

June 20th, 2024

Kyle Amsel
Resource Management Officer
Kivalliq Region, Field Operations Unit
Crown-Indigenous Relations and Northern Affairs Canada
Rankin Inlet, NU
XOC 0G0

Sent via email: kyle.amsel@rcaanc-cirnac.qc.ca

Re: Follow-up Report Spill #2024-179 — Release of 100 L of contact water at the Meliadine Gold Project

On May 21st, 2024, the Nunavut Spill Line was notified by Agnico Eagle personnel via email (spills@gov.nt.ca) of an overflow of approximately 100 L of contact water coming from Channel 4 at the Meliadine Gold Project site (spill location coordinates: 63 1'46.79"N, 92 13'43.94"W). This follow-up report provides supplemental information based on the results of the incident assessment and is being provided in accordance with:

Nunavut Water Board 2AM-MEL1631 Water Licence (the Licence), Part H, Item 8c.

Description of Incident

On May 21st, 2024, at approximately 5:00PM, it was noted during a routine inspection of water management infrastructure that water was overflowing the berm of Channel 4, releasing approximately 100 L of water onto the tundra. The incident was a result of accumulated snowmelt within Channel 4 during freshet.

No waterbodies were impacted by the spill. The closest water body (Lake B8) is approximately 105 meters southwest, as seen in Figure 1.

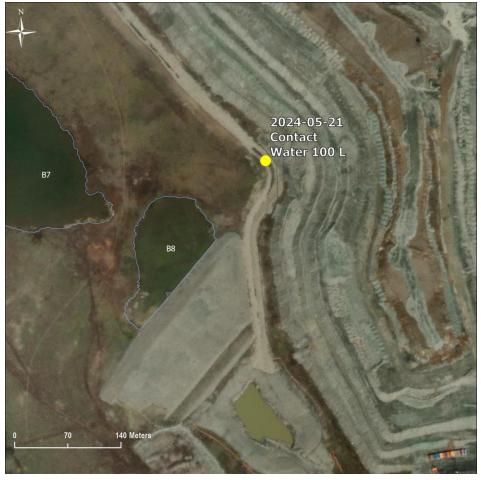


Figure 1: Location of the spill and proximity to waterbodies.

Response and Remediation

Upon discovering the overflow, Environment department personnel took water quality field readings and collected a water quality sample to be analyzed by an accredited lab. A sample was also collected for internal analysis of Total Suspended Solids (TSS) concentration at the Meliadine assay lab to provide an immediate indication of water quality.

Results from the assay lab sample indicated TSS was below criteria listed under Part D, Item 18 of the Licence. Table 1 presents the TSS results from the analyses conducted by the internal lab and external lab and validates the accuracy of the internal lab result.

Table 1: Internal and External laboratory TSS results from analysis of May 21st grab sample.

				2AM-MEL1631 Part D, Item 18			
Parameter	Unit	Internal Lab	External Lab	Maximum Authorized Monthly Mean Concentration	Maximum Authorized Concentration in a Grab Sample		
Total Suspended Solids (mg/L)	(mg/L)	6.0	7.0	50	100		

Results from the full suite of water quality analysis, presented in Appendix B, support the assessment that the water is primarily from the melting of snow that had accumulated within the channel.

Root Cause and Corrective Measures

An assessment was conducted soon after the incident to determine the root cause and contributing factors. The assessment concluded with the following:

- This part of Channel 4 has some upward-sloping areas which contributed to ponding water.
- Snow that had drifted into the channel downstream of the runoff area stagnated flow during the snowmelt period, affecting the drainage of ponded water upstream.

The following corrective and preventative actions have been implemented to address the root cause and to reduce the likelihood of reoccurrence:

 Maintenance work on this channel is planned to be completed prior to September 15th, 2024. This work will consist of maintaining the channel to meet design and ensure the channel berm is high enough to minimize the potential for runoff to overflow from the channel.

Should you have any questions or require further information, please do not hesitate to contact the undersigned.

Randy Schwandt | Environment Coordinator randy.schwandt@agnicoeagle.com | Direct 819.759.3555 x4603996 | Agnico Eagle Mines Limited - Meliadine Mine, Suite 879 - Rankin Inlet, Nunavut, Canada X0C 0G0

Sent from Meliadine

Appendix A – Photos

Photo 1: Overflow location on May 21st, 2024.

Photo 2: Overflow location on May 22nd, 2024 (day after the event).

Appendix B – Certificate of Analysis

Your P.O. #: OL-1381216

Site#: 63°02'15.5"N 92°13'06.3"W Site Location: MELIADINE

Attention: Reporting

Agnico-Eagle
Meliadine
Meliadine Mine
Rankin Inlet, NU
CANADA X0C 0G0

Report Date: 2024/06/03

Report #: R8175046 Version: 5 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4F6705 Received: 2024/05/25, 07:35

Sample Matrix: Water # Samples Received: 1

# Jumples Received. 1		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity (1)	1	N/A	2024/05/27	CAM SOP-00448	SM 24 2320 B m
Carbonate, Bicarbonate and Hydroxide (1)	1	N/A	2024/05/27	CAM SOP-00102	APHA 4500-CO2 D
Biochemical Oxygen Demand (BOD) (1)	1	2024/05/25	2024/05/30	CAM SOP-00427	SM 24 5210B m
Chloride by Automated Colourimetry (1)	1	N/A	2024/05/28	CAM SOP-00463	SM 24 4500-Cl E m
Conductivity (1)	1	N/A	2024/05/27	CAM SOP-00414	SM 24 2510 m
Dissolved Organic Carbon (DOC) (1, 5)	1	N/A	2024/05/27	CAM SOP-00446	SM 24 5310 B m
Dissolved Oxygen (1)	1	2024/05/25	2024/05/25	CAM SOP-00427	SM 24 4500 O G m
Petroleum Hydro. CCME F1 & BTEX in Water (1)	1	N/A	2024/05/27	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 6)	1	2024/05/26	2024/05/26	CAM SOP-00316	CCME PHC-CWS m
Fluoride (1)	1	2024/05/25	2024/05/27	CAM SOP-00449	SM 24 4500-F C m
Dissolved Mercury (low level) (1)	1	2024/05/27	2024/05/27	CAM SOP-00453	EPA 7470 m
Mercury (low level) (1)	1	2024/05/27	2024/05/27	CAM SOP-00453	EPA 7470 m
Low Level Chloride and Sulphate by AC (2)	1	N/A	2024/05/28	AB SOP-00020	SM24-4500-CI/SO4-E m
Cyanide (Free) (2)	1	N/A	2024/05/30	CAL SOP-00266	EPA 9016d R0 m
Cyanide, Strong Acid Dissociable (SAD) (2)	1	2024/05/29	2024/05/29	CAL SOP-00270	SM 24 4500-CN m
Cyanide WAD (weak acid dissociable) (2)	1	N/A	2024/05/29	CAL SOP-00270	SM 24 4500-CN m
Hardness (calculated as CaCO3) (3)	1	N/A	2024/05/29	BBY WI-00033	Auto Calc
Na, K, Ca, Mg, S by CRC ICPMS (diss.) (3)	1	N/A	2024/05/29	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (dissolved) (3)	1	N/A	2024/05/29	BBY7SOP-00002	EPA 6020b R2 m
Na, K, Ca, Mg, S by CRC ICPMS (total) (3)	1	2024/05/25	2024/05/29	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (total) (3)	1	2024/05/28	2024/05/29	BBY7SOP-00003 / BBY7SOP-00002	EPA 6020b R2 m
Silica (Reactive) (2)	1	N/A	2024/05/28	AB SOP-00011	EPA 370.1 R1978 m
Total Ammonia-N (1)	1	N/A	2024/05/27	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (1, 7)	1	N/A	2024/05/25	CAM SOP-00440	SM 24 4500-NO3I/NO2B
pH (1, 8)	1	2024/05/25	2024/05/27	CAM SOP-00413	SM 24th - 4500H+ B
Field Measured pH (1, 9)	1	N/A	2024/05/27		Field pH Meter
Orthophosphate (1)	1	N/A	2024/05/28	CAM SOP-00461	SM 24 4500-P E
Radium-226 Low Level (4, 10)	1	N/A	2024/05/31	BQL SOP-00006 BQL SOP-00017 BQL SOP-00032	Alpha Spectrometry

Your P.O. #: OL-1381216

Site#: 63°02'15.5"N 92°13'06.3"W Site Location: MELIADINE

Attention: Reporting

Agnico-Eagle
Meliadine
Meliadine Mine
Rankin Inlet, NU
CANADA XOC 0G0

Report Date: 2024/06/03

Report #: R8175046 Version: 5 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4F6705 Received: 2024/05/25, 07:35

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Calculated Total Dissolved Solids (1)	1	N/A	2024/05/31		Auto Calc
Total Dissolved Solids (1)	1	2024/05/27	2024/05/28	CAM SOP-00428	SM 24 2540C m
Field Temperature (1, 9)	1	N/A	2024/05/27		Field Thermometer
Total Kjeldahl Nitrogen in Water (1)	1	2024/05/27	2024/05/27	CAM SOP-00938	OMOE E3516 m
Total Organic Carbon (TOC) (1, 11)	1	N/A	2024/05/27	CAM SOP-00446	SM 24 5310B m
Total Phosphorus (Colourimetric) (1)	1	2024/05/27	2024/05/27	CAM SOP-00407	SM 24 4500-P I
Low Level Total Suspended Solids (1)	1	2024/05/27	2024/05/27	CAM SOP-00428	SM 24 2540D m
Turbidity (1)	1	N/A	2024/05/27	CAM SOP-00417	SM 24 2130 B
Un-ionized Ammonia (as N) (1, 12)	1	2024/05/25	2024/05/27	Calculation	Calculation

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd, Mississauga, ON, L5N 2L8
- (2) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE, Calgary, AB, T2E 6P8

Your P.O. #: OL-1381216

Site#: 63°02'15.5"N 92°13'06.3"W Site Location: MELIADINE

Attention: Reporting

Agnico-Eagle Meliadine Meliadine Mine Rankin Inlet, NU CANADA XOC 0G0

Report Date: 2024/06/03

Report #: R8175046 Version: 5 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4F6705

Received: 2024/05/25, 07:35

- (3) This test was performed by Bureau Veritas Burnaby, 4606 Canada Way, Burnaby, BC, V5G 1K5
- (4) This test was performed by Bureau Veritas Kitimat, 6790 Kitimat Road, Unit 4, Mississauga, ON, L5N 5L9
- (5) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (6) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.
- (7) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.
- (8) "The CCME method and Analytical Protocol (O. Reg 153/04, O. Reg. 406/19) requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME and Analytical Protocol (O. Reg 153/04, O. Reg. 406/19) holding time. Bureau Veritas endeavors to analyze samples as soon as possible after receipt."
- (9) This is a field test, therefore, the results relate to items that were not analysed at Bureau Veritas.
- (10) Radium-226 results have not been corrected for blanks.
- (11) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.
- (12) Un-ionized ammonia is calculated using the total ammonia result and field data provided by the client for pH and temperature.

Encryption Key

Katherine Szozda Project Manager 03 Jun 2024 14:09:23

Please direct all questions regarding this Certificate of Analysis to:

Katherine Szozda, Project Manager

Email: Katherine.Szozda@bureauveritas.com

Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		ZGL716			ZGL716		
Sampling Date		2024/05/21			2024/05/21		
		18:30			18:30		
	UNITS	CHANNEL#4	RDL	QC Batch	CHANNEL#4 Lab-Dup	RDL	QC Batch
Calculated Parameters							
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	73	1.0	9413995			
Calculated TDS	mg/L	630	1.0	9414427			
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	9413995			
Dissolved Hardness (CaCO3)	mg/L	297	0.50	9423984			
Field Measurements							
Field Temperature	Celsius	8.6	N/A	ONSITE			
Field Measured pH	рН	7.79		ONSITE			
Inorganics							
Total Ammonia-N	mg/L	1.2	0.050	9411598			
Total BOD	mg/L	<2	2	9413914			
Conductivity	mS/cm	1.09	N/A	9414527			
Free Cyanide (CN)	ug/L	19 (1)	2.0	9424907			
Strong Acid Dissoc. Cyanide (CN)	mg/L	0.0297	0.00050	9424905			
Weak Acid Dissoc. Cyanide (CN)	mg/L	0.024	0.00050	9424906			
Total Dissolved Solids	mg/L	665	10	9415437	655	10	9415437
Fluoride (F-)	mg/L	<0.10	0.10	9414530			
Total Kjeldahl Nitrogen (TKN)	mg/L	1.5	0.20	9415288			
Dissolved Organic Carbon	mg/L	4.9	0.40	9413872			
Total Organic Carbon (TOC)	mg/L	4.9	0.40	9415349			
Orthophosphate (P)	mg/L	0.031	0.010	9412513			
Dissolved Oxygen	mg/L	9.56	0.050	9414479			
рН	рН	7.76		9414528			
Total Phosphorus	mg/L	0.026	0.020	9415523	0.021	0.020	9415523
Reactive Silica (SiO2)	mg/L	2.4	0.050	9422473			
Total Suspended Solids	mg/L	7	1	9415340	6	1	9415340
Turbidity	NTU	2.6	0.1	9414513	2.3	0.1	9414513
Alkalinity (Total as CaCO3)	mg/L	73	1.0	9414529			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Interference checks not performed at the time of sampling. The lab cannot guarantee that interferences were not present at the time of sampling and that there is no low bias in results.

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		ZGL716			ZGL716		
Sampling Date		2024/05/21			2024/05/21		
Jumping Date		18:30			18:30		
	UNITS	CHANNEL#4	RDL	QC Batch	CHANNEL#4 Lab-Dup	RDL	QC Batch
Dissolved Chloride (Cl-)	mg/L	140	1.0	9412506			
Nitrite (N)	mg/L	0.075	0.010	9414497			
Nitrate (N)	mg/L	3.06	0.10	9414497			
Dissolved Sulphate (SO4)	mg/L	220	2.5	9422472			
Nitrate + Nitrite (N)	mg/L	3.14	0.10	9414497			
Un-ionized Ammonia (as N)	mg/L	0.012	0.00051	9414428			
Metals							
Dissolved Aluminum (Al)	mg/L	0.0063	0.0030	9423986			
Total Aluminum (Al)	mg/L	0.0282	0.0030	9423983			
Dissolved Antimony (Sb)	mg/L	0.00103	0.00050	9423986			
Total Antimony (Sb)	mg/L	0.00089	0.00050	9423983			
Dissolved Arsenic (As)	mg/L	0.120	0.00010	9423986			
Total Arsenic (As)	mg/L	0.109	0.00010	9423983			
Dissolved Barium (Ba)	mg/L	0.0323	0.0010	9423986			
Total Barium (Ba)	mg/L	0.0263	0.0010	9423983			
Dissolved Beryllium (Be)	mg/L	<0.00010	0.00010	9423986			
Total Beryllium (Be)	mg/L	<0.00010	0.00010	9423983			
Dissolved Boron (B)	mg/L	<0.050	0.050	9423986			
Total Boron (B)	mg/L	<0.050	0.050	9423983			
Dissolved Cadmium (Cd)	mg/L	0.000027	0.000010	9423986			
Total Cadmium (Cd)	mg/L	0.000025	0.000010	9423983			
Dissolved Chromium (Cr)	mg/L	<0.0010	0.0010	9423986			
Total Chromium (Cr)	mg/L	<0.0010	0.0010	9423983			
Dissolved Cobalt (Co)	mg/L	0.00366	0.00020	9423986			
Total Cobalt (Co)	mg/L	0.00304	0.00020	9423983			
Dissolved Copper (Cu)	mg/L	0.00556	0.00020	9423986			
Total Copper (Cu)	mg/L	0.00491	0.00050	9423983			
Dissolved Iron (Fe)	mg/L	0.0174	0.0050	9423986			
Total Iron (Fe)	mg/L	0.100	0.010	9423983			
Dissolved Lead (Pb)	mg/L	<0.00020	0.00020	9423986			
Total Lead (Pb)	mg/L	0.00123	0.00020	9423983			
Dissolved Lithium (Li)	mg/L	0.0051	0.0020	9423986			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		ZGL716			ZGL716		
Sampling Date		2024/05/21			2024/05/21		
Sampling Date		18:30			18:30		
	UNITS	CHANNEL#4	RDL	QC Batch	CHANNEL#4 Lab-Dup	RDL	QC Batch
Total Lithium (Li)	mg/L	0.0044	0.0020	9423983			
Dissolved Manganese (Mn)	mg/L	0.0694	0.0010	9423986			
Total Manganese (Mn)	mg/L	0.0569	0.0010	9423983			
Dissolved Molybdenum (Mo)	mg/L	0.0053	0.0010	9423986			
Total Molybdenum (Mo)	mg/L	0.0044	0.0010	9423983			
Dissolved Nickel (Ni)	mg/L	0.0032	0.0010	9423986			
Total Nickel (Ni)	mg/L	0.0027	0.0010	9423983			
Dissolved Selenium (Se)	mg/L	0.00124	0.00010	9423986			
Total Selenium (Se)	mg/L	0.00105	0.00010	9423983			
Dissolved Silver (Ag)	mg/L	0.000024	0.000020	9423986			
Total Silver (Ag)	mg/L	0.000029	0.000020	9423983			
Dissolved Strontium (Sr)	mg/L	0.461	0.0010	9423986			
Total Strontium (Sr)	mg/L	0.379	0.0010	9423983			
Dissolved Thallium (TI)	mg/L	0.000053	0.000010	9423986			
Total Thallium (TI)	mg/L	0.000045	0.000010	9423983			
Dissolved Tin (Sn)	mg/L	<0.0050	0.0050	9423986			
Total Tin (Sn)	mg/L	<0.0050	0.0050	9423983			
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	9423986			
Total Titanium (Ti)	mg/L	<0.0050	0.0050	9423983			
Dissolved Uranium (U)	mg/L	0.00077	0.00010	9423986			
Total Uranium (U)	mg/L	0.00065	0.00010	9423983			
Dissolved Vanadium (V)	mg/L	<0.0050	0.0050	9423986			
Total Vanadium (V)	mg/L	<0.0050	0.0050	9423983			
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	9423986			
Total Zinc (Zn)	mg/L	<0.0050	0.0050	9423983			
Dissolved Calcium (Ca)	mg/L	88.9	0.050	9423985			
Total Calcium (Ca)	mg/L	74.0	0.050	9423982			
Dissolved Magnesium (Mg)	mg/L	18.2	0.050	9423985			
Total Magnesium (Mg)	mg/L	15.3	0.050	9423982			
Dissolved Potassium (K)	mg/L	7.94	0.050	9423985			
Total Potassium (K)	mg/L	6.52	0.050	9423982			
Dissolved Sodium (Na)	mg/L	88.4	0.050	9423985			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		ZGL716			ZGL716		
Sampling Date		2024/05/21 18:30			2024/05/21 18:30		
	UNITS	CHANNEL#4	RDL	QC Batch	CHANNEL#4 Lab-Dup	RDL	QC Batch
Total Sodium (Na)	mg/L	72.0	0.050	9423982			
RADIONUCLIDE							
Radium-226	Bq/L	<0.0050	0.0050	9415387			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		ZGL716					
Sampling Date		2024/05/21 18:30					
	UNITS	CHANNEL#4	RDL	QC Batch			
Metals							
Mercury (Hg)	mg/L	<0.00001	0.00001	9415862			
Dissolved Mercury (Hg)	mg/L	<0.00001	0.00001	9415872			
RDL = Reportable Detection Limit							
QC Batch = Quality Control Ba	atch						

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

PETROLEUM HYDROCARBONS (CCME)

Bureau Veritas ID		ZGL716		
Samulina Data		2024/05/21		
Sampling Date		18:30		
	UNITS	CHANNEL#4	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/L	<0.20	0.20	9414785
Toluene	ug/L	<0.20	0.20	9414785
Ethylbenzene	ug/L	<0.20	0.20	9414785
o-Xylene	ug/L	<0.20	0.20	9414785
p+m-Xylene	ug/L	<0.40	0.40	9414785
Total Xylenes	ug/L	<0.40	0.40	9414785
F2-F4 Hydrocarbons	•			
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	9414810
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	9414810
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	9414810
Reached Baseline at C50	ug/L	Yes		9414810
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	93		9414785
4-Bromofluorobenzene	%	94		9414785
D10-o-Xylene	%	93		9414785
D4-1,2-Dichloroethane	%	94		9414785
o-Terphenyl	%	99		9414810
RDL = Reportable Detection I	imit			
QC Batch = Quality Control B	atch			

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

TEST SUMMARY

Bureau Veritas ID: ZGL716 Sample ID: CHANNEL#4 Matrix: Water **Collected:** 2024/05/21

Shipped:

Received: 2024/05/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	9414529	N/A	2024/05/27	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	9413995	N/A	2024/05/27	Automated Statchk
Biochemical Oxygen Demand (BOD)	DO	9413914	2024/05/25	2024/05/30	Amrutha Anilkumar
Chloride by Automated Colourimetry	SKAL	9412506	N/A	2024/05/28	Geetee Noorzaad
Conductivity	AT	9414527	N/A	2024/05/27	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	9413872	N/A	2024/05/27	Gyulshen Idriz
Dissolved Oxygen	DO	9414479	2024/05/25	2024/05/25	Amrutha Anilkumar
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	9414785	N/A	2024/05/27	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9414810	2024/05/26	2024/05/26	Mohammed Abdul Nafay Shoeb
Fluoride	ISE	9414530	2024/05/25	2024/05/27	Surinder Rai
Dissolved Mercury (low level)	CV/AA	9415872	2024/05/27	2024/05/27	Aswathy Neduveli Suresh
Mercury (low level)	CV/AA	9415862	2024/05/27	2024/05/27	Aswathy Neduveli Suresh
Low Level Chloride and Sulphate by AC	KONE	9422472	N/A	2024/05/28	Tyler Orr
Cyanide (Free)	SPEC	9424907	N/A	2024/05/30	Amy Phan
Cyanide, Strong Acid Dissociable (SAD)	TECH/UVVS	9424905	2024/05/29	2024/05/29	Joshua Fine
Cyanide WAD (weak acid dissociable)	TECH	9424906	N/A	2024/05/29	Joshua Fine
Hardness (calculated as CaCO3)	CALC	9423984	N/A	2024/05/29	Automated Statchk
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	ICP	9423985	N/A	2024/05/29	Automated Statchk
Elements by CRC ICPMS (dissolved)	ICP/MS	9423986	N/A	2024/05/29	Andrew An
Na, K, Ca, Mg, S by CRC ICPMS (total)	ICP	9423982	2024/05/29	2024/05/29	Automated Statchk
Elements by CRC ICPMS (total)	ICP/MS	9423983	2024/05/28	2024/05/29	Andrew An
Silica (Reactive)	KONE	9422473	N/A	2024/05/28	Tyler Orr
Total Ammonia-N	LACH/NH4	9411598	N/A	2024/05/27	Massarat Jan
Nitrate & Nitrite as Nitrogen in Water	LACH	9414497	N/A	2024/05/25	Jinal Chavda
рН	AT	9414528	2024/05/25	2024/05/27	Surinder Rai
Field Measured pH	PH	ONSITE	N/A	2024/05/27	Harwin Grewal
Orthophosphate	KONE	9412513	N/A	2024/05/28	Geetee Noorzaad
Radium-226 Low Level	AS	9415387	N/A	2024/05/31	Jordan Bilozir
Calculated Total Dissolved Solids	CALC	9414427	N/A	2024/05/31	Automated Statchk
Total Dissolved Solids	BAL	9415437	2024/05/27	2024/05/28	Tina Teng
Field Measured pH	PH	ONSITE	N/A	2024/05/27	Harwin Grewal
Total Kjeldahl Nitrogen in Water	SKAL	9415288	2024/05/27	2024/05/27	Rajni Tyagi
Total Organic Carbon (TOC)	TOCV/NDIR	9415349	N/A	2024/05/27	Gyulshen Idriz
Total Phosphorus (Colourimetric)	SKAL/P	9415523	2024/05/27	2024/05/27	Sachi Patel
Low Level Total Suspended Solids	BAL	9415340	2024/05/27	2024/05/27	Darshan Patel
Turbidity	AT	9414513	N/A	2024/05/27	Gurparteek KAUR
Un-ionized Ammonia (as N)	CALC	9414428	2024/05/27	2024/05/27	Automated Statchk

Bureau Veritas ID: ZGL716 Dup Sample ID: CHANNEL#4 **Collected:** 2024/05/21

Shipped:

Received: 2024/05/25

Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Dissolved Solids	BAL	9415437	2024/05/27	2024/05/28	Tina Teng
Total Phosphorus (Colourimetric)	SKAL/P	9415523	2024/05/27	2024/05/27	Sachi Patel

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

TEST SUMMARY

Bureau Veritas ID: ZGL716 Dup Sample ID: CHANNEL#4 Matrix: Water

Collected: 2024/05/21

Shipped: Received: 2024/05/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Low Level Total Suspended Solids	BAL	9415340	2024/05/27	2024/05/27	Darshan Patel
Turbidity	AT	9414513	N/A	2024/05/27	Gurparteek KAUR

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.3°C
Package 2	7.0°C
Package 3	5.3°C
Package 4	7.7°C

Sample ZGL716 [CHANNEL#4]: Total Phosphorus < ortho-Phosphate: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Agnico-Eagle
Site Location: MELIADINE
Your P.O. #: OL-1381216
Sampler Initials: KS

			Matrix Spike	Spike	SPIKED	SPIKED BLANK	Method Blank	3lank	RPD	0	oc sta	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
9414785	1,4-Difluorobenzene	2024/05/27	96	70 - 130	26	70 - 130	96	%				
9414785	4-Bromofluorobenzene	2024/05/27	101	70 - 130	101	70 - 130	6	%				
9414785	D10-o-Xylene	2024/05/27	66	70 - 130	107	70 - 130	88	%				
9414785	D4-1,2-Dichloroethane	2024/05/27	101	70 - 130	66	70 - 130	102	%				
9414810	o-Terphenyl	2024/05/26	107	60 - 130	106	60 - 130	105	%				
9411598	Total Ammonia-N	2024/05/27	102	75 - 125	103	80 - 120	<0.050	mg/L	9.2	20		
9412506	Dissolved Chloride (Cl-)	2024/05/28	NC	80 - 120	102	80 - 120	<1.0	mg/L	2.0	20		
9412513	Orthophosphate (P)	2024/05/28	6	75 - 125	97	80 - 120	<0.010	mg/L	NC	20		
9413872	Dissolved Organic Carbon	2024/05/27	NC	80 - 120	86	80 - 120	<0.40	mg/L	0.53	20		
9413914	Total BOD	2024/05/30					<2	mg/L	9.3	30	26	80 - 120
9414479	Dissolved Oxygen	2024/05/25							0.094	30		
9414497	Nitrate (N)	2024/05/25	56	80 - 120	66	80 - 120	<0.10	mg/L	2.4	20		
9414497	Nitrite (N)	2024/05/25	66	80 - 120	86	80 - 120	<0.010	mg/L	NC	20		
9414513	Turbidity	2024/05/27			66	80 - 120	<0.1	UTN	12	20		
9414527	Conductivity	2024/05/27			100	85 - 115	0.000000	mS/cm	0.48	10		
9414528	Нф	2024/05/27			102	98 - 103			1.2	N/A		
9414529	Alkalinity (Total as CaCO3)	2024/05/27			96	85 - 115	<1.0	mg/L	1.4	20		
9414530	Fluoride (F-)	2024/05/27	66	80 - 120	100	80 - 120	<0.10	mg/L	NC	20		
9414785	Benzene	2024/05/27	98	50 - 140	06	50 - 140	<0.20	1/8n	NC	30		
9414785	Ethylbenzene	2024/05/27	91	50 - 140	94	50 - 140	<0.20	ng/L	NC	30		
9414785	o-Xylene	2024/05/27	92	50 - 140	93	50 - 140	<0.20	ng/L	NC	30		
9414785	p+m-Xylene	2024/05/27	85	50 - 140	98	50 - 140	<0.40	ng/L	NC	30		
9414785	Toluene	2024/05/27	85	50 - 140	87	50 - 140	<0.20	ng/L	NC	30		
9414785	Total Xylenes	2024/05/27					<0.40	ng/L	NC	30		
9414810	F2 (C10-C16 Hydrocarbons)	2024/05/26	104	60 - 140	102	60 - 140	<100	ng/L	NC	30		
9414810	F3 (C16-C34 Hydrocarbons)	2024/05/26	108	60 - 140	108	60 - 140	<200	ng/L	NC	30		
9414810	F4 (C34-C50 Hydrocarbons)	2024/05/26	103	60 - 140	103	60 - 140	<200	ng/L	NC	30		
9415288	Total Kjeldahl Nitrogen (TKN)	2024/05/27	85	80 - 120	86	80 - 120	<0.10	mg/L	NC (1)	20	06	80 - 120
9415340	Total Suspended Solids	2024/05/27			66	80 - 120	<1	mg/L	3.1	20		
9415349	Total Organic Carbon (TOC)	2024/05/27	NC	80 - 120	86	80 - 120	<0.40	mg/L	0.090	20		
9415387	Radium-226	2024/05/31			87	85 - 115	<0.0050	Bq/L	NC	N/A		
9415437	Total Dissolved Solids	2024/05/28			97	80 - 120	<10	mg/L	1.5	20		

QUALITY ASSURANCE REPORT(CONT'D)

Agnico-Eagle
Site Location: MELIADINE
Your P.O. #: OL-1381216
Sampler Initials: KS

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	3lank	RPD	0	QC Sta	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
9415523	Total Phosphorus	2024/05/27	96	80 - 120	92	80 - 120	<0.020	mg/L	ON	20	66	80 - 120
9415862	Mercury (Hg)	2024/05/27	86	75 - 125	97	80 - 120	<0.00001	mg/L	ON	20		
9415872	Dissolved Mercury (Hg)	2024/05/27	6	75 - 125	85	80 - 120	<0.00001	mg/L	JN	20		
9422472	Dissolved Sulphate (SO4)	2024/05/28	NC	80 - 120	103	80 - 120	<0.50	mg/L				
9422473	Reactive Silica (SiO2)	2024/05/28	NC	80 - 120	109	80 - 120	<0.050	mg/L				
9423983	Total Aluminum (AI)	2024/05/29	104	80 - 120	103	80 - 120	<0.0030	mg/L				
9423983	Total Antimony (Sb)	2024/05/29	48 (2)	80 - 120	104	80 - 120	<0.00050	mg/L				
9423983	Total Arsenic (As)	2024/05/29	105	80 - 120	102	80 - 120	<0.00010	mg/L				
9423983	Total Barium (Ba)	2024/05/29	106	80 - 120	100	80 - 120	<0.0010	mg/L				
9423983	Total Beryllium (Be)	2024/05/29	101	80 - 120	106	80 - 120	<0.00010	mg/L				
9423983	Total Boron (B)	2024/05/29	103	80 - 120	108	80 - 120	<0.050	mg/L				
9423983	Total Cadmium (Cd)	2024/05/29	105	80 - 120	102	80 - 120	<0.000010	mg/L				
9423983	Total Chromium (Cr)	2024/05/29	86	80 - 120	98	80 - 120	<0.0010	mg/L				
9423983	Total Cobalt (Co)	2024/02/29	6	80 - 120	6	80 - 120	<0.00020	mg/L				
9423983	Total Copper (Cu)	2024/05/29	NC	80 - 120	95	80 - 120	<0.00050	mg/L				
9423983	Total Iron (Fe)	2024/05/29	NC	80 - 120	101	80 - 120	<0.010	mg/L				
9423983	Total Lead (Pb)	2024/05/29	103	80 - 120	99	80 - 120	<0.00020	mg/L				
9423983	Total Lithium (Li)	2024/05/29	100	80 - 120	108	80 - 120	<0.0020	mg/L				
9423983	Total Manganese (Mn)	2024/05/29	107	80 - 120	103	80 - 120	<0.0010	mg/L				
9423983	Total Molybdenum (Mo)	2024/05/29	NC	80 - 120	106	80 - 120	<0.0010	mg/L				
9423983	Total Nickel (Ni)	2024/05/29	66	80 - 120	66	80 - 120	<0.0010	mg/L				
9423983	Total Selenium (Se)	2024/05/29	110	80 - 120	102	80 - 120	<0.00010	mg/L				
9423983	Total Silver (Ag)	2024/05/29	102	80 - 120	99	80 - 120	<0.000020	mg/L				
9423983	Total Strontium (Sr)	2024/05/29	NC	80 - 120	96	80 - 120	<0.0010	mg/L				
9423983	Total Thallium (TI)	2024/05/29	101	80 - 120	100	80 - 120	<0.000010	mg/L				
9423983	Total Tin (Sn)	2024/05/29	27 (2)	80 - 120	104	80 - 120	<0.0050	mg/L				
9423983	Total Titanium (Ti)	2024/05/29	93	80 - 120	102	80 - 120	<0.0050	mg/L				
9423983	Total Uranium (U)	2024/05/29	111	80 - 120	104	80 - 120	<0.00010	mg/L				
9423983	Total Vanadium (V)	2024/05/29	103	80 - 120	99	80 - 120	<0.0050	mg/L				
9423983	Total Zinc (Zn)	2024/05/29	NC	80 - 120	103	80 - 120	<0.0050	mg/L				
9423986	Dissolved Aluminum (AI)	2024/05/29	66	80 - 120	102	80 - 120	<0.0030	mg/L				
9423986	Dissolved Antimony (Sb)	2024/05/29	102	80 - 120	102	80 - 120	<0.00050	mg/L				

QUALITY ASSURANCE REPORT(CONT'D)

Agnico-Eagle Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	3lank	RPD	٥	QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
9423986	Dissolved Arsenic (As)	2024/05/29	100	80 - 120	102	80 - 120	<0.00010	mg/L				
9423986	Dissolved Barium (Ba)	2024/05/29	86	80 - 120	100	80 - 120	<0.0010	mg/L				
9423986	Dissolved Beryllium (Be)	2024/05/29	102	80 - 120	101	80 - 120	<0.00010	mg/L				
9423986	Dissolved Boron (B)	2024/05/29	105	80 - 120	66	80 - 120	<0.050	mg/L				
9423986	Dissolved Cadmium (Cd)	2024/05/29	100	80 - 120	102	80 - 120	<0.000010	mg/L				
9423986	Dissolved Chromium (Cr)	2024/05/29	95	80 - 120	97	80 - 120	<0.0010	mg/L				
9423986	Dissolved Cobalt (Co)	2024/05/29	94	80 - 120	92	80 - 120	<0.00020	mg/L				
9423986	Dissolved Copper (Cu)	2024/05/29	95	80 - 120	92	80 - 120	<0.00020	mg/L				
9423986	Dissolved Iron (Fe)	2024/05/29	102	80 - 120	102	80 - 120	<0.0050	mg/L				
9423986	Dissolved Lead (Pb)	2024/05/29	6	80 - 120	66	80 - 120	<0.00020	mg/L				
9423986	Dissolved Lithium (Li)	2024/05/29	104	80 - 120	103	80 - 120	<0.0020	mg/L				
9423986	Dissolved Manganese (Mn)	2024/05/29	96	80 - 120	101	80 - 120	<0.0010	mg/L				
9423986	Dissolved Molybdenum (Mo)	2024/05/29	100	80 - 120	103	80 - 120	<0.0010	mg/L				
9423986	Dissolved Nickel (Ni)	2024/05/29	96	80 - 120	86	80 - 120	<0.0010	mg/L				
9423986	Dissolved Selenium (Se)	2024/05/29	102	80 - 120	103	80 - 120	<0.00010	mg/L				
9423986	Dissolved Silver (Ag)	2024/05/29	86	80 - 120	66	80 - 120	<0.0000020	mg/L				
9423986	Dissolved Strontium (Sr)	2024/05/29	94	80 - 120	96	80 - 120	<0.0010	mg/L				
9423986	Dissolved Thallium (TI)	2024/05/29	98	80 - 120	101	80 - 120	<0.000010	mg/L				
9423986	Dissolved Tin (Sn)	2024/05/29	100	80 - 120	102	80 - 120	<0.0050	mg/L				
9423986	Dissolved Titanium (Ti)	2024/05/29	66	80 - 120	101	80 - 120	<0.0050	mg/L				
9423986	Dissolved Uranium (U)	2024/05/29	103	80 - 120	109	80 - 120	<0.00010	mg/L				
9423986	Dissolved Vanadium (V)	2024/05/29	97	80 - 120	98	80 - 120	<0.0050	mg/L				
9423986	Dissolved Zinc (Zn)	2024/05/29	100	80 - 120	106	80 - 120	<0.0050	mg/L				
9424905	Strong Acid Dissoc. Cyanide (CN)	2024/05/29	86	80 - 120	102	80 - 120	<0.00050	mg/L				
9424906	Weak Acid Dissoc. Cyanide (CN)	2024/05/29	96	80 - 120	100	80 - 120	<0.00050	mg/L				

QUALITY ASSURANCE REPORT(CONT'D)

Agnico-Eagle Site Location: MELIADINE

Your P.O. #: OL-1381216 Sampler Initials: KS

QC Batch Parameter Date % Recovery QC Limits % Recovery				Matrix	Matrix Spike	SPIKED BLANK	BLANK	Method Blank	Blank	RPD	٥	QC St	QC Standard
Free Cyanide (CN) 2024/05/30 93 80 - 120 98 80 - 120 <2.0	QC Batch		Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	/ QC Limit
	9424907	Free Cyanide (CN)	2024/05/30	93	80 - 120	86	80 - 120	<2.0	1/8n				

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Due to a high concentration of NOx, the sample required dilution. The detection limit was adjusted accordingly.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Meeule
Anastassia Hamanov, Scientific Specialist
Cuistin Carriere
Cristina Carriere, Senior Scientific Specialist
A ST
David Huang, BBY Scientific Specialist
S. MARTERO E. S. STEPRESHOUSE SECTION
Steven Śfiripsoff, BSc., MBA, C. Chem, MissKitimat, Lab Director
Sylv (S. 1) Sylv (
Suwan (Sze Yeung) Fock B Sc. Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

applicable regulatory guidelines.

Agnico-Eagle

Site Location: MELIADINE Your P.O. #: OL-1381216 Sampler Initials: KS

Exceedance Summary Table – Metal Mining Effluent Reg Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary t	able is for information purp	oses only and should not	be considered a comprehe	nsive listing o	r statement of co	onformance to