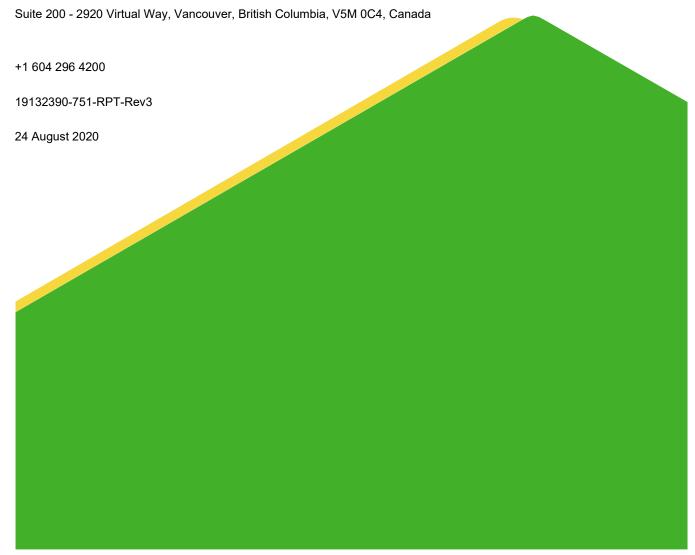


REPORT

Water Quality Management and Optimization Plan Progress Update


Phase 3: Finalize Meliadine Mine Effluent Discharge Benchmarks for Total Dissolved Solids

Submitted to:

Agnico Eagle Mining Limited Meliadine Mine Operations

Submitted by:

Golder Associates Ltd.

Distribution List

1 eCopy: Agnico Eagle Mines Limited

1 eCopy: Golder Associate Ltd.

İ

Table of Contents

1.0	INTRODUCTION	1
	1.1 Report Structure	2
2.0	APPROACH FOR BENCHMARK DEVELOPMENT	3
3.0	PHASE 2: CONDUCT VALIDATION STUDY	4
4.0	PHASE 3: FINALIZE MELIADINE MINE BENCHMARKS	8
5.0	ADAPTIVE MANAGEMENT	9
6.0	CONCLUSIONS	11
7.0	REFERENCES	13
TAB	BLES	
Tabl	le 1: Conceptual design for validation of interim TDS limits for discharge and receiving environment to be conducted in 2020 as part of the emergency amendment to Agnico Eagle's Type "A" Water Licence (No. 2AM-MEL-1631)	5
Tabl	le 2: Surface water quality adaptive management strategy for CP1 discharge to Meliadine Lake	10

APPENDICES

APPENDIX A WQ-MOP Rev2

APPENDIX B

Available 2020 Discharge Monitoring Results Collected Between 3 June 2020 and 17 July

1.0 INTRODUCTION

The purpose of this Water Quality Management and Optimization Plan (WQ-MOP) update is to present the findings of the validation monitoring that has been conducted to date under Phase 2 of the approach detailed in the approved WQ-MOP Rev2 (Golder 2020) and to provide supporting rationale for the recommendations as per Phase 3 of the WQ-MOP Rev2 for:

- the maximum average concentration (MAC) and maximum grab concentration (MGC) for discharge from CP1 to Meliadine Lake (i.e., effluent quality criteria; EQC); and
- the benchmark concentration to be achieved at the edge of the mixing zone in Meliadine Lake, which would also be consistent with the site-specific water quality objective [SSWQO]) for longer-term management of the receiving environment of Meliadine Lake

This progress update also describes the adaptive management thresholds associated with the management of water in CP1 and in the receiving environment (edge of mixing zone in Meliadine Lake) that are proposed for triggering measures that would be implemented to reduce the potential for the targets associated with discharge to Meliadine Lake to be exceeded.

On 2 June 2020, the WQ-MOP Rev2 (Golder 2020) was submitted to the Nunavut Water Board (NWB) as a requirement under NWBs Reason for Decision (NWB 2020) to approve Agnico Eagle Mines (Agnico Eagle) Emergency Amendment to their Type "A" Water Licence (No. 2AM-MEL-1631), submitted 24 March 2020, for effluent discharges associated with the Meliadine Mine located in the Kivalliq Region of Nunavut. This amendment, along with the WQ-MOP Rev2, was approved with Minister's consent on 12 May 2020 and discharges to Meliadine Lake were initiated on 5 June 2020. The objective of the WQ-MOP was to formalize a procedure for management of effluent discharges that follows a systematic and science-based framework for determining acceptable discharge quality conditions. The WQ-MOP Rev2 is provided in Appendix A and considers the operational discharge of water to Meliadine Lake via the existing in-lake diffuser.

The WQ-MOP Rev 2 included a summary of the water management plan for the Mine associated with the Meliadine Lake discharge and described the interim targets for total dissolved solids (TDS) that were developed for the effluent discharge and for receiving environment conditions at the edge of the mixing zone during the emergency amendment. This plan also detailed monitoring studies to monitor discharge and receiving environment conditions of Meliadine Lake under the approved temporary (May to October 2020) amendment to Agnico Eagle's Type "A" Water Licence (No. 2AM-MEL-1631), which permitted the following:

Authorization to temporarily discharge water from Containment Pond 1 (CP1) to Meliadine Lake that contains a maximum average concentration of TDS up to 3,500 mg/L, which exceeds the current limit described in Part F, Item 3 of the current Water Licence of 1,400 mg/L

Under the approved Water Licence Emergency Amendment, Meliadine Mine has been discharging from CP-1 to Meliadine Lake since 5 June 2020. Water quality monitoring described in detail in the approved WQ-MOP Rev 2 (Appendix A) and summarized in Table 1 of Section 3.0 is on-going and, as of 17 July 2020, the sampling program has been operational for a period of approximately 6 weeks. Available results that have been reported for the chemistry and toxicology components over the discharge period (between 3 June and 17 July 2020) are summarized and interpreted in Appendix B.

Within the WQ-MOP Rev2 (Appendix A), a three-phased approach was developed that included developing interim discharge and edge of mixing zone targets for TDS, designing and completing validation studies for the discharge and receiving environment, and finalizing the TDS benchmarks. At this time, Phase 1 (Develop Interim Targets) is complete, which proposed TDS targets for the discharge and the edge of the mixing zone. These proposed targets were reviewed by the Water Management Working Group (WMWG) and, following responses to comments from Environment and Climate Change Canada (ECCC) and Kivalliq Inuit Agency (KivIA) (Agnico Eagle 2020), as well as discussions through the WMWG, the following represent the agreed upon interim targets:

- A maximum average concentration (MAC) and a maximum grab concentration (MGC) of 3,500 mg/L TDS and 5,000 mg/L TDS, respectively, for the discharge
- An edge of mixing zone target of 1,000 mg/L TDS in the Meliadine Lake receiving environment at a radius of 100 m surrounding the in-lake diffuser

Phase 2 of the WQ-MOP (Conduct Validation Study) details the validation studies specific to the emergency amendment, which commenced in conjunction with the release of discharge from the Meliadine Mine to Meliadine Lake on 5 June 2020. This phase is ongoing in 2020, with the results being used to meet the intent of Phase 3. The scope of the on-going Phase 2 validation studies is summarized in Section 3.0 and details on the preliminary monitoring results available as of 17 July 2020 are provided in Appendix B.

Phase 3 (Finalize Meliadine Mine Benchmarks) involves incorporating the findings of Phase 1 into the assessment of results from the Phase 2 validation studies and determining the discharge limits (EQCs) and edge of mixing zone (SSWQO) benchmarks, which will provide for the ongoing long-term protection of Meliadine Lake from unacceptable effects (see Section 2.0 for details). As of 17 July 2020, monitoring results collected to date support the agreed upon interim targets, as the discharge has not been acutely toxic, adverse effects from chronic toxicity tests conducted on receiving environment samples have not been observed, and the discharge appears to be rapidly assimilated in the receiving environment. These data suggest that a MAC TDS concentration of 3,500 mg/L will remain protective of the receiving environment; however, the Phase 2 validation studies need to be completed to finalize the edge of mixing zone benchmark (SSWQO). As Phase 2 is ongoing, results of the validation monitoring collected in 2020 will be available to the Board during the technical review process; following each monthly monitoring event, results from the validation monitoring are collated, reviewed, and presented to the WMWG, which is represented by the NWB, KivIA, ECCC, and Crown Indigenous Relations and Northern Affairs Canada (CIRNAC).

1.1 Report Structure

This updated WQ-MOP provided as part of the 2020 Water Licence Amendment application has been structured as follows:

- Approach for Benchmark Development (Section 2.0)
- Summary of Validation Study Components (Section 3.0)
- Development of Meliadine Mine Benchmarks for Longer-term Water Management (Section 4.0)
- Conclusions (Section 5.0)

2.0 APPROACH FOR BENCHMARK DEVELOPMENT

For Phase 1, the guiding principle outlined in the WQ-MOP is that site-specific water quality benchmarks should be developed that satisfy the following conditions:

- protective of the environment
- satisfy regulatory requirements
- based on science (rather than strictly on considerations of policy or precedent)
- customized to the site-specific conditions of water quality and quantity

Adoption of fixed numerical benchmarks, either as static discharge limits or generic water quality guidelines, is unlikely to satisfy some parts of the above guiding principle. TDS benchmarks can, however, be developed using a toxicity-based approach that satisfies all the above conditions. TDS represent a "soup" of multiple component ions, and the behavior of this mixture in the environment is influenced by the relative toxicities of the component ions and the ability of some ions (e.g., calcium) to ameliorate the toxicity of others. For effective regulation of TDS, an approach is required that considers the toxicological potential of the mixture, and the point of compliance for different types of responses.

From our communications with ECCC, a conceptual approach was developed in the WQ-MOP Rev 2 that is consistent with guiding principles and has three main components in the development of numerical targets:

- Effluent discharges must not result in acute toxicity at the point of release
- Effluent discharges must not result in unacceptable chronic toxicity at the edge of the mixing zone (a regulated boundary located 100 m around the diffuser) following initial dilution
- Effluent discharges must not exceed the capacity of the receiving environment to accommodate long-term loadings of constituents (i.e., assimilative capacity)

For broader management of TDS in Nunavut, instead of promulgating an uncertain numerical value for TDS or its individual component(s), Agnico Eagle developed interim targets for managing TDS in the discharge and receiving environment (to apply at the edge of the mixing zone) that reflect the site-specific mixture of ions, confirmed through standardized toxicity tests and evaluation of assimilative capacity. As detailed in the WQ-MOP Rev2, a validation monitoring program was designed and was implemented with the onset of discharge on 5 June 2020 to validate interim targets developed as part of the WQ-MOP and to provide data to inform development of firm discharge limits and receiving environment benchmarks (or EQCs and SSWQOs) for long-term application. The discharge limit and SSWQO benchmarks can then be applied to guide an adaptive management approach for managing site water.

Since the approval of the emergency amendment, and following consent from the Minister of Northern Affairs on 12 May 2020, monitoring data collected at the end of pipe and in the receiving environment (at the edge of the mixing zone) following the commencement of discharge on 5 June 2020 (i.e., Phase 2 of the validation framework) have been compared to interim discharge and edge of mixing zone limits applied at the end of pipe and in the receiving environment, respectively.

The intent of Phase 3 is the integration of the benchmark recommendations made in Phase 1 and the results of Phase 2 to formalize the science-based interim targets as EQC and SSWQO benchmarks, as described in the WQ-MOP Rev2, that are applicable to future conditions at the Meliadine Mine. As described in Section 4.0, the validation monitoring conducted to date support the proposed interim targets; however, on-going validation

monitoring studies (i.e., regular time-based field physico-chemical measurements, plume delineation studies, water chemistry analyses, and sampling for toxicity testing [acute and chronic testing] of the discharge and the receiving environment) are expected to provide greater evidence to support the conditions required to satisfy establishing these interim targets as firm targets for long-term water management at the Site. These studies, especially the supplemental sublethal toxicity testing of the effluent, will be used to validate and/or refine the science-based interim TDS target for the discharge and edge of mixing zone. The scope for these investigations is summarized in Section 3.0.

3.0 PHASE 2: CONDUCT VALIDATION STUDY

In conjunction with the 2020 releases that have occurred, and are continuing to occur, at the Meliadine Mine, as approved under Amendment 1 of the Mine's Type "A" Water Licence, supporting studies are being conducted to monitor conditions and validate the science-based interim targets, as well as produce additional information on receiving environment assimilation (including plume delineation). This section presents the general conceptual design for the monitoring studies required as a condition under Amendment 1. A more detailed description of the discharge monitoring program is provided in the WQ-MOP Rev2 (Appendix A).

A discharge event to dewater CP1 was approved by NWB and discharge was initiated on 5 June 2020. The discharge is ongoing and the Meliadine Mine is currently permitted to discharge effluent up to a MAC of 3,500 mg/L TDS and an MGC of 5,000 mg/L TDS until October 2020. As a result, TDS concentrations in the discharge will be elevated relative to the receiving environment during this discharge event, presenting an opportunity to conduct site validation for the TDS targets for the discharge and for the receiving environment at the edge of the mixing zone. The conceptual design for the approved validation study described in the WQ-MOP Rev2 (Appendix A) consists of three components: water quality monitoring, toxicity testing, and plume delineation.

These three components are complimentary and are being conducted with the following primary objectives:

- Water Quality Monitoring: The surface water quality monitoring program is being conducted to validate the model predictions that TDS will be dispersed to less than 1,000 mg/L at the edge of the mixing zone, to provide detailed chemical characterization of the effluent and receiving environment during the discharge, and to provide information on the ionic composition of water used during the toxicity testing program.
- Toxicity Testing: The acute and chronic toxicity testing programs are being conducted to confirm that the ionic composition measured in the discharge and the receiving environment during the surface water quality monitoring program are not at levels that would cause adverse biological effects. As described in detail in the WQ-MOP Rev2 (Appendix A) and summarized in Table 1 below, acute toxicity tests are being conducted on the discharge to validate that the discharge is not acutely toxic. A suite of chronic toxicity tests is being conducted on both the effluent and receiving environment samples to validate that TDS concentrations measured at the edge of the mixing zone are not at levels that would cause chronic toxicity. As per commitments arising from responses to comments from ECCC and KivIA (Agnico Eagle 2020), as well as discussions through the WMWG, starting during the second monthly sampling event (see Table 1 for details), chronic toxicity testing of the discharge will be conducted monthly using a dilution series test design similar to that being performed on the edge of mixing zone receiving environment stations.
- Plume Delineation Study—The plume delineation study will be conducted in mid and late summer to assess the vertical and horizontal extent of the effluent plume during seasonal periods that reflect the two distinct open water hydrological conditions in Meliadine Lake: just after freshet flows in July when the ice has gone from the lake, and in August when in lake open water flows are low. The emphasis of these studies will be through *in situ* specific conductivity profiling of the water column using a handheld meter with a sensor that will be lowered through the water column, with a subset of locations sampled for TDS. The relationship

between field measured specific conductivity and laboratory measured TDS will be established to validate the use of specific conductivity as a tracer of TDS in the receiving environment. The information retrieved will be used to confirm model predictions related to effluent dilution and assimilation in the receiving environment, and to confirm that receiving environment monitoring stations are adequately characterizing conditions with respect to surface water chemistry and the potential for adverse biological effects.

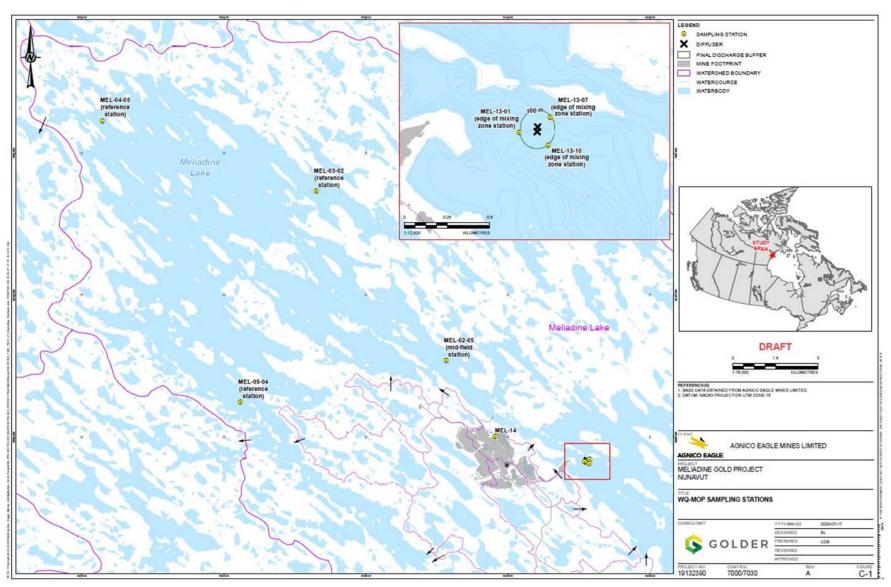
An overview of the validation monitoring design that will be conducted in 2020 is presented in Table 1. Figure 1 depicts the locations of the selected monitoring stations.

Starting in 2021, it is expected that the validation monitoring, with respect to discharge and edge of mixing zone locations and sampling frequency, will return to the monitoring design as required under the approved water licence.

Table 1: Conceptual design for validation of interim TDS limits for discharge and receiving environment to be conducted in 2020 as part of the emergency amendment to Agnico Eagle's Type "A" Water Licence (No. 2AM-MEL-1631)

2AIVI-IVIEL-1031)				
Water Quality Monitoring Program				
Sampling Media	Discharge	Mixing Zone	Receiving Environment (beyond mixing zone)	
Sample Timing	During discharge and during collection of samples for toxicity testing	During discharge ^(a)	During discharge ^(a)	
		3 stations at the edge of the mixing zone (MEL-01-01, MEL-01-07 and MEL-01-10) ^(b)	4 stations - 1 mid-field (MEL-02-05), 3 references (MEL-03-02, MEL-04-05, and MEL-05-04)	
Number of Samples	Per regulatory and operational requirements	1 sample per station	1 sample per station	
Frequency of Sampling	Weekly during discharge	Weekly during discharge or as per NWB's direction	Monthly during discharge or as per NWB's direction	
Test Parameters	Daily monitoring of discharge flow volumes Parameters as listed in Schedule I Group 2 of the 2AM-MEL1631 NWB Water Licence ^(c)	 Field physico-chemical water column profile measurements (temperature, specific conductivity, pH, DO) Parameters as listed in Schedule I Group 2 of the 2AM-MEL1631 NWB Water Licence^(c) 	 Field physico-chemical water column profile measurements (temperature, specific conductivity, pH, DO) Parameters as listed in Schedule I Group 2 of the 2AM-MEL1631 NWB Water Licence 	
Toxicity Testing Prog	ram			
Sampling Media	Discharge	Mixing Zone	Receiving Environment (beyond mixing zone)	
Sample Timing	During discharge	During discharge ^(a)	During discharge ^(a)	
Sampling Locations	MEL-14	3 stations at the edge of the mixing zone (MEL-01-01, MEL-01-07 and MEL-01-10) ^(b)	4 stations - 1 mid-field (MEL-02-05), 3 references (MEL-03-02, MEL-04-05, and MEL-05-04)	
Number of Samples	Per regulatory and operational requirements	1 composite sample per station	1 composite sample per station	
Frequency of Sampling	Weekly acute tests during discharge; monthly chronic toxicity tests beginning during the second monthly event ^(d)	Monthly during discharge	Monthly during discharge or as per NWB direction	
Test Parameters	Acute toxicity tests with: Rainbow Trout Daphnia magna Chronic toxicity tests(d) with: Pelagic crustacean (Daphnia magna) Epibenthic Invertebrate (Hyalella azteca)	Chronic toxicity tests with: Pelagic crustacean (Daphnia magna) Epibenthic Invertebrate (Hyalella azteca) Macrophyte (duckweed) ELS fish (Fathead Minnow)	Chronic toxicity tests with: Pelagic crustacean (Daphnia magna) Epibenthic Invertebrate (Hyalella azteca) Macrophyte (duckweed) ELS fish (Fathead Minnow)	

Table 1: Conceptual design for validation of interim TDS limits for discharge and receiving environment to be conducted in 2020 as part of the emergency amendment to Agnico Eagle's Type "A" Water Licence (No. 2AM-MEL-1631)


	,		
	Macrophyte (duckweed)ELS fish (Fathead Minnow)		
Plume Delineation St	udy		
Sampling Media	Discharge	Receiving Environment (within mixing zone and beyond)	
Sample Timing	During discharge ^(e)	During discharge ^(e)	
Sampling Locations	MEL-14	22 survey locations (see Appendix B) at distance intervals of 50 m from the diffuser, 100 m (i.e., edge of mixing zone), 175 m, and 250 m; potentially adjusted to include further afield samples if necessary ^(f)	
Frequency of Program	2 events during discharge (early and late summer)	2 events during discharge (early and late summer)	
Test Parameters	 TDS and major ions General parameters^(g) 	 Field physico-chemical water column profile measurements (temperature and specific conductivity) Water quality samples collected at a subset (a maximum of 10 stations) stations alongside profile measurements and analyzed for TDS, major ions, and general parameters^(f) 	

Notes:

- (a) The timing of sampling for each program is expected to occur continuously during the discharge period as outlined in the sample frequencies listed above for each sample media and test type. However, sample timing will be dependent on safe access to the lake. The period of anticipated discharge will likely coincide with the transition period between ice covered and open water conditions on Meliadine Lake. If samples cannot be collected at the required time due to safety considerations, contingency measures may be implemented, as outlined in Section 3.4.
- (b) Parameters as listed in Schedule I Group 2 of the 2AM-MEL1631 NWB Water Licence include Conventional Parameters (bicarbonate alkalinity, chloride, carbonate alkalinity, turbidity, conductivity, hardness, calcium, potassium, magnesium, sodium, sulphate, pH, total alkalinity, TDS, TSS, total cyanide, free cyanide, and weak acid dissociable [WAD] cyanide), Nutrients (ammonia-nitrogen, total Kjeldahl nitrogen, nitrate-nitrogen, orthophosphate, total phosphorus, total organic carbon, dissolved organic carbon, and reactive silica), and Total and Dissolved Metals (aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium, uranium, vanadium, and zinc).
- (c) Mixing zone stations MEL-01-01 and MEL-01-07 are routinely sampled by the mine during the EEM/AEMP programs. MEL-01-10 represents a new sampling station. Further details on the selected mixing zone sampling stations are provided in Section 3.1.
- (d) As per commitments arising from responses to comments from ECCC and KivIA and discussions through the WMWG following the first monthly sampling event, chronic toxicity testing of the MEL-14 effluent will be conducted monthly beginning on the second monthly sampling event.
- (e) Sample timing will be dependent on boat access to the lake. The period of anticipated discharge will likely coincide with the transition period between ice covered and open water conditions on Meliadine Lake. Access of the lake will occur as soon as open water conditions permit safe boat access.
- (f) The maximum spatial extent of plume delineation monitoring may be extended past 250 m should the proportion of effluent be estimated to contribute >10% of TDS at 250 m (estimated based on field specific conductivity measurements).
- (g) General parameters = total and bicarbonate/carbonate alkalinity, turbidity, laboratory specific conductivity, hardness, laboratory pH, and total suspended solids.

ELS = early life-stage; TDS = total dissolved solids.

Figure 1. Phase 2 WQ-MOP validation study sampling stations

4.0 PHASE 3: FINALIZE MELIADINE MINE BENCHMARKS

As previously described, the Meliadine Mine has been discharging from CP1 to Meliadine Lake since 5 June 2020, as approved under Amendment 1 of the Mine's Type "A" Water Licence. As such, water quality monitoring outlined in Table 1 is on-going and, as of 17 July 2020, the sampling program has been operational for a period of approximately 6 weeks. Results reported for the chemistry and toxicology components over this period are summarized and interpreted in Appendix B. Results available as of 17 July 2020 are as follows:

- Seven discharge chemistry sampling events
- Four weekly acute toxicity test results with Rainbow Trout and D. magna on the discharge
- One sampling event at edge of mixing zone sampling stations the ice was not safe to access during the weeks of 14, 21, and 28 June, and 5 July due to potential health and safety concerns; however, remote data loggers were deployed and will provide information on temperature and specific conductivity at the edge of mixing zone stations over this period and for the duration of the discharge period. Edge of mixing zone stations will be sampled weekly following ice-free conditions
- One round of monthly receiving environment chemistry results due to unsafe ice conditions, edge of mixing zone station MEL-13-10 was not able to be collected during the first monthly sampling event. This sample will be collected during subsequent monthly sampling events now that Meliadine Lake is ice free
- One round of monthly receiving environment chronic toxicity test results with each of the four test species due to the time required to conduct these chronic tests (e.g., up to 21-days for the *D. magna* test, 14-d *H. azteca*). Final results are only available for the Duckweed and Fathead Minnow tests as of 17 July 2020

Detailed discussion of the results of this testing are provided in Appendix B. The following represents the primary conclusions of this data analysis and interpretation of results:

- TDS concentrations measured in the discharge were less than the MAC of 3,500 mg/L in each of the weekly sampling events and ranged between 1,510 and 3,100 mg/L measured TDS (2,502 and 2,588 mg/L calculated TDS).
- The discharge was not found to be acutely toxic in four rounds of acute toxicity tests conducted with *D. magna* and Rainbow Trout, as the LC₅₀ values were >100% discharge in each of the tests.
- TDS concentrations measured at the edge of mixing zone stations were more than 10-fold lower than the proposed interim target of 1,000 mg/L during the 7 June 2020 sampling event, suggesting that the discharge has a high assimilation rate and that TDS concentrations rapidly decrease in the receiving environment to concentrations below which adverse effects on biological receptors would be expected.
- Consistent with the low TDS concentration results reported in the receiving environment, adverse toxicological effects were not identified during the first monthly chronic toxicity testing program; final results of the *H. azteca* and *D. magna* tests are pending.

Based on the agreed upon site-specific benchmark derivation procedure outlined in the WQ-MOP Rev2 (Appendix A) and summarized in Section 2.0, the validation monitoring conducted to date support the proposed interim targets because:

Discharges were measured at TDS concentrations ranging between 1,510 and 3,100 mg/L measured TDS (2,502 and 2,588 mg/L calculated TDS), which did not result in acute toxicity at the point of release

■ Discharges have not resulted in unacceptable chronic toxicity at the edge of the mixing zone following initial dilution (i.e., at a 100 m radius surrounding the diffuser in Meliadine Lake)

Discharges do not appear to be exceeding the capacity of the receiving environment to accommodate long-term loadings of constituents (i.e., assimilative capacity), as indicated by the observation that effluent was rapidly diluted to well below (i.e., >10-fold less) the proposed edge of mixing zone target of 1,000 mg/L TDS during the June 7, 2020 sampling event

Based on these observations, it is likely that the MAC (3,500 mg/L) can be adopted as a firm benchmark for managing the discharge (as an EQC), subject to confirmation by additional testing in Summer 2020. Monitoring efforts outlined in Table 1 in Section 3.0 will continue for the duration of the permitted temporary discharge of CP1; these data will be used in Phase 3 to ratify the mixing zone target as a firm benchmark (and SSWQO) in Meliadine Lake for long-term water management at the Site.

5.0 ADAPTIVE MANAGEMENT

As described in NWB's (2020) Reason for Decision, adaptive management measures related to the emergency discharge will be discussed on an ongoing basis throughout the discharge event during meetings with the WMWG comprised of the KivIA, CIRNAC, ECCC, and NWB. The thresholds and management responses will apply to discharges beyond 2020.

Based on the adaptive management thresholds and triggers to be implemented during water quality monitoring of the discharge, as stipulated by NWB (2020), and the recommendation from the KivlA following their review of the WQ-MOP Rev2, the following adaptive management table has been developed by Agnico Eagle (Table 2). The table identifies an operating level ranging from Level 0 (green; normal operating condition) to Level 3 (red; high risk situation), the thresholds that trigger each level, and a list of management strategies and actions for consideration in response to mitigate and/or rectify the condition, if required.

Water quality (i.e., TDS) and toxicity testing monitoring data collected in CP1 (representing the discharge) and at the edge of the mixing zone will be compared to the benchmarks determined by Phase 3 of the WQ-MOP.

These adaptive management measures will be implemented if the above referenced management thresholds are triggered. NWB will be notified promptly of any adaptive management measures that are implemented throughout the discharge period. Additional adaptive management responses or actions besides those listed in Table 2 may be considered on a case-by-case basis depending on the management level triggered, or if the results of on-going monitoring (such as the Phase 2 validation monitoring conducted in 2020) identifies other non-conformances. These include:

- Decreasing the rate of effluent discharge or temporary cessation of pumping of the discharge could be considered to increase dispersion and to decrease the overall size of the plume.
- Consideration given to collecting additional edge of the mixing zone sample(s) for exploratory chronic toxicity testing to confirm the threshold at the edge of the mixing zone. These additional samples could be amended with ionic salts in an ionic composition relevant to the edge of mixing zone and tested as a dilution series. The purpose would be to facilitate testing at concentrations both above and below the concentrations measured at the time of sampling, for the purpose of developing a concentration-response curve.
- Consideration given to additional targeted toxicity testing (e.g., validation test, or toxicity identification evaluation to explore the cause for an observed toxicological response), either in response to an acute toxicity outcome (e.g., mortality to crustacean *D. magna*) or for a moderate- to high-magnitude chronic

toxicity response. Such toxicity is not anticipated to occur during the program (i.e., the thresholds have been set specifically to avoid such responses); however, if an anomalous response is observed, a TIE could help elucidate the cause.

Table 2: Surface water quality adaptive management strategy for CP1 discharge to Meliadine Lake

Adaptive Management Level	Threshold	Management Activity / Response /Action
Green (Level 0) Normal Operating Condition	Measured concentrations are less than the MAC discharge limit and the edge of mixing zone threshold level	 Continue monitoring as per Water Licence requirements Continue water management as per Water Management Plan
Yellow (Level 1)	Two consecutive end-of-pipe TDS concentrations equivalent to, or greater than, the MAC discharge limit, or Two consecutive edge-of-mixing-zone TDS concentrations equivalent to, or greater than, 75% of the edge of mixing zone threshold	 Conduct a follow up sampling event to confirm trigger Collect additional edge of the mixing zone sample(s) for chronic toxicity testing Increase sampling frequency at end of pipe to twice weekly or at edge on mixing zone to bi-weekly
Orange (Level 2)	Three consecutive end-of-pipe TDS concentrations equivalent to, or greater than, the MAC discharge limit, or An end-of-pipe TDS measurement is equivalent to, or greater than the MGC discharge limit, or Three consecutive edge-of-mixing-zone TDS concentrations equivalent to, or greater than, 75% of the edge of mixing zone threshold	 Conduct a follow up sampling event to confirm trigger Decrease the rate of effluent discharge or temporarily cease pumping of the discharge Consider alternative management of CP1 water (e.g., divert to waterline)
Red (Level 3)	Two consecutive end-of-pipe TDS concentrations greater than 5,000 mg/L	 Cease pumping of the discharge to Meliadine Lake Conduct a follow up sampling event to confirm trigger Consider alternative management of CP1 water, such as diversion of CP1 water into the Waterline

An additional adaptive management strategy includes the utilization of an alternative to the water management plan; that is, use of the waterline as a supplemental option for water transfer from CP1. This alternative relates to the management of surface contact water and the potential opportunity to use the proposed waterline, which is new mine infrastructure provided in a Project Certificate Reconsideration Application currently before the NIRB for review. As described in the Type A Water Licence 2AM-MEL1631 Amendment (Main Application Document), Agnico Eagle is proposing to increase the currently approved discharge rate to 6,000 to 12,000 m³ of water per day to Melvin Bay. Treated saline groundwater effluent will be conveyed through waterlines from the treatment plant to the discharge facility at the Itivia Fuel Storage Facility for discharge during the open water season (May to October). Surface contact water from CP1 can be directed to the waterline and co-mingled with the treated contact water from the underground mine in the waterline. The treated contact water from the underground mine with the CP1 surface contact water will be discharged in a controlled manner to Melvin Bay through an engineered diffuser in compliance with the required discharge criteria. Treated final effluent quality will be required to meet MDMER criteria prior to discharge (GC 2019). The addition of the CP1 water to the treated contact water from the underground mine will not impact the ability of the discharge limits to be met. Further, supplemental assessments of the potential effects of redirecting CP1 water to the waterline were evaluated with respect to Meliadine Lake and Melvin Bay:

the redirection of CP1 water to the waterline instead of to Meliadine Lake shows that this will only result in a small reduction in overall flows in Meliadine Lake and negligible effects on the levels of Meliadine Lake (further details are provided in Appendix I of the Type A Water Licence 2AM-MEL1631, included as part of the 2020 Water Licence Application package).

preliminary modelling results indicate that effective dispersion of the waterline discharge can be achieved over the planned four months of discharge during open water conditions; the minimum dilution factor is well above the target ratio of 11:1 as used in the previous Melvin Bay Diffuser Design Report (i.e., 2-D dispersion modelling assessment, Tetra Tech April 2020). Taking into account effluent accumulation over time, the minimum dilution factor (corresponding to the maximum concentration) at the edge of the 100 m mixing zone boundary ranges from about 40:1 to 90:1. Furthermore, the preliminary modelling indicates that the discharge is effectively dispersed in Melvin Bay and flushed out of the bay as there are no discernible areas of effluent stagnation or significant accumulation over the discharge period. As a result, the characteristics of the diffuser system and the operating conditions of the discharge (e.g., discharge volume, discharge rates, discharge timing) combined with the hydrodynamic conditions of the bay (primarily tidal regime) results in the efficient flushing of the entire bay. Once discharge ceases, and ice cover occurs on Melvin Bay, further dispersion of the remaining discharge in the bay is actively dispersed through ongoing tidal circulation. The effectiveness of the immediate discharge and the low proportion of discharge in Melvin Bay means that marine habitat and water quality in the Bay will remain protected.

Additional adaptive management strategies, if necessary, would be proposed to the WMWG in advance of the next scheduled meeting to facilitate discussion and agreement prior to implementation.

6.0 CONCLUSIONS

This updated version of the WQ-MOP provides a roadmap that facilitates the evaluation of current and planned information from the Phase 2 (Conduct Validation Study) component of the WQ-MOP Rev2, as well as a process for the completion of Phase 3 (Finalize Meliadine Mine Benchmarks) to determine:

- the MAC and MGC for discharge from CP1 to Meliadine Lake (i.e., effluent quality criteria; EQC); and
- the benchmark concentration to be achieved at the edge of the mixing zone in Meliadine Lake, which would also be consistent with the SSWQO for longer-term management of the receiving environment of Meliadine Lake.

Based on the monitoring results from the Phase 2 validation studies to date (to July 17, 2020), the interim MAC TDS concentration of 3,500 mg/L (developed in Phase 1) remains protective of the receiving environment. However, the Phase 2 validation studies are on-going and need to be completed to finalize the MAC, as well as the edge of mixing zone benchmark (SSWQO). This will be the outcome of Phase 3, which will be completed as a consequence of water quality and toxicity testing information collected from the discharge and the receiving environment (e.g., the edge of mixing zone) in Meliadine Lake in 2020.

There are several uncertainties that are outlined in Appendix B that are expected to be addressed as the validation monitoring program progresses in 2020. Nonetheless, based on the available data as of 17 July 2020, it is likely that that the MAC of 3,500 mg/L will be adopted in Phase 3 as the firm discharge limit for managing the discharge (i.e., EQC). Validation of the MGC TDS limit and the interim receiving environment TDS target of 1,000 mg/L at the edge of the mixing zone (and SSWQO) will be proposed in September 2020 (during the NWB water licence amendment process).

Signature Page

Golder Associates Ltd.

Brett Lucas, MSc, RPBio Environmental Scientist

Gary Lawrence, MRM, RPBio Associate, Senior Environmental Scientist John Faithful, BSc (Hons)

Principal, Senior Water Quality Scientist

BR/GL/JF/al/lih/jlb

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/117232/project files/5 technical work/6000_sswq_tds_benchmarks/6020_wq-mop/rev3_wlamendment/19132390-751_rpt_wqmop_meliadine_rev3_24aug20.docx

7.0 REFERENCES

Agnico Eagle (Agnico Eagle Mines Ltd). 2015. Water Management Plan Version 1. Type A Water Licence Application, Meliadine Gold Project. APHA (American Public Health Association). 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC.

- Agnico Eagle. 2020. Water Licence 2AM-MEL1631 WQ-MOP Update IR Responses. Submitted to Nunavut Water Board. June 25, 2020.
- ASTM International. 2004. ASTM E 1193-97: Standard Guide for Conducting *Daphnia magna* Life-Cycle Toxicity Tests. 2004.
- Environment Canada. 1996. Biological Test Method: Acute Lethality Test using *Daphnia* spp. EPS 1/RM/11, Second Edition, May 1996.
- Environment Canada. 2007a. Biological Test Method: Acute Lethality Test using Rainbow Trout. EPS 1/RM/9, Third Edition, May 2007.
- Environment Canada. 2007b. Biological Test Method: Test for Measuring the Inhibition of Growth using the Freshwater Macrophyte (*Lemna minor*). EPS 1/RM/37, Second Edition, January 2007.
- Environment Canada. 2011. Biological Test Method: Test for Larval Growth and Survival using Fathead Minnows. EPS 1/RM/22, Second Edition, March 2011.
- Environment Canada. 2017. Biological Test Method: Test for Survival and Growth in Sediment and Water using the Freshwater Amphipod *Hyalella azteca*. EPS 1/RM/33, Third Edition, September 2017.
- Golder (Golder Associatws Ltd.). 2014. Final Environmental Impact Statement (FEIS)—Meliadine Gold Project. Volume 7.0, Freshwater Environment. Golder. 2018. Aquatic Effects Monitoring Program—2017 Annual Report. Agnico Eagle Mines Limited Meliadine Gold Project. Submitted to Agnico Eagle Mines Limited. March 2018.
- Golder. 2019. Cycle 1 Environmental Effects Monitoring Report and 2018 Aquatic Effects Monitoring Program Annual Report. Agnico Eagle Mines Limited—Meliadine Gold Mine. Submitted to Agnico Eagle Mines Limited. March 2019.
- Government of Canada. 2002. Metal and Diamond Mining Effluent Regulations SOR/2002-222. Current to October 10, 2018. Last amended on June 1, 2018. Minister of Justice. Ottawa, ON.
- MDDEP (Ministère du Développement Durable, de l' Environnement et des Parcs). 2007. Calculation and interpretation of effluent discharge objectives for contaminants in the aquatic environment, 2nd Edition, Quebec, 54 p.
- Nunavut Water Board (NWB). 2020. NWB Water Licence Type "A" No: 2AM-MEL1631 Request for the Minister's Consent to Process Amendment No. 1 on an Emergency Basis and Attached Reasons for Decision and Amendment No. 1 for the Minister's Consideration. File No. 2AM-MEL1631/Emergency Amendment No. 1.
- Tetra Tech. 2017. Design Report for Effluent Water Treatment Plant, Pumping Stations, Pipelines & Associated Berm, and Diffuser Available at: ftp://ftp.nwb-oen.ca/registry/2%20MINING%20MILLING/2A/2AM%20-%20Mining/2AMMEL1631%20Agnico/3%20TECH/5%20CONSTRUCTION%20(D)/Final%20Effluent%20 System/

Tetra Tech. 2018. Effluent Discharge Modelling for the As-Built Diffuser at the Meliadine Gold Project, Nunavut. Prepared for Agnico Eagle Mines Limited. May 2018.

- Tetra Tech. 2020. *Meliadine Melvin Bay Diffuser Conceptual Design Effluent Near Field Modelling.* Prepared for Agnico Eagle Mines Limited. April 2020.
- Wang F, Goulet RR, Chapman PM. 2004. Testing sediment biological effects with the freshwater amphipod *Hyalella azteca*: the gap between laboratory and nature. Chemosphere 57(11):1713–1724.

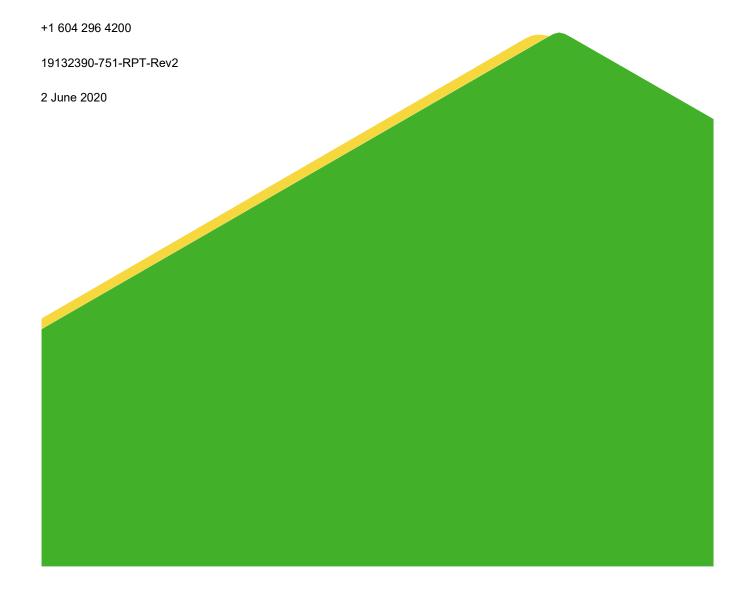
APPENDIX A

WQ-MOP Rev2

REPORT

Water Quality Management and Optimization Plan

Implementation Plan for Total Dissolved Solids


Submitted to:

Agnico Eagle Mining Limited Meliadine Mine Operations

Submitted by:

Golder Associates Ltd.

Suite 200 - 2920 Virtual Way, Vancouver, British Columbia, V5M 0C4, Canada

Distribution List

1 eCopy: Agnico Eagle Mines Limited

1 eCopy: Golder Associate Ltd.

İ

Table of Contents

1.0	INTR	ODUCTION	1
	1.1	Site-Specific Benchmark Development Procedure	2
	1.2	Phasing the Water Quality Management and Optimization Plan	3
2.0	PHAS	SE 1: DEVELOP INTERIM TARGETS	3
	2.1	Interim TDS Target for Effluent	3
	2.2	Interim TDS Target at the Edge of the Mixing Zone	4
	2.3	Assimilation Capacity Evaluation	5
3.0	PHAS	SE 2: CONDUCT VALIDATION STUDY	8
	3.1	Water Quality Sampling	11
	3.2	Sampling for Toxicity Testing	12
	3.3	Plume Delineation Study	14
	3.4	Contingency Planning	15
	3.4.1	Ice Melt	15
	3.4.2	Laboratory Testing	16
	3.5	Adaptive Management	17
4.0	CON	CLUSIONS	18
5.0	REFE	RENCES	20
TAB	LES		
Tabl	e 1: Dil	ution Factors in the Near-field Exposure Area at Meliadine Lake ^(a)	7
Tabl	e 2: Ca	lculations of Maximum Average Concentrations for TDS	8
Tabl		nceptual Design for Proposed Validation of Interim TDS Limits for Effluent and Receiving	9

APPENDICES

APPENDIX A

Supporting Information for the Interim TDS Targets

APPENDIX B

Plume Delineation Study Design

1.0 INTRODUCTION

This report provides a Water Quality Management and Optimization Plan (WQ-MOP) for effluent discharges associated with the Meliadine Mine located in the Kivalliq Region of Nunavut. The objective is to formalize a procedure for management of effluent discharges that follows a systematic and science-based framework for determining acceptable effluent quality conditions.

The WQ-MOP presented herein is focussed on development of interim targets for total dissolved solids (TDS) for effluent discharge and receiving environment conditions at the edge of the mixing zone, but within a framework that can be extended to longer-term management of site water. Although currently specific to the Meliadine Mine, it is intended to align with a process that can be generalized to other Agnico Eagle Mines Limited (Agnico Eagle) projects in Nunavut.

On 24 March 2020, Agnico Eagle submitted an emergency request for an amendment to their Type "A" Water Licence (No. 2AM-MEL-1631), specifically seeking the following amendment:

Authorization to temporarily discharge water from Containment Pond 1 (CP1) to Meliadine Lake that contains a maximum average TDS concentration up to 3,500 mg/L, which exceeds the current limit described in Part F, Item 3 of the current Water Licence of 1,400 mg/L

The emergency request issued by Agnico Eagle was based on the determination that the water storage capacity of CP1 would be exceeded if dewatering was not conducted prior to or in conjunction with the 2020 spring freshet. If the dewatering was not permitted, and the water storage capacity of CP1 was exceeded, this could represent a significant risk to site infrastructure, as well as human and environmental health. On 29 April 2020, the Nunavut Water Board (NWB 2020) recommended approval of Licence Amendment 1 for Agnico Eagle's Type "A" Water Licence, which permits the following:

■ The time-limited discharge (May 2020 – October 2020) of effluent from the Containment Pond 1 (CP1) into Meliadine Lake through the Meliadine Lake Diffuser (Monitoring Program Station MEL-14) and the Water discharge shall not exceed 3,500 mg/L for the Maximum Average Concentration (MAC) of the Total Dissolved Solids (TDS)

The NWB's approval of Emergency Amendment 1 is contingent on conditions outlined in NWB's (2020) Reason for Decision. To respond to these conditions and requirements, the following have been addressed in this Updated WQ-MOP:

- Water Quality Validation Study—The NWB approval states that "the Licensee, in addition to the requirement as referred to in Part I, Item 6, during the 2020 discharge, shall undertake the Water Quality Program provided in Table 3 of Schedule I." The scope for this study is provided in Section 3.0 of the WQ-MOP (Conduct Validation Study).
- Plume Delineation Study—The NWB approval states that "the Licensee shall provide to the Board for review the 2020 Discharge Plume Delineation Study summary report as soon as all necessary data and results become available." A detailed study design for the 2020 Discharge Plume Delineation Study has been included in Appendix B of the WQ-MOP, and a summary of program sampling requirements is included in Section 3.3 of the WQ-MOP.
- Response Plan—The WQ-MOP now includes adaptive management recommendations. This includes the addition of chemical and toxicological endpoint thresholds that monitoring data collected at the end of pipe or at the edge of the mixing zone can be compared, as well as a list of management actions or protocols that could be implemented in response to non-compliance.

■ **Field Contingencies**—The WQ-MOP now includes contingency plans that could be implemented if logistical complications (e.g., safety concerns due to ice-cover or COVID-19) arise during the required 2020 water quality sampling program.

NWBs recommended approval of Amendment 1 received Minister's consent from the Honourable Daniel Vandal, Minister of Northern Affairs on 12 May 2020.

1.1 Site-Specific Benchmark Development Procedure

The guiding principle for the WQ-MOP is that water quality benchmarks should be developed that satisfy the following conditions:

- protective of the environment
- satisfy regulatory requirements
- based on science (rather than strictly on considerations of policy or precedent)
- customized to the site-specific conditions of water quality and quantity

Adoption of fixed numerical benchmarks, either as static discharge limits or generic water quality guidelines, is unlikely to satisfy some parts of the above guiding principle. TDS benchmarks can, however, be developed using a toxicity-based approach that satisfies all the above conditions. TDS represent a "soup" of multiple component ions, and the behavior of this mixture in the environment is influenced by the relative toxicities of the component ions and the ability of some ions (e.g., calcium) to ameliorate the toxicity of others. For effective regulation of TDS, an approach is required that considers the toxicological potential of the mixture, and the point of compliance for different types of responses.

From our communications with Environment and Climate Change Canada (ECCC), a conceptual approach has been developed that is consistent with the guiding principle, and that has three main components in the development of numerical targets:

- Effluent discharges must not result in acute toxicity at the point of release
- Effluent discharges must not result in unacceptable chronic toxicity at the edge of the mixing zone following initial dilution
- Effluent discharges must not exceed the capacity of the receiving environment to accommodate long-term loadings of constituents (i.e., assimilative capacity)

For broader management of TDS in Nunavut, instead of promulgating an uncertain numerical value for TDS or its individual component(s), we recommend development of interim targets for managing TDS in the effluent discharge and receiving environment (to apply at the edge of the mixing zone) that reflect the site-specific mixture of ions, confirmed through standardized toxicity tests and evaluation of assimilative capacity. Much of this information has already been collected for Meliadine Mine, and Agnico Eagle has designed a validation program to validate interim targets and provide data to inform development of effluent quality criterion (EQC) and site-specific water quality objective (SSWQO) benchmarks for long-term application (see Section 3.0). The EQC and site-specific water quality objectives (SSWQO) benchmarks can be applied to guide an adaptive management approach to processing of site water.

1.2 Phasing the Water Quality Management and Optimization Plan

As communicated to NWB by Agnico Eagle, the upcoming 2020 freshet season will result in accumulation of site water that exceeds the water storage capacity of the mine at CP1, requiring a managed release of site water to the environment. In anticipation of this condition, Amendment 1 was approved by NWB for Meliadine Mine's Type "A" Water Licence, allowing Meliadine Mine to dewater CP1 prior to or in conjunction with the 2020 freshet, avoiding "emergency" conditions. This decision received Minister's consent from the Honourable Daniel Vandal, Minister of Northern Affairs, on 12 May 2020.

The operational needs dictate a phased approach to the WQ-MOP, in which short-term needs for monitoring and validation are met, while remaining consistent with the overall WQ-MOP framework.

- Phase 1: Develop Interim Targets—Application of the general process described in Section 1.1, entailing review of literature and results of site-relevant toxicity testing, and subsequent establishment of science-based TDS targets, for use on an interim basis.
- Phase 2: Conduct Validation Study—In conjunction with the upcoming release of discharge from Meliadine Mine to Meliadine Lake commencing during freshet, Agnico Eagle will conduct supporting studies in 2020 to validate and/or refine the science-based interim targets and produce additional information on receiving environment assimilation. The scope for this study is provided in Section 3.0 of the WQ MOP (Conduct Validation Study).
- Phase 3: Finalize Meliadine Mine Benchmarks—Integrate the results of Phase 1 and Phase 2 to formalize the science-based interim targets as EQC and SSWQO benchmarks, with a framework for their implementation (e.g., adaptive management), that is applicable to future conditions at Meliadine Mine. Phase 3 will be submitted as part of the amendment application of the existing Meliadine Water Licence to the Nunavut Water Board.

This document emphasizes Phase 1 (Section 2.0) and Phase 2 (Section 3.0) of the WQ-MOP; sufficient detail is provided for the validation and plume delineation studies to indicate conformance with the Mine's monitoring requirements outlined in the NWB's (2020) Reason for Decision. Additional details of sample collection, handling, and chain-of-custody are being developed separately for use by the field crew and analytical laboratories.

2.0 PHASE 1: DEVELOP INTERIM TARGETS

2.1 Interim TDS Target for Effluent

This section presents the proposed interim target for effluent of 3,500 mg/L calculated TDS for the Meliadine Mine; the target is expressed as a Maximum Average Concentration (MAC). This target is proposed as an interim value, pending implementation of Phase 2 and Phase 3 of the WQ-MOP. The interim target of 3,500 mg/L calculated TDS was proposed following a review of site acute toxicity data collected for Meliadine Mine (Appendix A) and was approved (Amendment 1) on 4 May 2020 as the temporary (May 2020 to October 2020) TDS MAC permitted to be discharged from CP1 into Meliadine Lake at the Meliadine Mine Lake Outfall diffuser (Monitoring Program Station MEL-14).

As discussed in Appendix A, the toxicity of TDS across different site waters varies by ionic composition and the relative proportion of ions in the mixture. Low effect concentrations for acute endpoints (e.g., survival) have been reported in the literature for individual ions for select species, but these tests reflect exposure conditions accounting for a single ion, and not a balanced TDS mixture representative of most field conditions. Considering

this, the proposal of an interim target focussed on review of site-specific acute toxicity data collected for site-relevant mixtures (e.g., treated effluent, influent, Collection Pond water; Appendix A, Section A2.0).

The approved interim TDS target for effluent of 3,500 mg/L is supported by:

■ No acute toxicity to *D. magna* or Rainbow Trout was observed with influent and effluent TDS concentrations of equal to or less than 5,420 mg/L (measured TDS concentrations of equal to or less than 4,925 mg/L)— details are provided in Appendix A.

- No mortality to other organisms has been observed in tests using Fathead Minnows or *C. dubia* in chronic exposures; as of January 2020, these tests covered calculated TDS concentrations up to 2,357 mg/L (measured TDS concentrations of 2,490 mg/L). Chronic test endpoints are not used in a regulatory context to evaluate the acute toxicity of the effluent, but the lack of mortality in chronic tests provides encouraging information.
- The record of acute toxicity depicted in Appendix A (Table A-4) provides evidence of the lack of acute toxicity even at high TDS concentrations. As of March 2020, nine acute toxicity tests have been conducted with calculated TDS concentrations above 3,500 mg/L. For this reason, some caution is recommended in the development of the interim TDS target for effluent. The no-effect concentration of 5,420 mg/L calculated TDS was therefore reduced by 30% and rounded down to the value of 3,500 mg/L.

Validation of the interim TDS target to demonstrate that the effluent is consistently not acutely lethal will be conducted through monitoring during the discharge period as presented in Section 3.0. Sensitive species that form the basis for the validation would include test species *D. magna* and Rainbow Trout, as these are the species used to assess compliance for acute lethality under the Metal and Diamond Mining Effluent Regulations (MDMER; Government of Canada 2002).

2.2 Interim TDS Target at the Edge of the Mixing Zone

An interim target of 1,000 mg/L (as calculated TDS) to apply in the receiving environment at the edge of the mixing zone is proposed for the protection against chronic toxicity to representative aquatic species. This interim target is intended to evaluate the condition (from Section 1.1) that effluent discharges must not result in unacceptable chronic toxicity at the edge of the mixing zone following initial dilution. The target is proposed as an interim value for use in the short-term, pending implementation of Phase 2 and Phase 3 of the WQ-MOP. The interim target of 1,000 mg/L in the receiving environment at the edge of the mixing zone was supported by the NWB (2020) in their Reasons for Decision related to the approval of Amendment 1 of the Type "A" Water Licence.

The proposed interim target was derived using methods described in Appendix A and summarized below:

- Characterization of the Meliadine TDS profile (Section A1.1)—water chemistry data collected at the Meliadine Mine were used to profile the anticipated water quality in the receiving environment, including composition of major component ions in the TDS mixture.
- Review of water quality benchmarks (Section A1.2)—review of TDS benchmarks developed for locations with a similar TDS composition to Meliadine Mine.
- Literature review (Section A1.3)—review of peer-reviewed literature to determine the threshold for chronic toxicity with a focus on TDS mixtures of similar composition to Meliadine Mine (i.e., dominance of chloride, sodium, and calcium ions).

Review of site-specific chronic toxicity data (Section A1.4)—review of site toxicity data and corresponding TDS and major ion chemistry of treated effluent and influent samples for Meliadine Mine, as collected during routine and regulatory compliance toxicity testing.

■ Weight of Evidence (Section A1.5)—integration of the above information to justify the interim target of 1,000 mg/L TDS to apply at the edge of the mixing zone.

The interim TDS target includes the following assumptions:

- Ambient water hardness should remain within the current range to ameliorate potential chloride toxicity (i.e., through demonstration of non-toxicity of chloride under site-relevant ranges of hardness).
- Additional site-specific validation of the TDS threshold should be conducted to confirm that the mixture of ions represented by the effluent and near-field exposure conditions does not result in acute or chronic toxicity. Such studies are planned, as discussed in Section 3.0.
- Effluent chemistry profiles, particularly with respect to the proportions of major ions, will remain generally consistent in the future.

There is already strong scientific evidence to support the interim target as protective of the aquatic community. The results of toxicity testing do not indicate that an exceedance above 1,000 mg/L TDS will result in harm to aquatic life but provide reasonable certainty of no harm up to 1,000 mg/L. The key lines of evidence are presented in Appendix A, and are supported by the following considerations:

- The Meliadine Mine effluent contains a balance of major ions that is advantageous for limiting the toxic potency of the TDS mixture (Section A1.5.1).
- The Snap Lake site, which applies the same TDS concentration as a SSWQO, provides similar ionic mixtures and biological communities (Section A1.5.2).
- The chronic toxicity data set for Meliadine Mine site water, which includes a battery of four sensitive aquatic species, supports the interim TDS target as a defensible no-effect concentration (Section A1.5.3).
- The ionic balance has been stable in Meliadine Mine water, such that an interim TDS target can be developed without requiring development of targets for individual component ions (Section A1.5.4).

2.3 Assimilation Capacity Evaluation

The ability of the receiving environment to assimilate the concentrations and loading of constituents in effluent is the last component of the WQ-MOP implementation. Consideration of assimilation capacity provides confidence that constituents will not gradually accumulate to concentrations that would degrade the receiving environment.

The approach to TDS management set out in the WQ-MOP is not expected to affect the quality, quantity, or flow of the waters in Meliadine Lake. TDS levels during and after the 2020 discharge will continue to be managed to minimize adverse effects of the licenced deposit of effluent on the aquatic ecosystem of Meliadine Lake, and discharges would continue to meet the stringent requirements set by the MDMER. Confidence in this conclusion comes from plume delineation surveys, preliminary dilution estimates from dispersion models, and consideration of the Meliadine Lake hydrology.

The evidence for sufficient assimilation efficiency in Meliadine Lake to accommodate the interim TDS target for effluent of 3,500 mg/L comes from:

Consistency with Previous Impact Assessment Outcomes—Based on the predictions included in the Final Environmental Impact Statement (FEIS) for the Meliadine Mine Gold Project (Golder 2014), the one-time release of mine wastewater to Meliadine Lake under this amendment would not be expected to result in potential additional project effects. That is, water quality in the receiver and downstream environment would remain within the predictions included in the FEIS. For the FEIS assessment, a Maximum Allowable Concentration (MAC; referred to as the Maximum Allowable Effluent Concentration [MAEC] in the FEIS) of TDS in the discharge of 4,685 mg/L was calculated based on the approach applied in the province of Quebec (MDDEP 2007), where the mixing ratio in a lake is set to a value of 10 to 1. The calculation of the MAC is dependent on the background concentrations (BG) in the lake, the water quality criteria (WQG; the guideline), and the mixing ratio (MR), as established by the following equation:

$$MAC = MR \times (WQG - BG) + BG.$$

Where for TDS:

MR = 10 (as per MDDEP)

WQG = 500 mg/L (Guidelines for Canadian Drinking Water Quality [GCDWQ; HC 2010], aesthetic objective)

BG = 35 mg/L

Therefore:

$$MAC = 10 \times (500 - 35) + 35 = 4,685 \text{ mg/L}$$

This MAC is well above the proposed interim target of 3,500 mg/L proposed in this amendment.

- Plume Delineation Results—Under operating conditions, a plume delineation survey based on specific conductivity results was conducted in 2018 in the near-field region of Meliadine Lake as part of the Environmental Effects Monitoring (EEM)/Aquatic Effects Monitoring Program (AEMP). The EEM plume delineation study used field surveys of specific conductivity to evaluate effluent dispersion with distance from the diffuser. The study evaluated dilution factors at a series of monitoring stations up to, and extending beyond, 250 m from the diffuser, based on the specific conductivity of the effluent and the measured field values through the water column at each the stations. To account for background values, two scenarios were used:
 - Scenario A: near-field average specific conductivity for 2015 to 2016; and
 - Scenario B: near-field average specific conductivity for 2017

An observed slight increase in specific conductivity between 2015 to 2016 (pre-construction) and 2017 (construction) was the impetus for considering the two scenarios.

Observations from the survey indicated a minimum dilution factor of 53 at 50 m away from the diffuser, and a minimum dilution factor range of 56 (Scenario A) and 85 (Scenario B) at the edge of the 100 m mixing zone boundary (Table 1). This study was also useful because it served to validate the performance of the submerged diffuser, which had previously been assessed by Tetra Tech as part of their design (Tetra Tech 2017) and re-assessed in 2018 (Tetra Tech 2018). As part of their reassessment in 2018, Tetra Tech concluded that the predicted minimum dilution of 23:1 was achieved at the edge of the 100 m mixing zone and that water quality criteria were met. The minimum dilution factor was more than twice the mixing ratio of

10:1 that was used to derive the MAC in the 2014 FEIS; it was based on a multi-year modelling scenario¹ where the minimum dilution at 100 m at the end of the first year of discharge was 72:1. The latter ratio is consistent with earlier modelling work to support a conceptual diffuser in 2015 (Agnico Eagle 2015), which indicated that the minimum dilution factor was 65:1.

In summary, the range of dilution factors observed at 100 m distance from the diffuser (representing the edge of the mixing zone) determined from the EEM plume delineation study are greater than the minimum dilution factor (23:1) developed in the performance assessment of the diffuser completed by Tetra Tech in 2018 based on multi-year simulations. The dilution factors remain in broad agreement with Tetra Tech's assessment for the first year of discharge (72:1) and the early work completed by Golder (65:1).

Table 1: Dilution Factors in the Near-field Exposure Area at Meliadine Lake^(a)

Sampling Station	Maximum Specific Conductivity in 2018 (μS/cm)	Dilution Factor – Scenario A	Dilution Factor – Scenario B
50-01	99.8	63	104
50-03	105.5	53	79
100-01	93.4	80	159
100-03	104	56	85
100-04	102.6	58	90
100-05	98.9	65	109
100-06	88.5	101	266
100-08	96.6	71	125

(a) Listed data represent a portion of the data listed in Table 2.4-10 of Golder (2019) μ S/cm = microsiemens per centimetre

The 2018 EEM plume delineation results suggest that the effluent concentration observed at the 100 m mixing zone boundary was less than 2% of concentrations observed at end of pipe. Furthermore, the survey results showed that the plume remained at depths of roughly between 3 and 7 m, indicating that the receiving water and the effluent discharged had similar densities and/or intense mixing. The measured data from 2018 showed that at the time of the survey, the plume was more distinct to the south-west of the diffuser, which indicates a preferential direction of plume advection during the time of survey. Changes in wind speed and direction including current direction and speed are key factors determining the plume dispersion direction on any given day.

■ **Mixing Ratio Calculations**—Preliminary calculations of the MAC have been completed based on standard industry practices as well as the results of the near-field modeling completed by Golder, as shown in Table 2.

¹ The multi-year simulation included annual diffuser discharge to Lake Meliadine over the 14 year construction and operations timeline (Year -3 to Year 11). This scenario was included to assess the effects of water quality constituent build-up in the lake on the dilution factor.

7

Table 2: Calculations of Maximum Average Concentrations for TDS

Report	Guideline for Canadian Drinking Water Quality for TDS (HC 2010) (mg/L)	Assumed Meliadine Lake Average Background TDS Concentration (mg/L)	Assumed Mixing Factor	Maximum Average Concentration (mg/L)
2014 ^(a)		35 mg/L	10:1	4,685
2015 ^(b)	500 mg/L		65:1	30,260 ^(c)
2018 ^(d)			23:1	10,730 ^(c)
2019 ^(e)			56:1	26,075 ^(c)

Notes:

- (a) Golder 2014. Water and Sediment Quality Model Meliadine Mine Gold Project, Nunavut. Appendix 7.4-A.
- (b) Agnico Eagle (2015) (see Appendix E, Water Management Plan).
- (c) Concentration of maximum average effluent TDS is conceptual only; effluent would **not** be discharged at TDS concentrations of this magnitude as it could result in acute toxicity at the point of discharge.
- (d) Tetra Tech (2018).
- (e) Golder. 2019. Appendix G Field Data in the Near-field Exposure Area at Meliadine Lake Under the Plume Delineation Study, 2018. For the preliminary calculations, the mixing ratio (MR) was established as:
 - 2014—reflects approach applied by the province of Quebec (MDDEP 2007), where the mixing ratio in a lake is set a value of 10:1.
 - 2015—reflects minimum mixing factor predicted by near-field modeling.
 - 2018—reflects minimum mixing factor as modelled for diffuser design (Tetra Tech 2017, 2018).
 - 2019—reflects minimum mixing factor calculated from observations of plume delineation survey at edge of the 100 m mixing zone.

TDS = total dissolved solids; mg/L = milligrams per litre.

Based on the model calculations and the observation of the plume delineation study, it is likely that the discharge of effluent with a TDS concentration at 3,500 mg/L, even at the lowest measured mixing ratio of 72, would result in negligible risk of sublethal toxicity at the edge of the mixing zone. This mixing potential at the edge of the mixing zone boundary limits the potential for a sublethal response.

Beyond the mixing zone, into the near- and far-field in Meliadine Lake, effluent will be carried by currents within the lake and further mixed with ambient water. The location of the effluent outfall diffuser is also within the expected main flow channel of the lake, which will act to convey and further disperse the effluent toward the lake outlet.

The assimilative capacity of the 100 m mixing zone will be validated through a detailed monitoring program, for which a conceptual design is provided in Section 3.0.

3.0 PHASE 2: CONDUCT VALIDATION STUDY

In conjunction with the 2020 releases that are planned to occur prior to or in conjunction with the freshet at Meliadine Mine and that have been approved under Amendment 1 of the Mine's Type "A" Water Licence, supporting studies are required to be conducted in spring/summer 2020 to validate the science-based interim targets and produce additional information on receiving environment assimilation (including plume delineation). This section presents the general conceptual design for the spring/summer 2020 monitoring study required as a condition under Amendment 1. The monitoring study will be undertaken both to assess conditions experienced in Meliadine Lake during the discharge event, and for use as a validation component of the WQ-MOP.

A discharge event to dewater Collection Pond 1 (CP1) has been approved by NWB and will occur at the Mine site in the spring/summer of 2020. TDS concentrations in the effluent will be elevated relative to the receiving environment during this discharge event, presenting an opportunity to conduct site validation for the interim TDS targets for the effluent and for the receiving environment at the edge of the mixing zone. These studies also provide the opportunity to collect additional information for the potential development of TDS EQC and SSWQO

benchmarks, for use in adaptive management. The conceptual design for the proposed validation would consist of three components: water quality monitoring (Section 3.1), toxicity testing (Section 3.2), and plume delineation (Section 3.3).

These three components are complimentary and will be conducted with the following primary objectives:

- Water Quality Monitoring: The surface water quality monitoring program will be conducted to validate the model predictions that TDS will be diluted to less than 1,000 mg/L at the edge of the mixing zone, to provide detailed chemical characterization of the effluent and receiving environment during the discharge, and to provide information on the ionic composition of water used during the toxicity testing program.
- Toxicity Testing: The acute and chronic toxicity testing programs will be conducted to confirm that the ionic composition measured in the effluent and the receiving environment during the surface water quality monitoring program are not at levels that would cause adverse biological effects. As described in detail in Section 3.2 and summarized in Table 3, acute toxicity tests will be conducted on the effluent and a suite of chronic toxicity tests will be conducted on receiving environment samples.
- Plume Delineation Study—The plume delineation study will be conducted to assess the vertical and horizontal extent of the effluent plume. This will primarily be assessed through *in situ* specific conductivity profiling of the water column using a handheld meter with a sensor that will be lowered through the water column, with a subset of locations sampled for TDS. The relationship between field measured specific conductivity and laboratory measured TDS will be established to validate the use of specific conductivity as a tracer of TDS in the receiving environment. The information retrieved will be used to confirm model predictions related to effluent dilution and assimilation in the receiving environment, and to confirm that receiving environment monitoring stations are adequately characterizing conditions with respect to surface water chemistry and the potential for adverse biological effects.

An overview of the conceptual design is presented in Table 3 and discussed in detail by component below.

Table 3: Conceptual Design for Proposed Validation of Interim TDS Limits for Effluent and Receiving Environment

Water Quality Monitoring Program				
Sampling Media	Effluent	Mixing Zone	Receiving Environment (beyond mixing zone)	
Sample Timing	During effluent discharge and during collection of effluent samples for toxicity testing	During effluent discharge ^(a)	During effluent discharge ^(a)	
Sampling Locations	MEL-14	3 stations at the edge of the mixing zone (MEL-01-01, MEL-01-07 and MEL-01-10) ^(b)	4 stations - 1 mid-field (MEL-02-05), 3 references (MEL-03-02, MEL-04- 05, and MEL-05-04)	
Number of Samples	Per regulatory and operational requirements	1 sample per station	1 sample per station	
Frequency of Sampling	Weekly during discharge	Weekly during discharge or as per NWB's direction	Monthly during discharge or as per NWB's direction	
Test Parameters	 Daily monitoring of effluent flow volumes Parameters as listed in Schedule I Group 2 of the 2AM-MEL1631 NWB Water Licence^(c) 	 Field physico-chemical water column profile measurements (temperature, specific conductivity, pH, DO) Parameters as listed in Schedule I Group 2 of the 2AM-MEL1631 NWB Water Licence^(c) 	 Field physico-chemical water column profile measurements (temperature, specific conductivity, pH, DO) Parameters as listed in Schedule I Group 2 of the 2AM-MEL1631 NWB Water Licence 	

Table 3: Conceptual Design for Proposed Validation of Interim TDS Limits for Effluent and Receiving Environment

Toxicity Testing Program				
Sampling Media	Effluent	Mixing Zone	Receiving Environment (beyond mixing zone)	
Sample Timing	During effluent discharge	During effluent discharge ^(a)	During effluent discharge ^(a)	
Sampling Locations	MEL-14	3 stations at the edge of the mixing zone (MEL-01-01, MEL-01-07 and MEL-01-10) ^(b)	4 stations - 1 mid-field (MEL-02-05), 3 references (MEL-03-02, MEL-04- 05, and MEL-05-04)	
Number of Samples	Per regulatory and operational requirements	1 composite sample per station	1 composite sample per station	
Frequency of Sampling	Weekly during discharge	Monthly during discharge	Monthly during discharge or as per NWB direction	
Test Parameters	Acute toxicity tests with: Rainbow Trout Daphnia magna	Chronic toxicity tests with: Pelagic crustacean (<i>Daphnia magna</i>) Epibenthic Invertebrate (<i>Hyalella azteca</i>) Macrophyte (duckweed) ELS fish (Fathead Minnow)	Chronic toxicity tests with: Pelagic crustacean (Daphnia magna) Epibenthic Invertebrate (Hyalella azteca) Macrophyte (duckweed) ELS fish (Fathead Minnow)	
Plume Delineation	Study			
Sampling Media	Effluent	Receiving Environment (within mix	ing zone and beyond)	
Sample Timing	During effluent discharge ^(d)	During effluent discharge ^(d)		
Sampling Locations	MEL-14	22 survey locations (see Appendix B) at distance intervals of 50 m from the diffuser, 100 m (i.e., edge of mixing zone), 175 m, and 250 m; potentially adjusted to include further afield samples if necessary ^(e)		
Frequency of Program	1 event during discharge	1 event during discharge		
Test Parameters	 TDS and major ions General parameters^(f) 	 Field physico-chemical water column profile measurements (temperature and specific conductivity) Water quality samples collected at a subset (a maximum of 10 stations) stations alongside profile measurements and analyzed for TDS, major ions, and general parameters^(f) 		

Notes:

- (a) The timing of sampling for each program is expected to occur continuously during the discharge period as outlined in the sample frequencies listed above for each sample media and test type. However, sample timing will be dependent on safe access to the lake. The period of anticipated discharge will likely coincide with the transition period between ice covered and open water conditions on Meliadine Lake. If samples cannot be collected at the required time due to safety considerations, contingency measures may be implemented, as outlined in Section 3.4.
- (b) Parameters as listed in Schedule I Group 2 of the 2AM-MEL1631 NWB Water Licence include Conventional Parameters (bicarbonate alkalinity, chloride, carbonate alkalinity, turbidity, conductivity, hardness, calcium, potassium, magnesium, sodium, sulphate, pH, total alkalinity, TDS, TSS, total cyanide, free cyanide, and weak acid dissociable [WAD] cyanide), Nutrients (ammonia-nitrogen, total Kjeldahl nitrogen, nitrate-nitrogen, orthophosphate, total phosphorus, total organic carbon, dissolved organic carbon, and reactive silica), and Total and Dissolved Metals (aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium, uranium, vanadium, and zinc).
- (c) Mixing zone stations MEL-01-01 and MEL-01-07 are routinely sampled by the mine during the EEM/AEMP programs. MEL-01-10 represents a new sampling station. Further details on the selected mixing zone sampling stations are provided in Section 3.1.
- (d) Sample timing will be dependent on boat access to the lake. The period of anticipated discharge will likely coincide with the transition period between ice covered and open water conditions on Meliadine Lake. Access of the lake will occur as soon as open water conditions permit safe boat access.
- (e) The maximum spatial extent of plume delineation monitoring may be extended past 250 m should the proportion of effluent be estimated to contribute >10% of TDS at 250 m (estimated based on field specific conductivity measurements).
- (f) General parameters = total and bicarbonate/carbonate alkalinity, turbidity, laboratory specific conductivity, hardness, laboratory pH, and total suspended solids.

ELS = early life-stage; TDS = total dissolved solids.

3.1 Water Quality Sampling

Water quality samples will be collected and analyzed for a suite of parameters (conventional parameters, nutrients, and total and dissolved metals) to characterize water quality conditions of the effluent and the receiving environment of Meliadine Lake. The water quality results will also inform the ionic composition of effluent and receiving environment samples used during toxicity testing for site-specific validation of the interim target established for the edge of the mixing zone (see Section 3.2). The water quality data will also provide confirmation that TDS in water released at sampling station MEL-14 remains within permitted levels established through Amendment 1 (i.e., MAC is ≤3,500 mg/L TDS; edge of mixing zone ≤1,000 mg/L TDS). Samples of effluent for water chemistry analysis should, to the extent possible, be collected on the same day as edge of mixing zone and receiving environment (mid-field and reference locations) samples and analyzed for the same suite of parameters. As described in NWB's (2020) Reasons for Decision document, water quality samples within the discharge period will be collected as follows from monitoring stations routinely sampled during the mine's EEM/AEMP program:

- Effluent samples: The effluent (defined as sampling station MEL-14) will be sampled weekly during discharge for conventional parameters, nutrients, and total and dissolved metals.
- Edge of mixing zone samples: Three stations located at the edge of the mixing zone will initially be sampled weekly during the discharge for conventional parameters, nutrients, and total and dissolved metals. These edge of mixing zone sampling stations were selected following review of the 2018 plume delineation study results. The stations include MEL-01-01 and MEL-01-07, which are located approximately 100 m northwest and northeast of the diffuser, respectively. These stations are routinely sampled as part of the mine's EEM/AEMP program. To improve spatial coverage surrounding the diffuser, it was determined that a water quality sample should be collected at the edge of the mixing zone towards the southeast of the diffuser. MEL-01-06 represents a station located southeast of the diffuser that is currently monitored under the mine's EEM/AEMP program; however, this station is located outside of the 100 m mixing zone boundary (i.e., ~200 m from the diffuser). As a result, a new station, MEL-01-10, will be monitored at the edge of the mixing zone. MEL-01-10 was selected to provide spatial coverage at the edge of the mixing zone (i.e., 100 m radius surrounding the diffuser) and will correspond with the station 100-04 selected for the plume delineation study described in Appendix B. The UTM coordinates of this station (Easting 542861.3, Northing 6989059.1) are further described in Figure 2 and Table 1 of Appendix B. The specific water depths that will be sampled at each station will be determined in the field based on the specific conductivity profile observed at the time of sampling, to account for changes in plume conditions that could occur over time. As such, the depth sampled at each edge of mixing zone station may change between rounds of sampling. The sampling frequency may also be adjusted during the program based on results and conversations held during the Water Management Working Group review meetings.
- Receiving environment mid-field samples: One mid-field station (MEL-02-05) will initially be sampled monthly during the discharge for conventional parameters, nutrients, and total and dissolved metals. The sampling frequency may be adjusted during the program based on results and conversations held during the Water Management Working Group review meetings.
- Receiving environment reference Samples: Three reference stations (MEL-03-02, MEL-04-05, and MEL-05-04) will initially be sampled monthly during the discharge for conventional parameters, nutrients, and total and dissolved metals. The sampling frequency may be adjusted during the program based on results and conversations held during the Water Management Working Group review meetings.

Physico-chemical profiling of the lake water column will be measured *in situ* using water quality meters (e.g., Hanna, YSI, Eureka or equivalent) equipped with a 20 m or longer cable at each edge of mixing zone and receiving environment sample location. Samples for laboratory water quality analysis will be collected at each location based on the depth determined to have the highest specific conductivity.

Additionally, to facilitate the collection of *in situ* physico-chemical data (i.e., specific conductivity, dissolved oxygen concentrations, temperature, and pH) at the edge of the mixing zone during the period where ice cover transitions to open water across the lake, prohibiting safe lake access, Agnico Eagle will install remote monitoring stations at the edge of the mixing zone prior to the discharge event. This monitoring will collect and log specific conductivity and temperature data at several depths at these stations, which will be recovered once the lake can be safely accessed.

3.2 Sampling for Toxicity Testing

The 2020 discharge event provides an opportunity to evaluate TDS toxicity under site-relevant conditions. During discharge, representative water samples will be collected and tested for laboratory-based toxicity using standardized protocols for aquatic toxicity. The toxicity testing program will include separate test protocols for effluent and receiving water samples.

Effluent samples from sampling station MEL-14 will be collected and tested using the suite of toxicity test species and standard protocols conducted for acute lethality testing and EEM under the MDMER. As outlined in NWB's (2020) Reasons for Decision document, the effluent (sample ID: MEL-14) will be sampled weekly during the discharge and tested for acute toxicity using the following acute toxicity test protocols:

- 96-hour Rainbow Trout survival test using the Environment Canada (2007a) standard biological test method (EPS 1/RM/9)
- 48-hour *Daphnia magna* survival test using the Environment Canada (1996) standard biological test method (EPS 1/RM/11)

As outlined in NWB's (2020) Reasons for Decision document, receiving environment stations will be sampled monthly during the discharge and tested using a suite of chronic toxicity tests that were agreed upon following consultation with the Water Management Working Group. Edge of mixing zone and receiving environment (i.e., mid-field and refence locations) samples will be tested for chronic toxicity using a multi-species approach that uses standardized chronic toxicity test protocols:

- 21-day Daphnia magna survival and reproduction test using the ASTM (2007) standard biological test method (Method E1193-97)—D. magna was selected as a chronic test species to evaluate receiving environment water quality, as it is well studied and sensitive pelagic crustacean, and found to be more ecologically relevant to northern lake communities relative to other crustaceans such as Ceriodaphnia dubia. The 21-d D. magna test was selected over the 7-d Ceriodaphnia dubia survival and reproduction test because the former is native to Meliadine Lake, and was recommended by stakeholders in the consultation stage to be preferred as a monitoring species.
- 14-day *Hyalella azteca* water-only survival and growth test using the Environment Canada (2017) standard biological test method (EPS 1/RM/33)—*H. azteca* was selected as a chronic test species to evaluate receiving environment water quality, as it is a well studied and sensitive invertebrate species. *H. azteca* was selected over the freshwater midge, *Chironomus dilutus*, as *H. azteca* is considered an epibenthic species (i.e., inhabits the microenvironment at the sediment-water interface), whereas *C. dilutus* is a benthic infaunal species that burrows in sediment and would have less direct exposure to receiving

waters. The feeding strategy of *H. azteca*, which derives little nutrition from the sediments, and responds primarily to contaminants in the overlying water column (including water and food; Wang et al. 2004), is well suited to an evaluation of environmental responses associated with effluent discharges. Similarly, the other benthic invertebrate group considered, mayflies, were considered less relevant as the candidate test species tend to prefer either more flowing habitats (e.g., *Centroptilum* representative of Eastern North America streams and rivers), or temperate lakes and streams (e.g., *Hexagenia* representative of slow moving streams and ponds of the Great Lakes), which are less relevant for the northern lentic Meliadine Lake environment. Mayflies are less commonly tested and with lower degree of protocol standardization, such that obtaining representative, reliable, and repeatable results was considered a potential project risk.

- 7-day Lemna minor (duckweed) growth test using the Environment Canada (2007b) standard biological test method (EPS 1/RM/37)—L. minor was selected as a chronic test species to evaluate receiving environment water quality, as it is a well studied and sensitive macrophyte species. NWB (2020) approved either the 7-day Lemna minor or the 72-h green alga (Pseudokirchneriella subcapitata) growth test for evaluating receiving environment water quality with respect to primary producers. L. minor was selected for testing as it was identified as the more sensitive of the two species during site-specific testing of CP1 water during the derivation of the proposed interim thresholds (Appendix A).
- 7-day larval Fathead Minnow (Pimephales promelas) survival and growth test using the Environment Canada (2011) standard biological test method (EPS 1/RM/22)—Fathead Minnow were selected as a chronic test species to evaluate receiving environment water quality, as it is a well studied and sensitive early life-stage fish species. NWB (2020) approved either the 7-day Fathead Minnow survival and growth test or the 7-d Rainbow Trout embryo development test for evaluating receiving environment water quality with respect to early life-stage fish. Fathead minnows were selected for testing because the Rainbow Trout embryo development test is contingent on being able to secure viable embryos. Because the testing is expected to occur monthly during the discharge, it was identified that quality Rainbow Trout embryos may not be consistently available throughout the program, which would complicate temporal interpretation of chronic toxicity test results. As a result, the 7-day Fathead Minnow test was selected as the preferred option for early life-stage chronic fish testing.

Three types of samples will be collected from the receiving environment during each monthly sampling event for evaluation using the suite of chronic toxicity tests listed above. These samples include the following:

- Edge of mixing zone samples—Three stations located at the edge of the mixing zone (MEL-01-01, MEL-01-07, and MEL-01-10, as described in Section 3.1) will be sampled during each monthly sampling event for chronic toxicity testing. Prior to toxicity testing, physico-chemical water quality profiling of the water column at mixing zone sampling stations will be conducted to identify the samples with the highest specific conductivity (measured *in situ*). Samples will be collected at the depth with the highest conductivity for toxicity testing. Mixing zone stations will be tested for chronic toxicity using a standard dilution approach (i.e., 100%, 50%, 25%, 12.5% and 6.25% volume to volume dilutions) with the suite of chronic toxicity tests identified above. Dilutions will be conducted with laboratory water selected to provide broad comparability to Meliadine Lake.
- Receiving environment mid-field samples—One mid-field station (MEL-02-05) will be sampled during each monthly sampling event for chronic toxicity testing. This mid-field sample will be tested for chronic toxicity using the full-strength sample with no dilution series (i.e., pass/fail test design).
- Receiving environment reference samples—Three reference stations (MEL-03-02, MEL-04-05, and MEL-05-04) will be sampled during each monthly sampling event for chronic toxicity testing. These reference samples will be tested for chronic toxicity using the full-strength sample with no dilution series.

As the primary constituent of concern is TDS (including its component ions), concentrations would not be expected to decrease significantly during storage of a few weeks duration. As a result, a sufficient volume of sample for chronic toxicity testing will be collected at each station once per month. The samples will be collected with minimal headspace and transported under cool dark conditions to the respective toxicology laboratories. Upon arrival at the laboratories, samples will be stored in the dark at 4°C until test initiation. For chronic tests that call for renewals of test solutions during the exposure period, the refresh solution will be obtained from the bulk sample used to supply water at test initiation. The advantage to this approach is that the exposure concentration experienced by the organisms during the test will be held constant and will correspond directly with samples collected for detailed chemistry. The chronic toxicity test protocols require that conductivity be monitored during the tests, which should provide confirmation that TDS exposure concentrations remain relatively constant throughout the exposure duration.

Attempts will be made to conduct toxicity tests within the respective hold time requirements (i.e., 3 days for chronic tests) specified in the test protocols; however, slight deviations from hold time requirements may be unavoidable due to the mine's remote location and due to the current situation surrounding COVID-19. For the purposes of this study, hold time exceedances are not considered to represent a deviation from the test protocol because TDS concentrations are not expected to measurably change during storage. To validate this assumption, if samples are initiated outside the respective hold times, a subset of the stored toxicity samples will be tested for TDS so that comparisons can be made with the samples collected for analytical chemistry in the field.

3.3 Plume Delineation Study

A plume delineation study will be conducted in the near-field area of Meliadine Lake immediately outside of the mixing zone once it is safe to access the lake during effluent discharge to characterize the effluent plume configuration, validate model predictions related to effluent dilution and assimilation in the receiving environment, and to confirm that receiving environment monitoring stations are adequately characterizing edge of mixing zone conditions. Study timing will be dependent on safe lake access. Although discharge will likely commence during ice cover conditions and continue during the transition period between ice cover and open water conditions on Meliadine Lake, boat access to the lake is required to conduct the plume delineation study. Therefore, the plume delineation study will occur once open water conditions permit safe boat access.

Specific conductivity and temperature depth profiling at different spatial intervals from the effluent diffuser (i.e., collected at 50 m, 100 m, 175 m, and 250 m distances at 22 stations around the diffuser; potentially adjusted to include further afield samples if necessary) will be used to depict the dimensions and behaviour of the plume. A subset of the planned sampling stations (i.e., a maximum of 10 of the 22 identified locations) will be sampled for laboratory analysis of TDS, major ions, and other general parameters. Samples selected for more detailed analyses will be selected to encompass the range of specific conductivity measures observed surrounding the outfall. These data from the plume delineation study will provide:

- validation that the water quality at the edge of the mixing zone is consistent with predictions of TDS and major ion concentrations (as estimated using existing water quality from the effluent and modeling of the receiving environment)
- confirmation that the relationship between specific conductivity and water quality is sufficiently reliable for use in future plume delineation
- representation of the rate of effluent dispersion in the near-field region in Meliadine Lake, to address the assimilation capacity portion of the WQ-MOP.

This study would occur over one to two days during the effluent discharge once safe access to the lake is possible. A detailed study plan for the Plume Delineation Study is provided in Appendix B and is similar in scope to plume monitoring conducted during the 2018 Meliadine Mine EEM/AEMP.

3.4 Contingency Planning

Field monitoring and data collection will be conducted by Agnico Eagle Mine personnel, with support from Golder on an as-needed basis. Golder will provide the detailed study design for each component, specific work instructions, program coordination, data analysis, and reporting. Sample collection, chain-of-custody, and health and safety will be the responsibility of Mine staff. Due to the remote location of the Meliadine Mine site, the seasonal lake conditions during ice melt, and the current public health situation surrounding COVID-19, contingency planning for unforeseen complications related to the monitoring program are necessary to provide a framework that can be safely implemented in the event that certain aspects of the proposed monitoring program become unworkable. This section summarizes some of the factors that could influence the need to modify the sampling program, and the measures that will be undertaken to maintain program implementation within the practical and safety constraints.

Following discussions between Agnico Eagle and the Water Management Working Group, NWB (2020) has stipulated that the following contingency measures should be considered in case complications prohibit sampling and analysis as outlined in Table 3:

- Use of specific conductivity or TDS field measurements as a surrogate for laboratory measured TDS and the contributing ions (development of a statistical relationship between field measurements of specific conductivity and laboratory TDS)
- Agnico Eagle should consult with the Water Management Working Group in respect of all monitoring and adaptive management measures (see Section 3.5) implemented by Agnico Eagle over the course of the CP1 discharges in 2020

Where schedule allows, and where adaptations would result in a significant departure from the study design, input will be sought from the Working Group. Therefore, this section emphasizes circumstances that may require revisions to the program with a few days notice, and for which a formal consultation step is not feasible.

3.4.1 Ice Melt

Due to the timing of effluent discharge during freshet, safe access to Meliadine Lake may pose a challenge due to melting ice conditions. It is anticipated that effluent discharge will begin before the lake is completely ice-free to alleviate on-site water storage capacity limitations. Therefore, the edge of mixing zone and receiving environment monitoring conducted as part of this study may not be possible at certain times during the discharge due to safety concerns associated with ice melt. The following outlines contingency measures that could be implemented if the receiving environment is not accessible at the start of the discharge event:

- Option 1—Delay open-water environment sampling (edge of mixing zone and receiving environment [mid-field and reference locations]). Depending on the ice cover conditions and the long-term weather forecast at the time of initial discharge, it may be prudent to delay the first round of open-water sampling, to provide improvement in conditions and safety, without any other changes required to the sampling program.
- Option 2—Temporary replacement of open water sampling with expanded effluent testing using dilutions. The discharge monitoring station, MEL-14, is located on land and is therefore expected to be accessible when lake ice prohibits receiving environment sampling (both edge of mixing zone samples and receiving environment samples). As a result, if receiving environment samples cannot be sampled during the

first month due to unsafe sampling conditions caused by melting ice on Meliadine Lake, additional whole effluent samples from MEL-14 could be sent to the toxicology laboratory and tested using an extended dilution series that encompasses a larger range of TDS concentrations than would be expected in the receiving environment. These tests would be simulations of water quality and toxicological responses to approximate the field conditions, with a return to direct sampling of field conditions as soon as appropriate. Such chronic toxicity data could then be compared to *in situ* monitoring data that would be collected following ice-free conditions to validate the interim targets established at the edge of the mixing zone. Although this contingency would have uncertainty related to the estimation of effluent dilution in the mixing zone, it has the added benefit of providing site-specific chronic toxicity data at test concentrations greater than those expected at the edge of the mixing zone. These data would be informative for both the short-term monitoring needs, but also to validate longer-term benchmarks for TDS in the effluent (EQC-setting) and receiving environment (SSWQO). Such benchmarks would support a future application for a permanent amendment to these targets under the mine's water licence (i.e., support WQ-MOP Phase 3—long-term management of TDS).

3.4.2 Laboratory Testing

The study design has been developed to provide a high level of care and quality management, but laboratory testing always carries some risk of uncontrollable disruption:

- Nunavut to the Quebec transfer location, and subsequently to the analytical laboratories, there is a possibility of holding time exceedances for chemical or toxicological analyses (these times vary by test type but are generally a few days in duration). The potential for time delays increases during the Covid-19 condition due to the reduced options for alternate shipping routes. In the event of a minor holding time exceedance, we propose to continue with testing of the samples as promptly as can be accommodated by the laboratories, with associated documentation of the necessary protocol deviations. The contaminant types of primary interest in the samples (i.e., major ions and metals) are resistant to rapid sample degradation. Cancellation or rescheduling of the testing program would result in loss of information and associated uncertainty that far outweighs the consideration of holding time. Additional chemical analysis (e.g., both test initiation and termination) can be used to provide confidence in the stability of the chemical mixtures.
- **Test Failure**—A low percentage of toxicity tests result in test failures (i.e., unacceptable performance of negative control media, or other major disqualification, such as a prolonged power outage causing violation of rules for controlled environmental conditions). We have attempted to anticipate potential causes of control failures (e.g., fungal infestation of water samples, essential micronutrient levels of tests). If other unforeseeable factors result in a test failure, the default approach will be to proceed in order of:
 - Consult the laboratory to determine if the cause of failure can be identified
 - Restart the test using additional archived sample, if available
 - If test cannot be repeated with confidence, repeat test with fresh sample in the subsequent monitoring event (with additional water volume provided to support follow-up investigation of cause, if needed)
 - If multiple rounds of testing indicate a systematic problem with test quality, consider replacement testing (e.g., new laboratory, replacement test protocol)

■ Inadequate Sample Volumes—In the event that water volumes are inadequate (e.g., sample containers compromised or lost in transit), attempts will be made to salvage the testing round through minor adjustments to the design, such as:

- Replacement of site water with a synthetic water sample designed to mimic the ionic composition of the site water (e.g., laboratory preparation of a simulated Meliadine Lake ambient background water composition)
- Modification of the dilution series to make efficient use of available sample

The contingency measures provided above represent an initial planning step and are not expected to address all potential complications that could arise during the monitoring program. As a result, these planning steps should be viewed as preliminary measures that are expected to evolve as the program progresses. Golder and Agnico Eagle will work together to identify additional contingency measures where necessary during the program and, where practical, will provide new contingency plans to the Water Management Working Group for comment and discussion prior to implementation.

3.5 Adaptive Management

As described in NWB's (2020) Reason for Decision, adaptive management measures related to the emergency discharge will be discussed on an ongoing basis throughout the discharge event during meetings with the Water Management Working Group comprised of the Kivalliq Inuit Association, Crown-Indigenous Relations and Northern Affairs Canada (CIRNAC), Environment and Climate Change Canada (ECCC), and NWB. However, prior to the first Water Management Working Group meeting, which is tentatively scheduled for two weeks following initiation of the discharge, NWB (2020) has stipulated that the following preliminary adaptive management thresholds and triggers be implemented during water quality monitoring of the discharge event:

- If two consecutive end-of-pipe sampling events identify TDS concentrations equivalent to, or greater than, 3,500 mg/L, Agnico Eagle will increase sampling frequency
- If two consecutive edge-of-mixing-zone sampling events identify TDS concentrations equivalent to, or greater than, 75% of the interim target of 1,000 mg/L, Agnico Eagle will increase sampling frequency

These preliminary adaptive management measures will be implemented if the above referenced management targets are not achieved. NWB will be notified promptly of any adaptive management measures that are implemented throughout the discharge period. Additional adaptive management strategies that may be considered on a case-by-case basis if non-compliance with the above targets are observed, or if the results of the validation studies identify other non-conformances are:

- Decreasing the rate of effluent discharge or temporary cessation of pumping of the discharge could be considered to increase dilution and decrease the overall size of the plume.
- Consideration given to collecting additional edge of the mixing zone sample(s) for exploratory chronic toxicity testing to further validate the proposed interim target at the edge of the mixing zone. These additional samples could be amended with ionic salts in an ionic composition relevant to the edge of mixing zone and tested as a dilution series. The purpose would be to facilitate testing at concentrations both above and below the concentrations measured at the time of sampling, for the purpose of developing a concentration-response curve.

Consideration given to additional targeted toxicity testing (e.g., validation test, or toxicity identification evaluation to explore the cause for an observed toxicological response), either in response to an acute toxicity outcome (e.g., mortality to crustacean *D. magna*) or for a moderate- to high-magnitude chronic toxicity response. Such toxicity is not anticipated to occur during the program (i.e., the thresholds have been set specifically to avoid such responses); however, if an anomalous response is observed, a TIE could help elucidate the cause.

If additional testing or analysis is conducted, per the second or third bullets above, the data would be useful both as a contingency measure and for longer-term management (i.e., WQ-MOP Step 3). These approaches have been applied at other northern mine sites to better understand the concentration-response and define the lower bound of where TDS may cause chronic toxicity in site-specific mixtures. Multiple chronic toxicity tests have already been conducted in recent years, and these support the proposed interim target at the edge of the mixing zone; additional tests would expand on that knowledge, clarifying the nature of TDS concentration-response, and the influence of modifying factors.

Additional adaptive management strategies, if necessary, would be proposed to the Water Management Working Group in advance of the next scheduled meeting to facilitate discussion and agreement prior to implementation.

4.0 CONCLUSIONS

The application of the WQ-MOP framework provides a basis for management of effluent discharges from Meliadine Mine to Meliadine Lake that:

- Is protective of the environment (both in the mixing zone and broader ecological condition of Meliadine Lake), as demonstrated in this memorandum, which provides Phase 1 and the conceptual elements of Phase 2 of the WQ-MOP
- Will satisfy regulatory requirements for the short-term (Phase 1 and 2) and long-term (Phase 3) management of TDS:
 - interim targets for TDS proposed herein satisfy short-term regulatory requirements for management of TDS during the 2020 discharge, subject to conditions outlined in Emergency Amendment 1, and endorsement of the interim targets for effluent and at the edge of the mixing zone
 - interim targets for TDS proposed herein form the basis for development of TDS targets for effluent (EQC)
 and receiving environment (SSWQO), following validation monitoring, for future application under an
 adaptive management framework
- Is based on science, including both site-specific evaluations of toxicity and comparison to other project approvals with similar composition of TDS
- Is customized to the site-specific conditions of water quality and quantity (with revisions as appropriate should these conditions change)

It is acknowledged that the aspects of the interim targets for TDS and, if required, future development of EQC and SSWQO, will benefit from additional confirmatory study. Our revised WQ-MOP provides the technical basis for these studies, and leverages the environmental monitoring of the 2020 discharge, which provides an opportunity to collect the data necessary for both short-term validation (i.e., Phase 2 of the WQ-MOP) and long-term management (i.e., Phase 3 of the WQ-MOP).

Signature Page

Golder Associates Ltd.

Breda Rahmanian, MSc, BIT

Toxicologist

Kristina Skeries, MSc *Geochemist*

Brett Lucas, MSc, RPBio Environmental Scientist

Gary Lawrence, MRM, RPBio

Associate, Senior Environmental Scientist

John Faithful, BSc (Hons)

Principal, Senior Water Quality Scientist

BR/GL/JF/al/jlb

Golder and the G logo are trademarks of Golder Associates Corporation

 $https://golder associates.share point.com/sites/117232/project files/5 technical work/6000_sswq_tds_benchmarks/6020_tds_memo/rev2/19132390-751-rpt-wqmop-meliadine-rev2a.docx$

5.0 REFERENCES

Agnico Eagle Mines Ltd. 2015. Water Management Plan Version 1. Type A Water Licence Application, Meliadine Gold Project. APHA (American Public Health Association). 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC.

- ASTM International. 2004. ASTM E 1193-97: Standard Guide for Conducting *Daphnia magna* Life-Cycle Toxicity Tests. 2004.
- Environment Canada. 1996. Biological Test Method: Acute Lethality Test using *Daphnia* spp. EPS 1/RM/11, Second Edition, May 1996.
- Environment Canada. 2007a. Biological Test Method: Acute Lethality Test using Rainbow Trout. EPS 1/RM/9, Third Edition, May 2007.
- Environment Canada. 2007b. Biological Test Method: Test for Measuring the Inhibition of Growth using the Freshwater Macrophyte (*Lemna minor*). EPS 1/RM/37, Second Edition, January 2007.
- Environment Canada. 2011. Biological Test Method: Test for Larval Growth and Survival using Fathead Minnows. EPS 1/RM/22, Second Edition, March 2011.
- Environment Canada. 2017. Biological Test Method: Test for Survival and Growth in Sediment and Water using the Freshwater Amphipod *Hyalella azteca*. EPS 1/RM/33, Third Edition, September 2017.
- Golder. 2014. Final Environmental Impact Statement (FEIS)—Meliadine Gold Project. Volume 7.0, Freshwater Environment. Golder. 2018. Aquatic Effects Monitoring Program—2017 Annual Report. Agnico Eagle Mines Limited Meliadine Gold Project. Submitted to Agnico Eagle Mines Limited. March 2018.
- Golder. 2019. Cycle 1 Environmental Effects Monitoring Report and 2018 Aquatic Effects Monitoring Program Annual Report. Agnico Eagle Mines Limited—Meliadine Gold Mine. Submitted to Agnico Eagle Mines Limited. March 2019.
- Government of Canada. 2002. Metal and Diamond Mining Effluent Regulations SOR/2002-222. Current to October 10, 2018. Last amended on June 1, 2018. Minister of Justice. Ottawa, ON.
- MDDEP (Ministère du Développement Durable, de l' Environnement et des Parcs). 2007. Calculation and interpretation of effluent discharge objectives for contaminants in the aquatic environment, 2nd Edition, Quebec, 54 p.
- Nunavut Water Board (NWB). 2020. NWB Water Licence Type "A" No: 2AM-MEL1631 Request for the Minister's Consent to Process Amendment No. 1 on an Emergency Basis and Attached Reasons for Decision and Amendment No. 1 for the Minister's Consideration. File No. 2AM-MEL1631/Emergency Amendment No. 1.
- Tetra Tech. 2017. Design Report for Effluent Water Treatment Plant, Pumping Stations, Pipelines & Associated Berm, and Diffuser Available at: ftp://ftp.nwb-oen.ca/registry/2%20MINING%20MILLING/2A/2AM%20-%20Mining/2AMMEL1631%20Agnico/3%20TECH/5%20CONSTRUCTION%20(D)/Final%20Effluent%20Syst em/
- Tetra Tech. 2018. Effluent Discharge Modelling for the As-Built Diffuser at the Meliadine Gold Project, Nunavut. Prepared for Agnico Eagle Mines Limited. May 2018.

Wang F, Goulet RR, Chapman PM. 2004. Testing sediment biological effects with the freshwater amphipod *Hyalella azteca*: the gap between laboratory and nature. Chemosphere 57(11):1713–1724.

APPENDIX A

Supporting Information for the Interim TDS Targets

APPENDIX A: SUPPORTING INFORMATION FOR INTERIM TDS TARGETS

This Appendix presents the supporting information and rationale for the proposed interim targets of: (a) 1,000 mg/L calculated TDS to apply at the edge of the mixing zone (Section A1.0) and (b) 3,500 mg/L calculated TDS to apply for effluent discharge (Section A2.0).

To prepare the interim targets, Golder Associates Ltd. (Golder) was requested to build from existing work performed on TDS benchmarks (i.e., Golder 2019), including the following:

- Incorporation of site-specific toxicity data.
- Integration with the framework discussed with regulators for developing interim water quality targets for TDS that reflect the site-specific mixture of ions, confirmed through standardized toxicity tests (acute and chronic toxicity testing) and evaluation of assimilative capacity.
- Establishment of a process for validation of interim targets in summer 2020.

The development of interim water quality targets for Agnico Eagle Nunavut operations was discussed with Environment and Climate Change Canada (ECCC) in several recent meetings and associated reviews:

- Meeting on 9 December 2019 (Agnico Eagle 2019). This meeting discussed the technical approach to development of site-specific water quality objectives (SSWQO) for multiple projects (and constituents of interest) in Nunavut.
- TDS Technical Memorandum (Golder 2019). This memorandum was prepared as a draft document to support a technical approach to development of SSWQOs for TDS.
- Meeting on 9 January 2019 (Agnico Eagle 2020). This meeting discussed the technical approach to development of SSWQOs specific to TDS and its components, following from the ECCC review of Golder (2019).
- Final Public Hearings for the Whale Tail Expansion Project, Baker Lake NU, February 13–14, 2020. The hearings included contributions from ECCC (as Intervenors), and from Agnico Eagle (in the Proponent's concluding statements) and included areas of general agreement regarding a conceptual approach to regulation of TDS.

A1.0 INTERIM TDS TARGET AT THE EDGE OF THE MIXING ZONE

The benchmark of 1,000 mg/L calculated TDS is proposed as an interim value for use in the short-term, pending implementation of Phase 2 and Phase 3 of the WQ-MOP.

The proposed interim target was derived as summarized below and detailed in the subsequent sections:

- Characterization of the Meliadine TDS profile (Section A1.1)—water chemistry data collected at the Meliadine Mine were used to profile the anticipated water quality in the receiving environment, including composition of major component ions in the TDS mixture.
- Review of water quality benchmarks (Section A1.2)—review of TDS benchmarks developed for locations with a similar TDS composition to Meliadine Mine.
- Literature review (Section A1.3)—review of peer-reviewed literature to determine the threshold for chronic toxicity with a focus on TDS mixtures of similar composition to Meliadine (i.e., dominance of chloride, sodium, and calcium ions).

Review of site-specific chronic toxicity data (Section A1.4)—review of site toxicity data and corresponding TDS and major ion chemistry for Meliadine treated effluent and influent samples, as collected during routine and regulatory compliance toxicity testing.

Weight of Evidence (Section A1.5)—integration of the above information to justify an interim target TDS concentration of 1,000 mg/L to apply at the edge of the mixing zone.

A1.1 Characteristics of Total Dissolved Solids

A1.1.1 Definition

The TDS parameter is defined as the sum of the concentrations of all common dissolved ions in freshwaters (e.g., sodium [Na⁺], calcium [Ca²⁺], magnesium [Mg⁺], potassium [K⁺], sulphate [SO₄²⁻], bicarbonate [HCO³⁻], chloride [Cl⁻], nitrate [NO³⁻], fluoride [F⁻], and silicate [SiO₃²⁻]), and is essentially an expression of salinity. TDS can be calculated using the following equation (APHA 2005):

$$TDS_{calculated\ (mg/L)} = \sum [Na^+, K^+, Ca^{2+}, Mg^{2+}, Cl^-, F^-, SO_4^{2-}, SiO_3^{2-}, 4.42 \times NO_3^- (as\ N), 0.6 \times total\ alkalinity\ (as\ CaCO_3)]$$

Concentrations of TDS may also be measured gravimetrically by analytical laboratories. However, calculated TDS is used herein as the primary basis for derivation of interim targets for TDS and screening because:

- Laboratory interference can reduce the accuracy of measured TDS (Evaristo-Cordero 2011). In particular, waters with high calcium, magnesium, and chloride concentrations can form hydroscopic residues that absorb water under normal laboratory conditions, potentially biasing the measured TDS higher than actual concentrations (APHA 2005; Evaristo-Cordero 2011). In contrast, calculated TDS is based on the major ions that can measurably contribute to TDS and is therefore, not influenced by any changes that may occur from those ions being taken out of solution.
- Calculated TDS incorporates explicit consideration of the ionic composition, which is important for evaluating the toxicity of the TDS mixture (as discussed below).
- Calculated TDS is forecasted, using predictive modelling, to estimate potential TDS concentrations in effluent and receiving environment under future mine conditions; use of calculated TDS for the interim target provides an equivalence for comparison relative to modelled conditions.

In recent meetings, ECCC expressed a preference that concentrations of TDS be expressed on a measured concentration basis. Agnico Eagle has committed to presenting monitoring results using both methods (calculated and measured).

A1.1.2 General Fate and Effects

Dissolved solids occur naturally in water, with the composition and concentration of individual ion constituents varying by location based on natural factors, such as the geology and soil in the watershed, atmospheric precipitation and the water balance (evaporation-precipitation) (Weber-Scannell and Duffy 2007). Anthropogenic activities can alter the concentration of TDS in the aquatic environment, with effluent from mining or industrial treatment of water identified as common sources of elevated TDS (Soucek 2007; Weber-Scannell and Duffy 2007). Differences in the ratios of calcium to magnesium (Ca:Mg) or relative contribution of sulphate or chloride to the total TDS concentration are common indicators of anthropogenic influence.

The primary toxicity modifying factor for TDS is ionic composition, reflecting the fact that individual ionic components exhibit different potential to exert toxicity. For example, Mount et al. (1997) reported 48-hr LC50 values ranging from 390 to >5,610 mg/L in *C. dubia* and 96-hr LC50 values ranging from <510 to 7,960 mg/L in the Fathead Minnow exposed to various ion combinations, respectively. In general, a balanced mixture of ions results in lower toxicity than strong dominance by an individual ion, particularly dominance by an individual ion with relatively high toxicity. Mount et al. (1997) reported that the relative ion toxicity to freshwater biota was generally potassium > carbonate \approx magnesium > chloride > sulphate, with calcium and sodium exhibiting relatively low toxicity. Therefore, the toxicity of a TDS mixture depends largely on the composition of ions within the mixture, rather than the total TDS concentration, which on its own is not an accurate predictor of toxicity. If the mixture is well characterized, and the composition of that mixture is similar to samples for which mixture-based toxicity testing has already been conducted, the confidence in predictions of toxicological potential increases substantially.

A1.1.3 Site-Specific Composition

Monitoring data for Meliadine effluent (MEL-14) were compiled for surface water samples collected between September 2017 and October 2019 and monitoring data for the near-field in Meliadine Lake (MEL-01; stations MEL-01-01 and MEL-01-06 to MEL-01-08) were compiled for surface water samples collected between July 2015 and September 2019. The date range selected for the effluent TDS data begins in 2017 because it coincides with period of increasing effluent TDS concentrations. The near-field TDS composition has been relatively stable over time; data were included for a broader time period to reflect the chronic exposure condition. Summary statistics for major ion chemistry, TDS, and water hardness are presented in Table A-1.

The interim target was developed considering that the ionic composition would fall within the bounds of the ionic composition of the effluent and near-field receiving water. In other words, the effluent and near-field receiving environment samples bracket the range of mixture types expected for future samples of water upon initial mixing. Average measured TDS in the effluent was approximately 930 mg/L and consisted predominantly of chloride (470 mg/L; 52% of TDS), sodium (167 mg/L; 18% of TDS), calcium (125 mg/L; 13% of TDS), sulphate (56 mg/L; 6% of TDS), carbonate (20 mg/L; 2% of TDS), and relatively low concentrations of magnesium, potassium, fluoride, nitrate, and reactive silica (combined 9% of TDS; Figure A-1). Average measured TDS in the near-field receiving environment (MEL-01) was lower (44 mg/L) with a broadly similar ionic composition to the effluent but with a higher overall proportion of carbonate and lower proportion of chloride, sodium, and calcium. TDS in the near-field consisted predominantly of chloride (12 mg/L; 28% of TDS), carbonate (18 mg/L; 24% of TDS), sodium (5.8 mg/L; 13% of TDS), calcium (7.7 mg/L; 18% of TDS), sulphate (4.5 mg/L; 10% of TDS), and relatively low concentrations of magnesium, potassium, fluoride, nitrate, and reactive silica (combined 6% of TDS; Figure A-2). On a site-wide basis, TDS composition relevant to the Meliadine interim TDS target is an ionic composition dominated by chloride, sodium, and calcium (from highest to lowest concentration), with lower contribution from carbonate. It is anticipated that, should TDS increase in the receiving environment relative to current conditions, the relative proportion of carbonate would decline as the relative proportions of chloride, sodium and calcium increase. Dominant ions of chloride, sodium, and calcium represent the lower range of toxicity potential relative to potassium, carbonate, and magnesium (Mount et al. 1997).

From November 2019 to March 2020, ten water quality samples were collected in Containment Pond 1 (CP1). The ionic composition of these samples were consistent with the ionic composition reported above for MEL-14 and MEL-01; average measured TDS in CP1 from November 2019 to March 2020 was approximately 4,403 mg/L and consisted predominantly of chloride (2,160 mg/L; 51% of TDS), sodium (806 mg/L; 19% of TDS), calcium

(483 mg/L; 11% of TDS), sulphate (349 mg/L; 8% of TDS), carbonate (87 mg/L; 2% of TDS), and relatively low concentrations of magnesium, potassium, fluoride, nitrate, and reactive silica (combined 9% of TDS).

Hardness may modify ion-specific toxicity, thereby ameliorating the toxicity of a mixture by reducing the toxicity of individual ions (Kennedy et al. 2005). For example, calcium has been identified as a specific component of hardness that ameliorates sulphate toxicity (Davies and Hall 2007; Mount et al. 2016). Hardness is not considered a toxicity modifying factor in the case of TDS, because hardness is a component of the TDS mixture and is therefore not an independent factor distinct from ionic composition. However, hardness can be considered for the evaluation of ion-specific toxicity, given that some ions (e.g., chloride, sulphate) are less toxic in hard water. Water hardness was calculated as calcium carbonate (CaCO₃) using the following equation:

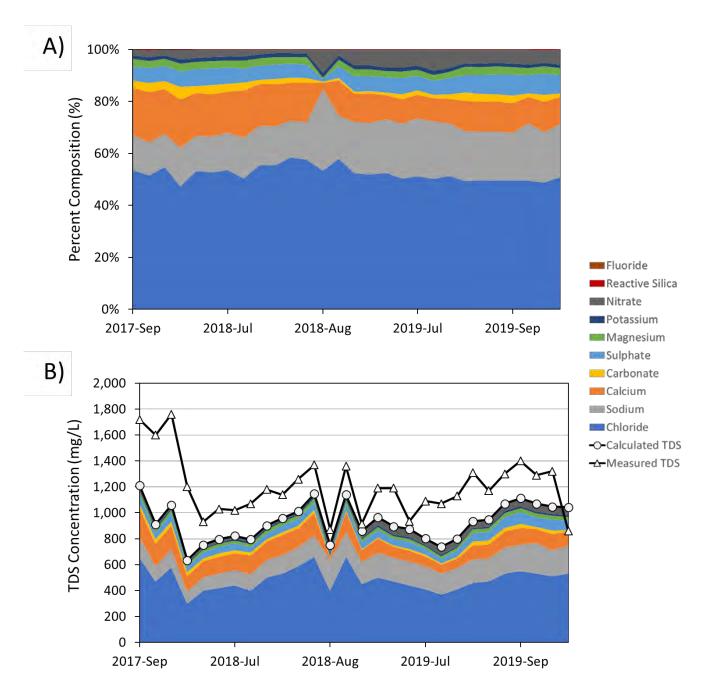
$$[CaCO_3] = 2.5 \times [Ca^{2+}] + 4.1 \times [Mg^{2+}]$$

Average calculated water hardness in the effluent was 408 mg/L as CaCO₃ (i.e., very hard water), compared to 25 mg/L (i.e., soft water) in the near-field receiving environment.

Table A-1: Water chemistry results for TDS and associated constituents in Meliadine Mine effluent (MEL-14) collected between September 2017 to October 2019 and near-field (MEL-01) collected between July 2015 and September 2019

Parameter			MEL-14			MEL-01 ^(a)					
(mg/L)	Median	Average	Maximum	Minimum	Sample Count	Median	Average	Maximum	Minimum	Sample Count	
Calculated TDS	923	930	1,213	634	28	42	44	69	33	43	
Measured TDS	1,185	1,203	1,760	860	28	52	54	94	25	43	
Carbonate ^(b)	20	20	34	4	28	10	11	17	8	43	
Chloride	470	487	660	300	28	12	12	19	8	43	
Sodium	167	165	236	94	28	5.6	5.8	9.4	4.1	43	
Calcium	125	122	220	17	28	7.3	7.7	13	5.8	43	
Sulphate	53	56	90	7	28	4.3	4.5	6.6	3.4	43	
Magnesium	26	25	36	4	28	1.3	1.4	2.4	1.0	43	
Potassium	14	14	17	10	28	1.0	1.0	1.7	0.8	43	
Fluoride	(c)	(c)	(c)	(c)	0	0.03	0.03	0.03	0.02	43	
Nitrate (as N)	11	9	15	3	28	0.01	0.01	0.08	0.01	43	
Reactive Silica	0.73	0.79	3.60	0.05	28	(d)	(d)	(d)	(d)	1	
Calculated Water Hardness (as CaCO ₃) ^(e)	407	408	698	59	28	24	25	41	19	43	

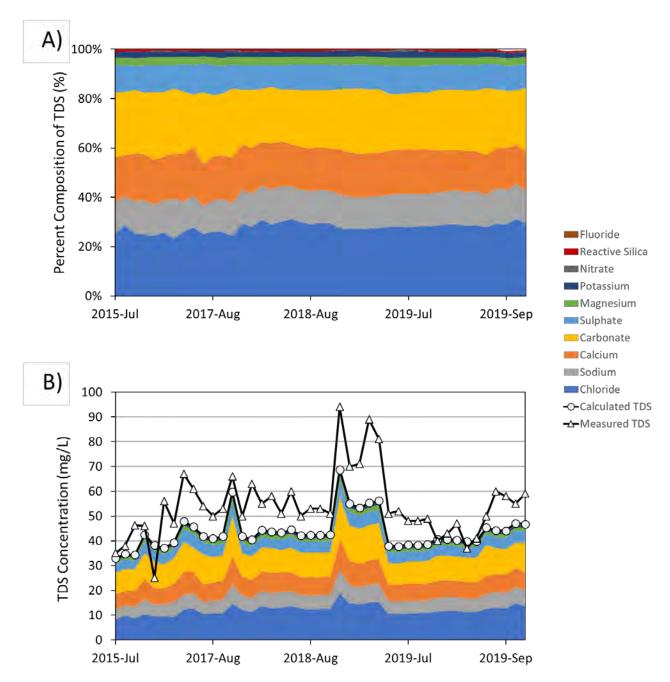
Notes:


All concentrations expressed in milligrams per litre.

- (a) MEL-01 measurements are from near-field stations MEL-01-01, MEL-01-06, MEL-01-07, MEL-01-08, and MEL-01-09.
- (b) Calculated from total alkalinity as total alkalinity (as CaCO₃) × 0.6
- (c) Fluoride was not measured for data collected between September 2017 and October 2019, which precluded the calculation of summary statistics. However, these data would not result in significant changes to the understanding of ionic composition, given that fluoride provides only a trace component of both halides and TDS in Meliadine water samples.
- (d) Reactive silica was only measured in one sample for data collected between September 2017 and October 2019, which precluded the calculation of summary statistics.
- (e) Calculated as $(2.5 \times [Ca^{2+}]) + (4.1 \times [Mg^{2+}])$

mg/L = milligrams per litre; CaCO₃ = calcium carbonate; N = Nitrogen; — = not measured.

Figure A-1: Percent composition of TDS (%) (Panel A) and TDS concentration (mg/L) (Panel B) at station MEL-14 (treated effluent) for samples collected between September 2017 and October 2019 at Meliadine Mine.



Notes:

lonic composition was calculated as: $TDS_{calculated\ (mg/L)} = \sum [Na^+, K^+, Ca^{2+}, Mg^{2+}, Cl^-, F^-, SO_4^{2-}, SiO_3^{2-}, 4.42 \times NO_3^- (as\ N), 0.6 \times total\ alkalinity\ (as\ CaCO_3)].$

Data for ionic composition from effluent (MEL-14) was collected between September 2017 and October 2019.

Figure A-2: Percent composition of TDS (%) (Panel A) and TDS concentration (mg/L) (Panel B) at station MEL-01 (near-field) for samples collected between July 2015 and September 2019 at Meliadine Mine.

Notes:

Ionic composition was calculated as: $TDS_{calculated\ (mg/L)} = \sum [Na^+, K^+, Ca^{2+}, Mg^{2+}, Cl^-, F^-, SO_4^{2-}, SiO_3^{2-}, 4.42 \times NO_3^- (as\ N), 0.6 \times total\ alkalinity\ (as\ CaCO_3)].$

Data for ionic composition from near-field (MEL-01) was collected from stations MEL-01-01, MEL-01-06, MEL-01-07, and MEL-01-08 between July 2015 and September 2019.

A1.2 Benchmarks from Other Sites

Currently, there is no federal, Provincial or Territorial water quality guideline for TDS in Canada. Several US States have developed state or site-specific TDS criteria focussed on the protection of aquatic life. In Alaska, TDS criteria range from 500 to 1,500 mg/L (ADEC 2009), depending on the TDS composition and whether the receiving environment is potential salmon spawning habitat. Permits are required for discharges to receiving water that result in an increase in TDS concentration in the waterbody between 500 and 1,000 mg/L. Chapman et al. (2000) reported that studies conducted for Coeur Alaska's Kensington Mine site resulted in the first site-specific TDS permit in Alaska. The permit states that TDS may not exceed 1,000 mg/L in Sherman Creek, the receiving waterbody of Kensington Mine effluent (ADEC 2017). Alaska also granted a site-specific permit for Red Dog Mine effluent (ADEC 2013; Brix et al. 2010). Concentrations of TDS up to 1,500 mg/L are permitted during periods when salmonids are not spawning, provided calcium is greater than 50% by weight of the total cations (ADEC 2013; Brix et al. 2010). During spawning periods, the limit was set at 500 mg/L (Brix et al. 2010). However, the studies used to establish the Alaskan TDS water quality criterion were based on ionic compositions dominated by calcium sulphate, whereas the Meliadine effluent and near-field TDS is predominantly sodium chloride and calcium chloride (Chapman et al. 2000; Brix et al. 2010). Therefore, these benchmarks are not directly applicable to Meliadine Mine.

In 2004, the Iowa Department of Natural Resources (IDNR) adopted an interim TDS standard of 1,000 mg/L in receiving streams; the standard was used as a screening value to determine whether site-specific toxicity testing was required (IDNR 2009). However, IDNR since recommended replacing the TDS standard with numerical sulphate and chloride criteria (IDNR 2009) under the assumption that the individual ions provide a more defensible basis for evaluating toxicity relative to the sum of the ions.

The Snap Lake Mine in the Northwest Territories currently has a site-specific water quality objective (SSWQO) for TDS of 1,000 mg/L (Golder 2014; Chapman and McPherson 2015). The SSWQO was derived following toxicity testing with multiple receptor groups (fish, invertebrates, and plants) using a TDS ionic composition specific to Snap Lake Mine dominated by chloride, calcium, and sodium. The typical composition of Snap Lake water includes ~45% to 47% chloride, 20% to 21% calcium, 10% to 11% sodium, 9% sulphate, 5% to 7% carbonate, 4% nitrate, and 2% to 3% magnesium, with minor contributions from potassium and fluoride. This composition is broadly similar to that of Meliadine effluent. The test species and effects endpoints for the TDS SSWQO dataset, as reported by Chapman and McPherson (2015) and discussed in detail in Golder (2014), are presented in Table A-2. Additional testing was also conducted with the non-resident water flea, Ceriodaphnia dubia. As discussed by Chapman (2014a) the results from multiple rounds of testing with C. dubia were highly variable (potentially confounded by laboratory artifacts) and could not be relied upon to derive a protective SSWQO for Snap Lake Mine. Because species of the genus Ceriodaphnia do not reside in Snap Lake, species of the genus Daphnia are observed in Snap Lake, the chronic reproduction D. magna results were considered more representative of daphnids in Snap Lake. Following a resident taxa approach for deriving a SSWQO using the dataset in Table A-2, the TDS SSWQO for Snap Lake was set as 1,000 mg/L. The SSWQO was considered protective of aquatic life, and "if not exceeded, will avoid harm to the Snap Lake ecosystem" (Chapman 2014a, p.5). As discussed by Chapman (2014c), the results of toxicity testing do not indicate that an exceedance above 1,000 mg/L TDS will result in harm to aquatic life but provide "reasonable certainty of no harm up to 1,000 mg/L" (Chapman 2014a, p.5).

Table A-2: Chronic toxicity testing dataset for Snap Lake TDS SSWQO as summarized by Chapman and McPherson (2015)

Test Species	Common Name	Life stage	Test Duration	Endpoint	Test Statistic ^(a)	Result (mg/L TDS)	Reference
				dry fertilization survival	LC ₂₀	990	
Salvelinus		early life-		dry fertilization growth	IC ₂₀	>1,490	- Baker et al. 2015
namaycush	Lake Trout	stage		wet fertilization survival	LC ₂₀	>1,480	- baker et al. 2015
				wet fertilization growth	IC ₂₀	>1,480	
Daphnia magna	water flea	<24 hr	21-d	reproduction	IC ₂₀	>1,100	Chapman 2014b
Brachionus calyciflorus	rotifer		48-hr	population	IC ₁₀	>1,330	Chapman 2014c
Chironomus dilutus	chironomid		10-d	growth	IC ₁₀	>1,390	Chapman 2014c
	Arctic Grayling			dry fertilization survival	LC ₂₀	>1,420	
Thumallus aratique		early life- stage		dry fertilization growth	IC ₂₀	>1,420	- Baker et al. 2015
Thymallus arcticus				wet fertilization survival	LC ₂₀	>1,410	Baker et al. 2015
				wet fertilization growth	IC ₂₀	>1,410	
Pseudokirchneriella subcapitata	green alga	population	72-h	growth	IC ₁₀	>1,470	Chapman 2014c
Navicula pelliculosa	diatom	population	120-h	growth	IC ₁₀	>1,490	Chapman 2014c
Cyclops vernalis	copepod		20-d	growth	IC ₂₀	>1,510	Marus et al. 2015; Chapman 2014c; Chapman 2014a
Pimephales promelas	Fathead Minnow	early life- stage	32-d	hatching, survival and growth	IC ₂₀	>2,200	Chapman 2014c

Notes:

mg/L = milligrams per litre; TDS = total dissolved solids; LC_X = lethal concentration causing a lethal effect to x% of the test population; IC_X = inhibitory concentration that causes an x% inhibitory effect in the sublethal endpoint being measured.

The Snap Lake SSWQO validation excluded test results for the water flea, *C. dubia*, because multiple rounds of testing produced highly variable effect concentrations that were not reliable. Variability in the reproductive endpoint for *C. dubia* was attributed to confounding factors associated with the testing laboratory (e.g., dilution and acclimation water), and such variations have also been reported elsewhere (Lasier et al. 2006; Pacholski et al. 2016; Mount et al. 2016). Golder (2011; 2014) and Chapman and McPherson (2015) concluded that *D. magna* are more relevant surrogate for resident cladoceran species in Snap Lake mine because zooplankton surveys in Snap Lake reported the genus *Daphnia* but not the genus *Ceriodaphnia*. The same logic would apply for Meliadine Lake, where zooplankton surveys conducted as part of Aquatic Effects Monitoring in 2015, 2016, and 2017 reported *Daphnia* presence but not *Ceriodaphnia* (Golder 2019).

⁽a) As reported in Chapman and McPherson (2015) for the "lowest reliable, technically defensible endpoint for each test." A discussion of the selection of endpoints is provided in Golder (2014).

A1.3 Review of Chronic Toxicity Literature

Golder (2011; 2014) conducted an extensive literature review for total dissolved solids that was updated by Chapman and McPherson (2015); the literature review is presented in Appendix A of Golder (2011; 2014) and summarized in Chapman and McPherson (2015). This literature is separate from the values derived from site-specific toxicity testing at Snap Lake Mine as reported in Table A-2. Golder (2011; 2014) and Chapman and McPherson (2015) concluded that the toxicity of TDS was highly dependent on the ionic composition, the species tested, and the life stage; they identified the following trends for generic TDS mixtures:

- Phytoplankton—overall high tolerance of phytoplankton to TDS toxicity with effect concentrations higher than 1,000 mg/L.
- Benthic invertebrates—in general, adverse effect concentrations were above 1,000 mg/L, with the following exceptions. Relatively high sensitivity was reported for oligochaete worms (96-hour immobilization EC₅₀ of 281 mg/L calcium chloride to the oligochaete worm *Tubifex*; Khangarot 1991), and the glochidia of a freshwater mussel (48-hour EC₅₀ of 560 mg/L sodium chloride to glochidia of *Lampsilis fasciola*; Bringolf et al. 2007). Lower effect concentrations were also reported for the fingernail clam (*Sphaerium simile*; 96-hour survival LC₅₀ of 740 mg/L; GLEC and INHS 2008; Soucek et al. 2011) but these represented individual ion exposure, which may not accurately predict chloride toxicity under mixture conditions.
- Zooplankton—cladoceran species were generally the most sensitive to TDS. Effect concentrations for calcium chloride salts ranged from 600 to 7,000 mg/L. A review of the chronic dataset presented by Golder (2011; 2014) indicated that effect concentrations for sodium chloride generally ranged from 750 mg/L (7-d reproduction no-effect concentration (NOEC) for *C. dubia*; Cooney et al. 1992) to 2,400 mg/L (7-d survival lowest effect concentration for *C. dubia*; Cooney et al. 1992).
- Fish—the sensitivity of fish to TDS toxicity varied by life-stage, with fertilization and egg-hardening life stages identified as the most sensitive toxicological endpoints. Fish were also generally less sensitive to TDS toxicity than zooplankton, with effect concentrations for calcium chloride ranging from 4,600 mg/L to greater than 15,000 mg/L. A review of the chronic dataset presented by Golder (2011; 2014) indicated that effect concentrations for sodium chloride generally ranged from 800 mg/L (8-d NOEC *Oncorhynchus mykiss*; Camargo and Tarazona 1991) to 8,000 mg/L (7-d NOEC *Pimephales promelas*; Pickering et al. 1996).

Lower effect concentrations have been reported for individual ions for select species, but these tests reflect exposure conditions accounting for a single ion, and not a balanced TDS mixture representative of most field conditions. A review of the literature indicates that when accounting for toxicity for TDS the following observations apply as summarized by Chapman and McPherson (2015):

- TDS toxicity is lower with the presence of more than one cation.
- Hardness may ameliorate TDS toxicity and the toxicity of individual ions (e.g., chloride and sulphate).
- The relative ratios of ions within the TDS mixture may affect TDS toxicity (e.g., Ca²⁺:Mg²⁺).

More recent research by Mount et al. (2016) support the conclusions by Chapman and McPherson (2015). Following extensive toxicity testing exposing *C. dubia* to different salt mixtures, Mount et al. (2016) concluded that inferring toxicity from individual ions is difficult due in part to interdependence among ions. Buchwalter et al. (2013) concluded that TDS toxicity is complicated by the findings that:

- 1) individual ions vary in toxicity;
- 2) some ions in solution can modify the toxicity of other ions; and
- 3) relative toxicities of ions are not consistent across species.

The results from Mount et al. (2016) also support the conclusion that toxicity of TDS mixtures varies by ionic composition, and that the characteristics of the TDS mixture influence the toxicity of other ions in the mixture.

A1.4 Site-Specific Chronic Toxicity Data

The information from the literature discussed in Section A1.3, particularly for Snap Lake, provides an indication of chronic exposure levels for TDS that are protective of aquatic life in a northern freshwater ecosystem. However, the identified importance of ionic composition means that site-specific results should carry the greatest weight in the interpretation of biological and ecological significance.

Chronic toxicity testing data and corresponding water chemistry data have been collected by Agnico Eagle as part of routine and regulatory monitoring at stations MEL-14 (treated effluent), and MEL-12 (influent from the water treatment plant). Chronic toxicity tests performed (all standard Environment Canada test protocols commonly applied in the Canadian environmental effects monitoring framework) were:

- Biological Test Method: Test of Reproduction and Survival Using the Cladoceran, Ceriodaphnia dubia (EC 2007a)
- Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnows (EC 2011)
- Biological Test Method: Growth Inhibition Test Using a Freshwater Alga (EC 2007b)
- Biological Test Method: Test for Measuring the Inhibition of Growth Using the Freshwater Macrophyte, Lemna minor (EC 2007c)

Chronic toxicity test results and corresponding water chemistry data for calculated TDS (and measured) and chloride are presented in Table A-3. The results of the chronic testing indicate:

- No effects to *C. dubia* survival at TDS concentrations up to and including 2,357 mg/L (measured TDS of 2,450 mg/L). Reduced *C. dubia* reproduction was observed at TDS concentrations between 1,140 mg/L to 2,202 mg/L (measured TDS of 1,360 to 2,490 mg/L).
- No effects to Fathead Minnow survival or growth at TDS concentrations up to and including 2,357 mg/L (measured TDS of 2,450 mg/L).
- Growth inhibition to *P. subcapitata* was observed in two samples collected in September and October 2019 at TDS concentrations of 2,202 mg/L and 2,357 mg/L, respectively (measured TDS of 2,490 mg/L and 2,450 mg/L, respectively). However, follow up testing conducted in October indicated no effect to growth inhibition at a TDS concentration of 2,350 mg/L (measured TDS of 2,370 mg/L). No effect to growth inhibition was observed in remaining samples at TDS concentrations up to and including 1,140 mg/L (measured TDS of 1,360 mg/L).
- Effects to *L. minor* frond count were observed at TDS concentrations between 2,202 mg/L to 2,357 mg/L (measured TDS of 2,490 mg/L to 2,450 mg/L). Although effects to *L. minor* frond count were occasionally observed at TDS concentrations of approximately 1,000 mg/L the effect was not consistently observed. For example, no effect to frond count (IC₂₅ >97% vol/vol) was observed on three occasions at TDS

concentrations ranging between 800 to 1,140 mg/L (measured TDS of 1,130 to 1,360 mg/L). Effects to *L. minor* biomass were observed in two of eight samples at TDS concentrations of 1,011 mg/L and 2,357 mg/L (measured TDS 1,260 mg/L to 2,450 mg/L). No effects to *L. minor* biomass were observed in six of eight samples at TDS concentrations of 800 to 2,350 mg/L (measured TDS of 1,130 mg/L to 2,370 mg/L).

In summary, multiple rounds of chronic toxicity testing indicate no effects to survival of fish or crustaceans across a wide range of TDS concentrations (i.e., unbounded no-effect level of 2,357 mg/L), and no reliable indications of sublethal toxicity have been observed at 1,000 mg/L. Moderate to high magnitude sublethal responses to *C. dubia* and aquatic plants/algae are evident at calculated TDS concentrations that exceed 2,000 mg/L. Collectively, these results provide evidence that the interim TDS target for Snap Lake of 1,000 mg/L remains protective for Meliadine Lake. A higher threshold TDS concentration protective of aquatic life may be supportable once the validation study (Phase 2 of WQ-MOP) is complete.

Table A-3: Chronic toxicity data for MEL-14 and MEL-12 samples collected between 2018 to 2019 with corresponding total dissolved solids and chloride concentrations

	Sample Date	Chronic Toxicity								Water Chemistry (mg/L)		
Sample Location		Water flea Ceriodaphnia dubia		Fathead minnow Pimephales promelas		Green alga P. subcapitata	Duckweed Lemna minor					
		3-brood Survival LC ₅₀ (% vol/vol)	3-brood Reproduction IC ₂₅ (% vol/vol)	7-d Survival LC ₅₀ (% vol/vol)	7-d Growth IC ₂₅ (% vol/vol)	72-hr Cell Inhibition IC ₂₅ (% vol/vol)	7-d Frond Count IC ₂₅ (% vol/vol)	7-d Biomass IC ₂₅ (% vol/vol)	Measured TDS	Calculated TDS	Chloride	
	07 August 2018	>100	>100	>100	>100	>90.9	72.3	>97	1,140 ^(a)	958 ^(a)	530 ^(a)	
	13 August 2018	_	_	>100	>100	>90.9	38.2	42	1,260	1,011	590	
MEL-14	3 September 2018	>100	90.1	>100	>100	>90.9	>97	>97	1,360	1,140	660	
	9 July 2019	_	_	_	_	_	>97	>97	1,190	965	500	
	13 August 2019	_	_	_	_	_	>97	>97	1,130	800	410	
MEL-12	24 September 2019	>100	24.3	>100	>100	60.8	26.3	>97	2,490	2,202	1,100	
	1 October 2019	>100	58.8	>100	>100	88.2	29.4	66.2	2,450	2,357	1,200	
	8 October 2019	>100	20.1	>100	>100	>90.9	59	>97	2,370	2,350	1,200	

Notes:

⁽a) Corresponding water chemistry data was not collected for this sample. However, a sample collected on 5 August 2018 from the same location is reported here for comparison. $mg/L = milligrams per litre; vol/vol = volume per volume; TDS = total dissolved solids; <math>LC_X = lethal concentration causing a lethal effect to x% of the test population; <math>IC_X = lethal concentration that causes a x% inhibitory effect in the sublethal endpoint being measured.$

A1.5 Weight of Evidence Summary for Proposed Site-Specific Water Quality Objective

An interim TDS target of 1,000 mg/L to apply at the edge of the mixing zone was proposed following integration of information obtained through characterization of the Meliadine TDS profile (Section A1.1), review of water quality benchmarks for TDS developed for similar mixtures (Section A1.2), a literature review of TDS toxicity (Section A1.3), and a review of site-specific chronic toxicity data for Meliadine treated effluent and influent samples (Section A1.4). Sections A1.5.1 to 1.5.4 summarize the weight of evidence behind the proposed interim TDS target.

Several considerations, summarized in Sections A1.5.1 through A1.5.4, provide confidence in the application of the interim TDS target and also bode well for outcomes of the Phase 2 validation studies. The literature and site-specific data review provide a basis to propose an interim target for TDS; implementation of Phase 2 validation studies will provide increased precision and reliability in the interim target.

A1.5.1 Ionic Balance is Favorable

Effect concentrations reported in the Snap Lake dataset were derived from exposures using a balanced TDS mixture, whereas effect concentrations from the literature are generally derived from exposures using single salt mixtures (e.g., sodium chloride or calcium chloride) that do not consider TDS mixture effects. Meliadine TDS ionic composition resembles the ionic composition evaluated during the validation of the Snap Lake TDS SSWQO of 1,000 mg/L. As indicated in Section A1.0, Meliadine TDS contains a high relative proportion of calcium and sodium ions (on average 31% of TDS); these dominant ions are among the least toxic according to Mount et al. (1997), and have been identified as key components of TDS that ameliorate toxicity of other ions (Davies and Hall 2007, Mount et al. 2016, Soucek et al. 2018, Scheibener et al. 2017). Concentrations of the relatively toxic potassium and magnesium ions are predicted to remain low in Meliadine effluent; potassium and magnesium ions make up approximately 4% to 5% of TDS in effluent and the near-field. The information from the ionic composition analysis (Section A1.0), and comparison to the Snap Lake TDS SSWQO dataset (Section A2.0), although not conclusive, suggests that the Meliadine TDS mixture would not exhibit chronic toxicity from TDS components at concentrations of TDS below approximately 1,000 mg/L. Some literature studies indicate toxicity to select invertebrate species at concentrations below 1,000 mg/L TDS, but these toxicity tests are limited to test solutions that contain predominantly one or two ions, which do not apply to the complex mixture conditions of Meliadine TDS, nor incorporate the beneficial effect of calcium and sodium for ameliorating toxicity of other ions in these mixtures.

A1.5.2 Comparability to Well-Validated Snap Lake

Effect concentrations derived from extensive validation of the SSWQO at Snap Lake mine indicated no effects to site-resident or relevant surrogate species below 1,100 mg/L TDS. The effect concentration for *D. magna*, the most sensitive species in the dataset, was unbounded indicating no effects at the highest tested TDS concentration. Unbounded effect concentrations were also reported for all other test species in the Snap Lake dataset. Therefore, concentrations of TDS above 1,000 mg/L may pose no risk to aquatic life but there is uncertainty in proposing an interim TDS target to apply at the edge of the mixing zone of higher than 1,000 mg/L because exposure concentrations used in the Snap Lake dataset did not reach toxicity thresholds for the species tested.

A1.5.3 Available Site-Specific Toxicity Data Support the Benchmark

The chronic toxicity data tested with Meliadine mixtures supports the proposed interim target to apply at the edge of the mixing zone of 1,000 mg/L (Section A4.0). During routine and regulatory chronic toxicity testing with

MEL-14 and MEL-12 samples, no chronic effects to *C. dubia* survival, early life-stage Fathead Minnow survival or growth, or growth of the green alga *P. subcapitata* were observed at TDS concentrations of approximately 1,140 mg/L (measured TDS of 1,360 mg/L). The reduction of *C. dubia* reproduction at 1,140 mg/L (measured TDS of 1,360 mg/L) was not large (IC₂₅ for reproduction of 90.1% vol/vol at TDS concentrations of 1,140 mg/L). Overall, these results support the proposed interim TDS target of 1,000 mg/L to apply at the edge of the mixing zone, but site-specific validation is necessary to verify these results and develop a TDS SSWQO for long-term application.

A1.5.4 Ionic Balance is Stable

The stable ionic balance over several years of monitoring (Figure 2) is suited to development of a single benchmark for TDS, without requiring development of individual benchmarks for component ions. The TDS interim target incorporates contributions from chloride and sulphate (along with other ionic components) and it is not recommended at this time that separate benchmarks be developed for chloride and sulphate as individual ions. However, the concentrations of individuals ions can be prorated from the recommended TDS interim target of 1,000 mg/L. For Meliadine TDS, the relative proportion of chloride at the recommended interim target of 1,000 mg/L would range between 280 to 520 mg/L, depending on the ionic composition. The upper bound of chloride proportion is based on an ionic composition derived from TDS in the effluent; it is anticipated that the ionic composition for TDS in the receiving environment would not have as high a proportion of chloride as effluent. For comparison, Snap Lake TDS including chloride of up to approximately 450 to 470 mg/L demonstrated negligible toxicity.

The proposed TDS interim target to apply at the edge of the mixing zone was derived from the anticipated ion composition for Meliadine based on monitoring data for effluent and near-field. Modelled chemistry data are not available for the ionic composition anticipated under future discharge conditions at Meliadine, requiring confirmation that ionic mixtures are expected to remain consistent in terms of proportions of major ions. If future effluent quality with respect to TDS constituents is markedly different, then re-evaluation of the proposed TDS threshold may be warranted.

A2.0 INTERIM TDS TARGET FOR EFFLUENT—SITE-SPECIFIC ACUTE TOXICITY RESULTS

Acute toxicity testing data and corresponding water chemistry data were collected by Agnico Eagle as part of routine and regulatory monitoring at stations MEL-14 (treated effluent), MEL-12 (influent from the water treatment plant), and CP1 (Collection Pond 1). Acute toxicity tests performed were:

- Biological Test Method: Reference Method for Determining Acute Lethality of Effluent to Daphnia magna (EC 2000a).
- Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout (EC 2000b).
- Biological Test Method: Acute Lethality Test Using Threespine Stickleback (Gastrosteus aculeatus) (ECCC 2017).

Acute toxicity test species include the standard protocols (*D. magna* and Rainbow Trout) used to assess compliance for acute lethality under the Metal and Diamond Mining Effluent Regulations (Government of Canada 2002). Two additional tests were conducted with Threespine Stickleback in November and December 2019. The Threespine Stickleback results were included for comparative purposes, although this species is currently not a required standard test species for regulatory testing related to discharge of effluent to Meliadine Lake. Acute

toxicity test results and corresponding water chemistry data for TDS (measured and calculated) and chloride are presented in Table A-4.

Acute toxicity testing conducted between 2017 to 2020 with influent (MEL-12 and CP1) and effluent (MEL-14) has indicated no acute toxicity (i.e., $LC_{50} > 100\%$ vol/vol) to *D. magna* or Rainbow Trout survival with TDS concentrations of up to and including 5,420 mg/L (measured TDS concentrations of up to 4,925 mg/L). Reduced survival (60% in full-strength sample) in Rainbow Trout was observed in a CP1 sample collected 17 December 2017 at TDS concentration of 3,150 mg/L. However, mortality did not exceed 50%, and since 2017 several samples have been tested with measured and TDS concentrations greater than 3,150 mg/L, all of which indicated no acutely toxic effects to Rainbow Trout.

Threespine Stickleback were tested on two occasions in November and December 2019 with CP1 sample. Measured TDS concentrations of up to and including 3,410 mg/L did not result in acutely toxic effects in Threespine Stickleback.

Table A-4: Acute toxicity data for MEL-14, MEL-12, and CP1 samples collected between 2017 to 2020 with

corresponding total dissolved solids and chloride concentrations

	Sample Date		Acute Toxicity	Water Chemistry (mg/L)				
Sample Location		Daphnia magna	Rainbow Trout Oncorhynchus mykiss	Threespine Stickleback Gastrosteus aculeatus	- Measured	Calculated		
Location		48-hour Survival LC₅ (% vol/vol)	96-hour Survival LC₅₀ (% vol/vol)	96-hour Survival LC₅₀ (% vol/vol)	TDS	TDS	Chloride	
	9 August 2017	>100	>100	_	1,600	911	470	
	27 August 2017	>100	>100	_	1,760	1,061	580	
	24 June 2018	>100	>100	_	1,200	634	300	
	1 July 2018	>100	>100	_	930	752	400	
MEL-14	5 August 2018	>100	>100		1,140	958	530	
	3 September 2018	>100	>100	_	1,360	1,140	660	
	24 June 2019	>100	>100	_	915	859	450	
	9 July 2019	>100	>100		1,190	965	500	
	3 September 2019	>100	>100		1,300	1,070	530	
	21 June 2017	>100	>100		1,190	575	290	
	12 July 2017	>100	>100	1	908	707	350	
	05 November 2017	_	>100		2,230	(b)	— ^(b)	
	11 November 2017	>100	>100		2,791	(b)	— ^(b)	
	19 November 2017	>100	>100	_	(c)	(b)	(b)	
CP1	17 December 2017	>100	NC (60% survival) ^(d)	_	3,150	(b)	(b)	
	10 June 2018	>100	>100		685	477	210	
	17 June 2018	>100	>100		540	281	180	
	25 November 2019	_	_	>100	2,960	3,055	1,500	
	15 December 2019			>100	3,410	(b)	(b)	
	05 January 2020	>100	>100	_	4,830	4,465	2,400	
	12 January 2020	>100	>100	_	4,150	3,815	1,900	

	Sample Date		Acute Toxicity	Water Chemistry (mg/L)			
Sample Location		Daphnia magna	Rainbow Trout Oncorhynchus mykiss	Threespine Stickleback Gastrosteus aculeatus	Measured	Calculated TDS	Chloride
		48-hour Survival LC ₅₀ (% vol/vol)	96-hour Survival LC₅₀ (% vol/vol)	96-hour Survival LC₅₀ (% vol/vol)	TDS		
	26 January 2020	>100	>100	_	4,160	3,659	1,900
	02 February 2020	>100	>100	_	4,080	4,263	2,100
	09 February 2020	>100	>100	_	4,330	4,219	2,100
	16 February 2020	>100	>100	_	4,880	4,352	2,300
	01 March 2020	>100	>100	_	5,350	4,946	2,500
	08 March 2020	>100	>100	_	4,870	4,816	2,400
	15 March 2020	>100	>100	_	5,420	4,925	2,500
	24 September 2019	>100	>100	_	2,490	2,202	1,100
MEL-12	01 October 2019	(e)	>100	_	2,450	2,357	1200
Ē	08 October 2019	>100	>100	_	2,370	2,350	1,200

Notes:

- (a) Test was conducted with full-strength sample (100% vol/vol) and laboratory control.
- (b) Corresponding major ion chemistry data were not measured in this sample; therefore, calculated TDS could not be determined.
- (c) Corresponding water chemistry data were not collected for this sample.
- (d) A 96-hour LC₅₀ could not be calculated because this test was conducted as a screening (pass/fail) test, whereby full-strength (100% vol/vol effluent) sample was tested with a laboratory control. To estimate the LC₅₀ a multi-concentration dilution series must be conducted. The result reported here in brackets is percent survival in the full-strength effluent sample.
- (e) Due to a laboratory error during testing with *Daphnia magna* the results of the 1 October 2019 test were invalidated and were not reported by the laboratory.

TDS = total dissolved solids; MEL-14 = treated effluent; MEL-12 = untreated influent; CP1 = Containment Pond 1; mg/L = milligrams per litre; $LC_X = lethal$ concentration causing a lethal effect to x% of the test population; vol/vol = volume per volume; NC = not calculable.

APPENDIX A REFERENCES

ADEC (Alaska Department of Environmental Conservation). 2009. Water Quality Standards. 18 AAC 70. Updated October 2009. Alaska Department of Environmental Conservation, Juneau, AK, USA.

- ADEC. 2013. Alaska Pollutant Discharge Elimination System. Permit No. AK0038652. Authorization to discharge under the Wastewater Discharge Authorization Program. Permit provided to Teck Alaska, Incorporated, Red Dog Mine.
- ADEC. 2017. Alaska Pollutant Discharge Elimination System. Permit No. AK0050571. Authorization to discharge under the Wastewater Discharge Authorization Program. Permit provided to Coeur Alaska, Inc., Juneau, Alaska 99801.
- Agnico Eagle Limited. 2019. Type A Water License Amendment—SSWQO Meeting Minutes. Meeting of Agnico Eagle Limited, Environment and Climate Change Canada, and Golder Associates Ltd. 9 December 2019.
- Agnico Eagle Limited. 2020. Meliadine Total Dissolved Solids Benchmark Meeting Minutes. Teleconference of Agnico Eagle Limited, Environment and Climate Change Canada, and Golder Associates Ltd. 9 January 2019.
- APHA (American Public Health Association). 2005. Standard Methods for the Examination of Water and Wastewater, 21st Edition. Washington, DC, USA.
- Baker JA, Elphick JR, McPherson CA, Chapman PM. 2015. Effect of total dissolved solids (TDS) on fertilization and development of two salmonids species. Bulletin of Environmental Contamination and Toxicology 95(4):488–493.
- Bringolf RB, Cope WG, Eads CB, Lazaro PR, Barnhart MC, Shea D. 2007. Acute and chronic toxicity of technical grade pesticides to glochidia and juveniles of freshwater mussels (*Unionidae*). Environmental Toxicology and Chemistry 26:2086–2093.
- Brix KV, Gerdes R, Curry N, Kasper A, Grosell M. 2010. The effects of total dissolved solids on egg fertilization and water hardening in two salmonids Arctic Grayling (*Thymallus arcticus*) and Dolly Varden (*Salvelinus malma*). Aquatic Toxicology 97:109–115.
- Buchwalter D. 2013. Aquatic Life Study Final Report. Central Valley Salinity Alternatives for Long-Term Sustainability (CV-SALTS). Prepared for San Joaquin Valley Drainage Authority. North Carolina State University. 9 October 2013.
- Camargo JA, Tarazona JV. 1991. Short-term toxicity of fluoride ion in soft water to Rainbow Trout and brown Trout. Chemosphere 22:605–611.
- Chapman PM, Bailey H, Canaria E. 2000. Toxicity of total dissolved solids associated with two mine effluents to Chironomid larvae and early life stages of Rainbow Trout. Environmental Toxicology and Chemistry 19:210–214.
- Chapman PM, McPherson CA. 2015. Development of a total dissolved solids (TDS) site-specific water quality objective for a Canadian diamond mine. Integrated Environmental Assessment and Management 12(2):371–379.

Chapman PM. 2014a. Snap Lake Mine: Additional toxicity testing to determine site-specific water quality objective for total dissolved solids in Snap Lake. Technical Memorandum. Submitted to De Beers Canada Inc. and Mackenzie Valley Land and Water Board. Yellowknife, NWT.

- Chapman PM. 2014b. Additional *Daphnia magna* 21-day TDS toxicity test results. Technical Memorandum. Submitted to De Beers Canada Inc. and Mackenzie Valley Land and Water Board. Yellowknife, NWT.
- Chapman PM. 2014c. Copepod TDS toxicity test results. Submitted to De Beers Canada Inc. and Mackenzie Valley Land and Water Board. Yellowknife, NWT.
- Cooney JD, DeGraeve GM, Moore EL, Lenoble BJ, Pollock TL, Smith GJ. 1992. Effects of environmental and experimental design factors on culturing and toxicity testing of *Ceriodaphnia dubia*. Environ Toxicol Chem 11:839–850.
- Davies TD, Hall KJ. 2007. Importance of calcium in modifying the acute toxicity of sodium sulfate to *Hyalella azteca* and *Daphnia magna*. Environmental Toxicology and Chemistry 26:1243–1247.EC (Environment Canada). 2000a. Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to *Daphnia magna*. Method and Development and Applications Unit. Environment Canada. EPS1/RM/14. Amended February 2016.
- EC. 2000b. Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout. Method and Development and Applications Unit. Environment Canada. EPS1/RM/13. Amended May 2007 and February 2016.
- EC. 2007a. Biological Test Method: Test of Reproduction and Survival Using the Cladoceran, *Ceriodaphnia dubia*. Method and Development and Applications Unit. Environment Canada. EPS1/RM/21. Amended February 2007.
- EC. 2007b. Biological Test Method: Growth Inhibition Test Using a Freshwater Alga. Method and Development and Applications Unit. Environment Canada. EPS1/RM/25. Amended March 2007.
- EC. 2007c. Biological Test Method: Test for Measuring the Inhibition of Growth Using the Freshwater Macrophyte, *Lemna minor*. Method and Development and Applications Unit. Environment Canada. EPS1/RM/37. Amended January 2007.
- EC. 2011. Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnows. Method and Development and Applications Unit. Environment Canada. EPS1/RM/22. Amended February 2011.
- ECCC (Environment and Climate Change Canada). 2017. Biological Test Method: Reference Method for Determining Acute Lethality using Threespine Stickleback. Method and Development and Applications Unit. Environment Canada. EPS1/RM/10. Amended December 2017.
- Evaristo-Cordero C. 2011. Senior Account Manager. ALS Laboratory Group, Edmonton, AB, Canada. Email to Tasha Hall (Golder Associates Ltd). September 30, 2011.
- GLEC (Great Lakes Environmental Center) and INHS (Illinois Natural History Survey). 2008. Acute Toxicity of Chloride to Select Freshwater Invertebrates. Prepared for the US Environmental Protection Agency. USEPA Contract Number 68-C-04-006.
- Golder (Golder Associates Ltd.). 2011. Total dissolved solids (TDS) study Task 1 Literature review Final. Submitted by De Beers Canada Inc. to the Mackenzie Valley Land and Water Board. Yellowknife, NWT, Canada.

Golder. 2014. Snap Lake Mine: Additional Toxicity Testing to Determine a Site-Specific Water Quality Objective for Total Dissolved Solids in Snap Lake. Submitted by De Beers Canada Inc. to the Mackenzie Valley Land and Water Board. Yellowknife, NWT, Canada.

- Golder. 2019. Proposed Site-Specific Water Quality Objective and Effluent Discharge Criterion for Total Dissolved Solids Threshold for Meliadine Gold Mine. Technical Memorandum submitted to Michel Groleau and Jamie Quesnel, Agnico Eagle Mines Limited. Project No. 19127573-SSWQO-TDS-Rev0. 20 December 2019.
- Government of Canada. 2002. Metal and Diamond Mining Effluent Regulations SOR/2002-222. Current to October 10, 2018. Last amended on June 1, 2018. Minister of Justice. Ottawa, ON.
- IDNR (Iowa Department of Natural Resources). 2009. Water Quality Standards Review: Chloride, Sulfate and Total Dissolved Solids. Iowa Department of Natural Resources. Consultation Package. February 9, 2009.
- Kennedy AJ, Cherry DS, Zipper CE. 2005. Evaluation of Ionic Contribution to the Toxicity of Coal-Mine Effluent Using *Ceriodaphnia dubia*. Environmental Toxicology and Chemistry 49:155–162.
- Khangarot BS. 1991. Toxicity of metals to a freshwater tubificid worm, *Tubifex* (Muller). Bulletin of Environmental Contamination and Toxicology 46: 906–912.
- Lasier PJ, Winger PV, Hardin IR. 2006. Effects of hardness and alkalinity in culture and test waters on reproduction of *Ceriodaphnia dubia*. Environmental Toxicology and Chemistry 25(10):2781–2786.
- Marus EM, Elphick JR, Bailey HC. 2015. A new toxicity test using the freshwater copepod *Cyclops vernalis*. Bulletin of Environmental Contamination and Toxicology 95(3):357-362.
- Mount DR, Gulley DD, Hockett JR, Garrison TD, Evans JM. 1997. Statistical models to predict the toxicity of major ions to *Ceriodaphnia dubia*, *Daphnia magna*, and *Pimephales promelas* (Fathead minnows). Environmental Toxicology and Chemistry 16:2009–2019.
- Mount DR, Erickson RJ, Highland TL, Hockett JR, Hoff DJ, Jenson CT, Norberg-King TJ, Peterson KN, Polaske Z, Wisniewski S. 2016. The acute toxicity of major ion salts to *Ceriodaphnia dubia*: I. influence of background water chemistry. Environmental Toxicology and Chemistry 35(12):3039–3057.Pacholski L, Chapman P, Hood A, Peters M. 2016. A Cautionary Note: *Ceriodaphnia dubia* Inter-laboratory test variability. Bulletin of Environmental Contamination and Toxicology 98(1):53–57.
- Pickering QH, Lazorchak JM, Winks KL. 1996. Subchronic sensitivity of one-, four-, and seven-day-old Fathead Minnow. Environmental Toxicology and Chemistry 15:353–359.
- Scheibener S, Conley JM, Buchwalter D. 2017. Sulfate transport kinetics and toxicity are modulated by sodium in aquatic insects. Aquatic Toxicology 190:62–69.
- Soucek DJ. 2007. Comparison of hardness- and chloride-regulated acute effects of sodium sulfate on two freshwater crustaceans. Environmental Toxicology and Chemistry 26:773–779.
- Soucek DJ, Linton TK, Tarr CD, Dickinson A, Wickramanayake N, Delos CG, Cruz LA. 2011. Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates. Environmental Toxicology and Chemistry 30:930–938.
- Soucek DJ, Mount DR, Dickinson A, Hockett JR. Influence of dilution water ionic composition on acute major ion toxicity to the mayfly, *Neocloeon triangulifer*. 2018. Environmental Toxicology and Chemistry 37(5):1330–1339.

Weber-Scannell PK, Duffy LK. 2007. Effects of Total Dissolved Solids on Aquatic Organisms: A Review of Literature and Recommendation for Salmonid Species. American Journal of Environmental Science 3:1–6.

APPENDIX B

Plume Delineation Study Design

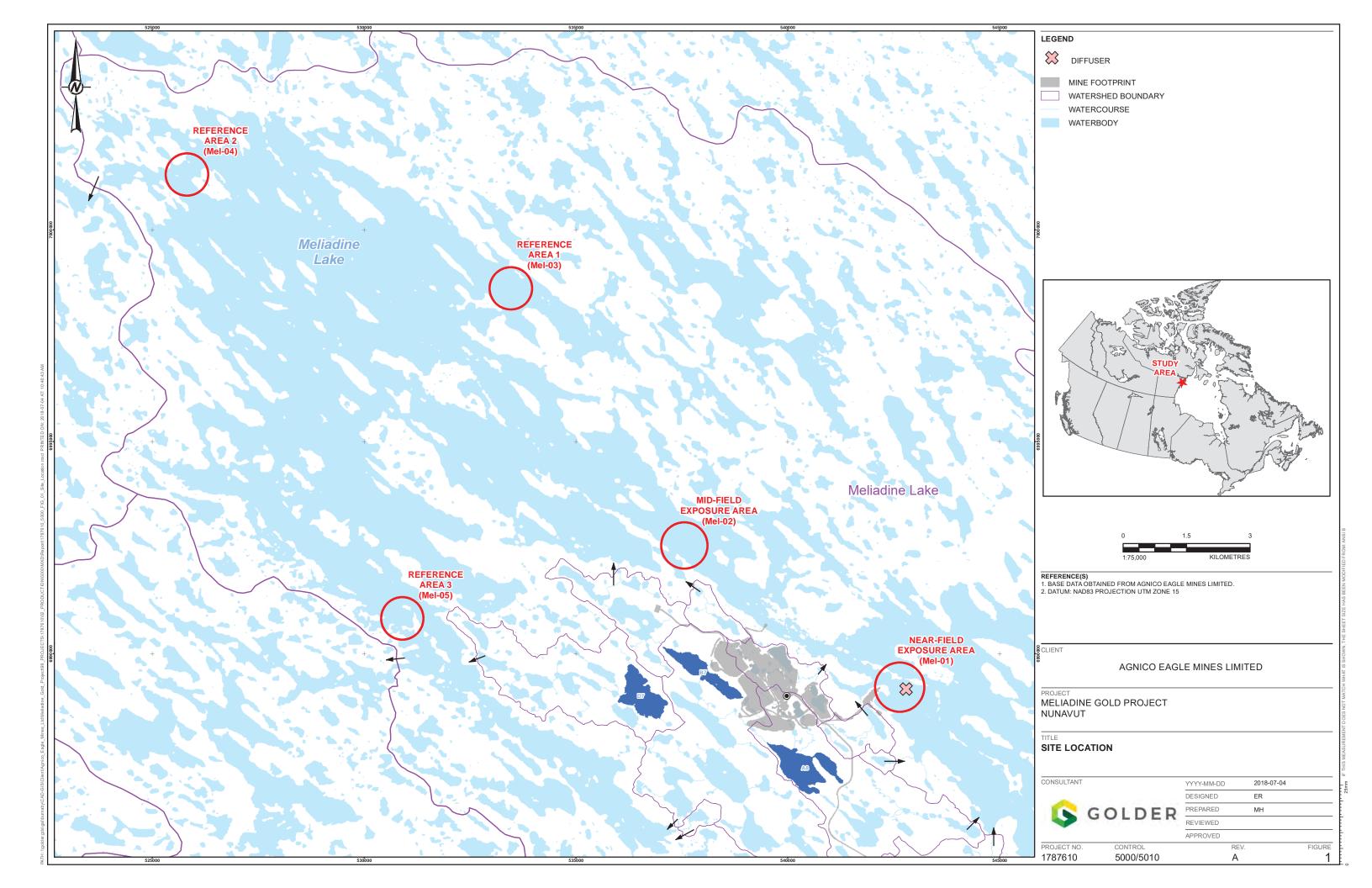
B.1 INTRODUCTION

The Meliadine Gold Mine (Mine) is located in the Kivalliq District of Nunavut near the western shore of Hudson Bay, in Northern Canada (Figure 1). The nearest community is Rankin Inlet (coordinates: 62°48'35''N;092°05'58''W), approximately 25 km south of the Tiriganiaq deposit (coordinates: 63°01'03''N, 92°12'03''W). The Mine is located within the Meliadine Lake watershed of the Wilson Water Management Area (Nunavut Water Regulations Schedule 4).

As communicated to the Nunavut Water Board (NWB) by Agnico Eagle Mines Limited (Agnico Eagle), the 2020 freshet season will result in accumulation of site water that exceeds the water storage capacity of the mine at containment pond 1 (CP1), requiring a managed release of site water to the environment. In anticipation of this condition, Amendment 1 was approved by NWB for the Meliadine Mine Type "A" Water Licence (No. 2AM-MEL-1631), allowing Meliadine to dewater CP1 prior to freshet, avoiding "emergency" conditions. Specifically, Amendment 1 permits the following:

The time-limited discharge (May 2020 – October 2020) of effluent from the Containment Pond 1 (CP1) into Meliadine Lake through the Meliadine Lake Diffuser (Monitoring Program Station MEL-14) and the Water discharge shall not exceed 3,500 mg/L for the Maximum Average Concentration (MAC) of the Total Dissolved Solids (TDS)

The NWB approval is contingent on several conditions outlined in NWB's (2020) Reason for Decision. Among these conditions is the requirement for Agnico Eagle to conduct a Plume Delineation Study during the discharge event to characterize plume dispersion in the receiving environment of Meliadine Lake. The purpose of the Plume Delineation Study is to provide confidence that the dispersion of the CP1 discharge will follow the anticipated pattern of flow and mixing in the receiving environment, such that environmental protection objectives at the edge of the mixing zone will be satisfied.


A submerged diffuser was installed in Meliadine Lake in August 2017 to disperse the water discharged from containment ponds 1 and 5 (CP1 and CP5). The diffuser is 30 m long, 400 mm diameter, with a nearly north-south orientation, and connected to the pipelines through a T-connection. Ten 51 mm ports are evenly spaced at every 3 m along the diffuser (Tetra Tech 2017).

This document provides details on the proposed plume delineation study (e.g., sampling design and methods) to evaluate plume dispersion dynamics during the planned release of effluent from CP1. This plan has been designed to address reporting requirements under Amendment 1 for a Plume Delineation Study, as outlined in Insert Item 25, Part I of NWB's (2020) Reasons for Decision. The period of anticipated discharge is expected to commence during ice cover on Lake Meliadine and continue through the transition period between ice cover and open water conditions, and into open water conditions on Meliadine Lake. Safe boat access to the lake is required to successfully conduct the plume delineation study. Therefore, the detailed plume delineation study will be conducted over 1 to 2 days as soon as open water conditions permit safe boat access.

B.2 BACKGROUND INFORMATION

Turbulent mixing caused by the diffusers results in an initial effluent plume adjacent to the diffusers. The term "plume" in this report refers to the mixture of effluent and lake water that is chemically distinguishable from the surrounding ambient lake water.

The diffuser in Meliadine Lake is oriented on a nearly north-south alignment, forming a "T" at the end of the pipe (Tetra Tech 2018; Figure 1). The constructed diffuser differed from the original project design (see Tetra Tech 2017) in terms of its horizontal position and depth of diffuser system at T-connection (42 m horizontal shift and a 3.2 m shallower depth). Therefore, the performance of the diffuser system was reassessed by Tetra Tech (2018). Despite the deviations from the original design, the predicted minimum dilution of 23:1 was achieved at the edge of the mixing zone, and water quality criteria were met (Tetra Tech 2018).

Based on previous experience in low conductivity sub-arctic lakes, specific conductivity was considered an appropriate tracer to delineate the effluent plume in Meliadine Lake, because effluent conductivity (i.e., specific conductance, temperature-corrected to 25°C) is higher than the specific conductivity of natural lake water. Specific conductivity measurements are a rapid, inexpensive, and reliable way of measuring the ionic content in a solution; the main constituents of interest in Meliadine Lake discharge are ionic parameters (e.g., chloride and other components of total dissolved solids). Specific conductivity in CP1 ranged from 5,300 to 9,000 microsiemens per litre (µS/cm) between November 2019 and March 2020 (Appendix A), whereas specific conductivity in Meliadine Lake (Near-field exposure area) ranged from 49 to 99 µS/cm in 2017 (Golder 2018c). This gradient in specific conductivity provides a reliable basis for tracing the direction and intensity of the plume during the release event, with chemical measurements from samples collected at select monitoring stations used to confirm the water quality details.

B.3 METHODS

B.3.1 Sampling Design

The sampling design selected for the plume delineation in Meliadine Lake is a nearly radial model that allows measurement of plume dispersion in all directions. According to the *MVLWB/GNWT Guidelines for Effluent Mixing Zones* (GNWT 2017), the regulated mixing zone is defined as an area where concentrations of some substances may not comply with site-specific water quality objectives for the receiving environment, but is nevertheless suitable for reducing constituent concentrations from full strength discharges to those that provide protection against chronic effects to aquatic life. For lakes in the Mackenzie Valley, regulated mixing zones commonly have a maximum of 100 m radius from the discharge point (GNWT 2017). In contrast, site characterization under the MDMER/MMER (GC 2017) requires a description of the manner in which the effluent mixes within the exposure area at 250 m from each final discharge point. Using these distances as a basis for monitoring design, a modified radial grid containing 22 sampling stations was developed (Figure 2). Coordinates of sampling stations are provided in Table 1.

Table 1: Coordinates of plume delineation study sampling stations

	UTM Coordinates (NAD 83, Zone 15V)					
Sample ID	Easting	Northing				
50-01	542803.3	6989212.3				
50-02	542847.2	6989144.7				
50-03	542792.6	6989085.7				
50-04	542748.4	6989153.2				
100-01	542807.5	6989262.1				
100-02	542875.5	6989226.9				
100-03	542897.3	6989140.6				
100-04	542861.3	6989059.1				

	UTM Coordinates (NAD 83, Zone 15V)						
Sample ID	Easting	Northing					
100-05	542788.4	6989035.9					
100-06	542719.9	6989070.2					
100-07	542699.0	6989157.3					
100-08	542728.6	6989233.4					
175-01	542813.8	6989336.8					
175-02	542971.8	6989134.3					
175-03	542782.1	6988961.1					
175-04	542624.1	6989163.6					
250-01	543046.7	6989128.0					
250-02	542958.1	6988944.5					
250-03	542775.8	6988886.4					
250-04	542605.4	6988972.9					
250-05	542549.2	6989170.0					
250-06	542622.9	6989339.8					

Two central markers are depicted in Figure 2 that outline the north and south ends of the diffuser, which is approximately 30 m in length. From each of these central markers, semicircles of 50, 100, 175, and 250 m were drawn, and within each arc, sampling stations have been placed along up to eight transects radiating from the diffuser (Figure 2). The number of stations at each distance varied, with the larger station numbers applied to the 100 m and 250 m distances. Some of the candidate sampling stations along transects were removed from the design as they were located on islands or shallow areas of Meliadine Lake.

The distances from sampling stations to central markers (i.e., diffuser ends) were selected to provide higher resolution close to the diffusers and to characterize the edge of the mixing zone per the GNWT and MDMER frameworks.

B.3.2 Field Work Instructions

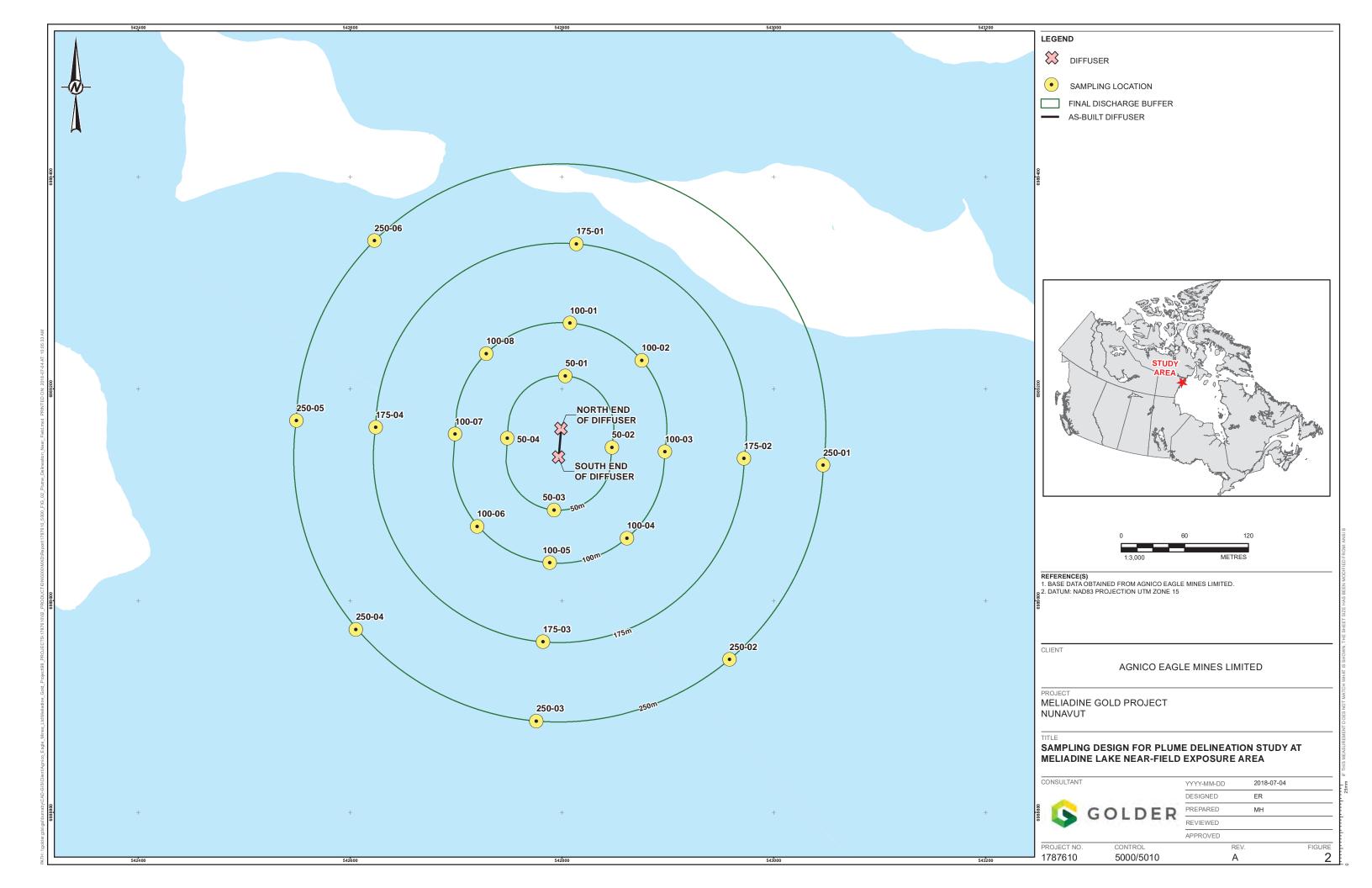
As described by Golder (2018a), the method selected for plume delineation relies on vertical profiles of specific conductivity in near-field exposure areas of Meliadine Lake. Vertical profiles of the lake water column will be measured using water quality meters (e.g., Hanna, YSI, Eureka, or equivalent) equipped with a 20 m or longer cable. Before commencing the profile, the water quality sensor will be placed in lake water for at least one minute to allow readings to stabilize. If, following extended submersion (beyond one minute if necessary), the equipment is not providing stable readings, measurements will be taken using a different meter.

At each sampling station, profile measurements will be taken from surface (i.e., 0.3 m) and at 1-m water depth intervals, starting from 1 m below surface to 1 m above the lake bottom. Temperature and specific conductivity (and if possible, dissolved oxygen concentration, dissolved oxygen saturation, and pH) will be entered on field data sheets. If possible, wind direction and speed will be estimated and recorded.

A maximum of ten water samples will be collected from a subset of the planned sampling stations for laboratory analysis of TDS, major ions, and general parameters (i.e., total and bicarbonate/carbonate alkalinity, turbidity, laboratory specific conductivity, hardness, laboratory pH, and total suspended solids). These samples will be collected from the depth of highest specific conductivity through the water volume at these stations, as determined

from the specific conductivity water column profile. Samples identified for more detailed analyses will be selected to encompass the range of specific conductivity measures observed surrounding the diffuser. These data will be used to validate the assumption that TDS concentrations in the receiving environment can be adequately traced using specific conductivity.

Field work for this study will commence as soon as open water conditions are present on Meliadine Lake, and there is safe access to the sampling locations by boat. Field work will be completed within a timely manner to avoid influence of confounding factors associated with weather conditions and discharge variability. Although it is expected that it will take one full day of work for a two-person field crew to complete the field program, additional days might be required depending on weather conditions. The program will be conducted during discharge to satisfy reporting requirement under Amendment 1 for a plume delineation study, as outlined in Insert Item 25, Part I of NWB's (2020) Reasons for Decision. In addition, a corresponding sample of the discharge from MEL-14 is required to be collected for the program. Therefore, the timing of the field work for this study should be planned around the weekly MEL-14 sampling schedule.


Quality assurance and quality control (QA/QC) procedures will be undertaken to obtain accurate data. QA/QC will include field staff training, routine calibration of field equipment, and documentation. Meter calibration will be rechecked at least once during each day of field work. In case the field staff notice that results are deviating from the expected range of values, a new check with calibration standards will be performed at a sampling station and, if necessary, the probe will be recalibrated. Calibration checks or re-calibration will be documented in the field book.

B.3.3. Data Analysis and Reporting

Following field work, data will be reviewed, and summary tables and figures will be prepared for presentation and discussion during the next available Water Management Working Group meeting. The plume will be described in terms of its size, shape, and vertical distribution. The relationship between field measured specific conductivity and laboratory measured TDS and calculated TDS (from the sum of major ions, where these data are available for each of the selected substations) will be established to validate the use of specific conductivity as a tracer of TDS in the receiving environment. The information retrieved will be used to confirm model predictions related to effluent dilution and assimilation in the receiving environment, and to confirm that receiving environment monitoring stations are adequately characterizing conditions with respect to surface water chemistry and toxicity testing (Sections 3.1 and 3.2 of the main body of the report, respectively).

Results from the plume delineation study will be presented as a stand-alone report, including spatial delineation of the plume and estimated dilution factors at each sampling station. This report will be submitted for review by the Water Management Working Group.

APPENDIX B REFERENCES

Golder (Golder Associates Ltd.) 2013. 2012 Plume Characterization Study Report. Snap Lake Mine. Prepared for De Beers Canada Inc. January 2013.

- Golder 2015. 2014 Plume Characterization Study Report. Snap Lake Mine. Prepared for De Beers Canada Inc. January 2015.
- Golder 2017. EEM Cycle 1 Study Design 2017 Annual Report, Meliadine Gold Mine. Prepared for Agnico Eagle Mines Limited. July 2017.
- Golder 2018a. Response to Comments on The Cycle 1 EEM Study Design for the Meliadine Mine. May 2018.
- Golder 2018b. 2017 Aquatic Effects Monitoring Program. Annual Report Final. Gahcho Kué Mine. Prepared for De Beers Canada Inc. May 2018.
- Golder 2018c. Aquatic Effects Monitoring Program 2017 Annual Report, Meliadine Gold Project. Prepared for Agnico Eagle Mines Limited. March 2018.Nunavut Water Board. 2016. Water Licence No. 2AM-MEL1631, Reasons for Decision Including Record of Proceedings. Available at: ftp://ftp.nwb-oen.ca/registry/2%20MINING%20MILLING/2A/2AM%20-%20Mining/2AM-MEL1631%20Agnico/4%20LICENCE/2%20DECISION/160415%202AM-MEL1631%20PH%20Decision%20OVCE.pdf
- GC (Government of Canada). 2017. Regulations Amending the Metal Mining Effluent Regulations. Canada Gazette Part I, Vol 151, No. 19. May 2017.
- GNWT 2017. Guidelines for Effluent Mixing Zones. Mackenzie Valley Land and Water Board. Gwich'in Land and Water Board. Sahtu Land and Water Board. Wek'èezhìi Land and Water Board. Government of the Northwest Territories/ September 2017. Available at:

 https://mvlwb.com/sites/default/files/news/1376/attachments/guidelines-effluent-mixing-zones-final-draft-iune-2017edit9.pdf
- Nunavut Water Board (NWB). 2020. NWB Water Licence Type "A" No: 2AM-MEL1631 Request for the Minister's Consent to Process Amendment No. 1 on an Emergency Basis and Attached Reasons for Decision and Amendment No. 1 for the Minister's Consideration. File No. 2AM-MEL1631/Emergency Amendment No. 1.
- Tetra Tech. 2017. Design Report for Effluent Water Treatment Plant, Pumping Stations, Pipelines & Associated Berm, and Diffuser Available at: ftp://ftp.nwb-oen.ca/registry/2%20MINING%20MILLING/2A/2AM%20-%20Mining/2AM-MEL1631%20Agnico/3%20TECH/5%20CONSTRUCTION%20(D)/Final%20Effluent%20System/
- Tetra Tech 2018. Effluent Discharge Modelling for the As-Built Diffuser at the Meliadine Gold Project, Nunavut. Prepared for Agnico Eagle Mines Limited. May 2018.

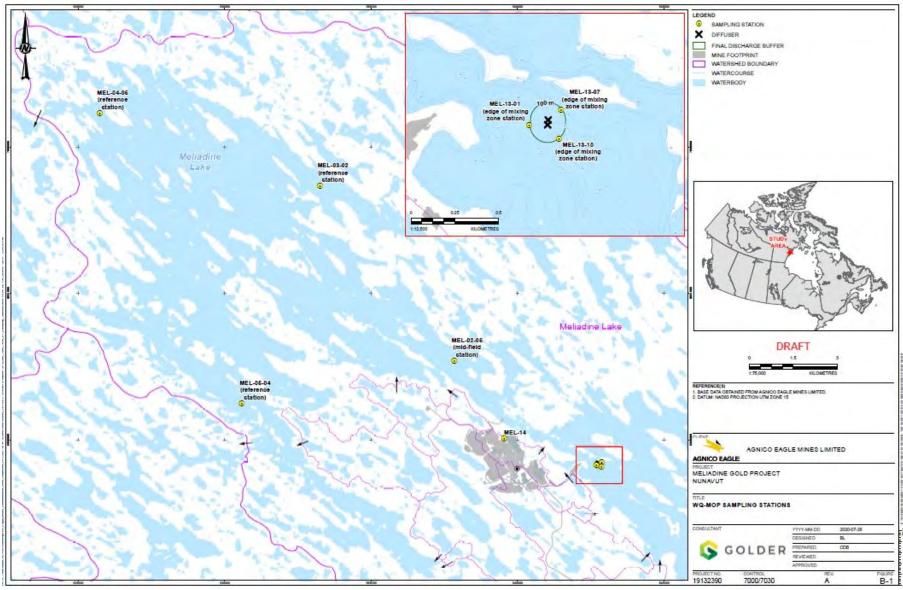
golder.com

24 August 2020 19132390-751-RPT-Rev3

APPENDIX B

Available 2020 Discharge Monitoring Results Collected Between 3 June 2020 and 17 July

APPENDIX B: AVAILABLE DISCHARGE MONITORING RESULTS COLLECTED BETWEEN 5 JUNE AND 17 JULY 2020


This Appendix presents the 2020 Meliadine Mine emergency discharge validation monitoring program results as of 17 July 2020. These monitoring results have been collected to support regulatory requirements and commitments outlined in Amendment 1 to the Meliadine Mine Type "A" Water Licence (No. 2AM-MEL-1631). As outlined in the Golder (2020) Water Quality Monitoring and Optimization Plan (WQ-MOP Rev2; Appendix A), the monitoring program provides the opportunity to assess and validate the interim total dissolved solid (TDS) targets established for both the discharge (3,500 mg/L calculated TDS) and the receiving environment at the edge of the mixing zone (1,000 mg/L calculated TDS at a 100 m radius surrounding the outfall diffuser). A detailed description of the study design, including analytical testing being performed as part of the 2020 Meliadine Mine emergency discharge monitoring program, is outlined in Section 3.0 of the WQ-MOP (Appendix A). The sampling stations assessed during this monitoring program are depicted in Figure B-1.

The purpose of this Appendix is to provide a high-level summary of key analytical measures (e.g., TDS concentrations in the discharge and receiving environment, results of toxicity tests) that have been collected to date, in order to assess these measures relative to predictions and targets established in the Golder (2020) WQ-MOP. This evaluation of monitoring results is organized as follows:

- Summary of key analytical chemistry results related to TDS in the discharge and receiving environment (Section B1.0)
- Summary of acute toxicity testing with the MEL-14 discharge (Section B2.0)
- Summary of chronic toxicity testing with Meliadine Lake receiving environment water samples (Section B3.0)
- Uncertainties (Section B4.0)
- Conclusions on the results of the monitoring program, as they relate to predictions and targets established in the Golder (2020) WQ-MOP (Section B5.0)

Figure B-1: WQ-MOP Sampling Stations

B1.0 SUMMARY OF ANALYTICAL CHEMISTRY RESULTS

Water chemistry monitoring results from the WQ-MOP sampling program performed between 5 June 2020 (commencement of discharge) and 17 July 2020 were tabulated by Agnico Eagle and provided to Golder (see Attachment B1). Monitoring events currently include the following:

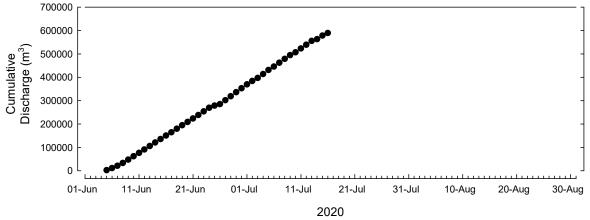
- Seven MEL-14 discharge water chemistry sampling events.
- One edge of mixing zone water chemistry sampling event on 7 June 2020—due to melting ice conditions on Meliadine Lake (health and safety concerns), weekly sampling events during the weeks of 14 June, 21 June, 28 June, and 5 July were not conducted. However, remote data loggers were deployed and will provide information on temperature and specific conductivity at the edge of mixing zone stations over this period and for the duration of the discharge period.
- One monthly water chemistry sampling event at receiving environment stations MEL-13-01, MEL-13-07, MEL-02-05, MEL-03-02, MEL-04-05, and MEL-05-04. Due to unsafe local ice conditions, edge of mixing zone station MEL-13-10 was not accessible during the first monthly sampling event. This remaining mixing zone sample will be collected during subsequent monthly sampling events now that Meliadine Lake is ice-free.

Figure B-2 summarizes the results of weekly sampling of the MEL-14 discharge for specific conductivity, chloride, TDS (calculated), and TDS (measured). In total, 589,249 m³ of effluent was discharged to Meliadine Lake between 5 June and 17 July 2020 (Figure B-3), with daily discharge rates ranging from 2,197 to 17,518 m³/day (Figure B-2). TDS concentrations remained within the 3,500 mg/L MAC limit permitted under Amendment 1 during each weekly sampling event. Concentrations of TDS ranged between 2,502 and 2,588 mg/L calculated TDS (1,510 and 3,100 mg/L measured TDS).

Table B-1 summarizes TDS concentrations measured in the receiving environment of Meliadine Lake. Concentrations of TDS were low at each monitoring station, indicative of effective dispersal of the discharge plume. Edge of mixing zone TDS concentrations were more than 10-fold lower than the proposed interim target of 1,000 mg/L, demonstrating a high discharge assimilation rate that reduces TDS concentrations to well below concentrations for which adverse effects on biological receptors would be expected. TDS concentrations at edge of mixing zone stations ranged between 35 and 50 mg/L measured TDS (55 to 65 mg/L calculated TDS).

All collected water quality data are screened against applicable water licence discharge limits (discharge quality) and CCME water quality guidelines for the protection of freshwater aquatic life (receiving environment water quality) in Attachment B1. To date, the results indicate that water quality has remained within these limits in each of the water quality samples collected as part of the WQ-MOP sampling program, except for zinc at the MEL-13-07 station.

Dissolved zinc exceeded the CCME long-term water quality guideline of 10.7 μ g/L (the chronic dissolved zinc guideline is pH, hardness, and dissolved organic carbon dependent) at the MEL-13-07 edge of mixing zone station on 7 June 2020, as the dissolved concentration was 18 μ g/L (total zinc was measured at 29 μ g/L), However, the effluent monitoring data (Attachment B1) does not suggest that zinc has been elevated in the effluent, as total and dissolved concentrations ranged between <5 μ g/L and <25 μ g/L during the seven weekly sampling events collected to date, with reported concentrations of <25 μ g/L total Zn and 19 μ g/L dissolved Zn on the day that the exceedance was measured in the receiving environment (7 June 2020). Furthermore, these concentrations of zinc were well below the permitted discharge limits


of 400 µg/L for the Maximum Average Concentration (MAC) and 800 µg/L for the Maximum Grab Concentration (MGC). As a result, the observed exceedance at MEL13-07 does not appear to be directly correlated with the MEL-14 discharge; however, monitoring is on-going and additional receiving environment monitoring data will provide a better understanding of zinc concentrations in the Meliadine Lake receiving environment.

environment monitoring data will provide a better understanding of zinc concentrations in the Meliadine Lake receiving environment.

Figure B-2: MEL-14 discharge sampling results for key parameters collected between 5 June 2020 and 17 July 2020

20000 20000 18000 18000 16000 16000 Daily Discharge (m³) 14000 14000 12000 12000 Specific Conductivity 10000 10000 8000 8000 6000 6000 4000 4000 2000 2000 0 21-Jun 01-Jul 21-Jul 31-Jul 10-Aug 20-Aug 30-Aug 01 11-Jun 11-Jul -Jun Specific Conductivity (uS/cm) 6000 6000 TDS / Chloride (mg/L) 5000 Field Specific Conductivity 5000 TDS (Calculated) TDS (Measured) 4000 4000 Chloride 3000 3000 2000 2000 1000 1000 0 11-Jul 21-Jul 20-Aug 30-Aug 01-Jun 11-Jun 21-Jun 01-Jul 31-Jul 10-Aug 2020

Figure B-3: Cumulative CP1 Water discharge to Meliadine Lake between 5 June 2020 and 16 July 2020

Notes: m³ = metres cubed; mg/L = milligrams per litre; µS/cm = microsiemens per centimetre.

Table B-1: Meliadine Lake receiving environment sampling results for key parameters collected on 7 June 2020.

Sample Type	Sample Station	Specific Conductivity (µS/cm)	TDS (mg/L as Calculated)	TDS (mg/L as Measured)	Chloride (mg/L)
Edge of	MEL-13-01	130	65	50	18
Mixing Zone	MEL-13-07	110	55	35	16
Mid-field	MEL-02-05	120	60	35	16
	MEL-03-02	61	29	30	7.8
Reference	MEL-04-05	92	46	40	8.6
	MEL-05-04	100	52	40	9.8

Notes: TDS = total dissolved solids; mg/L = milligrams per litre; μ S/cm = microsiemens per centimetre.

B2.0 SUMMARY OF ACUTE TOXICITY TEST RESULTS

Acute toxicity tests were conducted on the MEL-14 discharge weekly throughout the discharge period that began on 5 June 2020. As of 17 July 2020, results for four rounds of weekly acute toxicity testing programs were reported using the 96-hour Rainbow Trout and 48-hour *Daphnia magna* survival tests. Table B-2 summarizes the results of these tests; detailed laboratory reports from each of the four tests are provided in Attachment B2.

Acute toxicity tests indicate that the discharge has not been acutely toxic to Rainbow Trout or D. magna across the range of TDS concentrations tested (i.e., between 2,570 and 3,100 mg/L measured TDS; Section B1.0). The LC50 values (lethal concentration effecting 50% of organisms) were >100% (full-strength) discharge in each of the tests. Furthermore, 100% of organisms have survived in the undiluted full-strength samples. These findings are in agreement with acute toxicity testing of pit water collected throughout 2019 and early 2020, which have consistently indicated a lack of acute toxicity at concentrations similar to, and exceeding, those observed in the weekly samples during discharge release.

The results of these tests were confirmed as valid by the testing laboratory (Aquatox Laboratories, Guelph, ON), as the tests met control and test acceptability requirements outlined in the respective test methods (see Appendix B2 for details).

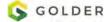
Table B-2: Weekly acute toxicity test results from MEL-14 during the emergency discharge monitoring program (results include available test results up until 17 July 2020).

TDS Concentration		96-hour Rainbow 1	Frout Survival Results	48-hour <i>Daphnia magna</i> Survival Results		
Sample Date	(mg/L as Measured)	LC50 Value (% Discharge)	Strength Discharge		Survival in 100% Full Strength Discharge (%)	
7 June 2020	2,600	>100	100	>100	100	
14 June 2020	3,090	>100	100	>100	100	
21 June 2020	2,790	>100	100	>100	100	
28 June 2020	2,910	>100	100	>100	100	

Notes: TDS = total dissolved solids; mg/L = milligrams per litre; % = percent; LC_{50} = lethal concentration effecting 50% of organisms.

B3.0 SUMMARY OF CHRONIC TOXICITY TEST RESULTS

One component of the WQ-MOP monitoring program involves chronic toxicity testing of monthly receiving environment samples from Meliadine Lake. The goal of the testing is to assess the potential for chronic effects to aquatic receptors at, and beyond, the edge of the mixing zone (i.e., a 100 m radius surrounding the diffuser in Meliadine Lake). As outlined in the WQ-MOP Rev2 (Golder 2020), chronic effects are not anticipated at the edge of the mixing zone based on earlier chronic toxicity tests of pit water and predicted exposure concentrations. Nevertheless, four chronic toxicity test species were identified to monitor conditions in the receiving environment during the required monthly toxicity testing. These tests include:


- 21-day Daphnia magna (freshwater crustacean) survival and reproduction test
- 14-day Hyalella azteca (benthic invertebrate) survival and growth test
- 7-day Lemna minor (Duckweed; aquatic macrophyte) survival and growth test
- 7-day Fathead Minnow (freshwater fish) survival and growth test

The low hardness receiving environment of Meliadine Lake (ranging between approximately 20 and 40 mg/L hardness; 2019 AEMP¹) poses a challenge for conducting chronic toxicity testing, as the organisms used in the selected tests are typically cultured in higher hardness waters (i.e., 80–110 mg/L for *D. magna*; ~140 mg/L *H. azteca*; ~100 mg/L for *L. minor*, 130–140 mg/L for Fathead Minnow). This was identified as a project risk during conversations with Bureau Veritas Laboratories (BV Labs; chronic toxicity laboratory), as the transfer of organisms from the higher hardness culture waters to the lower hardness test waters could elicit osmotic stress to the organisms and, therefore, bias the results of the test. During conversations with the laboratory, it was concluded that potential for osmotic stress would be less of a concern for Fathead Minnows and Duckweed, as these species tend to have a larger range of tolerance to different water types. However, hardness concentrations in the Meliadine Lake receiving environment were considered to be on the lower end of the tolerance range for the two invertebrate species (*D. magna* and *H. azteca*). To reduce the potential for a confounding effect of osmotic stress, it was considered necessary to acclimate organism cultures prior to testing.

The chronic toxicity testing for Meliadine Lake is further complicated by the fact that the primary contaminant of concern being investigated in the MEL-14 discharge is TDS, requiring consideration of the influence of dilution water on the concentrations and ratios of major ions. Toxicity associated with TDS is typically caused by osmotic stress and is influenced by the specific ratios of the component major ions (i.e., calcium, magnesium, sodium, potassium, chloride, sulphate, and alkalinity). Chronic toxicity tests are commonly performed using dilution series tests on the discharge being investigated and, therefore, ionic concentrations tend to be greater than control/dilution water used in the tests. The standard control/dilution water used during testing is typically the same water that the organisms are cultured in. However, for tests conducted in receiving environment samples (Meliadine Lake), the ambient TDS is low relative to the culture media, such that standard dilution waters may increase TDS in receiving environment samples at higher dilutions. Therefore, a site-specific test design was required to:

- 1. Control for the low hardness conditions in Meliadine Lake and assess normal organism response in lower hardness waters
- 2. Select relevant references to compare against organism responses in exposure areas

¹ Azimuth Consulting Group Partnership. 2020. Aquatic Effects Monitoring Program, 2019 Annual Report, Meliadine Gold Project. Prepared for Agnico Eagle Mines Limited. Project No. AEM-19-04 / MEL AEMP 2019.

B-6

Set-up the test design so that the test acceptability (e.g., organism health and validity of the tests)
can be properly assessed, while also accounting for the non-standard (low hardness) exposure
conditions of site media

To address these site-specific complications, a modified test design was developed and applied during the chronic toxicity testing associated with each of the four test species. Additional controls were implemented so that organism responses resulting from low conductivity waters of the receiving environment, rather than an adverse toxicological response to TDS, can be discerned. The following represents the various components of the modified chronic toxicity test design:

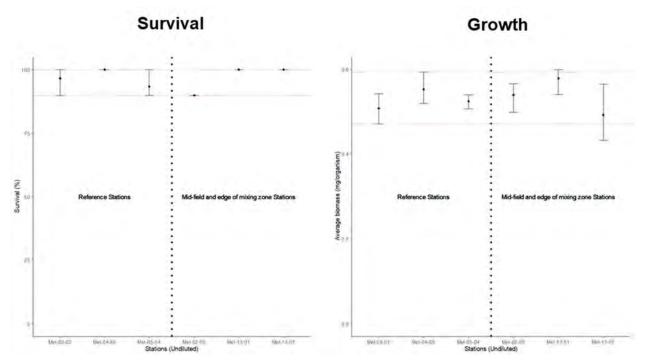
- Controls—Three types of control water are used during the testing:
 - Laboratory control—standard culture water used for each species during regular testing at the laboratory. This control is used to assess test validity per standard protocol requirements; it is intended to facilitate comparison of organism response to a normal performance range for cultured organisms in non-contaminated media.
 - Soft water control—standard culture water used for each species during regular testing is diluted down to a hardness of ~40 mg/L, while keeping ionic ratios intact. This control is used to assess organism response in low hardness waters, but at typical ratios of major ions used during standard testing. This control serves as a baseline for the receiving environment tests because endpoints such as growth or reproduction could be lower than the laboratory control in lower ionic strength waters, due to suboptimal exposure conditions for the cultured organisms. This control is compared to the response in the laboratory control to assess for potential differences in organism performance that was independent of the influence of the discharge.
 - Site Control—synthetic dilution water control. The site control is a synthetic water recipe developed based on ionic ratios reported in the 2019 AEMP [Azimuth 2020] and based on the pooled reference conditions in Meliadine Lake. The difference between the soft water control and the site control is that the former used a standard recipe of ions used for organism culturing, whereas the latter is customized to ambient site conditions. The site control is used to evaluate organism response in clean test water using ionic ratios that are representative of Meliadine Lake reference sites, as identified during the most recent AEMP. This water is also used as the dilution water in the dilution series tests outlined below, as this provides a more realistic assessment of how the discharge is expected to be diluted within the receiving environment. The site control is used to assess how well organisms respond to the synthetic dilution water. Results are compared to the soft water control to assess how organisms respond to water with a similar hardness (i.e., soft water control), but with ionic ratios that more closely resemble Meliadine Lake conditions.
- **Meliadine Lake Receiving Environment Monitoring Samples**—Two types of tests are conducted using receiving environment samples during the discharge event:
 - Full strength tests—full strength tests (sometimes called "pass/fail" tests) are performed with samples of undiluted Meliadine Lake water, including samples from the mid-field station MEL-02-05 and the three reference stations (MEL-03-02, MEL-04-05, and MEL-05-04). The reference station results are compared statistically to the mid-field results, as well as to the dilution series test results (next bullet) to investigate whether significant differences are apparent, and whether these differences could be related to the influence of the discharge.

Dilution series tests—Meliadine Lake edge of mixing zone stations (MEL-13-01, MEL-13-07, and MEL-13-10) are tested using a standard volumetric dilution series (e.g., 100%, 50%, 25%, 12.5%, 6.25%, 3.13%, and 1.56% volume/volume sample). Due to the larger test set-up for these dilution series (i.e., greater number of test vessels), dedicated controls are specified for each station to control for subtle temperature or light differences in the test chambers that may influence survival, growth, or reproduction endpoints in the tests. The chronic toxicity test results in the 100% undiluted edge of mixing zone samples are compared statistically to the results in the reference stations (MEL-03-02, MEL-04-05, and MEL-05-04) to assess whether edge of mixing zone stations show statistically significant reductions in survival, growth, or reproduction. The statistical assessment includes comparison to each individual reference station, as well as the pooled average of the reference station results. Where statistical differences are identified, the dilution series test design facilitates the investigation of any concentration-response relationships observed along the dilution series, which are expected to facilitate the calculation of relevant IC/ECx values (inhibitory / effect concentrations influencing X% of the population). This information will be useful for confirming: 1) whether effects are apparent and not simply reflective of confounding factors (e.g., subtle temperature, light, or feeding differences); and 2) determining at what level of dilution the observed effects decrease to ambient levels.

As a result, chronic toxicity test results are assessed using the following tiered approach:

- 1. Compare results of the undiluted edge of mixing zone and mid-field stations to the range in response observed at the reference stations—There is natural variability in sub-lethal endpoints such as growth and reproduction and, therefore, it is necessary to evaluate the range in response observed in reference water relative to the range observed at exposure sites.
- Evaluate the dose response relationship observed along the dilution series for edge of mixing zone stations—It is important to also consider the pattern of response as a function of dilution to determine whether the pattern suggests that a higher percentage of site water causes a larger decrease in organism performance.
- 3. Assess the response in the laboratory controls to determine the potential confounding influence of low hardness—The controls, both standard negative control and low hardness controls, are not compared directly to organism response in site water, as the lab water is not necessarily consistent in character as the receiving environment (e.g., micronutrients, DOC, etc.). These controls are instead used to assess test validity. In the case of the site water control (also the dilution water), the results are included as a treatment along the dilution series test design (e.g., 0% sample [site control], 1.56% sample, etc.).

The following sections discuss the results of the first round of monthly chronic toxicity testing. Due to the time required to conduct these chronic tests (e.g., up to 21-days for the *D. magna* test, 14-d *H. azteca*), final results are only available for the Duckweed and Fathead Minnow tests as of 17 July 2020. Results for the Fathead Minnow test are discussed in Section B3.1 and the results of the Duckweed test are discussed in Section B3.2. Detailed laboratory reports for these two tests are provided in Attachment B3.


B3.1 Fathead Minnow Results

The 7-day Fathead Minnow larval survival and growth tests conducted on receiving environment samples collected on 7 June 2020 did not indicate impairment of survival or growth endpoints relative to organism response observed at the reference stations. This was true for organisms exposed to both edge of mixing zone and mid-field water samples. Survival and growth endpoints measured in undiluted 100% samples from the edge of mixing zone and mid-field stations encompassed a similar range of response as the reference stations (Figure B-4). Furthermore, as discussed in the laboratory report provided in Appendix B3, statistically significant effects on survival or growth (p <0.05) were not identified in the edge of mixing zone stations and the mid-field station, relative to the responses observed in each of the three reference stations, or to the pooled reference station response.

These receiving environment results using full strength samples are consistent with the results reported for the edge of mixing zone dilution series testing (Table B-3). For the latter, the survival EC₅₀ value (effect concentration impacting 50% of organisms) and the sub-lethal growth EC₂₅ value (effect concentrations impacting 25% of organisms) were both >100% discharge in each of the two edge of mixing zone stations (MEL-13-01 and MEL-13-07).

The results of these tests were considered valid by the testing laboratory (Bureau Veritas, Burnaby, BC), as the tests met control and test acceptability requirements outlined in the respective test methods (see Appendix B3 for details).

Figure B-4: Fathead minnow survival and growth results for the full strength (100%) edge of mixing zone and mid-field stations sampled on 7 June 2020 relative to the response observed at the three reference stations

Notes: % = percent; mg/organism = milligrams per organism; points represent the mean response in the treatment; error bars represent the range in organism response (i.e., maximum and minimum response) observed between replicates in each treatment; red lines represent the range in response (maximum and minimum) observed in the Reference Stations.

	and i danie 2020 camping orom										
	MEL	-13-01	MEL-13-07								
Sample Date	Survival LC₅ Value (% Discharge)	Growth IC ₂₅ Value (% Discharge)	Survival LC ₅₀ Value (% Discharge)	Growth IC₂₅ Value (% Discharge)							
7 June 2020	>100	>100	>100	>100							

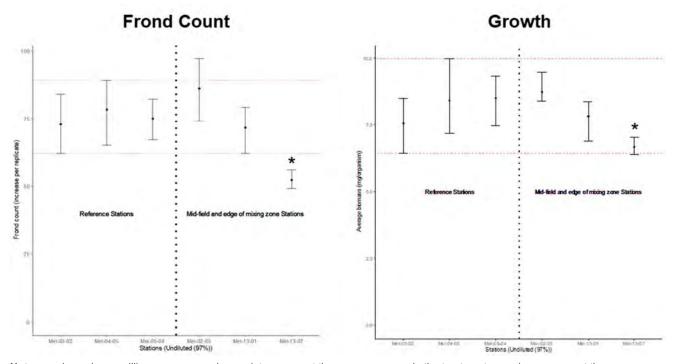
Table B-3: Edge of mixing zone fathead minnow dilution series results from MEL-13-01 and MEL-13-07 from the 7 June 2020 sampling event

Notes: % = percent; LC_{50} = lethal concentration effecting 50% of organisms; IC_{25} = inhibitory concentration affecting 25% of organisms.

B3.2 Duckweed Results

The results of the 7-day Duckweed growth tests conducted on receiving environment samples collected on 7 June 2020 did not indicate impairment of frond count or growth endpoints relative to organism response observed at the reference stations. This was true for organisms exposed to both edge of mixing zone and mid-field stations.

Frond count and growth endpoints measured in undiluted 100% samples from the edge of mixing zone and mid-field stations encompassed a similar range of response as that in the reference stations, with the exception of MEL-13-07 (Figure B-5). As discussed in the laboratory report provided in Appendix B3, the following outcomes of statistical comparisons (p <0.05) were observed for the Duckweed endpoints:


- Significant effects on frond count or growth of organisms were not evident at the MEL-13-01 edge of mixing zone station; this applied relative to responses observed in each of the three reference stations, as well as the pooled reference station response.
- Significant effects (p <0.05) for the frond count endpoint were observed at the MEL-13-07 station relative to responses observed in each of the three reference stations, as well as the pooled reference station response. Significant effects were also observed on organism growth at the MEL-13-07 station relative to the MEL-04-05 and MEL-05-04 reference stations, as well as the pooled reference response. However, as described in Table B-4 and depicted in Figure B-6, these significant differences appear to be artifacts of the test design (i.e., variation due to factors other than discharge influence). The concentration-response relationship observed along the dilution series of the MEL-13-07 edge of mixing zone station did not suggest an association between exposure magnitude and toxicological response. The calculated IC₂₅ values for the frond count and growth endpoints were both determined by the toxicology laboratory (Bureau Veritas Laboratories, Burnaby, BC) to be >97% discharge (the maximum dilution series concentration of 97% rather than 100% is due to the dilution of the 100% sample by a nutrient formulation required by the standard test protocol; Environment Canada 2007).
- Significant effects on frond count and growth of organisms were not evident at the MEL-02-05 midfield station; this applied relative to responses observed in each of the three reference stations, as well as the pooled reference station response.

Results reported for the edge of mixing zone dilution series testing (Table B-4) indicated that both the frond count and growth EC₂₅ values were >97% discharge in each of the two edge of mixing zone stations (MEL-13-01 and MEL-13-07). These results indicate that water collected at the edge of the mixing zone in Meliadine Lake on 7 June 2020 did not result in chronic effects on growth to Duckweed.

The results of these tests were considered valid by the testing laboratory (Bureau Veritas, Burnaby, BC), as the tests met control and test acceptability requirements outlined in the respective test methods (see Appendix B3 for details).

Figure B-5: Duckweed frond count and growth results for the full strength (100%) edge of mixing zone and mid-field stations sampled on 7 June 2020 relative to the response observed at the three reference stations

Notes: mg/organism = milligrams per organism; points represent the mean response in the treatment; error bars represent the range in organism response (i.e., maximum and minimum response) observed between replicates in each treatment; red lines represent the range in response (maximum and minimum) observed in the Reference Stations; * represents that the response in a edge of mixing zone or mid-field station was determined to be statistically different (p < 0.05) than the response observed in one or more reference stations.

Table B-4: Edge of mixing zone duckweed dilution series results from MEL-13-01 and MEL-13-07 from the 7
June 2020 sampling event

	MEL	-13-01	MEL-13-07			
Sample Date	Frond Count IC25 Value (% Discharge)	Growth IC25 Value (% Discharge)	Frond Count IC25 Value (% Discharge)	Growth IC25 Value (% Discharge)		
7 June 2020	>97	>97	>97	>97		

Notes: % = percent; IC_{25} = inhibitory concentration affecting 25% of organisms.

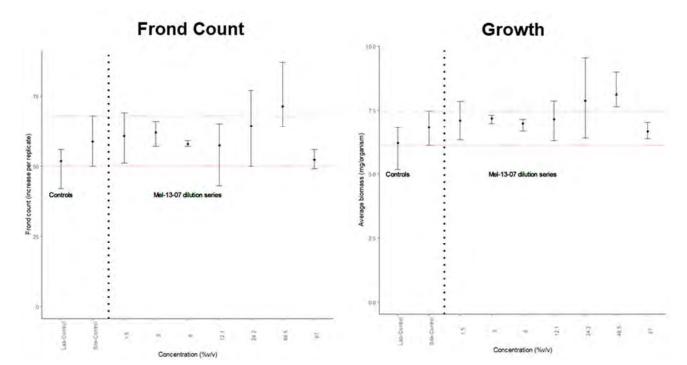


Figure B6: Duckweed frond count and growth results for the MEL-13-07 edge of mixing zone dilution series test sampled on 7 June 2020

Notes: mg/organism = milligrams per organism; points represent the mean response in the treatment; error bars represent the range in organism response (i.e., maximum and minimum response) observed between replicates in each treatment; red lines represent the range in response (maximum and minimum) observed in the Site control.

B4.0 UNCERTAINTY ANALYSIS

All monitoring programs are subject to uncertainty because the environmental monitoring components cannot assess every individual area for every possible ecological factor. Typical sources of uncertainty in an environmental monitoring programs include: how representative sampling stations are for assessing potential impacts, the timing of sample collection, the potential effect of cumulative exposures, and extrapolating effects between species or between observations in the laboratory and under field conditions. These uncertainties are common to all monitoring programs and are compensated for by using appropriately conservative approaches. Specific uncertainties of the current program include the following:

Limited number of edge of mixing zone sampling events—Due to melting ice conditions on Meliadine Lake, weekly sampling events during the weeks of 14 June, 21 June, 28 June, and 5 July were not conducted due to health and safety concerns. Interpretation of the discharge assimilation capacity is limited to a single sampling event that was conducted on 7 June 2020. The 7 June 2020 sampling event indicated that assimilation was rapid, as measured TDS concentrations at the edge of mixing zone were more than 10-fold lower than the proposed interim target of 1,000 mg/L; however, the one sampling event precludes the ability to investigate temporal trends or the effects of longer duration discharge in the mixing zone. Remote data loggers were deployed as a supplemental monitoring effort to measure in situ data in the transition period between ice cover and open water, and will provide information on temperature and specific conductivity at the edge of mixing zone stations over this period and for the duration of the discharge period.

Spatial characterization—The edge of mixing zone station MEL-13-10 was not safely accessible during the first monthly sampling event, which represents some limitations in the spatial delineation of edge of mixing zone conditions. This sample will be collected during subsequent monthly sampling events now that Meliadine Lake is ice-free; however, as samples at MEL-13-10 have not been collected to date, TDS concentrations and chronic toxicity at this station is currently a source of uncertainty.

- Full species battery still pending—Chronic toxicity tests have not indicated adverse biological effects in the receiving environment. However, testing has only been conducted during a single round of testing and final results are currently only available for two of the four test species. As a result, there is some uncertainty related to temporal variability in conditions within the receiving environment, as well as the sensitivity of *D. magna* and *H. azteca*. Testing is ongoing and subsequent rounds of testing will provide more conclusive outcomes.
- Limited exposure range—TDS concentrations measured in the edge of mixing zone stations sampled for chronic toxicity testing on June 7 were well below the edge of mixing zone target of 1,000 mg/L, which provides confirmation that discharge assimilation is effective during the early stage of discharge, as predicted from the dispersion models for the site. However, the low concentrations of TDS and other exposure indicators limit the degree to which the receiving environment water quality benchmarks can be validated. Testing at higher TDS concentrations is important for validating the interim benchmark and for providing recommendations for a final water quality objective at the edge of the mixing zone for long-term management of Meliadine Lake. Of relevance to the edge of mixing zone target validation testing are commitments related to monthly chronic toxicity testing of the MEL-14 discharge arising from responses to comments from ECCC and KivIA (Agnico Eagle 2020) and discussions through the WMWG. This supplemental chronic testing will be initiated during the second monthly sampling event and will involve chronic toxicity testing of the full-strength discharge plus volumetric dilutions. This testing is expected to be useful for validation of the interim target of 1,000 mg/L at the edge of mixing zone, as the discharge dilution series testing is expected to encompass exposures both above and below the proposed target of 1,000 mg/L calculated TDS.

B5.0 CONCLUSIONS

Based on the results obtained during the WQ-MOP monitoring program as of 17 July 2020, the following represents the primary conclusions based on data analysis and interpretation from the analytical chemistry and toxicology testing programs:

- TDS concentrations measured in the discharge were less than the MAC of 3,500 mg/L in each of the weekly sampling events and ranged between 2,502 and 2,588 mg/L calculated TDS (1,510 and 3,100 mg/L measured TDS).
- The discharge was not found to be acutely toxic in four rounds of acute toxicity tests conducted with *D. magna* and Rainbow Trout, as the LC₅₀ values were >100% discharge in each of the tests.
- TDS concentrations measured at the edge of mixing zone stations were more than 10-fold lower than the proposed interim target of 1,000 mg/L during the 7 June 2020 sampling event, suggesting that the discharge has a high assimilation rate and that TDS concentrations rapidly decrease in the

receiving environment to concentrations below which adverse effects on biological receptors would be expected.

Consistent with the low TDS concentration results reported in the receiving environment, adverse toxicological effects were not identified during the first monthly chronic toxicity testing program; final results of the *H. azteca* and *D. magna* tests are pending.

Based on the agreed upon site-specific benchmark derivation procedure outlined in Section 1.1 of the Golder (2020) WQ-MOP Rev2 (Appendix A), the validation monitoring conducted to date support the proposed interim targets because:

- Discharges were measured at calculated TDS concentrations ranging between 2,502 and 2,588 mg/L calculated TDS (1,510 and 3,100 mg/L measured TDS), which did not result in acute toxicity at the point of release
- Discharges have not resulted in unacceptable chronic toxicity at the edge of the mixing zone following initial dilution (i.e., at a 100 m radius surrounding the diffuser in Meliadine Lake)
- Discharges do not appear to be exceeding the capacity of the receiving environment to accommodate long-term loadings of constituents (i.e., assimilative capacity), as indicated by the observation that effluent was rapidly diluted and mixing zone water quality was well below the interim target of 1,000 mg/L during the June 7 2020 sampling event.

Based on these observations, it is likely that the MAC can be adopted as a firm target for managing the discharge, subject to confirmation by additional testing in Summer 2020. Monitoring efforts outlined in Table 1 of the main body of this report will continue for the duration of the permitted discharge of CP1.

Due to the limited number of chronic toxicity test events conducted to date, and the fact that concentrations in the receiving environment have been substantially below the edge of mixing zone target of 1,000 mg/L, it is recommended that further monitoring be conducted to validate the proposed edge of mixing zone target as a site-specific water quality objective (SSWQO) in Meliadine Lake. These programs have already been designed and are being implemented this summer. Specifically, the monthly chronic toxicity testing of the MEL-14 discharge (arising from responses to comments from ECCC and KivIA and discussions through the WMWG) will be initiated during the second monthly sampling event and will involve chronic toxicity testing of the discharge on each of the four selected chronic test species. These tests will be conducted using a dilution series similar to that being performed on the edge of mixing zone stations. This testing is expected to be useful for validation of the interim target of 1,000 mg/L at the edge of mixing zone and can be combined with other site-specific chronic toxicity data in support of a final regulatory benchmark for TDS.

APPENDIX B REFERENCES

Agnico Eagle (Agnico Eagle Mines). 2020. Water Licence 2AM-MEL1631 WQ-MOP Update IR Responses. Submitted to Nunavut Water Board. June 25, 2020.

- Azimuth (Azimuth Consulting Group Partnership). 2020. Aquatic Effects Monitoring Program, 2019 Annual Report, Meliadine Gold Project. Prepared for Agnico Eagle Mines Limited. Project No. AEM-19-04 / MEL AEMP 2019.
- Environment Canada. 2007b. Biological Test Method: Test for Measuring the Inhibition of Growth using the Freshwater Macrophyte (*Lemna minor*). EPS 1/RM/37, Second Edition, January 2007.
- Golder (Golder Associates Limited). 2020. Water Quality Monitoring and Optimization Plan.

 Implementation Plan for Total Dissolve Solids. Prepared for Agnico Eagle Mining Limited. Project No. 19132390-751-RPT-Rev2.

Marchant Marchant	Table 1. MEL-14 Discharge Analytical Ch	emistry Results Collected	Between 5 June 2020	and 5 July 2020 Sample Date Sample Name Location	2020-06-05 MEL-14 MEL-14	2020-06-07 MEL-14 MEL-14	2020-06-14 MEL-14 MEL-14	2020-06-15 MEL-14 MEL-14	2020-06-21 MEL-14 MEL-14	2020-06-28 MEL-14 MEL-14	2020-07-01 MEL-14 MEL-14	2020-07-05 MEL-14 MEL-14
California Cal				SAMPLE_TYPE_CODE								
Part	Parameter			Unit								
Name				pH units	7.05	7.29	7.08	6.88	7.01	6.87	6.99	-
Sementangen					4825	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		5005		(- - -
Sementamone	Dissolved oxygen				12.07	11.65	· · · · · · · · · · · · · · · · · · ·	-	-	11.57	9.08	- -
Company Comp	Conventional Parameters	9.5	9,5	pH units	7.52	7.58	7.66	7.66	7.41	7.43	_	7.25
Series S	[* ·			umhos/cm	4700	4600	5100	4900	4800	4700	-	2300
Marchesteron	Hardness, as CaCO3 (Total)			mg/L	1050	1050	1040	1020	1080	1090	-	530
Second part	Total dissolved solids (calculated)	5000	3500	mg/L	2600	2600	-	-	-	-	-	-
Section Sect	Total suspended solids		15	mg/L	5	6	8	6	6	7	-	5
Second	Dissolved organic carbon			mg/L	13	12	13	13	12	11	-	5.1
Second	Dissolved Oxygen										-	9.52
Selection of the control of the cont	Bicarbonate, as CaCO3										-	36
Section 1	Carbonate, as CaCO3			mg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0
Second 100	Cyanide	1	0.5	mg/L	0.0068	0.0070	0.011	0.0095	0.012	^		< 0.0050
Part	Magnesium			mg/L	71.8	70.5	78.8	72.5	76.8			34.9
March Marc	Sodium			mg/L	480	474	510	470	509	506		209
Separate Page	Silica			mg/L	5.3	8.3	6.1	6.8	4.8	3.8		1.5
Same of the control o	Cyanide (WAD)										-	0.0035 0.0014
Section 1	Nitrate										_	13.0
Second Column	Nitrate + nitrite	10	14	mg/L	27.0	26.6	28.1	28.2	29.3	26.2		13.1
Company Comp	Total Kjeldahl nitrogen			mg/L	11	9.4	14	11	13	12	-	4.2
Transfer	Orthophosphate	4	۷	mg/L	< 0.010	< 0.010	0.016	0.023	0.012	< 0.010		0.057 < 0.010
Section Sect	Total Metals										<u> </u>	
Second	Antimony			mg/L	< 0.0025	< 0.0025	< 0.0010	< 0.0010	< 0.0025	< 0.0050	-	< 0.00050
Manufact	Barium	0.6	0.3	mg/L	0.151	0.155	0.151	0.153	0.155	0.153	-	0.0711
Section	Bismuth			mg/L	< 0.0050	< 0.0050	< 0.0020	< 0.0020	< 0.0050	< 0.01	-	< 0.00010 < 0.0010
Second S	Cadmium			mg/L	0.000080	0.000101	0.000078	0.000085	0.000095	< 0.00010		0.000029
Carpor Q	Chromium			mg/L	< 0.0050	< 0.0050	< 0.0020	< 0.0020	< 0.0050	< 0.01		< 0.0010
Each Q-4	Copper	0.4	0.2	mg/L	0.0031	0.0031	0.0032	0.0031	0.0028	< 0.0050	-	0.00133 0.00131
Magnetime	Lead	0.4	0.2	mg/L	< 0.0010	< 0.0010	0.00070	0.00061	< 0.0010	< 0.0020		0.097 0.00041
Members	Magnesium			mg/L	72.4	74.4	71.4	70.2	78.7	75.9	-	0.0699 37.1
March 2 0.5 mg/L 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.00000000	Mercury			mg/L	< 0.00010	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00010	-	0.455 < 0.00010
Services		1	0.5	mg/L				0.0094	0.0103	< 0.01	-	0.0022 0.0043
Sear				mg/L	0.00063	0.00074	0.00066	0.00060	0.00069	< 0.0010	-	15.7 0.00023
Section					< 0.00010	•		< 0.000040	< 0.00010	< 0.00020	-	0.753 < 0.000020
Mallem				mg/L	5.22	5.6	5.8	5.7	5.45	5.36	-	226 2.65
Imanim										,	- - - -	41.7 0.000030
Vanadam											-	< 0.0050 < 0.0050
Decision mg/L Colored Colore								< 0.01			-	0.00019 < 0.0050
Amminum		0.8	0.4								-	< 0.0050 < 0.00010
Meanic mg/L 0.0541 0.0052 0.0051 0.007 0.00503 0.0056 0.											_	0.0776
Baryllum	T			mg/L	0.0541	0.0626	0.0611	0.0477	0.00803	0.0026	-	< 0.00050 0.00356
Boron											-	0.0685 < 0.00010
Chromium	Boron			mg/L	0.472	0.462	0.554	0.498	0.532	< 0.5	-	< 0.0010 0.236
Copper	Chromium			mg/L	< 0.0020	< 0.0020	< 0.0050	< 0.0050	< 0.0050	< 0.01	-	0.000029 < 0.0010
Inade	Copper			mg/L	0.00287	0.00279	0.0031	0.0029	0.0026	< 0.0020	-	0.00127 0.00111
Manganese mg/L 1.5 1.3 1.5 1.36 1.39 1.35 . 0.43 0.0000 0.00001 0.00001 0.0000001 0.000001	Lead			mg/L	< 0.00040	< 0.00040	< 0.0010	< 0.0010	< 0.0010	< 0.0020	-	0.0441 < 0.00020
Molybdenum mg/L 0.0046 0.0044 < 0.0050 < 0.0050 < 0.0150 < 0.0151 < 0.0050 < 0.0050 < 0.0150 < 0.0051 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.				mg/L	1.35	1.3	1.5	1.36	1.39	1.35	-	0.0698 0.436
Selenium	Molybdenum			mg/L	0.0046	0.0044	< 0.0050	< 0.0050	< 0.0050	< 0.01	-	< 0.00010 0.0020
Selver	Selenium			mg/L	0.00058	0.00065	0.00071	0.00052	0.00057	< 0.0010	-	0.0039 0.00019
Sulphur mg/L 80.4 82.3 88 84 89 84 3.93 Thallium mg/L 0.000000 0.0000047 0.000008 0.000000 0.00001 0.0000 Tin mg/L 0.01 < 0.01 < 0.02 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 <	Silver			mg/L	< 0.000040	< 0.000040	< 0.00010	< 0.00010	< 0.00010	< 0.00020	-	0.674 < 0.000020
Tin	Sulphur			mg/L	80.4	82.3	88	84	89	84	-	2.6 39.7
Uranium mg/L 0.00157 0.00181 0.0021 0.0020 0.00176 0.013 . 0.00 Vanadium mg/L < 0.01 < 0.01 < 0.025 < 0.025 < 0.025 < 0.025 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.0001 < 0.000 Organics	Tin			mg/L	< 0.01	< 0.01	< 0.025	< 0.025	< 0.025	< 0.05	-	0.000026 < 0.0050
Description Description	Uranium			mg/L	0.00197	0.00181	0.00211	0.00202	0.00176	0.0013	-	< 0.0050 < 0.00010
Organics mg/L < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0	Zinc			mg/L	0.019	0.019	< 0.025	< 0.025	< 0.025	< 0.05		< 0.0050 < 0.0050
Ethylbenzene mg/L < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040	Organics										-	< 0.00010
Xylenes mg/L < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.0	Ethylbenzene			mg/L	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	-	< 0.00020 < 0.00020
o-Xylene mg/L < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.	Xylenes			mg/L	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	-	< 0.00020 < 0.00040
F1 (C6-C10) mg/L < 0.025	o-Xylene			mg/L	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	-	< 0.00040 < 0.00020
F3 (C16-C34) mg/L	F1 (C6-C10)			mg/L	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025		< 0.025 < 0.025
Toxicity Daphnia 48 h Static acute test - LC50	F3 (C16-C34)			mg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	_	< 0.1 < 0.2
Daphnia 48 h Static Acute Test - EC50 % - > 100 > 100 - > 100 > 100 -	Toxicity				< 0.2	•	•	< 0.2			-	< 0.2
LC50 (96h) - Rainbow Trout % - > 100 - > 100 -	Daphnia 48 h Static Acute Test - EC50			%	-	> 100	> 100		> 100	> 100		-
	Radionuclides				-		> 100	-	> 100	> 100	-	
notes.	Radium-226 Notes:			Bq/I	0.014	0.016	0.013	-	0.019	1.1	-	< 0.0050

"-" indicates a parameter was less than the laboratory detection limit.
"-" indicates a parameter was not analyzed or a criteria is not defined.
Output generated by GalReport and provided to Golder by Agnico Eagle.

Table O. Meliadina I also Decaisis	- Curing and Mater C		7 I 2000 Camalina E
Table 2: Meliadine Lake Receivin	a Environment water u	Juality Summary (7	June 2020 Sambling Eventi

able 2: Meliadine Lake Receiving Environment W		CCME Guidelines	Event)		Sampli	ng Sites			
Parameter	Unit		atic Life		ixing zone	Mid-field		Reference	
		Acute	Chronic	MEL-13-01 43989.7215	MEL-13-07 43989.7542	MEL-02-05 43989.588	MEL-03-02 43989.4486	MEL-04-05 43989.6299	MEL-05-04 43989.3708
Conventional Parameters			•	•	•	•	•	•	•
pH Specific conductivity	umhos/cm	-	6.5 - 9.0	7.3 130	7.3 110	7.2 120	7.2 61	7.4 92	7.4 100
Hardness, as CaCO ₃	mg/L	-	-	37	29	35	19	27	31
Total alkalinity, as CaCO ₃	mg/L	-	-	28	23	27	12	24	26
Total dissolved solids (calculated) Total dissolved solids (measured)	mg/L mg/L	-	1000*	65 50	55 35	60 35	29 30	46 40	52 40
Total suspended solids	mg/L	-	-	2.0	2.0	1.0	1.0	1.0	1.0
Total organic carbon Dissolved organic carbon	mg/L mg/L	-	-	4.4 4.3	3.5 3.5	3.8 3.6	2.2 2.1	2.6 2.6	3.0 2.7
Turbidity	NTU	-	-	0.20	0.40	0.60	1.2	0.10	0.20
Major Ions Bicarbonate, as CaCO ₃	ma/l	T -	_	27	23	27	12	24	26
Calcium	mg/L mg/L	-	-	12	9.6	11	5.1	8.6	9.8
Carbonate, as CaCO ₃	mg/L		-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloride Cyanide	mg/L	640	120 0.0050	18 <0.005	16 <0.005	16 <0.005	7.8 <0.005	11 <0.005	12 <0.005
Fluoride	mg/L mg/L	-	0.0030	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Magnesium	mg/L	-	-	2.0 1.5	1.7 1.2	1.9 1.3	0.93 0.70	1.4 1.1	1.6 1.2
Potassium Sodium	mg/L mg/L	-	-	7.9	6.7	7.3	3.6	5.5	6.1
Sulphate	mg/L	-	-	7.5	6.0	5.9	3.0	4.4	4.9
Silica Nutrients	mg/L	-	-	0.67	0.53	0.56	0.18	0.30	0.32
Nitrate	mg-N/L	124	2.9	<0.1	<0.1	<0.1	0.11	<0.1	<0.1
Nitrite Nitrate + nitrite	mg-N/L mg-N/L	-	0.060	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 0.11	<0.01 <0.1	<0.01 <0.1
Total ammonia	mg-N/L	-	4.1 - 161 ^(a)	<0.05	0.19	<0.05	<0.05	0.15	< 0.05
Total Kjeldahl nitrogen Total nitrogen (calculated)	mg-N/L mg-N/L	-	-	0.21 0.21	0.25 0.25	0.19 0.19	0.18 0.29	0.15 0.15	0.11 0.11
Total phosphorus	mg-P/L	-	-	<0.02	<0.02	<0.02	0.025	<0.02	<0.02
Orthophosphate Total Metals	mg-P/L	-	-		-	<0.01	<0.01	<0.01	<0.01
Aluminum	mg/L	-	0.0050 - 0.10 ^(b, c)	<0.003	0.017	0.0032	0.0066	<0.003	<0.003
Antimony	mg/L	-	- 0.0050	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Arsenic Barium	mg/L mg/L	-	0.0050	0.00047 0.012	0.00064 0.0095	0.00043 0.016	0.0011 0.011	0.00023 0.0097	0.00029 0.011
Beryllium	mg/L	-	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth Boron	mg/L mg/L	29	1.5	<0.001 <0.05	<0.001 <0.05	<0.001 <0.05	<0.001 <0.05	<0.001 <0.05	<0.001 <0.05
Cadmium	mg/L	0.00011 - 0.00077 ^(d)	0.000040 - 0.000070 ^(d)	<0.00001	<0.00001	<0.00001	0.000020	<0.00001	<0.00001
Calcium Chromium	mg/L mg/L	-	0.0010	12 <0.001	9.1 <0.001	11 <0.001	5.9 <0.001	8.5 <0.001	9.8
Cobalt	mg/L	-	-	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Copper	mg/L	-	0.0020 ^(d) 0.30	0.0011	0.0017	0.0011	0.00077	0.00093	0.0011
Iron Lead	mg/L mg/L	-	0.0010 ^(d)	<0.01 <0.0002	0.038 <0.0002	0.098 <0.0002	0.073 0.00022	<0.01 <0.0002	<0.01 <0.0002
Lithium	mg/L	-	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Magnesium Manganese	mg/L mg/L	-	-	2.0 0.0013	1.6 0.0022	1.9 0.0011	1.0 0.0026	1.4 <0.001	1.6 <0.001
Mercury	mg/L	-	0.000026	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Molybdenum Nickel	mg/L	-	0.073 0.025 ^(d)	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001
Potassium	mg/L mg/L	-	-	1.4	1.1	1.4	0.80	1.1	1.2
Selenium	mg/L	-	0.0010	<0.0001	<0.0001 0.26	<0.0001 0.26	<0.0001 <0.1	<0.0001 0.14	<0.0001
Silicon Silver	mg/L mg/L	-	0.00025	0.31 <0.00002	<0.00002	<0.00002	<0.00002	<0.00002	0.15 <0.00002
Sodium	mg/L	-	-	7.5	6.0	7.1	3.8	5.1	5.5
Strontium Sulphur	mg/L mg/L	-	-	0.068 <3.0	0.054 <3.0	0.064 <3.0	0.031 <3.0	0.044 <3.0	0.049 <3.0
Thallium	mg/L	-	0.00080	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Tin Titanium	mg/L mg/L	-	-	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
Uranium	mg/L	0.033	0.015	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Vanadium Zinc	mg/L mg/L	- 0.011 - 0.049 ^(e)	- 0.0063 - 0.017 ^(f)	<0.005 <0.005	<0.005 0.029^(C)	<0.005 <0.005	<0.005 0.0066	<0.005 <0.005	<0.005 <0.005
Zirconium	mg/L mg/L	0.011 - 0.049**	0.0063 - 0.017**	<0.005	<0.0001	<0.005	<0.0001	<0.005	<0.005
Dissolved Metals Aluminum	mc/l			<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Antimony	mg/L mg/L	-	-	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Arsenic Barium	mg/L mg/l	-	-	0.00046 0.012	0.00046 0.0098	0.00043 0.013	0.0010 0.0076	0.00027 0.0094	0.00028 0.011
Beryllium	mg/L mg/L	-	-	<0.0012	<0.0098	<0.0001	<0.0076	<0.0094	<0.0011
Bismuth	mg/L	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron Cadmium	mg/L mg/L	-	-	<0.05 <0.00001	<0.05 0.000013	<0.05 0.000026	<0.05 0.000020	<0.05 0.000013	<0.05 <0.00001
Chromium	mg/L	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Cobalt Copper	mg/L mg/L	-	-	<0.0002 0.0011	<0.0002 0.00095	<0.0002 0.0012	<0.0002 0.00070	<0.0002 0.00078	<0.0002 0.00082
Iron	mg/L	-	-	0.0062	0.0052	0.0094	0.012	<0.005	<0.005
Lead Lithium	mg/L mg/L	-	-	<0.0002 <0.002	<0.0002 <0.002	<0.0002 <0.002	<0.0002 <0.002	<0.0002 <0.002	<0.0002 <0.002
Manganese	mg/L	-	-	<0.001	0.0012	<0.001	0.0026	<0.001	<0.001
Mercury Molybdenum	mg/L mg/L	-	-	<0.00001 <0.001	<0.0001 <0.001	<0.00001 <0.001	<0.0001 <0.001	<0.00001 <0.001	<0.00001 <0.001
Nickel	mg/L	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Selenium Silicon	mg/L mg/l	-	-	<0.0001 0.28	<0.0001 0.23	<0.0001 0.23	<0.0001 <0.1	<0.0001 0.13	<0.0001 0.13
Silver	mg/L mg/L	-	-	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Strontium	mg/L	-	-	0.062	0.052	0.055	0.024	0.039	0.044
Sulphur Thallium	mg/L mg/L	-	-	<3.0 <0.00001	<3.0 <0.00001	<3.0 <0.00001	<3.0 <0.00001	<3.0 <0.00001	<3.0 <0.00001
Tin	mg/L	-	-	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Titanium Uranium	mg/L mg/L	-	-	<0.005 <0.0001	<0.005 <0.0001	<0.005 <0.0001	<0.005 <0.0001	<0.005 <0.0001	<0.005 <0.0001
Vanadium	mg/L	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	mg/L	0.011 - 0.049 ^(g)	0.0063 - 0.017 ^(h)	< 0.005	0.018 ^(C)	<0.005	0.0062	< 0.005	< 0.005
Zirconium	mg/L	-	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001

- Notes:
 "<" = indicates a parameter was less than the laboratory detection limit.
 "." = indicates a parameter was not analyzed or a criteria is not defined.
 "*" = the agreed upon interim edge of mixing zone target for TDS
- (a) = the ammonia guideline is pH and temperature dependent. The guideline that results in the minimum ammonia guideline (4.12 mg-N/L) is based on the combination of field pH (7.6) and water temperature (1.8°C). Guidelines calculated with temperature and pH values falling outside the defined range (i.e., pH 6.0 to 10.0 and temperature 0°C to 30°C) should be used with caution, as the WQG does not necessarily accurately reflect toxic effects at the low and high pH and temperature extremes. The guideline is calculated based on the individual field pH and
- temperature measurements for each sample.

 (b) = guideline is pH dependent. The guideline range shown is based on the pH range observed in the dataset (6.0 to 7.6). The guideline is calculated based on the individual pH for each
- $^{\rm (c)}$ = guideline is pH dependent: 0.005 mg/L at pH < 6.5 and 0.1 mg/L at pH \geq 6.5.
- (d) = guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (2 to 37 mg/L). The guideline is calculated based on the individual hardness value for each sample.
- = quideline is for dissolved zinc, but comparison to total zinc is appropriate when no dissolved zinc concentrations are available. The acute dissolved zinc quideline is hardness and DOC dependent. The guideline that results in the minimum acute zinc guideline (11.3 µg/L) is based on the combination of Hardness (2.3 mg/L) and DOC (0.2 mg/L). Guidelines calculated with Hardness and DOC values falling outside the defined range (i.e., Hardness 13.8 to 250.5 mg/L and DOC 0.3 to 17.3 mg/L) should be used with caution, as the WQG does not necessarily accurately reflect toxic effects at the low and high hardness and DOC extremes. The guideline is calculated based on the individual hardness and DOC measurements for each sample.
- (f) = guideline is for dissolved zinc, but comparison to total zinc is appropriate when no dissolved zinc concentrations are available. The chronic dissolved zinc guideline is pH, hardness and DOC dependent. The guideline that results in the minimum chronic zinc guideline (6.3 µg/L) is based on the combination of field pH (6.0), Hardness (2.3 mg/L) and DOC (0.2 mg/L). Guidelines calculated with pH, Hardness and DOC values falling outside the defined range (i.e., pH 6.5 to 8.13, Hardness 23.4 to 399 mg/L and DOC 0.3 to 22.9 mg/L) should be used with caution, as the WQG does not necessarily accurately reflect toxic effects at the low and high pH, hardness and DOC extremes. The guideline is calculated based on the individual pH, hardness and DOC measurements for each sample.
- (g) = the acute dissolved zinc guideline is hardness and DOC dependent. The guideline that results in the minimum acute zinc guideline (11.3 µg/L) is based on the combination of Hardness (2.3 mg/L) and DOC (0.2 mg/L). Guidelines calculated with Hardness and DOC values falling outside the defined range (i.e., Hardness 13.8 to 250.5 mg/L and DOC 0.3 to 17.3 mg/L) should be used with caution, as the WQG does not necessarily accurately reflect toxic effects at the low and high hardness and DOC extremes. The guideline is calculated based on the individual hardness and DOC measurements for each sample.
- (h) = the chronic dissolved zinc guideline is pH, hardness and DOC dependent. The guideline that results in the minimum chronic zinc guideline (6.3 μg/L) is based on the combination of field pH (6.0), Hardness (2.3 mg/L) and DOC (0.2 mg/L). Guidelines calculated with pH, Hardness and DOC values falling outside the defined range (i.e., pH 6.5 to 8.13, Hardness 23.4 to 399 mg/L and DOC 0.3 to 22.9 mg/L) should be used with caution, as the WQG does not necessarily accurately reflect toxic effects at the low and high pH, hardness and DOC extremes. The quideline is calculated based on the individual pH, hardness and DOC measurements for each sample.
- (C) = concentration is greater than the chronic aquatic life CCME guideline or outside the recommended pH, DO or total alkalinity range. Bolded concentrations are greater than a water quality guidelines

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceedances

Table 3. MEL-14 Discharge Summary (5 June 2020 to 16 July 2020)

Date	Daily discharge to Meliadine Lake (m³)	Cumulative discharge to Meliadine Lake (m ³)	Specific conductivity (μS/cm)
05-Jun-20	2,197	2,197	4,780
06-Jun-20	9,001	11,198	4,650
07-Jun-20	9,830	21,028	4,548
08-Jun-20	12,137	33,165	4,780
09-Jun-20	14,389	47,554	4,843
10-Jun-20	14,369	61,923	4,896
11-Jun-20	14,373	76,296	4,923
12-Jun-20	14,561	90,857	4,960
13-Jun-20	14,901	105,758	5,028
14-Jun-20	14,812	120,570	5,054
15-Jun-20	15,012	135,582	4,967
16-Jun-20	14,965	150,547	4,894
17-Jun-20	13,857	164,404	4,930
18-Jun-20	15,254	179,658	4,948
19-Jun-20	14,872	194,530	4,945
20-Jun-20	14,291	208,821	4,874
21-Jun-20	14,688	223,509	4,851
22-Jun-20	14,842	238,351	4,396
23-Jun-20	15,767	254,118	3,906
24-Jun-20	15,295	269,413	4,750
25-Jun-20	9,141	278,553	5,090
26-Jun-20	6,456	285,009	4,589
27-Jun-20	16,678	301,688	4,829
28-Jun-20	16,961	318,649	4,588
29-Jun-20	17,518	336,167	4,534
30-Jun-20	16,786	352,953	4,989
01-Jul-20	16,656	369,609	4,750
02-Jul-20	14,670	384,279	4,665
03-Jul-20	12,646	396,925	4,223
04-Jul-20	16,860	413,785	3,285
05-Jul-20	17,211	430,995	2,206
06-Jul-20	14,792	445,787	1,883
07-Jul-20	16,313	462,100	1,905
08-Jul-20	16,529	478,629	1,913
09-Jul-20	15,996	494,625	1,952
10-Jul-20	12,299	506,924	2,053
11-Jul-20	16,202	523,126	2,038
12-Jul-20	15,992	539,118	2,027
13-Jul-20	16,213	555,331	2,075
14-Jul-20	7,674	563,005	2,146
15-Jul-20	15,340	578,345	2,180
16-Jul-20	10,904	589,249	2,188

Notes: m^3 = metres cubed; μ S/cm = microsiemens per centimetre.

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2JO Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 1 of 2

Work Order: Sample Number: 242474 63745

SAMPLE IDENTIFICATION

Company:

Agnico Eagle Mines Limited - Meliadine Project

Location:

Rankin Inlet NU

GPS Location:

63*02'15.5" 92*13'06.3"

Substance:

MEL - 14

Sampling Method: Sampled By:

Grab MG

Sample Description: Clear, pale yellow, mild strong odour.

Date Collected:

Time Collected:

Date Received:

Time Received:

Temperature on Receipt:

Date Tested:

09:30 21 °C

13:40

2020-06-11

2020-06-07

2020-06-11

Test Method:

Reference Method for Determining Acute Lethality of Effluents to Daphnia magna. Environment

Canada EPS 1/RM/14 (Second Edition, December 2000, with February 2016 amendments).

48-HOUR TEST RESULTS

Value Effect 95% Confidence Limits LC50

>100% EC50 >100%

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Species:

Daphnia magna

Time to First Brood:

7.8 days

Calculation Method

Organism Batch:

Dm20-11

Average Brood Size:

41.3 young

Culture Mortality:

2.7% (previous 7 days)

TEST CONDITIONS

Sample Treatment:

pH Adjustment:

None None

Number of Replicates:

1

Organisms / Replicate:

10

Pre-aeration Rate:

~30 mL/min/L

Organisms / Test Level:

Duration of Pre-Aeration:

0 minutes

Organism Loading Rate:

15.0 mL/organism

Test Aeration:

None

Impaired Control Organisms: 0.0%

Test Method Deviation(s):

Hardness Adjustment:

None

None

REFERENCE TOXICANT DATA

Toxicant:

LC50:

Sodium Chloride

Historical Mean LC50:

6.4 g/L

Date Tested:

2020-06-09

Warning Limits $(\pm 2SD)$:

5.6 - 7.4 g/L

5.7 g/L

Organism Batch:

Dm20-11

95% Confidence Limits:

5.4 - 6.0 g/L

Analyst(s):

JCS

Statistical Method:

Spearman-Kärber

COMMENTS

All test validity criteria as specified in the test method were satisfied.

Approved B√ :

TOXICITY TEST REPORT

Test Data Reviewed By:

Date:

2020-06-16

 $Daphnia\ magna$

EPS 1/RM/14

Page 2 of 2

Work Order: 242474 Sample Number: 63745

- = not measured/not required

* adjusted for temperature and barometric pressure

TEST DATA

				TEST DATA				
			pН	Dissolved O ₂ (mg/L)	Conductivity (µmhos/cm)	$\begin{array}{c} Temperature \\ (^{\circ}C) \end{array}$	O ₂ Saturation (%)*	Hardness (as CaCO ₃)
Initial	Water Chemist	ry (100%):	7.2	8.5	4690	19	99	>1000 mg/I
			01	nours				
Date & Time	2020-06-11	16:30						
Analyst(s):	JCS (JL)							
Concentration (%)	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation*	Hardness
100	0	0	7.2	8.5	4690	19	99	>1000
50	0	0	7.9	8.5	2586	19	_	_
25	0	0	8.2	8.5	1688	19	_	_
12.5	0	0	8.3	8.6	1307	19	_	_
6.25	0	0	8.5	8.6	1073	19	_	_
Control	0	0	8.5	8.8	796	19	100	230
Notes:								
			24	hours				
Date & Time Analyst(s):	2020-06-12 SV	16:30						
Concentration (%)	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
100	_	0	_	_	-	20		
50	_	0	_	_	_	20		
25	-	0	_		_	20		
12.5	_	0	_	_		20		
6.25		0	_	-		20		
Control	-	0		_	-	20		
Notes:								
			48	hours				
Date & Time Analyst(s):	2020-06-13 SV	16:30						
Concentration (%)	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
100	0	0	8.1	8.3	4660	20		
50	0	0	8.4	8.3	2669	20		
25	0	0	8.4	8.4	1808	20		
12.5	0	0	8.5	8.4	1381	20		
6.25	0	0	8.5	8.5	1093	20		
Control	0	0	8.5	8.4	813	20		
Notes:								
		Number	immobi	ile does not incl	ude number d	ead.		

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 1 of 2

Work Order: Sample Number: 242474 63745

SAMPLE IDENTIFICATION

Company:

Agnico Eagle Mines Limited - Meliadine Project

Location:

Rankin Inlet NU

GPS Location:

63*02'15.5" 92*13'06.3"

Substance:

MEL - 14

Sampling Method:

Grab

Sampled By: Sample Description:

MG

Clear, pale yellow, mild strong odour.

Date Collected:

Time Collected:

Date Received: Time Received:

2020-06-11 09:30

Temperature on Receipt: 21 °C

13:40

2020-06-07

Date Tested: 2020-06-11

Test Method(s):

Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout. Environment Canada, EPS 1/RM/13 (2nd Edition, December 2000, with May 2007 and February 2016 amendments).

96-HOUR TEST RESULTS

Effect

Value

95% Confidence Limits

Statistical Method

LC50

>100%

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Test Organism:

Oncorhynchus mykiss

Average Fork Length (± 2 SD):

 $36.0 \text{ mm} (\pm 7.8)$

Organism Batch:

T20-12

Range of Fork Lengths:

32 - 43 mm $0.40 \text{ g} (\pm 0.25)$

Control Sample Size:

10

Average Wet Weight (± 2 SD): Range of Wet Weights:

Cumulative stock tank mortality rate:

0% (previous 7 days)

0.28 - 0.67 g

Control organisms showing stress:

0 (at test completion)

Organism Loading Rate:

0.2 g/L

TEST CONDITIONS

Sample Treatment:

None

Volume Tested (L):

16

pH Adjustment:

None

Number of Replicates:

1

Test Aeration:

Yes

Organisms Per Replicate:

10

Pre-aeration/Aeration Rate:

 6.5 ± 1 mL/min/L

Organisms Per Test Level:

10

Duration of Pre-Aeration:

30 minutes

Test Method Deviation(s):

None

REFERENCE TOXICANT DATA

Toxicant:

Potassium Chloride

Date Tested:

2020-06-04

Organism Batch:

T20-12

Historical Mean LC50:

3794 mg/L

LC50:

4171 mg/L

Warning Limits (± 2SD):

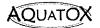
2914 - 4939 mg/L

95% Confidence Limits:

3684 - 4601 mg/L

Analyst(s):

FS, TL, KP


Statistical Method:

Linear Regression (MLE)

COMMENTS

•All test validity criteria as specified in the test method were satisfied.

Approved Bfy:

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 2 of 2

Work Order: Sample Number : 63745

242474

Sample I (amour)			TEST DAT	ГА			
			pН	Dissolved O ₂ (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	O ₂ Saturation (%)*
Initial Water Chemi	stry (100%):		7.2	7.6	4571	16	84
After 30 min pre-ae	-		7.2	7.9	4569	16	86
			A TIOTID	<u> </u>			
			0 HOUR	8			
Date & Time	2020-06-11	14:30					
Analyst(s):	KP			n. 1 10	a		O 5-44:*
Concentration (%)	Dead	Impaired	pН				O ₂ Saturation*
100	0	0	7.2	7.9	4569	16	86
50	0	0	7.9	9.3	2799	16	_
25	0	0	8.2	9.4	1747	16	_
12.5	0	0	8.3	9.4	1317	16	_
6.25	0	0	8.4	9.3	1080	16	-
Control Notes:	0	0	8.3	9.3	831	16	99
	4- 		24 HOUR	RS		**************************************	
Date & Time Analyst(s):	2020-06-12 RK(FS)	14:30					
Concentration (%)	Dead	Impaired	pН	Dissolved O ₂	Conductivity		
100	0	0	-	_	_	15	
50	0	0	-	-	-	15	
25	0	0	_		_	15	
12.5	0	0	-	-		15	
6.25	0	0	_	. –	-	15	
Control Notes:	Û	0	_	_	-	15	
			48 HOUI	RS	- (Add - 2-1)		
Date & Time Analyst(s):	2020-06-13 MJT(FS)	14:30					
Concentration (%)	Dead	Impaired	pН	Dissolved O ₂	Conductivity		
100	0	0	-	_	-	15	
50	0	0	_	_	-	15	
25	0	0	_	_	-	15	
12.5	0	0	-	_	_	15	
6.25	0	0	****		-	15	
Control Notes:	0	0	~	***	1800	15	
			72 HOUI	RS			
Date & Time	2020-06-14	14:30	72 HOC1	N O			
Analyst(s): Concentration (%) 100	MDH Dead 0	Impaired ()	pН	Dissolved O ₂	Conductivity	Temperature	:
50	0	0	****	****		15	
25	0	0		***		15	
12.5	0	0				15	
6.25	0	0	-	***		15	
Control Notes:	0	0	****		***	15	
		·····	96 HOU	RS			
Date & Time Analyst(s):	2020-06-15 KP	14:30					
Concentration (%)	Dead	Impaired	pН		Conductivity		2
100	0	0	7.9	9.7	4629	15	
50	0	0	8.1	9.7	2817	15	
25	0	0	8.1	9.8	1710	15	
12.5	0	0	8.1	9.8	1271	15	
6.25	0	0	8.1	9.7	1026	15	
Control Notes:	0	0	8.1	9.7	755	15	
"-" = not measured/						eviewed By:	
Number impaired do	oes not include num	ber dead.			Date:	202	0-06-16

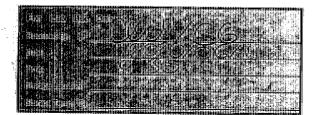
Number impaired does not include number dead. * adjusted for temperature and barometric pressure

CHAIN OF CUSTODY RECORD

P.O. Number: 644699	+
Field Sampler Name (print): MG	
Signature:	
Affiliation: Agnico Eagle Mines - Meliadine	
Sample Storage (prior to shipping): Refrigerator/cooler	
Custody Relinquished by: Laura Hanson	
Date/Time Shipped: 2020-06-08	

Shipping Address:

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road


Puslinch, Ontario Canada N0B 2J0

Voice: (519) 763-4412

Fax: (519) 763-4419

Client:	Agnico Eagle Meliadine Project Rankin Inlet, Nunavut, Canada
Phone:	(819) 759-3555
Fax:	
Contact	Dan Gorton, Sean Arruda

	Sample Identification			Analyses Requested					S	Sample Method and Volume					
Date Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name	AguaTok Temp. on Sample Number ; arrival.	Rainbow Trout Single Concentration	Rainbow Trout LC50	Daphnia magna Single Concentration	Daphnia magna LC50	Fathead Minnow Survival & Growth	Ceriodaphnia dubia Survival & Reproduction	Lemna minor Growth	Pseudokirchneriella subcapitata Growth	Microtox	Grab	Composite	# of Containers and Volume (eg. 2 x 1L, 3 x 10L, etc.)
2020-06-07	13:40	MEL-14	63745		1		1						1		2 pails (40L)
			2												
	-														
	-			_											
			144 74 144 14												
	-		The second secon											+	
							_							\dashv	

Please list any special requests or instructions:			<u></u>	
Add on certificate GPS location	63*02'15.5"	92*13'06.3"		
		·····		10
Direction]

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 1 of 2

Work Order: 242545 Sample Number: 63833

SAMPLE IDENTIFICATION Company: Agnico Eagle Mines Limited - Meliadine Project Location: Rankin Inlet NU Date Collected: 2020-06-14 **GPS** location 63*02'15.5" 92*13'06.3' Time Collected: 13:40 Substance: MEL-14 Date Received: 2020-06-18 Sampling Method: 10:00 Grab Time Received: Sampled By: RS/LH Temperature on Receipt: 22 °C Sample Description: Clear, light yellow, mild odour. Date Tested: 2020-06-18 Reference Method for Determining Acute Lethality of Effluents to Daphnia magna. Test Method: Environment Canada EPS 1/RM/14 (Second Edition, December 2000, with February 2016 amendments). **48-HOUR TEST RESULTS** Effect Value 95% Confidence Limits Calculation Method >100% LC50 EC50 >100% The results reported relate only to the sample tested and as received. **TEST ORGANISM** Species: Time to First Brood: Daphnia magna 7.8 days Dm20-11 Organism Batch: Average Brood Size: 41.7 young Culture Mortality: 7.3% (previous 7 days) **TEST CONDITIONS** Sample Treatment: None Number of Replicates: 1 pH Adjustment: None Organisms / Replicate: 10 ~30 mL/min/L Pre-aeration Rate: Organisms / Test Level: 10 Duration of Pre-Aeration: 0 minutes Organism Loading Rate: 15.0 mL/organism Test Aeration: None Impaired Control Organisms: 0.0% Test Method Deviation(s): Hardness Adjustment: None None REFERENCE TOXICANT DATA Toxicant: Sodium Chloride Historical Mean LC50: 6.4 g/L5.6 - 7.4 g/L Date Tested: 2020-06-09 Warning Limits (\pm 2SD): LC50: 5.7 g/LOrganism Batch: Dm20-11 95% Confidence Limits: 5.4 - 6.0 g/LAnalyst(s): **JCS** Statistical Method: Spearman-Kärber **COMMENTS**

All test validity criteria as specified in the test method were satisfied.

Approved By:		
· ·	D	. 17

Work Order: 242545 Sample Number: 63833

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 2 of 2

TECT DATA

				TEST DATA				
			pН	(mg/L)	(µmhos/cm)	(°C)	O ₂ Saturation (%)*	Hardness (as CaCO ₃
Initial	Water Chemis	try (100%) :	7.1	8.2	5020	18	95	>1000 mg/
			0 1	hours				
Date & Time Analyst(s):	2020-06-18 JCS (JL)	16:00						
Concentration (%)	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation*	Hardness
100	0	0	7.1	8.2	5020	18	95	>1000
50	0	0	7.7	8.5	2903	18	_	_
25	0	0	8.0	8.6	1898	18	_	_
12.5	0	0	8.1	8.7	1437	18	_	_
6.25	0	0	8.3	8.8	1113	18	_	_
Control	0	0	8.6	8.9	776	18	100	230
Notes:								
			24	hours				
Date & Time Analyst(s):	2020-06-19 SJG (SV)	16:00						
Concentration (%)	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
100	_	0	_	_	_	20		
50	_	0	_	_	_	20		
25	_	0	_	_	_	20		
12.5	_	0	_	_	_	20		
6.25	_	0	_	_	_	20		
Control	_	0	_	_	_	20		
Notes:	Test organism SJG	ns in the 100%	% conce	ntration appear	ed to be trappe	ed in settled so	lids. 2020-06-19	
			48	hours				
Date & Time Analyst(s):	2020-06-20 SV	16:00						
	5 (
Concentration (%)	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
` '		Immobile	рН 8.1	Dissolved O ₂ 8.2	Conductivity 5000	Temperature 20		
100	Dead		-					
100 50	Dead 0	1	8.1	8.2	5000	20		
100 50 25	Dead 0 0	1 0	8.1 8.3	8.2 8.1	5000 2568	20 20		
100 50 25 12.5	Dead 0 0 0	1 0 0	8.1 8.3 8.3	8.2 8.1 8.3	5000 2568 1765	20 20 20		
100 50 25 12.5 6.25	Dead 0 0 0 0	1 0 0 0	8.1 8.3 8.3 8.4	8.2 8.1 8.3 8.3	5000 2568 1765 1293	20 20 20 20		
50 25 12.5 6.25 Control	Dead 0 0 0 0 0 0	1 0 0 0	8.1 8.3 8.3 8.4 8.4	8.2 8.1 8.3 8.3 8.4	5000 2568 1765 1293 1058	20 20 20 20 20 20		
100 50 25 12.5 6.25 Control	Dead 0 0 0 0 0 0	1 0 0 0 0	8.1 8.3 8.3 8.4 8.4 8.5	8.2 8.1 8.3 8.3 8.4	5000 2568 1765 1293 1058 782	20 20 20 20 20 20 20		
100 50 25	Dead 0 0 0 0 0 0 0	1 0 0 0 0	8.1 8.3 8.3 8.4 8.4 8.5	8.2 8.1 8.3 8.3 8.4 8.3	5000 2568 1765 1293 1058 782	20 20 20 20 20 20 20	viewed By :	JL

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2JO Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 1 of 2

Work Order: 242545 Sample Number: 63833

		SAMPLE IDENTIFI	CATION		
Company:	Agnico Eagle M	lines Limited - Meliadine Pr	roject		
	Rankin Inlet N	U	Date Collected:	2020-06-14	
GPS location	63*02'15.5" 92*	' 13'06.3'	Time Collected:	13:40	
Substance:	MEL-14		Date Received:	2020-06-18	
Sampling Method:	Grab		Time Received:	10:00	
Sampled By:	RS/LH		Temperature on Receipt:	22 °C	
Sample Description :	Clear, light yelle	ow, mild odour.	Date Tested:	2020-06-18	
		anada, EPS 1/RM/13 (2nd E	ethality of Liquid Effluents to Raidition, December 2000, with May		
		96-HOUR TEST RI			
Effect	Value	95% Confidence	ce Limits Statistical Met	hod	
LC50	>100%	_	_		
	The result	s reported relate only to the sai	mple tested and as received.		
		TEST ORGAN	ISM		
Test Organism:		Oncorhynchus mykiss	Average Fork Length (± 2 SD):	43.5 mm (±6.2)	
Organism Batch:		T20-13	Range of Fork Lengths:	38 - 49 mm	
Control Sample Size:		10	Average Wet Weight (± 2 SD):	0.65 g (±0.25)	
Cumulative stock tank	mortality rate:	0.1% (previous 7 days)	Range of Wet Weights:	0.45 - 0.78 g	
Control organisms sho	wing stress:	0 (at test completion)	Organism Loading Rate:	0.4 g/L	
		TEST CONDIT	IONS		
Sample Treatment:		None	Volume Tested (L):	16	
pH Adjustment:		None	Number of Replicates:	1	
Test Aeration:		Yes	Organisms Per Replicate:	10	
Pre-aeration/Aeration	Rate:	$6.5 \pm 1 \text{ mL/min/L}$	Organisms Per Test Level:	10	
Duration of Pre-Aerati	on:	30 minutes	Test Method Deviation(s):	None	
		REFERENCE TOXIC	ANT DATA		
Toxicant:		Potassium Chloride	Date Tested:	2020-06-18	
Organism Batch:		T20-13	Historical Mean LC50:	3793 mg/L	
LC50:		3464 mg/L	Warning Limits (± 2SD):	2915 - 4934 mg/l	
95% Confidence Limit	ts:	3207 - 3742 mg/L	Analyst(s):	MJT, MDH, TL	
Statistical Method:		Linear Regression (MLE)			
		COMMENT	S		

COMMENTS

•All test validity criteria as specified in the test method were satisfied.

Approved By:	
	Project Manager

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 2 of 2

Work Order: 242545 Sample Number: 63833

TEST DATA

			TEST DA	TA			
			pН	Dissolved O ₂ (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	O ₂ Saturation (%)*
Initial Water Chem	istry (100%):		7.1	8.6	4961	16	93
After 30 min pre-a			7.2	9.0	4981	16	97
-			0 HOUR	00			
Date & Time	2020-06-18	15:10	UHOUK	63			
Analyst(s):	MDH	13.10					
Concentration (%)	Dead	Impaired	»II	Dissolved O	Conductivity	Tompowatuwa	O ₂ Saturation*
100	Dead 0	Impaired ()	рН 7.2	9.0	4981	16	97
50	0	0	7.2	9.6	3118	14	97
25	0	0	8.0	9.8	1994	14	_
12.5	0	0	8.1	9.6 9.6	1443	14	_
6.25	0	0	8.2	9.6 9.5		14	
Control	0	0	8.2		1189	14	100
Notes:	U	U	8.2	9.8	880	14	100
			24 110111	26			
Date & Time	2020-06-19	15:10	24 HOUI	13			
Analyst(s):	FS						
Concentration (%)	Dead	Impaired	pН	Dissolved O2	Conductivity	Temperature	
100	0	0	_	_	_	15	
50	0	0	_	_	_	15	
25	0	0	_	_	_	15	
12.5	0	0	_	_	_	15	
6.25	0	0	_	_	_	15	
Control	0	0	_	_	_	15	
Notes:							
			10 11 0 11	20			
			48 HOUI	RS			
Date & Time Analyst(s):	2020-06-20 FS	15:10					
Concentration (%)	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	
100	0	0	_	_	_	16	
50	0	0	_	_	_	16	
25	0	0	_	_	_	16	
12.5	0	0	_	_	_	16	
6.25	0	0	_	_	_	16	
Control	0	0	_	_	_	16	
Notes:							
			72 HOUI	RS			
Date & Time Analyst(s):	2020-06-21 MDH	15:10					
Concentration (%)	Dead	Impaired	pН	Dissolved O	Conductivity	Temperatura	
100	0) ()	- -	— — — — — — — — — — — — — — — — — — —	–	16	
50	0	0	_	_	_	16	
25	0	0	_	_	_	16	
12.5	0	0	_	_	_	16	
6.25	0	0	_	_	_	16	
Control	0	0	_	_	_	16	
Notes:	Ü					10	
			96 HOUI	RS			
Date & Time	2020-06-22	15:10					
Analyst(s):	TL	15.10					
Concentration (%)	Dead	Impaired	pН	Dissolved O-	Conductivity	Temperature	
100	0	0	7.9	9.0	4952	16	
50	0	0	8.1	9.1	3101	16	
25	0	0	8.2	9.1	1962	16	
12.5	0	0	8.2	9.1	1395	16	
6.25	0	0	8.2	9.1	1145	16	
Control	0	0	8.2	9.1	815	16	
Notes:	U	U	0.2	9.1	013	10	
1,000.							
"_" = not measured/n	ot required				Test Data Re	viewed By:	AW

[&]quot;-" = not measured/not required

Number impaired does not include number dead.

Test Data Reviewed By : AW
Date : 2020-06-23

^{*} adjusted for temperature and barometric pressure

CHAIN OF CUSTODY RECORD

24254S AquaTox Work Order No:

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, Ontario Canada N0B 2J0 Shipping Address:

Voice: (519) 763-4412

(519) 763-4419 Fax:

Agnico Eagle Client:

Meliadine Project Rankin Inlet, Nunavut, Canada

Phone: (819) 759-3555

Sample Storage (prior to shipping); Refrigerator/cooler

Randy Schwandt

Date/Time Shipped:

Custody Relinquished by:

Affiliation: Agnico Eagle Mines - Meliadine

RS/LH

Field Sampler Name (print): P.O. Number: 644699

Signature:

Fax:

contact: Dan Gorton, Sean Arruda

Sample Method and Volume	# of Containers and Volume (eg. 2 x 1L, 3 x 10L, etc.)	2 pails (40L)						
ample	Composite							
ŭ	ds1Đ	>						
	Microtox							
	Pseudokirchneriella httmospitata Growth							
	thwore Growth							
nested	Ceriodaphnia dubia Survival & Reproduction							
Analyses Requested	wonniM bashta Survival & Growth							
Analys	Daphnia magna LC50	>						
	Daphnia magna Single Concentration							
	Rainbow Trout LC50	>						
	Rainbow Trout Single Concentration							
	p. on ival	7						
	Tem	12						
	AquaTox Temp.on	63833		12				
Sample Identification	Sample Name	MEL-14		1 Time provided by other	Vid email,			
	Time Collected (e.g. 14:30, 24 hr clock)	13:40	1	4				
	Date Collected (yyyy-mm-dd)	2020-06-14						

20-0101 53G/FS 10:00 For Lab Use Only Storage Temp.(°C) Storage Location: Received By: Date: Time:

Add on certificate GPS location 63*02'15.5" 92*13'06.3" Please list any special requests or instructions:

Standard COC with Microtox rev 8 2416 v9 01 TC

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 1 of 2

Work Order: 242603 Sample Number: 63909

SAMPLE IDENTIFICATION

Company: Agnico Eagle Mines Limited - Meliadine Project Date Collected: 2020-06-21 Location: Rankin Inlet NU Time Collected: 13:37 63*02'15.5" 92*13'06.3" GPS Location: Date Received: 2020-06-25 Substance: MEL-14 Time Received: 09:45 Sampling Method: Grab Temperature on Receipt: 20 °C Sampled By: D.M., G. L. Date Tested: 2020-06-25

Sample Description: Clear, yellow, mild odour.

Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna. Environment

Canada EPS 1/RM/14 (Second Edition, December 2000, with February 2016 amendments).

48-HOUR TEST RESULTS										
Effect	Value	95% Confidence Limits	Calculation Method							
LC50	>100%	_	_							
EC50	>100%	_	_							

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Species: Daphnia magna Time to First Brood: 8.2 days
Organism Batch: Dm20-12 Average Brood Size: 41.4 young

Culture Mortality: 3.2% (previous 7 days)

TEST CONDITIONS

Sample Treatment: None Number of Replicates: 1
pH Adjustment: None Organisms / Replicate: 10
Pre-aeration Rate: ~30 mL/min/L Organisms / Test Level: 10

Duration of Pre-Aeration: 0 minutes Organism Loading Rate: 15.0 mL/organism

Test Aeration : None Impaired Control Organisms : 0.0% Hardness Adjustment : None Test Method Deviation(s) : None

REFERENCE TOXICANT DATA

Sodium Chloride Toxicant: Historical Mean LC50: 6.4 g/LDate Tested: 2020-06-23 Warning Limits (\pm 2SD): 5.5 - 7.4 g/LLC50: 5.9 g/L Organism Batch: Dm20-12 95% Confidence Limits: 5.6 - 6.2 g/LAnalyst(s): **JCS**

Statistical Method: Spearman-Kärber

COMMENTS

All test validity criteria as specified in the test method were satisfied.

Approved By:	

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 2 of 2

Work Order: 242603 Sample Number: 63909

* adjusted for temperature and barometric pressure

TEST DATA

			pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation	Hardness
T *** T		(1000/)	7.0	(mg/L)	(µmhos/cm)	(°C)	(%)*	(as CaCO ₃)
Initial	Water Chemis	try (100%) :	7.2	8.4	4920	19	96	>1000 mg/
			0 1	hours				
Date & Time Analyst(s):	2020-06-25 JCS (AW)	16:05						
Concentration (%)	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation*	Hardness
100	0	0	7.2	8.4	4920	19	96	>1000
50	0	0	7.8	8.5	2803	19	_	_
25	0	0	8.0	8.6	1835	19	_	_
12.5	0	0	8.1	8.7	1325	19	_	_
6.25	0	0	8.2	8.7	1020	19	_	_
Control	0	0	8.6	8.9	758	19	100	220
Notes:								
			24	hours				
Date & Time	2020-06-26	16:05						
Analyst(s):	SV							
Concentration (%)	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
100	_	0	_	_	_	20		
50	_	0	_	_	_	20		
25	_	0	_	_	_	20		
12.5	_	0	_	_	_	20		
6.25	_	0	_	_	_	20		
Control	_	0	_	_	_	20		
Notes:								
			48	hours				
Date & Time Analyst(s):	2020-06-27 SV	16:05						
Concentration (%)	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
100	0	0	8.1	8.3	4910	20		
50	0	0	8.2	8.3	2723	20		
25	0	0	8.3	8.3	1780	20		
12.5	0	0	8.4	8.4	1289	20		
6.25	0	0	8.4	8.4	1013	20		
Control	0	0	8.5	8.5	761	20		
Notes:								
		Number	immobi	le does not incl	ude number de	ead.		
"_" = not measured/r	not required					Test Data Rev	viewed Bv :	EJS
*	1						- ,	

Date:

2020-06-30

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 1 of 2

Work Order: 242603 Sample Number: 63909

		SAMPLE IDEN	TIFICATI	ON	
Company: Agnico Eagle Mines Limited - Meliadine Project Location: Rankin Inlet NU GPS Location: 63*02'15.5" 92*13'06.3" Substance: MEL-14 Sampling Method: Grab Sampled By: D.M., G. L. Sample Description: Clear, yellow, mild odour. Test Method(s): Reference Method for Determining Acute Lethality Canada, EPS 1/RM/13 (2nd Edition, December 2000					2020-06-25 ow Trout. Environment
	Canada, EPS 1/			·	iry 2016 amendments).
Effort	Value	96-HOUR TE 95% Confide			had
Effect		93% Connde	nce Lillins	Statistical Met	IIOU
LC50	>100%	_		_	
	The	results reported relate only to	the sample te	sted and as received.	
		TEST OR	GANISM		
Test Organism: Organism Batch: Control Sample Size: Cumulative stock tank mortality rate: Control organisms showing stress:		Oncorhynchus mykiss T20-13 10 0% (previous 7 days) 0 (at test completion)	Average Fork Length (± 2 SD): Range of Fork Lengths: Average Wet Weight (± 2 SD): Range of Wet Weights: Organism Loading Rate:		43.0 mm (±7.5) 37 - 48 mm 0.67 g (±0.36) 0.43 - 0.90 g 0.3 g/L
		TEST CON	DITIONS		
Sample Treatment: pH Adjustment: Test Aeration: Pre-aeration/Aeration Duration of Pre-Aerat		None None Yes 6.5 ± 1 mL/min/L 30 minutes	Volume Tested (L): Number of Replicates: Organisms Per Replicate: Organisms Per Test Level: Test Method Deviation(s):		20 1 10 10 None
		REFERENCE TO	XICANT I	DATA	
Toxicant: Organism Batch: LC50: 95% Confidence Limits: Statistical Method:				al Mean LC50 : g Limits (± 2SD) :	2020-06-18 3793 mg/L 2915 - 4934 mg/L MJT, MDH, TL
		COMM	IENTS		
•All test validity crite	ria as specified in	n the test method were satisf			

Approved By: _

Project Manager

Work Order:

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 2 of 2

Sample Number: 63909

242603

* adjusted for temperature and barometric pressure

Sample Number :	63909		TEST DAT	ΓΑ			
			рН	Dissolved O ₂ (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	O ₂ Saturation (%)*
Initial Water Chem	istry (100%):		7.0	8.4	4859	16	91
After 30 min pre-ac	eration:		7.1	8.9	4875	16	97
			0 HOURS	<u> </u>			
Date & Time	2020-06-25	15:00	onock	9			
Analyst(s):	KP/MDH	13.00					
Concentration (%)	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation
100	0	0	7.1	8.9	4875	16	97
0	0	0	7.8	9.3	2882	16	_
25	0	0	8.0	9.4	1938	16	_
12.5	0	0	8.1	9.4	1434	16	_
6.25	0	0	8.1	9.3	1179	16	_
Control	0	0	8.1	9.2	876	16	100
Notes:							
			24 HOUR	S			
Date & Time	2020-06-26	15:00		-			
Analyst(s):	MJT(FS)		**	D. 1 10		m .	
Concentration (%)	Dead	Impaired	pН	-	Conductivity	-	
100 0	0	0	_	_	_	15 15	
25	0	0	_	_	_	15	
12.5	0	0	_	_	_	15	
6.25	0	0	_	_	_	15	
Control	0	0	_	_	_	15	
Notes:	U	U	_	_	_	13	
TVOICS.							
			48 HOUR	S			
Date & Time	2020-06-27	15:00					
Analyst(s):	MJT(FS)						
Concentration (%)	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	
100	0	0	-	_	_	15	
0	0	0	_	_	_	15	
25	0	0	_	_	_	15	
12.5	0	0	_	_	_	15	
6.25	0	0	_	_	_	15	
Control	0	0	_	_	_	15	
Notes:							
			72 HOUR	S			
Date & Time Analyst(s):	2020-06-28 TL	15:00					
Concentration (%)	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	
100	0	0	-	_	_	15	
0	0	0	_	_	_	15	
25	0	0	-	_	_	15	
12.5	0	0	-	_	_	15	
6.25	0	0	-	_	_	15	
Control	0	0	_	_	_	15	
Notes:							
·			96 HOUR	S			
Date & Time	2020-06-29	15:00					
Analyst(s): Concentration (%)	TL Dead	Impaired	ьЩ	Dissolved O ₂	Conductivit	Temperature	
100	Dead 0	1mpaireu ()	рН 7.9	9.1	4854	16	
0	0	0	8.2	9.1	2870	16	
25	0	0	8.2	9.1	1925	16	
12.5	0	0	8.2	9.2	1406	16	
6.25	0	0	8.2	9.2 9.2			
	0	0			1147 866	16 16	
Control Notes:	U	U	8.2	9.1	866	16	
"_" = not measured/i	not required				Test Data Re	wiewed Du	EJS
	-	har daad					
Number impaired do	es not include num				Date:	2020	-06-30

CHAIN OF CUSTODY RECORD

AquaTox Work Order No: 242663

	_
P.O. Number: 644699	
DM/GL	
Field Sampler Name (print):	
Signature:	
Affiliation: Agnico Eagle Mines - Meliadine	
Sample Storage (prior to shipping): Refrigerator/cooler	
Daphne Morin	
Custody Relinquished by:	-
Date/Time Shipped:	

Shipping Address: AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road

Puslinch, Ontario Canada N0B 2J0

Voice: (519) 763-4412

Fax: (519) 763-4419

dine Project n Inlet, Nunavut, Canad	da
759-3555	
) 759-3555 n Gorton, Sean Arruda

Sample Identification		Analyses Requested						Sample Method and Volume								
Date Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name	AquaTox Sample Number	Temp. on	Rainbow Trout Single Concentration	Rainbow Trout LC50	Daphnia magna Single Concentration	Daphnia magna LC50	Fathead Minnow Survival & Growth	Ceriodaphnia dubia Survival & Reproduction	Lemna minor Growth	Pseudokirchneriella subcapitata Growth	Microtox	Grab	Composite	# of Containers and Volume (eg. 2 x 1L, 3 x 10L, etc.)
2020-06-2	13:37	MEL-14	63909		E	1		1					113	1		2 pails (40L)
				P. 1												
									117							
		V s														

For Lab Use	Only 02 1/ 1/11
Received By:	CW/M)
Date:	2020/06/25
Time:	9:45
Storage Location:	
Storage Temp.(°C)	

Please list any special requests or instructions:			
Add on certificate GPS location	63*02'15.5"	92*13'06.3"	

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0

Tel. (519) 763-4412 Fax. (519) 763-4419

PRELIMINARY

ACUTE LETHALITY REPORT SUMMARY

Work Order: 242677

Sara Savoie Agnico Eagle Mines Limited - Meliadine Project Meliadine Division Rankin Inlet NU X0C 0G0

RESULTS

Substance	Date Collected	Date Tested	Species / Test	LC50	Mortality in 100% Concentration (%)
MEL-14	2020-06-28	2020-07-06	RBT LC50	>100%	0
	2020-06-28	2020-07-06	Dm LC50	>100%	0

RBT = rainbow trout

Dm = Daphnia magna

* = pH Stabilized

SC = single concentration

Test Protocols

Reference Method for Determining Acute Lethality of Effluents to Daphnia magna. Environment Canada EPS 1/RM/14 (Second Edition, December 2000, with February 2016 amendments)

Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout. Environment Canada, EPS 1/RM/13 (2nd Edition, December 2000, with May 2007 and February 2016 amendments).

Although test results are generated under strict QA/QC protocols, the results provided herein, along with any unsigned test reports, faxes, or emails are considered preliminary.

www.bvlabs.com

BUREAU VERITAS LABORATORIES Office 604 734 7276 4606 Canada Way Burnaby, BC V5G 1K5

Toll Free 800 665 8566 Fax 604 731 2386

FATHEAD MINNOW TOXICITY TEST ON:

MEL-13-01, MEL-13-07,& MEL-02-05

Prepared for:

Agnico Eagle Mines Ltd. 10200, Route de Preissac Rouyn-Noranda, QC J0Y 1C0

Prepared by:

Ecotoxicology Group Bureau Veritas Laboratories

Job No.: C039804 July 2020

Summary of Test Results for Samples from Agnico Eagle Mines Ltd Job C039804

Sample: MEL-13-01

Test IC25 or LC25 (%v/v) IC50 or LC50 (%v/v)

Fathead minnow: Survival - >100 (N/A, N/A)

Biomass >100 (N/A, N/A)

Pooled Significant Effect vs MEL-03-02 MEL-04-05 MEL-05-04 references Fathead minnow: Survival No No No No **Biomass** No No No No

N/A = Not available

95% confidence limits in parentheses

Sample: MEL-13-07

Test IC25	or LC25 (%v/v) IC50 or LC50 (%v/v)
-----------	------------------------------------

Fathead minnow: Survival - >100 (N/A, N/A)
Biomass >100 (N/A, N/A) -

Pooled Significant Effect vs MEL-03-02 MEL-04-05 MEL-05-04 references Fathead minnow: Survival No No No No **Biomass** No No No No

Summary of Test Results for Samples from Agnico Eagle Mines Ltd Job C039804

Sample: MEL-02-05

Significant Effect	vs	MEL-03-02	MEL-04-05	MEL-05-04	Pooled references
Fathead minnow:	Survival	No	No	No	No
	Biomass	No	No	No	No

N/A = Not available

95% confidence limits in parentheses

Sample: Site Control (Synthetic Control)

Significant Effect	vs	MEL-03-02	MEL-04-05	MEL-05-04
Fathead minnow:	Survival	No	No	No
	Biomass	No	No	No

Fathead Minnow Test Data Summary

Client Name/Location	Agnico-Eagles Mines Ltd. / Rouyn-Noranda, QC
Testing Lab/Location	Bureau Veritas Laboratories / Burnaby, BC
Collection Approach	6 samples, each split into 3-6 subsamples
Sample	
Sample Names	MEL-13-01, MEL-13-07, MEL-02-05, MEL-03-02, MEL-04- 05, and MEL-05-04
Information on labelling/coding	See Chain of Custody form
Sample collection date (y/m/d)	2020/June/06 & 2020/June/07
Date (y/m/d)/time of sample receipt at lab	2020/Jun/11 @ 08:20
Test Organisms Imported from External Supplier	The Environment Canada document on the importation of test organisms has been followed (September 1999)
Species	Pimephales promelas
Source	Aquatic Bio Systems Inc., Fort Collins, CO.
Age at start of test	<24 hour old larvae
Unusual appearance, behaviour, or treatment of larvae by supplier before shipping or by lab immediately preceding the test	See organism supplier letter and Organism History sheet from Aquatic Biosystems Inc., and Acclimation and Holding Conditions sheet
Swim bladders inflated & actively feeding	Bladders were inflated and larvae were actively feeding
Temp. & DO of shipping water immediately before shipped and upon arrival	See Organism History sheet from Aquatic Biosystems Inc. and Acclimation and Holding Conditions sheet
Acclimation rate & procedure	See Acclimation and Holding Conditions sheet for details.
Culturing conditions	There were no deviations from test-method-specific "must" requirements for culturing of test organisms, facilities, apparatus used for culturing test organisms, and culture/holding-water conditions.
Mortality upon arrival and 24h preceding test	See Acclimation and Holding Conditions sheet
Test Conditions & Facilities	
Test method	EPS 1/RM/22 Second Edition – February 2011
	BBY2SOP-00002 Fathead Minnow 7 Day Survival and Growth Test
Dates or days when subsamples used	See Test Observations sheet
Date for test start (y/m/d)	2020/Jun/12
Date for test completion (y/m/d)	2020/Jun/19

Test vessels	600mL polypropylene plastic beakers
Persons performing test	Y. Su, M. Brassil, M. Hamad, N. Shergill, M. O'Toole
Rate of preaeration	<100 bubbles/min
Duration of preaeration	See Test Observations sheet
Duration/rate of aeration during test	No aeration
pH adjustment procedure	No pH adjustment of samples
Filtration procedure	No filtration of samples
Control/dilution water	Lab Control: Deionized water hardened to 140 mg/L CaCO ₃
	Site Water (Synthetic water): Deionized water mixed with various chemicals as per client's request
	Soft water control: Lab Control water diluted with deionized water to 40 mg/L CaCO ₃
Type & quantity of chemicals added to control/dilution water	NaHCO ₃ , CaSO ₄ , MgSO ₄ , and KCl in the ratio of 1.6:0.8:1.0:0.07
Number and conc. of test solutions	7 (100, 50, 25, 12.5, 6.25, 3.13 and 1.56%v/v) plus a control
Volume and depth of solution	250 mL & 4.5 cm depth
Number of replicates per conc.	3
Number of organisms per test vessel	10
Type of food, frequency of feeding, and ration of food delivered to each replicate	50uL of concentrated, live <i>Artemia</i> nauplii (<24 hours old) was fed to each replicate twice daily; 2 hours prior to water renewal and in the afternoon following water renewal
	Ration of food is decreased by half in any replicate with ≤5 surviving fish
Manner & rate of exchange of test solutions	Daily - 80% of solution was removed with debris and uneaten <i>Artemia</i>
DO & Temperature of sample just before its use	See Test Observations sheet
Conductivity, Temperature, DO, & pH of test solutions and controls at the beginning of the 24-hr period	See Water Quality Measurements sheet; 'initial' water quality measurements
Temperature, DO & pH of test solutions and controls at the end of the 24-hr period	See Water Quality Measurements sheet; 'final' water quality measurements

Test observations and/or deviations from test method and standard practices	There was nothing unusual about the tests, no deviations from the test method, and no problems with the tests.
Results	Results contained in this report refer only to the testing of samples as submitted.
Survival endpoint statistics	
Name and citation of program(s) and	CETIS v1.9.2.4:
methods used for calculating statistical endpoint(s)	Linear Interpolation (ICPIN)
statistical endpoint(s)	Fisher Exact Test
Behaviour, number & percent mortality in each test vessel	See Test Observations sheet and Survival Data sheet
Mean (±SD) percent mortality for each treatment	See Survival Data sheet

Percent of control fish which either appear moribund, display loss of equilibrium or show atypical swimming behaviour	0 % appeared abnormal in any way. See Test Observations sheet
Growth (Biomass) endpoint statistics	
Name and citation of program(s) and methods used for calculating statistical endpoint(s)	CETIS v1.9.2.4: Linear Interpolation (ICPIN) Equal Variance t Two-Sample Test
Weighting techniques applied?	N/A
Residuals Analysis	N/A
Outliers?	None
QA	
Did the test pass the validity criteria of:	Yes:
 ≤ 20% mortality and abnormality in controls Average dry weight of ≥ 250 µg in the controls Reference Toxicant test: LC50 (95% CL) (g NaCl/L) for	 Percent mortality and abnormality: MEL-13-01: 0% MEL-13-07: 0% MEL-02-05: 0% MEL-03-02: 0% MEL-04-05: 0% MEL-05-04: 0% Average dry weight: MEL-13-01: 497 µg MEL-13-07: 573 µg MEL-02-05: 554 µg MEL-03-02: 554 µg MEL-04-05: 554 µg MEL-04-05: 554 µg MEL-05-04: 554 µg
Reference toxicant test historic mean & 2SD range (g NaCl/L) for survival	6.7; 2SD range: (5.5, 8.0)
Reference Toxicant test: IC50 (95% CL) (g NaCl/L) for biomass	6.4 (5.9, 6.9)
Reference toxicant test historic mean & 2SD range (g NaCl/L) for biomass	6.2; 2SD range: (5.3, 7.2)
Invalid Reference toxicant test?	No
Date of Reference toxicant test (y/m/d) and test duration	2020 June 12 7 days
Conditions of reference toxicant test	Same as test conditions, same batch of organisms
Conditions of following toxicality test	Came as test somations, same paten of organisms

Report Date:

03 Jul-20 12:44 (p 1 of 1)

Test Code:

PP-10735-0220 | 20-2104-0068

Fathead Minn	ow 7-d Larval Survi	val and Growt	h Test		Bureau Veritas Laboratories
nalysis ID: Analyzed:	19-3214-2414 19 Jun-20 17:18	Endpoint: Analysis:	7d Survival Rate Single 2x2 Contingency Table	CETIS Ver Official Re	
Batch ID:	13-1526-7178	Test Type:	Growth-Survival (7d)	Analyst:	M. Hamad
Start Date:	12 Jun-20 13:30	Protocol:	EC/EPS 1/RM/22	Diluent:	Reconstituted Water
Ending Date:	19 Jun-20 16:07	Species:	Pimephales promelas	Brine:	Not Applicable
Duration:	7d 3h	Source:	Aquatic Biosystems, CO	Age:	
Sample ID:	11-2996-7815	Code:	C039804	Client:	Agnico Eagle Mines
Sample Date:	07 Jun-20	Material:	Water	Project:	
Receipt Date:	11 Jun-20 08:20	Source:	Agnico Eagle Mines	•	
Sample Age:	5d 14h	Station:	MEL 13-01		

Comments:

Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04.

1.0000

Exact

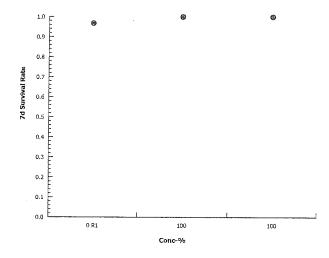
100

Data Trans	sform		Alt Hyp			Comparison Result	
Untransform	med		C > T			100% passed 7d survival rate	
Fisher Exa	ct Test			***************************************			
Control	vs	Group		Test Stat P-Ty	pe P-Value	Decision(α:5%)	

Non-Significant Effect

Data Summary

Ref 1


Data Summary	у						
Conc-%	Code	NR	R	NR + R	Prop NR	Prop R	%Effect
0	R1	29	1	30	0.9667	0.03333	0.0%
100		30	0	30	1	0	-3.45%

1.0000

7d Survival Rate Detail

onc-%	Code	Rep 1	Rep 2	Rep 3
0	R1	1.0000	0.9000	1.0000
100		1.0000	1.0000	1.0000

Graphics

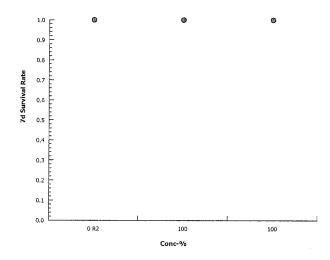
2020 Julo3 dml Analyst:_____

POINTOGE

Report Date:

03 Jul-20 12:44 (p 1 of 1)

Test Code:


PP-10735-0220 | 20-2104-0068

Fathead Mini	now 7-d Larval Survi	val and Growt	h Test		Bureau Veritas Laboratories
nalysis ID: Analyzed:	07-6206-0559 19 Jun-20 17:18	Endpoint: Analysis:	7d Survival Rate Single 2x2 Contingency Table	CETIS Vei Official Re	rsion: CETISv1.9.2 esults: Yes
Batch ID:	13-1526-7178	Test Type:	Growth-Survival (7d)	Analyst:	M. Hamad
Start Date:	12 Jun-20 13:30	Protocol:	EC/EPS 1/RM/22	Diluent:	Reconstituted Water
Ending Date:	19 Jun-20 16:07	Species:	Pimephales promelas	Brine:	Not Applicable
Duration:	7d 3h	Source:	Aquatic Biosystems, CO	Age:	
Sample ID:	11-2996-7815	Code:	C039804	Client:	Agnico Eagle Mines
Sample Date:	: 07 Jun-20	Material:	Water	Project:	
Receipt Date:	: 11 Jun-20 08:20	Source:	Agnico Eagle Mines	•	
Sample Age:	5d 14h	Station:	MEL 13-01		

Comments:

Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04.

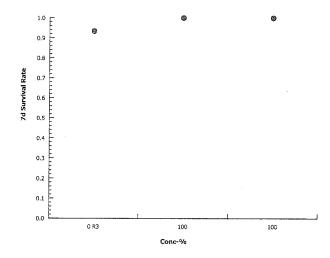
Data Trans	form		Alt Hyp	Alt Hyp Comparison Result								
Untransfor	med		C > T	100% passed 7d survival rate								
Fisher Exa	ct Test											
Control	vs	Group		Test Stat	P-Type	P-Value	Decision	(α:5%)				
Ref 2		100		1.0000	Exact	1.0000	Non-Sign	ificant Effect				
Data Sumr	nary			,								
Conc-%		Code	NR	R	NR + R	Prop NR	Prop R	%Effect				
0		R2	30	0	30	1	0	0.0%				
100			30	0	30	1	0	0.0%				
7d Surviva	l Rate I	Detail										
onc-%		Code	Rep 1	Rep 2	Rep 3							
0		R2	1.0000	1.0000	1.0000							
100			1.0000	1.0000	1.0000							

Report Date:

03 Jul-20 12:44 (p 1 of 1)

Test Code:

PP-10735-0220 | 20-2104-0068


Fathead Minr	now 7-d Larval Survi	val and Growt	h Test		Bureau Veritas Laboratories
`nalysis ID: Analyzed:	13-9111-9604 19 Jun-20 17:18	Endpoint: Analysis:	7d Survival Rate Single 2x2 Contingency Table	CETIS Vers Official Re	
Batch ID:	13-1526-7178	Test Type:	Growth-Survival (7d)	Analyst:	M. Hamad
Start Date:	12 Jun-20 13:30	Protocol:	EC/EPS 1/RM/22	Diluent:	Reconstituted Water
Ending Date:	19 Jun-20 16:07	Species:	Pimephales promelas	Brine:	Not Applicable
Duration:	7d 3h	Source:	Aquatic Biosystems, CO	Age:	
Sample ID:	11-2996-7815	Code:	C039804	Client:	Agnico Eagle Mines
Sample Date:	07 Jun-20	Material:	Water	Project:	
Receipt Date:	11 Jun-20 08:20	Source:	Agnico Eagle Mines	•	
Sample Age:	5d 14h	Station:	MEL 13-01		

Comments:

Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04.

Data Trans	sform		Alt Hyp					Comparison Result					
Untransfor	med		C > T		100% passed 7d survival rate								
Fisher Exa	act Test												
Control	vs	Group		Test Stat	P-Type	P-Value	Decision	ι(α:5%)					
Ref 3		100		1.0000	Exact	1.0000	Non-Sign	ificant Effect					
Data Sumi	mary												
Conc-%		Code	NR	R	NR + R	Prop NR	Prop R	%Effect					
0		R3	28	2	30	0.9333	0.06667	0.0%					
100			30	0	30	1	0	-7.14%					
7d Surviva	ıl Rate I	Detail											
onc-%		Code	Ren 1	Ren 2	Ren 3								

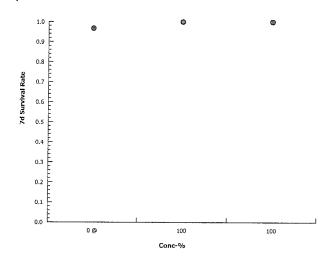
onc-%	Code	Rep 1	Rep 2	Rep 3
0	R3	0.9000	1.0000	0.9000
100		1.0000	1.0000	1.0000

Report Date:

03 Jul-20 12:43 (p 1 of 1)

Test Code:

PP-10735-0220 | 20-2104-0068


Fathead Minr	now 7-d Larval Survi	val and Growt	th Test		Bureau Veritas Laboratories
\nalysis ID: Analyzed:	13-4579-2189 19 Jun-20 17:23	Endpoint: Analysis:	7d Survival Rate Single 2x2 Contingency Table	CETIS Vers	sion: CETISv1.9.2 sults: Yes
Batch ID:	13-1526-7178	Test Type:	Growth-Survival (7d)	Analyst:	M. Hamad
Start Date:	12 Jun-20 13:30	Protocol:	EC/EPS 1/RM/22	Diluent:	Reconstituted Water
Ending Date:	19 Jun-20 16:07	Species:	Pimephales promelas	Brine:	Not Applicable
Duration:	7d 3h	Source:	Aquatic Biosystems, CO	Age:	
Sample ID:	11-2996-7815	Code:	C039804	Client:	Agnico Eagle Mines
Sample Date:	07 Jun-20	Material:	Water	Project:	
Receipt Date:	11 Jun-20 08:20	Source:	Agnico Eagle Mines	•	
Sample Age:	5d 14h	Station:	MEL 13-01		

Comments:

Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04.

Data Trans	form		Alt Hyp				,	Compari	son Result	:			
Untransforr	ned		C > T				100% passed 7d survival rate						
Fisher Exa	ct Test										No. of the state o		
Group 1	vs	Group		Test Stat	P-Type	P-Value	Decision	(a:5%)					
0		100		1.0000	Exact	1.0000	Non-Significant Effect						
Data Sumn	nary					· · · · · · · · · · · · · · · · · · ·							
Conc-%		Code	NR	R	NR + R	Prop NR	Prop R	%Effect					
O .		@	87	3	90	0.9667	0.03333	0.0%					
100			30	0	30	1	0	-3.45%					
7d Surviva	Rate [Detail				,							
onc-%		Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9		
o		@	0.9000	1.0000	0.9000	1.0000	1.0000	1.0000	1.0000	0.9000	1.0000		
100			1.0000	1.0000	1.0000								

Graphics

Analyst: down QA: 14

Report Date:

03 Jul-20 12:39 (p 1 of 2)

Test Code:

PP-10735-0220 | 20-2104-0068

Agnico Eagle Mines

Fathead Wilni	now 7-d Larval Surviv	al and Growt	n lest		Bureau Veritas Laboratories
nalysis ID: Analyzed:	14-7306-7307 19 Jun-20 17:18	•	7d Survival Rate Linear Interpolation (ICPIN)	CETIS Vers Official Res	
Batch ID:	13-1526-7178	Test Type:	Growth-Survival (7d)	Analyst:	M. Hamad
Start Date:	12 Jun-20 13:30	Protocol:	EC/EPS 1/RM/22	Diluent:	Reconstituted Water
Ending Date:	19 Jun-20 16:07	Species:	Pimephales promelas	Brine:	Not Applicable
Duration:	7d 3h	Source:	Aquatic Biosystems, CQ	Age:	

Puration: 7d 3h Source: Aquatic Biosystems, CQ

Sample ID: 11-2996-7815 Code: C039804 Client:

Sample Date: 07 Jun-20 Material: Water Project:

Resamples

Receipt Date: 11 Jun-20 08:20 Source: Agnico Eagle Mines Sample Age: 5d 14h Station: MEL 13-01

Seed

Comments:

X Transform

Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04.

Y Transform

Linear Interpolation Options

Log(X+	1)	Linear	3974	196	200	Yes	Two-Point Interpolation	
Point E	stimates							
Level	%	95% LCL	95% UCL	TŲ	95% LCL	95% UCL		
EC5	>100	n/a	n/ a	<1	n/a	n/a		
EC10	>100	n/a	n/a	<1	n/a	n/a		
EC15	>100	n/a	n/a	<1	n/a	n/a		
EC20	>100	n/a	n/a	<1	n/a	n/a		
EC25	>100	n/a	n/a	<1	n/a	n/a		
EC40	>100	n/a	n/a	<1	n/a	n/a		
=C50	>100	n/a	n/a	<1	n/a	n/a		

Exp 95% CL

Method

7d Survival R	ate Summary				Calc	ulated Varia	ate(A/B)				
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	S1	3	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	30	30
1.56		3	0.9667	0.9000	1.0000	0.0333	0.0577	5.97%	3.33%	29	30
3.3		3	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	30	30
6.25		3	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	30	30
12.5		3 .	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	30	30
25		3	0.9667	0.9000	1.0000	0.0333	0.0577	5.97%	3.33%	29	30
50		3	0.9333	0.9000	1.0000	0.0333	0.0577	6.19%	6.67%	28	30
100		3	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	30	30

7d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3
0	S 1	1.0000	1.0000	1.0000
1.56		0.9000	1.0000	1.0000
3.3		1.0000	1.0000	1.0000
6.25		1.0000	1.0000	1.0000
12.5		1.0000	1.0000	1.0000
25		1.0000	0.9000	1.0000
50		1.0000	0.9000	0.9000
100		1.0000	1.0000	1.0000

Analyst: dmi

9007Y0d

Report Date:

03 Jul-20 12:39 (p 2 of 2)

Test Code:

PP-10735-0220 | 20-2104-0068

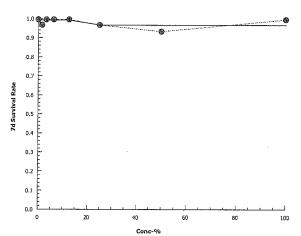
Fathead Minnow 7-d Larval Survival and Growth Test

Bureau Veritas Laboratories

`nalysis ID: .∢nalyzed:

14-7306-7307

19 Jun-20 17:18


Endpoint: 7d Survival Rate

Analysis:

Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.9.2

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

BBY2FCD-00215/14 Tab - Survival, Page 1 of 1

Client Name: Golder Associates Ltd. (Agnico)

Job / Sample #: C039804 XX3664

Sample ID: MEL-13-01

					#.	#Survivin	g Organis	sms					
	Replicate	# Of Fish				Day							
Conc.	#	Seeded	1	2	3	4	5	6	7	0, 0	0/ 1/4 / 1/2	% Mean	SD
(% v/v)	Date	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	% Survivai	% Mortality	Mortality	(%)
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
Control	В	10	10	10	10	10	10	10	10	100%	0%	1.4	
	O	10	10	10	10	10	10	10	10	100%	0%		
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
Site Control	В	10	10	10	10	10	10	10	10	100%	0%		
	С	10	10	10	10	10	10	10	10	100%	0%		
	А	10	10	10	10	10	10	10	9	90%	10%	3.3%	5.8%
1.56	В	10	10	10	10	10	10	10	10	100%	0%		
	С	10	10	10	10	10	10	10	10	100%	0%		
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
3.13	В	10	10	10	10	10	10	10	10	100%	0%		
_	С	10	10	10	10	10	10	10	10	100%	0%		100
	А	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
6.25	В	10	10	10	10	10	10	10	10	100%	0%		
	С	10	10	10	10	10	10	10	10	100%	0%		10 m (1) m
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
12.5	В	10	10	10	10	10	10	10	10	100%	0%		
	С	10	10	10	10	10	10	10	10	100%	0%	118	7.7
	Α	10	10	10	10	10	10	10	10	100%	0%	3.3%	5.8%
25	В	10	10	10	10	10	9	9	9	90%	10%		
	С	10	10	10	10	10	10	10	10	100%	0%		
	Α	10	10	10	10	10	10	10	10	100%	0%	6.7%	5.8%
50	В	10	10	10	9	9	9	9	9	90%	10%		
	С	10	10	10	9	9	9	9	9	90%	10%		
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
100	В	10	10	10	10	10	10	10	10	100%	0%		
	С	10	10	10	10	10	10	10	10	100%	0%		
An	alyst	МНМ	МВ	NS	YS	МНМ	МВ	MYM	YS		Į.		

* see test comments

Proofed: Maries

Report Date:

03 Jul-20 19:16 (p 1 of 8)

Test Code:

PP-10735-0220 | 20-2104-0068

							Test	: Code:	PP-107	35-0220 2	20-2104-00
Fathead Minn	ow 7-d Larval S	Survival and	Growt	h Test					Bureau	ı Veritas L	aboratorie.
nalysis ID: analyzed:	02-4926-0225 22 Jun-20 17:0		point: lysis:	Mean Dry Bior Parametric-Tw	-			IS Version		1.9.2	
Batch ID:	13-1526-7178	Test	t Type:	Growth-Surviva	al (7d)	- ;	Ana	lyst: M	. Hamad		
Start Date:	12 Jun-20 13:30		tocol:	EC/EPS 1/RM/			Dilu	-	econstituted \	Nater	
Ending Date:	19 Jun-20 16:07	⁷ Spe	cies:	Pimephales pr	omelas		Brin	e: No	ot Applicable		
Duration:	7d 3h	Sou	rce:	Aquatic Biosys	stems, CO		Age	:			
Sample ID:	11-2996-7815	Cod	e:	C039804			Clie	nt: Ag	gnico Eagle N	Mines	
Sample Date:	07 Jun-20	Mate	erial:	Water			Proj	ect:			
Receipt Date:	11 Jun-20 08:20) Sou	rce:	Agnico Eagle N	V lines				•		
Sample Age:	5d 14h	Stat	ion:	MEL 13-01							
Comments: Ref1 is Mel-03-	-02. R e f2 is Mel-	04-05. Ref3	is Mel-C	95-04.							
Data Transfori	m	Alt Hyp		, , , , , , , , , , , , , , , , , , , ,			Compari	son Resul	t		PMSD
Untransformed		C > T					100% pas	sed mean	dry biomass	-mg	11.78%
Equal Varianc	e t Two-Sample	Test									
Control v	vs Conc-%		Test S	tat Critical	MSD DF	P-Type	P-Value	Decisio	n(a:5%)		
Ref 1	100		-2.504	2.132	0.06 4	CDF	0.9667	Non-Sig	nificant Effec	t	
Auxiliary Tests	5							•	•		
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(a:5%)		
Extreme Value	Grubbs E	xtreme Valu	e Test		1.224	1.887	1.0000	No Outli	ers Detected		
ANOVA Table											
Source	Sum Squa	ares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)		
∍tween	0.0074202)	0.0074	202	1	6.268	0.0665	Non-Sig	nificant Effec	t	
Error	0.0047353		0.0011	838	4	_					
Total	0.0121555	,			5						
Distributional '	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Variance F	Ratio F Test			1.22	199	0.9007	Equal Va	ariances		
Distribution	Shapiro-W	ilk W Norma	ality Tes	t	0.8647	0.43	0.2060	Normal I	Distribution		
Mean Dry Bion	nass-mg Summ	ary							٠		
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R1	3	0.5083	0.4187	0.5979	0.511	0.471	0.543	0.02083	7.10%	0.00%
100		3		0.4975	0.6598	0.596					-13.84%

2020 20163 Analyst: <u>dm`</u>

DOUTING OA: PH

Conc-%

0

100

Code

R1

Rep 1

0.471

0.596

Rep 2

0.511

0.599

Rep 3

0.543

Report Date:

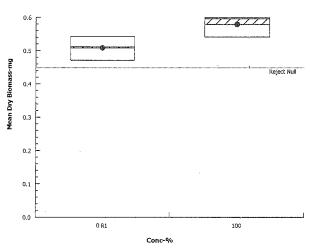
03 Jul-20 19:16 (p 2 of 8)

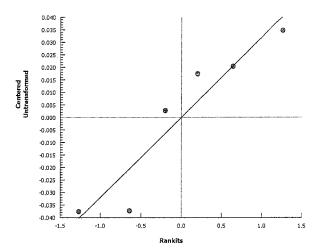
Test Code:

PP-10735-0220 | 20-2104-0068

Fathead Minnow 7-d Larval Survival and Growth Te	st
--	----

Bureau Veritas Laboratories


nalysis ID: analyzed: 02-4926-0225 22 Jun-20 17:08


E.I Α Δι

Endpoint: Mean Dry Biomass-mg **Analysis:** Parametric-Two Sample

CETIS Version: Official Results:

CETISv1.9.2 Yes

Report Date:

03 Jul-20 19:16 (p 3 of 8)

Test Code:

PP-10735-0220 | 20-2104-0068

									Test	: Code:	PP-107	35-0220 [2	20-2104-00
Fathead Minr	10w 7-0	Larval	Survival	and Growt	th Tes	it				,	Bureau	ı Veritas L	.aboratorie
nalysis ID:		334-8083		Endpoint:		n Dry Biom	•			IS Version		1.9.2	
Analyzed:	22 Ju	un-20 17:	:08 .	Analysis:	Para	metric-Tw	o Sample		Offic	cial Result	s: Yes		·/
Batch ID:	13-15	26-7178		Test Type:	Grov	wth-Surviva	al (7d)		Ana	lyst: M.	Hamad		
Start Date:	12 Jui	n-20 13:3	30	Protocol:	EC/E	EPS 1/RM/	22		Dilu	ent: Re	constituted \	Vater	
Ending Date:	19 Jui	n-20 16:0	7 :	Species:	Pime	ephales pro	omelas		Brin	e: No	t Applicable		
Duration:	7d 3h	1	ţ	Source:	Aqu	atic Biosys	tems, CO		Age				
Sample ID:	11-29	96-7815	(Code:	C03	9804			Clie	nt: Ag	nico Eagle N	Mines	
Sample Date:				Vlaterial:	Wat	er			Proj	ect:			
Receipt Date:	: 11 Jur	า-20 08:2	20 :	Source:	Agni	co Eagle N	Mines						
Sample Age:	5d 14	h		Station:	MEL	. 13-01							
Comments: Ref1 is Mel-03	3-02 Re	ef2 is Me	l-04-05 F	tef3 is Mel-	05-04								
Data Transfor			Alt Hy			•			Comparis	son Result	t		PMSD
Untransformed	t		C > T	•							dry biomass	-mg	11.13%
Equal Variand	ce t Tw	o-Samp	le Test					•					
Control	vs	Conc-%	, D	Test	Stat	Critical	MSD DF	P-Type	P-Value	Decision	η(α:5%)		
Ref 2		100		-0.877	71	2.132	0.062 4	CDF	0.7850	Non-Sigr	nificant Effec	t	
Auxiliary Test	ts					•							
Attribute		Test					Test Stat	Critical	P-Value	Decision	n(α:5%)		
Extreme Value		Grubbs	Extreme \	√alue Te s t			1.285	1.887	1.0000	No Outlie	ers Detected		
ANOVA Table													
Source		Sum Sqı	uares	Mean	Squa	are	DF	F Stat	P-Value	Decision	າ(α:5%)		
∋tween	(0.000962	27	0.000	9627		1	0.7693	0.4300	Non-Sigr	nificant Effec	t	
Error	(0.005005	53	0.001	2513		4	_					
Total		0.005968	3				5						
Distributional	Tests												
Attribute	1	Test					Test Stat	Critical	P-Value	Decision	າ(α:1%)		
√ariances	1	Va riance	Ratio F T	est			1.347	199	0.8522	Equal Va	riances		
Distribution		Shapiro-\	Wilk W No	ormality Te	st		0.9184	0.43	0.4939	Normal [Distribution		
Mean Dry Bio	mass-r	ng Sumi	mary										
	(Code	Count	Mean		95% LCL			Min	Max	Std Err	CV%	%Effect
							0.0475	0.547	0.540	0 504	0.004.00	0.050/	0.00%
Conc-% 0 100		₹2	3	0.553	3	0.4592	0.6475	0.547	0.519	0.594	0.02188	6.85%	0.00%

Analyst: OA: AH

Conc-%

0

100

Code

R2

Rep 1

0.519

0.596

Rep 2

0.594

0.599

Rep 3

0.547

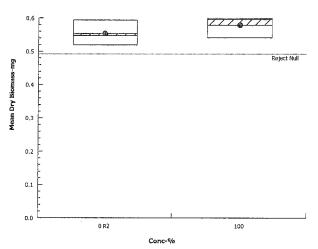
Report Date:

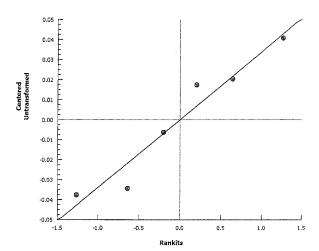
03 Jul-20 19:16 (p 4 of 8)

Test Code:

PP-10735-0220 | 20-2104-0068

Fathead Minnow 7-0	Larval Surviva	l and Growth	Test


Bureau Veritas Laboratories


nalysis ID: Analyzed:

01-0334-8083 22 Jun-20 17:08

Endpoint: Mean Dry Biomass-mg Analysis: Parametric-Two Sample **CETIS Version:** Official Results:

CETISv1.9.2 Yes

Conc-%

0

100

Code

R3

Rep 1

0.54

0.596

Rep 2

0.507

0.599

Rep 3

0.529

0.541

Report Date:

03 Jul-20 19:16 (p 5 of 8)

Test Code:

PP-10735-0220 | 20-2104-0068

							Test	: Code:	PP-1073	35-0220 2	20-2104-006
Fathead Minn	now 7-d Lar	val Survival	and Growt	h Test					Bureau	Veritas L	aboratorie
nalysis ID:	07-7609-8	501	Endpoint:	Mean Dry Bior	mass-mg		CET	IS Version	n: CETISv1	.9,2	
Analyzed:	22 Jun-20	17:08	Analysis:	Parametric-Tw	o Sample		Offic	cial Result	s: Yes		
Batch ID:	13-1526-71	78	Test Type:	Growth-Surviv	al (7d)		Ana	lyst: M	Hamad		
Start Date:	12 Jun-20 1	13:30	Protocol:	EC/EPS 1/RM	/22		Dilu	ent: Re	econstituted V	Vater	
Ending Date:	19 Jun-20 1	16:07	Species:	Pimephales pr	omelas		Brin	e: No	ot Applicable		
Duration:	7d 3h		Source:	Aquatic Biosys	stems, CO		Age	:			
Sample ID:	11-2996-78	15	Code:	C039804			Clie	nt: Ag	nico Eagle M	ines	
Sample Date:	07 Jun-20		Material:	Water			Proj	ect:			
Receipt Date:	: 11 Jun-20 0	08:20	Source:	Agnico Eagle I	Mines						
Sample Age:	5d 14h		Station:	MEL 13-01							
Comments:											
Ref1 is Mel-03	3-02. Ref2 is	Mel-04-05, F	Ref3 is Mel-	05-04. 						. ,	
Data Transfor		Alt H	ур					son Resul			PMSD
Untransformed	<u>.</u>	C > T					100% pas	ssed mean	dry biomass-	mg	8.60%
Equal Variand	ce t Two-Sai	mple Test									
Control	vs Con	c-%	Test	Stat Critical		P-Type	P-Value	Decisio	n(α:5%)		
Ref 3	100		-2.51	2.132	0.045 4	CDF	0.9672	Non-Sig	nificant Effect		
Auxiliary Test	s										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	e Grub	bs Extreme	Value Test		1.622	1.887	0.3541	No Outli	ers Detected		
ANOVA Table											
Source	Sum	Squares	Mean	Square	DF	F Stat	P-Value	Decision	n(α:5%)		
etween	0.004	2667	0.004	2667	1	6.327	0.0657	Non-Sig	nificant Effect		
Error	0.002		0.000	6743	4						
Total 	0.006	964			5					,	
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
√ariances	Variar	nce Ratio F T	Γest		3.777	199	0.4187	Equal Va			
Distribution	Shapi 	ro-Wilk W N	ormality Te	st	0.864	0.43	0.2033	Normal I	Distribution		
Mean Dry Bio	mass-mg Sı	ummary									
Conc-%	Code						Min	Max	Std Err	CV%	%Effect
)	R3	3	0.525	0.4836	0.5671	0.529	0.507	0.54	0.009701	3.20%	0.00%
100		3	0.578	7 0.4975	0.6598	0.596	0.541	0.599	0.01885	5.64%	-10.15%

Report Date:

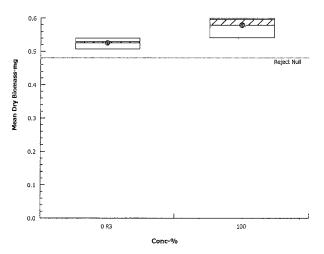
03 Jul-20 19:16 (p 6 of 8)

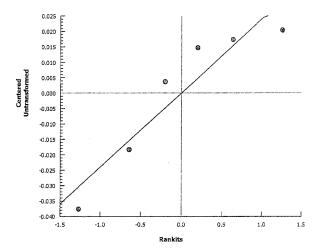
Test Code:

PP-10735-0220 | 20-2104-0068

Fathead Minnow	7-d Larva	l Survival	and	Growth	Test

Bureau Veritas Laboratories

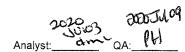

nalysis ID: Analyzed:


07-7609-8501 22 Jun-20 17:08

Analysis:

Endpoint: Mean Dry Biomass-mg Parametric-Two Sample **CETIS Version:** Official Results:

CETISv1.9.2 Yes


Report Date:

03 Jul-20 19:16 (p 7 of 8)

Test Code:

PP-10735-0220 | 20-2104-0068

							Tes	t Code:	PP-107	35-0220 2	20-2104-00
Fathead Minn	ow 7-d Larval S	Survival a	nd Growt	h Test			·		Burea	u Veritas L	_aboratorie
nalysis ID:	18-5244-7317	E	ndpoint:	Mean Dry Bior	mass-ma		CET	IS Version	n: CETISv	1.9.2	
Analyzed:	22 Jun-20 17:0		nalysis:	Parametric-Tv	•			cial Resul			
Batch ID:	13-1526-7178		est Type:	Growth-Surviv	ral (7d)		Δna	lyst: M	. Hamad		
Start Date:	12 Jun-20 13:30		rotocol:	EC/EPS 1/RM	, ,		Dilu	-	econstituted	Mater	
	19 Jun-20 16:01		pecies:	Pimephales pr			Brin		ot Applicable		
_	7d 3h		ource:	Aquatic Biosys			Age		o () (p o a o		
Sample ID:	11-2996-7815		ode:	C039804			Clie		gnico Eagle N	lines	
Sample Date:			aterial:	Water			Proj		gillo Eagle i	VIII IES	
•	11 Jun-20 08:20		ource:	Agnico Eagle I	Minos		Pio	ect.			
Sample Age:			tation:	MEL 13-01	Millies						
——————————————————————————————————————				WILL 13-01				· · · · · · · · · · · · · · · · · · ·			
Comments: Ref1 is Mel-03-	-02. Ref2 is Mei-	-04-05. Re	ef3 is Mel-0	05-04.							
Data Transfor	m	Alt Hyp)			· · · · · · · · · · · · · · · · · · ·	Compari	son Resul	t		PMSD
Untransformed		C > T					100% pas	ssed mean	dry biomass	-mg	7.67%
Equal Varianc	e t Two-Sample	e Test									
-	vs Conc-%		Test S	Stat Critical	MSD DI	F P-Type	P-Value	Decisio	n(α:5%)		
රා ලංග	100		-2.219	···	0.041 10		0.9746		nificant Effec	:t	
Auxiliary Tests	S									-,	· · · · · · · ·
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	Grubbs E	extreme Va	alue Te s t		2,031	2.412	0.3017		ers Detected		
ANOVA Table										*	
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)		
∍tween	0.0055503	3	0.0055	5503	1	4.925	0.0508	Non-Sig	nificant Effec	:t	
Error	0.0112707	7	0.0011	1271	10						
Total	0.0168209	9			11						
Distributional	Tests							,			
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
√ariances	Variance F	Ratio F Te	st		1.071	199.4	1.1358	Equal Va	ariances		
Distribution	Shapiro-W	√ilk W Nor	mality Tes	st	0.9628	0.8025	0.8230	Normal	Di s tribution		
Mean Dry Bion	nass-mg Summ	nary				******		:	· · · · · · · · · · · · · · · · · · ·		
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	@	9	0.529	0.503	0.555	0.529	0.471	0.594	0.01127	6.39%	0.00%
00		3	0.5787	0.4975	0.6598	0.596	0.541	0.599	0.01885	5.64%	-9.39%
/lean Dry Bion	nass-mg Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	
)	@	0.54	0.507	0.529	0.519	0.594	0.547	0.471	0.511	0.543	

100

0.596

0.599

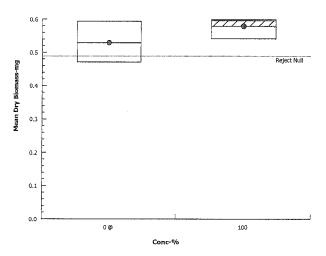
Report Date:

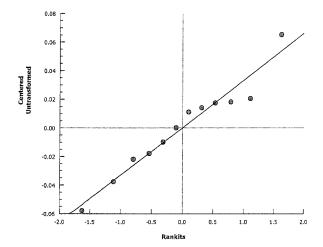
03 Jul-20 19:16 (p 8 of 8)

Test Code:

PP-10735-0220 | 20-2104-0068

Fathead Minnow 7-d Larval Survival and Growth Tes


Bureau Veritas Laboratories


nalysis ID: Analyzed:

18-5244-7317 22 Jun-20 17:08

Endpoint: Mean Dry Biomass-mg Analysis: Parametric-Two Sample **CETIS Version:** Official Results: Yes

CETISv1.9.2

Report Date:

03 Jul-20 12:45 (p 1 of 2)

Test Code:

PP-10735-0220 | 20-2104-0068

								Tes	t Code:	F	PP-10735-022	20 20-2104-00
Fathea	ad Minn	iow 7-d Larval S	Survival ar	d Grow	th Test						Bureau Verit	as Laboratorie
nalys	sis ID:	12-0613-8884	En	dpoint:	Mean Dry Bion	na s s-mg		CE ⁻	ΓIS Versi	on: C	ETISv1.9.2	
Analyz	zed:	22 Jun-20 17:	11 A n	alysis:	Linear Interpol	ation (ICPIN	I)	Offi	cial Resu	ults: Y	es	
Batch	ID:	13-1526-7178	Te	st Type:	Growth-Surviva	al (7d)		Ana	ılyst:	M. Ham	ad	
Start D	Date:	12 Jun-20 13:3	0 Pr	otocol:	EC/EPS 1/RM/	/22				Reconst	ituted Water	
Ending	g Date:	19 Jun-20 16:0	7 S p	ecies:	Pimephales pre	omelas		Brin	ne: l	Not App	licable	
Duration	on:	7d 3h	So	urce:	Aquatic Bios y s			Age				
Sampl	e ID:	11-2996-7815	Co	de:	C039804			Clie	ent:	Aanico F	Eagle Mines	
•		07 Jun-20		terial:	Water				ject:	, (g),1100 I	-agio minoo	
•		11 Jun-20 08:20		urce:	Agnico Eagle N	Mines			,			
•		5d 14h		ition:	MEL 13-01							
Comm	ents:	, delable										
Ref1 is	Mel-03-	-02. Ref2 is Mel-	-04-05. Ref	3 is Mel-	05-04.						·	
	•	lation Options										
X Tran		Y Transforn			Resamples	Exp 95%			1 (
Log(X+		Linear	260	3105	200	Yes	Two-	-Point Inter	olation			
Residu	ıal Anal	ysis										
Attribu		Method			Test Stat	Critical	P-Value	Decision	(a:5%)			
Extrem	e Value	Grubbs E	xtreme Valı	ie Test	2.066	2.802	0.7544	No Outlie	rs Detect	ted		
Point E	Estimate	es										
Level	%	95% LCL	95% UCL	. TU	95% LCL	95% UCL						
IC5	>100	n/a	n/a	<1	n/a	n/a						
IC10	>100	n/a	n/a	<1	n/a	n/a						
'C15	>100	n/a	n/a	<1	n/a	n/a						
520	>100	n/a	n/a	<1	n/a	n/a						
IC25	>100	n/a	n/a	<1	n/a	n/a						
IC40	>100	n/a	n/a	<1	n/a	n/a						
IC50	>100	n/a	n/a	<1	n/a	n/a						
Mean D	ry Bion	nass-mg Summ	nary			Cal	culated Va	riate	NA 1989 - 11 -			
Conc-%	6	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%		Effect	
0		S1	3	0.560		0.573	0.01073	0.01858	3.32%			
1.56			3	0.530		0.538	0.004096	0.007094	1.34%	5.3	55%	
3.3			3	0.515		0.581	0.03645	0.06313	12.24%		7%	
5.25			3	0.564		0.608	0.02313	0.04005	7.09%		77%	
12.5			3	0.509		0.558	0.0299	0.05179	10.16%		4%	
25			3	0.547		0.589	0.03 7 89	0.06562	11.98%		6%	
50			3	0.525		0.56	0.02153	0.03729	7.09%	6.1	9%	
100			3	0.5787	7 0.541	0.599	0.01885	0.03265	5.64%	-3.2	27%	
<i>l</i> lean D	ry Biom	nass-mg Detail										
Conc-%	,)	Code	Rep 1	Rep 2	Rep 3							
)		S1	0.569	0.539	0.573							
.56			0.529	0.524	0.538							
			0.455	0.504	0 544							

10203 3000 JUNO Analyst: dm QA: 14

3.3

6.25

12.5

25

50

100

0.455

0.557

0.455

0.582

0.486

0.596

0.581

0.529

0.558

0.472

0.531

0.599

0.511

0.608

0.516

0.589

0.56

Report Date:

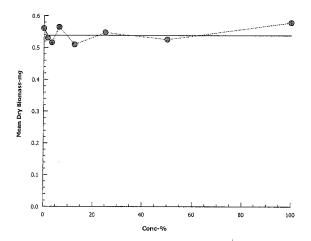
03 Jul-20 12:45 (p 2 of 2)

Test Code:

PP-10735-0220 | 20-2104-0068

Fathead Minnow 7-d Larval Survival and Growth Test

Bureau Veritas Laboratories


nalysis ID: Analyzed:

12-0613-8884

22 Jun-20 17:11

Endpoint: Mean Dry Biomass-mg Analysis: Linear Interpolation (ICPIN) **CETIS Version:** Official Results: Yes

CETISv1.9.2

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Tab - Biomass, Page 1 of 1

Client Name: Golder Associates Ltd. (Agnico)

Sample ID: MEL-13-01 Job / Sample #: C039804 XX3664

Weighing Dates: 2020 June 17, 2020 Jun 20 Drying Time (h): >24

Balance ID: bby-0260 Drying Temp (°C): 60

Boat #	Conc. & Replicate	Initial # Of Fish	Boat Wt.	Boat & Fish	Wt. of Fish	Biomass/Replicate ¹	Mean Biomass/Conc¹	SD
_			(g)	Wt. (g)	(mg)	(mg)	(mg)	
275	0-A	10	0.80154	0.80641	4.87	0.487	0.497	0.03
276	В	10	0.80728	0.81255	5.27	0.527		And the second
277	С	10	0.81578	0.82055	4.77	0.477		
278	Site Ctrl-A	10	0.80451	0.81020	5.69	0.569	0.560	0.02
279	В	10	0.79960	0.80499	5.39	0.539		
280	С	10	0.80923	0.81496	5.73	0.573	The state of the s	
281	1.56%-A	10	0.80425	0.80954	5.29	0.529	0.530	0.01
282	В	10	0.80329	0.80853	5.24	0.524		100 mg
283	С	10	0.82841	0.83379	5.38	0.538	1986	
284	3.13%-A	10	0.82530	0.82985	4.55	0.455	0.516	0.06
285	В	10	0.80330	0.80911	5.81	0.581		
286	С	10	0.78898	0.79409	5.11	0.511		
287	6.25%-A	10	0.79284	0.79841	5.57	0.557	0.565	0.04
288	В	10	0.78756	0.79285	5.29	0.529		
ว89	С	10	0.79521	0.80129	6.08	0.608		
٥ر	12.5%-A	10	0.78925	0.79380	4.55	0.455	0.510	0.05
291	В	10	0.79870	0.80428	5.58	0.558		
292	С	10	0.79851	0.80367	5.16	0.516		
293	25%-A	10	0.81684	0.82266	5.82	0.582	0.548	0.07
294	В	10	0.81718	0.82190	4.72	0.472		
295	С	10	0.79996	0.80585	5.89	0.589		
296	50%-A	10	0.81018	0.81504	4.86	0.486	0.526	0.04
297	В	10	0.81173	0.81704	5.31	0.531		
298	С	10	0.78729	0.79289	5.60	0.560		
299	100%-A	10	0.78313	0.78909	5.96	0.596	0.579	0.03
300	В	10	0.78252	0.78851	5.99	0.599	A CONTRACTOR OF THE CONTRACTOR	
301	С	10	0.79014	0.79555	5.41	0.541	and the second s	1
302	QA/QC		0.78708	0.78712	0.04			
303	QA/QC		0.80186	0.80178	-0.08	Land Spirit Control		
275	0-A	10	0.80145	0.80645	5.00		A CONTRACT OF THE STATE OF THE	
Α	nalyst		NS	DML				1 7 (t) 3 °

¹ Biomass is calculated as the weight of fish per replicate divided by the number of fish initially seeded into that replicate (i.e. **10** fish per replicate).

Average Dry Weight of Control Fish (Average dry weight of control fish must be ≥ 250 µg for test to be valid)

Boat#	Conc. & Replicate	# Surviving Fish	Wt. of Fish (mg)	Mean Wt./ Fish (µg)	Mean Dry Wt.
275	0-A	10	4.87	487	(μg) 497
276	В	10	5.27	527	
277	С	10	4.77	477	

BBY2FCD-00215/14

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Tab - Obs, Page 1 of 2

	Client Name:	Golder Associates	Ltd. (Agnic		Job / Sample #:	CU39801	1/203664
	Date Started:	June 12, 2020	, 0	,	Sample ID:	MEL-13-01	7
	Date Ended:	June 19, 2020)	Organism Lot #:	AB200612)
	Analyst(s):	MHamad)	1.SUNDO		HENERALL	2 m.0'T	oole
	•			<u> </u>	Deviations - See	BLNC: 🗆	
Befor	e Use Measuremen	ts (After tempera	ture adjustmer	nt)	Worksheet Create	ed: □	
Day	Date	Initial D.O. (% Sat)	Initial Temp (°C)	Aerated (min.)*	Post Aeration D.O. (% Sat)	Post Aeration Temp (°C)	Analyst
0	June 12, 2020	103,3	25,6	20	99,2	25.4	MHM
1	June 13, 2020	10511	25.6	20	103.1	2516	Mm
2	June 14, 2020	109.7	26,0	20	107.2	26,0	mo
3	June 15, 2020	107.4	14.3	20	100.0	14.1	S
4	June 16, 2020	166.0	25.1	20	10015	25.0	MM
5	June 17, 2020	109.6	25.9	20	101.4	25.7	MITM
6	June 18, 2020	11012	25.6	20	102.0	25.5	14117
Sa Sa Obse Day	ample Hardness (mg rvations during the	UPGr grvd (0100 I/L CaCO3) (A) 7 Test (Organism I June 12, 2020 O 91, 22 - 091.	(1 <i>PS</i> 5 2 75 pehaviour, add	Initials: itional test i Carboy / Bot		13:30	Analyst
1		June 13, 2020		Carboy / Bot	tle #: 2	16.584	MIM/UR
	Pre-Aeration Time:	12:49-15:00	1		Water change @:		
	Feeding AM: ♥Š\\ WQ Rep: 🛆	<i>F</i>		O6	Feedin	g Volume (uL):	50
2	Date: Pre-Aeration Time:	June 14, 2020		Carboy/ Bot	tle #: 3 Water change @:	15:20	NS YS
	Feeding AM: OG (ng PM: 16:1			g Volume (uL):	20

BUREAU VERITAS LABORATORIES

BBY2FCD-00215/14 Tab - Obs, Page 2 of 2

ECOTOXICOLOGY

Client Name: Golder Associates

Sample ID: MEL-13-01

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Job / Sample #:	804	XX3664
-----------------	-----	--------

Day		Analyst
3	Date: June 15, 2020 (arbo) / Bottle #:	ys.
	Pre-Aeration Time: 0' 14:45 ~ 15:05 Water change @: 16:30	
	Feeding AM: 070 Feeding PM: 17:30 Feeding Volume (uL):	50
	WQ Rep: C	
4	Date: June 16, 2020 (Carboy) / Bottle #: C	MIN
	Pre-Aeration Time: pq'i4o-loipo Water change @: 14',31	4/577
	Feeding AM: 03:45 Feeding PM: 15:70 Feeding Volume (uL):	50
	WQ Rep: A	
5	Doto:	MIN JUR
5	Date: June 17, 2020 Carboy / Bottle #: 2 Pre-Aeration Time: %\\\ 15 -08\\\\ 35 Water change @: \(\frac{12.30}{30} \)	(11) / 200
	Feeding AM: 07145 Feeding PM: 14:20 Feeding Volume (uL):	20
	WQ Rep: R	30
	Wartep.	
6	Date: June 18, 2020 Garboy) Bottle #: 3	MIFM
	Pre-Aeration Time: 13157 - 13,27 Water change @:(A)	
	Feeding AM: 🔾 🖔 ` Feeding PM: 🏟 Feeding Volume (uL):	30
	WQ Rep: C	
7	Date: June 19, 2020	y
	Test ended @ 16 2 07 WQ rep: A	
		· · · · · · · · · · · · · · · · · · ·

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Clie	nt Name:	Golder Assoc	ciates Ltd.		_		•	1 -
Sa	imple ID:	MEL-13-01			_ Jo	b \Sample #:	<u>C03980</u>	<u> XXX366</u>
Aı	nalyst(s):	MHamac	1,4,50) N.Swe	-	Massil	'W.O.	Toole
					0 /		•	
Control	Day	1	2	3	4	5	6	7
Conductivity	Initial	458	463	462	504	453	452	452
(µs/cm)	Final	513	480	481	512	515	513	478
Temp. (°C)	Initial	24,4	24.6	24.9	249	25.3	250	25.0
(o)	Final	24.0	24.7	24.0	24,8	25,4	24.6	25.3
D.O. (mg/L)	Initial Final	311	7.8	8,2	8.0	8.1	8.4	8,3
	+	8,2	6.9	4,4	616	615	6.6	6:1
pH	Initial Final	8,0	8,2	8.1	819	3.7	7.8	8.1
Santhalic /	i iriai	0.0	6,0	ואיט	7.	4,4	<u> </u>	7.7
Site Control	Day	1	2	3	4	5	6	7
Conductivity	Initial	125	126,	126	129	130	129	129
(µs/cm)	Final	140	148	139	134	150	147	199
	Initial	23.8	2510	25.3	14.7	24.8	25.0	25.0
Temp. (°C)	Final	24.6	24.7	24.0	24,6	25.1	25.0	25.3
D.O. (mg/L)	Initial	8,2	8.1	8.3	7.9	8-2	४,३	8.2
D:0: (mg/L)	Final	6.9	6.8	7.1	6.9	6,2	6.3	6.4
рН	Initial	8,0	7.7	7.S	7.9	7,7	ナ・ケ	7.6
,	Final	7.3	8.1	7.1	7.4	7.2	7.3	7.2
4 500/	In I						_	
1.56%	Day	1 12 50	2	3	4	5	6	7
Conductivity	Initial	135	127	126	178	128	128	129
(µs/cm)	Final			133	135	146	148	147
Temp. (°C)	Initial Final	24.0	25.0 24.4	25.4	14,9°	24.9 24.8	50·1	25.0 25.2
	Initial	8.4	811	8.3	a) 7-980	8,2	24.8, 8.3	8,2
D.O. (mg/L)	Final	7.0	7	3,3	6.8	6.5	<u>०, २</u> ७, ५	6.6
	Initial	7.8	7.6	7.5	7.8	7.4	7.4	7-5
pН	Final	71	7.9	77 1	7.3	7.1	7.3	7-12
		7					1	7 -
3.13%	Day	1	2	3	4	5	6	7
Conductivity	Initia!	125	126	126	127	128	128	128
(µs/cm)	Final	134	137	134	132	139	137	144
Temp. (°C)	Initial	24.0	75.0	25.4 24.9	75.7	24.9	25.1	25:0
	Final	8.9	24.4		25.2	25,3	24.6	751
D.O. (mg/L)	Initial Final	7.1	812	8.3	6,6	813	8,3 6.4	8.2
-11	Initial	7.8	7.6	7.4	7.6	7.5	7.5	7,2
рH	Final	7.1	77	71	71	7.0	7.1	7-1
			······································	mo	y's			

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Clien	t Name:	Golder Assoc	ciates Ltd.					1
Sa	mple ID:	MEL-13-01			Jo	b / Sample #:	<u>C03980</u>	14 XX361
6.25%	Day	1	2	3	4	5	6	7
Conductivity	Initial	126	126	126	127	127	128	128
µs/cm)	Final	133	141	142	133	138	139	147
	Initial	24.0	25.0	25.4	Z5-1	24.8	251	52,5
Temp. (°C)	Initial 24.0 Final 24.0 Initial 8.4 Final 7.2 Initial 7.3 Final 7.1 Eviewed by: M.M. M. Day 1 Initial 126 Final 134 Initial 24.0 Final 24.0 Final 24.0		24.4	24.6	24.9	25,3	25.2	24.9
D.O. (/L)	Initial	814	812	83-	812	8,3	873	813
D.O. (mg/L)	Final		7.0	6.8	୯୫	6,3	6.3	6.6
	+	7,7	7.5	7.2	7.6	7,5	7.4	3.2
pН		71	7.6	7.0	7.1	7,0	7.1	7.1
Analyst		MIN JUM	10704 1	mo MM	ys my	MAN MANY	MIM M	~
	ewed by:		MIM N	mo M	USW	MAM MAM	141mm M	~
		1 10	11. 705	,,,,		4		ايد.
12.5%	Day	1	2	3	4	5	6	7
Conductivity		126	126	126	127	128	128	128
μs/cm)			137	135	131	142	141	140
	+		250	25,4	15.0	24.8	25.1	25.2
Temp. (°C) D.O. (mg/L)			24.5	24.8	2341	24.8	248	250
*			813	C .	8,3	8.3	8.3	8.3
D.O. (mg/L)			6.9	7,0	6,5	6.5	7.7	70
		- 10	7,4	73	7.6	7.5	7.5	7.1
pΉ			1 - 1	7.	70	7.0	7.1	7.1
	I mai	7.(1.0		4.0	7.0	7.	F
25%	Day	1	2	3	4	5	6	7
	Initial	127	127	127	128	128	129	129
Conductivity	Final	134	139	139	126	143	144	142
µS/CIII)	Final	24.1	24.9	25.5	15.1	24.8	25,2	75.2
	Final	24.5	24.3	2405	25.2	24,4	2512	24.2
(µs/cm) Temp. (°C) D.O. (mg/L) pH	+	8,4	8.3			8.3	1-2-	8.3
	Initial	1 17		8,3	83 65	19 0	813	29
	Final		7.0	+ 1		56	60	
рН	Initial	7.4	7,3	7.3	7.5	4:0	7.5	70
	Final	7.0	7.5	4.7	J. C	41	+`C	7.1
E00/	Day	1	2	3	4	5	6	7
50%	_		12 8	128		- 4	179	120
Conductivity	Initial	128	138	139	129		143	
μs/cm)	Final	141			1 2 2 1	142		141
Temp. (°C)	Initial	24.5	24.8	2S.6	75.0	24.8	25.3	25.3
	Final	24.1	24.3	24.5	25.2	24.8	245	24-9
D.O. (mg/L)	Initial	8ु.प	814	84	8.3	\$13	813	\$3
	Final	7.0		4.2	6.5	616	9.4	6.7
pН	Initial	7.3	7.2	7.2	7.5	7.5	7.4	7.4
·	Final	7.1	175	7.2	7.0	7:1	7-1	7.2
1000/	In.	r			4	F		7
100%	Day	1 1 10	2	3	4	5	6	
Conductivity	Initial	130	130	130	139	130	130	132
µs/cm)	Final	137	141	138	130	145	145	14)
Temp. (°C)	Initial	25.0	25,7	ZS.8	24.1	24.9	2505	255
1 (-)	Final	24.1	24.4	74~5	251	2573	248	74.8
D.O. (mg/L)	Initial	8,4	8.6	<u>8.s</u>	8.5	8,4	8/3	8,3
(mg/L/	Final	6,8	7.1	Tro	6.05	G12	63	6.0
	Initial	4.2	17:1	7.1	7.4	7.4	74	49
$\Gamma \cap \square$	I Cin al	7.0	7.5	7.0	40	7-0	7.1	7.3
рп 	Final	1 7		1 /				
pH Analyst	Finai	My my	MHM NS	mo m	\$ 1m	MILM MIGH	mety mm	mm

BBY2FCD-00215/14

Tab - Survival, Page 1 of 1 **FATHEAD MINNOW SURVIVAL AND GROWTH TEST ECOTOXICOLOGY**

Client Name: Golder Associates Ltd.

Job / Sample #: C039804 x

Sample ID: MEL-13-01

					#	Surviving	g Organis	ms					
	Replicate	# Of Fish				Day							
Conc.	#	Seeded	1	2	3	4	5	6	7	0, 0	0/ 84 (.13)	% Mean	SD
(% v/v)	Date	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	% Survival	% Mortality	Mortality	(%)
	Α	10	(0	10	10	10	10	Po	10	-	-	-	-
Control	В	10	10	10	10	lo	10	10	10	-	-	ili	
	С	10	0)	0	10	10	10	10	0	-	-		l _{ov}
	А	10	10	10	10	10	10	10	10	-		-	-
Site Control	В	10	10	9	10	16	10	10	10	-	_		
Synthetic	, c	10	W	10	10	10	16	(0	10	-	-	HE S	
<u> </u>	A	10	10	10	10	b	10	10	9	-	-	_	-
1.56	В	10	IC	10	10	b	10	10	10	-	-		
F	С	10	10	10	10	10	10	10	10		-	147	
	А	10	10	10	10	10	10	10	10	-	-	_	-
3.13	В	(10	10	10	10	10	10	16	10	-	-	let.	
	С	lo	10	OI	10	13	10	10	10		-	li ki	
	Α	10	10	10	10	10	10	Ю	10	-	-	_	_
6.25	В	10	10	10	10	10	10	10	10	_	-		
	С	10	10	10	10	G	10	P	10	-	-	18	1.0
	А	10	10	10	[\O	10	10	ю	10	-	-	-	_
12.5	В	10	10	10	10	10	10	10	10	-	-		
	С	lo	10	10	10	10	10	a	10	-	-	to a	
	Α	10	(0)	10	10	10	10	10	10	-	-	-	_
25	В	اما	10	10	A910	<u> </u>	9	9	q	-	_		
	С	10	10	10	@91	270	10	b	10	-	-		
	Α	ما	10	10	10	ю	10	10	B)911	o -	-	-	_
50	В	10	10	10	q	à	4	9	9	-	-		
	С	h	10	İŎ	9	Ć,	9	9	q	-	-	Page 1	
	Α	10	ĬŎ	10	10	1/0	10	b	10	<u>-</u>	-	-	-
100	В	(0	10	10	10	10	10	<i>b</i>	10	-	-		
	С	10	10	iŎ	10		10	V	10	-	_		
Ar	nalyst	YIM CON	RIV	NS.	ys.	M	118	w	1/3				

* see test comments

A WE. YS LOZO JUNE 15 @ WE. YS ZOZO JUNE 19

Randomization Chart

BUREAU VERITAS LABORATORIES BBY2FCD-00438/3

Tab: Fathead minnow; Pg: 1 of 1

Client Name:	Golder	Hanno	Start Date: 2020 Jun 12
		- 7	

Sample Name: MEL-13-01

Use the coloured dot to find appropriate conc'ns and put beakers back in proper position following daily water change.

Back Wall		Position Map			
4	8	12	16	20	24
3	7	11	15	19	23
2	6	10	14	18	22
1	5	9	13	17	21

Front of Counter

Position #	Treatment	Replicate	Colour
6		Α	
18	Control	В	Red
3		С	
21		Α	
20	Site Control	В	White
25	(Synthetic)	С	
13		Α	
26	1.56%	В	Orange
10		С	
2		А	
23	3.13%	В	Yellow
14		С	
5		Α	" ""
7	6.25%	В	Fl. Green
24		С	
4		Α	
9	12.5%	В	Green
15		С	
27	•	Α	
1	25%	В	Blue
16		С	
8		A	<u> </u>
12	50%	В	Purple
17		С	
22		А	/////////////////////////////////////
19	100%	В	Pink
11		С	

Report Date:

19 Jun-20 17:04 (p 1 of 4)

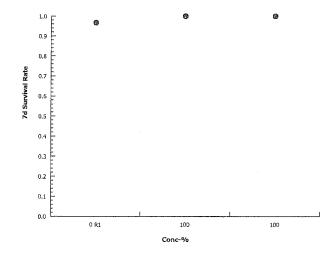
Test Code:

PP-10735-0320 | 20-9088-9222

									11 10100 0020 20 0000 0221		
Fathead Minr	now 7-d Larvai S	Surviva	I and Growt	h Test					Bureau Veritas Laboratories		
nalysis ID:	12-6274-6755		Endpoint:	7d Survival Ra	ate		CETIS Vei	rsion:	CETISv1.9.2		
તnalyzed:	19 Jun-20 16:5	54	Analysis:	Single 2x2 Co	ntingency Ta	ble	Official Re	esults:	Yes		
Batch ID:	13-1526-7178		Test Type:	Growth-Surviv	al (7d)	·	Analyst:	M. Ha	amad		
Start Date:	12 Jun-20 14:23	3	Protocol:	EC/EPS 1/RN	1/22		Diluent:	Reco	nstituted Water		
Ending Date:	19 Jun-20 15:4	5	Species:	Pimephales p	romelas		Brine:	Not A	pplicable		
Duration:	7d 1h		Source:	Aquatic Biosy	stems, CO		Age:				
Sample ID:	07-1013-0430		Code:	C039804			Client:	Agnic	o Eagle Mines		
Sample Date:	07 Jun-20		Material:	Water	•		Project:				
Receipt Date:	11 Jun-20 08:20)	Source:	Agnico Eagle	Mines						
Sample Age:	5d 14h		Station:	MEL 13-07							
Data Transfor	·m	Alt H	Чур				Comparison R	esult			
Untransformed		C > 1					100% passed 7	0% passed 7d survival rate			
Fisher Exact	Test										
Control	vs Group		Test S	Stat P-Type	P-Value	Decision	(α:5%)				
Ref 1 melo:	১-02 100		1.000	0 Exact	1.0000	Non-Signi	ificant Effect				
Data Summar	у										
Conc-%	Code	NR	R	NR + R	Prop NR	Prop R	%Effect				
0	R1	29	1	30	0.9667	0.03333	0.0%	•			
100		30	0	30	1	0	-3.45%				

Graphics

Conc-%


0

. ე0

7d Survival Rate Detail

Code

R1

Rep 1

1.0000

1.0000

Rep 2

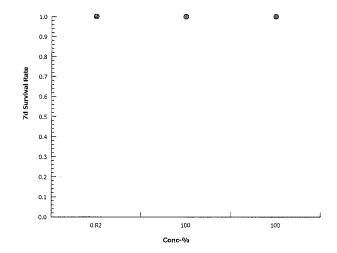
0.9000

1.0000

Rep 3

1.0000

Report Date:


19 Jun-20 17:04 (p 2 of 4)

Test Code:

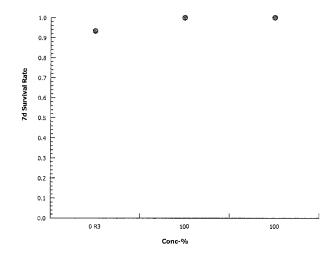
PP-10735-0320 | 20-9088-9222

									'	est code	5. 11-10/30-0020 Z0-3000-0222
Fathead Minr	10w 7-	d Larval S	urvival	and Growt	h Te	st					Bureau Veritas Laboratories
nalysis ID:	11-7	786-8713		Endpoint:	7d \$	Survival Ra	ıte		C	ETIS Ve	rsion: CETISv1.9.2
Analyzed:	19 J	un-20 16:5	4	Analysis:	Sing	gle 2x2 Cor	ntingency Ta	ble	C	official Re	esults: Yes
Batch ID:	13-15	26-7178		Test Type:	Gro	wth-Surviv	al (7d)		Δ	nalyst:	M. Hamad
Start Date:	12 Ju	n-20 14:23		Protocol:	EC/	EPS 1/RM	/22			iluent:	Reconstituted Water
Ending Date:	19 Ju	n-20 15:45		Species:	Pim	ephales pr	omelas		Е	rine:	Not Applicable
Duration:	7d 1h	٦		Source:	Aqu	atic Biosys	stem s , CO		Δ	ge:	
Sample ID:	07-10	13-0430		Code:	C03	C039804				lient:	Agnico Eagle Mines
Sample Date:	: 07 Ju	n-20		Material:	Wat	ter			P	roject:	
Receipt Date:	: 11 Ju	n-20 08:20	;	Source:	Agn	ico Eagle l	Mines				
Sample Age:	5d 14	1h	;	Station:	MEI	L 13-07					
Data Transfor	rm		Alt H	ур					Comp	arison R	esult
Untransformed	d		C > T						100%	passed 7	'd survival rate
Fisher Exact	Test									,	
Control	vs	Group		Test S	Stat	P-Type	P-Value	Decision	n(α:5%)		
Ref 2 melo	405	100		1.000	0	Exact	1.0000	Non-Sign	nificant Ef	fect	
Data Summar	ry										
Conc-%		Code	NR	R		NR + R	Prop NR	Prop R	%Effe	ct	
0		R2	30	0		30	1	0	0.0%		
100			30	0		30	1	0	0.0%		
7d Survival R	ate De	tail									•
Conc-%		Code	Rep 1	Rep 2	!	Rep 3					
0		R2	1.0000	1.000	0	1.0000					
00			1.0000	1.000	0	1.0000					

Graphics

Report Date:

19 Jun-20 17:04 (p 3 of 4)


Test Code:

PP-10735-0320 | 20-9088-9222

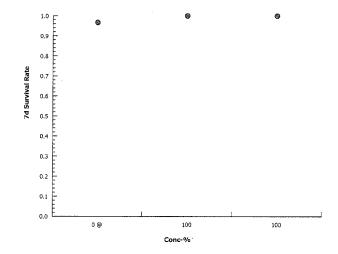
									163	LOUGE	•	11-10/33-0320 20-30	00-322
Fathead Minn	10w 7-	d Larval S	urviva	I and Grow	th Te	est						Bureau Veritas Labor	atories
nalysis ID:	19-9	820-7893		Endpoint:	7d	Survival Ra	te		CET	ΓIS Ver	sion:	CETISv1.9.2	
Analyzed:	19 J	un-20 16:5	5	Analysis:	Sin	gle 2x2 Cor	ntingency Tal	ble	Offi	cial Re	sults:	Yes	
Batch ID:	13-15	526-7178		Test Type	: Gro	wth-Surviva	al (7d)		Ana	ılyst:	М. На	amad	
Start Date:	12 Ju	n-20 14:23		Protocol:	EC	EPS 1/RM	/22		Dilu	ent:	Reco	nstituted Water	
Ending Date:	19 Ju	n-20 15:45		Species:	Pin	nephales pr	omelas		Brin	ne:	Not A	Applicable	
Duration:	7d 1	h		Source:	Αqι	uatic Biosys	tems, CO		Age	:			
Sample ID:	07-10	13-0430		Code:	CO:	39804			Clie	nt:	Agnic	co Eagle Mines	
Sample Date:	07 Ju	n-20		Material:	Wa	ter .			Pro	ject:			
Receipt Date:	11 Ju	n-20 08:20		Source:	Agr	nico Eagl <mark>e N</mark>	Vines						
Sample Age:	5d 14	4h		Station:	ME	L 13-07							
Data Transfor	m		Alt F	lур					Compari	son Re	esult		
Untransformed	d		C > 7	-					100% pa	ssed 7	d surviv	/al rate	
Fisher Exact	Test												
Control	vs	Group		Test	Stat	P-Type	P-Value	Decision	(a:5%)				
Ref 3 melos	504	100		1.000	00	Exact	1.0000	Non-Signi	ificant Effec	t			
Data Summar	У												
Conc-%		Code	NR	R		NR + R	Prop NR	Prop R	%Effect				
0		R3	28	2		30	0.9333	0.06667	0.0%				
100			30	0		30	1	0	-7.14%				
7d Survival R	ate De	tail					· · · · · · · · · · · · · · · · · · ·						
Conc-%		Code	Rep	l Rep	2	Rep 3							
0		R3	0.900	0 1.000	00	0.9000							

Graphics

ე0

1.0000

1.0000

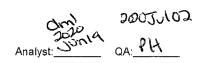

Report Date:

19 Jun-20 17:04 (p 4 of 4)

Test Code:

PP-10735-0320 | 20-9088-9222

											•		
Fathead Min	now	7-d Larval S	urviva	and Growt	h Te	st				, 		Burea	u Veritas Laboratories
nalysis ID: Analyzed:		-9538-1652 Jun-20 16:5	5	Endpoint: Analysis:		Survival Ra gle 2x2 Cor	te ntingency Ta	ble	-	ETIS Ver		CETISv Yes	1.9.2
Batch ID:	13-	1526-7178		Test Type:	Gro	wth-Surviv	al (7d)		A	nalyst:	М. Н	amad	
Start Date:	12	Jun-20 14:23	3	Protocol:	EC.	/EPS 1/RM	/22			iluent:	Reco	nstituted	Water
Ending Date:	19	Jun-20 15:45	j	Species:	Pin	nephales pr	omelas		E	Brine:	Not A	Applicable	
Duration:	7d	1h		Source:	Αqι	uatic Biosys	tems, CO		A	.ge:			
Sample ID:	07-	1013-0430		Code:	CO	39804			C	lient:	Agnio	co Eagle I	Mines
Sample Date	: 07	Jun-20		Material:	Wa	ter			F	roject:			
Receipt Date	: 11 .	Jun-20 08:20)	Source:	Agr	nico Eagle I	Mines						
Sample Age:	5d	14h		Station:	ΜE	L 13-07							
Data Transfo	rm		Alt H	ур					Comp	arison Re	sult		
Untransforme	ď		C > T			•			100%	passed 7	survi	/al rate	
Fisher Exact	Test				*								
•	vs	Group		Test	Stat	P-Type	P-Value	Decision	(a:5%)				
o booled	>	100		1.000	0	Exact	1.0000	Non-Signi	ificant Ef	fect			
Data Summa	ry												
Conc-%		Code	NR	R		NR + R	Prop NR	Prop R	%Effe	ct			
0		@	87	3		90	0.9667	0.03333	0.0%		-		
100			30	0		30	1	0	-3.45%	ó			
7d Survival R	ate [Detail											
Conc-%		Code	Rep 1	Rep 2		Rep 3	Rep 4	Rep 5	Rep 6	Rep	7	Rep 8	Rep 9
0		@	0.900	0 1.000)	0.9000	1.0000	1.0000	1.0000	1.00	00	0.9000	1.0000
ე0			1.000	0 1.000	1	1.0000							


Report Date:

19 Jun-20 17:04 (p 1 of 2)

Test Code:

PP-10735-0320 | 20-9088-9222

		-						Te	st Code:		PP-107	35-0320	20-9088-9222
Fathea	ıd Minr	now 7-d Larval S	Survival and	d Growt	th Test						Bureau	ı Veritas	Laboratories
nalys analyz	is ID:	21-1698-4845 19 Jun-20 16:5		dpoint:	7d Survival Rat Linear Interpola		۷)		TIS Vers		CETISv ² Yes	1.9.2	
Batch I		13-1526-7178			Growth-Surviva	· · · · · · · · · · · · · · · · · · ·		An	alyst:	M. Ha	amad		
Start D		12 Jun-20 14:23		tocol:	EC/EPS 1/RM/				uent:		nstituted \	Vat er	
		19 Jun-20 15:45		ecies:	Pimephales pro				ne:		pplicable		
Duratio		7d 1h	·=·	ırce:	Aquatic Biosys			Ag					
Sample	o ID:	07-1013-0430	Cod		C039804				ent:	Agnic	o Eagle M	lingo	
•		07-1013-0430 07 Jun-20		erial:	Water				oject:	Agnic	o Eagle IV	iiies	
•		11 Jun-20 08:20		ırce:	Agnico Eagle N	Mines		FIC	oject.				
-		5d 14h		tion:	MEL 13-07	111103							
	-	olation Options	_		_								
X Trans		Y Transforn			Resamples	Exp 95%	.						
Log(X+	1)	Linear	115	5209	200	Yes	I WC	-Point Inter	rpolation				
Point E	Estimat	es											
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL	-						
EC5	>100	n/a	n/a	<1	n/a	n/a	,						
EC10	>100	n/a	n/a	<1	n/a	n/a							
EC15	>100	n/a	n/a	<1	n/a	n/a							
EC20	>100	n/a	n/a	<1	n/a	n/ a							
EC25	>100	n/a	n/a	<1	n/a	n/a							
EC40	>100	n/a	n/a	<1	n/a	n/a							
EC50	>100	n/a	n/a	<1	n/a	n/a			······································				
7d Sur	vival Ra	ate Summary				Calc	ulated Varia	ate(A/B)					
onc-%	6	Code	Count	Mean		Max	Std Err	Std Dev			%Effect	Α	В
. J		S1	3	0.966		1.0000	0.0333	0.05 7 7	5.97%		0.0%	29	30
1.56			3	0.966		1.0000	0.0333	0.0577	5.97%		0.0%	29	30
3.13			3	1.000		1.0000	0.0000	0.0000	0.00%		-3.45%	30	30
6.25 12.5			3	0.966		1.0000 1.0000	0.0333	0.0577	5.97%		0.0%	29	30
25			3 3	1.000 0.966		1.0000	0.0000 0.0333	0.0000 0.0577	0.00% 5.97%		-3.45% 0.0%	30 29	30 30
50			3	0.966		1.0000	0.0333	0.0577	5.97%		0.0%	29	30
100			3	1.000		1.0000	0.0000	0.0000	0.00%		-3.45%	30	30
7d Sur	rival Ra	ate Detail		-	· · · · · · · · · · · · · · · · · · ·		y		-	-			
Conc-%			Don 1	Don 2	Bon 2								
0	U	Code S1	Rep 1 1.0000	0.900									
1.56		01	1.0000	0.9000									
3.13			1.0000										
5.13 6.25				1.0000									
12.5			0.9000	1.0000									
14.0			1.0000	1.0000	0 1.0000								

25

50

100

1.0000

0.9000

1.0000

1.0000

1.0000

1.0000

0.9000

1.0000

Report Date:

19 Jun-20 17:04 (p 2 of 2)

Test Code:

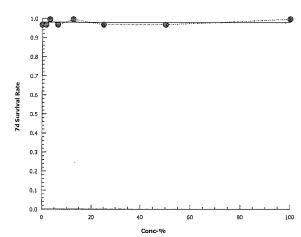
PP-10735-0320 | 20-9088-9222

Fathead Minnow 7-d Larval Survival and Growth Test

Bureau Veritas Laboratories

nalysis ID: Analyzed:

21-1698-4845 19 Jun-20 16:54


Endpoint: 7d Survival Rate Analysis:

Linear Interpolation (ICPIN)

CETIS Version:

CETISv1.9.2

Official Results: Yes

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Tab - Survival, Page 1 of 1

Client Name: Golder Associates Ltd. (Agnico)

Job / Sample #: <u>C039804 XX3665</u>

Sample ID: MEL-13-07

					#	Survivin	g Organis	ms					
	Replicate	# Of Fish				Day							
Conc.	#	Seeded	1	2	3	4	5	6	7	0/ 0	0/ 1/4	% Mean	SD
(% v/v)	Date	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	% Survivai	% Mortality	Mortality	(%)
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
Control	В	10	10	10	10	10	10	10	10	100%	0%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	С	10	10	10	10	10	10	10	10	100%	0%	T.	
	А	10	10	10	10	10	10	10	10	100%	0%	3.3%	5.8%
Site Control	В	10	10	10	10	10	10	10	9	90%	10%		
	С	10	10	10	10	10	10	10	10	100%	0%		
	Α	10	10	10	10	10	10	10	10	100%	0%	3.3%	5.8%
1.56	В	10	10	10	10	10	10	10	9	90%	10%		
	С	10	10	10	10	10	10	10	10	100%	0%		
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
3.13	В	10	10	10	10	10	10	10	10	100%	0%	100	
	С	10	10	10	10	10	10	10	10	100%	0%		
	А	10	10	10	10	10	10	10	9	90%	10%	3.3%	5.8%
6.25	В	10	10	10	10	10	10	10	10	100%	0%		
	C	10	10	10	10	10	10	10	10	100%	0%		
:	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
12.5	В	10	10	10	10	10	10	10	10	100%	0%		
	С	10	10	10	10	10	10	10	10	100%	0%		
	Α	10	10	10	10	10	10	10	10	100%	0%	3.3%	5.8%
25	В	10	10	10	10	10	10	10	10	100%	0%	1975 T. S.	
	O	10	10	10	10	10	10	10	9	90%	10%		
	А	10	10	10	9	9	9	9	9	90%	10%	3.3%	5.8%
50	В	10	10	10	10	10	10	10	10	100%	0%		
	С	10	10	10	10	10	10	10	10	100%	0%		
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
100	В	10	10	10	10	10	10	10	10	100%	0%		
	С	10	10	10	10	10	10	10	10	100%	0%		
An	alyst	МНМ	МНМ	NS	YS	MHM	MB	MHM	MHM				

^{*} see test comments

Proofed: Maves

Report Date:

22 Jun-20 16:55 (p 1 of 8)

Test	Code:
1036	Couc.

PP-10735-0320 | 20-9088-9222

							1031	Coue.	FF-101.	33-0320 Z	0-3000-322
Fathead Minn	now 7-d Larval	Survival ar	nd Growt	h Test					Bureau	ı Veritas La	aboratorie
าalysis ID:	20-0622-9798	B Er	ndpoint:	Mean Dry Bion	nass-mg		CET	IS Version	ı: CETISv	1.9.2	
analyzed:	22 Jun-20 16	:52 A r	nalysis:	Parametric-Tw	o Sample		Offic	ial Result	s: Yes		
Batch ID:	13-1526-7178	Te	est Type:	Growth-Surviva	al (7d)		Anal	yst: M.	Hamad		
Start Date:	12 Jun-20 14:2	23 Pr	otocol:	EÇ/EPS 1/RM	/22		Dilu	- ent: Re	econstituted \	Vater	
Ending Date:	19 Jun-20 15:4	15 S r	oecies:	Pimephales pr			Brin	e: No	ot Applicable		
Duration:	7d 1h	-	ource:	Aquatic Biosys			Age:		, .		
Sample ID:	07-1013-0430	Co	ode:	Ç039804			Clie	nt: Ag	nico Eagle M	lines	
Sample Date:	: 07 Jun-20	Ma	aterial:	Water			Proj	ect:			
Receipt Date:	: 11 Jun-20 08:2	20 S c	ource:	Agnico Eagle N	<i>l</i> lin e s						
Sample Age:	5d 14h	St	ation:	MEL 13-07							
Data Transfor		Alt Hyp	·					on Resul			PMSD
Untransformed	d	C > T					100% pas	sed mean	dry biomass	-mg	18.38%
Equal Variand	ce t Two-Samp	le Test									
Control	vs Conc-%)	Test S	Stat Critical	MSD DF	P-Type	P-Value	Decisio	n(α:5%)		
Ref 1 melog	50レ 100		0.349	8 2.132	0.093 4	CDF	0.3721	Non-Sig	nificant Effec	t	
Auxiliary Test	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	e Grubbs	Extreme Va	alue Test		1.499	1.887	0.5782	No Outli	ers Detected		
ANOVA Table	ļ									·	•
Source	Sum Sq	uares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between	0.000352	27	0.000	3527	1	0.1223	0.7441	Non-Sig	nificant Effec	t	
Error	0.011530)7	0.002	8827	4						
⁻ otal	0.011883	33			5						. ,
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances -	Variance	Ratio F Te	st		3.43	199	0.4514	Equal Va	ariances		
Distribution	Shapiro-\	Wilk W Nori	mality Tes	st	0.9814	0.43	0.9583	Normal I	Distribution		
Mean Dry Bio	mass-mg Sum	mary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	R1	3	0.5083	3 0.4187	0.5979	0.511	0.471	0.543	0.02083	7.10%	0.00%
100		3	0.493	0.327	0.659	0.481	0.433	0.565	0.03857	13.55%	3.02%
Wean Dry Bio	mass-mg Detai	11	_,	,							
Conc-%	Code	Rep 1	Rep 2	Rep 3							
5011C-76											
0	R1	0.471	0.511	0.543							

Report Date:

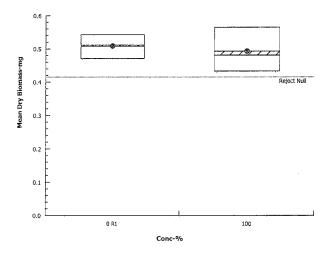
22 Jun-20 16:55 (p 2 of 8)

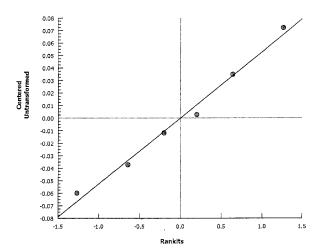
Test Code:

PP-10735-0320 | 20-9088-9222

Fathead Minnow 7-d Larval S	Survival and (Growth Test
-----------------------------	----------------	-------------

Bureau Veritas Laboratories


nalysis ID: Analyzed:


20-0622-9798 22 Jun-20 16:52

Analysis:

Endpoint: Mean Dry Biomass-mg Parametric-Two Sample **CETIS Version:** Official Results:

CETISv1.9.2 Yes

Report Date:

22 Jun-20 16:55 (p 3 of 8)

Test Code:

PP-10735-0320 | 20-9088-9222

							,,,,				
Fathead Minno	w 7-d Larval	Survival a	and Growt	h Test	7,1				Bureau	ı Veritas La	aboratorie
nalysis ID:	14-7223-433	9 E	ndpoint:	Mean Dry Bion	nass-mg		CET	IS Version	: CETISv1	1.9.2	
Analyzed:	22 Jun-20 16	6:53 A	nalysis:	Parametric-Tw	o Sample		Offic	cial Result	s: Yes		
Batch ID: 1	3-1526-7178	Т	est Type:	Growth-Surviva	al (7d)		Ana	lyst: M.	Hamad		
	2 Jun-20 14:		rotocol:	EC/EPS 1/RM/			Dilu	-	constituted V	Vater	
Ending Date: 1			pecies:	Pimephales pre			Brin	e: No	t Applicable		
	d 1h		ource:	Aquatic Biosys			Age				
Sample ID: 0	7-1013-0430		ode:	C039804			Clie	nt: Aa	nico Eagle M	fines	
Sample Date: 0			faterial:	Water			Proj	-	•		
Receipt Date: 1			ource:	Agnico Eagle N	/lines		,				
Sample Age: 5			tation:	MEL 13-07							
Data Transform		Alt Hy	 p			 	Compari	son Result	t		PMSD
Untransformed		C > T	<u> </u>				·_		dry biomass	-mg	17.09%
Equal Variance	t Two-Samr	ole Test									
Control vs	•		Test \$	Stat Critical	MSD DF	P-Type	P-Value	Decisio	n(α:5%)		
Ref 2 mel Out			1.36	2.132	0.095 4	CDF	0.1227		nificant Effec	t	
Auxiliary Tests										······································	
Attribute	Test				Test Stat	Critical	P-Value	Decision	n(α:5%)		
Extreme V alue	Grubbs	Extreme V	alue Test		1.482	1.887	0.6137	No Outli	ers Detected		
ANOVA Table											
Source	Sum Sq	uares	Mean	Square	DF	F Stat	P-Value	Decision	n(α:5%)		
Between	0.00546	02	0.005	4602	1	1.851	0.2453	Non-Sigr	nificant Effec	t	
Error	0.01180	07	0.002	9502	4						
otal	0.01726	08			5						
Distributional T	ests										
Attribute	Test				Test Stat	Critical	P-Value	Decision	n(α:1%)	•	
Variances	Variance	Ratio F Te	est		3.108	199	0.4869	Equal Va	ariances		
Distribution	Shapiro-	Wilk W No	rmality Te	st	0.9598	0.43	0.8183	Normal [Distribution		
Mean Dry Bioma	ass-mg Sum	mary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R2	3	0.553	3 0.4592	0.6475	0.547	0.519	0.594	0.02188	6.85%	0.00%
100		3	0.493	0.327	0.659	0.481	0.433	0.565	0.03857	13.55%	10.90%
Mean Dry Bioma	ass-mg Deta	ıil									
Conc-%	Code	Rep 1	Rep 2								
0	R2	0.519	0.594	0.547							

100

0.433

0.481

Report Date:

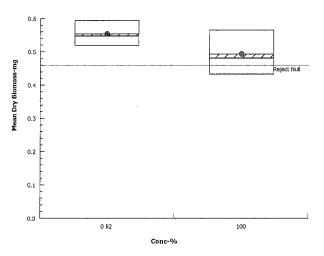
22 Jun-20 16:55 (p 4 of 8)

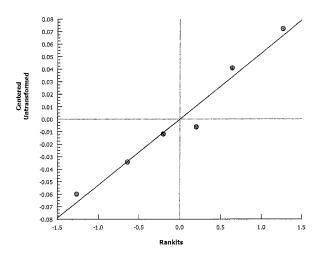
Test Code:

PP-10735-0320 | 20-9088-9222

Fathead Minnow 7-d Larval Survival and Growth Te
--

Bureau Veritas Laboratories


nalysis ID: Analyzed:


14-7223-4339 22 Jun-20 16:53

Analysis:

Endpoint: Mean Dry Biomass-mg Parametric-Two Sample **CETIS Version:** Official Results:

CETISv1.9.2 Yes

Report Date:

22 Jun-20 16:55 (p 5 of 8)

Test Code:

PP-10735-0320 | 20-9088-9222

								. 0000.			
Fathead Minr	now 7-d Larva	I Survival	and Growt	h Test					Bureau	Veritas La	aboratorie
nalysis ID:	15-8419-190)7 E	Endpoint:	Mean Dry Bion	nass-mg		CET	'IS Version	: CETISv1	.9.2	
Analyzed:	22 Jun-20 1	6:55 A	Analysis:	Parametric-Tw	o Sample		Offic	cial Result	s: Yes		
Batch ID:	13-1526-7178	В 7	Test Type:	Growth-Surviva	al (7d)		Ana	lyst: M.	Hamad		
Start Date:	12 Jun-20 14		Protocol:	EC/EPS 1/RM/			Dilu		constituted V	Vater	
Ending Date:	19 Jun-20 15	:45	Species:	Pimephales pr	omelas		Brin	e: No	t Applicable		
Duration:	7d 1h		Source:	Aquatic Biosys	tems, CO		Age	:			
Sample ID:	07-1013-0430) (Code:	C039804			Clie	nt: Ag	nico Eagle M	ines	
Sample Date:	: 07 Jun-20	P	/laterial:	Water			Proj	ect:			
Receipt Date:	: 11 Jun-20 08	:20	Source:	Agnico Eagle N	<i>M</i> ines						
Sample Age:	5d 14h	\$	Station:	MEL 13-07							
Data Transfo	rm	Alt Hy	p					son Result			PMSD
Untransforme	d	C > T		,			100% pas	ssed mean	dry biomass-	mg	16.14%
Equal Varian	ce t Two-Sam	ple Test									
Control	vs Conc-	%	Test S	Stat Critical	MSD DF	P-Type	P-Value	Decision	າ(α:5%)		
Ref3 mexic	50°K 100		0.812	9 2.132	0.085 4	CDF	0.2309	Non-Sigr	nificant Effect		
Auxiliary Test	ts								,		
Attribute	Test				Test Stat	Critical	P-Value	Decision	η(α:5%)		
Extreme Value	e Grubb	s Extreme \	/alue Test		1.652	1.887	0.3058	No Outlie	ers Detected		
ANOVA Table)										
Source	Sum S	quares	Mean	Square	DF	F Stat	P-Value	Decision	η(α:5%)		
Between	0.00156	882	0.001	5682	1	0.6608	0.4619	Non-Sigr	nificant Effect		
Error	0.00949	927	0.002	3732	4						
otal	0.01106	808			5 						
Distributional	l Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision	η(α:1%)		
√ariances		e Ratio F T			15.81	199	0.1190	Equal Va			
Distribution	Shapiro	-Wilk W No	rmality Tes	st 	0.9611	0.43	0.8285	Normal E	Distribution		
Mean Dry Bio	mass-mg Sur	nmary									
Conc-%	Code	Count	Mean	95% LCL	·~	Median	Min	Max	Std Err	CV%	%Effect
ו	R3	3	0.5253		0.5671	0.529	0.507	0.54	0.009701	3.20%	0.00%
100		3	0.493	0.327	0.659	0.481	0.433	0.565	0.03857	13.55%	6.15%
Mean Dry Bio	mass-mg Det	ail									
Conc-%	Code	Rep 1	Rep 2								····
כ	R3	0.54	0.507	0.529							

Analyst: QA: PM

100

0.433

0.481

Report Date:

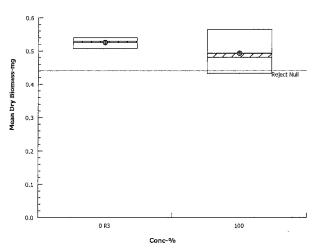
22 Jun-20 16:55 (p 6 of 8)

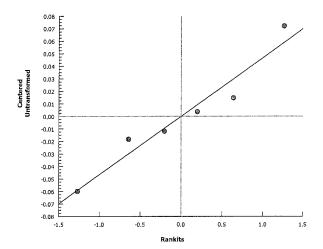
Test Code:

PP-10735-0320 | 20-9088-9222

Fathead Minnow 7-d Larval Survival and Growth Test

Bureau Veritas Laboratories


nalysis ID: Analyzed:


15-8419-1907 22 Jun-20 16:55

Analysis:

Endpoint: Mean Dry Biomass-mg Parametric-Two Sample **CETIS Version:** Official Results:

CETISv1.9.2 Yes

100

Report Date:

22 Jun-20 16:55 (p 7 of 8)

Test Code:

PP-10735-0320 | 20-9088-9222

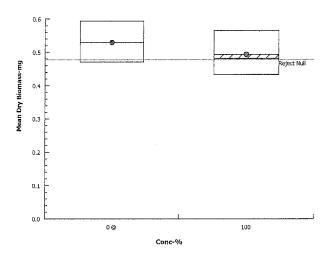
						1031	ooue.	11 -107	00 0020 2	0 0000 022
Fathead Minnow	7-d Larval S	urvival and Grow	th Test			·		Bureau	ı Veritas L	aboratories
	0-6604-9624 2 Jun-20 16:5	Endpoint:	Mean Dry Bior Parametric-Tw	•	•		IS Version		1.9.2	
		, , , , , , , , , , , , , , , , , , ,	•	· · · · · · · · · · · · · · · · · · ·		······································				
	-1526-7178		: Growth-Surviv			Anal	•	Hamad		
	Jun-20 14:23		EC/EPS 1/RM			Dilu		constituted \	Water	
Ending Date: 19		•	Pimephales pr			Brin		t Applicable		
Duration: 7d	1h 	Source:	Aquatic Biosys	stems, CO		Age				
Sample ID: 07	-1013-0430	Code:	C039804			Clie	n t: Ag	ni c o Eagle N	lines	
Sample Date: 07	Jun-20	Material:	Water			Proj	ect:			
Receipt Date: 11	Jun-20 08:20	Source:	Agnico Eagle I	Mines						
Sample Age: 5d	14h	Station:	MEL 13-07							
Data Transform		Alt Hyp					son Result			PMSD
Jntransformed		C > T				100% pas	sed mean	dr y biomass	-mg	9.71%
Equal Variance t	Two-Sample	Test								
Conc-% vs	Conc-%	Test	Stat Critical	MISD DE	P-Type	P-Value	Decision	η(α:5%)		
600/6P	100	1.27	1.812	0.051 10	CDF	0.1163	Non-Sigr	nificant Effec	t	
Auxiliary Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	η(α:5%)		
Extreme Value	Grubbs Ex	xtreme Value Test	t	1.777	2.412	0.7027	No Outlie	ers Detected		
NOVA Table										
Source	Sum Squa	ires Meai	n Square	DF	F Stat	P-Value	Decision	η(α:5%)		
Between	0.002916	0.002	2916	1	1.614	0.2327	Non-Sigr	nificant Effec	t	
Error	0.018066	0.00	18066	10	_					
໊ວtal 	0.020982			11						
Distributional Te	sts									
Attribute	Test			Test Stat	Critical	P-Value	Decision	η(α:1%)		
/ariances		tatio F Test		3.908	11.04	0.1309	Equal Va			
Distribution	Shapiro-Wi	ilk W Normality Te	est	0.9364	0.8025	0.4524	Normal E	Distribution		
lean Dry Biomas	ss-mg Summ	ary								
Conc-%	Code	Count Mear	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	@	9 0.529	0.503	0.555	0.529	0.471	0.594	0.01127	6.39%	0.00%
00		3 0.493	0.327	0.659	0.481	0.433	0.565	0.03857	13.55%	6.81%
lean Dry Biomas	ss-mg Detail									
Conc-%	Code	Rep 1 Rep 2	2 Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	
	@	0.54 0.507			0.594	0.547			0.543	

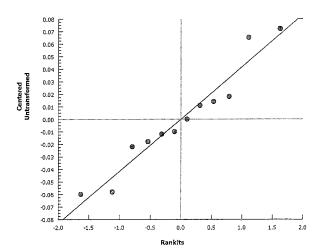
0.433

0.481

Report Date:

22 Jun-20 16:55 (p 8 of 8)


Test Code:


PP-10735-0320 | 20-9088-9222

Fathead Minnow 7-d Larval Survival and Growth Test

Bureau Veritas Laboratories

าalysis ID:	00-6604-9624	Endpoint:	Mean Dry Biomass-mg	CETIS Version:	CETISv1.9.2
Analyzed:	22 Jun-20 16:55	Analysis:	Parametric-Two Sample	Official Results:	Yes

Report Date:

22 Jun-20 16:55 (p 1 of 2)

Test Code:	PP-10735-0320	20-9088-92
report bate.	ZZ GGII ZG I	0.00 (p 1 01

									rest	Code:		PP-10735-0320 20-9088-92
Fathea	d Minne	ow 7-d Larval S	urvival and	Growt	h Test							Bureau Veritas Laboratorie
nalys	is ID:	18-2082-1589	End	lpoint:	Mean Dry Biom	nass-mg			CET	IS Version	on:	CETISv1.9.2
۸nalyz	ed:	22 Jun-20 16:5	2 A na	ılysis:	Linear Interpola	ation (ICPIN	i)		Offic	Official Results: Yes		
Batch	ID:	13-1526-7178	Tes	t Type:	Growth-Surviva	ıl (7d)			Ana	Analyst: M. Hamad		
Start D	ate:	12 Jun-20 14:23	Pro	tocol:	EC/EPS 1/RM/22					ent: F	Reco	nstituted Water
Ending	Date:	19 Jun-20 15:45	Spe	cies:	Pimephales promelas				Brin	e: N	Not A	Applicable
Duratio	on:	7d 1h	Sou	ırce:	Aquatic Biosystems, CO					:		
Sample ID: 07-1013-0430 Code:			le:	C039804				Clie	nt: A	Agnic	co Eagle Mines	
•				erial:	Water				Proj	ect:		
		11 Jun-20 08:20		ırce:	Agnico Eagle M	lines						
Sampl	e Age:	5d 14h 	Stat	tion:	MEL 13-07							
Linear	Interpol	lation Options										
X Tran		Y Transform			Resamples	Exp 95%		Method		-1-41		
Log(X+	•	Linear	192	4986 	200	Yes		1 WO-PO	int Interp	olation		
Residu	ial Analy	/sis										
Attribu		Method			Test Stat		P-Va		Decision	·		
Extrem	e Value	Grubbs Ex	treme Valu	e Test	1.997	2.802	0.918	16 N	No Outlie	rs Detect	ed	
oint E	stimate	s										
_evel	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
C5	68.6	48.27	n/a	1.458	n/a	2.072						
C10	93.98	45.26	n/a	1.064	n/a	2.209						
C15	>100	n/a	n/a	<1	n/a	n/a						
C20	>100	n/a	n/a	<1	n/a	n/a						
C25	>100	n/a	n/a	<1	n/a	n/a						
`40	>100	n/a	n/a	<1	n/a	n/a						
J50	>100	n/a	n/a	<1	n/a	n/a						
	-	nass-mg Summ	ary			Ca	lculate	d Variat	te			
Conc-%	<u></u>	Code	Count	Mean		Max	Std E		td Dev	CV%	,	%Effect
.56		S1	3	0.506 0.516	0.446	0.562	0.033		.0581	11.48%		0.0% -2.11%
.56 3.13			3	0.558	7 0,449 0.506	0.587 0.599	0.039		.06904 .04747	13.36% 8.51%		-2.11% -10.28%
.25			3	0.545		0.621	0.027		.09209	16.88%		-7.84%
2.5			3	0.6043		0.673	0.042		.07338	12.14%		-19.43%
5			3	0.553		0.576	0.012		.02201	3.98%		-9.42%
50			3	0.592		0.628	0.019		.03453	5.83%		-17.13%
00			3	0.493	0.433	0.565	0.038		.06681	13.55%		2.57%
/lean D	ry Biom	ass-mg Detail										
Conc-%	, D	Code	Rep 1	Rep 2	Rep 3			-				
)		S1	0.562	0.446	0.51							
.56			0.587	0.514	0.449							
.13			0.506	0.569	0.599							
.25			0.443	0.573	0.621							
2.5			0.613	0.673	0.527							
25			0.532	0.576	0.553							
0			0.559	0.591	0.628							
				-								

Analyst: QA: PH

001-349-190-8 CETIS™ v1.9.2.4

0.433

0.481

0.565

100

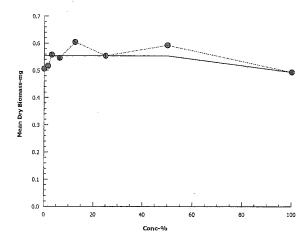
Report Date:

22 Jun-20 16:55 (p 2 of 2)

Test Code:

PP-10735-0320 | 20-9088-9222

Bureau Veritas Laboratories


nalysis ID: Analyzed:

18-2082-1589 22 Jun-20 16:52

Analysis:

Endpoint: Mean Dry Biomass-mg Linear Interpolation (ICPIN) **CETIS Version:** Official Results: Yes

CETISv1.9.2

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

BBY2FCD-00215/14 Tab - Biomass, Page 1 of 1

Client Name: Golder Associates Ltd. (Agnico)

Sample ID: MEL-13-07 Job / Sample #: C039804 XX3665

Weighing Dates: 2020 June 17, 2020 Jun 20 Drying Time (h): >24

Balance ID: bby2-0260 Drying Temp (°C): 60

Boat	Conc. &	Initial #	Boat Wt.	Boat & Fish	Wt. of Fish	Biomass/Replicate1	Mean Biomass/Conc1	SD
#	Replicate	Of Fish	(g)	Wt. (g)	(mg)	(mg)	(mg)	
304	0-A	10	0.80144	0.80714	5.70	0.570	0.573	0.06
305	В	10	0.80493	0.81008	5.15	0.515		
306	С	10	0.80810	0.81443	6.33	0.633		
307	Site Ctrl-A	10	0.79177	0.79739	5.62	0.562	0.506	0.06
308	В	10	0.80906	0.81352	4.46	0.446		
309	С	10	0.81217	0.81727	5.10	0.510		(4)
310	1.56%-A	10	0.81361	0.81948	5.87	0.587	0.517	0.07
311	В	10	0.80485	0.80999	5.14	0.514		
312	С	10	0.79729	0.80178	4.49	0.449		
313	3.13%-A	10	0.80236	0.80742	5.06	0.506	0.558	0.05
314	В	10	0.78473	0.79042	5.69	0.569		
315	С	10	0.82537	0.83136	5.99	0.599		
316	6.25%-A	10	0.81461	0.81904	4.43	0.443	0.546	0.09
317	В	10	0.79856	0.80429	5.73	0.573	Same In the	
218	С	10	0.79863	0.80484	6.21	0.621 ⁻	1.100	
,9	12.5%-A	10	0.80023	0.80636	6.13	0.613	0.604	0.07
320	В	10	0.80637	0.81310	6.73	0.673		
321	С	10	0.79973	0.80500	5.27	0.527		
322	25%-A	10	0.79829	0.80361	5.32	0.532	0.554	0.02
323	В	10	0.78474	0.79050	5.76	0.576		
324	С	10	0.78370	0.78923	5.53	0.553		
325	50%-A	10	0.79626	0.80185	5.59	0.559	0.593	0.03
326	В	10	0.80695	0.81286	5.91	0.591		1131
327	C	10	0.79326	0.79954	6.28	0.628		
328	100%-A	10	0.80523	0.80956	4.33	0.433	0.493	0.07
329	В	10	0.80372	0.80853	4.81	0.481	. Albinus	
330	С	. 10	0.80518	0.81083	5.65	0.565	1571 - 21 - 21	
331	QA/QC	1	0.79185	0.79201	0.16		The state of the s	
332	QA/QC		0.79620	0.79639	0.19			
304	0-A	10	0.80152	0.80738	5.86	7.4	\$ 1.5 m	
Α	nalyst	1	NS	DML		3 3	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	97

¹ Biomass is calculated as the weight of fish per replicate divided by the number of fish initially seeded into that replicate (i.e. 10 fish per replicate).

Average Dry Weight of Control Fish (Average dry weight of control fish must be ≥ 250 µg for test to be valid)

Boat #	Conc. &	# Surviving	Wt. of Fish	Mean Wt./	Mean Dry Wt.
	Replicate	Fish	(mg)	Fish (µg)	(µg)
304	0-A	10	5.70	570	573
305	В	10	5.15	515	
306	С	10	6.33	633	

Job / Sample #:_(

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Client Name: Golder Associates Ltd. (Agnico)

Tab - Obs, Page 1 of 2

	Date Started:	June 12, 2020			Sample ID:	MEL-13-07	
		June 19, 2020		n -/	Organism Lot #:	AB 200612	
	Analyst(s):	MHamad 19	150 , -	6n953/	Manergale		
Befor	e Use Measuremen			nt)	Deviations See I Worksheet Create		
Day	Date	Initial D.O. (% Sat)	Initial Temp (°C)	Aerated (min.)*	Post Aeration D.O. (% Sat)	Post Aeration Temp (°C)	Analyst
0	June 12, 2020	105,7	25.3	20	103.9	25,6	MIM
1	June 13, 2020	105.1	52.8	20	103.6	25.7	MIM
2	June 14, 2020	110.2	26.0		108.5	25,9	lwo .
3	June 15, 2020	109,6	ZY, Y	Zo	103,8	14.0	N2
4	June 16, 2020	110.1	25.5	20	10118	25.1	MHM
5	June 17, 2020	11312	25.9	20_	101.9	25.7	MITM
6	June 18, 2020	111.3	2317	20	101.2	25.7	1414
	ion rate must be ≤10 mple Description	00 bubbles/min Clarand Colo	_	rument ID's:	BB12-0366 Initials	MHgmad	
Sa Obse i	mple Hardness (mg		ੇ ਹੈ pehaviour, add	Initials: litional test	ys information)	Room #	106
Day		·					Analyst
0	Date:	June 12, 2020		Carboy / Bot	ttle #:		MIM
	Pre-Aeration Time:	091,22-091	12		Test Seeded @:	141,23	
		Feedi	ng PM: 16=1	5	Feeding Volume	(uL): 50	
1	Date:	June 13, 2020		Carboy)Bot	ttle #: 3		min /ces
•	Pre-Aeration Time:			<u> </u>	Water change @	16:20	
	Feeding AM: 6%\			50		g Volume (uL):	50
	WQ Rep: Д	1) 1 6601	19 1 W. \ / ,		7 CCUIII	g volumo (al.).	.,0
	WQ Rep. 7.			· · · · · · · · · · · · · · · · · · ·			
			<u> </u>				
2	Date:	June 14, 2020		Carboy / Bot	#Ip#:		US VS
۷	Pre-Aeration Time:			Valuaby / DO	Water change @	15:08	<u> </u>
				· [0			<u>-</u> λ
	Feeding AM:	reedil	ng PM: No 3	. 10	reedin	g Volume (uL):	20
	WQ Rep: B	<u> </u>	AV W				

BUREAU VERITAS LABORATORIES

BBY2FCD-00215/14 Tab - Obs, Page 2 of 2

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Job / Sample #: <u>039804</u>

Client Name: Golder Associates Sample ID: MEL-13-07

Day		Analyst
3	Date: June 15, 2020 Parboy / Bottle #: 2	3
	Pre-Aeration Time: 14:45 ~ 15:05 Water change @: 16:50	1
	Feeding AM: 07:00 Feeding PM: 17:50 Feeding Volume (uL):	50
	WQ Rep: C	
		,
4	Date: June 16, 2020 Carboy Bottle #: 3	Mim
	Pre-Aeration Time: 09'-40-10:00 Water change @: 14'.20	
	Feeding AM: 07:45 Feeding PM: \5', 20 Feeding Volume (uL):	50
	WQ Rep: A	
:		1 /10
5	Date: June 17, 2020 Carboy Bottle #: 3	MITA ME
	Pre-Aeration Time: 08:15 - 08:35 Water change @: // 58	
	Feeding AM: 07:45 Feeding PM: 14:20 Feeding Volume (uL)	:50
	WQ Rep: 13	
		400000
		1
6	Date: June 18, 2020 Carboy)/ Bottle #:	M
	Pre-Aeration Time: 13',07 -13', 27 Water change @: 14',10	
	Feeding AM: OSAS Feeding PM: 1500 Feeding Volume (uL)	:50
	WQ Rep: (, <u></u>
		state states to gr.
		MIT
7	Date: June 19, 2020	Hier c
	Test ended @ \\infty \infty \ \WQ rep: \(\Lambda\)	
; 1		

BUREAU VERITAS LABORATORIES

BBY2FCD-00215/14

Tab - Measurements, Page 1 of 2

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Clier	nt Name:	Golder Assoc	ciates Ltd.	Agnico)			es es	./	
Sa	ımple ID:	MEL-13-07		0	. 1 Jo	b / Sample #:	<u>C039804</u>	1/203665	<u>.</u>
Ar	nalyst(s):	YISU,	MHamad	, who	esal, m	.O Toole	NShevck	ie.	-
				*					- 1
Control	Day	1	2	3	4	5	6	7	Į
Conductivity	Initial Final	458	463	462	50U 50B	453	452	454	ł
(µs/cm)	Initial	24.4	24.6	24.9	24.9	2513	509 25,0	250	ł
Temp. (°C)	Final	24.0	243	24:7	25.3	24,7	24.3	24.6	i
D.O. (====/L)	Initial	811	7.8	8.7	8,0	8.1	8.4	8,0	1
D.O. (mg/L)	Final	619	7.2	7.2	6.8	6.8	616	6-8]
рН	Initial	8.2	8,2	8.1	81	8.2	8.1	813	
	Final	7.6	ુ જ.૦	7.8	7.8	7.9	8.0	0.8]
Synthetic	1_		1		***				•
Site Control	Day	1	2	3	4	5	6	7	
Conductivity	Initial	125	126	126	129	130	129	129	
(µs/cm)	Final	140	153	133	146	141	137	138	
Temp. (°C)	Initial	23.8	25.6	25.3	24.7	24.8	25.0	25.2	•
	Final	,	24.3	25.0	25.3	24,7	24.6	275	ł
D.O. (mg/L)	Initial Final	3,3	811	8.3 7.1	3.9 6.5	8,2 6,9	8,3	8,2	ł
	Initial	6.9	7.7	7.4	7.9	7.7	6.9 7.5	A 8-27	18
рН	Final	7.3	8,0	7.2	7.3	7.4	7.3	7.7	٥
	•		<u> </u>	,	T				1
1.56%	Day	1	2	3	4	5	6	7	1
Conductivity	Initial	125	126	125	127	130	128	129	
(µs/cm)	Final	138	139	133	136	142	137	133	
Temp. (°C)	Initial	24.1	24.8	ZS.3	25.0	24.8	24.9	25.3	
	Final	2317	24,4	25.0	25,3	2413	24.6	24.6	
D.O. (mg/L)	Initial	8.4	8.0	8.3	813	<u> প্র</u> ক্	8.3	8,2	ľ
	Final	7.3	6.8	7.3	6,7	7.1	7.0	7-0	ł
pН	Initial	7.5	57	7.3	7.5	7.7	7.7	7.7	l
<u></u>	Final	<i>f</i> · [7.8	7.2	7.2	7.3	7.0	(+ ·)	1
3.13%	Day	1	2	3	4	5	6	7	1
	Initial	124	125	125	125	127	127		ł
Conductivity (µs/cm)	Final	134	1.36	135	133	142	133	128 V34	
	Initial	24.1	24.8	25,3	Z5:3	24.8	24.9	25.3	1
Temp. (°C)	Final	23.9	24.2	25,2	25,1	24,3	24.6	247	1
D.O. (ma/l.)	Initial	8.4	8,2	8.3	8,3	8.3	813	8,2	1
D.O. (mg/L)	Final	7.2	6.9	6.9	7.0	7,2	7.3	723	
рН	Initial	7.5	7.5	7.3	715	7.6	7-15	74]
F''	Final	7.1	7.7	6.9	7-1	7.2	7.2	Th]
				haa					

Mo

DURMIM2020 JUN 18

BUREAU VERITAS LABORATORIES

BBY2FCD-00215/14

Tab - Measurements, Page 2 of 2

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Clie	nt Name:	Golder Assoc	ciates Ltd.	kanico/				1
		MEL-13-07	(1	June 1	Jo	b / Sample #:	C03980	4 XX366
6.25%	Day	1	2	3	4	5	6	7
Conductivity	Initial	123	124	124	125	126	127	124
(µs/cm)	Final	136	139	132	133	140	140	139
Temp. (°C)	Initial	24:0	2418	25.2	Z5.3	24.7	24.9	2514
remp. (C)	Final	23.9	24.0	25,2	25,4	24.6	25.0	24.6
D.O. (mg/L)	Initial	814	8,2	8.3	8.3	8.3	\$13	8,2
D.O. (mg/L)	Final	7,2	7.1	825-261	# 12	7.0	7.1	6.9
Hq	Initial	7.5	B87273	7.3	7.5	7.6	7.5	7.6
<u>'</u>	Final	7.1	7.6	7.0	3-1	7.1	7.1	71
Analyst		MIN MIN	MM NS	mo my	ys mum	1414M	MHM	MHM
Daily WQ Revi	ewed by:	W MITH	m b	000 M	ys Hm	MILM	MHM	MM
12.5%	Day	1	2	3	4	5	6	7
Conductivity	Initial	177.	123	123	153	124	125	126
(µs/cm)	Final	131	133	129	136	140	139	14
Temp. (°C)	Initial	24,1	24,9	ZS,3	253	24,7	25,0	25.4
remp. (C)	Final	23,8	24.2	2512	25·V	24.8	248	25:0
D.O. (mg/L)	Initial	8.4	8:2	8.3	8.3	8.3	803	8.2
5.0. (mg/L)	Final	7.2	1.0	B125-3-6	18 71	6,9	7-0	70
рН	Initial	7.4	7.3	73	7.4	7.5	75	7.5
	Final	7.0	1.6	7.1	7.2	7.1	7.1	72
25%	Day	1	2	3	4	5	6	7
Conductivity	Initial	118	119	119	120	121	122	122
(µs/cm)	Final	128	131	127	131	131	131	\33
	Final	24.2	24.9	ZS,3	15.0	24.8	24.9	2524
Temp. (°C)	Final	23.7	24.3	25.4	25-0	25.1	27.8	24.8
D (/ma/l)	Initial	8.4	8:2	8,4	8,3	813	8,3	8.3
D.O. (mg/L)	Final	7.2	7.0	6,1	6.8	6,6	6.4	6.9
nH	Initial	4.3	7.3	7.3	7.4	7.5	7.3	7-5
pH 	Final	7.0	7.5	6.9	70	7.0	70	7-1
50%	Day	1	2	3	4	5	6	7
Conductivity	Initial	112	114	112	114	115	116	314
(µs/cm)	Final	124	227*	164	136	130	135	131
· · · · · · · · · · · · · · · · · · ·	Initial	24.4	24.9	2S.S	25.2	24.8	2510	25.5
Temp. (°C)	Final	24.0	24.3	25,4	25,3	25.0	24.8	24.6
D.O. (")	Initial	8.5	83	8,5	813	8.3	8,3	8.2
D.O. (mg/L)	Final	7.1	9.0	5,8	6,8	613	6.3	6-8
	Initial	7.3	マック	7.2	7.4	7.5	7.4	7.5
рН	Final	7.0	7.4	7.0	7-1	7.0	7.0	77
100%	Day	1	2	3	4	5	6	7
	Initial	99	100	98	102	102	152	100
Conductivity (µs/cm)	Final	706	111	901	138	117	118	100
	Initial	25.0	25.0	25,9	74.8	24.9	25.2	25,4
Temp. (°C)	Final	24.0	24.5		2513	2411	24.6	24.9
			814	25:4	8.2	8,4	05	8,2
D.O. (mg/L)	Initial Final	8.5 7.1	6.8	6,0	63	6.4	813	6.6
	Initial	7.1	77.4	, 7 ,	3.3 3.3	7.4	any	18.4.
рH	Final	7.5	7.5	6.9	71	710	73	7-1
Analyst	illiai	MW HIM		IND MIM	A) MM	MITT how	WHO AND	my m
Daily WQ Revi	ewed by:		W 12	100 V	yo W			10 101
Daily Fraction	chod by.	V -			ED 4 = 272	usland	RONC-9	42/15/1m
		MIL	WEOJ SE MENT	11 7 (B) (1)	eral milm s	Timber C	RepC=2	i-junio"
		UW U	1 1 2000	III WW	010(/ 1.161.1 0	11111		

BBY2FCD-00215/14

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Tab - Survival, Page 1 of 1

Client Name: Golder Associates Ltd.

Job / Sample #: CO39801 XX3

Sample ID: MEL-13-07

				-	#	Surviving	g Organis	ms					
	Replicate	# Of Fish				Day							
Conc.	#	Seeded	1	2	3	4	5	6	7	% Survival	 % Mortality	% Mean	SD
(% v/v)	Date	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	70 Gui Vi Vai	76 Working	Mortality	(%)
	Α	10	<i>(</i> 0	10	10	lo	10	10	6	•	_	-	-
Control	В	10	(b	10	10	10	10	W	1/0	-	-		
	С	10	Ś	5	10	10	10	To	10	-	-		
	Α	10	(0	10	10	io	10	10	10	-	-	-	-
Site Control	В	(v)	(d)	10	10	10	10	W	q	-	-		
(Synthetic	С	10	(0	10	10	10	10	P	10	-	-	1000	
	Α	10	(0	10	10	10	10	10	13	-	-	-	-
1.56	В	(0)	10	10	10	10	10	10	9	-	-		
	С	10	0	NO	10	10	10	10	10	-	-		
	А	1-6	10	10	10	10	10	10	6	-	-	-	-
3.13	В	10	10	10	10	10	10	10	Vo	-	-		
	С	10	10	0	(0)	lo	10	10	10	-	-		
	Α	þ	10	10	(0	lo.	10	10	9	-	-	-	-
6.25	В	16	10	10	10	10	10	10	6	-	-		
	С	10	10	10	(V)	10	10	Gj	16	-	-		
	Α	۵	10	10	10	ю	10	10	10_	-	-	-	-
12.5	В	10	10	lO	(0	ΟÌ	10	6	(i)	-	-		
	С	lο	(0)	10	(b)	j o	10	10	10	-	-	100	
	Α	İν	10	10	(0)	(0	10	ю	10	-	_	-	-
25	В	10	lo	10	(0	lo	10	b	10	-	-		
	С	10	(6)	W	(0	· OJ	ID	C/	9	-	-		3.42 4.42
	Α	10	10	10	9	9	9	9	9	-	-	-	-
50	В	10	10	10	10	10	10	6	lo	-	-		
	С	6	10	ίŎ	10	10	10	10	(o.	-	-		
	А	(0)	al	10	10	1/0	10	10	jo	-	_	-	-
100	В	10	(x)	10	10	1,0	10	10	0/	-	-		
	С	0/	10	O	10	ю	10	10	10	-	-		
A	nalyst	1,7	MHX	NS	y 5	MIN	WS	W	Men	27. 97.			

^{*} see test comments

Randomization Chart

BUREAU VERITAS LABORATORIES BBY2FCD-00438/3

Tab: Fathead minnow; Pg: 1 of 1

Client Name: Golder (Agnico) Start Date: 2020 Jun 12

Sample Name: MEL-13-07

Use the coloured dot to find appropriate conc'ns and put beakers back in proper position following daily water change.

Back Wall		Position Map						
4	8	12	16	20	24			
3	7	11	15	19	23			
2	6	10	14	18	22			
1	5	9	13	17	21			

Front of Counter

Position #	Treatment	Replicate	Colour
17		А	
7	Control	В	Red
27		С	
26		А	
5	Site Control	В	White
8	(Synthetic)	С	
20		А	
25	1.56%	В	Orange
1		С	
11	***	Α	
9	3.13%	В	Yellow
14		С	
4		Α	
13	6.25%	В	Fl. Green
18		_ C	
19	-	Α	
16	12.5%	В	Green
6		С	
12		.A	
15	25%	В	Blue
21		С	
10		А	
23	50%	В	Purple
22		С	
3	4	Α	_
2 24	100%	B C	Pink

Report Date:

03 Jul-20 13:35 (p 1 of 1)

Test Code:

PP-10735-0120 | 00-3690-9242

Fathead Minn	ow 7-d Larval S	urvival and Growt	h Test				Bureau Veritas Laboratories
nalysis ID:	12-9023-4371 19 Jun-20 17:0	Endpoint: 6 Analysis:	7d Survival Ra Single 2x2 Co			Version: Results:	CETISv1.9.2 Yes
Batch ID: Start Date: Ending Date: Duration:	13-1526-7178 12 Jun-20 14:10 19 Jun-20 14:44 7d 1h		Growth-Surviv EC/EPS 1/RM Pimephales pi Aquatic Biosys	I/22 romelas	Analys Diluen Brine: Age:	t: Reco	iamad onstituted Water Applicable
Sample ID: Sample Date: Receipt Date: Sample Age:	11 Jun-20 08:20	Code: Material: Source: Station:	C039804 Water Agnico Eagle MEL 02-05	Mines	Client: Projec	•	co Eagle Mines
Comments: Ref1 is Mel-03	3-02. Ref2 is Mel-	04-05. Ref3 is Mel-	05-04.				
Data Transfor	rm	Alt Hyp			Compariso	n Result	
Untransformed	d	C > T			100% pa s se	d 7d survi	val rate
Fisher Exact	Test		,,,,				
Control	vs Group	Test \$	Stat P-Type	P-Value	Decision(α:5%)		

Control	vs	Group		lest Stat	P-Type	P-value	Decision	(α:5%)	
Ref 1		100		0.3060	Exact	0.3060	Non-Signi	ficant Effect	
Data Sumi	mary								
Conc-%		Code	NR	R	NR + R	Prop NR	Prop R	%Effect	
0	•	R1	29	1	30	0.9667	0.03333	0.0%	
100			27	3	30	0.9	0.1	6.9%	

7d Survival R	ate Detail				
onc-%	Code	Rep 1	Rep 2	Rep 3	
υ	R1	1.0000	0.9000	1.0000	
100		0.9000	0.9000	0.9000	

Report Date:

03 Jul-20 13:35 (p 1 of 1)

Test Code:

PP-10735-0120 | 00-3690-9242

Fathead Minr	now 7	'-d Larval S	Survival and	Growth 1	est				Bureau Veritas Laboratories
`nalysis ID: Analyzed:		0119-1629 Jun-20 17:1	•		d Survival Ra ingle 2x2 Cor		ble	CETIS Ver Official Re	
Batch ID:	13-1	526-7178	Test	Type: G	rowth-Surviv	al (7d)		Analyst:	M. Hamad
Start Date:	12 J	un-20 14:10	Prote	ocol: E	C/EPS 1/RM	/22		Diluent:	Reconstituted Water
Ending Date:	19 J	un-20 14:44	1 Spec	ies: Pi	mephales pr	omelas		Brine:	Not Applicable
Duration:	7d	1h	Sour	ce: A	quatic Bios y s	stems, CO		Age:	
Sample ID:	07-4	234-1571	Code	e: C	039804			Client:	Agnico Eagle Mines
Sample Date:	: 06 J	un-20	Mate	rial: W	at e r			Project:	
Receipt Date:	: 11 J	un-20 08:20	Sour	ce: A	gnico Eagle N	Mines			
Sample Age:			Stati	on: M	EL 02-05				
Comments: Ref1 is Mel-03	3-02.	Ref2 is Mel-	-04-05. Re f 3	is Mel-05-	04.				
Data Transfor	rm		Alt Hyp					Comparison Re	esult
Untransformed	þ		C > T					100% passed 7	d survival rate
Fisher Exact	Test		. ,						· · · · · · · · · · · · · · · · · · ·
Control	vs	Group		Test Sta	t P-Type	P-Value	Decision((α:5%)	
Ref 2		100		0.1186	Exact	0.1186	Non-Signi	ficant Effe c t	
Data Summar	ry								
Conc-%		Code	NR	R	NR + R	Prop NR	Prop R	%Effect	
0		R2	30	0	30	1	0	0.0%	
•									

7d	Sur	vival	Rate	Detail

o nc- %	Code	Rep 1	Rep 2	Rep 3
0	R2	1.0000	1.0000	1.0000
100		0.9000	0.9000	0.9000

Report Date:

03 Jul-20 13:35 (p 1 of 1)

PP-10735-0120 | 00-3690-9242

							Test Code	e:	PP-10735-0120 00-3690-9242
Fathead Mini	now 7-d Lar	val Surviva	al and Grow	th Test					Bureau Veritas Laboratories
nalysis ID:	02-5070-3		Endpoint:	7d Survival R			CETIS Ve	rsion:	CETISv1.9.2
Analyzed:	19 Jun-20	17:13	Analysis:	Single 2x2 Co	ontingency T	able	Official Re	esults:	Yes
Batch ID:	13-1526-71	78	Test Type:	Growth-Survi	val (7d)		Analyst:	M. Hai	mad
Start Date:	12 Jun-20 1	14:10	Protocol:	EC/EPS 1/RN	<i>I</i> 1/22		Diluent:	Recon	stituted Water
Ending Date:	19 Jun-20 1	14:44	Species:	Pimephales p	romeias		Brine:	Not Ar	pplicable
Duration:	7d 1h		Source:	Aquatic Biosy	stems, CO		Age:	,	•
Sample ID:	07-4234-15	71	Code:	C039804			Client:	Agnico	Eagle Mines
Sample Date:	06 Jun-20		Material:	Water			Project:	J	3
Receipt Date:	11 Jun-20 C	08:20	Source:	Agnico Eagle	Mines		-		
Sample Age:	6d 14h		Station:	MEL 02-05					
Comments:									
Ref1 is Mel-03	-02. Ref2 is	Mel-04-05.	Ref3 is Mel-	05-04.					
Data Transfor	m	Alt H	łyp				Comparison Re	esult	
Untransformed		C > T	•				100% passed 76		l rate
Fisher Exact	est	***							The state of the s
Control v	/s Grou	ıp	Test S	Stat P-Type	P-Value	Decision	ı(α:5%)		
Ref 3	100		0.5000	Exact	0.5000	Non-Sign	ificant Effect		
Data Summar	/			, , , , , , , , , , , , , , , , , , , ,					
Conc-%	Code	NR	R	NR + R	Prop NR	Prop R	%Effect		
ס	R3	28	2	30	0.9333	0.06667	0.0%		
100		27	3	30	0.9	0.1	3.57%		
'd Survival Ra	te Detail								
onc-%	Code	Rep 1	Rep 2	Rep 3					
)	R3	0.900	0 1.0000						

100

0.9000

0.9000

Report Date:

03 Jul-20 13:35 (p 1 of 1)

							Те	st Code:	PP-10	735-0120 00-3690-92
Fathead Minr	now 7-d Larval	Survival a	and Growt	h Test					Burea	au Veritas Laboratorie
nalysis ID: Analyzed:	15-0572-546 19 Jun-20 17	-	Endpoint: Analysis:	7d Survival F Single 2x2 C		able		TIS Version: ficial Results		v1.9.2
Batch ID: Start Date: Ending Date: Duration:	13-1526-7178 12 Jun-20 14: 19 Jun-20 14: 7d 1h	10 F 44 S	est Type: Protocol: Species: Source:	Growth-Survi EC/EPS 1/RN Pimephales p Aquatic Biosy	M/22 promelas		Dil	uent: Rec	damad onstituted Applicable	
Sample ID: Sample Date: Receipt Date: Sample Age:	11 Jun-20 08:	N 20 S	ode: faterial: ource: tation:	C039804 Water Agnico Eagle MEL 02-05	Mines		Cli		ico Eagle	Mines
Comments: Ref1 is Mel-03		el-04-05. Re	ef3 is Mel-0	5-04.						
Data Transfor		Alt Hy	<u>) </u>				Compar	ison Result		
Untransformed	***	C > T					100% pa	issed 7d survi	val rate	
Fisher Exact 1	Test .									
Group 1 v	s Group		Test S 0.1643		P-Value 0.1643	Decision Non-Sign	i(α:5%)			
Data Summary										
Conc-%	Code	NR	R	NR + R	Prop NR	Prop R	%Effect			
0	@	87	3	90	0.9667	0.03333	0.0%			
100		27	3	30	0.9	0.1	6.9%			
7d Survival Ra	te Detail									
onc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9
)	@	0.9000	1.0000	0.9000	1.0000	1.0000	1.0000	1.0000	0.9000	1.0000
100		0.0000						1.0000	0.0000	1.0000

100

0.9000

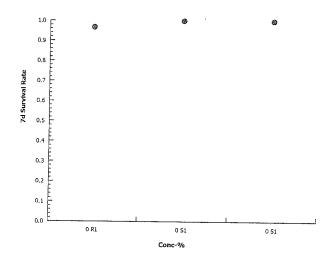
0.9000

Report Date:

03 Jul-20 13:35 (p 1 of 1)

Test Code:

PP-10735-0120 | 00-3690-9242


Fathead Minr	now 7-d Larval Survi	ival and Growt	th Test		Bureau Veritas Laboratories
nalysis ID: Analyzed:	20-7398-8377 29 Jun-20 16:24	Endpoint: Analysis:	7d Survival Rate Single 2x2 Contingency Table	CETIS Versi Official Resi	
Batch ID: Start Date: Ending Date: Duration:	13-1526-7178 12 Jun-20 14:10 19 Jun-20 14:44 7d 1h	Test Type: Protocol: Species: Source:	Growth-Survival (7d) EC/EPS 1/RM/22 Pimephales promelas Aquatic Biosystems, CO	Diluent:	M. Hamad Reconstituted Water Not Applicable
Sample Date:	11 Jun-20 08:20	Code: Material: Source: Station:	C039804 Water Agnico Eagle Mines MEL 02-05	Client: // Project:	Agnico Eagle Mines

Comments:

Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04.

sform		Alt Hyp				<u>-</u>	Comparis	son Result
med		C > T		3				ssed 7d survival rate
ct Test				***				
vs	Control		Test Stat	P-Type	P-Value	Decision	(α:5%)	
Contr	Ref 1		0.5000	Exact	0.5000			f
ests				· · · · · · · · · · · · · · · · · · ·				
	Test				Test Stat	Critical	P-Value	Decision(α:5%)
lue	Grubbs E	Extreme Va	lue Test	7,1	1.826	1.887	0.0968	No Outliers Detected
nary								
	Code	NR	R	NR + R	Prop NR	Prop R	%Effect	
	R1	29	1	30	0.9667	0.03333	3.33%	
	S1	30	0	30	1	0	0.0%	
Rate D	etail							
	Code	Rep 1	Rep 2	Rep 3				
	R1	1.0000	0.9000	1.0000				
	S1	1.0000	1.0000	1.0000				
	ct Test vs Contr ests	red ct Test vs Control Contr Ref 1 ests Test lue Grubbs E hary Code R1 S1 Rate Detail Code R1	red C > T ct Test vs Control Contr Ref 1 ests Test lue Grubbs Extreme Variary Code NR R1 29 S1 30 Rate Detail Code Rep 1 R1 1.0000	vs Control Test Stat Contr Ref 1 0.5000 ests Test lue Grubbs Extreme Value Test nary Code NR R R1 29 1 S1 30 0 Rate Detail Code Rep 1 Rep 2 R1 1.0000 0.9000	C > T	Test Stat P-Type P-Value Control Test Stat P-Type P-Value Contr Ref 1 0.5000 Exact 0.5000 Eests Test Stat Ilue Grubbs Extreme Value Test 1.826 nary Code NR R NR + R Prop NR R1 29 1 30 0.9667 S1 30 0 30 1 Rate Detail Code Rep 1 Rep 2 Rep 3 R1 1.0000 0.9000 1.0000	C C C C C C C C C C	Ref 1 past Ref 1 past Ref 1 past Ref 1 past Ref 1 past Ref 1 past Ref 1 Ref 1 Ref 2 Ref 3 Ref 3 Ref 4 Ref 4 Ref 5 Ref 5 Ref 6 Ref 7 Ref 7 Ref 7 Ref 8 Ref 8 Ref 9

Graphics

Analyst:

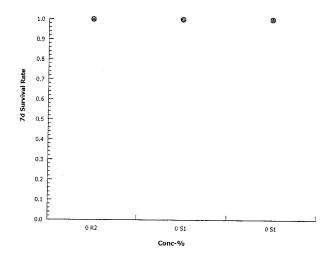
DOJUGOS

Report Date:

03 Jul-20 13:35 (p 1 of 1)

Test Code:

PP-10735-0120 | 00-3690-9242


Fathead Minr	now 7-d Larval Survi	ival and Growt	h Test			Bureau Veritas Laboratories
nalysis ID: Analyzed:	18-5152-9513 29 Jun-20 16:24	Endpoint: Analysis:	7d Survival Rate Single 2x2 Contingency Table	CETIS Ver Official Re		CETISv1.9.2 Yes
Batch ID: Start Date: Ending Date: Duration:	13-1526-7178 12 Jun-20 14:10 19 Jun-20 14:44 7d 1h	Test Type: Protocol: Species: Source:	Growth-Survival (7d) EC/EPS 1/RM/22 Pimephales promelas Aquatic Biosystems, CO	Analyst: Diluent: Brine: Age:		mad nstituted Water oplicable
Sample Date:	11 Jun-20 08:20	Code: Material: Source: Station:	C039804 Water Agnico Eagle Mines MEL 02-05	Client: Project:	Agnic	o Eagle Mines

Comments:

Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04.

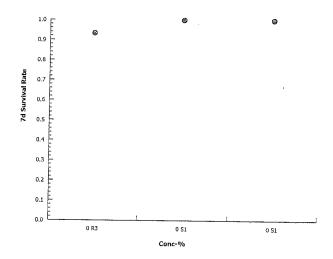
Data Trans	form		Alt Hyp					Comparison Result
Untransforr	ned		C > T					Ref 2 passed 7d survival rate
Fisher Exa	ct Test	•						10-10-10-10-10-10-10-10-10-10-10-10-10-1
Control	vs	Control		Test Stat	P-Type	P-Value	Decision	n(α:5%)
Site Water	Contr	Ref 2		1.0000	Exact	1.0000	Non-Sign	ificant Effect
Data Sumn	nary					· · · · · · · · · · · · · · · · · · ·		
Conc-%		Code	NR	R	NR + R	Prop NR	Prop R	%Effect
0		R2	30	0	30	1	0	0.0%
0		S1	30	0	30	1	Ò	0.0%
7d Survival	Rate D	Detail						
onc-%		Code	Rep 1	Rep 2	Rep 3			
υ		R2	1.0000	1.0000	1.0000			
0		S1	1.0000	1.0000	1.0000			

Graphics

Report Date:

03 Jul-20 13:34 (p 1 of 1)

Test Code:


PP-10735-0120 | 00-3690-9242

Fathead Minr	ow 7-d Larval Survi	val and Growt	th Test		Bureau Veritas Laboratories
nalysis ID: Analyzed:	16-2650-6810 29 Jun-20 16:24	Endpoint: Analysis:	7d Survival Rate Single 2x2 Contingency Table	CETIS Vers	
Batch ID: Start Date: Ending Date: Duration:	13-1526-7178 12 Jun-20 14:10 19 Jun-20 14:44 7d 1h	Test Type: Protocol: Species: Source:	Growth-Survival (7d) EC/EPS 1/RM/22 Pimephales promelas Aquatic Biosystems, CO	Analyst: Diluent: Brine: Age:	M. Hamad Reconstituted Water Not Applicable
Sample Date:	11 Jun-20 08:20	Code: Material: Source: Station:	C039804 Water Agnico Eagle Mines MEL 02-05	Client: Project:	Agnico Eagle Mines

Comments:

Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04.

form		Alt Hyp					Compari	son Result					
ned		C > T				(0.07,0)							
ct Test				***************************************									
vs	Control		Test Stat	P-Type	P-Value	Decision	ι(α:5%)						
Contr	Ref 3		0.2458	Exact	0.2458			t					
ests			<u> </u>										
	Test				Test Stat	Critical	P-Value	Decision(α:5%)					
lue	Grubbs E	xtreme Va	lue Test		1.826	1.887	0.0968	No Outliers Detected					
nary				v *** · · · · · · · · · · · · · · · · ·									
	Code	NR	R	NR+R	Prop NR	Prop R	%Effect						
-	R3	28	2	30	0.9333	0.06667	6.67%						
	S1	30	0	30	1	0	0.0%						
Rate D	Detail												
	Code	Rep 1	Rep 2	Rep 3									
	R3	0.9000	1.0000	0.9000			······································						
	S1	1.0000	1.0000	1.0000									
	ct Test vs Contr ests	ct Test vs Control Contr Ref 3 ests Test lue Grubbs E hary Code R3 S1 Rate Detail Code R3	red C > T ct Test vs Control Contr Ref 3 ests Test lue Grubbs Extreme Va nary Code NR R3 28 S1 30 Rate Detail Code Rep 1 R3 0.9000	C F C C C C C C C C	C C C C C C C C C C	C T	C C C C C C C C C C	Ref 3 past Ref 3 past Ref 3 past Ref 3 past Ref 3 past Ref 3 past Ref 3 past Ref 3 past Ref 3 past Ref 3 past Ref 3 R					

BBY2FCD-00215/14

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Tab - Survival, Page 1 of 1

ECOTOXICOLOGY

Client Name: Golder Associates Ltd. (Agnico)

Sample ID: Various

Job / Sample #:	C039804	
	7-0	

					#	Surviving	g Organis	ms				-	
	Replicate	# Of Fish				Day							
Conc.	#	Seeded	1	2	3	4	5	6	7	% Sunvival	% Mortality	% Mean	SD
(% v/v)	Date	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	70 Gui vivai	70 Wortanty	Mortality	(%)
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
Control	В	10	10	10	10	10	10	10	10	100%	0%		
	С	10	10	10	10	10	10	10	10	100%	0%	1142	
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
Site Control	В	10	10	10	10	10	10	10	10	100%	0%	4.1	
	С	10	10	10	10	10	10	10	10	100%	0%		
Soft	А	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
Water	В	10	10	10	10	10	10	10	10	100%	0%		
Control	С	10	10	10	10	10	10	10	10	100%	0%	100	
	Α	10	10	10	10	10	10	10	9	90%	10%	10.0%	0.0%
MEL-02- 05 100%	В	10	10	10 .	10	10	10	10	9	90%	10%	1.0	
	С	10	10	10	9	9	9	9	9	90%	10%		97 (1 7 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8
	А	10	10	10	10	10	10	10	10	100%	0%	3.3%	5.8%
MEL-03- 02 100%	В	10	10	10	9	9	9	9	9	90%	10%		
	С	10	10	10	10	10	10	10	10	100%	0%		
	Α	10	10	10	10	10	10	10	10	100%	0%	0.0%	0.0%
MEL-04- 05 100%	. В	10	10	10	10	10	10	10	10	100%	0%		
	С	10	10	10	10	10	10	10	10	100%	0%		
	Α	10	10	10	10	10	10	10	9	90%	10%	6.7%	5.8%
MEL-05- 04 100%	В	10	10	10	10	10	10	10	10	100%	0%		1
	С	10	9	9	9	9	9	9	9	90%	10%		
Ar	alyst	МНМ	МНМ	NS	YS	МНМ	MB	МНМ	МНМ				

^{*} see test comments

Proofed: Manes 2020JU102

Report Date:

03 Jul-20 19:19 (p 1 of 14)

Test Code:

PP-10735-0120 | 00-3690-9242

											0 0000 02 1	
Fathead Minr	now 7-d Larval S	Survival and Grov	vth Te	st					Bureau	Veritas L	aboratories	
nalysis ID: Analyzed:	18-0089-4097 22 Jun-20 17:2	Endpoint 25 Analysis:		an Dry Biom ametric-Two	_		CETIS Version: CETISv1.9.2 Official Results: Yes					
Batch ID:	13-1526-7178	Test Type	: Gro	wth-Surviva	ıl (7d)		Anal					
Start Date:	12 Jun-20 14:10	Protocol:	EC/	EPS 1/RM/	22		Dilue	ent: Reco	onstituted V	Vater		
Ending Date:	19 Jun-20 14:44	Species:	Pim	ephales pro	omelas		Brine	e: Not	Applicable			
Duration:	7d 1h	Source:	Aqu	atic Biosyst	tems, CO		Age:	Age:				
Sample ID:	07-4234-1571	34-1571 Code: C039804					Clier	nt: Agni	co Eagle M	lines		
Sample Date:	: 06 Jun-20	Material:	Wat	ter			Proje	ect:				
Receipt Date:	: 11 Jun-20 08:20	Source:	Agn	ico Eagle M	lines							
Sample Age:	6d 14h	Station:	MEI	L 02-05								
Comments:			·			,	~					
Ref1 is Mel-03	3-02. Ref2 is Mel-	04-05. Ref3 is Me	l-05-04	1. 			,					
Data Transfo	rm	Alt Hyp					Comparis	on Result			PMSD	
Untransformed	d	C > T					100% pas	sed mean di	y biomass	-mg	12.29%	
Equal Variand	ce t Two-Sample	e Test										
Control	vs Conc-%	Tes	t Stat	Critical	MSD DF	P-Type	P-Value	Decision(α:5%)		····-	
Ref 1	100	-1.0	69	2.132	0.062 4	CDF	0.8273	Non-Signif	icant Effec	t 		
Auxiliary Test	ts					-						
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:5%)			
Extreme Value	Grubbs E	xtreme Value Tes	st		1.266	1.887	1.0000	No Outlier	s Detected			
ANOVA Table	•											
Source	Sum Squ	ares Mea	ın Squ	are	DF	F Stat	P-Value	Decision(a:5%)			
∍tween	0.0014727	7 0.00	14727		1	1.143	0.3453 Non-Significant Effect		t			
Error	0.0051553	0.00	12888		4							
Total	0.006628				5							
Distributional	l Tests											
Attribute	Test				Test Stat	Critical	P-Value	Decision(a:1%)			
Variances	- ·	Ratio F Test			1.02	199	0.9903	Equal Vari				
Distribution	Shapiro-W	Vilk W Normality T	est		0.8796	0.43	0.2671	Normal Dis	stribution			
Mean Dry Bio	mass-mg Sumn	nary										
Conc-%	Code	Count Mea	n	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	R1	3 0.50	83	0.4187	0.5979	0.511	0.471	0.543	0.02083	7.10%	0.00%	
100		3 0.53	97	0.4509	0.6284	0.554	0.499	0.566	0.02063	6.62%	-6.16%	

0

100

Conc-%

Mean Dry Biomass-mg Detail

Code

R1

Rep 1

0.471

0.499

Rep 2

0.511

0.566

Rep 3

0.543

0.554

Report Date:

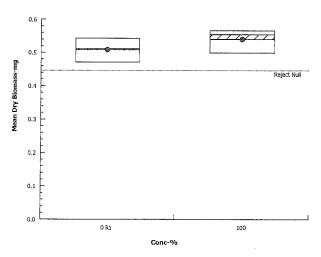
03 Jul-20 19:19 (p 2 of 14)

Test Code:

PP-10735-0120 | 00-3690-9242

Fathead Minnow 7-d Larval Survival and Growth Test

Bureau Veritas Laboratories


nalysis ID: Analyzed:

18-0089-4097 22 Jun-20 17:25

Analysis:

Endpoint: Mean Dry Biomass-mg Parametric-Two Sample CETIS Version: Official Results: CETISv1.9.2

Yes

Report Date:

03 Jul-20 19:19 (p 3 of 14)

Test Code:

PP-10735-0120 | 00-3690-9242

Fathead Minn	ow 7-d Larval	Survival an	d Growt	h Test						Bureau	Veritas L	aboratorie	
nalysis ID:	00-8392-7028	End	dpoint:	Mean Dry	Biomass-	mg		CET	.9.2	······································			
Analyzed:	22 Jun-20 17:	25 An a	alysis:	Parametrio	c-Two Sar	nple		Offic	cial Results				
Batch ID:	13-1526-7178	Tes	t Type:	Growth-Su	ırvival (7d)		Anal					
Start Date:	12 Jun-20 14:1	0 Pro	tocol:	EC/EPS 1	/RM/22			Dilu	ent: Re	constituted V	Vater		
Ending Date:	19 Jun-20 14:4	4 Spe	ecies:	Pimephale	es promela	as		Brin					
Duration:	7d 1h	Sou	urce:	Aquatic Bi	osystems	, co		Age:					
Sample ID:	07-4234-1571	Co	de:	C039804		Client: Agnico Eagle Mines					lines		
Sample Date:	06 Jun-20	Ma	terial:	Water				Proj	ect:				
Receipt Date:	11 Jun-20 08:2	0 S oi	arce:	Agnico Ea	gle Mines								
Sample Age:	6d 14h	Sta	tion:	MEL 02-05	5								
Comments:													
	-02. Ref2 is Me		3 is Mel-()5-04. 									
Data Transfor		Alt Hyp							son Result			PMSD	
Untransformed		C > T						100% pas	ssed mean	dry biomass ————	-mg 	11.59%	
Equal Variand	e t Two-Sampl	e Test											
Control	vs Conc-%		Test S	Stat Critic	al MS	D DF	P-Type	P-Value	Decision	n(α:5%)			
Ref 2	100		0.454	5 2.132	0.0	64 4	CDF	0.3365	Non-Sigr	Non-Significant Effect			
Auxiliary Test	s		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•							
Attribute	Test				Tes	st Stat	Critical	P-Value	Decision	n(α:5%)			
Extreme Value	Grubbs	Extreme Val	ue Test		1.2	35	1.887	1.0000	No Outliers Detected				
ANOVA Table				.,.									
Source	Sum Squ	ıares	Mean	Square	DF		F Stat	P-Value	Decision	ι(α:5%)			
∍tween	0.000280	2	0.0002	2802	1		0.2066	0.6730	Non-Sign	ificant Effec	t		
Error	0.005425	3	0.0013	3563	4		_						
Total	0.005705	5			5						.,		
Distributional	Tests												
Attribute	Test				Tes	st Stat	Critical	P-Value	Decision	ι(α:1%)			
Variances	Variance	Ratio F Tes	t		1.1	25	199	0.9410	Equal Va	Equal Variances			
Distribution	Shapiro-\	o-Wilk W Normality Test 0.9331 0.43 0.6039 Normal Distribution											
Mean Dry Bio	mass-mg Sumi	mary											
Conc-%	Code	Count	Mean	95%	LCL 959	% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	R2	3	0.5533	3 0.459	2 0.6	475	0.547	0.519	0.594	0.02188	6.85%	0.00%	
100		3	0.5397	7 0.450	9 0.6	284	0.554	0.499	0.566	0.02063	6.62%	2.47%	
Mean Dry Bio	mass-mg Detai	I											
Conc-%	Code	Rep 1	Rep 2	Rep 3	3								
	- Γο	0.540	0.504	0.547									

0.547

0.554

0

100

R2

0.519

0.499

0.594

Report Date:

03 Jul-20 19:19 (p 4 of 14)

Test Code:

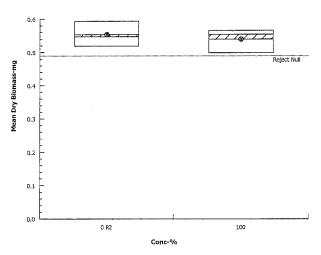
PP-10735-0120 | 00-3690-9242

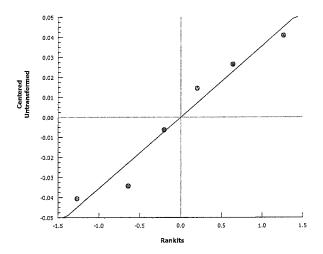
Fathead Minnow 7-d Larval Survival and Growth Test

Bureau Veritas Laboratories

nalysis ID: Analyzed:

00-8392-7028 22 Jun-20 17:25


Analysis:


Endpoint: Mean Dry Biomass-mg Parametric-Two Sample **CETIS Version:**

CETISv1.9.2

Official Results:

Yes

Report Date:

03 Jul-20 19:19 (p 5 of 14)

Test Code:

PP-10735-0120 | 00-3690-9242

						I est	Code:	PP-107	35-0120 (JU-369U-9242
w 7-d Larval S	urvival and (Growth	Test					Bureau	ı Veritas L	.aboratories
19-1297-1011 22 Jun-20 17:2	-		•	_					1.9.2	
3-1526-7178	Test 1	Гуре: С	: Growth-Survival (7d) Analyst: M. Hamad							
2 Jun-20 14:10		• •		` '			•	Vater		
9 Jun-20 14:44	Speci	es: F								
d 1h	Source	e: A	quatic Bios y s	tems, CO		Age	;			
7-4234-1571	Code	: C	039804		· · · · · · · · · · · · · · · · · · ·	Clie	nt: Ag	t: Agnico Eagle Mines		
6 Jun-20	Mater	ial: V	Vater			Proj	ect:			
1 Jun-20 08:20	Sourc	e: A	gnico Eagle N	Mines						
d 14h	Statio	n: M	/IEL 02-05							
2. Ref2 is Mel-0	04-05. Ref3 is	Mel-05	-04.							
	Alt Hyp	,		·		Comparis	son Result	:		PMSD
	C > T					100% pas	sed mean	dry biomass	-mg	9.25%
t Two-Sample	Test									
Conc-%	•	Test Sta	at Critical	MSD DF	P-Type	P-Value	Decision	η(α:5%)		
100		-0.6288	2.132	0.049 4	CDF	0.7182	Non-Sigr	nificant Effec	t	
			,							
Test				Test Stat	Critical	P-Value	Decision	η(α:5%)		
Grubbs Ex	treme Value	Test		1.629	1.887	0.3429	No Outlie	ers Detected		
Sum Squa	res I	Vlean S	quare	DF	F Stat	P-Value	Decision	η(α:5%)		
0.0003082	(0.00030	82	1	0.3954	0.5636	Non-Sigr	ificant Effect		
0.0031173	(0.00077	93	4	_					
0.0034255				5						
ests										
Test				Test Stat	Critical	P-Value	Decision	ι(α:1%)		
s Variance Ratio F Test				4.521	199	0.3623	Equal Va	riances		·
				0.0400	0.43	0.4415	Normal E	Nictribution		
Shapiro-Wi	lk W Normali	ty Test		0.9108	0.43	0.4413	- Normal L	istribution		
Shapiro-Wi ss-mg Summa		ty Test		0.9106				ristribution		
	ary	ty Test Vlean	95% LCL			Min	Max	Std Err	CV%	%Effect
ss-mg Summa	ary Count I		95% LCL 0.4836						CV% 3.20%	%Effect
	9-1297-1011 22 Jun-20 17:2: 3-1526-7178 2 Jun-20 14:10 9 Jun-20 14:44 d 1h 7-4234-1571 6 Jun-20 l Jun-20 08:20 d 14h 2. Ref2 is Mel-0 t Two-Sample	9-1297-1011 Endp 22 Jun-20 17:25 Analy 3-1526-7178 Test 2 Jun-20 14:10 Proto 9 Jun-20 14:44 Speci d 1h Source 7-4234-1571 Code 6 Jun-20 Mater 1 Jun-20 08:20 Source 1 Jun-20 08:20 Source 2 14h Statio Alt Hyp C > T t Two-Sample Test Conc-% 100 Test Grubbs Extreme Value Sum Squares 0.0003082 0.0031173 0.0034255 ests Test	9-1297-1011	22 Jun-20 17:25	9-1297-1011	9-1297-1011	V7-d Larval Survival and Growth Test	9-1297-1011	Part	Part

Analyst:

Mean Dry Biomass-mg Detail

Code

R3

Rep 1

0.54

0.499

Rep 2

0.507

0.566

Rep 3

0.529

0.554

Conc-%

0

100

Report Date:

03 Jul-20 19:19 (p 6 of 14)

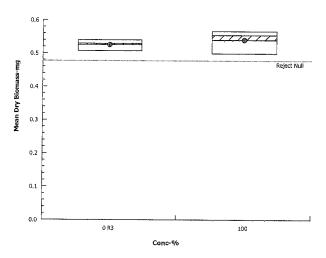
Test Code:

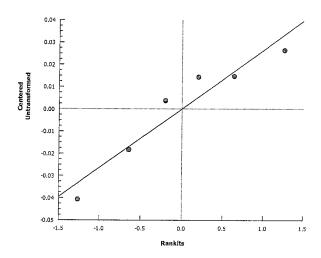
PP-10735-0120 | 00-3690-9242

Fathead Minnow 7-d Larval Survival and Growth Test

Bureau Veritas Laboratories

nalysis ID: Analyzed:


19-1297-1011 22 Jun-20 17:25


Analysis:

Endpoint: Mean Dry Biomass-mg Parametric-Two Sample

CETIS Version: Official Results: CETISv1.9.2

Yes

Report Date:

03 Jul-20 19:19 (p 7 of 14)

	.,						Test	t Code:	PP-107	00-3690-924	
Fathead Minno	ow 7-d Larval S	urvival and	Growt	h Test		,	· ·		Burea	u Veritas L	_aboratories
nalysis ID:	19-4011-8204	End	point:	Mean Dry Bion	na s s-mg		CET	'IS Version:	CETISv	1.9.2	
Analyzed:	22 Jun-20 17:2	6 Ana	lysis:	Parametric-Tw	o Sample		Offic	cial Results	: Yes		
Batch ID:	13-1526-7178	Test	Туре:	Growth-Surviva	al (7d)		Ana	lyst: M. I	lamad		
Start Date:	12 Jun-20 14:10	Prot	ocol:	EC/EPS 1/RM	/22		ent: Red	constituted \	Water		
Ending Date:	19 Jun-20 14:44	Spe	cies:	Pimephales pr	omelas		Brin	ie: Not	Applicable		
Duration:	7d 1h	Sou	rce:	Aquatic Biosys	tems, CO		Age	:			
Sample ID:	07-4234-1571	Cod	e:	C039804			Clie	nt: Agr	ico Eagle N	/lines	
Sample Date: 0	06 Jun-20	Mate	erial:	Water			Proj	ect:		•	
Receipt Date:	11 Jun-20 08:20) Sou	rce:	Agnico Eagle N	Mines						
Sample Age: 6	6d 14h	Stati	ion:	MEL 02-05							
Comments:		•									
Ref1 is Mel-03-0	02. Ref2 is Mel-	04-05. Ref3	is Mel-0)5-04.							
Data Transform	n	Alt Hyp					Comparis	son Result			PMSD
Untransformed		C > T 100% passed mean dry biomass-mg						-mg	7.81%		
Equal Variance	e t Two-Sample	Test									
Conc-% v	s Conc-%		Test S	stat Critical	MSD DF	P-Type	P-Value	Decision	(a:5%)		
o pooled	100		-0.468	1.812	0.041 10		0.6751	Non-Sign	ificant Effec	t	
Auxiliary Tests											
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:5%)		
Extreme Value	Grubbs E	xtreme Valu	e Test		1.994	2.412	0.3457	No Outlie	rs Detected		
ANOVA Table	<u>.</u>										
Source	Sum Squa	ares	Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)		
∍tween	0.000256		0.0002	256	1	0.219	0.6499	Non-Signi	ficant Effec	;t	
Error	0.0116907		0.0011	691	10	_					
Total	0.0119467	,			11						
Distributional 1	Tests				-						
Attribute	Test			1	Test Stat	Critical	P-Value	Decision	(α:1%)		•
Variances	Variance F	Ratio F T est			1.117	11.04	0.7466	Equal Var	iances		
Distribution	Shapiro-W	ilk W Norma	ality Tes	t	0.9736	0.8025	0.9447	Normal D	istribution		
Mean Dry Biom	nass-mg Summ	ary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	@	9	0.529	0.503	0.555	0.529	0.471	0.594	0.01127	6.39%	0.00%

100

0

100

Conc-%

Code

@

Mean Dry Biomass-mg Detail

3

Rep 1

0.54

0.499

0.5397

Rep 2

0.507

0.566

0.4509

Rep 3

0.529

0.554

0.6284

Rep 4

0.519

0.554

Rep 5

0.594

0.499

Rep 6

0.547

0.566

Rep 7

0.471

0.02063

Rep 8

0.511

6.62%

Rep 9

0.543

-2.02%

Report Date:

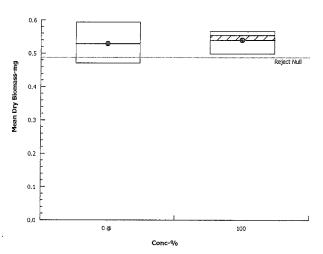
03 Jul-20 19:19 (p 8 of 14)

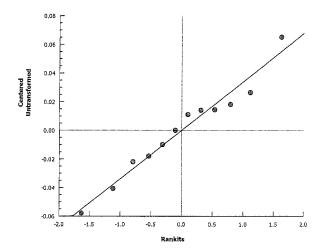
Test Code:

PP-10735-0120 | 00-3690-9242

Fathead Minnow	7-d	Larval	Survival	and	Growth	Test
----------------	-----	--------	----------	-----	--------	------

Bureau Veritas Laboratories


nalysis ID: Analyzed:


19-4011-8204 22 Jun-20 17:26

Analysis:

Endpoint: Mean Dry Biomass-mg Parametric-Two Sample **CETIS Version:** Official Results:

CE**T**ISv1.9.2 Yes

Report Date:

03 Jul-20 19:19 (p 13 of 14)

Test Code:

PP-10735-0120 | 00-3690-9242

Fathead Minn	now 7-d Larval Survi	Bureau Veritas Laboratories			
nalysis ID: Analyzed:	17-3150-3433 29 Jun-20 16:24	Endpoint: Analysis:	Mean Dry Biomass-mg Parametric-Two Sample	CETIS Ver Official Re	rsion: CETISv1.9.2 esults: Yes
Batch ID: Start Date: Ending Date: Duration:	13-1526-7178 12 Jun-20 14:10 19 Jun-20 14:44 7d 1h	Test Type: Protocol: Species: Source:	Growth-Survival (7d) EC/EPS 1/RM/22 Pimephales promelas Aquatic Biosystems, CO	Analyst: Diluent: Brine: Age:	M. Hamad Reconstituted Water Not Applicable
Sample ID: Sample Date: Receipt Date: Sample Age:	11 Jun-20 08:20	Code: Material: Source: Station:	C039804 Water Agnico Eagle Mines MEL 02-05	Client: Project:	Agnico Eagle Mines

Comments:

Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04.

Data Transform		Alt Hyp					Comparis	on Resul		PMSD	
Untransformed		C > T					Ref 1 pas	f 1 passed mean dry biomass-mg			8.81%
Equal Variance t	Two-Samp	le Test			<i></i>						
Control vs	Contro	1 11	Test Stat	Critical	MSD DF	P-Type	P-Value	Decisio	n(α:5%)		
Site Water Contr	Ref 1		0.1732	2.132	0.045 4	CDF	0.4354	Non-Sig	nificant Effect		
Auxiliary Tests									-		
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:5%)			
Extreme Value	Grubbs	Extreme Va	lue Test		1.61	1.887	0.3735	No Outliers Detected			
ANOVA Table											
Source	Sum Sq	uares	Mean Squ	uare	DF	F Stat	P-Value	Decision(a:5%)			
tween	2.017E-0)5	2.017E-05	5	1	0.03	0.8709	Non-Significant Effect			
Error	0.00268	87	0.0006722	2	4	_					
Total	0.00270	88			5						
Distributional Tes	its										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Variance	Ratio F Tes	st		30.26	199	0.0640	Equal Va	ariances		
Distribution	Shapiro-	Wilk W Norr	mality Test		0.9398	0.43	0.6574	Normal	Distribution		
Mean Dry Biomas	s-mg Sum	mary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R1	3	0.5083	0.4187	0.5979	0.511	0.471	0.543	0.02083	7.10%	0.00%
0	S1	3	0.512	0.4957	0.5283	0.511	0.506	0.519	0.003786	1.28%	-0.72%

Mean Dry Biomass-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	
0	R1	0.471	0.511	0.543	•
0	S1	0.511	0.506	0.519	

Analyst: QA: M

Report Date:

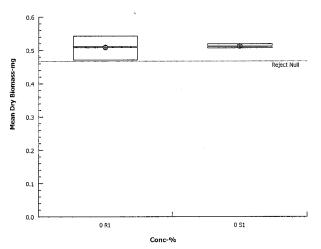
03 Jul-20 19:19 (p 14 of 14)

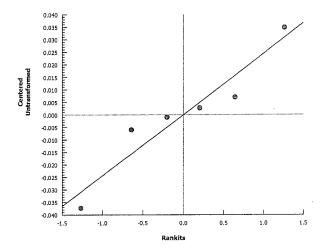
Test Code:

PP-10735-0120 | 00-3690-9242

Fathead Minnow 7-	d Larval Sur	vival and 0	3rowth Test
-------------------	--------------	-------------	-------------

Bureau Veritas Laboratories

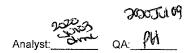

nalysis ID:
Analyzed:


17-3150-3433 29 Jun-20 16:24

Analysis:

Endpoint: Mean Dry Biomass-mg Parametric-Two Sample **CETIS** Version: Official Results:

CETISv1.9.2 Yes


Report Date:

03 Jul-20 19:19 (p 11 of 14)

Test Code:

PP-10735-0120 | 00-3690-9242

· · · · · · · · · · · · · · · · · · ·											
Fathead Minn	ow 7-d Larval	Survival	and Growt	h Test					Burea	น Veritas เ	aboratorie
nalysis ID: Analyzed:	08-4655-4348 29 Jun-20 16		Endpoint: Analysis:					ΓIS Versio cial Resu		1.9.2	·
Batch ID:	13-1526-7178	7	est Type:	Growth-Surviv	Growth-Survival (7d)			Analyst: M. Hamad			
	12 Jun-20 14:		Protocol:		EC/EPS 1/RM/22			•	Reconstituted \	Water	
Ending Date:	19 Jun-20 14:4		Species:		Pimephales promelas		Brir		lot Applicable		
Duration:	7d 1h	S	Source:	Aquatic Biosys			Age				
Sample ID:	07-4234-1571		ode:	C039804			Clie	nt: A	gnico Eagle N	/lines	
Sample Date:	06 Jun-20	N	/laterial:	Water			Pro	ject:	3		
Receipt Date:	11 Jun-20 08:2	20 S	ource:	Agnico Eagle I	Mines		•	,			
Sample Age:	6d 14h	S	Station:	MEL 02-05							
Comments:	00 D-60 i- M-	10405 D	- 50 '- M-1 (25.04	····		· · · · · · · · · · · · · · · · · · ·				
Ref1 is Mel-03-				J5-04. 							
Data Transforn	n	Alt Hy	p					son Resu			PMSD
Untransformed		C > T					Ref 2 passed mean dry biomass-mg			-mg	9.25%
Equal Variance	e t Two-Samp	le Test									
Control v	s Control	H	Test S	Stat Critical	MSD D	P-Type	P-Value	Decisio	on(α:5%)		
Site Water Con	tr Ref 2		-1.861	2.132	0.047 4	CDF	0.9319		nificant Effec	t	
Auxiliary Tests							·		** - *		
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme V alue	Grubb s	Extreme V	'alue Test		1.672	1.887	0.27 7 1		iers Detected		
ANOVA Table											
Source	Sum Squ	ıares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)		
tween	0.002562	:7	0.0025	627	1	3.465	0.1362	Non-Sig	nificant Effec	t	
<u> </u>	0.002958	7	0.0007	397	4	_		•			
Total	0.005521	3			5						
Distributional 1	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
√ariances		Ratio F Te			33.4	199	0.0581	Equal V	ariances		
Distribution	Shapiro-V	Vílk W No	rmality Tes	t	0.9283	0.43	0.5669	Normal	Distribution		
Mean Dry Biom	ass-mg Sumi	mary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	R2	3	0.5533	0.4592	0.6475	0.547	0.519	0.594	0.02188	6.85%	0.00%
)	S 1	3	0.512	0.4957	0.5283	0.511	0.506	0.519	0.003786	1.28%	7.47%
Mean Dry Biom	ass-mg Detai	I							William Co.		
Conc-%	Code	Rep 1	Rep 2	Rep 3							
~		0.540					***				

0

0

R2

S1

0.519

0.511

0.594

0.506

0.547

0.519

Report Date:

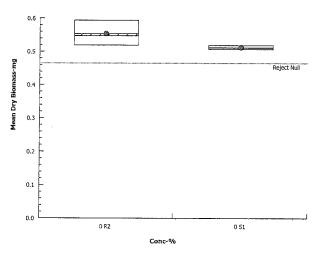
03 Jul-20 19:19 (p 12 of 14)

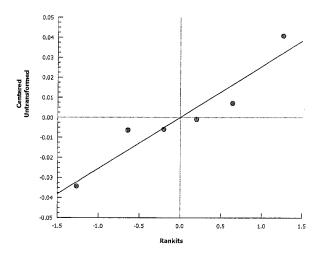
Test Code:

PP-10735-0120 | 00-3690-9242

Fathead Minnow 7-d Larval Survival	and Growth Test
------------------------------------	-----------------

Bureau Veritas Laboratories


nalysis ID: Analyzed:


08-4655-4348 29 Jun-20 16:24

Analysis:

Endpoint: Mean Dry Biomass-mg Parametric-Two Sample **CETIS Version:** Official Results: Yes

CETISv1.9.2

Report Date:

03 Jul-20 19:19 (p 9 of 14)

PP-10735-0120 | 00-3690-9242

	•					Test	t Code:	PP-1073	PP-10735-0120 00-3690-924		
Fathead Minnov	v 7-d Larval S	urvival and	i Growti	n Test				,	Bureau	Veritas L	.aboratori
nalysis ID: 1	0-9293-1933	Enc	lpoint:	Mean Dry Bior	mass-mg		CET	IS Version	: CETISv1	.9.2	
Analyzed: 2	29 Jun-20 16:2	4 Ana	lysis:	Parametric-Tw	o Sample		Offic	cial Results	s: Yes		
Batch ID: 13	3-1526-7178	Tes	t Type:	Growth-Surviv	al (7d)		Ana	lyst: M.	Hamad		
Start Date: 12	2 Jun-20 14:10	Pro	tocol:	EC/EPS 1/RM	/22		Dilu	Diluent: Reconstituted Water			
Ending Date: 19	9 Jun-20 14:44	Spe	cies:	Pimephales pr	omelas		Brin	e: Not	t Applicable		
Duration: 7d	d 1h	Sou	rce:	Aquatic Biosys	stems, CO		Age	:			
Sample ID: 07	7-4234-1571	Cod	le:	C039804			Clie	nt: Agı	nico Eagle M	ines	
Sample Date: 06	3 Jun-20	Mat	erial:	Water			Proj	ect:			
Receipt Date: 11	Jun-20 08:20	Sou	rce:	Agnico Eagle I	Viines						
Sample Age: 6d	! 14h	Stat	ion:	MEL 02-05							
Comments:				·							
Ref1 is Mel-03-02	2. Ref2 is Mel-0	04-05. Ref3	is Mel-0	5-04.							
Data Transform		Alt Hyp		·			Comparison Result				PMSD
Untransformed		C > T					Ref 3 passed mean dry biomass-mg				4.34%
Equal Variance t	Two-Sample	Test									
Control vs	Control II		Test S	tat Critical	MSD DF	P-Type	P-Value	Decision	(a:5%)		
Site Water Contr	Ref 3		-1.28	2.132	0.022 4	CDF	0.8652	Non-Sign	ificant Effect		
Auxiliary Tests											
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:5%)		
Extreme Value	Grubbs Ex	treme Valu	e Test		1.607	1.887	0.3782	No Outlie	rs Detected		
ANOVA Table		•									
Source	Sum Squa	res	Mean S	Square	DF	F Stat	P-Value	Decision	(α:5%)		
∍tween	0.0002667		0.0002	667	1	1.639	0.2696	Non-Sign	ificant Effect		
Error	0.0006507		0.0001	627	4	_					
Total ————————	0.0009173				5	·				· · · · · · · · · · · · · · · · · · ·	
Distributional Te	sts										
	T4				Test Stat	Critical	P-Value	Decision	(α:1%)		
	Test	Variance Ratio F Test			6.566	199	0.2643	Equal Variances			
/ariances	Variance R										
/ariances			ality Test		0.9821	0.43	0.9616	Normal D	istribution		
/ariances Distribution	Variance R Shapiro-Wi	lk W Norma	ality Test					Normal D	istribution		
Attribute Variances Distribution Vlean Dry Biomas Conc-%	Variance R Shapiro-Wi ss-mg Summa Code	lk W Norma ary Count	ality Test Mean	95% LCL				Normal D Max	stribution	CV%	%Effec
Variances Distribution Mean Dry Biomas	Variance R Shapiro-Wi ss-mg Summa	ik W Norma ary			0.9821	0.43	0.9616	***************************************		CV% 3.20%	%Effec

Analyst: OM QA: PH

Conc-%

0

0

Code

R3

S1

Rep 1

0.54

0.511

Rep 2

0.507

0.506

Rep 3

0.529

0.519

Report Date:

03 Jul-20 19:19 (p 10 of 14)

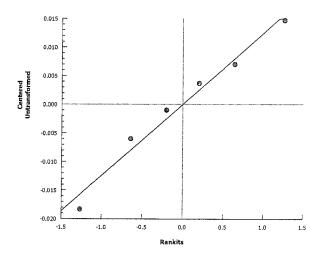
Test Code:

PP-10735-0120 | 00-3690-9242

Fathead Minnow	7-d	Larval	Survival	and	Growth	Test
----------------	-----	--------	----------	-----	--------	------

Bureau Veritas Laboratories


nalysis ID: Analyzed:


10-9293-1933 29 Jun-20 16:24

Analysis:

Endpoint: Mean Dry Biomass-mg Parametric-Two Sample **CETIS Version:** Official Results: CETISv1.9.2

Yes

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

BBY2FCD-00215/14 Tab - Biomass, Page 1 of 1

Client Name: Golder Associates Ltd. (Agnico)

Sample ID: Various

Job / Sample #: C039804

Weighing Dates: 2020 Jun 17, 2020 Jun 22

Drying Time (h): >24

Balance ID: bby2-0260

Drying Temp (°C): 60

Boat #	Conc. & Replicate	Initial # Of Fish	Boat Wt.	Boat & Fish	Wt. of Fish	Biomass/Replicate ¹	Mean Biomass/Conc¹	SD
_	•	 	(g)	Wt. (g)	(mg)	(mg)	(mg)	
333	0-A	10	0.80753	0.81357	6.04	0.604	0.554	0.04
334	В	10	0.79958	0.80483	5.25	0.525		
335	С	10	0.79940	0.80473	5.33	0.533		
336	Site Ctrl-A	10	0.80069	0.80580	5.11	0.511	0.512	0.01
337	В	10	0.80624	0.81130	5.06	0.506		
338	С	10	0.79919	0.80438	5.19	0.519		
339	Soft Water Ctrl-A	10	0.80924	0.81460	5.36	0.536	0.566	0.03
340	В	10	0.80080	0.80640	5.60	0.560		
341	С	10	0.79555	0.80158	6.03	0.603	The second second second	
342	MEL-02-05 100%-A	10	0.81810	0.82309	4.99	0.499	0.540	0.04
343	В	10	0.81632	0.82198	5.66	0.566		
344	С	10	0.80144	0.80698	5.54	0.554		
345	MEL-03-02 100%-A	10	0.79452	0.79923	4.71	0.471	0.508	0.04
346	В	10	0.79925	0.80436	5.11	0.511		
347	С	10	0.79903	0.80446	5.43	0.543		
3	MEL-04-05 100%-A	10	0.79742	0.80261	5.19	0.519	0.553	0.04
349	В	10	0.78833	0.79427	5.94	0.594		
350	С	.10	0.80137	0.80684	5.47	0.547		
351	MEL-05-04 100%-A	10	0.79964	0.80504	5.40	0.540	0.525	0.02
352	В	10	0.80213	0.80720	5.07	0.507		5,62
353	С	10	0.78768	0.79297	5.29	0.529		
354	QA/QC		0.79520	0.79534	0.14		And the second	
355	QA/QC		0.79277	0.79295	0.18	The second secon		
333	0-A	10	0.80757	0.81355	5.98	1	and the second second	
	Analyst		NS	DML	22.0	Transfer Committee		

¹ Biomass is calculated as the weight of fish per replicate divided by the number of fish initially seeded into that replicate (i.e. **10** fish per replicate).

Average Dry Weight of Control Fish (Average dry weight of control fish must be ≥ 250 µg for test to be valid)

Boat #	Conc. & Replicate	# Surviving Fish	Wt. of Fish (mg)	Mean Wt./ Fish (µg)	Mean Dry Wt.
333	0-A	10	6.04	604	554
334	В	10	5.25	525	
335	С	10	5.33	533	

BBY2FCD-00215/14

Client Name: Golder Associates Ltd. (Agrico)

Golder Associates Ltd. (Agrico)

Job / Sample #: CO3C(30H)

Date Started: June 12, 2020 Sample ID:

Analyst(s): Mitamad, 4.50 m.0 Tole, was 9500612

Deviations - So

Before Use Measurements (After temperature adjustment)

Deviations - See BLNC: □
Worksheet Created: □

Day	Date	Sample	Initial D.O. (% Sat)	Initial Temp (°C)	Aerated (min.)*	Post Aeration D.O. (% Sat)	Post Aeration Temp (°C)	Analyst
		MEL-02-05	103,3	25.8	20	98.8	25.4	MHM
0	June 12, 2020	MEL-03-02	104.6	25.9	20	100.9	25.5	MHM
	50/10 12, 2020	MEL-04-05	10517	25.9	20	102.1	25.4	MIM
		MEL-05-04	10613	25,9	20	104.3	25.4	MIN
		MEL-02-05	48,3	25,7	MA	PIA	NIA	MITM
1	June 13, 2020	MEL-03-02	92,2	25,7	M	MA	NIA	MITM
'	04110 10, 2020	MEL-04-05	95.4	25.9	MA	MIX	74	14124
		MEL-05-04	91.9	25.8	MA	MIA	MIA	MHM
		MEL-02-05	111,2	25.6	20	107.4	22.8	mo
2	June 14, 2020	MEL-03-02	1.901	25,6	26	108.3	28.7	Mo
~	04110 1 1, 2020	MEL-04-05	1100	25.8	7.0	109.2	8, 25	WO
		MEL-05-04	וווח	25.9	20	107.3	25.8	mo
		MEL-02-05	11/18	2411	ZO	102,2	14.0	yrs.
3	June 15, 2020	MEL-03-02	10912	24.9	Zo	103.5	24.0	ys
	04.10 (0, 2020	MEL-04-05	109.3	34.7	20	103,0	2911	49
		MEL-05-04	10000	14.4	20	97.4	14,1	ys
		MEL-02-05	109.3	25.2	20	98.4	25.1	MHM
4	June 16, 2020	MEL-03-02	110-2	25.5	20	100.3	25.3	MIM
		MEL-04-05	110.5	25.5	20	98.9	25,3	MITM
		MEL-05-04	[49.7	25,2	20	101.4	25.2	MHM
		MEL-02-05	111.8	25.2	20	103.3	25.8	MHV
5	June 17, 2020	MEL-03-02	(110)	25.6	20	1608	25.7	17140
	,	MEL-04-05	113.0	26.0	20	ીજ ા	25,7	MHM
		MEL-05-04	112-6	25.8	20	100,7	2517	MHM
		MEL-02-05	111.8	25.7	20	100.0	25.7	Min
6	June 18, 2020	MEL-03-02	lloil	25.7	20	9912	25,6	MITM
	,	MEL-04-05	110.8	25,7	20	99.4	25.7	mm
		MEL-05-04	11116	25.8	20	101.6	25.6	m

*Aeration rate must be ≤100 bubbles/min

Instrument ID's: 1313/12-0366

Room # 107 106 14 2020 Tulon

Sample
Descriptions: MEL-02-05 Cler Colorles Initials MHM

MEL-03-02 Cler (plantes Initials MHM)

MEL-04-05 (Year Colombes Initials MAM

MEL-05-04 (New Colombes Initials MAM

BBY2FCD-00215/14

ECOTOXICOLOGY FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Tab - Obs, Page 2 of 3

		Golder Assoc		<u> </u>	Job / Sample #: <u>CO3^C</u>	1804
	ole Hardness (mg /L CaCO3):	MEL-02-05 MEL-03-02 MEL-04-05 MEL-05-04	32 フラ フ含 36 anism behaviour,	Initials: Initials: Initials: Initials: Initials:	yn ys ys ys	
Day			,		<u> </u>	Analyst
0	Date:	June 12, 2020	0	Carboy B	ottle #: √, \ , 2 , 1	m/y
	Pre-Aeration Tin	ne: \3'.06~	13/26		Test Seeded @: 14',10	
			Feeding PM: 16	:15	Feeding Volume (uL): 5	Ø
1	Date:	June 13, 2020)	Carboy B	ottle #: \	win lek
	Pre-Aeration Tin	ne:			Water change @: 15:12	,
	Feeding AM:	3:15	Feeding PM:	1:00	Feeding Volume	(uL): 🕉
	WQ Rep: A		·			
2	Date:	June 14, 2020)	Carboy / B	ottle #:	KS 45
	Pre-Aeration Tin	ne:			Water change @: 14:5	5
	Feeding AM:	9:05	Feeding PM: (6	, 110	Feeding Volume	(uL):50
	WQ Rep: 🏠					
3	Date:	June 15, 2020)	carboy / B	ottle #: 1,2,2,3	y s
	Pre-Aeration Tim		0 ~15:10		Water change @: 17:0	5
	Feeding AM: 0	7100	Feeding PM:	7:50	Feeding Volume	- i
	WQ Rep:	<i>f</i>				
			*		<u> </u>	V ,
					<i>V</i>	. 10
4	Date:	June 16, 2020		Carboy / B		621807
	Pre-Aeration Tim			2.0	Water change @: パろいル	
	Feeding AM: 🕥	7:45	Feeding PM: 15	, <i>W</i>	Feeding Volume	(uL): \$0
	WQ Rep: رخ					

DWEMHMOWJUM6

BBY2FCD-00215/14 Tab - Obs, Page 3 of 3

ECOTOXICOLOGY

Client Name: Golder Associates Ltd. (Agnico)

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Job / Sample #: CO39804

	Sample ID: VOCOS		
Day			∕a)Analyst
5	Date: June 17, 2020 Carboy		Kenm/ all
	Pre-Aeration Time:	Water change @: 12:14	1
	Feeding AM: 07:45 Feeding PM: 4:20	Feeding Volume (uL):	50
	WQ Rep: 6		
6	Date: June 18, 2020 Carboy) Bottle #: \ , Z , Z , 3	w
	Pre-Aeration Time:	Water change @: 1৭১৭১	
:	Feeding AM: 08115 Feeding PM: 15:00	Feeding Volume (uL):	SU
	WQ Rep:		
7	Date: June 19, 2020		MN
	Test ended @ 14',44 WQ rep: A		
		<u> </u>	

DWEMHM BOJUNG

BBY2FCD-00215/14

Tab - Measurements, Page 1 of 2

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Client Name: Golder Associates Ltd. (Agnico)									
Sar	mple ID:	VOLVOUS	v	9	. / Joi	b / Sample #:	Cosas	<u>04</u>	
An	Analyst(s): 14 Hamad, 4 Su Ward Sid, M.O' Toole Novembra								
1 Malli-or by the control of the con									
Control	Davi	4		3	4	E	6	7	
Control	Day	1	²		504	⁵	452	454	
Conductivity (µs/cm)	Initial Final	458	1179	461	512	43)	499	512	
	Initial	24,4	24.6	24,4	24.9	25,3	25.0	25.0	
Temp. (°C)	Final	2410	24.2	24.8	25.5	25.0	25.0	25.0	
D.O. (111 1111)	Initial	8.1	7.8	8.2.	810	8:1	8.4	8.0	
D.O. (mg/L)	Final	7,4	7.1	4.2	6,3	7.3	7.2	73	
рН	Initial	8,2	812	8.1	8.1	8.2	8-1	8.3	
рп	Final	チチ	8.1	79	7.5	716	7.6	7.5	
Synthetic									
Site Control	Day	11	2	3	4	5	6	7	
Conductivity	Initial	125	126	130	129	130	129	129	
(µs/cm)	Final	137	139	142	135	141	142	140	
Temp. (°C)	Initial	23.8	2510	24.8	25.3	24.8	25.0	2572	
	Final	24.0	24.2	25.0		24.6	813	812	
D.O. (mg/L)	Initial Final	8.2 7.5	7.2	8.3	7.9 6.3	8,2,2	7.1	3,5	
	Initial	8.0	7.7	2.5 0.8 @	7.9	7.7	7.5	7-8	
рН	Final	3.5	8,2	7.2	7.7	7.3	73	7.4	
<u> </u>		1 3	012		10	41			
Soft Water									
Control	Day	1	2	3	4	5	6	7	
Conductivity	Initial	104	105	105	108	109	110	111	
(µs/cm)	Final	120	134	122	118	123	120	124	
Temp. (°C)	Initial	23.6	24.7	24.7	24.2	24.7	24.4	24.9	
	Final	24.0	24.2 8 · T	25·1 8.2				812	
D.O. (mg/L)	Initial Final	8.8	7.2	7.3	812 7.0	9,2	\$13	7.0	
	Initial	7.5	7.6	7.5	7.6	7.7	7.6	7.6	
рН	Final	77.3	8,0	7.2	7.2	7.2	72	7.3	
			· ////	- C	7	•		· · · ·	
MEL-02-05									
100%	Day	1	2	3	4	5	6	7	
Conductivity	Initial	125	123	123	122	123	123	123	
(µs/cm)	Final	134	133	131	130	134	13.5	130	
Temp. (°C)	Initial	24.8	25.5	25.4	74.5	24,6	24.7	24.9	
	Final		24.2	251	24.0	812	24-8	25.0	
D.O. (mg/L)	Initial Final	8.6	811	8.7 7.3	8,7	6.8	814	813	
	Initial	7.6	7.3		7.2	7.7	6.8 Free	1.4	
рН	Final	7.3	7.8	1.0	7.2	7,2	72	7-1	
L	illai	1 <u> </u>	1.2	4,)	7.0	TIV	L + C	F-1	

@ WE no 2020 Jun 14

BBY2FCD-00215/14

Tab - Measurements, Page 2 of 2

ECOTOXICOLOGY

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

Clier	nt Name:	Golder Assoc	iates Ltd.	Agnico)	_					
Sa	Sample ID: VOLVOS Job / Sample #: COBA 80 4									
MEL-03-02 100%	Day	1	2	3	4	5	6	7		
Conductivity (µs/cm)	Initial Final	70 19	68 86	169 78	68 75	81 377 8	69 70	(9 76		
Temp. (°C)	Initial Final	ZS.3 24.2	25,6	25,3 25.0	14,4 25.0	24.6	24.5	24.9		
D.O. (mg/L)	Initial Final	8.4	7.4	3.3	8.8	813	8,3	8,2		
рН	Initial	7.2	711	7.1	7.2	7.5	6,6	4.4		
Analyst	Final	7.2 MM 7117M	w k	2.0	7.0 15 years	MHM MHM	MHM MM	72 MM ~		
Daily WQ Revie	ewed by:	my mm	-	mo m	115 m	was Wilm	MIDA M	mm		
MEL-04-05 100%	Day	1	2	3	4	5	6	7		
Conductivity	Initial	104	103	103	104	98	103	104		
(µs/cm)	Final	116	طلل	108	120	<u>115</u>	- FII	121		
Temp. (°C)	Initial Final	25.3 24.1	25,7 24.\	25.3	24.0	24.6	24.5 25.0	24.8		
D.O. (mg/L)	Initial Final	अंत भूर	77	3,5	8.6	812	8,2,	8.6		
рН	Initial Final	7.2	7.1	7.\	7.4	7.5	7.5	7.3		
	1	7.5	(10 /)	7.1		7.0	7 1	7.7		
MEL-05-04 100%	Day	1	2	3	4	5	6	7		
Conductivity	Initial	97	100	96	105	97	100	104		
(µs/cm)	Final	112	111/2	103	112	118	119	143		
Temp. (°C)	Final Final	25,3 24,0	2517 24,0	25.4	24.0	24,8 24,8	24.7 74.8	24.9 25.0		
D.O. (mg/L)	Initial Final	8.5	7.5	8.8	816	8.3	813	814		
рН	Initial Final	7.3	7.1	7.1	7.8	7.5	7.5	7.7		
Daily WQ Revie		*	, ,	molure	ys m	MIN IM	THAM M	mm		

(B) WEMHMZOZOJUNI]

FATHEAD MINNOW SURVIVAL AND GROWTH TEST

BBY2FCD-00215/14 Tab - Survival, Page 1 of 1

Client Name: Golder Associates Ltd. (Agnico)

Job / Sample #: CO24804

Sample ID: VoridoS

			_		#	#Survivin	g Organis	ms					
	Replicate	# Of Fish	# Of Fish Day										
Conc.	#	Seeded	1	2	3	4	5	6	7	0/ Summed	O/ Montality	% Mean	SD
(% v/v)	Date	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	% Survival % Morta	% Mortality	Mortality	(%)
	Α	b	16	10	(0	10	10	jo	lo	_	-	-	
Control	В	10	10	10	(0	lo	10	10	10	-	-		
	С	(10	20	0	(O	10	10	0	10	-	-		
	Α	lo	10	10	10	10	10	io	(j)	_	-	-	-
Site Control	В	10	10	10	(0	0	10	10	10	-	-		
(Synthetia	С	10	(0	10	10	1)	10	10	(0	-	-		
Soft Water Control	Α	10	10	10	()	ſο	10	10	jo	-	-	_	-
	В	10	์เง	10	0	10	10	(0	10	-	-		
	С	10	10	10	[0]	10	10	lo	10	-	-	++ (13)	
	Α	10	(0	10	10	10	10	10	9	-	-	-	-
MEL-02- [05 100% [В	(O	10	10	(~	10	10	10	9	-	-		
	С	(0	lo	10	q	9	9	9	9	-	-		
	Α	(0	ol	10	10	10	10	6	10	-	-	-	-
MEL-03- 02 100%	В	16	σj	10	9	G	9	9	5	-	-		
	С	VO.	10	10	10	10	10	ю	0	-	-		
	Α	10	16	10	10	10	10	10	lo	-	-	-	-
MEL-04- 05 100%	В	10	VO	10	10	to	10	10	10	_	_	i i	
	С	10	10	10	0)	10	10	10	(0	-	_		
T	Α	(,0	(0	10	10	0	10	10	9	-	-	-	100
MEL-05- 04 100%	В	Ю	lo	10	w	(0	10	10	10	-	-		
	С	10	9	9	9	C	9	C/	9	-	-		
Ana	alyst	Im	1415	15	95	MIM	B	~~	MIM				

^{*} see test comments

Randomization Chart

BUREAU VERITAS LABORATORIES BBY2FCD-00438/3

Tab: Fathead minnow; Pg: 1 of 1

Client Name: Golder (Agnico)	Start Date: 2020 Jun 12
Sample Name: Vanous	

Use the coloured dot to find appropriate conc'ns and put beakers back in proper position following daily water change.

Back Wall	Position Map						
4	8	12	16	20	24		
3	7	11	15	19	23		
2	6	10	14	18	22		
1	5	9	13	17	21		

Front of Counter

Position #	Treatment	Replicate	Colour	
10		А		
9	Control	В	Red	
17		С		
7		Α		
5	Site Control	В	White	
8	(synthetic)	С		
4	Cost Mark	A		
21	Soft Water Control	В	Orange	
19		С		
2		Α		
13	MEL-02-05	В	Yellow	
3		С		
15		А		
16	MEL-03-02	В	Fl. Green	
12		С		
20		A		
14	MEL-04-05	В	Green	
18		С		
1		Α	· · · · · · · · · · · · · · · · · · ·	
11	MEL-05-04	В	Blue	
6		С		

ORGANISMS - ACCLIMATION AND HOLDING CONDITIONS

BBY2FCD-00070/6
Page ____ of ___

	Client #'s	: <u>10735</u>	,3170	Date & T ir	me of Arrival:	2020	JUN 12@	11:30
Org	ganism Lot#	:_AB20	0612	Age	upon Arrival:	22	244/	
Water (L) per S	Shipping Bag	: <u> </u>	L	Organism: Fathed Minnow				
Number of Sh	nipping Bags	:_2		_		178		
				- Light Ir	itensity (lux):			· · · · · · · · · · · · · · · · · · ·
Arrival Condition	ns	1	Cond	I	1			
Bag ID	# Dead	% Dead	Salinity (ppt)	Temp (°C)	DO (mg/L)	рН	Feeding	Analyst
A	0	0	360	24.2	9.7	7.5	WIA	MHM
			PH	2000				
				3002	me sa			
Daily Conditions			nation					
	Morta	lities	Cond	V				
Date	# Dead	% Dead	(µS/cm) Salinity (ppt)	Temp (°C)	DO (mg/L)	рН	Feeding	Analyst
	0	0	360	24.3	10.8	7.4	NIA	inm
				PHS				
				- NO 1	Ima			
					100			
Total Mortalities				L_				
Equipment ID:	20.10	121						
	151342-0	$\frac{\sqrt{1}}{2}$						
Comments (e.g. fe	eding times	and quan	tities; fish b	ehaviour, a	cclimation c	onditions	s):	Analyst
	eding times	and quan	tities; fish b	ehaviour, a	eclimation c	onditions	s):	Analyst
Comments (e.g. fe	eding times	and quan		200		onditions	5):	Analyst
Comments (e.g. fe	eding times	and quan	tities; fish b	200	ucclimation c	onditions	s):	Analyst

BBY2FCD-00069/3

Tab: CaSO4; Page 1 of 1

FATHEAD MINNOW WATER HARDNESS ADJUSTMENT

BATCH ID: 2020 Jun 09 (Date Hardened)

(For water hardness 100-140 mg/L)

	Enter Numbers Here	· · · · · · · · · · · · · · · · · · ·
Volume of Water (L)	200	
Desired Hardness (mg/L)	130	

Keep this set to a desired hardness of 130, so water will always be on the harder side, as fathead minnows are cultured in water at a hardness of 103-142 mg/L CaCO₃.

Chemical Weights	MgSO ₄ (g)	CaSO ₄ (g)	NaHCO₃ (g)	KCI (g)
. Brand	Fisher	Alfa Aesar	Fisher	Fisher
Lot#	183674	Q09 E068	189522	195613
Calculated	19.5000	15.3400	31.2000	1.3000
Actual	19.4998	15.3401	31.1999	1.3003
Balance: BBY2-02t	₂ O		,	
Analyst: M. Thoms	2501			·
Date: 2020 Ju	709			

Water Quality:	
Temp (°C): 24.2 pH: 8.1	Hardness (mg/L CaCO ₃): 136
DO (mg/L): 7.4	
Conductivity (µS/cm): 456	Instrument ID: 43 B 42-0366
Analyst: Milamael	Date: 2020Jun)D
Comments: VA	
	· <u>,</u>
,	

Note: Hardness = Ca and Mg as mg/L CaCO₃

Red Thousands of the contraction of

BUREAU VERITAS LABORATORIES

BBY2FCD-00069/3

Tab: CaSO4; Page 1 of 1

FATHEAD MINNOW WATER HARDNESS ADJUSTMENT

BATCH ID:

2020 clan \L.
(Date Hardened)

(For water hardness 100-140 mg/L)

Volume of Water (L)	Enter Numbers Here 200	
Desired Hardness (mg/L)	130	

Keep this set to a desired hardness of 130, so water will always be on the harder side, as fathead minnows are cultured in water at a hardness of 103-142 mg/L CaCO₃.

Chemical Weights	MgSO ₄ (g)	CaSO ₄ (g)	NaHCO₃ (g)	KCI (g)	
Brand	Fisher	Alfa Acar	Fisher	Figher	
Lot#	187776	809E068	187782	172053	
Calculated	19.5000	15.3400	31.2000	1.3000	
Actual	19,5004	15,3401	31,2004	1-3004	
Balance: 3842-0260					
Analyst: Slears					

Water Quality:	,
Temp (°C): 25.8 pH: 7.7	Hardness (mg/L CaCO₃): 136
DO (mg/L):	
Conductivity (µS/cm): 458	Instrument ID: BBY2-0366
Analyst: Mifamad	Date: 2020 Juni G
Comments: NA	
4804	

Note: Hardness = Ca and Mg as mg/L CaCO₃

Synthetic Water FHM + Lemna 3-11-30003

			N All Commence of the Commence	pige and the second	10 mm	8	73		200.00	Difference from target
	Autount of sait (IIIg) iff 15 of water	2						A CHARLES OF THE PARTY OF THE P	TIPO I	
Molar Mass Salts	Salts	NaHCO3	CaSO4*2H2O	MgSO4	KG		CaCl*2H20 NaCl	NaCl	100	(max)
60.01		18,54802663							18,54802663	6 I ∙
40.08			0				8,262436139	A PARTICIPATION OF THE PROPERTY OF THE PARTICIPATION OF THE PARTICIPATIO	8.262436139	6.0
35.45					2.377598927		7.307968092	7.26558497	16.95115199	-1,8
			King that they are presented that		10000000000000000000000000000000000000			是 · · · · · · · · · · · · · · · · · · ·	0	0.0
24.30				1.413260219					1,413260219 - 10.3	£10°
39.10					2.622401073				2.622401073	4.5
23.10	· · · · · · · · · · · · · · · · · · ·	7.139800285		SAME AND SAME				4.73441503	11.87421532	2.3
90'96			0	5.586739781				a de la la la la la la la la la la la la la	5.586739781	9.0
18.02				i i			7.429595769		7.429595769 #VALUE!	#VALUE!
		0.312173086							0.31 <u>2</u> 173086 #VALUE!	#VALUE!
	Total check (mgL) g/200L	5.2	0.0	7	5.1.0	0.0		23 12 4.6 2.4		
						\	- I - PAS	7		

Balance: BBY2-0360

Analyst. PH

Date: 2000 Junell

Synthetic Water (WQ)

Conductivity=126.0 cus/cm plt = 7.5 Temperature=24.1

DO (%Sat) - 99,2 DO CM9117 = 813

Hardness: 32 mall Calos

594501 171430 Esoeul EC5681 463694 Brand Lot# Fisher Fisher Fisher Fisher Fisher @ Cach. 24,0 ZaHCO3 Mgsoy KC

BIR We adolphe

www.bvlabs.com

BUREAU VERITAS LABORATORIES Office 604 734 7276 4606 Canada Way Burnaby, BC V5G 1K5

Toll Free 800 665 8566 Fax 604 731 2386

LEMNA MINOR TOXICITY TEST ON:

MEL-13-01, MEL-13-07,& MEL-02-05

Prepared for:

Agnico Eagle Mines Ltd 10200, Route de Preissac Rouyn-Noranda, QC J0Y 1C0

Prepared by:

Ecotoxicology Group Bureau Veritas Laboratories

Job No.: C039804 July 2020

Summary of Test Results for Samples from Agnico Eagle Mines Ltd Job C039804

Sample: MEL-13-01

Test IC25 or LC25 (%v/v) IC50 or LC50 (%v/v)

Lemna Minor: Frond Increase - >97 (N/A, N/A)

Dry weight >97 (N/A, N/A)

Pooled Significant Effect vs MEL-03-02 MEL-04-05 MEL-05-04 references Lemna Minor. Frond Increase No No No No Dry weight No No No No

N/A = Not available

95% confidence limits in parentheses

Sample: MEL-13-07

IC50 or LC50 (%v/v)

Lemna Minor. Frond Increase - >97 (N/A, N/A)

Dry weight >97 (N/A, N/A)

Significant Effect vs	MEL-03-02	MEL-04-05	MEL-05-04	Pooled references
Lemna Minor. Frond Increase	Yes (I)	Yes (I)	Yes (I)	Yes (I)
Dry weight	No	Yes (I)	Yes (I)	Yes (I)

N/A = Not available

(I) = Sample Inhibition

95% confidence limits in parentheses

Summary of Test Results for Samples from Agnico Eagle Mines Ltd Job C039804

Sample: MEL-02-05

Significant Effect vs	MEL-03-02	MEL-04-05	MEL-05-04	Pooled references
Lemna Minor. Frond Increase	No	No	No	No
Dry weight	No	No	No	No

Sample: Site Control (Synthetic Control)

Significant Effect vs	MEL-03-02	MEL-04-05	MEL-05-04
Lemna Minor: Frond Increase Dry weight	No	No	No
	No	No	No

Lemna minor Test Data Summary

Client Name/Location	Agnico-Eagles Mines Ltd. / Rouyn-Noranda, QC
Testing Lab/Location	Bureau Veritas Laboratories / Burnaby, BC
Collection Approach	6 samples, each split into 3-6 subsamples
Sample Information	
Sample ID	MEL-13-01, MEL-13-07, MEL-02-05, MEL-03-02, MEL-04- 05, and MEL-05-04
Sample collection date (y/m/d)	2020/June/06 & 2020/June/07
Date (y/m/d)/time of sample receipt at lab	2020/Jun/11 @ 08:20
Test Organisms	
Species	Lemna minor (Landolt clone 7730)
Source	Axenic in-house culture started from organisms obtained from Canadian Phycological Culture Centre, CPCC #492
Growth medium used for culturing	Hoagland's E+ Medium
Age of culture at start of test	10 days
Appearance/Any unusual treatment of culture	Good. No unusual appearance or treatment of culture prior to use in test
Culture health monitoring	Mean number of fronds in health monitoring vessels (38.3) displayed a ≥8-fold increase by the end of 7 days in APHA medium. See "Plant Subculture and Acclimation for Tests" data sheet.
Acclimation time and test medium	Plants were acclimated to APHA medium 18-24 hours prior to testing
Test Conditions & Facilities	
Test method	EPS 1/RM/37 Second Edition - January 2007 BBY2SOP-00053 Lemna minor 7 Day Growth Inhibition Test
Test type	Static
Date test started (y/m/d)	2020/Jun/12
Date test completed (y/m/d)	2020/Jun/19
Test vessels	200 mL transparent polypropylene cups with plastic Petri dish lids
Persons performing test	N. Shergill, M. Brassil, P. Howes, Y. Su
Test location	Temperature and photoperiod controlled room, under same conditions as culture vessels
Light intensity, quality & photoperiod	24 hour full spectrum fluorescent light: 74-90 μmol/(m²s)
Rate and duration of preaeration	~100 bubbles/minute for 20 minutes
Procedure for pH adjustment	No pH adjustment of sample
Procedure for filtration	The sample was not filtered
Control(s)	Lab control: APHA medium
	Site water (Synthetic water) control: Control/ dilution water based on client recipe (Deionized water with reagent grade

	chemicals)
	Soft water control: Fathead minnow lab control water diluted with deionized water to 40 mg/L CaCO ₃
Chemicals added to control/dilution water	APHA Nutrient stocks A, B, and C, as described in method at 10ml/L Test medium prepared using Milli-Q water (ASTM type 1)
Type and quantity of chemicals added to test sample prior to testing (i.e., nutrient spiking)	APHA Nutrient stocks A, B, and C, as described in method at 10 ml/L
Number and concentration of test solutions	7 (97, 48.5, 24.2, 12.1, 6.0, 3.0, 1.5% v/v) plus laboratory control, synthetic/site water control, and soft water control (Where applicable)
Volume and depth of solution in test vessels	150 mL & ≥4 cm
Number of replicates per concentration	4 (plus 1 for measurements)
Number of fronds/plant and Number of plants/test vessel	3 fronds per plant; 2 plants per test vessel
Sample pH before and after addition of APHA stocks A, B, and C	See "Test Data and Observations" sheet
Temperature of test solutions and control during the test	See "Test Data and Observations" sheet
pH of test solutions and control at test initiation and completion	See "Test Data and Observations" sheet
Test observation frequency	Plants were observed daily for growth, necrosis, chlorosis, algal growth, and any abnormalities
Test observations	Plant growth appeared healthy and fronds appeared dark green in the control and the 1.5 to 97% v/v concentrations for all samples.
	Green algae present in 48.5% and 97% for sample MEL-13-01
	Green algae present in 97% for sample MEL-13-07.
Test observations and/or deviations from test method and standard practices	There was nothing unusual about the test, no other deviations from the test method, and no problems with the test.
Results	Results contained in this report refer only to the testing of samples as submitted.
Frond increase endpoint statistics	
Name and citation of program(s) and	CETIS v1.9.2.4 –
methods used for calculating statistical endpoint(s)	Linear Interpolation (ICPIN)
- Isaaaaa anaponii(o)	Equal Variance t Two-Sample Test
Weighting techniques applied?	N/A
Residuals Analysis	N/A
Frond increase in controls and in each treatment (mean ± SD)	See "Frond Increase" data sheet
Significant stimulation in sample	No, see Dunnett Multiple Comparison Test and Equal Variance t Two-Sample Test in CETIS
Percent stimulation for frond increase	See "Frond Increase" spreadsheet

in the test solutions	
Any outliers and justification for their removal	None
Dry weight endpoint statistics	
Name and citation of program(s) and	CETIS v1.9.2.4 –
methods used for calculating statistical endpoint(s)	Linear Interpolation (ICPIN)
oranomon orrapoliti(o)	Equal Variance t Two-Sample Test
Weighting techniques applied?	N/A
Residuals Analysis	N/A
Dry weights (mean ± SD)	See "Dry Weights" data sheet
Significant stimulation in sample	No, see Dunnett Multiple Comparison Test and Equal Variance t Two-Sample Test in CETIS
Percent stimulation for dry weight in the test solutions	See "Dry Weights" data sheet
Any outliers and justification for their removal	None
Quality Assurance	
Test validity criteria	
 Average number of fronds in the control are ≥48 fronds 	 Average number of fronds in Controls: MEL-13-01: 66.5
 A minimum of an 8-fold frond increase 	 MEL-13-07: 57.8 MEL-02-05: 70.5 MEL-03-02: 70.5 MEL-04-05: 70.5 MEL-05-04: 70.5 Amount of Frond Increase:
	 MEL-13-01: 11.1 fold MEL-13-07: 9.6 fold MEL-02-05: 11.8 fold MEL-03-02: 11.8 fold MEL-04-05: 11.8 fold MEL-05-04: 11.8 fold
Reference Toxicant test: IC25 (95% CL) (µg Ni/L) for frond	8.6 (N/A, 75.9)
increase	
Reference toxicant test historic mean IC25 & 2SD range (µg Ni/L) for frond increase	10.1; 2SD range: (4.6, 22.4)
Invalid Reference toxicant test?	No
Date of Reference toxicant test and test duration	2020/Jun/04 7 days
Conditions of reference toxicant test	Same as test conditions

Report Date:

29 Jun-20 16:51 (p 1 of 10)

Test Code:

LM-10735-0220 | 14-6119-7024

Lemna Growth I	Inhibition Test							Bureau	ı Veritas La	aboratories
,	8-5028-2771	•	Frond Increase				IS Versio		1.9.2	
Analyzed: 2	29 Jun-20 16:50	Analysis:	Parametric-Tw	o Sample	*	Offic	ial Resu	Its: Yes		·
Batch ID: 10	0-5417-7042	Test Type:	Lemna Growth			Anal	iyst: N	1. Brassil		
Start Date: 12	2 Jun-20	Protocol:	EC/EPS 1/RM/	37		Dilu	ent: A	PHA Media		
Ending Date: 19	9 Jun-20	Species:	Lemna minor			Brin	e: N	lot Applicable		
Duration: 70	d Oh	Source:	Canadian Phyd	cological Cul	ture Centre	Age:	; 			
•	6-3674-6015	Code:	C039804			Clier		gnico Eagle M	line s	
Sample Date: 07	7 Jun-20	Material:	Water			Proj	ect: 2	-11-0691		
Receipt Date: 11	1 Jun-20 08:20	Source:	Agnico Eagle N	/lines						
Sample Age: 50	d 0h	Station:	MEL 13-01							
Data Transform		Alt Hyp				Comparis				PMSD
Untransformed		C <> T				97% pass	ed frond	increase		19.51%
Equal Variance	t Two-Sample	Test	•							
Control vs	Conc-%	Test	Stat Critical	MSD DF	P-Type	P-Value	Decisio	on(α:5%)		
Ref 1 mel 030	1 2 97	0.215	5 2.447	14.19 6	CDF	0.8365	Non-Si	gnificant Effec	t	
Auxiliary Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	on(α:5%)		
Extreme Value	Grubbs Ex	treme Value Test		1.481	2.127	0.9357	No Out	liers Detected		
ANOVA Table										
Source	Sum Squa	res Mean	Square	DF	F Stat	P-Value	Decisio	on(α:5%)		
Between	3.125	3.125	•	1	0.04644	0.8365	Non-Si	gnificant Effec	t	
Error	403.75	67.29	17	6						
otal	406.875			7						
Distributional Te	ests									
Attribute	Test			Test Stat	Critical	P-Value	Decision	on(α:1%)		
Variances	Variance R	atio F Te s t		1.71	47.47	0.6704		/ariances		
Distribution	Shapiro-Wi	lk W Normality Te	st	0.9535	0.6451	0.7461	Normal	Distribution		
Frond Increase	Summary				•					
Conc-%	Code	Count Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R1	4 72.75	58.09	87.41	72.5	62	84	4.608	12.67%	0.00%
97		4 71.5	60.29	82.71	72.5	62	79	3.524	9.86%	1.72%
Frond Increase I	Detail									
Conc-%	Code	Rep 1 Rep 2	Rep 3	Rep 4						
0	R1	84 70	62	75						****
97		73 72	62	79						

Report Date:

29 Jun-20 16:51 (p 2 of 10)

Test Code:

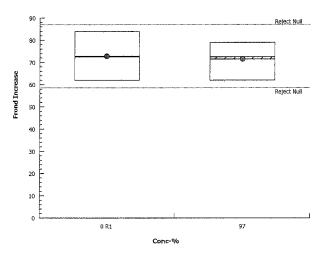
LM-10735-0220 | 14-6119-7024

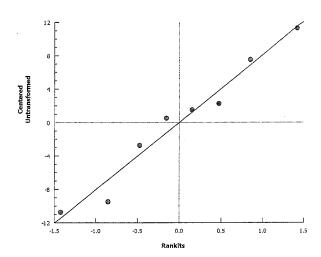
Lemna	Growth	Inhibition	Test
-------	--------	------------	------

Bureau Veritas Laboratories

nalysis ID: Analyzed:

08-5028-2771 29 Jun-20 16:50


Analysis:


Endpoint: Frond Increase

Parametric-Two Sample

CETIS Version: Official Results: Yes

CETISv1.9.2

Report Date: Test Code:

29 Jun-20 16:51 (p 3 of 10) LM-10735-0220 | 14-6119-7024

Lemna Growth Inhibition Test

Bureau Veritas Laboratories

palvsis ID: 02-2119-2854

Endpoint: Frond Increase

CETIS Version: CETISV1.9.2

nalysis ID:02-2119-2854Endpoint:Frond IncreaseCETIS Version:CETIS V1.9.2Analyzed:29 Jun-20 16:50Analysis:Parametric-Two SampleOfficial Results:Yes

Batch ID: 10-5417-7042 Test Type: Lemna Growth Analyst: M. Brassil Protocol: EC/EPS 1/RM/37 Start Date: 12 Jun-20 Diluent: APHA Media Ending Date: 19 Jun-20 Species: Lemna minor Brine: Not Applicable Duration: 7d 0h Source: Canadian Phycological Culture Centre Age:

Sample ID: 16-3674-6015 Code: C039804 Client: Agnico Eagle Mines

Sample Date: 07 Jun-20 Material: Water Project: 2-11-0691

Receipt Date: 11 Jun-20 08:20 Source: Agnico Eagle Mines
Sample Age: 5d 0h Station: MEL 13-01

Data TransformAlt HypComparison ResultPMSDUntransformedC <> T97% passed frond increase21.88%

Equal Variance t Two-Sample Test

Control	vs	Conc-%	Test Stat	Critical	MSD DF P-Type	P-Value	Decision(α:5%)
Ref 2 me	OHO	> 97	0.9645	2.447	17.12 6 CDF	0.3720	Non-Significant Effect

Auxiliary Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:5%)
Extreme Value	Grubbs Extreme Value Test	1,446	2.127	1.0000	No Outliers Detected

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	91.125	91.125	1	0.9302	0.3720	Non-Significant Effect
Error	587.75	97.9583	6			
otal	678.875		7			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Variance Ratio F Test	2.945	47.47	0.3988	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.9197	0.6451	0.4273	Normal Distribution

Frond Increase Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R2	4	78.25	59.01	97.49	79.5	65	89	6.047	15.45%	0.00%
97		4	71.5	60.29	82.71	72.5	62	79	3.524	9.86%	8.63%

Frond Increase Detail

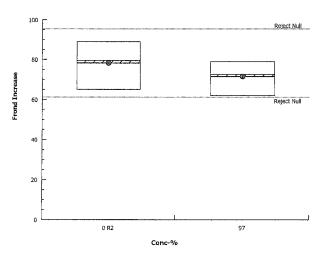
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	R2	71	65	88	89
97		73	72	62	79

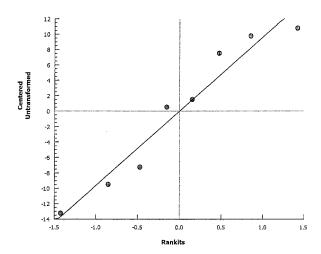
Report Date:

29 Jun-20 16:51 (p 4 of 10)

Test Code:

LM-10735-0220 | 14-6119-7024


Lemna	Growt	h Inhi	bition	Test
-------	-------	--------	--------	------


Bureau Veritas Laboratories

nalysis ID: Analyzed: 02-2119-2854 29 Jun-20 16:50 Endpoint: Frond Increase
Analysis: Parametric-Two Sample

CETIS Version: Official Results:

CETISv1.9.2 Yes

Report Date:

29 Jun-20 16:51 (p 5 of 10)

Test Code:

LM-10735-0220 | 14-6119-7024

Lemna Growth In	hibition Test							Bureau	ı Veritas La	aboratories
•	1-6581-0165	•	Frond Increase				IS Versior		1.9.2	
	Jun-20 16:50	Analysis:	Parametric-Tw							
	5417-7042		Lemna Growth			Anal	•	Brassil		
	Jun-20	Protocol:	EC/EPS 1/RM/	37		Dilu		PHA Media		
Ending Date: 19		Species:	Lemna minor			Brin		t Applicable		
Duration: 7d	0h	Source:	Canadian Phyc	cological Cul	ture Centre	Age:	····			
•	3674-6015	Code:	C039804			Clie	•	inico Eagle M	Mines	
Sample Date: 07		Material:	Water			Proj	ect: 2-	11-0691		
Receipt Date: 11		Source:	Agnico Eagle N	/lines						
Sample Age: 5d	0h	Station:	MEL 13-01							
Data Transform		Нур					son Resul			PMSD
Untransformed	C <	<> T				97% pass	ed frond in	ncrease		16.93%
Equal Variance t	Two-Sample Tes	t								
Control vs	Conc-%	Test	Stat Critical	MSD DF	P-Type	P-Value	Decisio	n(α:5%)		
Ref 3 melosou	97	0.674	6 2.447	12.69 6	CDF	0.5250	Non-Sig	nificant Effec	t	
Auxiliary Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	Grubbs Extrer	ne Va lue Test		1.399	2.127	1.0000	No Outli	ers Detected		
ANOVA Table										
Source	Sum Squares	Mean	Square	DF	F Stat	P-Value	Decisio	η(α:5%)		
Between	24.5	24.5		1	0.4551	0.5250	Non-Sigi	nificant Effec	t	
Error	323	53.83	33	6	_					
otal	347.5		··· ··· ··· · · · · · · · · · · · · ·	7		·		, , , , , , , , , , , , , , , , , , ,		
Distributional Tes	its									
Attribute	Test			Test Stat		P-Value	Decision			
Variances	Variance Ratio			1.168	47.47	0.9016	Equal Va			
Distribution	Shapiro-Wilk W	/ Normality Tes	st 	0.8961	0.6451	0.2666	Normal [Distribution		
Frond Increase St	ummary									
Conc-%	Code Co			95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R3 4	75	62.88	87.12	75.5	67	82	3.808	10.15%	0.00%
97	4	71.5	60.29	82.71	72.5	62	79	3.524	9.86%	4.67%
Frond Increase De	etail									
Conc-%	Code Rej	1 Rep 2	Rep 3	Rep 4						
0	R3 70	67	81	82						
97	73	72	62	79						

Report Date:

29 Jun-20 16:51 (p 6 of 10)

Test Code:

LM-10735-0220 | 14-6119-7024

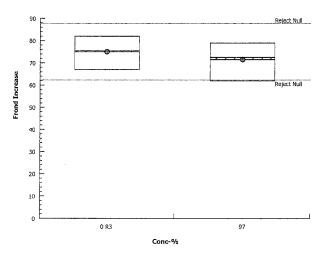
Lemna	Growth	Inhibition	Test
-------	--------	------------	------

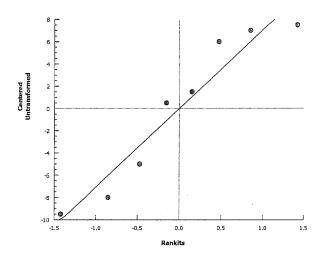
Bureau Veritas Laboratories

nalysis ID: Analyzed:

10-6581-0165 29 Jun-20 16:50

Endpoint: Frond Increase Analysis:


Parametric-Two Sample


CETIS Version: Official Results: Yes

CETISv1.9.2

Graphics

001-349-190-8

Report Date:

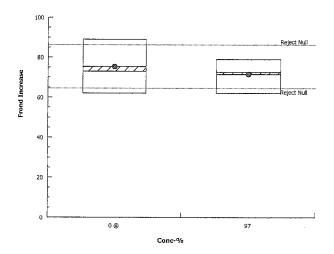
29 Jun-20 16:51 (p 7 of 10)

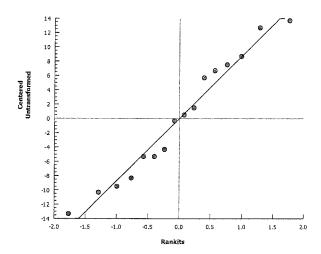
Test Code:

LM-10735-0220 | 14-6119-7024

Lemna Growt	h Inhibition Te	est							Burea	u Veritas L	aboratorie
nalysis ID:	12-4272-652	7 i	Endpoint:	Frond Increase	9		CET	'IS Versio	n: CETISv	1.9.2	
Analyzed:	29 Jun-20 16	5:50 /	Analysis:	Parametric-Tw	o Sample		Offic	cial Resul	ts: Yes		
Batch ID:	10-5417-7042		Test Type:	Lemna Growth	1		Ana	lyst: N	l. Brassil		
Start Date:	12 Jun-20		Protocol:	EC/EPS 1/RM			Dilu	ent: A	PHA Media		
Ending Date:	19 Jun-20	5	Species:	Lemna minor			Brin	e: N	ot Applicable		
Duration:	7d Oh	5	Source:	Canadian Phy	cologi c al Cul	ture Centre	Age	:			
Sample ID:	16-3674-6015	(Code:	C039804			Clie	nt: A	gnico Eagle N	/lines	
Sample Date:	07 Jun-20	ľ	/laterial:	Water			Proj	ect: 2-	-11-0691		
Receipt Date:	11 Jun-20 08:	20 \$	Source:	Agnico Eagle I	Mines						
Sample Age:	5d 0h	\$	Station:	MEL 13-01							
Data Transfor	m	Alt Hy		W			Compari	son Resu	lt		PMSD
Untransformed		C <> T					97% pass	sed frond i	ncrease		14.42%
Equal Varianc	e t Two-Samp	le Test									
	vs Conc-%	6	Test S	Stat Critical	MSD DF	P-Type	P-Value	Decisio	n(α:5%)		
0 २००/८ २	97		0.756	3 2.145	10.86 14	CDF	0.4617	Non-Sig	ınifi c ant Effec	;t	
Auxiliary Test	s										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	Grubbs	Extreme \	/alue Test		1.612	2.586	1.0000	No Outl	iers Detected		
ANOVA Table											
Source	Sum Sq	uares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between	44.0833		44.083	33	1	0.5727	0.4617	Non-Sig	nificant Effec	t	
Error	1077.67		76.976	32	14	_					
ntal	1121.75				15 						
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Variance	Ratio F T	est		1.7	43.52	0.7295	Equal V	ariances		
Distribution	Shapiro-	Wilk W No	rmality Tes	st	0.9546	0.8408	0.5663	Normal	Distribution		
Frond Increase	e Summary										
Conc-%	Code	Count	Mean	95% LCL		Median	Min	Max	Std Err	CV%	%Effect
0	@	12	75.33	69.5	81.17	73	62	89	2.652	12.20%	0.00%
97 		4	71.5	60.29	82.71	72.5	62	79 	3.524	9.86%	5.09%
Frond Increase											
Conc-%	Code	Rep 1	Rep 2	 	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
)	@	70	67	81	82	71	65	88	89	84	70
		62	75	_							
97		73	72	62	79						

Report Date:


29 Jun-20 16:51 (p 8 of 10)


Test Code:

LM-10735-0220 | 14-6119-7024

Lemna Growth Inhibition Test	Bureau Veritas Laboratories

nalysis ID:12-4272-6527Endpoint:Frond IncreaseCETIS Version:CETISv1.9.2Analyzed:29 Jun-20 16:50Analysis:Parametric-Two SampleOfficial Results:Yes

Distribution

07-3944-7550

Report Date:

CETIS Version:

29 Jun-20 16:51 (p 9 of 10) 7024

CETISv1.9.2

Lemna Growth Inhibition Test Bureau Veritas Laboratori		Test Code:	LM-10735-0220 14-6119-7024
	Lemna Growth Inhibition Test		Bureau Veritas Laboratories

nalysis ID: analyzed: 29 Jun-20 16:51 Analysis: Parametric-Control vs Treatments Official Results: Test Type: Lemna Growth Batch ID: 10-5417-7042 Analyst: M. Brassil EC/EPS 1/RM/37 Diluent: APHA Media Start Date: 12 Jun-20 Protocol: Not Applicable

Ending Date: 19 Jun-20 Species: Brine: Lemna minor Duration: 7d 0h Source: Canadian Phycological Culture Centre Age:

Endpoint: Frond Increase

Sample ID: 16-3674-6015 Code: C039804 Client: Agnico Eagle Mines Sample Date: 07 Jun-20 Material: Water Project: 2-11-0691

Receipt Date: 11 Jun-20 08:20 Source: Agnico Eagle Mines

Sample Age: 5d 0h Station: MEL 13-01

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	PMSD
Untransformed	C <> T	97	> 97	n/ a	1.031	20.18%

Dunnett Multiple Comparison Test Control Test Stat Critical Conc-% MSD DF P-Type P-Value Decision(a:5%) Site Water Contr 1.5 0.1478 2.814 14.28 6 CDF 1.0000 Non-Significant Effect 3 0.4435 2.814 14.28 6 CDF 0.9976 Non-Significant Effect 6 0.1971 2.814 14.28 6 CDF 1.0000 Non-Significant Effect 12.1 1.084 2.814 14.28 6 CDF 0.8043 Non-Significant Effect 24.2 0.9363 2.814 14.28 6 CDF 0.8862 Non-Significant Effect 48.5 0.8378 2.814 14.28 6 CDF 0.9287 Non-Significant Effect 97 14.28 6 CDF 1.0000 0.1478 2.814 Non-Significant Effect

Auxiliary Tests						
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:5%)	
xtreme Value	Grubbs Extreme Value Test	2.455	2.938	0.3237	No Outliers Detected	

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	163.469	23.3527	7	0.4537	0.8578	Non-Significant Effect
Error	1235.25	51.4688	24			
Total	1398.72		31			

Distributional					
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance Test	8.573	18.48	0.2848	Equal Variances

0.9081

0.6065

Normal Distribution

0.9737

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	S1	4	70.75	61.62	79.88	69	66	79	2.869	8.11%	0.00%
1.5		4	71.5	57.12	85.88	67.5	66	85	4.518	12.64%	-1.06%
3		4	73	69.1	76.9	73	70	76	1.225	3.36%	-3.18%
6		4	69.75	60.53	78.97	70.5	62	76	2.898	8.31%	1.41%
1 2 .1		4	76.25	71.32	81.18	77	72	79	1.548	4.06%	-7.77%
24.2		4	75.5	56.3	94.7	74.5	62	91	6.035	15.99%	-6.71%
48.5		4	75	63.45	86.55	76.5	65	82	3.629	9.68%	-6.01%
97		4	71.5	60.29	82.71	72.5	62	79	3.524	9.86%	-1.06%

001-349-190-8 CETIS™ v1.9.2.4

Shapiro-Wilk W Normality Test

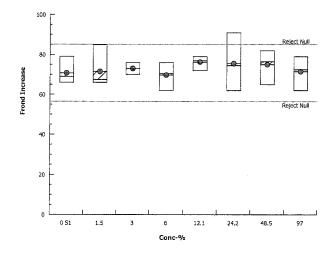
Report Date: Test Code:

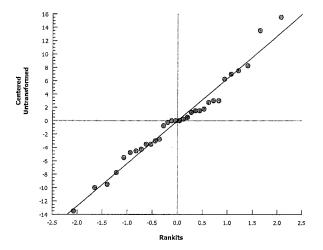
29 Jun-20 16:51 (p 10 of 10)

LM-10735-0220 | 14-6119-7024

Lomna	Crowth	Inhibition	Toot	
Lemma	Growiii	Immibilion	resi	

Bureau Veritas Laboratories


nalysis ID: 07-3944-7550 Analyzed: 29 Jun-20 16:51 Endpoint: Frond Increase Parametric-Control vs Treatments Analysis:


CETIS Version: CETISv1.9.2

Official Results: Yes

Frond Increase Detail

i iona mereas	o Dolan				
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	S1	66	79	68	70
1.5		67	85	66	68
3		76	70	73	73
6		70	7.1	62	76
12.1		79	76	72	78
24.2		62	72	91	77
48.5		75	78	65	82
97		73	72	62	79

Report Date:

29 Jun-20 16:51 (p 1 of 2)

Test Code:

LM-10735-0220 | 14-6119-7024

										est oode.		ENI-10700-0220 14-0110 702
Lemna	a Growt	h Inhibition Tes	st									Bureau Veritas Laboratories
nalys	is ID:	09-2478-3308	Er	ndpoint:	Frond Increase	e e				ETIS Vers	sion:	CETISv1.9.2
Analyz		29 Jun-20 16:4		nalysis:	Linear Interpol		٧)		C	Official Re	sults:	Yes
Batch	ID:	10-5417-7042	Te	st Type:	Lemna Growth	1			Δ	nalyst:	М. В	rassil
Start D	ate:	12 Jun-20		otocol:	EC/EPS 1/RM					Diluent:	APH	A Media
Ending	g Date:	19 Jun-20	Sp	ecies:	Lemna minor				Е	Brine:	Not A	Applicable
Duration	on:	7d Oh	Sc	urce:	Canadian Phy	cological Cu	ulture (Centre		lge:		
Sampl	e ID:	16-3674-6015	Co	de:	C039804				C	Client:	Agnie	co Eagle Mines
Sampl	e Date:	07 Jun-20	Ma	aterial:	Water				F	roject:	2-11-	-0691
		11 Jun-20 08:20) Sc	urce:	Agnico Eagle I	Mines						
Sampl	e Age:	5d 0h	Sta	ation:	MEL 13-01							
Linear	interpo	lation Options										
X Tran	sform	Y Transform	n Se	ed	Resamples	Exp 95%	6 CL	Meth	hod			
Log(X+	·1)	Linear	44	9937	200	Yes		Two-	-Point Int	terpolation		
Residu	ıal Anal	ysis										
Attribu	te	Method			Test Stat	Critical	P-V	'alue	Decis	ion(α:5%)		
Extrem	e Value	Grubbs Ex	ktreme Val	ue Test	2.455	2.938	0.3	237	No Ou	tliers Dete	cted	
Point E	Estimate	es						,	,			
Level	%	95% LCL	95% UC	L TU	95% LCL	95% UCL	-					
IC5	>97	n/a	n/a	<1.03	1 n/a	n/a					•	
IC10	>97	n/a	n/a	<1.03		n/a						
IC15	>97	n/a	n/a	<1.03		n/a						
IC20	>97	n/a	n/a	<1.03		n/a						
IC25	>97	n/a	n/a /-	<1.03		n/a						
40°، ن50،	>97 >97	n/a n/a	n/a n/a	<1.03 <1.03		n/a						
		n/a	n/a 	~1.03	1 n/a	n/a						<u> </u>
		e Summary	_					ed Va				
Conc-9	6	Code	Count	Mean		Max		Err	Std De			%Effect
0		S1	4	70.75		79	2.86		5.737	8.119		0.0%
1.5			4	71.5 73	66 70	85 76	4.5		9.037	12.64		-1.06%
3 6			4	73 69.75	70 62	76 76	1.22 2.89		2.449 5.795	3.369 8.319		-3.18%
12.1			4	76.25		70 79	1.54		3.096	4.06%		1.41% -7.77%
24.2			4	75.5	62	91	6.03		12.07	15.99		-6.71%
48.5			4	75	65	82	3.62		7.257	9.68%		-6.01%
97			4	71.5	62	79	3.52		7.047	9.86%		-1.06%
Frond !	ncrease	Detail										
Conc-%	6	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0		S1	66	79	68	70						
1.5			67	85	66	68						
3			76	70	73	73						
6			70	71	62	76						
12.1			79	76	72	78						
24.2			62	72	91	77						
48.5			75	78	65	82						
97			73	72	62	79						

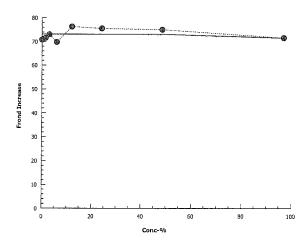
Report Date:

29 Jun-20 16:51 (p 2 of 2)

Test Code:

LM-10735-0220 | 14-6119-7024

Lemna (Growth	Inhibition	Test
---------	--------	------------	------


Bureau Veritas Laboratories

Analyzed:

nalysis ID: 09-2478-3308 29 Jun-20 16:45

Endpoint: Frond Increase Analysis: Linear Interpolation (ICPIN) **CETIS Version:** Official Results: Yes

CETISv1.9.2

Tab: Frond Counts, Page 1 of 1

Lemna minor Growth InhibitionTest Data

Client Name: Golder Associates Ltd. (Agnico)

Sample ID: MEL-13-01

Start Date: June 12, 2020

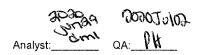
Analyst(s): N. Shergill, M. Brassil End Date: June 19, 2020

Conc. & Replicate	Initial Number of Fronds	Final Number of Fronds	Frond Increase	Mean Increase in # Fronds per Conc'n	SD	% Stimulation
Control-A	6	62	56	60.5	3.7	
В	6	66	60	00.0		<u> </u>
С	6	67	61			
D	6	71	65	<u> </u>		
Site Control-A	6	72	66	70.8	5.7	16.94
В	6	85	79	70.0	0.7	10.54
С	6	74	68			
D	6	76	70			
1.5%-A	6	73	67	71.5	9.0	18.18
В	6	91	85	71.0	3.0	10.10
C	6	72	66		 	+
D	6	74	68			
3.0%-A	6	82	76	73.0	2.4	20.66
В	6	76	70	70.0	<u> </u>	20.00
C	6	79	73			
D	6	79	73			
6.0%-A	6	76	70	69.8	5.8	15.29
В	6	77	71	00.0		10.20
С	6	68	62			
D	6	82	76			
12.1%-A	6	85	79	76.3	3.1	26.03
В	6	82	76	, , , , , , , , , , , , , , , , , , , ,		
С	6	78	72		·	
D	6	84	78			
24.2%-A	6	68	62	75.5	12.1	24.79
В	6	78	72			
С	6	97	91			1
D	6	83	77			
48.5%-A	6	81	75	75.0	7.3	23.97
В	6	84	78			
С	6	71	65			
D	6	88	82			
97%-A	6	79	73	71.5	7.0	18.18
В	6	78	72			
С	6	68	62			
D	6	85	79			
Analyst	NS	MB		Harry Market Company	No. 3 (A)	11417

N/S - No growth stimulation (frond increase) compared to the Control

Control Validity Criteria: Mean final # of fronds in Controls on day 7 must be ≥8 times initial # of fronds

Mean Final # of Fronds on Day 7	66.5
Control Frond Increase	11.1
Validity Criteria Met?	Yes


Report Date:

29 Jun-20 16:58 (p 1 of 10)

Test Code:

LM-10735-0220 | 14-6119-7024

Lemna Growt	h Inhibition T	est				,			Bureau	u Veritas La	aboratorie
nalysis ID:	09-2706-456		ndpoint:	Total Dry We	• •			IS Versio		1.9.2	
Analyzed:	29 Jun-20 16	5:56 A	nalysis:	Parametric-T	wo Sample		Offic	ial Resu	Its: Yes		
Batch ID:	10-5417-7042	? T	est Type:	Lemna Grow	th		Anal	lyst: N	/l. Brassil		
Start Date:	12 Jun-20	Р	rotocol:	EC/EPS 1/RI	M/37		Dilu	ent: A	PHA Media		
Ending Date:	19 Jun-20	S	pecies:	Lemna minor			Brin	e: N	lot Applicable		
Duration:	7d 0h	S	ource:	Canadian Ph	ycological Cu	Iture Centre	Age	!		***********	
	16-3674-6015		ode:	C039804			Clie		gnico Eagle N	Mines	
Sample Date:			aterial:	Water			Proj	ect: 2	-11-0691		
Receipt Date:			ource:	Agnico Eagle	Mines						
Sample Age:	5d 0h	s	tation:	MEL 13-01			**************************************		15		
Data Transfor		Alt Hy)		·····		Comparis				PMSD
Untransformed		C <> T					97% pass	ed total d	Iry weight-mg		17.61%
Equal Varianc	e t Two-Samı	ole Test									
	/s Conc-	%	Test S	Stat Critical	MSD D	P-Type	P-Value	Decision	on(α:5%)		
Ref 1 mel 03	67 97		0.502	2.447	1.328 6	CDF	0.6336	Non-Si	gnificant Effec	t	
Auxiliary Tests	5										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	on(α: 5 %)	· · · · · · · · · · · · · · · · · · ·	
Extreme Value	Grubbs	Extreme V	alue Test		1.569	2.127	0.7319	No Out	liers Detected		
ANOVA Table											
Source	Sum Sc	uares	Mean	Square	DF	F Stat	P-Value	Decisio	on(α:5%)		
Between	0.14851		0.148		1	0.252	0.6336	Non-Si	gnificant Effec	t	
Error	3.53638		0.5893	396	6						
otal	3.68489				7	-				,	
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	on(α:1%)		
Variances		e Ratio F Te			1.57	47.47	0.7201		/ariances		
Distribution	Shapiro	-Wilk W No	mality Tes	st 	0.9308	0.6451	0.5235	Normal	Distribution		
Total Dry Weig	ıht-mg Summ	ary									
Conc-%	Code	Count	Mean	95% LC	L 95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R1	4	7.545	6.195	8.895	7.635	6.43	8.48	0.4243	11.25%	0.00%
97		4	7.817	6.74	8.895	8.005	6.89	8.37	0.3387	8.66%	-3.61%
Total Dry Weig	ht-mg Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0	R1	8.48	7.75	6.43	7.52						

8.37 8.27 6.89 7.74

97

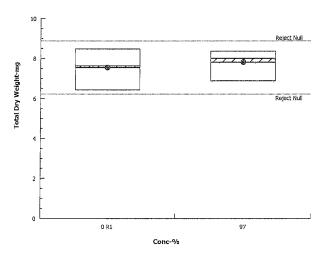
Report Date:

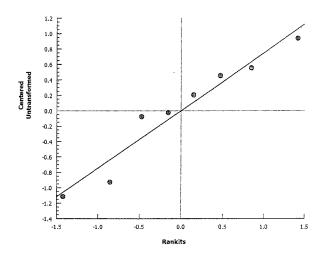
29 Jun-20 16:58 (p 2 of 10)

Test Code:

LM-10735-0220 | 14-6119-7024

Lemna	Growth	Inhibition	Test
-------	--------	------------	------


Bureau Veritas Laboratories


nalysis ID: Analyzed:

09-2706-4563 29 Jun-20 16:56 Endpoint: Total Dry Weight-mg Parametric-Two Sample Analysis:

CETIS Version: Official Results:

CETISv1.9.2 Yes

Report Date:

29 Jun-20 17:01 (p 1 of 4)

Test Code:

LM-10735-0220 | 14-6119-7024

							1001	. Coue.	LIVI-107	33-0220 1	4-0113-702
Lemna Growt	th Inhibition	Test							Bureau	ı Veritas L	aboratorie
nalysis ID:	11-3013-98	305	Endpoint:	Total Dry Weig	ht-mg		CET	IS Versio	n: CETISv	1.9.2	
Analyzed:	29 Jun-20	17:01	Analysis:	Parametric-Tw	o Sample		Offic	cial Resul	ts: Yes		
Batch ID:	10-5417-70	42	Test Type:	Lemna Growth	1		Ana	lyst: N	l. Brassil		
Start Date:	12 Jun-20		Protocol:	EC/EPS 1/RM			Dilu	ent: A	PHA Media		
Ending Date:	19 Jun-20		Species:	Lemna minor			Brin	e: N	ot Applicable		
Duration:	7d 0h		Source:	Canadian Phy	cological Cul	ture Centre	Age	•			
Sample ID:	16-3674-60°	15	Code:	C039804			Clie	nt: A	gnico Eagle N	Mines	
Sample Date:			Material:	Water			Proj	ect: 2	11-0691		
Receipt Date:		8:20	Source:	Agnico Eagle I	Mines						
Sample Age:	5d 0h		Station:	MEL 13-01	· · · · · · · · · · · · · · · · · · ·						
Data Transfor		Alt H						son Resu			PMSD
Untransformed	<u> </u>	C <>	Τ				97% pass	ed total d	ry weight-mg		20.08%
Equal Variand	e t Two-Sar	nple Test									
	vs Cond	:-%	Test \$	Stat Critical	MSD DF	P-Type	P-Value	Decisio	n(α:5%)		
Ref 2 〜へと の	405 97		0.865	2.447	1.69 6	CDF	0.4203	Non-Sig	nificant Effec	t	
Auxiliary Test	s										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	Grubl	os Extreme	Value Test		1.73	2.127	0.4288	No Outl	iers Detected		
ANOVA Table											
Source	Sum S	Squares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between	0.7140)12	0.714	012	1	0.7483	0.4203	Non-Sig	nificant Effec	t	
Error	5.7251		0.954	196	6	_					
otal	6.4391	19			7						
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Varian	ce Ratio F	Test		3.16	47.47	0.3699	Equal V	ariances		
Distribution	Shapir	o-Wilk W N	Iormality Tes	st	0.9713	0.6451	0.9079	Normal	Distribution		
Total Dry Weig	ght-mg Sụm	mary									
Conc-%	Code	Coun		95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R2	4	8.415	6.499	10.33	8.25	7.18	9.98	0.602	14.31%	0.00%
97		4	7.817	6.74	8.895	8.005	6.89	8.37	0.3387	8.66%	7.10%
Total Dry Weig	ght-mg Deta	il									
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0	R2	7.85	7.18	8.65	9.98		, , , , , , , , , , , , , , , , , , , ,				
97		8.37	8.27	6.89	7.74						

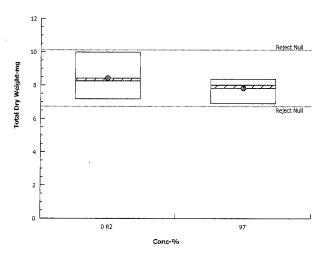
Report Date:

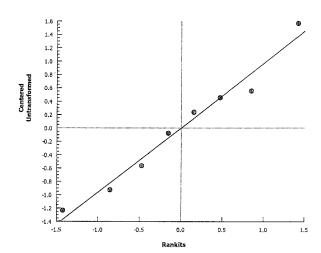
29 Jun-20 17:01 (p 2 of 4)

Test Code:

LM-10735-0220 | 14-6119-7024

Lemna Growth Inhibition Test	Bureau Veritas Laboratories

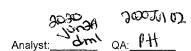

nalysis ID: 11-3013-9805 Analyzed: 29 Jun-20 17:0


29 Jun-20 17:01 Analysis:

Endpoint: Total Dry Weight-mg **Analysis:** Parametric-Two Sample

CETIS Version: CET Official Results: Yes

CETISv1.9.2 Yes


Report Date:

29 Jun-20 17:01 (p 3 of 4)

Test Code:

LM-10735-0220 | 14-6119-7024

							1031	. oouc.	LIVI 101	00 0220 1	7 0 1 10 7 02
Lemna Growth	Inhibition Tes	st			, ,				Bureau	ı Veritas L	aboratorie
nalysis ID: (09-7933-2576	Endpo	int: To	otal Dry Weig	ht-mg		CET	'IS Version	n: CETISv	1.9.2	
Analyzed:	29 Jun-20 17:0	1 Analys	sis: Pa	arametric-Tw	o Sample		Offic	cial Result	ts: Yes		
Batch ID: 1	0-5417-7042	Test Ty	ype: Le	mna Growth			Ana	lyst: M	. Brassil		
Start Date: 1	2 Jun-20	Protoc	-	C/EPS 1/RM/			Dilu	=	PHA Media		
Ending Date: 1	9 Jun-20	Specie	es: Le	emna minor			Brin	e: No	ot Applicable		
Duration: 70	d Oh	Source	e: Ca	anadian Phyd	ological Cul	ture Centre	Age	:			
Sample ID: 16	6-3674-6015	Code:	C	039804			Clie	nt: Ag	nico Eagle N	lines	
Sample Date: 0	7 Jun-20	Materia	al: W	ater			Proj	ect: 2-	11-0691		
Receipt Date: 1	1 Jun-20 08:20) Source	e: Ag	gnico Eagle N	Mines						
Sample Age: 50	d Oh	Station	n: MI	EL 13-01							
Data Transform		Alt Hyp					Comparis	son Resul	t		PMSD
Untransformed		C ⇔ T					97% pass	ed total dr	y weight-mg		16.65%
Equal Variance	t Two-Sample	e Test		•							
Control vs		Т	est Stat	t Critical	MSD DF	P-Type	P-Value	Decisio	n(α:5%)		
Ref 3 meloso	4 97	1	.176	2.447	1.415 6	CDF	0.2840	Non-Sig	nificant Effec	t	
Auxiliary Tests											
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(a:5%)		
Extreme Value	Grubbs E	xtreme Value 1	Test		1.371	2.127	1.0000	No Outli	ers Detected		
ANOVA Table											
Source	Sum Squa	ares IV	lean Sq	uare	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between	0.9248	0.	.9248		1	1.384	0.2840	Non-Sig	nificant Effec		
Error	4.01035	0.	.668392		6	_					
~otal	4.93515				7						
Distributional Te	ests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Varianc es	Variance F	Ratio F Test			1.914	47.47	0.6073	Équal Va	ariances		
Distribution	Shapiro-W	/ilk W Normality	y Test		0.8837	0.6451	0.2042	Normal I	Distribution		
Total Dry Weigh	t-mg Summar	У									
Conc-%	Code	Count M	lean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R3	4 8.	.497	7.006	9.989	8.605	7.46	9.32	0.4685	11.03%	0.00%
97		4 7.	.817	6.74	8.895	8.005	6.89	8.37	0.3387	8.66%	8.00%
Total Dry Weight	t-mg Detail										
Conc-%	Code	Rep 1 R	ep 2	Rep 3	Rep 4						
0	R3	7.95 7.	.46	9.26	9.32						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
97		8.37 8.	.27	6.89	7.74						

Report Date:

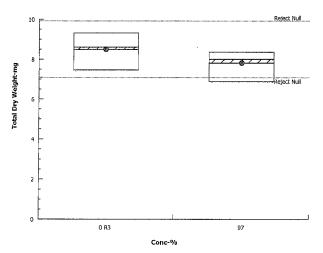
29 Jun-20 17:01 (p 4 of 4)

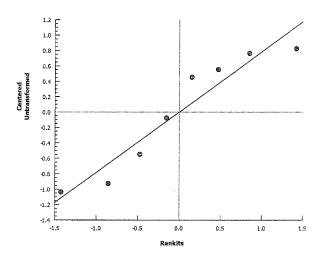
Test Code:

LM-10735-0220 | 14-6119-7024

Lemna	Growth	Inhibition	Test
-------	--------	------------	------

Bureau Veritas Laboratories

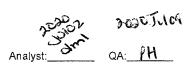

nalysis ID: Analyzed:


09-7933-2576 29 Jun-20 17:01 Endpoint: Total Dry Weight-mg Analysis:

Parametric-Two Sample

CETIS Version: Official Results:

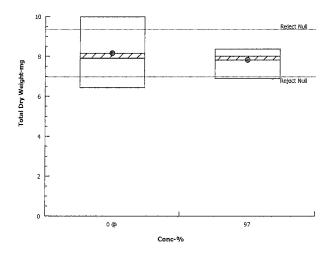
CETISv1.9.2 Yes

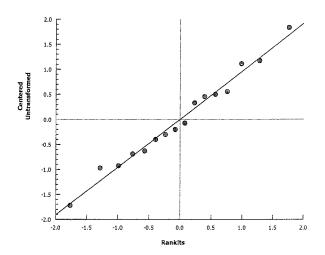

Report Date:

02 Jul-20 17:29 (p 1 of 2)

Test Code:

LM-10735-0220 | 14-6119-7024

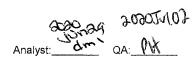

							165	Coue.	LIVI- I U /	33-0220 1	7-0113-102
Lemna Growt	th Inhibition	Test							Bureau	ı Veritas L	aboratorie
nalysis ID:	15-8155-26	 11	Endpoint:	Total Dry Weig	ht-mg		CET	IS Versio	n: CETISv	1.9.2	
Analyzed:	02 Jul-20 1	7:29	Analysis:	Parametric-Tw	o Sample		Offic	cial Resu	lts: Yes		
Batch ID:	10-5417-704	.2	Test Type:	Ļemna Growth	1		Ana	lvst: M	l. Bras s il		
Start Date:	12 Jun-20	_	Protocol:	EC/EPS 1/RM			Dilu	-	PHA Media		
Ending Date:			Species:	Lemna minor			Brin		ot Applicable		
Duration:	7d 0h		Source:	Canadian Phy	cological Cul	ture Centre	Age		11		
Sample ID:	16-3674-601	5	Code:	Ç039804	<u>, , , , , , , , , , , , , , , , , , , </u>		Clie	nt: A	gnico Eagle N	/lines	
Sample Date:	07 Jun-20		Material:	Water			Proj	ect: 2	-11-0691		
Receipt Date:	11 Jun-20 08	3:20	Source:	Agnico Eagle I	Mines						
Sample Age:	5d 0h		Station:	MEL 13-01							
Data Transfor	m	Alt H	 ур	y			Compari	son Resu	lt		PMSD
Untransformed	1	C <> .	T				97% pass	sed total d	ry weight-mg		14.49%
Equal Variance	e t Two-Sam	ple Test						. ,			
	vs Conc	-%	Test	Stat Critical	MSD DF	P-Type	P-Value	Decisio	n(α:5%)		
o Socres	9 7		0.608	1 2.145	1.182 14	CDF	0.5529	Non-Sig	nificant Effec	t	
Auxiliary Test	s										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	on(α:5%)		
Extreme Value	Grubb	s Extreme	Value Test		1.982	2.586	0.5643	No Out	iers Detected		
ANOVA Table											
Source	Sum S	quares	Mean	Square	DF	F Stat	P-Value	Decisio	on(α:5%)		
Between	0.3366	75	0.336	675	1	0.3698	0.5529	Non-Sig	nificant Effec	t	
Error	12.747	3	0.910	521	14	_					
otal	13.084				15						
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Variand	ce Ratio F	Гest		2.253	43.52	0.5471	Equal V	ariances		
Distribution	Shapiro	o-Wilk W N	ormality Te	st	0.9845	0.8408	0.9893	Normal	Distribution		
Total Dry Weig	ght-mg Sumr	nary									
Conc-%	Code	Count	: Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	cv%	%Effect
0	@	12	8.152	7.507	8.798	7.9	6.43	9.98	0.2935	12.47%	0.00%
97		4	7.817	6.74	8.895	8.005	6.89	8.37	0.3387	8.66%	4.11%
Total Dry Weig	ght-mg Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	@	7.95	7.46	9.26	9.32	7.85	7.18	8.65	9.98	8.48	7.75
		6.43	7.52								
97		8.37	8.27	6.89	7.74						



Report Date: Test Code: 02 Jul-20 17:29 (p 2 of 2) LM-10735-0220 | 14-6119-7024

Lemna Growth Inhibition Test Bureau Veritas Laboratories

nalysis ID:15-8155-2611Endpoint:Total Dry Weight-mgCETIS Version:CETISv1.9.2Analyzed:02 Jul-20 17:29Analysis:Parametric-Two SampleOfficial Results:Yes


Report Date:

29 Jun-20 16:58 (p 9 of 10)

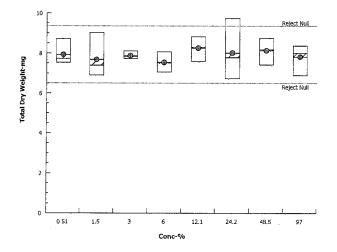
Test Code:

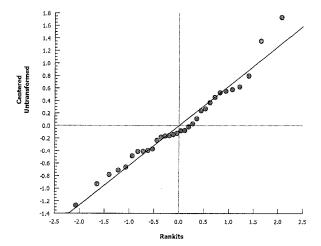
LM-10735-0220 | 14-6119-7024

Lemna Growth I	nhibition T	est			,			,	Burea	u Veritas L	aboratorie
nalysis ID: 1	5-8497-448	2	Endpoint:	Total Dry Wei	ght-mg		CE	TiS Version	n: CETISv	1.9.2	
Analyzed: 2	9 Jun-20 16	:57	Analysis:	Parametric-Co	ontrol vs Trea	atments	Off	icial Resul	ts: Yes		
Batch ID: 10	-5417-7042		Test Type: Lemna Growth			Ana	alyst: M	. Brassil			
Start Date: 12	2 Jun-20		Protocol: EC/EPS 1/RM/37		1/37		Dile	uent: Al	PHA Media		
Ending Date: 19	Jun-20		Species:	Lemna minor			Bri	ne: No	ot Applicable		
Duration: 7d	l Oh		Source:	Canadian Phy	cological Cu	lture Centre	Age	9:			
Sample ID: 16	5-3674-6015		Code:	C039804			Clie	ent: Ag	gnico Eagle N	/lines	
Sample Date: 07	' Jun-20		Material:	Water			Pro	ject: 2-	11-0691		
Receipt Date: 11	Jun-20 08:	20	Source:	Agnico Eagle	Mines						
Sample Age: 5d	l Oh		Station:	MEL 13-01							
Data Transform		Alt H	ур				NOEL	LOEL	TOEL	TU	PMSD
Untransformed		C <>	Т				97	> 97	n/a	1.031	17.98%
Dunnett Multiple	Compariso	on Test									
Control vs	Conc-%	6	Test S	Stat Critical	MSD DE	P-Type	P-Value	Decisio	n(α:5%)		
Site Water Contr	1.5		0.483	3 2.814	1.425 6	CDF	0.9960	Non-Sig	nificant Effec	t	
	3		0.103	7 2.814	1.425 6	CDF	1.0000	Non-Sig	nificant Effec	t	
	6		0.755	4 2.814	1.425 6	CDF	0.9556	Non-Sig	nificant Effec	t	
	12.1		0.6468	3 2.814	1.425 6	CDF	0.9796	Non-Sig	nificant Effec	:t	
	24.2		0.1728	3 2.814	1.425 6	CDF	1.0000	Non-Sig	nificant Effec	:t	
	48.5		0.4048	3 2.814	1.425 6	CDF	0.9986	Non-Sig	nificant Effec	:t	
	97		0.2123	3 2.814	1.425 6	CDF	1.0000	Non-Sig	nificant Effec	t	
Auxiliary Tests											
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
xtreme Value	Grubbs	Extreme	Value Test		2.742	2.938	0.1135	No Outli	ers Detected		
ANOVA Table											
Source	Sum Sq	uares	Mean	Square	DF	F Stat	P-Value	Decision	n(α:5%)		
Between	1.4963		0.2137	757	7	0.4168	0.8823	Non-Sigi	nificant Effec	t	
Error	12.3075		0.5128	311	24						
Total	13.8038				31						
Distributional Tes	sts										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
√ariances	Bartlett E	quality of	Variance T	est	9.497	18.48	0.2189	Equal Va	ariances		
Distribution	Shapiro-	Wilk W N	ormality T es	it	0.9674	0.9081	0.4305		Distribution		
Total Dry Weight-	-mg Summa	ary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	S1	4	7.925	7.068	8.782	7.725	7.53	8.72	0.2693	6.80%	0.00%
		4	7.68	6.192	9.168	7.395	6.9	9.03	0.4677	12.18%	3.09%
1.5		4	7.872	7.593	8.152	7.825	7.73	8.11	0.08778	2.23%	0.66%
		7						0.07			
3		4	7.542	6.712	8.373	7.52	7.06	8.07	0.2608	6.92%	4.83%
3					8.373 9.113	7.52 8.295	7.06 7.59	8.07 8.83	0.2608 0.2704	6.92% 6.55%	4.83% -4.13%
3 5 12.1		4	7.542	6.712							
1.5 3 6 12.1 24.2 48.5		4 4	7.542 8.253	6.712 7.392	9.113	8.295	7.59	8.83	0.2704	6.55%	-4.13%

Report Date:

29 Jun-20 16:58 (p 10 of 10)


Test Code:


LM-10735-0220 | 14-6119-7024

Lemna Growt	Bureau Veritas Laboratories				
nalysis ID:	15-8497-4482	Endpoint:	Total Dry Weight-mg	CETIS Version:	CETISv1.9.2
مnalyzed:	29 Jun-20 16:57	Analysis:	Parametric-Control vs Treatments	Official Results:	Yes

Total Dry Weight-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	S1	7.69	8.72	7.76	7.53
1.5		7.52	9.03	7.27	6.9
3		8.11	7.9	7.73	7.75
6		7.13	7.91	7.06	8.07
12.1		8.83	8.52	7.59	8.07
24.2		6.74	7.64	9.74	7.93
48.5		7.42	8.24	8.11	8.75
97		8.37	8.27	6.89	7.74

Report Date:

29 Jun-20 16:58 (p 1 of 2)

Test Code: LM-10735-0220 | 14-6119-7024 Lemna Growth Inhibition Test Bureau Veritas Laboratories nalysis ID: 01-2247-1043 Endpoint: Total Dry Weight-mg CETIS Version: CETISv1.9.2 Analyzed: 29 Jun-20 16:56 Analysis: Linear Interpolation (ICPIN) Official Results: Yes 10-5417-7042 Batch ID: Test Type: Lemna Growth Analyst: M. Brassil Start Date: 12 Jun-20 Protocol: EC/EPS 1/RM/37 Diluent: APHA Media Ending Date: 19 Jun-20 Species: Lemna minor Brine: Not Applicable Duration: 7d 0h Source: Canadian Phycological Culture Centre Age: Sample ID: 16-3674-6015 Code: C039804 Client: Agnico Eagle Mines Sample Date: 07 Jun-20 Material: Water Project: 2-11-0691 Receipt Date: 11 Jun-20 08:20 Source: Agnico Eagle Mines Sample Age: 5d 0h Station: MEL 13-01 Linear Interpolation Options X Transform Y Transform Seed Resamples Exp 95% CL Method Log(X+1) Linear 777968 200 Two-Point Interpolation Yes Residual Analysis Attribute Method Test Stat Critical P-Value Decision(a:5%) Extreme Value Grubbs Extreme Value Test 2.742 2.938 0.1135 No Outliers Detected **Point Estimates** Level % 95% UCL TU 95% LCL 95% LCL 95% UCL IC5 >97 <1.031 n/a n/a n/a n/a IC10 >97 n/a n/a <1.031 n/a n/a IC15 >97 n/a n/a <1,031 n/a n/a IC20 >97 n/a n/a <1.031 n/a n/a IC25 >97 n/a n/a <1.031 n/a .n/a :40 >97 n/a n/a <1.031 n/a n/a ى50، >97 n/a n/a <1.031 n/a n/a Total Dry Weight-mg Summary Calculated Variate Conc-% Code Count Mean Min Max Std Err Std Dev CV% %Effect 0 S1 4 7.925 7.53 8.72 0.2693 0.5387 6.80% 0.0% 1.5 4 7.68 6.9 9.03 0.4677 0.9353 12.18% 3.09% 3 4 7.872 7.73 8.11 0.08778 0.1756 2.23% 0.66% 6 4 7.542 7.06 8.07 0.2608 0.5216 6.92% 4.83% 12.1 4 8.253 7.59 8.83 0.2704 0.5408 6.55% -4.13% 24.2 4 8.012 6.74 9,74 0.6291 1.258 15.70% -1.1% 48.5 4 8.13 7.42 8.75 0.274 0.548 6.74% -2.59% 97 4 7.817 6.89 8.37 0.3387 0.6773 8.66% 1.36% Total Dry Weight-mg Detail Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 0 **S**1 7.69 8.72 7.76 7.53 1.5 7.52 7.27 9.03 6.9 3 8.11 7.9 7.73 7.75 6 7.13 7.91 7.06 8.07

Analyst: Om QA: PH

12.1

24.2

48.5

97

8.83

6.74

7.42

8.37

8.52

7.64

8.24

8.27

7.59

9.74

8.11

6.89

8.07

7.93

8.75

7.74

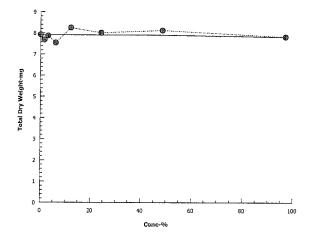
Report Date:

29 Jun-20 16:58 (p 2 of 2)

Test Code:

LM-10735-0220 | 14-6119-7024

Lemna Growth Inhibition Test	Bureau Veritas Laboratories
------------------------------	-----------------------------


nalysis ID: Analyzed:

01-2247-1043 29 Jun-20 16:56

Analysis:

Endpoint: Total Dry Weight-mg Linear Interpolation (ICPIN) **CETIS Version:** Official Results: Yes

CETISv1.9.2

ECOTOXICOLOGY

Lemna minor Growth Inhibition Test Data

Tab: Weights, Page 1 of 1

Golder Associates Ltd.

Client Name: (Agnico) Job# / Sample #: C039804 XX3664

Sample iD: MEL-13-01 Oven Temp (°C): 60

Weighing Dates: <u>2020 Jun 17, 2020 Jun 22</u> Drying Time (h): <u>>24</u>

Analyst(s): NS, DML Balance ID: bby2-0260

Boat #	Conc. & Replicate	Final # of Fronds	Boat Wt. (g)	Boat & Frond Dry Weight (g)	Dry Weight per Rep. (mg)	Mean Dry Weight per Conc (mg)	SD	% Stimulation
356	Control-A	62	0.81216	0.81852	6.36	6.67	0,43	
357	В	66	0.79954	0.80616	6.62			
358	С	67	0.79011	0.79653	6.42			
359	D	71	0.80579	0.81308	7.29			
360	Site Control-A	72	0.80900	0.81669	7.69	7.93	0.54	18.77
361	В	85	0.81090	0.81962	8.72			
362	C	74	0.79486	0.80262	7.76			
363	D	76	0.80918	0.81671	7.53			
364	1.5%-A	73	0.81227	0.81979	7.52	7.68	0.94	15.10
365	В	91	0.81294	0.82197	9.03		,	
366	С	72	0.80552	0.81279	7.27			
367	D	74	0.80177	0.80867	6.90			
368	3.0%-A	82	0.77881	0.78692	8.11	7.87	0.18	17.98
369	В	76	0.82365	0.83155	7.90			
370	С	79	0.81335	0.82108	7.73			
371	D	79	0.80623	0.81398	7.75			
372	6.0%-A	76	0.80242	0.80955	7.13	7.54	0.52	13.04
373	В	77	0.79516	0.80307	7.91		•	
374	С	68	0.79782	0.80488	7.06	,		
375	D	82	0.80229	0.81036	8.07			
376	12.1%-A	85	0.82225	0.83108	8.83	8.25	0.54	23.68
377	В	82	0.80671	0.81523	8.52			1
378	С	78	0.80391	0.81150	7.59			
379	D	84	0.81179	0.81986	8.07			
380	24.2%-A	68	0.82027	0.82701	6.74	8.01	1.26	20.08
381	В	78	0.80153	0.80917	7.64			
382	С	97	0.80776	0.81750	9.74			
383	D	83	0.78941	0.79734	7.93			
384	48.5%-A	81	0.79660	0.80402	7.42	8.13	0.55	21.84
385	В	84	0.80489	0.81313	8.24			
386	С	71	0.80677	0.81488	8.11			
387	D	88	0.80218	0.81093	8.75			
388	97%-A	79	0.79783	0.80620	8.37	7.82	0.68	17.16
389	В	78	0.79715	0.80542	8.27			
390	С	68	0.80507	0.81196	6.89			
391	D	85	0.79323	0.80097	7.74			
392	QA/QC	N/A	0.79050	0.79066	0.16	_	-	-
393	QA/QC	N/A	0.79464	0.79473	0.09	-	-	
356	0-A	62	0.81211	0.81875	6.64	-	-	
A	nalyst	MB	NS	DML				

Tab: Observations, Page 1 of 1

Lemna minor Growth InhibitionTest Data

Clie	ent Name:	Golder A	ssociates l	Ltd.	_	Start Date: June 12, 2020						
S	ample ID:	MEL-13-	01		_		End Date:	June 19, 2	.020			
San	nple Date:	<u> Joza</u>	ঠানত্	í	_	Job#	/ Sample #	0398	XX / PC	3664		
A	Analyst(s):	N.Shergi	lo WS	-assil,	Allwes	Orga	nism Lot#:	CP 200	DESC WENT	CP 2006		
	-11 -6			r addition o		_		6				
	pH of ra	w sample		ocks A, B, 8	& C	_	ation time	pH after	aeration			
	1.60	H MS 2020	SUNTZ	. 6		20min 1.8						
APHA Stocks F	rep Date:	2020	EN 24						-000			
Thermo	meter ID:	<u>BB42</u>	-0438	S Pla	ant Shelf #:	_3	_ Test Vol	ume (mL):	_150	<u>l</u>		
Sample De	escription:	Clea	<u> </u>	ماصرب	1201							
Concentration				рН Мо	nitoring							
(%)	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 0	Day 7		
Control	25	26	27	026m	27	26	26	27	8.2			
Site Control	25	27	27	02627	27	26	26	27	\$ 3	8.5		
1.5	25	26	27	31	27	26	26	27	2.3	8.6		
3.0	4											
6.0												
12.1	25	36	27	. 9 .J	27	26	26	27	8.3	8.8		
24.2												
48.5												
97.0	a 5	27	J C	97	27	36	26	27	8.1	9.4		
Analyst	145	WB	NS	HQ	WS	uß	us	WS	NS	aB		
Date	30,70 JUNIZ	292 uni	7350 IH	nozowas'	29Farry	n Tole!	June 18	1022NA	3001Z	JENE A		
Observations du								D	^			
	Date:	June 12,	2020					Analyst:	ubo	1581		
Day 0	# of Plan	ts per Tes	st Vessel:	2		- 141	# of Frond	s per Plant				
(Test Initiation)		servations	s: Dar	t gree	h2 10	althy	Test	Seeded @:	15:22			
	Other co			odbr	COUJAC	t fitte	83	temp	: usub	2020		
		11/0							# D			
	Date:	June 13,				<u> </u>	 	Analyst:	Watras	<u> </u>		
	Obser- vations:	Control	Site Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%		
Day 1		D€,H	DG, H	DG, H	06, H	DG,H	DG, H	D6,H	06, 14	D6,H		
	Other Co	mments:	All s	olhs	dear	r of Co	elourle	255				
						•						

@ pt we 2007 incly

Tab: Observations, Page 1 of 1

Lemna minor Growth InhibitionTest Data

C	lient Name	e: Golder A	ssociates	Ltd.	_		Start Date:	June 12, 2	020	
		MEL -13	3-01			Job#	/ Sample #	(6399	304 /°	XX3664
	Date:	June 14,	2020		_			Analyst:	OVEN	00.8n
Day 2	Obser- vations:	Control	Site Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%
	Other C	omments:	N/Q	DQ.H	- DG1#	DG, H	DX71H	Dark	N7.H	100'H
	Date:	June 15,	2020		_			Analyst:	P-Have	?
Day 3	Obser- vations:	Control	Site Control	1.5%	3% .	6%	12.1%	24.2%	48.5%	97%
Day o	Other C	OG/H comments:	0614 na	064	0G-114	OGTH	DG, H	DEM	06,4	06,17
	Date:	June 16,	2020	<u> </u>				Analyet:	Word	0.5%(
	Observations:	Control	Site Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%
Day 4		Det, H	Dt, H	DG, H)	D4, 14	D6, H	D4, H	Da, H	DE,H	06, H
	Other C	omments:	-,,,,	(
	Date:	June 17,			-			Analyst:	ustra	ડકો/
Day 5	Obser- vations:	Control	Site Control	1.5%	3% DG, H	6%	12.1%	24.2%	48.5%	97%
	Other C	omments:	ALL SI	DG, H	ple ar	DG H Clock	DG, H	Da, Holocirle	16H	10tz, F)
	Other C	omments.	1100 31	01.13	Att.				· · ·	
	Date:	June 18,			<u> </u>			Analyst:	UB)	nassi I
Day 6	Obser- vations:	Control	Site Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%
	Other C	Dk/H omments:	DG, H	106,4	Dt, H	Dt. H	Db,H	DAH	DE, H	DG,H,A
	Date:	June 19, d Time:	2020 3 2 のゴ	ene 19	@] ;	2:10		Analyst:	ubras	sal
Day 7	Obser- vations:	Control	Site Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%
4		omments:		green	alga	_	pages	04 41	D6,4,A	- 917.
-	rep	J, 07/18	<u> </u>	- P		<u>-Coss .</u>				
_egend:		ark Green		C = Chlor N = Necro		A = Greer	•	CD = Colony destroyed RD = Roots destroyed		
	•	ght Green althy, Norm	al	$\mathbf{G} = \text{Gibbs}$		T = Trans S = small		KD = K00[s uestroye	u
	Other:				y	2 5,11011				
								·		

BBY2FCD-00330/5 Tab: Frond Counts, Page 1 of 1

Lemna minor Growth InhibitionTest Data

Client Name: Golder Associates Ltd.

Sample ID: MEL-13-01

Analyst(s)

Start Date: June 19, 2020

End Date: June 19, 2020

Conc. &	Initial Number	Final Number	Frond	Mean Increase in #	SD	%
Replicate	of Fronds	of Fronds	Increase	Fronds per Conc'n	i	Stimulation
Control-A	6	62		NA SA		
В	6	,66				
C	6	67.				
D	6	7//				
Site Control-A	6	72				N/S
В	6	85.				
С	6	74	40			
D	6	16				
1.5%-A	6	1.3	**			N/S
В	6	9 (
С	.6	72				
D	6	74	ww			
3.0%-A	6	82	Best vide	ar in		N/S
В	6	76				
С	6	79			·	:
D	6	79				
6.0%-A	6	76				N/S
В	6	77				
С	6	68				
D	6	**2				
12.1%-A	6	85	**	Not dated		N/S
В	6	82				
С	-6	78	***			1.
D	6	84				
24.2%-A	6	68	No. Mar.			N/S
В	6	ั78				
С	6	97				
D	6	33				
48.5%-A	6	8/				N/S
В	6	84	No. See See See See See See See See See Se			
С	6					
D	6	88			· · · · · · · · · · · · · · · · · · ·	
97%-A	6	19	M/M		Name .	N/S
В	6	-18				
С	6	80'	u			
D	6	45	w w			
Analyst		18			(1) 电电子	

N/S - No growth stimulation (frond increase) compared to the Control

Control Validity Criteria: Mean final # of fronds in Controls on day 7 must be ≥8 times initial # of fronds

Mean Final # of Fronds on Day 7	#DIV/0!
Control Frond Increase	#DIV/0!
Validity Criteria Met?	#DIV/0!

Randomization Chart

BBY2FCD-00438/3 Tab: Lemna minor; Pg: 1 of 1

 Client Name:
 Golder
 Test Date:
 2020 Jun 12

 Sample Name:
 MEL-13-01
 Shelf #:
 25

Back Wall			Position Map	n Map					
5	10	15	20	25	30	35	40		
4	9	14	19	24	29	34	39		
3	8	13	18	23	28	33	38		
2	7	12	17	22	27	32	37		
1	6	11	16	21	26	31	36		

Front of Counter

Position #	Treatment	Replicate	Colour
21		Α	
42		В	
30	Control	С	Ređ
10		D	
6		Measure	
35		Α	
38		В	
26	Site Control	С	White
29		D	
5		Measure	
39		Α	
33		В	
20	1.5%	С	Orange
8		D	
18		Measure	
22		Α	
4		В	
15	3.0%	С	Yellow
13		D	
43		Measure	
19		Α	
7		В	
14	6.0%	С	Fl. Green
40		D	
9	•	Meas.	
27		Α	
25		В	
41	12.1%	С	Teat
23		D	
45		Measure	
28	***************************************	А	
11		В	
12	24.2%	С	Blue
1		D	
3		Measure	
36		Α	
34		В	
2	48.5%	С	Purple
17		D	•
37		Measure	
44		À	
32		В	_
31	97%	С	Pink
24		D	

Report Date:

02 Jul-20 18:53 (p 1 of 10)

Test Code:

LM-10735-0320 | 10-2620-0901

								100	coue.	LIV1-107	33-0320 1	0-2020-03
Lemna Grow	th Inhibition Te	st								Burea	u Veritas L	aboratorie
nalysis ID:	15-2720-0159	Er	ndpoint:	Frond	Increase)		CET	'IS Versio	on: CETISv	1.9.2	
Analyzed:	02 Jul-20 18:4	9 A r	alysis:			o Sample		Offi	cial Resu	ilts: Yes		
Batch ID:	14-7281-3650	Te	st Type:	Lemna	a Growth			Ana	lyst: N	/I. Brassil		•
Start Date:	12 Jun-20 15:3		otocol:		S 1/RM			Dilu	•	APHA Media		
Ending Date:	19 Jun-20 13:2		ecies:		a minor			Brin		ot Applicable		
Duration:	6d 22h	•	urce:	Canad	lian Phyd	cological Cul	lture Centre	Age				
Sample ID:	08-2245-2202	Co	de:	C0398	304			Clie	nt: A	Agnico Eagle N	Mines	
Sample Date:	07 Jun-20		aterial:	Water				Proj		-11-0691		
•	11 Jun-20 08:2		urce:		Eagle N	Vines .						
Sample Age:			ation:	MEL 1								
Comments:			·									
Ref1 is Mel-03	-02. Ref2 is Mel	-04-05. Ref	3 is Mel-0	05-04.								
Data Transfor	m	Alt Hyp					·	Compari	son Resu	ılt		PMSD
Untransformed		Č <> T						97% faile	d frond in	crease		16.23%
Equal Variand	e t Two-Sample	e Test					· ·	· · · · · · · · · · · · · · · · · · ·				
Control	vs Control	[[Test S	Stat C	ritical	MSD DF	P-Type	P-Value	Decisio	on(α:5%)		
Ref 1	97*		4.248		.447	11.81 6	CDF	0.0054		ant Effect		
Auxiliary Test	<u> </u>				,							
Attribute	Test					Test Stat	Critical	P-Value	Decisio	on(α:5%)		
Extreme Value		Extreme Va	lue Test		,	1.78	2.127	0.3542		liers Detected		
ANOVA Table	TANK A		•				•		4,4.4	· · · · · · · · · · · · · · · · · · ·		
Source	Sum Squ	ares	Mean	Square	•	DF	F Stat	P-Value	Decisio	on(α:5%)		
tween	840.5		840.5			1	18.04	0.0054		ant Effect		
Error	279.5		46.583	33		6			ŭ			
Total	1120					7						
Distributional	Tests											
Attribute	Test					Test Stat	Critical	P-Value	Decisio	on(α:1%)		
Variances	Variance	Ratio F Tes	st			10.29	47.47	0.0871	Equal V	/ariances		
Distribution	Shapiro-V	Vilk W Norn	nality Tes	st		0.9624	0.6451	0.8327	Normal	Distribution		
Frond Increas	e Summary	-				· · · · · · · · · · · · · · · · · · ·						
Conc-%	Code	Count	Mean	95	5% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	R1	4	72.75	58	3.09	87.41	72.5	62	84	4.608	12.67%	0.00%
97		4	52.25	47	7.68	56.82	52	49	56	1.436	5.50%	28.18%
Frond Increas	e Detail										V	
Conc-%	Code	Rep 1	Rep 2	Re	ер 3	Rep 4						
		0.4						-,-,				

2020 2020 1169

Analyst: 00 QA: 14

0

97

R1

84

52

70

56

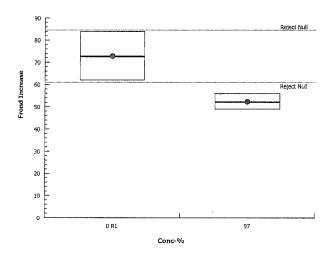
62

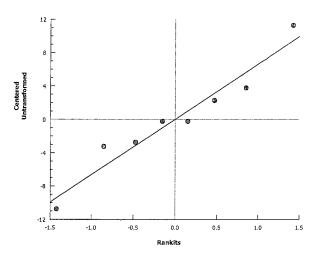
49

75

52

Report Date:

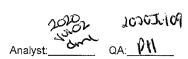

02 Jul-20 18:53 (p 2 of 10)


Test Code: LM-10735-0320 | 10-2620-0901

Lemna Growth Inhibition Test

Bureau Veritas Laboratories

nalysis ID:15-2720-0159Endpoint:Frond IncreaseCETIS Version:CETISv1.9.2Analyzed:02 Jul-20 18:49Analysis:Parametric-Two SampleOfficial Results:Yes


Report Date:

02 Jul-20 18:53 (p 3 of 10)

Test Code:

LM-10735-0320 | 10-2620-0901

								Tes	t Code:	LM-107	735-0320 1	0-2620-09
Lemna Grow	vth Inhib	ition Test								Burea	u Veritas L	aboratorie
nalysis ID: Analyzed:		37-2605 -20 18:50	Endpoint: Analysis:		ond Increase rametric-Tw				ΓIS Version cial Resul		1.9.2	
Batch ID:	14-728	1-3650	Test Type:	Ler	mna Growth			Ana	lyst: M	. Brassil		
Start Date:	12 Jun	-20 15:39	Protocol:		/EPS 1/RM/				•	PHA Media		
Ending Date	: 19 Jun	-20 13:25	Species:		mna minor			Brit		ot Applicable		
Duration:	6d 22h	ı	Source:	Ca	nadian Phyd	cological Cu	lture Centr	e Age				
Sample ID:	08-224	5-2202	Code:	C0	39804			Clie	nt: Aç	gnico Eagle I	Vines	
Sample Date	: 07 Jun	20	Material:	Wa	ater			Pro	ject: 2-	11-0691		
Receipt Date	e: 11 Jun	20 08:20	Source:	Agı	nico Eagle N	V lines						
Sample Age:	: 5d 16h		Station:	ME	L 13-07							
Comments: Ref1 is Mel-03	3-02. Ret	2 is Mel-04-0	05. Ref3 is Mel-	05-0	14.							
Data Transfo	rm	Al	t Hyp					Compari	son Resul	t		PMSD
Untransforme	ed	С	<> T					97% faile	d frond inc	rease		19.43%
Equal Varian	ce t Two	-Sample Te	st								,	
Control	vs (Control II	Test	Stat	Critical	MSD D	F P-Type	P-Value	Decisio	n(α:5%)		
Ref 2	(97*	4.183		2.447	15.21 6	CDF	0.0058	Significa	int Effect		
Auxiliary Tes	its											
Attribute		est				Test Stat	Critical	P-Value	Decisio	n(α: 5 %)		
Extreme Value	e (Grubbs Extre	me Valu e Test			1.628	2.127	0.6091	No Outli	ers Detected		
ANOVA Table	е					•						
Source	s	um Squares	Mean	Squ	ıare	DF	F Stat	P-Value	Decisio	n(α:5%)		
∍tween		352	1352			1	17.5	0.0058	Significa	int Effect		
Error		33.5	77.25			6	_			*		
Total		315.5				7						
Distributiona												
Attribute Variances		e st ariance Ratio	E Tool			Test Stat		P-Value	Decision			
Distribution			V Normality Te:	c+		17.73 0.9628	47.47 0.6451	0.0412 0.8359	Equal Va	ariances Distribution		
	,	•	v Normanty Tes			0.9020	0.0451	0.6359	Normari	JISTIDUTION		
Frond Increas		-										
Conc-%			unt Mean		95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effect
0	R		78.25		59.01	97.49	79.5	65	89	6.047	15.45%	0.00%
97 		4	52.25		47.68	56.82	52 ————	49	56	1.436	5.50%	33.23%
Frond Increas	se Detail											
Conc-%	C	ode Re	p1 Rep2		Rep 3	Rep 4						
^												

0

97

R2

71

52

65

56

88

49

89

52

Report Date:

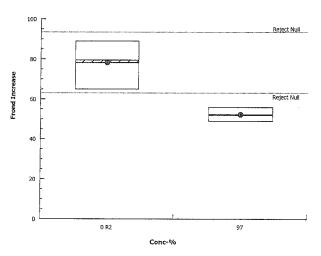
02 Jul-20 18:53 (p 4 of 10)

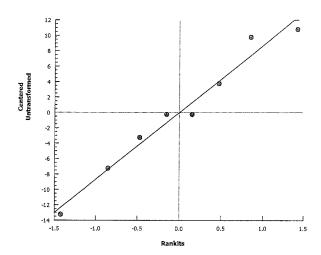
Test Code:

LM-10735-0320 | 10-2620-0901

_emna	Growth	Inhibition	Test
_emna	Growth	Inhibition	Test

Bureau Veritas Laboratories


nalysis ID: Analyzed:


00-7787-2605 02 Jul-20 18:50 Endpoint: Frond Increase Analysis:

Parametric-Two Sample

CETIS Version: Official Results:

CETISv1.9.2 Yes

Report Date:

02 Jul-20 18:53 (p 5 of 10)

Test Code:

LM-10735-0320 | 10-2620-0901

Lemna Grow	th Inhibition To	est								Burea	u Veritas La	aboratorie
nalysis ID:	00-6910-781	7	Endpoint:	Frond In	crease	l		CET	IS Version	n: CETISv	1.9.2	
Analyzed:	02 Jul-20 18:		Analysis:			o Sample		Offic	cial Resu	Its: Yes		
Batch ID:	14-7281-3650		Test Type:	Lemna C	Growth			Ana	lyst: N	/I. Brassil		
Start Date:	12 Jun-20 15:		Protocol:	EC/EPS		37		Dilu	•	APHA Media		
Ending Date:	: 19 Jun-20 13:	25	Species:	Lemna n	ninor			Brin	e: N	lot Applicable		
Duration:	6d 22h		Source:	Canadia	n Ph y c	ological Çul	ture Centre	Age	;			
Sample ID:	08-2245-2202		Code:	C039804	1		•	Clie	nt: A	gnico Eagle N	/lin e s	
Sample Date	: 07 Jun-20		Material:	Water				Proj	ect: 2	-11-0691		
Receipt Date	: 11 Jun-20 08:	20 ⁻	Source:	Agnico E	agle M	lines						
Sample Age:	5d 16h		Station:	MEL 13-	07							
Comments:			,									
Ref1 is Mel-03	3-02. Ref2 is Me	el-04-05. F	Ref3 is Mel-0	05-04.			· · · · · · · · · · · · · · · · · · ·	····				
Data Transfo	orm	Alt H	ур					Compari	son Resu	ılt		PMSD
Untransforme	ed	C <> -	T					97% faile	d frond in	crease		13.28%
Equal Varian	ce t Two-Samp	ole Test										
Control	vs Contro	H	Test S	Stat Crit	ical	MSD DF	P-Type	P-Value	Decision	on(α:5%)		
Ref 3	97*		5.59	2.44	47	9.958 6	CDF	0.0014	Signific	ant Effect		
Auxiliary Tes	its											
Attribute	Test					Test Stat	Critical	P-Value	Decisio	on(α:5%)		
Extreme Value	e Grubbs	Extreme	Value Test			1.501	2.127	0.8864	No Out	liers Detected		
ANOVA Table	9		•									
Source	Sum Sq	uares	Mean	Square		DF	F Stat	P-Value	Decisio	on(α:5%)		
₃tween	1035.12		1035.1	12		1	31.25	0.0014	Signific	ant Effect		
Error	198.75		33.125	5		6						
Total	1233.88					7						
Distributiona	l Tests						,					
Attribute	Test					Test Stat	Critical	P-Value	Decisio	on(α:1%)		
Variances	Variance	Ratio F	Test			7.03	47.47	0.1435	Equal \	/ariances		
Distribution	Shapiro-	Wilk W N	ormality Tes	st		0.9556	0.6451	0.7668	Normal	Distribution		
Frond Increas	se Summary											
Conc-%	Code	Count	Mean	95%	LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R3	4	75	62.8	38	87.12	75.5	67	82	3.808	10.15%	0.00%
97		4	52.25	47.6	88	56.82	52	49	56	1.436	5.50%	30.33%
Frond Increas	se Detail											
Conc-%	Code	Rep 1	Rep 2	Rep	3	Rep 4						

82

52

97

R3

70

52

67

56

81

49

Report Date:

02 Jul-20 18:53 (p 6 of 10)

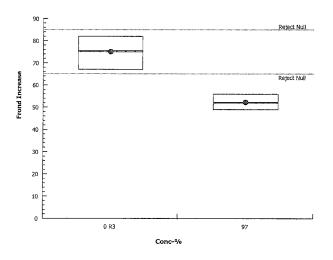
Test Code:

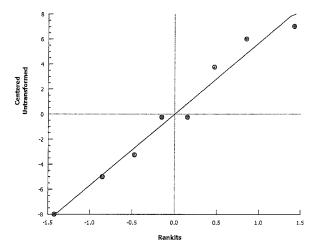
LM-10735-0320 [10-2620-0901

Lemna G	rowth in	hibition	Test
---------	----------	----------	------

Bureau Veritas Laboratories

iu	'n	J		•	•	-
ana	ly	z	e	d	:	


nalysis ID: 00-6910-7817 02 Jul-20 18:50


Endpoint: Frond Increase

Analysis: Parametric-Two Sample

CETIS Version: Official Results: Yes

CETISv1.9.2

Report Date:

02 Jul-20 18:53 (p 7 of 10)

Test Code:

LM-10735-0320 | 10-2620-0901

Lemna Growth I	nhibition Test							Bureau	u Veritas La	aboratories
•	9-1079-3559 2 Jul-20 18:50	Endpoint: Analysis:	Frond Increase Parametric-Tw				IS Version		1.9.2	
Start Date: 12 Ending Date: 19	-7281-3650 Jun-20 15:39 Jun-20 13:25 22h	Test Type: Protocol: Species: Source:	Lemna Growth EC/EPS 1/RM/ Lemna minor Canadian Phys	/37	lture Centre	Anal Dilu Brin Age:	ent: AP e: No	Brassil HA Media t Applicable		
Sample ID: 08 Sample Date: 07 Receipt Date: 11 Sample Age: 5d	Jun-20 08:20	Code: Material: Source: Station:	C039804 Water Agnico Eagle M MEL 13-07	∕lines		Clie Proj	_	nico Eagle N 1-0691	Mines	
Comments: Ref1 is Mel-03-02	. Ref2 is MeI-04-0	05. Ref3 is Mel-	05-04.							
Data Transform	Al	t Нур				Comparis	son Result			PMSD
Untransformed	С	<> T				97% faile	d frond incr	ease		13.56%
Equal Variance t	Two-Sample Te	st	· · · · · · · · · · · · · · · · · · ·						,	
Conc-% vs	Control II	Test :	Stat Critical	MSD DF	P-Type	P-Value	Decision	ι(α:5%)		
० किळाहरू	97*	4.845	2.145	10.22 14	CDF	2.6E-04	Significar	nt Effect		
Auxiliary Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	ι(α:5%)		
Extreme Value	Grubbs Extre	me Value Test		1.714	2.586	1.0000	No Outlie	rs Detected		
ANOVA Table								W. A.		
Source	Sum Squares	Mean	Square	DF	F Stat	P-Value		(a. 50/)		
Jource	Juili Squares			D 1	rolal	r-value	Decision	(a:5%)		
tween	1598.52	1598.		1	23.47	2.6E-04	Decision Significar	····		
tween			52 ,					····		
tween	1598.52	1598.	52 ,	1				····		
tween	1598.52 953.417 2551.94	1598.	52 ,	1 14				····		
tween Error Total	1598.52 953.417 2551.94	1598.	52 ,	1 14	23.47			nt Effect		
tween Error Total Distributional Tea Attribute Variances	1598.52 953.417 2551.94 sts Test Variance Ratio	1598. 68.10 • F Test	52 12	1 14 15	23.47 Critical 43.52	2.6E-04 P-Value 0.0807	Significar Decision Equal Va	nt Effect (α:1%) riances		
tween Error Total Distributional Teather	1598.52 953.417 2551.94 sts Test Variance Ratio	1598. 68.10	52 12	1 14 15 Test Stat	23.47 Critical	2.6E-04 P-Value	Significar Decision Equal Va	nt Effect (α:1%)		
tween Error Total Distributional Tea Attribute Variances	1598.52 953.417 2551.94 sts Test Variance Ratio Shapiro-Wilk V	1598. 68.10 • F Test	52 12	1 14 15 Test Stat 10.23	23.47 Critical 43.52	2.6E-04 P-Value 0.0807	Significar Decision Equal Va	nt Effect (α:1%) riances		
tween Error Total Distributional Tea Attribute Variances Distribution Frond Increase S Conc-%	1598.52 953.417 2551.94 sts Test Variance Ratic Shapiro-Wilk V	1598. 68.10 • F Test	52 12	1 14 15 Test Stat 10.23 0.9704	23.47 Critical 43.52 0.8408	2.6E-04 P-Value 0.0807	Significar Decision Equal Va	nt Effect (α:1%) riances	CV%	%Effect
itween Error Total Distributional Ter Attribute Variances Distribution Frond Increase S Conc-% 0	1598.52 953.417 2551.94 sts Test Variance Ratic Shapiro-Wilk V ummary Code Co	1598. 68.10 F Test V Normality Tes ount Mean 75.33	52 12 st 95% LCL 69.5	1 14 15 Test Stat 10.23 0.9704 95% UCL 81.17	23.47 Critical 43.52 0.8408 Median 73	P-Value 0.0807 0.8443 Min 62	Decision Equal Va Normal D	(α:1%) riances distribution Std Err 2.652	CV% 12.20%	%Effect 0.00%
tween Error Total Distributional Tea Attribute Variances Distribution Frond Increase S Conc-%	1598.52 953.417 2551.94 sts Test Variance Ratic Shapiro-Wilk V	1598. 68.10 F Test V Normality Tes	52 12 st 95% LCL	1 14 15 Test Stat 10.23 0.9704	23.47 Critical 43.52 0.8408	P-Value 0.0807 0.8443	Decision Equal Va Normal D	(α:1%) riances istribution Std Err		
itween Error Total Distributional Ter Attribute Variances Distribution Frond Increase S Conc-% 0	1598.52 953.417 2551.94 sts Test Variance Ratio Shapiro-Wilk V ummary Code Co @ 12	1598. 68.10 F Test V Normality Tes ount Mean 75.33	52 12 st 95% LCL 69.5	1 14 15 Test Stat 10.23 0.9704 95% UCL 81.17	23.47 Critical 43.52 0.8408 Median 73	P-Value 0.0807 0.8443 Min 62	Decision Equal Va Normal D	(α:1%) riances distribution Std Err 2.652	12.20%	0.00%
bitween Error Total Distributional Tender Attribute Variances Distribution Frond Increase S Conc-% 0 97	1598.52 953.417 2551.94 sts Test Variance Ratio Shapiro-Wilk V ummary Code © 12 4	1598. 68.10 F Test V Normality Tes ount Mean 75.33	95% LCL 69.5 47.68	1 14 15 Test Stat 10.23 0.9704 95% UCL 81.17	23.47 Critical 43.52 0.8408 Median 73	P-Value 0.0807 0.8443 Min 62	Decision Equal Va Normal D	(α:1%) riances distribution Std Err 2.652	12.20%	0.00%

97

52

56

49

52

Report Date:

02 Jul-20 18:53 (p 8 of 10)

Test Code:

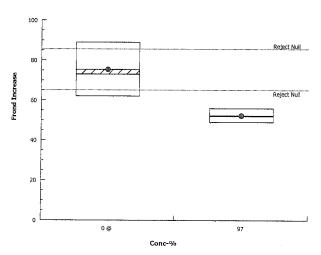
LM-10735-0320 | 10-2620-0901

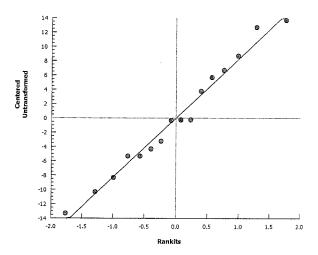
Lemna	Growth	Inhibition	Test
-------	--------	------------	------

Bureau Veritas Laboratories

nalysis ID: Analyzed:

09-1079-3559 02 Jul-20 18:50 Endpoint: Frond Increase

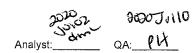

Analysis: Parametric-Two Sample


CETIS Version:

CETISv1.9.2

Official Results:

Yes


Report Date:

02 Jul-20 18:53 (p 9 of 10)

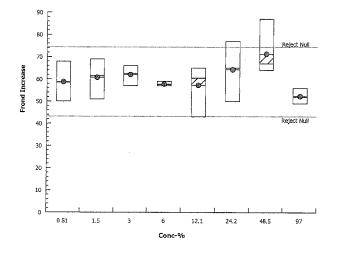
Test Code:

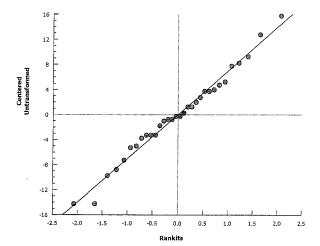
LM-10735-0320 | 10-2620-0901

							Tes	st Code:	LM-107	'35-0320 '	10-2620-0901
Lemna Growth	Inhibition Te	est					,		Burea	u Veritas L	aboratories.
nalysis ID:	00-1687-2728	3 E	Endpoint:	Frond Increas	e		CE.	TIS Version	on: CETISv	1.9.2	
-	02 Jul-20 18:		Analysis:	Parametric-Co		atments		icial Resu			
Batch ID: 1	4-7281-3650	7	est Type:	Lemna Growt	n		Ana	alyst: N	Л. Brassil		
Start Date: 1	2 Jun-20 15:3	39 F	Protocol:	EC/EPS 1/RM	1/37		Dilu	uent: A	APHA Media		
Ending Date: 1	9 Jun-20 13:2	25 S	Species:	Lemna minor			Brii	ne: N	Not Applicable		
Duration: 6	d 22h	5	Source:	Canadian Phy	cological Cu	ılture Centre	Age	e:			
Sample ID: 0	8-2245-2202	C	Code:	C039804			Clie	ent: A	Agnico Eagle M	/lines	
Sample Date: 0			/laterial:	Water			Pro	ject: 2	?-11-0691		
Receipt Date: 1			Source:	Agnico Eagle	Mines						
Sample Age: 5	d 16h		itation:	MEL 13-07							
Comments:								ŕ			
Ref1 is Mel-03-0	2. Ref2 is Me	I-04-05. R	ef3 is Mel-0)5-04.							
Data Transform		Alt Hy					NOEL	LOEL	TOEL	TU	PMSD
Untransformed		C <> T					97	> 97.	n/a	1.031	26.48%
Dunnett Multiple	e Compariso	n Test									
Control vs	Conc-%)	Test S	tat Critical	MSD DI	P-Type	P-Value	Decisio	on(α:5%)		
Site Water Contr			0.3617		15.56 6	CDF	0.9993		gnificant Effec		
	3		0.5878		15.56 6	CDF	0.9878		gnificant Effec		
	6		0.1809		15.56 6	CDF	1.0000		gnificant Effec		
	12.1		0.2713		15.56 6	CDF	0.9999		gnificant Effec		
	24.2 48.5		0.9948		15.56 6	CDF	0.8562		gnificant Effec		
	46.5 97		2.261 1.176	2.814 2.814	15.56 6 15.56 6	CDF CDF	0.1535 0.7455		gnificant Effec		
ıxiliary Tests			1.170	2.014	13.30 0		0.7455	11011-31	gnificant Effec		
Attribute	Test				T4 04-4	0-1411	5 V 1	.	(= 0()		
Extreme Value		Extreme V	alue Test		Test Stat 2.289	Critical 2.938	P-Value 0.5553		on(α:5%) liers Detected		
ANOVA Table					2.200	2.300	0.0000	140 Outi	neis Detected		
Source	Sum Squ	iaroe	Moon	Saucro	DF	E Ctat	D. Value	D!-!-	··· (··· F 0/)		
Between	884.719	iares	126.38	Square 8	7	F Stat 2.067	P-Value 0.0874		on(α:5%) gnificant Effec		
Error	1467.25		61.135		24	2.007	0.0074	14011-316	Jimicani Enec	L	
Total	2351.97				31	_					
Distributional Te	sts										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Bartlett E	quality of \	/ariance Te	est	15.31	18.48	0.0322		ariances		
Distribution	Shapiro-V	Vilk W No	mality Test		0.9844	0.9081	0.9125		Distribution		
Frond Increase S	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	S1	4	58.75	46.89	70.61	58.5	50	68	3.728	12.69%	0.00%
1.5		4	60.75	47.6	73.9	61.5	51	69	4.131	13.60%	-3.40%
3		4	62	55.77	68.23	62.5	57	66	1.958	6.32%	-5.53%
6		4	57.75	56.23	59.27	57.5	57	59	0.4787	1.66%	1.70%
12.1		4	57.25	41.75	72.75	60.5	43	65	4.871	17.02%	2.55%
24.2 48.5		4	64.25	45.9	82.6	65	50	77	5.764	17.94%	-9.36%
40.5 97		4 4	71.25	54.34 47.68	88.16	67 52	64	87 56	5.313	14.91%	-21.28%
<i>31</i>		4	52.25	47.68	56.82	52	49	56	1.436	5.50%	11.06%

Report Date:

02 Jul-20 18:53 (p 10 of 10)


Test Code:


LM-10735-0320 | 10-2620-0901

Lemna Growt	th Inhibition Test				Bureau Veritas Laboratories
nalysis ID:	00-1687-2728	Endpoint:	Frond Increase	CETIS Version:	CETISv1.9.2
مnalyzed:	02 Jul-20 18:51	Analysis:	Parametric-Control vs Treatments	Official Results:	Yes

Frond	Increase	Detail
-------	----------	--------

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	S1	60	68	57	50
1.5		57	66	69	51
3		61	64	66	57
6		57	57	59	58
12.1		60	61	65	43
24.2		77	61	69	50
48.5		66	64	68	87
97	÷	52	56	49	52

Report Date:

02 Jul-20 18:53 (p 1 of 2)

Test Code:

LM-10735-0320 | 10-2620-0901

									est Code:		LIVI-10735-0320 10-2620	J-09C
Lemn	a Growt	th Inhibition Te	st								Bureau Veritas Laborat	tories
naly:	sis ID: zed:	09-8821-3810 02 Jul-20 18:5		dpoint: alysis:	Frond Increase Linear Interpol		1)		ETIS Vers		CETISv1.9.2 Yes	
Batch	ID:	14-7281-3650	Tes	st Type:	Lemna Growth	1	\	A	nalyst:	M. Br	assil	
Start I	Date:	12 Jun-20 15:3		tocol:	EC/EPS 1/RM				iluent:	APHA	\ Media	
Endin	g Date:	19 Jun-20 13:2	5 Sp	ecies:	Lemna minor			В	rine:	Not A	pplicable	
Durati		6d 22h	· ·	urce:	Canadian Phys	cological Cu	ilture Centi		ge:		i i i	
Samp	le ID:	08-2245-2202	Со	de:	C039804			C	lient:	Agnic	o Eagle Mines	
Samp	le Date:	07 Jun-20	Ma	terial:	Water			Р	roject:	2-11-0	0691	
Recei	pt Date:	11 Jun-20 08:20	O So	urce:	Agnico Eagle I	Mines						
Sampl	le Age:	5d 16h	Sta	tion:	MEL 13-07							
Comm Ref1 is		-02. Ref2 is Mel	-04-05. Ref	3 is Mel-	05-04.							
Linear	Interpo	olation Options			* 0 * 0 * 0 * 11 * 0 * 0 * 0 * 0 * 0 * 0							
X Tran		Y Transform	n See	ed	Resamples	Exp 95%	CL Me	thod				
Log(X+	+1)	Linear	242	089	200	Yes	Tw	o-Point Int	erpolation			
Residu	ual Anal	ysis										
Attribu	ıte	Method			Test Stat	Critical	P-Value	Decisi	on(α:5%)			
Extrem	e Value	Grubbs E	xtreme Valu	e Test	2.289	2.938	0.5553		tliers Detec	ted		
Point I	Estimate	9S			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
IC5	60.85	n/a	75.97	1.643	1.316	n/a					······································	
IC10	76.27	48.68	n/a	1.311	n/a	2.054						
7:15	95.55	65.46	n/a	1.047	n/a	1.528						
₋ /20	>97	n/ a	n/a	<1.03	1 n/a	n/a						
IC25	>97	n/a	n/a	<1.03	1 n/a	n/a						
IC40	>97	n/a	n/a	<1.03		n/a						
IC50	>97	n/a 	n/a	<1.03	1 n/a	n/a						
Frond	Increase	e Summary				Cal	culated V	ariate			<u> </u>	
Conc-9	%	Code	Count	Mean	Min	Max	Std Err	Std De	v CV%	(%Effect	
)		S1	4	58.75	50	68	3.728	7.455	12.69°	% (0.0%	
1.5			4	60.75	51	69	4.131	8.261	13.60°		3.4%	
3			4	62	57	66	1.958	3.916	6.32%		5.53%	
)			4	57.75	57	59	0.4787	0.9574	1.66%		1.7%	
2.1 24.2			4	57.25	43	65 77	4.871 5.704	9.743	17.029		2.55%	
24.2 18.5			4	64.25 71.25	50 64	77 87	5.764 5.313	11.53	17.949		9.36%	
+0.5 97			4	52.25	49	87 56	5.313 1.436	10.63 2.872	14.919 5.50%		.21.28% 1.06%	
	Increase	Dotail		02.20	-TJ		1.700	2.012	3.30 %		11,0070	
-rona i Conc-%		Code	Rep 1	Rep 2	Rep 3	Pon 4						
)	<u> </u>	S1	60 60	68	57	Rep 4 50						
1.5		01	57	66	69	51						
3			61	64	66	57						
, S			57	57	59	58						
2.1			60	61	65	43						
24.2	•		77	61	69	50						
- 1			1.1	0 1	09	50						

48.5

97

66

52

64

56

68

49

87

52

Report Date:

02 Jul-20 18:53 (p 2 of 2)

Test Code:

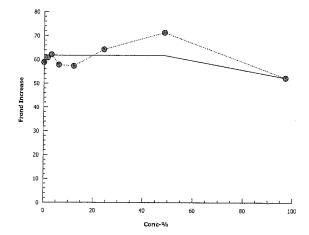
LM-10735-0320 | 10-2620-0901

Lemna	Growth	Inhibition	Test
-------	--------	------------	------

Bureau Veritas Laboratories

nalysis ID: Analyzed:

09-8821-3810 02 Jul-20 18:51


Endpoint: Frond Increase

Analysis: Linear Interpolation (ICPIN)

CETIS Version:

CETISv1.9.2

Official Results: Yes

Tab: Frond Counts, Page 1 of 1

Lemna minor Growth InhibitionTest Data

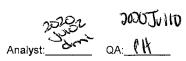
Client Name: Golder Associates Ltd. (Agnico) Job# / Sample #: C039804 XX3665

Sample ID: MEL-13-07 Start Date: June 12, 2020 Analyst(s): N. Shergill, M. Brassil End Date: June 19, 2020

Conc. &	Initial Number	Final Number	Frond	Mean Increase in #	SD	%
Replicate	of Fronds	of Fronds	Increase	Fronds per Conc'n		Stimulation
Control-A	6	61	55	51.8	6.6	
В	6	62	56			
С	6	60	54			
D	6	48	42			
Site Control-A	6	66	60	58.8	7.5	13.53
В	6	74	68			
С	6	63	57	,		
D	6	56	50			
1.5%-A	6	63	57	60.8	8.3	17.39
В	6	72	66			
С	6	75	69			
D	6	57	51			
3.0%-A	6	67	61	62.0	3.9	19.81
В	6	70	64			
С	6	72	66			
D	6	63	57			
6.0%-A	6	63	57	57.8	1.0	11.59
В	6	63	57			
С	6	65	59			
D	6	64	58			
12.1%-A	6	66	60	57.3	9.7	10.63
В	6	67	61			
С	6	71	65			,
D	6	49	43			
24.2%-A	6	83	77	64.3	11.5	24.15
В	6	67	61	3,11		
С	6	75	69	,		<u> </u>
D	6	56	50			
48.5%-A	6	72	66	71.3	10.6	37.68
В	6	70	64		,,,,,	1
C	6	74	68			1
D	6	93	87			
97%-A	6	58	52	52.3	2.9	0.97
B	6	62	56	02.0	2.0	0.07
С	6	55	49			
D	6	58	52			
Analyst	NS				ngg saar oo gar oo	and accompanies of

N/S - No growth stimulation (frond increase) compared to the Control

Control Validity C	riteria: Mean final # of fronds in Contro	ols on day 7	must be ≥8 times initial # of fronds
	Mean Final # of Fronds on Day 7	57.8	Proofed by Maris
	Control Frond Increase	9.6	
	Validity Criteria Met?	Yes	9090 JU10


Report Date:

02 Jul-20 19:01 (p 1 of 10)

Test Code:

LM-10735-0320 | 10-2620-0901

Lampa Cuard											
Lemma Grown	th Inhibition Te	st							Bureau	ı Veritas La	aboratorie
nalysis ID:	16-0143-1980	Endpoir	nt: To	tal Dry Weig	ht-mg		CET	IS Versio	on: CETISv	1.9.2	
Analyzed:	02 Jul-20 18:	59 Analysi s	s: Pa	rametric-Tw	o Sample		Offic	cial Resu	Its: Yes		
Batch ID:	14-7281-3650	Test Typ	oe: Ler	mna Growth			Anal	lyst: N	Л. Brassil		
Start Date:	12 Jun-20 15:3	9 Protoco	ı: EC	/EPS 1/RM/	37		Dilu	•	APHA Media		
Ending Date:	19 Jun-20 13:2	Species	: Ler	mna minor			Brin	e: N	lot Applicable		
Duration:	6d 22h	Source:	Ca	nadian Phyd	cological Cul	ture Centre	Age:				
Sample ID:	08-2245-2202	Code:	C0:	39804			Clie	nt: A	Ignico Eagle M	lines	<i></i>
Sample Date:	07 Jun-20	Material	: Wa	ater			Proje	ect: 2	-11-0691		
Receipt Date:	11 Jun-20 08:2	O Source:	Agı	nico Eagle N	Mines						
Sample Age:	5d 16h	Station:	ME	L 13-07							
Comments:			·								
Ref1 is Mel-03	-02. Ref2 is Mel	l-04-05. Ref3 is M	lel-05-0	4.							
Data Transfor		Alt Hyp	**************************************				Comparis				PMSD
Untransformed	<u> </u>	C <> T					97% passed total dry weight-mg				14.60%
Equal Variand	e t Two-Sampl	e Test									
Control	vs Conc-%	Te	st Stat	Critical	MSD DF	P-Type	P-Value	lue Decision(α:5%)			
Ref 1	97	1.9	77	2.447	1.102 6	CDF	0.0954	Non-Si	gnificant Effec	t	
Auxiliary Test	s										
•	s Test				Test Stat	Critical	P-Value	Decisio	on(α:5%)		
Auxiliary Test Attribute Extreme Value	Test	Extreme Value Te	est		Test Stat	Critical 2.127	P-Value 0.2177		on(α:5%) liers Detected		
Attribute Extreme Value	Test	Extreme Value Te	est						`		
Attribute Extreme Value ANOVA Table	Test		est ean Squ	uare				No Out	`		
Attribute Extreme Value ANOVA Table	Test Grubbs I	ıares Me		ıare	1.892	2.127	0.2177	No Out	liers Detected	t	
Attribute Extreme Value ANOVA Table Source stween	Test Grubbs I	rares Me	an Squ	uare	1.892 DF 1	2.127 F Stat	0.2177 P-Value	No Out	liers Detected on(α:5%)	t	
Attribute Extreme Value ANOVA Table Source etween Error	Test Grubbs I Sum Squ 1.5842	rares Me	ean Squ 6842	uare	1.892 DF	2.127 F Stat	0.2177 P-Value	No Out	liers Detected on(α:5%)	t	
Attribute Extreme Value ANOVA Table Source etween Error Total	Test Grubbs I Sum Squ 1.5842 2.4322 4.0164	rares Me	ean Squ 6842	ıare	1.892 DF 1	2.127 F Stat	0.2177 P-Value	No Out	liers Detected on(α:5%)	t	
Attribute Extreme Value ANOVA Table Source etween Error Total Distributional	Test Grubbs I Sum Squ 1.5842 2.4322 4.0164	rares Me	ean Squ 6842	ıare	1.892 DF 1	2.127 F Stat 3.908	0.2177 P-Value	No Out Decision Non-Sign	liers Detected on(α:5%)	t -	
Attribute Extreme Value ANOVA Table Source etween Error Total Distributional Attribute	Test Sum Squ 1.5842 2.4322 4.0164 Tests Test	rares Me	ean Squ 6842	uare	DF 1 6 7	2.127 F Stat 3.908	0.2177 P-Value 0.0954	Decision Non-Signature	on(α:5%) gnificant Effec	t	
Attribute Extreme Value ANOVA Table Source etween Error Total Distributional Attribute	Test Sum Squ 1.5842 2.4322 4.0164 Tests Test Variance	1.5 0.4	e an S qu 842 05367	uare	1.892 DF 1 6 7	F Stat 3.908 Critical	0.2177 P-Value 0.0954 P-Value	Decision Decision Decision Equal V	pn(α:5%) gnificant Effect pn(α:1%)	t	
Attribute Extreme Value ANOVA Table Source etween Error Total Distributional Attribute Variances Distribution	Test Sum Squ 1.5842 2.4322 4.0164 Tests Test Variance	nares Me 1.5 0.4 Ratio F Test Vilk W Normality	e an S qu 842 05367	iare	1.892 DF 1 6 7 Test Stat 7.939	2.127 F Stat 3.908 Critical 47.47	0.2177 P-Value 0.0954 P-Value 0.1227	Decision Decision Decision Equal V	on(α:5%) gnificant Effect on(α:1%) /ariances	t	
Attribute Extreme Value ANOVA Table Source stween Error Total Distributional Attribute Variances Distribution Total Dry Weig	Sum Squ 1.5842 2.4322 4.0164 Tests Test Variance Shapiro-V	nares Me 1.5 0.4 Ratio F Test Vilk W Normality	ean Squ 842 05367 Test	uare 95% LCL	1.892 DF 1 6 7 Test Stat 7.939 0.9577	2.127 F Stat 3.908 Critical 47.47 0.6451	0.2177 P-Value 0.0954 P-Value 0.1227	Decision Decision Decision Equal V	on(α:5%) gnificant Effect on(α:1%) /ariances	ť	%Effect
Attribute Extreme Value ANOVA Table Source etween Error Total Distributional Attribute Variances Distribution	Sum Squ 1.5842 2.4322 4.0164 Tests Test Variance Shapiro-V ght-mg Summa	rares Me 1.5 0.4 Ratio F Test Vilk W Normality	ean Squ 842 05367 Test		1.892 DF 1 6 7 Test Stat 7.939 0.9577	2.127 F Stat 3.908 Critical 47.47 0.6451	0.2177 P-Value 0.0954 P-Value 0.1227 0.7883	Decision Decision Decision Equal V Normal	on(α:5%) gnificant Effect on(α:1%) /ariances Distribution		%Effect 0.00%

Conc-%

0

97

Code

R1

Rep 1

8.48

6.45

Rep 2

7.75

7.02

Rep 4

7.52

6.78

Rep 3

6.43

6.37

Report Date:

02 Jul-20 19:01 (p 2 of 10)

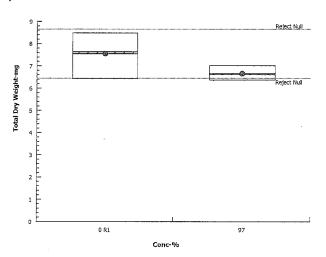
Test Code:

LM-10735-0320 | 10-2620-0901

Lemna	Growth	Inhibition	Test
-------	--------	------------	------

Bureau Veritas Laboratories

nalysis ID: Analyzed:

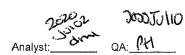

16-0143-1980 02 Jul-20 18:59

Analysis:

Endpoint: Total Dry Weight-mg Parametric-Two Sample **CETIS Version:** Official Results:

CETISv1.9.2

Yes


Report Date:

02 Jul-20 19:01 (p 5 of 10)

Test Code:

LM-10735-0320 | 10-2620-0901

Lemna Growt	th Inh	ibition Tes	st		manufacture and					Burea	u Veritas L	aboratori
nalysis ID:		579-7956		Endpoint:	Total Dry W				IS Version		1.9.2	
Analyzed:	02 .	lul-20 19:0	0 /	Analysis:	Parametric-Two Sample		Offic	cial Results: Yes				
Batch ID:	14-72	281-3650	7	Гest Туре:	Lemna Grow	vth		Ana	lyst: M	. Brassil		
Start Date:	12 Ju	ın-20 15:39	9 F	Protocol:	EC/EPS 1/R	M/37		Dilu	ent: Af	PHA Media		
Ending Date:	19 Ju	ın-20 13:2	5 \$	Species:	Lemna mino	r		Brin	ie: No	ot Applicable		
Duration:	6d 2	2h		Source:	Canadian Ph	nycological Cu	lture Centre	Age	:			
Sample ID:		245-2202	(Code:	C039804			Clie	nt: Aç	gnico Eagle N	Mines	
Sample Date:			-	Vlaterial:	Water			Proj	ect: 2-	11-0691		
Receipt Date:			0 \$	Source:	Agnico Eagle	e Mines						
Sample Age:	5d 1	6h 		Station:	MEL 13-07	-						
Comments:												
Ref1 is Mel-03	3-02. R	lef2 is Mel-	-04-05. R	ef3 is Mel-	05-04.							
Data Transfor			Alt Hy					Compari	son Resul	t		PMSD
Untransformed	<u></u>	· · · · · · · · · · · · · · · · · · ·	C <> T					97% failed total dry weight-mg				18.04%
Equal Variand	ce t Tv	vo-Sample	e Test									
Control	vs	Control	II .	Test S	Stat Critical	MSD DE	P-Type	P-Value Decision(α:5%)				
Ref 2		97*		2.836	2.447	1.518 6	CDF	0.0297	0297 Significant Effect			
Auxiliary Test	s								•			
Attribute		Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	eme Value Grubbs Extreme Value Test			1.926	2.127	0.1833	No Outli	ers Detected				
ANOVA Table												-
Source		Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	n (α:5%)		
∍tween		6.1952		6.1952	2	1	8.044	0.0297	Significa	nt Effect		
Error		4.621		0.770	67	6	_					
Total		10.8162				7						,
Distributional	Tests											
Attribute		Test				Test Stat	Critical	P-Value	Decisio	າ(α:1%)		
Variances		Variance F				15.98	47.47	0.0476	Equal Va	ariances		
Distribution		Shapiro-W	/ilk W No	rmality Tes	st	0.9525	0.6451	1 0.7369 Normal Distribution				
Total Dry Weig	ght-m	g Summai	ry									
Conc-%		Code	Count	Mean	95% LC	L 95% UCL	Median	Min	Max	Std Err	CV%	%Effec
		R2	4	8.415	6.499	10.33	8.25	7.18	9.98	0.602	14.31%	0.00%
0												

Conc-%

0

97

Code

R2

Rep 1

7.85

6.45

Rep 2

7.18

7.02

Rep 3

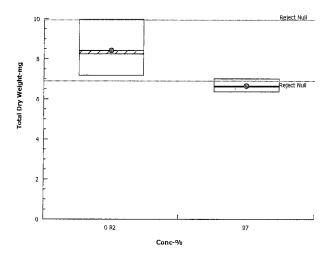
8.65

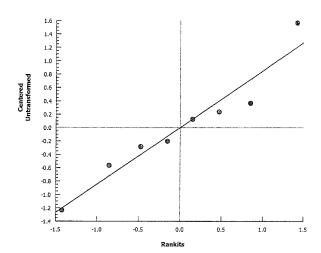
6.37

Rep 4

9.98

6.78


Report Date:


02 Jul-20 19:01 (p 6 of 10)

Test Code:

LM-10735-0320 | 10-2620-0901

Lemna Growt	Bureau Veritas Laboratories				
\nalysis ID:	05-6579-7956	Endpoint:	Total Dry Weight-mg	CETIS Version:	CETISv1.9.2
Analyzed:	02 Jul-20 19:00	Analysis:	Parametric-Two Sample	Official Results:	Yes

Report Date:

02 Jul-20 19:01 (p 7 of 10)

Test Code:

LM-10735-0320 | 10-2620-0901

								res	t Code:	LIVI- I U /	735-0320 1	0-2620-090
Lemna Grov	vth In	hibition Tes	t							Burea	u Veritas L	aboratories
nalysis ID: Analyzed:		-7062-5135 2 Jul-20 19:00		indpoint: nalysis:	Total Dry We Parametric-T				TIS Version cial Result		1.9.2	
Batch ID:	14-	7281-3650	Т	est Type:	Lemna Growt	h		Ana	lyst: M.	Brassil		
Start Date:	12	Jun-20 15:39		rotocol:	EC/EPS 1/RI				-	HA Media		
Ending Date	: 19	Jun-20 13:25	s	pecies:	Lemna minor			Brin	ne: No	t Applicable		
Duration:	6d	22h	s	ource:	Canadian Phy	ycological Cu	lture Centre	Age	:			
Sample ID:	-80	2245-2202	С	ode:	C039804			Clie	nt: Ag	nico Eagle I	Mines	
Sample Date	: 07	Jun-20	IV	laterial:	Water			Proj	ject: 2-1	1-0691		
Receipt Date	e: 11 .	Jun-20 08:20	S	ource:	Agnico Eagle	Mines						
Sample Age	: 5d	16h 	S	tation:	MEL 13-07							
Comments: Ref1 is Mel-0	3-02.	Ref2 is Mel-	04-05 Re	ef3 is Mel-(05-04							
Data Transfo		11012 10 11101	Alt Hy			•		Compari	son Result			PMSD
Untransforme			C <> T	<u>-</u>					d total dry v			14.17%
Equal Variar	ice t	Two-Sample	Test					•				
Control	vs	Control I	!	Test S	Stat Critical	MSD D	F P-Type	P-Value	Decision	ι(α:5%)		
Ref 3		97*		3.744	2.447	1.204 6	CDF	0.0096	Significar	nt Effect		
Auxiliary Tes	ts											
Attribute		Test				Test Stat	Critical	P-Value	Decision	ι(α:5%)	~~	
Extreme Valu	е	Grubbs E	xtreme V	alue Test		1.61	2.127	0.6451	No Outlie	rs Detected	l	
ANOVA Tabl	Э											
Source		Sum Squa	ires	Mean	Square	DF	F Stat	P-Value	Decision	(α:5%)		
∍tween		6.78961		6.7896	31	1	14.02	0.0096	Significar	nt Effect		
Error		2.90618		0.4843	363	6	_					
Total		9.69579				7 .						
Distributiona	l Tes	ts										
Attribute		Test				Test Stat		P-Value	Decision	(a:1%)		
Variances		Variance R				9.681	47.47	0.0945	Equal Va			
Distribution	-	Shapiro-W	ilk W Nor	mality Tes	:t	0.9622	0.6451	0.8309	Normal D	istribution		
Total Dry We	ight-r	ng Summar	-									
Conc-%		Code	Count	Mean	95% LCL		Median	Min	Max	Std Err	CV%	%Effect
0		R3	4	8.497	7.006	9.989	8.605	7.46	9.32	0.4685	11.03%	0.00%
97			4	6.655	6.176	7.134	6.615	6.37	7.02	0.1506	4.53%	21.68%
Total Dry We	ight-r	ng Detail										
Conc-%		Code	Rep 1	Rep 2	Rep 3	Rep 4						

Analyst: Since QA: [H]

97

R3

7.95

6.45

7.46

7.02

9.26

6.37

9.32

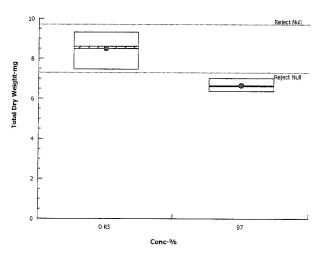
6.78

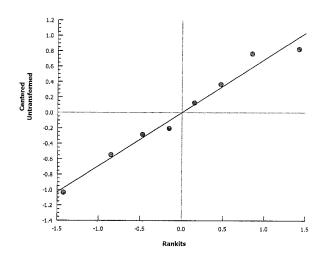
Report Date:

02 Jul-20 19:01 (p 8 of 10)

Test Code:

LM-10735-0320 | 10-2620-0901


Lemna Growth Inhibition Test	Bureau Veritas Laboratories


nalysis ID: 07-7062-5135 Analyzed:

02 Jul-20 19:00

Endpoint: Total Dry Weight-mg Analysis: Parametric-Two Sample **CETIS Version:** Official Results: Yes

CETISv1.9.2


Report Date:

02 Jul-20 19:01 (p 9 of 10)

Test Code:

LM-10735-0320 | 10-2620-0901

							100	i oodo.		700.0020	10-2020-000
Lemna Growth	n Inhibition Te	st							Burea	au Veritas L	_aboratorie
∖nalysis ID: Analyzed:	08-0213-8976 02 Jul-20 19:0		Endpoint: Analysis:	Total Dry Wei				TIS Versio icial Resul		v1.9.2	
Start Date: Ending Date:	14-7281-3650 12 Jun-20 15:3 19 Jun-20 13:2 6d 22h	9 5 ;	Test Type: Protocol: Species: Source:	Lemna Growth EC/EPS 1/RM Lemna minor Canadian Phy	1/37	Ilture Centre	Dilu Brit	uent: A ne: N	1. Brassil PHA Media ot Applicable	e	
Sample ID: Sample Date: Receipt Date: Sample Age:	11 Jun-20 08:20))	Code: Material: Source: Station:	C039804 Water Agnico Eagle I MEL 13-07	Mines		Clie Pro		gnico Eagle -11-0691	Mines	
Comments: Ref1 is Mel-03-0	02. Ref2 is Mel-	-04-05. R	Ref3 is Mel-(05-04.							
Data Transforn	n	Alt Hy	/p				Compari	son Resu	lt		PMSD
Untransformed		C <> T	•				97% faile	d total dry	weight-mg		13.85%
Equal Variance	t Two-Sample	e Test									
Conc-% vs	s Control I	II	Test S	Stat Critical	MSD DE	P-Type	P-Value	Decisio	n(α:5%)		
gapag o	97*		2.844	2.145	1.129 14		0.0130	·	ant Effect		
Auxiliary Tests									<u></u>		
Attribute	Test				Test Stat	Critical	P-Value	Dagisia	n(α:5%)		
Extreme Value		xtreme \	/alue Test		2,074	2.586	0.4200		iers Detected	1	
ANOVA Table											4.00
Source	Sum Squ	aroc	Maan	Carrana	DE	E 04-4	D. W. I				
etween	6.72752	aies	6.7275	Square	DF 1	F Stat 8.089	P-Value 0.0130	Decisio	n(α:5%) ant Effect		
Error	11.6431		0.8316		14	0.009	0.0130	Significa	ant Enect		
Total	18.3706		2.23.0		15						
Distributional T	ests		 								
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Variance F	Ratio F T	est		11.4	43.52	0.0694	Equal Va			
Distribution	Shapiro-W	'ilk W No	rmality Tes	t	0.9757	0.8408	0.9207	-	Distribution		
Total Dry Weigh	nt-mg Summar	у	* 4		****						
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	@	12	8.152	7.507	8.798	7.9	6.43	9.98	0.2935	12.47%	0.00%
97		4	6.655	6.176	7.134	6.615	6.37	7.02	0.1506	4.53%	18.37%
Total Dry Weigh	nt-mg Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	@	7.95	7.46	9.26	9.32	7.85	7.18	8.65	9.98	8.48	7.75
		6.43	7.52					· ·	- · - -	•	•
0.7		C 45	7.00		0.70						

97

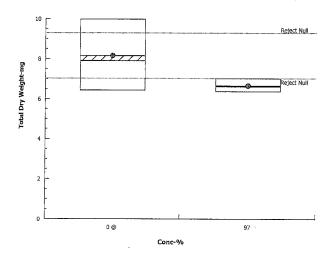
6.45

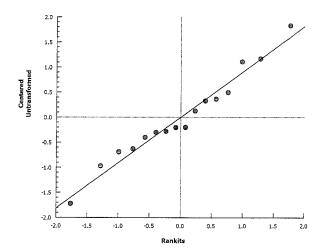
7.02

6.37

6.78

Report Date:


02 Jul-20 19:01 (p 10 of 10)


Test Code:

LM-10735-0320 | 10-2620-0901

Lemna Growt	th Inhibition Test				Bureau Veritas Laboratories
nalysis ID:	08-0213-8976	Endpoint:	Total Dry Weight-mg	CETIS Version:	CETISv1.9.2

Analyzed: 02 Jul-20 19:00 Analysis: Parametric-Two Sample Official Results: Yes

Report Date:

02 Jul-20 19:01 (p 3 of 10)

Test Code:

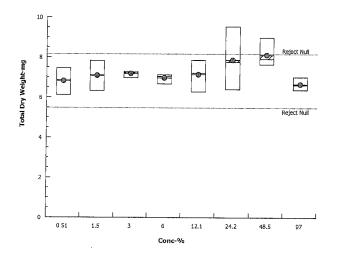
LM-10735-0320 | 10-2620-0901

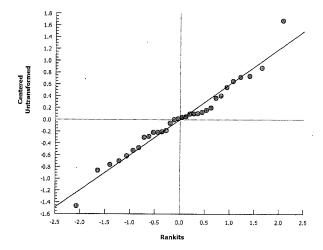
Lemna Growth I	nhibition Te	est								Burea	u Veritas L	aboratories.
•	7-7682-797 2 Jul-20 19:		Endpoint: Analysis:	Total Dry We Parametric-C		rea	tments	- -	ΓIS Versioι cial Resul		1.9.2	
Start Date: 12 Ending Date: 19	I-7281-3650 ! Jun-20 15::) Jun-20 13:: I 22h	39 25	Test Type: Protocol: Species: Source:	Lemna Grow EC/EPS 1/RI Lemna minor Canadian Ph	√I/37	Cult	ture Centre		ient: Al	. Brassil PHA Media ot Applicable		
Sample ID: 08 Sample Date: 07 Receipt Date: 11 Sample Age: 5d	Jun-20 08:2	20	Code: Material: Source: Station:	C039804 Water Agnico Eagle MEL 13-07	Mines			Clie Pro	•	nico Eagle N	Mines	- Add headach de comment ann ann aire der
Comments: Ref1 is Mel-03-02	. Ref2 is Me	l-04-05. I	Ref3 is Mel-()5-04.					- · · · · · · · · · · · · · · · · · · ·		,	
Data Transform		Alt H	ур			,		NOEL	LOEL	TOEL	TU	PMSD
Untransformed		C <> '	Ť					97	> 97	n/a	1.031	19.71%
Dunnett Multiple	Compariso	n Test										
Control vs	Conc-%		Test S	stat Critical	MSD	DE	P-Type	P-Value	Decisio	o/a: E9/ \		
Site Water Contr	1.5		0.5706			6	CDF	0.9896		nificant Effec	·+	
	3		0.7643		1.344		CDF	0.9531	_	nificant Effec		
	6		0.314		1.344		CDF	0.9997	-	nificant Effec		
	12.1		0.6701		1.344		CDF	0.9755	_	nificant Effec		
	24.2		2.188	2.814	1.344		CDF	0.9755	_	nificant Effec		
	48.5		2.712	2.814	1.344		CDF	0.1737	-	nificant Effec		
	97		0.3455		1.344		CDF	0.0622	_	าเกิดสาก Effec nificant Effec		
uxiliary Tests						_			11011 0191			
Attribute	T4								_			
Extreme Value	Grubbs	Evtreme	Value Test		7est St 2.819	at	Critical 2.938	P-Value 0.0831	Decision	·`		t
ANOVA Table		Laticine	Value 1631		2.019		2.936		No Outile	ers Detected		
	0			_								
Source	Sum Squ	iares		Square	DF_		F Stat	P-Value	Decision	``		
Between	7.12722		1.0181		7		2.232	0.0674	Non-Sigr	nificant Effec	t	
Error Total	10.9463		0.4560	95	24 31		-					
		· · · · · · · · · · · · · · · · · · ·		······································	31							
Distributional Tes	sts											
Attribute	Test				Test Sta	at	Critical	P-Value	Decision	ι(α:1%)		
Variances			Variance Te		16.28		18.48	0.0227	Equal Va	riances		
Distribution	Shapiro-V	Vilk W N	ormality Tes	t	0.9732		0.9081	0.5931	Normal E	Distribution		
Total Dry Weight-	mg Summa	ıry										
Conc-%	Code	Count	Mean	95% LCL	. 95% UC	:L	Median	Min	Max	Std Err	CV%	%Effect
0	S1	4	6.82	5.941	7.699		6.845	6.12	7.47	0.2761	8.10%	0.00%
1.5		4	7.092	5.895	8.29		7.105	6.33	7.83	0.3762	10.61%	-4.00%
3		4	7.185	6.948	7.422		7.24	6.97	7.29	0.07444	2.07%	-5.35%
6		4	6.97	6.642	7.298		7.04	6.67	7.13	0.103	2.95%	-2.20%
12.1		4	7.14	6.092	8.188		7.21	6.28	7.86	0.3293	9.23%	-4.69%
24.2		4	7.865	5.712	10.02		7.76	6.4	9.54	0.6766	17.21%	-15.32%
48.5		4	8.115	7.164	9.066		7.915	7.64	8.99	0.2988	7.37%	-18.99%
97		4	6.655	6.176	7.134		6.615	6.37	7.02	0.1506	4.53%	2.42%
			3.000	0.170	1.107		0.010	0.01	1.02	0.1300	4.0070	∠. 4 ∠ 70

2005ull Analyst: 300 QA: PH

Report Date:

02 Jul-20 19:01 (p 4 of 10)


Test Code:


LM-10735-0320 | 10-2620-0901

Lemna Growt	th Inhibition Test				Bureau Veritas Laboratories
`nalysis ID:	17-7682-7977	Endpoint:	Total Dry Weight-mg	CETIS Version:	CETISv1.9.2
Analyzed:	02 Jul-20 19:00	Analysis:	Parametric-Control vs Treatments	Official Posults:	Vac

Total Dry Weight-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	S1	6.87	7.47	6.82	6.12	
1.5		6.57	7.83	7.64	6.33	
3		7.28	7.2	7.29	6.97	
6		7.13	6.67	7.01	7.07	
12.1		7.08	7.86	7.34	6.28	
24.2		9.54	7.25	8.27	6.4	
48.5		7.9	7.64	7.93	8.99	
97		6.45	7.02	6.37	6.78	

Report Date:

02 Jul-20 19:01 (p 1 of 2)

Test Code:

LM-10735-0320 | 10-2620-0901

Lemna	a Growt	h Inhibition Te	st				···				Bureau Veritas Laboratories
naiys Anaiyz	sis ID: :ed:	21-3654-8647 02 Jul-20 19:0		dpoint: alysis:	Total Dry Weig Linear Interpol		N)		CETIS Ve		CETISv1.9.2 Yes
Batch	ID:	14-7281-3650	Tes	st Type:	Lemna Growth	1			Analyst:	M. B	Brassil
Start D	ate:	12 Jun-20 15:3	9 Pro	otocol:	EC/EPS 1/RM	/37			Diluent:	IA Media	
Ending	g Date:	19 Jun-20 13:2	5 Sp	ecies:	Lemna minor			E	3rine:	Not a	Applicable
Duratio	on:	6d 22h	So	urce:	Canadian Phys	ulture Centr	e A	Age:			
Sample	e ID:	08-2245-2202	Co	de:	C039804			(Client:	Agni	co Eagle Mines
•		07 Jun-20		terial:	Water			F	Project:		-0691
Receip	t Date:	11 Jun-20 08:20	O Soi	urce:	Agnico Eagle I	Mines					
Sample	e Age:	5d 16h	Sta	tion:	MEL 13-07						
Commo		-02. Ref2 is Mel-	-04-05. Ref3	3 is Mel-	05-04.			,			
Linear	Interpo	lation Options			7. W. A						The Control of the Co
X Trans	sform	Y Transform	n See	ed	Resamples	Exp 95%	√s CL Met	hod			
Log(X+	1)	Linear	793	261	200	Yes	Two	-Point In	terpolation)	
Residu	al Anal	ysis				***************************************					
Attribut		Method			Test Stat	Critical	P-Value	Doois	ion(a:E0/)		
Extreme			xtreme Valu	e Test	2.819	2.938	0.0831		ion(α:5%) Itliers Dete		
					2.010		0.0001	140 00	THEIS DEL		
Point E				_							
Level IC5	% 71.37	95% LCL			95% LCL		·				100000-b
IC10	/1.37 >97	58.26 n/a	n/a n/a	1.401 <1.03	n/a	1.716					
`C15	>97	n/a	n/a n/a	<1.03		n/a n/a					
J20	>97	n/a	n/a	<1.03		n/a					
IC25	>97	n/a	n/a	<1.031		n/a					
IC40	>97	n/a	n/a	<1.031	l n/a	n/a					
IC50	>97	n/a	n/a	<1.031	n/a	n/a					
Total Di	ry Weig	ht-mg Summai	у			Ca	lculated Va	ariate			
Conc-%)	Code	Count	Mean	Min	Max	Std Err	Std De	ev CV%		%Effect
0		S1	4	6.82	6.12	7.47	0.2761	0.5523			0.0%
1.5			4	7.092	6.33	7.83	0.3762	0.7523		1%	-4.0%
3			4	7.185	6.97	7.29	0.07444	0.1489	2.07	%	-5.35%
6			4	6.97	6.67	7.13	0.103	0.2059	2.95	%	-2.2%
12.1			4	7.14	6.28	7.86	0.3293	0.6587	9.23	%	-4.69%
24.2			4	7.865	6.4	9.54	0.6766	1.353	17.2		-15.32%
48.5 97			4	8.115	7.64	8.99	0.2988	0.5977			-18.99%
			4	6.655	6.37	7.02	0.1506	0.3012	4.53	%	2.42%
	_	ht-mg Detail					,				
Conc-%		Code	Rep 1	Rep 2	Rep 3	Rep 4					
0		S1	6.87	7.47	6.82	6.12					
1.5			6.57	7.83	7.64	6.33					
3			7.28	7.2	7.29	6.97					
6			7.13	6.67	7.01	7.07					
12.1			7.08	7.86	7.34	6.28					
24.2 48.5			9.54	7.25	8.27	6.4					
48.5 97			7.9	7.64	7.93	8.99					
Ð I			6.45	7.02	6.37	6.78					

Report Date:

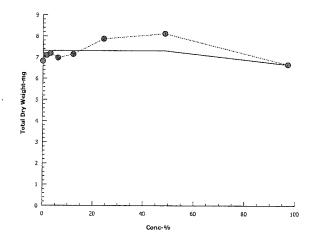
02 Jul-20 19:01 (p 2 of 2)

Test Code:

LM-10735-0320 | 10-2620-0901

Lemna Growth Inhibition Test

Bureau Veritas Laboratories


nalysis ID: 21-3654 Analyzed: 02 Jul-2

21-3654-8647 End 02 Jul-20 19:01 Anal

Endpoint: Total Dry Weight-mg
Analysis: Linear Interpolation (ICPIN)

CETIS Version: CET
Official Results: Yes

CETISv1.9.2

ECOTOXICOLOGY

Lemna minor Growth Inhibition Test Data

Tab: Weights, Page 1 of 1

Golder Associates Ltd.

Client Name: (Agnico) Job# / Sample #: C039804 XX3665

Sample ID: MEL-13-07 Oven Temp (°C): 60

Weighing Dates: 2020 Jun 17 2020 Jun 22 Drying Time (h): >24

Analyst(s): NS, DML Balance ID: bby2-0260

Boat #	Conc. & Replicate	Final # of Fronds	Boat Wt. (g)	Boat & Frond Dry Weight (g)	Dry Weight per Rep. (mg)	Mean Dry Weight per Conc (mg)	SD	% Stimulation
394	Control-A	61	0.78949	0.79591	6.42	6.21	0.71	
395	В	62	0.80679	0.81362	6.83			
396	С	60	0.79501	0.80142	6.41			
397	D	48	0.79968	0.80486	5.18			1
398	Site Control-A	66	0.80784	0.81471	6.87	6.82	0.55	9.82
399	В	74	0.79743	0.80490	7.47			
400	C	63	0.80527	0.81209	6.82	,		
401	D	56	0.80723	0.81335	6.12			
402	1.5%-A	63	0.79938	0.80595	6.57	7.09	0.75	14.21
403	В	72	0.80944	0.81727	7.83			
404	С	75	0.79139	0.79903	7.64			
405	D	57	0.79573	0.80206	6.33			
406	3.0%-A	67	0.79342	0.80070	7.28	7.19	0.15	15.70
407	В	70	0.79119	0.79839	7.20			
408	С	72	0.79878	0.80607	7.29			
409	D	63	0.80213	0.80910	6.97			
410	6.0%-A	63	0.80182	0.80895	7.13	6.97	0.21	12.24
411	В	63	0.80304	0.80971	6.67			
412	С	65	0.79402	0.80103	7.01			
413	D	64	0.79725	0.80432	7.07			
414	12.1%-A	66	0.79000	0.79708	7.08	7.14	0.66	14.98
415	В	67	0.79829	0.80615	7.86			
416	C	71	0.79561	0.80295	7.34			
417	D	49	0.79705	0.80333	6.28			
418	24.2%-A	83	0.81704	0.82658	9.54	7.87	1.35	26.65
419	В	67	0.80075	0.80800	7.25			
420	С	75	0.79392	0.80219	8.27			
421	D	56	0.79398	0.80038	6.40			
422	48.5%-A	72	0.80422	0.81212	7.90	8.11	0.60	30.68
423	В	70	0.80685	0.81449	7.64			
424	C	74	0.80295	0.81088	7.93			
425	D	93	0.80715	0.81614	8.99			
426	97%-A	58	0.78571	0.79216	6.45	6.65	0.30	7.17
427	В	62	0.79683	0.80385	7.02			
428	С	55	0.80369	0.81006	6.37			
429	D	58	0.79182	0.79860	6.78			
430	QA/QC	N/A	0.79855	0.79834	-0.21	-	_	_
431	QA/QC	N/A	0.80432	0.80418	-0.14	-	-	
394	0-A	61	0.78951	0.79607	6.56	-	-	
Aı	nalyst	MB	NS	DML			15 11	e fire de la c

Tab: Observations, Page 1 of 1

Lemna minor Growth InhibitionTest Data

Clie	ent Name:	Golder A	Associates I	td. Agn	<u>(00)</u>	Start Date: June 12, 2020						
S	Sample ID:	: MEL-13	-07	()	_	End Date: June 19, 2020						
San	nple Date:	SON :	Yonet	_	_•	Job# / Sample # CO 39 804						
,	Analyst(s):	NSVer	con Cl	Agras	87, P.Ha	ive S Organism Lot #: <u>CP200602</u>						
			1 -	r addition o								
		w sample ^	sto	ocks A, B,	<u>& C</u>	Pre-aeration time pH after aeration						
	7.9	>		7.8		20	min	1.8		1		
APHA Stocks Prep Date: 2020 Feb 24 Instrument IDs: BBY 2 - COUL										12		
Thermo	meter ID:	gg42	-0429	, Pla	ant Shelf#:	,		lume (mL):				
Sample De	escription:	clea	2 f (•				· · ·				
Concentration	ļ			Temperat	ure Monitor	ring			рМ На	onitoring		
(%)	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 0	Day 7		
Control	24	25	25	26	27	25	26	26	8.3	83		
Site Control	24	25	25	ðς	27	26	25	26	8.3	88		
1.5	24	25	25	36	27	25	26	26	8,3	8.6		
3.0									0, 3			
6.0			11 - 11 - 11 - 11									
12.1	24	25	25	25	27	25	25	26	8,3	8.5		
24.2												
48.5												
97.0	24	25	25	26	27	25	25	26	8.1	9.0		
Analyst	NS	us	201	PH	w	us	MP	W5	N>	wB		
Date	2020 SUNIZ	2010	11/25 E	2020 Junel	207EN	26254e	r fund	Turela	9020 NIZ	2 fure 9		
bservations du	ring the	Test										
	Date:	June 12,	2020		-			Analyst:	clore	2581		
Day 0	# of Plan		-	<u> </u>		. រួរ	# of Frond	s per Plant:	3			
(Test Initiation)	1		Door	k dro	On t	- neal	Test s	Seeded @:	<u> 15:3</u>	9		
Other comments: 110 st control measure fell over re-scalar								<u>scalad</u>				
	(C)	16:		JS ZC	N/3	- MICHANICA III			<u> </u>	200		
	Date:	June 13,	·····					Analyst:	L CON	SV(L		
	Obser- vations:	Control	Site Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%		
Day 1		4,24	DE,H	16,H		DG, H		DG, H	DG,19	DG, H		
	Other Co	mments:	A(1)	so (ns	appe	ar e	lear	A col	our le	55		
	ł				-							

BBY2FCD-00330/5

Tab: Observations, Page 1 of 1

Lemna minor Growth InhibitionTest Data

	Client Name	: Golder A	ssociates l	td. /Agnic	(0)		Start Date	: June 12, 2	020			
			13-0	' '	- ,	Job#	/ Sample #	<u> </u>	2804	~		
	Date:	June 14,	2020		-			Analyst:	Whom	-9110		
	Obser- vations:	Control	Site Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%		
Day 2		Dott	0G H			Dat	D6.H	06. H	D6. #	D6, H		
	Other C	omments:					,			ν,		
	Date:	June 15,	2020					Analyst:	P. Wenes	·		
	Obser-		Site					7				
Day 3	vations:	Control	Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%		
	Other C	omments:	106-11t	106, VI	106,11	106,4	LDG, H	106-14	10G7W	or, lt		
	Date:	June 16,		<u> </u>	-	T		Analyst:	42000	ISTY_		
Day 4	Obser- vations:	Control	Site Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%		
Day 4		Dienty	Dt, H	DG, H	DE, H	DG, H	De H	DG, H	DG, H	06,17		
	Other C	omments:	Na									
	Date:	June 17,	2020					Analyst:	usic	ાડકો		
	Obser-	Control	Site	4.50/	20/	00/	40.40/	0.4.00/	40.50/	670/		
Day 5	vations:	Control Db +1	DG, H	1.5% DG, H	3% H	3G.H.	12.1% DG , H	24.2% D 6, H	48.5% DF , H	97% DG, H		
	Other Co	omments:	Alls	olins	appea		lar f		rliss			
	Data	luna 10	2020		1,4	·		A - I (<u> </u>	maris		
	Date: Obser-	June 18,	Site					Analyst:	ug	<u> 45811 </u>		
Day 6	vations:	Control	Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%		
	0450	Mr. H	DE,H	DKH	D6, H	DE,H	D6, H	DG, H	DG,H	DE, 17		
	Other Co	Other Comments: 10 19										
	Date:	June 19,	2020					Analyst:	WARD	501		
	Test End	d Time:	_[3:	<u>52.</u>		_	T		,			
Day 7	Obser- vations:	Control	Site Control	1.5%	3%	6%	12.1%	24.2%	48.5%	97%		
		M , H	DE, H		DG, H	06,H	De, H	04,H	06,4	DG, H, A		
	Other Co		others	drag	• • • •	goe dour		base o	4 91	<i>l</i>		
∟egend:	DG - Da	\			•			CD = Calar		٠		
Legena.		DG = Dark Green C = Chlorosis LG = Light Green N = Necrosis					A = Green Algae CD = Colony destroyed T = Transparent RD = Roots destroyed					
	_	Ithy, Norma		G = Gibbo		S = small	'	31	, 3 4			
	Other:						, , , , , , , , , , , , , , , , , , ,					

Lemna minor Growth Inhibition Test Data

Tab: Weights, Page 1 of 1

Client Name: Golder Associates Ltd.	Job# / Sample #: <u>C62930</u> 4
Sample ID: MEL-13-07	Oven Temp (°C):
Weighing Dates: 2020 Jun 19	Drying Time (h): 734
Analyst(s) Long S OV	Balance ID: 6843-0360

Desta	Conc. &	Final #	Boat Wt.	Boat & Frond	Dry Weight	Mean Dry Weight	1	%
Boat #	Replicate	of Fronds	(g)	Dry Weight (g)	per Rep. (mg)	per Conc (mg)	SD	Stimulation
394	Control-A	64.0						
395	В	62						
396	С	PO -						
397	D	1 4-8						
398	Site Control-A							N/S
399	В	714						
400	С	63-						
401	D	, -56						
402	1.5%-A	ln3-						N/S
403	В	72						
404	С	75						
405	D	, -57			en in			
406	3.0%-A	67				W-M		N/S
407	В	70						
408	C	72						
409	D	-63	建筑建设		. subtract			
410	6.0%-A	(B:				ter had		N/S
411	В	, -63						
412	С	65-,						
413	D	., -64						
414	12.1%-A	66,						N/S
415	В	, 97						
416	С	9[-			No. 800			
417	D	629						
418	24.2%-A	83						N/S
419	В	67						
420	С	75.						
421	D	. . 56						
422	48.5%-A	7-2		达到 有关系		-		N/S
423	В	7-0						
424	C \sim	74-02						
425	DA	1,-40						
426	97%-A	X-58				Main Serve		N/S
427	В	62						
428	С	55						
429	D	-5%						
430	QA/QC	N/A				•	-	-
431	QA/QC	N/A				-	-	
394	0-A	6				<u>-</u>	•	
Aı	nalyst	TUR			" " "以此","言" "	PROMINE TO	4.0	

BBY2FCD-00438/3 Tab: Lemna minor; Pg: 1 of 1

ck Wali			Position Map				
5	10	15	20	25	30	35	40
4	9	14	19	24	29	34	39
3	8	13	18	23	28	33	38
2	7	12	17	22	27	32	37
1	6	11	16	21	26	31	36

Front of Counter

Position #	Treatment	Replicate	Colour			
16		A				
27		В				
21	Control	С	Red			
22	Control	D	ricu			
30		Measure				
24		A				
28		В				
42	Site Control	С	White			
41	Site Control	D	VVIIILE			
43						
9		Measure				
		A				
12	1 = 0/	В	0			
11	1.5%	С	Orange			
36		D				
10		Measure				
37		Α _				
17		В				
1	3.0%	С	Yellow			
33		D				
3		Measure				
40		Α				
4		В				
32	6.0%	С	Fl. Green			
14		D				
6		Meas.				
38		А				
23		В				
13	12.1%	С	Teal			
39		D				
25		Measure				
29		А				
8		В				
7	24.2%	С	Blue			
20		D				
18		Measure				
2		A				
31		В				
34	48.5%	С	Purple			
5		D	, aipio			
45		Measure				
26		A				
44		В				
15	97%	C	Pink			
35		D				
19	·	Measure				

Report Date:

02 Jul-20 19:13 (p 1 of 16)

Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growt	th Inhibition Te	st				-			Burea	u Veritas L	aboratorie.
∖nalysis ID:	12-0437-6506		•	Frond Increase			CET	'IS Version:	CETISV	1.9.2	
Analyzed:	02 Jul-20 19:1	12 Ana	lysis:	Parametric-Tw	o Sample		Offic	cial Results	: Yes		
Batch ID:	16-1531-7750	Test	Type:	Lemna Growth			Ana	lyst: M. I	Bras s il		
Start Date:	12 Jun-20 15:0	1 Prot	ocol:	EC/EPS 1/RM	/37		Dilu	ent: API	HA Media		
Ending Date:	19 Jun-20 15:2	2 Spe	cies:	Lemna minor			Brin	ie: Not	Applicable		
Duration:	7d Oh	Sou	rce:	Canadian Phys	cological Cu	lture Centre	Age	:			
Sample ID:	00-5473-3468	Cod	e:	C039804			Clie	nt: Agr	ico Eagle N	Vines	
Sample Date:		Mate		Water .			Proj	ect: 2-1	1-0691		
-	11 Jun-20 08:2			Agnico Eagle N	Mines						
Sample Age:	6d 15h	Stati	on:	MEL 02-05							
Comments:											
Ref1 is Mel-03	-02. Ref2 is Mel	-04-05. Ref3	is Mel-0	5-04.		Material and the second					
Data Transfor		Alt Hyp						son Result		·····	PMSD
Untransformed		C <> T					97% pass	sed frond inc	rease		22.66%
Equal Varianc	e t Two-Sampl	e Test			-						
Control v	s Conc-%		Test S	tat Critical	MSD DF	P-Type	P-Value	Decision	(α:5%)		
Ref 1	97		1.967	2.447	16.49 6	CDF	0.0968	Non-Signi	ficant Effec	et	
Auxiliary Tests	<u> </u>							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:5%)		
Extreme Value	Grubbs E	Extreme Value	e Test		1.36	2.127	1.0000		s Detected		
ANOVA Table			,								
Source	Sum Squ	ares	Mean S	Square	DF	F Stat	P-Value	Decision(α:5%)		
etween	351.125		351.12	5	1	3.867	0.0968	Non-Signi	ficant Effec	:t	
Error	544.75		90.791	7	6						
Total	895.875				7						
Distributional	Tests										
Attribute	Test			·	Test Stat	Critical	P-Value	Decision(α:1%)		
Variances		Ratio F Test			1.138	47.47	0.9177	Equal Var	iances		
Distribution	Shapiro-W	Vilk W Norma	lity Test		0.9256	0.6451	0.4773	Normal Di	stribution		
Frond Increase	e Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
כ	R1	4	72.75	58.09	87.41	72.5	62	84	4.608	12.67%	0.00%
97	******	4	86	70.36	101.6	86.5	74	97	4.916	11.43%	-18.21%
Frond Increase	e Detail										10.
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
)	R1	84	70	62	75						

97

97

Report Date:

02 Jul-20 19:13 (p 2 of 16)

Test Code:

LM-10735-0120 | 12-1579-4175

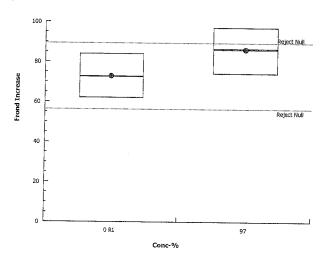
Lemna Growth Inhibition Test

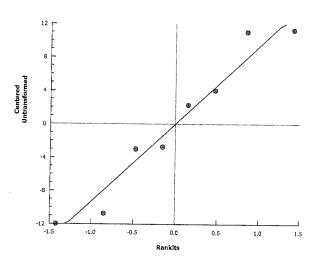
Bureau Veritas Laboratories

\nalysis ID: Analyzed:

12-0437-6506

02 Jul-20 19:12


Endpoint: Frond Increase


Analysis: Parametric-Two Sample **CETIS Version:**

CETISv1.9.2

Official Results:

Yes

06-8709-7378

02 Jul-20 19:12

Report Date:

02 Jul-20 19:13 (p 3 of 16) LM-10735-0120 | 12-1579-4175

Test Code: Lemna Growth Inhibition Test

Endpoint: Frond Increase

Bureau Veritas Laboratories

	Duiedu Veritas Lai
	
CETIS Version:	CET!Sv1.9.2

Analysis: Parametric-Two Sample Official Results: Yes Batch ID: 16-1531-7750 Test Type: Lemna Growth Analyst: M. Brassil Start Date: 12 Jun-20 15:01 Protocol: EC/EPS 1/RM/37 Diluent: APHA Media Ending Date: 19 Jun-20 15:22 Species: Lemna minor Brine: Not Applicable

Duration: 7d 0h Source: Canadian Phycological Culture Centre Age:

Sample ID: 00-5473-3468 Code:

C039804 Client: Agnico Eagle Mines Material: Water Project: 2-11-0691

Receipt Date: 11 Jun-20 08:20 Source: Agnico Eagle Mines Sample Age: 6d 15h Station: MEL 02-05

Comments:

Sample Date: 06 Jun-20

nalysis ID:

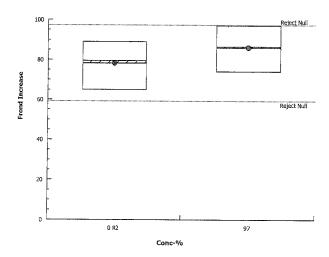
Analyzed:

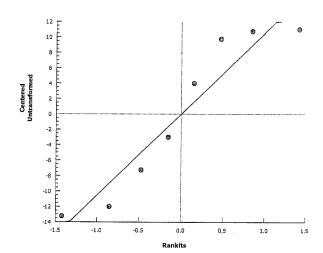
Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04.

Data Trans			Alt Hyp)				Compari	son Res	ult		PMSD
Untransform	ned		C <> T							increase	- **	24.37%
Equal Varia	ance t	Two-Sam	ple Test									
Control	vs	Conc-	%	Test Stat	Critical	MSD D	F P-Type	P-Value	Decisi	ion(α:5%)		
Ref 2		97		0.9945	2.447	19.07 6	CDF	0.3584		ignificant Effec	ot .	
Auxiliary Te	ests						······································			·		
Attribute		Test				Test Stat	Critica	l P-Value	Decisi	on(α:5%)		
Extreme Val	ue	Grubbs	s Extreme Va	alue Test		1.299	2.127	1.0000		tliers Detected		
ANOVA Tab	le											
Source		Sum Sc	quares	Mean Squ	ıare	DF	F Stat	P-Value	Decisi	on(α:5%)		
etween		120.125		120.125		1	0.989	0.3584		gnificant Effec	.+	
Error		728.75		121.458		6	0.000	0.0004	14011-01	grillicant Enec	·L	
Total		848.875				7						
Distribution	al Test	ts			· · · · · · · · · · · · · · · · · · ·							
Attribute		Test				Test Stat	Critical	P-Value	Decisio	on(α:1%)		
Variances			Ratio F Tes		· · · · · · · · · · · · · · · · · · ·	1.513	47.47	0.7419		/ariances	7511	····
Distribution		Shapiro-	Wilk W Norr	nalit y Test		0.8742	0.6451	0.1658		Distribution		
Frond Increa	ase Su	mmary			·····		-					
Conc-%		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		R2	4	78.25	59.01	97.49	79.5	65	89	6.047	15.45%	0.00%
97			4	86	70.36	101.6	86.5	74	97	4.916	11.43%	-9.90%
Frond Increa	se De	tail										
Conc-%		Code	Rep 1	Rep 2	Rep 3	Rep 4						
0		R2	71	65	88	89						
97			97	90	74	83						

Report Date:

02 Jul-20 19:13 (p 4 of 16)


Test Code:


LM-10735-0120 | 12-1579-4175

Lemna Growth Inhibition Test	Bureau Veritas Laboratories

CETIS Version: CETISv1.9.2

Analyzed: 02 Jul-20 19:12 Analysis: Parametric-Two Sample Official Results: Yes

Report Date:

02 Jul-20 19:13 (p 5 of 16)

Test Code:

LM-10735-0120 | 12-1579-4175

							163	it Code:	LIVI-10	733-01201	12-1579-417
Lemna Growth I	nhibition Tes	t						*			_aboratories
	6-6189-1907 2 Jul-20 19:1:	Endpoir 2 Analysis		ond Increas	-			TIS Version		v1.9.2	
Batch ID: 16	-1531-7750	Test Tvr	ne ler	nna Growti	h		-		Л. Brassil		
Start Date: 12	Jun-20 15:01			/EPS 1/RM				•	APHA Media		
Ending Date: 19				nna minor	1101		Brit			_	
-	0h	Source:			cological C	ulture Centre			lot Applicable	9	
		Jource.	Cai	naulali Fily	Cological Ci	illure Centre	Age); 			
•	-5473-3468	Code:	C03	39804			Clie	nt: A	gnico Eagle	Mines	
Sample Date: 06		Material	: Wa	ter			Pro	ject: 2	-11-0691		
Receipt Date: 11		Source:	Agr	nico Eagle	Mines						
Sample Age: 6d	15h	Station:	ME	L 02-05							
Comments: Ref1 is Mel-03-02.	. Ref2 is Mel-	04-05. Ref3 is M	el-05-04	4.					, , , , , , , , , , , , , , , , , , ,		
Data Transform		Alt Hyp				*	Compari	son Resu	lt		PMSD
Untransformed		C <> T		· #**				sed frond i			20.29%
Equal Variance t	Two-Sample	Test							· · · · · · · · · · · · · · · · · · ·		
Control vs	Conc-%	Tes	t Stat	Critical	MSD D	F P-Type	P-Value	Decisio	n(α:5%)		
Ref 3	97	1.70	69	2.447	15.22 6	CDF	0.1273		nificant Effe	ct	
Auxiliary Tests							·				
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	Grubbs Ex	ktreme Value Te	st		1.474	2.127	0.9543		iers Detected	1	
ANOVA Table								-			
Source	Sum Squa	res Mea	an Squa	are	DF	F Stat	P-Value	Decisio	n(α:5%)		
etween	242	242			1	3.129	0.1273		nificant Effec	et	
Error	464	77.3	3333		6			·			
Total	706				7	_					
Distributional Tes	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Variance R	atio F Test			1.667	47.47	0.6850		ariances		
Distribution	Shapiro-Wi	lk W Normality T	est		0.9489	0.6451	0.6996	•	Distribution		
Frond Increase Su	ımmary										
Conc-%	Code	Count Mea	ın	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
ס	R3	4 75		62.88	87.12	75.5	67	82	3.808	10.15%	0.00%
97		4 86		70.36	101.6	86.5	74	97	4.916	11.43%	-14.67%
rond Increase De	etail									······································	
Conc-%	Code	Rep 1 Rep	2	Rep 3	Rep 4						

nalyst: QA: 111

0

97

R3

70

97

67

90

81

74

82

83

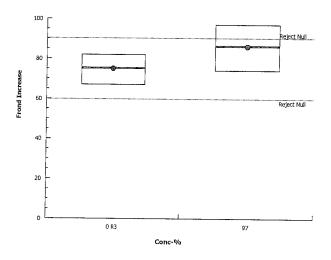
Report Date:

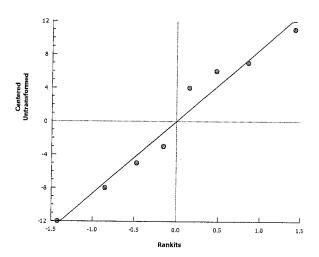
02 Jul-20 19:13 (p 6 of 16)

Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growth Inhibition Test **Bureau Veritas Laboratories**

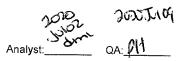

nalysis ID: Analyzed:


06-6189-1907 02 Jul-20 19:12

Endpoint: Frond Increase

Analysis: Parametric-Two Sample **CETIS Version:**

CETISv1.9.2 Official Results:


Report Date:

02 Jul-20 19:13 (p 7 of 16)

Test Code:

LM-10735-0120 | 12-1579-4175

							Te	st Code:	LM-10	735-0120	12-1579-41
Lemna Growt	h Inhibition	Test							Bure	au Veritas	Laboratorie
∖nalysis ID:	16-7201-35	28	Endpoint:	Frond Increas	se	****	CE	TIS Version	on: CETIS	v1 9 2	
Analyzed:	02 Jul-20 1	9:12	Analysis:	Parametric-T	wo Sample			icial Resu		******	
Batch ID:	16-1531-775	50	Test Type:	Lemna Growt	h		Δn	alyst: N	И. Brassil		
Start Date:	12 Jun-20 1	5:01	Protocol:	EC/EPS 1/RN				-	N. Brassii NPHA Media		
Ending Date:	19 Jun-20 1	5:22	Species:	Lemna minor					Not Applicable	۵	
Duration:	7d Oh		Source:	Canadian Phy		uiture Centre			tot Applicable	0	
Sample ID:	00-5473-346	8	Code:	C039804			Clia	ent: A	Agnico Eagle	Minos	
Sample Date:	06 Jun-20		Material:	Water					!-11 - 0691	MILLES	
Receipt Date:	11 Jun-20 08	3:20	Source:	Agnico Eagle	Mines		110	,joot. 2	11-0031		
Sample Age:	6d 15h		Station:	MEL 02-05							
Comments:											
Ref1 is Mel-03-	02. R ef2 is N	1el-04-05.	Ref3 is Mel-0	05-04.							
Data Transform	n	Alt H					Compar	ison Resu	ilt		PMSD
Untransformed		C <>	Т				97% pas	sed frond	increase		15.34%
Equal Variance	e t Two-Sam	ple Test									******
Conc-% v		%	Test S	Stat Critical	MSD D	F P-Type	P-Value	Decisio	on(α:5%)		
o socies	97		1.98	2.145		4 CDF	0.0677		nificant Effe	ct	·
Auxiliary Tests						······	VV		<u> </u>		
Attribute	Test				Test Stat	Critical	P-Value	Decisio	on(α:5%)		
Extreme Value	Grubb	s Extreme	Value Test		1.516	2.586	1.0000		iers Detected	t	
ANOVA Table						71.0				*	
Source	Sum S	auares	Mean	Square	DF	F Stat	P-Value	Doginio	m/m = EP/ \		
etween	341.333		341.33		1	3.921	0.0677		n(α:5%)	-1	
≣rror	1218.67	7	87.047		14	5.521	0.0077	พงก-อเช	inificant Effec	CI	
l Total	1560				15	***					
Distributional T	ests					· · · · · · · · · · · · · · · · · · ·					
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(a:1%)		
/ariances	Variance	e Ratio F	Test		1.145	7.6	0.7478	Equal V			
Distribution	Shapiro-	-Wilk W N	ormality Test	t	0.9391	0.8408	0.3387		Distribution		
rond Increase	Summary				-		· , ,				
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
	@	12	75.33	69.5	81.17	73	62	89	2.652	12.20%	0.00%
7		4	86	70.36	101.6	86.5	74	97	4.916	11.43%	-14.16%
rond Increase	Detail	T. 17-16-									-
onc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
	@	70	67	81	82	71	65	88	89	84	70
		62	75			•		-	0 0	U-T	70

97

97

90

74

83

Report Date:

02 Jul-20 19:13 (p 8 of 16)

Test Code:

LM-10735-0120 | 12-1579-4175

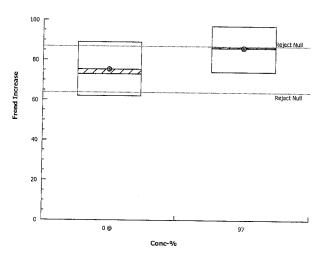
Lemna Growth Inhibition Test

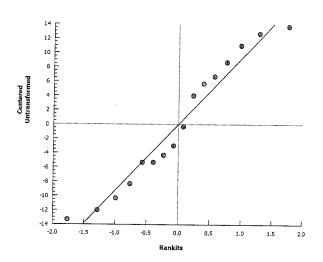
Bureau Veritas Laboratories

nalysis ID: Analyzed:

16-7201-3528

02 Jul-20 19:12

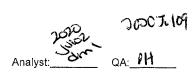

Endpoint: Frond Increase


Analysis:

Parametric-Two Sample

CETIS Version: Official Results:

CETISv1.9.2 Yes


Report Date:

02 Jul-20 19:27 (p 1 of 6)

Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growt	h Inhibition	Test							Burea	u Veritas L	aboratorie
nalysis ID: Analyzed:	13-7372-69 02 Jul-20		Endpoint: Analysis:	Frond Increas Parametric-Tv		 		IS Versio		1.9.2	
Batch ID:	16-1531-77	50	Test Type:	Lemna Growth	'n		Ana	lyst: N	l. Brassil		*
Start Date:	12 Jun-20 1	5:01	Protocol:	EC/EPS 1/RM	1/37		Dilu	ent: A	PHA Media		
Ending Date:	19 Jun-20 1	5:22	Species:	Lemna minor			Brin	ne: N	ot Applicable)	
Duration:	7d Oh		Source:	Canadian Phy	cological Cu	Iture Centre	Age	:			
Sample ID:	00-5473-34	68	Code:	C039804			Clie	nt: A	gnico Eagle I	Mines	
Sample Date:	06 Jun-20		Material:	Water			Proj	ject: 2-	-11-0691		
Receipt Date:	11 Jun-20 0	8:20	Source:	Agnico Eagle	Mines						
Sample Age:	6d 15h		Station:	MEL 02-05							
Comments: Ref1 is Mel-03-	00 Def0 ie	N/1-1-04-0E	D-60 :- M-1	05.04							
				U5-U4.			0	B			
Data Transforr Untransformed	11	Alt F						son Resused seed frond			PMSD 16.19%
	- 4 Tura Car		·	· · · · · · · · · · · · · · · · · · ·							10.1570
Equal Variance Control v		•	T4 (24-4 0-1411	MOD D	- D -	5 .//		. =0.0		
Site Water Con	tr Ref 1		0.154	Stat Critical 2 2.447	11.9 6	F P-Type CDF	P-Value 0.8825		n(α:5%) Inificant Effec		
			0.154.	Z 2,441	11.9 6	CDF	0.8825	Non-Sig	minicant Effec	JI	
Auxiliary Tests	\$										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	Grubi	bs Extreme	Value Test		1.767	2.127	0.3734	No Outl	iers Detected	1	
ANOVA Table											
Source	Sum S	Squares	Mean	Square	DF	F Stat	P-Value	Decisio	n(a:5%)		
∍tween	1.125		1.125		1	0.02379	0.8825	Non-Sig	nificant Effec	ct	
Error	283.75		47.29°	17	6						
Fotal	284.87	75			7						
Distributional ⁻	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
/ariances	Varian	ce Ratio F	Test		8.784	47.47	0.1075	Equal V	ariances		
Distribution	Shapir	o-Wilk W N	ormality Tes	st	0.9677	0.6451	0.8792	Normal	Distribution		
rond Increase	Summary						·				
Conc-%	Code	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	R1	4	72.75	58.09	87.41	72.5	62	84	4.608	12.67%	0.00%
1	S1	4	73.5	68.55	78.45	73.5	70	77	1.555	4.23%	-1.03%
rond Increase	Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
	R1	84	70	62	75						-
				_							

S1

72

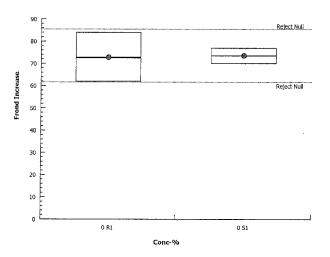
77

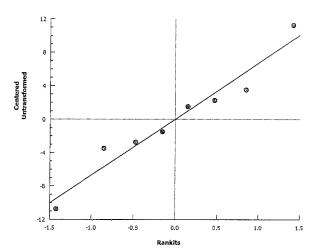
75

70

Report Date:

02 Jul-20 19:27 (p 2 of 6)


Test Code:


LM-10735-0120 | 12-1579-4175

Lemna Grow	vth Inhibition Test			Bureau Veritas Laboratories
nalysis ID:	13-7372-6587	Endpoint: Frond Increas	e CETIS Version:	CETISv1.9.2

Analyzed: 02 Jul-20 19:25 Analysis: Parametric-Two Sample Official Results:

Graphics

Yes

Report Date:

02 Jul-20 19:27 (p 3 of 6)

Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growt	h Inhibitic	on Test							Burea	ıu Veritas L	aboratorie
nalysis ID: Analyzed:	07-0803- 02 Jul-20		Endpoint: Analysis:	Frond Increas Parametric-Tv				ΓIS Versior cial Result		/1.9.2	
Batch ID:	16-1531-7	7750	Test Type:	Lemna Growth	h		Ana	lyst: M.	Brassil		
Start Date:	12 Jun-20	15:01	Protocol:	EC/EPS 1/RM	1/37		Dilu	ent: AF	PHA Media		
Ending Date:	19 Jun-20	15:22	Species:	Lemna minor			Brin	ne: No	t Applicable)	
Duration:	7d Oh		Source:	Canadian Phy	cological Cu	lture Centre	Age	:			
Sample ID:	00-5473-3	3468	Code:	C039804			Clie	nt: Ag	nico Eagle	Mines	
Sample Date:	06 Jun-20		Material:	Water			Proj		11-0691		
Receipt Date:	11 Jun-20	08:20	Source:	Agnico Eagle	Mines		_				
Sample Age:	6d 15h		Station:	MEL 02-05							
Comments: Ref1 is Mel-03	-02 Ref2 i	s Mel-04-05	Ref3 is MeL	n5_n4							
Data Transfor							Commoni	DI			DMOD
Untransformed		Alt C <>						son Result sed frond in	********		PMSD 20.78%
Equal Varianc							- Ter z pas	isea irona ii			20.7676
		ntrol II	Test S	Stat Critical	MŞD DE	P-Type	P-Value	Decision	\a: 5 %\		
Site Water Cor			0.7608		15.28 6	CDF	0.4756		nificant Effe	ot	
Auxiliary Tests	3			·	··········					 	
Attribute	Tes	t			Test Stat	Critical	P-Value	Decision	n(α:5%)		
Extreme Value	Gru	bbs Extrem	e Value Test		1.621	2.127	0.6237	No Outlie	ers Detected	1	
ANOVA Table											
Source	Sum	Squares	Mean	Square	DF	F Stat	P-Value	Decision	ι(α:5%)		
∍tween	45.1	25	45.125	5	1	0.5788	0.4756	Non-Sign	ificant Effec	ct	
<u> </u>	467.		77.958	33	6	****					
Гotal	512.	875 			7						
Distributional	Tests									•	
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)		
/ariances		ince Ratio F	•		15.13	47.47	0.0514	Equal Va	riances		
Distribution	Shap	iro-Wilk W	Normality Tes	t	0.9694	0.6451	0.8931	Normal D	istribution		
rond Increase	e Summar	у									
Conc-%	Code	e Cour	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	R2	4	78.25	59.01	97.49	79.5	65	89	6.047	15.45%	0.00%
)	S1	4	73.5	68.55	78.45	73.5	70	77	1.555	4.23%	6.07%
rond Increase	e Detail							-			
onc-%	Code	<u> </u>	<u>-</u>	Rep 3	Rep 4						
)	R2	71	65	88	89						

Analyst: Som QA: 11

72

77

75

70 ,

Report Date:

02 Jul-20 19:27 (p 4 of 6)

Test Code:

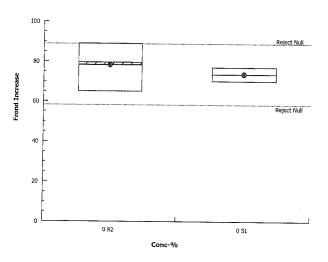
LM-10735-0120 | 12-1579-4175

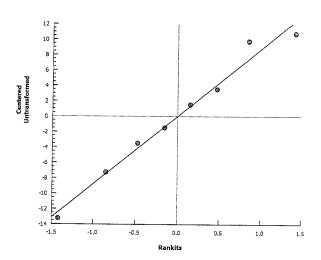
Lemna	Growth	Inhibition	Test
-------	--------	------------	------

Bureau Veritas Laboratories

nalysis ID: Analyzed:

07-0803-5533

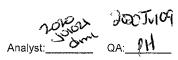

02 Jul-20 19:25


Endpoint: Frond Increase

Analysis: Parametric-Two Sample **CETIS Version:**

CETISv1.9.2

Official Results: Yes


Report Date:

02 Jul-20 19:27 (p 5 of 6)

Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growt	h Inhibition	Test							Burea	u Veritas L	aboratories
nalysis ID: Analyzed:	13-0256-68 02 Jul-20 1		Endpoint: Analysis:	Frond Increase Parametric-Tv				IS Version: cial Results	CETISv : Yes	1.9.2	
Batch ID:	16-1531-775	50 7	Test Type:	Lemna Growt	h	,	Ana	lyst: M. E	Brassil		
Start Date:	12 Jun-20 15	5:01 F	Protocol:	EC/EPS 1/RM	M/37		Dilu	ent: APH	IA Media		
Ending Date:	19 Jun-20 15	5:22	Species:	Lemna minor			Brin	e: Not	Applicable		
Duration:	7d Oh	5	Source:	Canadian Phy	/cological Cu	lture Centre	Age	:			
Sample ID:	00-5473-346	8 (Code:	C039804			Clie	nt: Agn	ico Eagle N	Mines	
Sample Date:	06 Jun-20	Ŋ	/laterial:	Water			Proj	ect: 2-11	-0691		
Receipt Date:	11 Jun-20 08	3:20	Source:	Agnico Eagle	Mines						
Sample Age:	6d 15h	\$	Station:	MEL 02-05							
Comments: Ref1 is Mel-03-	02 Pof2 is N	101 04 05 P	of3 is Mol (25.04							
							Compori	een Beeult		· · · · · · · · · · · · · · · · · · ·	DMCD
Data Transformed		Alt Hy C <> T						son Result sed frond inc	crease		PMSD 13.69%
Equal Variance											
	vs Contr	-	Test S	Stat Critical	MSD DF	P-Type	P-Value	Decision(α:5%)		
Site Water Cor			0.364		10.06 6	CDF	0.7278	Non-Signif		pt	
Auxiliary Tests	S										
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:5%)		
Extreme Value	Grubb	s Extreme \	/alue Test		1.486	2.127	0.9251	No Outlier	s Detected		
ANOVA Table											
Source	Sum S	quares	Mean	Square	DF	F Stat	P-Value	Decision(α:5%)		
∍tween	4.5		4.5		1	0.133	0.7278	Non-Signif	ficant Effec	pt .	
Error	203		33.833	33	6	_					
Total	207.5				7						
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variances	Variand	e Ratio F T	est		6	47.47	0.1753	Equal Vari	ances		
Distribution	Shapiro	-Wilk W No	rmality Tes	st	0.9587	0.6451	0.7976	Normal Dis	stribution		
Frond Increase	e Summary										
Conc-%	Code	Count	Mean	95% LCL	. 95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R3	4	75	62.88	87.12	75.5	67	82	3.808	10.15%	0.00%
0	S1	4	73.5	68.55	78.45	73.5	70	77	1.555	4.23%	2.00%
Frond Increase	e Detail										
Conc-%	Code	Rep 1	Rep 2		Rep 4						
0	R3	70	67	81	82						
_											

S1

72

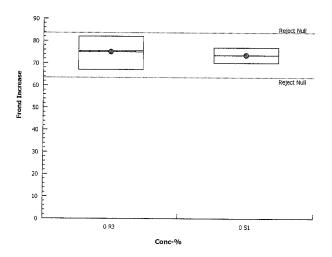
77

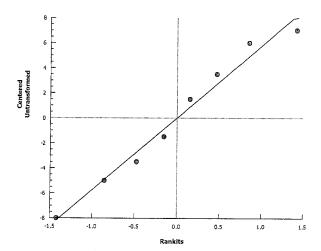
75

70

Report Date:

02 Jul-20 19:27 (p 6 of 6)


Test Code:


LM-10735-0120 | 12-1579-4175

Lemna Growth Inhibition Test

Bureau Veritas Laboratories

nalysis ID:13-0256-6817Endpoint:Frond IncreaseCETIS Version:CETISv1.9.2Analyzed:02 Jul-20 19:25Analysis:Parametric-Two SampleOfficial Results:Yes

Tab: Frond Counts, Page 1 of 1

Lemna minor Growth InhibitionTest Data

Client Name: Golder Associates Ltd. (Agnico)

Job# / Sample #: C039804

Sample ID: Various Start Date: June 12, 2020

Analyst(s): M. Brassil End Date: June 19, 2020

Conc. & Replicate	Initial Number of Fronds	Final Number of Fronds	Frond Increase	Mean Increase in # Fronds per Conc'n	SD	% Stimulation
Control-A	6	67	61	64.5	4.8	
В	6	73	67			
C	6	66	60			
D	6	76	70			
Site Control-A	6	78	72	73.5	3.1	13.95
В	6	83	77			10.00
C	6	81	75		******	
D	6	76	70			
Soft Water Ctrl-A	6	73	67	75.3	12.3	16.67
B	6	69	63			10.01
C	6	88	82			
D	6	95	89			
MEL-02-05 97.0-A	6	103	97	86.0	9.8	33.33
В В	6	96	90			00.00
C	6	80	74		" 	
D	6	89	83			
MEL-03-02 97.0-A	6	90	84	72.8	9.2	12.79
В	6	76	70			
С	6	68	62			
D	6	81	75			
MEL-04-05 97.0-A	6	77	71	78.3	12.1	21.32
В	6	71	65			21.02
С	6	94	88			
D	6	95	89			
MEL-05-04 97.0-A	6	76	70	75.0	7.6	16.28
В	6	73	67			
С	6	87	81			
D	6	88	82			
Analyst	MB	MB	Taran		401 541	

N/S - No growth stimulation (frond increase) compared to the Control

Control Validity Criteria: Mean final # of fronds in Controls on day 7 must be ≥8 times initial # of fronds

Mean Final # of Fronds on Day 7	70.5	
Control Frond Increase	11.8	_
Validity Criteria Met?	Yes	

Report Date:

02 Jul-20 19:13 (p 15 of 16)

Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growt	h Inhibition Te	st							Burea	u Veritas L	aboratorie
nalysis ID:	13-7741-7594	Enc	lpoint:	Total Dry We	ight-mg		CET	IS Version	: CETISV	1.9.2	
Analyzed:	02 Jul-20 19:1	2 Ana	lysis:	Parametric-T	wo Sample	W	Offi	cial Results	s: Yes		
Batch ID:	16-1531-7750	Tes	t Type:	Lemna Grow	th		Ana	lyst: M.	Brassil		
Start Date:	12 Jun-20 15:0	1 Pro	tocol:	EC/EPS 1/RM	M/37		Dilu	ent: AP	HA Media		
Ending Date:	19 Jun-20 15:2	2 Spe	cies:	Lemna minor			Brin	ne: Not	t Applicable		
Duration:	7d 0h	Sou	ırce:	Canadian Ph	ycological Cu	lture Centre	Age	:			
Sample ID:	00-5473-3468	Cod	le:	C039804			Clie	nt: Agr	nico Eagle N	Mines	
Sample Date:	06 Jun-20	Mat	erial:	Water			Proj	ject: 2-1	1-0691		
Receipt Date:	11 Jun-20 08:2	0 S ou	rce:	Agnico Eagle	Mines						
Sample Age:	6d 15h	Stat	ion:	MEL 02-05							
Comments:											
Ref1 is Mel-03	-02. Ref2 is Me	-04-05. Ref3	is Mel-0	5-04.				4-5			
Data Transfor		Alt Hyp					Compari	son Result			PMSD
Untransformed	I	C <> T					97% pass	sed total dry	weight-mg		15.95%
Equal Variand	e t Two-Sampl	e Test									***
Control	vs Conc-%		Test S	tat Critical	MSD D	P-Type	P-Value	Decision	ι(α:5%)		
Ref 1	97		2.414	2.447	1.204 6	CDF	0.0523		ificant Effec	ct	
Auxiliary Test	s						· · · · · · · · · · · · · · · · · · ·				
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:5%)		
Extreme Value	Grubbs I	Extreme Valu	e Test		1.731	2.127	0.4277	No Outlie	rs Detected	[
ANOVA Table											
Source	Sum Squ	ares	Mean S	Square	DF .	F Stat	P-Value	Decision	(a:5%)		
∋tween	2.82031		2.8203	1	1	5.828	0.0523	Non-Sign	ificant Effec	pt .	
Error	2.90377		0.4839	63	6						
Total	5.72409				7						
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)		
Varian c es		Ratio F Test			2.905	47.47	0.4045	Equal Vai	riances		
Distribution	Shapiro-V	Vilk W Norm	ality Test		0.9574	0.6451	0.7846	Normal D	istribution		
Total Dry Weig	ght-mg Summa	ry									
Conc-%	Code	Count	Mean	95% LCI	_ 95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0 .	R1	4	7.545	6.195	8.895	7.635	6.43	8.48	0.4243	11.25%	0.00%
97		4	8.733	7.94	9.525	8.53	8.4	9.47	0.2489	5.70%	-15.74%
Total Dry Wei	ght-mg Detail								·		
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
^	D1	0.40	775	C 42	7.50						

0

97

R1

8.48

8.47

7.75

9.47

6.43

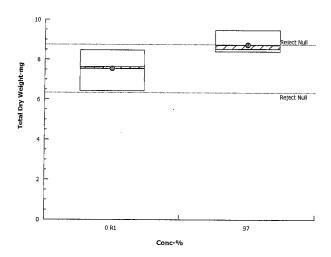
8.4

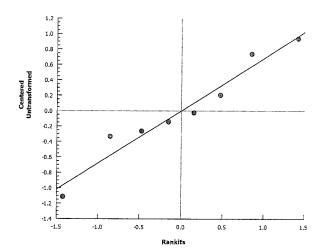
7.52

8.59

Report Date:

02 Jul-20 19:13 (p 16 of 16)

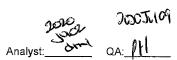

Test Code:


LM-10735-0120 | 12-1579-4175

Lemna Growth Inhibition Test **Bureau Veritas Laboratories**

13-7741-7594 nalysis ID: Endpoint: Total Dry Weight-mg **CETIS Version:** CETISv1.9.2

Analyzed: 02 Jul-20 19:12 Analysis: Parametric-Two Sample Official Results: Yes


Report Date:

02 Jul-20 19:13 (p 13 of 16)

Test Code:

LM-10735-0120 | 12-1579-4175

							100	L OUGE.	LIVI-107	133-0120	2-10/3-41
Lemna Growt	th Inhibition T	est							Burea	u Veritas L	aboratorie
nalysis ID:	01-0954-755	8 E	ndpoint:	Total Dry Weig	ght-mg		CET	IS Versio	n: CETISv	/1.9.2	
Analyzed:	02 Jul-20 19	:12 A	nalysis:	Parametric-Tw	o Sample		Offi	cial Resul	ts: Yes		
Batch ID:	16-1531-7750) T	est Type:	Lemna Growth	1		Ana	iyst: M	. Brassil		
Start Date:	12 Jun-20 15:	:01 P	rotocol:	EC/EPS 1/RM	/37		Dilu	ent: A	PHA Media		
Ending Date:	19 Jun-20 15:	:22 S	pecies:	Lemna minor			Brin	ie: N	ot Applicable	•	
Duration:	7d 0h	S	ource:	Canadian Phy	cological Cu	Iture Centre	Age	:			
Sample ID:	00-5473-3468	3 0	ode:	C039804			Clie	nt: A	gnico Eagle I	Mines	
Sample Date:	06 Jun-20	IV	laterial:	Water			Proj	ect: 2-	11-0691		
Receipt Date:		20 S	ource:	Agnico Eagle I	Mines						
Sample Age:	6d 15h	S	tation:	MEL 02-05							
Comments:											
Ref1 is Mel-03	-02. Ref2 is Me	el-04-05. Re	ef3 is Mel-	05-04. 							
Data Transfor		Alt Hy	p				Compari	son Resul	t		PMSD
Untransformed	1	C <> T					97% pass	sed total dr	y weight-mg		18.94%
Equal Variand	e t Two-Samp	ole Test									
Control	vs Conc-%	%	Test S	Stat Critical	MSD D	P-Type	P-Value	Decisio	n(α:5%)		
Ref 2	97		0.4874	4 2.447	1.594 6	CDF	0.6433	Non-Sig	nificant Effec	et	
Auxiliary Test	s					· · · · · · · · · · · · · · · · · · ·					
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	Grubbs	Extreme V	alue Test		1.835	2.127	0.2823		ers Detected		
ANOVA Table				, , , , , , , , , , , , , , , , , , , ,							***************************************
Source	Sum Sq	uares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)		
etween	0.20161	3	0.2016	313	1	0.2375	0.6433	Non-Sig	nificant Effec	ct	
Error	5.09257		0.8487	762	6						
Total	5.29419				7						
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Variance	Ratio F Te	est		5.848	47.47	0.1809	Equal Va		· .	
Distribution	Shapiro-	Wilk W No	mality Tes	st	0.9611	0.6451	0.8202	Normai I	Distribution		
Total Dry Weig	ght-mg Summ	ary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	R2	4	8.415	6.499	10.33	8.25	7.18	9.98	0.602	14.31%	0.00%
97		4	8.733	7.94	9.525	8.53	8.4	9.47	0.2489	5.70%	-3.77%
Total Dry Weig	ght-mg Detail							·			
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
ס	R2	7.85	7.18	8.65	9.98						
^ -		a									

8.47

9.47

8.4

8.59

Report Date:

02 Jul-20 19:13 (p 14 of 16)

Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growth Inhibition Test

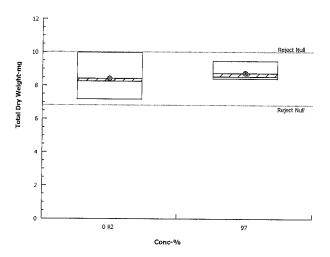
Bureau Veritas Laboratories

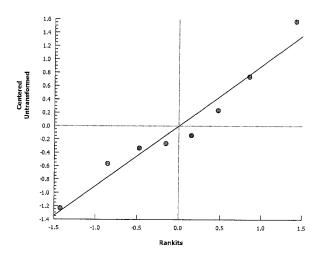
nalysis ID: Analyzed:

01-0954-7558

02 Jul-20 19:12

Analysis:


Endpoint: Total Dry Weight-mg


Parametric-Two Sample

CETIS Version:

CETISv1.9.2

Official Results:

Report Date:

02 Jul-20 19:13 (p 11 of 16)

Test Code: LM-10735-0120 | 12-1579-4175 Lemna Growth Inhibition Test **Bureau Veritas Laboratories** nalysis ID: 21-2236-1088 **CETIS Version:** CETISv1.9.2 Total Dry Weight-mg Endpoint: Analyzed: 02 Jul-20 19:12 Analysis: Parametric-Two Sample Official Results: Yes Batch ID: 16-1531-7750 Test Type: Lemna Growth Analyst: M. Brassil EC/EPS 1/RM/37 APHA Media Start Date: 12 Jun-20 15:01 Protocol: Diluent: Ending Date: 19 Jun-20 15:22 Species: Lemna minor Brine: Not Applicable Duration: 7d 0h Source: Canadian Phycological Culture Centre Age: Sample ID: 00-5473-3468 Code: C039804 Agnico Eagle Mines Client: Sample Date: 06 Jun-20 Material: Water Project: 2-11-0691 Receipt Date: 11 Jun-20 08:20 Source: Agnico Eagle Mines MEL 02-05 Sample Age: 6d 15h Station: Comments: Ref1 is Mel-03-02. Ref2 is Mel-04-05. Ref3 is Mel-05-04. **Data Transform** Comparison Result **PMSD** Alt Hyp Untransformed C <> T 97% passed total dry weight-mg 15.28% Equal Variance t Two-Sample Test Control P-Value Conc-% Test Stat Critical MSD DF P-Type Decision(a:5%) Ref 3 0.4429 2.447 1.298 6 CDF 0.6733 Non-Significant Effect **Auxiliary Tests** Attribute Test Test Stat Critical P-Value Decision(a:5%) Extreme Value Grubbs Extreme Value Test 1.494 2.127 0.9054 No Outliers Detected

ANOVA Tal

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)	
etween	0.11045	0.11045	1	0.1962	0.6733	Non-Significant Effect	
Error	3.37775	0.562958	6				
Total	3.4882		7				

Distributional Tests

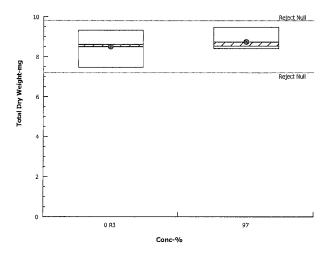
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Variance Ratio F Test	3.542	47.47	0.3266	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.8901	0.6451	0.2344	Normal Distribution

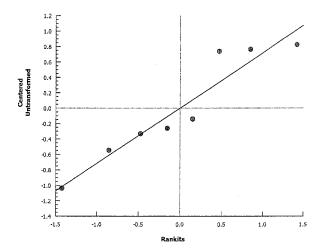
Total Dry Weight-mg Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	R3	4	8.497	7.006	9.989	8.605	7.46	9.32	0.4685	11.03%	0.00%
97		4	8.733	7.94	9.525	8.53	8.4	9.47	0.2489	5.70%	-2.77%

Total Dry Weight-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	R3	7.95	7.46	9.26	9.32	
97		8.47	9.47	8.4	8.59	


Analyst: OA: PH


Report Date: Test Code: 02 Jul-20 19:13 (p 12 of 16) LM-10735-0120 j 12-1579-4175

Lemna Growth Inhibition Test

nalysis ID: 21-2236-1088 Endpoint: Total Dry Weight-mg
Analyzed: 02 Jul-20 19:12 Analysis: Parametric-Two Sample

CETIS Version: CETISv1.9.2
Official Results: Yes

Report Date:

02 Jul-20 19:13 (p 9 of 16)

Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growt	th Inhibit	tion Test							Burea	u Veritas L	aboratories
nalysis ID: Analyzed:	09-905 02 Jul-	9-2020 20 19:12	Endpoint: Analysis:	Total Dry We Parametric-T				IS Version		1.9.2	
Batch ID:	16-1531	-7750	Test Type:	Lemna Growt	th	·	Ana	lyst: M.	Brassil		
Start Date:	12 Jun-2	20 15:01	Protocol:	EC/EPS 1/RN	Л/37		Dilu	ent: AP	HA Media		
Ending Date:	19 Jun-2	20 15:22	Species:	Lemna minor			Brin	e: No	t Applicable		
Duration:	7d 0h		Source:	Canadian Phy	ycologi c al Cu	lture Centre	Age	:			
Sample ID:	00-5473	-3468	Code:	C039804			Clie	nt: Ag	nico Eagle l	Vines	
Sample Date:	06 Jun-2	20	Material:	Water			Proj	ect: 2-1	1-0691		
Receipt Date:	11 Jun-2	20 08:20	Source:	Agnico Eagle	Mines						
Sample Age:	6d 15h		Station:	MEL 02-05							
Comments: Ref1 is Mel-03	-02. Ref2	2 is Mel-04-0	5. Ref3 is Mel-	05-04.							
Data Transfor	m	Alt	Нур				Comparis	son Result			PMSD
Untransformed	ł	C <	<> T				97% pass	sed total dry	weight-mg		14.13%
Equal Variance	e t Two-	Sample Tes	t								
Conc-%	vs C	onc-%	Test \$	Stat Critical	MSD DF	P-Type	P-Value	Decision	ι(α:5%)		
0 Pooled	9	7	1.08	2.145	1.152 14	CDF	0.2984	Non-Sign	ificant Effec	et	
Auxiliary Test	s				,						
Attribute	Te	est			Test Stat	Critical	P-Value	Decision	ι(α:5%)		
Extreme Value	G	rubbs Extrer	ne Value Test		2.034	2.586	0.4800	No Outlie	rs Detected		
ANOVA Table											
Source	Su	ım Squares	Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)		
etween	1.0	0092	1.009	2	1	1.166	0.2984	Non-Sign	ificant Effec	pt .	
Error	12	.1147	0.865	336	14	_					
Total	13.	.1239			15						
Distributional	Tests										
Attribute	Te	st			Test Stat	Critical	P-Value	Decision	(a:1%)		
Variances	Va	riance Ratio	F Test		4.17	43.52	0.2664	Equal Va			
Distribution	Sh	apiro-Wilk W	/ Normality Tes	st	0.9686	0.8408	0.8157	Normal D	istribution		
Total Dry Weig	ght-mg S	ummary									
Conc-%	Co	de Coi	unt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	@	12	8.152	7.507	8.798	7.9	6.43	9.98	0.2935	12.47%	0.00%
97		4	8.733	7.94	9.525	8.53	8.4	9.47	0.2489	5.70%	-7.11%
Total Dry Weig	ght-mg D	etail									
Conc-%	Со	de Rep	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	@	7.9	5 7.46	9.26	9.32	7.85	7.18	8.65	9.98	8.48	7.75
		6.43	3 7.52								
97		8.47	7 9.47	8.4	8.59						

Report Date:

02 Jul-20 19:13 (p 10 of 16)

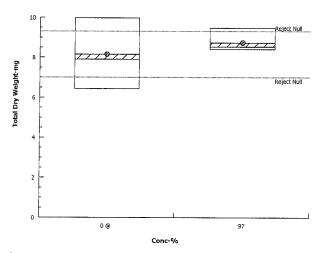
Test Code:

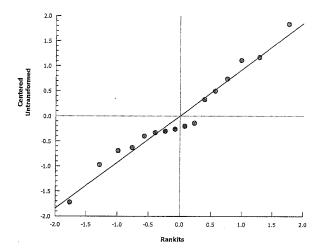
LM-10735-0120 | 12-1579-4175

Lemna Growth Inhibition Test

Bureau Veritas Laboratories

\nalysis ID: Analyzed:

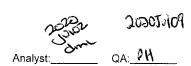

09-9059-2020 02 Jul-20 19:12


Analysis:

Endpoint: Total Dry Weight-mg Parametric-Two Sample CETIS Version:

CETISv1.9.2

Official Results: Yes


Report Date:

02 Jul-20 19:27 (p 5 of 6)

Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growt	th Inh	ibition Tes	t				· · · · · · · · · · · · · · · · · · ·			Burea	u Veritas L	aboratorie
nalysis ID:		2388-2019		-	Total Dry Wei				IS Version		1.9.2	
Analyzed:	02 .	Jul-20 19:26	- A	nalysis:	Parametric-Tw	o Sample		Offic	cial Result	s: Yes		
Batch ID:	16-1	531-7750	Т	est Type:	Lemna Growth	1		Ana	lyst: M.	Brassil		
Start Date:	12 Jւ	un-20 15:01	Р	rotocol:	EC/EPS 1/RM	/37		Dilu	ent: AF	PHA Media		
Ending Date:	19 Ju	un-20 15:22	: S	pecies:	Lemna minor			Brin	e: No	t Applicable	•	
Duration:	7d 0	h	S	ource:	Canadian Phy	cological Cu	iture Centre	Age	:			
Sample ID:	00-54	473-3468	С	ode:	C039804			Clie	nt: Ag	ni c o Eagle I	Mines	
Sample Date:	06 Ju	ın-20	M	laterial:	Water			Proj	ect: 2-1	11-0691		
Receipt Date:	11 Jւ	ın-20 08:20	S	ource:	Agnico Eagle !	Mines						
Sample Age:	6d 1	5h	S	tation:	MEL 02-05							
Comments:												
Ref1 is Mel-03	-02. F	Ref2 is Mel-	04-05. Re	ef3 is Mel-	05-04.	w						
Data Transfor			Alt Hyp)				······································	son Result			PMSD
Untransformed			C <> T		****			Ref 1 pas	sed total di	ry weight-mo	9	17.13%
Equal Varianc	e t Tv	vo-Sample	Test									
Control v	vs	Control I	ŀ	Test 9	Stat Critical	MSD DF	P-Type	P-Value	Decision	η(α:5%)		
Site Water Cor	ntr	Ref 1		0.219	1 2.447	1.312 6	CDF	0.8339	Non-Sigr	nificant Effec	ot	
Auxiliary Tests	s											
Attribute		Test				Test Stat	Critical	P-Value	Decision	η(α:5%)		
Extreme Value		Grubbs E	xtreme V	alue Test		1.588	2.127	0.6914	No Outlie	ers Detected	1	
ANOVA Table												
Source		Sum Squa	ires	Mean	Square	DF	F Stat	P-Value	Decision	n(α:5%)		
∋tween		0.0276125		0.0276	3125	1	0.04799	0.8339	Non-Sigr	ificant Effec	t	
Error		3.45237		0.5753	396	6	_					
Γotal		3.47999				7						
Distributional	Tests	;										
Attribute		Test				Test Stat	Critical	P-Value	Decision	ι(α:1%)		
/ariances		Variance R	latio F Te	st		1.672	47.47	0.6833	Equal Va	riances		
Distribution		Shapiro-W	ilk W Nor	mality Tes	st	0.9665	0.6451	0.8693	Normal D	Distribution		
otal Dry Weig	ght-m	g Summar	у									
Conc-%		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
		R1	4	7.545	6.195	8.895	7.635	6.43	8.48	0.4243	11.25%	0.00%
)		S1	4	7.662	6.618	8.707	7.7	6.99	8.26	0.3282	8.57%	-1.56%
otal Dry Weig	jht-m	g Detail										
Conc-%		Code	Rep 1	Rep 2	Rep 3	Rep 4						
		R1	8.48	7.75	6.43	7.52						
		04	0.00	0.46								

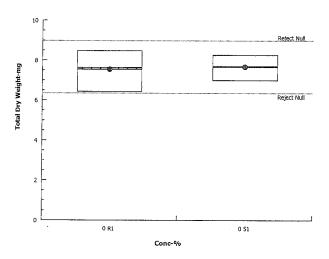
6.99

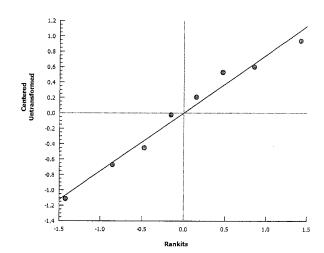
8.19

8.26

7.21

Report Date:


02 Jul-20 19:27 (p 6 of 6)


Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growt	th Inhibition Test				Bureau Veritas Laboratories
nalysis ID:	19-2388-2019	Endpoint:	Total Dry Weight-mg	CETIS Version:	CETISv1.9.2
Analyzed:	02 Jul-20 19:26	Analysis:	Parametric-Two Sample	Official Results:	Yes

Graphics

Report Date:

02 Jul-20 19:27 (p 3 of 6)

Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growth	ı Inhibition T	est							Burea	u Veritas L	aboratories
nalysis ID: Analyzed:	12-3333-310 02 Jul-20 19		indpoint: inalysis:	Total Dry Weig Parametric-Tw	-			is Version:		1.9.2	
Batch ID:	 16-1531-7750) T	est Type:	Lemna Growth			Ana	lyst: M. I	Brassil		
Start Date:	12 Jun-20 15		rotocol:	EC/EPS 1/RM			Dilu	•	HA Media		
Ending Date:	19 Jun-20 15	:22 S	pecies:	Lemna minor			Brin	e: Not	Applicable	1	
Duration:	7d Oh	S	ource:	Canadian Phy	cological Cu	Iture Centre	Age	:			
Sample ID:	00-5473-3468	3 C	ode:	C039804			Clie	nt: Agr	i c o Eagle I	Vines	
Sample Date: (06 Jun-20	IV	laterial:	Water			Proj	ect: 2-1	1-0691		
Receipt Date:	11 Jun-20 08:	:20 S	ource:	Agnico Eagle I	Vines						
Sample Age:	3d 15h	S	tation:	MEL 02-05							
Comments: Ref1 is Mel-03-0	no Pafo is M	al.04.05 D	af3 is Mol (05.04		,					
								D			
Data Transform Untransformed	1	Alt Hy _l C <> T	ρ					son Result sed total dry	, weight-ma	r	PMSD 21.89%
Equal Variance	t Two-Sami										21.0070
Control v			Test 9	Stat Critical	MSD DE	F P-Type	P-Value	Decision	(a:5%)		
Site Water Cont		,, II	1.098	2.447	1.678 6	CDF	0.3145		ficant Effec	 ct	
Auxiliary Tests	1.					V-74-/		-1		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Attribute	Test				Test Stat	Critical	P-Value	Decision	(a:5%)		
Extreme Value	Grubbs	Extreme V	alue Test		1.743	2.127	0.4088	No Outlier	s Detected		
ANOVA Table											
Source	Sum Sc	juares	Mean	Square	DF	F Stat	P-Value	Decision((a:5%)		
∍tween	1.13251		1.132	51	1	1.205	0.3145	Non-Signi	ficant Effec	et	
Error	5.64117		0.9401	196	6	_					
Total	6.77369				7						
Distributional T	ests										
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variances		Ratio F Te			3.365	47.47	0.3455	Equal Var	iances		
Distribution	Shapiro-	Wilk W Nor	mality Tes	st	0.9591	0.6451	0.8013	Normal Di	stribution		
Total Dry Weigh	nt-mg Summ	ary									
	Code			95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effect
0	R2	4	8.415	6.499	10.33	8.25	7.18	9.98	0.602	14.31%	0.00%
0	S1	4	7.662	6.618	8.707	7.7	6.99	8.26	0.3282	8.57%	8.94%
Total Dry Weigh	nt-mg Detail										
Conc-%	Code	Rep 1	Rep 2		Rep 4						
0	R2	7.85	7.18	8.65	9.98						

70300 700T

0

S1

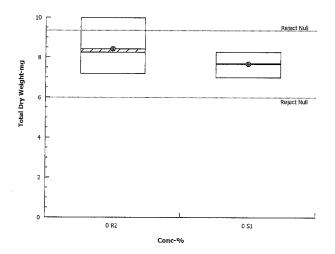
6.99

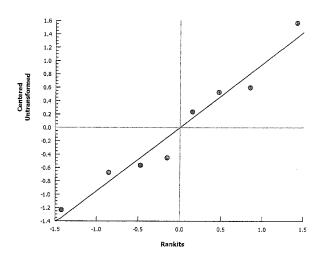
8.19

8.26

7.21

Report Date:

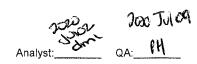

02 Jul-20 19:27 (p 4 of 6)


Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growt	th Inhibition Test				Bureau Veritas Laboratories
nalysis ID:	12-3333-3104	Endpoint:	Total Dry Weight-mg	CETIS Version:	CETISv1.9.2
Analyzed:	02 Jul-20 19:25	Analysis:	Parametric-Two Sample	Official Results:	Yes

Graphics


Report Date:

02 Jul-20 19:27 (p 1 of 6)

Test Code:

LM-10735-0120 | 12-1579-4175

							162	L Coue.	LIVI-107	30-0120 1	2-10/5-41
Lemna Growt	h Inhibition Te	st							Burea	u Veritas L	aboratorie
nalysis ID:	21-1856-4958	E	ndpoint:	Total Dry Weig	ght-mg		CET	IS Versio	n: CETISv	1.9.2	
Analyzed:	02 Jul-20 19:2	25 A	nalysis:	Parametric-Tw			Offic	cial Resu	l ts : Yes		
Batch ID:	16-1531-7750	Te	est Type:	Lemna Growth	1		Ana	lvst: N	1. Brassil		
-	12 Jun-20 15:0		rotocol:	EC/EPS 1/RM			Dilu	•	PHA Media		
Ending Date:	19 Jun-20 15:2	.2 S I	pecies:	Lemna minor			Brin		lot Applicable		
	7d Oh		ource:	Canadian Phy	cological Cu	lture Centre	Age				
Sample ID:	00-5473-3468	С	ode:	C039804			Clie	nt: A	gnico Eagle I	Vines	
Sample Date:	06 Jun-20	М	aterial:	Water			Proj	ect: 2	-11-0691		
Receipt Date:	11 Jun-20 08:2	0 S	ource:	Agnico Eagle I	Vlin e s						
Sample Age:	6d 15h	St	tation:	MEL 02-05							
Comments:											, , , , , , , , , , , , , , , , , , , ,
Ref1 is Mel-03-	-02. Ref2 is Mel	l-04-05. Re	f3 is Mel-	05-04.							
Data Transfori	m	Alt Hyp)				Comparis	son Resu	lt		PMSD
Untransformed		C <> T					Ref 3 pas	sed total	dry weight-mo	3	18.27%
Equal Varianc	e t Two-Sampl	e Test									***************************************
Control v	s Control	H	Test S	Stat Critical	MSD DF	P-Type	P-Value	Decisio	n(α:5%)		
Site Water Con		······································	1.46	2.447	1.4 6	CDF	0.1946		nificant Effec	ot	
Auxiliary Tests	······································			F. 1 F. 101						· · · · · · · · · · · · · · · · · · ·	
Attribute	Test				Test Stat	Critical	P-Value	Decisio	on(α:5%)		
Extreme Value	Grubbs E	Extreme Va	alue Test		1.385	2.127	1.0000		iers Detected		
ANOVA Table											-
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)		
∍tween	1.39445		1.3944	45	1	2.131	0.1946	Non-Sig	nificant Effec	ot .	
Error	3.92635		0.6543	392	6	_					
Total	5.3208				7						
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Variance	Ratio F Te	st		2.038	47.47	0.5735		ariances		
Distribution	Shapiro-V	Vilk W Nor	mality Tes	st	0.8577	0.6451	0.1140	Normal	Distribution		
Total Dry Weig	ıht-mg Summa	ıry									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	R3	4	8.497	7.006	9.989	8.605	7.46	9.32	0.4685	11.03%	0.00%
)	S1	4	7.662	6.618	8.707	7.7	6.99	8.26	0.3282	8.57%	9.83%
Γotal Dry Weig	ht-mg Detail	-		•				,			
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
)	R3	7.95	7.46	9.26	9.32				*		
_											

S1

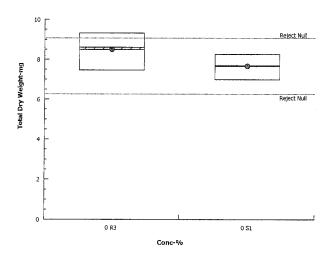
6.99

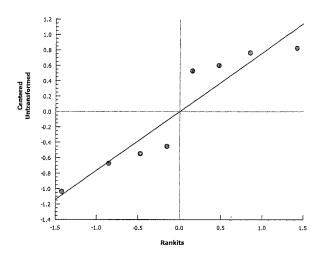
8.19

8.26

7.21

Report Date:


02 Jul-20 19:27 (p 2 of 6)


Test Code:

LM-10735-0120 | 12-1579-4175

Lemna Growt	th Inhibition Test				Bureau Veritas Laboratories
nalysis ID:	21-1856-4958	Endpoint:	Total Dry Weight-mg	CETIS Version:	CETISv1.9.2
Analyzed:	02 Jul-20 19:25	Analysis:	Parametric-Two Sample	Official Results:	Yes

Graphics

Lemna minor Growth Inhibition Test Data

Tab: Weights, Page 1 of 1

Golder Associates Ltd.

Client Name: (Agnico)

Job# / Sample #: C039804

Sample ID: Various

Oven Temp (°C): 60

Weighing Dates: 2020 Jun 17 2020 Jun 22

Drying Time (h): >24

Analyst(s): NS

YS

Balance ID: bby2-0260

Boat #	Conc. & Replicate	Final # of Fronds	Boat Wt.	Boat & Frond Dry Weight (g)	Dry Weight per Rep. (mg)	Mean Dry Weight per Conc (mg)	SD	% Stimulation
432	Control-A	67	0.78390	0.79073	6.83	6.95	0.19	
433	В	73	0.80892	0.81579	6.87	0.00	0.10	· · · · · · · · · · · · · · · · · ·
434	С	. 66	0.80701	0.81387	6.86			
435	D	76	0.80104	0.80827	7.23			
436	Site Control-A	78	0.80316	0.81015	6.99	7.66	0.66	10.29
437	В	83	0.80249	0.81068	8.19			
438	С	81	0.80605	0.81431	8.26			
439	D	76	0.79264	0.79985	7.21			
440	Soft Water Ctrl-A	73	0.81297	0.82065	7.68	7.92	0.97	13.93
441	В	69	0.81633	0.82319	6.86			
442	С	88	0.81984	0.82777	7.93			
443	D	95	0.81678	0.82597	9.19			
444	MEL-02-05 97.0-A	103	0.80030	0.80877	8.47	8.73	0.50	25.69
445	В	96	0.80120	0.81067	9.47			
446	С	80	0.80291	0.81131	8.40			
447	D	89	0.80124	0.80983	8.59			
448	MEL-03-02 97.0-A	90	0.78696	0.79544	8.48	7.55	0.85	8.60
449	B	76	0.77420	0.78195	7.75		••••	
450	C	68	0.78711	0.79354	6.43			
451	D	81	0.82981	0.83733	7.52			···
452	MEL-04-05 97.0-A	77	0.80185	0.80970	7.85	8.42	1.20	21.12
453	В	71	0.81271	0.81989	7.18			
454	C	94	0.79491	0.80356	8.65			
455	D	95	0.79198	0.80196	9.98			
456	MEL-05-04 97.0-A	76	0.77873	0.78668	7.95	8.50	0.94	22.31
457	В	73	0.77861	0.78607	7.46			
458	C	87	0.76705	0.77631	9.26			
459	D	88	0.80609	0.81541	9.32			
460	QA/QC	N/A	0.79519	0.79521	0.02	-	-	-
461	QA/QC	N/A	0.78767	0.78762	-0.05	-	-	
432	0-A	67	0.78388	0.79085	6.97	-	-	
	Analyst	MB	NS	YS				

N/S - No growth stimulation (dry weight) compared to the Control

Start Date: June 12, 2020

Tab: Observations, Page 1 of 1

Lemna minor Growth InhibitionTest Data

Cli	ent Name	: Golder A	Associates	Ltd. (Agn	100)		Start Date:	June 12, 2	2020	
5	Sample ID	: <u> </u>	1005	· 0	_		End Date:	June 19, 2	2020	
Sar	mple Date	: 30	9050m	ob.	_	Job#	/ Sample #	COS	9804	
•	Analyst(s)	N.She	rople	uka	<u>s</u> \$i/				Bada	
	pH of ra	w sample		r addition o		Pre-aera	ation time	pH after	aeration	
	07.9	@8.O	07.10	2	7.8	2	Omin	07.8	28,2	
APHA Stocks F	ම්%ර Prep Date:		37.7		7.8			3 7.8 	41.9	<u>[</u>
Thermo	ometer ID:		-0438		int Shelf #:	3			15	$\overline{\bigcirc}$
			,	YUOK				():		
Concentration		-		Temperati	ure Monitor	ing			рН Мо	nitoring
(%)	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 0	Day 7
Control	24	27	อา	26	26	26	26	27	8.3	8.9
Site Control	24	27	ねて	96	26	26	26	27	83	8.6
Soft Water Control	24	27	ねて	วๆ	26	Δ6	26	27	8.3	8.7
MEL-02-05 97.0	25	27	רב	əη	26	26	26	27	7.9	8.9
MEL-03-02 97.0	25	27	27	əη	26	26	26	27	8.2	92
MEL-04-05 97.0	25	27	27	26	26	26	16	27	7.9	9.2
MEL-05-04 97.0	25	27	דג	อๆ	26	26	26	27	7.9	9.1
Analyst	uso	WB	102	NO	UK	us	w	ws	WB	uB
Date	2020 JOHUZ	2020 Jiwol	HINGE (roso	Turell	3020 Jwe17	20201	1020 June 9	2020 Jure 12	2020
Observations du	ring the 1						210-1-1			· 20-18-1
7	Date:	June 12,	2020					Analyst:	under	2.581
Day 0	# of Plant	ts per Tes	t Vessel:	2		(1)	# of Frond	s per Plant	3	
(Test Initiation)	1	servations	A 1 -	jank g	sen 1	ralth	↑ Test S	Seeded @:	15:0	
	Other cor	nments: \	Ma	· · · · · · · · · · · · · · · · · · ·	<u> </u>					
	Date:	June 13,	2020					Analyst:		Bassil
Doy 1	Observati	ons:	Control	Site Control	Soft Water Control	MEL-02-05 97.0%	MEL-03-02 97.0%	MEL-04-05 97.0%	MEL-05-04 97.0%	
Day 1		<u> </u>	DGH	DG, H	De, H	DG, A	DG, H	DG, FI	DG, H	
	Other Cor	mments: <u>İ</u>	HU S	OUNS	appea	u cle	erf	Coloda	(055	
					, ,		•			

Client Name: Golder Associates Ltd.

BBY2FCD-00330/5

Tab: Observations, Page 1 of 1

Lemna minor Growth InhibitionTest Data

		Lemna r	<i>minor</i> Gro	owth Inhi	bitionTes	t Data	<i>,</i>	ome sono sinia	
	4 SAMPLI	ĒŚ			Job#	/ Sample #	Cach	Source of the server of the se	
	Date: June 14	, 2020					Analyst	Nonercall	
Day 2	Observations:	Control	Site Control	Soft Water Control	MEL-02-05 97.0%	MEL-03-02 97.0%	MEL-04-05 97.0%	MEL-05-04 97.0%	
	Other Comments:	DGH	DG H	DG H	DGH	DGH	DG H	og th	
	Date: June 15	, 2020			····		Analyst:	P. Haves	
Day 3	Observations:	Control	Site Control	Soft Water Control	MEL-02-05 97.0%	MEL-03-02 97.0%	MEL-04-05 97.0%	MEL-05-04 97.0%	
.,	Other Comments:	nia nia	ant	DEAT	06,14	D6-14	06,14	DEIT	
	Date: June 16,	2020		,			Analyst:	wassi	
Day 4	Observations:	Control	Site Control	Soft Water Control	MEL-02-05 97.0%	MEL-03-02 97.0%	MEL-04-05 97.0%	MEL-05-04 97.0%	
	Other Comments:	DK, H nia	DG, H	DG, H	DG, H	DG,H	DG, H	[DE' H]	
	Date: June 17,	2020					Analyst:	Warassil	
Day 5	Observations:	Control	Site Control	Control	97.0% Db. H	97.0%	97.0% Da, H	97.0%	
	Other Comments:			ppear			colon	M ' 1 ' /	
	Date: June 18,	2020					Analyst:	uspassi	
Day 6	Observations:		Site Control	Soft Water Control	MEL-02-05 97.0%	MEL-03-02 97.0%	MEL-04-05 97.0%	MEL-05-04 97.0%	
	Other Comments:	DEH	5 DE'H	DE,H	DG, H	DG,H	Db, H	Dt, H	
	Date: June 19,			, , , , , , , , , , , , , , , , , , ,			Analyst:	whosel	<i></i>
	Test End Time:	15:	Fh.						
Day 7	Observations:		Site Control	Soft Water Control	MEL-02-05 97.0%	MEL-03-02 97.0%	MEL-04-05 97.0%	MEL-05-04 97.0%	
	Other Comments:	Ma	· DK/H	DE,H	D&,H	14,4	06, H	D6,f)	
Legend:	DG = Dark Green		C = Chloro	sis	A = Green	Algae	CD = Color	ny destroyed	·—
	LG = Light Green		N = Necros		T = Transp	_		s destroyed	
	H = Healthy, Normal Other:	al	G = Gibbos	sity	S = small fi	ronds		-	

Tab: Frond Counts, Page 1 of 1

Lemna minor Growth InhibitionTest Data

Client Name: Golder Associates Ltd. (Agaic 6)	Job# / Sample #: _ CO3A804
Sample ID:	Start Date: June 12, 2020
Analyst(s): Noras Al	End Date: June 19, 2020

Conc. &	Initial Number	Final Number	Frond	Mean Increase in #	SD	%
Replicate	of Fronds	of Fronds	Increase	Fronds per Conc'n		Stimulation
Control-A	6	67				
В	6	73				
С	6	66.				
D	6	76				
Site Control-A	6	78				N/S
В	6	83				-
C	6	81			_	
D	6	76				
Soft Water Ctrl-A	6	.73		-		N/S
В	6	bg				
С	6	88				
D	6	95				
MEL-02-05 97.0-A	6	03				N/S
В	6	9°6				
С	6	80				
D	6	89				
MEL-03-02 97.0-A	6	90'				N/S
В	6	, 76				
С	6	68				
D	6	81				-
MEL-04-05 97.0-A	6	77				N/S
В	6	7.1				
С	6	94				
D	6	95				
MEL-05-04 97.0-A	6	76				N/S
В	6	73				
С	6	81				
D	6	88				
Analyst		SLU				

N/S - No growth stimulation (frond increase) compared to the Control

Control Validity Criteria: Mean final # of fronds in Controls on day 7 must be ≥8 times initial # of fronds

Mean Final # of Fronds on Day 7	#DIV/0!
Control Frond Increase	#DIV/0!
Validity Criteria Met?	#DIV/0!

Randomization Chart

BBY2FCD-00438/3 Tab: Lemna minor; Pg: 1 of 1

Client Name: Golder (Agnico)

Test Date: 2020 Jun 12

Sample Name: Shelf #: 3

Back Wall			Position Map				
5	10	15	20	25	30	35	40
4	9	14	19	24	29	34	39
3	8	13	18	23	28	33	38
2	7	12	17	22	27	32	37
1	6	11	16	21	26	31	36

Front of Counter

Position #	Treatment	Replicate	Colour
1		А	
21		В	
31	Control	С	Red
4		D	
17		Measure	
14		Α	
24		В	
28	Site Control	С	White
30		D	
35		Measure	
26		Α	
8	C = ff \ \ \ \ \ - t =	В	
32	Soft Water Control	С	Orange
13	00.12.0.	D	
27		Measure	
12		Α	
22		В	
34	MEL-02-05	С	Yellow
3		D	
11		Measure	
9		Α	
29		В	
6	MEL-03-02	С	Fl. Green
10		D	
7		Meas.	
25		Α	
16		В	
23	MEL-04-05	С	Teal
19		D	
15		Measure	
20		Α	
5		В	
2	MEL-05-04	С	Blue
33		D	
18		Measure	

BUREAU VERITAS LABORATORIES BBY2FCD-00318/4 Tab APHA Media, Page 1 of 1

Modified APHA Medium Preparation Sheet (Lemna minor)

APHA Medium is the test medium recommended for testing samples of effluent, leachate, or receiving water, using L. minor.

To prepare 1L of APHA test medium, the following are added to 970 mL of Type 1 deionized water. The medium is aerated vigorously for at least 2 hours. If larger volume (>4 L) of media is prepared, overnight aeration of the medium is recommended to stabilize the pH of the medium. Immediately before testing, the pH of the test medium is adjusted to 8.3+/-0.1 using 1N NaOH or 1N HCl).

Volume Prepared (L):	20 🔭
Date of Preparation:	2020 Ton 10
Date of Use:	2000 300 11
Analyst:	Orreroseo

(ADHATONSEN) 2020 IN 12 (45/5)

Stock Solution	Date of Preparation	Nominal Amount (mL)	Actual Amount (mL)	Pipette
Stock Solution A	20 20 GN24	200	200	(A)
Stock Solution B	2020 EBBY	200	200	(A)
Stock Solution C	2020 8004	200	800	(A)

Volume of media prepared	Theoretical aeration time	Actual aeration time
1-4 L	At least 2 hours	E
>4 L	Overnight	

Initial pH	8.2
Final pH	nja

[8.3+/-0.1]

Normality of NaOH:	/
Volume of NaOH:	17.19
Normality of HCI:	2020
Volume of HCI:	June 11

[0.5 N]

[0.5 N]

BUREAU VERITAS LABORATORIES BBY2FCD-00318/4

Tab APHA Media, Page 1 of 1

Modified APHA Medium Preparation Sheet (Lemna minor)

APHA Medium is the test medium recommended for testing samples of effluent, leachate, or receiving water, using *L. minor.*

To prepare 1L of APHA test medium, the following are added to 970 mL of Type 1 deionized water. The medium is aerated vigorously for at least 2 hours. If larger volume (>4 L) of media is prepared, overnight aeration of the medium is recommended to stabilize the pH of the medium. Immediately before testing, the pH of the test medium is adjusted to 8.3+/-0.1 using 1N NaOH or 1N HCl).

Volume Prepared (L):	20
Date of Preparation:	30>0 Jun 10
Date of Use:	2020 JUN 13
Analyst:	Narorago

1000 JUNO

Stock Solution	Date of Preparation	Nominal Amount (mL)	Actual Amount (mL)	Pipette
Stock Solution A	2006197	200	200	(A)
Stock Solution B	rengosos	200	200	(A)
Stock Solution C	20067	200	300	(A)

(A) we to used grad. cyclinder, we soo Junio

Volume of media prepared	Theoretical aeration time	Actual aeration time
1-4 L	At least 2 hours	nia
>4 L	Overnight	

Initial pH	8.2
Final pH	n19

[8.3+/-0.1]

Normality of NaOH:	
Volume of NaOH:	10 819
Normality of HCI:	2020
Volume of HCI:	/ Take //

[0.5 N]

[0.5 N]

Lemna minor Culturing Plant Subculture and Acclimation for Tests

BUREAU VERITAS LABORATORIES BBY2FCD-00331/4 Tab: Subculture, Page 1 of 1

Stock Culture Information
Parent Culture ID: CD 2005 26 Culture flask #s:
Appearance of culture and media prior to subculturing: Plants appear dark
only & healthy modia amplanc clear
at cotours of what brown
WE UR 2020 Terre 02 Analyst: Ward Stil
To No. Oct. Co.
Test Subculture and Health Monitoring (7 - 10 days prior to testing)
Date of Transfer: 1020 June 02 New Subculture ID: CP 200602 SC
of Flasks Prepared: 6 x 500 w Flask Volume: ~ 20 cm
of Plants/Flask: 10 Shelf Location: 4
Hoagland's Batch: 2020 May 14 Analyst: whoasal
\ <u>\</u>
Health Monitoring Cups Date prepared: 2020 Alex June 02 Test Medium: APHA 2020 May 26
Date prepared: 2020 for Fund D2Test Medium: HYTTH 2020 May 26
replicates: Shelf #: 4 # Fronds seeded/rep: Analyst: WindStil
Fronds seeded/rep: Analyst: Analyst:
Day 7 Counts Rep A Rep B Rep C Mean Date Analyst
38 38 39 38,3 2020 June 09 Warerall
(Health cup validity: Mean of ≥24 fronds on day 7, when 3 fronds/rep are seeded on day 0)
APHA Acclimation (18-24 hrs prior to testing) for (date): 2020 Time 12 setup
Date & Time of Transfer: 2020 Tuto 11 16:05 Subculture ID: CP2006025C Shelf Location: 4
Appearance of plants and Hoagland's E+ media prior to transfer to APHA media:
Hants appear dark green & healthy, media
appears light brown of clear.
Number of crystallization dishes prepared () using # of subculture flasks ()
APHA Batch: 2020 Jame O Analyst: 125 Masal
APHA Acclimation (18-24 hrs prior to testing) for (date): setup
Date & Time of Transfer: Subculture ID: Shelf Location:
Appearance of plants and Hoagland's E+ media prior to transfer to APHA media:
200
July 172
Number of crystallization dishes prepared () using # of subculture flasks ()
APHA Batch: Analyst:

Page 1 of 1

alcis@

		Ica	4.	Rom	MH0	1		
∟ab Location:	er en al Addition	1	10	1,00		en santulinsa itter		e established
Light Meter ID:		BBAS	2 (0459	•		e	
Light Fixture Co	orrection F	actor: Actu	al Levels X	1/9=	Corrected Levels	-	• • • • • • • •	
		Merc 0.95)		ng x 1.05)	Fluorescent - (rea	ading x 0.91)) Daylight -	(reading x
Test Method:	Lew	na Olin	or 7	Day	Growth	In held	ition -	Test
Required Light	Levels and	Units: 66	-90	umol	/m2/ sec	-		
Date: 20	<u>30 I</u>	une 12	Analyst:	U	Ana ssi	f 		

Site of I	Measurement	Actual Levels	Corrected Levels
Stelf#1	lest back	82	-
	left front	\$3	
	mid, back	8	
	Wid. front	84	
	right back	77	Nld
	vightmont	\$1	/ NB
Shelf#3	left back	74	/2020
	left front	84	Jone 12
	mied back	88	
	troop bein	88	
	right back	81	
	vight front	77	
Shelfatta	left back	91	
(left front	83	
	mid back	85	
	mid fount	80	
	right back	¢ 3	
	top their	73	
	V		· · · · · · · · · · · · · · · · · · ·

ECOTOXICOLOGY

BUREAU VERITAS LABORATORIES

BBY2FCD-00069/3

Tab: CaSO4; Page 1 of 1

FATHEAD MINNOW WATER HARDNESS ADJUSTMENT

BATCH ID:

2020 Jun 09

(Date Hardened)

(For water hardness 100-140 mg/L)

Volume of Water (L) 200

Desired Hardness (mg/L) 130

Keep this set to a desired hardness of 130, so water will always be on the harder side, as fathead minnows are cultured in water at a hardness of **103-142** mg/L CaCO₃.

Chemical Weights	MgSO ₄ (g)	CaSO ₄ (g)	NaHCO ₃ (g)	KCI (g)
Brand	Fisher	Alfa Aesar	Fisher	Fisher
Lot#	183674	Q09 E068	189522	195613
Calculated	19.5000	15.3400	31.2000	1.3000
Actual	19,4994	15.3401	31.1999	1.3003
Balance: 8B12-021	<i>o</i> 0			
Analyst: M. Thom		-		
Date: 2020 TU	1	<u>-</u>		

Water Quality:	
Temp (°C): 24.2 pH: 8.1	Hardness (mg/L CaCO ₃): 136
DO (mg/L): 7·4	7.0111.12//
Conductivity (µS/cm): 456	Instrument ID: 43 B Y 2-0366
Analyst: MYamau	Date: 2020 Jun 10
Comments: PVA	

Note: Hardness = Ca and Mg as mg/L CaCO₃

For lemna softwater ctrl diluted ISL FHM water with DI water to a total of 5L. Hardness NYOng/L. Spiked 5L softwater ctrl with soml of each APHAStock A RICLE.

FHM + Lemna 2-11-20003 Synthetic Water

אוסתפו מעול ואוסת אמנסי		00	†							
Amount of salt (mg) in 1L of water	26		5	8		12	ns	Sum Difference from target	from farget	
Molar Mass Salts	NaHCO3	CaSO4*2H2O M	MgSO4 K(KCI CaCO3	03 CaCl*2H2O	2H2O NaCl		(max)	<u>~</u>	
10.09	18.54802663						18.54802663			
40.08			2	2 377 598927	8.262436139	307968092 7.26558497	7 16.95115199	6139 0.9 5199 -4.8		
							Ĭ	0.0		
24.30			.413260219	2,622401073			1.413260219	.0219 -0.3 1073 11.5		
A 123,10 M CONTRACTOR OF STATES OF S	7.139800285					4.73441503		1532 2.3		
90'96			5.586739781		>0CN C	7 470505750	5.586739781	9781 0.6		
18.02						60,000	7.429.7	1 1 1		
1,01	0.312173086						0.312173086	3086 #VALUE!		
Total check (mg/L) g/2001.	26 5.2	0.0	4. S	5 1.0 0.0		2.4				
Actual w+(g) 5:4004	5.90p4		1,400°,1 P.00P.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		500h.c ma.L	, , ,			
09CD-CN99 (+ 1910 / 2)	0960-6							(•	11
)								Brand		日の十世
Analyst PH			_		•					189000
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1000	X SOFFED	_	Lemno	Ž	ぐらエミス		100014		
Date: 2020 Johns	, SE	- To: 0	7	7		\ (F. Cher		18367Y
3		多ら大	ろころ	VALUE OF STATE		Mg/SOL		. > 1.5 -		
rre, raci		High.	APH	WITH APHA SHOP		-		righer.		SSOPLI
(Coll) John of others	Conny)				入り				•
	7537	A B.C		fo/m051)						Charles
Conductivity= 126.0 cms/cm	1cm	. Joseph	Into	and Into 15Lof	Ð		C	Fisher	Ļ	171430
5+ - +12) D			•
Temperature= 24.1		10 V	netic (SYNTHOETIC WARY)	•	132		Fisher	ک	594501
Do cm912>= 8.3										
DO (% Sat) = 9912							ď		700	
Hardness: 32 molt (960)	E S	APHA Stocks. A - Rep 2030 Feb 24	octs. A	t - Prep a	redot oec	ر ا آھ		rigo acadendo y	· 5	
				3-PRP 20	reasoe	B-Rep DODOKLOFY JIN WY SOUSSUNGIN		<u>7</u>		

golder.com