

CONSTRUCTION SUMMARY (AS-BUILT) REPORT FOR RANKIN INLET BYPASS ROAD AND CULVERTS MELIADINE PROJECT, NUNAVUT

PRESENTED TO **Agnico Eagle Mines Ltd.**

FEBRUARY 2019
ISSUED FOR USE
TETRA TECH PROJECT NUMBER: 28920
AGNICO EAGLE DOCUMENT NUMBER: 6515-E-132-005-132-REP-020

EXECUTIVE SUMMARY

Tetra Tech was retained by Agnico Eagle Mines Limited (Agnico Eagle) to conduct a detailed design of the civil works and the water management infrastructures at the Meliadine Gold Project, Nunavut. As a part of this mandate, Tetra Tech designed the Rankin Inlet Bypass Road and associated culverts. Tetra Tech also previously prepared the design report for these infrastructures (Agnico Eagle N° 6515-E-132-005-132-REP-006).

Agnico Eagle requested Tetra Tech to complete on their behalf the following as-built construction record report. It should be noted that Tetra Tech was not involved, nor was on site, during the construction activities for these infrastructures. Accordingly, all the construction, quality assurance, and commissioning activities associated with the aforementioned infrastructure was managed by Agnico Eagle and their subcontractors. As such, Tetra Tech has presented the construction data as supplied by Agnico Eagle and therefore Tetra Tech cannot accept any responsibility for the accuracy of any of the data supplied.

The construction for the Rankin Inlet Bypass Road was conducted over two construction work seasons between August 2017 and September 2018.

This report summarizes the construction as-built information for the Rankin Inlet Bypass Road for the Meliadine project.

TABLE OF CONTENTS

1.0	INT	RODUCTION	1				
2.0	SUMMARY OF THE CONSTRUCTION						
	2.1	Site Location Plan					
	2.2	Construction Schedule	2				
	2.3	Rankin Inlet Bypass Road Components					
		2.3.1 Bypass Road					
		2.3.2 Culverts					
	2.4	Drawings and Photographs					
3.0	3.1 3.2 3.3	LD DECISIONS THAT DEVIATE FROM ORIGINAL DESIGN. Bypass Road. Bridge. Culverts.	5 6				
4.0	EAF	RTHWORKS	12				
	4.1	Field decisions that deviate from original design					
5.0	COI	NSTRUCTION MONITORING	13				
6.0	LIM	ITATIONS OF REPORT	13				
7.0	CLC	OSURE	14				

APPENDICES

Appendix A	As-built Drawings of Rankin Inlet Bypass Road and Culverts
Appendix B	Survey Drawings of Rankin Inlet Bypass Road and Culverts
Appendix C	Photographs of Rankin Inlet Bypass Road and Culverts
Appendix D	Construction Summary Report of Rankin Inlet Bypass Road and Culverts
Appendix E	Particle Size Summary – 25 mm minus and 20 mm minus material
Appendix F	Design Report for Crossing C10 with a Group of Culverts Instead of a Bridge
Appendix G	Design Report for Culvert C13 and C14

1.0 INTRODUCTION

Agnico Eagle Mines Limited (Agnico Eagle) retained the services of Tetra Tech to carry out the planning and design works associated with the Water and Environment and the Civil Works components of the Meliadine Project, a gold mine located approximately 25 km north from Rankin Inlet, and 80 km southwest from Chesterfield Inlet in the Kivalliq Region of Nunavut. The remote location of the Project requires that access, service and haul roads be built to support the development. A controlled 31 km long All-Weather Access Road (AWAR) links the Meliadine mine site and Rankin Inlet.

A bypass road including culverts was designed and built to divert traffic associated to the Meliadine Project around Rankin Inlet, in order to reduce impacts on the community (dust, noise, traffic, etc.). The 6.2 km long bypass road allow traffic from the Rankin Inlet Laydown Area, near Melvin Bay (part of Hudson Bay) to bypass the community of Rankin Inlet, minimizing the use of municipal roads by Agnico Eagle to deliver material, fuel and people to the Meliadine mine site.

Tetra Tech previously prepared the design drawings for the construction of Rankin Inlet Bypass Road. As part of the scope of work, Agnico Eagle asked Tetra Tech to:

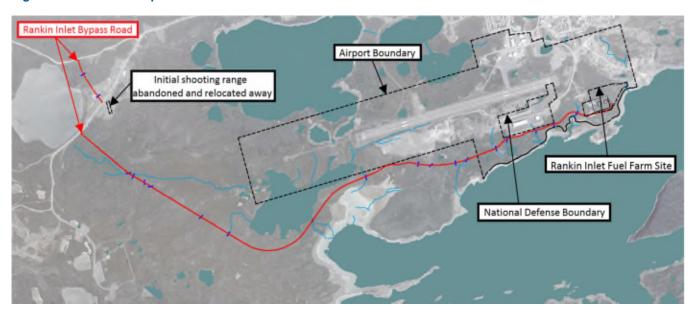
- Design the Rankin Inlet Bypass Road and associated culverts;
- Produce construction drawings and specifications for the Rankin Inlet Bypass Road and associated culverts;
- Prepare design and construction summary reports of the Rankin Inlet Bypass Road and associated culverts.

As required by the Water Licence A (No. 2AM-MEL1631), this report summarizes the construction work of the Rankin Inlet Bypass Road. Included in this report is:

- A summary of the characteristics of the infrastructures;
- Documentation on field decisions that deviate from original plans;
- As-built drawings;
- Survey drawings;
- Photographs;
- Construction Summary Report of Rankin Inlet Bypass Road and Culverts;
- Particle Size Summary for 25 mm minus material and 20 mm minus material.

The design report for the Rankin Inlet Bypass Road was issued for approval to the Nunavut Water Board (NWB) in March 2017. Two amendments were issued after the original design report issuance:

- 1. Amendment 1: Design report for crossing C10 with a group of culverts instead of a bridge, issued August 2017, refer to Appendix F.
- 2. Amendment 2: Design report for Culvert C13 and C14 were added along the Bypass Road, issued September 2017, refer to Appendix G.



2.0 SUMMARY OF THE CONSTRUCTION

2.1 Site Location Plan

The figure below presents a site location plan.

Figure 2.1: Site location plan

2.2 Construction Schedule

The construction work for the Rankin Inlet Bypass Road and associated culverts were conducted between August 2017 and September 2018. Construction was completed according to the milestone dates shown in Table 2.1.

Table 2.1: Construction Milestone Dates

Year	ltem	Date of completion
	Site Preparation	August 25, 2017
2017 Work	Road (from 1+500 to 6+173)	December 7, 2017
	Culverts (C14, C13, C12B, C12A, C11C, C11B1, C11B, C10, C9)	November 16, 2017
	Site Preparation	May 22, 2018
2018 Work	Road (from 0+000 to 6+173)	September 1, 2018
	Culverts (C11A, C7B, C7A, C6A, C6B, C5, C4, C3, C2, C1)	July 12, 2018

2.3 Rankin Inlet Bypass Road Components

The Rankin Inlet Bypass Road has 19 groups of culverts to allow existing natural water streams and surface water runoff to reach Melvin Bay (part of Hudson Bay). From the original 14 groups, some were divided into smaller groups to better suit the on-site conditions.

2.3.1 Bypass Road

The table below presents a summary of the as-built bypass road characteristics.

Table 2.2: Summary of the As-Built Bypass Road Characteristics

Parameters	Value		
Length	6 173 m		
Width	6.5 m for most of the road At least 8.0 m from chainage 0+222 to 1+492		
Minimum fill on running surface	1.3 m		
Number of pullouts	13		
Number of groups of culverts	19		
Embankment typical slope	2.5H: 1V		

2.3.2 Culverts

The following table presents a summary of the as-built culverts characteristics.

Table 2.3: As-Built Parameters for the Culverts and Peak Flow for a 1:25 year return period

No.	Drainage Area	Peak Flow	Typical Cross-	Type F1 culverts	Type F2 culverts	Type F3 culverts	Culvert Capacity	Length of	
	(ha)	(m³/s)	Section Type	Nur	l nber x Diame	ter	(m³/s)	Culverts (m)	
C01	9.7	0.72	A*	1 x 1.0 m		1 x 1.0 m	1.90	2 x 36	
C02	3.9	0.29	A*	2 x 0.7 m			0.80	2 x 42	
C03	3.3	0.24	B*	1 x 1.0 m	1 x 1.0 m	1 x 0.7 m	2.30	3 x 36	
C04	8.0	0.59	A*	1 x 1.0 m		1 x 1.0 m	1.90	1 x 30 1 x 36	
C05	13.2	0.97	D*	2 x 1.0 m			1.90	2 x 30	
C06A	12.0	0.89	D*	2 x 0.8 m			1.24	2 x 30	
C06B	5.3	0.39	E*		1 x 0.8 m		0.62	1 x 18	
C07A	8.1	0.60	D*	2 x 0.8 m			1.24	2 x 30	
C07B	1.7	0.13	D*	2 x 0.8 m			1.24	2 x 18	
C09	13.1	0.97	D*	1 x 1.0 m		1 x 1.0 m	1.90	2 x 24	
C10**	1004.3	5.40	CULVERT #C10 CROSS SECTION	1 x 1.2 m	4 x 1.2 m	1 x 1.0 m	8.45	6 x 30	
C11A	31.2	0.82	D*		2 x 1.2 m		3.00	2 x 18	
C11B	63.1	1.66	D*		2 x 1.0 m		1.90	2 x 18	
C11B1	8.9	0.23	E*			1 x 1.0 m	0.95	1 x 24	
C11C	23.5	0.62	D*	1 x 1.0 m	1 x 1.0 m		1.90	2 x 18	
C12A	6.2	0.16	D*			2 x 1.2 m	3.00	2 x 18	
C12B	328.5	4.40	D*			2 x 1.2 m	3.00	2 x 30	
C13	6.2	0.75	D*		2 x 0.8 m		1.24	2 x 18	
C14	7.7	0.93	D*		3 x 0.8 m		1.86	3 x 18	

^{*} No embedment was provided to the lowest pipes.

^{**} The original design of C10 called for a bridge of approximately 15 m long and 7.4 m width. It was replaced by a group of culverts in August 2017.

2.4 Drawings and Photographs

Sealed as-built drawings completed by Tetra Tech are presented in Appendix A.

Survey drawings conducted by Hamel Arpentage after the construction of the Rankin Inlet Bypass Road can be found in Appendix B.

Photographs of the Rankin Inlet Bypass Road and associated culverts during and after construction are shown in Appendix C.

3.0 FIELD DECISIONS THAT DEVIATE FROM ORIGINAL DESIGN

This section documents variations from original design which were approved by the designer and/or the field engineer on site for the Rankin Inlet Bypass Road. The changes listed herein do not negatively affect the original water management strategy.

A construction summary was prepared for the Rankin Inlet Bypass Road by the Agnico Eagle construction team. This summary is available in Appendix D.

The bypass road and culverts geometry and characteristics were adjusted to site conditions. The tables below present the changes between the proposed work and the actual work.

The original design of the bypass road was conducted during winter (2016-2017) and the presence of snow during the engineering phase prevented the engineering team from completing a survey and gather on-site relevant information before the issuance of the design report.

Once the site visits and surveys were conducted (May to July 2017), a revised design was issued for construction by the engineering team to the construction team providing 19 groups of culverts instead of the 14 groups in the original design. These changes were made by the designer.

3.1 Bypass Road

The construction work led to slight variations from the original design in bypass road as summarized in Table 3.1 below.

Table 3.1: General Details for the Bypass Road

Item	Proposed	Actual	Difference
Length	6 321 m	6 173 m	- 148 m
Width	6.5 m for the majority of the road 8.0 m from chainage 0+262 to 1+492 8.0 m from chainage 5+840 to 5+871	6.5 m for most of the road At least 8.0 m from chainage 0+222 to 1+492	-
Minimum fill on running surface	1.3 m	1.3 m	-
Number of pullouts	11	13	+ 2
Number of groups of culverts	14	19	+ 5
Embankment typical slope	2.5H: 1V	2.5H: 1V	-

The road length difference (-148 m) is the result of several slight adjustments to the original design included in the Design Report, approved by the field engineer:

- A grave site monument was located at the centerline of 5+860 requiring a shift in the design of approximately 200 m to the northwest.
- Alignment modifications were made to reduce the volume of fill material by straightening out the curves heading up chainage from station 3+530 to the existing access community road.

Two additional pullouts were made to facilitate construction work. They were left as permanent features for the road after construction.

Earthen safety berms were planned for the sections of road with an embankment height of 3 m or greater, to comply with NWT/NU Mine Act safety requirements:

- Selected boulders were strategically placed to work as safety barriers to replace earthen berms, as accepted
 by the designer in order to minimize the anticipated maintenance required along those sections of the road
 due to snow accumulations. Around 227 boulders were installed for about 824 m of roadway from stations
 0+000 to 0+044 and 0+375 to 1+160.
- A berm of 600 mm minus Class A esker material as per design specifications was used as a safety berm from station 1+160 to 1+330 (an extension of approximately 170 m because the fill heights were of 3 m or greater). Fill heights were also the rationale for extension of the safety barrier specified from station 2+100 to 2+308, which was extended by about 200 m to conform to the design and was placed from station 1+920 to 2+330.
- No safety barriers where placed when the as-built fill heights were less than 3 m. Therefore, the safety barrier specified from station 0+290 to 0+303 was no longer required.

3.2 Bridge

In the original design report, a bridge was considered at crossing C10. However, the final design was pending due to the lack of information on; fish, fish habitat, the watershed, the existing ground as well as the watercourse and the existing flow at the crossing. Further, the presence of snow during the engineering phase prevented the engineering team from completing a field survey to acquire the relevant on-site information to decide if either a bridge or a group of culverts would be recommended.

After a number of site surveys were completed it appeared that the flow to be managed in crossing C10 was substantially less than that expected by theoretical calculations. It was also observed that the area was totally dry after the freshet. As a result, the engineering team recommended installation of a group of culverts instead of a bridge at crossing C10. The design report detailing the revised design for the C10 group of culverts, prepared in August 2017, is provided in Appendix F.

3.3 Culverts

Additional groups of culverts have been installed due to the new alignment of the road and to fit with the field observations:

- Some groups of culverts (C07, C11, and C12) were divided into two or three smaller locations to better suit
 the field topography and the natural spread of the water flow and were part of the revised design prepared
 by the engineering team.
- New culverts C06B and C11B1 were installed by the construction team based on field observations of freshet flows.

Some groups of culverts were not installed:

- The culvert C08 was not installed due to very steep topography and instead the water was diverted to C09 crossing.
- Group of culverts C12C was removed two weeks after being installed because the placement location was
 in a natural draw, with no place for the collected water to flow. Instead, the field engineer approved to
 excavate a small ditch on the side of the road alignment to direct the water away from the road.

All installed culverts have a greater capacity than the estimated peak flow for a 1:25 year return period which complies with the design and provides a buffer for any "wet freshet" event.

The culvert C12B is an exception, as the designer divided the original group of culverts C12 into 3 smaller groups with reduced capacity that better suits the site topography. Installation of the group of culverts C12C was cancelled on-site during the construction phase. The culvert C12B has the capacity to manage a lower peak flow than a 1:25 year return period, thus, should a 1:25 year return period or rarer event occur, the temporary runoff water exceeding the culvert capacity would naturally flow toward culvert C12A on the native ground along the road which would behave as a dam. The culvert C12A is located just 50 m downstream of culvert C12B and the overall capacity of both culverts is adequate to manage the peak flow for a 1:25 year return period.

For a better understanding of the changes made from the original design to the revised design by the designer and the changes approved by the field engineer from the revised design to the as-built, the following tables 3.2, 3.3, and 3.4 are summarizing information from original, revised and as-built designs.

Table 3.2: Culverts Capacity and Peak Flow for a 1:25 year return period

Original Design				Revised Design				As-built								
No.	Drainage Area (ha)	Peak Flow (m³/s)	Total Culvert Capacity (m³/s)	No.	Drainage Area (ha)	Peak Flow (m³/s)	Total Culvert Capacity (m³/s)	No.	Drainage Area (ha)	Peak Flow (m³/s)	Total Culvert Capacity (m³/s)					
C01	9.7	0.72	1.90	C01	9.7	0.72	1.90	C01	9.7	0.72	1.90					
C02	3.9	0.29	0.80	C02	3.9	0.29	0.80	C02	3.9	0.29	0.80					
C03	3.3	0.24	0.80	C03	3.3	0.24	2.30	C03	3.3	0.24	2.30					
C04	8.0	0.59	1.90	C04	8.0	0.59	1.90	C04	8.0	0.59	1.90					
C05	13.2	0.97	2.30	C05	13.2	0.97	1.90	C05	13.2	0.97	1.90					
000	47.0	4.00	0.05	000	47.0	4.00		C06A	12.0	0.89	1.24					
C06	17.3	1.28	2.85	C06	17.3	1.28	1.24	C06B	5.3	0.39	0.62					
007	0.7	0.70	4.00	C07A	8.1	0.60	1.24	C07A	8.1	0.60	1.24					
C07	9,7	0.72	1.90	C07B	1.7	0.13	1.24	C07B	1.7	0.13	1.24					
C08	4.3	0.32	0.80	C08	4.3	0.32	0.95	C08	NOT	INSTALL	LED					
C09	8.8	0.65	1.90	C09	8.8	0.65	1.90	C09	13.1	0.97	1.90					
C10	1004.3	5.40	8.45	C10	1004.3	5.40	8.45	C10	1 004.3	5.40	8.45					
			C	C11A	31.2	0.82	3.00	C11A	31.2	0.82	3.00					
C11	422.0	2.50	8.45	C14B	C11B	C14B	CAAD	C11D	C11B 72	1.89	1 80	1.90	C11B	63.1	1.66	1.90
C11	132.9	3.50	6.45	CIIB	12	1.09	1.69	C11B1	8.9	0.23	0.95					
				C11C	23.5	0.62	1.90	C11C	23.5	0.62	1.90					
				C12A	6.2	0.16	3.00	C12A	6.2	0.16	3.00					
C12	328.5	4.40	9.95	C12B	110	1.47	3.00	C12B	328.5	4.40	3.00					
				C12C	218.5	2.93 1.90		C12C	NO.	T INSTALI	LED					
C13	6.2	0.75	1.33	C13	6.2	0.75	1.24	C13	6.2	0.75	1.24					
C14	7.7	0.93	3.04	C14	7.7	0.93	1.86	C14	7.7	0.93	1.86					

Table 3.3: General Details for the Culverts

Tab	Table 3.3: General Details for the Culverts																	
	Original Design				Revised Design				As-built									
No.	Typical cross- section type	Number x Diameter	Length	No.	Typical cross- section type	Number x Diameter	Length	No.	Typical cross- section type	Number x Diameter	Length							
C01	А	2 x 1.0 m	2 x 31.5 m	C01	Α	2 x 1.0 m	2 x 34.8 m	C01	A*	2 x 1.0 m	2 x 36.0 m							
C02	Α	2 x 0.7 m	2 x 31.4 m	C02	Α	2 x 0.7 m	2 x 42.4 m	C02	A*	2 x 0.7 m	2 x 42.0 m							
C03	А	2 x 0.7 m	2 x 31.3 m	C03	В	1 x 0.7 m 2 x 1.0 m	3 x 49.3 m	C03	В*	1 x 0.7 m 2 x 1.0 m	3 x 36.0 m							
C04	А	2 x 1.0 m	2 x 32.2 m	C04	А	2 x 1.0 m	2 x 35.9 m	C04	A*	2 x 1.0 m	1 x 30.0 m 1 x 36.0 m							
C05	В	2 x 1.0 m 1 x 0.7 m	3 x 20.0 m	C05	D	2 x 1.0 m	2 x 23.1 m	C05	D*	2 x 1.0 m	2 x 30.0 m							
C06	В	1 X 1.2 m 1 x 1.0 m	3 x 31.8 m	C06	D	2 X 0.8 m	2 x 31.8 m	C06A	D*	2 x 0.8 m	2 x 30.0 m							
C00	В	1 x 0.7 m	3 X 31.0 III	C00	ט	2 X 0.0 111	2 X 31.0 III	C06B	E*	1 x 0.8 m	1 x 18.0 m							
C07	A	2 x 1.0 m	2 x 19.9 m	C07A	D	2 x 0.8 m	2 x 32.0 m	C07A	D*	2 x 0.8 m	2 x 30.0 m							
Cor	A	2 x 1.0 III	2 X 1.0 111	2 X 1.0 111	2 X 1.0 111	2 X 1.0 III	2 X 1.0 111	2 X 1.0 III	2 X 1.0 III	2 X 19.9 III	C07B	D	2 x 0.8 m	2 x 17.6 m	C07B	D*	2 x 0.8 m	2 x 18.0 m
C08	А	2 x 0.7 m	2 x 37.3 m	C08	D	1 x 1.0 m	1 x 36.9 m	C08	1	NOT INSTALL	ED							
C09	Α	2 x 1.0 m	2 x 19.1 m	C09	Α	2 x 1.0 m	2 x 23.4 m	C09	D*	2 x 1.0 m	2 x 24.0 m							
C10	CULVERT #C10 CROSS SECTION	1 x 1.0 m 5 x 1.2 m	6 x 27.0 m	C10	CULVERT #C10 CROSS SECTION	1 x 1.0 m 5 x 1.2 m	6 x 27.0 m	C10	CULVERT #C10 CROSS SECTION	1 x 1.0 m 5 x 1.2 m	6 x 30.0 m							
				C11A	D	2 x 1.2 m	2 x 23.0 m	C11A	D*	2 x 1.2 m	2 x 18.0 m							
C11	С	5 x 1.2 m	6 x 18.4 m	C11B	D	2 x 1.0 m	2 x 19.0 m	C11B	D*	2 x 1.0 m	2 x 18.0 m							
	O	1 x 1.0 m	0 X 10.4 III	CIIB	ט	2 X 1.0 111	2 X 19.0 III	C11B1	E*	1 x 1.0 m	1 x 24.0 m							
				C11C	D	2 x 1.0 m	2 x 22.0 m	C11C	D*	2 x 1.0m	2 x 18.0 m							
				C12A	D	2 x 1.2 m	2 x 23.6 m	C12A	D*	2 x 1.2 m	2 x 18.0 m							
C12	D	5 x 1.2 m 1 x 1.0 m	7 x 18.4 m	C12B	D	2 x 1.2 m	2 x 34.0 m	C12B	D*	2 x 1.2 m	2 x 30.0 m							
				C12C	D	2 x 1.0 m	2 x 19.0 m	C12C	1	NOT INSTALL	ED							
C13	D	2 x 0.8 m	2 x 23.0 m	C13	D	2 x 0.8 m	2 x 23.0 m	C13	D*	2 x 0.8 m	2 x 18.0 m							
C14	D	3 x 0.8 m	3 x 19.0 m	C14	D	3 x 0.8 m	3 x 19.0 m	C14	D*	3 x 0.8 m	3 x 18.0 m							

^{*} No embedment was provided to the lowest pipes

The final length of each culvert was adjusted to fit the final width of the bypass road at the crossing location and also to coincide with the standard culvert section length.

The minimum cover depth over all culverts along the road was increased to 1 m to allow heavy load equipment trucking without damaging the culverts, approved by the designer and the field engineer.

The typical cross-section type (configuration of culverts) was modified to suit with the accepted changes for the culverts location and number when applicable.

All culverts were installed with respect to the natural stream or ground slope as much as possible, avoiding any outlet drop to help prevent erosion. The natural stream or ground slope at the final culvert position was found to be generally gentler than assumed in the original design. Therefore, the natural velocities are less than designed when using the as-built slopes. However, there are 5 culverts location (C05, C09, C10, C12A and C13) where the slopes are steeper than the original design, and so are the velocities.

The as-built slope of the group of culverts C10 was greater than designed to suit with the natural stream slope without an outlet drop and therefore minimize impact on the potential fish and fish habitat. The on-site velocity in the main channel at C10 crossing was measured at 0.6 m/s in May 2017. For the peak flow associated to the 1:2 years annual rainfall event, a velocity of 1.97 m/s can be reached. As per design, to ensure that fish passage potential is not less than what was already existing, a 1.2 m diameter culvert has been strategically placed on-site to perfectly fit in the main channel, and was embedded 0.3 m below the channel invert. Since the culvert width is larger than the stream channel width, there is no channel constriction that could increase velocities within the culvert. Furthermore, 4 additional pipes of 1.2 m diameter were installed at ground level besides the embedded culvert and main watercourse, as per design. These secondary culverts allow sufficient capacity to convey the peak flow, but are also providing routes of reduced velocity during high flow period.

Following the installation of the group of culverts C12C with the design criteria specifying 0.3 m of embedment on the lowest pipes, field observations showed large volumes of ponding water within the culverts, creating concerns for potential ice jacking and damage. Therefore, the field engineer approved to proceed with the installation of the remaining culverts (all of them except for the group of culvert C10) with the lowest pipes at original ground level, without any embedment.

- Consequently, the lowest pipe in the group of culverts C01, C03, C04 and C09 (located where there is an ephemeral stream crossing) were not embedded as recommended. However, the as-built slopes were smoother than designed for the group of culverts C01, C03 and C04 reducing their expected velocity; while the expected velocity for the group of culvert C09 is slightly greater than assumed in the original design due to the natural steeper slope. None of the subject culverts is installed with an outlet drop that could negatively affect their potential use by small-bodied fish when water is flowing.
- The exception is for the installation of the group of culverts C10 that followed the original design with an
 embedment of 0.3 m for the lowest pipe to provide seasonal fish passage for both small-bodied and large
 bodied species between Cygnet Lake and the marine environment.

Table 3.4: Culverts Velocity for a 1:2 year return period

Original Design				Revised Design				As-built			
No.	Average Slope (%)	Peak Flow per culvert (m/s)	Velocity per culvert (m/s)	No.	Average Slope (%)	Peak Flow per culvert (m/s)	Velocity per culvert (m/s)	No.	Average Slope (%)	Peak Flow per culvert (m/s)	Velocity per culvert (m/s)
C01	7.2	0.21	2.44	C01	6.0	0.21	2.29	C01	4.9	0.21	2.13
C02	10.3	0.08	2.18	C02	6.0	0.08	1.80	C02	10.0	0.08	2.15
C03	12.1	0.07	2.21	C03	6.0	0.05	1.53	C03	5.9	0.05	1.50
C04	10.4	0.17	2.61	C04	6.0	0.17	2.15	C04	6.7	0.17	2.23
C05	1.3	0.19	1.32	C05	2.0	0.28	1.69	C05	3.0	0.28	1.95
Coc	2.0	0.05	1.00	C06	2.5	0.26	2.06	C06A	2.0	0.26	1.69
C06	3.8	0.25	1.99	C06	3.5	0.26	2.06	C06B	3.5	0.23	1.99
C07	7.0	0.24	2.44	C07A	1.7	0.11	1.25	C07A	1.2	0.11	1.25
C07	7.2	0.21	2.44	C07B	6.0	0.17	2.21	C07B	5.3	0.04	1.38
C08	16.4	0.09	2.65	C08	6.0	0.07	1.65	C08	N	NOT INSTALLED	
C09	2.1	0.19	1.54	C09	1.8	0.28	1.63	C09	2.2	0.28	1.75
C10	0.5	0.58	1.23	C10	0.5	0.58	1.23	C10	1.8	0.58	1.97
				C11A	2.3	0.22	1.63	C11A	1.6	0.22	1.43
								C11B	1.8	0.45	1.86
C11	3.2	0.38	2.14	C11B	2.3	0.51	2.11	C11B1	2.3	0.12	1.40
				C11C	2.4	0.17	1.56	C11C	0.8	0.17	1.05
				C12A	0.5	0.04	0.58	C12A	0.8	0.04	0.69
C12	1.0	0.40	1.44	C12B	1.0	0.40	1.44	C12B	1.6	1.19	2.29
				C12C	0.6	0.79	1.42	C12C	N	OT INSTALLE	D
C13	0.9	0.07	0.86	C13	0.9	0.07	0.86	C13	1.1	0.07	0.95
C14	2.0	0.03	0.90	C14	2.0	0.03	0.90	C14	1.1	0.03	0.74

4.0 EARTHWORKS

Table 4.1 below presents the granular material quantities for the construction of the Rankin Inlet Bypass Road, including the associated culverts. The quantities presented are in-place quantities and do not include any extras for excess or losses.

Table 4.1: Granular Material In-Place Quantities

Material	Proposed Quantities	Actual Quantities	Difference Quantities
Borrow pit material Class A or Granular Fill 0-600 mm material for road base (m³)	116 350		
Borrow pit material Class A or Granular Fill 0-600 mm material or overburden material approved by the field engineer for safety berms and road shoulder (m³)	5 580	94 766	- 27 164
Granular fill 0-50 mm for road and culverts (m³)	10 400	3 752	+152
Granular fill 0-25 mm for road topping (m³)	-	6 800	+132
Rip Rap 50-300 mm for culverts (m³)	420	588	+168
Rip Rap 600-1000 mm for protection of embankments (m³)	760	640	-120
Total Fill Material Volume (m³)	133 910	113 336	-27 466
Non-woven geotextile 200 g/m ² (if required) (m ²)	10 000	Not required	Not required

4.1 Field decisions that deviate from original design

This section documents variations in material quantities between original design and as-built for the Rankin Inlet Bypass Road.

- No overburden material was used as fill material, and the global borrow pit material Class A quantity is less than designed since the road length was shortened.
- Calcium chloride was applied to the road topping and compacted to help dust control. The road topping material was 0-25 mm instead of 0-30 mm, which is accepted by the designer.
- The quantity of riprap 50-300 mm installed is greater than the minimum design quantity. It was placed to the satisfaction of the field engineer to prevent erosion of the culverts inlet and outlet areas.
- So far, riprap 600-1000 mm for the protection of embankments has been installed in accordance with the design drawings. The installation of the riprap for section 1+297 to 1+353 will be completed in 2019.
- The installation of a geotextile under the road was recommended to minimize loss of fill material if the construction schedule extended into the summer and if site conditions required it. It was decided that it was unnecessary to place the geotextile on the natural ground based on site conditions. Instead, the fill was placed to design grades and compensated for the loss penetration of the road base granular fill into the tundra with additional granular fill.

 At some culvert locations (C14 through to C11B1), as an addition to the design, a geotextile was placed between the clean gravel bedding of the culverts and the natural ground to help avoid the clean gravel to get mixed with the natural ground. This is a good practice, however no as-built quantities were provided to record.

5.0 CONSTRUCTION MONITORING

The construction monitoring was managed by Agnico Eagle. The performance of the installed culverts will be monitored frequently, particularly during freshet flows.

6.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Agnico Eagle Mines Ltd. and their agents. Tetra Tech does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Agnico Eagle Mines Ltd., or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Tetra Tech accepts no responsibility for losses, claims, expenses or damages, if any, suffered by a third party as a result of any decisions made or actions based on this report. Use of this report is subject to the terms and conditions stated in Tetra Tech's Services Agreement.

While it is believed that the information contained herein is reliable under the conditions and subject to the limitations set forth in the report, this report is based on information not within the control of Tetra Tech, nor has said information been verified by Tetra Tech, and Tetra Tech therefore cannot and does not guarantee its sufficiency and accuracy. The comments in the report reflect Tetra Tech's best judgment in light of the information available to it at the time of preparation.

Use of this Document acknowledges acceptance of the foregoing conditions.

7.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted,

Tetra Tech

PERMIT TO PRACTICE TETRA TECH INDUSTRIES, INC. O/A TETRA TECH

Signature

Date

PERMIT NUMBER: P 1029

NT/NU Association of Professional Engineers and Geoscientists

Prepared by:

Maria Vera, Jr. Eng.

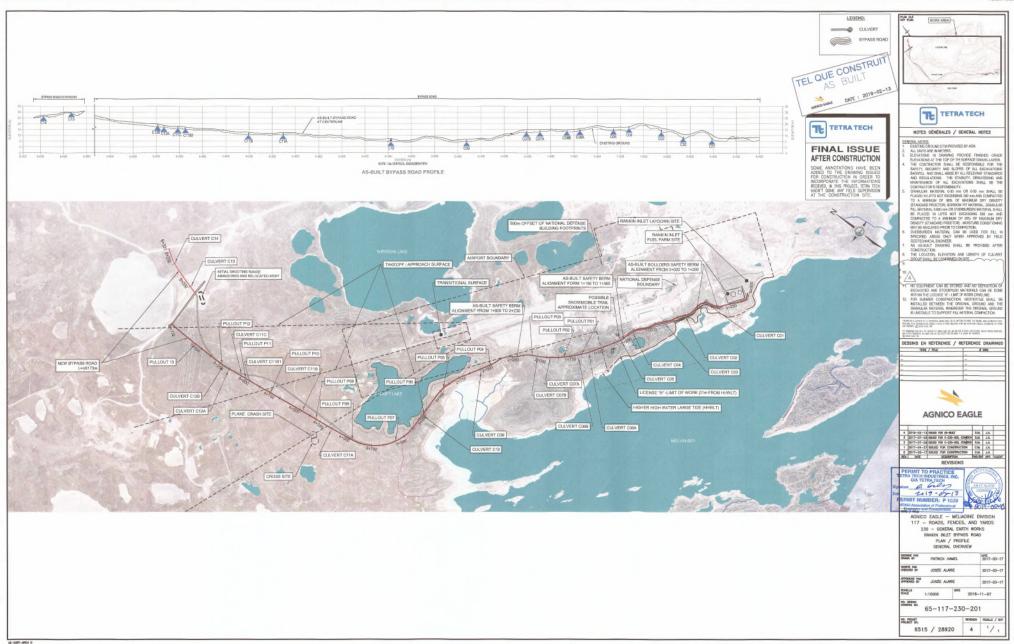
Direct Line: 514.257.2427 x3161 maria.verainfante@tetratech.com

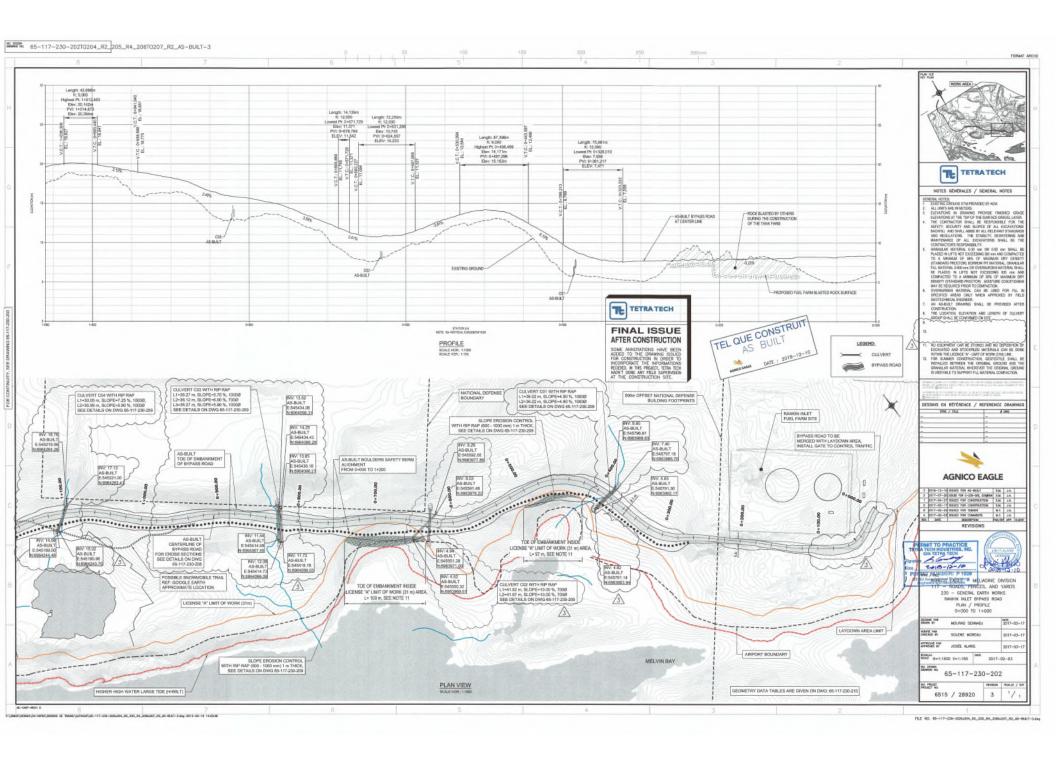
Reviewed by:

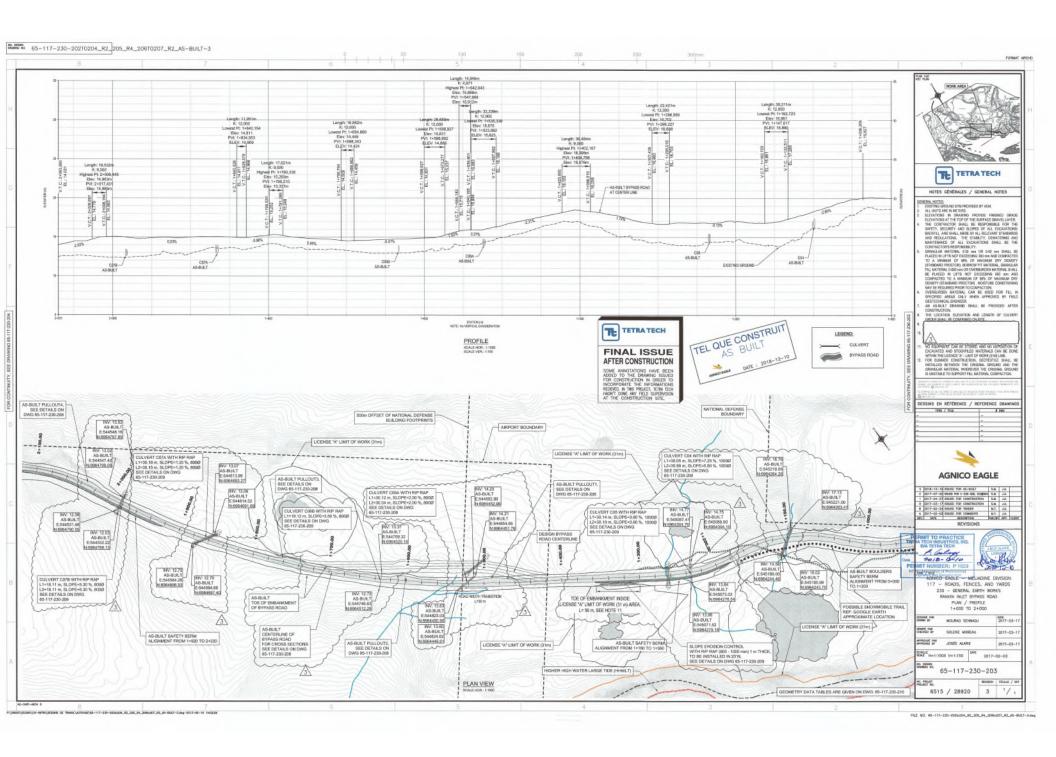
GISTERED

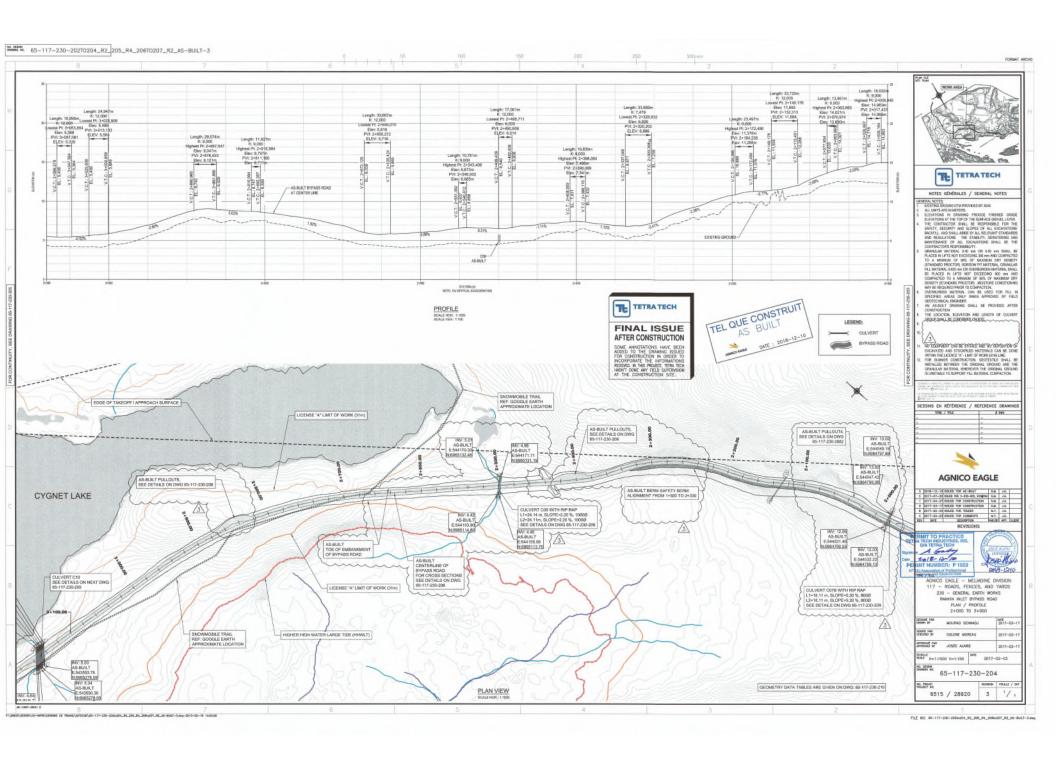
Josée Alarie, P.Eng.

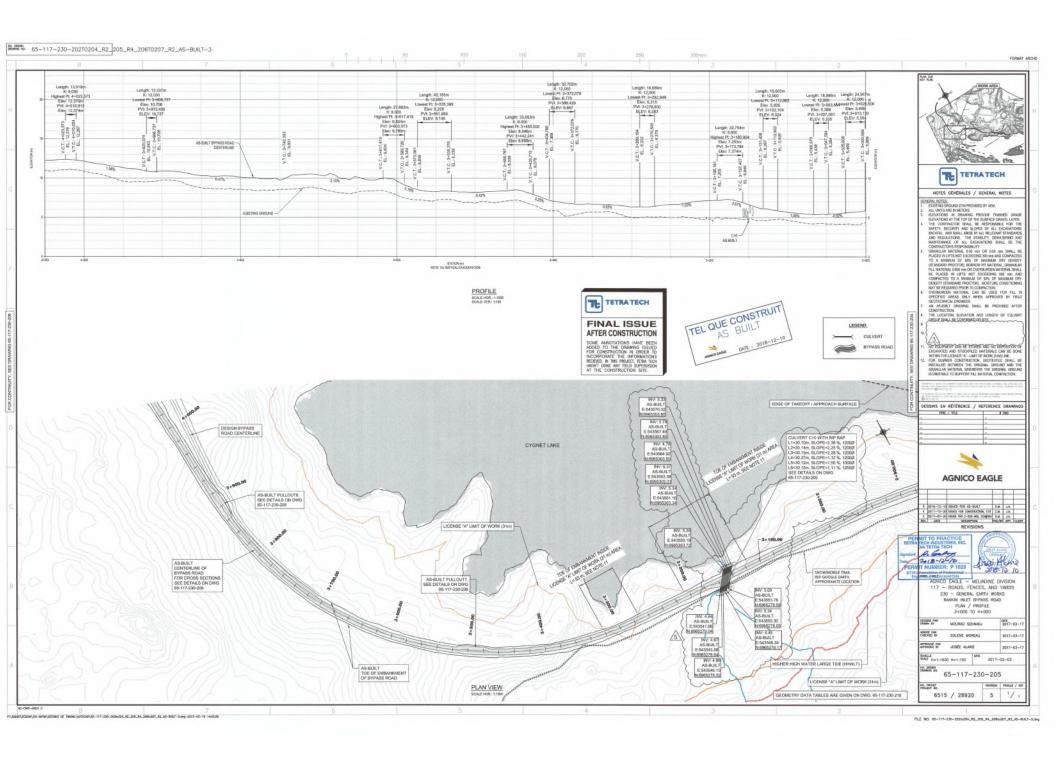
J.M.I.F. ALARIE

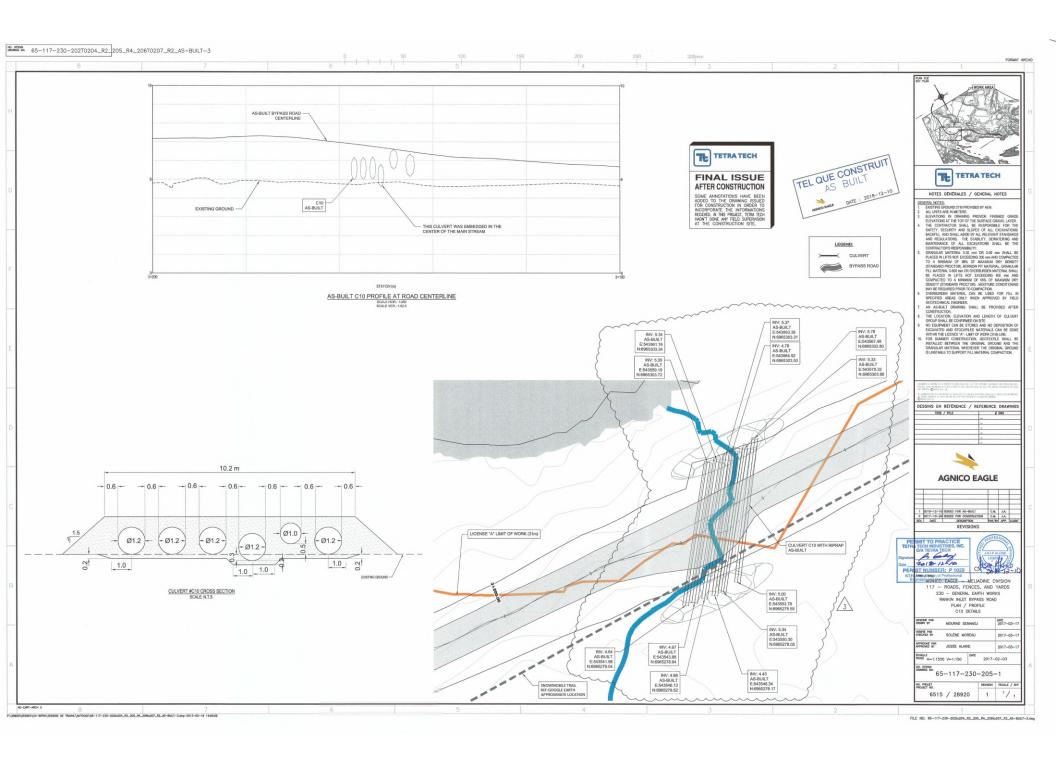

LICENSEE

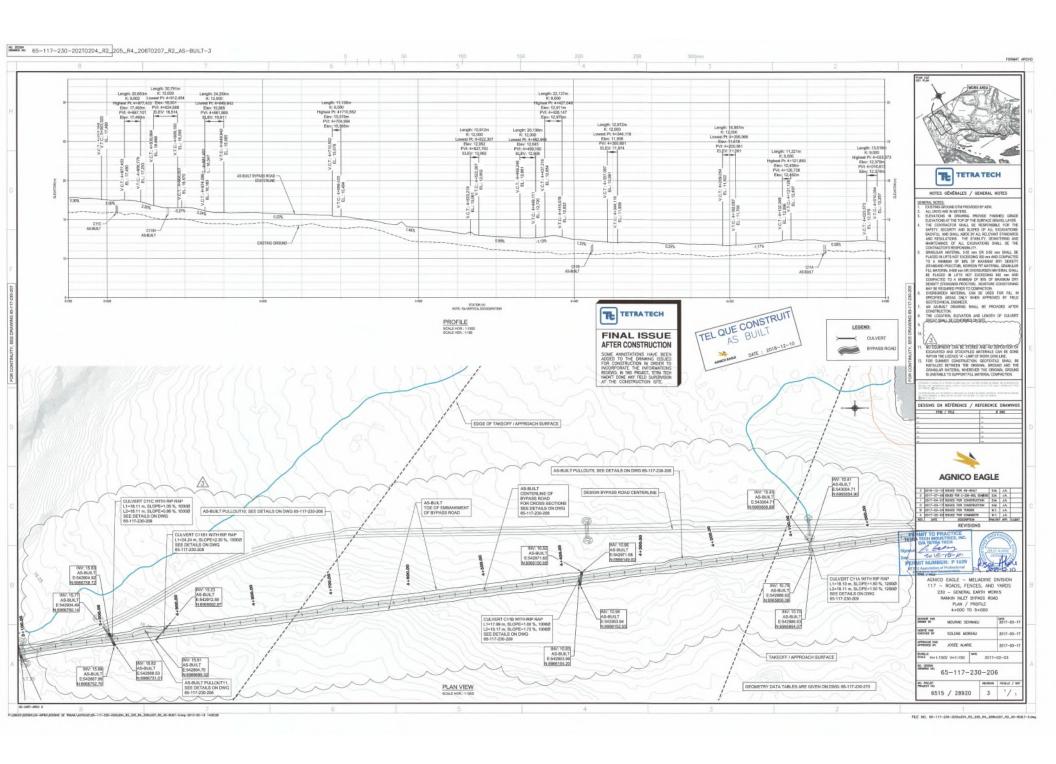

Direct Line: 514.257.2427 x3323 Josee.Alarie@tetratech.com

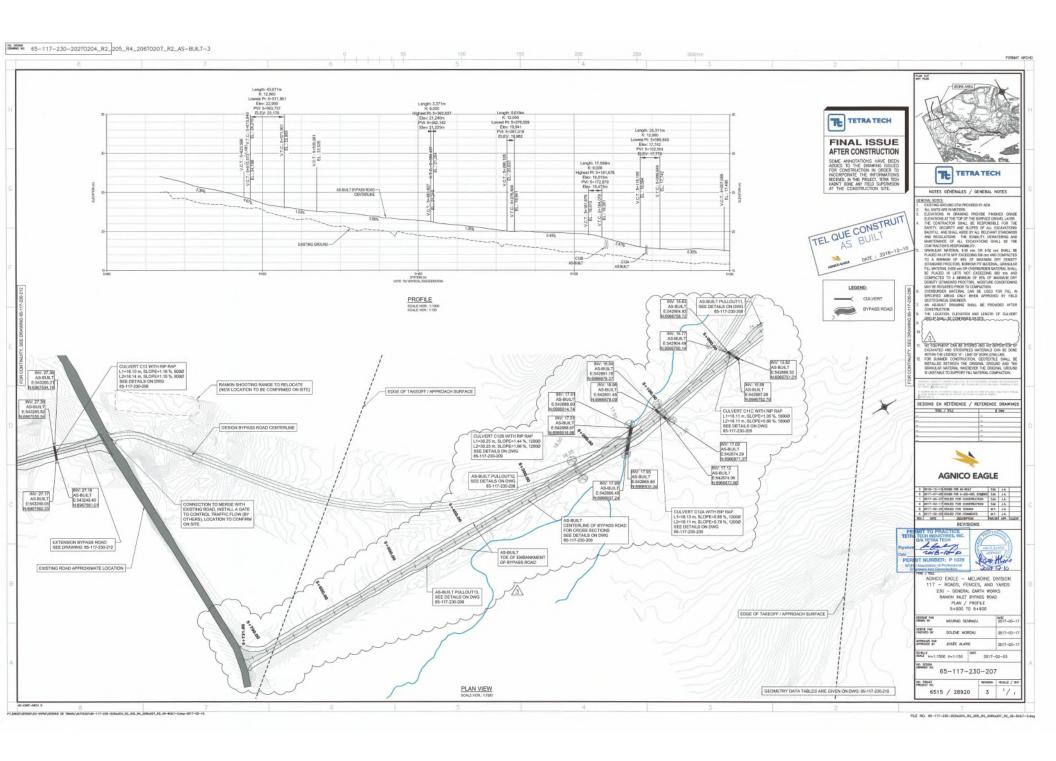

APPENDIX A

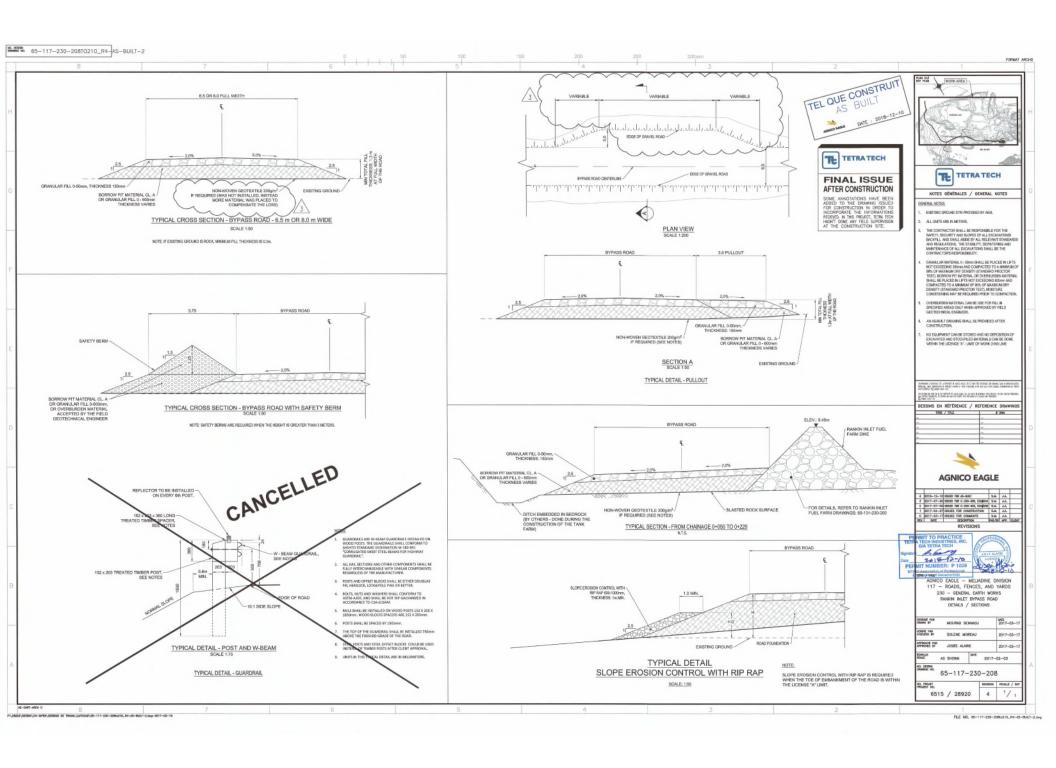

As-built Drawings

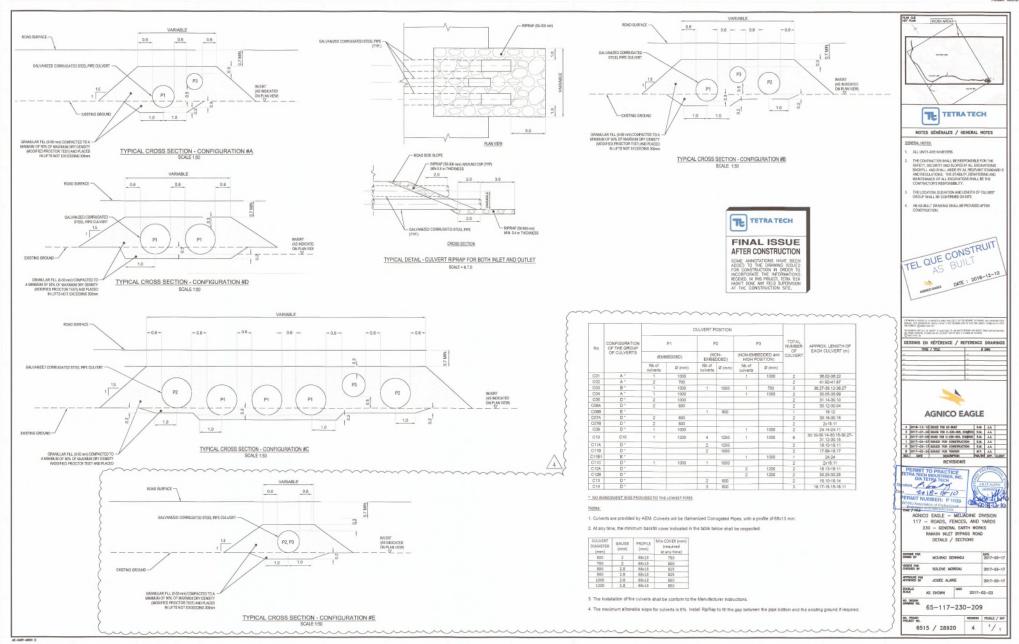


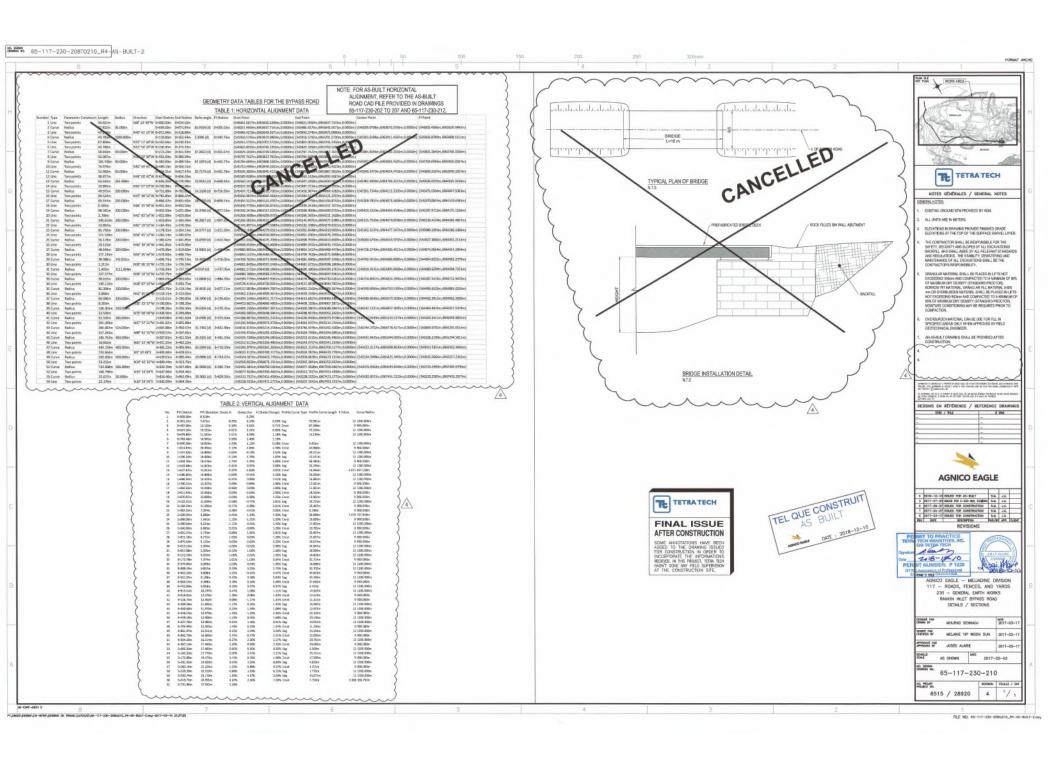


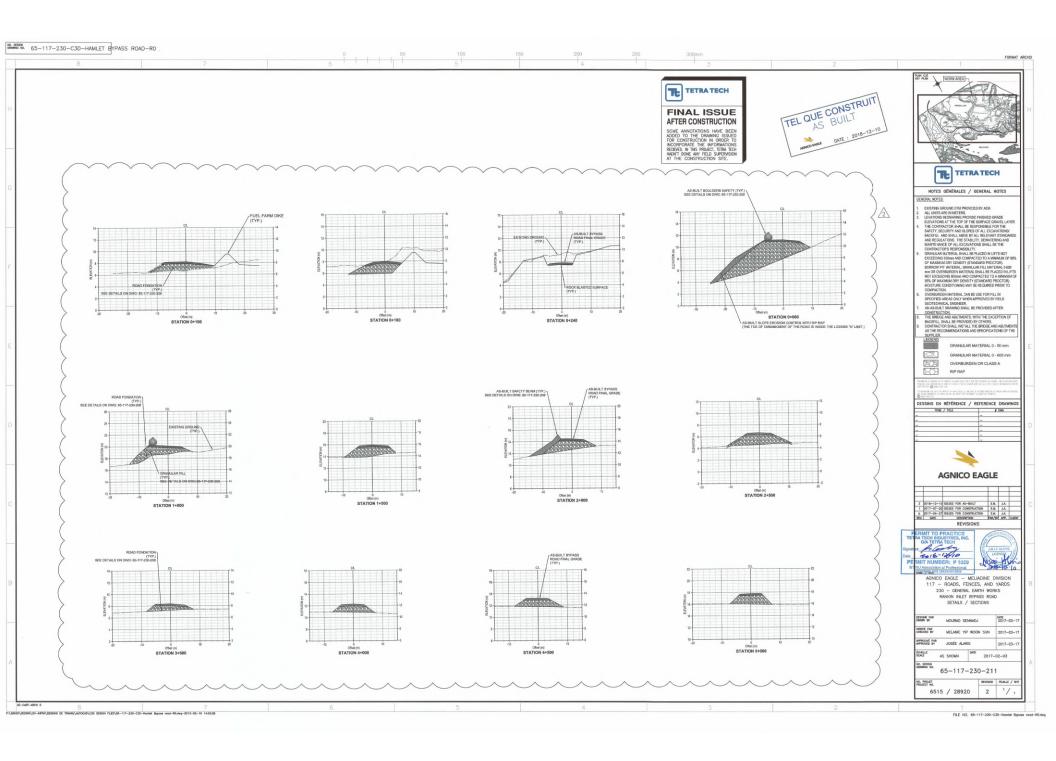


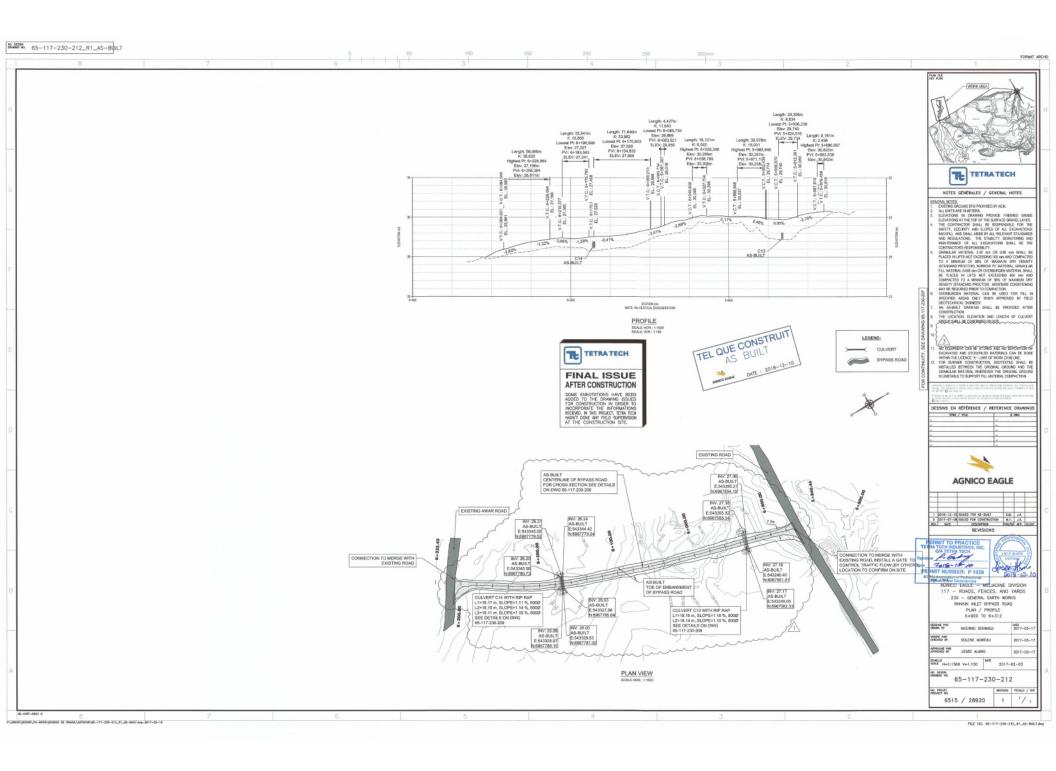


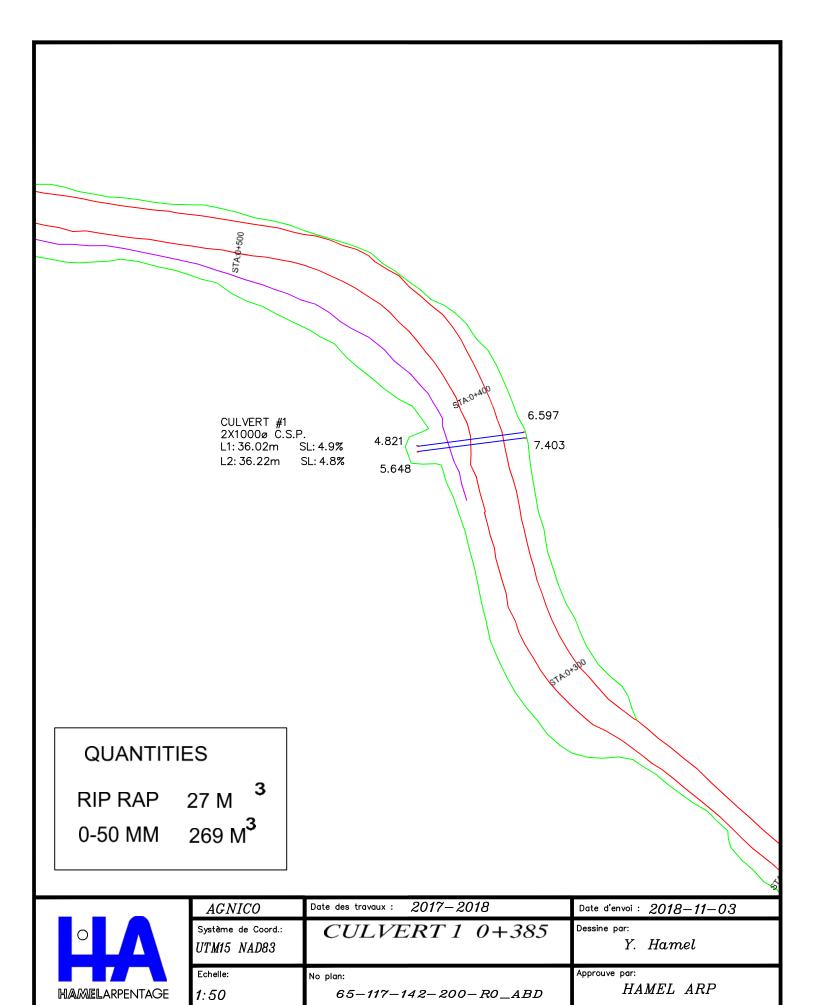


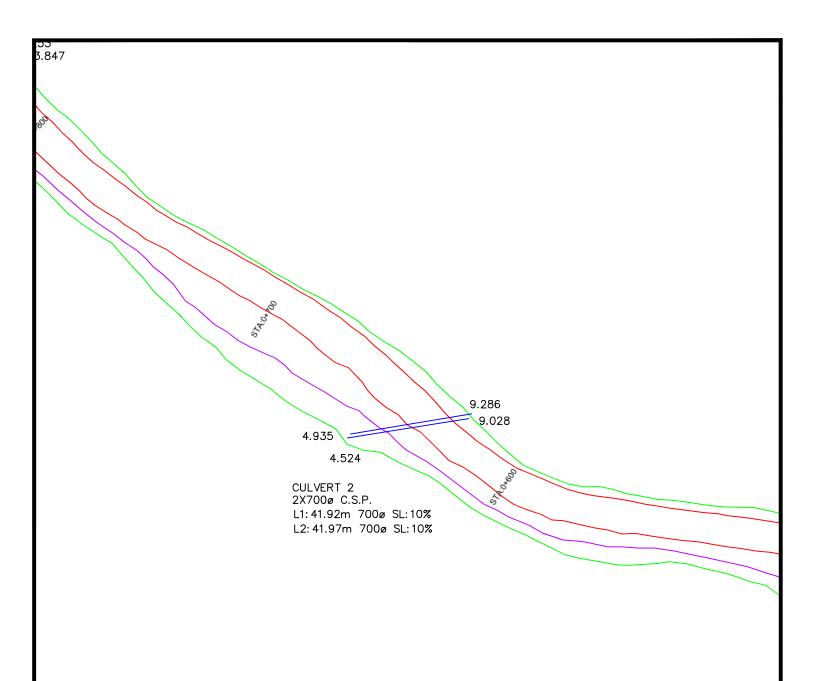




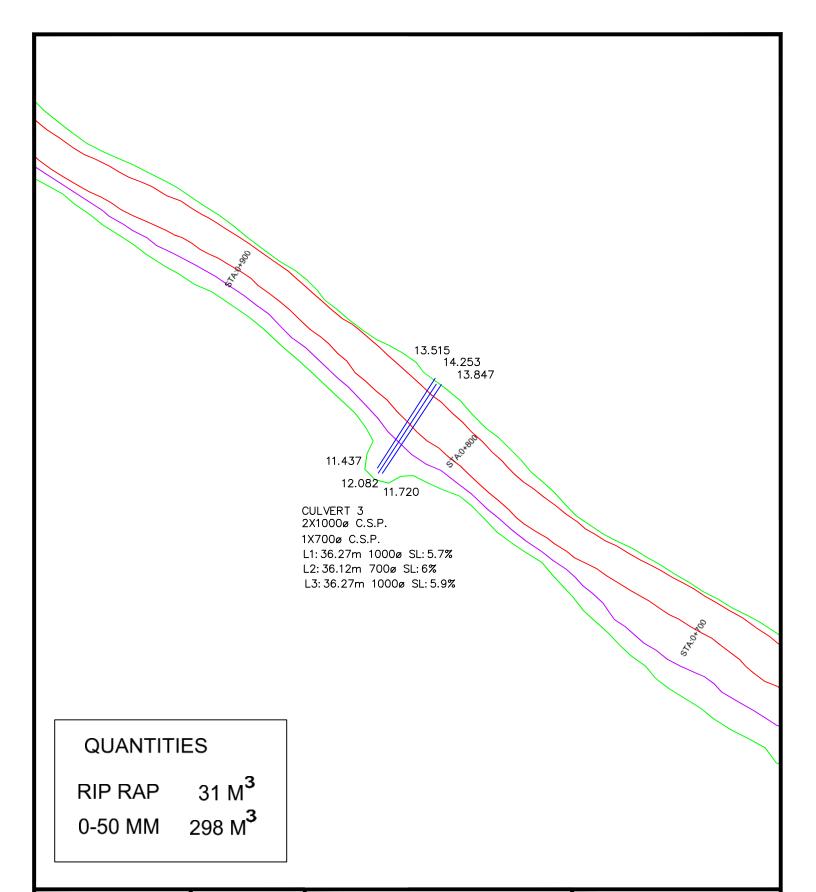




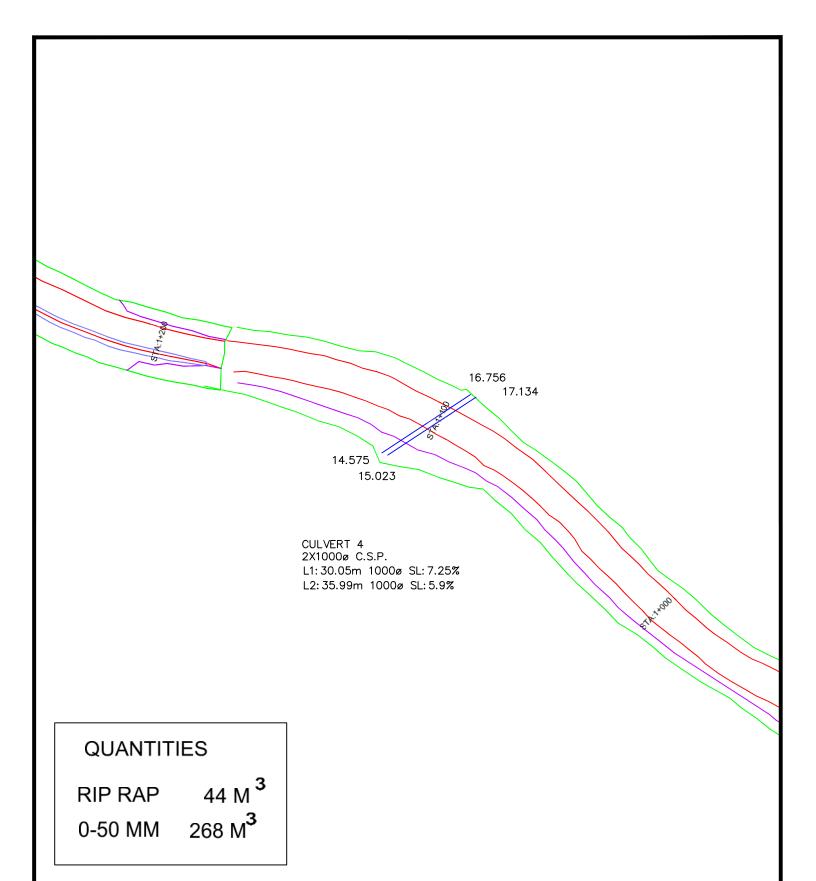




APPENDIX BSurvey Drawings



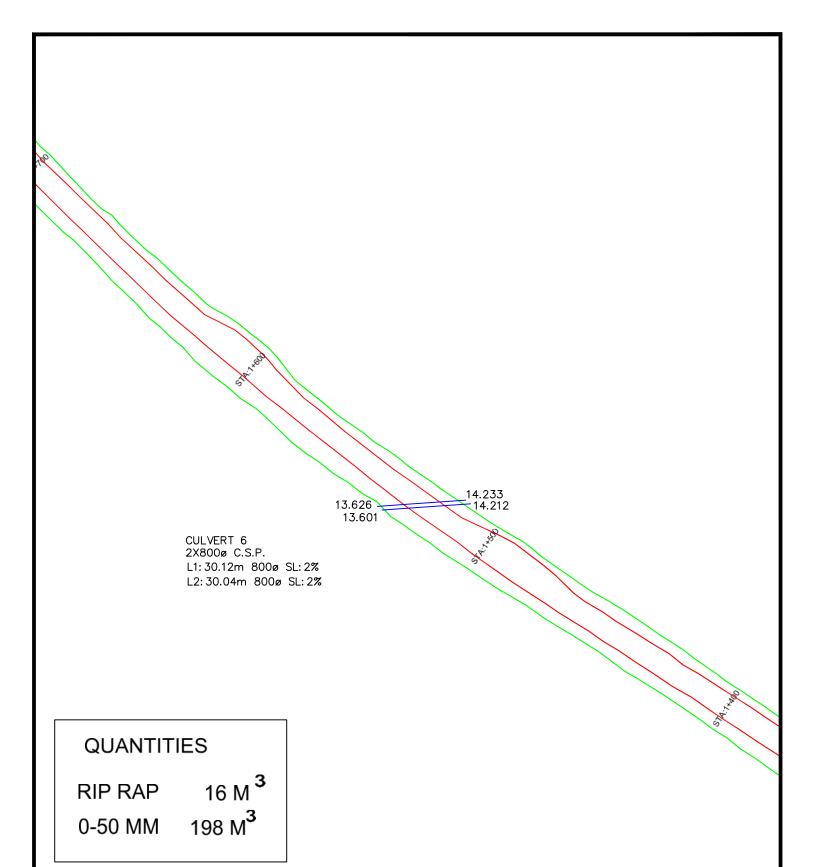
QUANTITIES

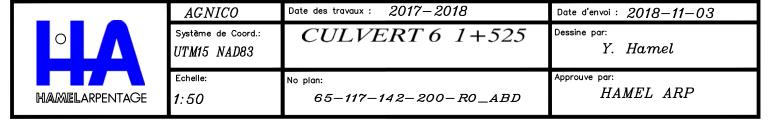

RIP RAP 38 M³ 0-50 MM 299 M³

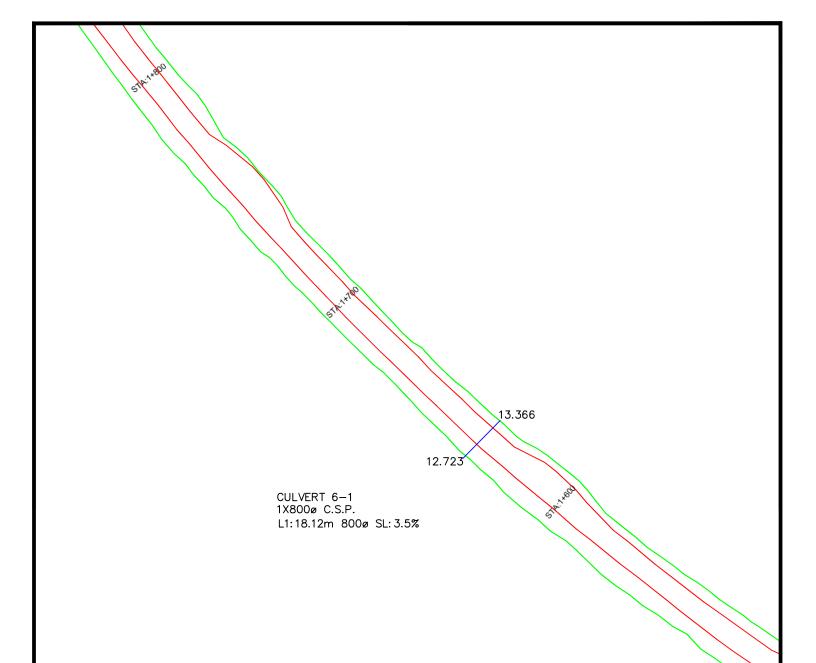
AGNICO	Date des travaux : $2017-2018$	Date d'envoi : $2018-11-03$
Système de Coord.: UTM15 NAD83	CULVERT 2 0+635	Dessine par: Y. Hamel
Echelle: 1:50	No plan: 65-117-142-200-R0_ABD	Approuve par: $HAMEL\ ARP$

	<i>AGNICO</i>	Date des travaux : $2017-2018$	Date d'envoi : $2018-11-03$
0	Système de Coord.: UTM15 NAD83	CULVERT 3 0+820	Dessine par: $Y.$ $Hamel$
HAMELARPENTAGE	Echelle: 1:50	No plan: 65-117-142-200-R0_ABD	Approuve par: HAMEL ARP

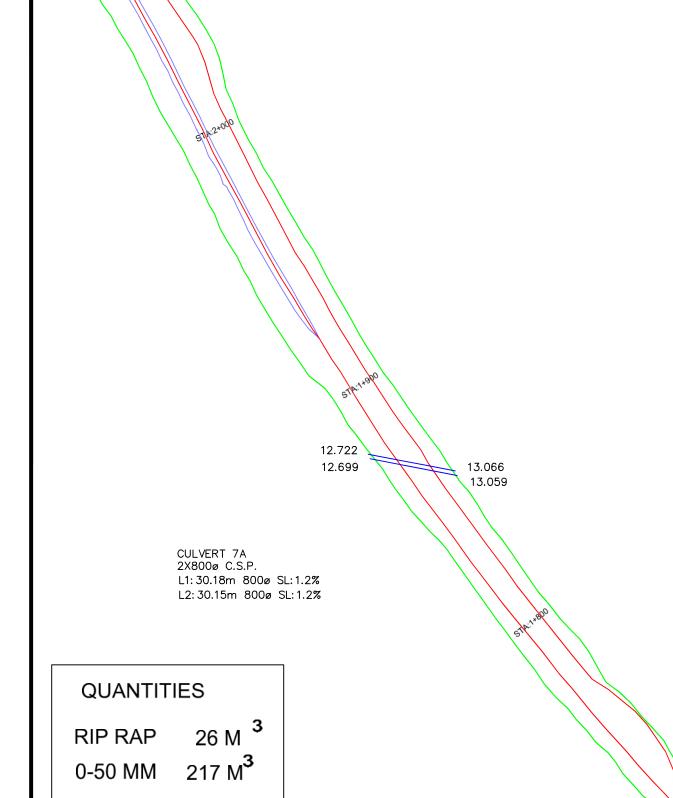
<i>AGNICO</i>	Date des travaux : $2017 - 2018$	Date d'envoi : $2018-11-03$
Système de Coord.: UTM15 NAD83	CULVERT 4 1+100	Dessine par: $Y. \;\; Hamel$
Echelle: 1:50	No plan: 65-117-142-200-R0_ABD	Approuve par: HAMEL ARP

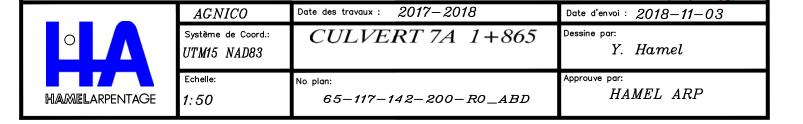


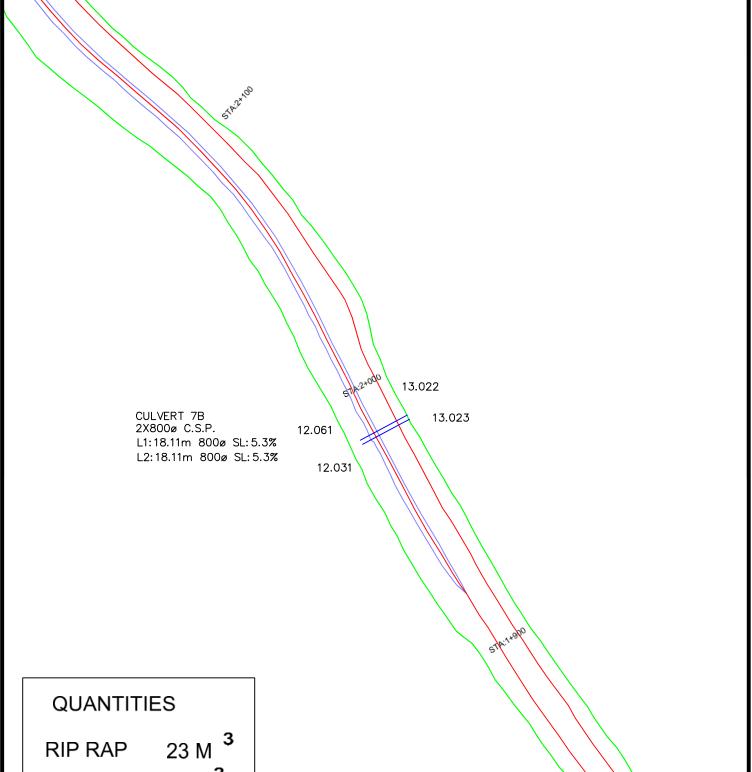

QUANTITIES


RIP RAP 30 M ³ 0-50 MM 164 M³

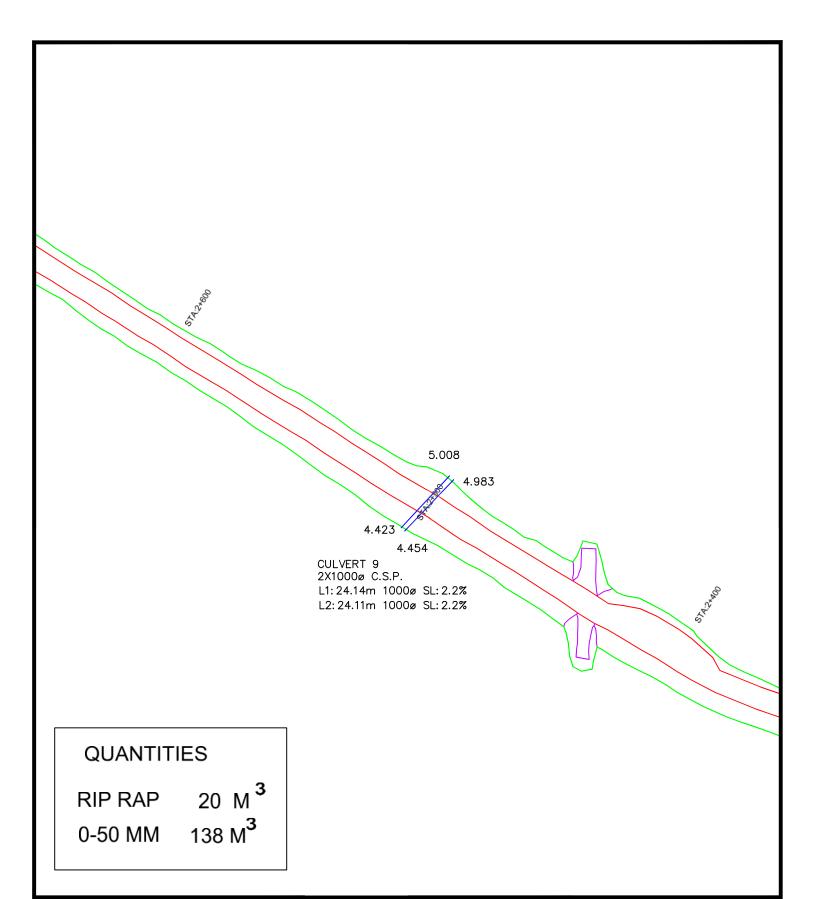
AGNICO	Date des travaux : $2017-2018$	Date d'envoi : $2018-11-03$
Système de Coord.: UTM15 NAD83	CULVERT 5 1+235	Dessine par: Y. Hamel
Echelle:	No plan:	Approuve par:
1:50	65-117-142-200-R0_ABD	HAMEL ARP

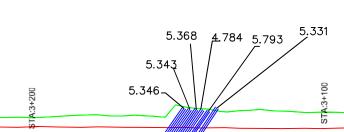



QUANTITIES


RIP RAP 26 M³ 0-50 MM 123 M³

<i>AGNICO</i>	Date des travaux : $2017-2018$	Date d'envoi : $2018-11-03$
Système de Coord.: UTM15 NAD83	CULVERT 6-1 1+635	Dessine par: Y. $Hamel$
Echelle:	No plan:	Approuve par:
1:50	65-117-142-200-R0_ABD	HAMEL ARP




0-50 MM 265 M³

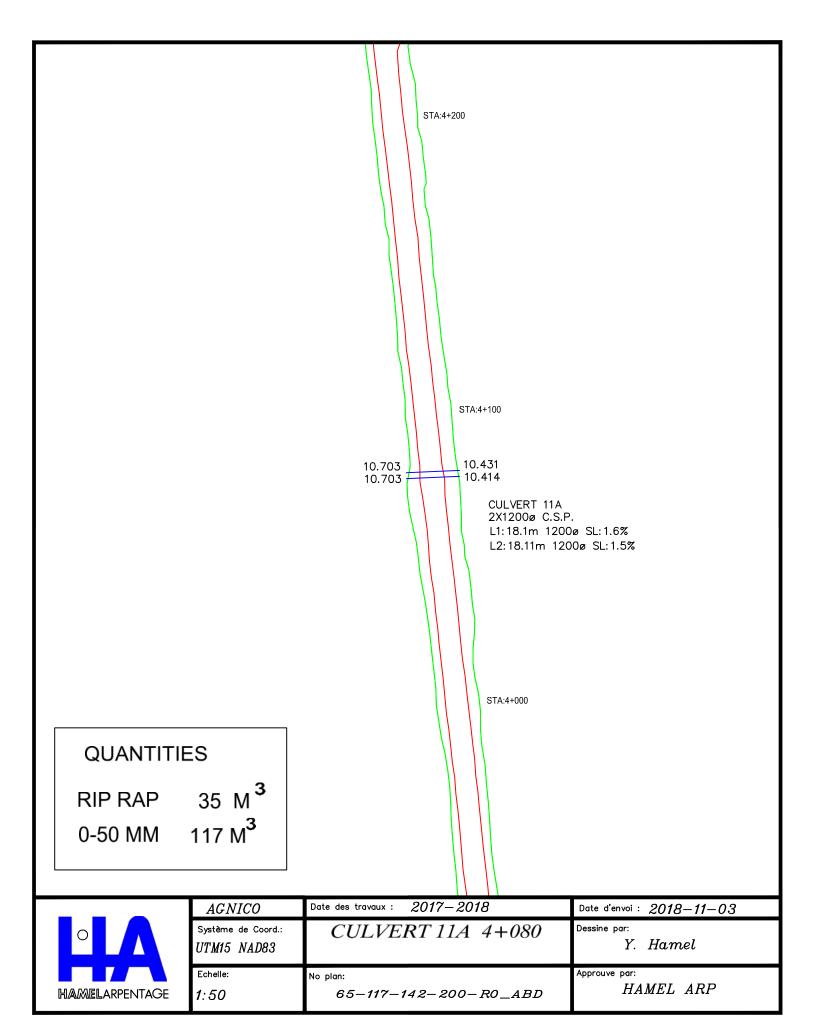
	0	
K		LARPENTAGE

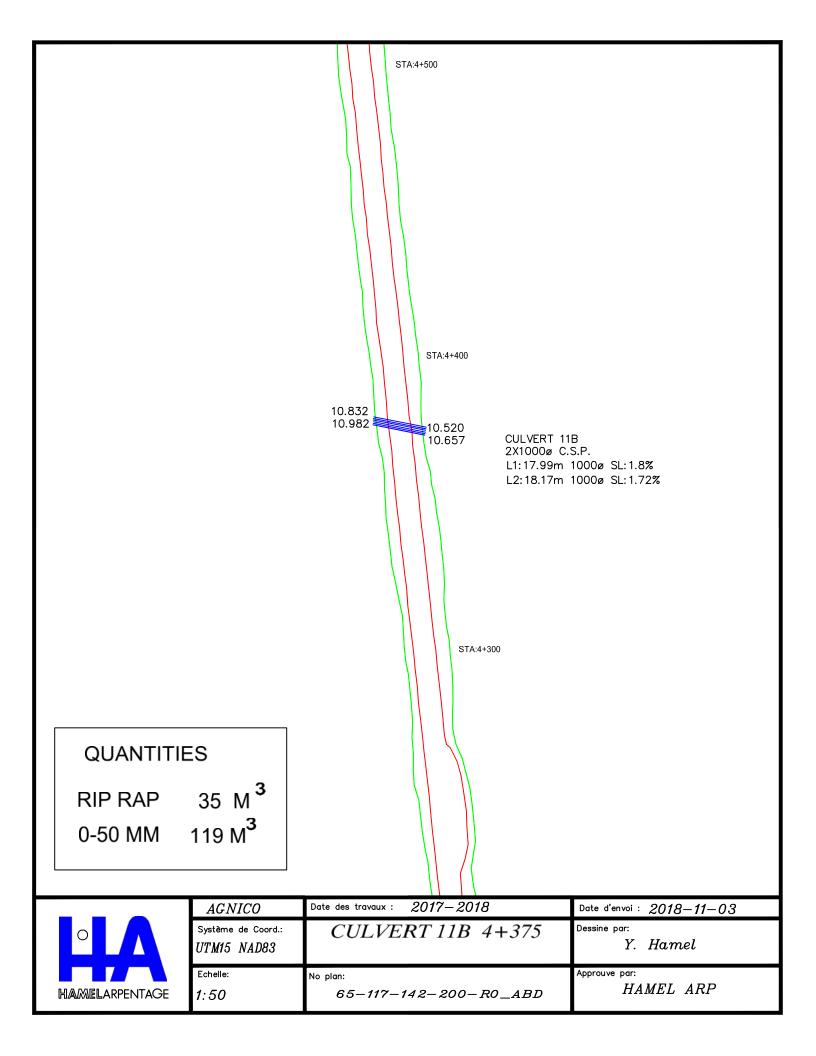
<i>AGNICO</i>	Date des travaux : $2017-2018$	Date d'envoi : $2018-11-03$
Système de Coord.: UTM15 NAD83	CULVERT 7B 1+985	Dessine par: Y. Hamel
Echelle: 1:50	No plan: 65-117-142-200-R0_ABD	Approuve par: HAMEL ARP

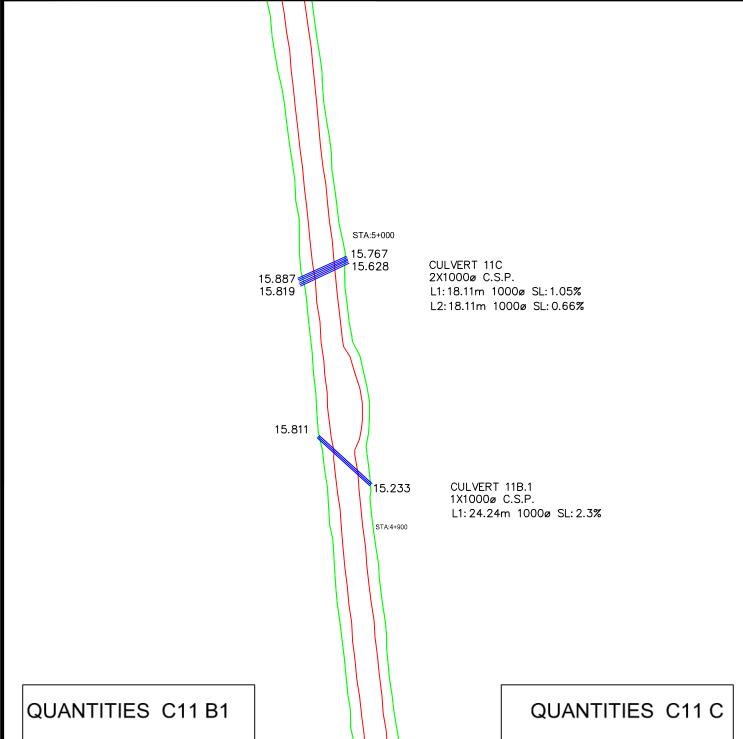
	<i>AGNICO</i>	Date des travaux : $2017-2018$	Date d'envoi : $2018-11-03$
	Système de Coord.: UTM15 NAD83	CULVERT 9 2+500	Dessine par: $Y.$ $Hamel$
	Echelle:	No plan:	Approuve par:
HAMELARPENTAGE	1:50	65-117-142-200-R0_ABD	HAMEL ARP

4.637 4.665 4.681 4.996 4.445

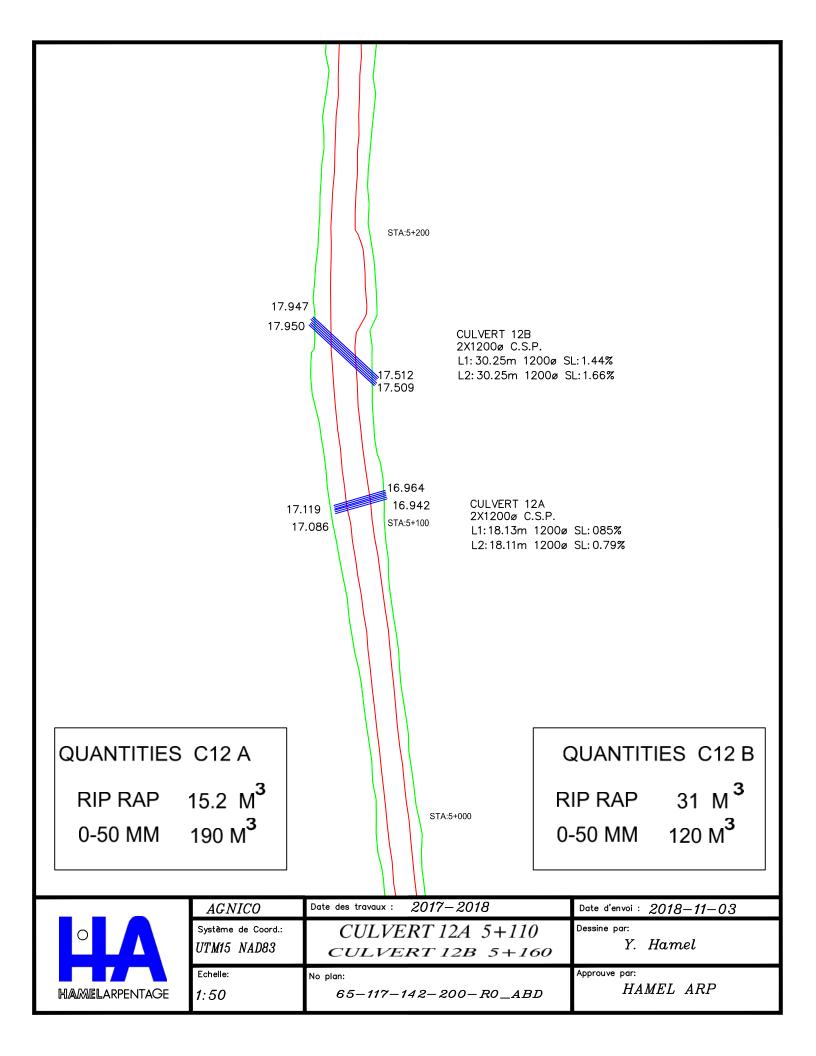
5X1200ø C.S.P. 1X1000ø C.S.P. L1: 30.10m 1200ø SL: 2.36% L2: 30.14m 1200ø SL: 2.25% L3: 30.15m 1200ø SL: 2.28% L4: 30.27m 1200ø SL: 1.12% L5: 30.12m 1000ø SL: 1.5% L2: 30.15m 1200ø SL: 1.11%

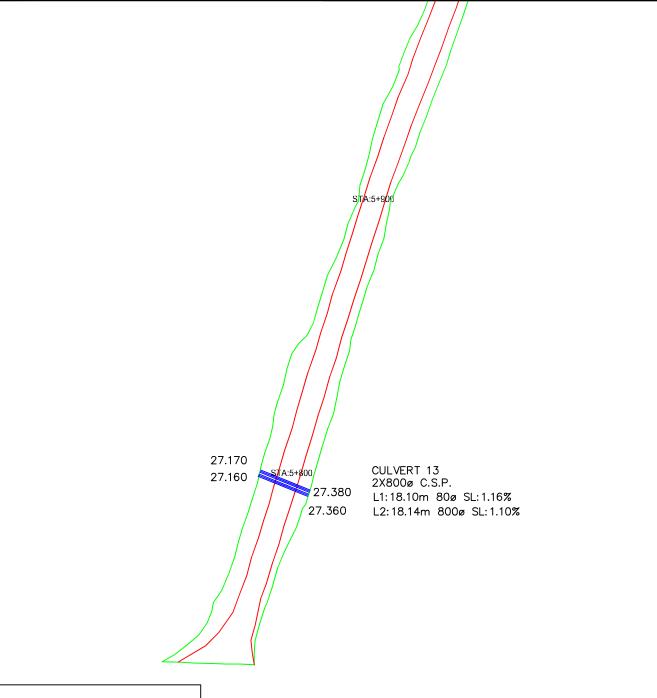

CULVERT 10


QUANTITIES


RIP RAP 83 M³ 0-50 MM 411 M³

<i>AGNICO</i>	Date des travaux : $2017-2018$	Date d'envoi : $2018-11-03$
Système de Coord.: $CULVERT~10~3+150$ $UTM15~NAD83$		Dessine par: $Y. \;\; Hamel$
Echelle:	No plan:	Approuve par:
1:50	65-117-142-200-R0_ABD	HAMEL ARP

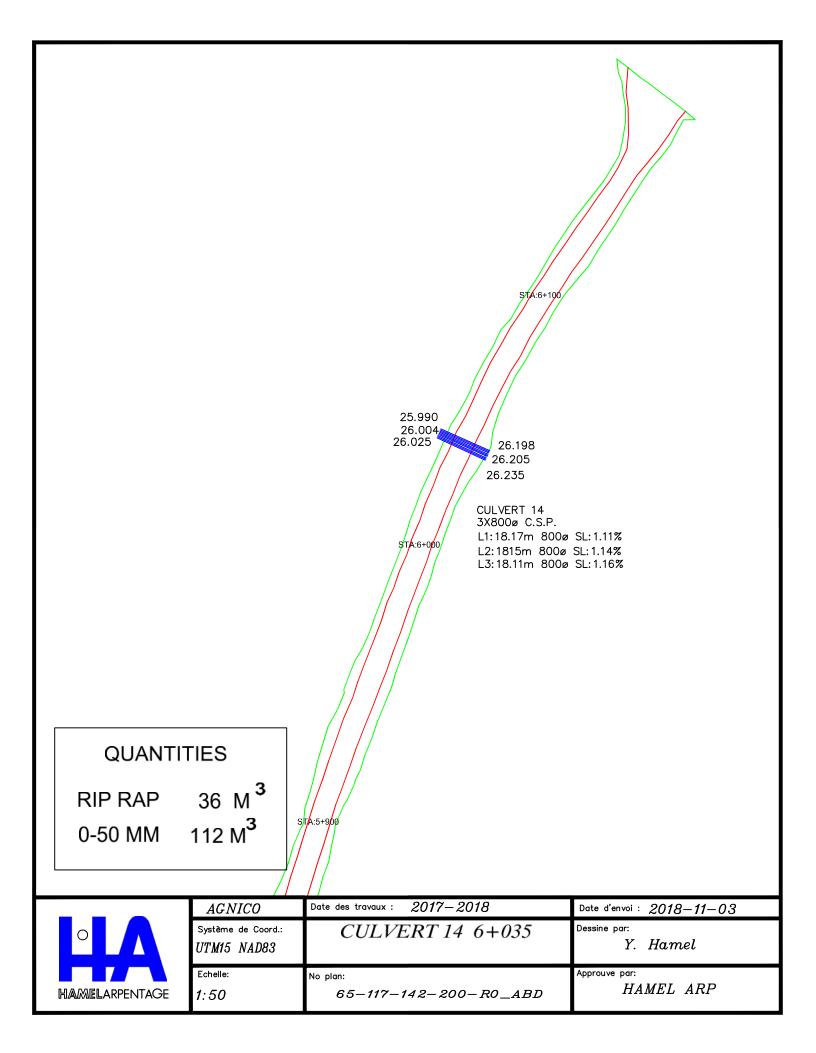


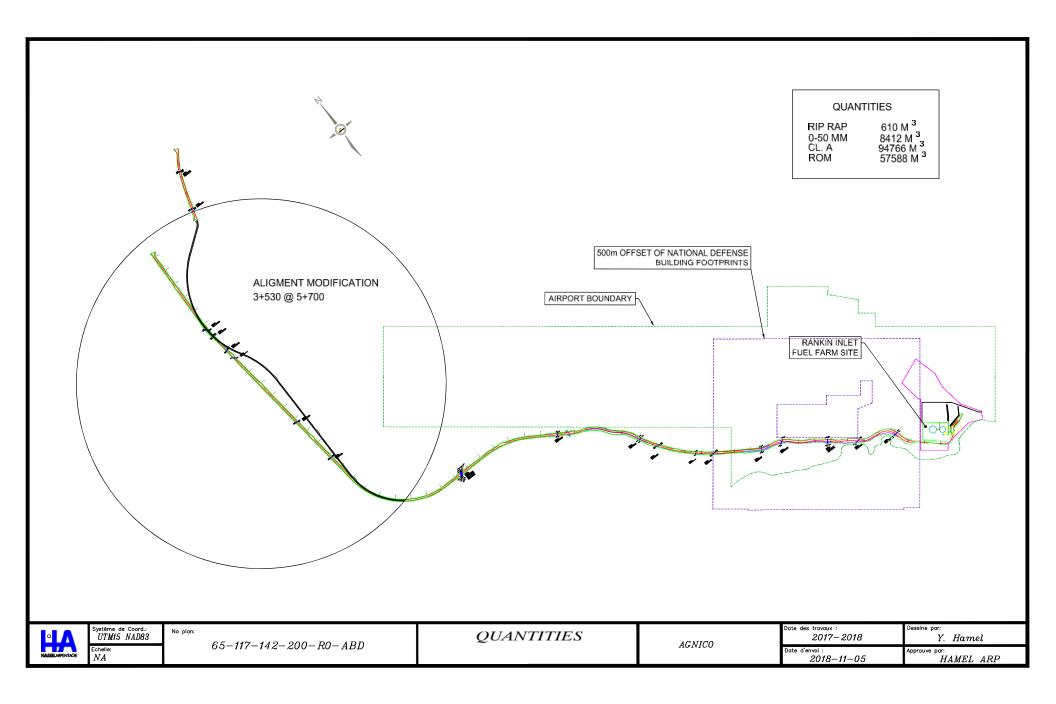

RIP RAP 15 M³ 0-50 MM 190 M³ RIP RAP 31 M³ 0-50 MM 120 M³

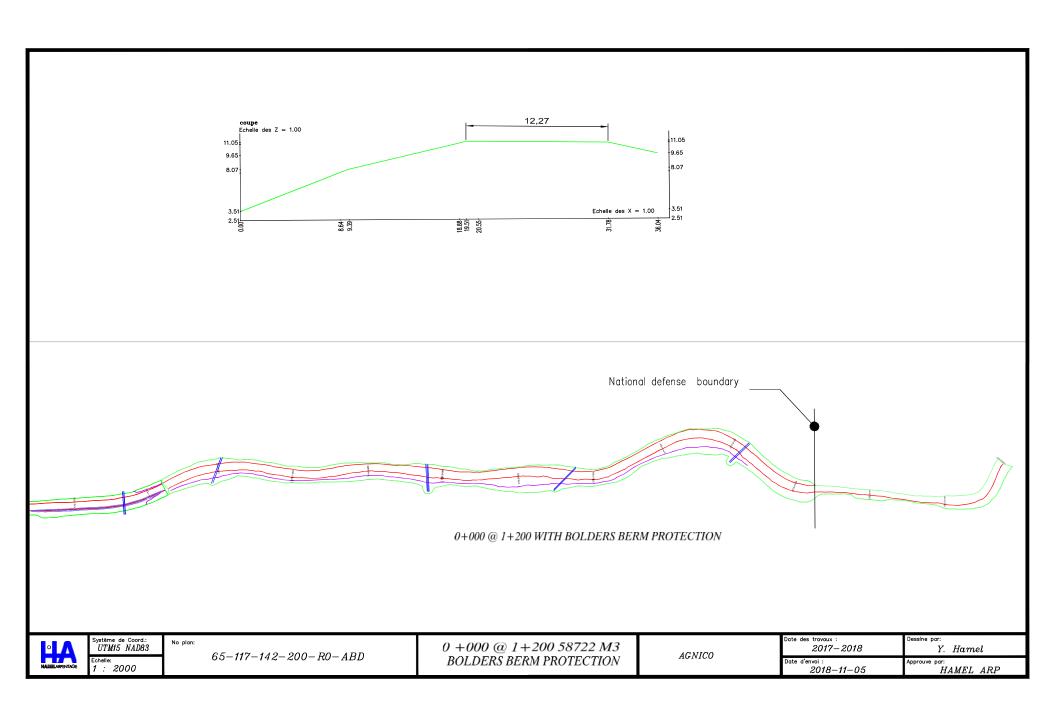
STA:4+800

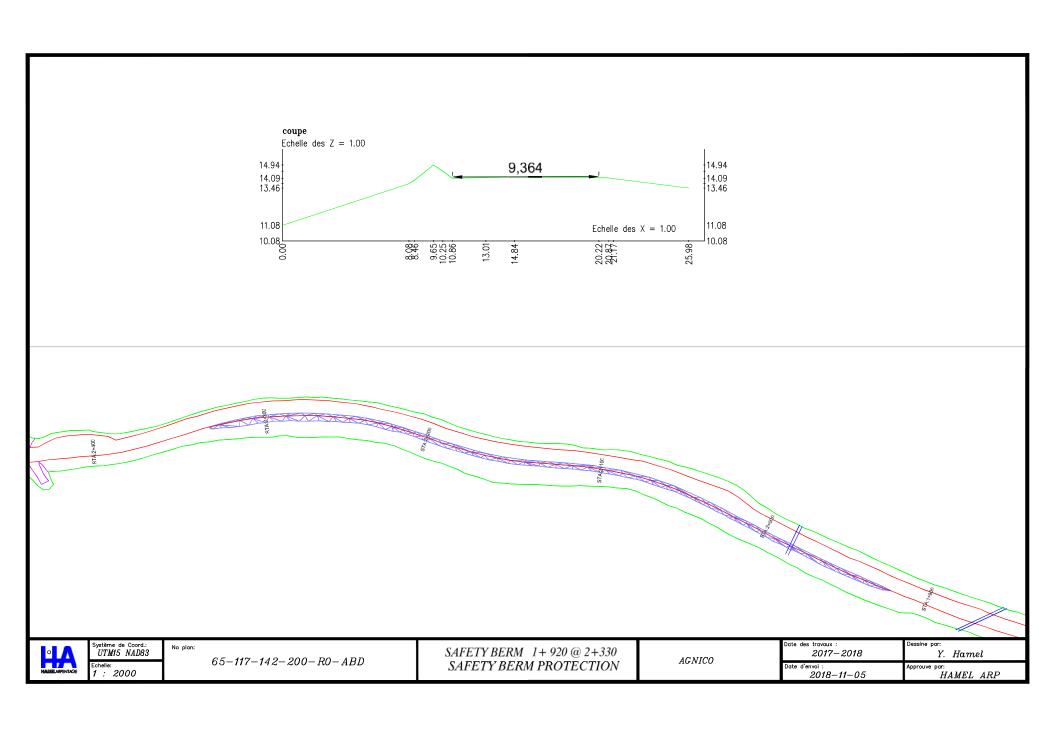
	0		
H		LARPENTAGE	

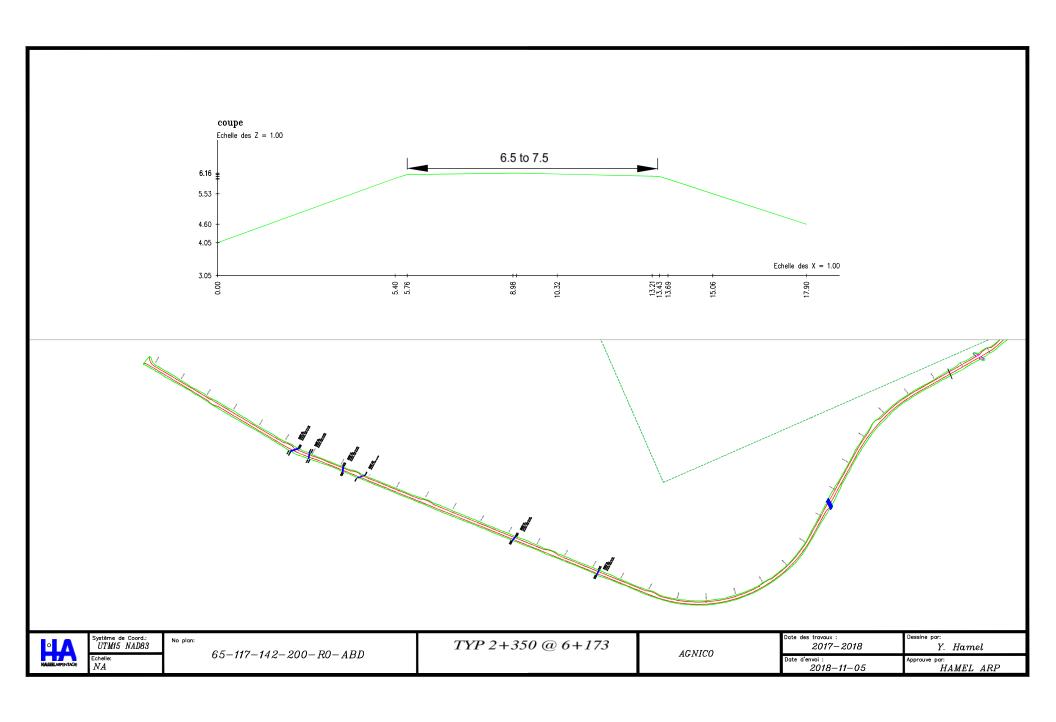
AGNICO	Date des travaux : $2017-2018$	Date d'envoi : $2018-11-03$
Système de Coord.: UTM15 NAD83	CULVERT 11 B1 4+925 CULVERT 11 C 4+ 990	Dessine par: Y. Hamel
Echelle: 1:50	No plan: 65-117-142-200-RO_ABD	Approuve par: HAMEL ARP


QUANTITIES

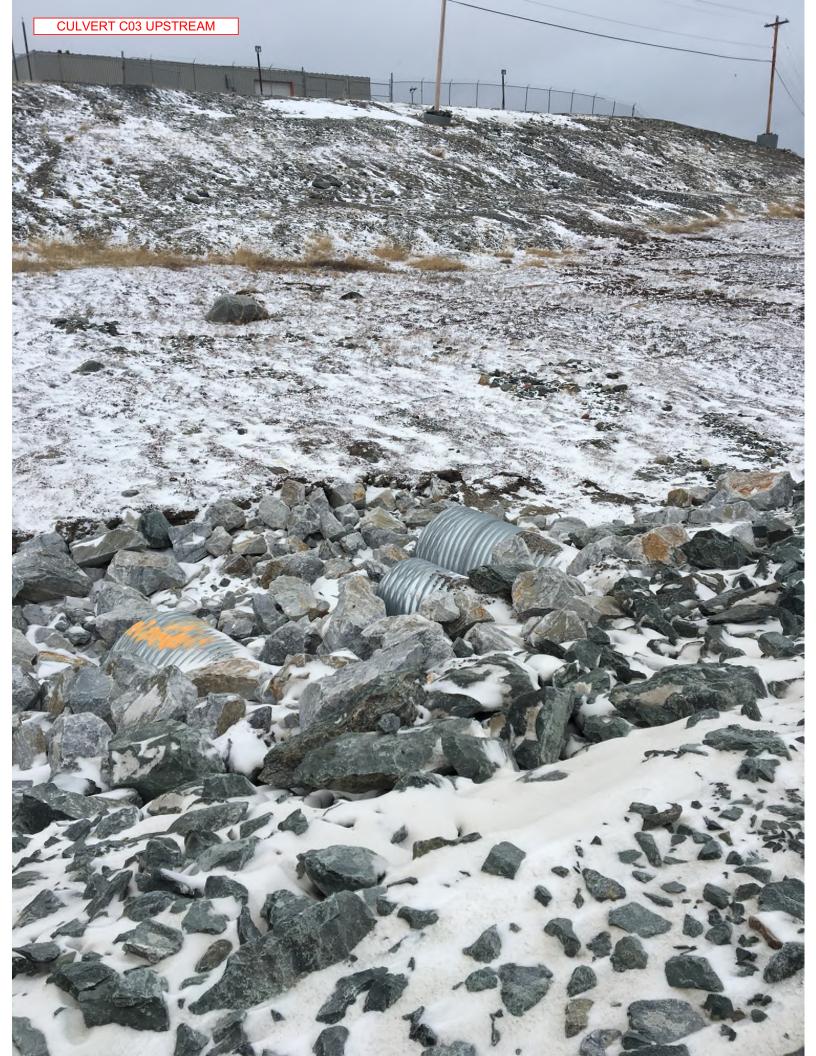

RIP RAP 26 M³

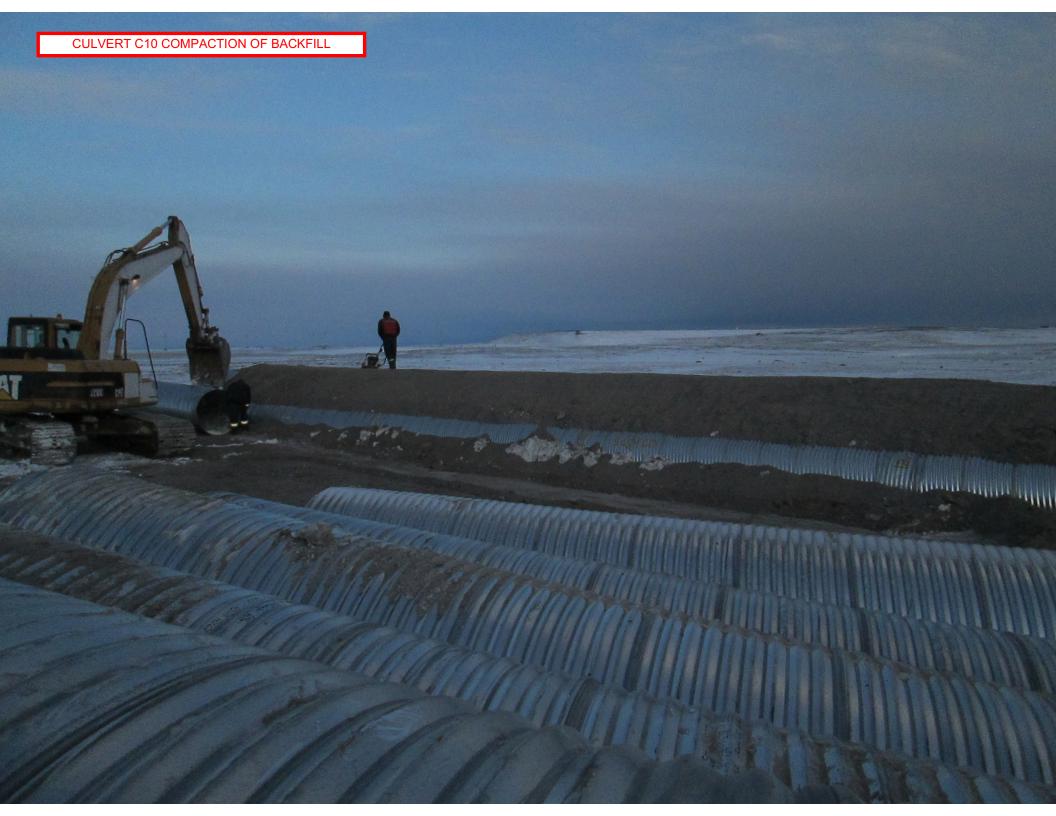

0-50 MM 134 M³




<i>AGNICO</i>	Date des travaux : $2017-2018$	Date d'envoi : $2018-11-03$
Système de Coord.: UTM15 NAD83	CULVERT 13 5+800	Dessine par: Y. Hamel
Echelle: 1:50	No plan: 65-117-142-200-RO_ABD	Approuve par: HAMEL ARP

APPENDIX C Photographs





APPENDIX D

Construction Summary Report of Rankin Inlet Bypass Road and Culverts

<u>Civil Earthworks Construction Summary – Rankin Inlet By-Pass Road (2017)</u>

- Construction management and quality assurance performed by Agnico Eagle Construction
- Primary civil construction contractor was Inukshuk Contracting Ltd. (ICL)
- All survey conducted by Hamel Arpentage

Design and Alignment Adjustments (2017)

- Construction of the By-Pass Road was originally planned to begin from both ends simultaneously: with one crew starting from km 0+000 (Rankin Inlet Fuel Farm) and working up chainage and one crew starting from km 5+600 and working down chainage. However, several challenges encountered pre-construction in 2017 prevented both an early commencement to road construction and necessitated a number of adjustments to the original design presented in the Design Report and Drawings (6515-E-132-005-132-REP-006):
 - The large fills and steep slopes presented from km 0+200 to 1+100 were challenged by the AEM Construction Team as potentially unstable, provoking a design review of alternative options. A viable alternative to significantly reduce the fills throughout this section would necessitate a slight encroachment on Department of National Defense (DND) leased property, and discussions with DND officials were initiated.
 - Staking of the design alignment on August 5 encountered two additional issues:
 - a. A grave site monument was located at the centerline of km 5+860 (original alignment) requiring a shift in the design alignment approximately 200 m to the northwest
 - b. Although previous discussions with community members had agreed to a relocation of the shooting range so as not to interfere with road activities, the range was actively in use at the time of the survey and plans to begin construction were halted until further discussions could be held. On August 17 it was decided that AEM would rebuild the shooting range approximately 1 km northwest of the original location. The relocation of the shooting range took about eight days to complete.
- Additional alignment modifications were made to reduce the volumes of fill material by straightening out the curves heading up chainage from Station 3+530 to the existing access community road. These alignment modifications were made with the approval of AEM Construction.
- The above noted alignment changes resulted in a rework of the chainage, so that the total length of the By-Pass road is now 6,173 m rather than the 6,350 m shown on the IFC drawings.
- It is noted on the issued for construction (IFC) drawings that "For summer construction, geotextile shall be installed between the original ground and the granular material wherever the original ground is unstable to support fill material compaction." Due to the very short window of placement of the first lift of material in summer construction and "wet" field conditions (less than one month 2017), it was the decision of AEM construction to not place geotextile under the road fill but to instead continue with the fill to design grades and compensate the contractor for the loss penetration (an estimated 4,000 m3) of the road base granular fill into the tundra.

1. Site Preparation (August 5 to August 25, 2017)

- Multiple discussions held with airport authority, community and Department of National Defense stakeholders prior to and during project commencement (see notes above).
- Survey of original ground along alignment conducted.

2. Road Placement (August 25 to December 7, 2017)

- All 600 mm minus granular material was obtained from the Char River (Site D) borrow pit located at about km 6 on the All Weather Access Road (AWAR)
- Esker road material was mechanically excavated from the borrow source, loaded onto tandem dump trucks to the By-Pass road, then pushed into place with a bulldozer in controlled lifts
- All placed material was compacted with a 10-tonne vibratory drum.
- A total of 65, 033 m3 of 600 mm minus esker material (the first lift) was placed from km 1+500 to 6+173 during the 2017 road building campaign.

3. Culvert Installation (August 31 to November 16, 2017)

- A total of nine culvert systems were installed along the road alignment in 2017, summarized as follows:

Culvert	Station	Date of In	stallation	Diameter	Length	No. of	Avg.
System	Installed	Start Date	End Date	(mm)	(m)	Culverts	Slope (%)
C14	6+035	Sept 2	Sept 6	800	18	3	1.1
C13	5+800	Sept 14	Sept 14	800	18	2	1.1
C12b	5+160	Sept 9	Sept 10	1200	30	2	1.6
C12a	5+110	Sept 12	Sept 12	1200	18	2	0.8
C11c	4+990	Sept 14	Sept 15	1000	18	2	0.9
C11b-1	4+925	Sept 17	Sept 17	1000	24	1	2.3
C11b	4+375	Sept 25	Sept 25	1000	18	2	1.8
C10	3+150	Oct 21	Oct 31	1200	30	5	1.8
				1000	30	1	1.8
C9	2+500	Nov 15	Nov 16	1000	24	2	2.2

- The original culvert design specifies that a minimum of one culvert in any given culvert group configuration is to be embedded 0.3 m below natural ground level into the underlying tundra (65-117-230-209_R2). However, field observations following the installation of Culverts 12c with the design specified 0.3 m of embedment showed large volumes of ponding water within the culverts, creating concerns for potential ice jacking and damage. The contractor was directed by AEM Construction to halt embedment for all future culvert installations and instead install the culverts as per the design specifications used at Meliadine site: excavation 200 mm into original ground, backfilling, and culvert placement at original ground level. The exception to this direction was the culvert C10 system, which followed the original design of 0.3 m embedment in order to provide fish passage.
- Until September 29 2017, all culverts installed (C14 through to C11b-1) were bedded on screened 50 mm minus clean gravel from Char River/Site D. A layer of 200 g/m2 geotextile was placed between the clean gravel and the natural ground, with no sub-excavation being conducted. Approved bedding material (20 mm minus) was then placed on and around the culverts and compacted with a small hand tamper. Although this approach was approved by AEM Construction, it is noted that there may be the potential for uplift and ice jacking due to ice build-up under the culverts. Alternatively, the use of clean gravel under the culverts may create a flow of water underneath, rather than through, the culverts and risk destabilization of the

- overlying road. The performance of these culverts should be monitored frequently, particularly during freshet flows.
- Culvert C9 was installed as per AEM Construction direction.
- Culvert 12c was initially installed on August 31 and was removed September 17, with one of the culverts being reinstalled at the C11b-1 location. No additional culvert system was installed at the original 12c area. When initially installed, it was shown that the design placement location was in a natural draw, with no place for the collected water to flow. It was the decision of AEM Construction to excavate a small ditch on either side of the road alignment to direct water away from the road and remove this culvert system from consideration.
- No culvert system was installed in the design specified location of C11a (approximate Station 4+800) in 2017. This culvert system will be installed prior to the 2018 freshet.

<u>Civil Earthworks Construction Summary – Rankin Inlet By-Pass Road (2018)</u>

- Construction management and quality assurance performed by Agnico Eagle Construction
- Primary civil construction contractors were Inukshuk Contracting Ltd. (ICL) and MTKSL
- All survey conducted by Hamel Arpentage

Design and Alignment Adjustments (2018)

- Discussions with DND officials regarding encroachment on government leased property to reduce the depth of road fills from km 0+200 to 1+100 were unsuccessful. As such, the original design and alignment of the road throughout this section were respected.
- To expediate the construction process, completion of the road was split between two
 contractors, with each utilizing different material sources: km 6+154 to 1+200 was completed by
 ICL using pit run obtained from the Char River Esker and km 0+000 to 1+200 was completed by
 MTKSL using rock sourced from Itivia Quarry. Road topping for the entire road surface was
 provided from crushed esker material produced by ICL.
- RFI-014 was initiated to address use of berm material for sections of the road greater than 3 m in height, with AEM Construction being concerned that berms would catch or trap snow and increase the maintenance required along those sections of the road affected. The Design Engineer approved use of selectively sized boulders spaced at appropriate distances to maintain the intent of safety barriers yet still allow for snow passage.
- The minimum cover depth over all culverts along the road was increased to 1.0 m in order to accommodate the expected large genset loads, as per the direction of the AEM Construction.

MTKSL Section (km 0+000 to km 1+200)

1. Site Preparation and Snow Removal (May 2 to May 11, 2018)

- Multiple discussions held with airport authority and community prior to and during project commencement.
- Survey of original ground along alignment conducted. Road and culvert locations staked.
- Snow removal from road alignment and for quarry access.

2. Road Placement (May 19 to July 24, 2018)

- The design-specified 600 mm minus granular material was predominantly obtained from the Itivia Quarry located to the east of the Tank Farm.

- A total of 57,588 m3 (surveyed as-built quantity) was placed by MTKSL for this section of the By-Pass road. Based on truck load counts (bulking factor therefore included), this material was sourced from the following:
 - Approximately 27,740 m3 from blast rock left in place at the quarry during the 2017 blasting campaign, a portion of which was hammered down to acceptable size for placement;
 - About 16,765 m3 from drill/blast operations conducted in 2018;
 - An estimated 16,080 m3 was reclaimed from the Itivia overburden waste disposal area which was later converted to a laydown area (Laydown 4).
- All 600 m minus granular material was loaded from the quarry or waste disposal area, hauled to and dumped at the road, then pushed into place with a bulldozer. After placement, all material was compacted with a 10-tonne vibratory drum roller. Sloping to the minimum design grade of 2.5H:1V occurred as the number of lifts increased, so as not to exceed the reach of the excavator.
- Crest widths within this section were built as per design, with a minimum of 6.5 m running surface from Stations 0+000 to 0+222 and at least 8.0 m running surface within the DND lease boundary from Stations 0+222 to 1+200.
- The minimum road material design depth of 1.3 m was respected throughout the MTKSL section.

3. Safety Barrier

- Placement of safety barriers are a Mine Act requirement for those sections of road with a drop of 3 m or greater. As per RFI-14 described above, select boulders (approximate width of 1 m, minimum height of 1.25 m with no sharp edges presented on road side) were strategically placed (two boulders placed together to form a minimum 2.5 m long barrier with 1 m distance kept between barrier sections) to act as safety barriers. A total of 227 boulders were placed as safety barriers along approximately 824 m of roadway from approximate Stations 0+000 to 0+044 and 0+375 to 1+160.
- Although safety barriers were also specified on the IFC drawings between Stations 0+290 to 0+303), as-built fill heights were less than 3 m along this section.

4. Culvert Installation (May 24 to July 12, 2018)

- MTKSL was responsible for placement of four (4) culvert systems within their section of road, summarized as follows:

Culvert	Station	Date of Installation		Diameter	Length	No. of	Avg.
System	Installed	Start Date	End Date	(mm)	(m)	Culverts	Slope (%)
C1	0+385	May 24	May 27	1000	36.0	2	4.9
C2	0+635	June 6	June 12	700	42.0	2	10.5
C3	0+820	June 26	June 30	1000	36.0	2	5.9
				700	36.0	1	5.9
C4	1+100	July 10	July 12	1000	30.0	2	6.6

- Culverts C1, C3 and C4 were placed in the design-specified locations. The position of Culvert C2 was field fit based on observations of freshet flows.

- 20 mm minus bedding material for the culverts consisted of crushed esker material from the Char River quarry.

5. Slope Erosion Rip Rap Installation (July 22 to July 25, 2018)

- Two areas of the MTKSL road section fall within the License "A" 31 m limit (km 0+412 to 0+509 and km 0+631 to 0+740). As specified in the design basis report and the IFC drawings, 600 to 1000 mm rip rap was placed to a design thickness of 1 m within these areas.

ICL Section (km 1+200 to 6+173)

1. Site Preparation and Snow Removal (May 16 to May 22, 2018)

- Snow was removed around previously installed culverts for freshet flows.

2. Road Placement (May 24 to September 1, 2018)

- As in 2017, all 600 mm minus granular material was obtained from the Char River (Site D) borrow pit. Material was placed and compacted as in 2017.
- Sloping to the design-specified 2.5H:1V occurred after final lift placement and compaction of the 600 mm minus granular material, but prior to the final placement of road topping.
- Crest widths within this section were built as per design, with a minimum of 8.0 m running surface within the DND lease boundary from Stations 1+200 to 1+492 and at least 6.5 m running width for the remaining length of roadway. Road widths were expanded as per design in areas approaching tie-ins with existing roads.
- A total of eleven (11) pullouts were installed along the ICL road section as per design, with their locations being at the approximate chainage as specified.
- The minimum design road material thickness of 1.3 m above original ground was generally respected throughout this section of roadway.

3. Safety Barrier

- The IFC drawings specified that one section of the ICL roadway required a safety barrier as per the Mine Act (Station 2+100 to 2+308). However due to the height of the fills, this barrier was extended by about 200 m and was placed from Station 1+920 to 2+330. Fill heights of 3 m or greater were also the rationale for extension of the safety barrier from 1+160 to 1+330 (approximately 170 m). The safety barrier constructed by ICL in these sections consisted of a berm of 600 mm minus Class A esker material as per design specifications. The height and side slopes of these berms generally conform to design.

4. Culvert Installation (May 22 to August 22, 2018)

- A total of six culvert systems were installed along the road alignment in 2018, summarized as follows:

Culvert	Approx. Station	Date of Installation		Diameter	Length	No. of	Avg.
System	Installed	Start Date	End Date	(mm)	(m)	Culverts	Slope (%)
C11a	4+080	May 22	May 24	1200	18.0	2	1.6
C7b	1+985	May 31	June 2	800	18.0	2	5.3
C7a	1+865	June 3	June 6	800	30.0	2	1.2
C6-1	1+635	June 7	June 7	800	18.0	1	3.5

C6	1+525	June 8	June 10	800	30.0	2	2.0
C5	1+235	June 16	June 18	1000	30.0	2	3.0

- Culvert 8 was not installed due to very steep topography, particularly directly upstream of the proposed culvert location.
- An additional single culvert, C6-1, was installed based on field observations of freshet flows.
- With the exception of the above noted deviations, all other culvert systems were installed in the design-specified location.

5. Road Topping (August 18 to September 16)

- 30 mm minus road topping material was also sourced from the Char River borrow pit, crushed on site and hauled for placement along the full road alignment (MTKSL and ICL sections).
 Compaction efforts after placement consisted of a minimum of four (4) passes with a 10-ton vibratory drum compactor.
- As a final step, calcium chloride was applied to the road topping and compacted for dust control.

6. Slope Erosion Rip Rap Installation (Future 2019 Work)

- One area of the ICL road section falls within the License "A" 31 m limit (km 1+297 to 1+353). As specified in the design basis report and the IFC drawings, 600 to 1000 mm rip rap will be placed to a design thickness of 1 m within these areas.

Equipment Used for Construction

(MTKSL 2018):

- CAT D8 Bulldozer
- CAT D6 Bulldozer
- CAT 349 Excavator
- CAT 345 Excavator
- CAT 330 Excavator
- CAT 980 Loader
- IT62 Loader

(ICL 2017/2018):

- CAT D8 Bulldozer
- CAT D6 Bulldozer
- CAT 320 Excavator
- CAT 345 Excavator
- Jaw crusher/screener

- CAT 740 Articulated Haul Trucks
- CAT CS56 10-ton vibratory drum compactor
- Various small hand-pushed compactors
- Komatsu PC400 with rock hammer attachment (Fournier et Fils)
- Drill (Canadrill)
- Tandem dump trucks
- CAT CS56 10-ton vibratory drum compactor
- Various small hand-pushed compactors

QA/QC Summary

1. All earthworks material used for road construction not subject to particle size analysis (600 mm minus granular material from both Char River (Site D) and Itivia (quarry and laydown); culvert rip

- rap; and slope erosion rip rap) was visually assessed as satisfactory for placement by AEM Construction.
- 2. All granular material was placed according to the Technical Specifications for Civil Earthworks Revision 3 (6515-GNS-014, June 6, 2017). Compaction efforts consisted of a minimum number (4) of passes with a 10-tonne vibratory compactor and were approved by AEM Construction.
- 3. Particle size analysis conducted on the culvert bedding material (attached) indicate that the material generally falls within specification for 20 mm minus Liner Bedding Fill (Technical Specifications for Civil Earthworks Rev 3 (6515-GNS-014, June 6, 2017)).
- 4. Particle size analysis conducted on the 30 mm minus road topping material (attached) indicates that the material is generally low on particles sized between 5 and 14 mm but contains an adequate percentage (5.2% average) of fines to achieve compaction.

APPENDIX E

Particle Size Summary

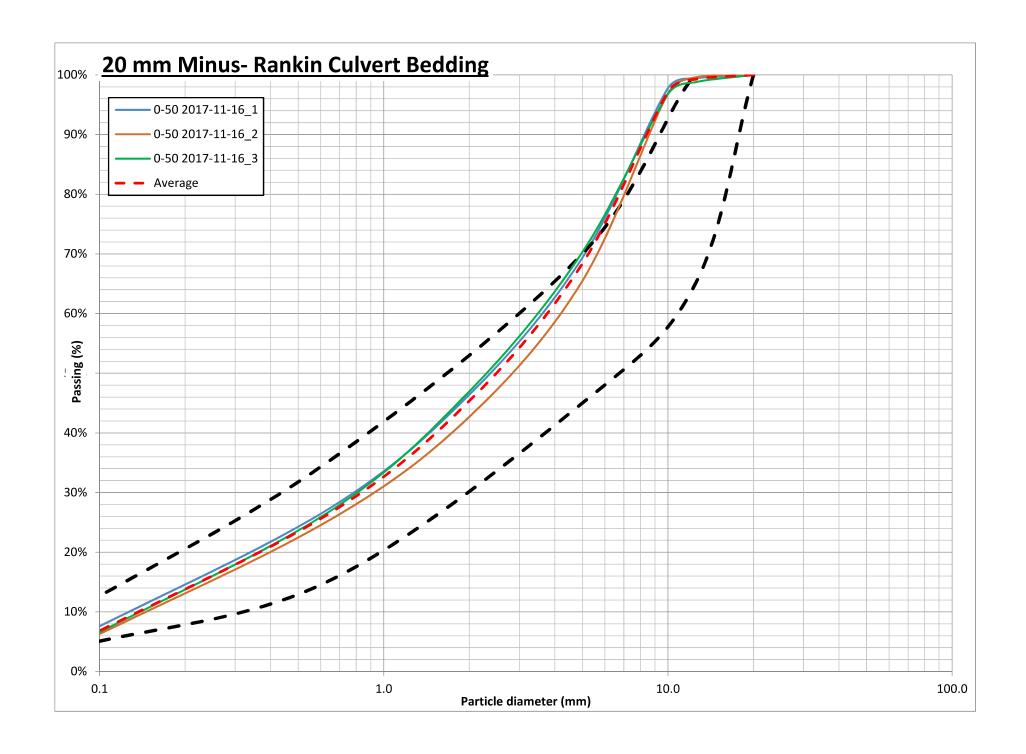


Table 1: Summary of Particle Size Analysis Results - 20 mm minus Culvert Bedding Rankin

No.	Sample ID	Sieve Size (mm)						Moisture	
NO.	Sample 1D	20.00	12.50	10.00	5.00	2.00	0.63	0.08	Content
1	0-50 2017-11-16_1	100.0%	99.4%	97.8%	69.3%	46.4%	27.1%	5.3%	3.0%
2	0-50 2017-11-16_2	100.0%	99.6%	96.9%	65.5%	42.7%	25.1%	4.0%	4.2%
3	0-50 2017-11-16_3	100.0%	98.8%	96.8%	70.3%	46.9%	26.5%	4.2%	4.1%
Averag	ge	100.0%	99.3%	97.1%	68.4%	45.3%	26.2%	4.5%	3.8%

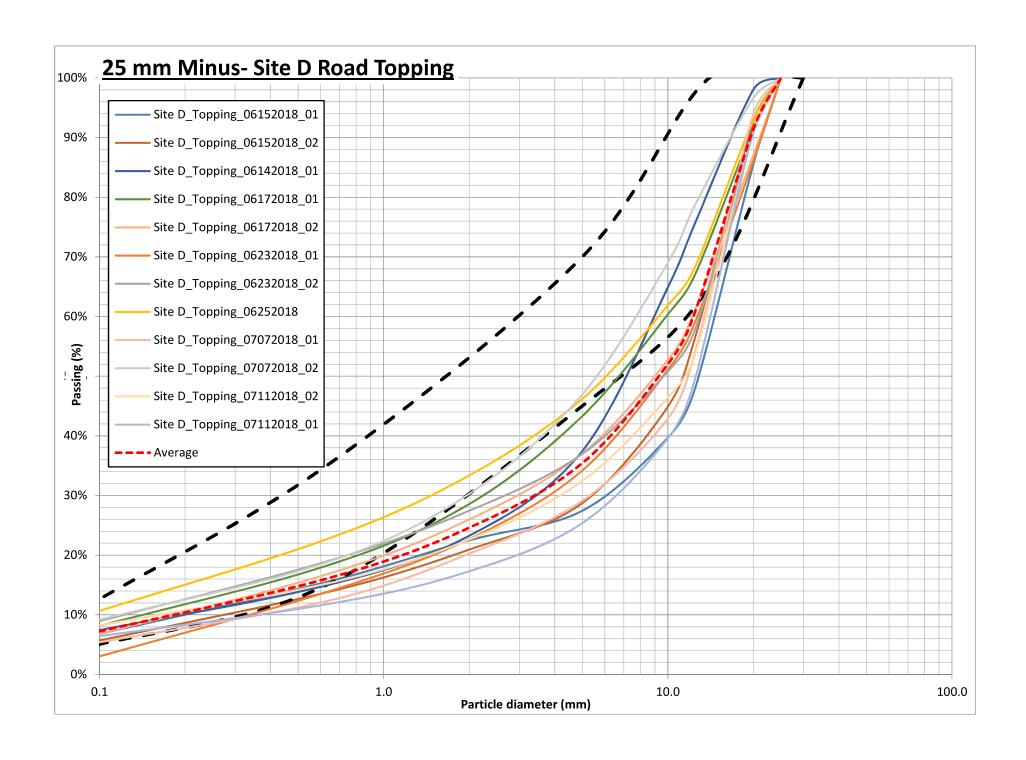


Table 1: Summary of Particle Size Analysis Results - 25 mm minus Site D Road Topping

No.	Sample ID				Sieve Si	ze (mm)				Moisture
NO.	Sample 1D	25.00	20.00	12.50	10.00	5.00	2.00	0.63	0.08	Content
1	Site D_Topping_06152018_01	100.0%	85.6%	48.1%	39.7%	27.4%	22.5%	15.5%	5.8%	1.5%
2	Site D_Topping_06152018_02	100.0%	92.7%	56.6%	44.9%	28.7%	20.9%	13.8%	4.8%	1.7%
3	Site D_Topping_06142018_01	100.0%	98.0%	75.8%	64.9%	37.4%	23.3%	14.9%	6.6%	2.1%
4	Site D_Topping_06172018_01	100.0%	91.5%	67.1%	60.4%	43.3%	28.6%	18.2%	7.0%	3.0%
5	Site D_Topping_06172018_02	100.0%	87.1%	61.2%	52.7%	37.0%	26.0%	16.8%	5.6%	2.6%
6	Site D_Topping_06232018_01	100.0%	86.1%	59.2%	51.1%	34.2%	22.7%	13.8%	1.7%	1.6%
7	Site D_Topping_06232018_02	100.0%	90.8%	58.0%	50.8%	37.0%	27.4%	18.9%	7.8%	1.6%
8	Site D_Topping_06252018	100.0%	92.9%	68.4%	61.9%	46.2%	33.4%	22.7%	9.2%	1.9%
9	Site D_Topping_07072018_01	100.0%	93.9%	54.2%	42.9%	29.1%	20.2%	12.3%	4.6%	2.8%
10	Site D_Topping_07072018_02	100.0%	96.6%	78.8%	69.0%	46.9%	30.3%	18.8%	8.1%	3.4%
11	Site D_Topping_07112018_01	100.0%	91.1%	49.7%	39.6%	25.4%	17.3%	11.8%	5.8%	0.5%
12	Site D_Topping_07112018_02	100.0%	90.9%	53.8%	46.4%	32.5%	22.6%	15.2%	7.4%	0.5%
Averag	ge	100.0%	91.4%	60.9%	52.0%	35.4%	24.6%	16.1%	6.2%	1.9%

APPENDIX F

Design Report for Crossing C10 with a Group of Culverts Instead of a Bridge

AMENDMENT#01 TO 6515-E-132-005-132-REP-006:

DESIGN REPORT FOR CROSSING C10 ON RANKIN INLET BYPASS ROAD MELIADINE PROJECT, NUNAVUT

PRESENTED TO

Agnico Eagle Mines Ltd.

AUGUST 2017 ISSUED FOR USE

TETRA TECH PROJECT NUMBER: 28920

AGNICO EAGLE DOCUMENT NUMBER: 6515-E-132-005-132-REP-006 AMENDMENT01

TABLE OF CONTENTS

1.0	INTE	RODUC	CTION	2
2.0	DES	SIGN OF	F CULVERT #C10	2
	2.1	Culver	rt Design Basis and Water Management Strategy	2
	2.2		ulic analyses and peak flow calculations	
	2.3	-	rt specifications for C10	
		2.3.1	Characteristics and configuration for culverts at Crossing C10	4
			Calculation of culvert capacity	
		2.3.3	Calculation of the velocity in culverts	5
	2.4	Erosio	on Control	6
	2.5	Site vis	sits, surveys and other considerations	6
3.0	LIMI	TATIOI	NS OF REPORT	7
4 0	CI O	SURF		7

1.0 INTRODUCTION

Agnico Eagle Mines Limited (Agnico Eagle) is developing the Meliadine Project, a gold mine located approximately 25 km north from Rankin Inlet, and 80 km southwest from Chesterfield Inlet in the Kivalliq Region of Nunavut. The proposed project site is located on the peninsula between the East, South, and West basins of Meliadine Lake (63°01'23.8"N, 92°13'6.42"W) on Inuit Owned Land.

As presented in the Design Report 6515-E-132-005-132-REP-006 issued for use in March 2017, Agnico Eagle intents to build a bypass road to divert traffic around the community of Rankin Inlet to minimize impacts on the Community (dust, noise, traffic, etc...). The bypass road will be 6.1 km long.

With respect to water management and fish habitat protection, some group of culverts shall be installed along the road to allow surface water to drain properly. Refer to Figure 2 given in appendix A of the initial Design Report 6515-E-132-005-132-REP-006 to have a global layout of the bypass road and proposed culverts.

In the initial report, the final design at the crossing C10 was pending due to the lack of information on fish and fish habitat, as well as on the watershed, the existing ground, the watercourse and the existing flow at the crossing. Indeed, the presence of snow during the engineering phase prevented the engineering team from completing a field survey and gather on-site relevant information to decide if either a bridge or a group of culverts would be recommended.

From May to July 2017, some site visits and surveys were conducted. It appears that the flow to be managed in crossing C10 is much less than the one expected by theoretical calculations. It has also been observed that the area was totally dry after the freshet. As a consequence, the engineering team recommends to install a group of culverts instead of a bridge at Crossing C10.

This document will summarize design basis, considerations, criteria and the detailed design for the crossing C10 with a group of culverts (Culvert#C10), as specified under Water License 2AM-MEL1631, Part D Item1.

2.0 DESIGN OF CULVERT #C10

2.1 Culvert Design Basis and Water Management Strategy

The overall objective of the water management strategy of this project is to develop a practical and feasible sitewide water management plan to minimize the potential negative impacts of mining development on the surrounding environment including habitats for fish and wildlife, and to facilitate mine operation and long-term closure and reclamation of the mine site. To attain this objective, culverts are used to control and divert runoff underneath the bypass road.

More precisely, the Culvert#C10 is required to allow the passage of runoff water under the future bypass road at the south outlet of Lake Cygnet. The design of Culvert#C10 will respect the recommended culvert's configurations for a potential fish habitat area.

2.2 Hydraulic analyses and peak flow calculations

The catchment area for the crossing C10 was delineated using the 2014 ML survey data (refer to Figure 2 provided in appendix A of the initial Design Report 6515-E-132-005-132-REP-006). Hydrologic and hydraulic analyses were carried out for the crossing to determine the culvert sizes to accommodate 25-year peak design flows at this location.

Because the catchment area is greater than 50 ha for the Crossing C10, a regional analysis approach was used to estimate 25-year peak flows.

Two Water Survey of Canada streamflow gauge stations were considered:

- Akkutuak Creek near Baker Lake with a drainage basin area of 18 km²
- Qinguk Creek near Baker Lake with a drainage basin area of 392 km²

Also considered as part of the regional analysis were peak flows for the All Weather Access Road for the Meliadine Gold Project developed by Golder for 11 drainage crossings with catch basin areas ranging from 16 to 1431 ha (Golder, 2010).

Historical flow data was obtained from the Water Survey of Canada (Water Survey of Canada, 2014) and the annual maximum flows were identified for each station for each year of record. A statistical analysis using HYFRAN-PLUS software was performed on the collected data and the peak flow for a 25 year return period was obtained for each station. The results were plotted in order to identify a correlation between the peak discharge and catchment area in order to provide a conservative estimate for the remaining larger catchment areas on the site.

Estimated 25-year peak flow for Crossing C10 catchment area which is greater than 50 ha was subjectively determined considering the Golder and WSC-derived results and the amount of lake storage in each basin which would attenuate the peak flow.

The estimated peak flow at Crossing C10 is summarized in Table 2.1 below:

Table 2.1: Estimated Peak Flow at Crossing C10

Crossing Name	Drainage Area (ha)	Return Period (years)	Estimated Peak Flow (m³/s)
	C10 1004.3	1:25	5.40
		1:10	4.59
C10		1:5	3.89
		1:2 (annual)	2.92

2.3 Culvert specifications for C10

2.3.1 Characteristics and configuration for culverts at Crossing C10

At Crossing C10, a combination of 6 culverts (5 x \emptyset 1.2 m and 1 x \emptyset 1.0 m) is recommended in order to convey the designed peak flow. An "offset stacked" configuration will be used to enable flow conveyance before complete ice break-up within the watercourses (Golder, 2010). The lowest culvert will also be embedded into the watercourse to provide low water potential fish passage. Moreover, the embedded culvert will be aligned with the stream centerline surveyed on field.

The configuration of the group of culvert for C10 is presented in Figure 2.1 below.

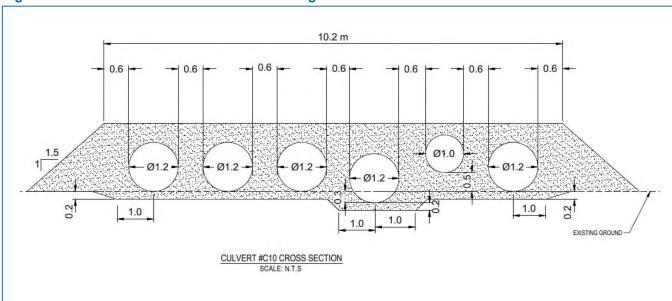


Figure 2.1: Cross-section for culverts at Crossing C10

The proposed culverts at Crossing C10 will be installed during the construction of the bypass road and will be in service for up to 15 years. The standard galvanized, corrugated steel pipe culvert is proposed with a corrugation profile of 68X13 mm and a thickness of 2.8 mm.

A minimum of 850 mm fill cover shall be placed over the culverts. The backfill around the culverts will be Granular Fill 0-50 mm and shall be placed in lifts no greater than 0.3 m thick and compacted to a minimum of 90% of Maximum Dry Density (Modified Proctor test).

The table below presents the characteristics for the group of culverts at Crossing C10.

Table 2.1: Characteristics for Culvert #C10

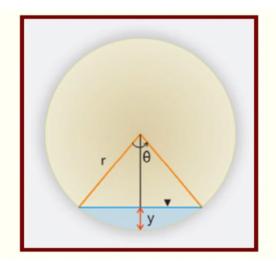
No.	Number of culvert x diameter	Length of Culverts (m)	Slope (%)
C10	5 x Ø1200mm 1 x Ø1000mm	6 x 27 m	0.5 %

2.3.2 Calculation of culvert capacity

To determine the culvert capacity, the Continuity equation and Manning formula were used.

Table 2.2: Culvert capacity at Crossing C10

No.	Drainage Area (ha)	Peak Flow (m³/s) (1:25 years)	Number of culvert x diameter	Slope (%)	Culvert Capacity (m³/s)
C10	1004.3	5.40	5 x Ø1200mm 1 x Ø1000mm	0.5 %	8.45


As indicated in the table above, the capacity of the proposed group of culverts is 8.45 m³/s, which is greater than the 5.40 m³/s estimated peak flow for a Return Period of 1:25 years.

Moreover, the capacity of the proposed group of culverts is greater than the estimated peak flow (1:25 years) by 56%, which allows a buffer for any "wet Freshet" events.

2.3.3 Calculation of the velocity in culverts

To calculate the velocity in the culverts, the estimated peak flow is considered to be distributed in 5 culverts (4 culverts at ground level and 1 embedded).

The velocity is calculated with the following formula and the results are presented in Table 2.3.

Formulas	
$\theta = 2 \cos^{-1}[1 - 2(y/D)]$	
$A = (D^2/8) (\theta - \sin\theta)$	
P = rθ	
R = A/P	
$Q = (k/n) AR^{2/3}S^{1/2}$	
V = Q/A	

Table 2.3: Velocity calculations at different return period rainfall events

Return Period (years)	Peak Flow (m³/s)	Flow per culvert (m³/s)	Velocity at peak flow in each culverts (m/s)
1:25	5.40	1.08	1,44
1:10	4.59	0.92	1.39
1:5	3.89	0.78	1.33
1:2 (annual)	2.92	0.58	1.23

The estimated velocity of 1.44 m/s for a 1:25 years return period is adequate to prevent erosion problem caused by washout effects. Erosion control measures are also indicated in section 2.4.

For a peak flow associated to an annual rainfall event with a return period 1:2 years, the estimated velocity is 1.23 m/s, which is adequate to allow fish passage.

2.4 Erosion Control

To control erosion, rip rap of diameter 50-300 mm will be installed around the culvert inlet and outlet areas, and on a length of 3 m minimum. The riprap will come from a NPAG source of rock. For the rip rap section, see drawing 65-117-230-230 provided in Appendix B of the initial Design Report 6515-E-132-005-132-REP-006.

During installation of the culverts, if required, straw logs will be used in the work area to prevent total suspended solids from reaching downstream water bodies. The plan is to start construction in fall 2017, when the ground is expected to be dry.

2.5 Site visits, surveys and other considerations

As mentioned, field surveys have been undertaken from May to July 2017 at the location of Crossing C10.

- Observations from field surveys conducted in May 2017 :
 - The run-off flow observed was during Freshet
 - o The main flow runs into a well-marked channel :
 - Water depth : 30 to 45 cm
 - Channel width: 30 cm maximum
 - The wet area outside the main channel was from 0.5 m to 6 m wide
 - The flow velocity in the channel was measured at 0.6 m/s
 - o The routing of the channel and the surrounding area were surveyed with a GPS station
- Site visit during July 2017
 - The area was totally dry

Based on field calculations, design and observations, it is considered that the proposed design of a group of culverts for managing runoff water at the Crossing C10 is adequate. Indeed, the proposed group of culverts will allow the passage of the estimated peak flow under the future bypass road. It will cover a wider width at the inlet than the spread wet area observed and the impact on the fish and fish habitat will be minimized.

3.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Agnico Eagle Mines Ltd. and their agents. Tetra Tech does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Agnico Eagle Mines Ltd., or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in Tetra Tech's Services Agreement.

4.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

PERMIT TO PRACTICE
TETRA TECH INDUSTRIES, INC.

O/A TETRA

Signature

Date

Date

PERMIT NUMBER: P 1029

NT/NU Association of Professional
Engineers and Geoscientists

28.07.2017

Prepared by:

Solène Moreau, Eng.

QUEBEC

Direct Line: 514.257.2427 x3443 Solene. Moreau@tetratech.com

Reviewed by: Josée Alarie, P. Eng.

Direct Line: 514.257.2427 x3323

J.M.I.F. ALARII

LICENSE

Josee.Alarie@tetratech.com

APPENDIX G

Design Report for Culvert C13 and C14

AMENDMENT #2 TO 6515-E-132-005-132-REP-006:

DESIGN REPORT FOR RANKIN INLET BYPASS ROAD CULVERTS C13 AND C14 MELIADINE PROJECT, NUNAVUT

PRESENTED TO

Agnico Eagle Mines Ltd.

SEPTEMBER 2017 ISSUED FOR USE

TETRA TECH PROJECT NUMBER: 28920

AGNICO EAGLE DOCUMENT NUMBER: 6515-E-132-005-132-REP-006_AMENDMENT02

TABLE OF CONTENTS

1.0		RODUCTION	
	1.1	Site Location and Access	1
2.0	DES	SIGN	1
2.0	2.1	Culvert Design Basis and Water Management Strategy	
		e e e e e e e e e e e e e e e e e e e	
	2.2	Hydraulic Analyses and Peak Flow Calculations	1
	2.3	Culvert Specifications	2
	2.4	Erosion Control	3
3.0	FIG	URES AND DRAWINGS	3
4.0	LIM	TATIONS OF REPORT	3
5.0	CLC)SURE	3

APPENDICES

Appendix A	Figure 1 – Site Location
------------	--------------------------

Appendix B Drawing 65-117-230-201, Rankin Inlet Bypass Road Plan/Profile General Overview

Appendix C Construction Drawings:

65-117-230-209 RIBR Details/Sections including culverts installation details

65-117-230-212 RIBR Plan/Profile 5+900 to 6+312 showing Culverts C13 and C14

1.0 INTRODUCTION

1.1 Site Location and Access

Agnico Eagle Mines Limited (Agnico Eagle) is developing the Meliadine Project (the Project), a gold mine located approximately 25 km north from Rankin Inlet, and 80 km southwest from Chesterfield Inlet in the Kivalliq Region of Nunavut. The proposed project site is located on the peninsula between the East South, and West basins of Meliadine Lake (63°01'23.8"N, 92°13'6.42"W) on Inuit Owned Land.

As presented in the Design Report 6515-E-132-005-132-REP-006 issued for use in March 2017, Agnico Eagle intents to build a bypass road to divert traffic around the community of Rankin Inlet to minimize impacts on the Community (dust, noise, traffic, etc...). The bypass road will be 6.1 km long.

Following the water management plan, several group of culverts will be installed along the road to allow surface water to drain properly,

From May to July 2017, some site visits and surveys were conducted, providing sufficient information to further define the west portion of the bypass road. It appears that two additional crossings are required in that portion to allow natural drainage, while there was 12 crossings analysed in the initial report.

The required culverts are Culvert C13 and Culvert C14, located on the west portion of the Rankin Inlet Bypass Road, north of Nipissak Lake and east of a small lake, in a section between an existing community road and the actual AWAR, as shown in the stations 5+900 and 6+200. The site location is shown in Figure 1 (Appendix A).

2.0 DESIGN

2.1 Culvert Design Basis and Water Management Strategy

The overall objective of the water management strategy of this project is to develop a practical and feasible sitewide water management plan to minimize the potential negative impacts of mining development on the surrounding environment including habitats for fish and wildlife, and to facilitate mine operation and long-term closure and reclamation of the mine site. To attain this objective, culverts are used to control and divert runoff crossing the road and new facilities.

The location of proposed Culvert C13 and Culvert C14 along the course of the Rankin Inlet Bypass Road are shown in Drawing 65-117-230-201 presented in Appendix B while Drawing 65-117-230-209 presents typical cross-sections of the culverts in Appendix C.

2.2 Hydraulic Analyses and Peak Flow Calculations

Hydrologic and hydraulic analyses were carried out to determine culvert sizes to accommodate a 25-year peak design flow.

The Rational Method was applied to calculate the peak flows. The Intensity-Duration-Frequency (IDF) curve developed by Environment and Climate Change Canada for Rankin Inlet Station was used (Environment Canada 2014). A 1 in 25 year rainfall intensity for a duration equivalent to the time of concentration of the catchment area was considered to determine the design peak flow for each culvert.

The time of concentration (T_C), which represents the time it takes for the most remote portion of the catchment to contribute to the flow at the outlet of the catchment, was calculated using the Kirpich equation (Akan, A. O., & Houghtalen, R. J.,2003). For catchments where TC < 10 min, a TC of 10 minutes was used for design purposes.

The estimated peak flow, culvert capacity and characteristics of each culvert are summarized in Table 2.1.

Table 2.1: Characteristics of the culverts

CULVERT	C13	C14		
Pipe's number and Ø (mm)	2 x Ø 800	3 x Ø 800		
Length of each culvert (m)	23	19		
Slope (%)	0.86	2.0		
Corrugated profile (mm)	68x13	68x13		
Thickness (mm)	2.8	2.8		
Minimum cover over culvert (mm)	825	825		
Estimated Peak Flow (m³/s)	0.75	0.93		
Culvert Flow Capacity (m³/s)	1.33	3.04		

2.3 Culvert Specifications

The proposed culverts will be in service for up to 15 years. The standard galvanized, corrugated steel pipe culvert, with a profile of 68 x13 mm and a minimum thickness of 2.8 mm is proposed.

A minimum of fill cover will be placed over the culverts according to the material thickness and the manufacturer's recommendations for heavy traffic as shown in the table provided on drawing 65-117-230-209 presented in Appendix C.

The backfill around the culverts will be granular fill 0-50 mm, or an approved equivalent, and will be placed in layers no greater than 0.3 m thickness and compacted to a minimum of 95% of Standard Proctor Maximum Dry Density (ASTM D698). Typical cross-section for the culverts are shown on drawing 65-117-230-209 provided in Appendix C.

Details and layout for the culverts are shown on drawings 65-117-230-209 and 65-117-203-212 presented in Appendix C.

2.4 Erosion Control

To control erosion, rip-rap of diameter 50-300 mm will be installed around the inlet and outlet areas of culverts. The rip-rap material will come from a NPAG source of rock, see drawing 65-117-230-209 given in Appendix C.

During the installation of the culverts, if required, straw logs will be used in the work area to prevent total suspended solids from reaching downstream water bodies.

3.0 FIGURES AND DRAWINGS

Figure 1 in Appendix A shows the mine site location.

Drawing 65-117-230-201 in Appendix B shows a general overview of the Rankin Inlet Bypass Road plan/profile including the proposed culverts location.

The following construction drawings are presented in Appendix C and show details for the culverts construction:

- ➤ 65-117-230-209: RIBR Details/Sections including culverts installation details
- 65-117-230-212: RIBR Plan/Profile 5+900 to 6+312 showing Culvert C13 and Culvert C14

4.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Agnico Eagle Mines Ltd. and their agents. Tetra Tech does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Agnico Eagle Mines Ltd., or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in Tetra Tech's Services Agreement.

5.0 CLOSURE

We trust this report meets your undersigned.

Respectfully submitted, Tetra Tech

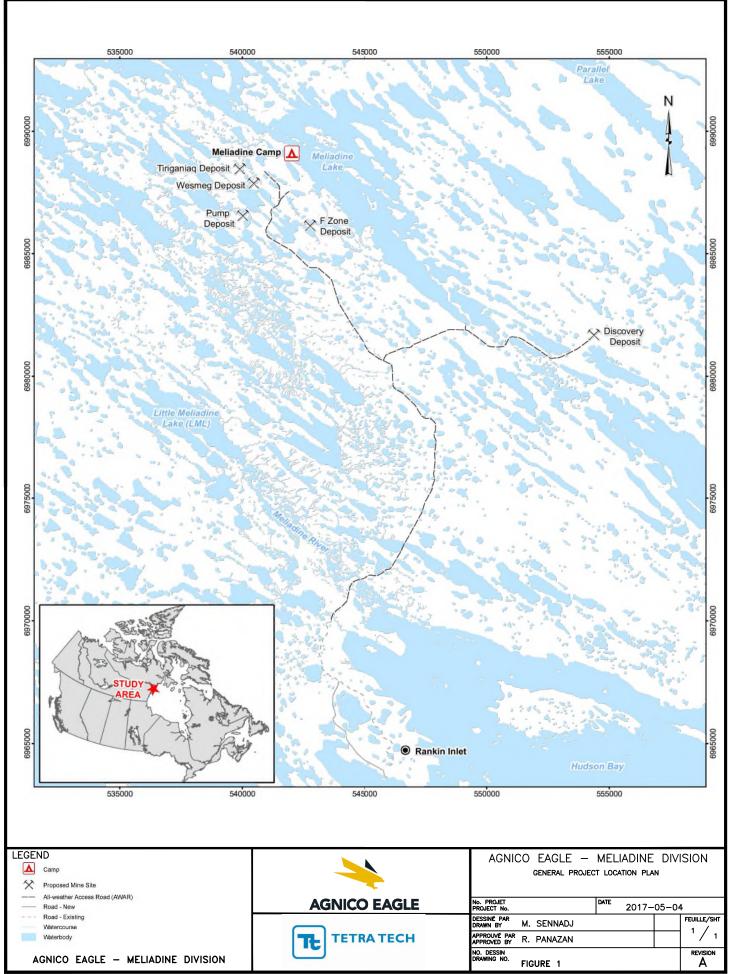
Date Zoln-09-21

PERMIT NUMBER: P 1029

NT/NU Association of Professional Engineers and Geoscientists

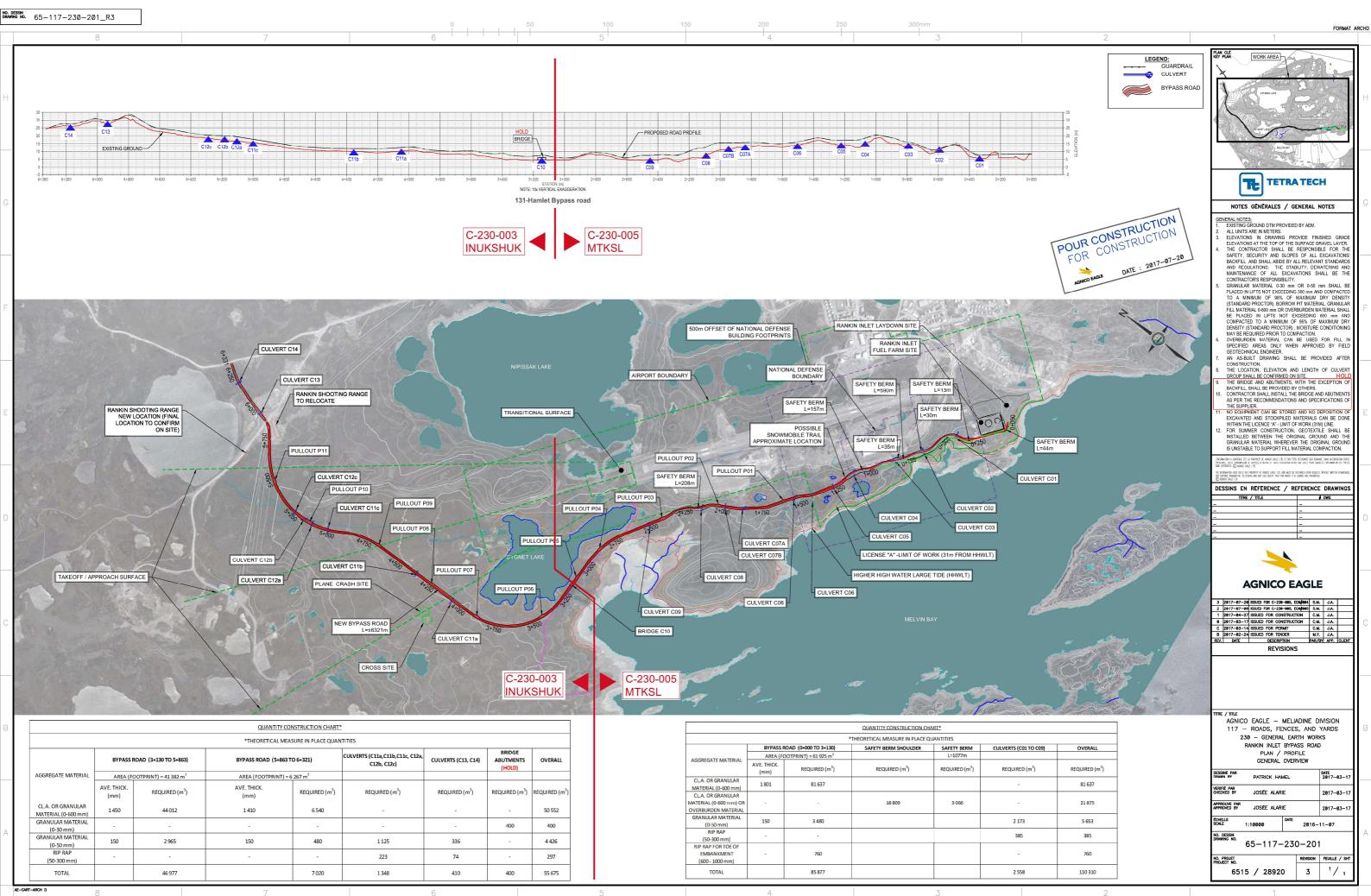
Prepared by:

Reviewed by:


Marco Mellado, Eng. Direct Line: 514.257.2427 x3018 Marco.mellado@tetratech.com Josée Alarie, P. Eng. Direct Line: 514.257.2427 x3323 Josee.Alarie@tetratech.com

APPENDIX A

Figure 1 – Site Location



APPENDIX B

Drawing 65-117-230-201
Rankin Inlet Bypass Road Plan/Profile General Overview

APPENDIX C

Construction Drawings:

> 65-117-230-209

> 65-117-230-212

ON PLAN VIEW)

- 0.6 -

- 0.6 -

P2

1.0

GRANULAR FILL (0-50 mm) COMPACTED TO A —/
MINIMUM OF 90% OF MAXIMUM DRY DENSITY
(MODIFIED PROCOTOR TEST) AND PLACED
IN LIFTS NOT EXCEEDING 300mm

TYPICAL CROSS SECTION - CONFIGURATION #B

0.6

P2

1.0

(AS INDICATED ON PLAN VIEW)

ROAD SURFACE -

GALVANIZED CORRUGATED STEEL PIPE CULVERT

	CONFIGURATION OF THE GROUP OF CULVERTS	CULVERT POSITION							
No		P1 (EMBEDDED)		P2 (NON- EMBEDDED)		P3 (NON-EMBEDDED and HIGH POSITION)		TOTAL NUMBER OF CULVERT	APPROX LENGTH OF EACH CULVER (m)
		Nb of culverts	Ø (mm)	Nb of culverts	Ø (mm)	Nb of culverts	Ø (mm)		
C01	A	1	1000			1	1000	2	34.8
C02	A	1	700			1	700	2	42.4
C03	В	1	1000	1	1000	1	700	3	49.3
C04	A	1	1000			1	1000	2	35.9
C05	D	2	1000					2	23.1
C06	D	2	800					2	31.8
C07a	D	2	800					2	32.0
С07ь	D	2	800					2	17.6
C08	D	1	1000					1	36.9
C09	A	1	1000			1	1000	2	23.4
C10	ON HOLD - Final design for C10 is not available. C10 will be a bridge or a group of culverts with a configuration type C.								
C11a	D	2	1200					2	23.0
C11b	D	2	1000					2	19.0
C11c	D	2	1000					2	22.
C12a	D	2	1200					2	23.6
C12b	D	2	1200					2	34.0
C12c	D	2	1000					2	19.0
C13	D	2	800					2	23.0
C14	D	3	800					3	19.0

SCALE 1:50

Notes:

- 1. Culverts are provided by AEM. Culverts will be Galvanized Corrugated Pipes, with a profile of 68x13 mm.
- 2. At any time, the minimum backfill cover indicated in the table below shall be respected.

DIAMETER (mm)	(mm)	(mm)	(required at any time)
600	2	68x13	750
700	2	68x13	800
800	2.8	68x13	825
900	2.8	68x13	825
1000	2.8	68x13	850
1200	2.8	68x13	850

- 3. The installation of the culverts shall be conform to the Manufacturer instructions.
- 4. The maximum allowable slope for culverts is 6%. Install RipRap to fill the gap between the pipe bottom and the existing ground if required.

TABLE: CULVERTS CHARACTERISTICS

2.0

2.0

3.0

GALVANIZED CORRUGATED STEEL PIPE

GRIPRAP (50-300 mm)

MIN. 0.4 m THICKNESS

CROSS SECTION

ROAD SIDE SLOPE

PLAN VIEW

RIPRAP (50-300 mm) AROUND CSP (TYP)

TYPICAL DETAIL - CULVERT RIPRAP FOR BOTH INLET AND OUTLET

(AS INDICATED
ON PLAN VIEW)

3.0

#\DESSIN\CIV-INFRA\DESSINS DE TRAVAIL\AUTOCAD\65-117-230-208to210_R3.dwq-2017-07-11 21:36:48

GRANULAR FILL (0-50 mm) COMPACTED TO -

A MINIMUM OF 90% OF MAXIMUM DRY DENSITY (MODIFIED PROCTOR TEST) AND PLACED IN LIFTS NOT EXCEEDING 300mm

ROAD SURFACE -

GALVANIZED CORRUGATED STEEL PIPE CULVERT

GRANULAR FILL (0-50 mm) COMPACTED TO A — MINIMUM OF 90% OF MAXIMUM DRY DENSITY (MODIFIED PROCTOR TEST) AND PLACED IN LIFTS NOT EXCEEDING 300mm

- 0.6 -

VARIABLE

1.0

P1

TYPICAL CROSS SECTION - CONFIGURATION #D

SCALE 1:50

ROAD SURFACE -

GRANULAR FILL (0-50 mm) COMPACTED TO

A MINIMUM OF 90% OF MAXIMUM DRY DENSITY
(MODIFIED PROCTOR TEST) AND PLACED

ROAD SURFACE -

EXISTING GROUND

GALVANIZED CORRUGATED -STEEL PIPE CULVERT

GALVANIZED CORRUGATED STEEL PIPE CULVERT -

0.6

1.0

0.6

TYPICAL CROSS SECTION - CONFIGURATION #A SCALE 1:50

TYPICAL CROSS SECTION - CONFIGURATION #C

SCALE 1:50

P3

0.6

VARIABLE

1.0

GALVANIZED CORRUGATED STEEL PIPE

(AS INDICATED ON PLAN VIEW)

FILE NO. 65-117-230-208to210_R3.dwg

65-117-230-209

6515 / 28920

NO. PROJET PROJECT NO. DATE 2017-02-03

3

REVISION FEUILLE / SHI

CULVERT C14 WITH RIP RAP L=±18.6m EACH, SLOPE=2.0 %

SEE DETAILS ON DWG 65-117-230-209

P:\28920\DESSIN\CIV-INFRA\DESSINS DE TRAVAIL\AUTOCAD\65-117-230-212_R0.dwg-2017-02-16

LOCATION TO CONFIRM ON SITE

TOF OF EMBANKMENT

OF BYPASS ROAD

PLAN VIEW

IRM ON SIT

L=64.58m

CULVERT C13 WITH RIP RAP L=±22.92 m EACH, SLOPE=0.86 % SEE DETAILS ON DWG 65-117-230-209 LOCATION TO CONFIRM ON SITE

FILE NO. 65-117-230-212_R0.dwg

0

2017-03-13

2017-03-17

REVISION FEUILLE / SH

PLAN / PROFILE

5+900 TO 6+312

MOURAD SENNADJ

SOLENE MOREAU

ECHELLE SCALE H=1:1500 V=1:150 DATE 2017-02-03

65-117-230-212

JOSÉE ALARIE

6515 / 28920

APPROUVÉ PAR APPROVED BY

NO. PROJET PROJECT NO.