

January 13, 2026

Kyle Amsel  
Resource Management Officer  
Kivalliq Region, Field Operations Unit  
Crown-Indigenous Relations and Northern Affairs Canada  
Rankin Inlet, NU  
X0C 0G0

*Sent via email: [kyle.amsel@rcaanc-circnac.gc.ca](mailto:kyle.amsel@rcaanc-circnac.gc.ca)*

**Re: Follow-up Report Spill #2025-473 – Release of 3300 L of diesel at the Meliadine Gold Project**

On December 26<sup>th</sup>, 2025, the Nunavut Spill Line was notified by Agnico Eagle personnel via email (spills@gov.nt.ca) of a spill of approximately 1000 L (now estimated to be 3300 L) of diesel at the Power Plant at the Meliadine Gold Project site (spill location coordinates: 63° 2'18.02"N, 92°13'30.72"W). This follow-up report provides supplemental information based on the results of the incident assessment and is being provided in accordance with:

- Nunavut Water Board 2AM-MEL1631 Water Licence (the Licence), Part H, Item 8c.

**Description of Incident**

On December 25, 2025, at approximately 7:00 PM, an Energy and Infrastructure (E&I) Maintenance employee received an after-hours notification that a power plant fuel tank alarm had been triggered. Upon arriving at the site, the employee discovered that the diesel tank was overflowing from its vent, and fuel was pooling beneath the tank. The initial estimate of the spilled diesel, based on surface area, was approximately 940 L. Further investigation using the tank's level readings indicated that the estimated maximum amount spilled was up to approximately 3,300 L.

The spill occurred on a concrete pad within the bounds of the site's runoff collection system; no water bodies were impacted. The closest water body (Lake 1775) is approximately 352 meters north (Figure 1).



Figure 1: Location of the spill and proximity to waterbodies.

### Response and Remediation

Upon receiving the alarm notification, the E&I Maintenance employee promptly shut off the tank's supply valve and diverted the excess diesel into the emergency day tanks inside the backup generator. They notified their supervisor and requested assistance from Environment personnel and additional E&I Maintenance staff to contain the spill. A trench lined with spill pads was created in the snow to keep the spill localized. Spill pads were also placed beneath the tank to absorb the diesel and prevent further migration.

After absorption, the contaminated pads were collected, filling two Quatrex bags (approximately  $1.5 \text{ m}^3$ ), and transported to the hazmat laydown area for shipment south for proper disposal. The contaminated snow was excavated by hand and machine and moved to the Snow Cell in accordance with the Spill Contingency Plan; approximately  $6 \text{ m}^3$  of snow was removed. Since the spill occurred on a concrete pad and the ground was frozen solid, no diesel entered the environment. Snow and ice were scraped until the concrete surface was exposed.

Once the snow was removed, personnel evaluated snow density using nearby uncontaminated snow as a reference to ensure similar densities, indicating sufficient cleanup. Additionally, no diesel odor was detectable, further confirming that the contaminated area had been fully addressed.

### **Root Cause**

An assessment was conducted shortly after the incident to determine the root cause and contributing factors. The assessment concluded the following:

The immediate cause of the incident was summer-grade fuel freezing within the tank, forming paraffin chunks that likely obstructed the tank's analog level sensor, resulting in faulty readings (see Figure 4). Although winter-grade fuel was in the system at the time of the spill, these paraffin chunks remained. This obstruction caused the sensor to display artificially low fuel levels, which triggered automatic filling. The filling activated the high-high level alarm, which would typically interlock the fuel transfer sequence and terminate the transaction. However, because the analog sensor continued to report low fuel levels, it overrode the high-high level alarm, cleared the alarm, and initiated a new fuel transfer sequence. This cycle persisted for approximately 24 minutes, causing repeated fuel injections that ultimately overflowed the tank. However, the persistence of the low-level alarm eventually prompted human intervention.

### **Corrective Measures**

The following corrective and preventive actions have been implemented to address the root causes and reduce the likelihood of recurrence:

- A visual inspection to remove paraffin clumps from this tank has been completed and any tank that contained summer fuel has been scheduled to be inspected January 14<sup>th</sup>.
- A work order has been created to latch the interlock associated with the high-high level sensor, ensuring that manual intervention will be required to unlock the pump system.
- The analog level sensor was proactively replaced on December 26 and reconfigured to transmit an upper-range value when inaccurate data is detected.
- A preventive maintenance task has been established to schedule the switch to winter fuel earlier in the year (end of August), starting in 2026.
- A work order has been created to reorganize the Power Plant alarm screen in the Process Plant control room to enable faster response in the event of alarms.
- A checklist has been created to ensure that summer fuel is emptied in the daily tanks prior to winter.



## AGNICO EAGLE

MELIADINE

Should you have any questions or require further information, please do not hesitate to contact the undersigned.



**Randy Schwandt** | Supervisor, Environment  
[randy.schwandt@agnicoeagle.com](mailto:randy.schwandt@agnicoeagle.com) | Direct 819.759.3555 x4603996 |  
Agnico Eagle Mines Limited - Meliadine Mine, Suite 879 - Rankin Inlet, Nunavut,  
Canada X0C 0G0  
[agnicoeagle.com](http://agnicoeagle.com)



## Appendix A – Photos



**AGNICO EAGLE**  
MELIADINE



**Photos 1:** Spill location



**Photo 2:** Paraffin in diesel tank from summer fuel being left in tank too late into winter.



**AGNICO EAGLE**  
MELIADINE



**Photo 3:** Spill location during remediation



**AGNICO EAGLE**  
MELIADINE



**Photo 4:** Material collected and placed at the contaminated Snow Cell