

July 10th, 2017

Karen Kharatyan Manager of Licensing Nunavut Water Board P.O. Box 119 Gjoa Haven, NU X0B 1J0

Re: Water License 2AM-MEL1631 Part D, Item 3 / NIRB Project Certificate 11MN034 Condition 18 - Submission of Construction Summary Report for the Sewage Treatment Plant

Mr. Kharatyan,

Agnico Eagle Mines Limited is developing the Meliadine Project, a gold mine located approximately 25 km north from Rankin Inlet, and 80 km southwest from Chesterfield Inlet in the Kivalliq Region of Nunavut. Situated on the western shore of Hudson Bay, the Project site is located on a peninsula between the east, south, and west basins of Meliadine Lake (63°1'23.8" N, 92°13'6.42"W) on Inuit Owned Land.

Facilities that are planned to be constructed for the operation of the future Meliadine Mine include a mill, power plant, maintenance facilities, tank farm for fuel storage, freshwater treatment plant, sewage treatment plant, and accommodation and kitchen facilities for 520 people.

Commissioning of the Sewage Treatment Plant was completed April 7, 2017. In accordance with Water License 2AM-MEL1631, Part D, Item 3 and Schedule D, and Project Certificate 11MN034 Condition 18, please find enclosed with this letter, a copy of the Construction Summary Report for the Sewage Treatment Plant.

Should you have any questions regarding this submission, please contact me.

Regards,

Agnico Eagle Mines Limited - Meliadine Division

Manon Turmel manon.turmel@agnicoeagle.com 819-759-3555 x8136 Environmental Compliance Counselor

Meliadine Sewage Treatment Plant

Construction Summary Report (As-Built report)

In Accordance with Water License 2AM-MEL1631 (Part D, Item 3)

Prepared by:

Agnico Eagle Mines Limited – Meliadine Division

TABLE OF CONTENTS

1	INT	ROE	DUCTION	4
2	SU	MMA	RY OF THE CONSTRUCTION	4
	2.2	SITI	E LOCATION AND ACCESS	4
	2.3	SCH	HEDULE	5
	2.4	TRE	EATMENT PLANT CHARACTERISTICS	5
	2.4	.1	Screening and Flow Equalization	5
	2.4	.2	Aerobic Biological Treatment	5
	2.4	.3	Membrane Filtration System	6
	2.4	.4	Ultraviolet Disinfection System	7
	2.4	.5	Sludge Handling System	7
3	FIE	LD C	DECISIONS AND MITIGATION MEASURES	7
4	SU	MMA	RY OF ANALYSIS RESULT OF WATER QUALITY TEST	9
5	DR	IWA:	NGS AND PHOTOGRAPHS1	0

LIST OF FIGURE AND TABLE IN TEXT

Figure 1. Plan of the site and location of the STP	4
Table 1. Water quality parameters and the concentrations to expect	9
Table 2. List of drawings contained in Appendix D	10

APPENDICES

Appendix A: Construction Monitoring Summary

Appendix B: Process Flow Schematics

Appendix C: Analysis results of water quality tests

Appendix D: Sewage Treatment Plant As-built Drawings

Appendix E: Sewage Treatment Plant Photographs

1 INTRODUCTION

As required by Water License A No. 2AM-MEL1631 – Agnico Eagle Mines Limited for the Meliadine Gold Project (Part D, Item 3), this report summarizes the construction work of the Sewage Treatment Plant (STP). Included in this report:

- Summary of the construction;
- Summary of field decisions and mitigation measures implemented during construction;
- As-built drawings;
- Photographs of the infrastructure.

2 SUMMARY OF THE CONSTRUCTION

2.2 SITE LOCATION AND ACCESS

Agnico Eagle Mines Limited (Agnico Eagle) is developing the Meliadine Project (the Project), a gold mine located approximately 25 km north from Rankin Inlet, and 80 km southwest from Chesterfield Inlet in the Kivalliq Region of Nunavut. Situated on the western shore of Hudson Bay, the Project site is located on a peninsula between the east, south, and west basins of Meliadine Lake (63°1'23.8" N, 92°13'6.42"W) on Inuit Owned Land.

The figure below presents a site location plan (Figure 1).



Figure 1. Plan of the site and location of the STP

2.3 SCHEDULE

The overall schedules for the STP are as follows:

- Period of construction and commissioning: From March 3rd, to April 6th, 2017.
 - o Period of clear water test: From March 22th to March 24th, 2017
 - o Period of raw water test: From March 26th to April 6th, 2017
- Date of operation start-up: April 7th, 2017.
- The construction monitoring was managed by the supplier (H2O Innovation).

Construction monitoring summary is presented in Appendix A.

2.4 TREATMENT PLANT CHARACTERISTICS

The STP relies on bacterial activity. The process is composed of five (5) steps described below: screening and flow equalization, aerobic biological treatment, membrane filtration, ultraviolet disinfection, and sludge handling. The flow diagram is available in Appendix B.

2.4.1 Screening and Flow Equalization

Influent wastewater is pumped to the two (2) aerated equalization tanks (EQ). The equalization system is able to manage a variation in flows. It provides raw wastewater storage of up to 50% of the design flow to store feed during high flow periods and to ensure feed supplementation during low flow periods. It provides a stable and consistent raw feed for the downstream processes. Equalized water is pumped via two (2) equalization pumps into a standpipe inside the second tank and flows from that pipe by gravity to the fine screens. The fine screens are rotary drum screens with 2 mm perforated plate openings that operate continuously. The screens ensure the removal of large debris to protect downstream equipment. Pressurized wash water is used intermittently to clean the screens and screenings.

2.4.2 Aerobic Biological Treatment

Screened raw water falls by gravity from the screens into the sump tank, where it is pumped to the aerobic tank, which is located outdoors. Aerobic biological treatment removes the organic load (measured as BOD) of the wastewater. Bacteria grown in the bioreactor remove unwanted organic pollutants to produce a treated water of high quality. Oxygen is supplied by regenerative blowers and is injected by fine bubble diffusers in the tank. The diffusers are designed for a wide range of air flows, according to the system's demand in oxygen. It keeps a dissolved oxygen concentration at concentrations more than 2 mg/L at any time to satisfy the needs of the

biomass. The mixed liquor suspended solids (MLSS) overflows into a standpipe inside the tank and flows by gravity to the membrane filtration trains. The dry bacteria product, BEC105, could be used in the treatment process to stimulate biological activity when needed. Since the beginning of operation, a defoamer (anti-foam agent) is used to reduce the production of foam, which may cause overflow. Less than 0.5 liter of product is used daily and it is possible that it will be reduced depending on the foam production. As the flow rate increases, the foam is expected to reduce. Caustic soda (NaOH) is used to maintain the optimal pH condition for the bacteria inside the aerobic tank. The bacterial activity may cause the production of acidity and an alkali such as NaOH keeps the alkalinity balanced and helps to stabilize the pH between 6 and 8.

2.4.3 Membrane Filtration System

Membrane filtration (MBR) is used to separate the bacteria from the water to ensure they are kept in the process at the desired concentration. Activated sludge is returned at a constant flow rate to the aerobic tank to prevent a build-up of sludge in the membrane tank. The return activated sludge (RAS) is pumped at a higher flow rate than the design flow rate of the plant, to make sure that there is good circulation in the whole system and that there is no accumulation of solids.

The membranes are totally submerged and have a pore size of 0.4 microns, which remove all suspended solids in the effluent. Permeation pumps are provided to suction the effluent through the membrane modules and transport it to the permeate tank. Permeation pumps are supplied with variable speed drives to overcome any changes in transmembrane pressure and achieve the design at all times. The operating cycle for the selected modules is to suction effluent water for seven (7) minutes and to relax the membrane for one (1) minute. The cycle optimizes the long-term operation of the membrane modules. The housings are constructed with an integrated diffuser at the bottom to aerate continuously the membrane and prevent clogging and accumulation of sludge. The relaxation of the membranes allows extending the interval between cleanings (CIP or Clean-In- Place). CIP cleans are done about twice a year. Washes are performed with permeate stored in the permeate storage tank while a cleaning chemical (sodium hypochlorite (NaClO) and citric acid (C₈H₈O₇)) is added. Chemical solutions are reverse flowing through the membranes, which are soaked for a few hours after. After washing, the permeation is restarted. While a train is washing, the other train can continue to treat water and ensure a continuous production of effluent.

Once a week, a chemically enhanced backpulse (CEB) should be performed on the membrane modules with sodium hypochlorite to mitigate membrane fouling. Permeate flow is reversed to flow back into the membranes while the cleaning chemical is added inline.

2.4.4 Ultraviolet Disinfection System

From the permeate pumps, each membrane bioreactor train sends permeate through an inline ultraviolet (UV) disinfection system. It is a physical process that inactivates instantaneously microorganisms. The UV system process adds no chemicals to the water, and therefore, has no impact on the chemical composition of the effluent. From here, effluent is sent to a common permeate storage tank. The permeate tank acts as a reservoir for treated water that is pumped to a discharge location. This tank can also be used for CEB and CIP process, as previously mentioned.

2.4.5 Sludge Handling System

Since bacteria continue to reproduce as they consume organics and nutrients, the concentration of biomass, measured as Mixed Liquor Suspended Solids (MLSS), increases with time. Periodic sludge wasting is required to control the MLSS concentration in the bioreactor tanks. Sludge is sent to the sludge storage tank by redirecting the flow of the RAS pump. A blower and coarse bubble diffuser system maintains an aerobic environment within the sludge tank to minimize the proliferation of odors. Periodic settling is used to facilitate the thickening of the waste activated sludge. The supernatant (upper portion of the tank) is sent back to the sump tank by opening a valve, where it will re-enter the treatment process. This operation, called decanting, reduces the volume of sludge that needs to be handled and extends the period of time that the sludge tank can be used before thickened sludge is disposed.

3 FIELD DECISIONS AND MITIGATION MEASURES

The construction of the STP generally followed the design drawing, except for the following:

Addition of defoamer: less than 0.5 L is used per day. This product is needed because of the formation of foam due to the activity of bacteria. This product is only needed at the beginning of the operation of the STP and the quantity will reduce with the augmentation of daily flow rate.

During the commissioning, the following issues occurred and have been solved:

- During a blizzard, the heavy winds pushed snow through the air damper. It caused minor leaks from the fan heater. To avoid this leaking, the fan speed was turned down during the blizzard.
- The main power disconnect was damaged during construction and was fixed.
- Baseboard heater was heating the wall instead of the floor. The heater was adjusted to 5°Celcius to minimized wall heating.

- The temporary insulation on the piping coming out of container #1 was damaged during the blizzard event. The piping was sealed with the permanent insulation after the event.
- Ventilation for artic conditions was deficient in the areas of the membrane, screen/waste and effluent reservoir. Artic vents were installed in those areas to prevent freezing during winter.
- Damaged by the blizzard, one of the Container#1 baseboard heaters was replaced.
- During the tests conducted on clear water, the equalization tank B T-19000B and Aeration reservoir T-72000 needed to be kept warm. A process air blower was used to keep the tank from freezing and auxiliary equipment was used to heat the water in the reservoir.
- The Container#1 and the Container#2 baseboard heaters were presented some dysfunctions. The electronic system was bypassed and an external thermostat control was installed for fixing the problem.
- The electronics of one of the flow indicating transmitter that measures the level of raw water going to the equalizer tanks (FIT-11274) had been isolated in a way the displays stays accessible before powering it up and commissioning it. However the device is not resistant to extreme cold temperatures. Before the start of this operation, the isolation has been completed to insure good function of this device.
- Equalizer tanks 1 and 2 (T19000A/B) and Aerobic tank (T-72000) level sensor 1/2" ball valve froze before the first clear water test. To ensure that this does not cause sensor level wrong reading during tests, verifications were done and the issue was solved. Equalizer tanks 1 and 2 (T19000A/B), and Aerobic tank (T-72000) level sensor insulation were completed with urethane.

4 SUMMARY OF ANALYSIS RESULT OF WATER QUALITY TEST

As indicated in the STP Operation and Maintenance Manual (OMM), inspections were conducted on the water quality daily and weekly once sewage started to flow through the STP. Physical parameters such as turbidity, temperature and flow rate were recorded, and samples collected to monitor the chemical water quality parameters presented in Table 1 which also lists the expected concentrations. Appendix C presents the laboratory analysis of water samples collected the days before and after the first discharge to CP1 on April 7th. Results show that the STP's effluent quality significantly improved the weeks following commissioning. Concentrations of Ammonia Nitrogen (NH3-N), nitrites (NO2), Total Kjeldahl Nitrogen, and total coliforms exceeded the expected concentrations initially but decreased in the following weeks. As the biological system was leaning towards equilibrium, the concentrations of most parameters are in accordance with the expected water quality concentrations listed below in Table 1. Parameters including nitrates (NO3) and nitrites (NO2) have some daily concentrations higher than expected initially. As a reminder, the final effluent from the STP is discharged into the CP1 attenuation pond. Water is then released to the receiving environment (i.e. Meliadine lake) if water quality results meet NWB Water License 2AM-MEL1631 and Metal Mining Effluent Regulations criteria.

Table 1. Water quality parameters and the concentrations to expect

Parameter	Influent Average	Effluent Quality
BOD	200-300 mg/L	<25 mg/L
COD	500 mg/L*	<50 mg/L
TSS	50-350 mg/L	<25 mg/L
Ammonia Nitrogen (NH ₃ -N)	40-50 mg/L	0.89 mg/L
NO ₃ (nitrate)	0.02 mg N/L*	50 mg N/L
NO ₂ (nitrite)	0.01 mg N/L*	2 mg N/L
Tot.Kjeldahl Nitrogen	45-60 mg/L	12-19 mg N/L*
T-Phoshorus	5-12 mg/L	10 mg/L*
рН	6.5 - 8.5	6 - 9
Alkalinity as CaCO ₃	250 mg/L	50 mg/L
Total Coliforms	15,900,000*	1000 cfu/100 mL
Fecal Coliforms	4,800,000*	1000 cfu/100mL

^{*}Data from Meadowbank

5 DRAWINGS AND PHOTOGRAPHS

As-built drawings are presented in Appendix D. Table 2 lists the different drawings included in Appendix D.

Table 2. List of drawings contained in Appendix D

Drawing Number	Drawing Name
U65875-C01-0001_R6	Process and instrumentation diagrams legend
U65875-C01-0110_R6	Raw Water Screening
U65875-C01-0190_R6	Feed Water Equalization
U65875-C01-0720_R6	Aerobic Tank
U65875-C01-0740_R6	Membrane Filtration
U65875-C01-0750_1_R6 U65875-C01-0750_2_R6	Blowers for Membrane Bioreactor System
U65875-C01-0790_R6	Permeate Tank
U65875-C01-0800_1_R6 U65875-C01-0800_2_R6	Dosing Skid - Cleaning Chemicals and Alkalinity
U65875-C01-0960_R6	Sludge Handling System

Appendix E contains photographs taken once the construction and commissioning.

Appendix A: Construction Monitoring Summary

Day	Time (from-to)		Work description	Comments/Delays
				WTP raw water tank feed to fire suppression system have to be
3/3/2017	13:30pm to 17:30pm		Arrival on site	insolated prior to fill raw water tank.
		STP/WTP	Material expedited from H2OI verification/gathering	
		WTP	Give the material to the plumber and give instruction to fix the 1 1/4" PVC piping broken line	
		STP/WTP	STP/WTP interconnections verification	
			Prepare material and give instruction to plumber in prevision of EQ sump and effluent sump	
		STP	inversion for the day after	
		STP	Smoke detector batteries replacement	
		WTP	Installing 5 microns and 10 microns Filters	
				WTP raw water tank feed to fire suppression system have been
				insolated by plumber. EQ sump and effluent sump inversion
3/4/2017	6:00am to 17:30pm		2nd day on site	could not be completed due to exteme weather condition
			I/O test	
		WTP	Start-up UV units, Test	
			pH/Cl probe wiring connection	
			Give instruction to the plumber to fix the 2" broken PVC flange	
		WTP	Smoke detector batteries replacement	
3/5/2017	6:00am to 17:30pm		3td day on site	
		STP	EQ sump and effluent sump inversion completed by plumbers	
		STP	EQ pumps electrical connection completed by electriciens	
		WTP	Test the control between raw water lift station and WTP	
		WTP	Fix LT-10060 raw water level transmitter issue.	
				H2OI might have to start commissioning on STP, depending on
				how long it takes to solve the issues on the WTP raw water lift
3/6/2017	6:00am to 17:30pm		4th day on site	station.
			Raw water lift pumps start-up. No water came in the WTP.	
		STP	Troubleshooting remote emergency stop button electrical interconnection	
			Pick up Alexis M. at his arrival at 13:30	
		CTD /M/TD	Discuss about the most incoming days planning since you water food is get surjichly as MTD	
	1 h · · ·	SIP/WIP	Discuss about the next incoming days planning since raw water feed is not available on WTP.	
	1 hour		Camp orientation	

Day	Time (from-to)		Work description	Comments/Delays
				Some progress have been achieve on STP commissioning since
				WTP commissioning is delayed due to raw water lift pumps
3/7/2017	6:00am to 17:30pm		5th day on site	issue
			7:30am meeting with agnico eagle. It have been determine that agnico eagle will witness some	
		STP/WTP	pre operational tests before starting up the systems.	
		STP	Replace 2 faulty pressure gages.	
		STP	Connect the 3 pH probes and the O2 sensor the transmitter.	
		STP/WTP	Verify VFD motor parameters	
		STP	Verify system parameters	
		STP	O/I test	
3/8/2017	no site		6th day on site	Blizzard red code all day
		STP/WTP	Double checking documentation in order to validate system determined set-point/adjustment	
3/9/2017			7th day on site	
			Double checking the STP/WTP documentation in order to validate system determined set-	
		STP/WTP	point/adjustment.	Blizzard red code all day
3/10/2017	10:00am to 17:30		8th day on site	Blizzard red code, access to site at 10:00am
	1 heure	STP/WTP	Put together the OIT list for STP/WTP	
	2 heures	STP	H2S/CH2 gas detector installation	
3/11/2017	6:00 to 17:30		9th day on site	
	5 hours	STP	H2S/CH2 gas detector installation	
	1 hour	STP/WTP	13:30pm meeting with Agnico-Eagle	
	1 heure	STP/WTP	Solving Wi-Fi connection with the laptop supplied with the system (Programming laptop)	
3/12/2017	6:00 to 17:30		10th day on site	
	5 hours	STP	H2S/CH2 gas detector installation	
	1 hour	STP/WTP	14:00 meeting with Agnico-Eagle	
3/13/2017	6:00am to 17:30pm		11th day on site	
	30 minutes	STP/WTP	13:00 weekly conference call with Agnico-Eagle	
	3 heures	WTP	Solving UV intensity signal issue	
3/14/2017	6:00am to 17:30pm		12th day on site	
	2 heures	STP	Gas detector programming integration and test	
	2 heures	STP/WTP	Install 3 air dampers. WTP container#1 air damper not accessible with a ladder.	

Day	Time (from-to)		Work description	Comments/Delays
				Raw water lift station is operational and provide water to WTP
				from 10:00am. Non-potable water is ready to supply camp
				network, and STP Equalisation reservoir T-19000A by the end of
3/15/2017	6:00am to 17:30pm		13th day on site	the day
	5 heures	WTP	WTP start-up	
	2 hours 30 minutes	STP	Meeting with Agnico to coordinate STP commissioning	
3/16/2017	6:00am to 17:30pm		14th day on site	
	1 hour	STP	Meeting with Agnico to coordinate STP commissioning	
			Put on paper the coordination details discussed during previous meetings. Sent to H2OI	
	2 heures	STP	engineering for approval.	
	1 heure	WTP	Put together an WTP operational testing check sheet under Agnico Eagle request	
	1 heure	WTP	Dosing pump clear water test/drawndown	
	30 minutes	WTP	pH and turbidity probe calibration	
3/17/2017	10:30am to 17:30		15th day on site	
	30 minutes	WTP	Agnico-Eagle operator training	
			Monitoring WTP distribution pump fixed speed operation to allow low pressure and smooth	
		WTP	distribution network filling/venting	
		WTP	Verification while distribution network is pressurized	
3/18/2017	6:00am to 17:30pm		16th day on site	Camp sewage lift station not available to fill STP reservoir
3, 23, 232	1 heure	WTP	Distribution pump automatic operation fine tuning	
			S S S S S S S S S S S S S S S S S S S	Start filling up STP equalisation reservoir T_19000B when
				bottom tie in for auxiliary water warm up system is ready at
3/19/2017	6:00am to 17:30pm		17th day on site	9:00am
	•	STP	Outdoor reservoir T-19000A/B, T-72000 level sensor insolation	
		STP	Trottling T-19000A top blower valve to equilibrate the air supply to both equalization tank	
				Blizzard red code, Billy T. move into new camp in construction
3/20/2017	6:00am to 17:30pm		18th day on site	to keep working during blizzard
		STP	Filling up Aerobic tank T-72000	
		STP	Testing EQ pumps, screen filter, sump pumps automation while filling up Aerobic tank	

Day	Time (from-to)		Work description	Comments/Delays
				Realise there is metal chips on the sump tank. Raise the flag that the Aerobic tank to membrane tank 6" pipe should have been cleaned from contruction debris. No progress can be done during the cleaning because this pipe was needed to progress on the operation testing. WTP raw water pump quit working
3/21/2017	6:00am to 17:30pm		19th day on site	during the day, and cause WTP shut down.
	5h	STP	Working with plumber to clean the 6 inch pipe from metal chips	
				Loosened during transportation. Have to drain a part of
	2h	STP	Working with plumber to fix the 2 inch valve FV-74050-2 leak	Aeration tank to fix the leak.
		STP	Filling Membrane tanks	
		STP	Test recirculation	
3/22/2017	6:00am to 17:30pm		20th day on site	Plumber installed 3X arctic vent
		STP	Clear water operational test membrane train 1 and 2. (permeation cycle)	
3/23/2017	6:00am to 17:30pm		21th day on site	
		STP	Clear water operational test membrane train 1 and 2. (CEB cycle, sludge wasting cycle)	
				Emptied Equalisation tank B by 12:00pm. EQ tankA filling valve
				frozen so no sewage was introduce, and no water was drained
3/24/2017	6:00am to 17:30pm		22th day on site	from Aerobic tank.
		STP	Finalize clear water test	

Appendix B: Process Flow Schematics

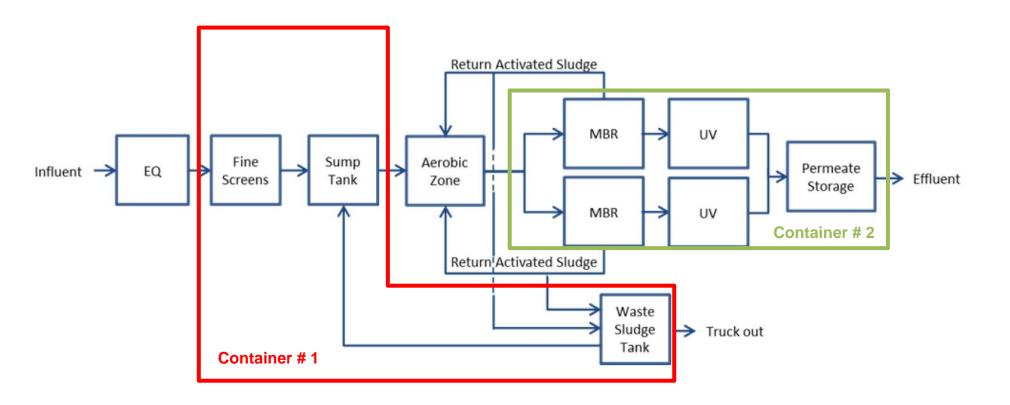
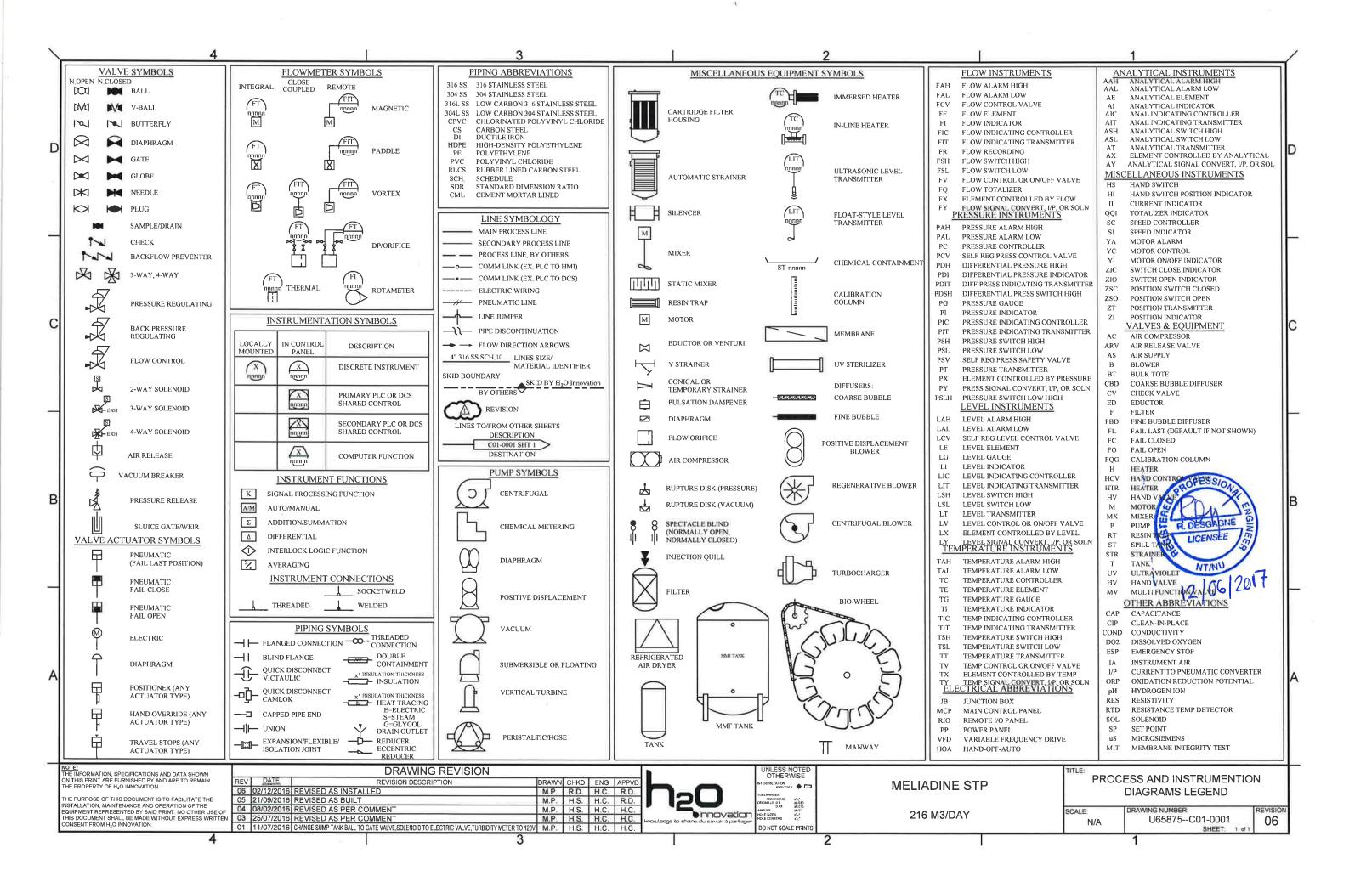
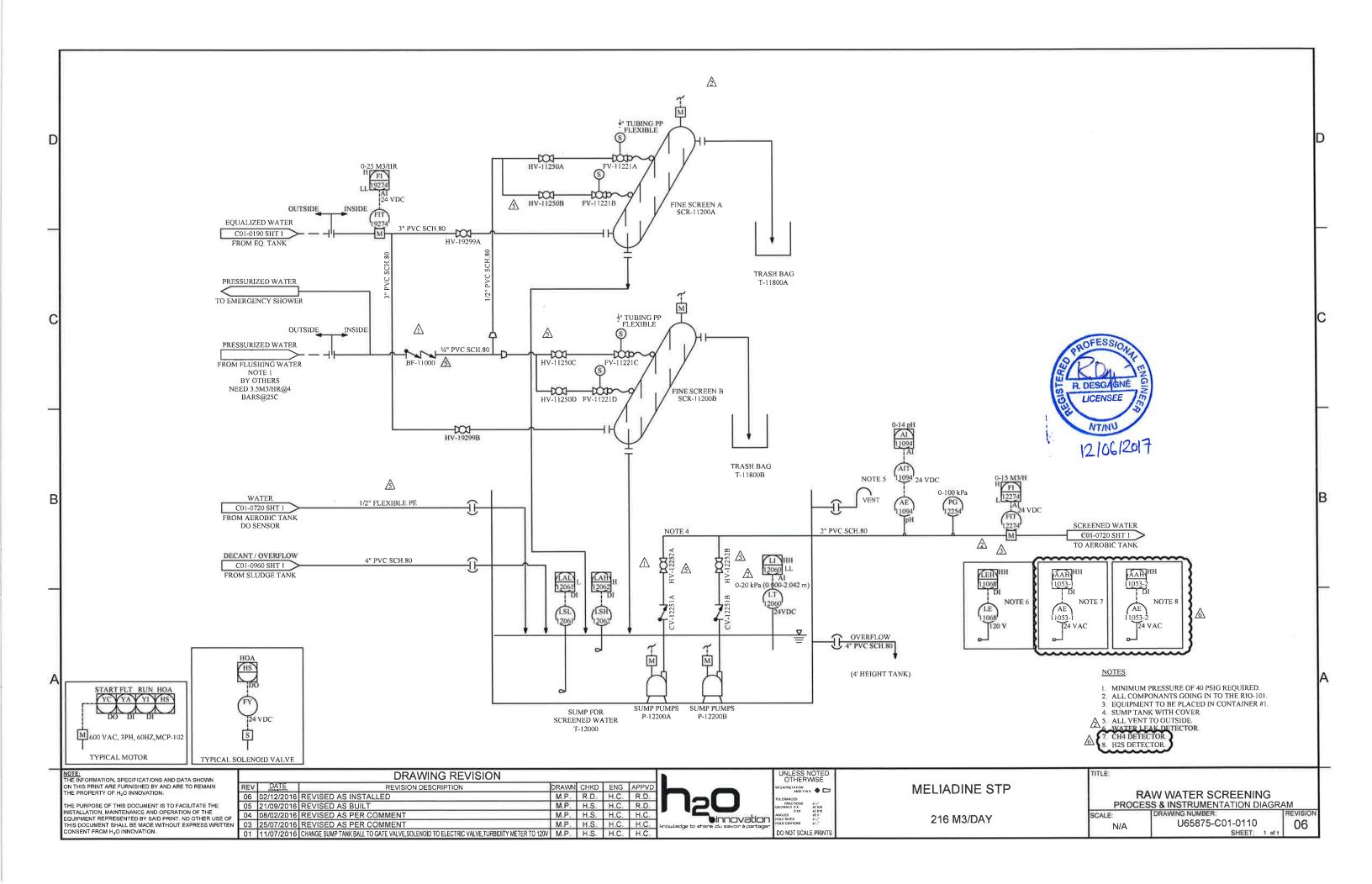
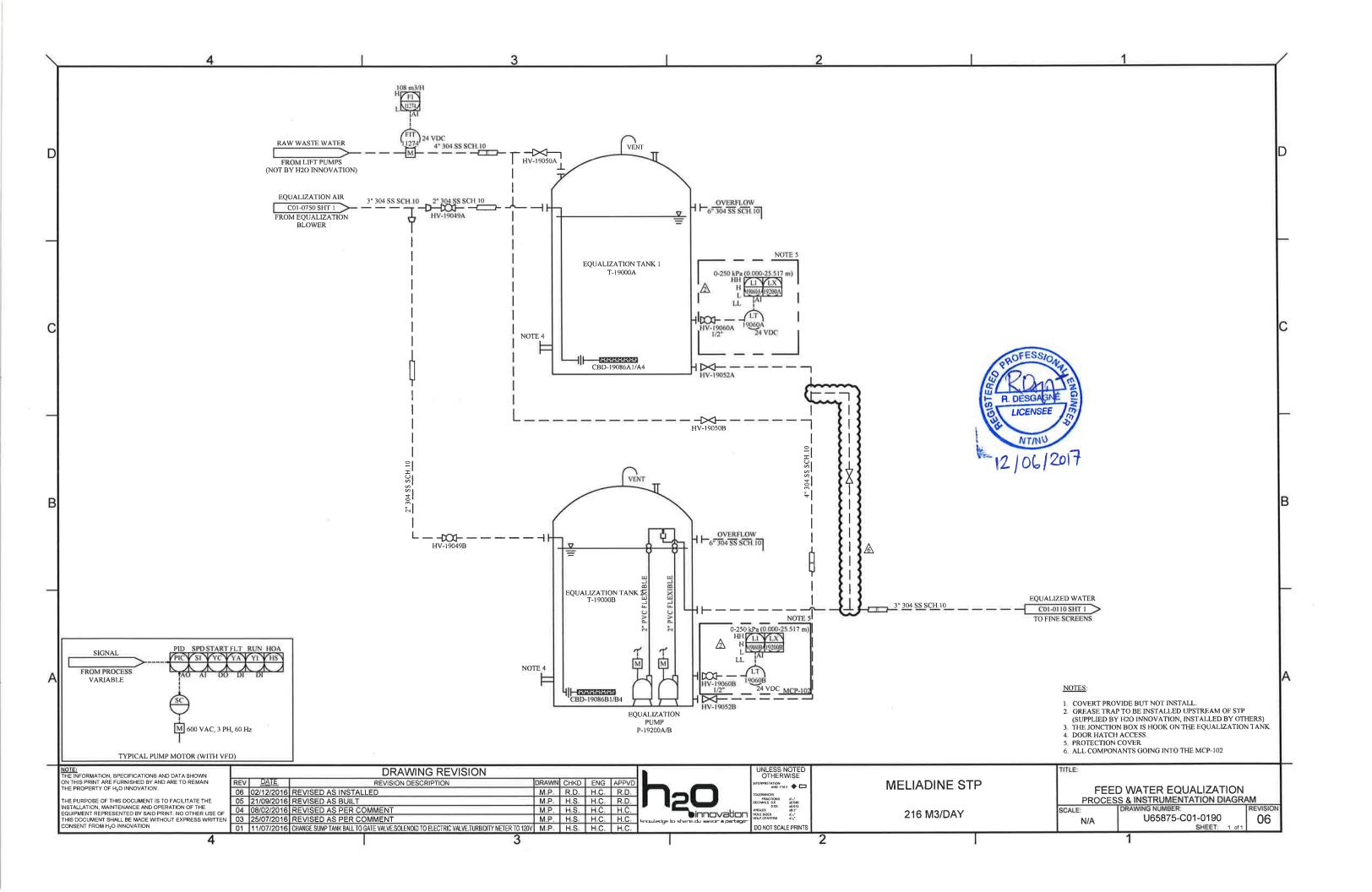


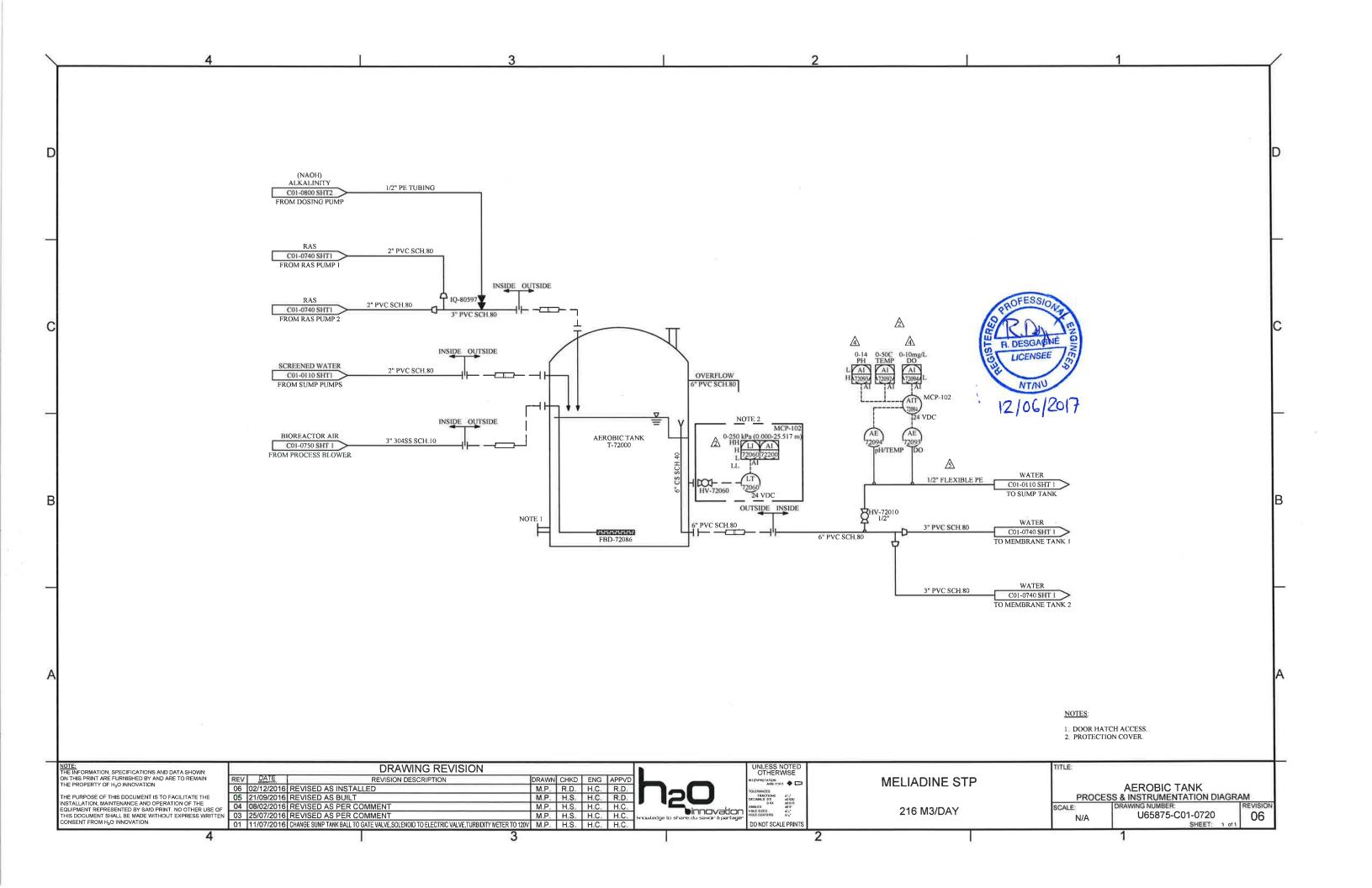
Figure 2: Process Flow Schematics (The steps in the boxes occur in the structure (the red box is in container 1 and the green box is in container 2; the others occur in tanks outside)

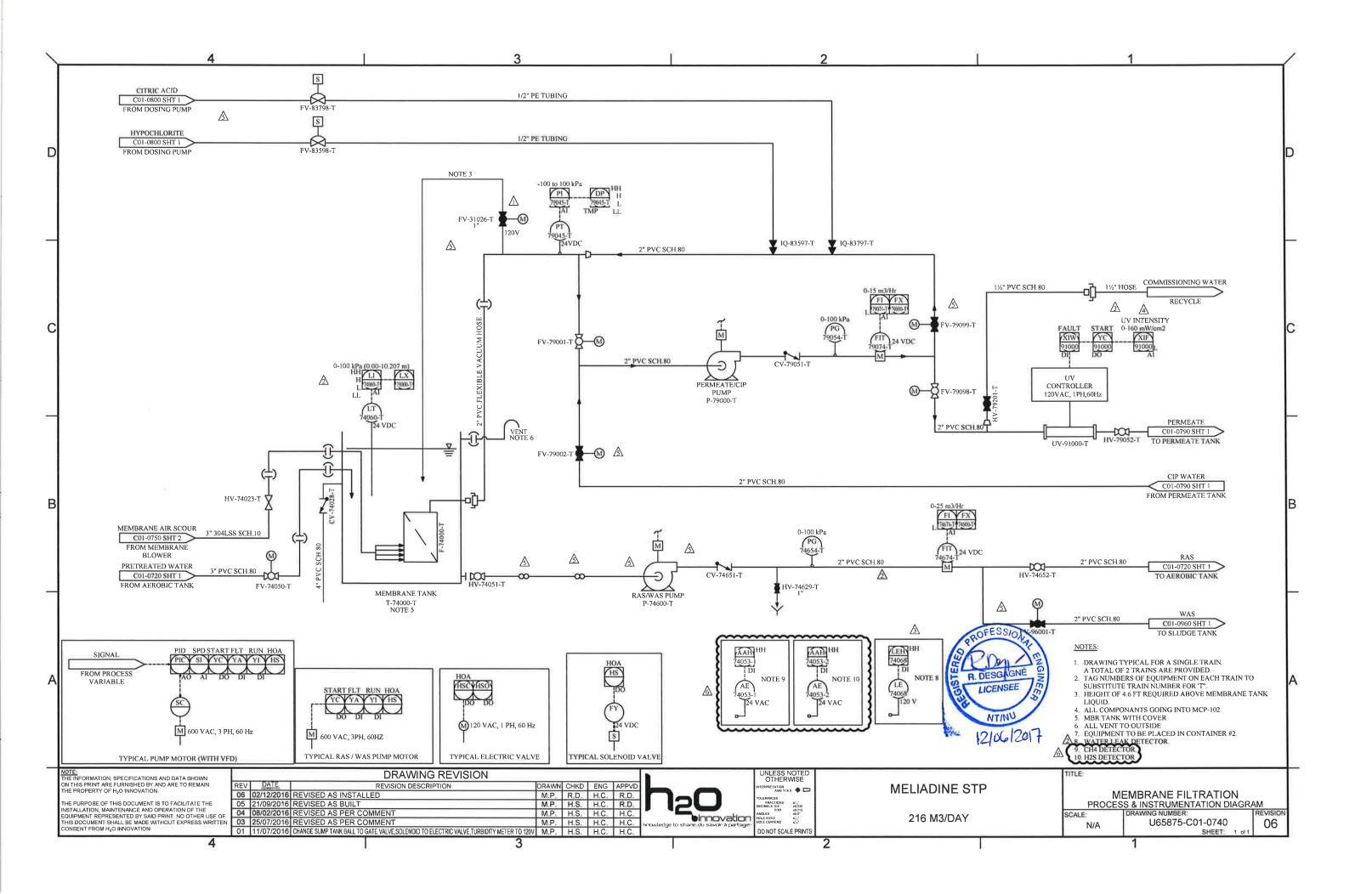
Appendix C: analysis result of water quality test

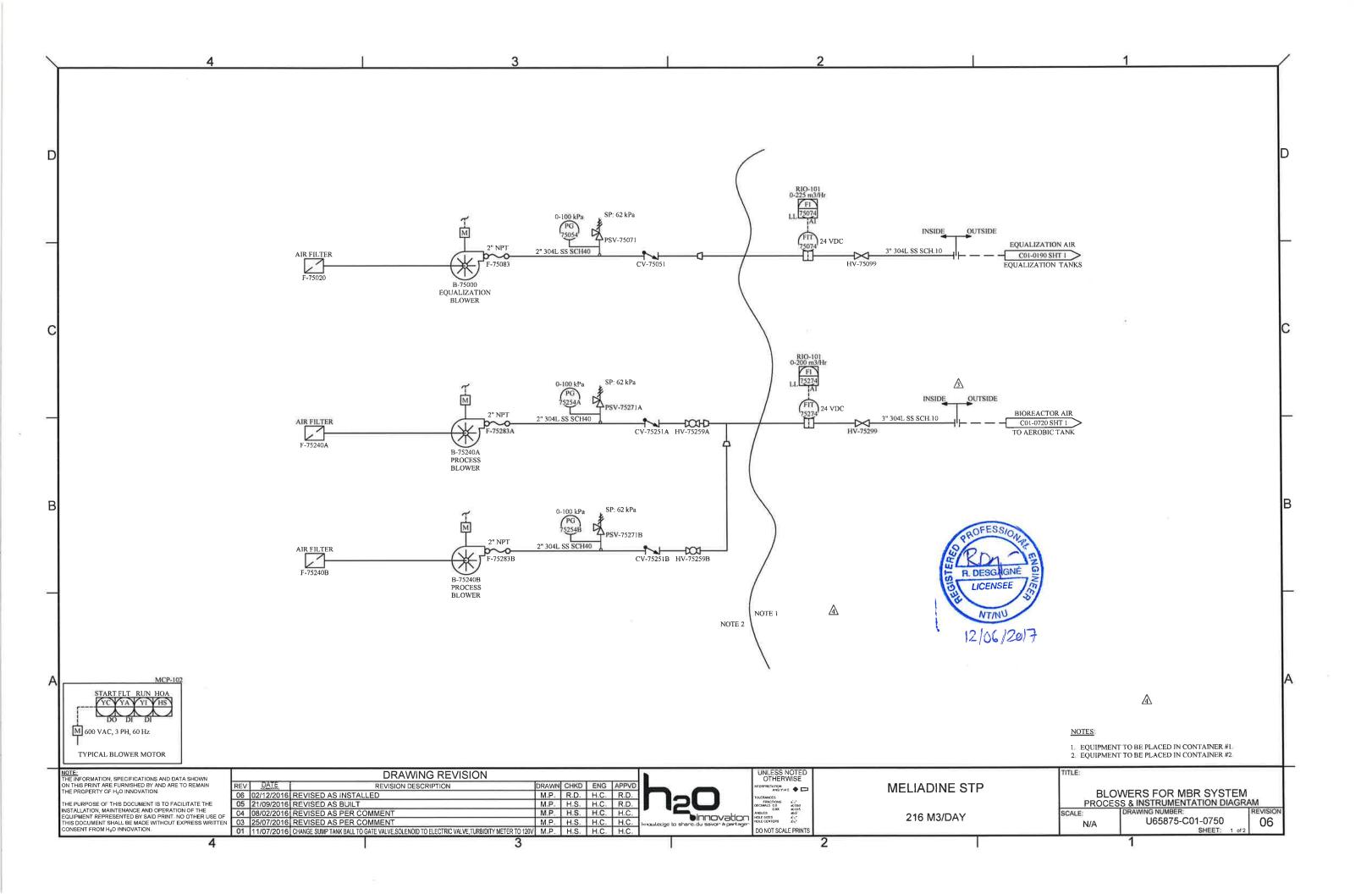

Table. Results of analysis of water quality parameters on STP water samples

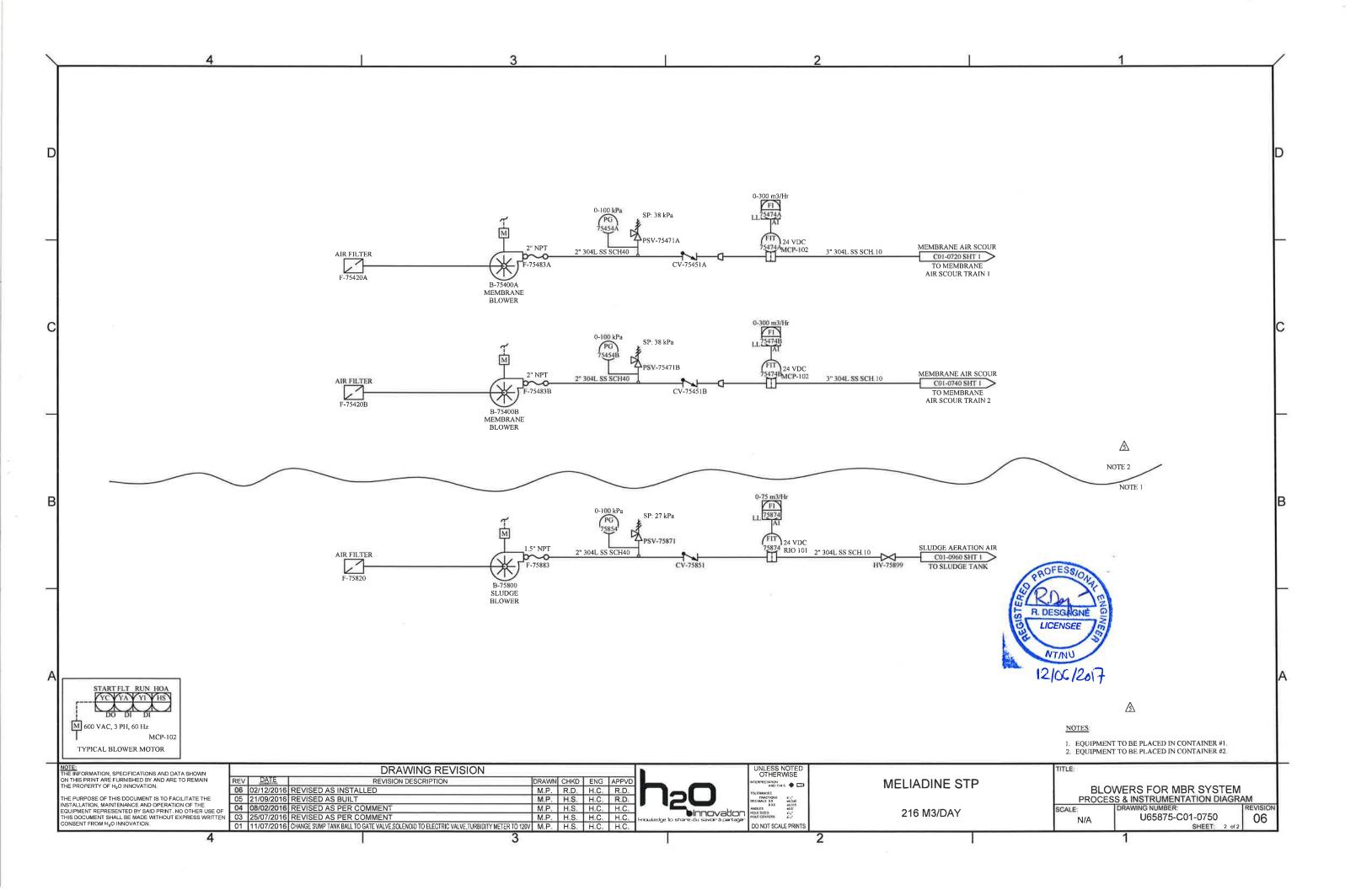

Parameters	Units	Results	Results	Results	Results	Results Maxxam	Results H2L	Results Maxxam	Results Maxxam	Results H2Lab	Results H2L	Results Maxxam	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Expected Effluent
Parameters	Units	26-Mar	30-Mar	3-Apr	6-Apr	12-Apr	12-Apr	13-Apr	17-Apr	17-Apr	20-Apr	20-Apr	24-Apr	27-Apr	1-May	4-May	8-May	11- M ay	15-May	18-May	22-May	25-May	29-May	Quality
pH (M-TIT-1.0)	-	8.61	8.43	8.69	8.74	-	8.38	7.4	6.84	6.98	6.41	-	6.3	6.82	6.54	6.99	6.84	7.27	7.31	7.33	7.51	7.39	7.64	6 to 9
M.E.S. (M-SOLI-1.0)	mg/L	<1	1	<1	1	-	4	2	5	7	4	6	<1	1	<1	1	1	<1	1	<1	<1	<1	<10	<25
Azote ammoniacal (NH3-NH4) (M-NH3-2.0)	mg N/L	88	106.84	98.43	90.21	74	93.33	48	27	27.84	29.29	29	40	24	8.1	6.6	0.37	0.71	0.25	0.15	0.2	0.7	0.06	0.89
NH3 (non-ionized)		-	-	-	-	-	5.78	-	-	0.07	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-
NH4		-	-	-	-	-	87.55	-	-	27.77	29.27	-	-	-	-	-	-	-	-	-	-	-	-	-
Azote Kjeldahl (M-NTK-1.0)	mg N/L	78	105.34	105.33	97.12	-	116.82	49	29	28.48	3.42	-	34	37	11	12	4.8	<5.0	8.2	3.3	2.1	7.7	3.5	12 to 19
DBO5 (LBS-DBO-399-A)	mg/L	4	<1	1	1	-	7	3	3	4		-	<2	3	<2.0	4	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<25
Nitrates (NO3) (M-NITR-2.0)	mg N/L	<0.10	< 0.01	0.03	0.33	-	<0.01	<10	<10	<0.01	1.88	-	10	69.3	14	<10	18	21	15.5	16	21	60.7	96.4	50
Nitrites (NO2) (M-NITR-2.0)	mg N/L	0.016	0.09	0.57	3.14	-	22.7	51.6	72.5	75.8	77	-	61.6	13	66.9	58.7	75.9	64.2	40.7	36.3	34	2.29	0.107	2
Phosphore total (P) (M-P-3.0)	mg P/L	4.5	8.37	8.88	8.7	-	9.94	11	12	11.9	12.3	-	13	12	13	12	12	13	9.7	9.3	10	7.2	8	10
Fecal Coliforms	UFC/100mL	40.0	<100	<100	15	-	10	ND	1000	1000	4000	-	<2	<10	2	2200	160	ND	<10	-	<10	ND	<2	1000
Total Coliforms	UFC/100mL	***	<100	<10000	2000	-	ND	ND	110000	110000	90000	-	<10	100	<100	30000	10000	ND	<1000	-	<100	ND	<1000	1000
AAHB	UFC/mL	>30000	40000	>30000	>200000	-	>30000	ND	>30000	>30000	220000	-	>3000	73	>30000	>30000	100000	ND	27100	-	12500	ND	>30000	
Atypical Colonies	UFC/100mL	>200000	600000	210000	50000	-	>2000000	ND	150000	150000	70000	-	1180	3000	1800	40000	80000	ND	156000	-	1200	ND	48000	

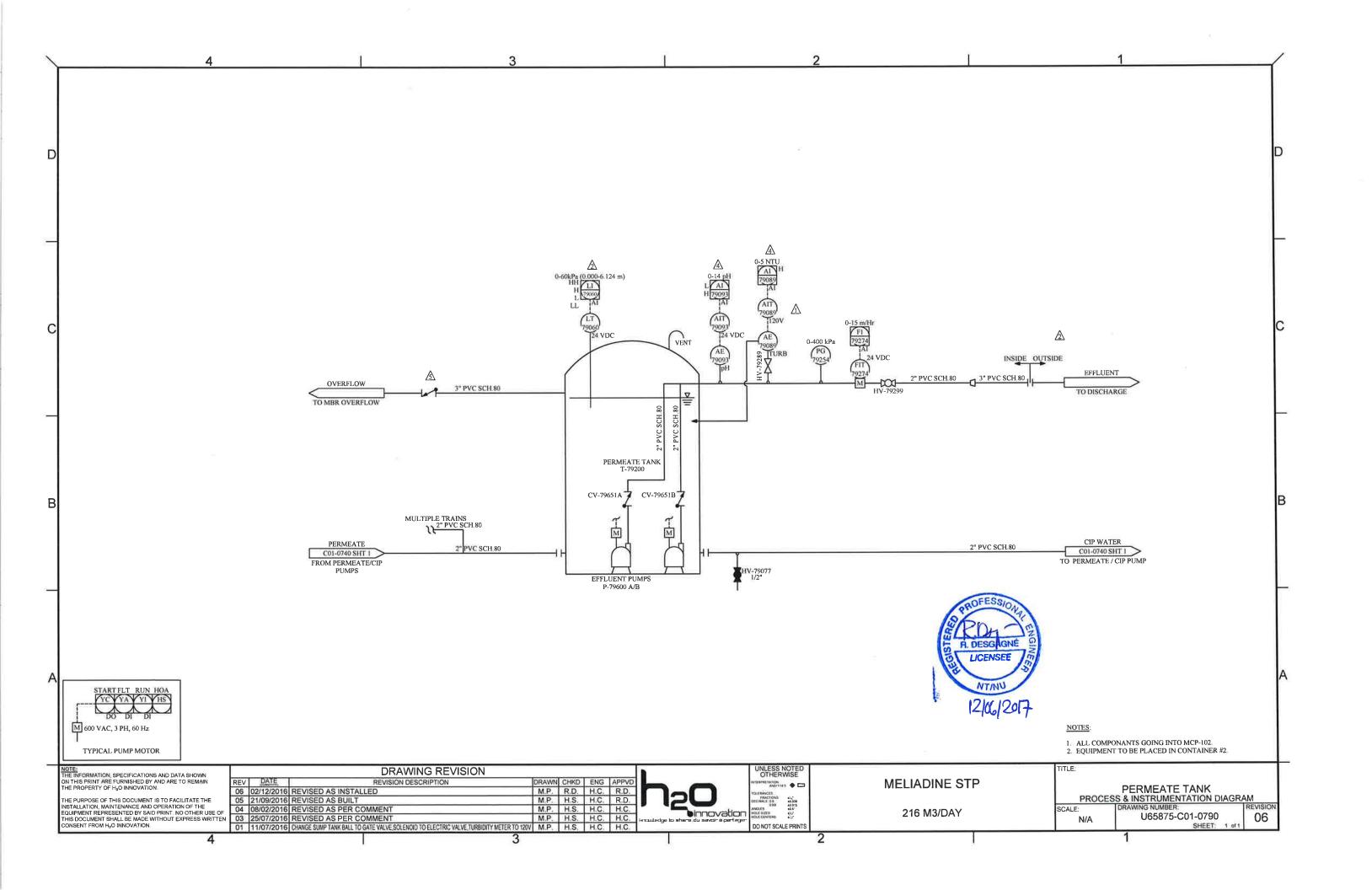

Extra Parameters (not OMM)	Units	26-Mar	30-Mar	3-Apr	6-Apr	12-Apr	12-Apr	13-Apr	17-Apr	17-Apr	20-Apr	20-Apr	24-Apr	27-Apr	1-May	4-May	8-May	11-May	15-May	18-May	22-May	25-May	29-May
UV Transmissivity	%T	33	-	27	-	-	25	24	24	25	25	-	24	23	23	23	24	23	31	35	33	39	38
Oil and Grease	mg/L	0.7	<1	<1	<1	<0.50	-	1.3	1.7	1	<1	-	0.8	<0.50	1.6	0.8	2.4	<0.50	1.5	1.9	0.7	1	1.2
COD	mg/L	61	-	60	55	-	67	76	93	59	84	-	80	83	84	84	71	89	64	57	61	57	49
Alkalinity	mg/L CaCO3	320	-	392	381	-	316	74	43	63	57	-	20	33	23	41	36	61	62	51	65	46	60
Bicarb. Alkalinity	mg/L CaCO3	-	-	-	-	-	-	-	43			-	20	-	-	-	-	-	-	-	-	-	-
Carb. Alkalinity	mg/L CaCO3	-	-	-	-	-	-	-	<1.0			-	<1	-	-	-	-	-	-	-	-	-	-

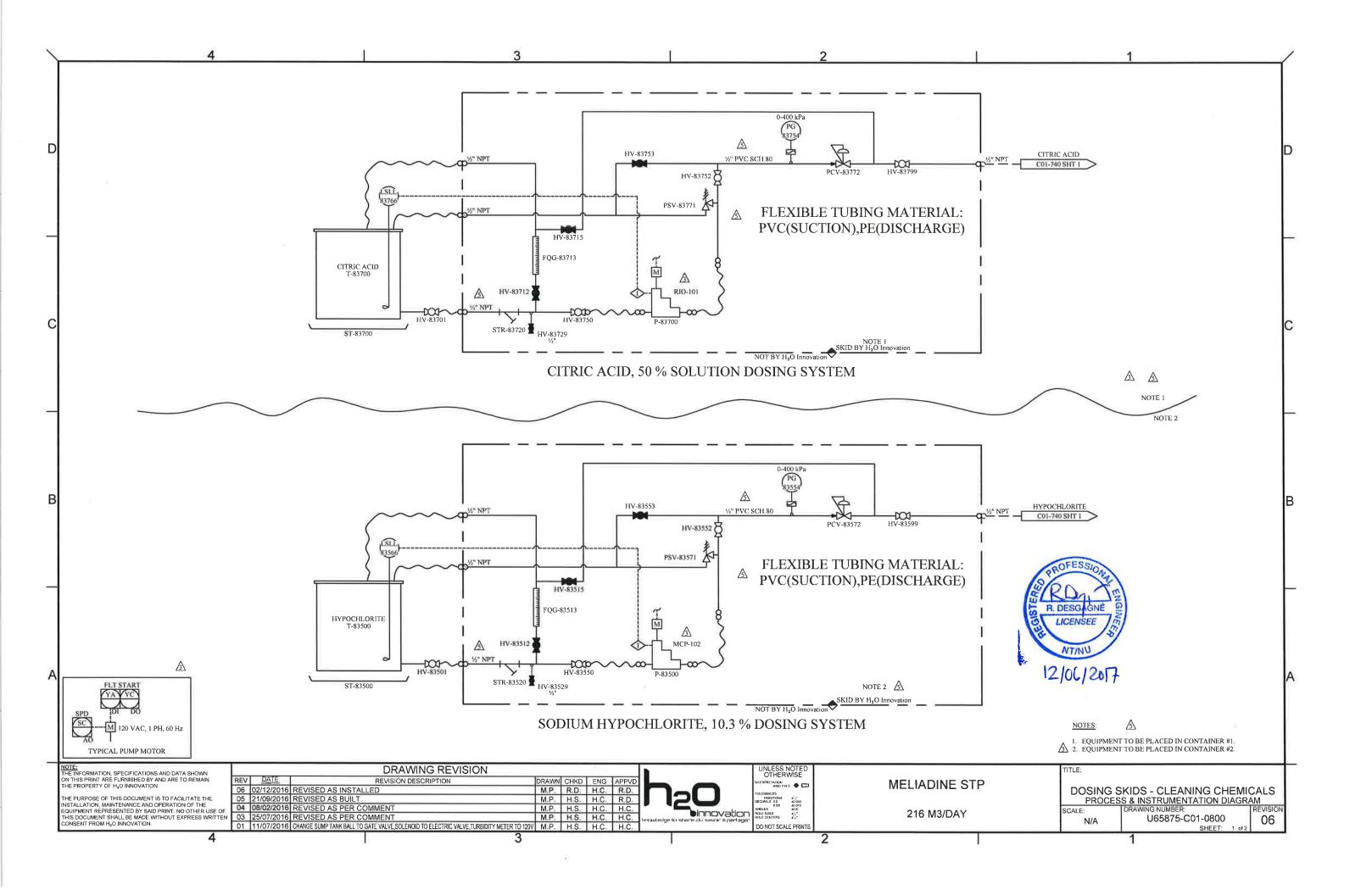


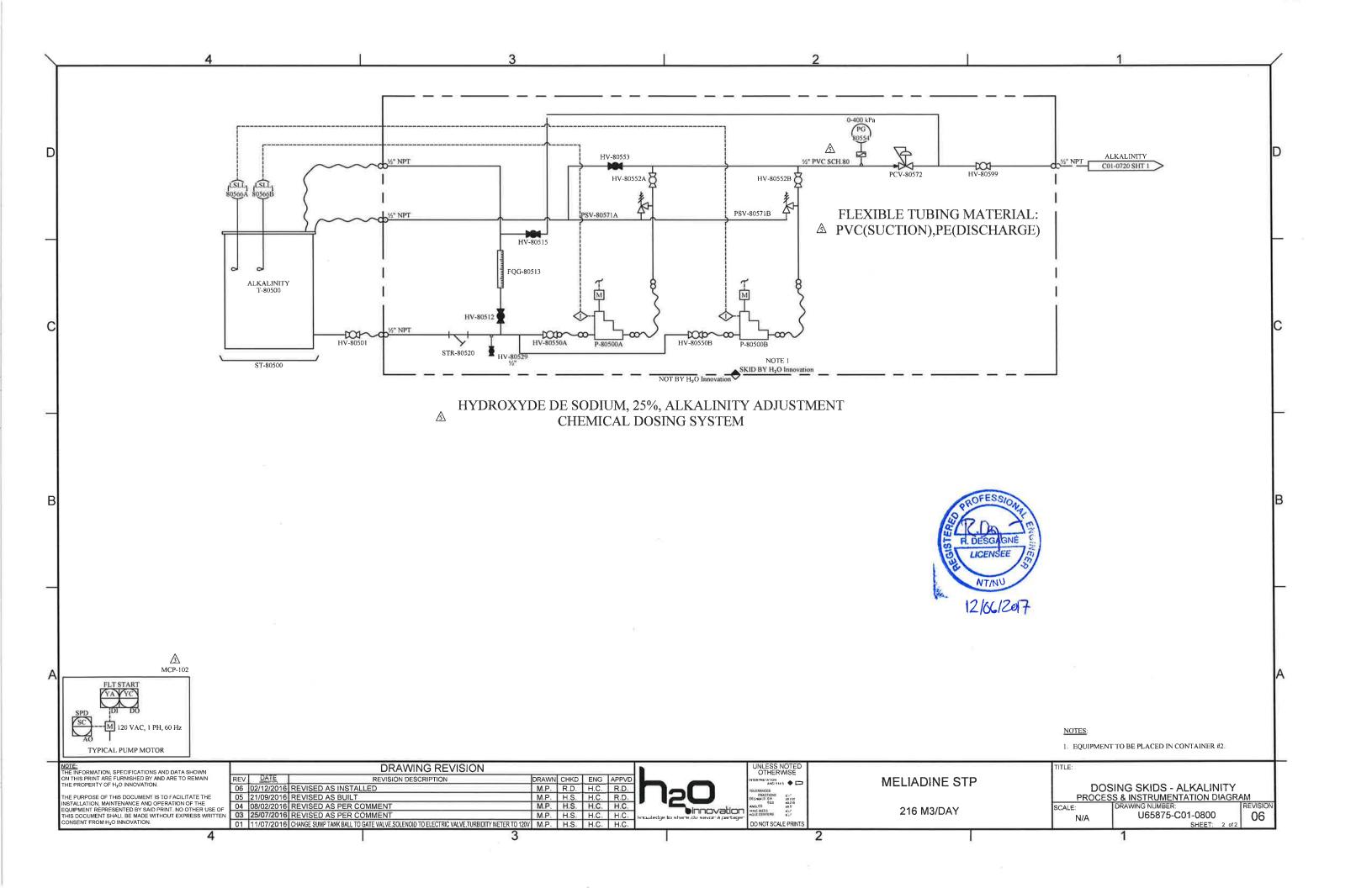

Appendix D: Sewage Treatment Plant as-Built Drawing

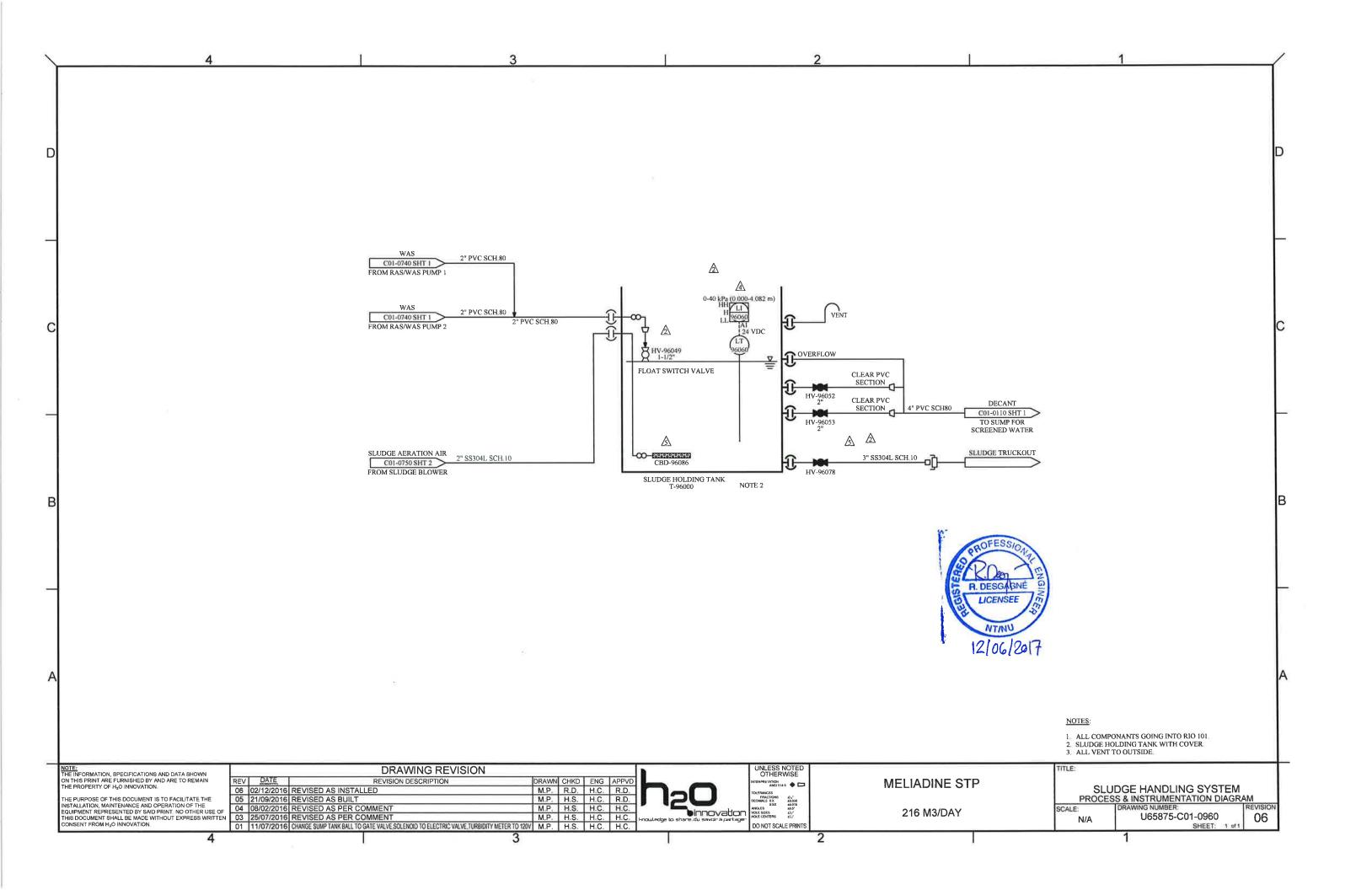


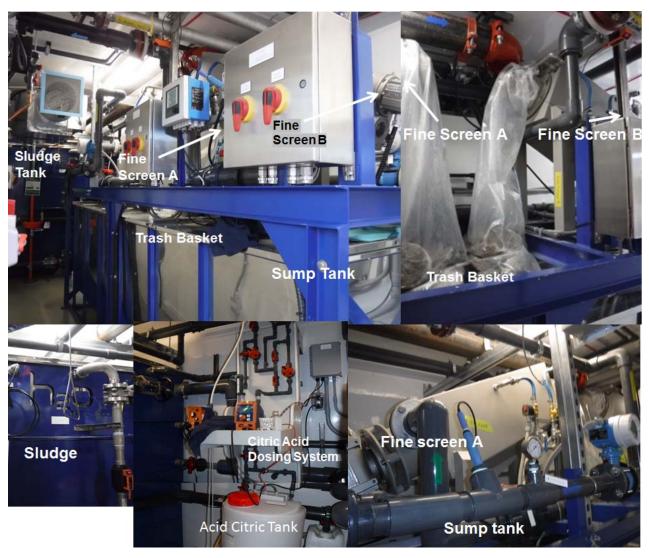











Appendix E: Sewage Treatment Plant Photographs

Photos of the ouside view of the Sewage Treatment Plant

Photos of the inside view of Container # 1

Photos of the inside view of Container # 2