbank CREMP Surfacewater Date Samples Received : 27-Aug-2024 12:20 :---- Date Analysis Commenced : 28-Aug-2024

C-O-C number : ---- Issue Date : 18-Sep-2024 08:30

Sampler : FQS, NS, OJ

Site :---Quote number :---- VA19-ACGI100-005 (Q39503

Quote number : VA19-ACGI100-005 (Q39503)
No. of samples received : 34

: 18

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

Vancouver BC Canada V6K 2G8

Matrix Spike (MS) Report; Recovery and Data Quality Objectives

Method Blank (MB) Report; Recovery and Data Quality Objectives

Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

No. of samples analysed

Telephone

Project

PO

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Brieanna Allen	Production/Validation Manager	Vancouver Inorganics, Burnaby, British Columbia	
Cindy Tang	Team Leader - Inorganics	Vancouver Inorganics, Burnaby, British Columbia	
Dan Gebert	Laboratory Analyst	Vancouver Metals, Burnaby, British Columbia	
Daniela Ruiz	Account Manager Assistant	Vancouver Administration, Burnaby, British Columbia	
Ghazaleh Khanmirzaei	Analyst	Vancouver Metals, Burnaby, British Columbia	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia	
Kim Jensen	Department Manager - Metals	Vancouver Metals, Burnaby, British Columbia	
Maya Urquhart	Lab Analyst	Vancouver Metals, Burnaby, British Columbia	
Miles Gropen	Department Manager - Inorganics	Vancouver Inorganics, Burnaby, British Columbia	
Nik Perkio	Senior Analyst	Waterloo Inorganics, Waterloo, Ontario	
Tracy Harley	Supervisor - Water Quality Instrumentation	Vancouver Inorganics, Burnaby, British Columbia	

Page : 2 of 21

Work Order: VA24C2005 Amendment 1
Client: Azimuth Consulting Group Inc.
Project: Meadowbank CREMP Surfacewater

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 21

Work Order: VA24C2005 Amendment 1
Client: Azimuth Consulting Group Inc.
Project: Meadowbank CREMP Surfacewater

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1622461)										
VA24C1974-005	Anonymous	Turbidity		E121	0.10	NTU	0.66	0.78	0.11	Diff <2x LOR	
Physical Tests (QC	Lot: 1622462)										
VA24C2005-005	PW-BG-5	Turbidity		E121	0.10	NTU	0.29	0.28	0.02	Diff <2x LOR	
Physical Tests (QC	Lot: 1622581)										
KS2403445-001	Anonymous	рН		E108	0.10	pH units	8.47	8.49	0.236%	4%	
Physical Tests (QC	Lot: 1622582)										
KS2403445-001	Anonymous	Alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	209	211	1.06%	200%	
		Alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	12.3	13.9	12.3%	200%	
		Alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0.00%	200%	
		Alkalinity, total (as CaCO3)		E290	1.0	mg/L	221	225	1.72%	20%	
Physical Tests (QC	Lot: 1622583)										
KS2403445-001	Anonymous	Conductivity		E100	2.0	μS/cm	427	429	0.467%	10%	
Anions and Nutrien	ts (QC Lot: 1622586)										
KS2403442-001	Anonymous	Bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1622587)										
KS2403442-001	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1622588)										
KS2403442-001	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1622589)										
KS2403442-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	1.89	1.86	0.04	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1622590)										
VA24C2005-001	PW-ST-20i	Chloride	16887-00-6	E235.CI-L	2.00	mg/L	97.4	97.7	0.378%	20%	
Anions and Nutrien	ts (QC Lot: 1622593)										
VA24C2005-001	PW-ST-20i	Phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0074	0.0073	0.0001	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1623884)										
FJ2402555-001	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0452	0.0451	0.0001	Diff <2x LOR	
Anions and Nutrion	ts (QC Lot: 1623885)					-					
VA24C1967-001	Anonymous	Phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0034	0.0035	0.00005	Diff <2x LOR	
	,	,									
EO2407405-001	ts (QC Lot: 1626576) Anonymous	Silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	6.60	6.72	1.68%	20%	
202.07400 001	, a.o.iyiilodo	Cilidate (as GIOZ)	700100-0		0.00	g/ L	0.00	0.72	1.0070	2070	

Page : 4 of 21

Sub-Matrix: Water	p-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Anions and Nutrien	ts (QC Lot: 1645308)												
VA24C2005-001	PW-ST-20i	Cyanate	88402-73-7	E343	2.00	mg/L	3.60	3.00	0.60	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 1656366)												
VA24C2005-001	PW-ST-20i	Fluoride	16984-48-8	E235.F	0.400	mg/L	<0.400	<0.400	0	Diff <2x LOR			
Cyanides (QC Lot:	1623485)												
VA24C1941-002	Anonymous	Thiocyanate	302-04-5	E344	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR			
Cyanides (QC Lot:	1626581)												
VA24C1021-006	Anonymous	Cyanide, free		E339-L	0.0010	mg/L	0.0037	0.0036	0.00008	Diff <2x LOR			
Cyanides (QC Lot:	1626582)												
VA24C1021-006	Anonymous	Cyanide, strong acid dissociable (Total)		E333-L	0.0010	mg/L	0.0188	0.0186	1.23%	20%			
Cyanides (QC Lot:	1626864)												
VA24C1019-001	Anonymous	Cyanide, free		E339-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR			
Cyanides (QC Lot:	1626865)												
VA24C1019-001	Anonymous	Cyanide, strong acid dissociable (Total)		E333-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR			
Cyanides (QC Lot:	1628658)												
VA24C1379-001	Anonymous	Cyanide, free		E339-L	0.0010	mg/L	0.0038	0.0040	0.0001	Diff <2x LOR			
Cyanides (QC Lot:	1628659)												
VA24C1379-001	Anonymous	Cyanide, strong acid dissociable (Total)		E333-L	0.0010	mg/L	0.0209	0.0179	15.3%	20%			
Organic / Inorganic	Carbon (QC Lot: 16238	887)											
VA24C1526-001	Anonymous	Carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.78	1.83	0.05	Diff <2x LOR			
Total Metals (QC Lo	ot: 1624609)												
VA24C2005-001	PW-ST-20i	Aluminum, total	7429-90-5	E420	0.0060	mg/L	0.0158	0.0162	0.0004	Diff <2x LOR			
		Antimony, total	7440-36-0	E420	0.00020	mg/L	0.0190	0.0185	2.70%	20%			
		Arsenic, total	7440-38-2	E420	0.00020	mg/L	0.502	0.502	0.0618%	20%			
		Barium, total	7440-39-3	E420	0.00020	mg/L	0.0270	0.0268	0.752%	20%			
		Beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR			
		Bismuth, total	7440-69-9	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR			
		Boron, total	7440-42-8	E420	0.020	mg/L	0.275	0.282	2.24%	20%			
		Cadmium, total	7440-43-9	E420	0.0000900	mg/L	<0.000100	<0.0000900	0.0000100	Diff <2x LOR			
		Calcium, total	7440-70-2	E420	0.100	mg/L	228	235	2.95%	20%			
		Cesium, total	7440-46-2	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR			
		Chromium, total	7440-47-3	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR			
		Cobalt, total	7440-48-4	E420	0.00020	mg/L	0.0594	0.0594	0.0404%	20%			

Page : 5 of 21

ub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 1624609) - continued										
/A24C2005-001	PW-ST-20i	Copper, total	7440-50-8	E420	0.00100	mg/L	0.00222	0.00223	0.00001	Diff <2x LOR	
		Iron, total	7439-89-6	E420	0.020	mg/L	0.090	0.092	0.002	Diff <2x LOR	
		Lead, total	7439-92-1	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Lithium, total	7439-93-2	E420	0.0020	mg/L	0.0039	0.0041	0.0001	Diff <2x LOR	
		Magnesium, total	7439-95-4	E420	0.0100	mg/L	30.4	29.9	1.74%	20%	
		Manganese, total	7439-96-5	E420	0.00020	mg/L	0.138	0.138	0.249%	20%	
		Molybdenum, total	7439-98-7	E420	0.000100	mg/L	0.176	0.169	4.21%	20%	
		Nickel, total	7440-02-0	E420	0.00100	mg/L	0.0368	0.0369	0.119%	20%	
		Phosphorus, total	7723-14-0	E420	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
		Potassium, total	7440-09-7	E420	0.100	mg/L	143	144	0.842%	20%	
		Rubidium, total	7440-17-7	E420	0.00040	mg/L	0.0983	0.0954	3.00%	20%	
		Selenium, total	7782-49-2	E420	0.000100	mg/L	0.0244	0.0238	2.34%	20%	
		Silicon, total	7440-21-3	E420	0.20	mg/L	6.52	6.48	0.644%	20%	
		Silver, total	7440-22-4	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Sodium, total	7440-23-5	E420	0.100	mg/L	260	257	0.924%	20%	
		Strontium, total	7440-24-6	E420	0.00040	mg/L	0.819	0.798	2.57%	20%	
		Sulfur, total	7704-34-9	E420	1.00	mg/L	504	506	0.311%	20%	
		Tellurium, total	13494-80-9	E420	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		Thallium, total	7440-28-0	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Thorium, total	7440-29-1	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Tin, total	7440-31-5	E420	0.00020	mg/L	0.00044	0.00043	0.0000009	Diff <2x LOR	
		Titanium, total	7440-32-6	E420	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		Tungsten, total	7440-33-7	E420	0.00020	mg/L	0.00369	0.00367	0.584%	20%	
		Uranium, total	7440-61-1	E420	0.000020	mg/L	0.0130	0.0130	0.254%	20%	
		Vanadium, total	7440-62-2	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		Zinc, total	7440-66-6	E420	0.0060	mg/L	<0.0060	<0.0060	0	Diff <2x LOR	
		Zirconium, total	7440-67-7	E420	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
otal Metals (QC Lo											
'A24C2005-001	PW-ST-20i	Chromium, total	7440-47-3	E420.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
otal Metals (QC Lo	,										
/A24C1892-005	Anonymous	Mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
otal Metals (QC Lo	<u> </u>		7400 07 0	F500	L 0 0000055		*0.0000050	40.0000050		D:# 40 1 0E	
'A24C2005-005	PW-BG-5	Mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
ssolved Metals (C	QC Lot: 1624652)										

Page : 6 of 21

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (0	QC Lot: 1624652) - conti	nued									
VA24C2005-001	PW-ST-20i	Aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	0.0132	0.0115	0.0017	Diff <2x LOR	
		Antimony, dissolved	7440-36-0	E421	0.00020	mg/L	0.0242	0.0239	1.16%	20%	
		Arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	0.346	0.351	1.50%	20%	
		Barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.0212	0.0214	0.854%	20%	
		Beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Boron, dissolved	7440-42-8	E421	0.020	mg/L	0.267	0.266	0.389%	20%	
		Cadmium, dissolved	7440-43-9	E421	0.0000450	mg/L	<0.0000450	<0.0000450	0	Diff <2x LOR	
		Calcium, dissolved	7440-70-2	E421	0.100	mg/L	239	239	0.177%	20%	
		Cesium, dissolved	7440-46-2	E421	0.000020	mg/L	0.000034	0.000036	0.000002	Diff <2x LOR	
		Chromium, dissolved	7440-47-3	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		Cobalt, dissolved	7440-48-4	E421	0.00020	mg/L	0.0478	0.0488	2.01%	20%	
		Copper, dissolved	7440-50-8	E421	0.00040	mg/L	<0.00040	0.00040	0.000004	Diff <2x LOR	
		Iron, dissolved	7439-89-6	E421	0.020	mg/L	0.097	0.099	0.002	Diff <2x LOR	
		Lead, dissolved	7439-92-1	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Lithium, dissolved	7439-93-2	E421	0.0020	mg/L	0.0040	0.0040	0.00004	Diff <2x LOR	
		Magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	26.7	26.9	0.648%	20%	
		Manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.0900	0.0908	0.807%	20%	
		Molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.151	0.147	2.50%	20%	
		Nickel, dissolved	7440-02-0	E421	0.00100	mg/L	0.0339	0.0342	0.759%	20%	
		Phosphorus, dissolved	7723-14-0	E421	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
		Potassium, dissolved	7440-09-7	E421	0.100	mg/L	145	143	1.25%	20%	
		Rubidium, dissolved	7440-17-7	E421	0.00040	mg/L	0.102	0.102	0.355%	20%	
		Selenium, dissolved	7782-49-2	E421	0.000100	mg/L	0.0138	0.0146	5.34%	20%	
		Silicon, dissolved	7440-21-3	E421	0.100	mg/L	4.73	4.72	0.146%	20%	
		Silver, dissolved	7440-22-4	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Sodium, dissolved	7440-23-5	E421	0.100	mg/L	254	257	1.16%	20%	
		Strontium, dissolved	7440-24-6	E421	0.00040	mg/L	0.803	0.777	3.31%	20%	
		Sulfur, dissolved	7704-34-9	E421	1.00	mg/L	442	450	1.70%	20%	
		Tellurium, dissolved	13494-80-9	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		Thallium, dissolved	7440-28-0	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Thorium, dissolved	7440-29-1	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Tin, dissolved	7440-31-5	E421	0.00020	mg/L	0.00077	0.00079	0.00002	Diff <2x LOR	
		Titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	

Page : 7 of 21

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	QC Lot: 1624652) - contir	nued									
VA24C2005-001	PW-ST-20i	Tungsten, dissolved	7440-33-7	E421	0.00020	mg/L	0.00503	0.00496	1.36%	20%	
		Uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.0120	0.0120	0.190%	20%	
		Vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		Zinc, dissolved	7440-66-6	E421	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
		Zirconium, dissolved	7440-67-7	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 1624653)										
VA24C2005-001	PW-ST-20i	Chromium, dissolved	7440-47-3	E421.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 1632890)										
VA24C1639-007	Anonymous	Mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Page : 8 of 21

Work Order: VA24C2005 Amendment 1
Client: Azimuth Consulting Group Inc.
Project: Meadowbank CREMP Surfacewater

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1622461)					
Turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 1622462)					
Turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 1622582)					
Alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 1622583)					
Conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 1626703)					
Solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 1626704)					
Solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 1622586)					
Bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 1622587)					
Nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1622588)					
Nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 1622589)					
Sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 1622590)					
Chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 1622593)					
Phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 1623884)					
Ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1623885)					
Phosphorus, total dissolved	7723-14-0 E375-T	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 1626576)					
Silicate (as SiO2)	7631-86-9 E392	0.5	mg/L	<0.50	

Page : 9 of 21

Work Order: VA24C2005 Amendment 1
Client: Azimuth Consulting Group Inc.
Project: Meadowbank CREMP Surfacewater

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 1645308)					
Cyanate	88402-73-7 E343	0.2	mg/L	<0.20	
Anions and Nutrients (QCLot: 1656366)					
Fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Cyanides (QCLot: 1623485)					
Thiocyanate	302-04-5 E344	0.5	mg/L	<0.50	
Cyanides (QCLot: 1626581)					
Cyanide, free	E339-L	0.001	mg/L	<0.0010	
Cyanides (QCLot: 1626582)					
Cyanide, strong acid dissociable (Total)	E333-L	0.001	mg/L	<0.0010	
Cyanides (QCLot: 1626864)					
Cyanide, free	E339-L	0.001	mg/L	<0.0010	
Cyanides (QCLot: 1626865)					
Cyanide, strong acid dissociable (Total)	E333-L	0.001	mg/L	<0.0010	
Cyanides (QCLot: 1628658)					
Cyanide, free	E339-L	0.001	mg/L	<0.0010	
Cyanides (QCLot: 1628659)					
Cyanide, strong acid dissociable (Total)	E333-L	0.001	mg/L	<0.0010	
Organic / Inorganic Carbon (QCLot: 162	3887)				
Carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 1624609)					
Aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
Antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
Arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
Barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
Beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
Bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
Boron, total	7440-42-8 E420	0.01	mg/L	<0.010	
Cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
Calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
Cesium, total	7440-46-2 E420	0.00001	mg/L	<0.000010	
Chromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	
Cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
Copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
Iron, total	7439-89-6 E420	0.01	mg/L	<0.010	
Lead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	MBRR

Page : 10 of 21

Work Order: VA24C2005 Amendment 1
Client: Azimuth Consulting Group Inc.
Project: Meadowbank CREMP Surfacewater

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
otal Metals (QCLot: 1624609) - c	continued				
Lithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
Magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
Manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
Molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
Nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
Phosphorus, total	7723-14-0 E420	0.05	mg/L	<0.050	
Potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
Rubidium, total	7440-17-7 E420	0.0002	mg/L	<0.00020	
Selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
Silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
Silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
Sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
Strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
Sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
Tellurium, total	13494-80-9 E420	0.0002	mg/L	<0.00020	
Thallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
Thorium, total	7440-29-1 E420	0.0001	mg/L	<0.00010	
Tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
Titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	
Tungsten, total	7440-33-7 E420	0.0001	mg/L	<0.00010	
Uranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
Vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	
Zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Zirconium, total	7440-67-7 E420	0.0002	mg/L	<0.00020	
otal Metals (QCLot: 1624610)					
Chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
otal Metals (QCLot: 1631157)					
Mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
otal Metals (QCLot: 1631159)					
Mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
ssolved Metals (QCLot: 162465	2)				
Aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
Antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
Arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
Barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	

Page : 11 of 21

Work Order: VA24C2005 Amendment 1
Client: Azimuth Consulting Group Inc.
Project: Meadowbank CREMP Surfacewater

Inalyte	CAS Number Method	LOR	Unit	Result	Qualifier
issolved Metals (QCLot: 1624652	2) - continued				
Beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
Bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
Boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
Cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
Calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
Cesium, dissolved	7440-46-2 E421	0.00001	mg/L	<0.000010	
Chromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
Cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
Copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
Iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
Lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
Lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
Magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
Manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
Molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
Nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
Phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	<0.050	
Potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
Rubidium, dissolved	7440-17-7 E421	0.0002	mg/L	<0.00020	
Selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
Silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
Silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
Sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
Strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
Sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
Tellurium, dissolved	13494-80-9 E421	0.0002	mg/L	<0.00020	
Thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
Thorium, dissolved	7440-29-1 E421	0.0001	mg/L	<0.00010	
Tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
Titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
Tungsten, dissolved	7440-33-7 E421	0.0001	mg/L	<0.00010	
Uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
Vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
Zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Zirconium, dissolved	7440-67-7 E421	0.0002	mg/L	<0.00020	

Page : 12 of 21

Work Order: VA24C2005 Amendment 1
Client: Azimuth Consulting Group Inc.
Project: Meadowbank CREMP Surfacewater

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 1624653)						
Chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 1632890)						
Mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	
Plant Pigments (QCLot: 1632527)						
Chlorophyll a	479-61-8	E870A	0.002	μg/sample	<0.0020	
Plant Pigments (QCLot: 1634348)						
Chlorophyll a	479-61-8	E870A	0.002	μg/sample	<0.0020	

Qualifiers

Qualifier	Description
MBRR	Initial MB for this submission had positive results for flagged analyte (data not shown). Low level samples were repeated with new QC (2nd MB results shown).
	High level results (>5x initial MB level) and non-detect results were reported and are defensible

Page : 13 of 21

Work Order: VA24C2005 Amendment 1
Client: Azimuth Consulting Group Inc.
Project: Meadowbank CREMP Surfacewater

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 1622461)								
Turbidity	E121	0.1	NTU	200 NTU	97.0	85.0	115	
Physical Tests (QCLot: 1622462) Turbidity	E121	0.1	NTU	200 NTU	97.0	85.0	115	
,	[2121	0.1	NIU	200 NTO	97.0	65.0	115	
Physical Tests (QCLot: 1622581) pH	E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 1622582)								
Alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	101	85.0	115	
Physical Tests (QCLot: 1622583)	E100	1	uS/om	147 μS/cm	101	00.0	110	
Conductivity	E100	, , , , , , , , , , , , , , , , , , ,	μS/cm	147 μ5/cm	101	90.0	110	
Physical Tests (QCLot: 1626703) Solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	85.8	85.0	115	
Physical Tests (QCLot: 1626704)			3					
Solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	86.2	85.0	115	
Anions and Nutrients (QCLot: 1622586)								
Bromide	24959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	95.1	85.0	115	
Anions and Nutrients (QCLot: 1622587)	14797-55-8 E235.NO3-L	0.005	(I	0.5	07.0	00.0	440	ı
Nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	97.3	90.0	110	
Anions and Nutrients (QCLot: 1622588) Nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	97.4	90.0	110	
Anions and Nutrients (QCLot: 1622589)			g	515 Mg/-				
Sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	99.5	90.0	110	
Anions and Nutrients (QCLot: 1622590)								
Chloride	16887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	97.7	90.0	110	
Anions and Nutrients (QCLot: 1622593)								
Phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.03 mg/L	96.5	80.0	120	
Anions and Nutrients (QCLot: 1623884)	7004 44 7 7000	2.225			401	05.0	1 445	ı
Ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	101	85.0	115	
Anions and Nutrients (QCLot: 1623885) Phosphorus, total dissolved	7723-14-0 E375-T	0.002	mg/L	0.05 mg/L	93.9	80.0	120	
	1120-17-0 2010-1	0.002	mg/L	0.00 mg/L	30.3	00.0	120	
Anions and Nutrients (QCLot: 1626576) Silicate (as SiO2)	7631-86-9 E392	0.5	mg/L	10 mg/L	101	85.0	115	
[(-			J	1				l

Page : 14 of 21

Cyanide SH427-37 E343 D.2 mglt 1 mglt St. 3 St. 0 115 — Almoins and Nutrients (OCLot: 1626365) Cyanides (OCLot: 1623485) Timegrania St. 24-65 E344 D.5 mglt 1 mglt St. 3 St. 0 110 Mglt	Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
Anions and Nutrients (OCLot: 1648308) Cyanides (OCLot: 1658368) Pluoride 16984468 2265F 0.02 mgL 1 mgL 86.3 85.0 115 Anions and Nutrients (OCLot: 1658586) Pluoride 16984468 2265F 0.02 mgL 1 mgL 96.8 50.0 110 Cyanides (OCLot: 1628587) Cya						Spike	Recovery (%)	Recovery	Limits (%)	
Cyanide SH427-37 E343 D.2 mglt 1 mglt St. 3 St. 0 115 — Almoins and Nutrients (OCLot: 1626365) Cyanides (OCLot: 1623485) Timegrania St. 24-65 E344 D.5 mglt 1 mglt St. 3 St. 0 110 Mglt	Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 1658366) Publishe (QCLot: 1653466) Publishe (QCLot: 1623465) Publishe (QCLot: 1623465) Publishe (QCLot: 1623465) Publishe (QCLot: 1623465) Publishe (QCLot: 1623651) Publishe (QCLot: 1623651) Publishe (QCLot: 1623651) Publishe (QCLot: 1623652) Publishe (QCLot: 1623652) Publishe (QCLot: 1626582) Publis	Anions and Nutrients (QCLot: 1645308)									
Planetic 10984-18-2 E205 F 0.02 mg/L 1 mg/L 98.8 0.00 110	Cyanate	88402-73-7	E343	0.2	mg/L	1 mg/L	85.3	85.0	115	
Cyanidas (OCLot: 1625485) Cyanidas (OCLot: 1625581) Cyanidas (OCLot: 1625581) Cyanidas (OCLot: 1625581) Cyanidas (OCLot: 1625581) Cyanidas (OCLot: 1625851)	Anions and Nutrients (QCLot: 1656366)									
Thiotypanide \$0.00	Fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	98.8	90.0	110	
Cyanides (OCLot: 1626881)	Cyanides (QCLot: 1623485)									
Cyanides (OCLot: 1626858) Cyanides (OCLot: 1626868) OCLot: 16268689	Thiocyanate	302-04-5	E344	0.5	mg/L	10 mg/L	100	85.0	115	
Cyanides (OCLot: 1626652) Cyanides (OCLot: 1626664) E333-L 0.001 mgL 0.25 mgL 92.3 80.0 120 Cyanides (OCLot: 1626664) Cyanides (OCLot: 1626665) Cyanides (OCLot: 1626666)	Cyanides (QCLot: 1626581)									
Cyanides (OCLOC: 1628864) Cyanides (OCLOC: 1628864) Cyanides (OCLOC: 16288658) Cyanides (OCLOC: 16288659) Cyanides (OCLOC: 1628869) Cyanides	Cyanide, free		E339-L	0.001	mg/L	0.125 mg/L	99.8	80.0	120	
Cyanides (OCLot: 1628684)	Cyanides (QCLot: 1626582)									
Cyanides (Color: 1628656 Fasa F	Cyanide, strong acid dissociable (Total)		E333-L	0.001	mg/L	0.25 mg/L	92.3	80.0	120	
Cyanides (Color: 16286566 1928	Cyanides (QCLot: 1626864)									
Cyanide Storing acid dissociable (Total) E333-L 0.001 mg/L 0.25 mg/L 97.7 80.0 120	Cyanide, free		E339-L	0.001	mg/L	0.125 mg/L	100	80.0	120	
Cyanide Storing acid dissociable (Total) E333-L 0.001 mg/L 0.25 mg/L 97.7 80.0 120	Cyanides (QCLot: 1626865)									
Cyanide, free E339-L 0.001 mg/L 0.125 mg/L 99.8 80.0 120	Cyanide, strong acid dissociable (Total)		E333-L	0.001	mg/L	0.25 mg/L	97.7	80.0	120	
Cyanide, free E339-L 0.001 mg/L 0.125 mg/L 99.8 80.0 120 — Cyanide, strong acid dissociable (Total) E333-L 0.001 mg/L 0.25 mg/L 98.8 80.0 120 — Organic / Inorganic Carbon (QCLot: 1623887) Carbon, dissolved organic [DOC] — E358-L 0.5 mg/L 8.57 mg/L 97.8 80.0 120 — Total Metals (QCLot: 1624609) Antimory, total 7440-36-0 6420 0.003 mg/L 2 mg/L 113 80.0 120 — Assertic, total 7440-38-0 6420 0.0001 mg/L 1 mg/L 110 80.0 120 — Assertic, total 7440-38-2 6420 0.0001 mg/L 1 mg/L 110 80.0 120 — Berrium, total 7440-38-2 6420 0.0001 mg/L 0.1 mg/L 110 80.0 120 — Berryillum, total </td <td>Cvanides (QCLot: 1628658)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cvanides (QCLot: 1628658)									
Oyanide, strong acid dissociable (Total) E333-L 0.001 mg/L 0.25 mg/L 96.8 80.0 120	Cyanide, free		E339-L	0.001	mg/L	0.125 mg/L	99.8	80.0	120	
Oyanide, strong acid dissociable (Total) E333-L 0.001 mg/L 0.25 mg/L 96.8 80.0 120	Cyanides (QCLot: 1628659)									
Carbon, dissolved organic [DOC]	Cyanide, strong acid dissociable (Total)		E333-L	0.001	mg/L	0.25 mg/L	96.8	80.0	120	
Carbon, dissolved organic [DOC]										
Carbon, dissolved organic [DOC]	Organic / Inorganic Carbon (QCLot: 1623887)									
Aluminum, total 7429-90-5 E420 0.003 mg/L 2 mg/L 113 80.0 120 Antimony, total 7440-36-0 E420 0.0001 mg/L 1 mg/L 1112 80.0 120 Arsenic, total 7440-38-2 E420 0.0001 mg/L 1 mg/L 110 80.0 120 Barium, total 7440-39-3 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 Beryllium, total 7440-41-7 E420 0.0002 mg/L 0.1 mg/L 105 80.0 120 Bismuth, total 7440-69-9 E420 0.00005 mg/L 1 mg/L 101 80.0 120 Boron, total 7440-42-8 E420 0.000 mg/L 1 mg/L 100 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 1 mg/L 100 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 100 80.0 120 Calcium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 103 80.0 120 Calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 Calcium, total 7440-48- E420 0.0001 mg/L 0.05 mg/L 103 80.0 120 Cestum, total 7440-48- E420 0.0001 mg/L 0.05 mg/L 108 80.0 120 Cestum, total 7440-48- E420 0.0001 mg/L 0.05 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0001 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120	Carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	97.8	80.0	120	
Aluminum, total 7429-90-5 E420 0.003 mg/L 2 mg/L 113 80.0 120 Antimony, total 7440-36-0 E420 0.0001 mg/L 1 mg/L 1112 80.0 120 Arsenic, total 7440-38-2 E420 0.0001 mg/L 1 mg/L 110 80.0 120 Barium, total 7440-39-3 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 Beryllium, total 7440-41-7 E420 0.0002 mg/L 0.1 mg/L 105 80.0 120 Bismuth, total 7440-69-9 E420 0.00005 mg/L 1 mg/L 101 80.0 120 Boron, total 7440-42-8 E420 0.000 mg/L 1 mg/L 100 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 1 mg/L 100 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 100 80.0 120 Calcium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 103 80.0 120 Calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 Calcium, total 7440-48- E420 0.0001 mg/L 0.05 mg/L 103 80.0 120 Cestum, total 7440-48- E420 0.0001 mg/L 0.05 mg/L 108 80.0 120 Cestum, total 7440-48- E420 0.0001 mg/L 0.05 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0001 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120										
Antimony, total 7440-36-0 E420 0.0001 mg/L 1 mg/L 112 80.0 120 Arsenic, total 7440-38-2 E420 0.0001 mg/L 0.25 mg/L 110 80.0 120 Barium, total 7440-39-3 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 Beryllium, total 7440-41-7 E420 0.00002 mg/L 0.1 mg/L 105 80.0 120 Bismuth, total 7440-69-9 E420 0.00005 mg/L 1 mg/L 101 80.0 120 Boron, total 7440-42-8 E420 0.01 mg/L 1 mg/L 101 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 1 mg/L 100 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 100 80.0 120 Calcium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 103 80.0 120 Calcium, total 7440-45- E420 0.05 mg/L 50 mg/L 103 80.0 120 Calcium, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 108 80.0 120 Cesium, total 7440-46-2 E420 0.0001 mg/L 0.25 mg/L 108 80.0 120 Chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Cobalt, total 7440-48-4 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Cobalt, total 7440-48-4 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Cobalt, total 7440-48-4 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 104 80.0 120 Cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 104 80.0 120 Cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 103 80.0 120	Total Metals (QCLot: 1624609)									
Arsenic, total 7440-38-2 E420 0.0001 mg/L 1 mg/L 110 80.0 120 Barium, total 7440-39-3 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 Beryllium, total 7440-41-7 E420 0.00002 mg/L 0.1 mg/L 105 80.0 120 Bismuth, total 7440-69-9 E420 0.00005 mg/L 1 mg/L 101 80.0 120 Boron, total 7440-42-8 E420 0.01 mg/L 1 mg/L 101 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 100 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 103 80.0 120 Calcium, total 7440-42- E420 0.05 mg/L 50 mg/L 103 80.0 120 Cacium, total 7440-42- E420 0.0001 mg/L 0.05 mg/L 103 80.0 120 Cesium, total 7440-43- E420 0.00001 mg/L 0.05 mg/L 108 80.0 120 Chromium, total 7440-43- E420 0.0001 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-43- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-43- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-43- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-43- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-43- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-43- E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-43- E420 0.0001 mg/L 0.25 mg/L 104 80.0 120	Aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	113	80.0	120	
Barium, total 7440-39-3 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 Beryllium, total 7440-41-7 E420 0.00002 mg/L 0.1 mg/L 105 80.0 120 Bismuth, total 7440-69-9 E420 0.00005 mg/L 1 mg/L 101 80.0 120 Boron, total 7440-42-8 E420 0.01 mg/L 1 mg/L 100 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 103 80.0 120 Calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 Cesium, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 103 80.0 120 Chromium, total 7440-46-2 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48-8 E420 0.0005 mg/L <	Antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	112	80.0	120	
Beryllium, total 7440-41-7 E420 0.00002 mg/L 0.1 mg/L 105 80.0 120 Bismuth, total 7440-69-9 E420 0.00005 mg/L 1 mg/L 101 80.0 120 Boron, total 7440-42-8 E420 0.01 mg/L 1 mg/L 100 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 103 80.0 120 Calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 Cesium, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 103 80.0 120 Chromium, total 7440-47-3 E420 0.0005 mg/L 0.05 mg/L 108 80.0 120 Chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120	Arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	110	80.0	120	
Bismuth, total 7440-69-9 E420 0.0005 mg/L 1 mg/L 101 80.0 120 Boron, total 7440-43-9 E420 0.01 mg/L 1 mg/L 100 80.0 120 Cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 103 80.0 120 Calcium, total 7440-47-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 Cesium, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 103 80.0 120 Chromium, total 7440-47-3 E420 0.0001 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 103 80.0 120 Cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 103 80.0 120	Barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
Boron, total 7440-42-8 E420 0.01 mg/L 1 mg/L 100 80.0 120 Cadmium, total 7440-43-9 E420 0.000005 mg/L 0.1 mg/L 103 80.0 120 Cadmium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 Cesium, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 108 80.0 120 Chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Chromium, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 103 80.0 120 Cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 103 80.0 120	Beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	105	80.0	120	
Cadmium, total 7440-43-9 E420 0.000005 mg/L 0.1 mg/L 103 80.0 120 Calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 Cesium, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 108 80.0 120 Chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 103 80.0 120	Bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	101	80.0	120	
Calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 Cesium, total 7440-46-2 E420 0.00001 mg/L 0.05 mg/L 108 80.0 120 Chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 103 80.0 120	Boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	100	80.0	120	
Cesium, total 7440-46-2 E420 0.00001 mg/L 0.05 mg/L 108 80.0 120 Chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 103 80.0 120	Cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	103	80.0	120	
Chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 Cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 103 80.0 120	Calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	103	80.0	120	
Cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 103 80.0 120	Cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	108	80.0	120	
	Chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	104	80.0	120	
Copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 102 80.0 120	Cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120	
	Copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	102	80.0	120	

Page : 15 of 21

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 1624609) - continued									
Iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	99.2	80.0	120	
Lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	105	80.0	120	
Lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	105	80.0	120	
Magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	110	80.0	120	
Manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	107	80.0	120	
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	109	80.0	120	
Nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	103	80.0	120	
Phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	99.0	80.0	120	
Potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	104	80.0	120	
Rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	108	80.0	120	
Selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	105	80.0	120	
Silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	108	80.0	120	
Silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	103	80.0	120	
Sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	110	80.0	120	
Strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	106	80.0	120	
Sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	106	80.0	120	
Tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	113	80.0	120	
Thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	102	80.0	120	
Thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	98.2	80.0	120	
Tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	107	80.0	120	
Titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	105	80.0	120	
Tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	105	80.0	120	
Uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	111	80.0	120	
Vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	105	80.0	120	
Zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	106	80.0	120	
Zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	105	80.0	120	
Total Metals (QCLot: 1624610)									
Chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	104	80.0	120	
Total Metals (QCLot: 1631157)									
Mercury, total	7439-97-6	E508	0.000005	mg/L	0 mg/L	98.4	80.0	120	
Total Metals (QCLot: 1631159)									
Mercury, total	7439-97-6	E508	0.000005	mg/L	0 mg/L	95.6	80.0	120	
Dissolved Metals (QCLot: 1624652)									
Aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	99.9	80.0	120	
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	98.6	80.0	120	

Page : 16 of 21

Work Order: VA24C2005 Amendment 1
Client: Azimuth Consulting Group Inc.
Project: Meadowbank CREMP Surfacewater

Laboratory Control Sample (LCS) Report Sub-Matrix: Water Spike Recovery (%) Recovery Limits (%) CAS Number Method LOR Unit Qualifier Analyte **Target Concentration** LCS Low High Dissolved Metals (QCLot: 1624652) - continued 7440-38-2 E421 Arsenic, dissolved 0.0001 mg/L 1 mg/L 101 80.0 120 7440-39-3 E421 Barium, dissolved 0.0001 mg/L 0.25 mg/L 99.4 80.0 120 7440-41-7 E421 0.00002 0.1 mg/L 95.4 80.0 120 mg/L Beryllium, dissolved 7440-69-9 E421 0.00005 1 mg/L 101 80.0 120 mg/L Bismuth, dissolved Boron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 97.4 80.0 120 7440-43-9 E421 0.000005 98.2 Cadmium, dissolved mg/L 0.1 mg/L 0.08 120 Calcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 98.9 0.08 120 Cesium, dissolved 7440-46-2 E421 0.00001 0.05 mg/L 98.2 80.0 120 mg/L Chromium, dissolved 7440-47-3 E421 0.0005 mg/L 0.25 mg/L 97.4 80.0 120 7440-48-4 E421 0.0001 97.0 0.08 Cobalt, dissolved mg/L 0.25 mg/L 120 Copper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 94.7 80.0 120 7439-89-6 E421 0.01 94.8 80.0 120 Iron, dissolved mg/L 1 mg/L 7439-92-1 E421 0.00005 0.5 mg/L 98.4 80.0 120 Lead, dissolved mg/L 7439-93-2 E421 120 Lithium, dissolved 0.001 mg/L 0.25 mg/L 96.1 80.0 7439-95-4 E421 0.005 50 mg/L 98.4 80.0 120 Magnesium, dissolved mg/L Manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.6 80.0 120 7439-98-7 E421 0.00005 0.25 mg/L 100 80.0 120 mg/L Molybdenum, dissolved Nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 95.9 80.0 120 7723-14-0 E421 0.05 mg/L 10 mg/L 104 0.08 120 Phosphorus, dissolved Potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 96.6 80.0 120 7440-17-7 E421 Rubidium, dissolved 0.0002 mg/L 0.1 mg/L 96.7 0.08 120 7782-49-2 E421 0.00005 95.1 80.0 Selenium, dissolved mg/L 1 mg/L 120 7440-21-3 E421 0.05 10 mg/L 105 0.08 120 Silicon, dissolved mg/L 7440-22-4 E421 0.00001 Silver, dissolved 0.1 mg/L 91.5 80.0 120 mg/L 7440-23-5 E421 0.05 mg/L 50 mg/L 101 0.08 120 Sodium, dissolved 7440-24-6 E421 0.0002 0.25 mg/L 98.7 80.0 120 Strontium, dissolved mg/L 7704-34-9 E421 0.5 mg/L 50 mg/L 87.6 0.08 120 Sulfur, dissolved 13494-80-9 E421 0.0002 Tellurium, dissolved mg/L 0.1 mg/L 97.1 0.08 120 7440-28-0 E421 0.00001 101 80.0 120 Thallium, dissolved mg/L 1 mg/L Thorium, dissolved 7440-29-1 E421 0.0001 mg/L 0.1 mg/L 99.3 80.0 120 Tin, dissolved 7440-31-5 E421 0.0001 mg/L 0.5 mg/L 102 80.0 120 Titanium, dissolved 7440-32-6 E421 0.0003 mg/L 0.25 mg/L 94.9 80.0 120 7440-33-7 E421 0.0001 120 0.1 mg/L 99.5 80.0 Tungsten, dissolved mg/L 0.00001 7440-61-1 E421 Uranium, dissolved mg/L 0.005 mg/L 99.3 80.0 120 7440-62-2 E421 0.0005 98.4 0.08 120 Vanadium, dissolved mg/L 0.5 mg/L 7440-66-6 E421 0.001 0.5 mg/L 102 0.08 120 Zinc, dissolved mg/L

Page : 17 of 21

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 1624652) - con	tinued										
Zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	101	80.0	120			
Dissolved Metals (QCLot: 1624653)											
Chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	97.4	80.0	120			
Mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0 mg/L	95.4	80.0	120			
Plant Pigments (QCLot: 1632527)											
Chlorophyll a	479-61-8	E870A	0.002	μg/sample	1 μg/sample	93.5	80.0	120			
Plant Pigments (QCLot: 1634348)									1		
Chlorophyll a	479-61-8	E870A	0.002	μg/sample	1 μg/sample	93.9	80.0	120			

Page : 18 of 21

Work Order: VA24C2005 Amendment 1
Client: Azimuth Consulting Group Inc.
Project: Meadowbank CREMP Surfacewater

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water								e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
nions and Nutri	ents (QCLot: 162258	6)								
KS2403443-001	Anonymous	Bromide	24959-67-9	E235.Br-L	0.512 mg/L	0.5 mg/L	102	75.0	125	
Anions and Nutri	ents (QCLot: 162258)	7)								
KS2403443-001	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3-L	2.53 mg/L	2.5 mg/L	101	75.0	125	
nions and Nutri	ents (QCLot: 162258	8)								
KS2403443-001	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	0.508 mg/L	0.5 mg/L	102	75.0	125	
nions and Nutri	ents (QCLot: 162258	9)								
KS2403443-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	102 mg/L	100 mg/L	102	75.0	125	
Anions and Nutrie	ents (QCLot: 162259)	0)								
VA24C2005-002	PW-ST-20ii	Chloride	16887-00-6	E235.CI-L	1960 mg/L	2000 mg/L	98.0	75.0	125	
nions and Nutri	ents (QCLot: 162259:	3)								
VA24C2005-002	PW-ST-20ii	Phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0326 mg/L	0.03 mg/L	109	70.0	130	
nions and Nutri	ents (QCLot: 162388	4)								
VA24C1525-002	Anonymous	Ammonia, total (as N)	7664-41-7	E298	ND mg/L		ND	75.0	125	
Anions and Nutrie	ents (QCLot: 162388	5)								
VA24C1967-002	Anonymous	Phosphorus, total dissolved	7723-14-0	E375-T	0.0471 mg/L	0.05 mg/L	94.2	70.0	130	
nions and Nutri	ents (QCLot: 162657)	6)								
EO2407405-002	Anonymous	Silicate (as SiO2)	7631-86-9	E392	10.2 mg/L	10 mg/L	102	75.0	125	
Anions and Nutrie	ents (QCLot: 164530	8)								
VA24C2005-001	PW-ST-20i	Cyanate	88402-73-7	E343	16.8 mg/L	20 mg/L	84.0	75.0	125	
nions and Nutrie	ents (QCLot: 165636	6)								
VA24C2005-002	PW-ST-20ii	Fluoride	16984-48-8	E235.F	20.1 mg/L	20 mg/L	100	75.0	125	
yanides (QCLot	: 1623485)									
VA24C1941-003	Anonymous	Thiocyanate	302-04-5	E344	9.77 mg/L	10 mg/L	97.7	75.0	125	
yanides (QCLot	: 1626581)									
/A24C1021-010	Anonymous	Cyanide, free		E339-L	0.208 mg/L	0.25 mg/L	83.4	75.0	125	
yanides (QCLot	: 1626582)									
VA24C1021-010	Anonymous	Cyanide, strong acid dissociable (Total)		E333-L	0.424 mg/L	0.5 mg/L	84.8	75.0	125	
Cyanides (QCLot	: 1626864)									
yanides (QUEU										

Page : 19 of 21

Sub-Matrix: Water				Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample IL	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Cyanides (QCLo	ot: 1626865) - continue									
VA24C1021-011	Anonymous	Cyanide, strong acid dissociable (Total)		E333-L	0.240 mg/L	0.25 mg/L	96.0	75.0	125	
Cyanides (QCLo										
VA24C1379-002	Anonymous	Cyanide, free		E339-L	0.120 mg/L	0.125 mg/L	96.3	75.0	125	
		Cyanide, nee		E339-L	0.120 Hig/L	0.125 HIg/L	90.3	75.0	125	
Cyanides (QCLo	ot: 1628659)									
VA24C1379-002	Anonymous	Cyanide, strong acid dissociable (Total)		E333-L	0.212 mg/L	0.25 mg/L	84.7	75.0	125	
Organic / Inorga	nic Carbon (QCLot: 162	23887)								
VA24C1526-002	Anonymous	Carbon, dissolved organic [DOC]		E358-L	4.89 mg/L	5 mg/L	97.8	70.0	130	
Total Metals (QC	CLot: 1624609)									
VA24C2005-002	PW-ST-20ii	Lead, total	7439-92-1	E420	0.0387 mg/L	0.04 mg/L	96.7	70.0	130	
VA24C2005-002	PW-ST-20ii	Aluminum, total	7429-90-5	E420	0.414 mg/L	0.4 mg/L	103	70.0	130	
7712.102000 002		Antimony, total	7440-36-0	E420	0.0401 mg/L	0.04 mg/L	100	70.0	130	
		Arsenic, total	7440-38-2	E420	ND mg/L		ND	70.0	130	
		Barium, total	7440-39-3	E420	0.0373 mg/L	0.04 mg/L	93.4	70.0	130	
		Beryllium, total	7440-41-7	E420	0.0771 mg/L	0.08 mg/L	96.4	70.0	130	
		Bismuth, total	7440-69-9	E420	0.0189 mg/L	0.02 mg/L	94.5	70.0	130	
		Boron, total	7440-42-8	E420	ND mg/L		ND	70.0	130	
		Cadmium, total	7440-43-9	E420	0.00794 mg/L	0.008 mg/L	99.3	70.0	130	
		Calcium, total	7440-70-2	E420	ND mg/L		ND	70.0	130	
		Cesium, total	7440-46-2	E420	0.0198 mg/L	0.02 mg/L	99.0	70.0	130	
		Chromium, total	7440-47-3	E420	0.0786 mg/L	0.08 mg/L	98.2	70.0	130	
		Cobalt, total	7440-48-4	E420	0.0381 mg/L	0.04 mg/L	95.2	70.0	130	
		Copper, total	7440-50-8	E420	0.0366 mg/L	0.04 mg/L	91.6	70.0	130	
		Iron, total	7439-89-6	E420	3.77 mg/L	4 mg/L	94.3	70.0	130	
		Lithium, total	7439-93-2	E420	0.189 mg/L	0.2 mg/L	94.5	70.0	130	
		Magnesium, total	7439-95-4	E420	ND mg/L		ND	70.0	130	
		Manganese, total	7439-96-5	E420	ND mg/L		ND	70.0	130	
		Molybdenum, total	7439-98-7	E420	ND mg/L		ND	70.0	130	
		Nickel, total	7440-02-0	E420	0.0753 mg/L	0.08 mg/L	94.1	70.0	130	
		Phosphorus, total	7723-14-0	E420	19.6 mg/L	20 mg/L	97.9	70.0	130	
		Potassium, total	7440-09-7	E420	ND mg/L		ND	70.0	130	
		Rubidium, total	7440-17-7	E420	ND mg/L		ND	70.0	130	
		Selenium, total	7782-49-2	E420	0.0858 mg/L	0.08 mg/L	107	70.0	130	
		Silicon, total	7440-21-3	E420	20.3 mg/L	20 mg/L	101	70.0	130	
		Silver, total	7440-22-4	E420	0.00799 mg/L	0.008 mg/L	99.9	70.0	130	
		Sodium, total	7440-23-5	E420	ND mg/L		ND	70.0	130	
		Strontium, total	7440-24-6	E420	ND mg/L		ND	70.0	130	
		Sulfur, total	7704-34-9	E420	ND mg/L		ND	70.0	130	
		Tellurium, total	13494-80-9	E420	0.0843 mg/L	0.08 mg/L	105	70.0	130	
		Thallium, total	7440-28-0	E420	0.00758 mg/L	0.008 mg/L	94.7	70.0	130	
		Thorium, total	7440-29-1	E420	0.0282 mg/L	0.04 mg/L	70.4	70.0	130	
		Tin, total	7440-31-5	E420	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	
		Titanium, total	7440-32-6	E420	0.0810 mg/L	0.08 mg/L	101	70.0	130	

Page : 20 of 21

Sub-Matrix: Water					Matrix Spike (MS) Report					
					Spi	ke	Recovery (%)	Recovery	y Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 1624609) - conti	nued								
VA24C2005-002	PW-ST-20ii	Tungsten, total	7440-33-7	E420	0.0404 mg/L	0.04 mg/L	101	70.0	130	
		Uranium, total	7440-61-1	E420	0.00853 mg/L	0.008 mg/L	107	70.0	130	
		Vanadium, total	7440-62-2	E420	0.203 mg/L	0.2 mg/L	102	70.0	130	
		Zinc, total	7440-66-6	E420	0.783 mg/L	0.8 mg/L	97.8	70.0	130	
		Zirconium, total	7440-67-7	E420	0.0837 mg/L	0.08 mg/L	105	70.0	130	
Total Metals (QC	Lot: 1624610)									
VA24C2005-002	PW-ST-20ii	Chromium, total	7440-47-3	E420.Cr-L	0.0786 mg/L	0.08 mg/L	98.2	70.0	130	
Total Metals (QC	Lot: 1631157)									
VA24C1892-006	Anonymous	Mercury, total	7439-97-6	E508	0.0000965 mg/L	0 mg/L	96.5	70.0	130	
Total Metals (QC	Lot: 1631159)									
VA24C2024-001	Anonymous	Mercury, total	7439-97-6	E508	0.0000915 mg/L	0 mg/L	91.5	70.0	130	
Dissolved Metals	(QCLot: 1624652)									
VA24C2005-002	PW-ST-20ii	Aluminum, dissolved	7429-90-5	E421	0.390 mg/L	0.4 mg/L	97.4	70.0	130	
		Antimony, dissolved	7440-36-0	E421	0.0387 mg/L	0.04 mg/L	96.7	70.0	130	
		Arsenic, dissolved	7440-38-2	E421	ND mg/L		ND	70.0	130	
		Barium, dissolved	7440-39-3	E421	0.0380 mg/L	0.04 mg/L	95.0	70.0	130	
		Beryllium, dissolved	7440-41-7	E421	0.0745 mg/L	0.08 mg/L	93.2	70.0	130	
		Bismuth, dissolved	7440-69-9	E421	0.0176 mg/L	0.02 mg/L	88.1	70.0	130	
		Boron, dissolved	7440-42-8	E421	ND mg/L		ND	70.0	130	
		Cadmium, dissolved	7440-43-9	E421	0.00782 mg/L	0.008 mg/L	97.7	70.0	130	
		Calcium, dissolved	7440-70-2	E421	ND mg/L		ND	70.0	130	
		Cesium, dissolved	7440-46-2	E421	0.0197 mg/L	0.02 mg/L	98.7	70.0	130	
		Chromium, dissolved	7440-47-3	E421	0.0748 mg/L	0.08 mg/L	93.5	70.0	130	
		Cobalt, dissolved	7440-48-4	E421	0.0362 mg/L	0.04 mg/L	90.5	70.0	130	
		Copper, dissolved	7440-50-8	E421	0.0357 mg/L	0.04 mg/L	89.4	70.0	130	
		Iron, dissolved	7439-89-6	E421	3.69 mg/L	4 mg/L	92.2	70.0	130	
		Lead, dissolved	7439-92-1	E421	0.0358 mg/L	0.04 mg/L	89.4	70.0	130	
		Lithium, dissolved	7439-93-2	E421	0.187 mg/L	0.2 mg/L	93.7	70.0	130	
		Magnesium, dissolved	7439-95-4	E421	ND mg/L		ND	70.0	130	
		Manganese, dissolved	7439-96-5	E421	ND mg/L		ND	70.0	130	
		Molybdenum, dissolved	7439-98-7	E421	ND mg/L		ND	70.0	130	
		Nickel, dissolved	7440-02-0	E421	0.0722 mg/L	0.08 mg/L	90.3	70.0	130	
		Phosphorus, dissolved	7723-14-0	E421	21.2 mg/L	20 mg/L	106	70.0	130	
		Potassium, dissolved	7440-09-7	E421	ND mg/L		ND	70.0	130	
		Rubidium, dissolved	7440-17-7	E421	ND mg/L		ND	70.0	130	
		Selenium, dissolved	7782-49-2	E421	0.0798 mg/L	0.08 mg/L	99.8	70.0	130	
		Silicon, dissolved	7440-21-3	E421	20.1 mg/L	20 mg/L	100	70.0	130	
		Silver, dissolved	7440-22-4	E421	0.00709 mg/L	0.008 mg/L	88.7	70.0	130	
		Sodium, dissolved	7440-23-5	E421	ND mg/L		ND	70.0	130	
		Strontium, dissolved	7440-24-6	E421	ND mg/L		ND	70.0	130	
		Sulfur, dissolved	7704-34-9	E421	ND mg/L		ND	70.0	130	
		Tellurium, dissolved	13494-80-9	E421	0.0790 mg/L	0.08 mg/L	98.7	70.0	130	

Page : 21 of 21

Sub-Matrix: Water	b-Matrix: Water				Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	(QCLot: 1624652) - cor	ntinued										
VA24C2005-002	PW-ST-20ii	Thallium, dissolved	7440-28-0	E421	0.00697 mg/L	0.008 mg/L	87.1	70.0	130			
		Thorium, dissolved	7440-29-1	E421	0.0363 mg/L	0.04 mg/L	90.8	70.0	130			
		Tin, dissolved	7440-31-5	E421	0.0403 mg/L	0.04 mg/L	101	70.0	130			
		Titanium, dissolved	7440-32-6	E421	0.0803 mg/L	0.08 mg/L	100	70.0	130			
		Tungsten, dissolved	7440-33-7	E421	0.0382 mg/L	0.04 mg/L	95.4	70.0	130			
		Uranium, dissolved	7440-61-1	E421	0.00751 mg/L	0.008 mg/L	93.9	70.0	130			
		Vanadium, dissolved	7440-62-2	E421	0.199 mg/L	0.2 mg/L	99.4	70.0	130			
		Zinc, dissolved	7440-66-6	E421	0.776 mg/L	0.8 mg/L	97.0	70.0	130			
		Zirconium, dissolved	7440-67-7	E421	0.0849 mg/L	0.08 mg/L	106	70.0	130			
Dissolved Metals	(QCLot: 1624653)											
VA24C2005-002	PW-ST-20ii	Chromium, dissolved	7440-47-3	E421.Cr-L	0.0748 mg/L	0.08 mg/L	93.5	70.0	130			
Dissolved Metals	(QCLot: 1632890)											
VA24C1751-001	Anonymous	Mercury, dissolved	7439-97-6	E509	0.0000958 mg/L	0 mg/L	95.8	70.0	130			

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#			
	_		_

Environmental Report Format / Distribution Report To Service Requested (Rush for routine analysis subject to availability) ✓ Standard Other Regular (Standard Turnaround Times - Business Days) Azimuth Consulting Group Company: Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT 7 PDF ☑ Excel Fax Eric Franz Digital Contact: 218-2902 West Broadway (Emergency (1-2 Bus, Days) - 100% Surcharge - Contact ALS to Confirm TAT Address: efranz@azimuthgroup.ca; mdimauro@azimutho Vancouver, BC V6K2G8 vanessa.wanie@agnicoeagle.com; Erika.Voverd Same Day or Weekend Emergency - Contact ALS to Confirm TAT **Analysis Request** Phone: 604-730-1220 Fax: meadowbank.environment@agnicoeagle.com Same as Report ? Please indicate below Filtered, Preserved or both (F. P. F/P) nvoice To Client / Project Information ☐ Yes ☑ No Meadowbank CREMP - Surfacewater Hardcopy of Invoice with Report? Job #: PO / AFE: LSD: Contact: Address: Q39503 Fax Quote #: Lab Work Order # ALS NS, OJ, FQS Brent Mack Sampler: Contact: (lab use only) Sample Sample Identification Date Sample Type (dd-mmm-yy) (hh:mm) (This description will appear on the report) PW-ST-20i 10:35 Х Х 11-Aug-24 Water 10:40 Х Х X PW-ST-20ii 10-Aug-24 Water X X Х 12 Х PW-BG-1 10-Aug-24 10:45 Water Х Х 10:50 X X X PW-BG-4 10-Aug-24 Water X х PW-BG-5 10-Aug-24 10:55 Water X X X Х X X 12 ST-20i-A 10-Aug-24 X Water х ST-20i-B 10-Aug-24 Water X ST-20i-C 10-Aug-24 Water X ST-20i-D 10-Aug-24 Water 338 Х ST-20i-E 10-Aug-24 Water **Environmental Division** ST-20ii-A 10-Aug-24 Water X Vancouver Х ST-20ii-B 10-Aug-24 Water Work Order Reference Х ST-20ii-C 10-Aug-24 Water VA24C2005 X ST-20ii-D 10-Aug-24 Water X ST-20ii-E 10-Aug-24 Water X BG-1-A 10-Aug-24 Water Х BG-1-B 10-Aug-24 Water X BG-1-C 10-Aug-24 Water Х BG-1-D 10-Aug-24 Water See See BG-1-E 10-Aug-24 X Water Telephone: +1 604 253 4188 X BG-4-A 10-Aug-24 X BG-4-B 10-Aug-24 Water BG-4-C 10-Aug-24 Water Х BG-4-D 10-Aug-24 Х Water BG-4-E 10-Aug-24 Water Х Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details *Routine parameters includes: TSS-low, TDS-low, Alk Species, pH, EC, Turbidity, Conductivity, Anions (F, NO2, NO3, Br, SO4), low-level Chloride, Silicate, TD-P, and Ontho-PO4 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT RELEASE (client use) SHIPMENT RECEPTION (lab use only) SHIPMENT VERIFICATION (lab use only) Released by: Date (dd-mmm-vv) Time (hh-mm) Observations: Received by Verified by: Yes / No? If Yes add SIF Rowan Woodall 12-Aug-24

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 <u>www.alsglobal.com</u>

COC#			
	Page	∆ of	•

Report To	To Report Format / Distribution Service Requested (Rush for routine analysis subject to availability)																	
Company:	Azimuth Consulting Group	✓ Standard	☐ Other						d Turna									コ
Contact:	Eric Franz	☑ PDF	☑ Excel	Digital	Fax	₩	rity (2	4 Busin	ness Da	ys) - 5	0% Su	rcharge	e - Cont	act ALS	5 to Co	nfirm 1	FAT	
Address:	218-2902 West Broadway	Email 1:	efranz@azimutt	group.ca; mdima	uro@azimuthgroi				Bus. Day							onfirm	TAT	
	Vancouver, BC V6K2G8	Email 2:	vanessa.wanie	Dagnicoeagle.co	m; Erika.Voyer@a	(S)an	ne Day	or Wes	ekend E	merge	ncy - C	ontact	ALS to	Confire	n TAT			
Phone:	604-730-1220 Fax:	Email 3:	meadowbank.er	vironment@agn	coeagle.com								quest					
Invoice To	Same as Report ?	Client / Pr	roject Informatio			Ple	ase ir	ndicat	e belo	w Fill	ered,	Prese	erved	$\overline{}$		P, F/	P)	ı
Hardcopy of I	nvoice with Report?	Job #:		REMP - Surface	vater		-	F/P	P		F	P		F [P - I	Ρ.		
Company:		PO / AFE:		·	<u> </u>	quote	۵	ŀ	ŀ		1				ı	- 1	,	
Contact:		LSD:				see d			€					ŏ	- [- 1	.	
Address:					·		z		z)				ပ်	₫		ı	.	ě
Phane:	Fax:	Quote #:	Q39503			efera	Ě		8		Ě		ě	- <u>₹</u>	डे	ا_ `	. !	nta.
2 0386 Salt 2	/ork Order # use only)	ALS Contact:	Brent Mack	Sampler:	NS, OJ, FQS	Parameters	Ammonia, TKN, Totał		T-CN (Low), Free CN (Low)	Total Mercury	Dissolved mercury	Sulfide	Total Metals +	Dissolved metals + fow	Thiocyanate (SCN)	Cyanate (CNO)	Chlorophyll-a	Number of Containers
Sample	Sample Identification		Date	Time	Sample Type	Routine	ان	ၧ	z	<u>≅</u>	훓	al S	TE I	훓	ဇ္ဇိ	auat	ğ	Ě
# 75	(This description will appear on the report)	٠	(dd-mmm-yy)	(hh:mm)	oumple type	S _o	Ŧ0Ċ.	8	걸	ō	ä	Total	Ĕ.	ä	Ē	õ	ີ້	₹
	BG-5-A		10-Aug-24		Water			·									Х	1
198	BG-5-B		10-Aug-24		Water		_										Х	1
Stop - MA	BG-5-C	•	10-Aug-24		Water		\Box						_				Х	1
- W.	BG-5-D		10-Aug-24		Water		_								_		Х	1
· 操心。"	BG-5-E		10-Aug-24		Water												Х	1
Marine Control	Pit-A-A		19-Aug-24		Water	:	.]	Ĭ									Х	1
e Salakan	Pit-A-B		19-Aug-24		Water												х	1
Apply to prove	Pit-A-C		19-Aug-24		Water						Ì			Î		\Box	х	1
1796	ALS- TB	N/A Water X							X	·x	П	4						
							ヿ		T	一					ヿ	コ	П	П
1964																ヿ		П
a. Sa									一		_				\neg	\neg		
		·					\dashv							\dashv	\dashv	\neg		П
Angel S									\neg	\dashv	\dashv	\dashv		\neg	\neg			\Box
			 				\dashv	_	\dashv	\dashv	\dashv	\dashv		-	一	\dashv		H
30				-			\dashv	_	-	\dashv		-		\dashv	\dashv	\dashv	\neg	\vdash
				 		\vdash	-			\dashv			-+	\dashv		\dashv	-	Н
14.	<u> </u>		-			\vdash	-							-				\vdash
				ļ:		<u> </u>	- 1					-		•	\dashv			\square
11 (15 mg) 1 1	<u>:</u>					\vdash	-			-				_4	\dashv		\vdash	\vdash
April 1986		·				\sqcup		<u>.</u>	_							_		\square
	·		<u> </u>										_	_	_			\sqcup
				<u></u>		Ш												
. 1 00,					· ·				::									Ш
\#							[[[
															7			
i Tana															\neg	\Box		
	Special Instructions / Regulations with water or lar	nd use (CC	ME-Freshwater	Aquatic Life/BC	CSR - Commerc	ial/AE	Tier	1 - N	atural	, etc	/ Haz	zardo	us De	talls				\neg
The following	chi-A samples are the result of 250 mLs filtration (rather than 5										<u>. </u>							<u> </u>
	Fallure to complete al By the use of this form the user ackr									Exc	el tab				,			ı
	Also provided on another Excel tab are the ALS location												mon a	naly	ses.			. 1
150 1	SHIPMENT RELEASE (client use)		MENT RECEPT						HIPME							y)		\neg
-Released by	Date (dd-mmm-w) Time (hh-mm) Received		Date:	Time:	Temperature:	Verifi	ed by	<i>r</i> :		Date	:	\neg	Time	:			rvatio	
Rowan Wood	Mall . 12-Aug-24 7:00		12 TR	12:20	22°C	l: .											/No? es add SIF	

Warm Idepacts

Up dated

Chain of Custody / Analytical Request Form
Canada Toll Free: 1 800 668 9878

COC#	
44.0	

(ALS) E	ALS) Enultrarimental www.alsqlobal.com Page 1 of 1																				
Report To					Report Fo	rmat / Distributi	on		Serv	ice Re	eques	sted (F	Rush f	or rou	tine ar	alysis	subje	ct to a	vailabi	lity)	_
Company:	Azimuth Consulting	Group			Standard	Other						nd Turn									
Contact:	Éric Franz				PDF	Excel	☐ Digital	Fax											onfirm 7		
Address:	218-2902 West Broa				Email 1:	efranz@azimuth								_					Confirm	TAT	
	Vancouver, BC V6K				Email 2:			m; Erika,Voyer@	Q s	me Da	y or W	eekend	_					m TAT			
hone: nvoice To	604-730-1220 Same as Report ?	Fax:	[No			meadowbank.er		icoeagle.com			adica	to bol		unalys		<u> </u>		18. /E	P. F/I	D) [
	nvoice with Report?	· [Yes	No		Job #:	roject Informatio Meadowbank Ci		water	-	D	F/P	P	1	F	P	1	F T	P I	P. 17		
Company:	The second secon	_			PO / AFE:		CONT.		븅	٠_		-			-		-				
Contact:					LSD:				e dnot			3	- 1			- 1	ان	. 1		ı	
Address:						 			es.	ド		CN (Low)				5	ow o			1	Ter3
hone:		Fax:			Quate #:	Q39503			e s	칟		9		출			+ s	ફ્ર		- 1	ria:
(lab	/ork Order#	7 1 7 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			ALS Contact:	Brent Mack	Sampler:	NS, OJ, FQS	Routine Parameters -	Ammonia, TKN, Total		Low), Free	Total Mercury	Dissolved mercury	ulfide	Total Metals + low	Dissolved metals +	Thiocyanate (SCN)	Cyanate (CNO)	Chlorophyil-a	Number of Containers
Sample #	(This	•	lentification I appear on the	report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routin	TOC, /	200	T-CN (Low),	Total N	Dissol	Total Suffide	Total N	_		Cyana	*Chlor	Numb
a de la compansión de la c	PW-ST-20i					11-Aug-24	10:35	Water	Х	لــــا	X	Х	Х	X		Х	Х	Х	Х		12
*******	PW-ST-20ii					10-Aug-24	10:40	Water	X		X	X	Х	X]	X	Х	Х	Х		12
garji da yiyi	PW-BG-1					10-Aug-24	10:45	Water	X		X	Х	Х	Х		X	X	Х	Х		12
: 27 (12 e 24	PW-BG-4					10-Aug-24	10:50	Water	X		Х	х	Х	Х	П	х	х	х	х		12
te d aya	PW-BG-5					10-Aug-24	10:55	Water	X		X	х	Х	Х		х	x	х	X		12
	ST-20i-A					10-Aug-24		Water	T								\neg	\Box	\Box	х	1
**************************************	ST-20i-B		mental D	ivision	-	10-Aug-24		Water									ヿ	一	\neg	x	1
7352.57	ST-20i-C	Vancou			-	10-Aug-24		Water			<u> </u>						\dashv	\neg		x	1
744 J.	ST-20i-D	Work Order Reference				10-Aug-24		Water	┼	-		\vdash		-			\dashv	-	\neg	$\frac{\hat{\mathbf{x}}}{\mathbf{x}}$	1
7.77 276	ST-20i-E	VA	24C2	2005	; -	10-Aug-24		Water	\vdash		Η.					-	-i	\vdash	\dashv	$\frac{\hat{\mathbf{x}}}{\mathbf{x}}$	1
Annual Committee of the	 			-000	' -				 			-				_	\dashv	┌┼┤			
	ST-20ii-A			5 13 000	_	10-Aug-24		Water		\vdash	<u> </u>			H				\dashv	.—	X	1
	ST-20ii-B			A.E	_	10-Aug-24		Water	1-	ļ	<u> </u>								il	X	1
3.17.7 4	ST-20li-C		Y		_	10-Aug-24		Water	1_		<u> </u>							\vdash	┈┤	Х	1
121.9	ST-20ii-D	n III		ᅸᆖᆘᆘ	-	10-Aug-24		Water	<u> </u>		_							<u>. </u>	ш.	X	1
	ST-20ii-E					10-Aug-24	·	Water												X	1
10.44	BG-1-A		9 M. J. P. B. J. W. I.			10-Aug-24		Water			L									Х	1
	BG-1-B	Telephone:	+ 1 604 253 416	38		10-Aug-24		Water												Х	1
	BG-1-C				-	10-Aug-24		Water											П	Х	1
	BG-1-D					10-Aug-24		Water			T								\sqcap	х	1
1014 700	BG-1-E					10-Aug-24	 	Water				T					-	\Box	\Box	Х	1
	BG-4-A			······		10-Aug-24		Water	T		_	 	_							Х	1
The House	BG-4-B	·				10-Aug-24		Water	+-		 		H		Ι	Н	_	\vdash	_	X	1
	BG-4-C				····	10-Aug-24	 	Water	+		┢		 			\vdash	$\vdash\vdash$	\vdash	\vdash	x	1
	BG-4-D	<u> </u>					<u> </u>		┼	-	-	-		-	⊢	-	\vdash		\vdash	X	
						10-Aug-24	 	Water	1	 	1.			\vdash	<u> </u>	<u> </u>	\vdash	\vdash	\vdash		1
	BG-4-E	· ·	· · · · · · · · · · · · · · · · · · ·			10-Aug-24	 	Water		_		—	_	_	ļ	<u> </u>	\vdash	 	\vdash	Х	1
	ol. (Samissia)				d was ICC	NC E	1	000 0	1-10	<u></u>	<u></u>		1 -4 -1	VV U			ليا	لِــــا		لــــا	_
t The College						ME-Freshwater	<u> </u>	· · · · · · · · · · · · · · · · · · ·		- %	· > .		, etc) / Ha	zardo	us De	italis				
** Routine pa	ng chl-A samples are grameters includes: T	tne result of 25 SS-low, TDS-lo	u mLs filtration (w, Alk Species.	ratner than : pH, EC, Tu	อบบ mr.): S irbidity, Cor	s I-20ii-C, ST-20i- nductivity. Anions	D, ST-20⊩A, ST (F, NO2, NO3 ↓	[-20⊱C, ST-20ii-/ Br. SO4). low-lev:	a, ST- el Chl	20ii-D oride	, ST-: Silica	20i-E te. TD	-P. aı	nd Orl	tho-Po	D4 .					
. feer-⊊	3)		Failure to	omplete al	l portions	of this form ma	y delay analysis	. Please fill in ti	his fo	rm LE	GIBL	Υ.									
	Also provided					i and agrees with ies, phone numb										mon a	anaiv:	ses.	-		
Chic William	*SHIPMENT RELEA					MENT RECEPT													ly)		
Released by			Time (hh-mm)	1100 030 - 1000NC - 1		Date:	Time:	Temperature:		ified b		- }	Date			Time			Obse	rvatio	ns:
	**************************************		Í	ı		1	1	1 3	.I			. 1	l .			I		,	1.00/	ind f	

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 ______ www.alsglobal.com

COC#			
		•	-
Page	•	of	1

Report To					Report Fo	rmat / Distributi	on		Service Requested (Rush for routine analysis subject to availability)												
Company:						Standard Other Regular (Standard Turnaround Times - Business Days)															
Contact:	Eric Franz				PDF Excel Digital Fax				() Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT												
Address:	218-2902 West Broad				Email 1:			nauro@azimuthgro	-											TAT	
	Vancouver, BC V6K2				Email 2:	vanessa.wanie@	Dagnicoeagle.c	om; Erika Voyer@	() Sa	me Day	y or We	ekend l						m TAT			
hone:	604-730-1220	Fax:			Email 3:	meadowbank.er	vironment@ag	nicoeagle.com								ques					
nvoice To	Same as Report ?	_ Yes	Ľ №		Client / Pr	oject Informatio	n		Pi	ease i	ndica	te belo	w Fil	tered,	Pres	erved	or bo	th (F,	, P, F/I	P)	
lardcopy of I	nvoice with Report?	☐ Yes	⊡ No		Job #:	Meadowbank Cl	REMP - Surface	water		Р	F/P	Р		F	<u> </u>		F	P	Р		. 1
Company:					PO / AFE:				quot	a.				İ			ŀ				. 1
Contact:					LSD:				See q	Total		8		1	- 1		ច				ایرا
Address:									Š			Z.	i			ঠ	<u>8</u>				ē
hone:		Fax:			Quote #:	Q39503			eter	TKN		8	- 1	Š	- 1		<u>+</u>	8			ig.
Leb W	/ork Order # use only)	in :2%		* +	ALS Contact:	Brent Mack	Sampler:	NS, OJ, FQS	Param	Ammonia,		T-CN (Low), Free CN (Low)	ercury	Dissolved mercury	ulfide	Total Metals + low	Dissolved metals + low	Thiocyanate (SCN)	Cyanate (CNO)	Chlorophyll-a	Number of Container
Sample &	(This	· · ·	entification appear on the	report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine	TOC, A	DOC	S	Total Mercury	Nossi	Total Sulfide	otal M	Vossi	hiocy	yanat	Chloro	Ę Ę
4 2 198							,	Water				 	-	٥	j~-		쒸			x	1
						10-Aug-24					-1	⊢╂	\dashv					\dashv	 		H
200	BG-5-B					10-Aug-24		Water	1				_						igwdap	Х	1
*-1/8X3X	BG-5-C					10-Aug-24		Water	Ш										Ш	Х	1
n, imen	BG-5-D					10-Aug-24		Water												X	1
ingests.	BG-5-E					10-Aug-24		Water				П								Х	1
7: 4:19	Pit-A-A					19-Aug-24		Water										\neg		х	1
ung na	Pit-A-B					19-Aug-24		Water		-								\neg	\Box	х	1
	}			-			-	+	╁			-	-					\vdash	 	x	1
(3*), W	Pit-A-C					19-Aug-24		Water	-										 		-
4 PA - 19	ALS- TB					N/A		Water	<u> </u>		L	X						Х	Х		4
-10-74									<u> </u>										\sqcup		
100									1								\Box	\Box			
and the				· · · · · ·					_								\Box				
and the state of the								 	-	-	H				_		\vdash	\vdash		\neg	\vdash
								ļ	+								${oldsymbol{oldsymbol{\sqcup}}}$	 	\vdash	μ—Н	
eli str eile									↓_		<u> </u>			\dashv				igspace	\sqcup	لــــا	
																					L
6 (48) 78																				,	
747			,			_															
4.30							 	 	1			\vdash		\vdash			М		\vdash		Н
and wide an exemplified a strong strong						 	 	+	+		_	\vdash	-	\vdash		H	\vdash	 	\vdash		$\vdash \vdash$
1 1 1							-	 	+	-	-			\vdash		-	\vdash	 	$\vdash\vdash$		—'
							<u> </u>		 _							L	لـــا	ļ'		<u> </u>	╙
						1			L	L		<u>L</u> _						L_ '	L_{L}^{I}	L!	\perp
Tales:						1	1	1	1	Ι –	1 -	\vdash	_						П	\vdash	\Box
		····	···			 	 	 	-	-	 	Н	_	\vdash	_			_	\vdash		
			·				<u> </u>		 	 	-	⊢	_	-			⊢⊢	\vdash		<u> </u>	⊢ —'
						<u> </u>	1	<u></u>	Ļ	<u> </u>	با	لــــا		ليبا	<u> </u>	ا	ليبا	L	لـــــــا	لــــا	ــــــــــــــــــــــــــــــــــــــ
N. Pilotti (Special Inst	ructions / Reg	ulations with w	vater or lan	d use (CC	ME-Freshwater	Aquatic Life/B	C CSR - Commer	cial/A	B Tie	r 1 - N	latura	i, etc) / Ha	zardo	us De	etails	<u> </u>	<u> </u>		<i>2,</i>
• , . *** • The a Caller - 1 .		A 050	ant a Elization (D 07-00: 4	T 00' 0 OT 00" 4				-									
The followin	g chi-A samples are th	ne result of 250						I-20i-C, S1-20i-A									—				
. A	ů,	By the use						is, Please III in I id Conditions as I					e Exc	el tab) .						
<i>₹</i>	Also provided o							le container / pres								mon a	analy	ses.			
120	SHIPMENT, RELEA																		ly) tr	**9*5	
Released by			Time (hh-mm)			Date:	Time:	Temperature:	_	fied b			Date	War 11		Time			Obse	ervati	ons:
		40.4	7.00			1	1.0	°C								1				/No? sadd	
Rowan Wool	dali .	12-Aug-24	7:00			1	L		' I				1			1			In 16,	o ಡ ೮೮	OIF.

Appendix B-2 Laboratory Reports for the Tailings Samples

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : **VA22C0090** Page : 1 of 9

Amendment : 2

Client : Azimuth Consulting Group Inc. Laboratory : Vancouver - Environmental

Contact : Marianna DiMauro Account Manager : Brent Mack

: # 218 - 2902 West Broadway Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 26-Aug-2022 11:00

Date Analysis Commenced : 01-Sep-2022

Issue Date : 07-Nov-2022 17:08

Telephone : --

Address

Project : CREMP Sediment Grabs

Vancouver BC Canada V6K 2G8

 PO
 : --

 C-O-C number
 : --

 Sampler
 : Azimuth

 Site
 : --

 Quote number
 : Q38011

 No. of samples received
 : 21

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 21

- General Comments
- Analytical Results

No. of samples analysed

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Alex Thornton	Analyst	Metals, Burnaby, British Columbia	
Colby Bingham	Quality Systems Coordinator	Metals, Saskatoon, Saskatchewan	
Hedy Lai	Team Leader - Inorganics	Inorganics, Saskatoon, Saskatchewan	
Hedy Lai	Team Leader - Inorganics	Sask Soils, Saskatoon, Saskatchewan	
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia	
Justin Kuzek	Team Leader - Organics	Organics, Saskatoon, Saskatchewan	
Jwan Abdalla	Laboratory Analyst	Metals, Saskatoon, Saskatchewan	
Kinny Wu	Lab Analyst	Metals, Burnaby, British Columbia	
Lian Nesbitt	Laboratory Analyst	Metals, Saskatoon, Saskatchewan	
Maria Painchaud	Laboratory Assistant	Inorganics, Saskatoon, Saskatchewan	
Nancy Cruse	Laboratory Assistant	Inorganics, Saskatoon, Saskatchewan	

Page : 2 of 9

Work Order : VA22C0090 Amendment 2
Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/kg	micrograms per kilogram
mg/kg	milligrams per kilogram
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

This report replaces the previous version and contains updated Grain Size data.

Qualifiers

Qualifier	Description
FR5	As per applicable reference method(s), soil:water ratio for Fixed Ratio Leach was modified to 1:5 due to high soil organic content

>: greater than.

Page : 3 of 9

Work Order : VA22C0090 Amendment 2
Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Analytical Results

Sub-Matrix: Sediment			C	lient sample ID	BG-1	BG-2	BG-3	BG-4	BG-5
(Matrix: Soil/Solid)									
			·	oling date / time	12-Aug-2022 16:55	21-Aug-2022 09:40	21-Aug-2022 13:50	21-Aug-2022 14:33	21-Aug-2022 16:30
Analyte	CAS Number	Method	LOR	Unit	VA22C0090-001 Result	VA22C0090-002 Result	VA22C0090-003 Result	VA22C0090-004 Result	VA22C0090-005 Result
Physical Tests					Result	Result	Result	Result	Result
moisture		E144	0.25	%	26.4	26.4	28.2	29.1	40.3
pH (1:2 soil:water)		E108	0.10	pH units	8.30	8.57	8.40	8.42	8.32
Particle Size									
clay (<0.002mm)		EC184B	1.0	%	5.2	7.4	7.7	9.7	9.0
clay (<0.005mm)		EC184B	1.0	%	17.4	23.8	25.1	25.1	28.6
silt (0.075mm - 0.002mm)		EC184B	1.0	%	94.6	92.6	92.2	90.1	90.7
silt (0.075mm - 0.005mm)		EC184B	1.0	%	82.4	76.2	74.8	74.7	71.1
fines (<0.075mm)		EC184B	1.0	%	99.8	100	99.9	99.8	99.7
sand (0.425mm - 0.075mm)		EC184B	1.0	%	<1.0	<1.0	<1.0	<1.0	<1.0
sand (2.0mm - 0.425mm)		EC184B	1.0	%	<1.0	<1.0	<1.0	<1.0	<1.0
sand (4.75mm - 2.0mm)		EC184B	1.0	%	<1.0	<1.0	<1.0	<1.0	<1.0
gravel (76.2mm - 4.75mm)		EC184B	1.0	%	<1.0	<1.0	<1.0	<1.0	<1.0
cobbles (>3in)		EC184B	1.0	%	<1.0	<1.0	<1.0	<1.0	<1.0
grain size curve		E185A	-	-	See	See	See Attached	See	See Attached
clay (<0.004mm)		EC184E	1.0	0/	Attached 13.3	Attached 18.3	19.3	Attached 19.9	22.1
, , , , , , , , , , , , , , , , , , ,		EC184E	1.0	%	86.4	81.7	80.6	79.9	77.6
silt (0.063mm - 0.004mm)				%					
sand (2.0mm - 0.063mm)		EC184E	1.0	%	<1.0	<1.0	<1.0	<1.0	<1.0
gravel (>2mm)		EC184E	1.0	%	<1.0	<1.0	<1.0	<1.0	<1.0
Organic / Inorganic Carbon		FC256	0.050	0/	0.412	0.202	0.251	0.220	0.222
carbon, total organic [TOC]		EC356	0.050	%	0.413	0.283	0.351	0.238	0.232
Metals	7400.00.5	E440	50	70 gr/ls gr	29500	31900	32200	29200	28600
aluminum	7429-90-5		0.10	mg/kg				29200	2.08
antimony	7440-36-0	E440		mg/kg	2.09	2.23 903	2.14 855		2.08 811
arsenic	7440-38-2	E440	0.10	mg/kg	1060			624	
barium	7440-39-3	E440	0.50	mg/kg	135	120	128	109	116
beryllium	7440-41-7	E440	0.10	mg/kg	0.83	0.76	0.79	0.64	0.65
bismuth	7440-69-9	E440	0.20	mg/kg	0.32	0.30	0.31	0.25	0.28
boron	7440-42-8	E440	5.0	mg/kg	5.9	6.6	6.3	5.5	6.0

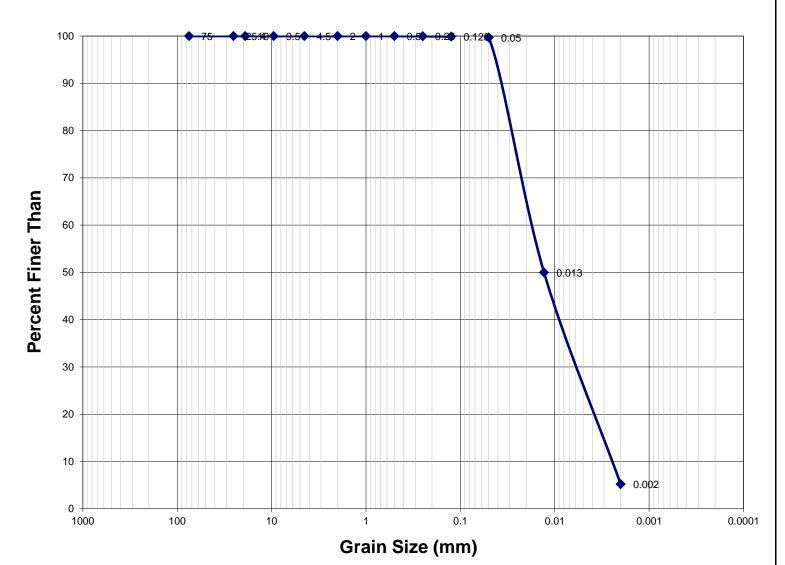
Page : 4 of 9

Work Order : VA22C0090 Amendment 2
Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Analytical Results

Sub-Matrix: Sediment			CI	lient sample ID	BG-1	BG-2	BG-3	BG-4	BG-5
(Matrix: Soil/Solid)									
	242 14	Makkand	Client samp	oling date / time	12-Aug-2022 16:55	21-Aug-2022 09:40	21-Aug-2022 13:50	21-Aug-2022 14:33	21-Aug-2022 16:30
Analyte	CAS Number	Method	LOR	Unit	VA22C0090-001	VA22C0090-002	VA22C0090-003	VA22C0090-004	VA22C0090-005
					Result	Result	Result	Result	Result
Metals cadmium	7440-43-9	E440	0.020	ma/ka	0.858	0.732	0.803	0.134	0.401
calcium		E440	50	mg/kg	20800	21800	21300	19300	17200
	7440-70-2	E440	0.50	mg/kg	1100	1350	1360	1230	1120
chromium	7440-47-3		0.50	mg/kg	28.4	33.2	30.2	36.5	28.7
cobalt	7440-48-4	E440		mg/kg					
copper	7440-50-8	E440	0.50	mg/kg	468	384	1300	143	140
iron	7439-89-6	E440	50	mg/kg	81000	85100	86400	85900	82700
lead	7439-92-1	E440	0.50	mg/kg	143	162	171	92.3	163
lithium	7439-93-2	E440	2.0	mg/kg	24.5	27.5	26.2	25.0	24.7
magnesium	7439-95-4	E440	20	mg/kg	29600	31500	32500	25200	27200
manganese	7439-96-5	E440	1.0	mg/kg	2160	2540	2560	2550	2330
mercury	7439-97-6	E510	0.0050	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
molybdenum	7439-98-7	E440	0.10	mg/kg	1.82	1.62	1.73	1.44	1.77
nickel	7440-02-0	E440	0.50	mg/kg	424	537	514	551	464
phosphorus	7723-14-0	E440	50	mg/kg	534	421	418	407	397
potassium	7440-09-7	E440	100	mg/kg	12600	12800	12400	11200	10800
selenium	7782-49-2	E440	0.20	mg/kg	0.63	0.50	0.70	0.65	0.56
silver	7440-22-4	E440	0.10	mg/kg	0.73	0.56	1.20	0.50	0.23
sodium	7440-23-5	E440	50	mg/kg	419	423	401	447	490
strontium	7440-24-6	E440	0.50	mg/kg	62.6	54.2	55.2	43.6	43.8
sulfur	7704-34-9	E440	1000	mg/kg	8000	8400	7800	8400	8100
thallium	7440-28-0	E440	0.050	mg/kg	0.494	0.471	0.482	0.428	0.425
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	1230	1250	1300	1140	1100
tungsten	7440-33-7	E440	0.50	mg/kg	6.10	7.81	6.89	5.97	4.95
uranium	7440-61-1	E440	0.050	mg/kg	0.845	0.671	0.730	0.697	0.815
vanadium	7440-62-2	E440	0.20	mg/kg	81.5	91.4	93.3	79.8	76.8
zinc	7440-66-6	E440	2.0	mg/kg	62.6	59.4	60.2	55.8	58.4
zirconium	7440-67-7	E440	1.0	mg/kg	11.0	7.6	8.5	7.5	8.7

Please refer to the General Comments section for an explanation of any qualifiers detected.



Client Name: ACGI100

Project: Sample ID: BG-1

Lab ID: VA22C0090001

Particle Size Distribution Curve

Summary of Results

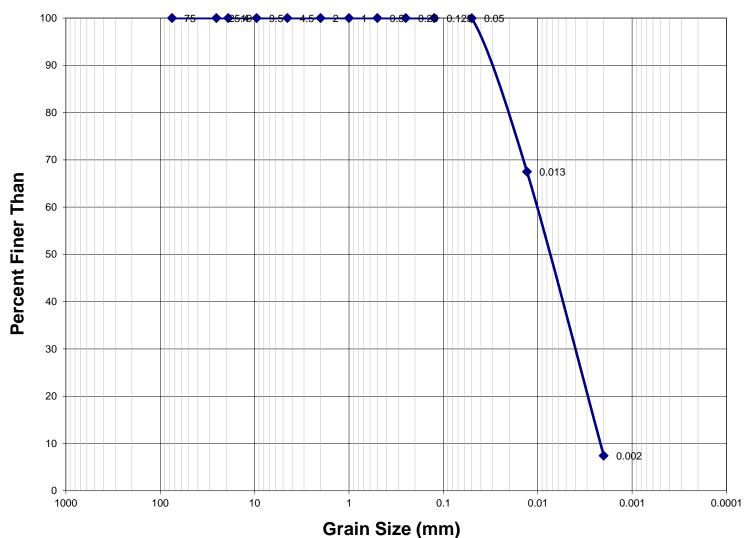
Unified Soil Classification System (USCS)

Unified Soil Classification System (USCS)						
Size Class	Size Range	Wt. (%)				
Cobbles	> 3"	0				
Gravel	4.75mm - 3"	0				
Coarse Sand	2.0mm - 4.75mm	0				
Medium Sand	0.425mm - 2.0mm	0				
Fine Sand	0.075mm - 0.425mm	0				
Fines	< 0.075mm	100				

Canadian Soil Survey Committee (CSSC)

Canadian Son Survey Committee (CSSC)						
Size Class	Size Range	Wt. (%)				
Cobbles	> 3"	0				
Gravel	2mm - 3"	0				
Sand	0.05mm - 2mm	0				
Silt	0.002mm - 0.05mm	95				
Clay	< 0.002mm	5				

Texture Silt



Client Name: ACGI100

Project: Sample ID: BG-2

Lab ID: VA22C0090002

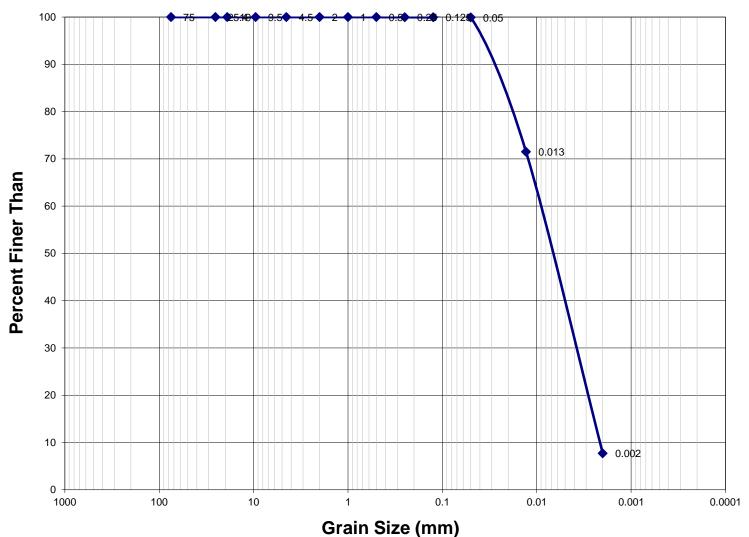
Particle Size Distribution Curve

Grain Size (IIIII

Summary of Results

Unified Soil Classification System (USCS)							
Size Class	Size Range	Wt. (%)					
Cobbles	> 3"	0					
Gravel	4.75mm - 3"	0					
Coarse Sand	2.0mm - 4.75mm	0					
Medium Sand	0.425mm - 2.0mm	0					
Fine Sand	0.075mm - 0.425mm	0					
Fines	< 0.075mm	100					

Canadian Soil Survey Committee (CSSC)						
Size Class	Size Range	Wt. (%)				
Cobbles	> 3"	0				
Gravel	2mm - 3"	0				
Sand	0.05mm - 2mm	0				
Silt	0.002mm - 0.05mm	93				
Clay	< 0.002mm	7				
Texture	Silt					



Client Name: ACGI100

Project: Sample ID: BG-3

Lab ID: VA22C0090003

Particle Size Distribution Curve

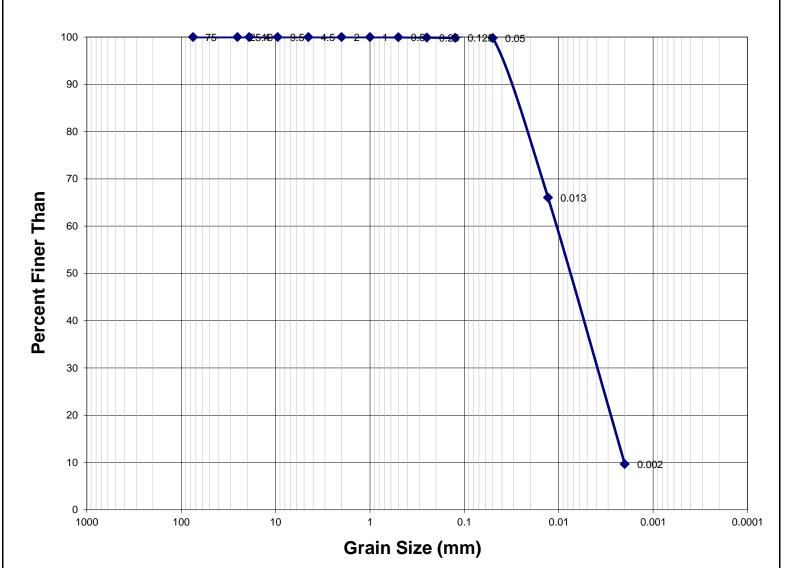
Grain Size (IIIII

Summary of Results

Unified Soil Classification System (USCS)							
Size Class	Size Range	Wt. (%)					
Cobbles	> 3"	0					
Gravel	4.75mm - 3"	0					
Coarse Sand	2.0mm - 4.75mm	0					
Medium Sand	0.425mm - 2.0mm	0					
Fine Sand	0.075mm - 0.425mm	0					
Fines	< 0.075mm	100					

Canadian Soil Survey Committee (CSSC)					
Size Class	Size Range	Wt. (%)			
Cobbles	> 3"	0			
Gravel	2mm - 3"	0			
Sand	0.05mm - 2mm	0			
Silt	0.002mm - 0.05mm	92			
Clay	< 0.002mm	8			
Texture	Silt				

Texture S



Client Name: ACGI100

Project: Sample ID: BG-4

Lab ID: VA22C0090004

Particle Size Distribution Curve

Summary of Results

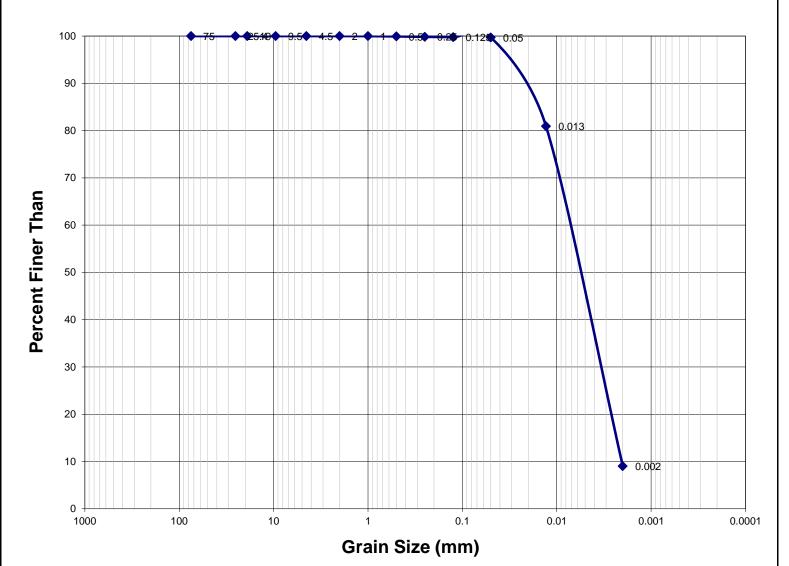
Unified Soil Classification System (USCS)

Unified Soil Classification System (USCS)								
Size Class	Size Range	Wt. (%)						
Cobbles	> 3"	0						
Gravel	4.75mm - 3"	0						
Coarse Sand	2.0mm - 4.75mm	0						
Medium Sand	0.425mm - 2.0mm	0						
Fine Sand	0.075mm - 0.425mm	0						
Fines	< 0.075mm	100						

Canadian Soil Survey Committee (CSSC)

Canadian Con Carvey Committee (CCCC)										
Size Class	Size Range	Wt. (%)								
Cobbles	> 3"	0								
Gravel	2mm - 3"	0								
Sand	0.05mm - 2mm	0								
Silt	0.002mm - 0.05mm	90								
Clay	< 0.002mm	10								

Texture Silt


Client Name: ACGI100

Project:

Sample ID: BG-5

Lab ID: VA22C0090005

Particle Size Distribution Curve

Summary of Results

Unified Soil Classification System (USCS)								
Size Class	Size Range	Wt. (%)						
Cobbles	> 3"	0						
Gravel	4.75mm - 3"	0						
Coarse Sand	2.0mm - 4.75mm	0						
Medium Sand	0.425mm - 2.0mm	0						
Fine Sand	0.075mm - 0.425mm	0						
Fines	< 0.075mm	100						

Canadian Soil Survey Committee (CSSC)

Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	2mm - 3"	0
Sand	0.05mm - 2mm	0
Silt	0.002mm - 0.05mm	91
Clay	< 0.002mm	9
Toyturo	Cilt	

Texture S

ALS Environmental

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsqlobal.com

COC#	
	-

ree: 1 auu aaa 3070			
sglobal.com	Page	1 of	3

Company Azimuth Consisting Group Discount Disco	Report To					Report F	ormat / Distribut	tion		Serv	ice R	eque	sted (I	Rush fo	or routin	ne analy	sis sut	ject to	availabil	lity)	
Address: 218-2902 West Bloodway: Crass 1: midmato@azimuthigrous ca Vincouver, BC VKKCS Enal 2: includes azimuthigrous ca Final 3: madination (and azimuthigrous ca) Final 3: madination (and azimut	Company:	Azimuth Consulting	Group			Standard	Other			● Re	gular (S	Standar	d Turna	round T	imes - I	Business	Days)				
Vancouver, BC VV8/C83 Email 2 Inclusional Content Preserved on the Presence Content ALS to Confern TAT	Contact:	Marianna DiMauro				✓PDF	☑ Excel	□Digital	□Fax	Orio	ority (2	-4 Busi	ness Da	ys) - 50	% Surc	harge - C	ontact	ALS to C	onfirm T	ΆΤ	
Phone: 604-700-1220 Fax	Address:	218-2902 West Bro	oadway		!	Email 1:	mdimauro@azi	muthgroup.ca		Œm	ergenc	y (1-2	Bus. Da	ys) - 10	0% Sun	charge -	Contact	: ALS to (Confirm 7	TAT	
Invoice To Same as Report? vs		Vancouver, BC V6	K2G8			Email 2:	imcivor@azimu	thgroup.ca; efra	anz@azimuthgroup) (Sar	ne Day	or We	ekend E	mergen	ıcy - Cor	ntact ALS	to Con	firm TAT			
Hardcopy of Invoice with Report?	Phone:	604-730-1220				Email 3:	meadowbank.e	nvironment@a	gnicoeagle.com												
Company: Contact: LSD: Askdress: Phone: Fax: Quote #: Q38011 ALS Contact: Brent Mack Sampler: Azimuth ALS Contact: Brent Mack Contact: ALS Contact: Brent Mack Sampler: Azimuth Brent Mack Sample Identification (This description will appear on the report) ALS Contact: Brent Mack Contact: Brent Mack Contact: Brent Mack Sampler: Azimuth Brent Mack Sample Type (brimin) BG-1 L2-Aug-22 16:55 Sediment X X X X BG-2 12-Aug-22 13:50 Sediment X X X X BG-3 21-Aug-22 14:33 Sediment X X X X BG-4 21-Aug-22 16:30 Sediment X X X X BG-5 21-Aug-22 16:30 Sediment X X X X BG-5 Als Brent Mack BG-5 Als Brent Mack BG-6 Als Brent Mack BG-1 Als Brent Mack	Invoice To	Same as Report ?				Client / P	roject Informati	on		Pl	ease i	ndica	te belo	ow Filt	ered, I	Preserv	ed or	both (F	-, P, F/	'P)	
Contact: LSD:	Hardcopy of I	nvoice with Report?	☐ Yes	✓ No				ent Grabs		<u> </u>											
Plane: Fax: Quote #: O38011	Company:					PO/AFE				1			ای								
Plane: Fax: Quote #: O38011						LSD:			·æ.				ğ								
12-Aug-22	Address:									1			Ę.								ers
12-Aug-22	Phone:		Fax:			Quote #:	Q38011			j	표		틸							1	ıtair
12-Aug-22		ALC: N. I. S.		- 2006 A			Brent Mack	Sampler:	Azimuth	etals	loisture,	ez.	EPHS, I				_				er of Cor
BG-2 21-Aug-22 13:50 Sediment X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C.C	(Thi	•		report)			1	Sample Type	Total M	TOC, M	Grain sí	PAHs, I								Numbe
BG-3 21-Aug-22 13-50 Sediment X X X X BG-4 21-Aug-22 14-33 Sediment X X X X Environmental Division Vancouver Work Order Reference VA22C0090 Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Nature Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT/RELEASE (Client use) SHIPMENT/RELEASE (Client use) Date: Time: Temperature: Venfied by: Date: Time: Observations: Preservations of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. SHIPMENT/RELEASE (Client use) SHIPMENT/RELEASE (Client use) SHIPMENT/RELEASE (Client use) Time: Temperature: Venfied by: Date: Time: Observations: Observations: Observations: Preservation / Notice only) SHIPMENT/RELEASE (Time: Time: Time: Time: Temperature: Venfied by: Date: Time: Observations: Preservation / Notice only)	**************************************	BG-1					12-Aug-22	16:55	Sediment	Х	Х	Х									1
BG-4 21-Aug-22 16:30 Sediment X X X X Environmental Division Vancouver Work Order Reference VA22C0090 Work Order Reference VA22C0090 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT/RELEASE (client use) SHIPMENT/RELEASE (client use) SHIPMENT/RELEASE (client use) Received by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No ? Yes / No ?	4644	BG-2					21-Aug-22	9:40	Sediment	Х	Х	Х									1
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natur Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natur Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT;RECESE (client use)		BG-3					21-Aug-22	13:50	Sediment	Х	Х	Х					\top				1
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT.RELEASE(client use) SHIPMENT.RECEPTION.((ab use only)) Released by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No?	***	BG-4					21-Aug-22	14:33	Sediment	Х	Х	Х					\top	1			1
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural Telephone: -1 604 253 4188 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT RELEASE (client use) SHIPMENT RECEPTION ((ab use only)) SHIPMENT VERIFICATION ((ab use only)) Pate: Time: Temperature: Verified by: Date: Time: Observations: Yes / No? Yes / No?		BG-5					21-Aug-22	16:30	Sediment	Х	Х	X	,	_							1
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural Telephone + 1 604 253 4188 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT; RELEASE; (Client use) SHIPMENT; RECEPTION ((ab use only)) Released by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No?	7																tal D	IVISIO	n	\exists	
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural Telephone: -1 604 253 4188 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT;RELEASE;(Client use) SHIPMENT;RELEASE; (Client use) Released by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No?													:	_	Work	k Order			_		
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural Telephone: +1 604 253 4188 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT/RELEASE/(client/use) SHIPMENT/RELEASE/(client/use) Released by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No?									·				-		V	422	CC	09	0	,	_
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural Telephone : +1 604 253 4186 Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT/RELEASE (client use) SHIPMENT/RECEPTION (lab use only) Released by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No?				···													43 6 W	a Bu	11		
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT RELEASE (Client use) SHIPMENT RELEASE (Client use) Date (dd-mmm-yy) Time (hh-mm) Received by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No ?																	У Ш		[]	+	
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT RELEASE (Client use) SHIPMENT RELEASE (Client use) Date (dd-mmm-yy) Time (hh-mm) Received by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No ?										-								XIII		1	
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT RELEASE (Client use) SHIPMENT RELEASE (Client use) Date (dd-mmm-yy) Time (hh-mm) Received by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No ?			,													11.5	H,IF.		11		
By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT/RELEASE/(client use) SHIPMENT/RELEASE/(client use) Date (dd-mmm-yy) Time (hh-mm) Received by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No ?		Special Inst	tructions / Reg	ulations with v	vater or land	d use (CC	ME-Freshwater	Aquatic Life/B	C CSR - Commer	cial/A	B Tie	г 1 - N	latui	Tei	ephone	±: +1 604	253 411	88			
By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT/RELEASE/(client use) SHIPMENT/RELEASE/(client use) Date (dd-mmm-yy) Time (hh-mm) Received by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No ?																					
By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT/RELEASE/(client use) SHIPMENT/RELEASE/(client use) Date (dd-mmm-yy) Time (hh-mm) Received by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No ?				F-:1 4		. 4							.,								
Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT RELEASE (Client use) SHIPMENT RECEPTION ((lab use only)) Feleased by: Date (dd-mmm-yy) Time (hh-mm) Received by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No ?			By the use			-								e Exc	el tab.						
Released by: Date (dd-mmm-yy) Time (hh-mm) Received by: Date: Time: Time: Time: Temperature: Temperature: Temperature: Temperature: Temperature: Temperature: Time: Temperature: Temperature: Time: Temperature: Time: Temperature: Temperature: Time: Temperature: Time: Temperature: Temperature: Temperature: Temperature: Temperature: Temperature: Temperature: Time: Temperature: Temperature: Temperature: Temperature: Time: Temperature: Tempera		Also provided o															on and	alyses.			
Released by: Date (dd-mmm-yy) Time (hh-mm) Received by: Date: Time: Temperature: Verified by: Date: Time: Observations: Yes / No ?		SHIPMENT RELE																		14043	
												E 17-11 HILL TEST							Obser	rvation	
	Marianna DiM	lauro	23-Aug-22	7:30					℃												SIF

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.

Contact : Marianna DiMauro

Address : # 218 - 2902 West Broadway

Vancouver BC Canada V6K 2G8

Telephone : ---

Project : CREMP Sediment Grabs

PO : ---C-O-C number : ---

Sampler : Azimuth

Site : ----

Quote number : Q38011

No. of samples received : 6
No. of samples analysed : 5

Page : 1 of 4

Laboratory : ALS Environmental - Vancouver

Account Manager : Brent Mack

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : 778-370-3279

Date Samples Received : 30-Aug-2023 11:00

Date Analysis Commenced : 02-Sep-2023

Issue Date : 08-Sep-2023 15:20

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Colby Bingham	Laboratory Supervisor	Inorganics, Saskatoon, Saskatchewan
Hedy Lai	Team Leader - Inorganics	Inorganics, Saskatoon, Saskatchewan
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia

Page : 2 of 4

Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

% percent mg/kg milligrams per kilogram pH units pH units	Unit	Description
	%	percent
pH units pH units	mg/kg	milligrams per kilogram
	pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 4 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Analytical Results

Sub-Matrix: Sediment			CI	ient sample ID	BG-1	ST-20i	ST-20ii	BG-4	BG-5
(Matrix: Soil/Solid)									
			Client samp	ling date / time	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00
Analyte	CAS Number	Method/Lab	LOR	Unit	VA23C0343-001	VA23C0343-002	VA23C0343-003	VA23C0343-004	VA23C0343-005
					Result	Result	Result	Result	Result
Physical Tests Moisture	E144	10/0	0.25	%	39.1	36.8	32.3	36.4	34.5
pH (1:2 soil:water)	E400		0.23	pH units	9.59	8.56	8.46	8.41	8.37
	E108	5/VA	0.10	pH units	9.59	0.50	0.40	0.41	0.37
Particle Size Gravel (>2mm)	IEC 19	84E/SK	1.0	%	<1.0	<1.0	<1.0	<1.0	<1.0
, ,	F0.46	34E/SK 34E/SK	1.0	%	<1.0	1.1	4.7	<1.0	<1.0
Sand (2.0mm - 0.063mm) Silt (0.063mm - 0.004mm)	F0.46	34E/SK 34E/SK	1.0	%	77.1	84.4	80.2	77.2	77.2
Clay (<0.004mm)	F046	34E/SK 34E/SK	1.0	%	22.7	14.5	15.1	22.5	22.4
,	EC18	54E/5IK	1.0	70	22.1	14.5	13.1	22.0	22.7
Organic / Inorganic Carbon Carbon, total organic [TOC]	EC35	56/SK	0.050	%	0.209	0.339	0.314	0.168	0.158
		30/310	0.030	70	0.209	0.559	0.014	0.100	0.130
Metals Aluminum	7429-90-5 E440)///Δ	50	mg/kg	33900	26900	27000	31000	30700
Antimony	7440-36-0 E440		0.10	mg/kg	5.96	2.16	2.50	2.47	2.30
Arsenic	7440-38-2 E440		0.10	mg/kg	796	1240	1280	691	856
Barium	7440-39-3 E440		0.50	mg/kg	189	115	110	114	115
Beryllium	7440-41-7 E440		0.10	mg/kg	0.70	0.70	0.63	0.71	0.61
Bismuth	7440-69-9 E440		0.20	mg/kg	0.70	0.27	0.30	0.25	0.25
Boron	7440-42-8 E440		5.0	mg/kg	15.6	5.1	5.5	5.7	5.1
Cadmium	7440-43-9 E440		0.020	mg/kg	1.05	0.751	0.632	0.168	0.271
Calcium	7440-70-2 E440		50	mg/kg	26400	21400	22200	21800	20000
Chromium	7440-47-3 E440		0.50	mg/kg	1440	1010	1120	1360	1340
Cobalt	7440-48-4 E440		0.10	mg/kg	32.3	34.6	42.3	37.5	40.1
Copper	7440-50-8 E440		0.50	mg/kg	332	236	190	127	126
Iron	7439-89-6 E440		50	mg/kg	88400	75300	81800	91000	83700
Lead	7439-92-1 E440		0.50	mg/kg	216	97.6	122	101	115
Lithium	7439-93-2 E440		2.0	mg/kg	23.4	20.1	20.7	24.8	24.0
Magnesium	7439-95-4 E440		20	mg/kg	32100	28000	26500	27800	28600
Manganese	7439-96-5 E440		1.0	mg/kg	2800	2160	2480	3140	2900
Mercury	7439-97-6 E510		0.0050	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Molybdenum	7439-98-7 E440)/VA	0.10	mg/kg	2.34	1.48	1.73	1.63	1.51

Page : 4 of 4 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Analytical Results

Sub-Matrix: Sediment		C	ient sample ID	BG-1	ST-20i	ST-20ii	BG-4	BG-5
(Matrix: Soil/Solid)								
		Client samp	ling date / time	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00	23-Aug-2023 00:00
Analyte	CAS Number Method/Lab	LOR	Unit	VA23C0343-001	VA23C0343-002	VA23C0343-003	VA23C0343-004	VA23C0343-005
				Result	Result	Result	Result	Result
Metals								
Nickel	7440-02-0 E440/VA	0.50	mg/kg	577	483	577	629	622
Phosphorus	7723-14-0 E440/VA	50	mg/kg	663	494	404	404	414
Potassium	7440-09-7 E440/VA	100	mg/kg	11900	10200	9440	11000	10900
Selenium	7782-49-2 E440/VA	0.20	mg/kg	0.40	0.61	0.86	0.50	0.79
Silver	7440-22-4 E440/VA	0.10	mg/kg	0.70	0.56	0.60	0.31	0.27
Sodium	7440-23-5 E440/VA	50	mg/kg	1050	414	463	615	503
Strontium	7440-24-6 E440/VA	0.50	mg/kg	65.9	66.9	64.3	54.6	47.6
Sulfur	7704-34-9 E440/VA	1000	mg/kg	8000	9500	12100	8900	8700
Thallium	7440-28-0 E440/VA	0.050	mg/kg	0.450	0.414	0.415	0.427	0.409
Tin	7440-31-5 E440/VA	2.0	mg/kg	3.2	<2.0	<2.0	<2.0	<2.0
Titanium	7440-32-6 E440/VA	1.0	mg/kg	1480	1110	1130	1340	1260
Tungsten	7440-33-7 E440/VA	0.50	mg/kg	8.09	5.50	7.28	6.25	4.25
Uranium	7440-61-1 E440/VA	0.050	mg/kg	0.885	0.732	0.755	0.719	0.682
Vanadium	7440-62-2 E440/VA	0.20	mg/kg	96.6	76.1	77.4	89.4	86.0
Zinc	7440-66-6 E440/VA	2.0	mg/kg	160	55.9	56.6	58.5	55.4
Zirconium	7440-67-7 E440/VA	1.0	mg/kg	7.4	7.2	6.8	7.1	5.3

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **VA23C0343** Page : 1 of 9

Client : Azimuth Consulting Group Inc. Laboratory : ALS Environmental - Vancouver

Contact : Marianna DiMauro Account Manager : Brent Mack

Address :# 218 - 2902 West Broadway Address :8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone :---- Telephone : 778-370-3279

Project: CREMP Sediment GrabsDate Samples Received: 30-Aug-2023 11:00PO: ----Issue Date: 08-Sep-2023 15:21

 C-O-C number
 : ---

 Sampler
 : Azimuth

 Site
 : ---

 Quote number
 : Q38011

Vancouver BC Canada V6K 2G8

No. of samples received :6
No. of samples analysed :5

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- Duplicate outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples ■ No Quality Control Sample Frequency Outliers occur.	
	alsglobal.com

Page : 3 of 9 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Soil/Solid

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Duplicate (DUP) RPDs								
Metals	Anonymous	Anonymous	Chromium	7440-47-3	E440	62.9 % ^{DUP-H}	30%	Duplicate RPD does not meet the DQO for this test.
Metals	Anonymous	Anonymous	Cobalt	7440-48-4	E440	145 % ^{DUP-H}	30%	Duplicate RPD does not meet the DQO for this test.
Metals	Anonymous	Anonymous	Silver	7440-22-4	E440	42.1 % DUP-H	40%	Duplicate RPD does not meet the DQO for this test.
Metals	Anonymous	Anonymous	Tin	7440-31-5	E440	97.0 % DUP-H	40%	Duplicate RPD does not meet the DQO for this test.

Result Qualifiers

Qualifier	Description
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.

Page : 4 of 9 Work Order : VA23C0343

Matrix: Soil/Solid

Analyte Group

Container / Client Sample ID(s)

Metals: Metals in Soil/Solid by CRC ICPMS

LDPE bag

BG-4

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Eval

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analysis Date

Analysis

Holding Times

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Sampling Date

Method

Extraction / Preparation

days

180

days

06-Sep-2023

days

14

days

Preparation

Holding Times

Eval

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

			Date	Rec	Actual			Rec	Actual	1
Metals : Mercury in Soil/Solid by CVAAS										
LDPE bag BG-1	E510	23-Aug-2023	06-Sep-2023	28	14	4	07-Sep-2023	28 davs	15 days	√
				days	days		51 - 3F - 3-20		,	
Metals : Mercury in Soil/Solid by CVAAS										
LDPE bag BG-4	E510	23-Aug-2023	06-Sep-2023	28	14	✓	07-Sep-2023	28 days	15 days	√
		Ů	, ,	days	days		, ,			
Metals : Mercury in Soil/Solid by CVAAS										
LDPE bag BG-5	E510	23-Aug-2023	06-Sep-2023	28	14	1	07-Sep-2023	28 days	15 days	✓
				days	days					
Metals : Mercury in Soil/Solid by CVAAS										
LDPE bag						,				
ST-20i	E510	23-Aug-2023	06-Sep-2023	28	14	✓	07-Sep-2023	28 days	15 days	✓
				days	days					
Metals : Mercury in Soil/Solid by CVAAS					ı					
LDPE bag ST-20ji	E510	23-Aug-2023	06-Sep-2023	20	14	1	07-Sep-2023	28 days	15 days	1
31-2011	2010	25-Aug-2025	00-3ер-2023	28 days	days	·	07-3ep-2023	20 days	15 days	•
Metals : Metals in Soil/Solid by CRC ICPMS							•			
LDPE bag										
BG-1	E440	23-Aug-2023	06-Sep-2023	180	14	✓	07-Sep-2023	180	16 days	✓

23-Aug-2023

E440

16 days

days

180

days

07-Sep-2023

Page : 5 of 9 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Matrix: Soil/Solid Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix: Soil/Solid					E	/aluation. × –	Holding time excee	euance,	- vvitiiiii	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Metals in Soil/Solid by CRC ICPMS										
LDPE bag										
BG-5	E440	23-Aug-2023	06-Sep-2023	180	14	✓	07-Sep-2023	180	16 days	✓
				days	days			days		
Metals : Metals in Soil/Solid by CRC ICPMS										
LDPE bag										
ST-20i	E440	23-Aug-2023	06-Sep-2023	180	14	1	07-Sep-2023	180	16 days	✓
			·	days	days		·	days		
Metals : Metals in Soil/Solid by CRC ICPMS				,						
LDPE bag				<u> </u>			<u> </u>			
ST-20ii	E440	23-Aug-2023	06-Sep-2023	180	14	✓	07-Sep-2023	180	16 days	✓
			,	days	days			days		
Dhariad Tarta Mairtan Contact la Considerate					uayo					
Physical Tests : Moisture Content by Gravimetry LDPE bag							I			
BG-1	E144	23-Aug-2023					05-Sep-2023		14 days	
BG-1	L177	25-Aug-2025					03-3ер-2023		14 days	
Physical Tests : Moisture Content by Gravimetry				<u> </u>	I	<u> </u>	1	I		
LDPE bag BG-4	E144	23-Aug-2023					05-Sep-2023		14 days	
BG-4	E144	23-Aug-2023					05-3ep-2023		14 uays	
Physical Tests : Moisture Content by Gravimetry				_						
LDPE bag	F444	00 4 0000					05.0 0000		44.1	
BG-5	E144	23-Aug-2023					05-Sep-2023		14 days	
Physical Tests : Moisture Content by Gravimetry										
LDPE bag		00.4					05.0			
ST-20i	E144	23-Aug-2023					05-Sep-2023		14 days	
Physical Tests : Moisture Content by Gravimetry										
LDPE bag										
ST-20ii	E144	23-Aug-2023					05-Sep-2023		14 days	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
LDPE bag										
BG-1	E108	23-Aug-2023	06-Sep-2023	30	14	✓	06-Sep-2023	30 days	15 days	✓
				days	days					

Page : 6 of 9 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Matrix: Soil/Solid

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Matrix. Golf/Golfu						varaation.	riolaing time excet	Judinoo ,	***************************************	riolaling
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
LDPE bag										
BG-4	E108	23-Aug-2023	06-Sep-2023	30	14	✓	06-Sep-2023	30 days	15 days	✓
				days	days					
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
LDPE bag										
BG-5	E108	23-Aug-2023	06-Sep-2023	30	14	✓	06-Sep-2023	30 days	15 days	✓
				days	days					
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
LDPE bag										
ST-20i	E108	23-Aug-2023	06-Sep-2023	30	14	✓	06-Sep-2023	30 days	15 days	✓
				days	days					
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
LDPE bag										
ST-20ii	E108	23-Aug-2023	06-Sep-2023	30	14	✓	06-Sep-2023	30 days	15 days	✓
				days	days					

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 7 of 9 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid		Evaluation	on: × = QC frequ	ency outside sp	ecification; ✓ = 0	QC frequency wit	hin specification
Quality Control Sample Type			С	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Mercury in Soil/Solid by CVAAS	E510	1119185	1	17	5.8	5.0	✓
Metals in Soil/Solid by CRC ICPMS	E440	1119186	1	17	5.8	5.0	✓
Moisture Content by Gravimetry	E144	1119188	1	17	5.8	5.0	√
pH by Meter (1:2 Soil:Water Extraction)	E108	1119187	1	17	5.8	5.0	✓
Laboratory Control Samples (LCS)							
Mercury in Soil/Solid by CVAAS	E510	1119185	2	17	11.7	10.0	✓
Metals in Soil/Solid by CRC ICPMS	E440	1119186	2	17	11.7	10.0	✓
Moisture Content by Gravimetry	E144	1119188	1	17	5.8	5.0	✓
pH by Meter (1:2 Soil:Water Extraction)	E108	1119187	1	17	5.8	5.0	√
Method Blanks (MB)							
Mercury in Soil/Solid by CVAAS	E510	1119185	1	17	5.8	5.0	✓
Metals in Soil/Solid by CRC ICPMS	E440	1119186	1	17	5.8	5.0	✓
Moisture Content by Gravimetry	E144	1119188	1	17	5.8	5.0	✓

Page : 8 of 9 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:Water Extraction)	E108 ALS Environmental - Vancouver	Soil/Solid	BC Lab Manual	pH is determined by potentiometric measurement with a pH electrode at ambient laboratory temperature (normally $20\pm5^{\circ}\text{C}$), and is carried out in accordance with procedures described in the BC Lab Manual (prescriptive method). The procedure involves mixing the dried (at <60 °C) and sieved (10mesh/2mm) sample with ultra pure water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH probe.
Moisture Content by Gravimetry	E144 ALS Environmental - Vancouver	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
Metals in Soil/Solid by CRC ICPMS	E440 ALS Environmental - Vancouver	Soil/Solid	EPA 6020B (mod)	This method is intended to liberate metals that may be environmentally available. Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI. Dependent on sample matrix, some metals may be only partially recovered, including AI, Ba, Be, Cr, Sr, Ti, Ti, V, W, and Zr. Silicate minerals are not solubilized. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. This method does not adequately recover elemental sulfur, and is unsuitable for assessment of elemental sulfur standards or guidelines. Analysis is by Collision/Reaction Cell ICPMS.
Mercury in Soil/Solid by CVAAS	E510 ALS Environmental - Vancouver	Soil/Solid	EPA 200.2/1631 Appendix (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCl, followed by CVAAS analysis.
Particle Size Analysis (Pipette) - MMER Classification	EC184E ALS Environmental - Saskatoon	Soil/Solid	Metal Mining Technical Guidance for Environmental Effects Monitoring (2012)	The particle size determination is performed by various methods to generate a Grain Size curve. The data from the curve is then used to produce particle size ranges based on the Metal Mining Effluent Regulations (MMER) classification system for Environmental Effects Monitoring.
Total Organic Carbon (Calculated) in soil	EC356 ALS Environmental - Saskatoon	Soil/Solid	CSSS (2008) 21.2	Total Organic Carbon (TOC) is calculated by the difference between total carbon (TC) and total inorganic carbon (TIC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108 ALS Environmental - Vancouver	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.

Page : 9 of 9 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Metals and Mercury	EP440	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI.
				This method is intended to liberate metals that may be environmentally available.
	ALS Environmental -			
	Vancouver			
Dry and Grind in Soil/Solid <60°C	EPP442	Soil/Solid	Soil Sampling and	After removal of any coarse fragments and reservation of wet subsamples a portion of
			Methods of Analysis,	homogenized sample is set in a tray and dried at less than 60°C until dry. The sample is
	ALS Environmental -		Carter 2008	then particle size reduced with an automated crusher or mortar and pestle, typically to
1	Saskatoon			<2 mm. Further size reduction may be needed for particular tests.

ALS Canada Ltd.

QUALITY CONTROL REPORT

Page

Work Order :VA23C0343

Vancouver BC Canada V6K 2G8

Client : Azimuth Consulting Group Inc. Laboratory : ALS Environmental - Vancouver

: Marianna DiMauro **Account Manager** : Brent Mack Contact

Address Address :# 218 - 2902 West Broadway :8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

: 1 of 10

Telephone :778-370-3279

> Date Samples Received :30-Aug-2023 11:00 **Date Analysis Commenced** :02-Sep-2023

Issue Date :08-Sep-2023 15:21

Telephone

Project : CREMP Sediment Grabs

PO C-O-C number

Sampler : Azimuth

Site Quote number :Q38011 No. of samples received : 6 No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Colby Bingham Laboratory Supervisor Saskatoon Inorganics, Saskatoon, Saskatchewan
Hedy Lai Team Leader - Inorganics Saskatoon Inorganics, Saskatoon, Saskatchewan
Ophelia Chiu Department Manager - Organics Vancouver Organics, Burnaby, British Columbia
Owen Cheng Vancouver Metals, Burnaby, British Columbia
Robin Weeks Team Leader - Metals Vancouver Metals, Burnaby, British Columbia

Page : 2 of 10 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 10 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

b-Matrix: Soil/Solid						Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Physical Tests (QC	Lot: 1119187)												
VA23C0291-001	Anonymous	pH (1:2 soil:water)		E108	0.10	pH units	11.9	11.9	0.3%	5%			
Physical Tests (QC	Lot: 1119188)												
VA23C0291-001	Anonymous	Moisture		E144	0.25	%	19.8	22.4	12.2%	20%			
Metals (QC Lot: 11	19185)				i i								
VA23C0291-001	Anonymous	Mercury	7439-97-6	E510	0.0500	mg/kg	<0.0500	<0.0500	0	Diff <2x LOR			
Metals (QC Lot: 11	19186)												
/A23C0291-001	Anonymous	Aluminum	7429-90-5	E440	50	mg/kg	34000	44500	26.7%	40%			
		Antimony	7440-36-0	E440	0.10	mg/kg	105	113	7.49%	30%			
	Arsenic	7440-38-2	E440	0.10	mg/kg	25.7	23.3	9.67%	30%				
		Barium	7440-39-3	E440	0.50	mg/kg	625	469	28.6%	40%			
	Beryllium	7440-41-7	E440	0.10	mg/kg	0.34	0.35	0.02	Diff <2x LOR				
		Bismuth	7440-69-9	E440	0.20	mg/kg	9.21	8.85	3.98%	30%			
		Boron	7440-42-8	E440	5.0	mg/kg	170	186	9.09%	30%			
		Cadmium	7440-43-9	E440	0.020	mg/kg	9.99	11.0	9.37%	30%			
		Calcium	7440-70-2	E440	50	mg/kg	137000	141000	3.03%	30%			
		Chromium	7440-47-3	E440	0.50	mg/kg	353	184	62.9%	30%	DUP-H		
		Cobalt	7440-48-4	E440	0.10	mg/kg	29.3	183	145%	30%	DUP-H		
		Copper	7440-50-8	E440	0.50	mg/kg	3720	2760	29.4%	30%			
		Iron	7439-89-6	E440	50	mg/kg	43100	49100	13.0%	30%			
		Lead	7439-92-1	E440	0.50	mg/kg	480	484	0.854%	40%			
		Lithium	7439-93-2	E440	2.0	mg/kg	24.8	30.0	18.7%	30%			
		Magnesium	7439-95-4	E440	20	mg/kg	12400	12000	3.39%	30%			
		Manganese	7439-96-5	E440	1.0	mg/kg	754	802	6.08%	30%			
		Molybdenum	7439-98-7	E440	0.10	mg/kg	22.7	25.8	12.7%	40%			
		Nickel	7440-02-0	E440	0.50	mg/kg	167	143	15.3%	30%			
		Phosphorus	7723-14-0	E440	50	mg/kg	10900	9640	12.1%	30%			
		Potassium	7440-09-7	E440	100	mg/kg	6440	5450	16.6%	40%			
		Selenium	7782-49-2	E440	0.20	mg/kg	0.30	0.36	0.06	Diff <2x LOR			
		Silver	7440-22-4	E440	0.10	mg/kg	6.81	4.44	42.1%	40%	DUP-H		
		Sodium	7440-23-5	E440	50	mg/kg	18600	16500	11.8%	40%			

Page : 4 of 10 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Sub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 111	9186) - continued										
VA23C0291-001	Anonymous	Strontium	7440-24-6	E440	0.50	mg/kg	321	314	2.08%	40%	
		Sulfur	7704-34-9	E440	1000	mg/kg	13300	13600	2.00%	30%	
		Thallium	7440-28-0	E440	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		Tin	7440-31-5	E440	2.0	mg/kg	251	87.1	97.0%	40%	DUP-H
		Titanium	7440-32-6	E440	1.0	mg/kg	254	258	1.37%	40%	
		Tungsten	7440-33-7	E440	0.50	mg/kg	3.98	4.33	8.44%	30%	
		Uranium	7440-61-1	E440	0.050	mg/kg	3.43	3.41	0.550%	30%	
		Vanadium	7440-62-2	E440	0.20	mg/kg	46.9	44.4	5.63%	30%	
		Zinc	7440-66-6	E440	2.0	mg/kg	7110	9230	25.9%	30%	
		Zirconium	7440-67-7	E440	1.0	mg/kg	1.7	3.4	1.7	Diff <2x LOR	

Qualifiers

Qualifier Description

DUP-H Duplicate results outside ALS DQO, due to sample heterogeneity.

Page : 5 of 10 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 111918						
Moisture		E144	0.25	%	<0.25	
letals (QCLot: 1119185)						
Mercury	7439-97-6	E510	0.005	mg/kg	<0.0050	
letals (QCLot: 1119186)						
Aluminum	7429-90-5	E440	50	mg/kg	<50	
Antimony	7440-36-0	E440	0.1	mg/kg	<0.10	
Arsenic	7440-38-2	E440	0.1	mg/kg	<0.10	
Barium	7440-39-3	E440	0.5	mg/kg	<0.50	
Beryllium	7440-41-7	E440	0.1	mg/kg	<0.10	
Bismuth	7440-69-9	E440	0.2	mg/kg	<0.20	
Boron	7440-42-8	E440	5	mg/kg	<5.0	
Cadmium	7440-43-9	E440	0.02	mg/kg	<0.020	
Calcium	7440-70-2	E440	50	mg/kg	<50	
Chromium	7440-47-3	E440	0.5	mg/kg	<0.50	
Cobalt	7440-48-4	E440	0.1	mg/kg	<0.10	
Copper	7440-50-8	E440	0.5	mg/kg	<0.50	
Iron	7439-89-6	E440	50	mg/kg	<50	
Lead	7439-92-1	E440	0.5	mg/kg	<0.50	
Lithium	7439-93-2	E440	2	mg/kg	<2.0	
Magnesium	7439-95-4	E440	20	mg/kg	<20	
Manganese	7439-96-5	E440	1	mg/kg	<1.0	
Molybdenum	7439-98-7	E440	0.1	mg/kg	<0.10	
Nickel	7440-02-0	E440	0.5	mg/kg	<0.50	
Phosphorus	7723-14-0	E440	50	mg/kg	<50	
Potassium	7440-09-7	E440	100	mg/kg	<100	
Selenium	7782-49-2	E440	0.2	mg/kg	<0.20	
Silver	7440-22-4	E440	0.1	mg/kg	<0.10	
Sodium	7440-23-5	E440	50	mg/kg	<50	
Strontium	7440-24-6	E440	0.5	mg/kg	<0.50	
Sulfur	7704-34-9	E440	1000	mg/kg	<1000	
Thallium	7440-28-0	E440	0.05	mg/kg	<0.050	
Tin	7440-31-5		2	mg/kg	<2.0	

Page : 6 of 10 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Sub-Matrix: Soil/Solid

Analyte	CAS Number Met	ethod	LOR	Unit	Result	Qualifier
Metals (QCLot: 1119186) - continued						
Titanium	7440-32-6 E44	440	1	mg/kg	<1.0	
Tungsten	7440-33-7 E44	440	0.5	mg/kg	<0.50	
Uranium	7440-61-1 E44	440	0.05	mg/kg	<0.050	
Vanadium	7440-62-2 E44	440	0.2	mg/kg	<0.20	
Zinc	7440-66-6 E44	440	2	mg/kg	<2.0	
Zirconium	7440-67-7 E44	440	1	mg/kg	<1.0	

Page : 7 of 10 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid			Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 1119187)											
pH (1:2 soil:water)		E108		pH units	6 pH units	100	95.0	105			
Physical Tests (QCLot: 1119188)											
Moisture		E144	0.25	%	50 %	93.2	90.0	110			
Metals (QCLot: 1119185)											
Mercury	7439-97-6	E510	0.005	mg/kg	0.1 mg/kg	106	80.0	120			
Metals (QCLot: 1119186)											
Aluminum	7429-90-5	E440	50	mg/kg	200 mg/kg	104	80.0	120			
Antimony	7440-36-0	E440	0.1	mg/kg	100 mg/kg	108	80.0	120			
Arsenic	7440-38-2	E440	0.1	mg/kg	100 mg/kg	107	80.0	120			
Barium	7440-39-3	E440	0.5	mg/kg	25 mg/kg	98.3	80.0	120			
Beryllium	7440-41-7	E440	0.1	mg/kg	10 mg/kg	91.2	80.0	120			
Bismuth	7440-69-9	E440	0.2	mg/kg	100 mg/kg	111	80.0	120			
Boron	7440-42-8	E440	5	mg/kg	100 mg/kg	87.4	80.0	120			
Cadmium	7440-43-9	E440	0.02	mg/kg	10 mg/kg	102	80.0	120			
Calcium	7440-70-2	E440	50	mg/kg	5000 mg/kg	94.1	80.0	120			
Chromium	7440-47-3	E440	0.5	mg/kg	25 mg/kg	101	80.0	120			
Cobalt	7440-48-4	E440	0.1	mg/kg	25 mg/kg	101	80.0	120			
Copper	7440-50-8	E440	0.5	mg/kg	25 mg/kg	98.8	80.0	120			
Iron	7439-89-6	E440	50	mg/kg	100 mg/kg	110	80.0	120			
Lead	7439-92-1	E440	0.5	mg/kg	50 mg/kg	103	80.0	120			
Lithium	7439-93-2	E440	2	mg/kg	25 mg/kg	91.9	80.0	120			
Magnesium	7439-95-4	E440	20	mg/kg	5000 mg/kg	108	80.0	120			
Manganese	7439-96-5	E440	1	mg/kg	25 mg/kg	104	80.0	120			
Molybdenum	7439-98-7	E440	0.1	mg/kg	25 mg/kg	103	80.0	120			
Nickel	7440-02-0	E440	0.5	mg/kg	50 mg/kg	100	80.0	120			
Phosphorus	7723-14-0	E440	50	mg/kg	1000 mg/kg	107	80.0	120			
Potassium	7440-09-7	E440	100	mg/kg	5000 mg/kg	108	80.0	120			
Selenium	7782-49-2	E440	0.2	mg/kg	100 mg/kg	102	80.0	120			
Silver	7440-22-4	E440	0.1	mg/kg	10 mg/kg	90.5	80.0	120			
Sodium	7440-23-5	E440	50	mg/kg	5000 mg/kg	108	80.0	120			
Strontium	7440-24-6	E440	0.5	mg/kg	25 mg/kg	107	80.0	120			
Sulfur	7704-34-9	E440	1000	mg/kg	5000 mg/kg	102	80.0	120			

Page : 8 of 10 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Sub-Matrix: Soil/Solid	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 1119186) - continued									
Thallium	7440-28-0	E440	0.05	mg/kg	100 mg/kg	116	80.0	120	
Tin	7440-31-5	E440	2	mg/kg	50 mg/kg	99.6	80.0	120	
Titanium	7440-32-6	E440	1	mg/kg	25 mg/kg	98.2	80.0	120	
Tungsten	7440-33-7	E440	0.5	mg/kg	10 mg/kg	94.9	80.0	120	
Uranium	7440-61-1	E440	0.05	mg/kg	0.5 mg/kg	100	80.0	120	
Vanadium	7440-62-2	E440	0.2	mg/kg	50 mg/kg	106	80.0	120	
Zinc	7440-66-6	E440	2	mg/kg	50 mg/kg	101	80.0	120	
Zirconium	7440-67-7	E440	1	mg/kg	10 mg/kg	100	80.0	120	

Page : 9 of 10 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:				Refere	nce Material (RM) Re	eport			
					RM Target	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Metals (QCLot	:: 1119185)								
·	SCP SS-2	Mercury	7439-97-6	E510	0.059 mg/kg	103	70.0	130	
Metals (QCLot	:: 1119186)								
	SCP SS-2	Aluminum	7429-90-5	E440	9817 mg/kg	113	70.0	130	
	SCP SS-2	Antimony	7440-36-0	E440	3.99 mg/kg	96.7	70.0	130	
	SCP SS-2	Arsenic	7440-38-2	E440	3.73 mg/kg	101	70.0	130	
	SCP SS-2	Barium	7440-39-3	E440	105 mg/kg	105	70.0	130	
	SCP SS-2	Beryllium	7440-41-7	E440	0.349 mg/kg	99.9	70.0	130	
	SCP SS-2	Boron	7440-42-8	E440	8.5 mg/kg	121	40.0	160	
	SCP SS-2	Cadmium	7440-43-9	E440	0.91 mg/kg	102	70.0	130	
	SCP SS-2	Calcium	7440-70-2	E440	31082 mg/kg	102	70.0	130	
	SCP SS-2	Chromium	7440-47-3	E440	101 mg/kg	118	70.0	130	
	SCP SS-2	Cobalt	7440-48-4	E440	6.9 mg/kg	105	70.0	130	
	SCP SS-2	Copper	7440-50-8	E440	123 mg/kg	98.7	70.0	130	
	SCP SS-2	Iron	7439-89-6	E440	23558 mg/kg	103	70.0	130	
	SCP SS-2	Lead	7439-92-1	E440	267 mg/kg	108	70.0	130	
	SCP SS-2	Lithium	7439-93-2	E440	9.5 mg/kg	101	70.0	130	
	SCP SS-2	Magnesium	7439-95-4	E440	5509 mg/kg	113	70.0	130	
	SCP SS-2	Manganese	7439-96-5	E440	269 mg/kg	112	70.0	130	
	SCP SS-2	Molybdenum	7439-98-7	E440	1.03 mg/kg	96.6	70.0	130	
	SCP SS-2	Nickel	7440-02-0	E440	26.7 mg/kg	104	70.0	130	
	SCP SS-2	Phosphorus	7723-14-0	E440	752 mg/kg	105	70.0	130	
	SCP SS-2	Potassium	7440-09-7	E440	1587 mg/kg	114	70.0	130	
	SCP SS-2	Sodium	7440-23-5	E440	797 mg/kg	110	70.0	130	
	SCP SS-2	Strontium	7440-24-6	E440	86.1 mg/kg	110	70.0	130	
	SCP SS-2	Thallium	7440-28-0	E440	0.0786 mg/kg	94.4	40.0	160	
	SCP SS-2	Tin	7440-31-5	E440	10.6 mg/kg	98.4	70.0	130	
	SCP SS-2	Titanium	7440-32-6	E440	839 mg/kg	125	70.0	130	

Page : 10 of 10 Work Order : VA23C0343

Client : Azimuth Consulting Group Inc.
Project : CREMP Sediment Grabs

Sub-Matrix:						Reference Material (RM) Report							
					RM Target	Recovery (%)	Recovery L	imits (%)					
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier				
Metals (QCLot: 1	119186) - continued												
	SCP SS-2	Uranium	7440-61-1	E440	0.52 mg/kg	106	70.0	130					
	SCP SS-2	Vanadium	7440-62-2	E440	32.7 mg/kg	112	70.0	130					
	SCP SS-2	Zinc	7440-66-6	E440	297 mg/kg	99.3	70.0	130					
	SCP SS-2	Zirconium	7440-67-7	E440	5.73 mg/kg	112	70.0	130					

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#			
	Page	1 of	1

_																					_
Report To					Report Fo	ormat / Distribut	tion		Serv	ice F	eque	sted ((Rush	for ro	utine a	nalysi	s subje	ect to	a∨ailal	bility)	
Company:	Azimuth Consultin	g Group			Standard	Other			● R	egular	(Stand	ard Turi	narour	id Time	s - Bus	iness [Days)				
Contact:	Marianna DiMauro				✓ PDF	✓ Excel	Digital	☐ Fax	OPI	riority (2-4 Bu	siness [Days) -	50%	Surcha	ge - Co	ontact A	LS to	Confirm	TAT	
Address:	218-2902 West Br	oadway	. :		Email 1:	mdimauro@azi	muthgroup.ca		Œ	merger	cy (1-2	Bus. C	ays) -	100%	Surcha	irge - C	Contact	ALS to	Confirm	m TAT	
	Vancouver, BC V6	K2G8			Email 2:	imcivor@azimu	ıthgroup.ca; efrai	nz@azimuthgroup	up Same Day or Weekend Emergency - Contact ALS to Confirm TAT												
Phone:	604-730-1220	Fax:			Email 3:	meadowbank.e	nvironment@agr	icoeagle.com						naly	sis Re	ques	:t				
Invoice To	Same as Report?	✓ Yes	No		Client / Pi	roject Informati	on		Ple	ase i	ndica	te belo	ow Fi	ltered	, Pres	erve	d or bo	th (F	, P, F	/P)	
Hardcopy of	Invoice with Report?	Yes	✓ No	,	Job #:	CREMP Sedim	ent Grabs	<u></u> :											-:		İ
Company:	<u> </u>		<u>,:.:</u>		PO / AFE:	<u></u>		<u> </u>					. :	· ·							
Contact:		N -			LSD:		• •	<u> </u>	1			ğ				.:.		٠.			
Address:	<u> </u>	<u> </u>					<u> </u>					£		:					·.	.	Jers
Phone:	<u> </u>	Fax:			Quote#:	Q38011			· ·	표	l	월		:							Itair
	Vork Order # b use only)	343		1	ALS Contact:	Brent Mack	Sampler:	Azimuth	tals	Moisture,	وي	LEPHS, HEPHS, MOG									Number of Containe
Sample		Sample I	dentification		• • •	Date	Time		Total Metals	ĭ	Grain size] 'S		ļ i							ğ
#	T (Tr	is description w	ill appear on the	report) :		(dd-mmm-yy)	(hh:mm)	Sample Type	Tota	T0C,	Grai	PAHs,					- 1	·: [.틀
	BG-1	-		· · · · ·		23-Aug-23	-	Sediment	Х	Х	X.						·				2
	ST-20i				::	23-Aug-23		Sediment	X	X	X							.:		- :	2
	ST-20ii					23-Aug-23	<u>-</u>	Sediment	Х	х	X.	:			-						2
	BG-4			!		23-Aug-23	-	Sediment	Х	X	X					:			\Box		2
	BG-5		Environment	al Division		23-Aug-23		Sediment	X	X	. X				:			.;	*		2
	BG-2		Vancouver Work Order	Reference		23-Aug-23	- ·	Sediment					7.1								2
		.11.11		C0343	3										, ,						
									i: :-	.:.					151 1				7 1		
					-					-			**!								
		11. 1		^[[*]]	F				·										- 1		
		17.1			 .		11	· · · · · ·	1:.	-::											
		<u> </u>	Telephone : + 1 604 :	4 ≡		:		 				•			_	-			\neg		\neg
	Special Inst		Total Pridot	233 4100	CCM	E-Freshwater A	Lauatic Life/BC	CSR - Commerci	ial/AE	Tier	1 - N	atural	l. etc) / Ha	zardo	us D	etails				
							· · · · · · · · · · · · · · · · · · ·														—
Archive BG-2	for metals analysis	<u> </u>	<u> </u>					1			:										
								Please fill in thi									-				
* *								Conditions as pr									•				
	Also provided o			S location a					rvatio	on / h					_	_					
Released by	SHIPMENT RELE		<u> </u>	Page Land		MENT RECEPTI	ON (lab use only		1/	Fig. 1		HPME			ICAT	Time	lab us		. ,		
Keleased by Marianna D <u>iN</u>		Date (dd-mmm-yy) 25-Aug-23	Time (hh-mm) 7:30	Received by	y.	Date:	Time:	Temperature:	ł	fied b	1	•	Date 30		23		Ar	7	Obser Yes / If Yes	No?	Ì
ITIGIRALINA DIN			1.00	<u> </u>															- 65	auu	υ ii

Fee Packs

GENF 20.00 Front

Appendix B-3
Fathead Minnow Toxicity Test Results (May 2023)

Toxicity Testing on Sample ST-20-ii

Sample collected May 08, 2023

Final Report

July 31, 2023

Submitted to: Azimuth Consulting Group Inc.

Vancouver, BC

i

TABLE OF CONTENTS

		Pa	ige
Signa	ature Pag	e	ii
Sum	mary		iii
1.0	Introduc	tion	1
2.0	Methods	S	1
3.0	Results		6
4.0	QA/QC		8
5.0	Reference	Ces	9
		List of Tables	
Table	e 1.	Summary of test conditions: 7-d fathead minnow (<i>Pimephales promelas</i>) survival and growth test.	3
Table	e 2.	Summary of test conditions: 96-h fathead minnow (<i>Pimephales promelas</i>) single concentration test.	
Table	e 3.	Summary of test conditions: 96-h fathead minnow (<i>Pimephales promelas</i>) pH-stabilized single concentration test	
Table	e 4.	Results: fathead minnow (<i>Pimephales promelas</i>) survival and growth test	
Table	e 5.	Results: fathead minnow (<i>Pimephales promelas</i>) survival test without and with pH adjustment	
Table	e 6.	Reference toxicant test results.	

List of Appendices

APPENDIX A – Pimephales promelas Sub-lethal Toxicity Test Data

APPENDIX B – Pimephales promelas Acute Toxicity Test Data

APPENDIX C – Chain-of-Custody Form

SIGNATURE PAGE

Report By:

Josh Baker, M.Sc., P.Chem.

Environmental Chemist

Josh Baker

Reviewed By:

Karen Lee, R.P.Bio.

Project Biologist

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

SUMMARY

Sample Information and Test Type

Sample ID	ST-20-ii
Sample collection date	May 08, 2023
Sample receipt date	May 17, 2023
Sample receipt temperature	20.9℃
	7-d fathead minnow (Pimephales promelas) survival and growth
Test types	96-h fathead minnow (Pimephales promelas) survival
rest types	96-h fathead minnow (<i>Pimephales promelas</i>) survival (with pH adjustment and stabilization)

Summary of Results

Endpoint	% v/v (95% CL)	% (Average ± SD)
Pimephales promelas (7-d)		
Survival LC50	69.1 (66.0 – 72.3)	
Biomass IC50	67.4 (60.2 – 73.5)	
Pimephales promelas (96-h)		
Survival		5.0 ± 10.0
Pimephales promelas (96-h) with pH adjustment and stabilization		
Survival		95.0 ± 5.8

LC = Lethal Concentration, IC = Inhibition Concentration, CL = Confidence Limits, SD = Standard Deviation

1.0 INTRODUCTION

Nautilus Environmental Company Inc. conducted a sub-lethal toxicity test for Azimuth Consulting Group Inc. with a sample identified as ST-20-ii. Sample ST-20-ii was collected on May 8, 2023 and delivered to the Nautilus Environmental laboratory in Burnaby, BC on May 17, 2023. The sample was transported in a 20-L plastic bucket, containing 18 L of sample, and was received at a temperature of 20.9°C. The sample already exceeded the recommended holding time for the test methods at the time of receipt at the laboratory. The sample was stored in the dark at 4 ± 2 °C prior to testing.

The sample was tested with a 7-d fathead minnow (*Pimephales promelas*) survival and growth sub-lethal toxicity test. An acute 96-h survival test with fathead minnow was also conducted. The acute test was conducted on the sample with both standard conditions and with an adjusted pH to better understand the role of pH-sensitive toxicants (i.e., ammonia) in the response of the fathead minnow.

The results of these toxicity tests are provided in this report. Copies of raw laboratory data sheets and statistical analyses for each test species are provided in Appendices A to B. The chain-of-custody form is provided in Appendix C.

2.0 METHODS

Methods for the toxicity tests are summarized in Tables 1 to 3. The sub-lethal test with fathead minnow (P. promelas) was conducted according to procedures described by Environment Canada (2011). Survival and dry weight at termination were used to estimate the median lethal concentration (7-d LC50) and concentrations which inhibited growth (7-d IC25 and IC50). Acute testing with fathead minnow was conducted according to procedures described by US EPA (2002), with survival at 96 h as the test endpoint. A pH-adjusted acute test was conducted concurrently with the standard acute test. Carbon dioxide (CO_2) was used to adjust the pH of the sample to 7.1 \pm 0.3 and maintained for the duration of the test; CO_2 is used in other acute test methods to maintain pH and reduce unionized ammonia toxicity which can occur at high pH (Environment Canada, 2008). Mixed air containing 1.0 - 1.5 % CO_2 was pumped continuously into the headspace of a semi-enclosed chamber. The sample was placed in the chamber for 60 minutes, to bring the sample into the desired pH range, prior to the addition of the organisms at test initiation. Likewise, fresh solution was placed in the chamber for 60 minutes to bring the pH within the desired range prior to being used for the solution renewal at 48-h. A laboratory control, using moderately hard

water, was also tested under the same CO₂-headspace conditions to ensure the pH-adjustment and stabilization method did not cause adverse effects to the organisms. Statistical analyses for all the tests were performed using CETIS (Tidepool Scientific Software, 2013).

Table 1. Summary of test conditions: 7-d fathead minnow (*Pimephales promelas*) survival and growth test.

Test species Pimephales promelas

Organism source Aquatic BioSystems, Fort Collins, CO

Organism age <24 hours post-hatch

Test type Static-renewal

Test duration 7 days

Test vessel 375-mL glass container

Test volume 250 mL
Test solution depth 6.5 cm

Test concentrations Seven concentrations, plus laboratory control

Test replicates 3 per treatment
Number of organisms 10 per replicate

Control/dilution water Moderately-hard reconstituted water

Test solution renewal Daily (80% renewal)

Test temperature $25 \pm 1^{\circ}\text{C}$

Feeding Twice a day with approximately 1500-2250 newly hatched brine

shrimp nauplii (Artemia sp.) in each test container

Light intensity 100 to 500 lux

Photoperiod 16 hours light / 8 hours dark

Aeration None, unless dissolved oxygen falls to <40% saturation

Temperature, dissolved oxygen, pH and conductivity measured

Test measurements daily; hardness and alkalinity of undiluted sample measured at

test initiation; survival checked daily

Test protocol Environment Canada (2011), EPS 1/RM/22

Statistical software CETIS Version 2.1.4
Test endpoints Survival and biomass

Test acceptability criteria for controls ≥80% survival; ≥250 µg mean dry weight

Reference toxicant Sodium chloride (NaCl)

Table 2. Summary of test conditions: 96-h fathead minnow (*Pimephales promelas*) single concentration test.

Test species Pimephales promelas

Organism source Aquatic BioSystems, CO
Organism age 24-48 hours post-hatch

Test type Static-renewal

Test duration 96 hours

Test vessel 375-mL glass jars

Test volume 250 mL

Test concentrations 100% (undiluted) sample, plus laboratory control

Test replicates 4 per treatment
Number of organisms 10 per replicate

Control/dilution water Moderately-hard water

Test solution renewal Once at 48 hrs
Test temperature $25 \pm 1^{\circ}$ C

Feeding Feeding Feeding 1200-

2250 newly hatched brine shrimp (Artemia nauplii) per 10 fish

Light intensity 100 to 500 lux

Photoperiod 16 hours light / 8 hours dark

Aeration None

Test measurements pH, conductivity, dissolved oxygen and temperature measured

daily; survival checked daily

Test protocol USEPA (2002), EPA-821-R-02-012

Statistical software CETIS Version 2.1.4
Test endpoints Survival (96-hour %)

Test acceptability criteria for controls ≥90% survival

Reference toxicant Copper (added as CuCl₂)

Table 3. Summary of test conditions: 96-h fathead minnow (*Pimephales promelas*) pH-stabilized single concentration test.

Test species Pimephales promelas

Organism source Aquatic BioSystems, CO
Organism age 24-48 hours post-hatch

Test type Static-renewal

Test duration 96 hours

Test vessel 375-mL glass jars

Test volume 250 mL

Test concentrations 100% (undiluted) sample with CO2-supplementation to

headspace, plus laboratory control

Test replicates 4 per treatment
Number of organisms 10 per replicate

Control/dilution water Moderately-hard water

Test solution renewal Once at 48 hrs

Test temperature $25 \pm 1^{\circ}\text{C}$

Feeding Fed upon arrival and once on day 2 with approximately 1500-

2250 newly hatched brine shrimp (Artemia nauplii) per 10 fish

Light intensity 100 to 500 lux

Photoperiod 16 hours light / 8 hours dark

Aeration None

Test measurements pH, conductivity, dissolved oxygen and temperature measured

daily; survival checked daily

Test protocol USEPA (2002), EPA-821-R-02-012

Statistical software CETIS Version 2.1.4
Test endpoints Survival (96-hour LC50)

Test acceptability criteria for controls ≥90% survival

Reference toxicant Copper (added as CuCl₂)

3.0 RESULTS

Results of the sub-lethal toxicity test are summarized in Table 4. Adverse effects on survival and biomass of the fathead minnow resulted in LC50 and IC50 estimates of 69.1 and 67.4% (v/v), respectively. A large majority of the mortalities were observed to occur in the first 96 hours of the 7-d test.

Results of the acute toxicity tests are summarized in Table 5. The unadjusted sample, with an average pH of 7.6 during the exposure, resulted in 5.0% survival at 96 h. In contrast, pH adjustment and stabilization resulted in an average pH of 7.0 during the exposure and increased the survival to 95.0% at 96 h.

Table 4. Results: fathead minnow (*Pimephales promelas*) survival and growth test.

Consontration (9/1/4)	Mean ± SD			
Concentration (%v/v)	7-d Survival (%)	7-d Biomass (mg)		
Laboratory Control	100 ± 0.0	0.70 ± 0.05		
1.56	100 ± 0.0	0.74 ± 0.01		
3.12	100 ± 0.0	0.89 ± 0.01		
6.25	100 ± 0.0	0.76 ± 0.02		
12.5	100 ± 0.0	0.75 ± 0.03		
25	96.7 ± 6.0	0.75 ± 0.06		
50	100 ± 0.0	0.68 ± 0.11		
100	0.0 ± 0.0	0.0 ± 0.00		
Test endpoint				
(% v/v)				
LC50 (95% CL)	69.1 (66.0 – 72.3)			
IC25 (95% CL)		55.2 (46.5 – 62.9)		
IC50 (95% CL)		67.4 (60.2 – 73.5)		

SD = Standard Deviation, LC = Lethal Concentration, IC = Inhibition Concentration, CL = Confidence Limits

Table 5. Results: fathead minnow (*Pimephales promelas*) survival test without and with pH adjustment.

Concentration (% v/v)	96-h Survival (%) Mean ± SD		
Laboratory Control	100 ± 0.0		
100	5.0 ± 10.0		
Laboratory Control with pH adjustment	97.5 ± 5.0		
100 with pH adjustment	95.0 ± 5.8		

SD = Standard Deviation

4.0 QA/QC

The health history of the test organisms used in the exposure was acceptable and met the requirements of the Environment Canada and USEPA protocols. The tests met all control acceptability criteria and water quality parameters remained within ranges specified in the protocol throughout the tests. Uncertainty associated with the tests are best described by the standard deviation around the mean and/or the confidence intervals around the point estimates. The samples were received and tested outside of the recommended holding times for the tests.

Results of the reference toxicant tests conducted during the testing program are summarized in Table 6. Results for these tests fell within the range for organism performance of the mean and two standard deviations, based on historical results obtained by the laboratory with these tests. Thus, the sensitivity of the organisms used in these tests was appropriate. The reference toxicant tests were performed under the same conditions as those used for the sample.

Table 6. Reference toxicant test results.

Test Species	Endpoint	Historical Mean (2 SD Range)	CV (%)	Test Date	
P. promelas	Survival (7-d LC50): 4.8 g/L NaCl	4.8 (3.6 – 6.5)	15	May 19, 2023	
	Biomass (7-d IC25): 4.3 g/L NaCl	4.1 (3.2 – 5.3)	13		
P. promelas	Survival (96-h LC50): 84.5 μg/L Cu	154.0 (64.1 – 370)	46	June 15, 2023	

SD = Standard Deviation, CV = Coefficient of Variation, LC = Lethal Concentration, IC = Inhibition Concentration

5.0 REFERENCES

- Environment Canada. 2008. Procedure for pH stabilization during the testing of acute lethality of wastewater effluent to rainbow trout. Environmental Protection Series. Report EPS 1/RM/50. Environment Canada, Science and Technology Branch, Environmental Science and Technology Centre, Ottawa, ON.
- Environment Canada. 2011. Biological test method: test of larval growth and survival using fathead minnows. Environmental Protection Series, Report EPS 1/RM/22, February 2011. Environment Canada, Environmental Protection, Conservation and Protection, Ottawa, ON. 73 pp.
- USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. EPA-821-R-02-012.
- Tidepool Scientific Software. 2021. CETIS comprehensive environmental toxicity information system, version 2.1.4 Tidepool Scientific Software, McKinleyville, CA. 303 pp.

APPENDIX A – Pimephales promelas Sub-lethal Toxicity Test Data

Fathead Minnow Test Summary Sheet

(7-d Pimephales promelas Survival and Growth Test)

	()		·	
Client: Azinul Work Order No.: 13087	th (onsulking Group Ltd.	Start Tes	: Date/Time: Mo, (st Species: Ppon	9,2023/13:00 elas
Sample Date: Date Received: Sample Volume: Dilution Water (initial water) Type: Temperature (°C) pH Dissolved Oxygen (mg/L) Hardness (mg/L CaCO ₃) Alkalinity (mg/L CaCO ₃) Test Organism Informates	Noderakly, Hard Wales 14.0 7.9 8.2 98 68 tion: OS1923 Aqualic Biosystems, CO <244 23.0 <3°C/day	incidence of any other signs of aty 2) the average d attain 250 ug wh WQ Ranges: T (°C) = 25 ± 1; Mortality prior to test initial Swim bladder inflated at Breeding stock mortality prior to test initiation (%): Breeding stock mortality Incidence of disease:	d if: I solutions, the combin mortalities, or fish sho ypical swimming behaving weight of the surviving en the fish are dried ar DO (mg/L) = 3.3 to 8.4 ation: test initiation? (Y/N) during the week	wing loss of equilibrium or vior, is >20% ng control fish does not not weighed. 4; pH = 6.5 to 8.5
7-d IC50 (95% CL): Survival: Reference Toxicant Mea Biomass:		4.8(3.6 - 6.	2)	[5 CV (%)
Reference Toxicant Mea Test Results:	in and Historical Range:		NaCl (g/L)	13CV (%)
LC5	25 % (v/v) (95% CL) 50 % (v/v) (95% CL) 25 % (v/v) (95% CL) 50 % (v/v) (95% CL)	Survival 	55.2(35.4	10mass - (0.9) (46:5-6), (6.73.5)

Reviewed by: + M

FMM

Date reviewed: JUNU 16/73

7-d Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client:	Azimulh Consulting Group 4	Start Date & Time: May 19, 2023 / 13:00
Sample ID:	ST-20-)(Stop Date & Time: May 26 2023 / 12:00
Work Order #:	230877	CER #:
		Test Species: Pimephales promelas

% (V/V)							Da	ays						,
Concentration	0		1		2		3		4		5		6	7
Chrl	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	74.0	25.0	25.0	24.5	24.5	24.5	25.0	24.5	25.0	24.5	25.0	25.0	25.0	25.0
DO (mg/L)	32	7.2	7.9	6.6	8.0	5.5	7.9	4.5	7.9	5.4	7.9	4.6	7.9	4.6
pH	7.0	7.8	9.0	7.8	8.1	7.5	80	7.4	8.0	7.4	8.0	7.3	8.0	7.3
Cond. (µS/cm)	346	34	6	35	-	34	7	34	7	3,	17	34	8	3438
Initials	Pin	68	น	BA	T-	PY	4	P	M	PY	ια	PY	4	pxy

							Da	ays						
Concentration	0		1		2		3 4		4	5		6		7
1.56	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	25.0	25.5	25.0	24.5	24.5	24.5	24.5	25.0	24.5	25.0	25.0	2550	25.0
DO (mg/L)	8.7	63°	7.6	6.4	7.8	16/15.4	8.0	5.1	7.9	5.9	2.0	4.8	7-8	4.9
рН	7.9	7.6	7.8	7.7	8.0	7.5	8.0	7.5	8-1	7.5	8-1	7.3	7.9	7.4
Cond. (µS/cm)	248	385	8	40	2	38	g	38	8	30	P	38	9	419
Initials	Pya	68	Λ	BA	~	PY		PYI	и	Py	h	P	M	PYLL

							Da	ays						
Concentration	0		1		2	,	3		4		5		6	7
12.5	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.5	250	25.5	25.0	25.0	24.5	24.5	24.5	25.0	24.5	25.0	25.0	25.0	25.0
DO (mg/L)	8.1	7.3	7.6	6.5	7.6	rs 84.	7.9	5.0	7.9	6.0	0.8	Sa	7.8	5.2
рН	79	7.9	7.9	7.8		7.5	8.1	7.5	8.0		8.0	7.5	8.0	7.5
Cond. (µS/cm)	631	62	.8	63	59	63	8	63	4	64	1	66	14	669
Initials	Ph	6	м	BAY		Pyl	1	PYV	1	PAR	1	P	in	PXY

						Da	ys						
0		1		2		3		4		5	(5	7
init.	old	new	old	news	old	new	old	new	old	new	old	new	final
25.5	25:0	25.5	25.0	25.0									
7.9	7.3	7.9	7.1	7/1									/
7.6	0.8	7.8	8.0	2330									
2420	241	W	243	15	1		/	/	/				
PYR	6 ₃₁	1	BAN	_	6						/	/	
	25.5 7.9 7.6 2420	25.5 250 7.9 7.3 7.6 8.0 2420 241	25.5 250 25.5 7.9 7.3 7.9 7.6 8.0 7.8 2420 2400	25.5 250 25.5 25.0 7.9 7.3 7.9 7.1 7.6 80 7.8 8.0 2420 2400 241 Proc 6m BAT	25.5 250 25.5 25.0 25.0 7.9 7.3 7.9 7.1 7/1 7.6 8.0 7.8 8.0 2.3 2420 2400 2425 PM GM BAT	25.5 250 25.5 25.0 25.0 7.9 7.3 7.9 7.1 71 7.6 80 7.8 8.0 2420 2420 2400 2425	0 1 2 3 init. old new old new old new 25.5 250 25.5 25.0 25.0 / 7.9 73 7.9 7.1 7/ 1.6 80 7.8 8.0 25.5 2420 2400 2415 FYM GM BATT	0 1 2 3 init. old new old new old new old 25.5 250 25.5 25.0 25.0 25.0 7 7.9 73 7.9 7.1 7/1 7.6 80 7.8 8.0 135 2420 2400 2425 PYM 634 BATT	0 1 2 3 4 init. old new old new old new old new 25.5 250 25.5 25.0 25.0 25.0 / / 7.9 73 7.9 7.1 7/1 3.6 80 7.8 8.0 25.5 2420 2420 2425	0 1 2 3 4 init. old new old new old new old new old 25.5 250 25.5 25.0 25.0 25.0 25.0 25.0	0 1 2 3 4 5 init. old new old new old new old new old new 25.5 250 25.5 25.0 25.0 25.0	0 1 2 3 4 5 (init. old new old	0 1 2 3 4 5 6 init. old new ol

Thermometer: CERHI DO meter/probe: 4 14 pH meter/probe: 4 14 Conductivity meter/probe: 4 14 Conductivity meter/probe: 4 14 Analysts: PM, 604,

	Control	ST-20-11	100%	
Hardness*	98	580		
Alkalinity*	63	110		
* mg/L as CaCO3				

Sample Description:

Clear, pale green odourless liquid w/ ten green particulates

Comments: O consisted after recallibrating the instrument

7-d Fathead Minnow Toxicity Test Daily Survival

Client: Azimuth Consulting Group 4d.
Sample ID: ST-20-11
Work Order #: 230877

Start Date & Time: May 19, 2023 / 13:00
Stop Date & Time: May 26, 2023 / 13:00
Test Species: Pimephales promelas

Concentration				Day of T	est - Per	cent Surv	/ival		
% (v/v)	Rep	1	2	3	4	5	6	7	Comments
Cl-rl	Α	100	100	100	100	100	100	100	
	В	I		-		1	ı		
	С								
1.56	Α								
	В								
	С			or and a second				1	
3.12	Α								
	В								
	С							- 1	
6.25	Α								
	В								
	С								
12.5	Α								
	В						e.		
	С								
25	Α								
	В			and the second s					
	С						1	90	
50	Α							ool	
	В							(
	С	*	1	J	V	1		y	
100	Α	80	O						
	В	70							
	С	q0	1	1m		1	1		
Tech Initials		684	BAM	P	pm	PYh	My	634	

Leg	0	n	d	
Leg	C		u	

- 1- Fish dying
- 2- Fish showing loss of equilibrium
- 3- Fish showing atypical swimming

Test solution de Comments:		n l.	 nornal	at kil	ternination				_
Reviewed by:	Emm				_	Date reviewed:	June	16/73	

Fathead Minnow Toxicity Test Data Sheet

				Dry V	Veight Data		-	
Client:	Azimulh	Consulting	Group			Start Date & Time:	May 19,202	3/13:00
Sample ID:	ST-20-1	,	1		Termi	Start Date & Time: nation Date & Time:	May 26, 20	13/1100/ 12:00
Work Order No.	: 23087	7				Balance ID:	Bal - 6	- f-
						Oven ID :	2	
	T	1	Arel		1			
Concentration	Rep	Pan No.	No. alive	Initials	Pan weight (mg)	Pan + organism (mg)	No. weighed	Initials
Control	Α	1	(O	684	1028.22	10 35.76	10	KV / AD
	В	Z		1	1020.50	1027.97		į
	С	3			1018.62	Po. C50j		
1-1	Α	4			1028.54	(036.08		
1.56	В	5			1028.98	1036-30		
	С	6			1023.40	1030.83		
	Α	7		9	1021.40	1030-30		
3.12	В	8		and the second	994.29	1003.33		
	С	9		and the second	998.36	11.F00J		
	Α	10			1005.74	1013.18		
6.25	В	(1			998.83	1006.65		
	С	12			998-80	1006.40		
	Α	13		-	1001.70	1009.52		
12.5	В	14			1003.13	1010.58		
	С	15			998.12	1005.79		
	Α	16			999.72	1006.91		
25	В	17	+			, 1040.15	1	
	С	18	ap		1036.636 0103554	1042.03	9	
	Α	19	100		1018.59	1026.43	10	
50	В	20		· Paragraphic	1038.59	1045.50		
	С	21	1		1000.56	1006.21	1	
100	Α	22	0		1009.12	_	0	
100	В	23			991.26	_	[
	С	24	1	1	1015.00	_	4	
Date/time pan pla oven:	aced in	May 18/2	14:00		() 1032 Date/time pan	+ organisms placed in	4.85 Hay .26/23	e 1245h
Date/time pan refrom oven:	moved	May 20	123 E 1100		Date/time pan	+ organisms removed from oven:		23 @ 1245h.
Comments:	10"6	Re-we	ighs Pa	ans.	1036-15	Pon 71 17	7: 103	7:7

Reviewed by:

Date Reviewed: EMPL 16/33

CETIS Summary Report

Report Date: Test Code/ID: 02 Aug-23 08:40 (p 1 of 2) 230877 / 01-4884-1478

													14/0
Fathead Minn	ow 7-d Larval	Survival	and Growt	h Test						Na	utilus Envii		
Batch ID:	05-7918-5835		Test Type:	Growth-Surviva	l (7d)			Ana	yst: Pi	erre Koelich			
Start Date:	19 May-23 13:		Protocol:	EC/EPS 1/RM/	22			Dilu	ent: M	od-Hard Synth	netic Water		
	26 May-23 12:	00	Species:	Pimephales pro	melas			Brin	e:				
Test Length:	6d 23h		Taxon:	Actinopterygii				Sou	rce: Ad	quatic Biosyst	ems, CO	Age:	<24
	10-9072-2507		Code:	41031ACB				Proj	ect:				
	08 May-23 17:		Material:	Water Sample				Sou	rce: Az	zimuth			
	17 May-23 09:		CAS (PC):					Stat	ion: S	Г-20-іі			
Sample Age:	10d 20h (20.9	°C)	Client:	Azimuth									
Point Estimat													
A second second second second second	Endpoint 7d Survival Ra			Estimate Metho	od		✓	Level	%	95% LCL	CHALLES SHOW SHOWING ACTU	TU	
	Mean Dry Bior			man-Kärber	2011			EC50	69.1	66	72.34	1.4	
17-2074-1407	Mean Dry Bior	nass-mg	Linea	r Interpolation (IC	SPIN)			IC15	51	19.38	59.06	2	
								IC20 IC25	53.07	35.44	60.94	1.9	
								IC25	55.22 62.21	46.46 54.27	62.88	1.8	
								IC40	67.35	54.27 60.15	69.06 73.49	1.6 1.5	
11-6527-3877	Mean Dry Wei	aht-ma	Linea	r Interpolation (IC	PINI		√	IC15					
	2.,	J9	Linda	i interpolation (It	21 114)		√ √	IC15	>50 >50			<2 <2	
							√	IC25	>50			<2	
							√	IC40	>50			<2	
								IC50	>50			<2	
7d Survival R	ate Summary							-				_	
Conc-%	Code	Coun	t Mean	95% LCL	95% UCL	Min		Max	Std Err	Std Dev	CV%	%Éfi	fect
0	LC	3	1.000	0 1.0000	1.0000	1.0000		1.0000	0.0000	0.0000	0.00%	0.00	
1.56		3	1.000	0 1.0000	1.0000	1.0000		1.0000	0.0000	0.0000	0.00%	0.00	
3.12		3	1.000	0 1.0000	1.0000	1.0000		1.0000	0.0000	0.0000	0.00%	0.00	
6.25		3	1.000	0 1.0000	1.0000	1.0000		1.0000	0.0000	0.0000	0.00%	0.00	
12.5		3	1.000	0 1.0000	1.0000	1.0000		1.0000	0.0000	0.0000	0.00%	0.00	%
25		3	0.966	7 0.8232	1.1100	0.9000		1.0000	0.0333	0.0577	5.97%	3.33	%
50		3	1.000	0 1.0000	1.0000	1.0000		1.0000	0.0000	0.0000	0.00%	0.00	
100	***************************************	3	0.000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		100.	00%
	mass-mg Sum	mary											
Conc-%	Code	Coun			95% UCL			Max	Std Err	Std Dev	CV%	%Eff	fect
1.56	LC	3 3	0.699		0.8239	0.647		0.747	0.02896		7.17%	0.00	
3.12			0.743		0.7703	0.732		0.754	0.00634		1.48%	-6.24	
		3	U 00U		0.0057						1.63%		29%
		3	0.889		0.9257	0.875		0.904	0.00837			-27.2	
6.25	a	3	0.762	0.7146	0.8094	0.875 0.744		0.782	0.01102	0.01908	2.50%	-8.96	6%
6.25 12.5	N.	3 3	0.762 0.748	0.7146 0.667	0.8094 0.829	0.875 0.744 0.717		0.782 0.782	0.01102 0.01882	0.01908 0.0326	2.50% 4.36%	-8.96 -6.96	6% 6%
6.25 12.5 25	g	3 3 3	0.762 0.748 0.750	0.7146 0.667 7 0.6123	0.8094 0.829 0.8891	0.875 0.744 0.717 0.718		0.782 0.782 0.815	0.01102 0.01882 0.03217	0.01908 0.0326 0.05572	2.50% 4.36% 7.42%	-8.96 -6.96 -7.34	5% 5% 1%
6.25 12.5 25 50	e.	3 3	0.762 0.748 0.750 0.68	0.7146 0.667 7 0.6123 0.407	0.8094 0.829 0.8891 0.953	0.875 0.744 0.717 0.718 0.565		0.782 0.782 0.815 0.784	0.01102 0.01882 0.03217 0.06346	0.01908 0.0326 0.05572 0.1099	2.50% 4.36% 7.42% 16.16%	-8.96 -6.96 -7.34 2.76	5% 5% 1% %
6.25 12.5 25 50 100	ight-ma Summ	3 3 3 3 3	0.762 0.748 0.750	0.7146 0.667 7 0.6123	0.8094 0.829 0.8891	0.875 0.744 0.717 0.718		0.782 0.782 0.815	0.01102 0.01882 0.03217	0.01908 0.0326 0.05572	2.50% 4.36% 7.42%	-8.96 -6.96 -7.34	5% 5% 1% %
6.25 12.5 25 50 100 Mean Dry Wei	ight-mg Summ Code	3 3 3 3 3	0.762 0.748 0.750 0.68 0	0.7146 0.667 7 0.6123 0.407 0	0.8094 0.829 0.8891 0.953	0.875 0.744 0.717 0.718 0.565 0		0.782 0.782 0.815 0.784	0.01102 0.01882 0.03217 0.06346 0	0.01908 0.0326 0.05572 0.1099 0	2.50% 4.36% 7.42% 16.16%	-8.96 -6.96 -7.34 2.76 100.	6% 6% 1% % 00%
6.25 12.5 25 50 100 Mean Dry Wei Conc-%	Code	3 3 3 3 3 mary	0.762 0.748 0.750 0.68 0	0.7146 0.667 7 0.6123 0.407 0	0.8094 0.829 0.8891 0.953 0	0.875 0.744 0.717 0.718 0.565 0		0.782 0.782 0.815 0.784 0	0.01102 0.01882 0.03217 0.06346 0	0.01908 0.0326 0.05572 0.1099 0	2.50% 4.36% 7.42% 16.16% 	-8.96 -6.96 -7.34 2.76 100.0	6% 6% 1% % 00%
6.25 12.5 25 50 100 Mean Dry Wei Conc-%		3 3 3 3 3 mary Coun	0.762 0.748 0.750 0.68 0 t Mean 0.699	0.7146 0.667 7 0.6123 0.407 0 95% LCL 3 0.5747	0.8094 0.829 0.8891 0.953 0 95% UCL 0.8239	0.875 0.744 0.717 0.718 0.565 0 Min		0.782 0.782 0.815 0.784 0 Max 0.747	0.01102 0.01882 0.03217 0.06346 0 Std Err 0.02896	0.01908 0.0326 0.05572 0.1099 0 Std Dev 0.05016	2.50% 4.36% 7.42% 16.16% CV% 7.17%	-8.96 -6.96 -7.34 2.76 100.0	6% 6% 1% 00% fect
6.25 12.5 25 50 100 Mean Dry Wei Conc-% 0 1.56	Code	3 3 3 3 3 mary Coun 3 3	0.762 0.748 0.750 0.68 0 t Mean 0.699 0.743	0.7146 0.667 7 0.6123 0.407 0 95% LCL 3 0.5747 0.7157	0.8094 0.829 0.8891 0.953 0 95% UCL 0.8239 0.7703	0.875 0.744 0.717 0.718 0.565 0 Min 0.647 0.732		0.782 0.782 0.815 0.784 0 Max 0.747 0.754	0.01102 0.01882 0.03217 0.06346 0 Std Err 0.02896 0.00634	0.01908 0.0326 0.05572 0.1099 0 Std Dev 0.05016 6 0.01099	2.50% 4.36% 7.42% 16.16% CV% 7.17% 1.48%	-8.96 -6.96 -7.34 2.76 100.0 %Eff 0.00 -6.24	6% 6% 1% 00% fect %
6.25 12.5 25 50 100 Mean Dry Wei Conc-% 0 1.56 3.12	Code	3 3 3 3 3 mary Coun 3 3 3	0.762 0.748 0.750 0.68 0 t Mean 0.699 0.743 0.889	0.7146 0.667 7 0.6123 0.407 0 95% LCL 3 0.5747 0.7157 7 0.8536	0.8094 0.829 0.8891 0.953 0 95% UCL 0.8239 0.7703 0.9257	0.875 0.744 0.717 0.718 0.565 0 Min 0.647 0.732 0.875		0.782 0.782 0.815 0.784 0 Max 0.747 0.754 0.904	0.01102 0.01882 0.03217 0.06346 0 Std Err 0.02896 0.00634 0.00837	0.01908 0.0326 0.05572 0.1099 0 Std Dev 0.05016 6 0.01099 4 0.0145	2.50% 4.36% 7.42% 16.16% CV% 7.17% 1.48% 1.63%	-8.96 -6.96 -7.34 2.76 100.1 %Eff 0.00 -6.24 -27.2	6% 6% 1% % 00% —————————————————————————————
6.25 12.5 25 50 100 Mean Dry Wei Conc- % 0 1.56 3.12 6.25	Code	3 3 3 3 3 mary Coun 3 3	0.762 0.748 0.750 0.68 0 t Mean 0.699 0.743 0.889 0.762	0.7146 0.667 7 0.6123 0.407 0 95% LCL 3 0.5747 0.7157 7 0.8536 0.7146	0.8094 0.829 0.8891 0.953 0 95% UCL 0.8239 0.7703 0.9257 0.8094	0.875 0.744 0.717 0.718 0.565 0 Min 0.647 0.732 0.875 0.744		0.782 0.782 0.815 0.784 0 Max 0.747 0.754 0.904 0.782	0.01102 0.01882 0.03217 0.06346 0 Std Err 0.02896 0.00634 0.00837 0.01102	0.01908 0.0326 0.05572 0.1099 0 Std Dev 0.05016 6 0.01099 4 0.0145 0.01908	2.50% 4.36% 7.42% 16.16% CV% 7.17% 1.48% 1.63% 2.50%	-8.96 -6.96 -7.34 2.76 100.1 %Eff 0.00 -6.24 -27.2 -8.96	5% 5% 1% % 000% fect 7% 1% 22%
6.25 12.5 25 50 100	Code	3 3 3 3 nary Coun 3 3 3	0.762 0.748 0.750 0.68 0 t Mean 0.699 0.743 0.889	0.7146 0.667 7 0.6123 0.407 0 95% LCL 3 0.5747 0.7157 7 0.8536 0.7146 0.667	0.8094 0.829 0.8891 0.953 0 95% UCL 0.8239 0.7703 0.9257	0.875 0.744 0.717 0.718 0.565 0 Min 0.647 0.732 0.875		0.782 0.782 0.815 0.784 0 Max 0.747 0.754 0.904	0.01102 0.01882 0.03217 0.06346 0 Std Err 0.02896 0.00634 0.00837	0.01908 0.0326 0.05572 0.1099 0 Std Dev 0.05016 6 0.01099 4 0.0145 0.01908 0.0326	2.50% 4.36% 7.42% 16.16% CV% 7.17% 1.48% 1.63%	-8.96 -6.96 -7.34 2.76 100.1 %Eff 0.00 -6.24 -27.2	5% 5% 1% % 000% fect % 1% 22% 6%

CETIS Summary Report

Report Date: Test Code/ID: 02 Aug-23 08:40 (p 2 of 2) 230877 / 01-4884-1478

					Test Code/ID:	230877 / 01-4884-1478
Fathead Minno	ow 7-d Larval	Survival an	d Growth T	est		Nautilus Environmental
7d Survival Ra	ite Detail				MD5: 2816D144C	761696743E17278FF80F6DB
Conc-%	Code	Rep 1	Rep 2	Rep 3		
0	LC	1.0000	1.0000	1.0000		
1.56		1.0000	1.0000	1.0000		•
3.12		1.0000	1.0000	1.0000		
6.25		1.0000	1.0000	1.0000		
12.5		1.0000	1.0000	1.0000		
25		1.0000	1.0000	0.9000		
50		1.0000	1.0000	1.0000		
100		0.0000	0.0000	0.0000		
Mean Dry Bion	nass-mg Deta	ail			MD5: B3AF40D6E	855AF24FD6E982FA6E66684
Conc-%	Code	Rep 1	Rep 2	Rep 3		
0	LC	0.704	0.747	0.647		
1.56		0.754	0.732	0.743		
3.12		0.89	0.904	0.875		
6.2 <mark>5</mark>		0.744	0.782	0.76		
12.5		0.782	0.745	0.717		
25		0.719	0.815	0.718		
50		0.784	0.691	0.565		
100		0	0	0		
Mean Dry Weig	ght-mg Detail				MD5: 6D40E1B128	34036FF4432EECFAE14D012
Conc-%	Code	Rep 1	Rep 2	Rep 3		
0	LC	0.704	0.747	0.647		
1.56		0.754	0.732	0.743		
3.12		0.89	0.904	0.875		
6.25		0.744	0.782	0.76		
12.5		0.782	0.745	0.717		
25		0.719	0.815	0.7978		
50		0.784	0.691	0.565		
100						
7d Survival Ra	te Binomials	-		2000		3
Conc-%	Code	Rep 1	Rep 2	Rep 3		
0	LC	10/10	10/10	10/10		
1.56		10/10	10/10	10/10		
3.12		10/10	10/10	10/10		
6.25		10/10	10/10	10/10		×
12.5		10/10	10/10	10/10		
25		10/10	10/10	9/10		
50		10/10	10/10	10/10		
100		0/10	0/10	0/10		

Report Date:

08 Jun-23 10:19 (p 1 of 2) 230877 / 01-4884-1478

							Test C	ode/ID:		230877 / 01	-4884-147
Fathead Minno	w 7-d Larval	Survival an	d Growth T	est					Na	utilus Envi	ronmenta
Analyzed:	19-0013-1678 08 Jun-23 10: 08 Jun-23 10:	15 An	alysis: U	d Survival Rantrimmed Spe 316D144C76	earman-Kär		Stat	IS Version: us Level: or ID:	CETISv2. 1 004-311-2		
20 0000	05-7918-5835			rowth-Surviva			Ana	yst: Pier	re Koelich		
	19 May-23 13:			C/EPS 1/RM/			Dilu	ent: Mod	-Hard Synth	etic Water	
Ending Date: 2				mephales pro	omelas		Brin	e:			
Test Length: 6	6d 23h 	Tax	kon: A	ctinopterygii			Sou	rce: Aqua	atic Biosyste	ems, CO	Age: <24
~	10-9072-2507		de: 41	1031ACB			Proj	ect:			
Sample Date: (terial: W	ater Sample			Sou	rce: Azim	nuth		
Receipt Date:	17 May-23 09:	00 CA	S (PC):				Stat	ion: ST-2	20-ii		
Sample Age:	10d 20h (20.9	°C) Cli	ent: Az	zimuth							
Spearman-Kär	ber Estimates	3									
Threshold Opti		Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL	Tox Units	95% LCL	95% UC
Control Thresho	old	0	0.00%	1.839	0.00995	69.1	66	72.34	1.4	1.4	1.5
7d Survival Ra	te Summary				Calculated	d Variate(A	/B)			Isotoni	ic Variate
Conc-%	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	LC	3	1.0000	1.0000	1.0000	1.0000	0.00%	0.00%	30/30	1.0000	0.00%
1.56		3	1.0000	1.0000	1.0000	1.0000	0.00%	0.00%	30/30	1.0000	0.00%
3.12 6.25		3	1.0000	1.0000	1.0000	1.0000	0.00%	0.00%	30/30	1.0000	0.00%
12.5		3	1.0000	1.0000	1.0000	1.0000	0.00%	0.00%	30/30	1.0000	0.00%
25		3 3	1.0000	1.0000	1.0000	1.0000	0.00%	0.00%	30/30	1.0000	0.00%
50		3	0.9667 1.0000	1.0000	0.9000	1.0000	5.97%	3.33%	29/30	0.9833	1.67%
100		3	0.0000	1.0000 0.0000	1.0000 0.0000	1.0000 0.0000	0.00%	0.00%	30/30	0.9833	1.67%
7d Survival Rat	to Dotail			0.0000	0.0000	0.0000	ARR.	100.00%	0/30	0.0000	100.00%
Conc-%		D 4		_							
0	Code LC	Rep 1	Rep 2	Rep 3							
1.56	LC	1.0000	1.0000	1.0000							
3.12		1.0000	1.0000	1.0000							
6.25		1.0000	1.0000	1.0000							
12.5		1.0000 1.0000	1.0000	1.0000							
25		1.0000	1.0000	1.0000			vr				
50		1.0000	1.0000	0.9000							
100		0.0000	1.0000 0.0000	1.0000 0.0000							
7d Survival Rat	te Binomials	**************************************						*			
Conc-%	Code	Rep 1	Rep 2	Rep 3							
0	LC	10/10	10/10	10/10			· · · · · · · · · · · · · · · · · · ·				
1 50			10/10	10/10							

10/10

10/10

10/10

10/10

10/10

10/10

0/10

10/10

10/10

10/10

10/10

10/10

10/10

0/10

10/10

10/10

10/10

10/10

9/10

10/10

0/10

1.56

3.12

6.25

12.5

25

50

100

Report Date: Test Code/ID: 08 Jun-23 10:19 (p 2 of 2)

230877 / 01-4884-1478

Fathead Minnow 7-d Larval Survival and Growth Test

Nautilus Environmental

Analyzed: Edit Date:

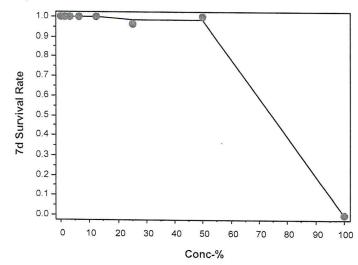
Analysis ID: 19-0013-1678 08 Jun-23 10:15

08 Jun-23 10:13

Endpoint: 7d Survival Rate

Analysis: Untrimmed Spearman-Kärber

MD5 Hash: 2816D144C761696743E17278FF80F6DB


CETIS Version:

Status Level: Editor ID:

004-311-246-8

CETISv2.1.4

Graphics

Report Date: Test Code/ID: 08 Jun-23 10:19 (p 1 of 2) 230877 / 01-4884-1478

							1	est Code/ID:		230877 / 0	1-4884-1478
Fathea	d Minn	ow 7-d Larval S	urvival and	Growth	n Test					Nautilus Env	ironmental
Analysi Analyze Edit Da	ed:	17-2874-1467 08 Jun-23 10:16 08 Jun-23 10:13	Anal	ysis:	Mean Dry Biom Linear Interpola B3AF40D6E855		A6E66684	CETIS Version Status Level Editor ID:	l:	CETISv2.1.4 1 004-311-246-8	
	ate: Date:	05-7918-5835 19 May-23 13:00 26 May-23 12:00 6d 23h	Prot	ocol: cies:	Growth-Surviva EC/EPS 1/RM/2 Pimephales pro Actinopterygii	22		Diluent: 1 Brine:	Mod-H	Koelich ard Synthetic Water c Biosystems, CO	Age: <24
Receip	Date: t Date:	10-9072-2507 08 May-23 17:30 17 May-23 09:00 10d 20h (20.9°	CAS	erial: (PC):	41031ACB Water Sample Azimuth				Azimut ST-20-		
Linear X Trans		olation Options Y Transform	Seed	d	Resamples	Exp 95% CL	Method				
Log(X+	1)	Linear	1167	357	200	Yes	Two-Point	Interpolation			
Point E	stimat	es								***************************************	
Level	%	95% LCL	95% UCL	Tox U	nits 95% LCL	95% UCL					
IC15 IC20 IC25 IC40 IC50	51 53.07 55.22 62.21 67.35	2 46.46 1 54.27	59.06 60.94 62.88 69.06 73.49	2 1.9 1.8 1.6 1.5	1.7 1.6 1.6 1.4 1.4	5.2 2.8 2.2 1.8 1.7					1.7 101 101
				VOT-116-1							

Mean Dry Bio	mass-mg Sum	nmary			Calcul	ated Variat	е		Isotor	ic Variate
Conc-%	Code	Count	Mean	Median	Min	Max	CV%	%Effect	Mean	%Effect
0	LC	3	0.6993	0.704	0.647	0.747	7.17%	0.00%	0.7773	0.00%
1.56	*	3	0.743	0.743	0.732	0.754	1.48%	-6.24%	0.7773	0.00%
3.12		3	0.8897	0.89	0.875	0.904	1.63%	-27.22%	0.7773	0.00%
6.25		3	0.762	0.76	0.744	0.782	2.50%	-8.96%	0.762	1.97%
12.5		3	0.748	0.745	0.717	0.782	4.36%	-6.96%	0.7493	3.60%
25		3	0.7507	0.719	0.718	0.815	7.42%	-7.34%	0.7493	3.60%
50		3	0.68	0.691	0.565	0.784	16.16%	2.76%	0.68	12.52%
100		3	0	0	0	0		100.00%	0	100.00%

Mean Dry Biomass-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3
0	LC	0.704	0.747	0.647
1.56		0.754	0.732	0.743
3.12		0.89	0.904	0.875
6.25		0.744	0.782	0.76
12.5		0.782	0.745	0.717
25		0.719	0.815	0.718
50		0.784	0.691	0.565
100		0	0	0

Report Date: Test Code/ID: 08 Jun-23 10:19 (p 2 of 2) 230877 / 01-4884-1478

Fathead Minnow 7-d Larval Survival and Growth Test

Nautilus Environmental

Analysis ID: 17-2874-1467 Analyzed:

08 Jun-23 10:16

Endpoint: Mean Dry Biomass-mg Analysis: Linear Interpolation (ICPIN)

Status Level:

CETISv2.1.4 1

Edit Date: 08 Jun-23 10:13


MD5 Hash: B3AF40D6E855AF24FD6E982FA6E66684

Editor ID:

CETIS Version:

004-311-246-8

Graphics

Analyst: PYK

APPENDIX B – Pimephales promelas Acute Toxicity Test Data

Acute Fathead Minnow Test Summary Sheet

Client: Azmuth	Consulting Group Hol	Start Date/Time: June 15,2013 / 12	:30
Work Order No.: 2311	37,231138	Test Species: Pimephales promelas	
Sample Information:		,	
Sample ID: ST - 20 Sample Date: Now S Date Received: May I Sample Volume: A + + + + + + + + + + + + + + + + + +	, 2023 1, 2023		
Type: Hardness (mg/L CaCO ₃): Alkalinity (mg/L CaCO ₃):	node with DI waken 14w - A-BI G2 56		
Test Organism Informati	on:		
Batch No.: 061423 Source: Açuchic Bio: Age: 2 days	yslens, Co		
Cu Reference Toxicant I	Results:		
Reference Toxicant ID: Stock Solution ID: Date Initiated: 96-hr EC50 (95% CL):	PP-25-30 236,02 June 15,2023 84.5 (69.4 - 100.	i) my/L Cy	
Survival: Reference Toxicant Mear	n (2SD Range): Cu (μ/L)	: 154.0(64.1-370-0) CV (%): 4(6
Test Results:			
Sample ±2 SD(%) The LOE 100% (V/V) and links		Survival (%) \$\frac{10.0}{5.0\pm 0.5.3}	
ph shah zahan (%) Reviewed by:	りし	Date reviewed: 1091	ひ

96 Hour Acute Toxicity Test Data Sheet Water Quality and Survival Data

Client:	Azimuth Consulting Group 41.	
Sample ID:	- CT - 20 - ii	
Work Order No.:	231137-231138	

Start Date & Time: Ton 15,2023 / 12:30

End Date & Time: Ton 19,003 / 12:30

Test Organism: Permetor

Conc.	Rep		Su	rvival			T	emper	ature ((°C)			Disso	lved o	xyger	(mg/l	L)			ķ	Н			C	onductivity	(µS)
		24	48	72	96	0	24		48	72	96	0	24		48	72	96	0	24		48	72	96	0	48	96
						28:0		old	new					old	new					old	new				new	
Control	Α	01	10	10	10	25.0	25.5	25.5	25.5	25.5	25.5	7.8	7.1	7.0	7.9	6.9	7.0	7.6	7.5	7.4	7.0	7.2	7.3	318	321	329
	В																									
	С	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	1,1,	$\perp \perp$	\perp																					
	D	L	V	V	5																					
100	Α	8	14	2	2	25.0	25.5	25.5	35.5	25.5	25.5	2.5	7.1	7.0	7.9	6.1	3.9	7.8	7.8	7.7	7.6	7.5	7.4	2420	2430	2490
	В	4	0	0	0																					
	С	2	0	11	11													<u> </u>			7					
	D	6	0	1	b															ane						
Control (1)	Α	10	10	q	9	26,0	25.5	25.5	25.5	25.5	25.5	7.7	7.2	6.9	7.8	6.7	6.9	7-1	7.2		7.4	6.9	6.8	318	321	322
(pH stab.)	В	\vdash	1	10	10															6.8						
	С	lacksquare	44	44	\vdash																					
	D	\vdash	11	1	\vdash		<u></u>											6			6					
100 0	A	$oxed{oxed}$	\vdash	1	1	25.5	22.2	25.5	25.5	25.5	26,0	8.1	6.6	6.5	7.8	6.2	6.2	7.4	68	6.8	7.4	6.9	6.8	2430	2340	2420
(ph shob)	В		Н_	9	9											î.									*	
	С		Ц.	10	10				- 0																	
	D	J	4	9	9											4							F F			
	A		<u> </u>	-																						
	В			-																						
	_ <u>C</u> _	<u> </u>	<u> </u>		 												-						FE			
	D		-		-											LE.										+
	_ <u>A</u> _				-																					
	В			-		100																				1
	C D			-									100									1.4				
Technician Initials	ט	Dyn	TIM	buc	PY	Pyn	Pyh	IM		bur	Pyn	pyn	PYIA	In	1	bu	PV.	pyn	Q.M	TIC	12 (21)	ruc	PY	Pyn	Im	PM

Sample Description	on: Clea	ar, pale green.	odorless liquid	w/few	green u	oarticulates							
Comments:	O Contain	ed in a semi	-enclosed ev	wironmen	7 witl	h 1.0 - 1.59	6 CO2+1	nixed ai	r conti	nuously	edded	to 1	headrogre
	@ sample	sinced in CO2 ,	chamber for l	so minutes	prior t	ouse in te	sit					9	7
Reviewed by:	KJU	"		Market St.	1			Reviewed: _	July	27/2	-3		

CETIS Summary Report

Report Date:

02 Aug-23 08:44 (p 1 of 1)

report bute.	02 Mag-20 00.44 (p 1 01
Test Code/ID:	231137-231138 / 17-4349-37

							i est ct	deno.	231137-	231130717	-4345-3734
Fathead Minnow	96-h Acute	Survival To	est						Na	utilus Envi	ronmental
Batch ID: 15	-8484-4100	Te	st Type:	Survival (96h)			Anal	vst: Pier	re Koelich		
Start Date: 15	Jun-23 12:3	0 Pr	otocol:	EPA/821/R-02-	-012 (2002)		Dilue		I-Hard Synth	netic Water	
Ending Date: 19	Jun-23 12:3	0 Sp	ecies:	Pimephales pr	omelas		Brine		n		
Test Length: 96	ih	Ta	kon:	Actinopterygii			Sour	ce: Aqu	atic Biosyst	ems, CO	Age: 2d
Sample ID: 10	-9072-2507	Co	de:	41031ACB			Proje	ect:			
Sample Date: 08	May-23 17:3	80 M a	terial:	Water Sample			Sour		nuth		
Receipt Date: 17	May-23 09:0	00 CA	S (PC):				Stati	on: ST-	20-ii		
Sample Age: 37	'd 19h (20.9	°C) Cli	ent:	Azimuth							
Single Comparis	on Summar	у									
	ndpoint		Com	parison Method	l		P-Value	Comparis	on Result		s
04-9430-5785 96	sh Survival Ra	ate	Wilco	xon Rank Sum	Two-Sample	Test	0.0143	99% failed	d 96h surviv	al rate	1
11-8788-5413 96	sh Survival Ra	ate	Equa	l Variance t Two	-Sample Tes	st	0.2685	100% pas	sed 96h sur	vival rate	1
Test Acceptabili	ty					TAC I	_imits	.,			
Analysis ID Er	ndpoint		Attrib	oute	Test Stat	Lower	Upper	Overlap	Decision		
04-9430-5785 96	h Survival Ra	ate	Contr	ol Resp	1	0.9	<<	Yes	Passes C	riteria	
11-8788-5413 96	sh Survival Ra	ate	Contr	ol Resp	0.975	0.9	<< .	Yes	Passes C	riteria	
96h Survival Rat	e Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	LC	4	1.000	0 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
0	MC	4	0.975		1.0550	0.9000	1.0000	0.0250	0.0500	5.13%	2.50%
99		4	0.050		0.2091	0.0000	0.2000	0.0500	0.1000	200.00%	95.00%
100		4	0.950	0.8581	1.0420	0.9000	1.0000	0.0289	0.0577	6.08%	5.00%
96h Survival Rat	e Detail						MD	5: AF2F628	339A69100	6F05584B8	742BAEA
Conc-%	Code	Rep 1	Rep 2	2 Rep 3	Rep 4						
0	LC	1.0000	1.000	0 1.0000	1.0000						
0	MC	0.9000	1.000	0 1.0000	1.0000						
99		0.2000	0.000	0.0000	0.0000						
100	×	1.0000	0.900	0 1.0000	0.9000						
96h Survival Rat	e Binomials										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0	LC	10/10	10/10	10/10	10/10		1 1 6	h P			
0	MC	9/10	10/10	10/10	10/10	LC=	Lab Co	UKO I			
99		2/10	0/10	0/10	0/10	M -	Lab con	r-1 cm g	habilized)		
100		10/10	9/10	10/10	9/10	1,15	Lab (on	west this	101011112-07		
						99 - 57	-20 -11	100% (414)) concentr	uHan	
						100 = ST	-zo-ii 10	(NV) 200	Concentrati	on (pH sh	abiliacd)
										*	

Report Date: Test Code/ID:

02 Aug-23 08:44 (p 1 of 2) 231137-231138 / 17-4349-3754

											est Co					-4349-37
Fathead Minn	now 96-h	Acute S	urviva	I Tes	t									Na	autilus Envi	ronmen
Analysis ID: Analyzed: Edit Date:	04-9430 02 Aug-2 11 Jul-23	23 8:42		Anal	ysis:		ametric-	ite Two Sample 237A246363		89F		S Versi s Leve	020000	CETISv2 1 004-311-		
Batch ID:	15.0404	4400							7001701070	,oL					-240-0	
Start Date:	15-8484 15 Jun-2			100	-	Survival		012 (2002)			Analy			Koelich	L - 4: - \ \ \ / - 4	
Ending Date:				Spec		Pimeph					Dilue Brine		ivioa-	Hard Synt	hetic Water	
Test Length:				Taxo		Actinopt		meias			Sour		Agua	tic Biosyst	ems. CO	Age: 2
Sample ID:	10-9072	-2507	20 - 1170	Code		41031A	CB		****							
Sample Date:)	Mate		Water S					Proje Sour		Azim	ıth		
Receipt Date:	17 May-	23 09:00)		(PC):						Statio		ST-20			
Sample Age:	37d 19h	1 (20.9 °C	C)	Clier	nt:	Azimuth	i									
Data Transfo	rm		Alt H	ур					Comparis	son Re	sult			•		PMSD
Angular (Corre	ected)		C > T						99% faile	d 96h s	surviva	l rate e	ndpo	nt		9.13%
Wilcoxon Rai	nk Sum T	wo-San	nple Te	est	J								-			
Control		onc-%	- No. 100 100 100 100 100 100 100 100 100 10	df	Test S	tat Cri	itical	Ties	P-Type	P-Va	alue	Decis	ion/c	-5%)		
Lab Control	99	0. 70000		6	10			0	Exact	0.01		Signif	-			-
Test Accepta	bility Crit	eria	_		••				***************************************							
Attribute		st Stat		AC Li	mits Upper	. Ov	erlap	Decision								
Control Resp	1		0.9		<<	Ye		Passes Cr	iteria							
ANOVA Table		=6:				100					77					(*)
Source		ım Squa	ires		Mean	Square		DF	F Stat	D.V.	-liva	D	/ .	- F0/)		
Between		77075			2.7707	-		1	238.5	P-Va	E-05	Decis				
Error	0.0	0697081			0.0116			6	250.5	~1.0	L-03	Sigilli	ICani	Ellect		
Total	2.8	34046						7	-							
ANOVA Assu	mptions	Tests														************
Attribute	Te	st						Test Stat	Critical	P-Va	alue	Decis	ion(o	:1%)		
Variance	Va	riance F										Indete	-			-
			IL IAI A	Norma	ality Tes	t		0.7065	0.6451	0.00	27	Non-N	lorma	l Distribut	ion	
Distribution	Sh	apiro-W	IIK VV I						0.0451	0.00		140111				
		apiro-W	IIK VV I					-	0.0431	0.00		110111				
96h Survival Conc-%	Rate Sun	napiro-W nmary ode	Coun		Mean	95	% LCL	95% UCL	Median	Min		Max		Std Err	CV%	%Effec
96h Survival Conc-%	Rate Sun	napiro-W nmary ode	Coun		1.0000	1.0	0000	95% UCL 1.0000			00	0.0000000000000000000000000000000000000	0	Std Err 0.0000	CV%	%Effec
96h Survival Conc-%	Rate Sun	napiro-W nmary ode	Coun			1.0			Median	Min		Max				
96h Survival Conc-% 0 99	Rate Sun Co	nmary ode	Coun 4 4	t	1.0000	1.0	0000	1.0000	Median	Min 1.00		Max 1.000		0.0000	0.00%	0.00%
96h Survival Conc-% 0 99 Angular (Corr Conc-%	Rate Sun Co LC rected) Tr	nmary ode	Coun 4 4	t umm:	1.0000) 1.0) 0.0	0000	1.0000	Median 1.0000 0.0000	Min 1.00		Max 1.000		0.0000	0.00%	0.00%
96h Survival Conc-% 0 99 Angular (Corr Conc-% 0	Rate Sun Co LC rected) Tr	napiro-W nmary ode c ransforr	Coun 4 4 med Su Coun 4	t umm:	1.0000 0.0500 ary Mean 1.4120	95°) 1.4	0000 0000 % LCL	1.0000 0.2091 95% UCL 1.4120	Median 1.0000 0.0000	Min 1.00 0.00	00	Max 1.000 0.200	0	0.0000 0.0500	0.00% 200.00%	0.00% 95.00%
96h Survival Conc-% 0 99 Angular (Corr Conc-% 0 99	Rate Sun Co LC rected) To Co LC	napiro-W nmary ode ; ransforr ode	Coun 4 4 med Su Coun	t umm:	1.0000 0.0500 ary Mean	95°) 1.4	0000 0000 % LCL	1.0000 0.2091 95% UCL	Median 1.0000 0.0000 Median	Min 1.00 0.00	20	Max 1.000 0.200 Max	0	0.0000 0.0500 Std Err	0.00% 200.00% CV%	0.00% 95.00% %Effec
96h Survival Conc-% 0 99 Angular (Conc-% 0 99	Rate Sun Co LC rected) To Co LC	napiro-W nmary ode ; ransforr ode	Coun 4 4 med Su Coun 4	t umm:	1.0000 0.0500 ary Mean 1.4120	95°) 1.4	0000 0000 % LCL	1.0000 0.2091 95% UCL 1.4120	Median 1.0000 0.0000 Median 1.4120	Min 1.00 0.00 Min 1.41	20	Max 1.000 0.200 Max 1.412	0	0.0000 0.0500 Std Err 0.0000	0.00% 200.00% CV% 0.00%	0.00% 95.00% %Effec
96h Survival Conc-% 0 99 Angular (Corr Conc-% 0 99 96h Survival Conc-%	Rate Sun Co LC rected) To Co LC Rate Deta	napiro-W nmary ode ; ransforr ode ;	Coun 4 4 med Su Coun 4	ımma	1.0000 0.0500 ary Mean 1.4120	95° 0 1.4 0 -0.0	0000 0000 % LCL	1.0000 0.2091 95% UCL 1.4120	Median 1.0000 0.0000 Median 1.4120	Min 1.00 0.00 Min 1.41	20	Max 1.000 0.200 Max 1.412	0	0.0000 0.0500 Std Err 0.0000	0.00% 200.00% CV% 0.00%	0.00% 95.00% %Effec
96h Survival Conc-% 0 99 Angular (Corr Conc-% 0 99 96h Survival Conc-% 0	Rate Sun Co LC rected) To Co LC Rate Deta	napiro-W nmary ode ; ransforr ode ;	Coun 4 4 med St Coun 4 4 Rep 1	umma t	1.0000 0.0500 ary Mean 1.4120 0.2350 Rep 2	95° 1.0 95° 1.4 95° 1.4 95° 1.4 95° 1.4 95° 1.4	0000 0000 % LCL 1120 0076	1.0000 0.2091 95% UCL 1.4120 0.4776	Median 1.0000 0.0000 Median 1.4120	Min 1.00 0.00 Min 1.41	20	Max 1.000 0.200 Max 1.412	0	0.0000 0.0500 Std Err 0.0000	0.00% 200.00% CV% 0.00%	0.00% 95.00% %Effec
96h Survival Conc-% 0 99 Angular (Corr Conc-% 0 99 96h Survival Conc-% 0	Rate Sun Co LC rected) To Co LC Rate Deta	napiro-W nmary ode ; ransforr ode ;	Coun 4 4 med St Coun 4 4	umma t	1.0000 0.0500 ary Mean 1.4120 0.2350	95° 1.00 95° 95° 1.40 95° 1.40 95° 1.40 95°	0000 0000 % LCL 1120 0076	1.0000 0.2091 95% UCL 1.4120 0.4776	Median 1.0000 0.0000 Median 1.4120	Min 1.00 0.00 Min 1.41	20	Max 1.000 0.200 Max 1.412	0	0.0000 0.0500 Std Err 0.0000	0.00% 200.00% CV% 0.00%	0.00% 95.00% %Effec
96h Survival Conc-% 0 99 Angular (Corr Conc-% 0 99 96h Survival Conc-% 0 99	Rate Sun Co LC rected) To LC Rate Deta	napiro-W nmary ode ; ransforr ode ;	Coun 4 4 4 Med St Coun 4 4 1.000 0.200	umma tt	1.0000 0.0500 ary Mean 1.4120 0.2350 Rep 2	95° 1.00 95° 95° 1.40 95° 1.40 95° 1.40 95°	% LCL 1120 00076	1.0000 0.2091 95% UCL 1.4120 0.4776 Rep 4 1.0000	Median 1.0000 0.0000 Median 1.4120	Min 1.00 0.00 Min 1.41	20	Max 1.000 0.200 Max 1.412	0	0.0000 0.0500 Std Err 0.0000	0.00% 200.00% CV% 0.00%	0.00% 95.00% %Effec
96h Survival Conc-% 0 99 Angular (Corr Conc-% 0 99 96h Survival Conc-%	Rate Sum Co LC rected) To Co LC Rate Deta Co LC rected) To	napiro-W nmary ode ; ransforr ode ;	Coun 4 4 4 Med St Coun 4 4 1.000 0.200	umma t	1.0000 0.0500 ary Mean 1.4120 0.2350 Rep 2	95' 95' 1.0 95' 8ee Re 0 1.0 0.0	% LCL 1120 00076	1.0000 0.2091 95% UCL 1.4120 0.4776 Rep 4 1.0000	Median 1.0000 0.0000 Median 1.4120	Min 1.00 0.00 Min 1.41	20	Max 1.000 0.200 Max 1.412	0	0.0000 0.0500 Std Err 0.0000	0.00% 200.00% CV% 0.00%	0.00% 95.00% %Effec
96h Survival Conc-% 0 99 Angular (Corr Conc-% 0 99 96h Survival Conc-% 0 99	Rate Sum Co LC rected) To Co LC Rate Deta Co LC rected) To	napiro-W nmary ode cransforr ode cransforr ode	Coun 4 4 Coun 4 4 Rep 1 1.000 0.200	umma tt	1.0000 0.0500 ary Mean 1.4120 0.2350 Rep 2 1.0000 0.0000	950 0.00 950 1.00 950	% LCL 1120 00076 p 3	1.0000 0.2091 95% UCL 1.4120 0.4776 Rep 4 1.0000 0.0000	Median 1.0000 0.0000 Median 1.4120 0.1588	Min 1.00 0.00 Min 1.41 0.15	20 88	Max 1.000 0.200 Max 1.412 0.463	0 66	0.0000 0.0500 Std Err 0.0000 0.0762	0.00% 200.00% CV% 0.00%	0.00% 95.00% %Effec 0.00% 83.36%

Report Date: Test Code/ID:

02 Aug-23 08:44 (p 2 of 2) 231137-231138 / 17-4349-3754

Nautilus Environmental

Fathead Minnow 96-h Acute Survival Test

Endpoint: 96h Survival Rate

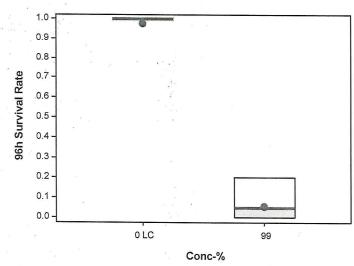
Analysis: Nonparametric-Two Sample **CETIS Version:** CETISv2.1.4 Status Level:

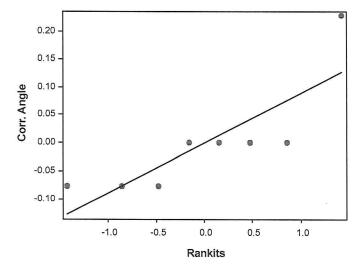
Analyzed: Edit Date:

02 Aug-23 8:42 11 Jul-23 8:54

MD5 Hash: 26298967719D237A24636368FAA3739E

Editor ID:


004-311-246-8


96h Survival Rate Binomials

Analysis ID: 04-9430-5785

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	LC	10/10	10/10	10/10	10/10	
99		2/10	0/10	0/10	0/10	

Graphics

Report Date:

Editor ID:

02 Aug-23 08:44 (p 2 of 2) 231137-231138 / 17-4349-3754

Test Code/ID:

Fathead Minnow 96-h Acute Survival Test

Nautilus Environmental

Analysis ID: 11-8788-5413 Analyzed:

02 Aug-23 8:43 11 Jul-23 8:54

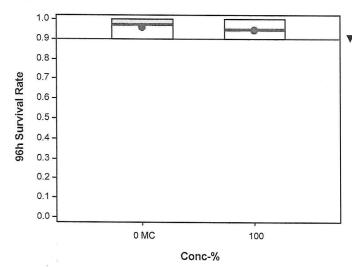
Endpoint: 96h Survival Rate

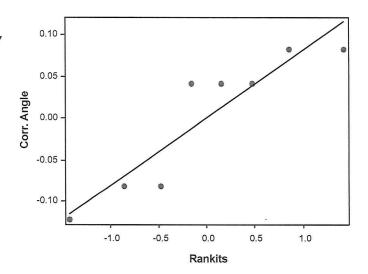
Analysis: Parametric-Two Sample

MD5 Hash: 21B60ED8E121B36E6B885A82C874F4CF

CETIS Version:

Status Level:


CETISv2.1.4 004-311-246-8


96h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	MC	9/10	10/10	10/10	10/10
100		10/10	9/10	10/10	9/10

Graphics

Edit Date:

APPENDIX C – Chain-of-Custody Form

G NAUTILUS ENVIRONMENTAL

TESTING LOCATION (Please Circle)

Burnaby

8664 Commerce Court

Burnaby, British Columbia, Canada
V5A 4N7

Phone 604.420.8773

#4, 6125 12 Street SE Calgary, Alberta, Canada T2H 2K1 Phone 403.253.7121

Chain of Custody

Page_of_

Date

ANALYSES REQUIRED Report to: Invoice To: Azimuth Consulting Group Company Company Same as report 218-2902 West Broadway Receipt Temperature (°C) Address Address Fathead Minnow Vancouver, BC City/Prov/PC City/Prov/PC Contact Eric Franz Contact PIF PF 778-872-5091 Phone Phone Email efranz@azimuthgroup.ca Email がエヌ 广开发 1171422 PO No. Sample Collection By: Sample Type: Grab Composite (7-day DATE # OF CONTAINERS AND 20 SAMPLE ID TIME MATRIX COMMENTS (DD/MM/YY) VOLUME (e.g. 1 x 20 L) 20.9 ST-20-ii 2023-05-08 17:30 1x18L 00 00 Q SPECIAL INSTRUCTIONS/COMMENTS (CLIENT) SAMPLE RECEIPT DETAILS (LABORATORY) SAMPLE DESCRIPTION AND COMMENTS (LABORATORY) Reclaim water from Goose Pit 1. Total No. of 4. Ice Present Containers in Cooler? Punt Fet 5, Seal Present? 2. Courier YR 6. Initials 3. Good Condition? RELINQUISHED BY (CLIENT) RECEIVED BY (LABORATORY) Our liability is limited to the cost of the test requested. The test results (Signature) (Printed Name) Kathleen Newberry only relate to the sample as received. No liability in whole or in part is (Printed Name) assumed for the collection, handling, or transport of the sample, May 17/23 & 9:00 (Date DD/MM/YY and Time application or interpretation of the test data or results in part or in Agnico Eagle 2023-05-09 - 7:00AM whole. Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted. Form 020; Version 1.2; Revised by CC 2016/10/06

END OF REPORT

Appendix B-4
Rainbow Trout Toxicity Test Results (September 2024)

B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 1 of 2

Work Order: 255586 Sample Number: 83581

SAMPLE IDENTIFICATION

Company: Azimuth Consulting Group Inc. Sampling Date: 2024-08-11 Location: Vancouver BC Sampling Time: Not provided Substance: ST-20I Date Received: 2024-08-14 Time Received: 13:30 Sampling Method: Not provided Temperature at Receipt: 26 °C Sampled By: Not provided Sample Description: Clear, colourless Date Tested: 2024-09-09

Test Method(s): Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout.

Environment Canada, EPS 1/RM/13 (2nd Edition, December 2000, with May 2007, February 2016,

and December 2023 amendments).

96-HOUR TEST RESULTS								
Substance	Effect	Value						
Control	Mean Impairment	0.0 %						
	Mean Mortality	0.0 %						
100%	Mean Impairment	0.0 %						
	Mean Mortality	0.0 %						

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Test Organism: Oncorhynchus mykiss Mean Fork Length: 42.7 mm Organism Batch: T24-17 Range of Fork Lengths: 39 - 50 mm Control Sample Size: 10 Mean Wet Weight: 0.7 gCumulative stock mortality rate: 0% (previous 7 days) Organism Loading Rate: 0.3 g/L

Control organisms showing stress: 0 (at test completion)

TEST CONDITIONS

1 Test Type: Single concentration Number of Replicates: Sample pH Adjustment: None Organisms Per Replicate: 10 $6.5 \pm 1 \text{ mL/min/L}$ Organisms Per Test Level: 10 Sample Pre-aeration/Aeration Rate: Duration of Sample Pre-Aeration: 30 minutes Volume of Sample: 20 L Control Pre-aeration/Aeration Rate : 6.5 ± 1 mL/min/L Volume of Control: 20 L

Duration of Control Pre-aeration: 30 minutes Test Method Deviation(s): Yes (see 'COMMENTS')

REFERENCE TOXICANT DATA

Toxicant: Potassium Chloride

Organism Batch: LC50: 3045 mg/L T24-17 2633 - 3394 mg/L Date Tested: 2024-09-01 95% Confidence Limits: 3937 mg/L Analyst(s): JGR, JCS, AJS, PG Historical Mean LC50: Statistical Method: Linear Regression (MLE) Warning Limits (\pm 2SD): 2868 - 5405 mg/L

COMMENTS

Noted Deviation: The maximum sample holding time of 5 days allowed by the test method was exceeded. The sample was tested with the client's consent. There were no other unusual conditions, and the test result is considered to be valid.

•All test validity criteria as specified in the test method were satisfied.

Approved By:	

Work Order: 255586 Sample Number: 83581

Notes:

Rainbow Trout EPS 1/RM/13 Page 1 of 2

TEST DATA

	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation
		(mg/L)	(µmhos/cm)	(°C)	$(\%)^3$
Initial Water Chemistry (100%):	7.1	8.2	2409	14	85
After 30 min pre-aeration:	7.2	8.4	2406	14	87

0 HOURS							
Date & Time	2024-09-09	14:10					
Analyst(s):	AJS						
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation ³
100%	0	0	7.2	8.4	2406	14	87
Control	0	0	8.0	9.7	741	14	100
Notes:							

			24 H	OURS		
Date & Time	2024-09-10	13:20				
Analyst(s):	AJS					
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
100%	0	0	8.0	_	_	15
Control	0	0	8.2	_	_	15

48 HOURS						
Date & Time	2024-09-11	12:20				
Analyst(s):	FM (NM)					
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
00%	0	0	7.8	_	_	15
Control	0	0	8.1	_	_	15
lotes:						

72 HOURS							
Date & Time	2024-09-12	15:30					
Analyst(s):	GR (NM)						
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	
00%	0	0	7.9	_	-	15	
Control	0	0	8.1	_	_	15	
lotes:							

96 HOURS							
Date & Time	2024-09-13	13:15					
Analyst(s):	JGR						
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	
0%	0	0	7.8	9.3	2415	15	
ontrol	0	0	8.0	9.6	710	15	
otes:							

[&]quot;_" = not measured/not required

Number impaired does not include number dead.

³ adjusted for temperature and barometric pressure

Test Data Reviewed By : JJ

Date : 2024-09-16

B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 EPS 1/RM/50 Page 1 of 2

Work Order: 255586 Sample Number: 83581

SAMPLE IDENTIFICATION

Company: Azimuth Consulting Group Inc. Sampling Date: 2024-08-11 Location: Vancouver BC Sampling Time: Not provided Substance: ST-20I Date Received: 2024-08-14 Sampling Method: Not provided Time Received: 13:30 Sampled By: Not provided Temperature at Receipt: 26 °C Sample Description: Clear, colourless Date Tested: 2024-09-09

Test Method(s): Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout. Environment

Canada, EPS 1/RM/13 (2nd Edition, December 2000, with May 2007, February 2016, and December

2023 amendments).

Procedure for pH Stabilization During the Testing of Acute Lethality of Wastewater Effluent to Rainbow

Trout. Environment Canada, EPS 1/RM/50 (March 2008), with deviation(s) as noted.

96-HOUR TEST RESULTS								
Substance	Effect	Value						
Control	Mean Impairment	0.0 %						
	Mean Mortality	0.0 %						
100%	Mean Impairment	0.0 %						
	Mean Mortality	0.0 %						

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Test Organism: Oncorhynchus mykiss Mean Fork Length: 42.3 mm 41 - 43 mm Organism Batch: T24-17 Range of Fork Lengths: Control Sample Size: Mean Wet Weight: 0.7 gCumulative stock tank mortality rate: 0% (previous 7 days) Organism Loading Rate: 0.3 g/LControl organisms showing stress: 0 (at test completion)

TEST CONDITIONS

Sample Treatment :pH StabilizationNumber of Replicates :1pH Adjustment :Yes (as per EPS 1/RM/50)Organisms Per Replicate :10pH Stabilization Technique :pH ControllerOrganisms Per Test Level :10

Gas Mixture Used : $100\% \text{ CO}_2$ Pre-aeration/Aeration Rate : $6.5 \pm 1 \text{ mL/min/L}$ Test Aeration : Yes Total Pre-Aeration Time : 30 minutes

Volume Tested (L): 20 Test Method Deviation(s): Yes (see 'COMMENTS')

REFERENCE	TOXICANT DATA

Toxicant: Potassium Chloride

Organism Batch: T24-17 LC50: 3045 mg/L Date Tested: 2024-09-01 95% Confidence Limits: 2633 - 3394 mg/L Analyst(s): JGR, JCS, AJS, PG Historical Mean LC50: 3937 mg/L Statistical Method: Linear Regression (MLE) Warning Limits (\pm 2SD): 2868 - 5405 mg/L

COMMENTS

• All test validity criteria as specified in the test method were satisfied.

Noted Deviations:

- pH controllers are calibrated at the start of the test, and not daily as described in the test method. Extensive internal method validation of this approach has confirmed the accuracy and stability of the pH controllers over the course of the 96-h test.
- The maximum sample holding time of 5 days allowed by the test method was exceeded. The sample was tested with the client's consent. There were no other unusual conditions, and the test result is considered to be valid.

Approved By:	
	Project Manager

255586

Work Order:

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 EPS 1/RM/50

Sample Number: 83581 TEST DATA

Page 2 of 2

	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation	TAN	NH3
		(mg/L)	(µmhos/cm)	(°C)	(%) ³	$(mg/L)^1$	$(mg/L)^2$
Initial Water Chemistry (100%):	7.1	8.2	2409	14	85	35.9	0.124
After 30 min pre-aeration:	7.2	8.4	2400	14	87	_	_

				U.	HOURS				
Date & Time	2024-09-09	14:10							
Analyst(s):	AJS								
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation ³	Hardness	Total Chlorine
								(mg/L as CaCO ₃)	(mg/L)
100%	0	0	7.2	8.4	2400	14	87	640	_
Control	0	0	8.0	9.7	741	14	100	_	_
Notes:									

				24	HOURS				
Date & Time	2024-09-10	13:20							
Analyst(s):	AJS								
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	TAN	NH3	
							$(mg/L)^{1}$	$(mg/L)^2$	
100%	0	0	7.2	_	_	15	_	_	
Control	0	0	8.1	_	_	15	_	_	
Notes:									

				48	HOURS				
Date & Time	2024-09-11	12:20							
Analyst(s):	FM (NM)								
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	TAN	NH3	
							$(mg/L)^1$	$(mg/L)^2$	
100%	0	0	7.3	_	_	15	_	_	
Control	0	0	8.1	_	_	15	_	_	
Notes:									

	72 HOURS								
Date & Time Analyst(s):	2024-09-12 GR (NM)	15:30							
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	TAN (mg/L) ¹	NH3 (mg/L) ²	
100%	0	0	7.1	_	_	15	_	_	
Control	0	0	8.0	_	_	15	_	_	
Notes:									

	96 HOURS								
Date & Time	2024-09-13	13:15							
Analyst(s):	JGR								
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	TAN (mg/L) ¹	$\frac{\text{NH3}}{\left(\text{mg/L}\right)^2}$	Average pH (0 - 96 h)
100%	0	0	7.3	9.1	2418	15	_	_	7.2
Control	0	0	8.0	9.6	719	15	_	_	8.0
Notes:									

¹ TAN = Total ammonia (as N); analysis conducted by Bureau Veritas S.A., Mississauga ON; MDL = 0.05 mg/L.

Test Data Reviewed By: Date: 2024-09-21 Number impaired does not include number dead.

² NH3 = Un-ionized ammonia (calculated from TAN, pH, and temperature according to the test method).

³ adjusted for temperature and barometric pressure

[&]quot;_" = not measured/not required

CHAIN OF CUSTODY RECORD

P.O. Number:
Field Sampler Name (print):
Signature:
Affiliation:
Sample Storage (prior to shipping):
Custody Relinquished by:
Date/Time Shipped:

Shipping Address:

Nautilus Environmental Guelph. B-11 Nicholas Beaver Road Puslinch, Ontario Canada N0B 2J0

Voice: (519) 763-4412

Fax: (519) 763-4419

Client:	Azimuth Group
Phone:	(604) 730-1220
Fax:	
Contact:	Marianna DiMauro

	Sample Identification				Analyses Requested							S	Sample Method and Volume			
Date Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name	Nautilus Tem Sample Number arri	p. on	Rainbow Trout Single Concentration	Rainbow Trout LC50	Daphnia magna Single Concentration	Daphnia magna LC50	Fathead Minnow Survival & Growth Ceriodaphnia dubia	Survival & Reproduction	Lemna minor Growth	Pseudokirchneriella subcapitata Growth	Other (please specify below)	Grab	Composite	# of Containers and Volume (eg. 2 x 1L, 3 x 10L, etc
2024-08-11		ST-20I	83581 86			1										4X10L
2024-08-11		ST-20II	83582 26			~										4X10L [₫]
															\vdash	
										+						
				1 5 70 10												
		3m, j														
		,48% ¹														

For Lab Use	Only
Received By:	JER/XD
Date:	2024-08-14
Time:	13:30
Storage Location:	
Storage Temp.(°C)	

Please list any special requests or instructions:	
pH Stabilization	
Azimuth) will confirm the method before the tests are initiated the week of Augu	ıst
19	
\$ 3 ×10L arrived 2024-08-4	

APPENDIX C

ATKINSRÉALIS. 1D TAILINGS CONSOLIDATION MODELLING OF GOOSE PIT. TECHNICAL NOTE. APRIL 30, 2024

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	i

Title of document:

1D Tailings Consolidation Modelling of Goose Pit

Client: Agnico Eagle Mines (AEM)

Project: Pit Lake Stratification and Tailing Consolidation Study

Prepared by: (under ICS¹)

Prepared by: Faustin Saleh Mbemba, P.Eng., M.A.Sc., Ph.D. #OIQ: 5087472

Reviewed by: Miguel Medina, P.Eng., M. Eng. #OIQ: 5018504

Approved by: Anh-Long Nguyen, Eng., M. Sc. #OIQ: 122858

¹ ICS: Immediate control and supervision.

In terms of supervising the engineering activities and supervision of people who are not engineers or junior engineers, the Ordre des ingénieurs du Québec uses a term often used in its regulation: Immediate control and supervision (ICS). In other words, an engineer must be involved in a continuous and active manner throughout the reserved tasks entrusted to him, and not just before or after.

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	ii

697172-2000-4GER-0001

LIST OF REVISIONS

	Revision					
#	Prep.	Rev.	App.	Date	Pages Revised	Observations
PA	MM	FSM		2023-11-16	All	Issued for Internal Review
PB	MM	MM/ FSM	ALN	2023-12-08	All	Issued for Client's Comments
00	MM/FSM	MM	ALN	2024-04-30	All	Issued for Client's Comments
				_		_

NOTICE TO READER

This document contains the expression of the professional opinion of AtkinsRéalis ("AtkinsRéalis") as to the matters set out herein, using its professional judgment and reasonable care. It is to be read in the context of the agreement dated 19 May 2023 (the "Agreement") between AtkinsRéalis and Agnico Eagle Mines (the "Client") and the methodology, procedures and techniques used, AtkinsRéalis' assumptions, and the circumstances and constraints under which its mandate was performed. This document is written solely for the purpose stated in the Agreement, and for the sole and exclusive benefit of the Client, whose remedies are limited to those set out in the Agreement. This document is meant to be read as a whole, and sections or parts thereof should thus not be read or relied upon out of context.

AtkinsRéalis has, in preparing estimates, as the case may be followed, accepted methodology and procedures, and exercised due care consistent with the intended level of accuracy, using its professional judgment and reasonable care, and is thus of the opinion that there is a high probability that current values will be consistent with the estimate/s. Unless expressly stated otherwise, assumptions, data and information supplied by, or gathered from other sources (including the Client, other consultants, testing laboratories and equipment suppliers, etc.) upon which AtkinsRéalis' opinion as set out herein are based have not been verified by AtkinsRéalis; AtkinsRéalis makes no representation as to its accuracy and disclaims all liability with respect thereto.

To the extent permitted by law, AtkinsRéalis disclaims any liability to the Client and to third parties in respect of the publication, reference, quoting, or distribution of this report or any of its contents to and reliance thereon by any third party.

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	iii

TABLE OF CONTENTS

1.0	Introduction	5
2.0	Methodology	5
3.0	Parameters	7
3.1	Geotechnical Parameters	
	3.1.1 Tailings Density	7
	3.1.1 Void Ratio	7
3.2	Bathymetry	11
4.0	Modelling the Goose Pit Consolidation with FSConsol	15
4.1	Assumptions	
4.2	Modelling Results	16
5.0	Modelling the Goose Pit Consolidation With Sigma/W	17
6.0	Adjustment of FSConsol Tailings Settlement Curve	19
7.0	Discussion and Conclusion	22
8.0	Recommendations	23
9.0	References	24

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	iv

List of Tables

Table 5-1: Goose Pit Tailings Parameters Used for Sigma/W Model1	8
List of Figures	
Figure 2-1: Plan View of Goose Pit (Year 2019- Muk3D)	6
Figure 3-1: Void Ratio vs. Effective Stress or Compressibility Curve (from Golder, 2017)	
Figure 3-2: Hydraulic Conductivity vs. Void Ratio Curve (from Golder, 2017)	
Figure 3-3: Different Scenarios for Compressibility Data	9
Figure 3-4: Different Scenarios for Permeability Data1	0
Figure 3-5: Initial Conditions for Depth and Time	0
Figure 3-6: Goose Pit Geometry (Azimuth, 2022)1	1
Figure 3-7: Plan View of Goose Pit Topography1	2
Figure 3-8: Profiles of Sections A to F in Goose Pit	4
Figure 3-9: Goose Pit Plan Area vs. Elevation	4
Figure 3-10: Storage Capacity Curve of Goose Pit	5
Figure 4-1: Settlement Obtained From FSConsol	7
Figure 5-1: Tailings Settlement Obtained from Sigma/W1	9
Figure 6-1: Adjustment of Settlement Curve from FSConsol to that from Sigma/W2	20
Figure 6-2: Evolution of Flow Rate of Water Expelled at Tailings' Surface with Sigma/W Model 2	21
Figure 6-3: Evolution of Flow Rate of Water Expelled at Tailings' Surface with FSConsol Model 2	21
Figure 7-1: Profiles of Sections B and E of Goose Pit – 2019, 2020, 2021 and 2023	23

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	5

1.0 Introduction

Agnico Eagle Mines (AEM) is currently conducting multiple studies regarding the water management in closure for Goose Pit at its Meadowbank operations in Nunavut, Canada.

The Meadowbank Mine site is located approximately 100 km north of the town of Baker Lake in Nunavut. Goose Pit is located at the southern extremity of the Meadowbank Mine site. Goose Pit has a maximum depth of about 67.0 m at the centre of the pit, a total volume of about 25 million m³, an area of over 1 km² (100 ha) and it is characterized by steep slopes. The pit was exploited since 2015 and it was naturally flooded with water. The tailings deposition began in 2019 and extended through 2020 when the deposition was terminated. No additional tailings have been deposited since 2020.

In 2018, an initial estimate of the tailing's consolidation was carried out based on the tailings geotechnical properties assessed from laboratory tests (SLI, 2018b).

The objective of the present study is to update the tailings consolidation model based on bathymetric surveys taken in Goose Pit since the previous study. A one-dimensional (1D) modelling was carried out to assess the tailings consolidation after one (1) year of deposition (from 2019 to 2020) followed by a 9-year period (until 2029), in order to estimate future settlements, representing a total period of 10 years of modelling. The assessment will also be used to estimate the amount of pore fluid that could be released from the tailings to predict their impact in the water quality during deposition, closure, and post-closure.

This report presents the results of the 1D consolidation, which evaluates the tailings settlement and the estimated consolidation flow rate during and after tailings deposition in Goose Pit. The results were calibrated with existing bathymetric surveys which were then used to predict future settlements.

2.0 Methodology

The first step in the methodology is to estimate the settlement using the numerical model and geotechnical parameters which were retrieved from laboratory test results on the Whale Tail tailings (Golder 2017).

In 2018, FSConsol software was used to estimate future settlements (SLI, 2018b). For this update, the same software was initially used for comparison purposes.

Once the settlement is computed at each time step, the volume of expelled water is computed as the product of the settlement and the plan area, according to the following equation:

Volume of expelled water, $V(m^3)$ = settlement (m) x plan area (m²)

And the flow rate of water expelled to the surface is computed at each time step as follows:

Flow of expelled water, Q (m³/s) = volume of water (m³)/ Δt (s)

With $\Delta t =$ the time step (s).

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	6

The plan area was determined by using the storage capacity curve from Muk3D which was based on the Goose Pit bathymetric surveys for years 2020 and 2021 and the original ground profile from 2019 which represent the pit shell at the end of mining operation. **Figure** 2-1 presents the plan view from 2019. Due to negligible difference between settlements that happened for one year, an average value for the plan area was considered for calculating the flow rate in this study.

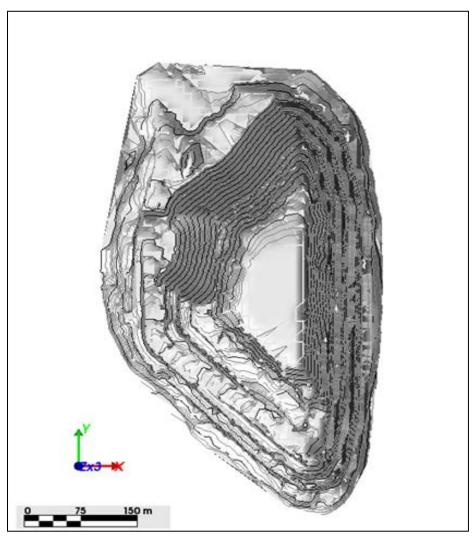


Figure 2-1: Plan View of Goose Pit (Year 2019- Muk3D)

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	7

3.0 Parameters

3.1 Geotechnical Parameters

The tailings geotechnical properties from the 2018 modelling of Goose Pit and the Portage Pit A and Pit E (SLI, 2018b) were used for this study. These geotechnical parameters were obtained from Golder's laboratory test results on Whale Tail Pit tailings (Golder 2017). **Table** 3-1 presents the summary of the geotechnical parameters while **Figure** 3-1 and **Figure** 3-2 present the compressibility and permeability data from Golder (2017). The geotechnical parameters from **Table** 3-1, **Figure** 3-1 and **Figure** 3-2 constitute the base case or the base scenario for modelling.

Table 3-1: Geotechnical Parameters from Golder (2017)

Parameters	Value
Tailings solid specific gravity	2.96
Tailings solid concentration from the mill	54% w/w
Initial dry unit weight (calculated by laboratory)	0.84 tons/m ³
Initial void ratio (calculated by laboratory)	2.56
Initial total unit weight (calculated by laboratory)	1.56 tons/m ³

3.1.1 Tailings Density

In January 2024 (during the revision of the PB version of this technical note), Agnico Eagle mentioned that the tailings density measured on site was variable, ranging from 1.45 t/m^3 in 2019, 1.8 t/m^3 in 2020 and 1.5 t/m^3 in 2021. However, as the consolidation numerical model cannot consider variable values of density, the value obtained from Golder laboratory tests (1.56 t/m^3 , see **Table** 3-1) was selected as it represents the average of these values (from 2019 to 2021).

3.1.1 Void Ratio

The void ratio of 0.86, which is the initial void ratio on compressibility curve (**Figure** 3-1), is a measurement obtained on a sample in laboratory by Golder (2017). These measurements were probably made on a sample which is not representative of the field conditions, as **Table** 3-1 of Golder (2017) also indicates an initial void ratio of 2.56.

However, the fact of having carried out the compressibility test with an initial void ratio of 0.86 instead of 2.56 will induce an error in the results. FSConsol model calculates the settlements as a function of the material compressibility and initial void ratio. The only geotechnical data available to date are those from Golder (2017). There has not been additional geotechnical testing, as is usually the case before any geotechnical study, to obtain geotechnical parameters that are suitable for the current conditions of the materials at the site. The results obtained in this study with FSConsol will be discussed regarding this aspect.

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	8

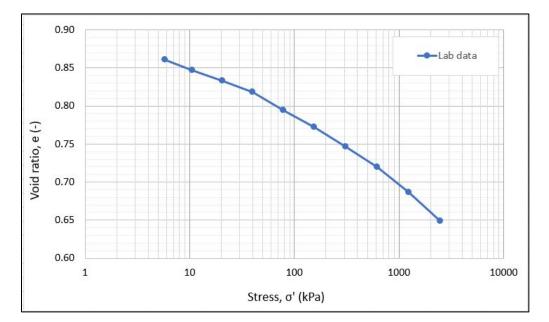


Figure 3-1: Void Ratio vs. Effective Stress or Compressibility Curve (from Golder, 2017)

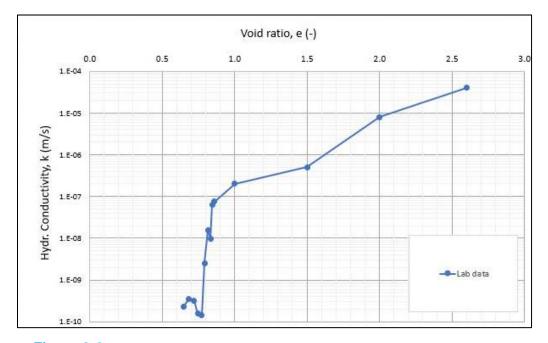


Figure 3-2: Hydraulic Conductivity vs. Void Ratio Curve (from Golder, 2017)

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	9

Due to the lack of recent data, several scenarios were considered using different compressibility curves. The base case (curve), called "Lab data" in **Figure** 3-3, is the one from Golder (2017), which is also shown in **Figure** 3-1. Then, different curves, following different paths (but having all the same initial and final void ratios) were considered. These are the curves labelled "Scenario 1", "Scenario 2", "Scenario 3" and "Scenario 4" in **Figure** 3-3.

This served as a sensitivity study to understand the behaviour (settlement) of tailings. As said above, the initial and final void ratios of these curves remained the same as those provided by Golder (2017).

The same approach was also used for the hydraulic conductivity curves shown in **Figure** 3-4 where the base case (base curve) from Golder (2017) is called "Lab Data" (also shown in **Figure** 3-2) and the three other curves used for sensitivity are called "Scenario a", "Scenario b" and "Scenario c".

The aim of this parametric (sensitivity) study was to derive the optimal compressibility and permeability curves for calibrating the data through different scenarios along with initial properties, which were measured in the laboratory (represented by the blue line). Scenario 1, selected for compressibility curves, and Scenario a, selected for hydraulic conductivity curves, were applied in modelling given that they yield the maximum values, as it will be highlighted later.

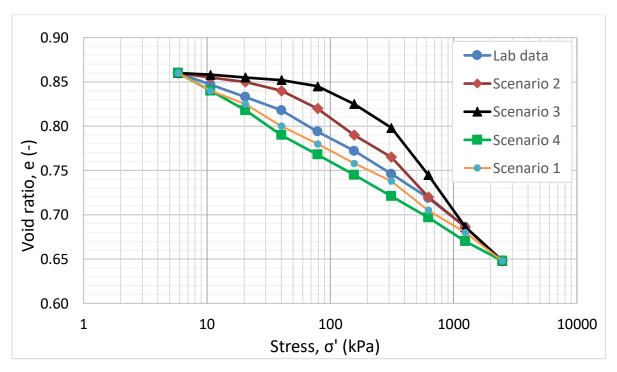


Figure 3-3: Different Scenarios for Compressibility Data

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	10

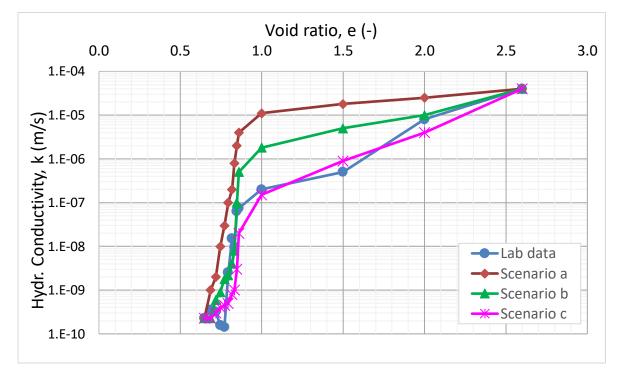


Figure 3-4: Different Scenarios for Permeability Data

In **Figure** 3-5, the initial state of the open pit is shown. The initial condition is an empty pit (no water, no tailings), with t = 0 at the time of the first bathymetry, which corresponds to the 2019 survey.

The initial deposition started in 2019, marked by the black line at t = 0, and modelling began from an initial depth of 0 m. The tailing process extended until 2020 (blue line), followed by a settlement until 2021 (pink line). Settlement measurements were modelled during the period between 2020 and 2021.

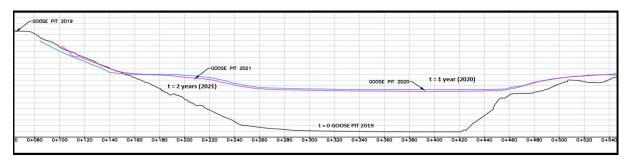


Figure 3-5: Initial Conditions for Depth and Time

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	11

3.2 Bathymetry

The bathymetry of Goose Pit was constructed from a digital elevation map (DEM) that was used as the basis for the two-dimensional discretization. The model's way of calculating the storage volume is almost identical (less than 1% difference) to the method using a 0.1 m step size for each point in the DEM. Therefore, the model is a good representation of the lake volume. **Figure** 3-6 presents a view of Goose Pit geometry from year 2022.

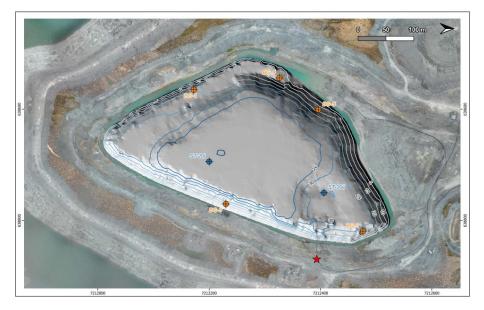


Figure 3-6: Goose Pit Geometry (Azimuth, 2022)

Figure 3-7 shows the plan view of the Goose Pit topography (from bathymetry), with various sections used in the analysis to highlight the evolution of filling and settlement of the tailings in the pit.

Bathymetries are used to calibrate the model, offering a basis for comparison with settlement data, which constitutes the model's output. It is essential to clarify that the bathymetric data does not qualify as geotechnical data for modelling. A single bathymetric dataset, such as the one from 2021, is adequate for this comparison. Additional bathymetries will not provide more information if the bathymetry is consistent. Hence the need for a good methodology for measuring it. It should, however, be noted that settlements on a site are measured by specific field devices such as settlement plates. Bathymetries are extremely coarse data and cannot give the precision required in geotechnics which can be, in some cases, of the order of mm or cm.

Figure 3-8 shows the profile of six sections from bathymetric data (from A to F). As it can be seen, the bathymetric surveys are not consistent. There are many uncertainties in the received bathymetric data. The same bathymetry can indicate a settlement of 0.5 m, 1 m, 1.5 m, 2 m or even more depending on location. In some instances, it may even indicate swelling or negative settlement when the tailings level in 2021 (after stopping filling) is above that of 2020. A few cross-sections located at the centre of the pit, which appeared to be more consistent, were chosen for the study.

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	12

According to **Figure** 3-8 (section B), which seems more coherent, the initial depth of 0 is at an approximative elevation of 5,035.0 m, as measured at the centre of the pit. The tailings deposition extended until 2020 (the blue line, at an approximative elevation of 5,072.5 m), followed by a settlement until 2021 (the red line, at an approximative elevation of 5,070.5 to 5,071.0 m). Therefore, the initial thickness of the deposited tailings layer is evaluated at $H_0 = 37.5$ m, and the settlement between the 2020 and 2021 surveys is around 1.5 to 2 m, as measured at the centre of the pit (elsewhere than in the centre, we can have values of less than 1 m or more than 2 m). Even in the centre of the pit, the settlement reading margin (from 1.5 m to 2.0 m) is too large and affects the precision. However, this value will be used later to validate or calibrate the numerical model, if necessary. Profile E in **Figure** 3-8 seems to give approximately the same information as profile B. The other profiles cannot be used. In the same way, all 2022 bathymetric profiles can be used. This raises serious questions regarding the methodology used to measure bathymetry, as will be highlighted below.

Figure 3-9 and **Figure** 3-10 show the storage capacity curve and plan area obtained from the bathymetric surveys using Muk3D, from the bottom of the pit. The area at the tailings surface and the stored volume can be read from these figures at any elevation (for any year).

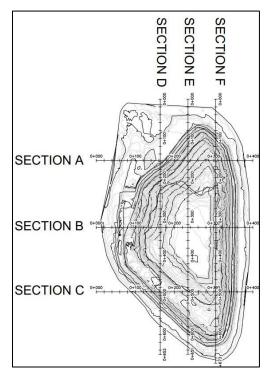
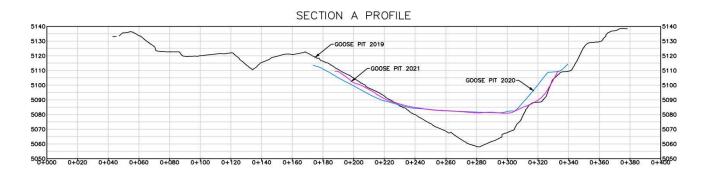
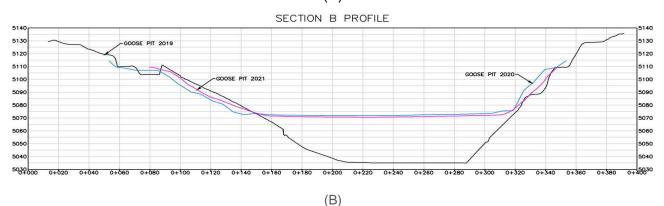


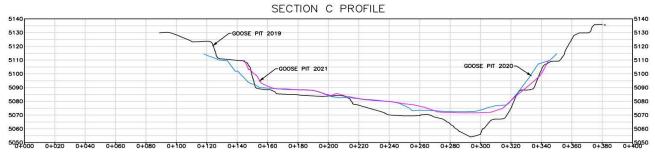
Figure 3-7: Plan View of Goose Pit Topography

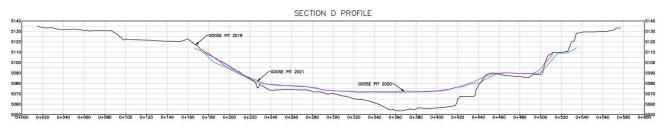

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba


Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	13


697172-2000-4GER-0001


(A)

, ,

(C)

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	14

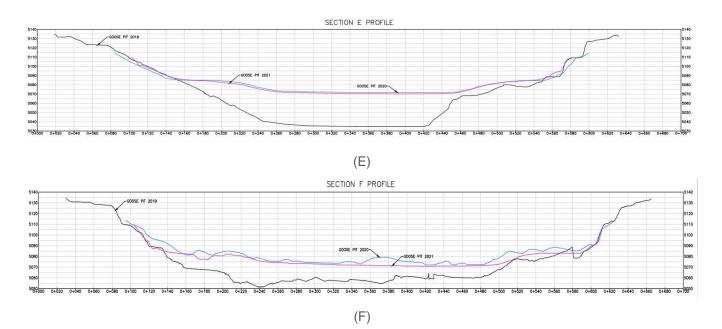


Figure 3-8: Profiles of Sections A to F in Goose Pit

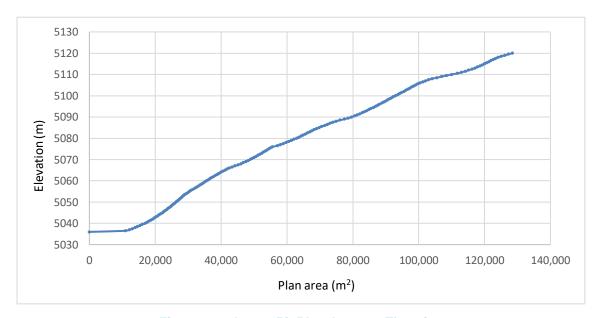


Figure 3-9: Goose Pit Plan Area vs. Elevation

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	15

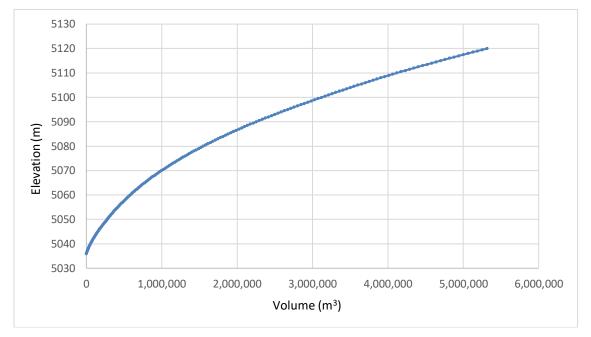


Figure 3-10: Storage Capacity Curve of Goose Pit

4.0 Modelling the Goose Pit Consolidation with FSConsol

The computer program FSConsol (GWP Software Inc) version 3.49 was used to carry out the 1D modelling of the in-pit tailings consolidation. The program is based on the finite strain consolidation theory (Gibson et all, 1967). It accounts for self-weight consolidation and the consolidation of the deposit during the filling operation. FSConsol can simulate various consolidation scenarios with changing filling rates, pond areas and soil properties in tailings, and it is a numerical model designed for handling significant deformations. This software was previously used to simulate tailings consolidation at Goose Pit (SLI, 2018b). The choice of this software first is justified by its previous use for consolidation modelling at Goose Pit in 2018 and for comparison purposes.

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	16

4.1 Assumptions

The following assumptions were made in the modelling of the tailings' consolidation in Goose Pit. These assumptions have already been used for modelling consolidation at Goose Pit in 2018.

- The bedrock underneath each pit is competent and there is no significant drainage through the pit bottom as well as through the pit walls (SLI, 2017).
- The daily mill throughput is 9,000 tons of dry tailings. It is assumed that the dry tailings waste produced is also 9,000 tons per day (SLI, 2018a), also corresponding to the average deposition done over 2019-2020.
- Tailings are being deposited as a 54%w/w slurry (SLI, 2018a).
- For simplification, the model assumes a flat tailings surface and can reach the maximum height.
- The 1D analysis represents a soil column taken from the middle of the pit.
- Tailings are continuously deposited in Goose Pit and deposition will stop when the maximum tailings elevation allowed is reached (maximum elevation is calculated based on bathymetric data which was 37.5 metres).
- The tailing is deposited sub-aqueously into the pit and the formation of ice lenses during deposition is negligible. The consolidation model does not consider the potential effect of seasonal variation of the ambient and water temperature on the tailing deposition. It was assumed that with the sub-aqueous tailings' deposition method, tailings in the pit are not frozen during the winter months.

4.2 Modelling Results

The results of settlements at Goose Pit for a period of 10 years after the end of tailings deposition in 2020 are presented in **Figure** 4-1. As discussed in **Section 3.1**, Scenario 1, chosen for compressibility, and Scenario a, selected for permeabilities, were applied in modelling since they are yielding the maximum values.

As it can be seen in **Figure** 4-1, the model results indicate a settlement of 0.46 m only after 1 year and a total settlement of 0.66 m after 10 years. Compared to the settlement of 1.5 m to 2 m observed from the +/- consistent bathymetric profile (profile B in **Figure** 3-8), this settlement is very small. The relative settlement $S_1/H_0 = 0.66$ m / 37.5 m = 1.8%.

TECHNICAL NOTE 1D Tailings Consolidation Modelling of **Goose Pit**

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	17

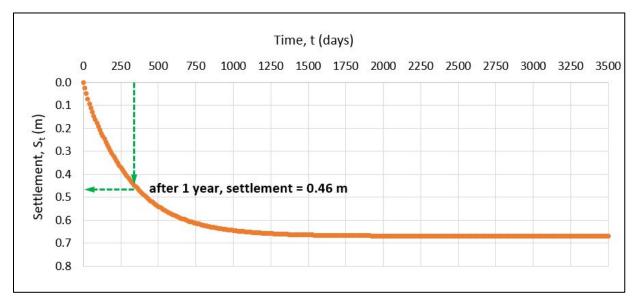


Figure 4-1: Settlement Obtained From FSConsol

The settlement obtained from FSConsol after 1 year (0.46 m) is much smaller than that observed on site (1.5 to 2 m obtained from the bathymetric surveys). It should be noted that the initial void ratio of the compressibility curve (Golder 2017, Figure 3-1) is inferior to the in situ estimated initial void ratio (Golder 2017, Table 3-1). It is therefore considered that the tailings compressibility curve must be re-evaluated in the laboratory, starting from a larger void ratio value, representative of the site conditions, in order to reach comparable settlement values.

Modelling the Goose Pit Consolidation With Sigma/W 5.0

To adjust the FSConsol model, another numerical model was used. Sigma/W is a well-known small deformation numerical code used to compute settlement. To adapt to large deformations (i.e., to compute large settlements), Sigma/W makes the accumulation (summation) of the results of several small deformations.

Sigma/W (GeoSlope Ltd. 2016) is a finite element code which can be used for numerical simulations of tailings consolidation. This code can solve constitutive equations for coupled stress – strain – pore water pressure analysis. The modified cam-clay (MCC) model can be applied to simulate the behaviour of deformable tailings. The advantage of Sigma/W in this case is that it calculates settlements by using other parameters than the compressibility curve.

The main parameters required for modelling with Sigma/W are presented in **Table** 5-1. The Lambda parameter λ is computed from the compression index Cc, which is obtained from the compressibility curve. Instead of using the initial void ratio of 2.56 from Golder (2017), the initial void ratio e was calculated from the provided solid content at the mine (54%, see Table 3-1) following the procedure presented just below. The reason is simple: we do not know how this initial void ratio of 2.56 was measured, especially since it was measured in the laboratory and not in situ. The hydraulic conductivity corresponding to the initial void ratio was deduced from the hydraulic conductivity function presented in Figure 3-2.

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	18

Table 5-1: Goose Pit Tailings Parameters Used for Sigma/W Model

Parameters	Value	Source (Obtained from)
Lambda λ = ($\mathcal{C}c/2.303$)	1.1	Compressibility curve
Void ratio I	2.13	Solid content
Hydraulic conductivity k(m/s)	1.1 x 10 ⁻⁰⁵	Function of void ratio (Figure 3-2)

The consolidation parameter lambda (λ) represents the gradients of the normal consolidation line (λ), and it can be derived from the compression index (Cc) obtained through conventional 1D consolidation tests or on the compressibility curve:

$$\lambda = C_c / 2.303$$

The void ratio for the Sigma/W was computed from the provided solid content P at the mine (P = 54% or 0.54, **Table** 3-1). The water content (w) can be estimated based on the solid content according to the following equation:

$$W = P\%(100-P\%)$$

This gives a corresponding water content of 0.82.

The void ratio can be calculated using the well-known following geotechnical relationship:

$$e \times Sr = w \times Gs$$

Where e is the void ratio, S_r the degree of saturation ($S_r = 1$ or 100% for saturated materials), and G_S the specific gravity ($G_S = 2.6$, **Table 3-1**). The resulting (calculated) void ratio is e = 2.13.

Figure 5-1 shows the results of settlements from Sigma/W at Goose Pit for a period of 5 years after the end of filling. These results indicate a settlement S_t of 2.1 m after 1 year and a total settlement of 3.0 m after 5 years. The relative settlement $S_t/H_0 = 3.0$ m / 37.5 m = 8%, which is more coherent for tailings categorized as "thickened tailings" with a solid content (P) falling within the range of 45% to 70%.

As mentioned above, Sigma/W results show a 2.1 metres settlement after 1 year, which is near the observed values on site (1.5 m to 2 m, from bathymetry in the centre of the pit). According to Sigma/W, the final settlement is expected to be no more than 3 metres; this settlement is reached approximately 2 years after the end of filling.

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	19

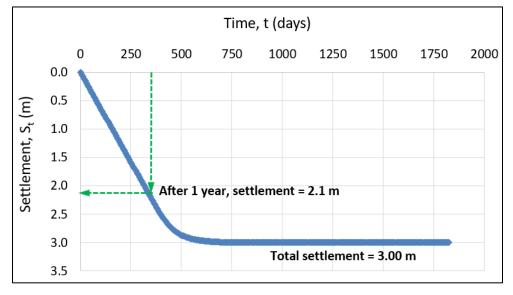


Figure 5-1: Tailings Settlement Obtained from Sigma/W

6.0 Adjustment of FSConsol Tailings Settlement Curve

As described in **Section 4.0**, the tailings settlement results from FSConsol are much smaller than what was observed on site (i.e., 1.5 to 2 metres) due to the input used in the model (i.e., compressibility with an initial void ratio of 0.86 instead of an initial void ratio higher than 2). To compensate for this deficiency, the tailings consolidation curve from FSConsol was adjusted to that obtained from Sigma/W. This adjustment aims to reach the same final settlement (more coherent) value of 3.0 m for both models (Sigma/W and FSConsol) and thus deduce from FSConsol the duration necessary to complete the settlements, for the purposes of comparison with the results from Sigma/W.

Figure 6-1 shows the FSConsol settlement curve adjusted to that from Sigma/W, which serves as calibration. The adjustment is made to have the same final settlement (3 m), but it is observed that the adjustment is also valid for the settlement obtained 1 year or 365 days after the end of filling, as the figure shows that for both models (Sigma/W and FSConsol) the settlement after 1 year is 2.1 m. This figure also indicates that the end of settlement occurs after 1.8 years based on the Sigma/W model and after 3 years based on the FSConsol model. From a conservative point of view, a duration of 3 years needed to reach the end of settlements will be considered.

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	20

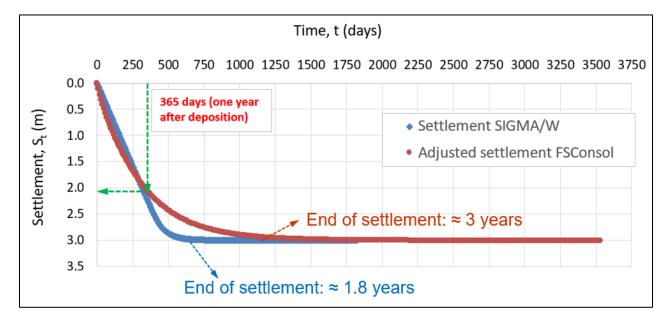


Figure 6-1: Adjustment of Settlement Curve from FSConsol to that from Sigma/W

In 2018, a 1D consolidation modelling was carried out with FSConsol to obtain the achievable dry tailings density after consolidation and estimate the cumulative volume (quantity) of water released into the supernatant. The actual modelling in the present study is focused on the water flow (flux) which should be used as input in another numerical model which is performing the hydrodynamic and geochemical modelling of Goose Pit; this flow is deduced from the settlement because settlement only takes place due to the expulsion of water from the pores.

However, even if it did not attract much attention, the settlement of the 2018 study, calculated with geotechnical data from Golder (2017), indicated a relative settlement of St/H0 = 3.8 m / 125.6 m = 3.02%, which is also low for "thickened tailings", especially since the tailings layer considered in the 2018 study was thicker (i.e., H0 = 125.6 m, placed for 4 years and 9 months). It is also important to highlight that in 2018, the modelling was carried out without validation/calibration, primarily because there was no bathymetric data available at that time. The 2023 study must reproduce field settlement observations (bathymetries), even if they are extremely imprecise and do not replace field measurements.

Evaluation of the flow rate of water expelled from tailings

For both models, the flow rate (flux) of water expelled from tailings is computed at each time step as follows:

Flow of expelled water, $Q(m^3/s) = settlement(m) \times plan area(m^2)$

The average plan area at the top surface of tailings has been obtained from Muk3D analyses.

Figure 6-2 and **Figure** 6-3 show the flow rate of water expelled from the tailings for the entire duration of consolidation, respectively for Sigma/W and FSConsol models. The results from the Sigma/W model indicate that the maximum flow rate $Q_{max} = 0.004$ m³/s and that the flux remains stable for the first 375 days after deposition. Subsequently, it gradually decreases and eventually reaches nearly zero after 700 days (approximately 2 years).

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page	
00	04/30/2024	21	

The results from the FSConsol model indicate that the maximum flow rate $Q_{max} = 0.007 \text{ m}^3/\text{s}$; from the outset, the flow begins to decrease, and it reaches zero after 1,000 days (approximately 3 years). From a conservative point of view, a max flow rate of $Q_{max} = 0.007 \text{ m}^3/\text{s}$ will be considered.

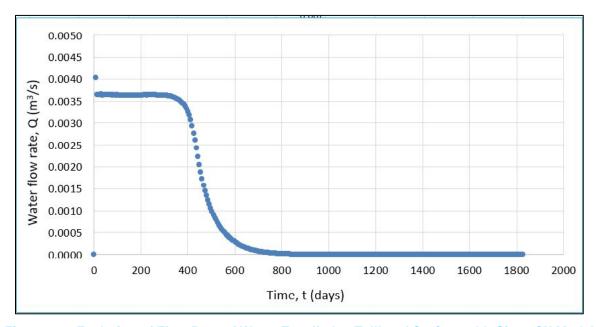


Figure 6-2: Evolution of Flow Rate of Water Expelled at Tailings' Surface with Sigma/W Model

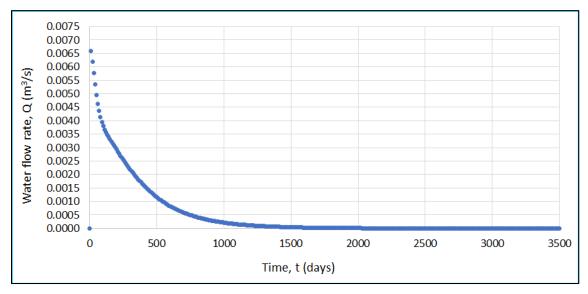


Figure 6-3: Evolution of Flow Rate of Water Expelled at Tailings' Surface with FSConsol Model

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	22

7.0 Discussion and Conclusion

The modelling of Goose Pit tailings consolidation has been achieved using two numerical models: FSConsol and Sigma/W.

Tailings settlement initial results from FSConsol were not in-line with field observations (i.e., 0.46 m after 1 year of deposition against an observed settlement of 1.5 to 2.0 m) because of an inappropriate input in the model, specifically the compressibility curve of the tailings. After a few iterations with FSConsol software, it was observed that the data available from the laboratory testing conducted in 2017 (Golder, 2017) were not representative of the *in situ* conditions.

Geoslope's Sigma/W was then used to estimate the tailings settlement. Settlement results from Sigma/W were close to the field observation. The results were then used to adjust the FSConsol model results. A total settlement of approximately 3 m was obtained from both the Sigma/W model and the adjusted FSConsol model, which is more in alignment with the observed field data.

The flow rate expelled from the tailings was evaluated for both models as the product of settlement and plan area for each time step. Sigma/W indicated a maximum flow rate of 0.004 m³/s, reaching a flux nil (zero) after approximately 2 years while FSConsol indicated a maximum flow rate of 0.007 m³/s, reaching a flux nil (zero) after approximately 3 years.

From a conservative standpoint, it is imperative to give due consideration to the maximum expelled flow rate from the tailings, which is calculated by using the FSConsol model at 0.007 m³/s. This conservative approach ensures that not only this is the best case (worst case) scenario considered, but it also allows to prepare for potential outliers and extreme conditions.

Figure 7-1 shows the bathymetric profiles (topographies) of sections B and E in 2019, 2020, 2021 and 2023. The 2019, 2020 and 2021 bathymetric profiles have already been shown in **Figure** 3-8, only the 2023 bathymetric profile is added here. It is observed that the bathymetric profile of 2023 is closer to that of 2021. This indicates that the settlement which occurred from 2021 to 2023 is a residual settlement, the greatest settlement occurred between 2020 (when filling stopped) and 2021. In 2021, the settlement in the centre of the pit was estimated at 1.5 to 2 m. According to **Figure** 7-1, the settlement in 2023 at the same location is estimated at 2.1 to 2.3 m. This settlement is less than that predicted by the Sigma/W model (i.e., 3 m as total settlement). We can assume that residual settlements at Goose Pit could continue to occur for a period of time (for less than a year according to FSConsol which predicts a period of 3 years to complete the settlements), but based on the current analyzed data, these residual settlements will hardly reach the total settlement of 3 m predicted by the Sigma/W model.

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page
00	04/30/2024	23

697172-2000-4GER-0001

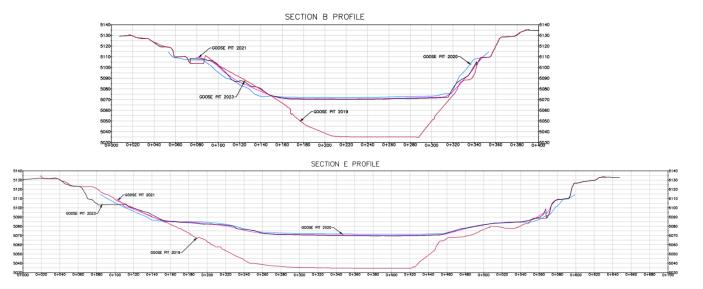


Figure 7-1: Profiles of Sections B and E of Goose Pit - 2019, 2020, 2021 and 2023

The differences between numerical predictions and field observations are often linked to the accuracy of the geotechnical parameters introduced into the model. It is important to mention that bathymetric data provided are not entirely consistent. Also, bathymetries are extremely coarse data and cannot give the precision required in geotechnics which can be, in some cases, of the order of mm or cm. This greatly affects the water flow deduced from settlements.

8.0 Recommendations

To improve the modelling results, the following items are recommended:

- Obtaining new and recent geotechnical investigations, including laboratory tests and characterization of materials (tailings), that reflect field conditions.
- Obtaining a detailed description of the site filling conditions (deposition rates and sequencing), including specific dates, granulometry, solid content and relevant historical data; and
- Exploring new interpretation and methodology for bathymetric studies.

Frequent measurements of the solid content before deposition and of the particle size (which could change with time and depth) are important elements that can help validate the inputs in the numerical models.

The situation of Goose Pit tailings deposition is more complex compared to most mining tailings deposition sites (example of slurred or filtered residues stored in an impoundment). At least a few field measurements, beside laboratory tests, will provide a significant improvement to the predictions made by the numerical models. The geotechnical work should be preceded by a geotechnical investigation, or at least an assessment of real geotechnical needs through discussions between AtkinsRéalis and Agnico Eagle geotechnical teams.

TECHNICAL NOTE 1D Tailings Consolidation Modelling of Goose Pit

697172-2000-4GER-0001

Prepared by: Mansoureh Mouchan, Faustin Saleh Mbemba

Reviewed by: Miguel Medina

Rev.	Date	Page	
00	04/30/2024	24	

9.0 References

Azimuth (2022). Technical Memo, in-pit tailing assessment, aerial imagery, photo, and bathymetry data from Agnico Eagle (page 14).

Golders (2017). Whale Tail Pit Project, Laboratory Testing on Process Plant Tailings AEM Document: 6112-E-105-001-REP-002. Technical Memorandum. December 14, 2017.

SNC-Lavalin (2017). Hydrogeological Modelling for In-Pit Deposition of Tailings. Document no. 643541-3000-4WER-0001, revision A00. November 30, 2017.

SNC-Lavalin (2018). Tailings Deposition Design Criteria. Document no. 651196-2000-40EC-0001, revision E00. February 23, 2018.

SNC-Lavalin (2018). 1D Tailing consolidation assessment – in-pit Tailing Deposition Detailed Engineering. 651196-2000-4GCA-0001, Rev 01, May 03, 2018.

APPENDIX D

ATKINSRÉALIS. PRELIMINARY GOOSE PIT HYDRODYNAMIC WATER QUALITY FORECAST — WATER QUALITY PROFILE FOR SIMULATION 3B-2 AT THE END OF CLOSURE (NOVEMBER 2043)

Water Quality Profile - Simulation 3B-2

Simulation Date: 2043-11-30

Water Depth	m	1	2	3	4	5	6	7	8
Elevation (m)	m	133.8	132.5	131.5	130.5	129.5	128.5	127.5	126.5
Temperature	deg C	0.021	2.17	3.46	3.76	3.62	3.60	3.60	3.60
Density	kg/m3	1000.1	1000.2	1000.3	1000.3	1000.3	1000.3	1000.3	1000.3
DO	mg/L	7.31	5.99	4.78	4.08	3.75	3.74	3.74	3.74
рН	mg/L	7.95	7.95	7.95	7.95	7.95	7.95	7.95	7.95
TDS	mg/L	320.3	337.5	354.0	364.5	369.8	370.0	370.0	370.0
Total Inorg. Carbon	mg C/L	0.918	2.64	4.10	4.83	5.10	5.11	5.11	5.11
Total Ammonia	mg/L	0.320	0.372	0.427	0.466	0.489	0.490	0.490	0.490
NO3	mg/L	2.73	2.73	2.74	2.75	2.75	2.75	2.75	2.75
SO4	mg/L	179.2	185.0	191.0	195.1	197.4	197.5	197.5	197.5
Al	mg/L	0.000255	0.000275	0.000296	0.000310	0.000319	0.000319	0.000319	0.000319
As	mg/L	0.0228	0.0242	0.0256	0.0266	0.0272	0.0272	0.0272	0.0272
Ве	mg/L	0	0	0	0	0	0	0	0
Ca	mg/L	56.90	58.65	60.45	61.69	62.39	62.41	62.41	62.41
Cd	mg/L	0	0	0	0	0	0	0	0
CI	mg/L	22.6	23.7	24.9	25.7	26.1	26.1	26.1	26.1
Cu	mg/L	0.00505	0.00533	0.00562	0.00582	0.00593	0.00594	0.00594	0.00594
Fe2+	mg/L	0.0144	0.0154	0.0165	0.0172	0.0176	0.0176	0.0176	0.0176
Fe3+	mg/L	0.000232	0.000242	0.000253	0.000259	0.000234	0.000232	0.000232	0.000232
Mg	mg/L	9.32	9.35	9.38	9.40	9.40	9.40	9.40	9.40
Мо	mg/L	0.00486	0.00501	0.00515	0.00526	0.00531	0.00532	0.00532	0.00532
Na	mg/L	27.4	28.7	30.0	30.9	31.4	31.4	31.4	31.4
PO4	mg/L	0.046	0.046	0.047	0.047	0.047	0.047	0.047	0.047
SCN-	mg/L	3.08	3.17	3.35	3.48	3.55	3.56	3.56	3.56
Se	mg/L	0.00164	0.00172	0.00180	0.00186	0.00189	0.00189	0.00189	0.00189