

Meliadine Gold Mine NWB 2AM-MEL1631 March 2025 Monthly Report

Prepared for:

Nunavut Water Board

Prepared by:

Agnico Eagle Mines Limited – Meliadine Division

Table of Contents

SECTION	V1 •	BACKGROUND	. 1
SECTION	N2 •	WATER MANAGEMENT	. 1
2.1		Usage	
2.2	DEWATE	RING ACTIVITIES	.1
2.3	WATER	DISCHARGE	.1
2.4	SEEPAGE	AND RUNOFF FROM THE LANDFILL AND LANDFARM	.2
2.5		TREATMENT PLANT	
2.6		DRING ANALYTICAL DATA	
SECTION	13 •	MATERIAL MANAGEMENT	. 3
3.1	LANDEII	L / LANDFARM	. 3
3.2		ASTE ROCK STORAGE FACILITY, TAILINGS	
SECTION 4	-	L MANAGEMENT	
4.1	INTERNA	AL AND REPORTABLE SPILLS	. 5

SECTION 1 • BACKGROUND

As required under Part I, Item 9 of amended Type A Water License 2AM-MEL1631, this report documents the water management and monitoring activities at the mine site and provides a summary of spills/actions for the month of March 2025.

SECTION 2 • WATER MANAGEMENT

2.1 WATER USAGE

Table 2.1 details monthly water usage approved under Water License 2AM-MEL1631.

Table 2.1: Summary of the monthly water usage in 2025

Usage	Unit	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	2025 Total
MEL-11 ¹	m³	40,096	44,128	50,163	-	-	-	-	-	1	-	1	1	134,386
Dust suppression ²	m ³	0	0	0	-	-	-	-	-	-	-	-	-	0
Dust suppression ³	m ³	0	0	0	-	-	-	-	-	-	-	-	-	0

2.2 DEWATERING ACTIVITIES

No dewatering activities took place during the month.

2.3 WATER DISCHARGE

Table 2.3 details monthly water discharge, including:

- discharge from the EWTP to Meliadine Lake via the Final Discharge Point (MEL-14);
- discharge of treated saline effluent to Melvin Bay via the Final Discharge Point (MEL-26), and
- discharge from the Itivia fuel containment facility (MEL-25).

¹ Camp, Mill, Dust suppression

² Water obtained along AWAR/Meliadine River

³ Reclaim water obtained from CP1 or other Contact Water management facilities and used for dust suppression on site

Table 2.3: Summary of the monthly water discharge in 2025

Location	Unit	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	2025 Total
MEL-14	m³	0	0	0	-	-	-	-	-	-	-	-	-	0
MEL-26	m³	0	0	0	-	-	-	-	-	-	-	-	-	0
MEL-25	m³	0	0	0	-	-	-	-	-	-	-	-	-	0

2.4 SEEPAGE AND RUNOFF FROM THE LANDFILL AND LANDFARM

The 2AM-MEL1631 landfill and landfarm were commissioned in November 2017. No seepage or runoff was observed during the month.

As per the approved Landfill (Stage 4) Berm Raise Design Report and Monitoring station MEL-24 description Modification, water accumulated inside the landfill is pumped towards Pond H13, which is the current location seepage from the landfill flows towards.

2.5 SEWAGE TREATMENT PLANT

Table 2.5 details monthly discharge from the Sewage Treatment Plant (STP), including the treated wastewater discharge to CP1 and sludge removed and disposed of in the WRSF.

Table 2.5: Summary of the monthly disposal/discharge from the STP in 2025

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	2025 Total
	ter Discharge m³)	4,973	4,474	4,930.4	-	-	-	-	-	-	-	-	-	14,377.4
Sewage	Amount (m³)	12	10	12.40	-	-	-	-	-	-	-	-	-	34.40
Sludge	Disposal Location	WRSF3	WRSF3	WRSF3	-	-	-	-	-	-	-	-	-	-

2.6 MONITORING ANALYTICAL DATA

One (1) sample related to the Water Licence was taken during the month. The analytical results are presented in Appendix.

SECTION 3 • MATERIAL MANAGEMENT

3.1 LANDFILL / LANDFARM

Table 3.1 details quarterly Landfill and Landfarm survey results, as well as the amount of material placed in the Landfarm every month.

Table 3.1: Summary of the monthly disposal in the Landfarm and quarterly survey volumes of Landfill and Landfarm

Location	Unit		Q1		Q2		Q3		Q4			2025 Total			
Location		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	2023 TOtal	
Landfill	m³		33,105			-			-			-		-	
(Survey)															
Landfarm (Survey)	m³		849 ⁴			-			-			-		-	
Landfarm ⁵	m³	2	0.8	23.85	-	-	-	-	-	-	-	-	-	26.65	

⁴ From landfarm survey conducted in November 2024. Surveys of the Landfarm are generally not conducted during the winter months, as the presence of snow would not allow a representative survey of the soil quantity.

⁵ Amount of contaminated solid material (soil) placed in the Landfarm or lined sorting area.

3.2 ORE, WASTE ROCK STORAGE FACILITY, TAILINGS

Table 3.2 details monthly material management, including processed ore, waste rock, and tailings.

Table 3.2: Summary of the monthly material management in 2025

	Material (tonnes)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Cumulative 2025
Processed Or	re	158,386	189,690	209,731	ı	-	ı	-	ı	ı	ı	-	ı	557,807
	Removed from open pit mining	382,704	369,748	457,569	ı	-	1	-	ı	ı	ı	-	1	1,210,021
Waste Rock	Removed from underground mining	99,563	87,430	89,629	-	-	-	-	-	-	-	-	-	276,622
	Used as underground dry rockfill	44,117	47,159	56,034	-	-	-	-	-	-	-	-	-	147,310
Tailings	Send to TSF	128,762	161,625	176,249	-	-	-	-	-	-	-	-	-	466,636
Tailings	Used as paste underground backfill	29,624	28,065	33,482	-	-	-	-	-	-	-	-	-	91,171

SECTION 4 SPILL MANAGEMENT

4.1 INTERNAL AND REPORTABLE SPILLS

Spills reported internally are listed in the table 4.1 and were managed according to Agnico Eagle's spill contingency plan. Spills were contained and cleaned up, contaminated material was disposed of in an appropriate manner, and the clean-up actions were monitored closely by the Environment Department. Two (2) reportable spills occurred during the month (Refer to the gray shading in Table 4.1).

Table 4.1: Summary of Agnico Eagle's Spill Reports during the month

Date and time of occurrence	Contaminant	Estimated quantity	Exact location of incident	Description of incident	Describe immediate corrective actions
Sunday, March 02, 2025 10:30:00 AM	Hydraulic Oil	2 L	Tiri01	While working in Tiri 1, a hydraulic hose failed on an excavator, resulting in a 2L hydraulic oil spill.	Spill pads were deployed to clean up the spill and disposed of in the appropriate bin. Contaminated material was scrapped and disposed of at Landfarm
Wednesday, March 05, 2025 12:00:00 AM	Coolant	2 L	Haul Road	A drill overheated while tramming from the maintenance shop into the pit, resulting in a 2L spill of coolant.	Spill pads were deployed to clean up the spill and disposed of in the appropriate bin. Contaminated material was scrapped and disposed of in a hazmat bin.
Saturday, March 08, 2025 2:45:00 AM	Coolant	84 L	PUMP01	A 84L spill of coolant occurred when a heating hose failed on the excavator.	Spill pads were deployed to clean up the spill and disposed of in the appropriate bin. Contaminated material was scrapped and disposed of in a hazmat bin.
Sunday, March 09, 2025 10:30:00 AM	Coolant (glycol)	1 L	WRSF6	A haul truck's radiator cell cracked, causing a pinhole to form in the radiator, resulting in a 1L spill of coolant on WRSF6.	Spill pads were deployed to clean up the spill and disposed of in the appropriate bin. Contaminated material was scrapped and disposed of in a hazmat bin.
Tuesday, March 11, 2025 1:30:00 PM	Hydraulic Oil	90 L	OP2	A hydraulic hose of a haul truck ruptured resulting in a 90L of hydraulic oil spill.	Spill pads were deployed to clean up the spill and disposed of in the appropriate bin. Contaminated material was scrapped and disposed of at Landfarm.

Tuesday, March 11, 2025 8:30:00 PM	Hydraulic Oil	30 L	Tiri01	A hydraulic hose of a drill ruptured, resulting in a 30L of hydraulic oil.	Spill pads were deployed to clean up the spill and disposed of in the appropriate bin. Contaminated material was scrapped and disposed of in a hazmat bin.
Tuesday, March 25, 2025 10:30:00 AM	Coolant	10 L	Maintenance yard	Employee was driving a haul truck to the Maintenance shop for preventive maintenance. Upon parking, they realized that the coolant hose was damaged and spilled on the ground.	Spill pads were deployed to clean up the spill and disposed of in the appropriate bin. Contaminated material was scrapped and disposed of in a hazmat bin.
Sunday, March 30, 2025 6:30:00 AM	Sewage water	50 L	Wing 16 Lift station	Approximately 50 L of sewage spilled onto the industrial pad outside the Wing 16 lift station. Upon inspection, it was discovered the lift station pump impeller was obstructed by noncompliant material, which led to the pump's failure and the lift station to overflow.	Upon discovering the spill, a vacuum truck and a plumber were displaced to respond to the spill. The vacuum truck was utilized to empty the contents within the secondary containment. The contaminated material was excavated and transported to Landfarm A in accordance with the Spill Contingency Plan.
Sunday, March 30, 2025 10:00:00 AM	Hydraulic Oil	50 L	WRSF6 (Northeast corner)	50 liters of hydraulic oil spilled from a dozer after a bolt failed on the steering block.	Spill pads were deployed to clean up the spill and disposed of in the appropriate bin. Contaminated material was scrapped and disposed of at Landfarm.
Sunday, March 30, 2025 5:00:00 PM	Sewage water	150 m3	P-Wing	An Energy and Infrastructure (E&I) worker observed sewage outside of the P-Wing. The sewage line connecting the P-Wing lift station to the Main Camp lift station was found to be leaking. Consequently, the sewage began accumulating beneath the P-Wing, forming a thick layer as it froze. An assessment concluded that approximately 150 cubic	Upon discovering the spill, personnel from the Energy and Infrastructure (E&I) department promptly stopped the flow of sewage from the P-Wing to the Main Camp lift station. A plumber subsequently rerouted the P-Wing sewage line to a temporary holding tank. Due to the spill's location, remediation activities are constrained by the confined space and

			meters of sewage was released under the P-Wing.	limited access around and under the building. The Surface Operations team excavated accessible contaminated material around P-Wing and transported it to Landfarm A in accordance with the Spill Contingency Plan. The impacted area will continue to be monitored, and if necessary, a diversion berm or interceptor ditch, along with a collection sump, will be installed to capture runoff during the spring melt. Soil remediation beneath the P-Wing infrastructure will be completed upon closure and reclamation.
--	--	--	---	---

Appendix – Monitoring Analytical Data

MEL-1:	1	3/3/2025
Parameter	Unit	
WQ02- Conventional Pa	rameters	
рН	pH units	7.20
Turbidity	NTU	< 0.1
Conductivity	ms/cm	0.174
Hardness, as CaCO3	mg/L	40.7
Total alkalinity, as CaCO3	mg/L	28
Carbonate, as CaCO3	mg/L	< 1.0
Bicarbonate, as CaCO3	mg/L	28
TDS	mg/L	75
TDS, calculated	mg/L	84
TSS	mg/L	< 1
Total organic carbon	mg/L	4.2
Dissolved organic carbon	mg/L	4.2
WQ03- Major Ions		
Chloride	mg/L	23
Cyanide	mg/L	< 0.00050
Cyanide (free)	mg/L	< 0.0020
Cyanide (WAD)	mg/L	< 0.00050
Silica	mg/L	0.94
Sulfate	mg/L	14
WQ04- Nutrients and Ch	_	
Ammonia Nitrogen (as N)	mg/L	< 0.050
Nitrate (as N)	mg/L	0.10
Nitrite (as N)	mg/L	< 0.010
Total phosphorus	mg/L	< 0.020
Orthophosphate (P)	mg/L	< 0.010
WQ06- Total Metals	<u> </u>	
Aluminum	mg/L	< 0.0030
Antimony	mg/L	< 0.00050
Arsenic	mg/L	0.00080
Barium	mg/L	0.0121
Beryllium	mg/L	< 0.00010
Boron	mg/L	< 0.050
Cadmium	mg/L	< 0.000010
Chromium	mg/L	< 0.0010
Copper	mg/L	0.00097
Iron	mg/L	0.014
Lead	mg/L	< 0.00020
Lithium	mg/L	< 0.0020
Manganese	mg/L	0.0035

Mercury	mg/L	< 0.00001
Molybdenum	mg/L	< 0.0010
Nickel	mg/L	< 0.0010
Selenium	mg/L	< 0.00010
Silver	mg/L	< 0.000020
Strontium	mg/L	0.0670
Thallium	mg/L	< 0.000010
Tin	mg/L	< 0.0050
Titanium	mg/L	< 0.0050
Uranium	mg/L	< 0.00010
Vanadium	mg/L	< 0.0050
Zinc	mg/L	< 0.0050
WQ07- Dissolved Metals	81 -	3.000
Aluminum	mg/L	< 0.0030
Antimony	mg/L	< 0.00050
Arsenic	mg/L	0.00091
Barium	mg/L	0.0146
Beryllium	mg/L	< 0.00010
Boron	mg/L	< 0.050
Cadmium	mg/L	< 0.000010
Calcium (Dissolved)	mg/L	14.5
Chromium	mg/L	< 0.0010
Copper	mg/L	0.00111
Iron	mg/L	0.0079
Lead	mg/L	< 0.00020
Lithium	mg/L	< 0.0020
Magnesium	mg/L	2.64
(Dissolved)	O.	
Manganese	mg/L	< 0.0010
Mercury	mg/L	< 0.00001
Molybdenum	mg/L	< 0.0010
Nickel	mg/L	< 0.0010
Potassium (Dissolved)	mg/L	1.48
Selenium	mg/L	< 0.00010
Silver	mg/L	< 0.000020
Sodium (Dissolved)	mg/L	11.1
Strontium	mg/L	0.0818
Thallium	mg/L	< 0.000010
Tin	mg/L	< 0.0050
Titanium	mg/L	< 0.0050
Uranium	mg/L	< 0.00010
Vanadium	mg/L	< 0.0050
Zinc	mg/L	< 0.0050
WQ10- Volatile Organics		

Benzene	mg/L	< 0.00020
Ethylbenzene	mg/L	< 0.00020
Toluene	mg/L	< 0.00020
Xylenes	mg/L	< 0.00040
m,p-Xylenes	mg/L	< 0.00040
o-Xylene	mg/L	< 0.00020
F1 (C6-C10)-BTEX	mg/L	< 0.025
F1 (C6-C10)	mg/L	< 0.025
F2 (C10-C16)	mg/L	< 0.09
F3 (C16-C34)	mg/L	< 0.2
F4 (C34-C50)	mg/L	< 0.2