

MELIADINE GOLD MINE

Ore Storage Management Plan

JUNE 2025 VERSION 8

$\sigma \Delta \sigma_{e} \Lambda \Gamma 4e$

ውඛ▷< ቴትኒታና ዕልተቱ ላ፤ ዕልታላተቱ Δ Lቱ ▷ታናቴርቴር▷ላታና δ በ/Lላታና ዕልታላቱጋቱ ላቦላታናጋ፤ δ በቴ/ፊ<ልቴ Cለናታቱ 1-Jና (CP1) δ ር 1-ታ 1-ታ (CP1) δ ር 1-ታ 3-ታ ለርሲላህ ታ በየ▷በታላቴ ታ ላጋቴር▷ላЈና δ ርት δ 1 Type A δ 2 2AM-MEL1631 ለታሲላሮቱ, ዕልበር▷ታላኒና ታ ውඛЈና.

AGNICO EAGLE

June 2025 i

EXECUTIVE SUMMARY

Agnico Eagle Mines Limited (Agnico Eagle) is operating the Meliadine Gold Mine (Meliadine), located approximately 25 km north of Rankin Inlet, and 80 km southwest of Chesterfield Inlet in the Kivalliq Region of Nunavut.

High and mid-grade ore produced from underground and the open pits will be trucked directly to the crusher located at the south end of the process plant. The crushed ore will be transported to the ore bin and then to the process plant via a covered conveyor system. Low grade ore will be stored in stockpiles and milled when needed, and marginal grade will be milled during the last year of operations. There will be no ore stockpiles remaining at mine closure.

Surface runoff and seepage water from the ore stockpiles will flow to the adjacent Collection Pond 1 (CP1) via Channel 1 and Culvert 3, where it will be treated to meet discharge criteria as per the Nunavut Water Board (NWB) Type A Water Licence 2AM-MEL1631 requirement, prior to being discharged to the receiving environment.

June 2025 ii

TABLE OF CONTENTS

σϙͼϧϒͿ	- 4 _{ep}	1
EXECUTIV	/E SUMMARY	2
TABLE OF	CONTENTS	3
DOCUME	NT CONTROL	5
ACRONYI	MS	6
UNITS		6
SECTION	1 • INTRODUCTION	1
1.1	Ore Storage Management Objectives	1
1.2	Management and Execution of the Ore Storage Management Plan	1
SECTION	2 • BACKGROUND	2
2.1	Site Conditions	2
2.1.1	Local Hydrology	2
2.1.2	Ice and Winter Flows	2
2.1.3	Spring Melt (Freshet) and Freeze-up Conditions	3
2.1.4	Permafrost	3
2.1.5	Local Hydrogeology	3
SECTION	3 • ORE STORAGE DEVELOPMENT	4
3.2	Mine Development Plan	4
SECTION	4 • ORE STORAGE MANAGEMENT	6
4.1	Ore Storage Locations	6
4.3	Design Parameters	7
4.4	Ore Stockpiling Procedure	8
SECTION	5 • WATER MANAGEMENT ASSOCIATED WITH ORE STORAGE	9

ORE STORAGE MANAGEMENT PLAN

SECTION 6	6 • DUST MANAGEMENT ASSOCIATED WITH ORE STORAGE10
SECTION 7	7 • RECLAMATION AND CLOSURE OF THE ORE STOCKPILES
SECTION 8	8 • MONITORING PROGRAM
8.1	Verification Monitoring Program
8.2	General Monitoring Program
REFERENC	CES14
APPENDIX	(A 15
Figure 1	1.1 General Mine Site Location Plan
Figure 3	3.1 General Site Layout Plan15
Figure 4	4.1 Ore Stockpile Typical Cross Section
Figure 4	4.2 OP2 Stage 1 As-Built
Figure 4	4.3 OP2 Stage 2 Preliminary As-Built
Tables	
	Key Mine Development Activities and Sequence
	Summary of Ore Production Schedule and Bank Quantities
	As-Built Parameters of OP2 Stage 1
	As-built Parameters for OP2 Stage 2
	Design Parameters for Ore Stockpiles
	Evolution of Ore Stockpiles at OP2 (Stage 1 / Stage 2)
Table 8-1:	Ore Stockpile Monitoring Activities

MELIADINE GOLD MINE

DOCUMENT CONTROL

Version	Date	Section	Page	Revision	Author
1	April 2015			First version of Ore Storage Management Plan as Supporting Document for Type A Water Licence Application, submitted to Nunavut Water Board for review and approval	Tetra Tech EBA Inc.
2	April 2020			General review throughout the document	Engineering
					Department
3	March			Update Quantities according to latest mine	Engineering
	2021			plan	Department
4	April 2022			Update Quantities according to latest mine	Engineering
				plan	Department
5	March			Update Quantities according to latest mine	Engineering
	2023			plan	Department
6_NWB	January	A yellow ar	row in the	Submitted to Nunavut Water Board as part of	Permitting
	2024	right-hand	margin	the Meliadine Mine Water Licence	Department
		indicates v	vhere	Amendment.	
		updates ha	ave been		
		made			
7	March	All		Update to reflect Meliadine operational status	Engineering
	2025			and quantities according to latest mine plan	Department
				Section 6: Removed details on dust sources	
				and suppression measures. These can be	
				found in the Dust Management Plan.	
8	June	3.2	4	Updated for Meliadine Pump Underground	Permitting
	2025	Table 3-2 Table 4-4	5 8	and Water Storage in Pits Modification	Department

June 2025 v

ACRONYMS

Agnico Eagle Agnico Eagle Mines Limited

CP Collection Pond (or Control Pond or Containment Pond)

EWTP Effluent Water Treatment Plant NIRB Nunavut Impact Review Board

NWB Nunavut Water Board
OP Ore Storage Pad

OSMP Ore Storage Management Plan
Project Meliadine Gold Mine Project
TSF Tailings Storage Facility
WRSF Waste Rock Storage Facility

UNITS

% percent

°C degrees Celsius

°C/m degrees Celsius per meter cm/s centimetre per second

ha hectare
kPa kilopascal
km kilometre(s)
L liter(s)
m metre
mg milligram

m/s metre per second

mm millimetre

mm/h millimetre per hour m²/year square metre(s) per year

m³ cubic metre(s)

Mm³ million cubic metre(s)

t tonne

t/m³ tonne per cubic metre

Mt million tonne(s) μm micrometre

June 2025 vi

SECTION 1 • INTRODUCTION

Agnico Eagle Mines Limited (Agnico Eagle) operates the Meliadine Gold Mine (the Mine) located approximately 25 kilometres (km) north of Rankin Inlet (Figure 1.1), Nunavut, and 80 km southwest of Chesterfield Inlet in the Kivalliq Region of Nunavut.

The Mine is subject to the terms and conditions of both the amended Project Certificate 006 issued by the Nunavut Impact Review Board (NIRB) in accordance with the Nunavut Land Claims Agreement Article 12.5.12 on March 2nd, 2022 (NIRB, 2022) and the Amended Water Licence No. 2AM-MEL1631 (the Licence), issued by the Nunavut Water Board (NWB) on October 25th, 2024 and approved by the Minister of Northern Affairs on November 22nd, 2024 (NWB, 2024).

This document presents an updated version of the Ore Storage Management Plan (OSMP).

1.1 Ore Storage Management Objectives

The ore storage management objectives are to minimize potential impacts to the environment during the mining phase. The purpose of the OSMP is to provide information to applicable mine departments (Environment, Engineering, Mine, Energy and Infrastructure, etc.) for sound management practices, proposed and existing infrastructure, and provide strategies for water management (runoff), dust control and monitoring programs.

1.2 Management and Execution of the Ore Storage Management Plan

Revisions of the OSMP can be initiated by changes in the Mine Development Plan (Mine Plan), operational performance, personnel or organizational structure, regulatory or social considerations, and/ or design philosophy. The OSMP will be reviewed annually by Agnico Eagle and updated as necessary.

SECTION 2 • BACKGROUND

2.1 Site Conditions

The Mine is located in an area of poorly drained lowlands near the northwest coast of Hudson Bay. The dominant terrain in the area consists of glacial landforms such as drumlins (glacial till), eskers (gravel and sand), and many small lakes. The topography is gently rolling with a mean elevation of 65 meters above sea level (masl) and a maximum relief of 20 meters.

The local overburden consists of a thin layer of topsoil overlying silty gravelly sandy glacial till. Cobbles and boulders are present throughout the region at various depths. Bedrock at the Mine site area consists of a stratigraphic sequence of clastic sediments, oxide iron formation, siltstones, graphitic argillite, and mafic volcanic flows (Snowden, 2008; Golder, 2009).

The climate is extreme in the area, with long cold winters and short cool summers, and mean air temperatures of 12°C in July and -31°C in January. The mean annual air temperature at the Mine site is approximately -10.4 °C (Golder, 2012a). Strong winds blow from the north and north-northwest direction more than 30 percent of the time.

The mean annual precipitation in the area is approximately 412 mm and is typically equally split between rainfall and snowfall.

2.1.1 Local Hydrology

The Mine is located within the Meliadine Lake watershed. Meliadine Lake has a water surface area of approximately 107 square kilometres (km²), a maximum length of 31 km, features a highly convoluted shoreline of 465 km, and has over 200 islands. Unlike most lakes, it has two outflows that drain into Hudson Bay through two separate river systems. It has a drainage area of 560 km² upstream of its two outflows. Most drainage occurs via the Meliadine River, which originates at the southwest end of the lake. The Meliadine River flows for a total stream distance of 39 km. The Meliadine River flows through a series of waterbodies, until it reaches Little Meliadine Lake and then continues into Hudson Bay. A second, smaller outflow from the west basin of Meliadine Lake drains into Peter Lake, which discharges into Hudson Bay through the Diana River system (a stream distance of 70 km). At its mouth, the Diana River has a drainage area of 1,460 km².

Watersheds in the Mine area are comprised of an extensive network of waterbodies, and interconnecting streams. The hydrology of these watersheds is dominated by lake storage and evaporation.

2.1.2 Ice and Winter Flows

Late-winter ice thicknesses on freshwater lakes in the Mine area range between 1.0 to 2.3 m with an average thickness of 1.7 m. Ice covers usually appear by the end of October and are completely

formed in early November. The spring ice melt (freshet) typically begins in mid-June and is complete by early July (Golder, 2012b).

2.1.3 Spring Melt (Freshet) and Freeze-up Conditions

With the exception of the main outlet of Meliadine Lake, which has been observed to flow continuously throughout the year, outlets of waterbodies near the Mine typically start flowing late May or early June, followed by freshet flows in mid-to-late-June. Flows steadily decrease in July and low flows are ongoing from August to the end of October, prior to winter freeze.

2.1.4 Permafrost

The Mine is located in an area of continuous permafrost. The depth of permafrost is estimated to be in the order of 320 to 490 m (WSP, 2024). The depth of the active layer ranges from about 1 m in areas with shallow overburden, up to 3 m adjacent to the lakes. The typical permafrost ground temperatures at the depths of zero annual amplitude (typically at the depth of below 15 m) are in the range of -5.0 to

-7.5 °C in the areas away from lakes and streams. The geothermal gradient ranges from 0.012 to 0.02°C/m (Golder, 2012b).

2.1.5 Local Hydrogeology

Groundwater characteristics at areas of continuous permafrost that are generally present in the Mine area include the following flow regimes:

- A shallow flow regime located in an active layer (seasonally thawed) near the ground surface and above permafrost; and
- A deep groundwater flow regime beneath the base of the permafrost.

From late spring to early autumn, when temperatures are above 0°C, the shallow active layer thaws. Within the active layer, the water table is projected to be a subdued replica of topography. Groundwater in the active layer flows to local depressions and ponds that drain to larger waterbodies. The talik beneath large waterbodies will be open. The open talik will connect to the deep groundwater flow regime beneath the permafrost.

Elongated waterbodies with terraces and a width of 340 to 460 m or greater are expected to have open taliks extending to the deep groundwater flow regime at the Mine. Meliadine Lake and Lake B7 are likely to have open taliks connected to the deep groundwater flow regime (Golder, 2012a). No impact is expected to Lake B7 by mine activities.

AGNICO FAGI E

SECTION 3 • ORE STORAGE DEVELOPMENT

3.2 Mine Development Plan

The Mine Plan and key mine development activities, including water management, are currently used concurrently with the OSMP. Agnico Eagle is currently mining the Tiriganiaq deposit with two open pits and one underground operation. The 2024 Water Licence Amendment extends the Life of Mine to 2031 with the open pit mining of F Zone, Wesmeg, Pump, and Discovery deposits. A recent modification application was submitted for the development of a portal in Pump Open Pit 2 (PUMP02) to extend access to deposits within permafrost. The current Mine Plan is expected to produce approximately 38.1 million tonnes (Mt) of ore, 180.7 Mt of waste rock, 34.5 Mt of overburden waste, and 30.6 Mt of tailings. Agnico Eagle will continue exploration activities with the objective to extend mine life beyond 2031.

Mining facilities on surface include a plant site and accommodation buildings, ore stockpiles, a tailings storage facility (TSF), waste rock storage facilities (WRSFs), a water management system that includes collection ponds, mined-out pits, water diversion channels, retention dikes/berms, and a series of water treatment plants. The ore will be milled in the process plant during mine operation at a feeding rate of approximately 8,500 tonnes per day (tpd). The general mine site layout plan is shown on Figure 3.1, while Table 3.1 provides the key mine development activities and sequence.

Table 3-1: Key Mine Development Activities and Sequence

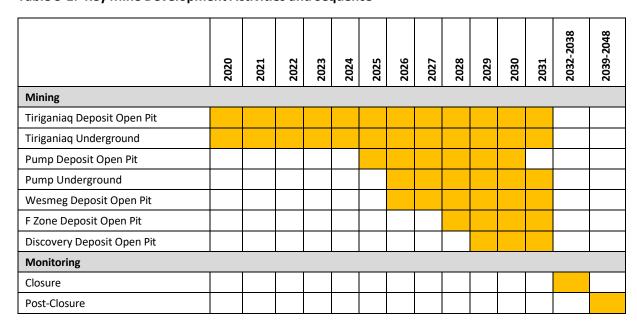


Table 3.2 summarizes the schedule and quantities of ore to be mined from the open pit and underground mining operations.

June 2025 4

AGNICO EAGLE

Table 3-2: Summary of Ore Production Schedule and Bank Quantities

Year	Mine	Underground TIRI COMPLEX	Tiriganiaq Pit #1	Tiriganiaq Pit #2	Tiriganiaq Pit #3	Tiriganiaq Pit #4	Wesmeg Pit #1	Wesmeg Pit #2	Wesmeg Pit #3	Wesmeg Pit #4	Wesmeg North	Underground PUMP	Pump Pit #1	Pump Pit #2	Pump Pit #3	Pump Pit #4	F-Zone Pit #1	F-Zone Pit #2	F-Zone Pit #3	Discovery Pit #1	Total
	Year	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)	Ore (t)
2019*	Yr -6	1,108,666																			1,108,666
2020*	Yr -5	1,293,507		109,392																	1,402,899
2021*	Yr -4	1,445,614	404,569	110,361																	1,960,544
2022*	Yr -3	1,345,975	432,859																		1,778,834
2023*	Yr -2	1,358,913	366,731																		1,725,644
2024*	Yr -1	1,462,735	561,067																		2,023,802
2025	Yr 1	1,492,137	705,361	725,941						67,234			154,100	62,652							3,207,425
2026	Yr 2	1,512,846	378,638	19,633				724,574	168,031			4,153		125,304							2,933,179
2027	Yr 3	2,836,714	1,002,891				939,292					40,403									4,819,300
2028	Yr 4	2,836,714	653,516								219,871	256,994			53,952		151,922	190,467			4,363,436
2029	Yr 5	2,836,714			16,278	58,010					117,694	375,756			195,927	263,169	125,462		11,133	261,779	4,261,922
2030	Yr 6	2,836,714			79,346	89,358					71,583	512,024			30,454				33,400	379,991	4,032,869
2031	Yr 7	2,846,220			33,072	31,021					409,148	881,916							66,799	620,016	4,888,192
Tota	l (t)	25,213,469	4,505,633	965,326	128,696	178,389	939,292	724,574	168,031	67,234	818,296	2,071,247	154,100	187,956	280,333	263,169	277,384	190,467	111,332	1,261,786	38,506,713

^{*} End of year total mined values

AGNICO EAGLE

SECTION 4 • ORE STORAGE MANAGEMENT

A portion of high-grade ore produced from underground and open pit operations will be trucked directly to the crusher located at the south end of the process plant. The crushed ore will be transported to the ore bin and then to the process plant via a covered conveyor system. The rest will be stored in stockpiles and milled when needed, prioritising highest grade first. Marginal grade will be milled during the last years of operation. There will be no ore stockpiles remaining at mine closure.

4.1 Ore Storage Locations

4.1.2 **OP2 Stage 2**

As described in the original OP2 design report (Agnico Eagle 2018), the ore storage facilities are being constructed in two stages (Stage 1 and Stage 2) to mitigate high initial construction costs associated to infrastructure not required until later in the Life of Mine and to better adapt to potential future adjustments in estimated annual volumes, the ore storage facilities will be constructed in stages.

Stage 1 was previous constructed as described in the As-Built Report submitted to the NWB in July 2020.

The detailed design report and IFC construction drawings for OP2 Stage 2 (Agnico Eagle, 2022a) were approved by the NWB June 20th, 2022. Construction of OP2 Stage 2 occurred throughout 2022 as material became available. OP2 Stage 2 is located southeast from OP2 Stage 1 as shown in Figure 3.1.

4.1.3 Temporary Ore Storage

Currently, underground ore recovered from above Level 250 is brought to the surface through Portal 1 and temporarily stored within OP1. The ore is then loaded by surface equipment and moved to OP2 and/or the primary crusher.

As part of the 2024 Water Licence Amendment, there will be new temporary ore stockpiles adjacent to the pits at Pump, F Zone, and Discovery. The stockpiles are being added to facilitate ore handling and increases productivity of mine fleet which allows for more efficient equipment to transport the ore on a long distance (e.g., specific site to mill). Ore will be segregated by provenance and by ore grade.

4.3 Design Parameters

4.3.1 OP2 Stage 1

The as-built characteristics of OP2 Stage 1 are presented in Table 4.1.

Table 4-1: As-Built Parameters of OP2 Stage 1

Parameter	As-Built Values
Pad thickness (m)	0.35
Maximum elevation (m)	71.7
Grade towards Channel 1 (%)	1.14
Average side slopes for pad (H:V)	2.3:1 (23.4°)
Surface area (m²)	103,179
Volume of rockfill (m³)	107,798

4.3.2 **OP2 Stage 2**

The as-built characteristics of OP2 Stage 2 are presented in Table 4.2.

Table 4-2: As-built Parameters for OP2 Stage 2

Design Parameter	As-built Value
Minimum Pad thickness (m)	2.3
Grade towards CP1 (%)	1.4
Average side slopes for pad (H:V)	1.8:1
Surface area (m²)	69,400
Volume of rockfill (m³)	198,000

4.3.3 Ore Stockpiles

The ore stockpiles are temporary structures and small compared to the WRSFs. Based on the stability and thermal analyses completed for the WRSFs during detailed design and experience with similar structures at other mine sites (i.e. Meadowbank Mine), the ore stockpiles will have an acceptable factor of safety against potential slope failure. A typical cross section of an ore stockpile is provided in Figure 4.1. Key design parameters for the ore stockpiles are summarized in Table 4.3.

Dividing OP2 Stage 1 into four stockpiles and maintaining a 15 m distance between the stockpiles provides enough storage for approximately 1.26 M tonnes, or 672 800 m³ of ore. OP2 Stage 2 provides enough storage for approximately 1.09 M tonnes, or 580,000 m³ of ore.

Table 4-3: Design Parameters for Ore Stockpiles

Parameter	Value
Bench width from the crest of the pad to the toe of the first lift of the ore (m)	5
Thickness of first lift of ore (m)	5
Bench width from the crest of the first lift to the toe of the second lift (m)	10
Approximate maximum thickness of the second lift of ore (m)	7
Assumed side slopes for ore (H:V)	1.3:1
Maximum elevation of any ore stockpile above sea level (m)	81
Assumed dry density of ore (t/m³)	1.88

4.4 Ore Stockpiling Procedure

Depending on the development schedule of the underground and open pit mining operations, the ore will either be transported directly to the mill and crusher for processing or will be temporarily stockpiled at one of the designated ore stockpiles on OP2 (Stage 1 / Stage 2) for subsequent processing.

Table 4.4 presents the planned evolution of ore stockpiles at OP2 (Stage 1 / Stage 2), together with their maximum storage tonnages shown in bold text.

Table 4-4: Evolution of Ore Stockpiles at OP2 (Stage 1 / Stage 2)

Year	Mine-Year	Stockpile at Year End
2019*	Yr -6	142,000
2020*	Yr -5	119,000
2021*	Yr -4	365,000
2022*	Yr -3	387,000
2023*	Yr -2	216,000
2024*	Yr -1	323,101
2025	Yr 1	1,249,276
2026	Yr 2	1,079,955
2027	Yr 3	2,796,756
2028	Yr 4	3,829,321
2029	Yr 5	5,090,919
2030	Yr 6	6,067,400
2031	Yr 7	7,515,527
Maximum	tonnes (t)	7,515,527
Maximum	olume (m³)	3,654,101

^{*} End of year total mined values. 2019 to 2023 values from Ore Storage Management Plan V6 (March 2024).

AGNICO EAGLE

SECTION 5 • WATER MANAGEMENT ASSOCIATED WITH ORE STORAGE

The water management objectives for the mine are to minimize potential impacts to the quantity and quality of surface water at the site.

OP2 is located within the catchment of CP1, as shown in Figure 3.1. The pad was sloped during construction to direct any contact water towards Channel 1 where it will be diverted into CP1 via the Culvert 3 system. The collected contact water is treated by the EWTP prior to discharge to Meliadine Lake.

The temporary stockpile runoff will report to the surface collection pond by the associated deposit.

Detailed information on the management of runoff water and seepage from the ore stockpiles and construction of infrastructure associated with ore management are described in the *Water Management Plan*.

SECTION 6 ● DUST MANAGEMENT ASSOCIATED WITH ORE STORAGE

The potential sources of dust related to ore management during construction, operation and closure include:

- Site preparation prior to placement of waste materials i.e., stripping, excavation and/or placement of storage pad;
- Vehicle traffic dislodging fine particles from the surface of the storage pad and associated haul roads;
- Ore handling and transfer loading, hauling, unloading and placement; and
- Ore sorting, screening and crushing.

Dust suppression measures, which are considered to be typical of the current mine practices (i.e. Meadowbank Complex) and consistent with best management practices, will be considered through design, operation and closure phases to control the dust.

Sources of dust related to ore management and suppression measures are detailed in the Dust Management Plan.

SECTION 7 ● RECLAMATION AND CLOSURE OF THE ORE STOCKPILES

The detailed Mine closure and reclamation activities are provided in the Interim Closure and Reclamation Plan.

Final closure activities of the ore management facilities will commence at the end of mining operations in 2031. Ore will not remain in the ore stockpiles following the cessation of operations; it will all be processed. Key mine development activities during the closure process include:

- Place final closure cover on top of tailings surface
- Finalize placement of Discovery WRSF cover system
- Decommission non-essential mine infrastructure and support buildings
- Post-closure monitoring and maintenance

Breaching of dikes and berms will be completed at the end of closure once water quality objectives are met.

In the event of a short-term temporary closure, the water and dust management strategies for the ore stockpiles will be the same as used during active mine operation. In the event of a long-term temporary closure, water control structures will be maintained as required.

Report

SECTION 8 • MONITORING PROGRAM

This section presents a summary of the monitoring programs that will be carried out during construction and operation related to ore storage management. The monitoring program presented here includes; stability and deformation, ground temperature, and annual inspections per the Type A Water Licence 2AM-MEL1631. The detailed information on monitoring of runoff and seepage from the ores stockpiles is described in the *Water Management Plan*. General monitoring is subject to change as directed by an Inspector, or by the Licensee, subject to approval by the NWB.

Table 8.1 summarizes the monitoring activities for the ore management.

Monitoring Component Monitoring Frequency Reporting Quantities of ore processed Continuously Monitoring data will be used by Agnico Daily during active ore placement; Routine visual inspections of ore Eagle internally. Verification monthly after placement stockpiles Monitoring Elevation and geometry survey Annually Seepage collection and monitoring Monthly over the open water season Quantities of ore placed into Monitoring data will Monthly stockpiles be reported to the Regulators in the General Governed by Air Quality Monitoring Dust monitoring related to ore storage Annual Report or Monitoring **Annual Inspection**

Annually or more frequent at the

request of an Inspector

Table 8-1: Ore Stockpile Monitoring Activities

8.1 Verification Monitoring Program

Geotechnical Engineer

Geotechnical inspection by qualified

Verification monitoring results will be used by Agnico Eagle in the management of ore stockpiles and production. The following verification monitoring data will be collected, compiled and managed internally:

- The tonnage of ore processed through the mill is monitored and reported internally on a continuous basis. These results are crosschecked with the tailings production rate from the filter press.
- During active development of each stockpile, site staff will carry out daily visual inspections in relation to the performance and condition of each structure. When placement activity ceases on an interim or seasonal basis, the inspection frequency will shift to monthly.
- The maximum heights of the ore stockpiles are estimated to be approximately 15 m above the pad. During operations, an annual elevation survey of the stockpiles will be performed to estimate overall volume placed and provide input to the operation plan.

• Surface runoff and seepage from the ore stockpiles will be monitored during the construction and operation phases monthly over the open water season. Additional inspections will be carried out after rainfall events and during freshet. The detailed information on the monitoring of surface runoff and seepage from the ore stockpiles is described in the *Water Management Plan*.

8.2 General Monitoring Program

The following general monitoring data will be reported to the NWB through either the Annual Report or an Annual Inspection Report:

- Monthly quantities of the ore placed into the stockpiles during mine operation.
- Dust related to ore management is not expected to be an issue by employing the dust suppression measures presented in the Dust Management Plan. Air quality at the mine site will be monitored during construction, operation, and closure through air quality monitoring stations and reported annually.
- The performance of the ore stockpiles will be inspected and assessed during the annual geotechnical site inspection by a geotechnical or civil engineer registered in Nunavut. The visual assessment and recommended actions to be taken related to the stockpiles will be summarized in the Annual Inspection Report. Inspections may occur more frequently at the request of the Inspector. Records of all inspections will be maintained for the review of the Inspector upon request.

The results from general monitoring program related to tailings management will be reported to the Regulators in the Annual Report or in the Annual Geotechnical Inspection Report.

REFERENCES

- Agnico Eagle Mines Limited (Agnico Eagle), 2018. *Ore Storage Pad 2 (OP2) Design Report and Drawings 6515-E-132-013-105-REP-033*. Submitted to Nunavut Water Board May 2018.
- Agnico Eagle, 2020b. Roads Management Plan, Version 8, Agnico Eagle Mines Ltd (6513-MPS-03)
- Agnico Eagle, 2020. Ore Storage Pad 2 (Stage 1) Construction Summary (As-Built) Report, Agnico Eagle Mines Ltd (6513-687-230-REP-001)
- Agnico Eagle, 2022a. *Ore Storage Pad 2 (OP2) Stage 2 Design Report and Drawings 65-530-230-REP-001*. Submitted to Nunavut Water Board February 2022.
- Agnico Eagle, 2022b. Meliadine Mine Water Management Plan, Version 12, Agnico Eagle Mines Ltd (6513-MPS-11).
- Golder Associates Ltd (Golder), 2009. Assess of completeness of geotechnical data for feasibility design Tiriganiaq open pit. Submitted to Comaplex Minerals Corp., 26 May 2009, Doc. 008 Rev. 0
- Golder, 2012a. SD 7-2 Aquatic Baseline Studies- Meliadine Gold Project, Nunavut, Canada. A Technical Report Submitted to Agnico Eagle Mines Ltd. by Golder Associates, September 19, 2012.
- Golder, 2012b. SD 6-1 Permafrost Thermal Regime Baseline Studies- Meliadine Gold Project, Nunavut, Canada. A Technical Report Submitted to Agnico Eagle Mines Ltd. by Golder Associates, September 25, 2012.
- INAC, 1992. Guidelines for Acid Rock Drainage Prediction in the North. Department of Indian Affairs and Northern Development, Northern Mine Environment Neutral Drainage Studies No.1, Prepared by Steffen, Robertson and Kirsten (B.C.) Inc.
- MEND, 2009. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials. MEND Report 1.20.1. Mining Environment Neutral Drainage Program, Natural Resources Canada. December 2009.
- SNC-Lavalin Inc., 2019. Meliadine Interim Closure and Reclamation Plan 2019, Final Report.
- Snowden. 2008. Tiriganiaq gold deposit, Nunavut resource update. Submitted to Comaplex Minerals Corp. January 2008.
- WSP. 2024. Updated Hydrogeology Modelling Meliadine Mine, WSP Doc.CA0020476.6818MEL2024_004-R-Rev0, January 2024.

APPENDIX A

- Figure 1.1 General Mine Site Location Plan
- Figure 3.1 General Site Layout Plan
- Figure 4.1 Ore Stockpile Typical Cross Section
- Figure 4.2 OP2 Stage 1 As-Built
- Figure 4.3 OP2 Stage 2 Preliminary As-Built

Figure 1.1 General Mine Site Location Plan

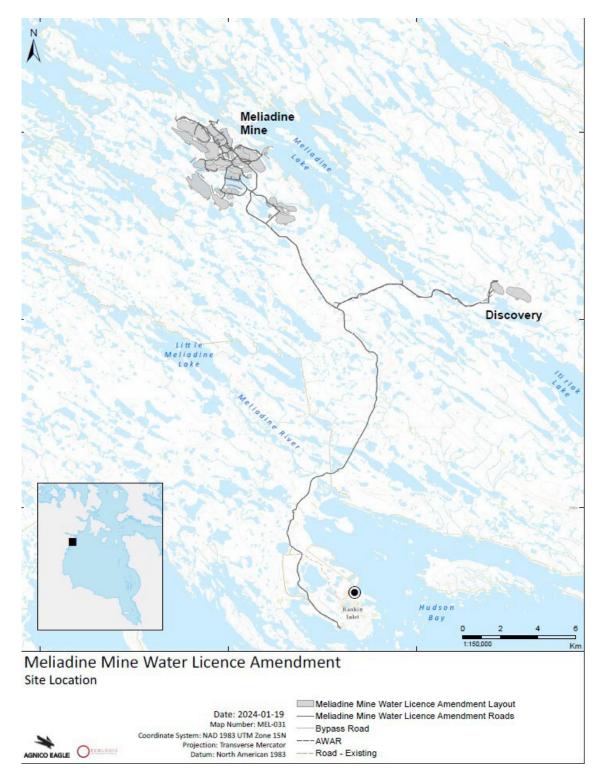
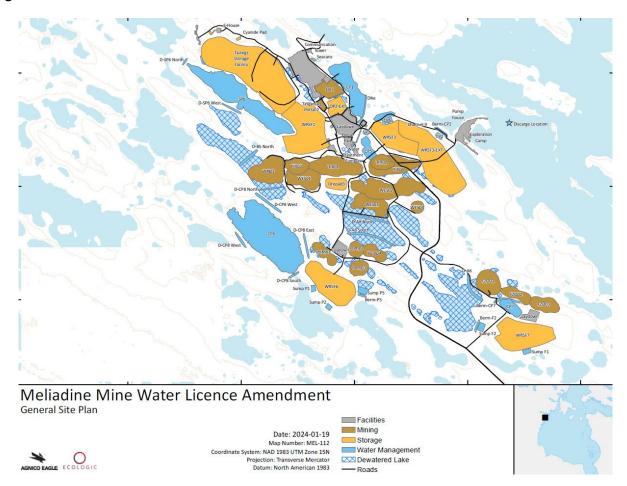
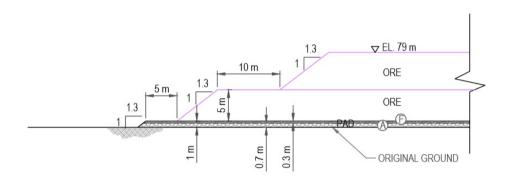


Figure 3.1 General Mine Site Location Plan

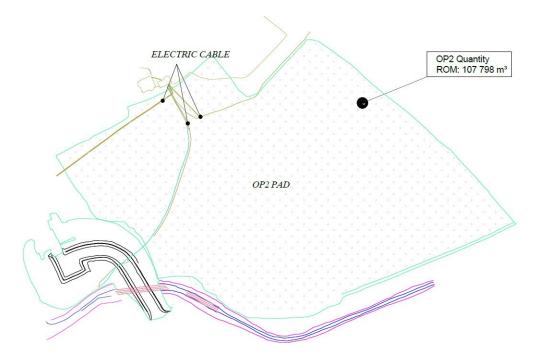
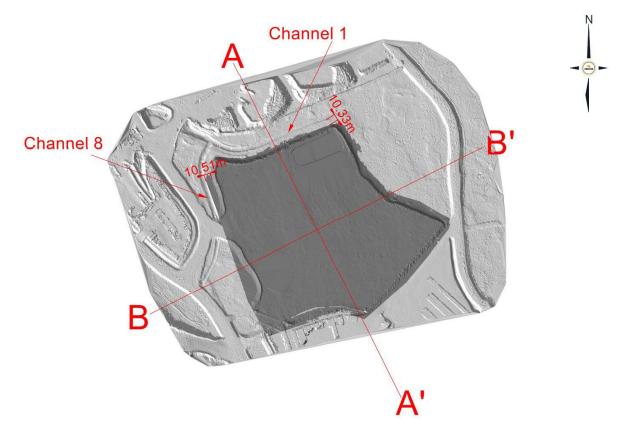
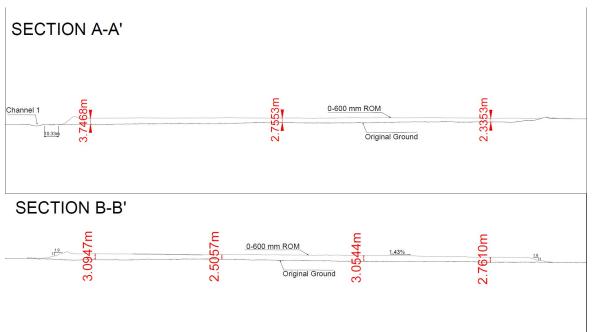


Figure 4.1 Ore Stockpile Typical Section


TYPICAL DESIGN SECTION FOR OP2


Figure 4.2 OP2 Stage 1 As-Built

AGNICO EAGLE

Figure 4.3 OP2 Stage 2 Preliminary As-Built

AGNICO EAGLE