Baffinland Iron Mines Corporation Mary River Project - Phase 2 Proposal Updated Application for Amendment No. 2 of Type A Water Licence 2AM-MRY1325

Attachment 8.2

North Railway Factual Geotechnical Report

(676 Pages)

Baffinland Iron Mines Corporation Mary River Expansion Project

2016-2017-2018 Rail Geotechnical Investigation Factual Data Report

Use	-			R Stefan		
Approved for Use	H Ghiabi	W Hoyle	D Stanger D Stanger	R Stefan		
Status	Prepared By	Checked By	Approved By	Approved By		
Use Statistics						

Document Number Explanation

This report was issued for client review as Rev. B on March 13th, 2018 under the following document number: H352034-1000-229-230-0005. Subsequently, there are 2 additional boreholes drilled at each of the three proposed bridges at KM 16, KM 71, and KM 102 in addition to the 3 boreholes drilled for the proposed bridge at KM 86 presented in revision 1. As a result of this additional information, the document number was revised to H353004-10000-229-230-0005. Although the current project number (H353004) was used to report the new data (borehole reports, test reports, etc.), the former project number (H352034) is still shown on the borehole reports/data sheets from previous investigations.

DISCLAIMER

This Report has been prepared by Hatch Ltd. ("Hatch") for the sole and exclusive benefit of Baffinland Iron Mines Corporation (the "Client") for the sole purpose of assisting the Client to identify potential options to increase production from the Mary River mine, and may not be provided to, used or relied upon by any other party without the prior written consent of Hatch.

Any use of this report by the Client is subject to the terms and conditions provided in the ArcelorMittal General Service Agreement, dated November 14, 2014, including the limitations on liability set out therein. Without limiting the foregoing, Hatch explicitly disclaims all responsibility for losses, claims, expenses or damages, if any, suffered by a third party as a result of any reliance on this Report, including for any decisions made or actions made by such a third party and based on this Report ("Claims"), and such third party's use or review of the Report shall constitute its agreement to waive all such Claims and release Hatch in respect thereof.

This report is meant to be read, and sections should not be read or relied upon out of context. While it is believed that the information contained herein is reliable under the conditions and subject to the limitations set forth herein, this Report is based in part on information not within the control of Hatch and Hatch therefore cannot and does not guarantee the accuracy of such information based in whole or in part on information not within the control of Hatch. The comments in it reflect Hatch's professional judgment in light of the information available to it at the time of preparation.

This report contains the expression of the professional opinion of Hatch exercising reasonable care, skill and judgment and based upon information available at the time of preparation. Hatch has conducted this investigation in accordance with the methodology outlined herein. It is important to note that the methods of evaluation employed, while aimed at minimizing the risk of unidentified problems, cannot guarantee their absence. The quality of the information, conclusions and estimates contained herein is consistent with the intended level of accuracy as set out in this report, as well as the circumstances and constraints under which this report was prepared.

Client's Signature:	
Name:	
Title:	
Date:	

Table of Contents

1.	Introduction	1
	Previous Investigations Local Topology and Geology	
2.	. 0	
	•	
	2.1 General	
	Borehole Locations 2.3 Drilling and Sampling Methodology	
	3 1 - 3	
	Safety Management Plan Laboratory Testing	
	2.5.1 Soil Testing	
	2.5.2 Rock Testing	
	2.6 Geophysics	10
3.	Investigation Results	12
	3.1 Rail Alignment	10
	3.1.1 Chainage 0+000 m to 54+000 m	12 12
	3.1.2 Chainage 54+000 m to 58+000 m	13
	3.1.3 Chainage 58+000 m to 70+000 m	
	3.1.4 Chainage 70+000 m to 100+000 m	
	3.2 Proposed Bridge Locations	
	3.2.1 Bridge 1	
	3.2.2 Bridge 2	
	3.2.3 Bridge 3	
	3.2.4 Bridge 4	
	3.3 Proposed Quarry Boreholes	
	3.3.2 Bedrock	
	3.4 Laboratory Test Results	
	3.5 Geophysics Results	
	3.6 Ice Rich Areas	
	3.7 Georadar Surveys Along the Rail Deviation Area	
4.	Summary of Findings	18
5	References	22

List of Tables

Гable 2-1: Rail Alignment Borehole Locations	
Table 2-2: Bridge Abutment Borehole Locations	
Table 2-3: Quarry Borehole Locations	
Table 2-4: Standards Used for the 2016 and 2017 Geotechnical Investigation	
Fable 2-5: Standards for Testing of Coarse Aggregate	
Fable 2-6: Rock Type and Location of The Tested Samples	
Fable 3-1: Physical Test Results of The Crushed Aggregate Samples	
Fable 3-2: Boreholes With Significant Ice Content	18
Fable 4-1: Primary Materials along Rail Alignment	18
List of Figures	
Figure 1: Drilling Rig Setup on a Borehole	6
Figure 2: Survival Shack and Off-Road Transport	
Figure 3: Sample Collected in a PVC Split Using a Mini Sonic Drilling Rig	
Figure 4: Ground Penetrating Radar Survey Unit	
Figure 5: GPR Survey in Progress	
Figure 6: Setup for Seismic Refraction	
Figure 7: Typical Granitic Gneiss Bedrock Outcrop	
Figure 8: Typical Sand Encountered in Boreholes Located between Chainage km 54 and km 58 (BH	
R037)	
Figure 9: Typical Dolomitic Limestone Outcrop	
Figure 10: Typical Soil Encountered between Chainage 78+000 m and 90+000 m (BH16-C016)	
Figure 11: Ground Ice at Km 47, 1.5 m to 3 m Deep (BH16-C011)	
·g · · · · · · · · · · · · · · · · ·	

List of Appendices

Appendix A Borehole Location Plan

Appendix B Borehole Reports

Appendix C Sample Photographs

Appendix D Laboratory Reports

Appendix E Fence Diagrams

Appendix F Summary of Laboratory Results

Appendix G Laboratory Certificate of Conformance

Appendix H Coarse Aggregate Physical Testing Reports

Appendix I Geological Investigation Safety Plan

Appendix J Geophysics Assessment

1. Introduction

Baffinland Iron Mines Corporation (BIM) currently operates the Mary River iron ore mine in Nunavut, Canada. BIM plans to increase the production to 12 Mtpa, shipping the output through Milne Port. This will be achieved by upgrading the mine fleet, constructing an approximately 110 km long rail line from the mine site to the port, building a new crushing and screening facility at the port, construction of larger ore stockpiles and building a second ore dock for ship loading.

Hatch Ltd. (Hatch) was retained by BIM to conduct geotechnical drilling investigations for the design of a railway alignment spanning from Milne Port to the Mine Site. The drilling program included three phases; the first phase was executed from September 28 to December 14, 2016, the second phase was executed between April 9, 2017 and May 2, 2017, and the third phase was executed between March 2, 2018 and April 19, 2018.

This report presents (i) sonic borehole data including the visual observations and laboratory test results for particle size distribution and soil behaviour type and (ii) geophysics data including ground-penetrating radar and refractive seismic lines. In addition, sample photographs are appended providing visual records of soil cores.

1.1 Previous Investigations

Geotechnical investigation programs have previously been conducted at the Mary River mine site, Steensby Inlet port structure, the Milne Inlet port site, the Tote Road from the mine site to Milne Port site, along a proposed southern railway alignment from Mary River and Steensby Inlet, as well as offshore investigations at Milne Port.

These previous programs were conducted in 2006, 2007, and 2008 by Knight Piésold Consulting Ltd. (Knight Piésold), in 2010 by AMEC Earth and Environmental (AMEC), and in 2011 and 2013 by Hatch. Select information from those investigations has been incorporated in this report.

1.2 Local Topology and Geology

The approximately 110 km proposed rail line starts at Milne Port (Km 0) and passes through approximately 20 km of Precambrian bedrock terrain, glaciofluvial sand and gravel terraces. Further south, the rail alignment spans across a relatively flat lying ground comprising fine grained glacial till veneer overlying Paleozoic rocks mainly dolomitic limestone units for approximately 60 km. The final stretch of the rail alignment traverses glaciolacustrine and glaciofluvial plains, terraces, eskers and bedrock outcrops ranging from granitic gneiss to sedimentary rocks. For detailed maps showing the geology along the rail alignment please refer to the Site Assessment of North Railway Alignment Report (H352034-1000-220-068-0001).

2. Geotechnical Investigation

2.1 General

The drilling supervision, field core logging and sampling associated with the railway drilling program was carried out by Hatch. Boart Longyear Ltd. (Boart Longyear) was selected as the drilling contractor. The field program was divided into three phases, the first phase (2016 investigation) was executed from September 28 to December 14, 2016, the second phase (2017 investigation) was executed between April 9 to May 2, 2017, and the third phase (2018 investigation) was executed between March 2, 2018 and April 19, 2018.

A total of 98 boreholes were drilled during the 2016 geotechnical investigation program, ranging from a depth of 1.5 m to 30 m. There were 81 boreholes drilled along the proposed rail alignment, 12 boreholes drilled at the proposed bridge abutments, and 5 boreholes drilled at the proposed quarry locations. These boreholes excluded the ones associated with Milne Port infrastructure.

A total of 14 boreholes were drilled during the early 2017 geotechnical investigation program ranging from a depth of 4.6 m to 25.9 m. Out of these 14 boreholes, 12 boreholes were drilled along the proposed rail alignment, and 2 boreholes were drilled at the proposed bridge abutments.

A total of 3 additional boreholes (BH17-BR86-1, -2, -3) were drilled at the Bridge at Km 86 location during the late 2017 geotechnical investigation program. The boreholes were drilled to a final depth of 39.6 m each.

A total of 6 boreholes were drilled during the 2018 geotechnical investigation program at three proposed bridge abutment locations, excluding boreholes associated with Milne Port Infrastructure. The depths of the boreholes ranged from 11.5 m to 32.5 m.

These boreholes provide data regarding overburden depth, soil type, ground ice and type of bedrock. Approximately 600 samples were collected on site and shipped to the Hatch geotechnical laboratory in Niagara Falls. Representative samples were selected for further laboratory testing.

As part of the 2017 and 2018 drilling program, geophysics work was undertaken along the rail alignment which included refractive seismic surveys and ground-penetrating radar. The geophysics work was undertaken by GPR Geophysics Inc. (GPR Inc.) while field supervision was provided by Hatch.

The focus of this report is the rail alignment portion of the investigation, which includes the boreholes that were drilled along the rail alignment, the bridge abutments and proposed quarry sites, and results from the geophysics surveys that were performed along the rail alignment.

2.2 Borehole Locations

A summary of the as-drilled borehole locations for the rail alignment, bridge abutments and potential quarries is presented in Table 2-1 through Table 2-3. All coordinates are located within Zone 17 of the Universal Transverse Mercator (UTM) Grid. The coordinates were recorded using a hand-held GPS unit. The horizontal datum for this project is the North American Datum 1983 (NAD 83).

The prefix BH represents Borehole, while 16, 17 and 18 refers to 2016, 2017, and 2018, the year of the investigation. The first letter following the dash symbol (-) categorizes the borehole location as Rail in Fill Sections (R), Rail in Cut sections (C), Bridge Abutment (B) or Quarry (Q).

The borehole locations are provided on the Borehole Location Plan, provided in Appendix A.

Table 2-1: Rail Alignment Borehole Locations

Borehole Number	Easting (m)	Northing (m)	Depth (m)
BH16-R003	504,513	7,975,552	5.5
BH16-R004	507,259	7,970,638	4.5
BH16-R005	509,249	509,249 7,968,499	
BH16-R006	508,438	7,969,804	2.9
BH16-R007	510,940	7,967,349	4.5
BH16-R008	512,763	7,966,604	4.5
BH16-R009	514,366	7,965,535	4.5
BH16-R010	515,332	7,963,810	4.5
BH16-R011	516,719	7,962,461	4.0
BH16-R012	516,716	7,962,464	4.0
BH16-R013	518,856	7,959,178	4.0
BH16-R014	519,701	7,957,349	4.5
BH16-R015	520,756	7,955,701	4.5
BH16-R016	521,588	7,953,865	4.5
BH16-R017	521,737	7,952,929	4.5
BH16-R018	521,854	7,951,940	4.5
BH16-R019	521,994	7,950,962	4.5
BH16-R020	521,842	521,842 7,949,969	
BH16-R021	521,784	7,948,976	4.5
BH16-R022	522,305	7,948,153	4.5
BH16-R023	522,505	7,947,177	4.0
BH16-R024	522,558	7,946,129	4.5
BH16-R025	522,989	7,945,094	4.5
BH16-R026	523,165	7,944,366	4.5
BH16-R027	523,442	7,942,265	4.5
BH16-R028	524,061	7,940,538	3.6
BH16-R029	525,062	7,938,851	3.0
BH16-R030	525,291	7,937,897	3.6
BH16-R032	525,991	7,936,109	2.7
BH16-R033	526,653	7,935,439	4.2
BH16-R034	527,056	7,933,500	4.5
BH16-R035	527,423	7,932,310	4.5
BH16-R036	527,210	7,931,660	4.5
BH16-R037	527,873	7,929,786	4.5

Borehole Number	Easting (m)	Northing (m)	Depth (m)
BH16-R038	528,501	7,928,421	4.5
BH16-R039	528,666	7,927,955	4.5
BH16-R040	528,686	7,927,755	4.5
BH16-R041	528,605	7,927,754	1.5
BH16-R042	528,517	7,927,713	4.5
BH16-R043	528,428	7,927,675	9.0
BH16-R044	528,736	7,926,992	4.5
BH16-R045	528,961	7,926,756	4.5
BH16-R046	529,065	7,926,599	4.6
BH16-R053	528,238	7,928,027	6.1
BH16-R067	535,406	7,918,572	4.6
BH16-R068	537,046	7,919,096	4.6
BH16-R069	539,489	7,920,583	4.6
BH16-R070	540,273	7,921,201	4.6
BH16-C006	508,897	7,968,767	3
BH16-C007	517,221	7,962,080	7.6
BH16-C008	520,080	7,956,909	13.7
BH16-C009	522,032	7,930,909	9.1
BH16-C010	522,513	7,946,728	5.5
BH16-C011	525,427	7,937,567	10.6
BH16-C012	526,569	7,937,567	4.6
BH16-C015			
BH16-C016	536,142	7,918,691	7.6 7.6
	536,362	7,918,814	
BH16-C017	538,597	7,919,724	6.1
BH16-C018	546,111	7,920,740	6.1
BH16-C019	546,163	7,920,494	4.5
BH16-C019B	546,214	7,920,455	6
BH16-C020	546,402	7,920,072	10
BH16-C021	546,593	7,919,917	9
BH16-C022	547,077	7,919,746	9.1
BH16-C023	547,304	7,919,643	10.7
BH16-C024	547,530	7,919,537	10.7
BH16-C025	548,370	7,919,181	7.6
BH16-C026	550,262	7,918,123	10.7
BH16-C027	550,416	7,917,928	12.2
BH16-C028	551,403	7,916,768	11.6
BH16-C029	552,569	7,915,813	7.6
BH16-C030	555,337	7,915,646	12.2
BH16-C031	556,864	7,915,216	1.5
BH16-C032	557,282	7,915,265	9.1
BH16-C201	553,750	7,915,276	2.4
BH16-C202	554,531	7,915,452	7.6
BH16-C203	555,007	7,915,451	9.1
BH16-C204	555,659	7,915,432	2.7
BH16-C205	555,883	7,915,449	8.5
BH16-C206	556,059	7,915,442	9.1
BH16-C207	556,679	7,915,415	7.3
BH17-C001	509,861	7,967,883	9.1
BH17-C002	519,513	7,957,644	10.7
BH17-C003	520,091	7,957,302	9.1
BH17-C004	520,484	7,956,357	10.7
BH17-C005	525,227	7,938,527	9.1

Borehole Number	Easting (m) Northing (m)		Depth (m)
BH17-C006	527,370 7,932,609		10.7
BH17-C006B	528,253	528,253 7,929,081	
BH17-C007	528,564 7,917,138		4.6
BH17-C010	529,961	7,916,702	5.5
BH17-C011	532,072	7,917,478	10.6
BH17-C012	533,228	7,918,553	4.6
BH17-C013	534,196	7,918,569	7.6

Table 2-2: Bridge Abutment Borehole Locations

Borehole Number	Easting (m)	Northing (m)	Depth (m)
BH16-B001	514,191	7,965,675	11.5
BH16-B002	514,290	7,965,604	13.7
BH16-B003	514,357	7,965,533	16.8
BH16-B004	514,367	7,965,540	16.8
BH16-B009	542,204	7,922,291	27.4
BH16-B010	542,208	7,922,304	14.0
BH16-B011	542,365	7,922,121	10.7
BH16-B012	542,376	7,922,131	9.1
BH16-B013	555,619	7,914,671	10.7
BH16-B014	555,599	7,914,683	9.1
BH16-B015	555,824	7,914,884	13.6
BH16-B016	555,830	7,914,892	7.6
BH17-B001	529,031	7,916,747	16.5
BH17-B002	529,323	7,916,577	25.6
BH17-BR86-1	542,257	7,922,182	39.6
BH17-BR86-2	542,269	7,922,172	39.6
BH17-BR86-3	542,304	7,922,142	39.6
BH18-BR15-1	555,758	7,915,441	17.4
BH18-BR15-2	514,211	7,965,645	16.8
BH18-BR70-1	529,143	7,916,680	32.5
BH18-BR70-2	529,107	7,916,700	28.5
BH18-BR102-1	555,758	7,915,441	11.5
BH18-BR102-2	555,697	7,915,443	16.9

Table 2-3: Quarry Borehole Locations

Borehole Number	Easting (m)	Northing (m)	Depth (m)
BH16-Q001	505,308	7,972,797	4.5
BH16-Q7001	529,144	7,927,494	5.0
BH16-Q7002	530,561	7,928,150	6.9
BH16-Q7003	531,053	7,929,065	9.1
BH16-Q7004	529,264	7,927,466	10.6

2.3 Drilling and Sampling Methodology

The geotechnical boreholes were drilled using a BL100 Mini Sonic Drilling rig shown below in Figure 1; manufactured and operated by Boart Longyear. The boreholes were advanced by vibration of the drill string at a high frequency in addition to rotary motion, and pressure by the drilling head. Sonic drilling does not require water at shallow depths in the overburden, and casing was not used for drilling through overburden. Figure 2 shows the equipment used for

off road transport of personnel and survival shack during the 2017 and 2018 investigations. Other major equipment included generator sets, welding unit, frost fighters and pickup trucks.

Figure 1: Drilling Rig Setup on a Borehole

Figure 2: Survival Shack and Off-Road Transport

When using sonic drilling in overburden, a 3 m drilling rod was advanced 1.5 m into the ground for each run. The bottom 1.5 m was collected into a 4 inch split PVC pipe as shown in Figure 2. Soil collected above the bottom 1.5 m, if encountered, was disposed to ensure the collected sample was not contaminated by surface soil "fall in" accumulated at the bottom of the drilled hole. Soil sample were photographed in the PVC split. Once the material in the split was photographed and sampled, the splits were secured using caps and aluminum tape, and stored in a shipping container at the Milne Port site.

Bedrock was cored using a HQ-3 triple tube wireline core barrel, which required the use of water and casing. In addition, rock coring required the installation of a high-speed rotary head on the drilling rig every time there was a switch from sonic drilling in soil to rock coring.

The Hatch field supervisor documented the materials encountered, and determined in situ testing and sampling requirements. When ice was encountered in the borehole, it was documented and classified according to ASTM D4083. The description of soils as detailed in the geotechnical borehole reports are based on field visual classification and confirmatory laboratory testing in accordance with the explanatory notes included with these reports.

The detailed geotechnical borehole drilling reports are contained in the attached Appendix B and should be referenced for a complete description of soil materials and the in situ testing and sampling performed. Appendix B also contains a set of explanatory notes detailing terminology used in the borehole reports. Additional observations such as testing and sampling procedures, percent recovery, water loss/gain, and mechanical heating of samples were recorded, along with time of observation. Photographs of samples collected during the drilling investigation are contained in Appendix C. An example of a retrieved sample is shown in Figure 3.

Figure 3: Sample Collected in a PVC Split Using a Mini Sonic Drilling Rig

2.4 Safety Management Plan

Safety management was a key consideration during the planning process for the geotechnical investigations. A safety management plan was prepared by Hatch and reviewed by BIM and Boart Longyear. A copy of this Plan is provided in Appendix I. A Job Hazard Analysis (JHA) was developed by Hatch and BIM and reviewed by Boart Longyear. This JHA was reviewed periodically and updated according to the work activities. A notification procedure was prepared by BIM specifically for the drilling activities in remote areas. A copy of both the final JHA and the notification procedure is presented in Appendix I.

2.5 Laboratory Testing

2.5.1 Soil Testing

All samples were shipped to the Hatch geotechnical laboratory in Niagara Falls, a Canadian Council of Independent Laboratories (CCIL) certified laboratory (see Appendix G for the certification document). Representative samples were selected for testing including moisture content, particle size distribution, and pore water salinity in accordance with the standard listed in Table 2-4. Full laboratory test results are presented in Appendix D and laboratory results are summarized in Appendix F. Select laboratory results are also shown on the boreholes in Appendix B.

2

Table 2-4: Standards Used for the 2016, 2017, and 2018 Geotechnical Investigation

Name	Standard
Standard Test methods for Laboratory Determination of Water Content of Soil and Rock by Mass	ASTM D2216
Standard Test Methods for Particle-Size Distribution of Soils using Sieve Analysis	ASTM D6913
Standard Test method for Particle Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis	ASTM D7928
Standard Test Methods for Pore Water Extraction and Determination of the Soluble Salt Content of Soils by Refractometer	ASTM D4542

2.5.2 Rock Testing

The physical testing of bedrock core and rock samples was completed by Amec Foster Wheeler PLC laboratory in Hamilton, Ontario (CCIL certification is shown in Appendix G). Rock testing was completed following the procedures in the Standards listed in Table 2-5.

Table 2-5: Standards for Testing of Coarse Aggregate

Name	Standard
Standard Test Method for Resistance of Coarse Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus	ASTM D6928
Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates	ASTM C136/C136M
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate	ASTM D7172
Resistance of Unconfined Coarse Aggregate to Freezing and Thawing	ASTM D4992

Samples were collected on site for the granitic gneiss, dolomitic limestone and diabase rock types. Four of the samples were collected for physical testing at the laboratory. The rock type, sample collection method and location of the four tested samples are presented in Table 2-6.

Table 2-6: Rock Type and Location of The Tested Samples

Borehole No.	Laboratory	Depth	UTM Coordinates	UTM Coordinates Rock		Sample
Borellole No.	Sample No.	Range (m)	Easting	Northing	Type	Туре
BH16-Q7004	NF17-01	4.6-7.6	529,264	7,927,466	Upper Limestone	Core
BH16-Q7004	NF17-02	7.6-10.6	529,264	7,927,466	Lower Limestone	Core
BH16-M007 ⁽¹⁾	NF17-03	6.1-9.1	503,822	7,974,945	Granitic Gneiss	Core
Lump Sample	NF17-04	From Surface	547,599	7,921,210	Diabase	Grabbed Sample

(1) The report for this borehole is presented in Appendix B.

2.6 Geophysics

GPR Inc. was contracted to undertake a Ground Penetrating Radar (GPR) survey to assess the extent of ground ice in areas that were identified (i) as ice rich or (ii) to have large ice bodies in the 2016, 2017, and 2018 drilling investigation. The survey required towing of a GPR unit (Figure 4) in a line over the area to be surveyed. Readings were recorded using a handheld output device, which can be seen in Figure 5. A detailed description of the GPR survey technique can be found in Appendix J.

Figure 4: Ground Penetrating Radar Survey Unit

Figure 5: GPR Survey in Progress

Seismic refraction testing was carried out to estimate bedrock depth in areas not accessible by a track mounted drilling rig. A wave was generated by vertically striking a striker plate with a sledgehammer. A line of geophones connected to a data acquisition system was used to record seismic data, shown in Figure 6. A detailed description of the seismic refraction testing can be found in Appendix J.

Figure 6: Setup for Seismic Refraction

3. Investigation Results

The sections below include a brief summary of the investigation results. The results of the borehole investigations are presented along the alignment from the Milne Port to the mine site. The boreholes at the bridges and quarry sites are discussed separately.

3.1 Rail Alignment

The following sections contain a summary of the investigation results along the rail alignment grouped by chainage. These observations are a generalization of the borehole findings and the full borehole logs should be consulted to appreciate the full variability of the overburden and bedrock conditions along the alignment. Due to the length of the alignment the investigations are only representative of the conditions in their location and variability may occur between the investigations which have not been considered.

3.1.1 Chainage 0+000 m to 54+000 m

Overburden in this sections of the rail alignment typically consists of sand with silt and/or gravel as secondary components. Layers of gravel or cobbles were encountered in several boreholes in this section. Coarse grain material was often subrounded to rounded, indicating a possible glaciofluvial origin. Layers of coarse grained subangular to angular soil was also encountered and were the most common soil encountered where the rail alignment deviated

from the Phillips Creek. Large ice lenses were encountered in BH16-C008, BH16-C011 and BH17-C002. These are discussed in more detail in Section 3.6.

Granitic gneiss bedrock outcrops were noted in the investigation area along the first 24 km of the alignment. A typical example of a granitic gneiss outcropping is presented in Figure 7.

Figure 7: Typical Granitic Gneiss Bedrock Outcrop

3.1.2 Chainage 54+000 m to 58+000 m

Boreholes between approximately Chainage 54+000 m and 58+000 m intersected sand or sand with silt from the surface to termination depths, and bedrock was not reached in any of these investigations. An example of the material encountered in this section of the alignment is presented in Figure 8.

Figure 8: Typical Sand Encountered in Boreholes Located between Chainage km 54 and km 58 (BH16-R037)

Dolomitic limestone bedrock outcrops were also noted until km 58. A typical dolomitic limestone outcrop is shown in Figure 9.

Figure 9: Typical Dolomitic Limestone Outcrop

3.1.3 Chainage 58+000 m to 70+000 m

No boreholes were drilled in this section of the alignment as part of the 2016-17 investigations due to a lack of access to the borehole locations and weather related constraints. Please see Geophysics surveys SL17-D1 through SL17-D7, in Appendix J, for seismic refraction results from this section of the proposed rail alignment.

3.1.4 Chainage 70+000 m to 100+000 m

Typical overburden along this section of the alignment was found to vary from sand to silt and sand, an example is shown in Figure 10. Much of this section of the alignment is mapped as glaciolacustrine or glaciofluvial in origin, which matches the observed materials. Ice lenses were encountered in several boreholes including a 4.6 m thick ice body encountered in BH16-C023 near km 93 of the rail alignment.

Figure 10: Typical Soil Encountered between Chainage 78+000 m and 90+000 m (BH16-C016)

3.1.5 Chainage 100+000 m to Terminus

Boreholes in the remaining section of the alignment, intersected materials ranging from silty sand to sand and gravel. These materials often were intersected within the same borehole. This section generally consists of either a thin veneer of sand and gravel (glacial fluvial) overlying granitic bedrock or exposed granitic rock. Inferred bedrock was encountered in all of the investigations in this section. The bedrock in this area is mapped as sedimentary rocks including dolomitic sandstone and undifferentiated gneiss.

3.2 Proposed Bridge Locations

Drilling was completed at four bridge locations along the rail alignment. The bridge abutment boreholes for bridges 1, 3 and 4 were completed during the 2016, and 2018 investigation; and the bridge 2 boreholes were completed as part of the early 2017 investigation. Three additional holes were drilled for Bridge 3 (KM 86) as part of the geotechnical program completed in late 2017. The approximate chainage for the bridges are as follows:

Bridge 1: 16+000 m

Bridge 2: 71+000 m

Bridge 3: 86+000 m

Bridge 4: 103+000 m.

3.2.1 Bridge 1

Investigations for the Bridge 1 abutments (BH16-B001 to B004, and BH18-BR15-1 and BH18-BR-15-2) encountered primarily sand and silt. Boulders or cobbles were intersected in all investigations, up to 1.5 m thick in BH16-B001. Bedrock, consisting of granitic gneiss, was reached at depths of 10.7 m and 10.2 m for boreholes BH18-BR15-1 and BH18-BR15-2 respectively. Ice lenses were intersected in three of the four boreholes completed in 2016, up to 3 m thick in BH16-B001.

3.2.2 Bridge 2

The investigations at both abutments of Bridge 2 generally encountered silty, silty sand or sand. A layer of silt with high organic content was encountered between 3.0 and 6.1 m depth in BH17-B002 at the proposed east abutment. An ice layer was encountered from 9.1 m to 10.6 m in BH18-BR70-1. Drilling refusal occurred at a depth of 16.5 m at BH17-B001 and at 25.6 m in BH17-B002. Siltstone to dolomitic limestone bedrock was encountered at depths of 22.9 m and 17.1 m for boreholes BH18-BR70-1 and BH18-BR70-2 respectively.

3.2.3 Bridge 3

Overburden materials encountered at the Bridge 3 abutments generally consisted of well bonded frozen sand. Sand and gravel and silty sand layers were observed in some of the boreholes. BH17-BR86-1, BH17-BR86-2 and BH17-BR86-3 were advanced to a target depth of 39.6 m. A 1m thick layer of ice was encountered from 5 m to 6 m deep at BH17-BR86-1. None of the boreholes drilled at the Bridge at km 86 abutments reach bedrock.

2

3.2.4 Bridge 4

The investigations at both abutments of Bridge 4 generally encountered gravel or sand and gravel. The bedrock was outcropped at the surface at the both edges of the river and dips below the surface moving away from the bridge abutments. Granitic gneiss bedrock was encountered at depths of 1.3 m and 9.7 m for boreholes BH18-102-1 and BH18-BR102-2 respectively.

3.3 Proposed Quarry Boreholes

Most quarry location boreholes were not drilled in the 2016 investigation due to weather constraints and challenges associated with access to their locations; however, following several attempts representative samples of the limestone were recovered approximately 3 km east of the rail alignment at Chainage 58+000 m. A sample of the granitic gneiss was collected from the rail unloading area boreholes at Milne Port. Diabase samples were collected from the surface near Chainage 103+000 m during a site visit in September 2016 and tested during this program.

3.3.1 Overburden

Overburden material of thickness ranging from no cover to approximately 5 m was encountered at the quarry locations.

3.3.2 Bedrock

- Extensive granitic gneiss ridge extends from Chainage 0+000 m to 11+000 m, likely continues to approximately Chainage 24+000 m. Possible quarry locations are available along this ridge.
- Extensive dolomitic limestone ridge extends from Chainage 46+000 m to 58+000 m just east of the rail alignment. Possible quarry locations are available along this ridge.
- Other possible quarry locations were observed east of the rail alignment at approximately Chainage 100+000 m (diabase).

3.4 Laboratory Test Results

The results of the classification and moisture content testing have been presented on the borehole logs in Appendix B, at the corresponding sample depths. The full laboratory reports are included in Appendix D with a summary of the classification test results included as Appendix F. During the investigation, samples of typical rock types were collected, at or near potential quarry locations when possible. Laboratory testing was undertaken to determine the suitability of the rock for use as aggregate, including relative density, absorption, abrasion resistance and unconfined freeze thaw loss. A summary of the laboratory test results for the crushed aggregate samples are presented in Table 3-1. Full laboratory test results are presented in Appendix H.

Table 3-1: Physical Test Results of The Crushed Aggregate Samples

	Borehole ID: Depth (Lab ID)			
Test Type	BH16 – Q7004: 4.6 – 10.6 m	BH16 – Q7004: 4.6 – 10.6 m	BH16 – M007: 6.1 – 9.1 m	Surface Outcrop Sample
	(NF17-01)	(NF17-02)	(NF17-03)	(NF17-04)
Specific Gravity	2.662	2.655	2.618	2.995
Absorption (%)	0.82	0.9	0.37	0.45
Micro-Deval Abrasion (% loss)	10.5	11	4.5	7.9
Unconfined Freeze-Thaw (% loss)	6.7	11.1	1.6	0.8

3.5 Geophysics Results

The GPR investigations were undertaken at fourteen sites along the rail alignment, with seven sites in the deviation area, in order to define ice rich zones. A seismic and georadar survey was undertaken near Chainage 4+500 m of the alignment to determine the depth to bedrock. Seismic surveys were also undertaken at the railway unloading area. The results of the geophysical investigation, including bedrock profiles and ice layer mapping, are presented in Appendix J. Results of the GPR surveys in the ice rich areas are discussed further in Section 3.6.

3.6 Ice Rich Areas

It was found that some of the boreholes drilled during the 2016/2017 rail investigations contained large amounts of ice, and could therefore potentially indicate the presence of large ice bodies. In the area where high ice content were discovered during the borehole investigations, a GPR survey was subsequently used to delineate the subsurface conditions, as presented in Appendix J. Figure 11 is an example of a section of ice core recovered during the borehole investigations.

Figure 11: Ground Ice at Km 47, 1.5 m to 3 m Deep (BH16-C011)

The location of potential ice bodies along the rail alignment may be important for design considerations. Boreholes that contained a significant amount of ice, defined as ice lenses greater than 3 m thick, are shown in Table 3-2.

Table 3-2: Boreholes With Significant Ice Content

Borehole	Ice Depth from Ground Surface (m)	Investigation Depth (m)	Inferred GPR Ice Thickness* (m)
BH16-C008	3	13.7	>10.7
BH16-C011	1.5	10.7	>9.2
BH16-C023	6.1	10.7	>4.6
BH17-C002	2.7	10.7	>8

^{*} Note: the base of the ice lense/body was not reached in any of these investigations.

The inferred ice thicknesses from the GPR surveys are presented in Appendix J. The GPR surveys of the ice rich areas confirmed the results of the borehole investigation and provide inferred thicknesses and extent of these ice rich areas.

3.7 Georadar Surveys Along the Rail Deviation Area

GPR surveys were conducted at seven sites along the rail deviation area subsequent, and as a separate component, to the 2018 Geotechnical Investigation to determine ice depth, thickness, and extent. The chainage of the survey areas spanned from approximately 59 KM to 69 KM, and 77 KM to 78 KM. Ice chunks and Ice lenses were delineated at depths 4 m to 9 m from the surface. Detailed results and ice thickness maps can be found in Appendix J. It should be noted that no boreholes were drilled in the Georadar survey areas along the rail deviation to verify subsurface ice conditions.

4. Summary of Findings

A variety of soil materials were found along the rail alignment including sand, gravel and lesser amounts of silt during the sonic drilling program. The soils along the alignment were primarily alluvium of glaciofluvial or glaciolacustrine origin, or glacial till or moraine deposits. The boreholes along the alignment have been separated based on the primary soil type encountered as summarized in Table 4-1.

Table 4-1: Primary Materials along Rail Alignment

Approximate Alignment Chainage	Borehole/Geophysics ID	Likely Origin of Primary Soils in Borehole
	BH16-R003	
	BH16-R004	
	BH16-R006	
	BH16-C006	
	BH16-R005	
	BH17-C001	
0+000 m to 17+000 m	BH16-R007	Glaciofluvial Origin
	BH16-R008	
	BH16-B001	
	BH16-B002	
	BH16-B004	
	BH16-R009	
	BH16-B003	

Approximate Alignment Chainage	Borehole/Geophysics ID	Likely Origin of Primary Soils in Borehole
i i	BH18-BR15-1	
	BH18-BR15-2	
	BH16-R010	
	BH16-R012	
17+000 m to 25+000 m	BH16-R011	Mix of glaciofluvial and till/moraine
	BH16-C007	
	BH16-R013	
	BH17-C002	
	BH17-C003	
	BH16-R014	
	BH16-C008	
	BH17-C004	
	BH16-R015	
	BH16-R016	
25+000 m to 37+500 m	BH16-R017	Glaciofluvial
	BH16-R018	
	BH16-R019	
	BH16-R020	
	BH16-R021	
	BH16-C009	
	BH16-R022	
	BH16-R023	
	BH16-C010	
37+500 m to 40+000 m	BH16-R024	Mix of glaciofluvial and till/moraine
	BH16-R025	
	BH16-R026	
	BH16-R027	
	BH16-R028	
	BH16-R029	
	BH17-C005	
	BH16-R030	
40 + 000 to 54 + 000	BH16-C011	Clasiaflundal
40+000 m to 54+000 m	BH16-R032	Glaciofluvial
	BH16-C012	
	BH16-R033	
	BH16-R034	
	BH17-C006	
	BH16-R035	
	BH16-R036	
	BH16-R037	
	BH17-C006B	
	BH16-R038	
	BH16-R053	
	BH16-R039	
54+000 m to 58+000	BH16-R040	Glaciolacustrine
34+000 III (0 36+000	BH16-R041	Giaciolacustille
	BH16-R042	
Γ	BH16-R043	
	BH16-R044	
	BH16-R045	
	BH16-R046	
58+000 m to 70+000 m	SL17-D6	Till/moraine

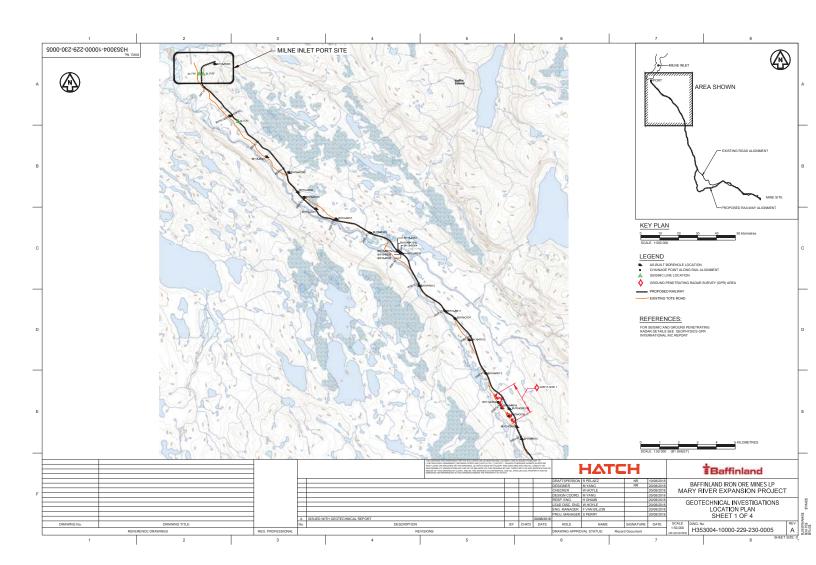
Approximate Alignment Chainage	Borehole/Geophysics ID	Likely Origin of Primary Soils in Borehole
The state of the s	SL17-D7	
	SL17-D5	
	SL17-D4	
	SL17-D3	
	SL17-D2	
	SL17-D1	
	BH18-BR70-1	
	BH18-BR70-2	
	BH17-C007	
	BH17-B001	
70+000 m to 75+000 m	BH17-B002	Glaciolacustrine
	BH17-C010	
	BH17-C011	
75+000 m to 77+000 m	BH17-C012	Mix of glaciolacustrine and
751000 III to 771000 III	BH17-C013	till/moraine deposits
	BH16-R067	
	BH16-C015	
	BH16-C016	
	BH16-R068	
	BH16-C017	
	BH16-R069	
	BH16-R070	
	BH16-B009	
	BH16-B010	
	BH16-B011	
	BH16-B012	
	BH16-C018	
	BH16-C019	
	BH16-C019B	
	BH16-C020	
	BH16-C021	
	BH16-C022	
77,000 (400,000	BH16-C023	Object to the second
77+000 to 100+000 m	BH16-C024	Glaciolacustrine
	BH16-C025	
	BH16-C026	
	BH16-C027	
	BH16-C028	
	BH16-C029	
	BH17-BR86-1	
	BH17-BR86-2	
	BH17-BR86-3	
	BH16-C201	
	BH16-C202	
	BH16-C203	
	BH16-C030	
100+000 m to Terminus	BH16-B014	Mix of glaciofluvial and till/moraine
	BH16-B013	deposits
	BH16-C204	_
	BH16-B015	_
	BH16-B016	
	BH16-C205	

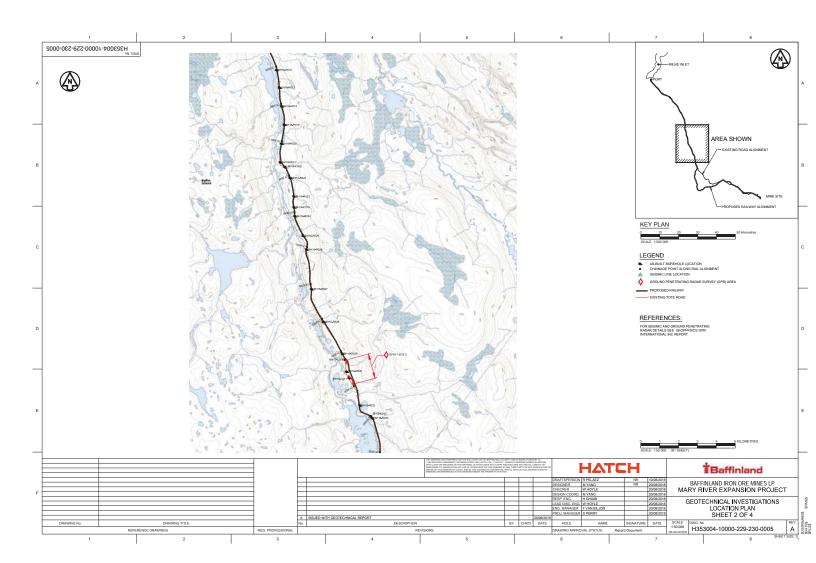
Approximate Alignment Chainage	Borehole/Geophysics ID	Likely Origin of Primary Soils in Borehole
	BH16-C206	
	BH16-C207	
	BH16-C031	
	BH16-C032	
	BH18-BR102-1	
	BH18-BR102-2	

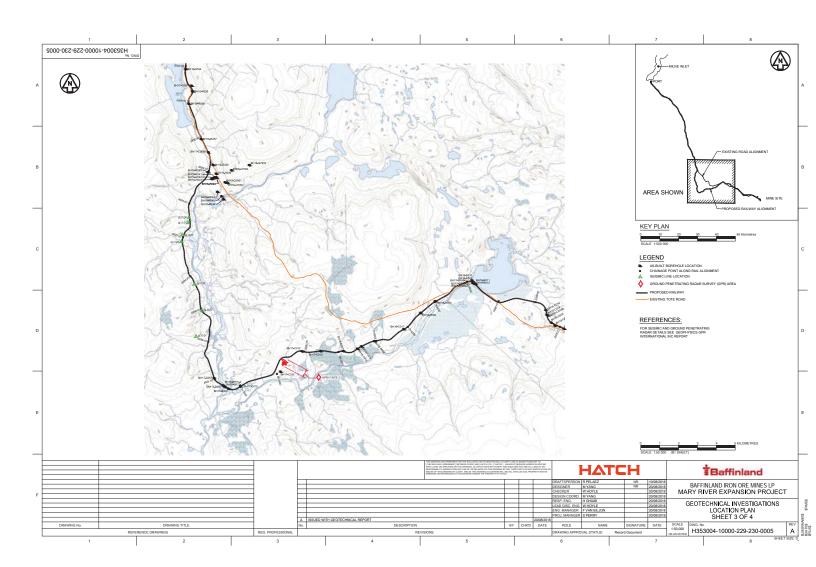
Bedrock was identified in some boreholes and by refractive seismic methods along the rail alignment. Outcroppings of granitic gneiss, dolomitic limestone and diabase were found along the alignment and may provide borrow materials for the rail construction. Ground ice was noted in a number of the boreholes along the alignment. The following locations were identified as having ground ice significant enough to warrant design consideration and alignment modification, other incidents of ground ice were noted in the borehole reports and may also be encountered between the following investigation locations:

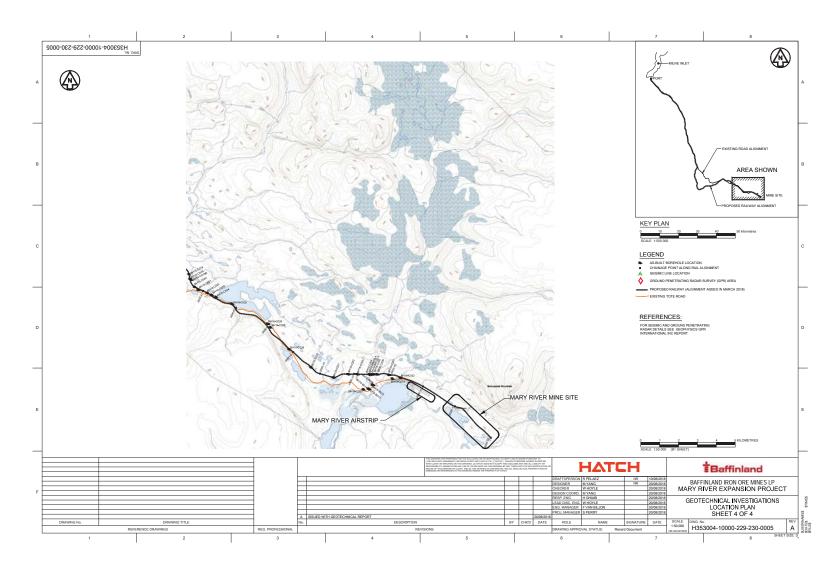
- Some ground ice and individual ice inclusions at the proposed Bridge 1 location at an approximate Chainage at 16+000 m along the proposed rail alignment;
- A large ice body was encountered at the cut location at Chainage 26+700 m on the proposed rail alignment 3 m below the existing ground surface elevation;
- A large ice body was encountered at the cut location at Chainage 47+300 m on the proposed rail alignment at 3 m below the existing ground surface elevation; and
- A large ice body or lenses were encountered at the cut location at Chainage 77+000 m on the proposed rail alignment at approximately 1.5 m to 2.5 m below the existing ground surface elevation;
- Frequent ice inclusions and irregularly oriented excess ice were found at the boreholes drilled between Chainage 92+000 m and 96+000 m of the proposed rail alignment.

A ground-penetrating radar unit was used to confirm and delineate the ice rich areas identified above, with the exception of the previous proposed bridge location at approximately Chainage 92+000 m to 96+000 m.


5. References


- 1. ASTM Standard Practice for Description of Frozen Soils (Visual-Manual Procedure) Designation D4083-89 *Approved June 1 2016.*
- Scott, D.J., de Kemp, E.A. 1998: Bedrock Geology Compilation, Northern Baffin Island and Northern Melville Peninsula, Northwest Territories, Geological Survey of Canada, Open File 3633, scale 1:500 000.
- Little, EC., Holme, P.J., and Kerr, D.E. 2013: Surficial Geology, Icebound Lakes (southwest), Baffin Island, Nunavut, Geological Survey of Canada, Canadian Geoscience Map 74 (preliminary), scale 1:100 000 doi:19.1985/292183.
- 4. Dyke, A.S. 2000: Surficial Geology, Phillips Creek, Baffin Island, Nunavut; Geological Survey of Canada, Map 1961A, scale 1:250 000.
- 5. AMEC Earth & Environmental, 2010: Geotechnical, Geochemical and Quarry Sourcing Investigation (Draft). Project No. TC101510. Dec. 2010.
- 6. Knight Piesold Consulting Ltd. (KP) report "Mine Site Infrastructure, Pit Overburden and Waste Dumps 2006 Site Investigation Summary Report", (Ref. No. NB102-00181/3-2), February 28, 2007.
- 7. Knight Piesold Consulting Ltd. (KP) report "Mine Site Infrastructure, Pit Overburden and Waste Dumps 2007 Site Investigations and Foundations Recommendations Summary Report", (Ref. No. NB102-00181/8-2), December 14, 2007.
- 8. Knight Piesold Consulting Ltd. (KP) boreholes (PMT-001, PMBC-002, PMPL-002, PMTF-001, PMSD-001 and BS-001) advanced at Milne Inlet in May 2007.
- 9. EBA Engineering Consultants Ltd. (EBA) memo "Foundation Recommendations, Mary River Mine Site Infrastructure", (File: E14101009.003), September 9, 2010.
- 10. Hatch Ltd. H337697-0000-15-124-0004. Geotechnical Data Report Infrastructure. April 5, 2012.
- 11. Hatch Ltd. H349000-1000-15-122-0001. Geotechnical Design Criteria. Aug 08, 2013.
- 12. Hatch Ltd. H352034-1000-220-068-0001, Site Assessment of North Railway Alignment Report, Oct. 3, 2017.
- 13. Jackson, G.D., Morgan, W.C. and Davidson, A., 1975: Geology Icebound Lake District of Franklin, Geological Survey of Canada Map 1451A, scale 1:250,000.
- 14. Blackadar, R.G. and Davison, W.L., 1968: Geology Phillips Creek District of Franklin, Baffin Island, Geological Survey of Canada Map 1239A, scale 1:253,440.





Appendix A Borehole Location Plan

Appendix B Borehole Reports

■ HATCH

List of Abbreviations and Terms Used in the Borehole Reports

(Sheet 1)

General

Elevations

Elevations are referenced to datum indicated.

Depth

All depths are given in meters (feet) measured from the ground surface unless otherwise noted.

Sample Recovery

Indicates the length retained in millimeters (inches) in a split spoon sampler or percentage recovery of sample retained in the core barrel sampler.

Sample Number

Samples are numbered consecutively in the order in which they were obtained or attempted in the borehole.

Sample Type

The first letter describes the sampling method and the second, the shipping container.

Sampling Method

 $\begin{array}{lll} A-Split \ \mbox{Tube} & E-Auger \\ B-Thin \ \mbox{Wall Tube} & F-Wash \end{array}$

 $\begin{array}{ll} {\sf C-Piston\ Sampler} & {\sf G-Shovel\ Grab\ Sample} \\ {\sf D-Core\ Barrel} & {\sf K-Slotted\ Sampler} \end{array}$

Shipping Container

O – Tube U – Not Recovered

P – Water Content Tin X – Plastic & PVC Sleeve (Sonic)

 $\begin{array}{lll} Q-Jar & Y-Core\ Box \\ S-Plastic\ Bag & Z-Discarded \end{array}$

Abbreviations

N/A – Not applicable N/E – Not encountered N/O – Not observed

Soil

Soil Description, Label and Symbol

Soil description under the "Description" column conforms generally, but not rigorously, to the Unified Soils Classification System. For a given soil unit, defined by depth boundaries, the descriptive text constitutes the definitive soil unit description and takes precedence over both the brief label and the symbol used to graphically represent the soil unit.

Grain Size

Clay		<0.002 mm
Silt	0.002 -	0.075 mm
Sand	0.075 -	4.75 mm
Fine	0.075 -	0.42 mm
Medium	0.42 -	2.00 mm
Course	2.00 -	4.75 mm
Gravel	4.75 –	75 mm
Fine	4.75 –	19.00 mm
Coarse	19.00 –	75.00mm
Cobbles	75 –	300 mm
Boulder		>300 mm

Relative Quantities

Term	Example	(%)
Trace	Trace sand	1 – 10
Some	Some sand	10 - 20
With (adjective)	With Sand (Sandy)	20 - 35
And	And sand	>35
Noun	Sand	>50

Standard Penetration Test (SPT)

The test is carried out in accordance with ASTM D-1586 and the 'N' value corresponds to the sum of the number of blows required by a 63.5-kg (140-lb) hammer, dropped 760 mm (30 in.), to drive a 50-mm (2-in.) diameter split tube sampler the second and third 150 mm (6 in.) of penetration.

Density (Granular Soils)

	N(SPT)
Very loose	0 - 4
Loose	4 – 10
Compact	10 – 30
Dense	30 - 50
Very dense	>50

Consistency (Cohesive Soils)

	N(SPT)
Very soft	<2
Soft	2 – 4
Firm	4 – 8
Stiff	8 – 15
Very stiff	15 – 30
Hard	>30

Plasticity/Compressibility

Liquid Limit (%)

Low plasticity clays	Low compressibility silts	<30
Medium plasticity clays	Medium compressibility silts	30 - 50
High plasticity claysHigh	compressibility silts	>50

Dilatancy

None
Slow
- No visible change, during shaking or squeezing
- Water appears slowly on surface of specimen during shaking and does not disappear or disappears slowly upon squeezing.

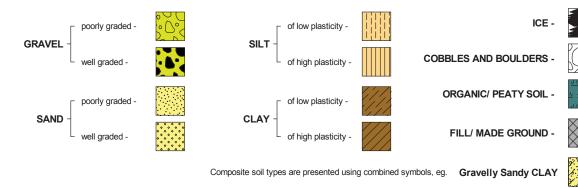
Rapid - Water appears quickly on the surface of specimen during shaking and disappears quickly upon squeezing.

Sensitivity

Insensitive	<2
Low	2 – 4
Medium	4 – 8
High	8 – 16
Quick >16	

■ HATCH List of Abbreviations and Terms Used in the Borehole Reports

(Sheet 2)


Rock

110011			T			
Core Recovery Sum of lengths of rock core recovered from a core run, divided by			Strength Term	Description Unconfined Compressive		
the length of the core run and expressed as a percentage.				Strength		
RQD (Rock Quality Designation) Sum of lengths of hard, sound pieces of rock core equal to or greater than 100 mm from a core run, divided by the length of the core run and expressed as a percentage. Measured along centerline of core. Core fractured by drilling is considered intact. RQD normally quoted for N-size core.			Extremely weak rock	Indented by thumbnail	(MPa) 0.25 – 1.0	(psi) 36 – 145
			Very weak	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	1.0 – 5.0	145 – 725
RQD (%) Rock Quality 90 - 100 Excellent 75 - 90 Good 50 - 75 Fair 25 - 50 Poor 0 - 25 Very Poor			Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	5.0 – 25	725 – 3625
Grain Size Term Very coarse-grained Coarse-grained Medium-grained Fine-grained	Grain Size		Medium strong rock	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer to facture it	25 – 50	3625 –7250
Very fine-grained Bedding Term	2 μm - 00 μm < 2 μm		Strong rock	Specimen requires more than one blow of geological hammer to fracture it	50 – 100	7250 – 14500
Very thickly bedded Thickly bedded 600 mm - Medium bedded 200 mm - 6	>2 m >6 600 mm - 2 m 2.00 - 6 200 mm - 600 mm 0.65 - 2	2 m >6.50 ft 2 m 2.00 - 6.50 ft mm 0.65 - 2.00 ft	Very strong rock	Specimen requires many blows of geological hammer to fracture it	100 – 250	14500 – 36250
Very thinly bedded Laminated Thinly laminated	20 mm - 60 mm 0.06 - 0 6 mm - 20 mm 0.02 - 0	0.20 ft 0.06 ft 0.02 ft	Extremely strong rock	Specimen can only be chipped with geological hammer	>250	>36250
Discontinuity Frequency Expressed as the number of discontinuities per meter or discontinuities per foot. Excludes drill-induced fractures and fragmented zones.			Weathering Term	Description		
			Fresh	No Visible sign of rock material weathering		
			Faintly weathered	Discoloration on major discontinuity surfaces.		
Discontinuity Spacing Term Extremely widely spaced Very widely spaced Widely spaced	2 m - 6 m 6.50 - 20	>20.00 ft 50 - 20.00 ft 00 - 6.50 ft	Slightly weathered	Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker than in its fresh condition.		
Moderately spaced Closely spaced Very closely spaced Extremely closely spaced	60 mm - 200 mm 0.20 - 0 20 mm - 60 mm 0.06 - 0	2.00 ft 0.65 ft 0.20 ft 0.06 ft	Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as corestones.		
Note: Excludes drill-induced fractures and fragmented rock.			Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.		
Broken Zone Zone of full diameter core of very low RQD which may include some drill-induced fractures.			Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.		
Fragmented Zone Zone where core is less than full diameter and RQD = 0.			Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.		

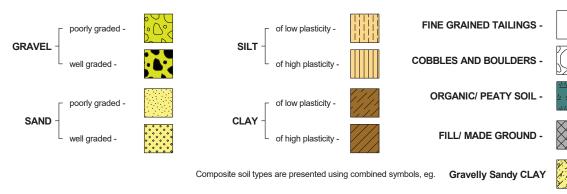
BASIS FOR SOIL DESCRIPTION

(Based on AS1726-1993 - Geotechnical Site Investigations, with modifications)

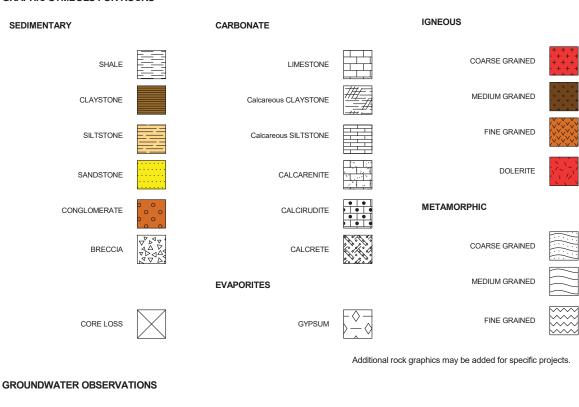
GRAPHIC SYMBOLS FOR SOILS

GROUNDWATER OBSERVATIONS

Permanent Water Level	Ā	Inflow into Pit or Borehole	-	Slow Inflow/ Seepage into Pit or Borehole	₩
Temporary Water Level	$\bar{\triangle}$	Outflow/ Water Loss in Borehole	⊸		
SAMDI E TVDES					

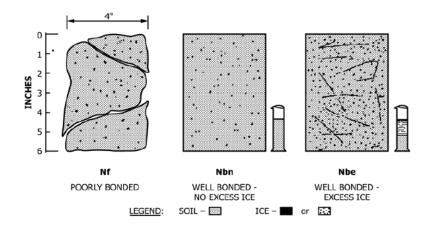

SAMPLE TYPES

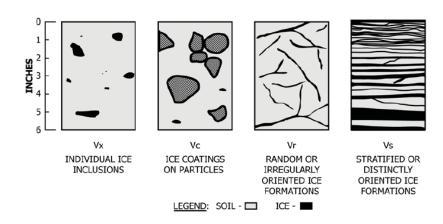
Disturbed bag sample	Auger Flight Cuttings	Thin walled "undisturbed" push tube sample eg. U60, U100 etc	
Bulk Disturbed (>20kg)	Standard Penetration Test (SPT), with Disturbed Split-Spoon Sample		
Hollow Stem Auger Core	SPT (no recovery)	Sample attempted with no recovery	


BASIS FOR ROCK DESCRIPTION

(Based on AS1726-1993 - Geotechnical Site Investigations, with modifications)

GRAPHIC SYMBOLS FOR SOILS


GRAPHIC SYMBOLS FOR ROCKS



Slow Inflow/ Seepage into Pit Permanent Water Level Inflow into Pit or Borehole or Borehole ∇ Temporary Water Level Outflow/ Water Loss in **SAMPLE TYPES** Thin walled "undisturbed" push tube sample eg. U60, U100 etc Disturbed bag sample Auger Flight Cuttings Standard Penetration Test Bulk Disturbed (>20kg) (SPT), with Disturbed Split-Spoon Sample Sample attempted with no Hollow Stem Auger Core SPT (no recovery) recovery

Symbol	Description
Nf	Poorly bonded with no visible excess ice
Nbn	Well bonded with no visible excess ice
Nbe	Well bonded with excess cie
Vx	Individual ice inclusions
Vc	Ice coatings on particles
Vr	Random or Irregularly oriented ice formations
Vs	Stratified or distrinctly oriented ice formations

Rev 0 Page 1 of 1

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24

Notes:

BOREHOLE REPORT

BH16-B001

Easting:

Surface Elevation:

Sheet 1 of 2

514,191.0 m

78.00 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 12/3/2016

Northing: 7,965,675.0 m

Bottom Elevation: 66.50 m

Total Depth: 11.5 m Logged By: MR

ľ	Ontract	. 01. D0	art L	Jong	ycui	rig type/ mounting. Willingonic rig	Date L	vys	jeu	•	12/3/2010	-	.ogg	eu Dy	•			MR
D	riller:	Mi	chae	l Sc	ott	Hole Diameter (mm): 96	Date F	levi	ewe	ed:	:2/10/2017	F	Revie	wed	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Г	_	_			<u> </u>	SILT: Organic, fine grained	Vx			Ť		T						
	77.0	- - 1.0-				ICE LENSE, silt inclusions: Grey to dark grey, soft, cloudy texture	ICE		∇									- - - -
ved due to permafrost		- - - 2.0-				SILTY SAND, trace GRAVEL, trace COBBLES: Grey to light brown, fine to coarse grained sand, subangular to rounded cobbles	Vc											- - - - - -
Unobserved due	- - -75.0 - -	3.0-					Nbe	,	\square		•	g 1!		66	29			- - - - - -
		4.0-					Nbn											- - - - -
	-73.0 - - - - - -72.0	5.0- - - - - 6.0-	Vibracore	H-Casing		DOLLI DEDO O CONTRA SERVICIO DE LA CONTRA SERVICIO DELIGIO DE LA CONTRA SERVICIO DE LA C	Me		✓									+ - - - -
	- - - -71.0	7.0-				BOULDERS: Grey, granitic gneiss and mafic gneiss with pulvurized powder	Nf		~									- - - - -
	- - 70.0	8.0-				Sandy SILT, trace COBBLES, trace BOULDERS: Reddish brown, rounded to subrounded cobbles	Nf											 - - - -
בובייייייייייייייייייייייייייייייייייי	- - -69.0 - -	9.0-																 - - - - -
=	68.0	10.0		<u> </u>								<u></u>		_	<u> </u>			

BOREHOLE REPORT

BH16-B001

Easting:

Northing:

Surface Elevation:

Sheet 2 of 2

514,191.0 m

7,965,675.0 m

78.00 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Location: Proposed Rail Alignment

Platform: Ground

Datum:

Bottom Elevation: 66.50 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Total Depth: 11.5 m Logged By: MR

Date Logged: 12/3/2016

Dril	ler:	Mic	chae	l Sc	ott	Hole Diameter (mm): 96	Date I	Rev	iew	ed:2/1	10/2017		Re	view	/ed E	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing		Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Co	Moisture ontent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - 67.0	- - - 11.0-		[11.5]		BOULDERS: Pulverized rock, angular, possible bedrock			\searrow										
	- 66.0 - -	- 12.0- - - -				Drilling Refusal. Drillhole BH16-B001 terminated at 11.5m.			\searrow										
	65.0 64.0	13.0—																	
	- - 63.0 -	_ _ _ 15.0— _ _																	
	- 62.0 - -	16.0— — — —																	
	61.0 60.0	17.0— — — — — — — — — — — — — — — — — — —																	
	- - 59.0	- - 19.0- -																	
Note	- - - _{58.0}	20.0																	

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24

Notes:

BOREHOLE REPORT

BH16-B002

Sheet 1 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 12/2/2016

Easting: 514,290.0 m Northing: 7,965,604.0 m

Surface Elevation: 78.00 m

Bottom Elevation: 64.90 m **Total Depth:** 13.1 m

Logged By: UK

"	milaci	51. DO	u	.0119	you	rag Type/ Mounting. Willingonic rag	Dato L	- ye	,00		12/2/2010	-	-aa.	u by				UK
Dr	iller:	E.E	3eac	han	пр	Hole Diameter (mm): 96	Date F	levi	ew	/ed	d:2/10/2017	R	evie	wed	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
permafrost	- - - - -77.0	- - - 1.0-				SAND: Dark brown to grey, some organics	Nf		V	1								-
Unobserved due to perm		_ 2.0— _ _ _				SANDY GRAVEL, some COBBLES: Grey to brown, coarse grained sand, angular gravel	Nf					11						-
	75.0 74.0	3.0— — — — 4.0—			<u> </u>	SAND, some COBBLES, some BOULDERS: Grey, fine grained sand, rounded to subrounded cobbles and boulders	Nf											
	- - 73.0 - -	5.0— - - - -				SILTY SAND, some COBBLES, trace GRAVEL: Grey, fine grained sand	Nbn	•	\searrow			14	5	77	19			
	72.0 71.0	6.0— — — — 7.0—	Vibracore	H-Casing		SAND, some SILT, trace GRAVEL: Grey	Nf		X			14			19			-
	_ _ 	8.0—				BOULDERS: Granitic, fragmented SANDY SILT: Grey, fine grained BOULDERS: Granitic gneiss, rock			V									-
		9.0— - - - - 10.0—				fragments and boulders SILTY SAND, some COBBLES, some BOULDERS: Dark grey, fine to coarse grained sand, rounded to subrounded cobbles	Nf											

BOREHOLE REPORT

BH16-B002

Sheet 2 of 2

Client: Baffinland Iron Mines

Project No.: H352034

Easting: 514,290.0 m Northing: 7,965,604.0 m

Bottom Elevation:

Project: Mary River Expansion Study Stage 2

NAD83

Surface Elevation: 78.00 m

Location: Proposed Rail Alignment

Platform: Ground

Datum:

64.90 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Date Logged: 12/2/2016

Total Depth: 13.1 m Logged By: UK

Driller: E.Beachamp Hole Diameter (mm): 96 Date Reviewed: 2/10/2017 Reviewed By: SH/WH Soil Description

	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	(size, grading, shape, roundness), colour, structure, accessory components.		Recovery	Sample Type	Moisture Content Profile	100	Field Water Conten	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		- - - - 67.0	- - - - 11.0-				SILTY SAND, some COBBLES, some BOULDERS: Dark grey, fine to coarse grained sand, rounded to subrounded cobbles (Continued)	Nf (Continue	d)										
		- - - - - 66.0	- - - 12.0-							∇									-
		- - - - 65.0			[13.1]		SILT, some SAND, trace GRAVEL: Light brown to grey, granular to cohesive, fine to medium grained sand, subangular to angular gravel	Nf		∇									-
11:24		- - - - 64.0	- - - 14.0-				Drilling Refusal. Drillhole BH16-B002 terminated at 13.1m.					-							-
ingFile>> 13/09/2017		- - - - 63.0	- - - 15.0-																-
REV 3.GPJ < <draw< td=""><td></td><td>- - - - 62.0</td><td>- - - 16.0-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></draw<>		- - - - 62.0	- - - 16.0-																-
T ALL_WITH ICE LOG		- - - - 61.0	- - - 17.0-																-
LE RAIL ALIGNMEN		- - - - 60.0	- - - 18.0-																-
B Log ICE BOREHO		- - - - - -59.0	- - - 19.0-																-
BAFFINLAND GINT LIBRARY GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <drawingfile>> 13/09/2017 11:24</drawingfile>		- - - - - -58.0	- - - 20.0-																-
BAFFINLAN	Note	es:																	

BOREHOLE REPORT

BH16-B003

Easting:

Northing:

Surface Elevation:

Sheet 1 of 2

514,357.0 m

7,965,533.0 m

79.00 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Location:

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

Notes:

Proposed Rail Alignment

Bottom Elevation: 63.80 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Platform: Ground

Total Depth: 15.2 m

Date Logged: 12/2/2016

Datum:

Logged By: MR

Dr	iller:	Mie	chae	l Sc	ott	Hole Diameter (mm): 96	Date R	eviev	wed: 2/10/2017	Re	view	ved E	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
afrost		- - - 1.0-				SILTY SAND, with GRAVEL, trace COBBLES: Dark brown to dark grey, Organics, fine to coarse grained sand, subangular gravel	Vc	₩								- - - -
Unobserved due to permafrost		2.0-				GRAVEL, with SAND, some COBBLES, trace SILT: Grey to light brown, fine to coarse grained sand, rounded to subrounded cobbles	Vc	\ <u>\</u>		9	24	47	28			- - - - - -
7.	76.0 	3.0-			01	SILTY SAND and GRAVEL: Grey, fine to coarse grained	Nbn									+ - - -
	75.0 	4.0-				SAND: Grey, fine to coarse grained sand ICE, silt inclusions: Brown to grey, milky texture	Vr	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
	74.0 	5.0— — — — — —				texture		~	z	100	2	72	26			-
	_ _ _ 	- - - - 7.0-					Vr									- - - -
		8.0—	Vibracore	H-Casing		SAND, some SILT, trace COBBLES: Reddish brown, rounded to subrounded cobbles	Nf	\$\frac{1}{2}		23						- - - - - - -
ייי פויין בוניאלייילדנ	-70.0 - - - - - - - - - - -	9.0-				SILTY SAND: Grey to brown, fine to coarse grained sand, rounded cobbles		∑Z								- - - - - -

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24

BOREHOLE REPORT

BH16-B003

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 12/2/2016

Easting: 514,357.0 m

Northing: 7,965,533.0 m Surface Elevation: 79.00 m

Bottom Elevation: 63.80 m

Total Depth: 15.2 m Logged By: MR

				·		3 . // por 33 .			_			,5	,				IVIIX
	Driller:	Mi	chae	el Sc	ott	Hole Diameter (mm): 96	Date I	Rev	iew	ved:2/10/2017	Rev	/iew	ed E	Зу:			SH/WH
	Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - -68.0 - - - - - - - - - - - - - - - - - - -	11.0-				BOULDERS: Granitic gneiss SILTY SAND, some GRAVEL, some COBBLES: Reddish brown, fine grained sand, angular to subangular gravel	Nf										-
dwiligi liez - 2,000,000 - 2,000	- - -65.0 - - - - - 64.0	- - 14.0- - - - - 15.0-		[15.2]					M								-
L_WITH ICE LOG_NEV 3.613 V.D.	- - 63.0 - -	16.0-	-			Drilling Refusal. Drillhole BH16-B003 terminated at 15.2m.											-
ICE BOREHOLE RAIL ALIGNIMEN I AL	62.0 61.0 	17.0- - - - - 18.0- -															-
AND GINT LIBRARY.GLB LOG		19.0-	-														-

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

BOREHOLE REPORT

BH16-B004

Easting:

Sheet 1 of 2

514,367.0 m

79.00 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Northing: 7,965,540.0 m Surface Elevation:

Bottom Elevation: 62.80 m

Total Depth: 16.2 m Logged By: UK

	Con	tracto	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ed	: 12/1/2016		1		лери d By				16.2 m UK	
	Drill	er:	E.I	Bead	chan	np	Hole Diameter (mm): 96	Date R	levie	ewe	ed:2/10/2017		Re	viev	ved E	Зу:			SH/WH	
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
		-78.0	- - - 1.0-				SAND: Grey, coarse grained sand 0.60 m to 1.50 m: SILT, dark grey to dark brown	Nf Nbn												
	Unobserved due to permafrost	-77.0 -76.0	- 2.0- - - - - - 3.0-				SILTY SAND, some GRAVEL: Grey, angular to subangular gravel,	Nf	2	\square	• 		9							
13/08/2017 11.24	-	-75.0	4.0-						<u> </u>	~										
V 5.GP 5 Diawingi IIC -	- - - -	-74.0	5.0— - - -				ICE, SILT inclusions: Moderate hardness, greyish color, cloudy texture	ICE				>>•	100	7	54	39				- - - - -
	-	-73.0	6.0-				Sand and SILT, trace GRAVEL: Grey, fine to coarse grained sand BOULDERS: Granitic gneiss	Vr					100	·	04					-
ייי ייים ייים אואיסים ארט	-	-72.0	7.0- - - -	ē	gr.		SAND: Grey, fine to coarse grained	Nbn	2	Z			19	35	44	21				-
- 09 IOE BONEHOLE I	-	-71.0	8.0— - - -	Vibracore	H-Casing		SAND: Grey, fine to coarse grained	Nbn Nf												-
י איזטיייייאמוז ואוט	- - - -	-70.0	9.0-				SILTY SAND: Grey to brown, fine to coarse grained	Nf												-
	Notes	-69.0 S:	10.0										1		<u> </u>	<u> </u>	<u> </u>			+

Location:

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24

Notes:

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-B004

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Proposed Rail Alignment

NAD83

Platform: Ground

Date Logged: 12/1/2016

Datum:

Easting: 514,367.0 m Northing: 7,965,540.0 m

Surface Elevation: 79.00 m **Bottom Elevation:** 62.80 m

Total Depth: 16.2 m Logged By: UK

١٠	ontract	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogg	jea	: 12/1/2016		Log	gea	I By:				UK
D	riller:	E.I	Bead	chan	пр	Hole Diameter (mm): 96	Date F	Revi	ew	ed:2/10/2017		Rev	iew	ed E	By:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	0	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - 68.0	- - - 11.0- - -				ROCK: Granitic gneiss, intact, moderate to high strength SILTY SAND, some GRAVEL, trace COBBLES: Brown to reddish brown, fine to coarse grained sand, rounded to subrounded cobbles	Nf		\checkmark									-
		12.0- - - - - 13.0-					Vx		V									- - - - - -
	- - - - - - 65.0	- - - 14.0- -				SAND and SILT, trace COBBLES: Grey to dark grey, fine to medium grained sand, rounded to subrounded cobbles	Vc		\vee									- - - - - - -
		15.0= - - - - - 16.0=		[16.2]		SAND, some GRAVEL, some COBBLES, trace BOULDERS :Dark grey, fine to coarse grained sand, rounded to subrounded cobbles and boulders	Nf	X.	~									-
	- - -62.0	- - 17.0- - -				Drilling Refusal. Drillhole BH16-B004 terminated at 16.2m.												- - - - -
2		18.0- - - - - 19.0-																- - - - - -
	59.0	- 20.0-																-

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

Notes:

BOREHOLE REPORT

BH16-B009

Sheet 1 of 3

115.60 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 542,204.0 m Northing: 7,922,291.0 m

Surface Elevation: 143.00 m

Total Depth: 27.4 m

Bottom Elevation:

Contrac	tor: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ged	: 11/7/2016	l .	gge					RS/CS
Driller:	E.E	3eac	ham	пр	Hole Diameter (mm): 96	Date R	levi	ew	ed:2/10/2017		view					SH/WH
Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
141.0 142.		Vibracore	H-Casing (SAND: Poorly graded, brown, fine to medium grained 1.50 m to 4.00 m: Trace SILT	Nf	E E E E E E E E E E E E E E E E E E E	× × × × × × × × × × × × × × × × × × ×		22	0	98	2			

BAFFINI AND GINT LIBRARY GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ </br>

BOREHOLE REPORT

BH16-B009

Sheet 2 of 3

143.00 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 542,204.0 m Northing: 7,922,291.0 m

Surface Elevation:

Bottom Elevation: 115.60 m

Total Depth: 27.4 m

	Contra	cto	r: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Logged:	11/7/2016	Logge	d By:		RS/CS
L	Driller:	:	E.E	Bead	chan	пр	Hole Diameter (mm): 96	Date Reviewe	d :2/10/2017	Review	ed By:		SH/WH
	Water Elevation (m)		Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Recovery Sample Type	Moisture Content Profile	Field Water Content Percent Gravel	Percent Sand Percent Fines	Liquid Limit Plastic Index	Other Tests
47.11.124	- 132 131 131 136 125	0.00	11.0-				SAND: Poorly graded, brown, fine to medium grained (Continued)	Nf (Continued)					- - - - - - - - - - - - - - - - - - -
HICE LOG NEW 3.GT3 AND AWINGTIEN 19/08	- - -128 - - - - - - -127		15.0—										
BONETIOLE PAIL ALIGINIMENT ALL_VIIII	- - - - - - - - - 125		17.0— 17.0— 18.0—				SAND and GRAVEL: Rounded to subrounded gravel, fine grained sand	Nbn					
III		4.0	19.0—		[18.8]								

BOREHOLE REPORT

BH16-B009

Sheet 3 of 3

115.60 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

NAD83

Platform: Ground

Datum:

Easting: 542,204.0 m Northing: 7,922,291.0 m

Surface Elevation: 143.00 m

Total Depth: 27.4 m

Bottom Elevation:

Cont	racto	or: Bo	art I	ong	ıyear	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogg	ged	d:	11/7/2016		otai i	-				RS/CS	
Drille	er:	E.I	Bead	chan	np	Hole Diameter (mm): 96					! :2/10/2017		eviev					SH/WH	
	Elevation (m)	Depth (m)	Method	Casing	Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil		Sample Type		Moisture Content Profile	Water Content		Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	122.0 121.0 121.0 119.0	21.0—				SAND: Grey with Brown seams, fine to medium grained sand	Nbn (Continue	ed)											
 -	-115.0	28.0-				To Target Depth. Drillhole BH16-B009 terminated at 27.4m.													+
	113.0	30.0																	_

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

Notes:

Project:

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

Notes:

BOREHOLE REPORT

BH16-B010

Sheet 1 of 1

Client: Baffinland Iron Mines Project No.: H352034

> Mary River Expansion Study Stage 2 Datum: NAD83

Location: Proposed Rail Alignment

Platform: Ground

Easting: 542,208.0 m

Northing: 7,922,304.0 m Surface Elevation: 143.00 m

Bottom Elevation: 133.00 m

Total Depth: 10.0 m Logged By:

	Con	tracto	or: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ged	l: 11	/8/2016				d By:				CS	
	Drill	ler:	E.I	Bead	cham	пр	Hole Diameter (mm): 96	Date R	levi	ew	ed:2/	10/2017		Re	viev	ved E	Зу:			SH/WH	
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	C (Moisture ontent Profile 50	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	Unobserved due to permafrost		1.0-				SAND, trace SILT, trace GRAVEL: Reddish brown, medium to fine grained sand	Nf	,	X											
	Unobserv		3.0- - - - - - 4.0-							\times				11	5	87	8				
12/20/20/21		-138.0	5.0—	Vibracore	H-Casing		4.20 m: Slight increase in silt content	Nbn		\times				21	0	98	2				
2000		—137.0 ·	6.0— — — —					Nf	,	X											-
COMMENT OFF		—136.0 —135.0	7.0- - - - 8.0-				SILTY SAND: Reddish brown to grey, fine to course grained sand	Nbn													
במל וכב בכובייכיבי יגייני			9.0- - -					Nbn	,	X				20	0	61	39				
- CIN CID		—133.0—	10.0 		[10.0]		To Target Depth. Drillhole BH16-B010 terminated at 10.0m.														-

BOREHOLE REPORT

BH16-B011

Easting:

Northing:

Total Depth:

Sheet 1 of 2

542,365.0 m

7,922,121.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Location:

Proposed Rail Alignment

Platform:

Datum:

Surface Elevation: 144.00 m **Bottom Elevation:** 133.30 m

Ground

10.7 m

С	ontr	acto	r: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ged	: 11/8/2016			d By				RS	
D	rille	r:	Sa	mue	l Fly	nn	Hole Diameter (mm): 96	Date R	evi	ewe	ed:2/10/2017	Re	eviev	ved E	Зу:			SH/WH	
Water	Total Care	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Unobserved due to permatrost	50	42.0 41.0 40.0 338.0 338.0		Vibracore	H-Casing		SAND, trace SILT, trace GRAVEL: Light brown, fine to coarse grained sand	Nbn Nbn		\times		19	0	98	2				

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24 Notes:

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-B011

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/8/2016

Easting: 542,365.0 m

Northing: 7,922,121.0 m Surface Elevation: 144.00 m

Bottom Elevation: 133.30 m

Total Depth: 10.7 m Logged By: RS

Drill	ler:	Sa	mue	l Fly	nn	Hole Diameter (mm): 96	Date I	Revi	iew	ed:2/10	/2017		_	view	ed E	Зу:			SH/WF
water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Con	Moisture tent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tests
-		-		[10.7]		SAND, trace SILT, trace GRAVEL: Light brown, fine to coarse grained sand (Continued)	Nf (Continue												
-	 133.0	11.0-				To Target Depth. Drillhole BH16-B011 terminated at 10.7m.						'							
-		- -																	
-	—132.0 ·	12.0-																	
-	 131.0	13.0-																	
-		- - -																	
-	—130.0 ·	14.0— —																	
	—129.0	15.0-																	
-		- -																	
-	128.0	16.0 																	
	- 127.0	17.0-																	
-		- -																	
-	—126.0	18.0-																	
-	 125.0	19.0-																	
		- -																	
lotes	_ _{124.0} S:	20.0				<u> </u>	<u> </u>						<u> </u>			<u> </u>			

Location:

BOREHOLE REPORT

BH16-B012

542,376.0 m

7,922,131.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project: Mary River Expansion Study Stage 2 Proposed Rail Alignment

Platform:

Datum:

NAD83 Ground

136.90 m **Total Depth:**

Logged By:

Surface Elevation:

Bottom Elevation:

Easting:

Northing:

9.1 m

146.00 m

Date Logged: 11/8/2016 Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig RS

Dri	ller:	Sa	mue	l Fly	'nn	Hole Diameter (mm): 96	Date F	Revi	ew	ed:2/10/2017		Re	view	ved E	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - -	-				SAND and GRAVEL: Fine to coarse grained sand, angular to subangular gravel	Nf											
	145.0 	1.0-				SAND, trace SILT: Brown, fine to medium grained sand	Nbn											
▼	- - 144.0 -	2.0-																
Standing Water	- - -	- - -			. () .	SAND and GRAVEL: Brown, rounded to subrounded gravel, up to 30mm	Nf											
Stand	143.0 	3.0-				SITLY SAND, trace GRAVEL: Grey and brown layers	Nbn		X	9		12	4	87	9			
	- 142.0 -	4.0 -	ore	Bu														
	_ _ _ 141.0	- - 5.0-	Vibracore	H-Casing														
	- - -	-																
	140.0 	6.0-																
	- 139.0 	7.0-																
	_ _ _ 138.0	- - 8.0-																
	- - -	- - -							X									
	137.0	9.0-		[9.1]					Ц									
	- - -	- - -				To Target Depth. Drillhole BH16-B012 terminated at 9.1m.												
Note	136.0	10.0-																
NOTE	es.																	

BOREHOLE REPORT

BH16-B013

Easting:

Northing:

Total Depth:

Surface Elevation:

Bottom Elevation:

Sheet 1 of 2

555,619.0 m

7,914,671.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Location:

Proposed Rail Alignment

Platform: Ground

Datum:

154.80 m 144.20 m

10.6 m

Oril		L.I		cham		Hole Diameter (mm): 96	1	1		ed:2/10/2017				ved I	_ <u>, </u>	T		SH/W
vvalei	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Oth Tes
d due to permanost	- - - - - - - - - - - - - - - -	1.0-				SAND and GRAVEL, some COBBLES: Brown, fine to coarse grained sand, angular gravel 1.20 m to 3.00 m: Trace to some silt and cobbles	Nf Nf		X									
new lescono	- - - - - - - - - -	3.0-				SILTY SAND, some GRAVEL: Grey, angular gravel SAND and SILT: Inferred COBBLES or	Nf		\times			12	0	53	47			
-	- - - - 149.8 - -	- - 5.0- - -	Vibracore	H-Casing		BOULDERS: Brown, white powder												
-	148.8 	6.0- - - - - - 7.0-				INFERRED SANDSTONE: Angular pieces of rock, low to moderate strength			\times									
-		8.0- - - - - - 9.0-				INFERDED CANDOTONE REPROCE			\boxtimes									
	- - - - - 144.8	10.0				INFERRED SANDSTONE BEDROCK												

BOREHOLE REPORT

BH16-B013

Easting:

Northing:

Logged By:

Sheet 2 of 2

555,619.0 m

7,914,671.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Surface Elevation: 154.80 m

Location:

Proposed Rail Alignment

Platform: Ground **Bottom Elevation:** 144.20 m **Total Depth:** 10.6 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Date Logged: 11/13/2016

Datum:

RS/CS

Driller: E.Beachamp Hole Diameter (mm): 96 Date Reviewed: 2/10/2017 Reviewed By: SH/WH

	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Mois Content	ture Profile 50	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		-	-		[10.6]		INFERRED SANDSTONE: Angular pieces of rock, low to moderate strength (Continued)			X										
		- 143.8 	11.0-				To Target Depth. Drillhole BH16-B013 terminated at 10.6m.						·							-
	-	- - 142.8 -	12.0-																	-
	-	- - - 141.8	13.0-																	-
17 11:24	-	- - - 140.8	14.0-									 								-
vingFile>> 13/09/20	-	- - - 139.8	15.0-																	-
REV 3.GPJ < <draw< td=""><td>-</td><td>- - - - -138.8</td><td>- 16.0-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></draw<>	-	- - - - -138.8	- 16.0-																	-
L_WITH ICE LOG_	-	- - -	- - -																	- - -
AIL ALIGNMENT AL	- - - -	137.8 	17.0-																	- - -
CE BOREHOLE R			18.0-																	-
D GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ < <drawingfile>> 13/09/2017 11:24</drawingfile>	-		19.0- -																	-
D GINT LI		-	20.0-									 <u> </u>								

BAFFINLAND Notes:

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-B014

Sheet 1 of 1

555,599.0 m

7,914,683.0 m

156.00 m

146.90 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: **Date Logged:** 10/28/2016

Ground

Total Depth:

Easting:

Northing:

Surface Elevation:

Bottom Elevation:

9.1 m Logged By: MR

				·	,	5 3.		-					55	•				IVIIX	
Dr	iller:	Sa	mue	l Fly	nn -	Hole Diameter (mm): 96	Date R	evie	we	ed:2/10/2017	\downarrow		view	ved E	Зу:			SH/WH	4
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 10	00	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Unobserved due to Permafrost		3.0- - - - - - - - - - - - - - - - - - -	Vibracore	H-Casing C:		SAND and GRAVEL, some COBBLES: Dark grey to brown, medium to coarse grained sand, rounded cobbles 1.50 m to 3.00 m: Trace to some silt SAND, with GRAVEL, trace COBBLES: Grey, fine to coarse grained sand, angular to subrounded gravel 4.60 m to 7.0 m: Trace to some silt	Nf Nf	21 21				12	0	65	35	רג	id		
				[9.1]		SAND with GRAVEL, trace COBBLES: Light grey, white powder, trace cobbles, fine to coarse grained sand, angular gravel 7.90 m: Inferred sandstone bedrock, weak to moderate strength			Z			1	0	63	37				
	- - - - 146.0	- 10.0-		41		To Target Depth. Drillhole BH16-B014 terminated at 9.1m.													-

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24 Notes:

BOREHOLE REPORT

BH16-B015

555,824.0 m

7,914,884.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Datum:

Platform:

Project:

Location:

Mary River Expansion Study Stage 2

Proposed Rail Alignment

NAD83

Ground

Total Depth:

Easting:

Northing:

Surface Elevation:

Bottom Elevation:

142.40 m 13.6 m

156.00 m

	(m) r	<u></u>			Log	Soil Description				Moisture			Content	le/	70	s			
water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Content Profile		100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tes
Unobserved due to permatrost	- - - - - - - - - - - - - - - - -	- - 1.0- - - - - 2.0-				SILTY SAND, with GRAVEL, with COBBLES: Brown, fine to coarse grained sand, angular to rounded gravel and cobbles, well graded	Nf		X		>>>	•	100	17	41	41			
aon Turan	- — 153.0 - — - — 152.0 - — 152.0	3.0- - - - - 4.0- -							X										
-	- 	5.0- - - - - 6.0- -		bu		6.10 m to 7.60 m: Ice rich soil	Vx		\times				11	0	63	37			
	- 	7.0- - - - - 8.0-	Vibracore	H-Casing					X										
	- - - 147.0 - -	9.0-				9.70 m to 10.6 m: Ice rich soil	Vr												

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-B015

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/14/2016

Easting: 555,824.0 m Northing: 7,914,884.0 m

Surface Elevation: 156.00 m

Bottom Elevation: 142.40 m

Total Depth: 13.6 m Logged By: US

	riller:	Mie	chae	l Sc	ott	Hole Diameter (mm): 96	Date R	evi	ew	ed:2/10/2017	R	evie	wed	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - -145.0	- - - 11.0-				SANDSTONE: Pulverized sandstone bedrock with some intact sandstone core, grey to white	Nf (Continue	ed)	\times		100	15	66	20			-
	- - - 144.0 -	12.0-				INFERRED SANDSTONE BEDROCK: bedrock, moderate strength, good			X								- - - - -
	- - -143.0 - -	13.0-		[13.6]		quality To Target Depth.			X								-
	- 142.0 - - - -	14.0-				Drillhole BH16-B015 terminated at 13.6m.											- - - - -
	141.0 	15.0-															† - - - -
	- - - -139.0	17.0-															- - - -
	- - -138.0 -	18.0-															- - - -
	137.0 	19.0-															-
<u> </u>	136.0	20.0															

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24 Notes:

BOREHOLE REPORT

BH16-B016

Sheet 1 of 1

555,830.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034

Northing: 7,914,892.0 m Project: Mary River Expansion Study Stage 2 Datum: Surface Elevation: 153.00 m NAD83

Bottom Elevation: 145.40 m Location: Proposed Rail Alignment Platform: Ground **Total Depth:** 7.6 m

Date Logged: 11/16/2016 Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Logged By: MR

Dril	ler:	Sa	mue	l Fly	'nn	Hole Diameter (mm): 96	Date F	Revi	iew	ed:2/10/2017		Re	view	ed E	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Unobserved due to permafrost	- - - -152.0 - - - -	1.0				GRAVEL and SAND, some SILT, trace COBBLES: Light brown to brown, fine to coarse grained sand, rounded to subangular gravel	Nf		×									
Unobserv	- - 150.0 - - - - 149.0	- 3.0- - - - - 4.0-	Vibracore	H-Casing	, Q ° (0 , , , , , , , , , , , , , , , , , , ,	SAND: Grey to light brown, fine to coarse grained sand 2.80 m to 2.90 m: Ice lense	Nf ICE Vx		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			15	0	88	12			
-	- - 148.0 - -	5.0—					Nf		✓				0	67	33			
-	- 147.0 - - - - - - 146.0	6.0— — — — — —				5.80 m to 6.10 m: Ice lense SAND, some GRAVEL, some COBBLES: Light brown to grey	ICE Vx											
	-	-		[7.6]	000	To Target Depth.			M	•		7	0	66	34			
- - - -	- 145.0 - - - - - 144.0	8.0— — — — — 9.0—				Drillhole BH16-B016 terminated at 7.6m.												
Note	- - - - - 143.0	10.0								 								

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-C006

Sheet 1 of 1

69.65 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 12/3/2016

Easting: 508,897.0 m Northing: 7,968,767.0 m

Surface Elevation: 71.75 m

Total Depth: 2.1 m

Bottom Elevation:

Logged By: UK

	COIL	iacio	JI. DO	art	.orig	ycai	rag Type/ mounting. Willingonic rag	Date	.og	gec	4.	12/3/2010		LU	yye	л Бу	•			UK
	Drille	er:	E.E	Bead	ham	пр	Hole Diameter (mm): 96	Date F	Rev	iew	/ed	1:2/10/2017		Re	view	ed E	Зу:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	to permafrost	70.8 69.8	1.0-	Vibracore	H-Casing		SAND, some SILT: Dark brown, organic, medium to coarse grained sand SILTY SAND, with COBBLES, : Grey to white, pulverized rock and angular rock pieces INFERRED BEDROCK: Granitic gneiss	Nf Nf												-
11:24	- - - -	68.8	3.0-				Drilling Refusal. Drillhole BH16-C006 terminated at 2.1m.													-
LEV 5.GF3 SEDIAMIIGNIESS 15/09/201	-	66.8	5.0-																	-
OLE PAIL ALIGINIEN I ALL WITH I CE LO	- - -	64.8	7.0-																	-
D GIN I LIBRARY GLB LOG ICE BOREHOLE	- - - - - - -	62.8	9.0-																	_

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

Notes:

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-C007

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 12/1/2016

Easting: 517,221.0 m

Northing: 7,962,080.0 m Surface Elevation: 105.00 m

Bottom Elevation: 97.40 m **Total Depth:** 7.6 m

Logged By: MR

<u></u>	Method	Casing	Graphic Log	Hole Diameter (mm): 96 Soil Description					d:2/10/2017		_	eviev		- y .			SH/W
Depth (m)	Method	sing	ic Log	Son Description		1	. 1										
-		ပိ	Graph	TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tes
				SILTY SAND, trace GRAVEL, trace COBBLES: Light brown, fine to medium grained sand, rounded to subangular	Nf												
-				gravel													
1.0-							V				17						
-					Vc												
2.0-																	
-							V										
3.0-					Vx												
-	racore	Casing					abla				12	1	73	26			
4.0-	Ş	Ŧ															
- -					Nbn												
5.0-				4.60 m to 4.80 m: Ice lense	ICE		abla										
-																	
6.0-				6.10 m to 7.60 m: Ice rich silty sand	Vx												
-				·													
7.0-																	
-		[7.6]		To Target Denth			\square				39						
8.0-				Drillhole BH16-C007 terminated at 7.6m.													
-	-																
9.0-																	
- -																	
10.0	_																
	3.0- - - - - - - - - - - - - - - - - - -		3.0- 		4.60 m to 4.80 m: Ice lense 6.10 m to 7.60 m: Ice rich silty sand To Target Depth. Drillhole BH16-C007 terminated at 7.6m.	Nbn	Nbn	Double D	Double of the second of the se	Vx	100	12 12 12 12 13 14 15 15 15 15 15 15 15	Nbn	300- 300-	300- 200 More of the second of	20- Double Double Double Double Double Double Drillhole BH16-C007 terminated at 7.6m.	Nbn

BOREHOLE REPORT

BH16-C008

Easting:

Sheet 1 of 2

520,080.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Northing: 7,956,909.0 m Surface Elevation: 119.30 m

Bottom Elevation: 105.60 m

Total Depth: 13.7 m

Dri			chae			Hole Diameter (mm): 96			1	ed:2/10/2017			eviev		ŕ			SH/W
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
mafrost		1.0-				GRAVELLY SAND, some COBBLES and SILT: Light brown to grey, fine to coarse grained sand, rounded to subangular gravel	Nf		₩ ₩			13						
Unobserved due to permafrost	- 	2.0-					Vx		\square			20						
Unc	116.3 	3.0-			000	ICE: Grey to white color, weak to moderate strength, cloudy texture, minor silt inclusions	ICE											
	- 115.3 - -	4.0- - -																
		5.0- - -																
	- 113.3 - -	6.0-	ē	Di Di														
		7.0-	Vibracore	H-Casing														
	- 111.3 -	8.0-																
	- 110.3 - -	9.0-																
	109.3	10.0																

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-C008

Sheet 2 of 2

520,080.0 m

7,956,909.0 m

119.30 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/30/2016

Bottom Elevation: 105.60 m

Easting:

Northing:

Surface Elevation:

Total Depth: 13.7 m

Logged By: MR

	Contra	ictor.	. 608	ail L	orig	yeal	Rig Type/ Mounting: WilniSonic Rig	Date	Log	yec	ı.	11/30/2016	'	ogg	ea E	y:				MR	
	Driller	:	Mic	hae	I Sc	ott	Hole Diameter (mm): 96	Date I	Rev	iew	ed	1 :2/10/2017	F	evie	ewec	ΙВу	<i>r</i> :			SH/WH	\rfloor
	Water Elevation (m)		Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand		Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	- - - - - 10	7.3	11.0-		[13.7]		ICE: Grey to white color, weak to moderate strength, cloudy texture, minor silt inclusions (Continued)	ICE (Continu													
1677 10103/2017 11.24	- 10 - - - -	5.3	- 14.0- - - -				To Target Depth. Drillhole BH16-C008 terminated at 13.7m.														 - - -
EV 5.GFJ >>DIAWIIIgn	- - -	4.3	15.0-																		-
ALL_WITH IOE LOG_R	- - - -	3.3	16.0-																		
E NAIL ALIGINIMEIN I	- - -		17.0-																		F
LOG ICE BOREHOLE	—10 —		18.0																		-
JIN I LIBRAN I GLB	10 	0.3	19.0-																		
L		.3	20.0					1	\perp	ш			\perp	\perp	\perp	\perp					+

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24 Notes:

BOREHOLE REPORT

BH16-C009

Sheet 1 of 1

522,032.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034

Northing: 7,948,728.0 m Project: Mary River Expansion Study Stage 2 Datum: Surface Elevation: 136.50 m NAD83

Bottom Elevation: 127.40 m Location: Proposed Rail Alignment Platform: Ground **Total Depth:** 9.1 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig **Date Logged:** 11/28/2016 Logged By: MR

Contract	or: B0	art L	.ong	year	RIG Type/ Mounting: MiniSonic Rig	Date L	.ogg	jea	: 11/28/2016	"	ogge	а ву	:			MR
Driller:	Mid	chae	l Sc	ott	Hole Diameter (mm): 96	Date F	Revi	ewe	ed:2/10/2017	R	eviev	ved I	Ву:			SH/WH
Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
- 135.5 - 135.5 - 136.5 - 137.5 - 138.			H-Casing		SILTY SAND, trace GRAVEL: Light brown, fine to medium grained sand, angular to subangular gravel SILTY SAND, some GRAVEL: Grey, fine to coarse grained sand, angular to subangular gravel SILTY SAND, with COBBLES, with BOULDERS: Grey, coarse grained sand, angular to subangular gravel SILTY SAND, with COBBLES, with BOULDERS: Grey, coarse grained sand, rounded to subrounded cobblesm possible weathered bedrock	Nbn Nf Nf	*			13	9	61	30			
-	-		e '1	. / >	To Target Depth. Drillhole BH16-C009 terminated at 9.1m.											-
126.5	10.0									L						
126.5	10.0									_	_					

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24 Notes:

BOREHOLE REPORT

BH16-C010

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Datum: NAD83

Platform: Ground Easting: 522,513.0 m

Northing: 7,946,595.0 m Surface Elevation: 168.20 m

Bottom Elevation: 162.70 m

Total Depth: 5.5 m

Co	ontract	or: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Logged	d:	11/27/2016	Lo	gge	d By	:			MR
Dr	iller:	Mic	chae	l Sc	ott	Hole Diameter (mm): 96	Date Review	/ed	d:2/10/2017	_	eviev	ved I	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Erozen Soil Description Recovery	0	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Unobserved due to permafrost			Vibracore	H-Casing		SANDY SILT, with GRAVEL, some COBBLES, trace BOULDERS: Brown, fine to coarse grained sand, angular to subangular gravel, rounded to subrounded cobbles and boulders ICE LENSE: Clear, no texture SANDY SILT, some COBBLES, trace GRAVEL: Subangular to subrounded cobbles Pulvirized ROCK: Possible boulders or bedrock 3.00 m to 4.00 m: Pulverized rock mixed with water WEATHERED ROCK: Dolomitic limestone				12	9	33	58			
,	- - -163.2 -	5.0—		[5.5]	- + + - + + + + + - + + - + + - + +											-
	- - 162.2 - -	6.0-				Drilling Refusal. Drillhole BH16-C010 terminated at 5.5m.										-
	- 161.2 - - - - - -	7.0— 8.0—														
		9.0-														

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

-STAWINGFIIB>> 13:09/2017 11:24 Notes:

BOREHOLE REPORT

BH16-C011

Sheet 1 of 2

525,427.0 m

7,937,567.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24

Notes:

Mary River Expansion Study Stage 2

NAD83

Ground

Location: Proposed Rail Alignment Platform:

Date Logged: 11/27/2016

Datum:

Bottom Elevation:

Easting:

Northing:

Total Depth: Logged By:

Surface Elevation:

10.7 m UK

179.00 m

168.30 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

C	ontracto	or: Bo	an L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ea:	11/2//2016	-	ogge	d By	:			UK
Dr	iller:	E.E	3eac	chan	пр	Hole Diameter (mm): 96	Date R	evie	we	d:2/10/2017	R	eviev	ved I	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
st	- - - - -178.0	- - - 1.0-				SANDY GRAVEL, with SILT, trace COBBLES: Grey, coarse grained sand, angular to subangular gravel		_	Z								-
Unobserved due to permafrost	- - - -177.0	2.0-				Dolomitic Boulder: White, pulverized ICE: No soil inclusions, moderate strength, clear to milky white	ICE										-
Unobserve	- - - -176.0 -	3.0-				3.00 m to 6.10m: White to milky white, cloudy, weak strength		2			100						 - -
	- - 175.0 - -	4.0-						2	Z	>>•	100						- - - -
	- 174.0 - - -	5.0— - - -	Vibracore	H-Casing													-
	173.0 	6.0-				6.10m to 7.60 m: White to clear, candled texture in some parts					100						-
	172.0 - - - 171.0	7.0— — — — — 8.0—				7.60m to 10.60 m: Soft, colourless to milky white, clear to cloudy, sand inclusions		Σ	<u> </u>		100)					
	- - - 170.0	9.0-						2	Z		100						
	169.0	10.0															_

Project:

BOREHOLE REPORT

BH16-C011

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

> Mary River Expansion Study Stage 2 Datum:

Location: Proposed Rail Alignment NAD83

Platform: Ground Easting: 525,427.0 m

Northing: 7,937,567.0 m Surface Elevation: 179.00 m

Bottom Elevation: 168.30 m

Total Depth: 10.7 m Logged By:

Orill			3ea		· ·	Hole Diameter (mm): 96		Ė	$\dot{\Box}$	ed:2/				+	eviev		Ť			SH/V
water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	C o _		ure Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Oth Tes
-		-		[10.7]		ICE: No soil inclusions, moderate strength, clear to milky white (Continued)	ICE (Continu		M					100						
-	-168.0	11.0-		[16.1]		To Target Depth. Drillhole BH16-C011 terminated at 10.7m.														
-	-167.0 -166.0	12.0-																		
-	-165.0	- - - 14.0-																		
-	-164.0	15.0—																		
-	-163.0	16.0— — —										 								
-	-162.0	17.0— — — —																		
-	-161.0	18.0-																		
	-160.0 -159.0	19.0-										 								

Project:

BOREHOLE REPORT

BH16-C012

Client: **Baffinland Iron Mines**

Mary River Expansion

Location: Tote Road km 53 Project No.: H352034

Datum: NAD83

Platform:

Easting: 526,569.0 m

Northing: 7,935,536.0 m Surface Elevation: 163.00 m

Bottom Elevation: 158.40 m

Total Depth: 4.6 m

Contractor	r: Boart l	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Lo	og	ged	: 11/2	6/2016	;		otai L ogge	-				4.6 m MR
Driller:	Michae	el Sc	ott	Hole Diameter (mm): 96	Date R	evi	ewe	ed:2/10	/2017		Re	view	ed E	Зу:			SH/WH
Water Elevation (m)	Depth (m) Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type		Moistu Itent P		Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Nuopserved due to bermatuost Wat	ded Netty Nety N	asing		structure, accessory components. SAND and GRAVEL: Brown to light brown, organics, fine to coarse grained sand, subangular gravel SAND: With GRAVEL, light brown, trace silt, granular, fine to medium grained, subangular to rounded, poorly bonded, no excess ice, (Nf) SANDY SILT and GRAVEL: Grey to	Nf Vx		Sample Sample				Pield	Perce	Perce	Perce	Liquid	Plasti	

Contractor: Boart Longyear

BAFFINIAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNIMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13.09/2017 11.24

BOREHOLE REPORT

BH16-C015

Sheet 1 of 1

Client: Baffinland Iron Mines Project N

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Project No.: H352034

Datum: NAD83

Platform: Ground

Date Logged: 11/24/2016

Easting: 536,142.0 m

 Northing:
 7,918,691.0 m

 Surface Elevation:
 189.75 m

Bottom Elevation: 182.15 m

Total Depth: 7.6 m Logged By: UK,MR

"	Jiiliaci	oi. Do	art L	Jong	ycai	Rig Type/ Mounting. Willingonic Rig	Date	ogg	jeu.	. 11/24/2010		Jyye	u Бу	•			UK,MR
D	riller:	E.I	Bead	chan	пр	Hole Diameter (mm): 96	Date F	Revi	ewe	ed:2/10/2017	R	eviev	ved I	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
rost	- - - - - -188.8	- - - 1.0-				SILTY SAND, some GRAVEL, trace COBBLES: Brown to grey, organics, coarse grained sand, angular to sunangular gravel, loose,	Nf				9						-
Unobserved due to permafrost	- - 187.8	2.0-				SILTY SAND, with GRAVEL: Grey, fine to coarse grained sand, angular to subangular gravel	Nf										-
Unobs	186.8 	3.0-	e)	D		SILTY SAND, some GRAVEL: Light brown to grey, with gravel and cobbles, medium to coarse grained sand,	Vx										-
100000	- - -185.8 - -	4.0-	Vibracore	H-Casing		rounded to subangular gravel											-
		5.0- - - -						5	Z								-
100000000000000000000000000000000000000	183.8 	6.0-															-
The Arion and a second a second and a second a second and	182.8 	7.0-		[7.6]		To Target Depth.			7								-
g loe Boxenore	- 181.8 - - -	8.0-				Drillhole BH16-C015 terminated at 7.6m.											-
INT LIBRART.GLB LOG		9.0-															-
2	179.8	10.0															
No	tes:																

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

BOREHOLE REPORT

BH16-C016

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 536,362.0 m

Northing: 7,918,814.0 m Surface Elevation: 190.10 m

Bottom Elevation: 182.50 m

Total Depth: 7.6 m Logged By: UK

	Con	tract	or: Bo	oart l	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	jed:	11/24/2016			ogge	-				7.6 m UK	
	Drill	er:	E.	Bead	cham	пр	Hole Diameter (mm): 96	Date R	levi	ewe	d:2/10/2017		Re	eviev	ved E	Ву:			SH/WH	
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	Unobserved due to permafrost Water	-189.1 -189.1 -186.1 -186.1 -184.1 -182.1	40-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	Vibracore	H-Casing	Second Se	(size, grading, shape, roundness), colour,		***	Sample Ty			Weld Wa	Linearia 25	Percent	222	r jdnig r j	Plastic Ir	Tests	
NLAND GIN I LIBRAN I	Note	<u>−180.1</u>	10.0-																	

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-C017

Easting:

538,597.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/23/2016

Northing: 7,919,742.0 m Surface Elevation: 159.90 m

Bottom Elevation: 153.80 m

Total Depth: 6.1 m Logged By: MR

١	ontract	or: Bo	an L	ong	year	RIG Type/ Mounting: MINISONIC RIG	Date L	.ogg	jea:	11/23/2016	L	ogge	d By	:			MR
D	riller:	Mie	chae	el Sc	ott	Hole Diameter (mm): 96	Date R	Revi	ewe	ed:2/10/2017	R	eviev	ved I	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Unobserved due to permafrost		- - - 1.0- - - - - 2.0-				SAND, some SILT, trace GRAVEL: Brown to light brown, fine to medium grained sand, rounded to subangular gravel 1.50 m to 3.00 m: Trace cobbles	Vx		× /		24	3	74	22			- - - - - - - - - - -
Unobserv		3.0- - - - - - 4.0- - -	Vibracore	H-Casing		SAND and GRAVEL, some SILT: Yellowish brown to reddish brown, fine to coarse grained sand, rounded to subangular gravel	Vx		\square		11						- - - - - - - - - - - - - -
	154.9 	5.0— — — — — — —		[6.1]		To Target Depth.			✓	•	10						- - - - -
	- - - -152.9	7.0—				Drillhole BH16-C017 terminated at 6.1m.											- - - - -
10.00	151.9 	8.0— - - - -															-
	150.9 	9.0-															-

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24

Notes:

BOREHOLE REPORT

BH16-C018

Sheet 1 of 1

546,111.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2 Datum: NAD83

Location: Proposed Rail Alignment Platform:

Ground

Northing: 7,920,740.0 m Surface Elevation: 160.40 m

Bottom Elevation: 154.30 m

Total Depth: Logged By:

Con	tracto	or: Bo	art L	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Logge	d:	11/10/2016				-				UK
Drill	er:	E.I	Bead	chan	пр	Hole Diameter (mm): 96	Date Review	vec	d:2/10/2017		Re	view	ed E	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description Sample Type	O H	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
rved due to permafrost	−159.4 −158.4	 1.0- 2.0-				SAND, some GRAVEL: Grey, 0.075 mm to 25 mm, angular gravel	\(\sigma\)	7			9	1	82	17			-
Unobser	-157.4 -156.4	- 3.0- - - - - 4.0- -	Vibracore	H-Casing		INFERRED BEDROCK: Possible Sandstone, greyish white, thinly bedded, 0.075mm, pulverized rock and intact rock, very low strength, weakly cemented		7									-
-	-155.4 -154.4	5.0-		[6.1]		Drilling Refusal.	\$2	2	•		3						-
-	-153.4					Drillhole BH16-C018 terminated at 6.1m.											-
-	-152.4 -151.4	8.0- - - - 9.0- - - -															-
	Unobserved due to permafrost Water III	Mater Mate	Driller: E.I (W)	Driller: E.Bear (m)	Driller: E.Beachan (m)	Casing C	Brillier: E.Beachamp Hole Diameter (mm): 96 Soil Description	Drilling Refusal. Dril	Drilling Refusal Drilling Re	Driller: E.Beachmp Hole Diameter (mm): 96 Date Reviewed: 2/10/2017	Drillier: E.Beachamp Hole Diameter (mm): 96 Date Reviewed: 27/10/2017	Contractor: Boart Longyear Boart Longyear Fig Type/ Mounting: MiniSonic Rig Date Logged: 11/10/2016 Re	Driller: EBeachamp Hole Diameter (mm): 96 Date Reviewed: 2/10/2017 Review Soil Description TyPE: plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. Soil Description TyPE: plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. Soil Description TyPE: plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. Soil Description TyPE: plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. Soil Description TyPE: plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. Soil Description TyPE: plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. Soil Description TyPE: plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. Soil Description TyPE: plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. Soil Description TyPE: plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. Soil Description TyPE: plasticity or particle characteristics from plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. Intervelve the plastic type pl	Double Boat Longyear Rig Type Mounting: MiniSonic Rig Date Logged: 11/10/2016 Reviewed	Drilling Refusal. Drilling Refusal.	Contractor: Board Longyear Mig Typed Mounting: Minisonic Rig Date Reviewed: 2/10/2017 Reviewed By: Reviewed By: Reviewed: 2/10/2017 Reviewed By: Reviewed By: Reviewed: 2/10/2017 Reviewed By: Reviewed: 2/10/2017 Reviewed:	Contractor: Boart Longyer Rig Typer Mounting: MiniSonic Rig Date Logged: 11/10/2016 Reviewed By:

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

-STAWINGFIIB>> 13:09/2017 11:24

BOREHOLE REPORT

BH16-C019

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 546,163.0 m Northing: 7,920,494.0 m

Surface Elevation: 169.50 m **Bottom Elevation:** 165.00 m

Total Depth: 4.5 m Logged By: UK

(Cont	racto	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	jed	: 11/10/2016		otai L ogge	-				4.5 M UK	
	Orille	er:	E.I	Bead	cham	пр	Hole Diameter (mm): 96	Date R	evi	ew	ed:2/10/2017	Re	eview	ed E	Зу:			SH/WH	
Wotor	vvalei	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
I Domochoot of our to Domochoot	-	-168.5 -167.5		Vibraco	H-Casing		SAND, trace GRAVEL: Brown to reddish brown, medium to coarse grained sand, medium gravel, angular to subangular	Nf										-	
	- - - -	-164.5	5.0-				Drilling Refusal. Drillhole BH16-C019 terminated at 4.5m.			V		8						-	-
	-	-163.5	6.0-															-	
	- - -	-162.5	7.0- -															-	-
	-	-161.5	8.0-															-	- - - -
9	- - - -	-160.5	9.0-															-	
	-	- 159.5	10.0																-

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

BOREHOLE REPORT

BH16-C019B

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Project No.: H352034

Datum:

Project:

Mary River Expansion Study Stage 2

Northing: Surface Elevation:

Easting:

Bottom Elevation:

546,214.0 m 7,920,455.0 m

Location:

Proposed Rail Alignment

NAD83

170.40 m 164.30 m

Platform: Ground

Total Depth: 6.1 m

Rig Type/ Mounting: MiniSonic Rig

	ler:	or: Bo Sa		ong:		Rig Type/ Mounting: MiniSonic Rig Hole Diameter (mm): 96				11/10/2016 2/10/2017			gged view					MF SH/WF
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery		Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tests
Unobserved due to permafrost	- - - -169.4 - - - - - -168.4		Icore	H-Casing		SAND, some GRAVEL: Light brown, medium to coarse grained sand, subangular to rounded gravel SAND: White, fine to medium grained, weakly cemented	Nf											
		3.0- - - 4.0- - - 5.0- - -	-	O-H		4.60 m to 6.10 m: Pulverized with angular pieces of quartz and sandstone observed at 4.6m			•			0	0	98	1			
-	- - - -163.4 - - - - - - -162.4	7.0-				Drilling Refusal. Drillhole BH16-C019B terminated at 6.1m.												
Note	- 161.4 160.4	9.0-																

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-C020

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/10/2016

Easting: 546,402.0 m

Northing: 7,920,072.0 m Surface Elevation: 166.00 m

Bottom Elevation: 157.00 m

Total Depth: 9.0 m Logged By: MR

0	ontracto	or: Bo	an L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogge	a:	11/10/2016	L	ogge	а ву	:			MR
Dr	iller:	Sa	mue	l Fly	/nn	Hole Diameter (mm): 96	Date F	eviev	ve	d:2/10/2017	R	eviev	ved I	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	; - C	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Unobserved due to permafrost						SAND: Light brown to grey, medium to coarse grained sand, weakly cemented	Nf	2 8			8						- - - - - - - - - - - - - - - - - - -
		4.0— — — — 5.0—	Vibracore	H-Casing			Nf	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			8						† - - - -
	- 160.0 - - -	6.0— — — —						Σ.									- - - -
		7.0— — — — 8.0— — — — — — — — —		[9.0]		8.50 m: Weakly cemented sandstone			Z		11						-
	- - - - - - - 156.0	9.0-		[]		To Target Depth. Drillhole BH16-C020 terminated at 9.0m.											-

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

BOREHOLE REPORT

BH16-C021

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 546,593.0 m

Northing: 7,919,917.0 m Surface Elevation: 167.10 m

Bottom Elevation: 158.10 m

Total Depth: 9.0 m

Oriller:	Sa	mue	ei Fiy	nn	Hole Diameter (mm): 96	Date R	ev	ew	ed:2/10/2017		_	eviev	vea i	By:			SH/WI
Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
- 166.1 - 166.1 - 166.1 - 166.1 - 166.1 - 166.1 - 166.1 - 166.1 - 166.1 - 166.1	1.0	Vibracore	Casing		SAND: Light brown, medium to coarse grained sand ICE LENSE: Colorless to grey, medium strength, clear to cloudy texture, sand inclusions SAND, some GRAVEL, trace SILT: Grey to light brown, fine to coarse grained sand, subangular to rounded gravel SAND WITH SOME GRAVEL: grey to light brown, trace silt, subangular, fine to coarse grained, subangular to rounded, poorly bonded, no excess ice, (Nf)	Nf Nbe	<u>α</u>				14						
- - - - - 159.1	8.0-										5	0	67	33			
158.1-	9.0-		[9.0]	. (8.70 m: Light grey powder at 8.7m with angular pieces of quartz sandstone, possible bedrock Drilling Refusal. Drillhole BH16-C021 terminated at 9.0m.						9		07	33			

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24

Notes:

BOREHOLE REPORT

BH16-C022

Sheet 1 of 1

547,077.0 m

7,919,746.0 m

163.20 m

Client: Baffinland Iron Mines Project No.: H352034 Easting:
Northing:

Project: Mary River Expansion Study Stage 2 Datum: NAD83

Location: Proposed Rail Alignment Platform: Ground

Bottom Elevation: 154.10 m

Total Depth: 9.1 m

Surface Elevation:

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Date Logged: 11/11/2016 Logged By: UK

Dri	iller:	E.E	Beac	ham	пр	Hole Diameter (mm): 96	Date F	Revi	ew	ed:2/10/2017	Re	eview	ed E	Зу:			SH/WH	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Unobserved due to permafrost		3.0	Vibracore	H-Casing Ca	JO ₩ ₩ Y	structure, accessory components. PEAT, with SAND: Grey, black, fragmented SAND, trace SILT: Grey, medium to coarse grained 1.50 m: Loose, fine to coarse grained, poorly bonded, 2.60 m: Moderately banded	Nf Nbn Nf	Reco	Samp		199	O O	- Ber	2	Tjd	Pla		
	- 156.2 			[9.1]		6.40 m: Grey to Brown 7.00 m: Trace cobbles ICE LENSE: Grey to blue, Cloudy texture, minor sand and silt inclusions			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		24						-	
	- - - - 153.2	- - - - 10.0—				To Target Depth. Drillhole BH16-C022 terminated at 9.1m.												-

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24

Notes:

BOREHOLE REPORT

BH16-C023

Easting:

Surface Elevation:

Sheet 1 of 2

547,304.0 m

165.90 m

Client: Baffinland Iron Mines Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

FIOJECT NO.: H352034

Datum: NAD83

Platform: Ground

Date Logged: 11/11/2016

Northing: 7,919,643.0 m

Bottom Elevation: 155.20 m

Total Depth: 10.7 m Logged By: MR

	COIIL	acic	JI. DO	art	Jong	ycai	rig type/ mounting. Willingonic rig	Date	.ogt	jeu		1/11/2010		LOÍ	gget	д Бу.	•			MR	
L	Drille	er:	Sa	mue	l Fly	nn	Hole Diameter (mm): 96	Date F	Revi	ewe	ed:2/	10/2017	\perp	Re	view	ed E	Зу:			SH/WH	
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Co	Moisture ontent Profile	00	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Ī	permafrost		-			7 77 7 77 77	PEAT, with SAND: Brown to dark grey, medium to coarse grained sand	Nf													Ŧ
	우	164.9	- 1.0- -				SAND, trace SILT: Dark grey to brown, medium to coarse grained sand	Nbn													-
	Unobs	163.9	2.0— — —																		
t	- - - -	162.9	3.0-				SAND, trace GRAVEL: Grey to light brown, fine to coarse grained sand, subangular to rounded gravel	Nf	9	abla				16	0	93	7				-
	- - - -	161.9	4.0-				4.60 m to 6.20 m: Light brown, sand														-
	- - - -	160.9	5.0-	Vibracore	H-Casing		and silt, some gravel		9	abla		• 		17	12	44	45				-
100 100 100	- - -	159.9	6.0— — — —				ICE: Colorless to white, soft to moderate strength, clear to cloudy texture, minor silt and sand inclusions		9	Z		•		15	12	44	45				-
- INTERNATIONAL	- - -	158.9	7.0-																		
יייי ייייייייייייייייייייייייייייייייי	- - -	157.9	8.0-																		
	-	156.9	9.0-																		-
F		.00.8	10.0							_											+

BOREHOLE REPORT

BH16-C023

Sheet 2 of 2

Client: **Baffinland Iron Mines**

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 547,304.0 m

Northing: 7,919,643.0 m Surface Elevation: 165.90 m

Bottom Elevation: 155.20 m

Total Depth: 10.7 m Logged By:

Oril			mue			Hole Diameter (mm): 96	Date		\Box					_	eviev		Ť			SH/V
water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristic (size, grading, shape, roundness), colou structure, accessory components.	Frozen So r, Description	Recovery	Sample Type	Co	Moi: onten	sture t Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Oth Tes
	-	-		[10.7]		ICE: Colorless to white, soft to moderate strength, clear to cloudy texture, minor silt and sand inclusions (Continued)														
	154.9 	11.0-				To Target Depth. Drillhole BH16-C023 terminated at 10.7m.														
	- 153.9 	12.0-																		
	- - 152.9	13.0-									 									
	- - -	140																		
	151.9 - - -	14.0— — —									 									
-	- 150.9 - -	15.0-																		
-	- - 149.9 -	16.0—																		
-	- - - 148.9	17.0-									 									
-	- - -	-																		
-	147.9 	18.0— — —									 									
-	- 146.9 -	19.0—									 									
	- - —145.9	20.0																		

Project:

BOREHOLE REPORT

BH16-C024

Sheet 1 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Datum: NAD83

Platform: Ground Easting: 547,530.0 m Northing: 7,919,537.0 m

Surface Elevation: 165.00 m

Bottom Elevation: 154.30 m

Total Depth: 10.7 m

	Cor	tract	or: Bo	art L	.ong	vear	Rig Type/ Mounting: MiniSonic Rig	Date Lo	ogq	ed:	11/12/2016			tal D gged					10.7 m MR
	Dril				l Fly		Hole Diameter (mm): 96				ed:2/10/2017			view					SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	5 0 7		e Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
			- - -				SAND, trace SILT, trace GRAVEL: Light brown, medium to coarse grained sand, rounded to subangular gravel	Nf											-
	o permafrost	—164.0	1.0-																-
	Unobserved due to permafrost	—163.0	2.0-																-
	'n	—162.0	3.0-				3.00 m to 6.00 m: No gravel observed		5	Z									
10/03/2011 11:4-1		—161.0	4.0-																-
3.Gr. >>Dlawingrile>		—160.0	5.0— - - -	Vibracore	H-Casing					Z			18	0	90	10			-
		—159.0	6.0-				6.10 m to 10.70 m: Light reddish brown sand	Vx											-
RAIL ALIGINIMEIN I ALL		—158.0	7.0-										18						-
LOG ICE BOREHOLE		—157.0	8.0— — — —						2	Z									-
JIN I LIBRART.GLB LO		—156.0	9.0-					Vr											-
) INCARE	Note	<u>155.0</u>	10.0				<u> </u>										<u> </u>		

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

-STAWINGFIIB>> 13:09/2017 11:24

BOREHOLE REPORT

BH16-C024

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 547,530.0 m

Northing: 7,919,537.0 m Surface Elevation: 165.00 m

Bottom Elevation: 154.30 m

Total Depth: 10.7 m Logged By:

П														ŧ						SH/W
water	Elevation (m)	Depth (m)	Method	Casing	Craphio Log	Glapilic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tes
	- -	- - -		[10.7			SAND, trace SILT, trace GRAVEL: Light brown, medium to coarse grained sand, rounded to subangular gravel (Continued)	Nf (Continue		M				14						
		11.0-					To Target Depth. Drillhole BH16-C024 terminated at 10.7m.													
	- 153.0 	12.0-																		
	- - 152.0	13.0-																		
	- - -	- - -																		
	151.0 	14.0— — —																		
} - -	- 150.0 - -	15.0-																		
-	- - 149.0 -	16.0 																		
-	- - - 148.0	17.0—																		
}	- - -	- - -																		
	147.0 	18.0— — —																		
	- 146.0 	19.0-																		
	- - - - - 145.0	20.0—																		

BOREHOLE REPORT

BH16-C025

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 548,370.0 m

Northing: 7,919,181.0 m Surface Elevation: 163.00 m

Bottom Elevation: 155.40 m

Total Depth: 7.6 m Logged By: UK

Con	tracto	r: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.og	ged	l:	11/12/2016		1		d By				7.6 m UK
Drill	er:	E.I	Bead	cham	р	Hole Diameter (mm): 96	Date F	Rev	iew	ed:	:2/10/2017		Re	viev	ved I	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Unobserved due to permafrost	-162.0 -161.0 -159.0		Vibracore	H-Casing		GRAVELLY SILTY SAND: Brown, fine to coarse grained	Nbn Nf	8. B. C.					15	1	89	10			
- - -	-157.0	6.0-				ICE: Grey to blue, moderate hardness milky to cloudy texture, sand inclusions 6.10 m to 7.00 m: White to pink, cloudy texture, sand and silt inclusions													
-	-156.0	7.0-		[7.6]		SAND and SILT: Light brown, fine grained sand To Target Depth.	Vx		<u> </u>										
- - -	-155.0 -154.0					Drillhole BH16-C025 terminated at 7.6m.													

Project:

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

BOREHOLE REPORT

BH16-C026

Client: **Baffinland Iron Mines**

Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 550,262.0 m

Northing: 7,918,123.0 m Surface Elevation: 170.20 m

Bottom Elevation: 159.50 m

Total Depth: 10.7 m Logged By: UK

١,	Con	tracto	or: Bo	art	Long	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ed	: 11/12/2016			ogge					UK	
	Drill	er:	E.	Bea	char	np	Hole Diameter (mm): 96	Date R	evie	ewe	ed:2/10/2017		Re	viev	ved E	Зу:			SH/WH	
14/-4-1	water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	15	-169.2				11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SNOW and ROOTLETS SILTY SAND, trace GRAVEL: Dark brown, coarse grained sand	Nf												
-	Unobserved due to permarrost	-168.2	- - - 2.0-					Nbn											,	
	Unobserv	-167.2	3.0-				SILTY SAND, trace GRAVEL: Brown, fine to medium grained	Nbn												
1302/07/07		-166.2	- 4.0- - -				3.90 m to 4.30 m: Some cobbles and gravel ICE: Minor silt inclusions	Nbn		Z			14	6	69	24				-
Camina III		-165.2	5.0- - -	Vibracore	H-Casing		SAND and SILT, trace GRAVEL: Brown, fine grained to medium grained sand			\square				2	77	21				
	-	-164.2	- 6.0- - -				INFERRED BOULDERS SILTY SAND, trace GRAVEL: Grey, fine to coarse grained sand	Nf												
	-	-163.2	7.0- - -							Z			19							-
JOE BONEHOLE MAIL	-	-162.2	8.0- - - -	-					2	Z			13							-
INI LIBRARI GEB LOG		-161.2	9.0-																	
ا ا	lote	=160.2 S:	10.0-		<u> </u>															+

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-C026

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/12/2016

Easting: 550,262.0 m

Northing: 7,918,123.0 m Surface Elevation: 170.20 m

Bottom Elevation: 159.50 m

Total Depth: 10.7 m Logged By: UK

				-	year	Rig Type/ Mounting: MiniSonic Rig				1: 11/1				gge					U
Dril	ller:	E.I	Bea T	chan	np I	Hole Diameter (mm): 96	Date I	Rev	iew	ed:2/10	0/2017			view	ed E	Ву:			SH/W
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Description	Recovery	Sample Type	Cor	Moisture ntent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tes
	- - -	-		[10.7]		SILTY SAND, trace GRAVEL: Grey, fine to coarse grained sand (Continued)	Nf (Continue	⊕d)											
	159.2 	11.0-				To Target Depth. Drillhole BH16-C026 terminated at 10.7m.													
	- - 158.2	12.0-																	
	- - -	-																	
-	—157.2 —	13.0-																	
	- - 156.2	- 14.0-																	
	- - -	-																	
-	—155.2 - -	15.0-																	
-	- 154.2 	16.0-																	
	- - - 153.2	17.0-																	
-	- - -	-																	
-	152.2 	18.0-																	
	- - 151.2 -	19.0-																	
-	- - 	- - -																	
Note	<u>150.2</u>	20.0					· · ·												

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

BOREHOLE REPORT

BH16-C027

Easting:

550,416.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/12/2016

Northing: 7,917,928.0 m

Surface Elevation: 171.00 m **Bottom Elevation:** 158.80 m

Total Depth: 12.2 m Logged By: MR

Dr	iller:	Sa	mue	l Fly	nn	Hole Diameter (mm): 96	Date F	Revie	we	ed:2/10/2017		Re	eviev	ved E	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Lype	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Unoserved due to permafrost		- - 1.0- - - 2.0- - - - 3.0-			10 0 0 0 0 0	SAND and GRAVEL: Peat, dark grey SAND and GRAVEL: Dark grey, medium to coarse grained sand, rounded to subrounded gravel SILTY SAND, trace GRAVEL: Light brown, medium to coarse grained sand, rounded to subangular gravel	Nf Nf Nf Nf											-
		4.0-						Z	Z			10	9	72	20			
	- 165.0 - - - - - - 164.0	6.0— — — — — — 7.0—	Vibracore	H-Casing		ICE: Grey, low to medium strength, cloudy texture SILTY SAND, trace GRAVEL: Light brown to grey, fine to coarse grained sand, rounded to subangular gravel	ICE Nf	Z	Z			16						-
		9.0-				ICE: Grey, low strength, cloudy texture, soil inclusions 7.90 to 12.20 m: Colourless to white, moderate strength, clear to cloudy texture	ICE											

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-C027

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/12/2016

Easting: 550,416.0 m

Northing: 7,917,928.0 m Surface Elevation: 171.00 m

Bottom Elevation: 158.80 m

Total Depth: 12.2 m Logged By: MR

Oriller:	Sar	nuel	Fly	nn	Hole Diameter (mm): 96	Date I	Rev	iew	ed:2/10	0/2017		Re	view	ed E	Ву:			SH/WH
Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Cor	Moisture ntent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	11.0				ICE: Grey, low strength, cloudy texture, soil inclusions (Continued)	ICE (Continu	ed)											
159.0	12.0-	[12.2]		To Target Depth.													
- - - - - 158.0	13.0-				Drillhole BH16-C027 terminated at 12.2m.													
157.0 	14.0-																	
156.0 	15.0—																	
155.0 	16.0-																	
154.0 	17.0-																	
—153.0 — — — ——152.0	18.0-																	
151.0	20.0																	

BOREHOLE REPORT

BH16-C028

Sheet 1 of 2

551,403.0 m

7,916,768.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Location:

Mary River Expansion Study Stage 2

Proposed Rail Alignment

NAD83

Bottom Elevation: 177.40 m

Platform: Ground

Datum:

Total Depth:

Easting:

Northing:

Surface Elevation:

11.6 m

189.00 m

	Con	tracto	or: Bo	art L	ona	vear	Rig Type/ Mounting: MiniSonic Rig	Date L	oaa	ed	: 11/12/2016			otai L ogge					11.6 m MR
	Drill				el Fly	-	Hole Diameter (mm): 96				ed:2/10/2017			view	-				SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description		Sample Type	Moisture Content Profile	100	Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	Unobserved due to permafrost	-187.0 -186.0					SAND and GRAVEL, trace COBBLES: Light brown, medium to coarse grained sand, rounded to subangular gravel SAND, with GRAVEL: Grey, fine to coarse grained sand, rounded to subangular gravel	Nf Nf											-
ANTIGED TOUR TOUR DOTATIONED TOUR ANTIGURANT THE TITLE TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR		-184.0 -183.0 -182.0 -180.0	5.0- - - - - - - - - - - - - - - - - - -	Vibracore	H-Casing		SAND, trace SILT: Light grey, fine to course grained sand	Nf					7	0	6	94			-
	-	- 179.0	10.0				9.40 m to 10.70 m: Some gravel and cobbles			<u> </u>			18						

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

-STAWINGFIIB>> 13:09/2017 11:24 Notes:

BOREHOLE REPORT

BH16-C028

Sheet 2 of 2

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Surface Elevation:

Easting:

Northing:

551,403.0 m 7,916,768.0 m

189.00 m

Location: Proposed Rail Alignment

Platform: Ground **Bottom Elevation:** 177.40 m

Contractor: Boart Longyear

Date Logged: 11/12/2016

Datum:

Total Depth: 11.6 m Logged By: MR

Rig Type/ Mounting: MiniSonic Rig

Dri	ller:	Sa	mue	el Fly	nn	Hole Diameter (mm): 96	Date F	kevi	ew	ed:	:2/10/2017			view	/ed l	∃y:			SH/WI
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
	-	-				SAND, trace SILT: Light grey, fine to course grained sand (Continued)	Nf (Continue												
	178.0 178.0	11.0-				SAND, some GRAVEL, trace COBBLES: Reddish brown, fine to coarse grained sand, angular to subrounded gravel	Nf		\square										
	- 177.0 	12.0-		[12.2]		10.80 m: Possible weathered bedrock, pulverized quartz sandstone Drilling Refusal. Drillhole BH16-C028 terminated at 11.6m.													
	- 176.0 	13.0-																	
	175.0 	14.0-																	
	- 174.0 	15.0- -																	
	- 173.0 - -	16.0-																	
		- 17.0- - -																	
	- 171.0 - -	- 18.0- - -																	
		19.0- - -																	
	169.0	20.0																	

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

-STAWINGFIIB>> 13:09/2017 11:24

BOREHOLE REPORT

BH16-C029

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 552,569.0 m

Northing: 7,915,813.0 m Surface Elevation: 185.25 m

Bottom Elevation: 177.65 m

Total Depth: 7.6 m

	Cor	tracto	or: Bo	art L	.ona	vear	Rig Type/ Mounting: MiniSonic Rig	Date L	oaae	ed:	11/13/2016	1	otal I ogge	Depti d Bv				7.6 m UK
	Dril				cham		Hole Diameter (mm): 96				d:2/10/2017		eviev					SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type		Moisture Content Profile 0 50 100	Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	Unobserved due to permafrost	-184.3 -183.3					SILTY SAND: Brown to reddish brown, fine grained sand	Nbn	Z	Z		21	1	75	25			- - - - - - - - - - - - - - - - - - -
הייו וייטייסיין איטוקרוופאר איטוקרוואסוטר איטוקרוואסוטר איטוקרוו		—181.3 —180.3	4.0-	Vibracore	H-Casing		3.70 m to 6.10 m: Low-strength pieces of rock		Σ.	Z								- - - - - - - - - - -
ALIGNIMENT ALL WITH THE LOG NEW		—179.3 —178.3	6.0— 7.0—		[7.6]			_	Σ.	Z								- - - - - -
NI LIBRART.GLD LOG INE DUNETIULE INNEL I	-	—177.3 —176.3	 8.0- 9.0-				To Target Depth. Drillhole BH16-C029 terminated at 7.6m.											- - - - - - - -
is a large	Note	<u>-175.3</u> S:	10.0							1								

BOREHOLE REPORT

BH16-C030

Sheet 1 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 555,337.0 m

Northing: 7,914,646.0 m Surface Elevation: 160.75 m

Bottom Elevation: 148.55 m

Total Depth: 12.2 m Logged By:

(Con	tracto	or: Bo	art L	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ed:	11/15/2016			ed B				MR
	Orille	er:	Mie	chae	el Sc	ott	Hole Diameter (mm): 96	Date R	levie	we	d:2/10/2017			ewed				SH/WH
10/0+0/1	vvalei	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample I ype	Moisture Content Profile	Water Content	$\overline{}$			Liquid Limit	Plastic Index	Other Tests
	-		- - -				SAND, trace GRAVEL: Light brown, medium to coarse grained sand, rounded to subrounded gravel	Nf										
4000		-159.8	1.0-				CAND trees CHT trees CDAVEL Light	- //-	2	2								_
+00430000000000000000000000000000000000	I Aca and to be	-158.8	2.0-				SAND, trace SILT, trace GRAVEL: Light brown, fine to coarse grained sand	Vc	Σ	Z		1.	4					-
		-157.8	3.0-															- - - -
107/00/01	-	-156.8	4.0— - - -						Σ	Z								-
Silving Silvin	-	-155.8	5.0— —						2	Z		1	9 3	94	3			-
	-	-154.8	6.0— - - -	Vibracore	H-Casing		ICE and SOIL: White, low strength, cloudy texture, mixed with SILTY SAND	_										-
	-	-153.8	7.0— —															-
פטירויסרר ימייריי	-	-152.8	8.0— -															-
יייי פייי פיייי	-	-151.8	9.0-															 - - -
	otes	-150.8	10.0			>												

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

-STAWINGFIIB>> 13:09/2017 11:24 Notes:

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-C030

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/15/2016

Easting: 555,337.0 m

Northing: 7,914,646.0 m Surface Elevation: 160.75 m

Bottom Elevation: 148.55 m

Total Depth: 12.2 m Logged By: MR

Dril	ler:	Mi	chae	l Sc	ott	Hole Diameter (mm): 96	Date I	Revi	iew	ed:2/10	/2017		Re	view	ed E	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Con	Moisture tent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
-	- - - 149.8 - -	- - - 11.0- - -				ICE and SOIL: White, low strength, cloudy texture, mixed with SILTY SAND (Continued)													
	148.8	12.0-		[12.2]	<u> </u>					ll i	ii								
DATE TRANSPORT TO BE LOG TO DETECTED TO THE TRANSPORT TO THE TOTAL TOTAL TRANSPORT TO THE T		13.0— 14.0— 15.0— 16.0— 16.0— 16.0— 16.0— 16.0— 16.0—				To Target Depth. Drillhole BH16-C030 terminated at 12.2m.													
		17.0-																	
	- 142.8 -	18.0-								 									
ייי בייייייייייייייייייייייייייייייייי	- - 141.8 - - -	19.0- - - -								 									
Note	<u>-140.8</u> es:	20.0-						<u> </u>											

BOREHOLE REPORT

BH16-C031

Easting:

Northing:

Surface Elevation:

556,864.0 m

7,915,216.0 m

170.00 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Datum: NAD83

Ground

Bottom Elevation: 168.50 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig **Date Logged:** 11/15/2016

Platform:

Total Depth: 1.5 m Logged By: UK

(m) ı			od	Soil Description							ınt						
Depth (m)	Method	Casing	Graphic Log	TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	C (Moisture ontent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
- - - 1.0-				SAND, trace GRAVEL: Brown, fine to coarse grained sand, angular to subangular gravel	Nf												
2.0-				To Target Depth. Drillhole BH16-C031 terminated at 1.5m.				•		·							
3.0-																	
4.0-																	
5.0-																	
6.0-																	
7.0-																	
8.0-																	
9.0-																	
	20- - - - - 30- - - - - - - - - - - - - -	2.0- - - - 3.0- - - - - - - - - - - - - - - - - - -	1.5] - [1.5] - [1.5] [1.5]	2.0- - - 3.0- - - - - - - - - - - - - - - - - - -	To Target Depth. Drillhole BH16-C031 terminated at 1.5m. To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m. To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	Coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	Coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	Coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	Coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	Coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m. To Target Depth. Drillhole BH16-C031 terminated at 1.5m.	Coarse grained sand, angular to subangular gravel To Target Depth. Drillhole BH16-C031 terminated at 1.5m.

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

BOREHOLE REPORT

BH16-C032

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/15/2016

Easting: 557,282.0 m

Northing: 7,915,265.0 m Surface Elevation: 171.00 m

Bottom Elevation: 161.90 m

Total Depth: 9.1 m Logged By: MR

				Ŭ	,	5 7.		55				- 30	,	,				IVIIX
	riller:	Mie	chae	el Sc	ott	Hole Diameter (mm): 96	Date F	Revie	we	ed:2/10/2017	I	Revi	ewe	d B	By:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Domont Course		Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
<u> </u>		- - - - 1.0-			77 77 77 77 77 77 77 77 77 77 77 77 77	PEAT, with SAND and GRAVEL: Brown, medium to coarse grained sand, rounded to subangular gravel	Nf	_	Z									
Inobserved due to nermafrost	- 169.0	2.0-			<u> </u>	SILTY SAND, some GRAVEL: Light brown, medium to coarse grained sand, rounded to subangular gravel	Nf											-
ayriesdoul I		3.0-			.000	SILTY SAND and GRAVEL, trace COBBLES: Light brown, medium to coarse grained sand, rounded to subrounded cobbles	Nf	<u> </u>			1	1 1	0 7	71	19			
13/03/2017 11.57	167.0 	4.0- - - - - 5.0-	Vibracore	H-Casing			Vc	Σ										
V G. G. S. S. C. C. Cawingries		6.0-						X	Z									
77-00-100-100-100-100-100-100-100-100-10	- - 164.0 - - -	7.0-				ICE and SOIL: Dark grey to light brown, cloudy texture, ice mixed with silty sand	ICE	Σ										-
TOLE PAIC ALIGNMEN	163.0 	8.0- - - - - 9.0-		[9.1]	. O.	SILTY SAND and GRAVEL, trace	Vc	S										
ואאאו יטבם בעש וער מעייר	- - - - - -161.0	10.0-			, . O.	COBBLES: Light brown, medium to coarse grained sand, rounded to subrounded cobbles To Target Depth. Drillhole BH16-C032 terminated at 9.1m.												
N.	160.0 otes:	11.0-																

BOREHOLE REPORT

BH16-C201

Sheet 1 of 1

553,750.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034

Northing: 7,915,276.0 m Project: Mary River Expansion Study Stage 2 Datum: Surface Elevation: 178.00 m NAD83

Bottom Elevation: 175.60 m Location: Proposed Rail Alignment Platform: Ground **Total Depth:** 2.4 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig **Date Logged:** 11/18/2016 Logged By: UK

				٠ .	year	Rig Type/ Mounting: MiniSonic Rig	Duto L	vyy	cu.	: 11/18/2016			gge	By:				UK
I	Oriller:	E.E	Bead	cham	р	Hole Diameter (mm): 96	Date R	evie	we	ed:2/10/2017		Re	view	ed E	By:			SH/WH
20,001	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
to colonia of o	- 177.0 - 177.0 - 176.	1.0-	Vibracore	H-Casing		SAND, some GRAVEL, trace COBBLES: Reddish brown, fine to coarse grained sand, angular to subangular gravel, some silt												- - - - - -
1000	- 176.0 	2.0-		[2.4]		ROCK: Weak to medium strong, sedimentary, grey and white crystals			Z									 - -
	- - -175.0	3.0-				To Target Depth. Drillhole BH16-C201 terminated at 2.4m.												
	- - 174.0 -	4.0-																-
	- - 173.0 -	5.0-																-
	- - 172.0 -	6.0-																-
	- - 171.0 -	7.0-																-
	- - 170.0 -	8.0-																+
100	- - 169.0 -	9.0-																+
	168.0	10.0																_

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11:24 Notes:

BOREHOLE REPORT

BH16-C202

Sheet 1 of 1

166.90 m

Client: **Baffinland Iron Mines**

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 554,531.0 m Northing: 7,915,452.0 m

Surface Elevation: 174.50 m

Total Depth: 7.6 m

Bottom Elevation:

С	ontract	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Lo	gge	ed:	11/16/2016			gge	•				MR
D	riller:	Sa	ımue	el Fly	'nn	Hole Diameter (mm): 96	Date Re	vie	we	d:2/10/2017		Re	view	ed E	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Sample Lype	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Unobserved due to permafrost			Vibracore	H-Casing		TOPSOIL, SILTY SAND, with GRAVEL SILTY SAND, with GRAVEL: Light brown, medium to coarse grained sand Crushed COBBLES and BOULDERS: Grey to pink, fine to coarse grained sand	Nf Nf											-
1000 TO THE	- 169.5 168.5 168.5 	5.0- 6.0- 7.0-		[7.6]		BOULDERS: Grey to light green, granitic gneiss and chloritic schist, medium to coarse grained, very thinly bedded, medium strength, slightly weathered INFERRED BEDROCK: Laminated to very thinly bedded, faintly weathered,												-
		9.0-				To Target Depth. Drillhole BH16-C202 terminated at 7.6m.												-

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

-STAWINGFIIB>> 13:09/2017 11:24

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-C203

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/17/2016

Easting: 555,007.0 m

Northing: 7,915,451.0 m Surface Elevation: 177.00 m

Bottom Elevation: 167.90 m

Total Depth: 9.1 m Logged By: UK

100	ontracto	or: Bo	an L	ong	year	RIG Type/ Mounting: MiniSonic Rig	Date L	.ogge	ea:	11/1//2016	L	ogge	а ву	:			UK
Dr	iller:	E.E	3eac	chan	np	Hole Diameter (mm): 96	Date F	Revie	we	d :2/10/2017	R	eviev	ved I	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	2 df : 2	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
rost	- - - - -176.0	- - - 1.0-				SILTY SAND, some COBBLES, trace BOULDERS: Grey, fine to coarse grained sand, angular to subangular cobbles	Nf	>									-
Unobserved due to permafrost	- - - 175.0	- - 2.0-				SILTY SAND, some GRAVEL: Brown, fine to coarse grained sand	Nf										- - -
Unobser	- - 174.0 -	3.0-				SILTY SAND: Brown, fine to medium grained	Nbn										-
100000	- 173.0 - - -	4.0-	Vibracore	H-Casing					z								-
	172.0 	5.0— — —				BOULDER: Sandstone, medium		Σ.	z								- - - -
		6.0— — — — — — 7.0—				grained, medium bedded, weak WEATHERED ROCK: Mafic gneiss with crystalline fines observed, shiny face when fracutured, grey and white streaks			z								-
	- - - - -169.0	- - - 8.0-				BEDROCK: Gneiss, grey and white bedding layers, approximately 40 mm, thinly bedded,weak to medium quality											- - - - -
- CE - CG CE - EG	- - 168.0	9.0-		[9.1]		To Target Depth.			z								
IND GIN FIED CITY	- - - 167.0	- - 10.0-				Drillhole BH16-C203 terminated at 9.1m.											

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:24

BOREHOLE REPORT

BH16-C204

Easting: 555,659.0 m Client: **Baffinland Iron Mines** Project No.: H352034

Northing: 7,915,432.0 m Project: Mary River Expansion Study Stage 2 Datum: Surface Elevation: NAD83 173.00 m

Bottom Elevation: 170.30 m Location: Proposed Rail Alignment Platform: Ground **Total Depth:** 2.7 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Date Logged: 11/16/2016 Logged By: MR

	liacio	r: Bo	art L	.ong	ongyear Rig Type/ Mounting: MiniSonic Rig Date Logged: 11/16/2016									ogge	d By	:			MR
Drille	er:	Sa	mue	l Fly	nn	Hole Diameter (mm): 96	Date F	Rev	iew	/ed	d:2/10/2017		Re	eviev	ved I	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
ved due to permafrost	-172.0 -171.0	1.0-	Vibracore	H-Casing		···	Nf Nf												
- - -	-170.0 -169.0	3.0-		[2.7]															
-	-168.0 -167.0	5.0—				INFERRED BEDROCK: Grey, pulveriszed boulders of gneiss or Franklin diabase observed, subcohesive, no bedding													
-	-166.0 -165.0	7.0-																	
-	-164.0	9.0-				Drilling Refusal. Drillhole BH16-C204 terminated at 2.7m.	_												

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

- CarawingFile>> 13:09/2017 11:25

BOREHOLE REPORT

BH16-C205

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 555,883.0 m

Northing: 7,915,449.0 m Surface Elevation: 173.00 m

Bottom Elevation: 164.50 m

Total Depth: 8.5 m

	Con	tracto	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Lo	gg	ed:	11/21/2016		.ogg		•	•			UK
	Drill	er:	E.I	Bead	chan	пр	Hole Diameter (mm): 96	Date Re	vie	ewe	d:2/10/2017	F	Revie	we	d By	y:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Kecovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel		Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	Unobserved due to permafrost	-172.0 -171.0	1.0-				SAND, with GRAVEL, some COBBLES, trace BOULDERS: Brown, coarse grained sand, rounded to subangular cobbles and gravel GRAVELLY SILTY SAND: Brown to grey, coarse grained sand, rounded to subangular gravel	_		Z									-
2000	Unobserve	-170.0 -169.0	3.0-	Vibracore	H-Casing					<u> </u>		6	20) 4	17	33			- - - - -
	-	-168.0 -167.0	5.0-			+ + + + + + + +	INFERRED BEDROCK: Granitic, white, crushed and pulverized rock pieces		2	Z									-
	-	-166.0 -165.0	- - 7.0- - - - - 8.0-			+ + + + + + + + + + + + + + + + + + +			2	✓									-
J GIN I LIBRARY GLB LOG ICE BUREHULE	-	-164.0 -163.0	9.0-		[8.5]	+ + + + + + + + + + + + + + + + + + + +	Drilling Refusal. Drillhole BH16-C205 terminated at 8.5m.												
TINING.	Note		10.0						_		· · ·								

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH16-C206

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 556,059.0 m

Northing: 7,915,442.0 m Surface Elevation: 173.00 m

Bottom Elevation: 163.90 m

Total Depth: 9.1 m Logged By: UK

	Co	ntract	or: Bo	oart l	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	jed:	11/22/2016		1	gge	-				9.1 m UK
	Dri	ller:	E.	Bead	chan	np	Hole Diameter (mm): 96	Date R	levi	ewe	ed:2/10/2017		Re	view	ved E	Зу:			SH/WH
•	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
LOG ICE BORETOLE MAIL ALL'ANTH ICE LOG - NEV 3:0F3 - NOTAMINGHIEN 11.20	Unobserved due to permafrost		1.0	Vibracore	H-Casing		SAND: White to grey, pulverized rock, weak to moderate strength, fine grained SILTY SAND, some GRAVEL: Dark brown, fine to medium grained sand, angular to subangular gravel ICE, with Sandy SILT inclusions: Grey, cohesive, fine grained, hard, cloudy SAND and GRAVEL: Reddish brown SANDY SILT, trace GRAVEL: Dark grey, find grained sand BOULDERS: Grey, white to grey, pulverized rock, medium strong SANDY SILT, trace GRAVEL: Dark brown to grey, find grained sand INFERRED BEDROCK: Light grey, pulverized rock with intact pieces, medium strong	Nf Nf ICE Vc Vr Nbn		No. of the state o		>>•	53	<u>a</u>	<u>a</u>	<u>«</u>		d.	
AND GIN LIBRART.GLD	NI=/	164.0 	9.0-		[9.1]	+ + +	To Target Depth. Drillhole BH16-C206 terminated at 9.1m.												
Ĭ	Note	es:																	

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH16-C207

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 556,679.0 m

Northing: 7,915,415.0 m Surface Elevation: 175.00 m

Bottom Elevation: 167.70 m

Total Depth: 7.3 m Logged By: MR

	Con	tract	or: Bo	oart I	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	jed:	11/21/2016	1		ed By				7.3 m MR
	Drill	er:	Sa	amue	el Fly	/nn	Hole Diameter (mm): 96	Date R	levi	ewe	ed:2/10/2017	F	evie	wed l	Ву:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 10	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
67:1	Unobserved due to permafrost	-174.0 -173.0 -172.0		Vibracore	H-Casing		SAND and GRAVEL, some COBBLES: Brown, medium to coarse grained sand, subangular to rounded gravel and cobbles SAND, some GRAVEL, trace COBBLES: Grey to light yellow, medium to coarse grained sand, rounded to subangular gravel	Nf Vx	***************************************	Z		12						- - - - - - - - - - - - - - - - - - -
E LOG_REV 3. GPJ << DIAWIIIgFIIE >> 13/03/2017 1		-170.0 -169.0	5.0-	-			INFERRED BEDROCK: Light grey,			<u> </u>		2						- - - - - - - - -
LIGNIMEN I ALL WITH IC		-168.0	7.0-		[7.3]		pulverized rock, with intact pieces of sandstone, medium strong Drilling Refusal.											-
I LIBRARY GLB LOG ICE BUREHULE KAIL AL		-167.0 -166.0					Drillhole BH16-C207 terminated at 7.3m.											
-INLAND GIN	Note	<u>-165.0</u> S:	10.0-	1							<u> </u>							

BOREHOLE REPORT

BH16-Q001

Sheet 1 of 1

505,308.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Bottom Elevation:

Easting:

Northing:

Total Depth:

Surface Elevation:

7,972,797.0 m 68.25 m

Location: Potential Quarry Location

Platform: Ground 63.65 m

4.6 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Date Logged: 10/5/2016

Datum:

Logged By: MR Reviewed By: SH/WH

Driller: Samuel Flynn Hole Diameter (mm): 96 Date Reviewed: 2/10/2017

Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		- - - 1.0-				ORGANICS: Frozen organic soil SAND, some GRAVEL, trace COBBLES: Medium to coarse grained sand, fine to coarse gravel, light brown, subangular to rounded	Nf		X									_
to permafrost		2.0-	Vibracore	H-Casing		SAND and GRAVEL trace COBBLES: Coarse sand, fine to coarse gravel, light brown to grey, subangular to rounded	Nf		\searrow									- -
observed due	65.3 	3.0-				3.00 m to 4.60 m: Trace COBBLES												
13/09/2017 11	64.3 	4.0-		[4.6]		To Target Depth. Drillhole BH16-Q001 terminated at												
OG_REV 3.GPJ < <drawingfile>></drawingfile>	62.3	- - - 6.0-				4.6m.												_
HOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ	61.3 	7.0-																_
		8.0— - - -																_
BAFFINLAND GINT LIBRARY.GLB LOG ICE BORE	59.3 	9.0-																
BAFFINLAND	<u></u> 58.3	10.0												<u> </u>	1	1		

BOREHOLE REPORT

BH16-Q7001

529,144.0 m

7,927,494.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Location:

Mary River Expansion Study Stage 2

Potential Quarry Location

Datum: NAD83

Platform:

Ground

Total Depth:

Easting:

Northing:

Surface Elevation:

Bottom Elevation:

184.20 m 3.6 m

187.80 m

	Con	itracto	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.og	ged	d: 10/24/2016		gge					CS CS
	Drill	ler:	E.E	3eac	chan	пр	Hole Diameter (mm): 96	Date F	lev	iew	red: 2/10/2017	Re	view	ved E	Зу:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	Water	- - - 186.8	- - - 1.0-				Silty GRAVEL: Light brown, pulverized rock flour (limestone), light grey, subangular to angular limestone, up to 80mm			\times								
	Unobserved due to Water	- 	- 2.0- - -	Vibracore	H-Casing		SILT, some GRAVEL, trace SAND: Light brown, angular, fine to coarse			\square		11						- - - -
	-		3.0-		[3.6]		LIMESTONE: Pulverized, subrounded to round, grey			X								
13/09/2017 11:25	-		4.0— — —				To Target Depth. Drillhole BH16-Q7001 terminated at 3.6m.											-
3.GPJ < <drawingfile>></drawingfile>	-		5.0— — —															-
WITH ICE LOG_REV 3.	-		6.0— — —															-
KAIL ALIGNMEN I ALL_V	-		7.0— - - -															-
		- 179.8 - -	8.0— — —															-
ND GINT LIBRARY.GLB LOG ICE BOREHOLE	-	—178.8 -	9.0-															-
ے ا	\perp	177.8	10.0															

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

Location:

BOREHOLE REPORT

BH16-Q7002

530,561.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Potential Quarry Location

NAD83

Platform: Ground

Datum:

Northing: 7,928,150.0 m Surface Elevation: 284.00 m

Bottom Elevation: 277.14 m

Total Depth: 6.9 m

Contrac					Rig Type/ Mounting: MiniSonic Rig	Date I	_	_				ogge	-				RS/C
Oriller:	_	Bea	acha	Ť	Hole Diameter (mm): 96	Date F	⊀ev	iew	red:2/10/2017		_	eviev	wed I	Ву:			SH/W
Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profil	e 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
283.0 283.0 283.0 282.0 282.0 281.0 280.0 	3.1	HO.3 Corina	asina		No recovery Silty GRAVEL, some COBBLES: Brown, fine to coarse gravel, subangular to angular No recovery LIMESTONE: Grey, fragmented, angular to subangular, limestone bedrock Silty GRAVEL, with COBBLES: Light brown, cobbles and gravel are angular to subangular, grey			8									
277.0 		-			To Target Depth. Drillhole BH16-Q7002 terminated at 6.9m.					 							
- - 275.0 -	9.0	- - - - -								 							

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH16-Q7003

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Potential Quarry Location

Datum: NAD83

Platform: Ground Easting: 531,053.0 m Northing: 7,929,065.0 m

Surface Elevation: 201.00 m

Bottom Elevation: 191.90 m

Total Depth: 9.1 m Logged By: RS

	Cor	tracte	or: Bo	art l	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogge	ed:	10/24/2016	Logge	d By:		9.1 m RS
	Dril	ler:	E.I	Зеа	chan	пр	Hole Diameter (mm): 96	Date R	evie	we	d :2/10/2017		ved By:		SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	odiliple i ype	Moisture Content Profile				Other Tests
0.72	Unobserved due to Permafrost	—199.0 —199.0		<u>.</u>	БU		SILT and GRAVEL, trace SAND: Fine grained, angular, beige/grey 1.50 m to 5.00 m: Visible ice layers, up to 5 mm thick	Vs	<u> </u>	<					- - - - - - - - - - - - - - - - - - -
6 KEV S.GPJ SSDIGWIIIgFIII6/7 15/03/2017 11.4				Vibracore	H-Casing		SAND: Fine to medium, brown Gravelly SILT: Well graded, grey	Nbn	Σ						-
NIC ALIGINIMEN I ALL WITH I OF LO			7.0— 8.0—				Start of Coring at 7.3m. Continued on Rock Core Log sheet.	_							
IN I LIBRARY GLB LOG ICE BUREHULE RA			9.0-												- - - - - - - - - - - - - - - - - - -
IN LAIN D	Note	<u>190.0</u>	11.0-	<u> </u>	<u> </u>					_					

BOREHOLE LOG

ROCK CORE FORMAT

BH16-Q7003

531,053.0 m

7,929,065.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Datum: NAD83

Location: Potential Quarry Location

Platform: Ground

Bottom Elevation: 191.90 m **Total Depth:**

Easting:

Northing:

Surface Elevation:

9.1 m RS

201.00 m

	Cor	ntracto	or: Bo	art L	.ona	/ear	Ria Tvo	e/ Mounting:	MiniSonic Rig	Bearing:	N/A	D	ate Lo	oaaed:	10/24/2	2016			gged By:		RS RS
	Dril				ham			ameter (mm):		Plunge:	Vertica				2/10/20						
+	וווע		□.1	Jeac	ııdıi		i ioie Di	ameter (IIIII):	Rock Descrip		v ei tica	ם וג	ale C	iiecked:	2/10/20			Ke.	viewed By:	SH/\	/VH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Geological Unit	colour,	ROCK TYF n size, texture general defec minor constitu	PE; and fabric, ct condition	S,	Weathering/ Cementation		mated ength	Is ₍₅₀₎ [UCS] MPa	Sp	efect acing mm [00.1]	RQD %			
BAFFINLAND GINT LIBRARY.GLB Log CORED BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV3.GPJ < <drawningfile>> 04/102017 16:45</drawningfile>	S		1.0 —		[9.1]			Resuming LIMESTON pulverized I	<i>in Rock Core</i> E: Bedrock, fr rock sample	Format 7.3	/	× 0		□ 3		007	580	RO			
LIBR	Note		11.0																		
GINT																					
LAND																					
AFFINI																					
₩.																					

BOREHOLE REPORT

BH16-Q7004

Sheet 1 of 3

529,264.0 m

7,927,466.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Datum:

Easting:

Northing:

Surface Elevation:

282.80 m

	Loc	atior	ղ։	Р	oter	ntial Quarry Location	Platf	or	m:	Ground	Во	ttom	n Ele	evati	on:	272.20 m
_	ontracto	or Bo	art I			Rig Type/ Mounting: MiniSonic Rig				d: 10/25/2016		tal D gged	-			10.6 m
	riller:			cham		Hole Diameter (mm): 96		_	_	ved:2/10/2017		yged view				RS/CS
	T	L.I	Deac	IIaII			Date	Cev	lew	/eu.2/10/2017	Re	view	reu i	эу.		SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile						Other Tests
AND GINT LIBRARY GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <- DrawingFile> 13/09/2017 11;25 Unobserved due to Permafrost			Vibracore	H-Casing		SILT and GRAVEL: Grey, pulverized limestone No recovery Start of Coring at 4.6m. Continued on Rock Core Log sheet.		α								
BAFFINLAND GINT	272.8 otes:	10.0														

Client:

BOREHOLE LOG

ROCK CORE FORMAT

BH16-Q7004

Sheet 2 of 3

529,264.0 m

7,927,466.0 m

Baffinland Iron Mines Project No.: H352034

Project: Mary River Expansion Study Stage 2

Datum: NAD83

Location: Potential Quarry Location

Platform: Ground

Total Depth: Logged By:

Easting:

Northing:

Surface Elevation:

Bottom Elevation:

272.20 m 10.6 m

282.80 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Bearing: N/A Date Logged: 10/25/2016 Driller:

RS/CS SH/WH

Water	Elevation (m)	(n		Casing	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	eathering/ ementation	Ę	Stimated Strength	Is ₍₅₀₎ [UCS] MPa	Defect Spacing mm		viewed By: SH/WH
	- - - - 281.8	1.0 —								1217	- - - -		N	
	- - - 280.8 -	2.0 —									- - - -			
	- - 279.8 - - -	3.0 —									-			
ngFile>> 04/10/2017 16:45	278.8 _ _ _ _ _ _ 277.8	4.0 —		-			Resuming in Rock Core Format 4.6m. LIMESTONE: Light grey to brown, thickly bedded, weak to medium strong joints, faintly weathered				- - -			
INTERPRETATION OF THE TRANSPORTER OF THE TRANSPORTE		6.0 —		-			6.00 m to 7.70 m: Medium texture, very thickly bedded, fresh limestone, medium				- - - -		77	
	- - 275.8 - -	7.0 —	HQ-3 Coring	HQ			strong				- - - -		99	
	274.8 	8.0 — - - - 9.0 —	ÄH				7.70 m to 10.60 m: Weak to medium strong, subhorizontal joints				-		52	
Not	- - - - 272.8	- 10.0		-							-			
	-													

Client:

BOREHOLE LOG

ROCK CORE FORMAT

BH16-Q7004

Sheet 3 of 3

529,264.0 m

7,927,466.0 m

Baffinland Iron Mines Project No.: H352034

Project: Mary River Expansion Study Stage 2

Potential Quarry Location

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Bearing: N/A

Datum: NAD83

Platform:

Location:

Ground

Date Logged: 10/25/2016

Bottom Elevation: 272.20 m

Total Depth: Logged By:

Easting:

Northing:

Surface Elevation:

10.6 m

282.80 m

RS/CS Reviewed By:

Dri	ller:	E.I	Bead	cham	пр	Hole Di	ameter (mm): 96 Plunge: Vertica	al D	ate C	hecke	ed: 2/	10/20	17	Re	viewed By:	SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation		imated ength	M	⁽⁵⁰⁾ CS] Pa	Defect Spacing mm			
	- -	-		[10.6]								-		89		
	271.8 27	11.0 —					To Target Depth. Drillhole BH16-Q7004 terminated at 10.6m.					-				
	_ 270.8 	12.0 —										- - - -				
	- - - 269.8 -	13.0 —										- - - - -				
04/10/2017 16:45	- - - 268.8 -	- 14.0 — -										- - - -				
FRIE ALIGNINELN FALL. WITH I CE LOO REV 3.557 3 - 451 AMING THE PARTY OF THE PARTY	_ 267.8 	- 15.0 — -										- - - -				
	- - 266.8 -	16.0 —										-				
	265.8 	17.0 —										-				
	- - 264.8 -	18.0 —										- - - - -				
Not	- - 263.8	19.0 —										-				
20 PAN : CL	262.8	20.0 —										-				
Not	es:															

BOREHOLE REPORT

BH16-R003

Sheet 1 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Datum: NAD83

Platform: Ground Easting: 504,513.0 m

Northing: 7,975,552.0 m Surface Elevation: 61.00 m

Bottom Elevation: 55.40 m

Total Depth: 5.6 m

	Cor	tracte	or: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ed:	10/5/2016			gge					UK	
	Dril	ler:	Va	nce	Mad	lden	Hole Diameter (mm): 96	Date R	evie	we	ed:2/10/2017		Re	view	ed E	Зу:			SH/WH	
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	sample Lype	Moisture Content Profile 0 50 100	0	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
DIGINI LIBRARY.GLB LOG ICE BUREHULE KAIL ALIGNMENI ALL_WITH ICE LUG_R	Unobserved due to permafrost	—60.5 —60.0 —59.5 —59.5 —58.0 —57.5 —56.5			H-Casing		SAND and GRAVEL: Fine to coarse grained sand 3.00 m to 4.6 m: Trace Cobbles	Nf Nf												

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

- CarawingFile>> 13:09/2017 11:25 Notes:

BOREHOLE REPORT

BH16-R003

Easting:

Sheet 2 of 2

504,513.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Northing: 7,975,552.0 m Surface Elevation: 61.00 m

Bottom Elevation: 55.40 m

Total Depth: 5.6 m Logged By: UK

	Contr	actor	: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogg	ged	d: 10	0/5/2016		gge	d By:				5.6 m UK	
	Drille	r:	Va	nce	Mad	den	Hole Diameter (mm): 96	Date F	Revi	ew	ed:2	/10/2017	Re	view	ed E	By:			SH/WH	
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	O	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	-		- - -				SAND and GRAVEL: Fine to coarse grained sand (Continued)	Nf (Continue												-
	-	5.5	5.5-		[5.6]	0 0	To Target Depth. Drillhole BH16-R003 terminated at 5.6m.													
	- 5 -	4.5	6.5-																-	- - -
	- - - - -	4.0	7.0—																- -	-
	5 	3.5	7.5—																	-
	5 	3.0	8.0-																	-
SE SEIGHWEIT	5	2.5	8.5—																_	- - -
200	5	2.0	9.0-																<u>-</u>	- - -
מולו בוכוימינים בו	5 	1.5	9.5																	- - -

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

Notes:

BOREHOLE REPORT

BH16-R004

Sheet 1 of 1

507,259.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Northing: 7,970,638.0 m Surface Elevation: 43.00 m

Bottom Elevation: 38.43 m

Total Depth: 4.6 m Logged By: MR

Co	ontract	or: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogg	jed	l: 10/6/2016		1		d By:				4.6 m MR	
Dr	iller:	Sa	mue	l Fly	'nn	Hole Diameter (mm): 96	Date F	Revi	ew	red:2/10/2017		Re	view	ved E	Ву:			SH/WH	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
ground contributed from the Landau much and the contributed from the con			Vibracore	H-Casing C		SAND with GRAVEL: Dark brown, medium to coarse grained sand, Rounded to sub rounded gravel SAND, some SILT, trace GRAVEL: Fine to coarse grained sand, rounded to subrounded gravel SAND and COBBLES, with GRAVEL, some SILT: Light brown to grey, fine to course grained sand, rounded cobbles	Nf Nf	Rec				30	8	74	18				
1 2	38.5	4.5-		[4.6]															ļ
	38.0	5.0-			, , ,	To Target Depth. Drillhole BH16-R004 terminated at 4.6m.													

BOREHOLE REPORT

BH16-R005

Sheet 1 of 1

509,249.0 m

7,968,499.0 m

84.00 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034 Northing:

Project: Mary River Expansion Study Stage 2 Datum: NAD83

Location: Proposed Rail Alignment Platform: Ground **Bottom Elevation:** 79.43 m **Total Depth:** 4.6 m

Surface Elevation:

Date Logged: 10/6/2016 Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Logged By: UK

Dr	iller:	Va	nce	Mad	lden	Hole Diameter (mm): 96	Date R	eviev	ved:2/10/2017	F	Revie	wed l	Ву:			SH/WH	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Moisture Content Profile	OO Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Unobserved due to permafrost		0.5	Vibracore	H-Casing Ca		structure, accessory components. SAND and GRAVEL, some SILT: Fine to coarse grained sand, subangular gravel SAND, some SILT, trace GRAVEL: Fine to coarse grained sand, angular to subangular gravel	Nf Nbn	Reco		1		78	18	ΓΙΘ	Pla		
		3.5— 4.0— - 4.5—		[4.6]				×		1	0					-	
	79.0	- - - 5.0			R - G	To Target Depth. Drillhole BH16-R005 terminated at 4.6m.											

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH16-R006

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 10/6/2016

Easting: 508,438.0 m

Northing: 7,969,804.0 m Surface Elevation: 78.75 m

Bottom Elevation: 75.85 m

Total Depth: 2.9 m Logged By: UK

Oriller	: '	Van	ce I	Mad	den	Hole Diameter (mm): 96	Date R	evie	we	ed:2/10/2017		Re	view	ed E	Зу:			SH/WH
1 6								_	_				_		<u> </u>	_		311/7/11
vvater Flevation (n	Depth (m)	()	Method		Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Sample Lype	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	8		Vibracore	H-Casing		SAND and GRAVEL, trace SILT: Coarse grained sand, angular gravel	Nf Nbn											-
	3 3					Drillhole BH16-R006 terminated at 2.9m.												-
	770	77.8	77.8 1.0- 1.00 pp	77.8 1.0	Dustried of ann payagoon 77.3 1.5—77.8 2.5—77.8 3.0—77.8 3.0—77.3 3.5—77.8 4.0—77.3 3.5—77.8 4.0—77.3 4.5—77.3	77.8 1.0	SAND: Organic, dark brown To Target Depth. To Target Depth. To Target Depth. Drillhole BH16-R006 terminated at 2.9m.	SAND: Organic, dark brown Nf SAND: Organic, dark brown Nf Nf SAND and GRAVEL, trace SILT: Coarse grained sand, angular gravel Ng SAND and GRAVEL, trace SILT: Coarse grained sand, angular gravel Ng SAND and GRAVEL, trace SILT: Coarse grained sand, angular gravel Ng Ng Ng Ng Ng Ng Ng Ng Ng N	SAND: Organic, dark brown Nf Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf Nf Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf Nf Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf Nf Nf Nf Nf Nf Nf N	SAND: Organic, dark brown Nf Nf SAND: Organic, dark brown Nf SAND: Organic, dark brown Nf Nf SAND: O	SAND: Organic, dark brown Nf Nf Nf Nf Nf Nf Nf Nf Nf N	SAND: Organic, dark brown Sand S	SAND: Organic, dark brown SAND and GRAVEL, trace SILT: Coarse grained sand, angular gravel SAND and GRAVEL, trace SILT: Coarse grained sand, angular gravel Nhbn Nhbn Nhbn Nhbn To Target Depth. Drillhole BH16-R006 terminated at 2.9m.	SAND: Organic, dark brown Nf SAND and GRAVEL, trace SILT: Coarse grained sand, angular gravel SAND and GRAVEL, trace SILT: Coarse grained sand, angular gravel Nf Nh Nh Nh Nh Nh Nh Nh Nh Nh	SAND: Organic, dark brown SAND: Organic, dark brown Nf SAND: Organic, dark brown Nf SAND: Organic, dark brown Nf NF NF Coarse grained sand, angular gravel SAND: Organic, dark brown NF NF NF ND ND ND ND ND ND ND	SAND: Organic, dark brown Nf Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf SAND: Organic, dark brown Nf Nf Nf Nf Nf Nf Nf Nf Nf N	SAND: Organic, dark brown SAND: Organic, dark brown Nf SAND and GRAVEL, trace SILT: Coarse grained sand, angular gravel Nbn Nbn Ni Ni Ni Ni Ni Ni Ni Ni Ni N	SAND: Organic, dark brown SAND: Organic, dark brown Nf SAND: Organic, dark brown Nf SAND: Organic, dark brown Nf Nf Nf No No No No No No No

BOREHOLE REPORT

BH16-R007

Sheet 1 of 1

510,940.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034

Northing: 7,967,349.0 m Project: Mary River Expansion Study Stage 2 Datum: Surface Elevation: 83.00 m NAD83

Bottom Elevation: 78.43 m Location: Proposed Rail Alignment Platform: Ground **Total Depth:** 4.6 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Date Logged: 10/6/2016 Logged By: UK

	Com	racio	or: Bo	ant	ong	year	RIG Type/ Mounting: MiniSonic Rig	Date L	.ogge	a:	10/6/2016		LO	gge	Ву	:			UK
L	Drille	er:	Va	nce	Mad	lden	Hole Diameter (mm): 96	Date F	Revie	we	ed:2/10/2017		Re	view	ed E	Зу:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Sample Lype	Moisture Content Profile	00	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	-82.5 -82.0	0.5=				SAND, some GRAVEL, some SILT: Reddish brown, fine to coarse grained sand, angular to subangular gravel	Nf	}	3									- - - - - - - - - - - - - - - - - - -
REV 3.GPJ << Drawnightee>> 15/08/2017 11.23	Unobserved du	-81.5 81.0	1.5= - - 2.0- - - - 2.5- - - - 3.0-	Vibracore	H-Casing		SAND, some SILT, trace Gravel: Grey, fine grained to coarse grained sand, angular to subangular gravel	Nbn		3			13	1	87	13			- - - - - - - - - - - - - - - - - - -
	-	-79.5	3.5—				SAND, with GRAVEL: Grey, fine to coarse grained sand, angular to subanbgular gravel GRAVEL: Coarse, angular to	Nf Nf											- - - - - -
SED LOG ICE BONEHOLE MAIL AL	- - -	-79.0 -78.5	4.0		[4.6]		subangular						10						- - - - - - -
D. I NAVIGUA I INDI CANA	-	- 78.0	5.0—				To Target Depth. Drillhole BH16-R007 terminated at 4.6m.												

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

- CarawingFile>> 13:09/2017 11:25

BOREHOLE REPORT

BH16-R008

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

NAD83

Platform: Ground

Datum:

Easting: 512,763.0 m

Northing: 7,966,604.0 m Surface Elevation: 83.50 m

Bottom Elevation: 78.93 m

Total Depth: 4.6 m

	Coi	ntract	or: Bo	art I	ona	ıvear	Rig Type/ Mounting: MiniSonic Rig	Date L	oaa	ed:	: 10/7/2016	1	otal [ogge	-				4.6 m MR
		ler:		mue	_	-	Hole Diameter (mm): 96				ed:2/10/2017		eviev	-				SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil		e I ype	Moisture Content Profile 0 50 100	Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	to Permafrost						SAND with GRAVEL: Medium to coarse grained sand, fine to coarse gravel, light brown, subangular to angular	Nf		×								- - - - - - - - - - - - - - - - - - -
3.GFJ < <diawiiigfiie<< td=""><td>Unobserved due to Permafrost</td><td></td><td>1.5— 2.0—</td><td></td><td></td><td></td><td>SAND with GRAVEL, trace COBBLES: Light brown to grey, coarse grained sand, fine to coarse gravel, rounded to subangular gravel</td><td>Nf</td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- - - - - - - - - - - - - - - - - - -</td></diawiiigfiie<<>	Unobserved due to Permafrost		1.5— 2.0—				SAND with GRAVEL, trace COBBLES: Light brown to grey, coarse grained sand, fine to coarse gravel, rounded to subangular gravel	Nf		<u> </u>								- - - - - - - - - - - - - - - - - - -
TOLE TAIL ALIGNIMENT ALL WITH TOE LOG NE			3.0-				SAND and GRAVEL, some COBBLES: Light brown, fine to coarse grained sand, fine to coarse gravel, rounded to subrounded	Nf										- - - - - - - -
TI TIERRAN I GEB LOY INC. DOINEIL			4.5				To Target Depth. Drillhole BH16-R008 terminated at 4.6m.											-
Š	Note	es:																

Location:

BOREHOLE REPORT

BH16-R009

Easting:

Northing:

Surface Elevation:

Sheet 1 of 1

514,367.0 m

7,965,535.0 m

79.00 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project: Mary River Expansion Study Stage 2

Datum: NAD83

Proposed Rail Alignment

Platform: Ground **Bottom Elevation:** 74.43 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig

Total Depth: 4.6 m

Date Logged: 10/8/2016 Logged By: MR Driller: Samuel Flynn Date Reviewed: 2/10/2017 Reviewed Bv: Hole Diameter (mm): 96 SH/WH

D	riller:	Sa	mue	l Fly	/nn	Hole Diameter (mm): 96	Date F	Revi	ew	ed:2/10/2017	Re	eviev	ved l	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - -78.5	0.5—				SAND: Organics, dark brown SAND, some GRAVEL: Light brown, fine to coarse grained sand, rounded to subrounded gravel	Nf										
Unobserved due to Permafrost		1.0-							X		23						- - - - - -
Unobserved du	- - - - -77.0	2.0-				SILTY SANDY GRAVEL, with COBBLES: Medium to coarse grained sand, rounded to subrounded cobbles	Nbn	3	X								- - - - - -
		2.5— ———————————————————————————————————															- - - - - - -
	- - - - -75.5	3.5-				SILTY SANDY GRAVEL, some COBBLES: Light brown, fine to coarse grained sand, fine to coarse gravel, rounded to subrounded cobbles	Nf										- - - - -
		4.0— ———————————————————————————————————						,	X								
	74.0	- - - 5.0-				To Target Depth. Drillhole BH16-R009 terminated at 4.6m.											-

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

BOREHOLE REPORT

BH16-R010

Sheet 1 of 1

515,332.0 m

80.00 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034

Northing: 7,963,810.0 m Project: Mary River Expansion Study Stage 2 Datum: Surface Elevation: NAD83

Bottom Elevation: 75.43 m Location: Proposed Rail Alignment Platform: Ground **Total Depth:** 4.6 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Date Logged: 10/8/2016 Logged By: UK

				-	,	3 . 7 , F33 .		55					99-1	,				OK	
Di	riller:	Va	nce	Mad	lden	Hole Diameter (mm): 96	Date F	evi	ew	red:2/10/2017		-	view	ed E	By:			SH/WH	4
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Unobserved due to Permafrost	- - - -79.5 - - -					1.50 m to 2.50 m: Some silt 2.50 m to 4.00 m: Sand with some gravel	Nf												
	75.0	- - - 5.0-				To Target Depth. Drillhole BH16-R010 terminated at 4.6m.													-

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

Notes:

BOREHOLE REPORT

BH16-R011

Sheet 1 of 1

516,719.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034 Northing: 7,962,461.0 m

Project: Mary River Expansion Study Stage 2 Datum: NAD83

Location: Proposed Rail Alignment Platform: Ground

Ria Type/ Mounting: MiniSonic Ria

Surface Elevation: 94.70 m **Bottom Elevation:** 90.13 m

Total Depth: 4.6 m

C	ontract	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ged	1: 10/8/2016	Lo	ogge	d By	:			UK	
Di	riller:	Va	nce	Mad	lden	Hole Diameter (mm): 96	Date F	levi	ew	red: 2/10/2017	R	eviev	ved I	Зу:			SH/WH	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Unobserved due to Permafrost						SAND, some SILT: Brown, fine to coarse grained sand GRANITE: Pinkish brown, 75 mm, pieces of granite in frozen sand	Nf Nf				19		86	14				
	89.7	- - - 5.0-				Drilling Refusal. Drillhole BH16-R011 terminated at 4.6m.												

BOREHOLE REPORT

BH16-R012

Easting:

Bottom Elevation:

Sheet 1 of 1

516,716.0 m

7,962,464.0 m

106.75 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

Northing: Surface Elevation: NAD83

Location:

Proposed Rail Alignment

Platform: Ground

Datum:

102.75 m

Ria Type/ Mounting: MiniSonic Ria

Total Depth: 4.0 m

	Con	tracto	or: Bo	art L	ong	ıyear	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogge	ed:	10/8/2016		Lo	gge	d By	:			UK
L	Dril	er:	Va	nce	Mad	dden	Hole Diameter (mm): 96	Date F	Revie	we	ed:2/10/2017		Re	viev	ved I	Зу:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	odi pio	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		-106.3	- - - 0.5- -				SAND, some GRAVEL, some COBBLES: Brown, well graded, subangular to angular gravel												
	to Permafrost	-105.8	1.0—				SAND, some SILT, trace GRAVEL: Brown, loose, angular to subangular gravel	Nf	>										-
13/03/2017 11:23	Unobserved due to Permafrost	-105.3 -104.8	1.5-				1.50 m to 3.00 m: Greyish brown, fragmented rock pieces	Nf											
יר בססביים מיינים איזיים מ		-104.3 -103.8	2.5—				SAND and GRAVEL: Brown, angular to subangular gravel	Nbn					10	1	81	18			
CALCALIGRAMENT ALL WITH IC		-103.3 -102.8	3.5—																
GIN LIBRAN LOLD LOG TOL DOTTETTOL		-102.8 -102.3	4.5— - 4.5— -				Drilling Refusal. Drillhole BH16-R012 terminated at 4.0m.												
}	Note	- 101.8	5.0-			<u> </u>	<u> </u>			_					<u> </u>				

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

- CarawingFile>> 13:09/2017 11:25

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH16-R013

Easting:

Surface Elevation:

Sheet 1 of 1

518,856.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Northing: 7,959,178.0 m

107.00 m **Bottom Elevation:** 102.43 m

Total Depth: 4.6 m Logged By: UK

	Co	ntract	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ed:	10/8/2016		l		d By:				4.6 m UK
	Dri	ller:	Va	ınce	Mad	dden	Hole Diameter (mm): 96	Date R	evie	ewe	ed:2/10/2017		Re	viev	ved E	Зу:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	oermafrost		0.5-				SAND, trace GRAVEL: Brown, well graded, angular to subangular gravel			X									-
13/09/2017 11:25	Unobserved due to permafrost		- 1.5- - - - - - 2.0- -				SAND, with GRAVEL: Brown, rounded to subangular gravel	Nbn											-
THE LOG NEW SOLD AND AWARDENESS.		- 	- 2.5- - - - - 3.0- -				SAND, some SILT: Brown to grey, fine grained sand	Nbn	K				16	0	85	15			-
LOG TOE BONEHOLE MAIL ALIGINMENT ALL_VIII		- 103.5 103.0 	3.5— 4.0—				Possible GRANITE: Dark grey streaks, dense			X			16						-
II SINI CIBRANT GEB	Note		4.5- - - - - 5.0-			+ + +	Drilling Refusal. Drillhole BH16-R013 terminated at 4.6m.	_											

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-R014

Easting:

Sheet 1 of 1

519,701.0 m

Client: Baffinland Iron Mines Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

•

NAD83

Platform: Ground

Date Logged: 10/8/2016

Datum:

 Northing:
 7,957,349.0 m

 Surface Elevation:
 111.00 m

Bottom Elevation: 106.50 m

Total Depth: 4.5 m Logged By: MR

١,	JON.	tracto	or: Bo	art L	Long	year	RIG Type/ Mounting: MINISONIC RIG	Date L	ogge	ea.	: 10/8/2016		Log	geo	I By:				MR
1	Orill	er:	Sa	mue	el Fly	/nn	Hole Diameter (mm): 96	Date F	evie	we	ed:2/10/2017	\perp	Rev	iew	ed E	Зу:			SH/WH
10/0401	water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Sample Lype	Moisture Content Profile 0 50 10	0	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-		- - -				SILTY SAND: Fine grained	Nf											
	-	-110.5	0.5 - - -				Silty SAND, with GRAVEL, trace COBBLES: Fine gravel, fine to coarse grained sand	Nf	Σ	3									- !
(2)		-110.0 -109.5	1.0- - - - 1.5-																
02:11 CONTRACT		-109.0	- - - 2.0-				Silty SAND, trace GRAVEL: Subangular to angular gravel, medium to coarse grained sand	Nf					11 -	11	69	20			
awiigi iero	-	-108.5	- - - 2.5-						2										-
	-	-108.0	3.0-																-
	-	-107.5	3.5—																- - -
רטק וטב פטוירווטרר י	-	-107.0	4.0— — — —				Sandy GRAVEL, trace COBBLES: Pinkish grey to light brown, coarse grained sand, rounded to subrounded gravel	Nf	K	K									
ו בופראיו : כבנ	-	-106.5	4.5 				To Target Depth. Drillhole BH16-R014 terminated at 4.5m.												
5		- _{106.0}	5.0									\perp							
			0.0									_							

BAFFINLAND GINT LIBRARY,GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

Notes:

BOREHOLE REPORT

BH16-R015

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 520,756.0 m

Northing: 7,955,701.0 m Surface Elevation: 115.00 m

Bottom Elevation: 110.50 m **Total Depth:** 4.5 m

Logged By: MR

(ont	racto	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ged	: 10/8/2016	1	ogge	-				4.5 m MR	
[rille	er:	Sa	ımue	l Fly	'nn	Hole Diameter (mm): 96	Date R	evi	ew	ed:2/10/2017	Re	eview	ved E	Зу:			SH/WH	
Wotor.	Vale	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
N Indicate the majority bear of the first of the state of		114.5 114.0 113.5 1113.0 1112.5	1.0				GRAVEL with SAND, trace SILT, trace COBBLES: Light brown, fine to coarse gravel, rounded, fine to coarse gravel, rounded, fine to medium grained sand, poorly bonded SAND with SILT, trace GRAVEL: Light brown, fine to medium grained sand, fine gravel	Nf Nf	Re	us V		13	2	73	24				
	- - - -	110.5					To Target Depth. Drillhole BH16-R015 terminated at 4.5m.												- - - - -

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

Notes:

BOREHOLE REPORT

BH16-R016

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 10/8/2016

Easting: 521,588.0 m

Northing: 7,953,865.0 m Surface Elevation: 112.00 m

Bottom Elevation: 107.50 m

Total Depth: 4.5 m Logged By: MR

"	Jilliact	01. D0	uit L	-0119	ycui	rig Type/ Mounting. Willingonic rig	Date L	oge	Ju	и.	10/0/2010	-	ogge	шБу				MR
Dr	iller:	Sa	mue	el Fly	/nn	Hole Diameter (mm): 96	Date F	evi	ew	/ec	! :2/10/2017	R	evie	wed I	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	_			7 7 7 7 7 1 7 1 7	SAND: Organic, dark grey				П								-
	- - - 111.5	0.5—				SILTY SAND, trace GRAVEL, trace COBBLES: Light brown, medium to coarse grained sand, fine to coarse gravel, rounded to subrounded	Nf											-
Ļ	-	1.0-						*		1		32						-
Permafrost	- - -	- - -							X	1		32						-
Unobserved due to		1.5-					Nbe											
Onobse	- - 110.0	2.0-				SAND, with GRAVEL, trace SILT: Fine	Nbe	*	X			15	8	55	28			-
	- - 109.5	2.5-				to coarse grained sand, fine to coarse gravel, rounded												-
	- - 109.0	3.0-																-
	- - 108.5 -	3.5-																-
	- - 108.0 -	- 4.0- -						Š	X									-
	-	-																-
	107.5—	-4.5 - - -				To Target Depth. Drillhole BH16-R016 terminated at 4.5m.												-
_	107.0	5.0-									<u>i i i </u>							

BOREHOLE REPORT

BH16-R017

Sheet 1 of 1

115.00 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Datum: NAD83

Platform: Ground Easting: 521,737.0 m Northing: 7,952,929.0 m

Bottom Elevation: 110.40 m

Surface Elevation:

Total Depth: 4.6 m

Contra	ctor:	Boa	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ged:	10/9/2016	L	ogge	d By	:			UK
Driller	:	Var	ice I	Mad	lden	Hole Diameter (mm): 96	Date R	evi	ewe	ed: 2/10/2017	R	eviev	ved I	Зу:			SH/WH
Water Elevation (m)	Denth (m)	Deptili (III)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Jnobserved due to permafrost.	1.5	0.5-	Vibraone	H-Casing		SILTY SAND and GRAVEL: Brown, fine to coarse grained sand	Nf	2			29						
-	0.0	5.0		0]	⊥i '/A'¹ai	To Target Depth. Drillhole BH16-R017 terminated at 4.6m.											-

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BAFFINLAND GINT LIBRARY GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile> 13.092017 11.25

Notes:

BOREHOLE REPORT

BH16-R018

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Ground

Platform:

Easting: 521,854.0 m

Northing: 7,951,940.0 m Surface Elevation: 113.00 m

Bottom Elevation: 108.40 m **Total Depth:** 4.6 m

	Con		. w. Do	ort I	000		Dia Tomal Mauntines MiniConia Dia	Doto I			10/0/2016		tal D	-				4.6 m	
			or: Bo		_	-	Rig Type/ Mounting: MiniSonic Rig		-		ed: 10/9/2016		gged	-				UK	
-	Drill	er:	Va	nce	Mad	lden	Hole Diameter (mm): 96	Date R	evi	ew	wed:2/10/2017		view	ed E	By:			SH/WH	1
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	Unobserved due to permafrost.	-112.5 -112.0 -111.5 -111.0		Vibracore	H-Casing (Casing (Casi		SILTY SAND, some Gravel: Brown, fine gravel, rounded to subangular gravel SILTY SAND with GRAVEL: Grey, fine sand, fine to coarse gravel, rounded to subrounded 2.40 m to 3.00 m: Gravel is fine to coarse, well bonded (Nbn) 3.00 m to 3.90 m: Brown to grey, Subangular gravel, fine to coarse SILTY SAND and BOULDERS: Crushed, grey with white stratification	Nf Nbn	Re	es S									
1		-108.5	4.5-		[4.6]		To Target Depth.											-	Ŧ
	F		-				Drillhole BH16-R018 terminated at 4.6m.												F
;		-108 O	5.0-				-												1
F		100.0	5.0							_									f

BOREHOLE REPORT

BH16-R019

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2 Datum:

Location: Proposed Rail Alignment

NAD83

Platform: Ground Easting: 521,994.0 m Northing: 7,950,962.0 m

Surface Elevation: 112.30 m **Bottom Elevation:** 107.70 m

	Co	ntracto	or: Bo	art L	ong.	vear	Rig Type/ Mounting: MiniSonic Rig	Date L			10/9/2016		otal E	-				4.6 m UK	
		ller:			_	lden	Hole Diameter (mm): 96				ed:2/10/2017		eview					SH/WH	
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	sample I ype	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	•
•		- - - - 111.8	 0.5 -				SILTY SAND, with GRAVEL, trace COBBLES: Brown, rounded to subangular gravel, well graded	Nf	<u>~</u> 0	6								-	-
	to permafrost.	- 111.3 - - -	1.0— — — —				GRAVEL and SAND: Brown, rounded to subround gravel	Nf	}									-	- - - -
5717 710	Unobserved due to permafrost.	—110.8 — — — — —110.3	1.5— — — — — 2.0—		1		SAND,with GRAVEL, with COBBLES: Brown, rounded to subangular gravel	Nf										-	- - - -
v s.gp. skulawiigriiezz is/08/z		 109.8 	2.5— ———————————————————————————————————	Vibracore	H-Casing		SILTY SAND with GRAVEL: Brown, rounded to subangular gravel, fragmented rock	Nf										-	
ALL_WITH ICE LUG_RE		—109.3 — — — — —108.8	3.0-				3.00 m to 4.00 m: Grey	Nbn										-	- - - - -
GLB Log ICE BUREHULE RAIL ALIGINILINI			4.0-		[4.6]		4.00 m to 4.60 m: Some cobbles	Nf										-	
ID GIN I LIBRART		- - - - 107.3	- - 5.0-				To Target Depth. Drillhole BH16-R019 terminated at 4.6m.												-
Ś	Note	es:																	Γ

BAFFINIAND GINT LIBRARY GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

BOREHOLE REPORT

BH16-R020

Sheet 1 of 1

521,842.0 m

7,949,969.0 m

112.90 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Surface Elevation: 117.50 m

Easting:

Northing:

Bottom Elevation:

Location:

Proposed Rail Alignment

Platform: Ground

4.6 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Drillhole BH16-R020 terminated at

Datum:

Total Depth:

Date Logged: 10/9/2016 Logged By: UK Driller: Hole Diameter (mm): 96 Date Reviewed: 2/10/2017 Vance Madden Reviewed By: SH/WH Elevation (m) Field Water Conten Soil Description Graphic Log $\widehat{\Xi}$ Moisture Percent Sand Other Method ype Liquid Limit Casing TYPE; plasticity or particle characteristics Content Profile Depth (Frozen Soil **Tests** Water (size, grading, shape, roundness), colour, structure, accessory components. Description Sample. 0 50 100 SAND and GRAVEL, some SILT, some Nf COBBLES: Brown, angular to subangular gravel -117.0 Unobserved due to permafrost. -116.0 SILTY SAND, with GRAVEL, with Nf COBBLES: White to grey, angular to subangular gravel, crushed rock -115.5 2.0-Vibracore H-Casing 3.0-SILT and SAND: Brown to grey, angular Nbn to subangular gravel -114.0 3.5 -113.5 4.0-0 57 43 --113.0 4.5 [4.6] To Target Depth.

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG REV 3.GPJ «CDrawingFile» 13/09/2017 11:25

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH16-R021

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 521,784.0 m

Northing: 7,948,976.0 m Surface Elevation: 123.25 m

Bottom Elevation: 118.75 m

Total Depth: 4.5 m Logged By: MR

0	on	tracto	or: Bo	art L	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ed:	10/9/2016				epu I By:				4.5 m MR	
	rill	er:	Sa	mue	el Fly	/nn	Hole Diameter (mm): 96	Date R	evie	we	ed:2/10/2017		Rev	riew	ed E	By:			SH/WH	
Water		Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample I ype	Moisture Content Profile 0 50 100)	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
		-122.8	- - - 0.5- -				SILTY SAND, some GRAVEL, trace COBBLES: Light brown to grey, fine to medium grained sand, fine to coarse gravel, rounded to subangular	Nf											-	
Inobserved due to permetrost		-122.3 -121.8	- 1.0- - - - - 1.5-																-	
povaoshoul		-121.3	2.0-	Vibracore	H-Casing		SILTY SAND, some SILT, some GRAVEL, trace COBBLES: Grey to dark grey, angular to subangular gravel, rounded to subrounded cobbles, fine to coarse grained sand	Nf											-	- - - -
	-	-120.8 -120.3	2.5— — — — — 3.0—				SILTY SAND, some GRAVEL: Light	Nf	<										-	
	- - - -	-119.8	3.5-				brown to reddish brown, fine to medium grained sand, fine gravel, rounded	· ·											-	
	-	-119.3	4.0- - - - - - - -		[4.5]														-	
	 - - -	-110.0	- - - -				To Target Depth. Drillhole BH16-R021 terminated at 4.5m.													
N	otes	<u>-118.3</u> 3:	5.0	•	•			•			· · ·									F

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-R022

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 10/9/2016

Easting: 522,305.0 m

Northing: 7,948,153.0 m Surface Elevation: 141.40 m

Bottom Elevation: 136.90 m

Total Depth: 4.5 m Logged By: MR

	Co	ntracto	or: Bo	an L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogge	ea:	10/9/2016	[ogge	a By	:			MR
L	Dri	ller:	Sa	mue	l Fly	/nn	Hole Diameter (mm): 96	Date F	Revie	we	d:2/10/2017	R	eviev	ved	Ву:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	odific odino	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		- - - - 140.9	0.5—				SILTY SAND and GRAVEL, trace COBBLES: Grey to light brown, angular to subangular gravel, fine to coarse,rounded to subrounded, coarse grained sand	Nf										
	permafrost.	- - 140.4 - -	1.0-															-
1.23	Unobserved due to permafrost.		1.5— - - - - 2.0—															-
Diawiighii6// 10/00/2011			2.0— — — — — — —	Vibracore	H-Casing													
IN ICE LOG NEV 3.GF3 VV		- - 138.4 - -	3.0-				SILT and SAND, some GRAVEL: TILL, grey, fine to coarse grained sand, fine to coarse gravel, rounded to subangular	Nbn										-
AL ALIGINIEN ALL_VII			3.5— — — —															_
ו רסן וכב פטאבווטרר יי		—137.4 — — — —	4.0-		[4.5]						•	9	13	44	44			
GIIN I LIBRART.GLE							To Target Depth. Drillhole BH16-R022 terminated at 4.5m.											
}		136.4	5.0		<u> </u>	I		1		_		-						

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BAFFINIAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNIMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13.09/2017 11.25

BOREHOLE REPORT

BH16-R023

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 522,505.0 m

Northing: 7,947,177.0 m Surface Elevation: 158.00 m

Bottom Elevation: 154.00 m

Total Depth: 4.0 m

	_		_											Deptl				4.0 m	
	Cor	tracte	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ged:	: 10/10/2016	Lo	gge	d By	:			MR	
	Dril	ler:	Sa	mue	l Fly	nn	Hole Diameter (mm): 96	Date F	levi	ewe	ed:2/10/2017	Re	viev	ved I	Зу:			SH/WH	1
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
oin I Library (Jolb Log Ice Borehole, Rail Alignmen I All, With Ice Log, Key 3, GF) < Chraming Files>> 13/03/2017 11:29	Unobserved due to Permaffrost				H-Casing		SILTY SAND, some GRAVEL: Light brown, fine to medium grained sand, coarse gravel, rounded to subrounded SAND and SILT: Grey, fine to medium grained Drilling Refusal. Drillhole BH16-R023 terminated at 4.0m.	Nbn					0	61	39				
HINLAINU	Note	153.0 S:	5.0-					<u> </u>			1 1 1								‡

BOREHOLE REPORT

BH16-R024

Easting:

Northing:

Surface Elevation:

Bottom Elevation:

Sheet 1 of 1

522,558.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Location:

Proposed Rail Alignment

Datum:

7,946,129.0 m 153.00 m 148.40 m

Platform: Ground

4.6 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Date Logged: 10/10/2016

Total Depth: Logged By: UK

Drill	er:	Va	ance	Mad	den	Hole Diameter (mm): 96	Date F	Rev	iew	ed:2/10/2017	R	eviev	ved E	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Unobserved due to Permafrost	152.5 152.0			бı		SILTY SAND and GRAVEL: Brown, angular to subangular gravel	Nf				9	30	38	32			-

Nbn

To Target Depth.

3.0-

3.5

Drillhole BH16-R024 terminated at

Notes:

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

BOREHOLE REPORT

BH16-R025

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 522,989.0 m Northing: 7,945,894.0 m

Surface Elevation: 153.75 m **Bottom Elevation:** 149.15 m

Total Depth: 4.6 m

Contract	or: Bo	oart l	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.og	ged	1: 10/10/2016			otal [ogge	-				4.6 U
riller:	Va	ance	Mad	lden	Hole Diameter (mm): 96	Date F	Revi	ew	ed:2/10/2017		_	eviev	ved I	Зу:			SH/W
Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tes
- 153.3 - 153.3 - 152.8 - 152.8 - 152.8	0.5-				SANDY SILT, some GRAVEL, trace COBBLES: Grey, angular to subabgular gravel	Nf		X			18	13	33	54			
- 152.3 	1.5-		H-Casing			Nbn											
- 151.3 - - - - 150.8	2.5-)-H			Vx					15	16	43	41			
- 150.3 - - - - - 149.8	3.5-	-						\times			16						
- - 149.3	4.5-		[4.6]		To Target Depth. Drillhole BH16-R025 terminated at 4.6m.												

Project:

BOREHOLE REPORT

BH16-R026

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 523,165.0 m

Northing: 7,944,366.0 m Surface Elevation: 152.00 m

Bottom Elevation: 147.40 m

Total Depth: 4.6 m

Coı	ntracto	or: Bo	art I	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date I	_og	ged	l: 10	0/10/2016		Lo	gge	d By	:			Uk
Dril	ller:	Va	nce	Mac	lden	Hole Diameter (mm): 96	Date I	Rev	iew	ed:2/	10/2017		-	viev	ved E	Зу:			SH/WF
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	C (Moisture ontent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
	- -	-				SAND with GRAVEL, trace SILT: Grey, granular, organics	Nf												
frost		0.5=				SILTY SAND, wtih GRAVEL: Brown, rounded to subangular GRAVEL	Nf												
due to Permafrost	- - 151.0 -	- 1.0- -				0.90 m to 3.00 m : Fragmented rock			\boxtimes				27						
Unobserved due	- - 150.5	- - 1.5-																	
	- - - 150.0	- - 2.0-																	
	- - - - 149.5	- - - 2.5-	Vibracore	H-Casing															
	- - -	- - -																	
	149.0 	3.0-					Nbn												
		3.5-																	
	- 148.0 - -	- 4.0- - -							X	•			8						
-	- - 147.5	4.5-		[4.6]		To Target Depth.													
-	- - - 	5.0-				Drillhole BH16-R026 terminated at 4.6m.													
Vote		3.0																	

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-R027

Easting:

Sheet 1 of 1

523,442.0 m

Client: Baffinland Iron Mines Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

,

NAD83

Platform: Ground

Datum:

Date Logged: 10/10/2016

 Northing:
 7,942,265.0 m

 Surface Elevation:
 171.10 m

Bottom Elevation: 166.50 m

Total Depth: 4.6 m Logged By: UK

Contract	(or : B0	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogg	jea:	10/10/2016	L	ogge	a By	:			UK
Driller:	Va	nce	Mad	lden	Hole Diameter (mm): 96	Date F	Revie	ewe	ed:2/10/2017	R	eview	ved E	Зу:			SH/WH
Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
- 170.6 - 170.6 - 170.6 - 170.6 - 170.6 - 169.6 - 169.6 - 169.1 - 168.6 - 168.	1.0- -		H-Casing Cas	Gre	structure, accessory components. SAND, with SILT, with COBBLES: Brown, rounded to subrounded cobbles 0.45 m to 1.10 m: Crushed limestone cobbles and boulders SAND and SILT, with GRAVEL: Brown 1.50 m to 3.00 m: Inferred rock/cobbles, fragmented, cobbles rounded to angular SILTY SAND, with GRAVEL, with COBBLES: Brown, rounded to subangular gravel	Nf Nf Nbn		ldmeS X	0 50 100	S S S S S S S S S S S S S S S S S S S	222	ы _в 43	35 35	Liqu	Se d	
——————————————————————————————————————	4.5-		[4.6]		To Target Depth.			_								_
-	-				Drillhole BH16-R027 terminated at 4.6m.											
166.1	5.0						_	_		_	-		_	=		

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

BOREHOLE REPORT

BH16-R028

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground

Date Logged: 10/10/2016

Easting: 524,061.0 m

Northing: 7,940,538.0 m Surface Elevation: 172.30 m

Bottom Elevation: 168.70 m

Total Depth: 3.6 m Logged By: MR

					J.	,	5 3.		5.					55-	,				IVIIX
1	Oriller	: _	Sa	mue	l Fly	nn	Hole Diameter (mm): 96	Date F	Revi	ew	ved:2/10/2017		Re	view	ved E	Зу:			SH/WH
10,040,1	water Flevation (m)	Elevation (III)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - -	1.8	- 0.5-				SAND and SILT, some GRAVEL: Light grey,fine to coarse grained sand, angular to subangular gravel	Nf											
+ C C C C C		1.3	- - - 1.0-						,	X			3						
70000		0.8	1.5—				Gravelly Silty SAND: Grey, dark grey mixed, fine to coarse grained sand, fine to coarse gravel, rounded to subrounded	Nf											
19/2017 11:25	- - - -17	70.3	2.0-	Vibracore	H-Casing				9	X									
o soliawingrijest isk	_ _ 16	9.8	- 2.5- -																
WITH ICE LOG REV 3.GF	——16 ——	9.3	3.0-				SANDY SILT, with GRAVEL, with COBBLES: Fine to medium grained sand, fine to coarse gravel, rounded to subrounded	Nf	3	X									
ALL.	16	8.8	3.5-		[3.6]														
E KAIL ALIGNMEN	-	88.3	- - 4.0-			e, 19,1	Drilling Refusal. Drillhole BH16-R028 terminated at 3.6m.												
LOG ICE BUREHULE	-		-																
NI LIBRARY.GLB L		67.8	4.5— — —																
		7.3	5.0																
N	lotes:																		

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-R029

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

NAD83

Platform: Ground

Datum:

Date Logged: 10/11/2016

Easting: 525,062.0 m

Northing: 7,938,851.0 m Surface Elevation: 186.00 m

Bottom Elevation: 183.00 m

Total Depth: 3.0 m Logged By: MR

			orig		Rig Type/ Mounting. Willingonic rag		- 5	900		10/11/2010			55	л Бу				MF
Driller:	Sa	mue	l Fly	nn	Hole Diameter (mm): 96	Date F	Revi	iew	ec	d :2/10/2017			view	ed E	Зу:			SH/WF
Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
- 185.5 185.0 184.5	0.5	Vibracore	H-Casing		SANDY SILT and GRAVEL, trace COBBLES: Light brown, subangular to angular gravel, fine to coarse sand, fine to coarse gravel	Nf												
184.5 - - - - - - - - - - - - - - - - - - -	1.5— 2.0— 2.5—	Vibra	H-C		GRAVEL and COBBLES, some SAND: Grey, subgranular to angular gravel, fine to coarse, fine to coarse grained sand	Nf		\boxtimes										
183.0	- 3.0 - - -		[3.0]		Drilling Refusal. Drillhole BH16-R029 terminated at 3.0m.													
—182.5 - - -	3.5—																	
182.0 	4.0-																	
— 181.5 —	4.5— — — —																	

HATCH LIBRARY DEVELOPMENT COPY GLB Log ICE BOREHOLE BAFFINLAND BOREHOLES_REV 1.GPJ <<DrawingFile>> 29/08/2018 11:41

BOREHOLE REPORT

BH16-R030

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Datum: NAD83

Location: Mary River Platform:

Easting: 525,291.0 m

Northing: 7,937,897.0 m Surface Elevation: 178.75 m

Bottom Elevation: 175.15 m

Total Depth: 3.6 m

1	Contra	acto	r: Bo	art l	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ge	d: 10/11/2016	Lo	ogge	d By	:			UK
L	Driller	:	Va	nce	Mac	lden	Hole Diameter (mm): 96	Date R	evi	ev	ved:2/10/2017	R	eviev	ved I	Ву:			SH/WH
3	water	evalion (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour,	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
3	\$ <u> </u>		ă	Ž	Ö	Ō	structure, accessory components.		Rec	Sam		ij	Pe	Pe	Pe	ij	ä	
100		8.3	0.5				SAND with SILT, with GRAVEL: Brown, angular to subangular gravel	Nf										- - - -
		7.8	- - - 1.0-				SANDY SILT, with GRAVEL, with COBBLES: Grey, angular to subangular gravel	Nf	×	X								- - - -
-		77.3	- - 1.5-	ė	g					X								- - - - -
11.000000000000000000000000000000000000	- - - - 17	6.8	2.0-	Vibracore	H-Casing		Pulverized rock with fragments of rocks, angular, sharp edges	Nf										- - - - -
	- - 17	6.3	2.5—						×	X		10						- - - -
	- - - - -	5.8	3.0-															- - - - -
	17	5.3	3.5-		[3.6]					$\langle \rangle$								+
:	- - - -17	4.8	4.0-				Drilling Refusal. Drillhole BH16-R030 terminated at 3.6m.											-
	- - - - - -	4.3	4.5— — — —															
 -	lotes:	3.8	5.0-	<u> </u>								_						

BOREHOLE REPORT

BH16-R032

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Surface Elevation:

Easting:

Northing:

525,991.0 m 7,936,109.0 m

168.75 m

Location: Proposed Rail Alignment

Platform: Ground

Datum:

Bottom Elevation: 166.05 m **Total Depth:**

2.7 m

Contrac				-	Rig Type/ Mounting: MiniSonic Rig					11/2016			Lo	gge	d By	:			UI
Water Elevation (m)		Method		Graphic Log lab	Hole Diameter (mm): 96 Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour,	Frozen Soil		Sample Type	Cor	Moistur ntent Pi	rofile		Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	SH/W Othe Test
Unobserved due to Permafrost Water	0.5-		Cag	319	structure, accessory components. SILTY SAND, some GRAVEL, some COBBLES: Brown to grey, fine to coarse grained sand		Recovery	Samp	0	50		100	Field	Per	Perc	Perc	Liqu	Plas	
98 - 167.3 - 167.3 - 166.8		-	H-Casing		LIMESTONE: Pulverized rock, white to grey, angular rock fragments, weak to moderate strength	_		\boxtimes											
- 			[2.7]		Drilling Refusal. Drillhole BH16-R032 terminated at 2.7m.						 								
- - 165.3 - -	3.5-									 									

BOREHOLE REPORT

BH16-R033

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 526,653.0 m

Northing: 7,935,439.0 m Surface Elevation: 164.00 m

Bottom Elevation: 159.80 m

Total Depth: 4.2 m Logged By:

Dril			ance	T		Hole Diameter (mm): 96	1	Ė	T	T	d:2/10/2017	+	Ť	wed	Ť	T		SH/WF
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	C	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tests
Unobserved due to Permafrost						sand, subrounded to rounded gravel SAND and GRAVEL, with SILT, trace COBBLES: Grey, fine to coarse gravel,	Nf Nf		X									
		2.0- - - - - 2.5- - - - -	Vibrac	H-Casing		subrounded gravel	Nif.		X			7						
-		3.5		[4.2]			Nf		X	7 >								
- - - -	- 159.5 	 4.5- - - - - 5.0-				To Target Depth. Drillhole BH16-R033 terminated at 4.2m.												

BOREHOLE REPORT

BH16-R034

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Drillhole BH16-R034 terminated at

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 10/12/2016

Easting: 527,056.0 m Northing: 7,933,500.0 m

Surface Elevation: 175.60 m

Bottom Elevation: 171.10 m

Total Depth: 4.5 m Logged By: MR

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Samuel Flynn Hole Diameter (mm): 96 Date Reviewed: 2/10/2017

	Oriller	r:	Sa	mue	l Fly	nn	Hole Diameter (mm): 96	Date R	evie	ved:2/1	0/2017	F	Revie	wed	Ву:			SH/WH	
Wotor.	vvater	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Co	Moisture ontent Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Hoopserved due to Dermefroet	- 110 DO	75.1	0.5				SAND and GRAVEL, trace silt: Light brown, grey mixed, fine to coarse grained sand, rounded	Nf										-	
11.23	- 17 - -	74.1	1.5—	ore	sing		GRAVELLY SILTY SAND: Light brown, grey mixed, angular to subangular gravel, fine to coarse grained sand	Vx										-	
LOG NEV 3.613 NOT AWINGTHEN 1903	-	73.1	- 2.5- - - - - 3.0-	Vibracore	H-Casing							8	3 27	40	32			-	
ENOLE PAIL ALIGINMENT ALL_WITH TOE	-	72.1	3.5									g	•					-	
KAKY.GLB LOG ICE BURE	- - - - - -	71.1	- - 4.5- -		[4.5]	000000000000000000000000000000000000000	To Target Depth.												- - - -

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

BOREHOLE REPORT

BH16-R035

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 527,423.0 m

Northing: 7,932,310.0 m Surface Elevation: 186.00 m

Bottom Elevation: 181.40 m

Total Depth: 4.6 m

	Con		ew Do	ort I	000	voor	Die Tyme/ Mayuntines, MiniCania Die	Dete I		al.	10/12/2016	1		Depti				4.6 m
			or: Bo		_	-	Rig Type/ Mounting: MiniSonic Rig		-		: 10/12/2016			d By				UK
ŀ	Dril		Va	ince	Mac	lden	Hole Diameter (mm): 96	Date R	levi	ewe	ed:2/10/2017		view	ved E	3y: □			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
			0.5-				SAND, with GRAVEL, with SILT: Grey to brown, angular to subangular gravel GRAVEL, with SAND, with COBBLES:	Nf Nf										-
	Unobserved	—185.0	- 1.0- - -				SAND and GRAVEL, some SILT: Grey, fine grained sand	Nf		X								-
		—184.5	1.5- - -				GRAVELLY SILTY SAND: Grey	Nbn										-
10103/2011 11:40		—184.0	2.0- - - -	Vibracore	H-Casing													-
יב אבות אייושות א פרבי אבות ה	-	-183.5	2.5- - - - - 3.0-										24	42	34			-
MAINIEM ALL_WITH ICE LO	-	—182.5	3.5-				LIMESTONE: Framnebted rock, light											-
ICE BUREHOLE KAIL ALIG	 - - - - -		- 4.0- - -				grey to white, pulverized, angular, sharp edges			X								-
-B Log	ļ	—181.5	4.5-		r4 0°													<u> </u>
JOINT LIBRARY			- -		[4.6]		To Target Depth. Drillhole BH16-R035 terminated at 4.6m.											_
1	Note	<u>-181.0</u> S:	5.0-				·					_						
=																		

BAFFINI AND GINT LIBRARY GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ </br>

BOREHOLE REPORT

BH16-R036

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Easting: 527,210.0 m

Northing: 7,931,660.0 m Surface Elevation: 172.00 m

Bottom Elevation: 167.40 m

Total Depth: 4.6 m

Co	ontract	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogge	d:	10/12/2016	L	ogge	d By	:			UK	
Dr	riller:	Va	nce	Mad	den	Hole Diameter (mm): 96	Date R	eviev	ved	1 :2/10/2017	+	evie	wed	Ву:			SH/WH	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	0	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Unobserved due to Permafrost			Vibracore	H-Casing		Gravelly SAND, some SILT, trace COBBLES: Organic, grey to brown, angular to subangular gravel SAND and SILT, with GRAVEL trace COBBLES: Brown to grey, angular to subangular gravel SILT and COBBLES, with SAND: Brown	Nf Nf				100		42	35				
	167.0	- - - 5.0-		[4.6]		To Target Depth. Drillhole BH16-R036 terminated at 4.6m.												 - - -

BAFFINIAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ. <-DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH16-R037

Easting:

Northing:

Surface Elevation:

Bottom Elevation:

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Location:

Datum:

7,929,786.0 m 162.25 m

527,873.0 m

Proposed Rail Alignment

Platform: Ground 157.65 m 4.6 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Date Logged: 10/12/2016

Total Depth: Logged By: UK

	oi. bo				Rig Type/ Mounting. Willisonic Rig					10/12/2010			yye	– ,				Ur
Driller:	Va	nce	Mad	lden	Hole Diameter (mm): 96	Date F	Rev	iew	ed	1:2/10/2017		_	view	ed E	By:			SH/WI
Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
-	-				SAND, trace SILT: Reddish brown,	Nf		П	Т		\top							
-	-				angular													
ļ	_									iii								
161.8	0.5-									i i i								
F	_									iii								
Ł	-									i i i								
-161.3	1.0-							X										
afros	-																	
Pern	-																	
op – 160.8	1.5					Nha												
Unobserved due to Permafrost	-					Nbn												
psen	-																	
- 160.3	2.0-									1 1 1								
-	-		g.															
ļ	-	Vibracore	H-Casing															
159.8	2.5-	₹	主															
109.6	2.5-							X		•		20	0	91	9			
Ė	-							M										
-	-																	
—159.3 —	3.0-									!!!								
ŀ	-																	
F	-																	
158.8	3.5-																	
F	-																	
-	-																	
158.3	4.0-							X				20						
-	-							M										
ţ	-																	
157.8	4.5-		[4.6]															
	-				To Target Depth.			П										
E	-				Drillhole BH16-R037 terminated at 4.6m.													
157.3	5.0																	
Notes:																		

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH16-R038

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 528,501.0 m

Northing: 7,928,421.0 m Surface Elevation: 164.00 m

Bottom Elevation: 159.50 m

Total Depth: 4.5 m Logged By: MR

	Coı	ntracto	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ed:	10/12/2016		l		d By				4.5 m MR	
	Dril	ler:	Sa	ımue	el Fly	'nn	Hole Diameter (mm): 96	Date R	evie	we	ed:2/10/2017				ved E				SH/WH	
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Lype	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
		- - - - -163.5	- - - 0.5-				SAND, trace SILT, trace GRAVEL: Light brown, reddish brown mixed, medium to coarse grained sand, rounded to subrounded gravel	Nf											-	
	ermafrost	- 163.0 -	- 1.0- - -						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										-	-
	Unobserved due to Permafrost		- 1.5= - -					Vc											-	- - -
27.11.10.2000.1	Unok	- 162.0 - -	2.0-	Vibracore	H-Casing				K				16	2	89	9			-	-
יייוו ופוווייים וחייי כרם		- 161.5 - -	2.5— — —		_														-	- - - -
		- 161.0 - -	3.0-																-	-
ALIGININIEN 1 ALL_11		- 160.5 - -	3.5— — —																-	- - - -
ICE BOREHOLE RAIL		- 160.0 - -	- 4.0- - -										8						-	- - - -
GINI LIBRART.GLB LOG		- 	4.5 		[4.5]		To Target Depth. Drillhole BH16-R038 terminated at 4.5m.													- - - -
	Note	159.0 :S:	5.0-					1						<u> </u>	<u> </u>					ŧ

Project:

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

-CDrawingFile>> 13:09/2017 11:25

BOREHOLE REPORT

BH16-R039

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 528,666.0 m

Northing: 7,927,955.0 m Surface Elevation: 165.75 m

Bottom Elevation: 161.25 m

Total Depth: 4.5 m

	Cor	tracte	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ged	1: 10/12/2016			gge					4.5 III MR
	Dril	ler:	Sa	amue	el Fly	/nn	Hole Diameter (mm): 96	Date F	evi	iew	ed:2/10/2017		Re	view	ed E	Зу:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	0	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
			0.5-	-			SAND, trace SILT, trace GRAVEL: Light brown, reddish brown mixed, medium to coarse grained sand, rounded to subrounded gravel	Nf											-
63	Unobserved due to Permafrost.	—164.8 —164.3	1.0- - - - 1.5- - -					Nbn					20	3	94	3			-
S.GPJ < <ur>S.GPJ <<ur>S.GPJ <</ur></ur>	⊃ - - - - -	—163.8 —163.3	2.0-	Vibracore	H-Casing					\boxtimes									-
ALIGNIMEN I ALL_WITH ICE LOG_REV	-		3.0-																-
GLB LOG ICE BUREHULE KAIL A	-	- 161.8 - - - -	4.0-		[4.5]					\boxtimes									-
AND GIN I LIBRARY.	Note		- - - 5.0-				To Target Depth. Drillhole BH16-R039 terminated at 4.5m.												

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-R040

Easting:

Sheet 1 of 1

528,686.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

NAD83

Ground

Platform:

Datum:

Date Logged: 10/13/2016

Northing: 7,927,755.0 m Surface Elevation: 166.00 m

Bottom Elevation: 161.40 m

Total Depth: 4.6 m Logged By: UK

riller:	Va	ance	Mac	lden	Hole Diameter (mm): 96	Date F	Rev	ewe	ed:2/10/2017			view	ed E	Зу:			SH/WH
Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	1.0	Vibracore	H-Casing		SAND and SILT, trace GRAVEL: Reddish brown to grey, angular to subangular gravel	Nf					19						
-	-		[4.6]	<u>դուս վեր</u>	To Target Depth. Drillhole BH16-R040 terminated at 4.6m.												

BOREHOLE REPORT

BH16-R041

528,605.0 m

7,927,754.0 m

Client: **Baffinland Iron Mines**

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground

Bottom Elevation: Total Depth:

Easting:

Northing:

Surface Elevation:

164.50 m

166.00 m

1.5 m

Driller:	V	ance	Mac		Hole Diameter (mm): 96	Date I	Rev	iew	ed: 2/	10/2017			view	ved I	Зу: 			SH/WI
Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	C 0	Moisture ontent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
M	0.5 1.0 2.0 2.5	Vibracore	O H-Casing		To Target Depth. Drillhole BH16-R041 terminated at 1.5m.		Rec	Seri						<u>a</u>	a a			
—161.5 —	4.5	- - - -																

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

Notes:

BOREHOLE REPORT

BH16-R042

162.50 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 528,517.0 m Northing: 7,927,713.0 m

Surface Elevation: 167.00 m

Total Depth: 4.5 m

Bottom Elevation:

С	ontract	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ged	: 10/14/2016		ogge	-				4.5 m MR	
D	riller:	Sa	ımue	l Fly	nn	Hole Diameter (mm): 96	Date R	levi	ew	ed:2/10/2017	Re	eview	ed E	Ву:			SH/WH	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Unobserved due to Permafrost.	- - - - -166.5	1.5- - - - - - - - - - - - - - - - - - -		H-Casing (Casing))	SAND, trace GRAVEL: Reddish brown, light brown mixed, medium to coarse grained sand, angular to subangular gravel,	Nf	Re									-	
בספ וכר בסייבו יייבר ייבר יייבר ייבר ייבר ייבר יייבר יייבר יייבר יייבר ייבר	- - - - - - - - - - - - - - - - - - -	3.5- - - - - 4.0- - - - - 4.0-		[4.5]		3.30 m to 4.60 m: Trace to some gravel	Nbn	,	X		15						-	
	162.0					To Target Depth. Drillhole BH16-R042 terminated at 4.5m.												-

BOREHOLE REPORT

BH16-R043

Easting:

Northing:

Surface Elevation:

Sheet 1 of 2

528,428.0 m

7,927,675.0 m

167.00 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Location: Proposed Rail Alignment Platform: Ground

Datum:

Bottom Elevation: 158.00 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Total Depth: 9.0 m Logged By: MR

Date Logged: 10/13/2016

Dri	ller:	Sa	mue	el Fly	/nn	Hole Diameter (mm): 96	Date F	Revi	iew	ed:2/10/2017		_	viev	ved I	Ву:			SH/W
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
	-	-				SAND: Grey to light brown, fine to coarse grained	Nf											
	-	-				30a.100 g. a10a												
	- 166.5	0.5-																
	-	-																
	-	-																
	— —166.0	1.0-																
afrost	-	-																
Perm	-	-																
lue to	165.5	1.5-																
rved c	-	-								liii								
Unobserved due to Permafrost.	-	-																
آ آ	—165.0 —	2.0-																
	-	-																
	-	-																
	—164.5 —	2.5-																
	-	-							X									
	— —164.0	3.0-																
	-	-					Vc											
	-	-																
	— —163.5	3.5-																
	-	-																
	-	-																
	—163.0 —	4.0-							X	•		15						
	-	-							M									
	-	-	core	sing														
	 162.5 	4.5-	Vibracore	H-Casing		4.50 m to 7.50m: Trace gravel	Nf											
	-	-																
		5.0=																
Note	es:	0.0																

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH16-R043

Sheet 2 of 2

167.00 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Datum: NAD83

Platform: Ground Easting: 528,428.0 m Northing: 7,927,675.0 m

Surface Elevation:

Bottom Elevation: 158.00 m

Total Depth: 9.0 m Logged By: MR

	Con	tracto	or: Bo	art L	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Lo	gg	ed:	10/13/2016		1	gge	d By				9.0 m MR
	Drill	er:	Sa	amue	el Fly	'nn	Hole Diameter (mm): 96	Date Re	vie	we	d :2/10/2017			view					SH/WH
•	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
3/08/2017 11:25		-161.5 -161.0					SAND: Grey to light brown, fine to coarse grained (Continued)	Nf (Continued	Т	×									
IGNINEIN ALL WITH INE LOG NEV 3.0F3 SCHIAWIIGHIES	-	-159.5 -159.0					7.50 m to 9.00 m: Light brown, fine to medium grained sand, no gravel	Nf											
AND GINT LIBRART.GLB LOG TOE BOREHOLE RAIL ALTG	Note	-158.0 -157.5	9.5-		[9.0]		To Target Depth. Drillhole BH16-R043 terminated at 9.0m.						7						

BOREHOLE REPORT

BH16-R044

Easting:

Northing:

Surface Elevation:

Sheet 1 of 1

528,736.0 m

7,926,992.0 m

167.00 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Datum:

Project:

Mary River Expansion Study Stage 2

NAD83

Location:

Proposed Rail Alignment

Platform: Ground **Bottom Elevation:** 162.50 m

Total Depth: 4.5 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Date Logged: 10/28/2016 Logged By: CS Vance Madden Hole Diameter (mm): 96 Date Reviewed: 2/10/2017

	Dri	ller:	Va	nce	Mad	den	Hole Diameter (mm): 96	Date R	eviev	ve	d:2/10/2017		Re	view	ed l	Ву:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	: - C	Moisture Content Profile	00 	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
•			- - - 0.5-				SANDY GRAVEL, trace COBBLES: Light brown, fine to coarse gravel , angular to subangular gravel												-
) Permafrost		1.0—						X	N I									-
67	Unobserved due to Permafrost	—165.5 —	1.5 - -			6. C	SAND, some SILT, some GRAVEL: Light brown, rounded to subrounded gravel, medium to coarse grained sand												-
Igr 6/2 3/03/2017 1.	ו	165.0 	2.0— — — — — — 2.5—	Vibracore	H-Casing				X				11						-
IT ICE LOG_NEV 3.GFJ ~~DIAW		 164.0 	3.0-																-
AIL ALIGINIMEIN I ALL_VII			3.5-																-
LOG ICE BUREHULE RA			4.0- - - -		[4.5]				X				16						_
IND GIN I LIBRAN I DEC		—162.5— — — ——162.0	4.5— — — — — — 5.0—				To Target Depth. Drillhole BH16-R044 terminated at 4.5m.												
41	Note																		

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

BOREHOLE REPORT

BH16-R045

528,961.0 m

7,926,756.0 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Platform:

Datum:

NAD83

Ground

Surface Elevation: **Bottom Elevation:**

Easting:

Northing:

Total Depth:

134.25 m 4.5 m

138.75 m

Project:

Location:

Mary River Expansion Study Stage 2

Proposed Rail Alignment

Contra						Rig Type/ Mounting: MiniSonic Rig					28/2016			ogge					C
Driller:		va	псе	iviad	lden	Hole Diameter (mm): 96	Date F	kev	ew	ea:2/1	0/2017		-	eviev	ved I	Βy:			SH/W
Water Flevation (m)	בוכאמנוסוו (ווו	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Co 0	Moisture ntent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
	7.3	0.5—	Vibracore	H-Casing		To Target Depth. Drillhole BH16-R045 terminated at 4.5m.				•			21						
	38	5.0									<u>i i i</u>		<u>_</u>	<u>L</u>	<u> </u>	<u> </u>		<u> </u>	
133	. a a	5.0							_				_						

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-R046

Sheet 1 of 1

133.60 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 10/28/2016

Easting: 529,065.0 m Northing: 7,926,599.0 m

Surface Elevation: 138.20 m

Bottom Elevation:

Total Depth: 4.6 m

Logged By: RS

١٠	ontract	or: Bo	an L	ong	year	RIG Type/ Mounting: MINISONIC RIG	Date	.ogg	jea:	10/28/2016	"	ogge	а ву	:			RS
D	riller:	E.I	Beac	chan	np	Hole Diameter (mm): 96	Date F	Revi	ewe	ed:2/10/2017	R	eviev	ved I	Ву:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Unobserved due to Permafrost	-137.7 -137.2 -136.7 -136.2					SAND, some GRAVEL, trace SILT: Light brown, subrounded to rounded gravel, medium to coarse grained sand SAND and GRAVEL, trace SILT: Fine to medium grained sand SILT: Organics, peat, dark brown, black, organic odour, frozen	Nf Nf	,		•	6						-
DONE DATE TO THE TREE TO THE TANK THE T	- 135.7 - 135.2 - 134.7 - 134.2	2.5— 3.0—	Vibracore	H-Casing		SILTY SAND: Grey, fine to medium grained sand, brown layers	Nbn				40						-
		- 4.5= -		[4.6]		To Target Depth. Drillhole BH16-R046 terminated at 4.6m.											-
5	133 2	50-								<u> i i i </u>							
	133.2	5.0															

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

Notes:

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

-CDrawingFile>> 13:09/2017 11:25

Notes:

BOREHOLE REPORT

BH16-R053

Sheet 1 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 528,238.0 m

Northing: 7,928,027.0 m Surface Elevation: 163.25 m

Bottom Elevation: 157.20 m

Total Depth: 6.1 m

	Con	tracto	or: Bo	art I	ona	vear	Rig Type/ Mounting: MiniSonic Rig	Date Le	oaa	ed:	10/28/2016		otal [ogge					6.1 m RS	
	Drill				ham		Hole Diameter (mm): 96				ed:2/10/2017		eviev						
ł			L.L	Jeac	IIaII			Date K	evie	VVE	:u. 2/10/2017	_	eviev	veu i	эу.			SH/WH	1
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Lype	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	Unobserved due to Permafrost	-162.8 -162.3 -161.8 -160.8 -159.8 -159.8	0.5- - - - - - - - - - - - - - - - - - -	Vibracore Me	H-Casing Ca	Gr.	structure, accessory components. SAND, trace SILT, trace GRAVEL: Light grey to brown, medium to coarse grained sand	Nf		Huse		Telephone and the second of th	Per Control of the Co	- Ber	Der Control of the Co	Πά	Pla Pla		
=		158.3	5.0							_		_							#

BOREHOLE REPORT

BH16-R053

Sheet 2 of 2

528,238.0 m

7,928,027.0 m

163.25 m

157.20 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Ground

Location: Proposed Rail Alignment Datum:

Bottom Elevation:

Surface Elevation:

Easting:

Northing:

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Date Logged: 10/28/2016

Platform:

Total Depth: 6.1 m Logged By: RS

Dril	ler:	E.I	Bead	cham	пр	Hole Diameter (mm): 96	Date F	Rev	iew	ed:	:2/10/2017			view	/ed l	Зу:			SH/WI
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
	- - -	- - -				SAND, trace SILT, trace GRAVEL: Light grey to brown, medium to coarse grained sand (Continued)	Nf (Continue												
-	- 157.8 - -	5.5 -				5.50 m to 6.10 m: Fine to medium grained sand	Nf		X				23						
	- - 157.3	6.0-		[6.1]															
	-	-				To Target Depth. Drillhole BH16-R053 terminated at													
	- - 156.8	6.5-				6.1m.													
	-	-																	
	- - 156.3	7.0-																	
	-	-																	
	- 155.8	7.5-																	
	- - -	-									įįį								
-	- 155.3	8.0-																	
	- - -	-																	
	- 154.8	8.5-																	
-	-	-																	
	- 154.3 -	9.0-																	
	- -	-																	
ļ	153.8 	9.5-																	
	- -	-																	
_	_{153.3} _	10.0																	

BAFFINIAND GINT LIBRARY GLB Log ICE BOREHOLE RAIL ALIGNIMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13.09/2017 11.25

BOREHOLE REPORT

BH16-R067

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Datum: NAD83

Platform: Ground Easting: 535,406.0 m Northing: 7,918,572.0 m

Surface Elevation: 189.00 m

Bottom Elevation: 184.40 m

Total Depth: Logged By:

	Co	ntract	or: Bo	oart L	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	ed:	11/24/2016	- 1		ed By				4.6 m MR
	Dri	ller:	Mi	chae	el Sc	ott	Hole Diameter (mm): 96	Date R	evie	ewe	d:2/10/2017	R	evie	wed	Ву:			SH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		- - - - - - -	0.5-			77 77 77 77 77 77 77 77 77 77 77 77 77	PEAT, with SAND, with GRAVEL, trace COBBLES: Dark brown to black, Organic, medium to coarse grained sand, rounded to subrounded cobbles	Nf										
	Unobserved due to permafrost		1.0- - - - - 1.5-				SAND, trace GRAVEL, trace COBBLES: Dark grey to dark brown, medium to coarse grained sand, rounded to subrounded cobbles	Nf		X		16	3	60	37			-
3/09/2017 11:25	Unobserved d	- - - - - - 187.0	2.0-	1	sing													- - - -
V 3.GPJ < <ur>V 3.GPJ <<ur>V 3.GPJ <</ur></ur>			2.5-	Vibracore	H-Casing					X								-
II ALL_WITH ICE LOG_RE			3.0-															-
BOREHOLE KAIL ALIGNMEN			- - 4.0-															-
RY.GLB Log ICE		- - 184.5	4.5-	1	[4.6]		To Target Depth.											-
AD GIN I LIBRA			5.0-				Drillhole BH16-R067 terminated at 4.6m.											-
3	Note	es:																

Contractor: Boart Longyear

BOREHOLE REPORT

BH16-R068

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/24/2016

Easting: 537,046.0 m

Northing: 7,919,096.0 m Surface Elevation: 183.50 m

Bottom Elevation: 178.90 m

Total Depth: 4.6 m Logged By: MR

0	ontracto	or: Bo	an L	.ong	year	RIG Type/ Mounting: MINISONIC RIG	Date L	.ogg	gea	11/24/2016	-	ogge	d By	:			MR
Dı	iller:	Mi	chae	l Sc	ott	Hole Diameter (mm): 96	Date F	Revi	ew	ed:2/10/2017	R	evie	wed I	Зу:			SH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
W Unobserved due to permafrost	- - - - - - - - - - - - - - - - - - -			H-Casing Ca		SAND: Light brown to yellowish grey, fine to medium grained sand SAND, trace SILT, trace GRAVEL: Dark brown, Organic, fine to medium grained sand	Vx	Reco	Samu Samu Samu Samu Samu Samu Samu Samu		원 42 15 15 15 15 15 15 15 15 15 15 15 15 15		- Be	9A	DIT I	P P R	
100 100 100 100 100 100 100 100 100 100	- - - - - - - - - - - - - - -	4.0-		[4.6]													- - - - - -
	- - - 178.5	-5.0-				To Target Depth. Drillhole BH16-R068 terminated at 4.6m.											-

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

Notes:

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

BOREHOLE REPORT

BH16-R069

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 11/23/2016

Easting: 539,489.0 m

Northing: 7,920,583.0 m Surface Elevation: 152.00 m

Bottom Elevation: 147.40 m

Total Depth: 4.6 m Logged By: UK

	Driller:		E.B	eac	ham	пр	Hole Diameter (mm): 96	Date F	evie	ewe	ed:2/10/2017		Rev	view	ed E	Зу:			SH/WH	
	Water Flevation (m)		Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	0	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	- - - - - 151	1.5	0.5—				Sandy SILT, with GRAVEL, with COBBLES: White to grey, fine grained sand, angular to subangular gravel													-
	- - - 151	1.0	1.0-							X		:	21	19	41	40				-
	- - - - - -	0.5	1.5—																	
gFIIe>> 15/08/2017 11.25	- - - - -		2.0-	Vibracore	H-Casing															-
OG_REV 3.GPJ SSDIAWIII			2.5—							X									-	-
IGINIMEIN I ALL WITH I CE L	- - - 148 -	3.5	3.5-																-	- - -
ICE BUREHULE KAIL AL	- - 148 - -	3.0	4.0-							X										-
INI LIBRARY.GLB LOG		7.5	4.5-		[4.6]		To Target Depth. Drillhole BH16-R069 terminated at 4.6m.													-
INLAIND G	Notes:	7.0	5.0																	ļ

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

Notes:

BOREHOLE REPORT

BH16-R070

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2 Datum:

Location: Proposed Rail Alignment

NAD83

Platform: Ground Easting: 540,273.0 m

Northing: 7,921,201.0 m Surface Elevation: 146.00 m

141.40 m **Total Depth:** 4.6 m

Bottom Elevation:

C	ontract	or: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogg	ged	d: 11/23/2016		1	gge	-				4.6 m MR	
Di	riller:	Mi	chae	l Sc	ott	Hole Diameter (mm): 96	Date F	Revi	ew	ved:2/10/2017		Re	view	ed E	Ву:			SH/WH	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profii	e 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
We control of the con	- - - - -145.5 - - - -	20	Vibracore	H-Casing Ca	B 등 점 Gr	structure, accessory components. PEAT, GRAVELLY SAND: Brown, coarse grained sand SAND, trace GRAVEL: Brown to light brown, fine to medium grained sand, angular to subangular gravel 1.50 m to 3.00 m: Light brown, some silt	Nf Nf Nf		ames X			8 8	O O	19d 84	16 16	Пр	Pla		
	141.0			[4.6]		To Target Depth. Drillhole BH16-R070 terminated at 4.6m.													+

BAFFINLAND GINT LIBRARY.GLB. Log. ICE BOREHOLE. RAIL ALIGNMENT ALL_WITH ICE LOG_REV.3.GPJ. <

-CDrawingFile>> 13:09/2017 11:25

BOREHOLE REPORT

BH17-B001

Sheet 1 of 4

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 529,031.0 m

Northing: 7,916,747.0 m Surface Elevation: 125.00 m

Bottom Elevation: 108.50 m

Total Depth: 16.5 m Logged By:

Co	ontract	or: Bo	art L	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogge	ed:	4/22/2017				d By				UK
	iller:				or Sam					d:6/8/2017				ved E				CH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Lype	Moisture Content Profile 0 50 10	00	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
						SILTY SAND: Brown, fine grained sand	Nf											-
2		1.5- - - -				SAND, trace SILT: Grey, fine grained sand	Nbn											-
	123.0 	2.0-	Sonic Drilling	CASING								26	0	93	7			-
		2.5- - - - 3.0-	Sonic	NO CV														-
	- - 121.5 - -	3.5-																-
	- 121.0 - - -	- 4.0- - - -																-
		4.5-		[5.0]		SILT, trace SAND: Black organics, fine grained sand	Nbn											-
No	tes:	5.0																

Project:

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH17-B001

Sheet 2 of 4

Client: **Baffinland Iron Mines**

Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 529,031.0 m

Northing: 7,916,747.0 m Surface Elevation: 125.00 m

Bottom Elevation: 108.50 m

Total Depth: 16.5 m Logged By: UK

	Contra	acto	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogg	jed:	4/22/2017	- 1		ged E				UK
	Driller	:	En	nile a	and/d	or Sam	Hole Diameter (mm): 100	Date R	evie	ewe	ed:6/8/2017	F	evi	ewed	By:			CH/WH
	Water Elevation (m)	Lievation (III)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 10	Field Water Content	Demont Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
67.11.73	- - - - - - - - - - - - - - - - - - -	9.5 9.0 8.5	5.5				SILT, trace SAND: Black organics, fine grained sand (Continued)	Nbn (Continue Vs				37	· · · · · ·	6	94			-
ALL_WITH ICE LOG_REV 3.GPJ < <drawingfile>> 13/09/201</drawingfile>	- - - - -11 - -	7.5	7.5- - - - 8.0- - - 8.5-	Sonic Drilling	NO CASING		SILTY SAND, trace GRAVEL, trace COBBLES: Dark grey, fine to medium grained, well graded sand; multi-coloured, fine to coarse, rounded cobbles	Vx										-
U GINT LIBRARY.GLB LOG ICE BOREHOLE KAIL ALIGNMENT.	- - - - - - - - - - - - - - - - - - -	6.0	9.0-		[10.0]		8.80 m: Inferred boulders SILT with SAND, trace GRAVEL: Dark grey, fine to coarse grained, well graded sand; multi-coloured, fine to coarse, rounded gravel	-				100		65	5 29			-
5	Notes:	0.0	10.0															

BOREHOLE REPORT

BH17-B001

Easting:

Northing:

Surface Elevation:

Sheet 3 of 4

529,031.0 m

7,916,747.0 m

125.00 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

Notes:

Mary River Expansion Study Stage 2

NAD83

Location: Proposed Rail Alignment Platform:

Bottom Elevation: 108.50 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Ground

Total Depth: 16.5 m Logged By: UK

Date Logged: 4/22/2017

Datum:

Dri	iller:	En	nile a	and/d	or Sam	Hole Diameter (mm): 100	Date R	evi	ew	red: 6/8/2017	F	Revie	wed	Ву:			CH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		10.5-				SILT with SAND, trace GRAVEL: Dark grey, fine to coarse grained, well graded sand; multi-coloured, fine to coarse, rounded gravel (Continued)	Vc										-
	—114.0 — — — — — — — — — — — — — — — — — — —	11.0-				11.00 m to 12.00 m: Large sub-angular cobbles (~ 10 cm) or possible boulders	Vx		X		4:	2 7	30	63			
		12.0-	Sonic Drilling	NO CASING		12.20 m: Inferred boulder	Nf										-
		13.0—	0	2		12.80 m: Grey, inferred boulder			\times		1:	2					-
	- - - - -111.0	14.0-				13.70 m to 16.50 m: Grey, fine grained sand; multi-coloured, fine, rounded gravel			\times								-
		14.5—		[15.0]				-									-

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-B001

Sheet 4 of 4

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 4/22/2017

Easting: 529,031.0 m

Northing: 7,916,747.0 m Surface Elevation: 125.00 m

Bottom Elevation: 108.50 m

Total Depth: 16.5 m Logged By: UK

C	ntracto	or: Bo	an L	ong	year	RIG Type/ Mounting: MiniSonic Rig	Date L	.ogg	jec	d: 4/22/2017		Lo	gge	а ву:				UK
Dr	iller:	En	nile a	and/	or San	Hole Diameter (mm): 100	Date F	Revi	ew	red: 6/8/2017		Re	view	ed E	By:			CH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - - - - - - - - - - - - - - - -	- - - 15.5- - - - 16.0- -	Sonic Drilling	NO CASING		SILT with SAND, trace GRAVEL: Dark grey, fine to coarse grained, well graded sand; multi-coloured, fine to coarse, rounded gravel (Continued)		* * * * * * * * * * * * * * * * * * * *				12						- - - - - - - - - - - - - - - - - - -
		16.5— — — — — — — ———————————————————————			<u> </u>	Drilling Refusal. Drillhole BH17-B001 terminated at 16.5m.					1							
	107.5 	- 17.5- - - -																- - - - - -
	107.0 	18.0— — — — — —																-
		- - 19.0-																 - - - -
	105.5 																	-
	105.0	20.0				<u> </u>												

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25 Notes:

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH17-B002

Sheet 1 of 6

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 4/18/2017

Easting: 529,323.0 m Northing: 7,916,577.0 m

Surface Elevation: 125.00 m **Bottom Elevation:** 99.40 m

Total Depth: 25.6 m Logged By: AΒ

	Drille	r:	Em	nile a	and/d	or Sam	Hole Diameter (mm): 100	Date F	Reviev	ved:6/8/2017		Re	view	ved E	Зу:			CH/WH	
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	- - - - - - -	24.5					SAND, some SILT: Brown, medium to fine grained, well graded sand					19	0	88	12			-	
	-	23.0	2.0	Sonic Drilling	NO CASING													-	
	-	22.0	3.0—				ORGANIC SILT, some SAND: Black, fine grained sand with strong organic odour.	Nbn			,	37	0	16	84			-	
ביין ביינולים ביטן וכב ביינולים ולייני	- - - -	21.0	4.0— 4.5— 4.5—		[5.0]			Nbe Nbn Vx										-	
	Notes:	20.0	5.0		[0.0]			l		<u> </u>			l	<u> </u>		<u> </u>			ŧ

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

Notes:

BOREHOLE REPORT

BH17-B002

Sheet 2 of 6

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

NAD83

Platform: Ground

Datum:

Easting: 529,323.0 m Northing: 7,916,577.0 m

Surface Elevation: 125.00 m

Bottom Elevation: 99.40 m **Total Depth:** 25.6 m

Co	ntracto	or: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogg	ged	d: 4/18/2017			ed By				25.6 m AB
Dri	ller:	En	nile a	and/d	or Sam	Hole Diameter (mm): 100	Date F	Revi	ew	red:6/8/2017	R	evie	wed	Ву:			CH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Wa			Sonic Drilling Met	NO CASING Cas	Grand Control of the		Nbn (Continue		lgmpl Sampl	0 50 100	24			52	Fidn	Plas	
		8.0— 8.5— 9.0—		[10.0]		9.10 m to 12.20 m: Black, medium to fine grained, well graded sand; multicoloured, rounded to subrounded gravel	Nbe Nf										

Project:

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH17-B002

Sheet 3 of 6

Client: **Baffinland Iron Mines**

Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 529,323.0 m Northing: 7,916,577.0 m

Surface Elevation: 125.00 m

Bottom Elevation: 99.40 m

Total Depth: 25.6 m Logged By: AB

Co	ntract	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Logged:	4/18/2017	1		d By				25.6 M AB
Dr	iller:	En	nile	and/	or San		Date Reviewe				ved E				CH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Recovery Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		- - - 10.5- - - - - 11.0-				SILTY and SAND: Brown, fine to coarse grained, well graded sand (Continued)	Nf (Continued)								-
	- - - - - - - - - - - - - - - - - - -	- 11.5- - - - 12.0-							9	3	66	32			-
		- - 12.5- - -	Sonic Drilling	NO CASING		SAND, some SILT, trace to some GRAVEL: Brown, fine to coarse grained, poorly graded sand									-
	—112.0 —	13.0-													-
		14.0- - - - - 14.5-													-
No	110.0 tes:	15.0=		[15.0]											

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

Notes:

BOREHOLE REPORT

BH17-B002

Sheet 4 of 6

Client: **Baffinland Iron Mines**

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground

Date Logged: 4/18/2017

Easting: 529,323.0 m

Northing: 7,916,577.0 m Surface Elevation: 125.00 m

Bottom Elevation: 99.40 m

Total Depth: 25.6 m Logged By: AΒ

D	riller:	En	nile a	and/d	or San	Hole Diameter (mm): 100	Date F	Revi	ew	ed:6/8/2017	R	eviev	ved l	Ву:			CH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - -109.5	- - - - 15.5—				SAND, some SILT, trace to some GRAVEL: Brown, fine to coarse grained, poorly graded sand (Continued)											- - - - -
	- - - -109.0	- 16.0- - -									11	10	70	20			- - - - - -
	108.5 	16.5— — —															- - - -
	108.0 	17.0— — —	Illing	ING													- - - -
	107.5 	17.5— — — —	Sonic Drilling	NO CASING			Nbe		X								- - -
	107.0 	18.0— — —															- - - -
	106.5 	18.5— — — — —				18.60 m to 19.80 m: Some GRAVEL: Multi-coloured, well graded; rounded gravel	Nf		X	•	8	15	66	20			- - - -
		- - - 19.5—															 - - - -
	105.0	20.0—		[20.0]		19.80 m to 21.30 m: Dark brown, fine to coarse grained, well graded sand; fine	Nf										-

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-B002

Sheet 5 of 6

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 4/18/2017

Easting: 529,323.0 m

Northing: 7,916,577.0 m Surface Elevation: 125.00 m

Bottom Elevation: 99.40 m

Total Depth: 25.6 m Logged By: AB

	Contrac	tor: bu	an L	Long	year	RIG Type/ Mounting: MiniSonic Rig	Date L	ogge	ea:	4/18/2017	"	ogge	d By	:			AB
L	Driller:	En	nile a	and/	or San	Hole Diameter (mm): 100	Date R	evie	we	d :6/8/2017	R	eviev	ved I	Ву:			CH/WH
	water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Sample Lype	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		20.5-				to coarse gravel SAND, some SILT, trace to some GRAVEL: Brown, fine to coarse grained, poorly graded sand (Continued)	Nbn										-
		21.0-															
		21.5=				21.30 m to 24.40 m: SILTY SAND, trace GRAVEL: Brown, fine grained sand	Nf										-
	—103.0 - -	22.0-	ling	NG					7								-
,		22.5-	Sonic Drilling	NO CASING													-
	- 102.0 - - -	23.0-															-
		23.5-									15	1	72	27			-
	- 101.0 - -	24.0-															-
	100.5 	24.5-			+ + + + + +	Inferred BEDROCK, grey, rock flour, Granitic	-										-
F	100.0	25.0		[25.0]	+ + + +												

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

Notes:

BOREHOLE REPORT

BH17-B002

Sheet 6 of 6

529,323.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034

Northing: 7,916,577.0 m Project: Mary River Expansion Study Stage 2 Datum: Surface Elevation: 125.00 m NAD83

Bottom Elevation: 99.40 m Location: Proposed Rail Alignment Platform: Ground **Total Depth:** 25.6 m

Date Logged: 4/18/2017 Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Logged By: AΒ

	oi. Do			,	Rig Type/ Mounting. Willisonic Rig		- 3	9	i. 4 /10				33-	и Бу				Al
Driller:	En	nile a	and/d	or San	Hole Diameter (mm): 100	Date I	Revi	ew	ed :6/8/2	2017		Re	view	ved E	Зу:			CH/WF
Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Cor	Moisture ntent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tests
- - - - 99.5	- - - - 25.5-	Sonic Drilling	NO CASING	+ +	Inferred BEDROCK, grey, rock flour, Granitic (Continued)													
- - 99.0	26.0—				Drilling Refusal. Drillhole BH17-B002 terminated at 25.6m.													
	26.5— — — — — — — — 27.0—																	
- - - - -97.5																		
- - 97.0 -	28.0— —																	
- 96.5 - - - - - -	28.5— — — — — 29.0—																	
- - - - - - -95.5	29.5—																	
95.0 Notes:	30.0																	

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

BOREHOLE REPORT

BH17-C001

Sheet 1 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 4/13/2017

Easting: 509,838.0 m Northing: 7,967,861.0 m

Surface Elevation: 74.00 m **Bottom Elevation:** 65.80 m

Total Depth: 8.2 m Logged By: AΒ

				•	•	5		٠.	•				55-	-,				AD
I	Driller:	En	nile a	and/	or Sam	Hole Diameter (mm): 100	Date F	Revi	ew	ved:6/8/2017		Re	view	ed E	Зу:			CH/WH
20,000	vvater Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - -73.5	 0.5 1.0				ORGANICS: Brown, fine grained, black mottling GRAVELLY SAND, some COBBLES: Grey, well graded, fine grained sand; Coarse, rounded to subrounded gravel												
	- 72.5 - - - - 72.0	1.5-				SAND: Multi-coloured, coarse grained, poorly graded 2.10 m: Black mottling	Nf		\times									
	- - -71.5 - - - -71.0	2.5— - - - - - - - 3.0—	Sonic Drilling	NO CASING	ાં પ્રાપ		NE											
	- - - -70.5	3.5-				SAND and SILT, some GRAVEL: Reddish brown, poorly graded, coarse grained sand; coarse, rounded gravel 3.40 m to 3.70 m: Inferred cobbles	Nf Nf					7	14	49	37			
ים בספ וסבי הסויביו סבר ויסויב עדו		4.0-				3.70 m to 6.10 m: Grey, coarse grained, well graded sand; rounded to sub-angular, coarse gravel	INI											
	69.0 lotes:	5.0—		[5.0]					X									

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-C001

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Datum: NAD83

Platform: Ground

Date Logged: 4/13/2017

Easting: 509,838.0 m

Northing: 7,967,861.0 m Surface Elevation: 74.00 m

Bottom Elevation: 65.80 m

Total Depth: 8.2 m Logged By: AB

L	Drille	r:	Em	nile a	and/	or Sam	Hole Diameter (mm): 100	Date Re	evie	ewe	ed:6/8/2017	R	evie	wed	Ву:			CH/WH	
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	- - - - - - -	8.5	- - - 5.5-				SAND and SILT, some GRAVEL: Reddish brown, poorly graded, coarse grained sand; coarse, rounded gravel (Continued) 5.20 m to 5.80 m: Inferred cobbles	Nf (Continue) Nf	d)	X								-	
	- - -6 -	6.80	6.0-)			6.10 m to 7.60 m: No gravel encountered, light brown, fine to coarse grained sand											-	
77.1	- - -	7.5	6.5— - - - - 7.0—	Sonic Drilling	NO CASING													-	- - - -
	- - - - -	6.5	- - - 7.5-				7.30 m: Inferred cobbles		<			3	0	48	52			-	-
	- - - - - - 6	66.0	- - - 8.0-		[8.2]	50000000000000000000000000000000000000	7.60 m to 8.20 m: Grey, fine grained Sand; well-graded, rounded gravel											-	
	- - 6	55.5	8.5— —			2 1 1 1	Drilling Refusal. Drillhole BH17-C001 terminated at 8.2m.											-	
	- 6 - -	55.0	9.0—															-	
	6 	4.5	9.5—															-	
F	Notes:	m.u .	10.0																Ē

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH17-C002

Sheet 1 of 3

116.00 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 519,532.0 m Northing: 7,957,667.0 m

Surface Elevation:

Bottom Elevation: 105.30 m

Total Depth: 10.7 m Logged By: UK

	Contra	ctor	r: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogg	ged	l: 4/13/2017				Jepu d By				UK
	Driller	:	Em	nile a	and/d	or Sam	Hole Diameter (mm): 100	Date R	Revi	ew	ed:6/8/2017		Re	viev	ved I	Зу:			CH/WH
	Water Flevation (m)	בוכאמוסוו (ווו)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - -	5.5	- - - 0.5-				SAND, trace GRAVEL: Brown, fine to medium grained sand; coarse, rounded gravel	Nf											-
	- - - - -11! - -	5.0	- - 1.0- - -			00000	COBBLES and BOULDERS, some SAND, trace GRAVEL: White, subangular cobbles; Inferred boulders	Nf		\times									-
13/03/2017 11.23			1.5-	ing	J.G		GRAVELLY SAND, some SILT: Grey, fine to coarse grained sand; coarse gravel	Nf											-
Carrie Solo Samuel III	- 11: - - - - -		2.5	Sonic Drilling	NO CASING		ICE: Clear to cloudy texture 3.00 m to 9.10 m: White cloudy texture	ICE					10	22	59	19			-
	- - - - 11: -	2.5	3.5																-
GLB LOG ICE BUREHULE RA	- 11: - - - - -		4.0— - - - - 4.5—																-
AIND GINT LIBRART.	Notes:	1.0	5.0		[5.0]														

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

BOREHOLE REPORT

BH17-C002

Sheet 2 of 3

116.00 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 519,532.0 m Northing: 7,957,667.0 m

Bottom Elevation: 105.30 m

Total Depth: 10.7 m Logged By: UK

Surface Elevation:

	Con	tracto	or: Bo	art L	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Logged	: 4/13/2017	1	ged By				10.7 m UK
	Drill	er:	En	nile	and/d	or Sam	Hole Diameter (mm): 100	Date Reviewe	ed:6/8/2017	Revi	ewed	Ву:			CH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Recovery Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	-110.5 -110.0	5.5- - - - - - - - - -				ICE: Clear to cloudy texture (Continued)	ICE (Continued)							
13/US/ZU1/ 11.23	-	-109.5 -109.0	6.5- - - - - 7.0- -	rilling	CASING										
LL_WITH ICE LOG_REV 3.GPJ SSDIAWING	-	-108.5 -108.0	7.5- - - - 8.0- - -	Sonic Drilling	NO CA										
S LOG ICE BUREHULE KAIL ALIGNIMEN I A	-	-107.5 -107.0	8.5- - - 9.0- - - 9.5-				8.80 m to 9.10 m: Ice with silt Inclusions								-
FINLAND GINT LIBRARY.GLB	Note	-106.0	9.5- - - - - 10.0-		[10.0]										

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

Notes:

BOREHOLE REPORT

BH17-C002

Sheet 3 of 3

105.30 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 519,532.0 m Northing: 7,957,667.0 m

Surface Elevation: 116.00 m

Total Depth: 10.7 m

Bottom Elevation:

	Contra	ector:	Boo	rt I /	ากสง	war.	Rig Type/ Mounting: MiniSonic Rig	Date Logged:	4/13/2017	1	otal D ogged					10.7 m
																UK
ŀ	Driller		Emi	ie a	nd/c	or Sam	,	Date Reviewe	d:6/8/2017	_	eview	ed E	By:			CH/WH
	Water Elevation (m)	Denth (m)	nepun (mi)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Description 5 5	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - - -	5.5 1	10.5		NO CASING		ICE: Clear to cloudy texture (Continued)	ICE (Continued)								-
	- - 10	5.0 1	11.0-				To Target Depth. Drillhole BH17-C002 terminated at 10.7m.									- - - - -
67:1	- - -		11.5-													- - - -
ing inches	- - -		12.0-													-
	- - -		13.0													- - - -
755	_ _ _ 	2.5 1	13.5—													-
	-		14.0													- - - -
LOG 101 201 111	- - - -		-													- - -
	- - -		14.5													-
F		1														

BOREHOLE REPORT

BH17-C003

Sheet 1 of 2

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Northing: Surface Elevation:

Bottom Elevation:

Easting:

7,957,541.0 m 118.25 m

520,130.0 m

Location: Proposed Rail Alignment

Platform: Ground

Datum:

109.15 m 9.1 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Date Logged: 4/14/2017

Total Depth: Logged By: UK/AB

Dri	iller:	En	nile a	nd/o	r Sam	Hole Diameter (mm): 100	Date R	evie	wed:6/8/2017	Re	eviev	ved E	Зу:			CH/WH
	(m) r	<u></u>			Log	Soil Description			Moisture	Content	/el	P	s			
_	tior	π) I	р	g	jc	TYPE; plasticity or particle characteristics	Frozen Soil	9)	ater (Gra	Sanc	Fine	i i	ndex	Other

vvalei	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Cont	loisture ent Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tests
	- - - 117.8	0.5-				SILTY SAND: Brown, fine to medium grained sand Inferred BOULDERS, GRAVELLY SAND: Brown, coarse grained sand; Fine to coarse, rounded to sub-angular gravel													
-	- 	1.0— - - - - 1.5—																	
	- - - 116.3 -	2.0—							\bigotimes										
-	- 	2.5— — — — — — 3.0—	Sonic Drilling	NO CASING															
	- - - - 114.8	3.5—				GRAVELLY SILTY SAND: Grey, coarse grained, poorly graded sand; Multi-coloured, coarse, rounded gravel			\times	•			7	33	46	21			
	- 114.3 - - -	4.0-				4.00 m to 4.60 m: Inferred boulders													
-		4.5— — — — — 5.0—		[5.0]	0 6	SILTY SAND, trace GRAVEL: Light brown, well graded sand	Nf												

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

Notes:

BOREHOLE REPORT

BH17-C003

Sheet 2 of 2

520,130.0 m

7,957,541.0 m

118.25 m

109.15 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

NAD83

Platform: Ground

Date Logged: 4/14/2017

Datum:

Bottom Elevation:

Easting:

Northing:

Surface Elevation:

Total Depth: 9.1 m

Logged By: UK/AB

Di	riller:	En	nile a	and/d	or Sam	Hole Diameter (mm): 100	Date Reviewed: 6/8/2017		Re	view	ed B	y:			CH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Sar Re	ture Profile 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	-				SILTY SAND, trace GRAVEL: Light brown, well graded sand (Continued)	Nf (Continued)								
		5.5 -						 	24	4	73	23			-
		6.0-				6.10 m to 9.10 m: Some cobbles, rounded to sub-rounded, multi-coloured,									- - - -
	111.8 	6.5 -				up to 10 cm diamater									- - - -
		7.0-						 							- - -
	110.8 	7.5—	Sonic Drilling	NO CASING											-
	110.3 	8.0- - -				7.90 m: Sand changes from light brown to reddish									-
	109.8 	8.5— - -													-
	109.3	9.0-							9	9	57	34			-
1	_ _ _ 108.8	9.5-				To Target Depth. Drillhole BH17-C003 terminated at 9.1m.									-
	-	- - -		[10.0]											
=	108.3	10.0	_	_					_						-

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-C004

Sheet 1 of 3

116.30 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

NAD83

Platform: Ground

Date Logged: 4/14/2017

Datum:

Easting: 520,486.0 m Northing: 7,956,367.0 m Surface Elevation:

Bottom Elevation: 105.60 m

Total Depth: 10.7 m Logged By: AΒ

				Ū	,	3 . // po 33 .		-				-99-	•				Ab	
Dr	iller:	En	nile a	and/d	or Sam	Hole Diameter (mm): 100	Date F	evi	ewe	ed:6/8/2017	_	eviev	ved I	Ву:			CH/WH	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
						SAND, some SILT, trace GRAVEL: Grey, well graded, sand; Fine to coarse, rounded to sub-rounded gravel			X								-	
		1.5— 2.0—				1.80 m to 3.0 m: Some cobbles											-	
	_ _ 113.8 _ _ _ _	2.5—	Sonic Drilling	NO CASING				<u> </u>	X								-	
	113.3 	3.0-				SILTY SAND: Light brown, fine to coarse grained, poorly graded sand	Nf										-	-
		3.5—				3.40 m: Inferred boulder			X									-
		4.0— — — —				4.30 m: Inferred boulder											<u>-</u>	
	111.8 	4.5— - - - - 5.0—		[5.0]			Vx											- - -

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

Notes:

BOREHOLE REPORT

BH17-C004

Sheet 2 of 3

105.60 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 520,486.0 m Northing: 7,956,367.0 m

Surface Elevation: 116.30 m

Total Depth: 10.7 m

Bottom Elevation:

c	ontract	or: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Logge	ed:	4/14/2017		gge	-				AB	
	riller:	En	nile a	and/d	or Sam	Hole Diameter (mm): 100	Date Revie	we	ed:6/8/2017	Re	view	ed E	Ву:			CH/WH	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	046	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
		5.5				SILTY SAND: Light brown, fine to coarse grained, poorly graded sand (Continued)	Nf (Continued)									-	
	- - - - -108.8	- - - 7.5-	Sonic Drilling	NO CASING		7.20 m: Inferred Boulder SILTY SAND, trace GRAVEL: Brown,				30	9	75	17			-	
	- - 108.3 - -	8.0- - -		_		well graded sand, multi-coloured, fine, rounded to subangular gravel										-	
	- 107.8 - - - - - - - - - 107.3	8.5- - - - - - 9.0-														-	
		9.5-		[10.0]		9.10 m to 9.80 m: Some inferred fragmented cobbles				10	8	60	32			-	

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-C004

Easting:

Sheet 3 of 3

520,486.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 4/14/2017

Northing: 7,956,367.0 m Surface Elevation: 116.30 m

Bottom Elevation: 105.60 m

Total Depth: 10.7 m Logged By: AB

	Contract	or: Bo	an L	.ong	year	RIG Type/ Mounting: MiniSonic Rig	Date Logged: 4/14/2017						ogge	AB				
	Driller:	En	nile a	and/d	or Sam	Hole Diameter (mm): 100	Date F	Reviewed By:						CH/WH				
	Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - -105.8	10.5—		NO CASING		SILTY SAND, trace GRAVEL: Brown, well graded sand, multi-coloured, fine, rounded to subangular gravel (Continued)			X									
		11.0-				To Target Depth. Drillhole BH17-C004 terminated at 10.7m.												-
	- 104.8 -	11.5 																-
		12.0-																
6	103.8 	12.5— — —																-
		13.0-																_
	102.8 	13.5— —																-
1		14.0-																
110000		14.5—																-
: : : :	101.3	15.0																-
. 1																		

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

Notes:

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.25

Notes:

BOREHOLE REPORT

BH17-C005

Sheet 1 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 4/14/2017

Easting: 525,227.0 m

Northing: 7,938,527.0 m Surface Elevation: 185.00 m

Bottom Elevation: 175.90 m

Total Depth: 9.1 m Logged By: UK

C0	ontracto	or : Bo	art L	.ong	year	RIG Type/ Mounting: MINISONIC RIG	Date L	ogg	gec	d : 4/14/2017		LC	gge	ву				UK	
Dr	iller:	En	nile a	and/	or Sam	Hole Diameter (mm): 100	Date F	levi	ew	wed:6/8/2017		Re	view	ed E	Зу:			CH/WH	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	- - - -184.5	0.5-				SILTY SAND: Grey, fine grained, poorly graded	Nf											-	
	184.0 	1.0-				ICE and SILTY SAND: Ice rich, grey,	Nbn Vr		\bigotimes									-	-
		2.0-	6			poorly graded sand												-	
	- 182.5 - - -	2.5— — — —	Sonic Drilling	NO CASING					X									-	-
	——182.0 ————————————————————————————————————	3.0- - - - - 3.5- -				SILTY SAND, some GRAVEL: Grey, fine to coarse grained sand; coarse, rounded to subrounded, well graded gravel.	Nf											-	
		4.0— - - - - 4.5—							X									-	
	180.0	 - - - 5.0-		[5.0]		4.60 m to 6.10 m: Some cobbles, trace boulders	Nbn												

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-C005

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

NAD83

Platform: Ground

Date Logged: 4/14/2017

Datum:

Easting: 525,227.0 m Northing: 7,938,527.0 m

185.00 m **Bottom Elevation:** 175.90 m

Surface Elevation:

Total Depth: 9.1 m Logged By: UK

	Contr	acto	or: Bo	an L	.ong	year	RIG Type/ Mounting: MiniSonic Rig	Date Logg	ea	1: 4/14/2017		Lo	gge	а ву	:			UK
L	Drille	r:	En	nile a	and/	or San	Hole Diameter (mm): 100	Date Revie	w	ed:6/8/2017		Re	view	ved E	Зу:			CH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - - - -	79.5	5.5-				SILTY SAND, some GRAVEL: Grey, fine to coarse grained sand; coarse, rounded to subrounded, well graded gravel. (Continued)	Nf (Continued)	X	•		7	19	57	24			-
	- - -	79.0	6.0— — — — —															-
2000	-	78.0	- - - 7.0- -						X									-
	- - 1 - -	77.5	- 7.5- - - -	Sonic Drilling	NO CASING				\									-
	- - -	77.0	8.0— — — — 8.5—				8.50 m to 8.80 m: Some sand	Nbn	X									-
NETICE 1311	- - - 1	76.0	9.0-				To Target Depth.											-
כווין בובוייייייייייייייייייייייייייייייי	- - -	75.5	9.5—		[10.0]		Drillhole BH17-C005 terminated at 9.1m.											-
ŧ	1	75.0	10.0						_				_					

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25

Notes:

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-C006

Easting:

Sheet 1 of 3

527,315.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 4/15/2017

Northing: 7,932,504.0 m

Surface Elevation: 178.60 m **Bottom Elevation:** 167.90 m

Total Depth: 10.7 m Logged By: AΒ

Dr	iller:	Em	nile a	and/d	or Sam	Hole Diameter (mm): 100	Date R	eviev	/ed : 6/8/2017	R	eviev	ved E	Ву:			CH/WH
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		0.5-				SILTY SAND, inferred BOULDERS: Grey, fine grained, poorly graded sand; grey boulder fragments		×								_
		1.0— 1.5—														-
	176.6 	2.0—	Sonic Drilling	CASING				X								_
	— 176.1 — — — — 175.6 —	2.5	Sonic I	NO CA		SAND and SILT, some GRAVEL, ICE Inclusions: Brown sand; multi-coloured, fine, rounded gravel	Vr									-
I	175.1 	3.5— — — — 4.0—					Vc	X		14	19	43	38			-
	- - -174.1 - - - - 173.6	4.5— - - - - - - - 5.0—		[5.0]												

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:25 Notes:

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:26

BOREHOLE REPORT

BH17-C006

Sheet 2 of 3

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 527,315.0 m

Northing: 7,932,504.0 m Surface Elevation: 178.60 m

Bottom Elevation: 167.90 m

Total Depth: 10.7 m Logged By: AB

	Contrac	ctor: Bo	oart l	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Log	ge	ed: 4/15/2017			otai L ogge	-				AB
	Driller:	Er	nile	and/	or Sam	Hole Diameter (mm): 100	Date Rev	iev	wed:6/8/2017		Re	view	ed E	By:			CH/WH
	Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - - - - - - - - - - - - - - - -					SAND and SILT, some GRAVEL, ICE Inclusions: Brown sand; multi-coloured, fine, rounded gravel (Continued)	Vr (Continued) Nbe										
15/09/2017 11:20	— 172.1 - - - - - 171.6 - -		rilling	CASING		SILT and SAND, inferred BOULDERS: Light brown silt; fine grained, well graded sand; grey boulder fragments		XX									
ALL_WITH IOE LOG_REV 3.0F3 SSDIAWIIIGH		6 8.0-	Sonic	NO CA		GRAVELLY SAND and SILT, ICE Inclusions: Light brown silt; angular gravel; possible boulders	Vx	IXXX			16	22	42	27			
GLB LOG ICE BUREHULE KAIL ALIGNIMEN I	- 169.6 	6 9.0-	-				Vr										
AND GIN LIBRART.	168.6 Notes:			[10.0]	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												

BOREHOLE REPORT

BH17-C006

Sheet 3 of 3

527,315.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2 Datum: NAD83

Location: Proposed Rail Alignment Platform:

Ground

Northing: 7,932,504.0 m Surface Elevation: 178.60 m

Bottom Elevation: 167.90 m

Total Depth: 10.7 m

Continuo	tor: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date I	_og	ged	d: 4	4/15/2017		Lo	gged	d By	:			AB
Driller:					Hole Diameter (mm): 100	Date I	Revi	iew	ed:	6/8/2017			view	ed E	Зу:			CH/WH
Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	°	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
- - - - - 168.1	- - - 10.5-	Sonic Drilling	NO CASING		GRAVELLY SAND and SILT, ICE Inclusions: Light brown silt; angular gravel; possible boulders (Continued) 10.40 m to 10.70 m: Inferred Boulders	Vx (Continue												
- - -167.6 - - - - -	- 11.0- - - - - 11.5-		[10.7]	1115	To Target Depth. Drillhole BH17-C006 terminated at 10.7m.													
- - - - -166.6	12.0-																	
166.1 165.6	12.5-																	
- - 165.1	13.5-																	
- - 164.6 - - -	14.0-																	
164.1 	14.5-																	

Project:

BAFFINIAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNIMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13.09/2017 11:26

Notes:

BOREHOLE REPORT

BH17-C006B

Sheet 1 of 2

Client: **Baffinland Iron Mines**

Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment Project No.: H352034

Datum: NAD83

Platform: Ground Easting: 528,253.0 m

Northing: 7,929,081.0 m Surface Elevation: $0.00 \; \text{m}$

Bottom Elevation: -6.10 m

Total Depth: 6.1 m

	Contrac	etor: Bo	ort I	ona	voor	Rig Type/ Mounting: MiniSonic Rig	Dato I	000	nod.	• 4/17/2017	1	otal D					6.1 m	
										: 4/17/2017		ogged					UK	
ŀ	Driller:		nile a	and/d	or Sam	Hole Diameter (mm): 100	Date R	evi	ewe	ed:6/8/2017	+	eview	ed E	By:			CH/WH	
	Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	- - - - 0.5	0.5-				SILTY SAND, some COBBLES: Brown, fine grained sand; rounded to sub-rounded cobbles	Nf										_	- - - -
	- 1.0 - - - - - 1.5	1.0-				SILTY SAND: Reddish brown, fine to medium grained sand	Nf										-	
24:1:1:25:20:00:00:00:00:00:00:00:00:00:00:00:00:	- - - 2.0	2.0-	rilling	SING			Nbn										- - -	
J L L C C		2.5- - - - - 3.0-	Sonic Drilling	NO CASING													-	
	- - 3.5 - - -	3.5- - - -	-				Nbn										<u>-</u>	
Old Electricity and the second	4.0 	4.0-	-	[5.0]				;									-	- - - - -
ŧΕ	-5.0	5.0				<u> </u>		_										-

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-C006B

Sheet 2 of 2

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 4/17/2017

Easting: 528,253.0 m

Northing: 7,929,081.0 m Surface Elevation: 0.00 m

Bottom Elevation: -6.10 m

Total Depth: 6.1 m Logged By: UK

Dri	ller:	En	nile a	and/	or San	Hole Diameter (mm): 100	Date I	Rev	iew	ed:6/8/201	7		Re	eviev	ved I	3v:			CH/WH
						Soil Description							_			- , .			OI I/VVII
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moi Conten	sture It Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	-			批	SILTY SAND: Reddish brown, fine to medium grained sand (Continued)	Nf (Continue												
	-	-	ρ	G															
		5.5	Sonic Drilling	NO CASING															
	- -	-	Sonic	9															
	-	-									ii								
	-6.0	6.0-		[6.1]															
	-	-				To Target Depth. Drillhole BH17-C006B terminated at													
	6.5	6.5-				6.1m.													
	-	-																	
	-	-																	
	7.0	7.0								i	iί								
	-	-																	
	-	-																	
	 -7.5	7.5—																	
	-	-																	
	8.0	8.0-																	
	- -	-								i	i i								
	- -	-																	
	8.5 	8.5-																	
	-	-																	
	9.0	9.0-																	
	-	-																	
	-	-								j									
	9.5	9.5-																	
	-	-																	
		-								 									
Vote	es:	10.0																	
NOTE	es:																		

Contractor: Boart Longyear

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ «CDrawingFile» 13.092017 11.28

Notes:

BOREHOLE REPORT

BH17-C007

Sheet 1 of 1

127.40 m

Client: **Baffinland Iron Mines** Project No.: H352034

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground

Date Logged: 4/22/2017

Easting: 528,564.0 m Northing: 7,917,138.0 m

Surface Elevation: 132.00 m

Total Depth: 4.6 m Logged By:

Bottom Elevation:

AB

	Contra	ctor: E	oan	Lon	gyea	ır	RIG Type/ Mounting: WilniSonic Rig	Date L	ogg	jea	d: 4/22/2017		LC	gge	аву	:			AB
L	Driller:	E	mile	and	or S	Sam	Hole Diameter (mm): 100	Date F	evi	ew	ved:6/8/2017		Re	view	ed E	Зу:			CH/WH
	Water Elevation (m)	Depth (m)	Method	Casing	o daga	GIAPING LOG	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - - 131. - - - 131.	0 1.	- - - - - - - - - - - - - - - - - -				ORGANIC SILT, some SAND: Brown sand, dark grey organics, some rootlets		*	X									
	— 130 — — 130 — — 130 — — 129	0 2.	Sonic Drilling	NO CASING			SILT and SAND, trace GRAVEL: Light brown, fine to coarse grained, well graded sand	Nbe Vc	*	X									
	- 129 		-				3.70 m to 4.60 m: Grey, fine grained	Vr											
מוויי בינויסיים במלו וכר מכויביו וכרב		5 4.	-	[4.6			To Target Depth. Drillhole BH17-C007 terminated at 4.6m.		***************************************				14	10	37	53			-
F	127	J. 5.				_													

BOREHOLE REPORT

BH17-C010

Sheet 1 of 1

529,961.0 m

7,916,702.0 m

0.00 m

4.6 m

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Location:

Proposed Rail Alignment

Datum:

Bottom Elevation: -4.60 m

Platform: Ground

Total Depth:

Easting:

Northing:

Surface Elevation:

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Date Logged: 4/20/2017

Logged By: AΒ

Water Elevation (m)				or Sam	Hole Diameter (mm): 100		_		ed:6/8/2017		_		ed E				CH/WH
Water	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
-	-				SAND, trace SILT, trace GRAVEL: Brown, very dense, fine to coarse grained sand, well graded	Nf											
	0.5-							X									
	1.0- - - -																
	1.5-					Nbe											
	2.0-	Sonic Drilling	NO CASING														
- 2.5 - - -	2.5— — —	So	N								14	1	88	11			
	3.0-					Nf											
	3.5—							X			15	0	90	9			
	4.0— — — —																
-4.5	4.5-		[4.6]		To Target Depth.												
-5.0	5.0				Drillhole BH17-C010 terminated at 4.6m.												

BOREHOLE REPORT

BH17-C011

Easting:

Northing:

Surface Elevation:

Bottom Elevation:

Sheet 1 of 1

Client: **Baffinland Iron Mines**

Project No.: H352034

Project:

Mary River Expansion Study Stage 2

NAD83

Location:

Proposed Rail Alignment

7,917,478.0 m 168.00 m 163.40 m

532,072.0 m

Platform: Ground

Datum:

Total Depth:

	Cont	tracto	or: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	og	ged	l:	4/19/2017			d By				UK
	Drille	er:	En	nile a	and/	or San	Hole Diameter (mm): 100	Date R	evi	ew	ed:	6/8/2017	R	evie	wed	Ву:			CH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-		-				SILTY SAND: Dark brown, organic	Nf											
	- - -	-167.5 -167.0					SILTY SAND, trace COBBLES: Brown, fine grained sand, rounded to subrounded cobbles	Nf		\times									-
	-	-166.5	1.5-				1.50 m to 3.0 m: No cobbles	Vs											+
	-		-				encountered	Vr											-
017 11:26	-	-166.0	2.0-	ВL	g														
GNMENT ALL_WITH ICE LOG_REV 3.GPJ < <drawingfile>> 13/09/2017 11:26</drawingfile>	-		- -	Sonic Drilling	NO CASING														-
l < <drawingf< td=""><td>-</td><td>-165.5</td><td>2.5-</td><td>o)</td><td>2</td><td></td><td></td><td></td><td></td><td>\bigotimes</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>†</td></drawingf<>	-	-165.5	2.5-	o)	2					\bigotimes									†
REV 3.GPJ	-	-165.0	3.0-																-
TH ICE LOG	-		-																-
IT ALL_WIT	F	-164.5	3.5-					Nbn											_
ALIGNME	-		- -																 - -
HOLE RAIL	-	-164.0	4.0-							X			17	0	76	24			
IBRARY.GLB LOG ICE BOREHOLE RAIL ALI	F		-							M									
GLB Log		-163.5	4.5-		[4.6]														_
BRAR	-		-				To Target Depth. Drillhole BH17-C011 terminated at												

BAFFINLAND GINT LIBRARY.GLB | Notes:

Client:

BAFFINLAND GINT LIBRARY.GLB LOG ICE BOREHOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13/09/2017 11:26

BOREHOLE REPORT

BH17-C012

Sheet 1 of 1

533,228.0 m

Baffinland Iron Mines Project No.: H352034

Project: Mary River Expansion Study Stage 2 Datum: NAD83 Northing: 7,918,553.0 m
Surface Elevation: 182.66 m

Location:Proposed Rail AlignmentPlatform:GroundBottom Elevation:178.06 mTotal Depth:4.6 m

 Contractor:
 Boart Longyear
 Rig Type/ Mounting:
 MiniSonic Rig
 Date Logged:
 4/19/2017
 Logged By:
 UK

 Driller:
 Emile and/or Sam
 Hole Diameter (mm):
 100
 Date Reviewed:6/8/2017
 Reviewed By:
 CH/WH

	Oriller:	:	Em	nile a	and/	or Sar	n Hole Diameter (mm): 100	Date F	Revie	wed:6/8/2017		Re	view	ved I	Ву:			CH/WH	
10/0401	Vater Flevation (m)	Elevation (III)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Moisture Content Profile	100	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	- - - - 18:	32.2	0.5-				SILTY SAND: Dark grey, fine grained sand	Nf											 - - - -
	- 18' - - -	31.7	1.0— - - - -																
	18 ⁻ 180	31.2	1.5					Vx											
	 - - -	30.2	2.5—	Sonic Drilling	NO CASING		ICE: White, cloudy texture	ICE											
	- 179 - - -	79.7	3.0				GRAVELLY SILT and SAND: Brown, fine grained sand; coarse, angular to sub-angular gravel	Nf											
	-	79.2	3.5—																- - - -
10.10.10.10.10.10.10.10.10.10.10.10.10.1	178 - - - -		4.0— — — — 4.5—		Mes							8	25	35	40				+
	- - - -	77.7	- - - 5.0-		[4.6]		To Target Depth. Drillhole BH17-C012 terminated at 4.6m.												- - - -
N	lotes:																		

BAFFINIAND GINT LIBRARY GLB Log ICE BOREHOLE RAIL ALIGNIMENT ALL_WITH ICE LOG_REV 3.GPJ <<DrawingFile>> 13.09/2017 11:26

BOREHOLE REPORT

BH17-C013

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Proposed Rail Alignment

Datum: NAD83

Platform: Ground Easting: 534,196.0 m

Northing: 7,918,569.0 m Surface Elevation: 182.20 m

Bottom Elevation: 177.60 m

Total Depth: Logged By:

	Con	tracto	or: Bo	art L	_ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogg	jed:	: 4/18/2016	- 1	ogo.		-				4.6 m UK
	Drill	er:	Er	nile	and/	or San	Hole Diameter (mm): 100	Date F	Revi	ewe	ed:6/8/2017	F	Revi	ewe	ed B	By:			CH/WH
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 50 100	Field Water Content	Derrent Gravel	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	-181.7 -181.2					SAND and SILT, some GRAVEL: Brown, fine grained sand; coarse, sub-rounded to rounded gravel	Nf	,			14	4 1.	22 .	43	46			-
13/03/2017 11.20	-	-180.7 -180.2	1.5-	Sonic Drilling	CASING		ICE and SILTY SAND: Grey, fine grained sand, stratified to irregular oriented ice formation	ICE + SOIL		X									-
יייייייייייייייייייייייייייייייייייייי	-	-179.7 -179.2	- 2.5- - - - - 3.0-	Sonic	OON														-
	- - - -	-178.7	3.5-																- - - - - -
LB LOG ICE BUREHULE RAIL	- - -	-178.2 -177.7	4.0- - - - - 4.5-		[4.6]														-
בובונים: כ	-	= 177.2			[+.0]		To Target Depth. Drillhole BH17-C013 terminated at 4.6m.												
5	Note	s:	0.0																

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Notes: Hole not located directly on abutment.

BOREHOLE REPORT

BH17-BR86-1

Sheet 1 of 4

Client: **Baffinland Iron Mines Corporation** Project No.: H353004

Project: Mary River Expansion Project

Location: North West Abutment

Datum: NAD83

Platform: Ground Easting: 542,257.3 m

Northing: 7,922,181.7 m Surface Elevation: 142.93 m

Bottom Elevation: 103.33 m

Total Depth: 39.6 m

١,	Contra	cto	r: Bo	art L	.ona	vear	Rig Type/ Mounting: MiniSonic Rig	Date L	.oac	aed	l: 10/1/2017	1	otal E ogge	-				39.6 m R.S
	Oriller:				_	ndrew	Hole Diameter (mm): 100 mm				ed:2/10/2018		eviev					H.G
							Soil Description					_						11.0
20,40,40	Vvater Flevation (m)		Depth (m)	Method	Casing	Graphic Log	TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 25 50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-		-			禁	Sandy GRAVEL, trace Silt: Brown.	unfrozen										
	- 141 -	1.9	1.0-				SAND, trace Silt: Brown to greyish-brown, medium to fine grained, well graded. Ice poor soil.	Nbn										
	- 140 -	0.9	2.0-															
	- 139 -	9.9	3.0-															-
	- 138 - -	8.9	4.0-															ļ
	- 137 - -	7.9	5.0— —				ICE	ICE										
	- 136	6.9	6.0-															-
	- - - 135	5.9	7.0-				SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine grained. Ice poor soil.	Nbn										- - - - -
	- - -134 - -	4.9	8.0— - - -															- - - - -
	- 133 - - -	3.9	9.0-															- - - -
	132 	2.9	10.0-															 - - -
H	131	1.9 I	11.0		_	Harla.	1											

Project:

BOREHOLE REPORT

BH17-BR86-1

Sheet 2 of 4

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Location: North West Abutment Project No.: H353004

Datum: NAD83

Platform: Ground Easting: 542,257.3 m

Northing: 7,922,181.7 m Surface Elevation: 142.93 m

Bottom Elevation: 103.33 m

Total Depth: 39.6 m

Co	ontracto	or: Bo	art l	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date Logged:	10/1/2017	Lo	gged E	Ву:			R.S
Dr	iller:	Br	ent l	ИсА	ndrew	Hole Diameter (mm): 100 mm	Date Reviewed	! :2/10/2018	Re	viewe	l By:			H.G
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description Sample 1/ye	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		- - 12.0- - - -				SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine grained. Ice poor soil. (Continued)	Nbn (Continued)							- - - - - - - - - -
	129.9 	13.0— — — — — — — — — — — — — — — — — — —												+ - - - - -
		15.0— - - - - - 16.0—												-
														- - - - - -
	_ 124.9 _ _ _ _ _	- 18.0- - - -												- - - - - -
	123.9 	19.0-												
	- - 121.9 - -	21.0-												 - - - - - -
	120.9	22.0-												-

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Notes: Hole not located directly on abutment.

Project:

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-1

Sheet 3 of 4

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Rig Type/ Mounting: MiniSonic Rig

Location: North West Abutment Project No.: H353004

Datum: NAD83

Platform: Ground

Date Logged: 10/1/2017

Easting: 542,257.3 m

Northing: 7,922,181.7 m Surface Elevation: 142.93 m

Bottom Elevation: 103.33 m

Total Depth: 39.6 m Logged By: R.S

	Contrac	ior: BC	Jail L	Long	year	Rig Type/ Mounting: Minisonic Rig	Date Logged: 10/1/2017		Log	ggea	ву:				R.S	
-	Driller:	Br	ent N	VICA:	ndrew	Hole Diameter (mm): 100 mm	Date Reviewed: 2/10/2018		+ -	viewe	ed By	y:			H.G	
	Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description Percentage Program Profile Content Pro	50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	- 119.1 - 119.1 - 118.1 - 117.3 - 116.1	24.0- - - - - - - - 25.0- - -				SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine grained. Ice poor soil. (Continued)	Nbn (Continued)								-	
SCHIAMINGFIRES US/US/2016 16.2/	- - - - - - - - - - - - - - - - - - -	-													-	
NIM SO RAIL BRIDGE ABUTIMENTO.GPJ	—113.9 ————————————————————————————————————	30.0-	-			29.30m to 29.4m: Some fine gravel.									-	
RARY VI.UI.GLB LOG ICE BUREHULE	— 110.9 —— 109.9	32.0-													-	

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Notes: Hole not located directly on abutment.

BOREHOLE REPORT

BH17-BR86-1

Sheet 4 of 4

Client: Baffinland Iron Mines Corporation Project No.: H353004 Easting: 542,257.3 m

Project: Mary River Expansion Project Datum: NAD83 Northing: 7,922,181.7 m

Surface Elevation: 142.93 m

Location:North West AbutmentPlatform:GroundBottom Elevation:103.33 mTotal Depth:39.6 m

Contractor:Boart LongyearRig Type/ Mounting:MiniSonic RigDate Logged:10/1/2017Logged By:R.SDriller:Brent McAndrewHole Diameter (mm):100 mmDate Reviewed: 2/10/2018Reviewed By:H.G

	Dri	ler:	Bre	ent N	ЛсAr	idrew	Hole Diameter (mm): 100 mm	Date F	levi	iew	ed:2/1	0/2018		Re۱	∕iew	ed E	By:			H.G
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Co	Moisture ontent Profile	50	rieid water content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		- - - - 108.9 - -	34.0-				SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine grained. Ice poor soil. (Continued)	Nbn (Continue	ed)											-
		- 107.9 - - -	35.0— - - - -				SAND, with SILT: Brown, fine grained. Ice poor soil.	Nbn												-
		106.9 	36.0— — — — — — — —				35.0m to 37.8m: Dark brownish-grey.													-
16:27		- - - - 104.9	38.0—				g),													-
< <drawingfile>> 05/03/2018 16:27</drawingfile>		- - - 103.9 -	39.0—																	-
ABUTMENTS.GPJ < <dre></dre>		- 102.9 - -	40.0— — —				To Target Depth. Drillhole BH17-BR86-1 terminated at 39.6m.				•									-
86 RAIL BRIDGE		- 101.9 - - -	41.0— - - - -																	-
RARY V1.01.GLB Log ICE BOREHOLE KM			42.0— — — — — 43.0—																	-
RARY V1.01.GLB 1	:	- - - -	- - - 44.0-																	-

Notes: Hole not located directly on abutment.

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Project:

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Notes: Hole is directly on North West Abutment.

BOREHOLE REPORT

BH17-BR86-2

Sheet 1 of 4

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Location: North West Abutment Project No.: H353004

NAD83

Platform: Ground

Datum:

Easting: 542,268.6 m

Northing: 7,922,171.3 m Surface Elevation: 142.97 m

Bottom Elevation: 103.37 m

Total Depth: 39.6 m

												1		Depti				39.6 m
9	Contr	racto	or: Bo	art L	ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	ogge	ed:	10/26/2017	Lo	ogge	d By	:		U	.K and R.S
1	Orille	r:	Br	ent N	ИсAı	ndrew	Hole Diameter (mm): 100 mm	Date R	evie	we	d:2/10/2018	Re	eviev	wed I	Зу:			H.G
10/0+01	יישופו	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	Sample Lype	Moisture Content Profile 0 25 50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
TOTAL INTEGER INTEGER THE TREE		142.0 141.0 141.0 141.0 141.0 141.0 141.0		Method	Casing	Graphic	(size, grading, shape, roundness), colour,	Frozen Soil Description unfrozen Nbn Nbn	Recovery Samule Time	- Compa 1yd		14 23 18 37		72 93 91 91	2 7 9 5	Liquid Limi	Plastic Inde	Tests
	-1 -1 - - - -	133.0	10.0— - - - - - 11.0—									22	0	89	11			

Project:

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-2

Sheet 2 of 4

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Rig Type/ Mounting: MiniSonic Rig

Location: North West Abutment Project No.: H353004

Datum: NAD83

Platform: Ground

Date Logged: 10/26/2017

Easting: 542,268.6 m

Northing: 7,922,171.3 m Surface Elevation: 142.97 m

Bottom Elevation: 103.37 m

Total Depth: 39.6 m Logged By: U.K and R.S

Dı	iller:	Bre	ent N	ЛсАr	ndrew	Hole Diameter (mm): 100 mm	Date R	evi	ewe	ed:2/10/2018		Re	view	ed E	Ву:			H.G	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
	- - - - -131.0	- - - 12.0-				SAND, trace to some Silt: Alternating layers of grey sand and brown silty-sand, poorly graded. Ice poor soil. (Continued)	Nbn (Continue	ed)				23						-	
	- - - 130.0	- - 13.0-																-	
	- - 129.0 -	- 14.0- - -																	-
		- 15.0 - -																	-
		16.0— — — —																-	-
	126.0 	17.0— — — — — — —																	
	- - - - -124.0	19.0-																-	-
	- - - -123.0	20.0-										22	0	90	10				
	- - 122.0 -	21.0—																-	-
	121.0	22.0																	Ė

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Project:

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-2

Sheet 3 of 4

Client: Baffinland Iron Mines Corporation

Mary River Expansion Project

Rig Type/ Mounting: MiniSonic Rig

Location: North West Abutment

Project No.: H353004

Datum: NAD83

Platform: Ground

Date Logged: 10/26/2017

Easting: 542,268.6 m

 Northing:
 7,922,171.3 m

 Surface Elevation:
 142.97 m

Bottom Elevation: 103.37 m

Total Depth: 39.6 m Logged By: U.K and R.S

	Contrac	tor: Bo	art L	ong	year	Rig Type/ Mounting: Minisonic Rig	Date Lo	99	ea:	10/26/2017	LC	ogge	а ву			U	.K and R.S
ļ	Driller:	Br	ent N	ИсА	ndrew	Hole Diameter (mm): 100 mm	Date Re	vie	we	ed:2/10/2018	Re	eviev	ved E	Зу:			H.G
	Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Necovery Commission	Sample I ype	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		24.0-				SAND, trace to some Silt: Alternating layers of grey sand and brown silty-sand, poorly graded. Ice poor soil. (Continued)	Nbn (Continued	Т			25						- - - - - - - - - - - - - - - - - - -
		-															
	——116.0 ————————————————————————————————————	-	-														-
		-									26						- - - - - - - -
200000000000000000000000000000000000000		31.0-	-														- - - - - - - -
10000	—111.0 — — — ————110.0	-															

Notes: Hole is directly on North West Abutment.

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-2

Client: **Baffinland Iron Mines Corporation** Project No.: H353004

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Project

Location: North West Abutment

Datum: NAD83

Platform: Ground

Date Logged: 10/26/2017

Easting: 542,268.6 m

Northing: 7,922,171.3 m Surface Elevation: 142.97 m

Bottom Elevation: 103.37 m

Total Depth: 39.6 m Logged By: U.K and R.S

			3)	,	g - /pg		- 3.	J					-990				U	.N allu N.
Oriller:	Bre	nt M	lcAn	drew	Hole Diameter (mm): 100 mm	Date F	Revi	ew	ed:2/10	0/2018		_	eviev	ved E	By:			H.0
Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type		Moisture ntent Profile	50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
	34.0-				SAND, trace to some Silt: Alternating layers of grey sand and brown silty-sand, poorly graded. Ice poor soil. (Continued)	Nbn (Continue												
- - - - - - - - - - - - - - - - - - -	37.0-				37.4m to 39.3m: Trace Organics, dark brownish-grey to black, thin lenses of organics.							27						
	40.0-				SAND, and SILT: Brown, fine grained. \text{lce poor soil.} To Target Depth. Drillhole BH17-BR86-2 terminated at 39.6m.	Nbn				• 		25	0	61	39			
- - -102.0 - -	41.0-																	
	42.0-																	
100.0 	43.0																	

BOREHOLE REPORT

BH17-BR86-3

542.304.8 m

7,922,141.4 m

Client: **Baffinland Iron Mines Corporation**

South East Abutment

Project No.: H353004

Project:

Location:

Mary River Expansion Project

NAD83

Datum: Platform:

Ground

Bottom Elevation: Total Depth:

Logged By:

Surface Elevation:

Easting:

Northing:

103.78 m 39.6 m

143.38 m

Contractor: Boart Longyear

Rig Type/ Mounting: MiniSonic Rig

Date Logged: 10/22/2017

U.K Driller: Hole Diameter (mm): 100 mm Date Reviewed: 2/10/2018 Brent McAndrew Reviewed By: H.G (E) Field Water Conten Soil Description Elevation Ξ Moisture Percent Sand Graphic L Other Method ype Liquid Limit Casing TYPE; plasticity or particle characteristics Content Profile Depth (Frozen Soil **Tests** Water (size, grading, shape, roundness), colour, structure, accessory components. Description 0 25 50 SAND with Gravel, trace Silt: Brown. unfrozen 142.4 1.0 14 21 69 10 SAND, trace to some SILT: Brown and Nbn greysish- brown, medium to fine 2.0grained. Ice poor soil. 23 0 93 3.0 24 0 94 6 5.0 0 89 11 HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27 6.0 6.1m to 9.0m: Colour changes to uniform dark brown. 8.0 26 0 78 22 SAND, trace Silt: Alternating layers of Nbn grey sand and brown silty sand, poorly graded, medium to fine. Ice poor soil.

-133.4

10.0

Project:

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-3

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Rig Type/ Mounting: MiniSonic Rig

Location: South East Abutment Project No.: H353004

Datum: NAD83

Platform: Ground

Date Logged: 10/22/2017

Easting: 542,304.8 m

Northing: 7,922,141.4 m Surface Elevation: 143.38 m

Bottom Elevation: 103.78 m

Total Depth: 39.6 m Logged By: U.K

				. 3		3 7, 3								99-	_,				0.10	
Dr	iller:	Bre	ent N	/IcAr	ndrew	Hole Diameter (mm): 100 mm	Date F	Revi	ew	ed:2/10/	/2018		_	view	ed E	Зу:			H.G	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Cont	Moisture tent Profile	50 —	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
		- - - 12.0- - -				SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine. Ice poor soil. (Continued)	Nbn (Continue						26	0	93	7				
	130.4 	13.0— — — — — — — — — — — — — — — — — — —																		
		15.0— ———————————————————————————————————																		
	- - - - -126.4	17.0—				15.2m to 16.8m: Silty sand layers are dark brown.														
	125.4 	- 18.0— - - -																		
	124.4 	19.0— — — — — — —																		+
	- - - -122.4 -	21.0—																		
	121.4	22.0																		[-

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Location:

BOREHOLE REPORT

BH17-BR86-3

Sheet 3 of 4

Client: **Baffinland Iron Mines Corporation**

Project No.: H353004

Project: Mary River Expansion Project

> South East Abutment Platform:

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig NAD83

Ground

Date Logged: 10/22/2017

Datum:

Easting: 542,304.8 m

Northing: 7,922,141.4 m Surface Elevation: 143.38 m

Bottom Elevation: 103.78 m

Total Depth: 39.6 m Logged By: $\mathsf{U}.\mathsf{K}$

Di	iller:	Br	ent N	ЛсАr	ndrew	Hole Diameter (mm): 100 mm	Date Reviewed: 2/10/2	2018	Re	view	ed E	Зу:			H.G
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Search Processing Page 17 Page 18	oisture ent Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	_ _ _ _ 120.4	23.0				SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine. Ice poor soil. (Continued)	Nbn (Continued)								-
	- - 119.4 - -	24.0—				23.0m to 24.5m: Colour changes to dark brown, layers are now brown and dark brown.									_
	- 	25.0- - - - - - 26.0-													-
	_ - - - 116.4	- - - 27.0-													
	_ _ 115.4 _ _ _	28.0—				27.4m to 30.5m: Colour changes to grey, layers are now light and dark grey.									-
	- 	29.0- - - - - 30.0-							25	0	92	8			
	- - - - -112.4	31.0-				SAND, trace SILT: Brown to grey. Ice poor soil.	Nbn		20	3	32	. 0			
	- - 111.4 - - -	32.0— - - - -													
=	110.4	33.0													

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Project:

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-3

Sheet 4 of 4

Client: Baffinland Iron Mines Corporation P

Mary River Expansion Project

Rig Type/ Mounting: MiniSonic Rig

Location: South East Abutment

Project No.: H353004

Datum: NAD83

Platform: Ground

Date Logged: 10/22/2017

Easting: 542,304.8 m

 Northing:
 7,922,141.4 m

 Surface Elevation:
 143.38 m

Bottom Elevation: 103.78 m

Total Depth: 39.6 m Logged By: U.K

-	ontiact	01. D0	uit L	Jong	ycui	rig Type/ Mounting. Williadine rig	Date	.og;	gc.	u.	10/22/2017		Log	lyeu	IJy.				U.K
D	riller:	Bre	ent N	ЛсАr	ndrew	Hole Diameter (mm): 100 mm	Date F	Revi	ev	vec	d:2/10/2018	_	$\overline{}$	iew	ed E	By:			H.G
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile)	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		34.0—				SAND, trace SILT: Brown to grey. Ice poor soil. (Continued)	Nbn (Continue												
					**************************************	To Target Depth. Drillhole BH17-BR86-3 terminated at 39.6m.													

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <-DrawingFile>> 05/03/2018 16:27

BOREHOLE REPORT

BH18-102-1

Client: Baffinland Iron Mine

Project No.: H353004

Easting: Northing: Surface Elevation:

Bottom Elevation:

555,763.0 m 7,915,435.0 m

Project:

Mary River Expansion Study

NAD83

168.00 m

Location:

Proposed Bridge 102 Abutment

Platform:

Datum:

158.35 m **Total Depth:**

Contractor: Boart Longyear

Rig Type/ Mounting: Sonic Drill Rig

Date Logged: 4/7/2018

9.7 m Logged By: YF/MY

١,	rill	or.	Br	ent N	ΛcΔr	drew	Hole Diameter (mm): 100	Date F	Pov	iow	od.					_ B	ovio	wed	B./-			1171
+			اں	S. IL IV	1071			Date	10 V		Ju.						- AIG	weu l	Jy. □			
10/04	Vale	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	o <u></u>	N Con	Noist tent	Profile	∋ 50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Г	T					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PEAT: Frozen with roots.	Nf			T											
	-		-				GRAVEL: Two boulders.	INI														
	Ė	-167.0	1.0-			• () • • () • (GRAVELLY SAND with COBBLES: Brown.															
HATCH LIBRARY DEVELOPMENT COPY,GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <drawngfile>> 29/08/2018 11:14</drawngfile>		-166.0 -165.0 -164.0 -162.0					Start of Coring at 1.3m. Continued on Rock Core Log sheet.															
SARY DEVELOPMENT O	-	-159.0 -158.0	9.0-									 										
HATCH LIBF	otes		.0.0																			

Baffinland Iron Mine

Mary River Expansion Study

Proposed Bridge 102 Abutment

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A°

Client:

Project:

Location:

BOREHOLE LOG

ROCK CORE FORMAT

Datum:

Platform:

Project No.: H353004

NAD83

Date Logged: 4/7/2018

BH18-102-1

Sheet 2 of 3

Easting:

555,763.0 m

Northing:

7,915,435.0 m 168.00 m

Surface Elevation: **Bottom Elevation:**

158.35 m

Total Depth:

9.7 m

Logged By:

YF/MY

Ι'	Contract	or. bo	arti	Long	year	rkig iyi	Der Mounting: Sonic Drill Rig Bearing: N/A	D	ate Logged:	4///201	0	LO	gged	D BY: YF/MY
L	Driller:	Br	ent I	VICA:	ndrew	Hole Di	ameter (mm): 100 Plunge: °	D	ate Checked	:		Rev	/iew	red By:
14/-4-:	vvater Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	Estimated Strength 표チェヌュヺ급	Is ₍₅₀₎ [UCS] MPa	Defect Spacing mm [001] 09- 00007	RQD %	Defect Log	Defect Description Inclination, type, infill, amount, aperture, planarity, roughness, frequency Specific General
Г	-	-								-				
	- - - 167.0	1.0 —					Resuming in Rock Core Format 1.3m.			- - - -				
2	- - - 166.0 -	2.0 —					BEDROCK: Gneiss, red plagioclase feldspar, coarse to very coarse grained, strong to very strong rock, fresh. 1.73 m: One discontinuity angled approx. 30 deg, black coated, 8 mm black alteration zone.			- - - - -				
3/00/20 10 11:	_ —165.0	3.0 —					2.09 m - 2.31 m: Fractured area. 2.31 m - 2.91 m: Becoming coarser grained.			- - -				
GP3 << DIAWINGFIIE </td <td>- - - 164.0 -</td> <td>4.0 —</td> <td></td> <td></td> <td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td> <td></td> <td>3.00 m: Becoming grey with pink (7 mm) veins, medium grained, strong to very strong. 3.53 m - 3.74 m: Black biotite mica, fractured zone, irregularly oriented 0.5 mm - 5 mm crystals.</td> <td></td> <td></td> <td>- - - - -</td> <td></td> <td></td> <td></td> <td></td>	- - - 164.0 -	4.0 —			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		3.00 m: Becoming grey with pink (7 mm) veins, medium grained, strong to very strong. 3.53 m - 3.74 m: Black biotite mica, fractured zone, irregularly oriented 0.5 mm - 5 mm crystals.			- - - - -				
A - NOTING	- - 163.0	5.0 —					3.74 m - 4.54 m: Quartzo feldspathic gneiss, grey to pink, very strong to strong. 4.54 m - 4.85 m: Potassium feldspar rich,			- - -				
O ECHNICAL INVE	- - - 162.0	6.0 —					pink, fractured zone. 4.85 m - 4.96 m: Possibly chloritized, 2 mm vein, medium grained, medium strong.			- - - -				
GINT LOGS MIN 2010 GE	- - - 161.0 -	7.0 —					4.91 m - 4.93 m: Clay vein, weak. 4.96 m - 5.06 m: Some gneissic banding, red/black fine grained, strong. 5.06 m - 5.26 m: Broken core, clay rich vein, fine to medium grained, red/black, chlorite infilled joints.			- - - - -				
D BONEHOLE	160.0	8.0 —					5.26 m - 6.01 m: Trace potassium feldspar banding, quartz rich, strong grey, fine. 6.06 m - 6.36 m: Quartzo feldspar with			- - -				
NI COPT.GLB LOG CORE	- - 159.0 - -	9.0			``````````````````````````````````````		black biotite banding, potassium feldspar rich, red, chlorite infilled joints. 6.36 m - 6.59 m: Quartz and feldspar, grey. 8.12 m - 8.26 m: Gneiss, grey pink, strong.			- - - - -				
	158.0	10.0 —					8.26 m - 8.30 m: Possible clay zone,			-				

HATCH LIBRARY DEVELOPMENT COPY, GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7. GPJ <-DrawingFile>> 29/08/2018 11:10

Notes:

Defect Description Legend

<u>Planarity</u> Planar Irregular Curved Undulose Stepped

<u>Type</u> DI Jt Pt Sh Cs Drilling Induced Joint Cz
Parting on Contact Fz
Shear Seam Banc
Crushed Seam

Seam Crushed Zone Fractured Zone Weak Band Band

Roughness Rough Smooth Polished Slickenside Ro

Infill Amount Clean Stained Veneer Coating cg

S

Client:

Project:

n (m)

BOREHOLE LOG

ROCK CORE FORMAT

BH18-102-1

Sheet 3 of 3

Easting:

555,763.0 m

Northing:

7,915,435.0 m 168.00 m

Surface Elevation: **Bottom Elevation:**

158.35 m

Total Depth:

9.7 m YF/MY

Logged By:

Reviewed By:

Location: Proposed Bridge 102 Abutment

Mary River Expansion Study

Baffinland Iron Mine

ical

Platform:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° Date Logged: 4/7/2018

Driller: Brent McAndrew Hole Diameter (mm): 100 Date Checked: Plunge:

> **Rock Description** BUCK TABE:

ng/ tion

Datum:

Estimated

Project No.: H353004

NAD83

Is₍₅₀₎

Defect Spacing

Defect Description

Water	Elevation	Depth (m	Method	Run #/TC	Graphic L	Geologi Unit	ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering Cementation	Stren		[UCS] MPa	2000 600 200 [100] B E	RQD %	Defect Log	Inclination, type, infill, amount, aperture, planarity, roughness, frequency
	- - - - -157.0	- - -					possibly chloritized, weak. 8.30 m - 8.61 m: Fine to medium grained, grey. 8.61 m - 8.87 m: Band of quartz to potasium feldspar, coarse grained, pink. Remainder fine to medium grained, grey, possible possible chlorite veins, trace pyrite, black biotite veins.		S I Z	7 7 7	- - - - -	20 60 60 60 60 60 60 60 60 60 60 60 60 60	R		Specific General
	_ 156.0 _ _	12.0 — - -					To Target Depth. Drillhole BH18-102-1 terminated at 9.7m.				- - -				
	_ —155.0 _	- 13.0 — - -									- - -				
	_ 154.0 	14.0 —									- - - -				
	- - 153.0 -	15.0 —									- - -				
	- - 152.0 -	16.0 —									- - - -				
	_ _ 151.0 _ _	17.0 —									- - - -				
	_ 150.0 	18.0 —									- - -				
0	_ _ 149.0 _	19.0 —									- - - -				
	148.0	20.0									-				

Notes:

HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:10

Defect Description Legend

<u>Planarity</u>

Planar Irregular Curved Undulose Stepped

<u>Type</u> DI Jt Pt Sh Cs Drilling Induced Joint Cz Parting on Contact Fz Shear Seam Crushed Seam

Seam Crushed Zone Fractured Zone Weak Band Sm Band

Roughness Rough Smooth Polished Slickenside Ro

Infill Amount Clean Stained Veneer Coating cn sn vn

cg

BOREHOLE REPORT

BH18-102-2

555.674.0 m

7,915,409.0 m

166.00 m

149.10 m

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Proposed Bridge 102 Abutment Platform:

Total Depth:

Easting:

Northing:

Surface Elevation:

Bottom Elevation:

16.9 m Logged By:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Date Logged: 4/8/2018 YF/MY Driller: **Brent McAndrew** Hole Diameter (mm): 100 Date Reviewed: Reviewed By: (E Water Conten Soil Description Elevation Moisture Ξ Graphic L Percent Sand Other Plastic Index Method ype Liquid Limit Casing TYPE; plasticity or particle characteristics Content Profile Depth (Frozen Soil Water Tests (size, grading, shape, roundness), colour, structure, accessory components. Description Sample 0 25 50 Field SAND and GRAVEL: Medium grained Nf sand, brown, slightly moist. inferred GRAVELLY SAND, trace BOULDERS: · O inferred Fine sand, possible boulder dust. 0.0 -165.0 1.0-۰ () ۰ o. 0 GRAVELLY SAND, trace SILT: Medium Nf 2.0 ۰ 0٬ to coarse grained, brownish grey to inferred 0 0 brown, subrounded to subangular. ۰ () ه , O (-163.0 3.0 69 ۰ 0 ο .t 3.40 m and 3.70 m: Cobbles -162.0 4.0 SAND, some GRAVEL, trace SILT: Nf Medium to fine grained, brownish grey. inferred 4.70 m: Inferred boulder. --161.0 5.0-5.00 m and 5.30 m: Cobble. GRAVEL to COBBLES: Mixed igneous / metamorphic, washed. 6.0-5.6m: Organic / sulfur layer. -159.0 7.0--158.0 8.0-Start of Coring at 8.7m. -- 157.0 Continued on Rock Core Log sheet.

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <<DrawingFile>> 29/08/2018 11:14 Notes:

BOREHOLE LOG

ROCK CORE FORMAT

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Proposed Bridge 102 Abutment Platform:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° **Date Logged:** 4/8/2018 Driller: Brent McAndrew Hole Diameter (mm): 100 Plunge:

Date Checked: Reviewed Bv:

BH18-102-2

Sheet 2 of 3

Easting: 555,674.0 m

Northing: 7,915,409.0 m Surface Elevation: 166.00 m

Bottom Elevation: 149.10 m

Total Depth: 16.9 m Logged By: YF/MY

Dr	iller:	Br	ent N	∕lcAn	drew l	Hole Di	ameter (mm): 100 Plunge: °	D	Date	Che	ecked	1:		Re	view	red By:
Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	E ;	Strer	ated ngth	Is ₍₅₀₎ [UCS] MPa	Defect Spacing mm [0001]	RQD %	Defect Log	Defect Description Inclination, type, infill, amount, aperture, planarity, roughness, frequency Specific General
		1.0 —										-				
:10	164.0 	2.0 —										-				
ED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:10	163.0 	3.0 —										- - -				
√- V7.GPJ < <drawing< td=""><td>162.0 </td><td>4.0 —</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></drawing<>	162.0 	4.0 —										-				
CAL INVESTIGATION	161.0 _ _ _ _	5.0										-				
IR 2018 GEOTECHNI	160.0 	6.0 —										-				
EHOLE GINT LOGS N	159.0 	- - -										-				
B Log CORED BORE	—158.0 - - - - - - - - - - - - - -	- - -		9 / 135	,		Resuming in Rock Core Format 8.7m. BEDROCK: Gneiss, visible medium to coarse grains, red, black, and grey,					-		77		Fz
LOPMENT COPY.GL	- - - - - - 156.0	- - -		/6	\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		strong to very strong.					-	-	22		DI DI -10° Jt PI Sm -20° Jt PI Sm Red stains sn Fz
HATCH LIBRARY DEVELOPMENT COPY.GLB Log COR	tes:						Defect Planarity Description Ir Irregular Legend Un Undulose St Stepped	Jt . Pt I Sh :	Drillin Joint Parti Shea	ng or ar Sea	luced Conta am Seam	Cz C act Fz Fi	eam rushed Zone ractured Zone eak Band		Ro Sm Po SI	ughness Infill Amount Rough cn Clean Smooth sn Stained Polished vn Veneer Slickenside cg Coating

Baffinland Iron Mine

Mary River Expansion Study

Proposed Bridge 102 Abutment

Client:

Project:

Location:

BOREHOLE LOG

ROCK CORE FORMAT

BH18-102-2

Sheet 3 of 3

Easting:

555,674.0 m

Northing:

7,915,409.0 m

Bottom Elevation:

Surface Elevation:

166.00 m 149.10 m

Total Depth:

16.9 m

Logged By:

YF/MY

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° Date Logged: 4/8/2018 Brent McAndrew Hole Diameter (mm): 100 Plunge: Date Checked: Reviewed By:

Platform:

Datum:

Project No.: H353004

NAD83

	Dril	ler:	Br	ent N	ИсАr	ndrew	Hole Di	ameter (mm): 100 Plunge: °	D	ate Checked	:		Re	view	ved By:
		(m)			0	go	-	Rock Description		F-4i-		Defect			Defect Description
	Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	Estimated Strength	Is ₍₅₀₎ [UCS] MPa	Spacing mm [100]	RQD %	Defect Log	Inclination, type, infill, amount, aperture, planarity, roughness, frequency Specific General
		-	-		10 / 98			BEDROCK: Gneiss, visible medium to coarse grains, red, black, and grey, strong to very strong. (Continued)			- - -		22		
	-	155.0 	11.0 — - -		11 / 76			10.90 m: Possible porphyriticm, no gneissic banding.			 - -		43	1	Cz —90° Jt PI Sm —40° Jt Cu Sm —70° Jt PI Sm Orange stains sn
	-	- 154.0 - -	12.0 — -		12 / 115						- -		87	1	LDI 75° Jt PI Sm F2 —45° Jt PI Sm Rust staining sn F2
> 29/08/2018 11:10	-	- - 153.0 - -	- 13.0 — -		13 / 115			12.50 m: Two weathered / soft zones / seams at 13.00 m and 13.30 m, 4 mm, one visible joint, non stained.			- - - -		99		_DI √30° Jt PI Sm sn −80° Jt PI Sn cg −50° Jt PI Sm cg Fz
BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <drawingfile>> 29/08/2018 11:10</drawingfile>	-	- - 152.0 -	- 14.0 — -		14/91			13.70 m: Minor gneissic banding, becoming iron stained, black, weak.			- - - -		49		−20° Jt PI Sm ∼75° Jt Cu Ro Rust stain, silt infill sn −DI −70° Jt Cu Sm Rusty infill sn FZ
NVESTIGATION - V7.	-	- - 151.0 - -	- 15.0 — -		15/117 14						- - - -		40		
GEOTECHNICAL II	-	- - 150.0 - -	16.0 —		16 / 106 15			15.70 m: Potassium felspar and quartz rich core, medium grained, red. 16.40 m: Quartz vein, very stained.			- - - -		24		45° Jt Cu Sm Rusty sn Cz 45° Jt Cu Sm sn
INT LOGS MR 2018		- - 149.0 - -	17.0 —					To Target Depth. Drillhole BH18-102-2 terminated at 16.9m.			- - -				45° Jt PI Sm Infill cg \80° Jt PI Sm Rusty sn \DI \50° Jt Cu Sm
	-	- - 148.0 -	- 18.0 — -								- - - -				
COPY.GLB Log CO.	-	- - 147.0 -	19.0 —								- - - -				
VELOPMENT C	Note	- - - 146.0	20.0								-				150.5
HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED	Note							Defect Pl Planarity Description Fl Planar Legend Fl Planar Cu Curved Un Undulose St Stepped	Jt S Pt F Sh S	Drilling Induced Joint Parting on Contac Shear Seam Crushed Seam	Cz Ci ct Fz Fr	eam ushed Zone actured Zone eak Band	'	Ro Sm Po SI	ughness Infill Amount Rough cn Clean Smooth sn Stained Polished vn Veneer Slickenside cg Coating

BOREHOLE REPORT

BH18-BR15-1

Sheet 1 of 3

Client: Baffinland Iron Mine

Project No.: H353004

Project:

Mary River Expansion Study

NAD83

Surface Elevation:

Easting:

Northing:

7,915,441.0 m 78.00 m

555,758.0 m

Location: Bridge 15 (Kilometer 18)

Bottom Elevation: 60.63 m

Platform:

Datum:

Total Depth: 17.4 m

-	ller:	Di	UII.	VICAI	ndrew	Hole Diameter (mm): 100	Date F	(ev	- W	eu	•			viev	veu I	Jу.			
	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	0	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Tests
	-					SNOW	ICE												
	-	-				ICE	ICE												
	 77.0	1.0-																	
	-	-				SILTY SAND, some GRAVEL: fine to medium grained sand, brownish grey.	Nf inferred		N										
	—-76.0 —	2.0-					Possible												
	-	-	-		901		ice feature,						6	34	44	22			
	- 75.0	3.0-					all melted.		7				O	34	44	22			
	-	-			o p														
	- - 74.0	4.0-											11	6	57	37			
		4.0-			9 0	4.20 m - 4.30 m: Boulder inferred with									01	31			
	-	-				silty sand layer.													
	—-73.0 —	5.0-									•		7						
	-	-																	
	- 72.0	6.0-			P D														
	-	-																	
	- 71.0	7.0-			000														
	-	-	1		101	COBBLES and BOULDERS: Cobble at	_												
	-	-	100		3	7.75 m and 8.90 m.													
	—70.0 —	8.0-	Rig BL		9														
	-	-	Drilling								iii								
	 69.0 	9.0-	Mini Sonic Drilling Rig BL100		1916	MUD SLURRY with GRAVEL to COBBLES: Coarse gravel (26 mm).	Nf inferred												
	-		≥		0 9 6	SSSEES. Socios gravor (20 mm).	Illioned												

BOREHOLE REPORT

BH18-BR15-1

Sheet 2 of 3

Client: Baffinland Iron Mine

Project No.: H353004

Project:

Location:

Mary River Expansion Study

Bridge 15 (Kilometer 18)

NAD83

Surface Elevation:

7,915,441.0 m 78.00 m

555,758.0 m

Platform:

Bottom Elevation:

60.63 m

Contractor: Boart Longyear

Rig Type/ Mounting: Sonic Drill Rig

Date Logged: 3/11/2018

Datum:

Total Depth: 17.4 m Logged By: MY/PS

Easting:

Northing:

	Dril	ller:	Bre	ent N	/lcAr	ndrew	Hole Diameter (mm): 100	Date F	Revi	ew	ed:				Re	view	ed E	Зу:			
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	N Cont	Noisture tent Profile	50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
HATCH LIBRARY DEVELOPMENT COPY GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <drawingfile>> 29/08/2018 11:14</drawingfile>	Wate		11.0— 12.0— 13.0— 14.0— 15.0— 16.0— 17.0— 18.0— 18.0— 18.0— 18.0— 18.0— 18.0— 18.0— 18.0— 18.0— 18.0— 18.0— 18.0— 18.0— 18.0—	Meth	Casir		(size, grading, shape, roundness), colour, structure, accessory components.	Description	Recovery	Sample T				50	Field W	Percent	Percent	Percent	T Liquid L	Plastic	rests
LIBRARY DEVELOPMENT CO	Niete		19.0-																		
НАТСН	Note	35.																			

Baffinland Iron Mine

Mary River Expansion Study

Bridge 15 (Kilometer 18)

Client:

Project:

Location:

BOREHOLE LOG

ROCK CORE FORMAT

Datum:

Platform:

Project No.: H353004

NAD83

BH18-BR15-1

Sheet 3 of 3

Easting:

555,758.0 m

Northing:

7,915,441.0 m

Surface Elevation:

78.00 m 60.63 m

Bottom Elevation: Total Depth:

17.4 m

MY/PS

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° **Date Logged:** 3/11/2018 Logged By: Driller: Brent McAndrew Hole Diameter (mm): 100 Date Checked: Plunge: Reviewed By:

	iliei.						ameter (mm). 100 mange.		ate Offeckeu	-				veu by.
Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	Estimated Strength 표天고동그렇급	Is ₍₅₀₎ [UCS] MPa	Defect Spacing mm [007.000 0000 000.000 000.000 000.000 000.000 000.000 000.000 000.000 000.00	RQD %	Defect Log	Defect Description Inclination, type, infill, amount, aperture, planarity, roughness, frequency Specific General
	- - - - - 67.0	- - - - 11.0 —		1 / 130	,		Resuming in Rock Core Format 10.7m. BEDROCK: Granitic gneiss alternating with mafic bands.			- - - -		52		- Fz 3° Jt PI Sm 5° Jt PI Sm
11:10	- - - 66.0 - -	12.0 —		2 / 105			12.58 m: Mafic matrix with white			- - - -		92		DI 40° Jt PI Sm 10° Jt PI Sm cg 90° Jt PI Sm 85° Jt PI Sm 90° Jt PI Ro 90° Jt PI Ro 75° Jt PI Sm
HATCH LIBRARY DE/ELOPMENT COPY.GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <drawngfile>> 29(08/2018 11:10)</drawngfile>	- 65.0 64.0	-		154 3 / 96			minerals peppered throughout, medium grain size.			- - - -		43		Fz 0° Jt PI Sm Soil cg Cz 30° Jt PI Ro Rust staining sn 80° Jt PI Ro Rust staining sn 90° Jt PI Ro Rust staining sn 45° Jt PI Ro Rust st
INVESTIGATION - V7.GPJ	- - - 63.0	- - 15.0 — - -	-	5/101 4/1			14.80 m - 15.85 m: Dark mafic to ultramafic matrix, black visable minerals.			- - - - -		86 92		\\ 30° \text{.if PI} \\ 30° \text{.if PI Sm Darker staining} \\ 0° \text{.if PI Sm} \\ 45° \text{.if PI Sm} \\ 45° \text{.if PI Sm} \\ -70° \text{.if PI Sm} \\ \text{-000} \\ 100 \\ 10
S MR 2018 GEOTECHNICAL	- 62.0 61.0	16.0 — - - - 17.0 —	-	66 / 9			15.85 m - 15.95 m: Granitic gneiss. 15.95 m - 17.22 m: Mafic matrix.			- - - - -		96		– DI ∼45° Jt PI Sm
RED BOREHOLE GINT LOG	_ _ _ _ _ 60.0	18.0 —			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		17.22 m: Mafic matrix with red banding, granitic gneiss. To Target Depth. Drillhole BH18-BR15-1 terminated at 17.4m.			- - - -				_45° Jt PI Sm Some staining, infill cg DI _40° Jt PI Sm Staining sn
MENT COPY.GLB Log CUI	_ _ 59.0 _ _	19.0 — - - -								- - - -				
HATCH LIBRARY DEVELOPING		20.0 —					Defect Planarity Description Ir Iregular Legend Cu Curved Un Undulose St Stepped	Jt J Pt F Sh S	Orilling Induced Joint Parting on Contar Shear Seam Crushed Seam	Cz Cı ct Fz Fı	eam rushed Zone actured Zone eak Band		Ro Sm Po SI	Rough cn Clean Smooth sn Stained Polished vn Veneer Slickenside cg Coating

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <DrawingFile>> 29/08/2018 11:14

Notes:

BOREHOLE REPORT

BH18-BR15-2

Sheet 1 of 3

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study

Location: Bridge 15 (Kilometer 18) Datum: NAD83

Platform:

Easting: 514,211.0 m

Northing: 7,965,645.0 m Surface Elevation: 78.00 m

Bottom Elevation: 61.20 m **Total Depth:**

16.8 m

١.						D. T. (M. 4) O : D : II D:	5			0/40/0040		1	tal E	-				16.8 m
۱,	Contrac	tor: Bo	art L	ong	year	Rig Type/ Mounting: Sonic Drill Rig	Date L	.ogg	jed:	: 3/12/2018		Lo	gge	d By	:			MY/PS
1	Oriller:	Br	ent N	ИсAı	ndrew	Hole Diameter (mm): 100	Date F	Revi	ewe	ed:		Re	view	ed E	Зу:			
10101	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile	50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - -77.0 - - - - -76.0	1.0-				BOULDERS to COBBLES: Grey with red viens. SAND, trace SILT: Fine to medium grained, light brown, red, and black. SANDY SILT: Grey. SILTY SAND, trace to some GRAVEL: Fine to medium grained, brownish grey.	Nf Nbn - Vx				>>•	14 63 9	1 1 29	85 45	14 54			- - - - - - - - - - - - - - - - - - -
	- -75.0 - - - - -74.0 - - - -	3.0- - - - - 4.0- - - - - -				3.90 m: Trace boulders, sub-rounded to rounded gravel and boulders.	Nf Nf inferred					11	14	60	26			- - - - - - - - -
	- - - - -72.0 - - - - - -	6.0-				5.20 m: Some gravel, trace boulders.			KA KA	•		5	22	48	30			- - - - - - - - -
	- - - -70.0 - - - - - - -69.0	8.0— 	Mini Sonic Drilling Rig BL100			7.80 m: Trace cobbles. 8.50 m - 8.70 m: Trace boulders, coarsening downwards, sub-angular to sub-rounded.												- - - - - - - -
	68.0	-				9.45 m - 9.80 m: Boulders, dark matrix with granitic crystals.	Nf											-

Project:

BOREHOLE REPORT

BH18-BR15-2

Sheet 2 of 3

Client: Baffinland Iron Mine

Location: Bridge 15 (Kilometer 18)

Mary River Expansion Study

Project No.: H353004

NAD83

Platform:

Datum:

Easting: 514,211.0 m

Northing: 7,965,645.0 m Surface Elevation: 78.00 m

Bottom Elevation: 61.20 m

Total Depth: 16.8 m

	0	4	D	41			Die Terrel Manustiner Carie Dell Die	Dete I			- 0/40/0040			otal E					16.8 m
	Contra						Rig Type/ Mounting: Sonic Drill Rig				: 3/12/2018			gge					MY/PS
L	Driller	:	Bre	ent N	/lcAr	drew	Hole Diameter (mm): 100	Date R	evie	w	ed:		_	eview	ved E	Зу:			
	Water	Elevation (III)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moistu Content P	rofile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
t		\dashv					10.00 m - 10.15 m: Boulders, dark		1	1									
	F		4				matrix with granitic crystals.	/			ii	i							_
	F		+				Start of Coring at 10.2m. Continued on Rock Core Log sheet.					i							-
	67	7.0	11.0				Communication Noon Core Log Sheet.					l I							1
	F		+																-
	Ĺ		1																
	-		+																-
	-66	3.0	12.0																1
	-		4																-
			1								ii	i							
2	65	5.0	13.0								ii	i							+
3	Ė		1																
	-		4									l I							-
2	١.																		-
	64	+.0	14.0																Ţ
5	F		+																-
5	F		1																
5	63	3.0	15.0																+
			1								ii	i							
5	-		-								ii	i							-
	-62	2.0	16.0									İ							- ‡
	-		+								1 1	l I							-
	Ė		1																
	-		+									ļ							-
	-6	1.0	17.0									ļ							†
	-		+																-
	t																		
	60	0.0	18.0																+
9	F		1								jj	j							E
3	-		+								ii	i							-
3	59	,	19.0																Ţ
	-		.3.0									 							Ŧ
	F		}																-
1	F		7									ļ							-
E	58	3.0	20.0							<u> </u>							<u> </u>		

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:14

Notes:

Baffinland Iron Mine

Brent McAndrew Hole Diameter (mm): 100

Client:

Driller:

BOREHOLE LOG

ROCK CORE FORMAT

Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Bridge 15 (Kilometer 18) Platform:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° **Date Logged:** 3/12/2018

Plunge:

Date Checked:

BH18-BR15-2

Sheet 3 of 3

78.00 m

Easting: 514,211.0 m

Northing: 7,965,645.0 m Surface Elevation:

Bottom Elevation: 61.20 m

Total Depth: 16.8 m Logged By: MY/PS

Reviewed By:

<u> </u>	Jrii	iei.	ы	enti	VICAI	larew	noie Di	ameter (mm): 100 Plunge:	L	ate Che	ckeu	•			Re	view	red By:	
Motor	water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, Resuming MiROCKOCONIE Followat 10.2m.	Weathering/ Cementation	Estima Streng	gth	Is ₍₅₀₎ [UCS] MPa	Spa n	efect acing nm [001]	ROD %	Defect Log	Inclinat amount, a	Description ion, type, infill, perture, planarity, sess, frequency Genera
		-	-			, , , ,		BEDROCK: Granitic gneiss, grey matrix with red veins.				-						
	-	- 67.0 -	11.0 —					10.70 m - 11.10 m: mafic matrix with plagioclase and granitic banding (gneissic banding).				-		 				
		- - - 66.0	12.0 —					Crushed rock, up to 30 cm.				-						
11:10		-	- -									- - -						
29/08/2018		- 65.0 -	13.0 —									- - -		i				
J < <drawingfile>></drawingfile>	-	- - — 64.0 -	- 14.0 —					13.70 m - 13.85 m: Pulverized rock.				- - -						
IGATION - V7.GP		- - - 63.0	15.0 —									- - -						
HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <drawngfile>> 29/08/2018 11:10 Z III</drawngfile>		- - - 62.0 -	- - 16.0 — -					15.50 m: Thicker plagioclase beds, thicker clasts (granite)				- - - -						
SINT LOGS MR 2018	-	- - 61.0 -	- 17.0 — -			~		To Target Depth. Drillhole BH18-BR15-2 terminated at 16.8m.				- -						
RED BOREHOLE		- - 60.0	18.0 — -									- - -						
OPY.GLB Log CO		- - 59.0 -	- 19.0 — -									- - - -						
ELOPMENT C		- - - 58.0	20.0									-		ii I				
HATCH LIBRARY DEV	lote	es:						Defect Planarity Description Legend Un Undulose St Stepped	Jt . Pt I Sh :	Orilling Indu Joint Parting on (Shear Sean Crushed Se	Contac	Cz Cr	acture	Zone d Zone and	•	Ro Sm Po SI	ughness Rough Smooth Polished Slickenside	Infill Amount cn Clean sn Stained vn Veneer cg Coating

Contractor: Boart Longyear

BOREHOLE REPORT

BH18-BR70-1

Sheet 1 of 5

91.50 m

Client: Baffinland Iron Mine

Rig Type/ Mounting: Sonic Drill Rig

Project: Mary River Expansion Study

Location: Proposed Bridge 70 Abutment Project No.: H353004

Datum: NAD83

Platform:

Date Logged: 4/13/2018

Easting: 529,138.0 m Northing: 7,916,667.0 m

Surface Elevation: 124.00 m

Total Depth: 32.5 m Logged By: YF/MY

Bottom Elevation:

														•				11/1011
Dr	iller:	Bre	ent N	ИсАr	ndrew	Hole Diameter (mm): 100	Date F	Reviev	мe	d:		Re	viev	ved I	Зу:			
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	- (Moisture Content Profile	50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - - - - - - - - - - - - - - - -	1.0-				SILTY SAND: Greyish brown, fine to medium grained.	Nbn											
>	- - 121.0 - - -	3.0-				3.00 m: Saline smelling dark organic layer. 3.30 m: Banding of silt. 3.70 m: Organic layer.	Nbn to Vx					22	0	97	3			-
		4.0— — — — 5.0—				4.20 m: Micaceous minerals, organics.	Vs											
	- - - - - - - - - -	6.0— — — — — — 7.0—					Nbn	И ГА				28	0	80	20			
,	- - - 116.0 - -	8.0—				7.60 m: Interbedded silt and organic layers, pungent organics.	Vr to Vx											-
	115.0 	9.0-				ICE and SOIL: Silt, trace sand, grey.	I+S					36	0	3	97			-

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <DrawingFile>> 29/08/2018 11:14 Notes:

BOREHOLE REPORT

BH18-BR70-1

Client: Baffinland Iron Mine

Project No.: H353004

Project:

Mary River Expansion Study

Datum: NAD83 Surface Elevation: **Bottom Elevation:**

Easting:

Northing:

7,916,667.0 m 124.00 m

91.50 m

YF/MY

529.138.0 m

Location: Proposed Bridge 70 Abutment

Platform:

Total Depth: 32.5 m

Contractor: Boart Longyear

Rig Type/ Mounting: Sonic Drill Rig

19.80 m - 21.70 m: Trace to some

Date Logged: 4/13/2018

Logged By:

Driller: **Brent McAndrew** Hole Diameter (mm): 100 Date Reviewed: Reviewed By: (E Soil Description Elevation Moisture Ξ Graphic L Percent Sand Other Water (Method ype Casing TYPE; plasticity or particle characteristics Content Profile Depth (Frozen Soil Tests Water (size, grading, shape, roundness), colour, structure, accessory components. Description 0 25 50 Field ICE and SOIL: Silt, trace sand, grey. I+S (Continued) (Continued) SILTY SAND: Brownish grey, stratified, Nbn possible laminated organics. -113.0 11.0 11.30 m - 11.45 m: Clay layers. 19 0 39 61 11.80 m - 12.00 m: Inferred boulder. 12.0 12.25 m - 12.30 m: Trace gravel, grey. HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <<DrawingFile>> 29/08/2018 11:14 12.70 m - 13.05 m: Inferred boulder. 13.0 -111.0 13.30 m: Cobbles. SANDY SILT, trace GRAVEL: Grey. Nbn -110.0 14.0-9 51 15 15.0-15.20 m, 16.40 m: Cobbles, greyish brown. 16.0 19 26 55 17.0-17.40 m - 18.00 m: Boulders Nbn inferred -106.0 18.0-SANDY SILT, trace CLAY: Dark grey. Nbn inferred SILT, trace GRAVEL, trace SAND: Nbn Grey, coarse grained sand. inferred 19.0-

Notes:

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:14

BOREHOLE REPORT

BH18-BR70-1

Sheet 3 of 5

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study

Location: Proposed Bridge 70 Abutment Datum: NAD83

Platform:

Easting: 529,138.0 m Northing: 7,916,667.0 m Surface Elevation: 124.00 m

Bottom Elevation: 91.50 m

Total Depth: 32.5 m

Co	ontract	or: Bo	art l	ong	year	Rig Type/ Mounting: Sonic Drill Rig	Date Logged:	4/13/2018	Lo	gged	Ву:	-			YF/MY
Dr	iller:	Br	ent l	AoN	ndrew	Hole Diameter (mm): 100	Date Reviewed	i:	Re	view	ed B	y:			
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - -103.0	- - - 21.0- - -				angular fine to medium gravel, trace cobbles. SILT, trace GRAVEL, trace SAND: Grey, coarse grained sand. (Continued)	Nbn inferred (Continued)								-
	- 102.0 - - - - - - 101.0	22.0-				21.70 m: Angular gravel in a silt matrix. Inferred as rock flour, cobbles, gravel, boulders, white to grey dust. BEDROCK (Inferred): Rock dust.									- - - - - -
	- - - - -100.0	24.0-													- - - - - -
	- 99.0 - - -	25.0- - - -													- - - - - - -
	98.0 - - - - - 97.0	26.0- - - - - 27.0-				Start of Coring at 25.9m. Continued on Rock Core Log sheet.									
200	- - 96.0 - -	28.0-													 - - - - -
		29.0-													- - - - -
No	tes:														

Baffinland Iron Mine

Client:

BOREHOLE LOG

ROCK CORE FORMAT

Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Proposed Bridge 70 Abutment Platform:

BH18-BR70-1

Sheet 4 of 5

Easting: 529,138.0 m

Northing: 7,916,667.0 m Surface Elevation: 124.00 m

Bottom Elevation: 91.50 m

Total Depth: 32.5 m

	Œ				ō	<u></u>	Rock Description				Defect			Defect Description
water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	Estimated Strength 표물포질그렇네	Is ₍₅₀₎ [UCS] MPa	Spacing mm [000,000,000]	RQD %	Defect Log	Inclination, type, infill, amount, aperture, planarity roughness, frequency Specific Ge
	- - - - 103.0									- - -				
	- - - - 102.0	-								- - - -				
	- - - - 101.0	23.0 —								- - - -				
	- - - 100.0 -	24.0 —								- - - -				
	- - - 99.0 -	25.0 —								- - - -				
	- - - 98.0 - -	26.0 —		101			Resuming in Rock Core Format 25.9m. BEDROCK: Siltstone to dolomitic limestone, grey with dark grey / black streaks, fine to very fine grained,			- - - -				-90° Jt PI Sm -90° Jt PI Sm Silt, light brown cg DI -90° Jt PI Sm
	- 97.0 - -	27.0 —		18 / 101			medium strong rock. 25.98 m - 27.02 m: Silt seams. 27.32 m - 27.36 m: Silt seams.			- - -		- 64		190° Jt PI Sm Yellowish brown coati cg 90° Jt PI Sm Silt cg 90° Jt PI Sm Some silt cg 90° Jt PI Sm Silt cg 90° Jt PI Sm Sm 190° Jt PI Sm
	- - - 96.0 -	28.0		19 / 72			27.40 m - 28.60 m: Irregular black bands, bioturbated with mud seams, strong rock (excepting weak seams). 27.82 m - 27.83 m: Silt seams.			- - - -		42		-90° Jt Pi Sm -90° Jt Pi Sm Sm -90° Jt Pi Sm -90° Jt Pi Sm -90° Jt Pi Sm -90° Jt Pi Sm -90° Jt Pi Sm
	- - - 95.0 - -	29.0 —		20 / 86			28.60 m - 29.50 m: No visible mud, but some core loss.			- - - -		83		Sm -90° Jt Pl Sm -90° Jt Pl Sm Silt cg -90° Jt Pl Sm Silt cg -90° Jt Pl Sm -90° Jt Pl Sm -90° Jt Pl Sm -90° Jt Pl Sm
	- - - 94.0	30.0 —					29.50 m - 31.00 m: Bioturbated, 5 cm mud seam, strong rock.			-		28		\\\\80° Jt PI Sm \\\\90° Jt PI Sm \\\\Fz \\\90° Jt Ir Ro
Note	es:						Planarity <u>Defect</u> PI Planar <u>Description</u> Ir Irregular <u>Legend</u> Cu Curved Un Undulose	Jt J	Orilling Induced oint Parting on Conta	Cz Cr	eam rushed Zone ractured Zone		Ro Sm Po	Rough cn Clean Smooth sn Stained Polished vn Veneer

Baffinland Iron Mine

Client:

HATCH LIBRARY DEVELOPMENT COPY, GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7. GPJ <<DrawngFile>> 29/08/2018 11:10

BOREHOLE LOG

ROCK CORE FORMAT

Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Proposed Bridge 70 Abutment Platform:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° **Date Logged:** 4/13/2018

BH18-BR70-1

Sheet 5 of 5

529,138.0 m Easting:

Northing: 7,916,667.0 m Surface Elevation: 124.00 m

Bottom Elevation: 91.50 m

Total Depth: 32.5 m Logged By: YF/MY

	Cor	tracte	or: Bo	art I	ong	year	Rig Typ	be/ Mounting: Sonic Drill Rig Bearing: N/A°	D	ate Log	ged:	4/13/20	18	Lo	gge	d By: YF/MY	
Ĺ	Dril	ler:	Br	ent l	1AoN	ndrew	Hole Di	ameter (mm): 100 Plunge: °	D	ate Che	ecked	:		Re	viev	ved By:	
	Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	Estima Stren	gth	Is ₍₅₀₎ [UCS] MPa	Defect Spacing mm [1001] 0007 0008 0008	RQD %	Defect Log	Defect Description Inclination, type, infill, amount, aperture, planarity, roughness, frequency Specific Genera	ıl
	-	. 93.0	31.0 —		21 / 103			BEDROCK: Siltstone to dolomitic limestone, grey with dark grey / black streaks, fine to very fine grained, medium strong rock. (Continued)				-		28		190° Jt PI SM Silt cg 190° Jt PI SM 1 SM 1 SM 190° Jt Ir Ro 190° Jt PI SM 190° Jt PI SM 190° Jt PI SM Silt cg FZ 190° Jt PI RO DI	
0	-	— 92.0	32.0 —		22 / 103			To Townsh Dorth				- - - - -		95			
1gFIIe>> 29/00/20 10 11.1		91.0	33.0 —					To Target Depth. Drillhole BH18-BR70-1 terminated at 32.5m.				- - - - -					
וטוא - עד. שוטי - אוטו			34.0 —									- - - - -					
HINIOAL III VEGILORI			35.0 —									- - - -					
JOSS MIN 2018 GEO LE		— 87.0	37.0 —									- - - -					
ED BOREHOLE GINI L		. 86.0	38.0 —									- - - -					
INI COPT.GLB LOG CORED	- - -	85.0 -	39.0 —									- - - - -					
3		– 84.0	40.0 —									_					
1A I CH LIBRARY DEVEL	Note		-					Defect Planarity Description Ir Irregular Legend Cu Curved Un Undulose St Stepped	Jt J Pt F Sh S	Orilling Ind oint Parting on Shear Sea Crushed S	Conta	Cz Cr	eam ushed Zone actured Zone eak Band		Ro Sm Po SI	Smooth sn Stained	

Project:

Contractor: Boart Longyear

BOREHOLE REPORT

BH18-BR70-2

Client: Baffinland Iron Mine

Mary River Expansion Study

Rig Type/ Mounting: Sonic Drill Rig

Location: Proposed Bridge 70 Abutment Project No.: H353004

Datum: NAD83

Platform:

Date Logged: 4/17/2018

Easting: 529,107.0 m Northing: 7,916,700.0 m

Surface Elevation: 124.00 m **Bottom Elevation:** 95.50 m

Total Depth: 28.5 m Logged By: YF/MY

rill	ler:	Br	ent N	/lcAn	drew	Hole Diameter (mm): 100	Date F	Rev	iew	ed:		+	evie	wed I	By:			
	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0 	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
Ŧ	-	-				SAND, trace to some SILT: Light brown, fine to medium grained.	Nbn											
ŀ						9												
ŀ	123.0	1.0-										1	38	47	15			
ŀ	.	-							И			20	0	86	14			
ŀ	.	-					Nbe											
ŀ	-122.0	2.0-									i i i l							
F		-									i i i l							
	.	-	1															
	—121.0 ·	3.0-	1									15	0	91	9			
ŀ	.	-										13	"	91	"			
ŀ	—120.0	4.0-																
ŀ		-																
F		-																
-	119.0	5.0-																
ŀ	.	-									iiil							
ŀ	.	-																
ŀ	—118.0	6.0-				6.10 m: With fine black organic layers.												
ŀ	.	-				o. To III. With line black organic layers.												
F		-																
ŀ	—117.0 ·	7.0-				7.00 m - 7.10 m: Silt, some sand.												
-	.	-	1		11111	SAND interbedded with SILT.	Nho											
-	 	8.0-				SAND IIILEIDEUGEG WILN SILT.	Nbe											
ŀ	.	-				8.30 m: Becoming finer with depth.	Vr											
-	.	-	-			5.55 III. Becoming litter with deptil.	VI				i i i l							
-	115.0	9.0-			HH	ICE: 40% soil	ICE											
F	.	-	1			SILT, some CLAY: Dark brown.	Vr - Vs											
-	.	-				9.70 m - 10.10 m: Ice lenses, snow like.						23	0	2	98			
ote	114.0	10.0						_										

BOREHOLE REPORT

BH18-BR70-2

Sheet 2 of 4

529,107.0 m

Client: Baffinland Iron Mine

Project No.: H353004

Project:

Mary River Expansion Study

NAD83

Location:

Proposed Bridge 70 Abutment

Datum:

Northing: 7,916,700.0 m Surface Elevation: 124.00 m

Easting:

Bottom Elevation: 95.50 m

rille	r:	Bre	ent N	1cAn	drew	Hole Diameter (mm): 100	Date F	Rev	iew	ed:					Re	viev					
Vyatel Tiproties (m)	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description		Sample Type	0		loistur tent P		50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
	01 11.0 12.0 11.0 10.0 09.0 08.0	11.0- -	Me	Ca			Vr - Vs (Continue Nbn Vr		Samp					500	Fig.	Per	Perc	Perc	Liqu	Plas	
	04.0	20.0			9	19.35 m - 19.60 m: Silt, grey, pieces of rock, likely bedrock, thin horizontal laminations, smooth, horizontal					 	 1	 1			0	2	98			

Contractor: Boart Longyear

BOREHOLE REPORT

BH18-BR70-2

Easting:

Northing:

Sheet 3 of 4

Client: Baffinland Iron Mine

Project No.: H353004

529,107.0 m

Project: Mary River Expansion Study

Datum: NAD83

7,916,700.0 m Surface Elevation: 124.00 m

Location: Proposed Bridge 70 Abutment Platform:

Bottom Elevation: 95.50 m

Date Logged: 4/17/2018

Total Depth: 28.5 m Logged By: YF/MY

Hole Diameter (mm): 100 Date Reviewed: Brent McAndrew Reviewed By:

Rig Type/ Mounting: Sonic Drill Rig

Driller: (E Field Water Conten Soil Description Elevation $\widehat{\mathbb{E}}$ Moisture Percent Sand Graphic L Other Method ype Liquid Limit Casing TYPE; plasticity or particle characteristics Content Profile Depth (Frozen Soil Tests Water (size, grading, shape, roundness), colour, structure, accessory components. Description Sample. 0 25 50 fractures, silt seams present. COBBLES: Limestone in possible rock floor. (Continued) 103.0 21.0 21.20 m - 22.10 m: Fractured zone. fresh, strong. Start of Coring at 21.3m. Continued on Rock Core Log sheet. 22.0 23.0 -101.0 24.0 25.0 26.0 27.0-28.0-29.0

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <<DrawngFile>> 29/08/2018 11:14

Notes:

BOREHOLE LOG

ROCK CORE FORMAT

BH18-BR70-2

Sheet 4 of 4

529,107.0 m

7,916,700.0 m

124.00 m

95.50 m

28.5 m

YF/MY

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Proposed Bridge 70 Abutment Platform:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° **Date Logged:** 4/17/2018 Logged By:

Total Depth:

Easting:

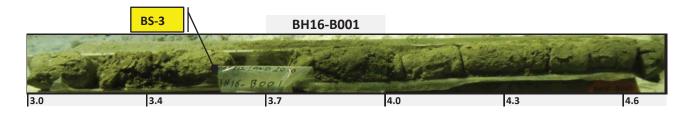
Northing:

Surface Elevation:

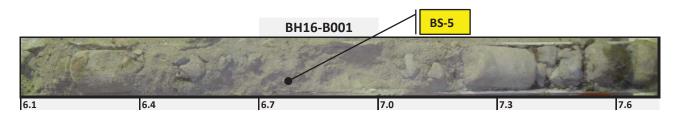
Bottom Elevation:

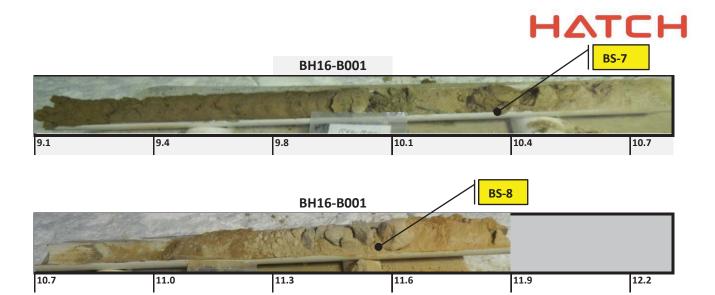
Dr	iller:	Br	ent N	ИсАr	ndrew	Hole Di	ameter (mm): 100 Plunge: °	D	ate Ch	necked	l:			Rev	view	ed By:				
Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	Stre	mated ength घ⊐ ร่ ⊔ี	Is ₍₅₀₎ [UCS] MPa	Spa m	Defect Spacing mm		Spacing mm		Spacing		Defect Log	Defect Description Inclination, type, infill, amount, aperture, planarity, roughness, frequency Specific General
	- - - - -103.0	- - - 21.0 —					Resuming in Rock Core Format 21.3m.				- - - -									
0	- - - 102.0 -	22.0 —					BEDROCK: Siltstone to dolomitic limestone. 22.10 m - 24.00 m: Fractured, crystal filled (white, medium grade) voids from				- - - -									
ngFile>> 29/08/2018 11:1	- - 101.0 - - -	23.0 —					23.30 m, fresh, strong.				- - - - -									
TION - V7.GPJ < <drawir< td=""><td>- - -</td><td>24.0 —</td><td></td><td></td><td></td><td></td><td>24.00 m - 25.50 m: Void to 24.40 m, becoming beige 24.50 m - 24.70 m, mottled.</td><td></td><td></td><td></td><td>- - - -</td><td></td><td></td><td></td><td></td><td></td></drawir<>	- - -	24.0 —					24.00 m - 25.50 m: Void to 24.40 m, becoming beige 24.50 m - 24.70 m, mottled.				- - - -									
HATCH LIBRARY DEVELOPMENT COPY GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:10	- - -	26.0 —					25.50 m - 27.00 m: Beige mottled from 25.60 m - 26.00 m, decreasing in beige concentrate after, fresh.				- - - -									
EHOLE GINT LOGS MR 2018	- - -	27.0 —					27.00 m - 28.50 m: Beige mottled grey mudstone, becoming more banded, strong, fresh, one vein at 28.00 m.				- - - - -									
PY.GLB Log CORED BOR	- - - -	28.0 —			=		To Target Depth. Drillhole BH18-BR70-2 terminated at 28.5m.				- - - -									
RY DEVELOPMENT CO		30.0					<u>Planarity</u> <u>Defect</u> PI Planar	Type	Orilling Ir	nduced	Sm Se	eam			Roi Ro	ughness Infill Amount Rough cn Clean				
HATCH LIBRAR							Description Ir Irregular Cu Curved Un Undulose St Stepped	Jt S Pt F Sh S	Joint	on Conta	Cz Cr	ushed a	Zone		Sm Po SI	Rougn cn Clean Smooth sn Stained Polished vn Veneer Slickenside cg Coating				

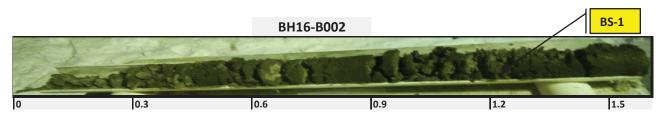
Appendix C Sample Photographs

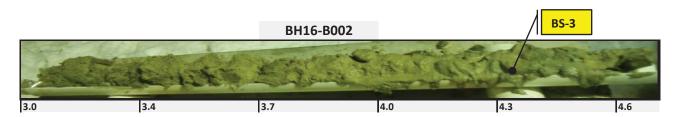


Borehole Name: BH16-B001 Mary River 12 MTPA Mine Expansion


Location: 17 W 514191 7965675 Pre-feasibility Study
Completion Date: 3/12/2016 Baffinland Iron Mines

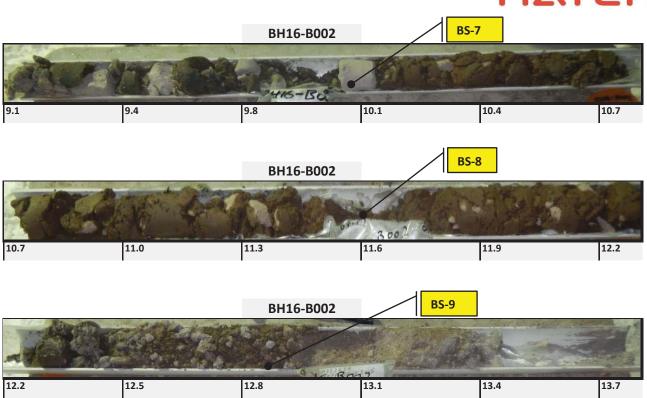






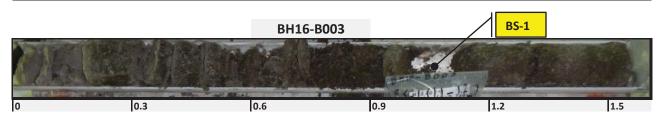
Borehole Name: BH16-B002 Mary River 12 MTPA Mine Expansion

Location: 17 W 514290 7965604 Pre-feasibility Study
Completion Date: 2/12/2016 Baffinland Iron Mines

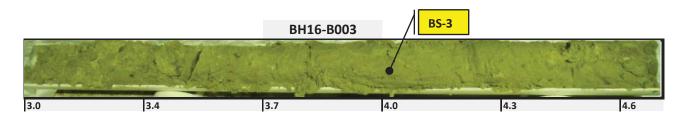


13.7

12.2

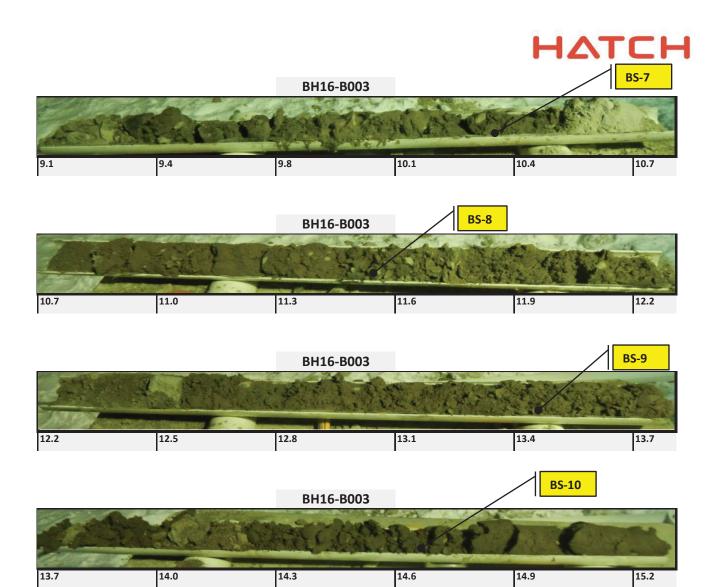

13.1

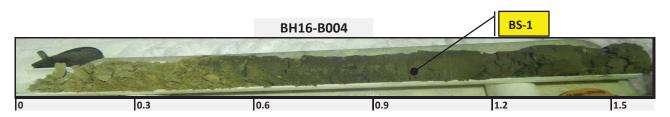
13.4

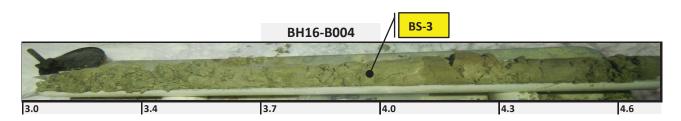


Borehole Name: BH16-B003 Mary River 12 MTPA Mine Expansion

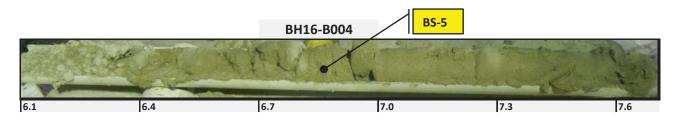
Location: 17 W 514357 7965533 Pre-feasibility Study
Completion Date: 2/12/2016 Baffinland Iron Mines

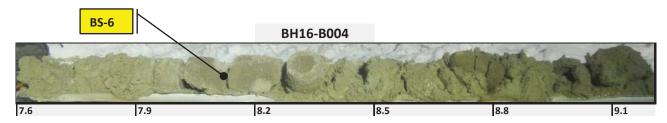


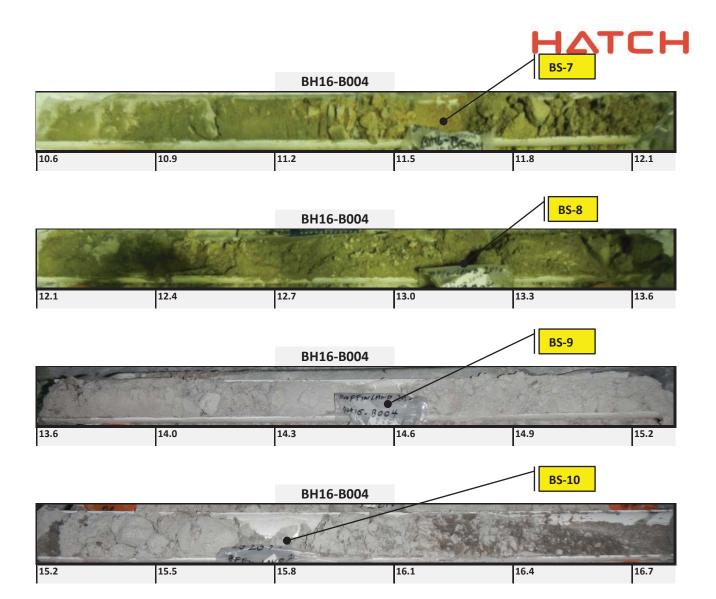


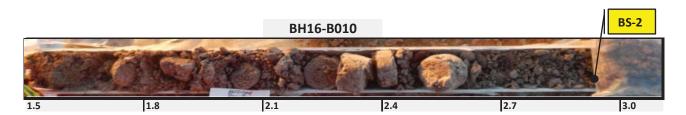


Borehole Name: BH16-B004 Mary River 12 MTPA Mine Expansion

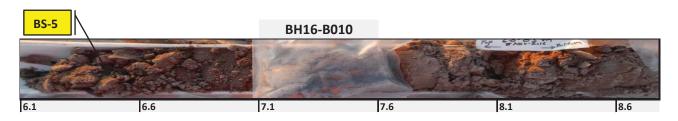

Location: 17 W 514367 7965540 Pre-feasibility Study
Completion Date: 1/12/2016 Baffinland Iron Mines

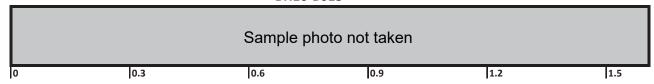


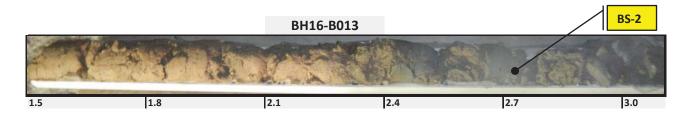




Borehole Name: BH16-B010 Mary River 12 MTPA Mine Expansion

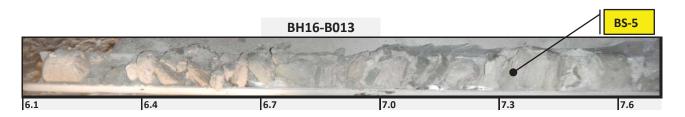

Location: 17 W 542208 7922304 Pre-feasibility Study
Completion Date: 08/10/2016 Baffinland Iron Mines

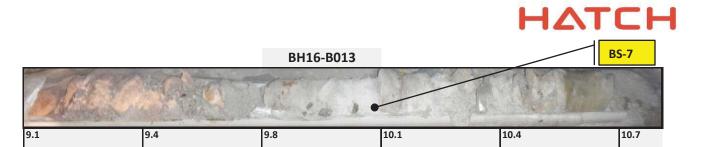




Borehole Name: BH16-B013 Mary River 12 MTPA Mine Expansion

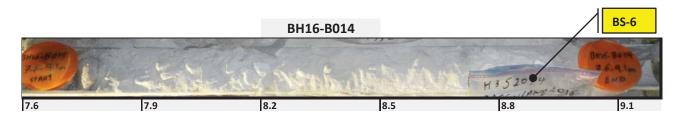
Location: 17 W 555619 7914671 Pre-feasibility Study
Completion Date: 13/11/2016 Baffinland Iron Mines

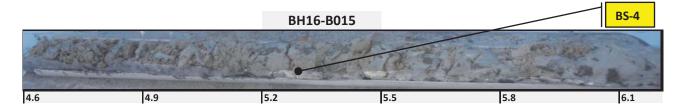

BH16-B013



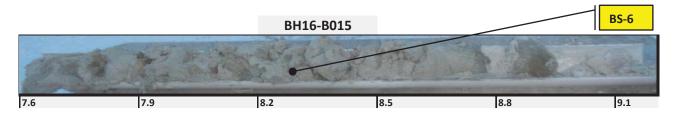
Borehole Name: BH16-B014 Mary River 12 MTPA Mine Expansion

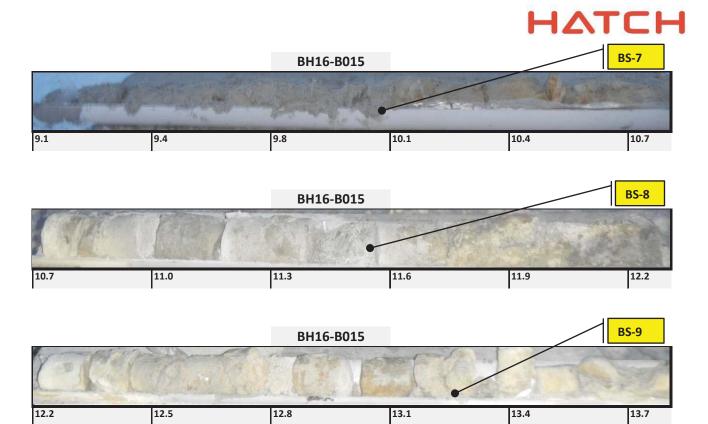
Location: 17 W 555599 7914683 Pre-feasibility Study
Completion Date: 14/11/2016 Baffinland Iron Mines

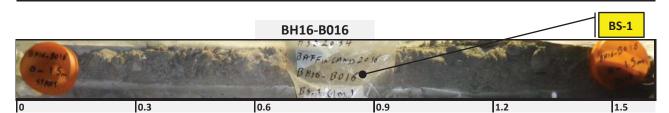


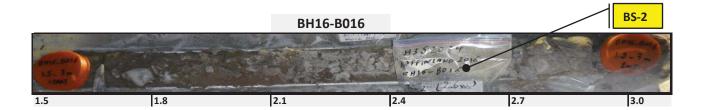

Borehole Name: BH16-B015 Mary River 12 MTPA Mine Expansion

Location: 17 W 555824 7914884 Pre-feasibility Study
Completion Date: 14/11/2016 Baffinland Iron Mines



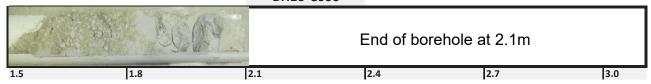






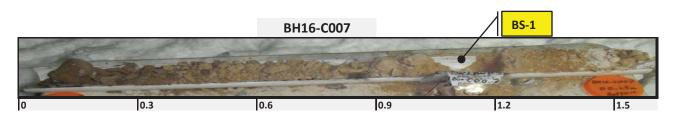
Borehole Name: BH16-B016 Mary River 12 MTPA Mine Expansion

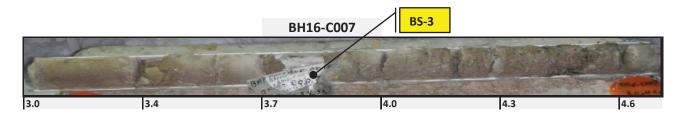
Location: 17 W 555830 7914892 Pre-feasibility Study
Completion Date: 14/11/2016 Baffinland Iron Mines

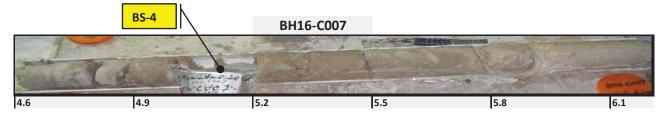


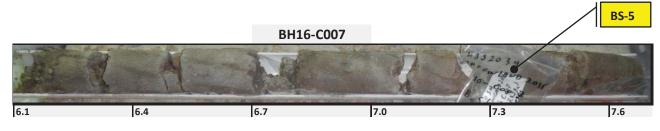
Borehole Name: BH16-C006 Mary River 12 MTPA Mine Expansion

Location: 17 W 508897 7968767 Pre-feasibility Study
Completion Date: 3/12/2016 Baffinland Iron Mines


BH16-C006




Borehole Name: BH16-C007 Mary River 12 MTPA Mine Expansion


Location: 17 W 517221 7962080 Pre-feasibility Study
Completion Date: 1/12/2016 Baffinland Iron Mines

Borehole Name: BH16-C008 Mary River 12 MTPA Mine Expansion

Location: 17 W 520080 7965909 Pre-feasibility Study
Completion Date: 11/30/2016 Baffinland Iron Mines

BH16-C008

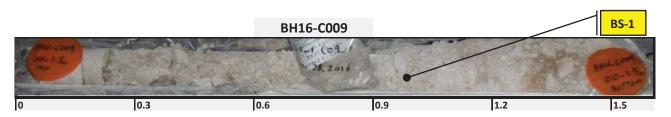
BH16-C008

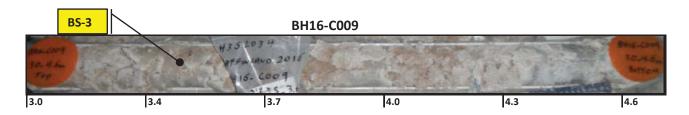
BH16-C008

BH16-C008

BH16-C008

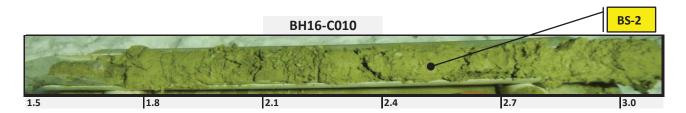
BH16-C008

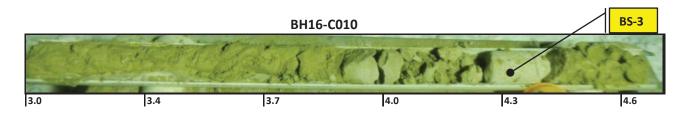

BH16-C008

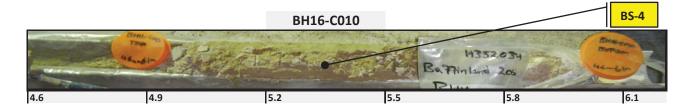


Borehole Name: BH16-C009 Mary River 12 MTPA Mine Expansion

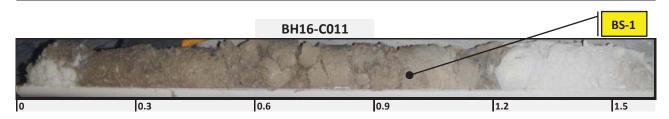

Location: 17 W 522032 7948728 Pre-feasibility Study
Completion Date: 28/11/2016 Baffinland Iron Mines

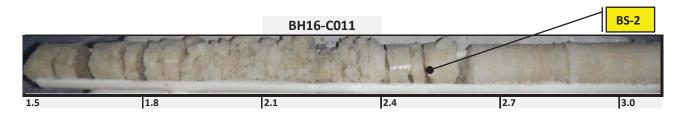


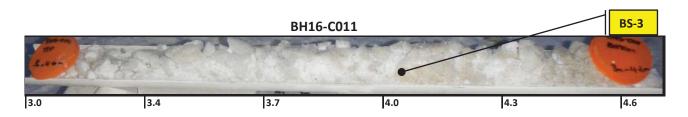



Borehole Name: BH16-C010 Mary River 12 MTPA Mine Expansion

Location: 17 W 522513 7946595 Pre-feasibility Study
Completion Date: 27/11/2016 Baffinland Iron Mines

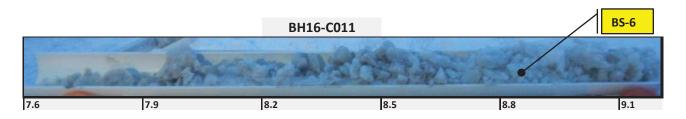


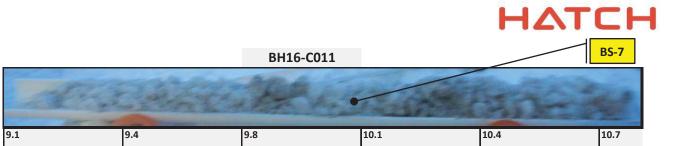


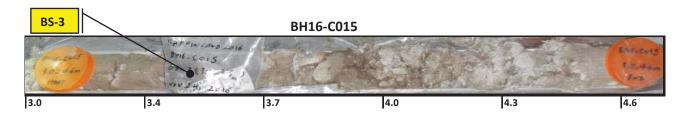


Borehole Name: BH16-C011 Mary River 12 MTPA Mine Expansion

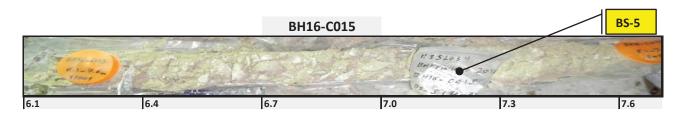
Location: 17 W 525427 7937567 Pre-feasibility Study
Completion Date: 27/11/2016 Baffinland Iron Mines

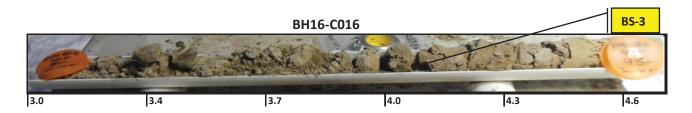


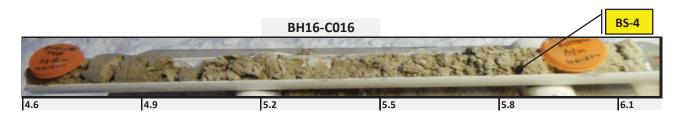




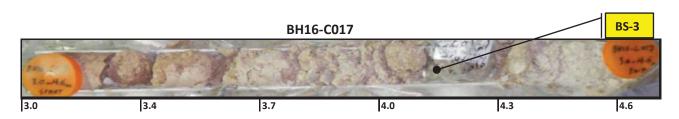
Borehole Name: BH16-C015 Mary River 12 MTPA Mine Expansion


Location: 17 W 536142 7918691 Pre-feasibility Study
Completion Date: 24/11/2016 Baffinland Iron Mines




Borehole Name: BH16-C016 Mary River 12 MTPA Mine Expansion

Location: 17 W 536362 7918814 Pre-feasibility Study
Completion Date: 24/11/2016 Baffinland Iron Mines

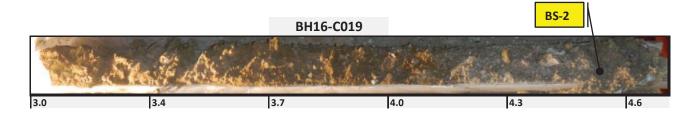


Borehole Name: BH16-C017 Mary River 12 MTPA Mine Expansion

Location: 17 W 538597 7919724 Pre-feasibility Study
Completion Date: 23/11/2016 Baffinland Iron Mines

Borehole Name: BH16-C018 Mary River 12 MTPA Mine Expansion

Location: 17 W 546111 7920740 Pre-feasibility Study
Completion Date: 10/11/2016 Baffinland Iron Mines



Borehole Name: BH16-C019 Mary River 12 MTPA Mine Expansion

Location: 17 W 546163 7920494 Pre-feasibility Study
Completion Date: 10/11/2016 Baffinland Iron Mines

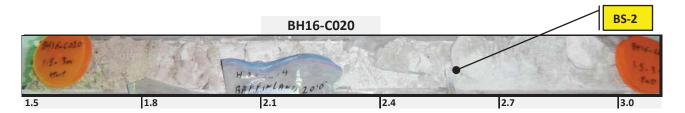
Borehole Name: BH16-C019B Mary River 12 MTPA Mine Expansion

Location: 17 W 546214 7920455 Pre-feasibility Study
Completion Date: 11/11/2016 Baffinland Iron Mines

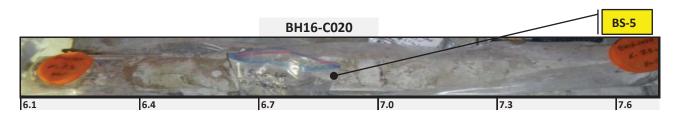
BH16-C019B

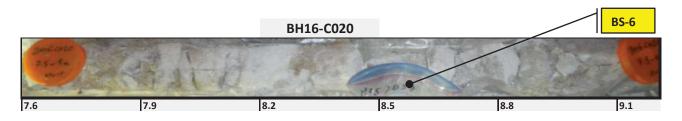
BH16-C019B

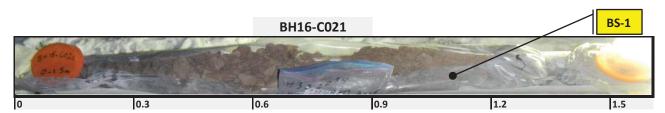
BH16-C019B

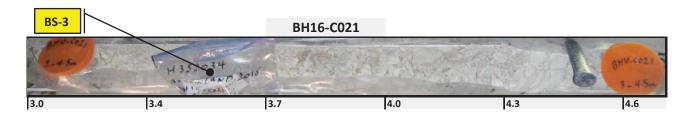


Borehole Name: BH16-C020 Mary River 12 MTPA Mine Expansion


Location: 17 W 546402 7920072 Pre-feasibility Study
Completion Date: 10/11/2016 Baffinland Iron Mines

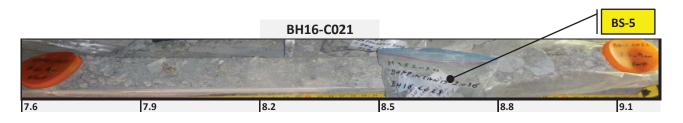


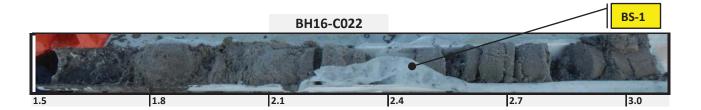


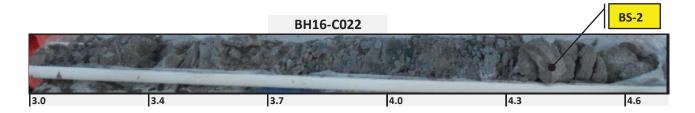


Borehole Name: BH16-C021 Mary River 12 MTPA Mine Expansion

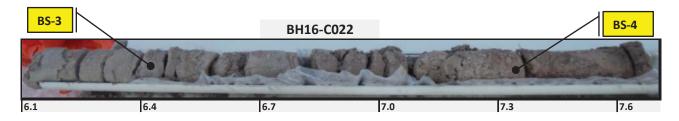
Location: 17 W 546593 7919917 Pre-feasibility Study
Completion Date: 09/11/2016 Baffinland Iron Mines



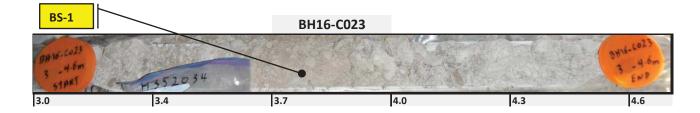



Borehole Name: BH16-C022 Mary River 12 MTPA Mine Expansion

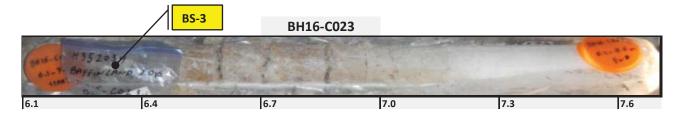
Location: 17 W 547077 7919746 Pre-feasibility Study
Completion Date: 11/11/2016 Baffinland Iron Mines


BH16-C022

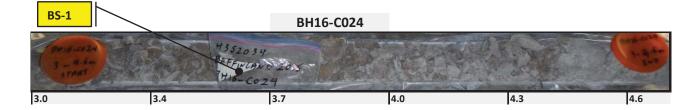
Borehole Name: BH16-C023 Mary River 12 MTPA Mine Expansion


Location: 17 W 547304 7919643 Pre-feasibility Study
Completion Date: 11/11/2016 Baffinland Iron Mines

BH16-C023

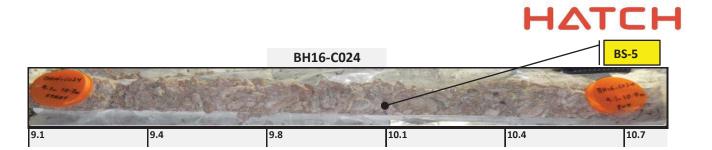


BH16-C023


Borehole Name: BH16-C024 Mary River 12 MTPA Mine Expansion

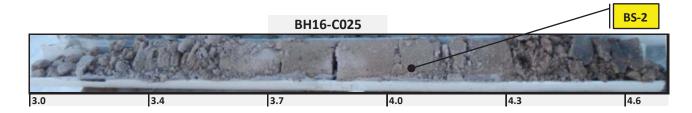
Location: 17 W 547530 7919537 Pre-feasibility Study
Completion Date: 14/11/2016 Baffinland Iron Mines

BH16-C024



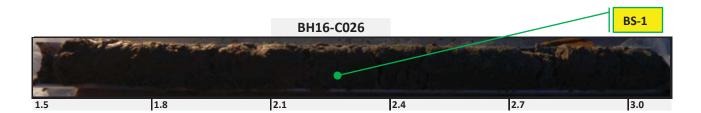
Borehole Name: BH16-C025 Mary River 12 MTPA Mine Expansion

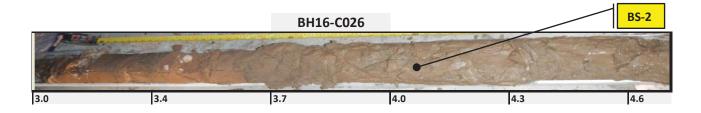
Location: 17 W 548370 7919181 Pre-feasibility Study

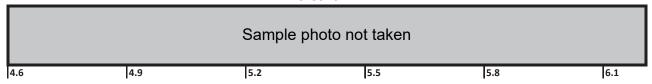

Completion Date: 12/11/2016

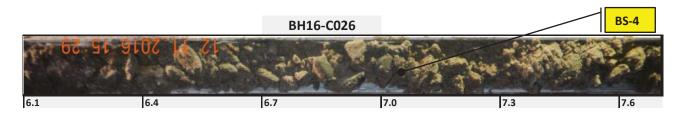
Reffinlend Iron Minor

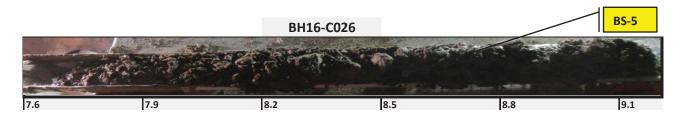
Completion Date: 12/11/2016 Baffinland Iron Mines

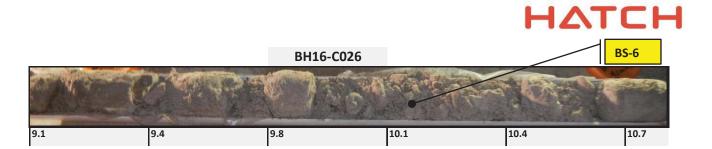



Borehole Name: BH16-C026 Mary River 12 MTPA Mine Expansion


Location: 17 W 550262 7918123 Pre-feasibility Study
Completion Date: 12/11/2016 Baffinland Iron Mines


BH16-C026





Borehole Name: BH16-C027 Mary River 12 MTPA Mine Expansion

Location: 17 W 550416 7917928 Pre-feasibility Study
Completion Date: 12/11/2016 Baffinland Iron Mines

BH16-C027

BH16-C027

BH16-C027

BH16-C027

BH16-C027

Sample photo not taken								
12.2	12.5	12.8	13.1	13.4	13.7			

	S	ample photo not	taken		
13.7	14.0	14.3	14.6	14.9	15.2

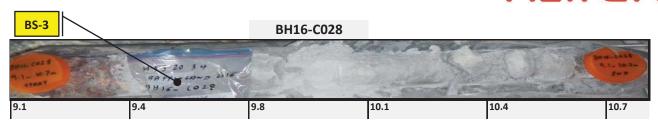
Borehole Name: BH16-C028 Mary River 12 MTPA Mine Expansion

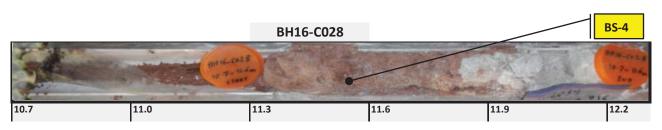
Location: 17 W 551403 7916768 Pre-feasibility Study
Completion Date: 13/11/2016 Baffinland Iron Mines

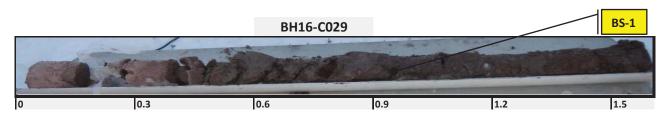
BH16-C028

BH16-C028

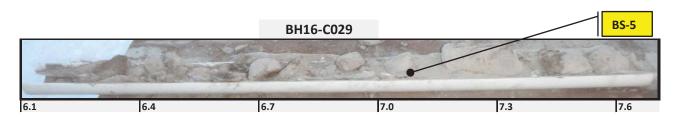
BH16-C028







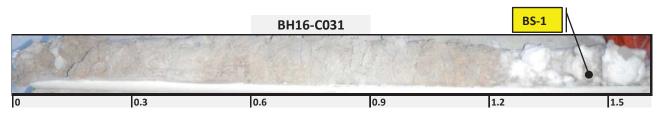
Borehole Name: BH16-C029 Mary River 12 MTPA Mine Expansion


Location: 17 W 552569 7915813 Pre-feasibility Study
Completion Date: 13/11/2016 Baffinland Iron Mines

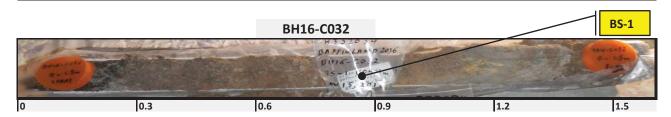
Borehole Name: BH16-C030 Mary River 12 MTPA Mine Expansion

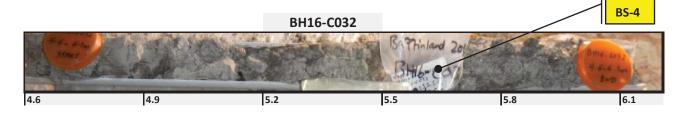
Location: 17 W 555337 7915646 Pre-feasibility Study
Completion Date: 16/11/2016 Baffinland Iron Mines

BH16-C030



Borehole Name: BH16-C031 Mary River 12 MTPA Mine Expansion


Location: 17 W 556864 7915216 Pre-feasibility Study
Completion Date: 15/11/2016 Baffinland Iron Mines

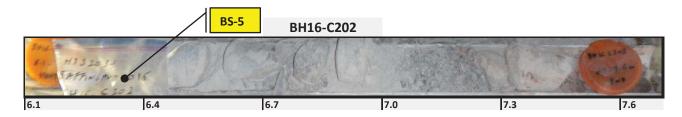

Borehole Name: BH16-C032 Mary River 12 MTPA Mine Expansion

Location: 17 W 557282 7915265 Pre-feasibility Study
Completion Date: 15/11/2016 Baffinland Iron Mines

Borehole Name: BH16-C201 Mary River 12 MTPA Mine Expansion

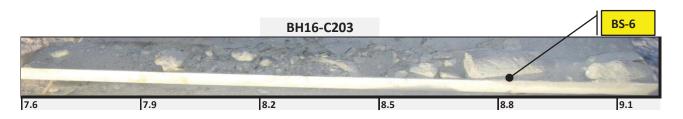
Location: 17 W 553750 7915276 Pre-feasibility Study
Completion Date: 18/11/2016 Baffinland Iron Mines

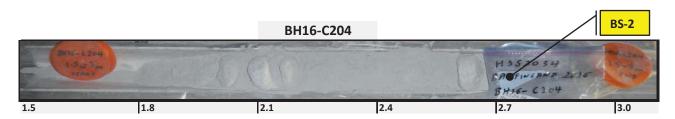
Borehole Name: BH16-C202 Mary River 12 MTPA Mine Expansion


Location: 17 W 554531 7915452 Pre-feasibility Study
Completion Date: 17/11/2016 Baffinland Iron Mines

Borehole Name: BH16-C203 Mary River 12 MTPA Mine Expansion

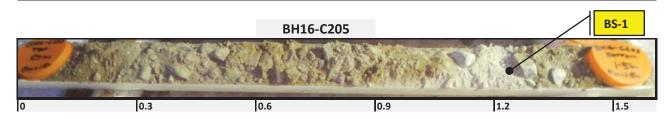
Location: 17 W 555007 7915451 Pre-feasibility Study
Completion Date: 17/11/2016 Baffinland Iron Mines



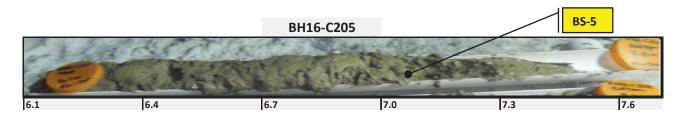


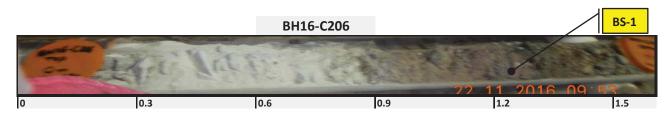
Borehole Name: BH16-C204 Mary River 12 MTPA Mine Expansion

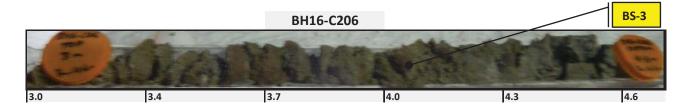
Location: 17 W 555659 7915432 Pre-feasibility Study
Completion Date: 16/11/2016 Baffinland Iron Mines



Borehole Name: BH16-C205 Mary River 12 MTPA Mine Expansion

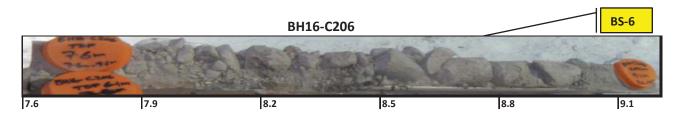

Location: 17 W 555883 7915449 Pre-feasibility Study
Completion Date: 21/11/2016 Baffinland Iron Mines

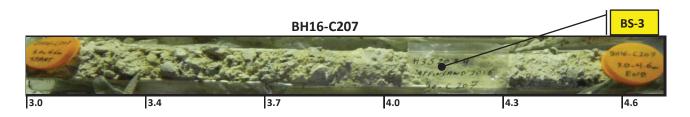




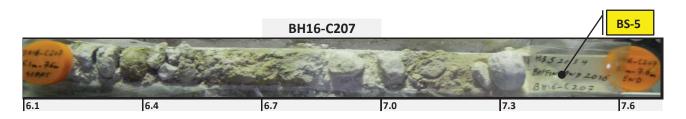
Borehole Name: BH16-C206 Mary River 12 MTPA Mine Expansion

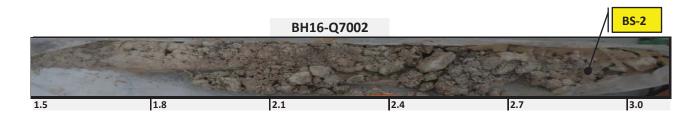
Location: 17 W 556059 7915442 Pre-feasibility Study
Completion Date: 22/11/2016 Baffinland Iron Mines





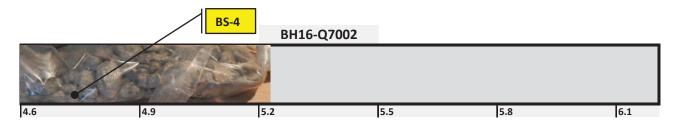
Borehole Name: BH16-C207 Mary River 12 MTPA Mine Expansion


Location: 17 W 556679 7915415 Pre-feasibility Study
Completion Date: 22/11/2016 Baffinland Iron Mines



Borehole Name: BH16-Q7002 Mary River 12 MTPA Mine Expansion

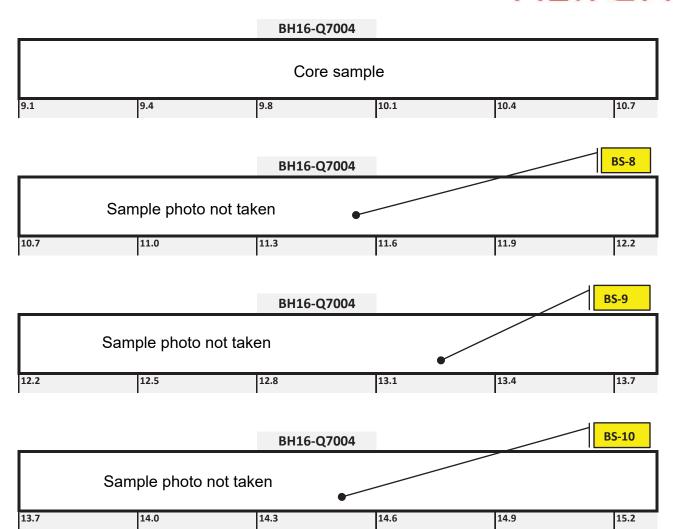
Location: 17 W 530561 7928150 Pre-feasibility Study
Completion Date: 28/10/2016 Baffinland Iron Mines


BH16-Q7002

BH16-Q7002

Sample Photographs Borehole Name: Mary River 12 MTPA Mine Expansion BH16-Q7004 Location: 17 W 529264 7927466 Pre-feasibility Study Completion Date: 25/10/2016 **Baffinland Iron Mines** BH16-Q7004 Core sample 0.6 0.9 0.3 BH16-Q7004 Core sample 1.8 2.1 2.4 2.7 3.0 BH16-Q7004 Core sample 3.7 4.0 4.3 BH16-Q7004 Core sample 4.9 5.2 5.5 5.8 6.1 BH16-Q7004 Core sample 6.7 7.0 7.6 BH16-Q7004 Core sample

8.2


8.5

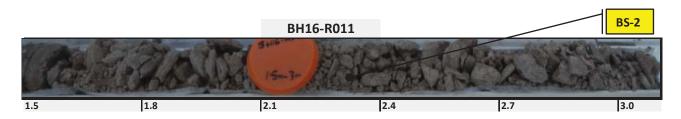
8.8

9.1

7.9

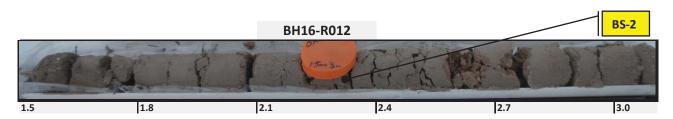
Borehole Name: BH16-R010 Mary River 12 MTPA Mine Expansion

Location: 17 W 515332 7963810 Pre-feasibility Study
Completion Date: 08/10/2016 Baffinland Iron Mines



Borehole Name: BH16-R011 Mary River 12 MTPA Mine Expansion

Location: 17 W 516719 7962461 Pre-feasibility Study
Completion Date: 08/10/2016 Baffinland Iron Mines

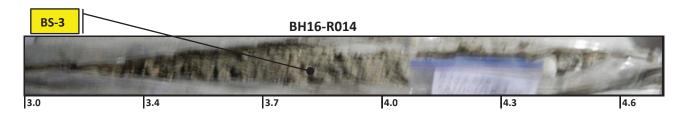


Borehole Name: BH16-R012 Mary River 12 MTPA Mine Expansion

Location: 17 W 516716 7962464 Pre-feasibility Study
Completion Date: 08/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R013 Mary River 12 MTPA Mine Expansion

Location: 17 W 518856 7959178 Pre-feasibility Study
Completion Date: 08/10/2016 Baffinland Iron Mines

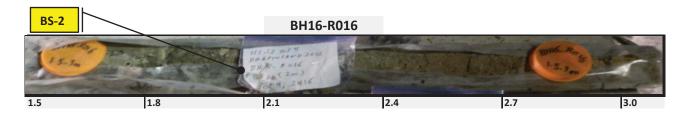


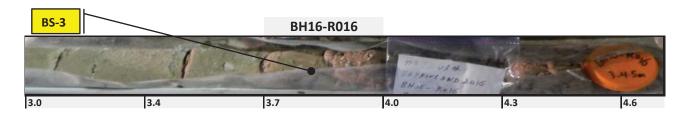
Borehole Name: BH16-R014 Mary River 12 MTPA Mine Expansion

Location: 17 W 518856 7959178 Pre-feasibility Study
Completion Date: 08/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R015 Mary River 12 MTPA Mine Expansion

Location: 17 W 520756 7955701 Pre-feasibility Study
Completion Date: 09/10/2016 Baffinland Iron Mines





Borehole Name: BH16-R016 Mary River 12 MTPA Mine Expansion

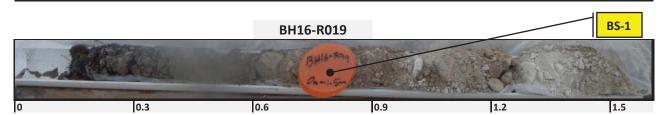
Location: 17 W 521588 7953865 Pre-feasibility Study
Completion Date: 09/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R017 Mary River 12 MTPA Mine Expansion

Location: 17 W 521737 7952929 Pre-feasibility Study
Completion Date: 09/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R018 Mary River 12 MTPA Mine Expansion

Location: 17 W 521854 7951940 Pre-feasibility Study
Completion Date: 09/10/2016 Baffinland Iron Mines



Borehole Name: BH16-R019 Mary River 12 MTPA Mine Expansion

Location: 17 W 521994 7950962 Pre-feasibility Study
Completion Date: 09/10/2016 Baffinland Iron Mines

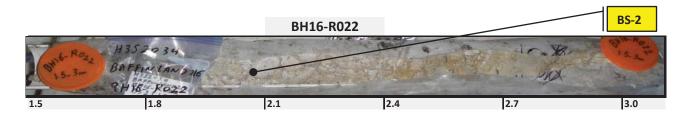
Borehole Name: BH16-R020 Mary River 12 MTPA Mine Expansion

Location: 17 W 521842 7949969 Pre-feasibility Study
Completion Date: 09/10/2016 Baffinland Iron Mines

BH16-R020

Borehole Name: BH16-R021 Mary River 12 MTPA Mine Expansion

Location: 17 W 522305 7948153 Pre-feasibility Study
Completion Date: 09/10/2016 Baffinland Iron Mines



Borehole Name: BH16-R022 Mary River 12 MTPA Mine Expansion

Location: 17 W 522305 7948153 Pre-feasibility Study
Completion Date: 10/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R023 Mary River 12 MTPA Mine Expansion

Location: 17 W 522505 7947177 Pre-feasibility Study
Completion Date: 10/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R024 Mary River 12 MTPA Mine Expansion

Location: 17 W 522558 7946129 Pre-feasibility Study
Completion Date: 10/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R025 Mary River 12 MTPA Mine Expansion

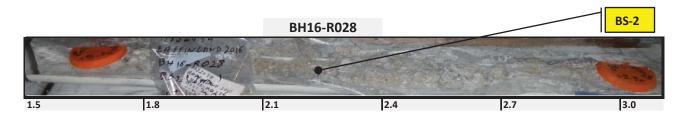
Location: 17 W 522989 7945094 Pre-feasibility Study
Completion Date: 10/10/2016 Baffinland Iron Mines

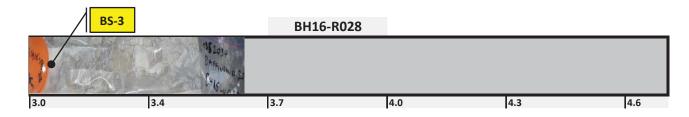
Borehole Name: BH16-R026 Mary River 12 MTPA Mine Expansion

Location: 17 W 523165 7944366 Pre-feasibility Study
Completion Date: 10/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R027 Mary River 12 MTPA Mine Expansion

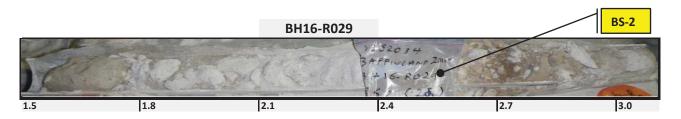
Location: 17 W 523442 7942265 Pre-feasibility Study
Completion Date: 10/10/2016 Baffinland Iron Mines





Borehole Name: BH16-R028 Mary River 12 MTPA Mine Expansion

Location: 17 W 524061 7940538 Pre-feasibility Study
Completion Date: 10/10/2016 Baffinland Iron Mines



Borehole Name: BH16-R029 Mary River 12 MTPA Mine Expansion

Location: 17 W 525062 7938851 Pre-feasibility Study
Completion Date: 11/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R030 Mary River 12 MTPA Mine Expansion

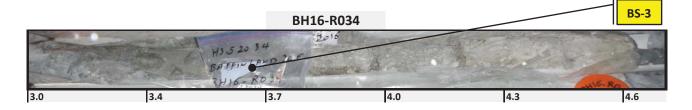
Location: 17 W 525291 7937897 Pre-feasibility Study
Completion Date: 11/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R032 Mary River 12 MTPA Mine Expansion

Location: 17 W 525991 7936109 Pre-feasibility Study
Completion Date: 11/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R033 Mary River 12 MTPA Mine Expansion

Location: 17 W 526653 7935439 Pre-feasibility Study
Completion Date: 11/10/2016 Baffinland Iron Mines



Borehole Name: BH16-R034 Mary River 12 MTPA Mine Expansion

Location: 17 W 527056 7933500 Pre-feasibility Study
Completion Date: 12/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R035 Mary River 12 MTPA Mine Expansion

Location: 17 W 527423 7932310 Pre-feasibility Study
Completion Date: 12/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R036 Mary River 12 MTPA Mine Expansion

Location: 17 W 527210 7931660 Pre-feasibility Study
Completion Date: 12/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R037 Mary River 12 MTPA Mine Expansion

Location: 17 W 527873 7929786 Pre-feasibility Study
Completion Date: 12/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R038 Mary River 12 MTPA Mine Expansion

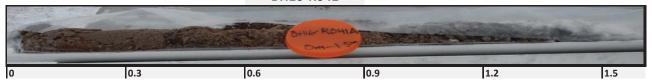
Location: 17 W 528501 7928421 Pre-feasibility Study
Completion Date: 12/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R039 Mary River 12 MTPA Mine Expansion

Location: 17 W 528666 7927955 Pre-feasibility Study
Completion Date: 12/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R040 Mary River 12 MTPA Mine Expansion

Location: 17 W 528686 7927755 Pre-feasibility Study
Completion Date: 13/10/2016 Baffinland Iron Mines



Borehole Name: BH16-R041 Mary River 12 MTPA Mine Expansion

Location: 17 W 528605 7927754 Pre-feasibility Study
Completion Date: 14/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R042 Mary River 12 MTPA Mine Expansion

Location: 17 W 528517 7927713 Pre-feasibility Study
Completion Date: 14/10/2016 Baffinland Iron Mines

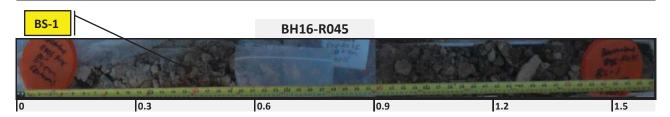
Borehole Name: BH16-R043 Mary River 12 MTPA Mine Expansion

Location: 17 W 528428 7927675 Pre-feasibility Study
Completion Date: 13/10/2016 Baffinland Iron Mines

Borehole Name: BH16-R044 Mary River 12 MTPA Mine Expansion

Location: 17 W 528736 7926992 Pre-feasibility Study
Completion Date: 28/10/2016 Baffinland Iron Mines

BH16-R044



Borehole Name: BH16-R045 Mary River 12 MTPA Mine Expansion

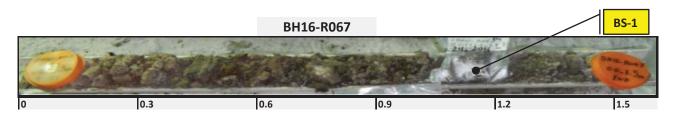
Location: 17 W 528961 7926756 Pre-feasibility Study
Completion Date: 28/10/2016 Baffinland Iron Mines

BH16-R045

Borehole Name: BH16-R053 Mary River 12 MTPA Mine Expansion

Location: 17 W 528238 7928027 Pre-feasibility Study
Completion Date: 28/10/2016 Baffinland Iron Mines

BH16-R053

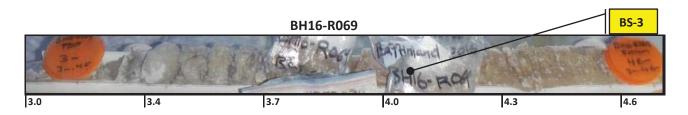


Borehole Name: BH16-R067 Mary River 12 MTPA Mine Expansion

Location: 17 W 535406 7918572 Pre-feasibility Study
Completion Date: 24/11/2016 Baffinland Iron Mines

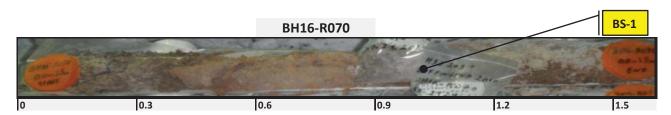
Borehole Name: BH16-R068 Mary River 12 MTPA Mine Expansion

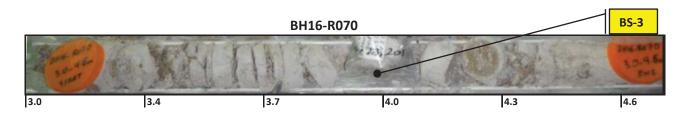
Location: 17 W 537046 7919096 Pre-feasibility Study
Completion Date: 24/11/2016 Baffinland Iron Mines



Borehole Name: BH16-R069 Mary River 12 MTPA Mine Expansion

Location: 17 W 539489 7920583 Pre-feasibility Study
Completion Date: 23/11/2016 Baffinland Iron Mines





Borehole Name: BH16-R070 Mary River 12 MTPA Mine Expansion

Location: 17 W 540273 7921201 Pre-feasibility Study
Completion Date: 23/11/2016 Baffinland Iron Mines

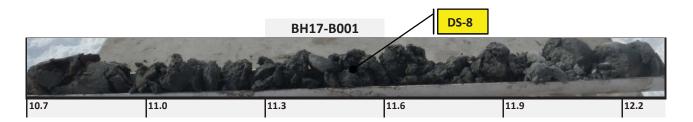
Borehole Name: BH17-B001

Location: 17 W 529031 7916747

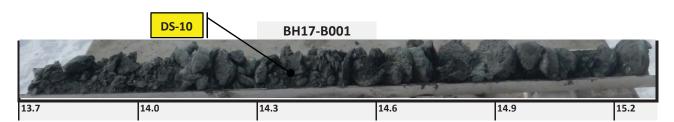
Completion Date: April 22, 2017

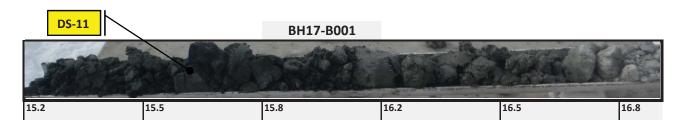
Mary River Expansion Study Stage 2 2017 Geotechnical Investigation

Baffinland Iron Mines






Borehole Name: BH17-B001 Mary River Expansion Study Stage 2

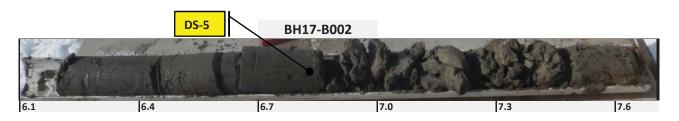

Location: 17 W 529031 7916747

Borehole Name: BH17-B002

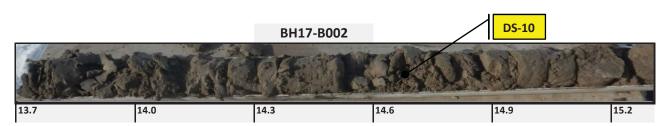
Location: 17 W 529323 7916577

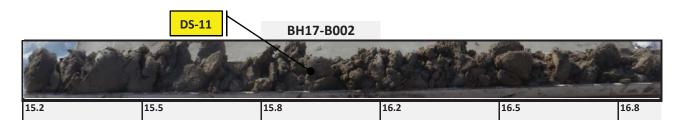
Completion Date: April 21, 2017

Mary River Expansion Study Stage 2 2017 Geotechnical Investigation

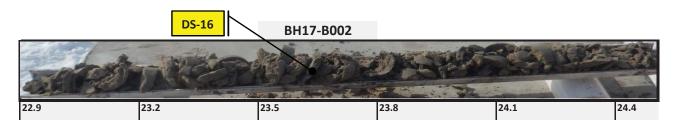

Baffinland Iron Mines

Mary River Expansion Study Stage 2


Borehole Name: BH17-B002


Location: 17 W 529323 7916577

Borehole Name: BH17-B002 Mary River Expansion Study Stage 2

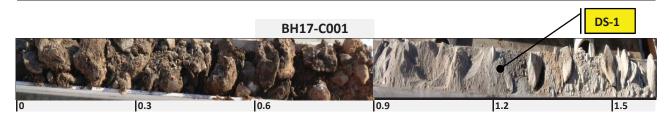

Location: 17 W 529323 7916577

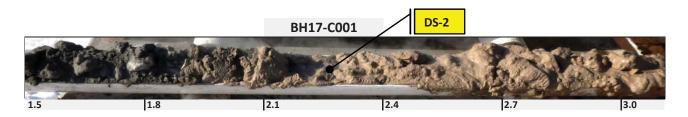
Borehole Name: BH17-B002 Mary River Expansion Study Stage 2

Location: 17 W 529323 7916577

Completion Date: April 21, 2017 Baffinland Iron Mines

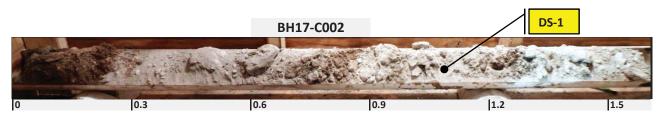
BH17-B002


DRILL BIT LOST; NO SAMPLE COLLECTED. END OF HOLE AT 25.6 M


24.4 24.7 25.0 25.3 25.6 25.9

Borehole Name: BH17-C001 Mary River Expansion Study Stage 2
Location: 17 W 509861 7967883 2017 Geotechnical Investigation

Completion Date: April 13, 2017 Baffinland Iron Mines

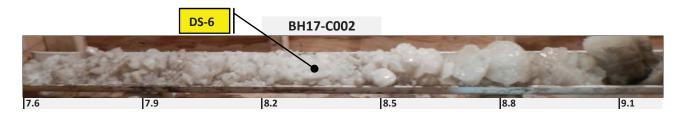

Borehole Name: BH17-C002

Location: 17 W 519513 7957644

Completion Date: April 14, 2017

Mary River Expansion Study Stage 2 2017 Geotechnical Investigation

Baffinland Iron Mines

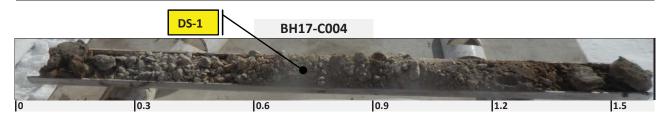


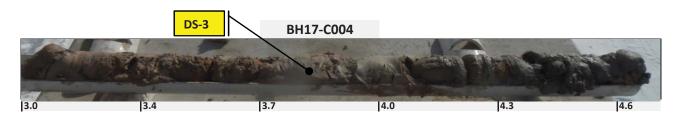
Borehole Name: BH17-C002 Mary River Expansion Study Stage 2


Location: 17 W 519513 7957644



Borehole Name: BH17-C003 Mary River Expansion Study Stage 2
Location: 17 W 520091 7957302 2017 Geotechnical Investigation

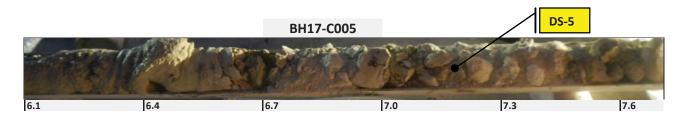


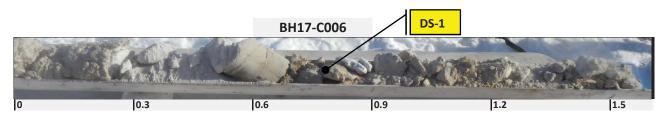


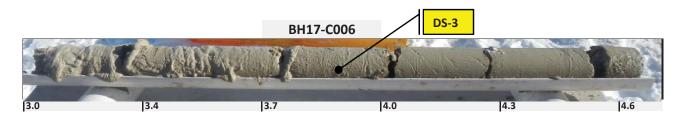
Borehole Name: BH17-C004 Mary River Expansion Study Stage 2
Location: 17 W 520484 7956357 2017 Geotechnical Investigation

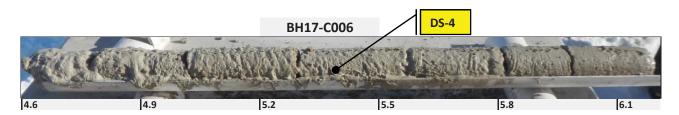
Borehole Name: BH17-C004 Mary River Expansion Study Stage 2

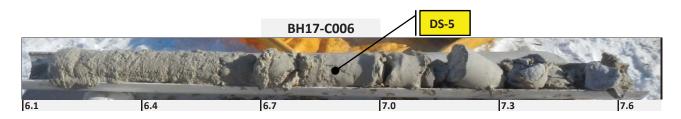
Location: 17 W 520484 7956357

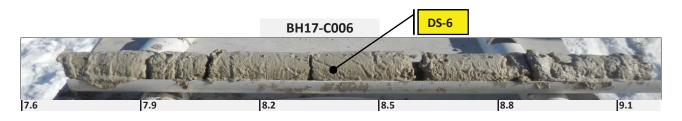

Borehole Name: BH17-C005 Mary River Expansion Study Stage 2
Location: 17 W 525227 7938527 2017 Geotechnical Investigation







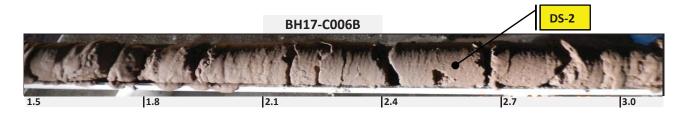

Borehole Name: BH17-C006 Mary River Expansion Study Stage 2
Location: 17 W 527370 7932609 2017 Geotechnical Investigation



Borehole Name: BH17-C006 Mary River Expansion Study Stage 2

Location: 17 W 527370 7932609

Completion Date: April 15, 2017 Baffinland Iron Mines


BH17-C006

Borehole Name: BH17-C006B Mary River Expansion Study Stage 2
Location: 17 W 528253 7929081 2017 Geotechnical Investigation

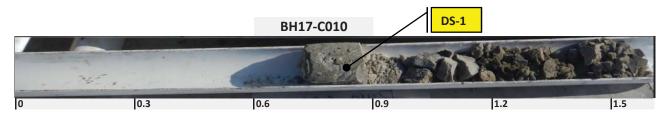

Borehole Name: BH17-C007

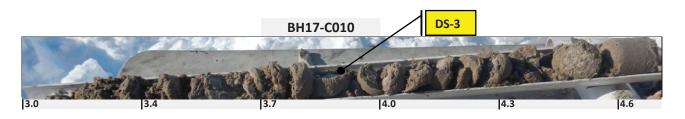
Location: 17 W 528564 7917138

Completion Date: April 22, 2017

Mary River Expansion Study Stage 2 2017 Geotechnical Investigation

Baffinland Iron Mines





Borehole Name: BH17-C010 Mary River Expansion Study Stage 2
Location: 17 W 529961 7916702 2017 Geotechnical Investigation

Borehole Name: BH17-C011 Mary River Expansion Study Stage 2
Location: 17 W 532072 7917478 2017 Geotechnical Investigation

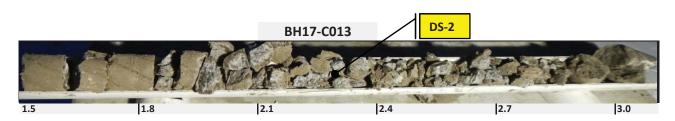
Borehole Name: BH17-C012

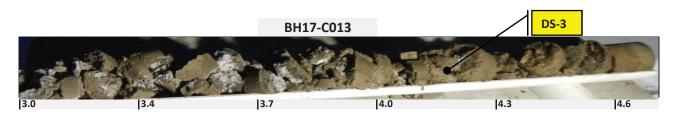
Location: 17 W 533228 7918553

Completion Date: April 19, 2017

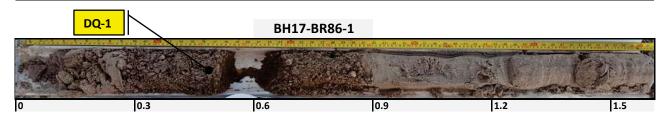
Mary River Expansion Study Stage 2 2017 Geotechnical Investigation

Baffinland Iron Mines



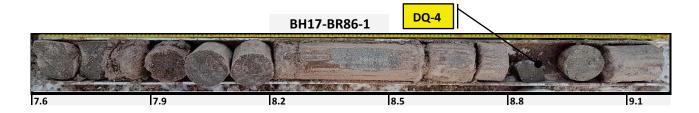


Borehole Name: BH17-C013 Mary River Expansion Study Stage 2
Location: 17 W 534196 7918569 2017 Geotechnical Investigation



Borehole Name: BH17-BR86-1 Mary River Expansion Study Stage 2
Location: 17 W 542257 7922182 2017 Geotechnical Investigation

Completion Date: October 3, 2017 Baffinland Iron Mines

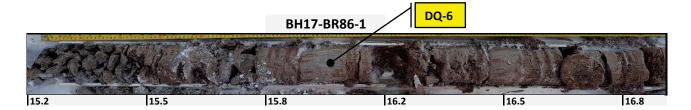

BH17-BR86-1

Borehole Name: BH17-BR86-1 Mary River Expansion Study Stage 2

Location: 17 W 542257 7922182

Completion Date: October 3, 2017 Baffinland Iron Mines

BH17-BR86-1



BH17-BR86-1


Borehole Name: BH17-BR86-1 Mary River Expansion Study Stage 2

Location: 17 W 542257 7922182

Completion Date: October 3, 2017 Baffinland Iron Mines

BH17-BR86-1

BH17-BR86-1

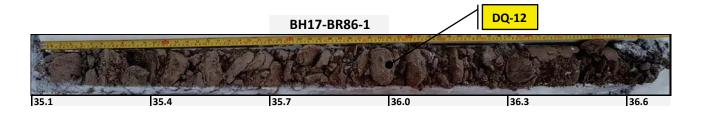
BH17-BR86-1

Borehole Name: BH17-BR86-1 Mary River Expansion Study Stage 2

Location: 17 W 542257 7922182

Completion Date: October 3, 2017 Baffinland Iron Mines

BH17-BR86-1



BH17-BR86-1

Borehole Name: BH17-BR86-1 Mary River Expansion Study Stage 2

Location: 17 W 542257 7922182

Completion Date: October 3, 2017 Baffinland Iron Mines

Borehole Name: BH17-BR86-2 Mary River Expansion Study Stage 2
Location: 17 W 542269 7922171 2017 Geotechnical Investigation

Completion Date: October 26, 2017 Baffinland Iron Mines

BH17-BR86-2

Borehole Name: BH17-BR86-2 Mary River Expansion Study Stage 2

Location: 17 W 542269 7922171

Completion Date: October 26, 2017 Baffinland Iron Mines

BH17-BR86-2

BH17-BR86-2

BH17-BR86-2

Borehole Name: BH17-BR86-2 Mary River Expansion Study Stage 2

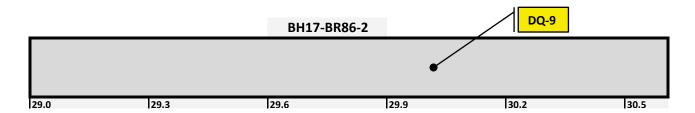
Location: 17 W 542269 7922171

Completion Date: October 26, 2017 Baffinland Iron Mines

BH17-BR86-2

BH17-BR86-2

BH17-BR86-2


Mary River Expansion Study Stage 2 Borehole Name: BH17-BR86-2

Location: 17 W 542269 7922171

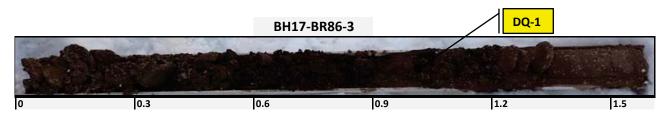
Completion Date: October 26, 2017 **Baffinland Iron Mines**

BH17-BR86-2

Borehole Name: BH17-BR86-2 Mary River Expansion Study Stage 2

Location: 17 W 542269 7922171

Completion Date: October 26, 2017 Baffinland Iron Mines


Borehole Name: BH17-BR86-3

Location: 17 W 542305 7922141

Completion Date:


Mary River Expansion Study Stage 2 2017 Geotechnical Investigation

Baffinland Iron Mines



Mary River Expansion Study Stage 2

Borehole Name: BH17-BR86-3

Location: 17 W 542305 7922141

Completion Date: **Baffinland Iron Mines**

BH17-BR86-3

BH17-BR86-3

DQ-6

BH17-BR86-3

BH17-BR86-3

BH17-BR86-3

Mary River Expansion Study Stage 2

Borehole Name: BH17-BR86-3

Location: 17 W 542305 7922141

Completion Date: Baffinland Iron Mines

BH17-BR86-3

BH17-BR86-3

BH17-BR86-3

BH17-BR86-3

Borehole Name: BH17-BR86-3

Location: 17 W 542305 7922141

Completion Date:

Mary River Expansion Study Stage 2

Baffinland Iron Mines

BH17-BR86-3

BH17-BR86-3

BH17-BR86-3

BH17-BR86-3

Mary River Expansion Study Stage 2

Borehole Name: BH17-BR86-3

Location: 17 W 542305 7922141

Completion Date: Baffinland Iron Mines

BH17-BR86-3

Borehole Name: BH18-BR15-1 Mary River Expansion Study Stage 2
Location: 17 W 514260 7965610 2018 Geotechnical Investigation

Completion Date: March 14, 2018 Baffinland Iron Mines

BH18-BR15-1

BH18-BR15-1

Borehole Name: BH18-BR15-1

17 W 514260 7965610

Location: Completion Date: March 14, 2018 Mary River Expansion Study Stage 2

Baffinland Iron Mines

BH18-BR15-1

BH18-BR15-1

BH18-BR15-1

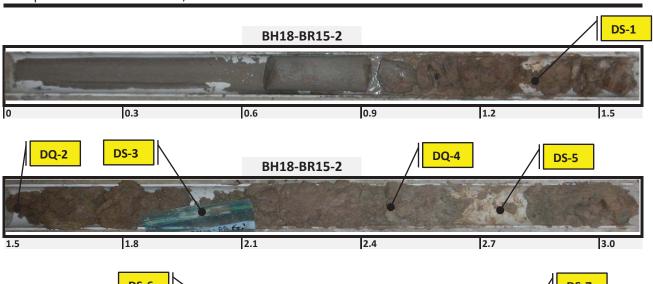
BH18-BR15-1

BH18-BR15-1

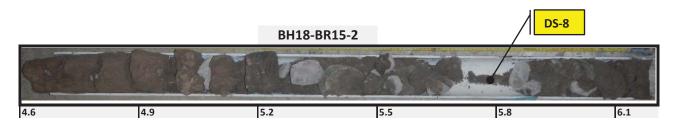
Borehole Name: BH18-BR15-1 Mary River Expansion Study Stage 2

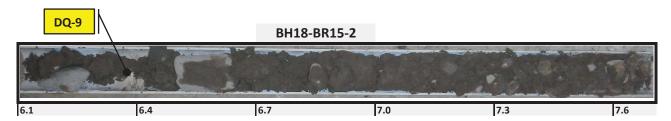
Location: 17 W 514260 7965610

Completion Date: March 14, 2018 Baffinland Iron Mines



Borehole Name: BH18-BR15-2 Location: 17 W 514211 7965645


Completion Date: March 12, 2018


Mary River Expansion Study Stage 2 2018 Geotechnical Investigation

Baffinland Iron Mines



Borehole Name: BH18-BR15-2

Location: 17 W 514211 7965645

Completion Date: March 12, 2018 Baffinland Iron Mines

Mary River Expansion Study Stage 2

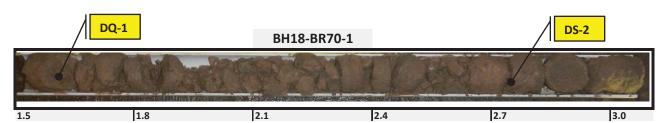
BH18-BR15-2

BH18-BR15-2

BH18-BR15-2

Borehole Name: BH18-BR70-1

Location: 17 W 529138 7916667


Completion Date: April 16, 2018

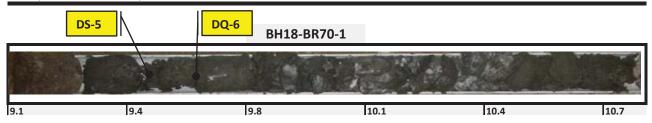
Mary River Expansion Study Stage 2 2018 Geotechnical Investigation

Baffinland Iron Mines

BH18-BR70-1

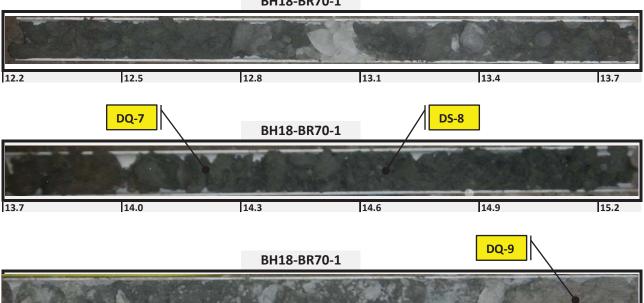
BH18-BR70-1

BH18-BR70-1



Borehole Name: BH18-BR70-1 Mary River Expansion Study Stage 2

Location: 17 W 529138 7916667


15.5

Completion Date: April 16, 2018 Baffinland Iron Mines

BH18-BR70-1

BH18-BR70-1

15.8

16.2

16.5

16.8

Borehole Name: BH18-BR70-1 Mary River Expansion Study Stage 2

Location: 17 W 529138 7916667

Completion Date: April 16, 2018 Baffinland Iron Mines

BH18-BR70-1

BH18-BR70-1

BH18-BR70-1

BH18-BR70-1

BH18-BR70-1

Borehole Name: BH18-BR70-1

17 W 529138 7916667

Completion Date: April 16, 2018

Location:

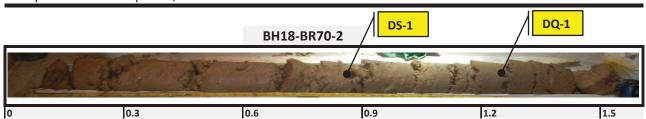
Mary River Expansion Study Stage 2

Baffinland Iron Mines

BH18-BR70-1

BH18-BR70-1

BH18-BR70-1



Borehole Name: BH18-BR70-2 Location: 17 W 529107 7916700

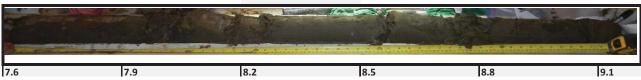
Completion Date: April 18, 2018

Mary River Expansion Study Stage 2 2018 Geotechnical Investigation

Baffinland Iron Mines

BH18-BR70-2

BH18-BR70-2


3.0 | 3.4 | 3.7 | 4.0 | 4.3 | 4.6

BH18-BR70-2

BH18-BR70-2

Borehole Name: BH18-BR70-2

Location: 17 W 529107 7916700

Completion Date: April 18, 2018

Mary River Expansion Study Stage 2

Baffinland Iron Mines

BH18-BR70-2

BH18-BR70-2

BH18-BR70-2

BH18-BR70-2

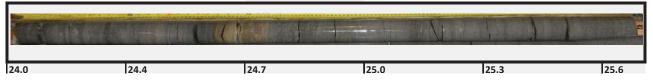
Borehole Name: BH18-BR70-2

17 W 529107 7916700

Location: Completion Date: April 18, 2018 Mary River Expansion Study Stage 2

Baffinland Iron Mines

BH18-BR70-2


BH18-BR70-2

BH18-BR70-2

BH18-BR70-2

Borehole Name: BH18-BR70-2 Mary River Expansion Study Stage 2

Location: 17 W 529107 7916700

Completion Date: April 18, 2018 Baffinland Iron Mines

Borehole Name: BH18-BR102-1 Mary River Expansion Study Stage 2
Location: 17 W 555763 7915435 2018 Geotechnical Investigation

Completion Date: April 7, 2018 Baffinland Iron Mines

BH18-BR102-1

BH18-BR102-1

BH18-BR102-1

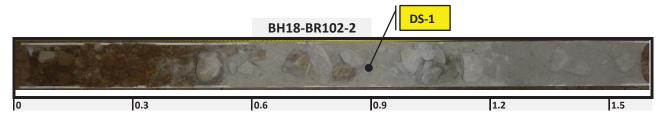
BH18-BR102-1

BH18-BR102-1

Borehole Name: BH18-BR102-1 Mary River Expansion Study Stage 2

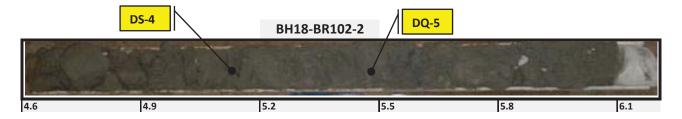
Location: 17 W 555763 7915435

Completion Date: April 7, 2018 Baffinland Iron Mines



Borehole Name: BH18-BR102-2 Location: 17 W 555674 7915443

Completion Date: April 10, 2018


Mary River Expansion Study Stage 2 2018 Geotechnical Investigation

Baffinland Iron Mines

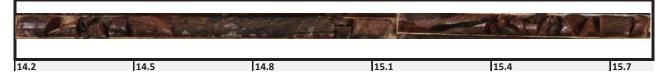
BH18-BR102-2

Borehole Name: BH18-BR102-2 Mary River Expansion Study Stage 2

Location: 17 W 555674 7915443

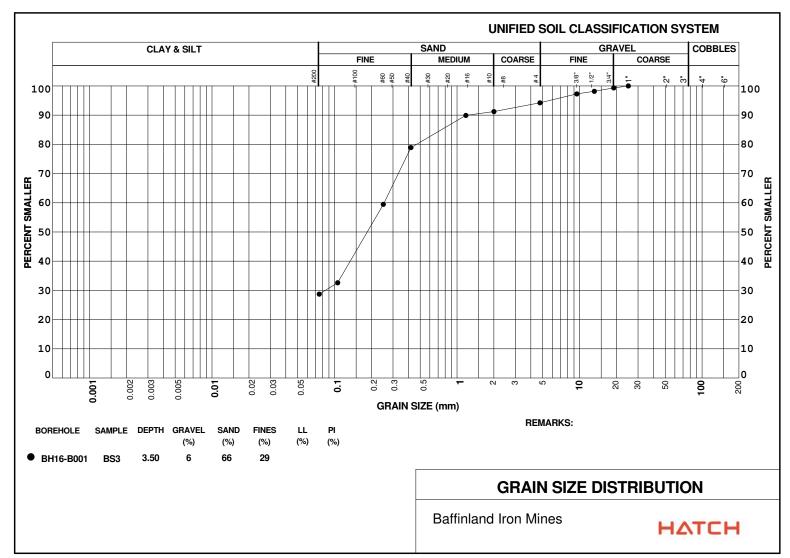
Completion Date: April 10, 2018 Baffinland Iron Mines

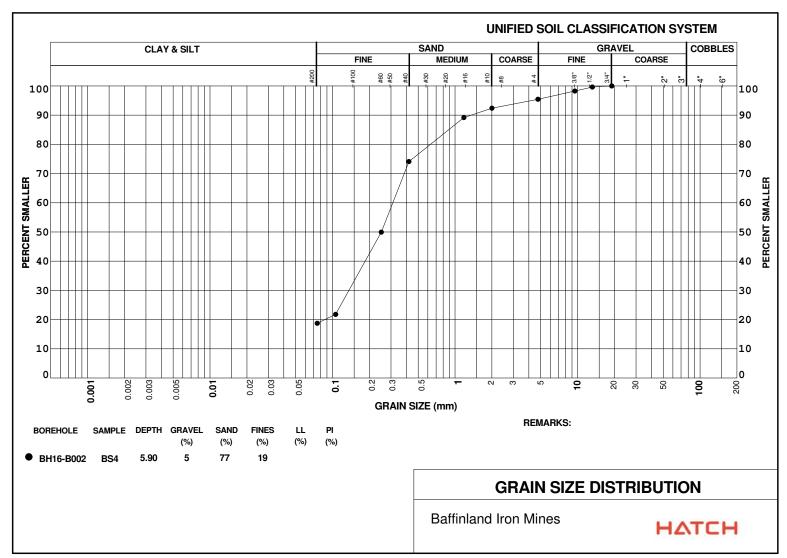

BH18-BR102-2

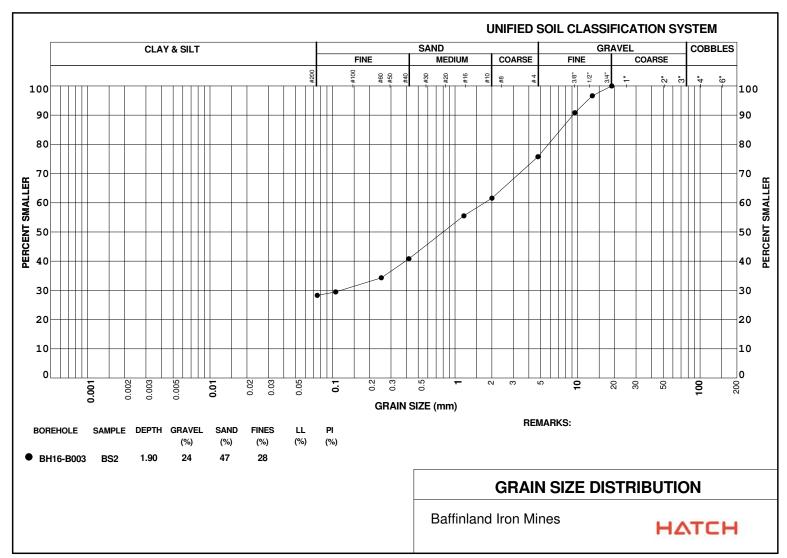

BH18-BR102-2

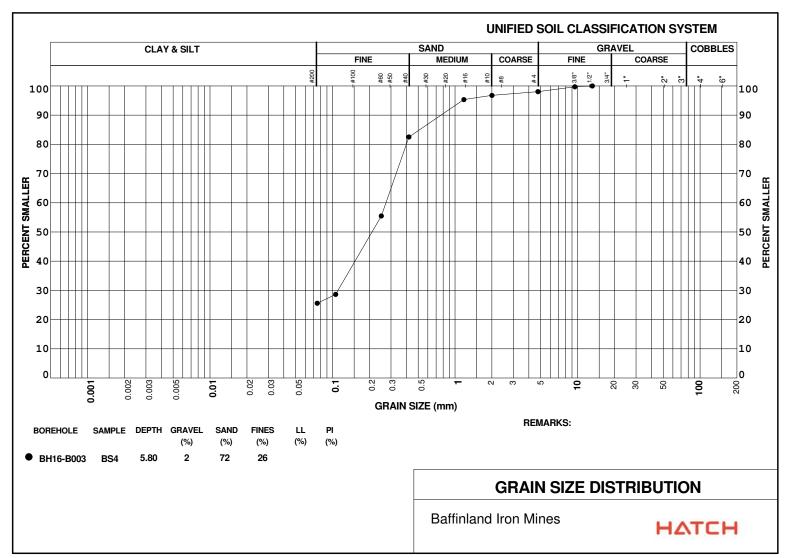
BH18-BR102-2

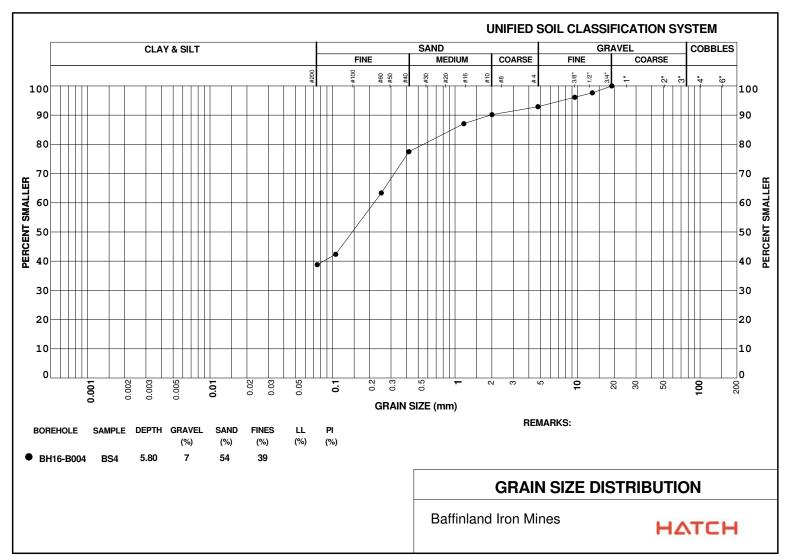
BH18-BR102-2

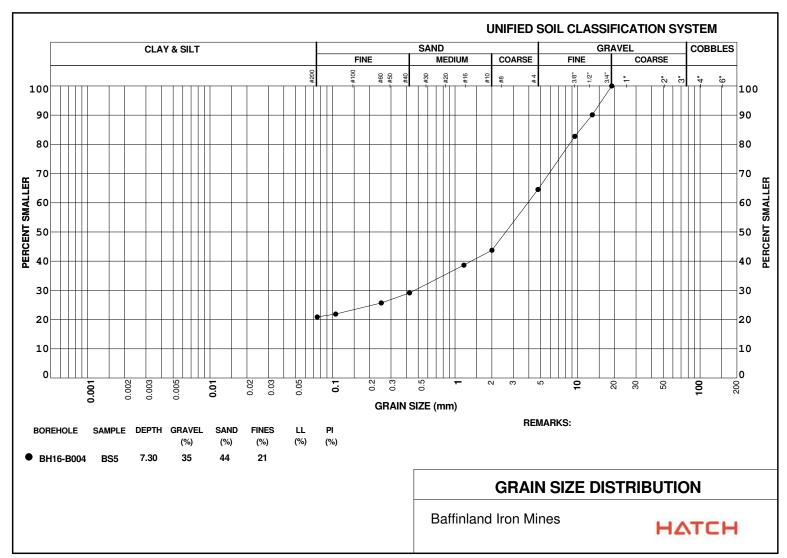


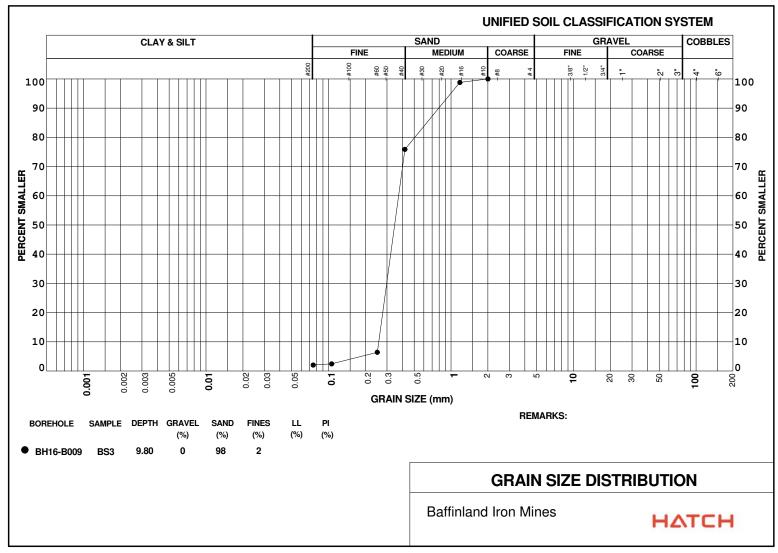


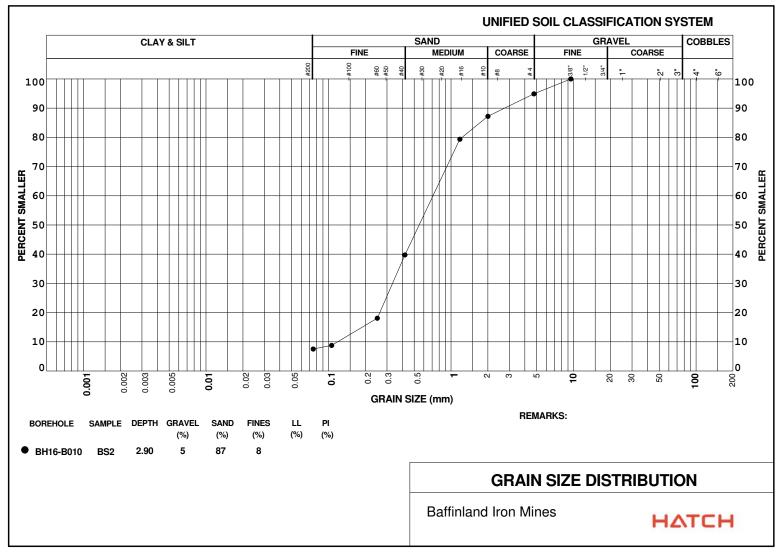


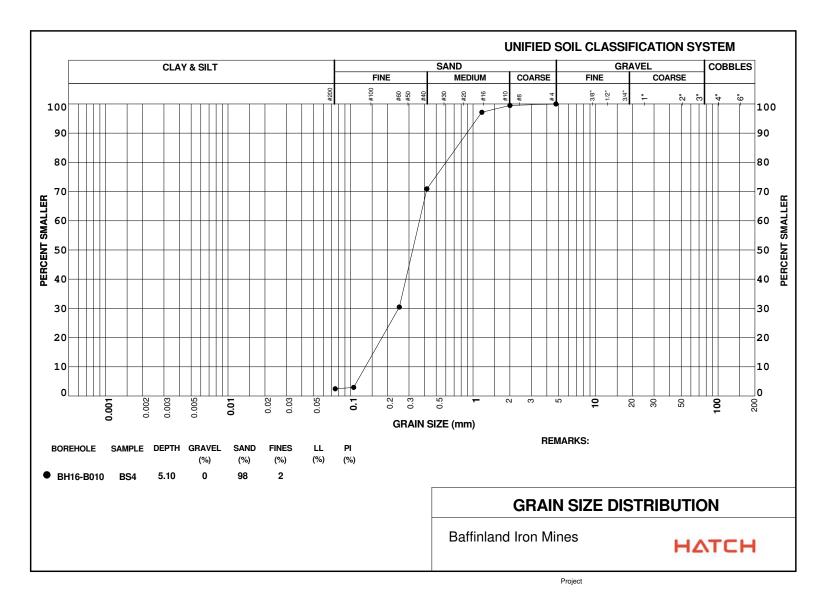


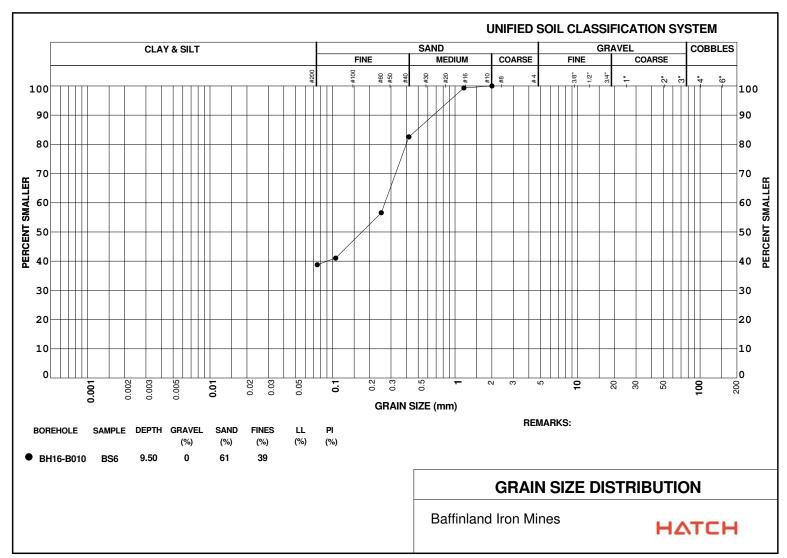

Appendix D Laboratory Reports

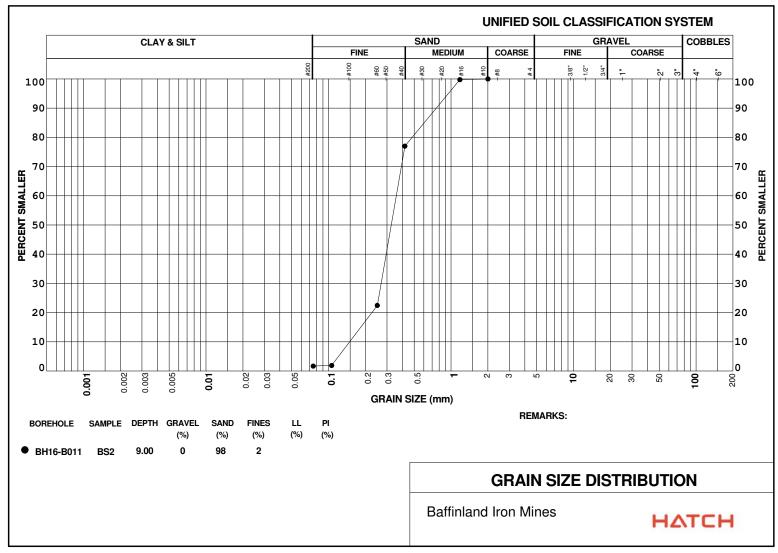


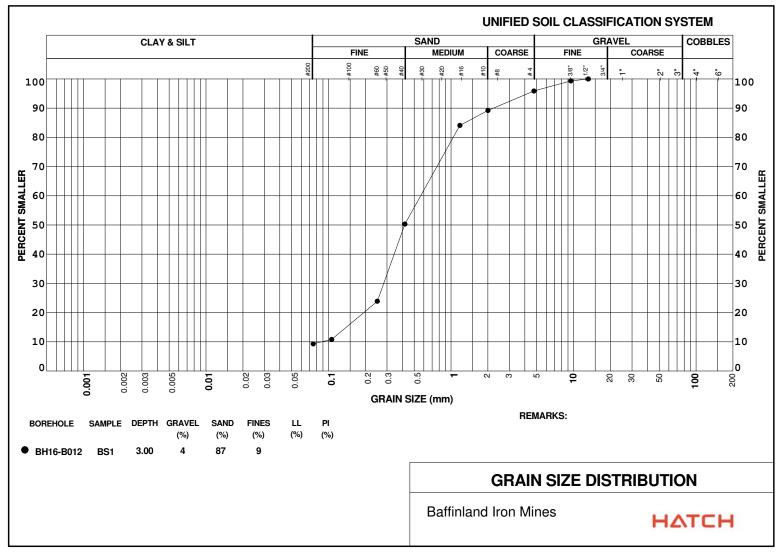


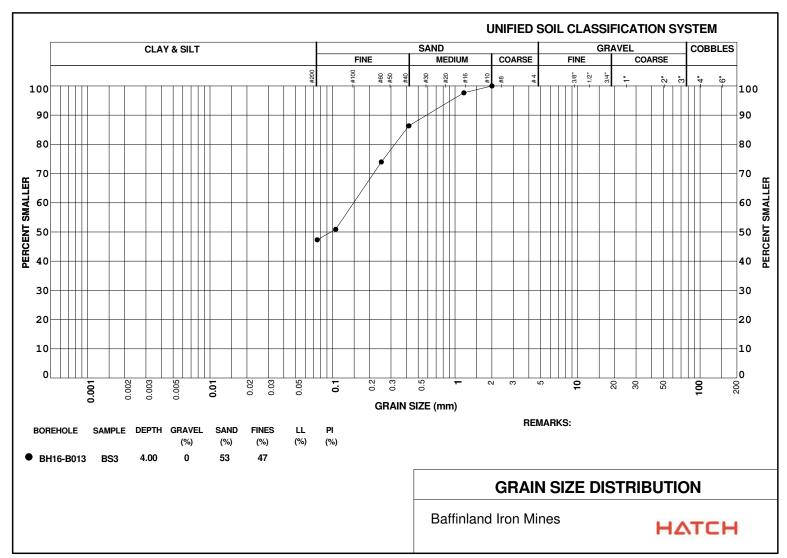


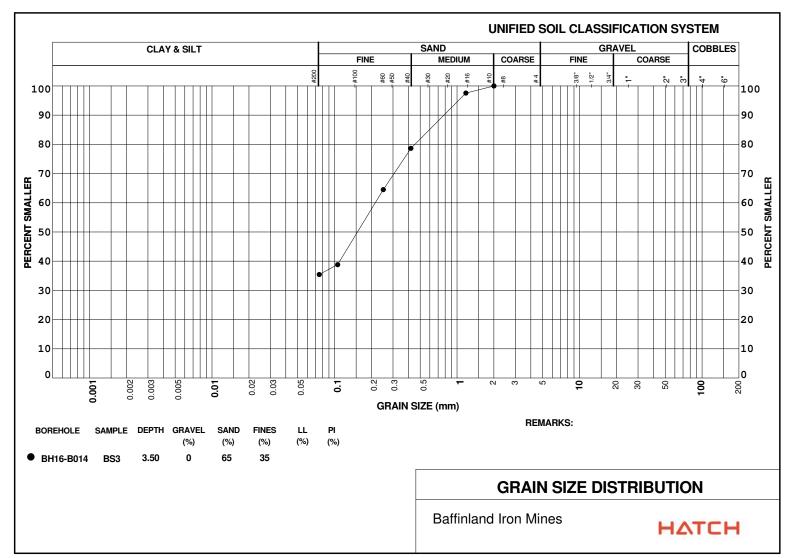


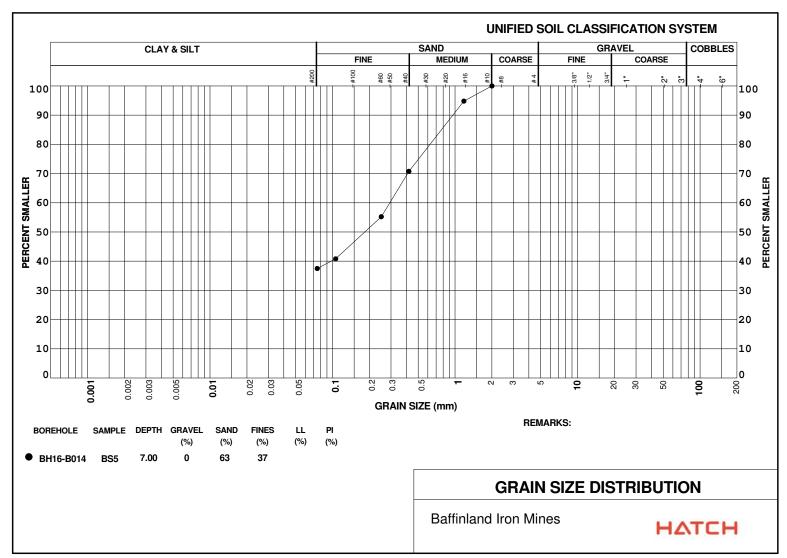


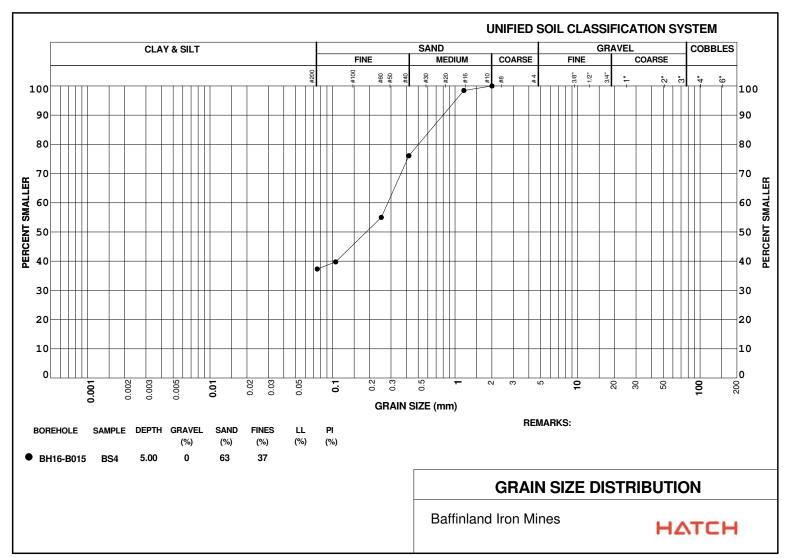


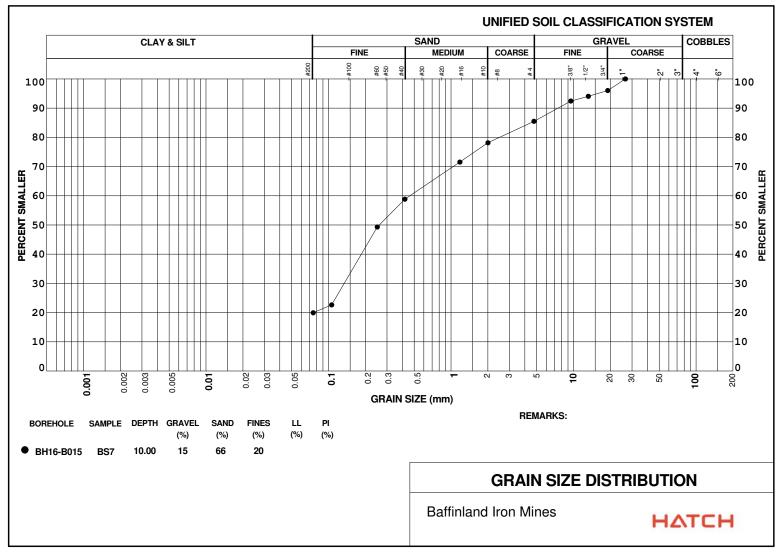


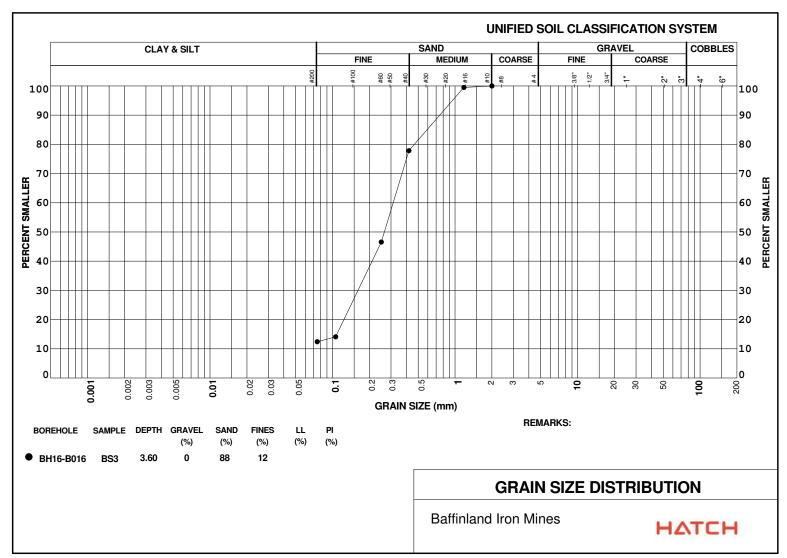


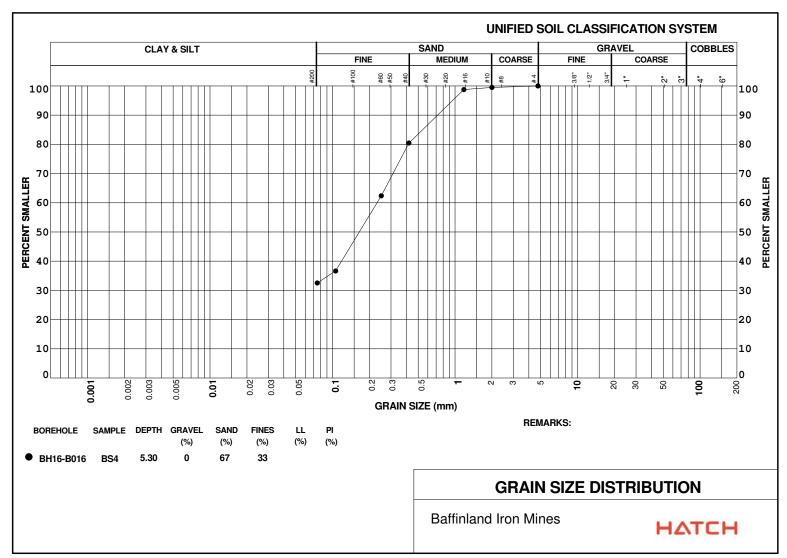


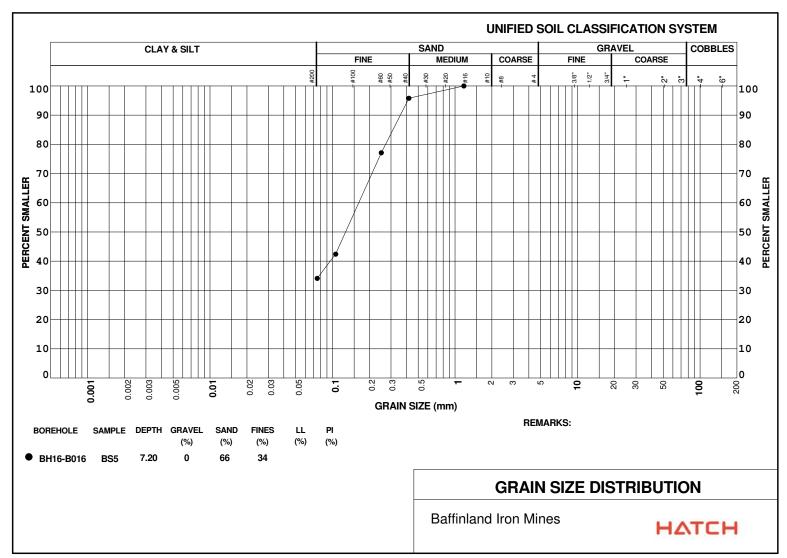


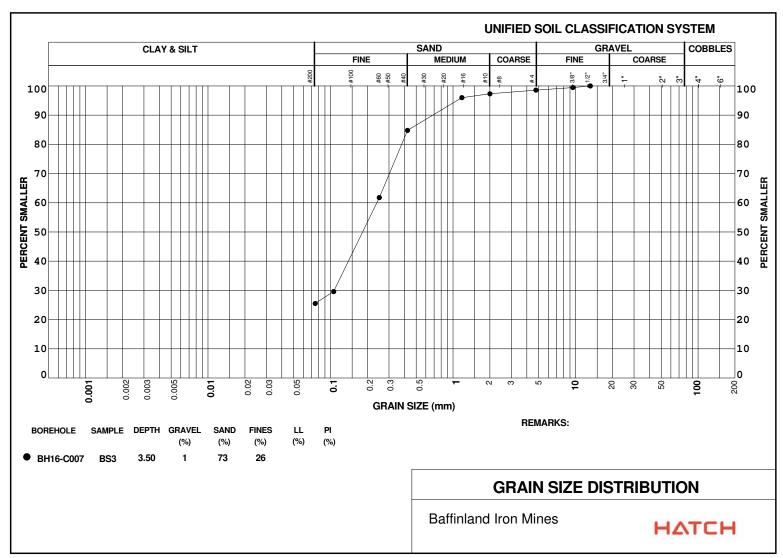


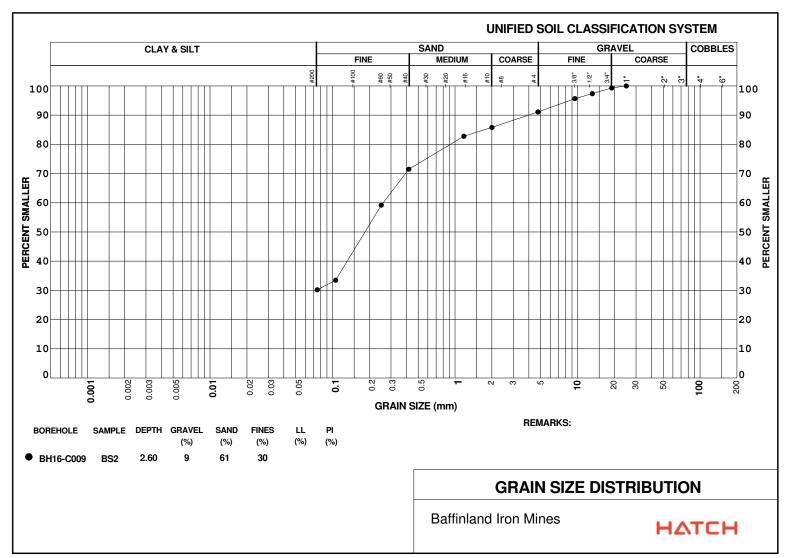


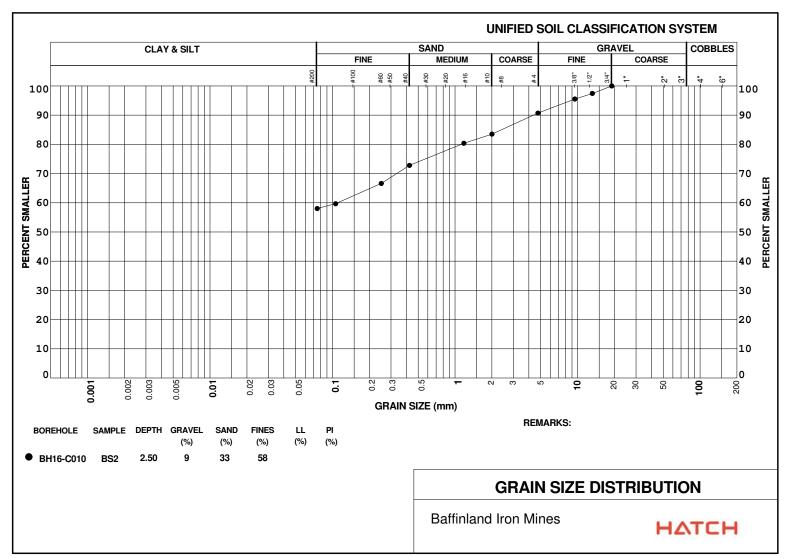


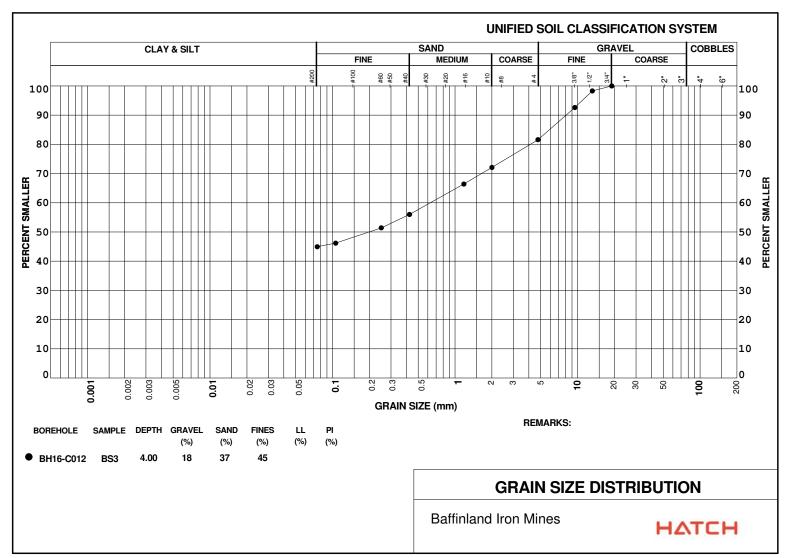


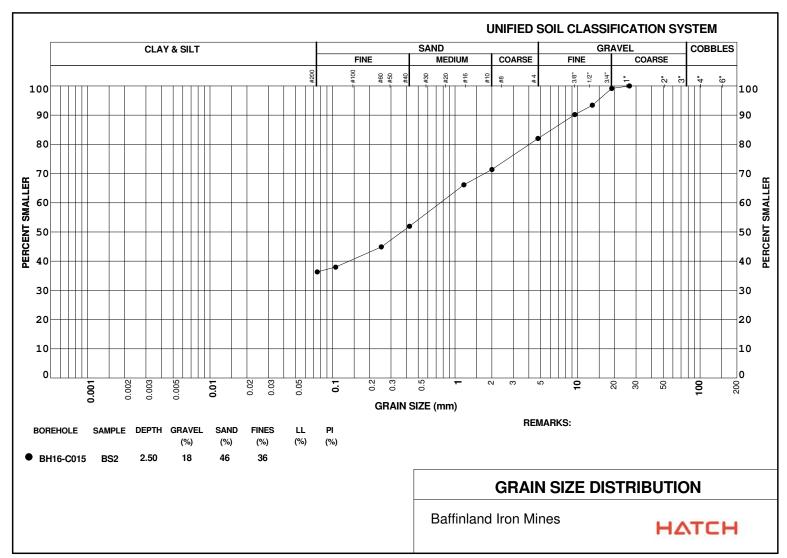


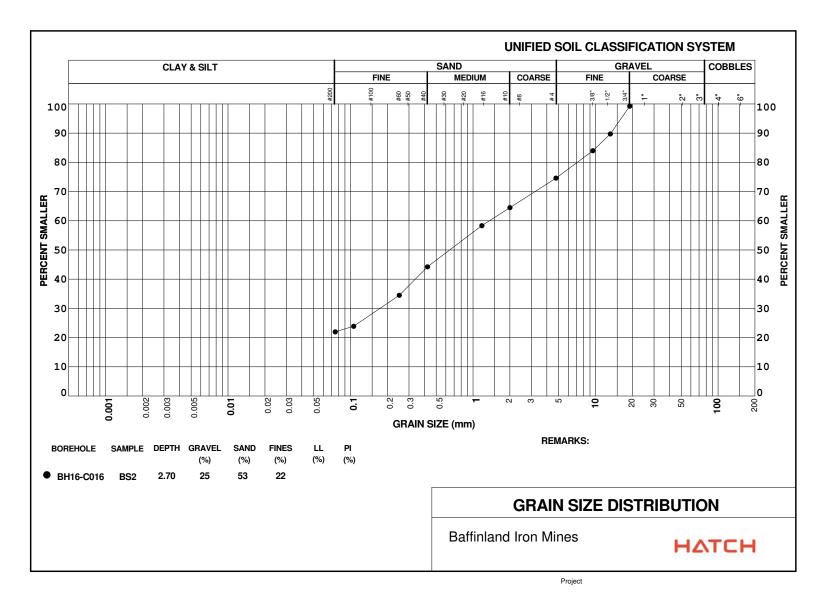


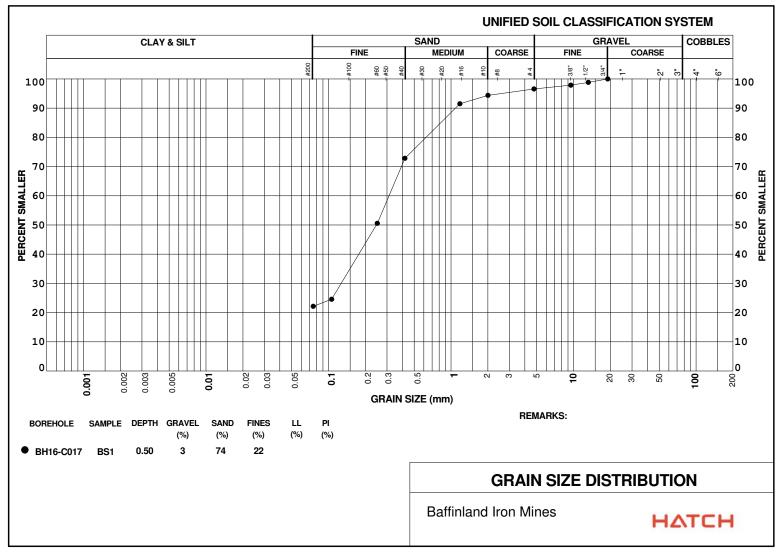


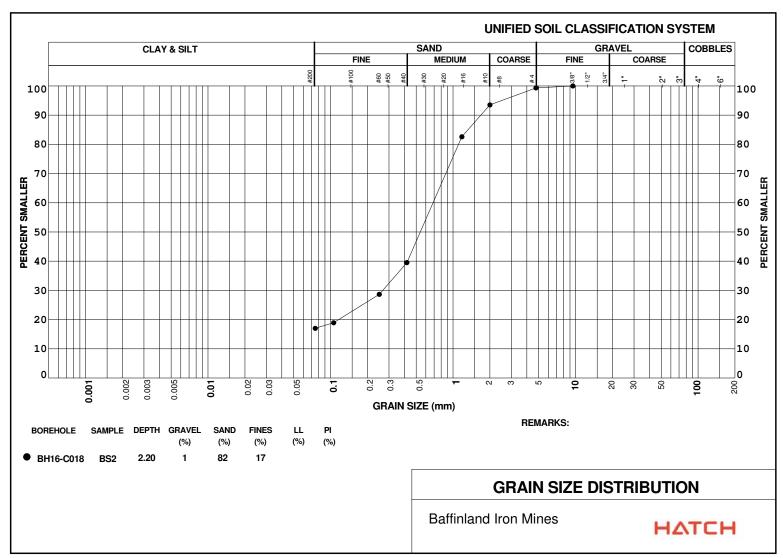


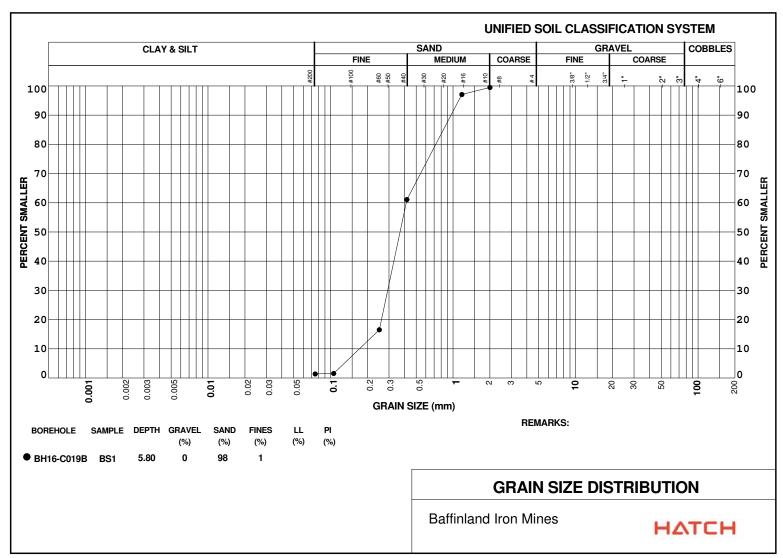


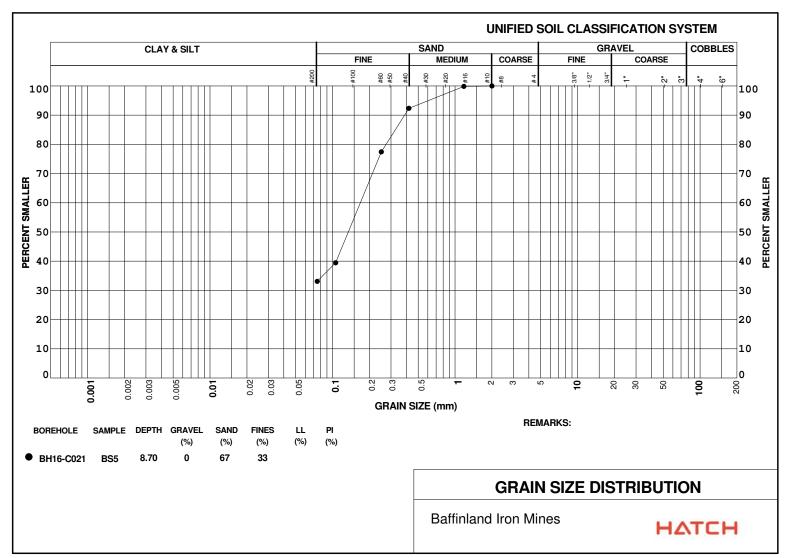


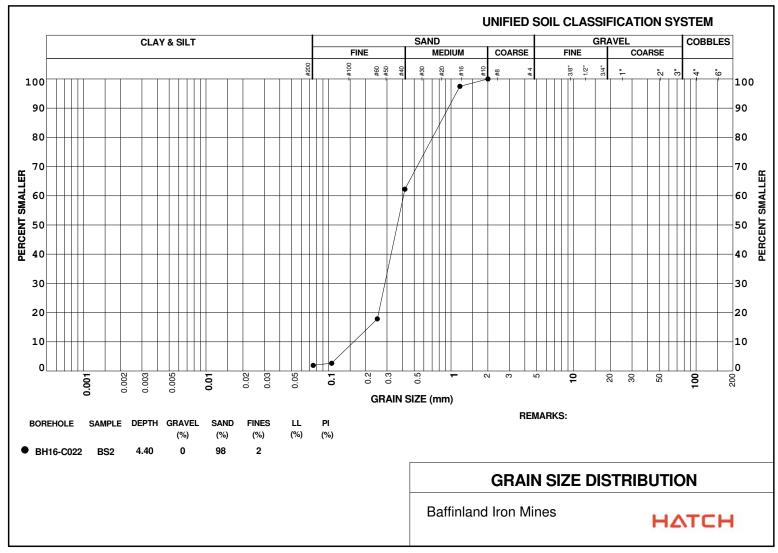


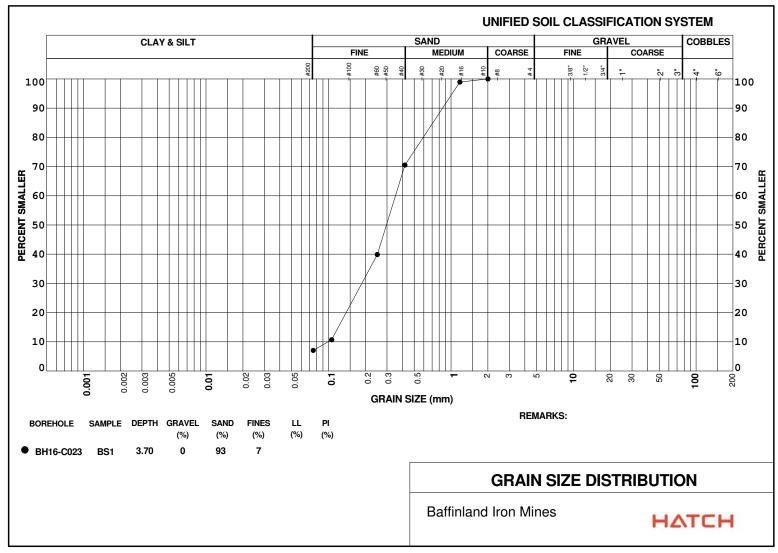


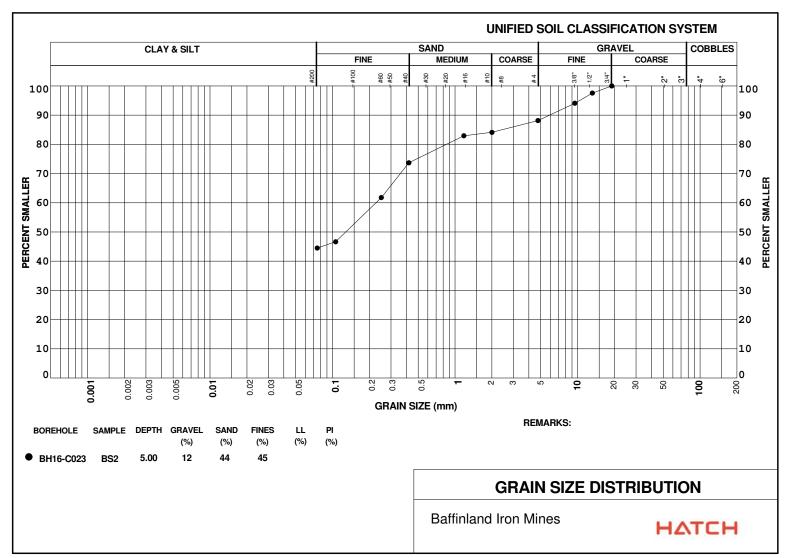


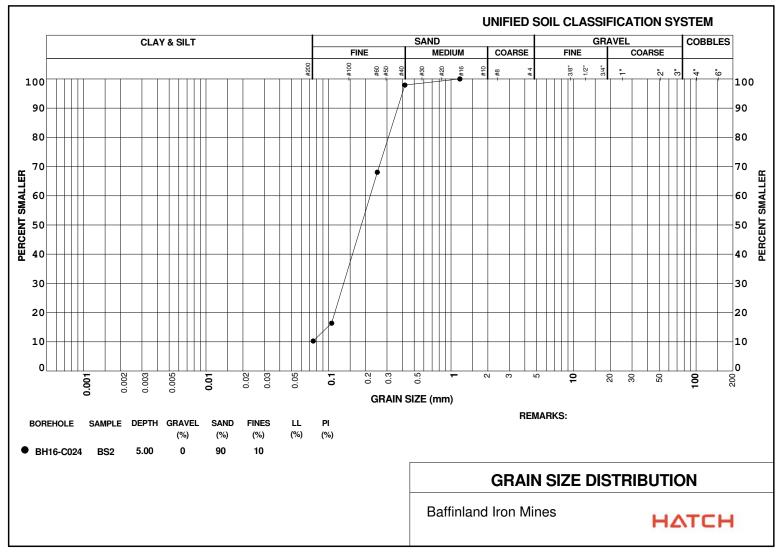


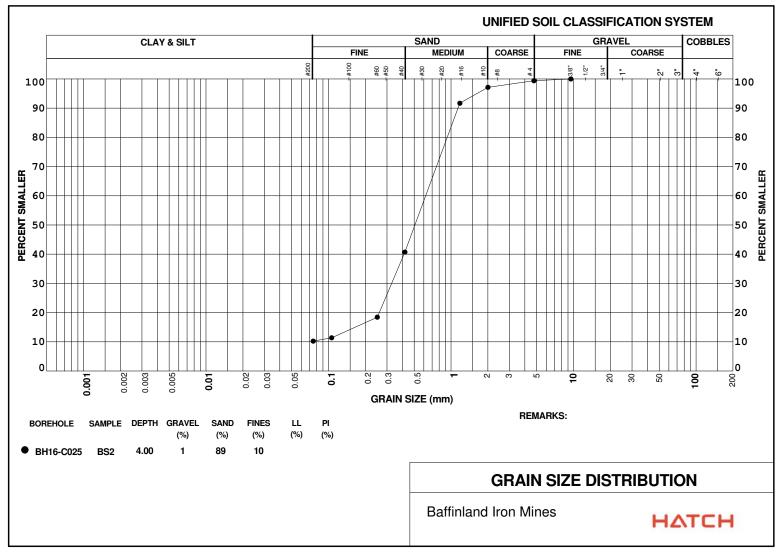


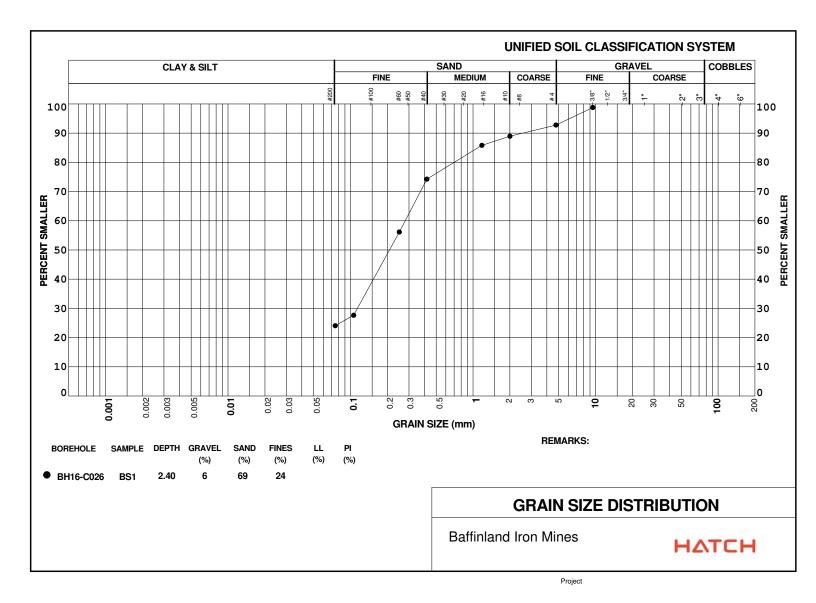


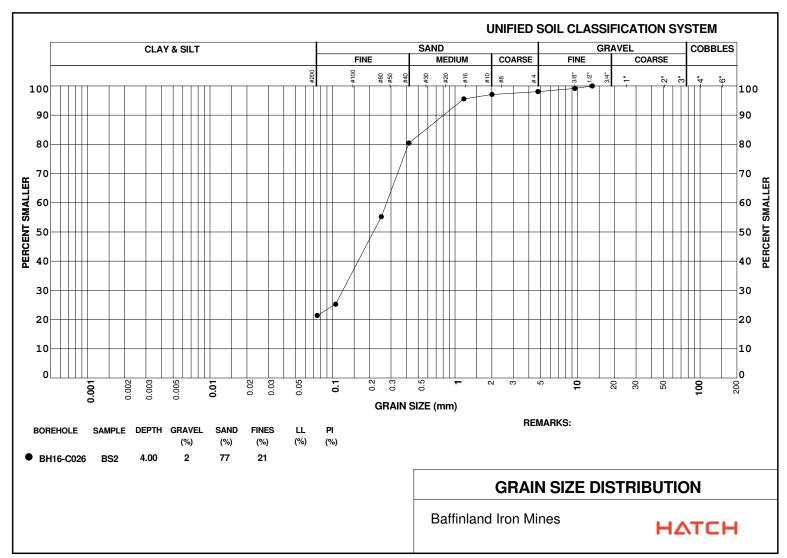


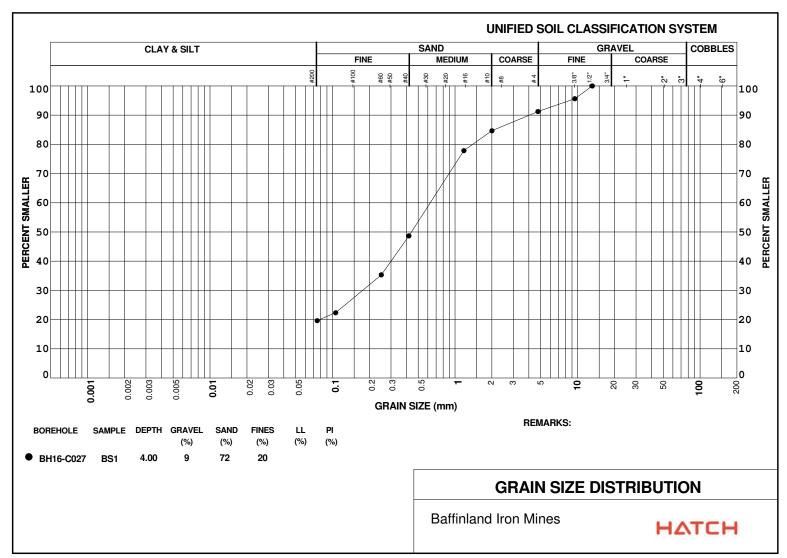


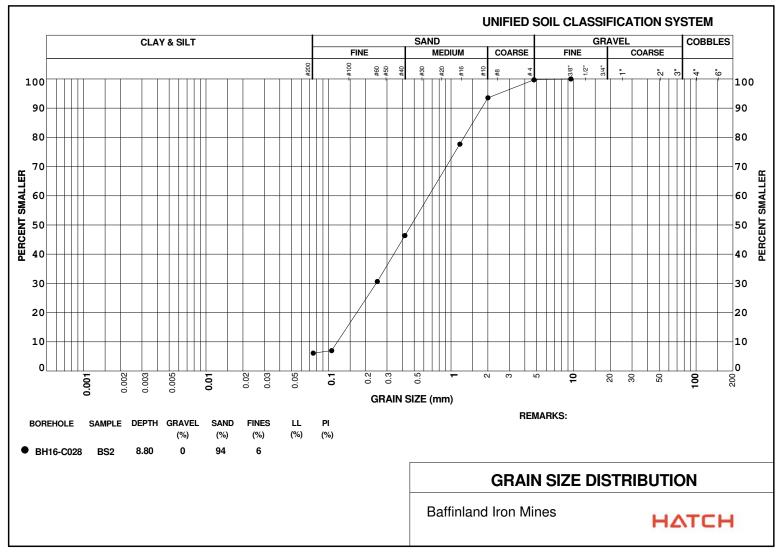


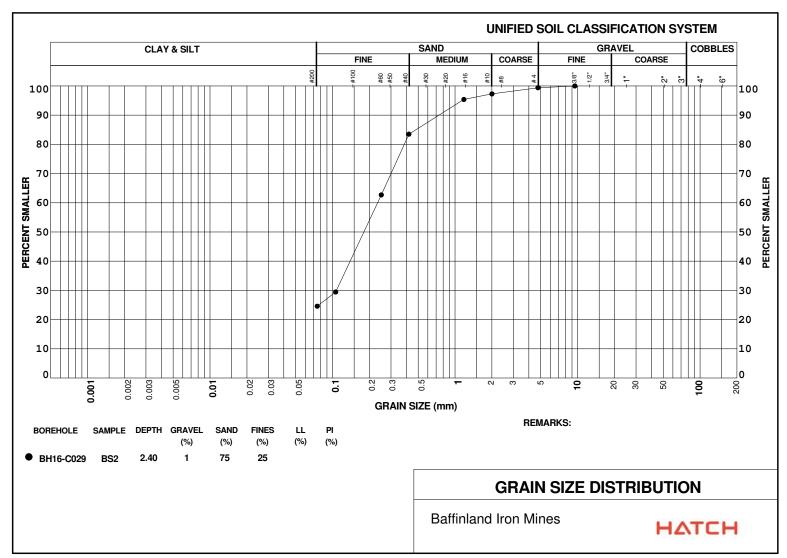


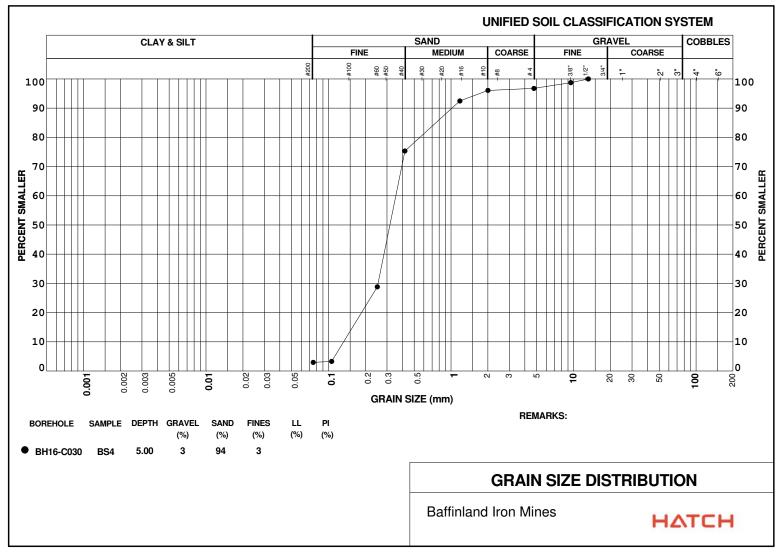


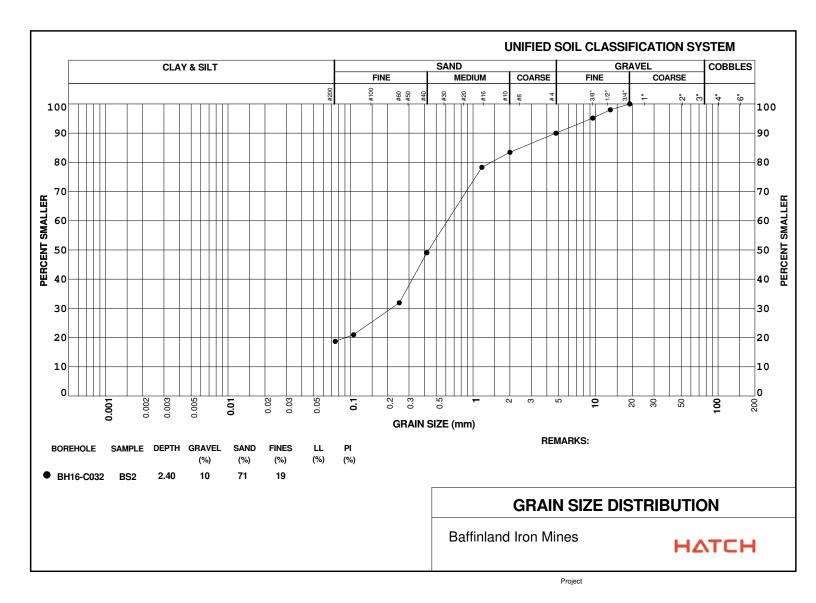


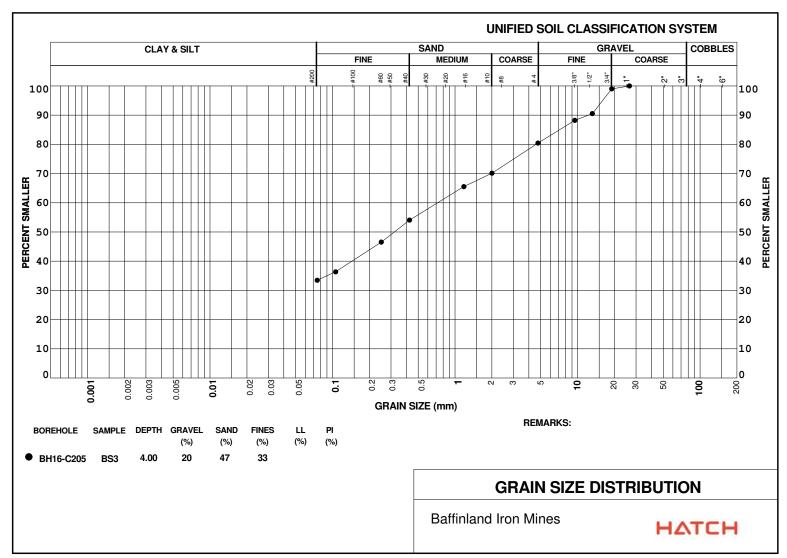


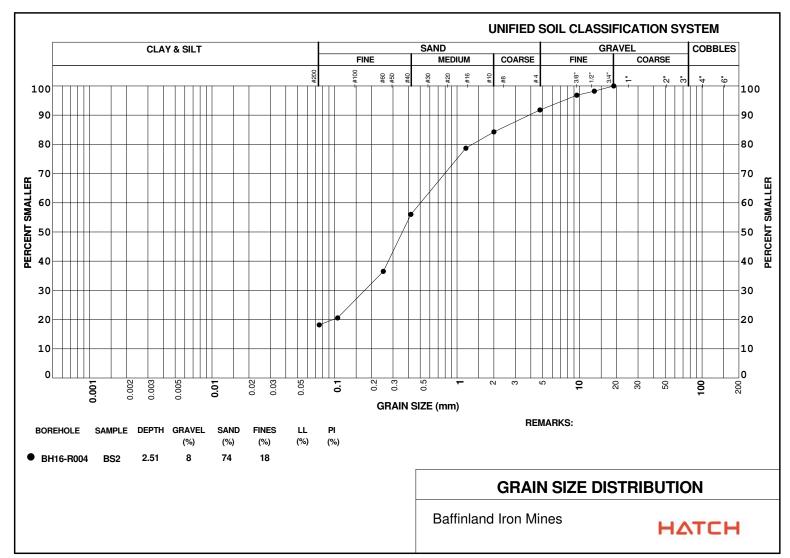


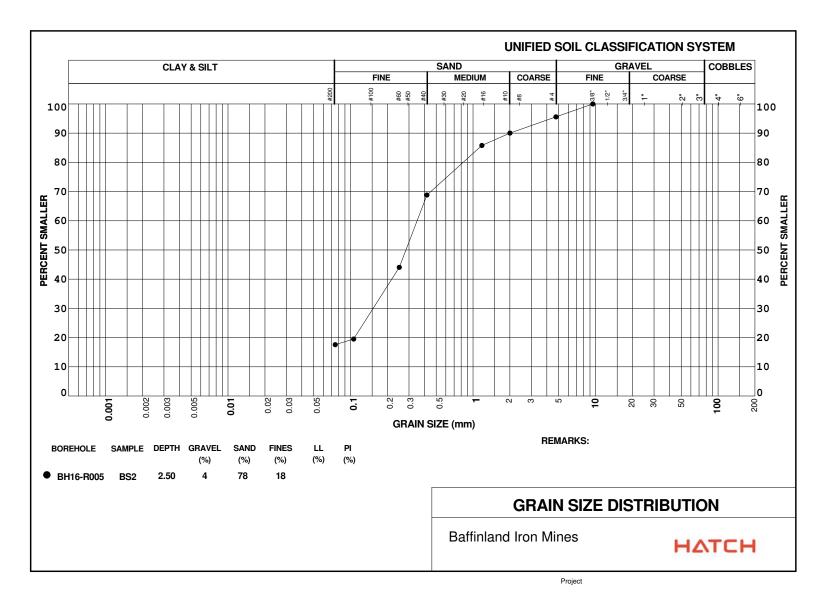


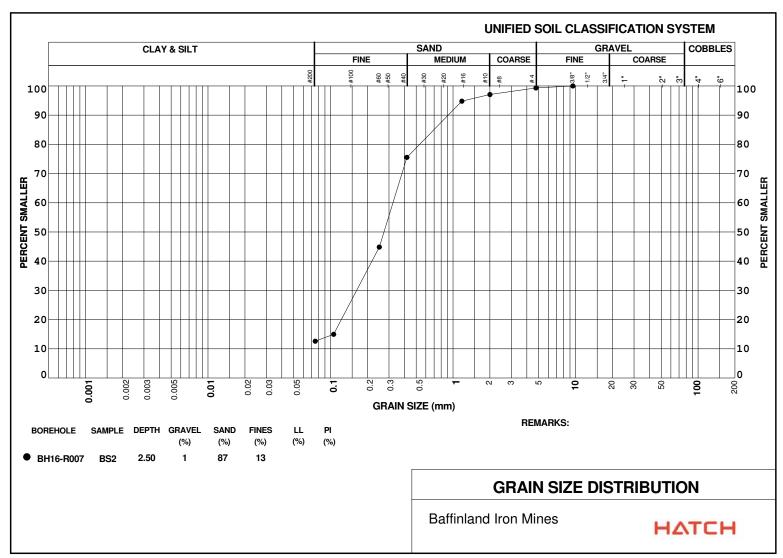


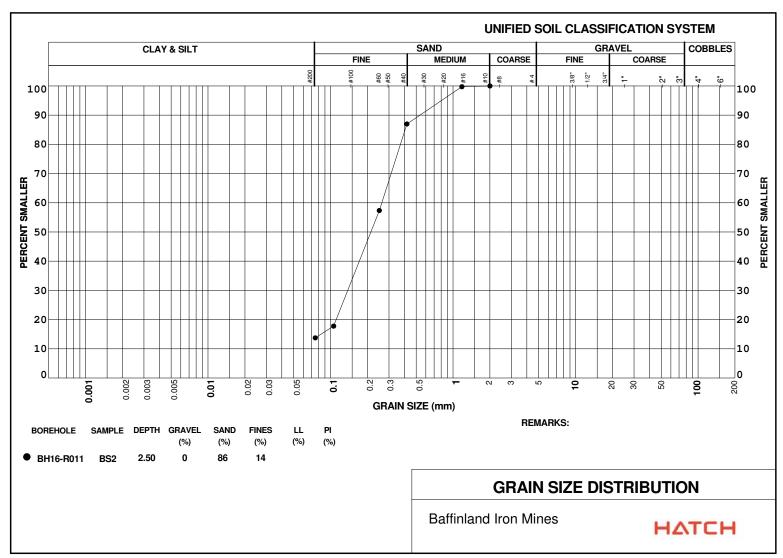


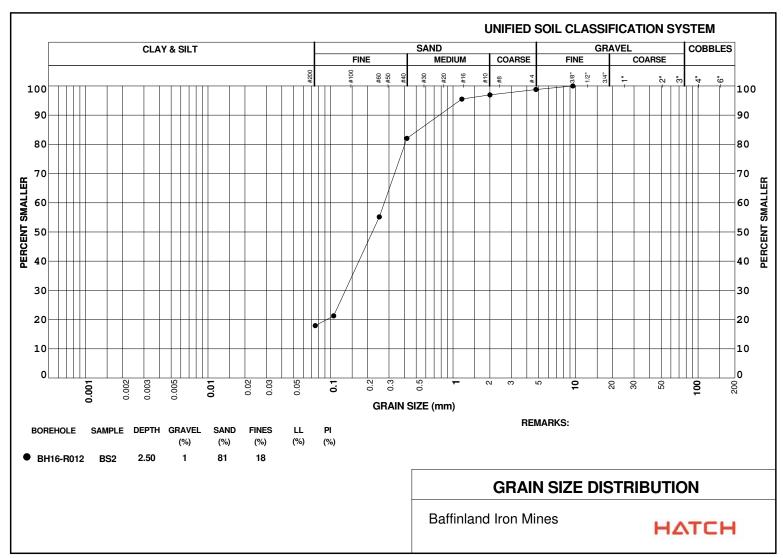


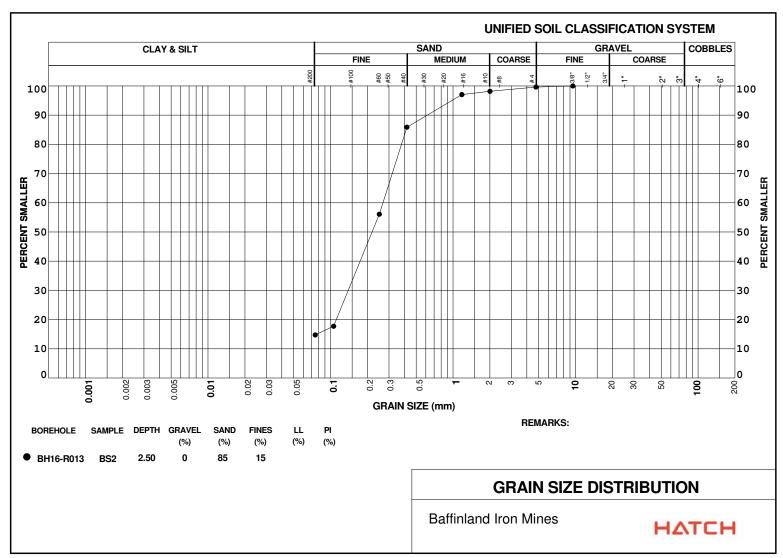


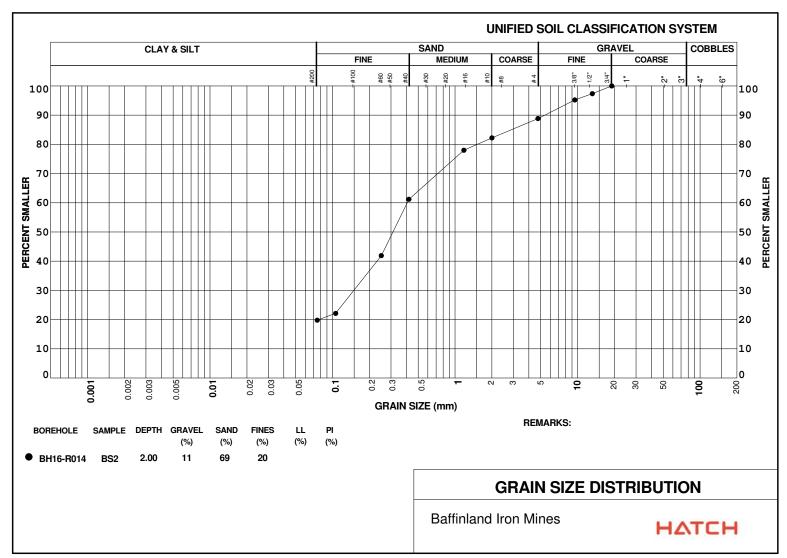


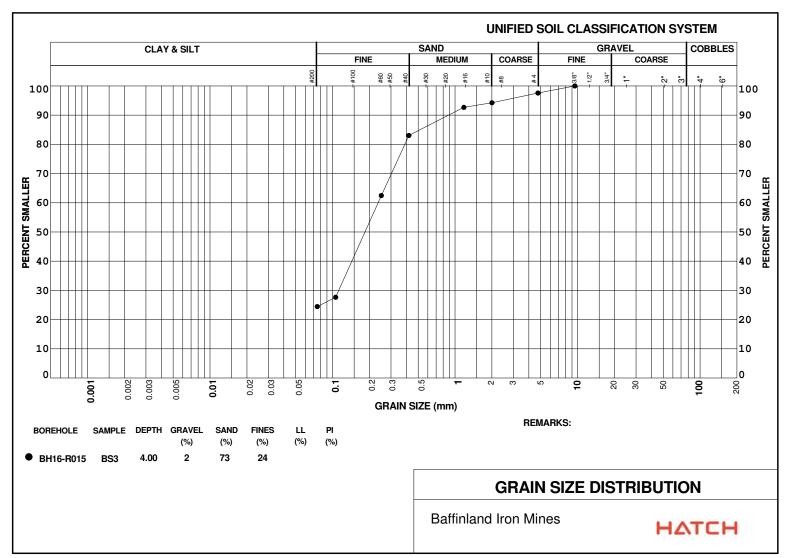


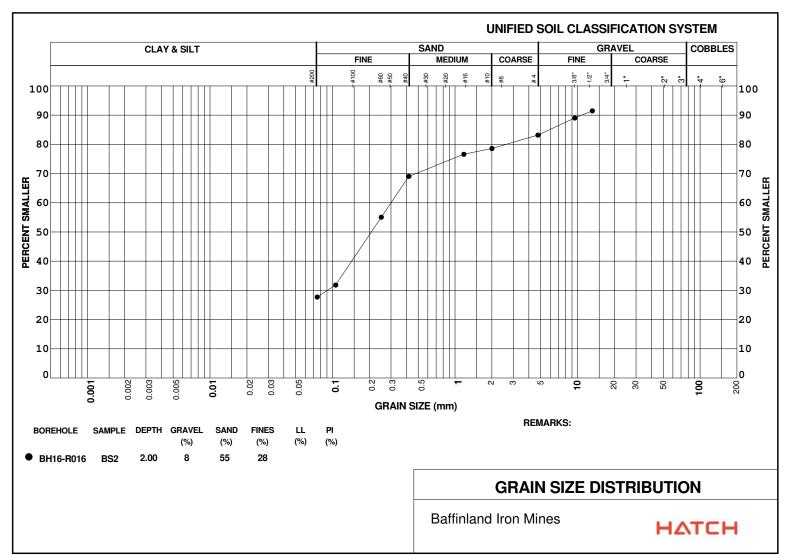


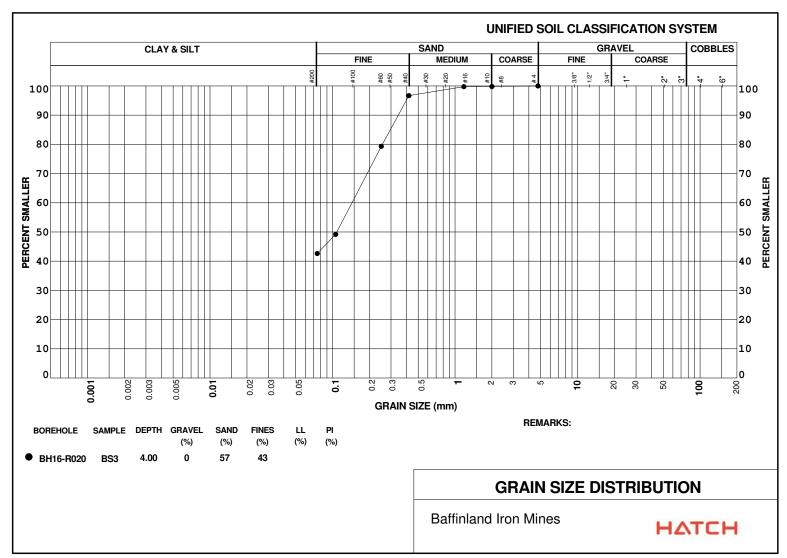


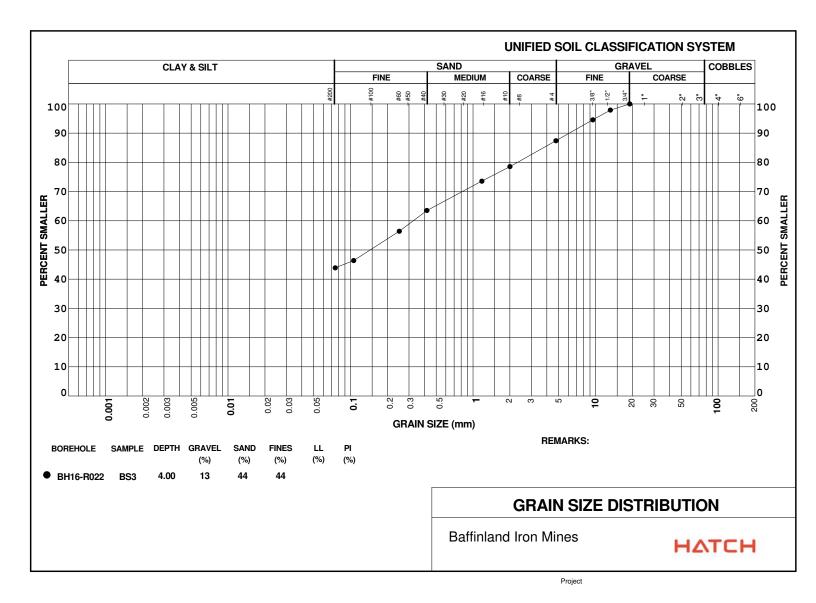


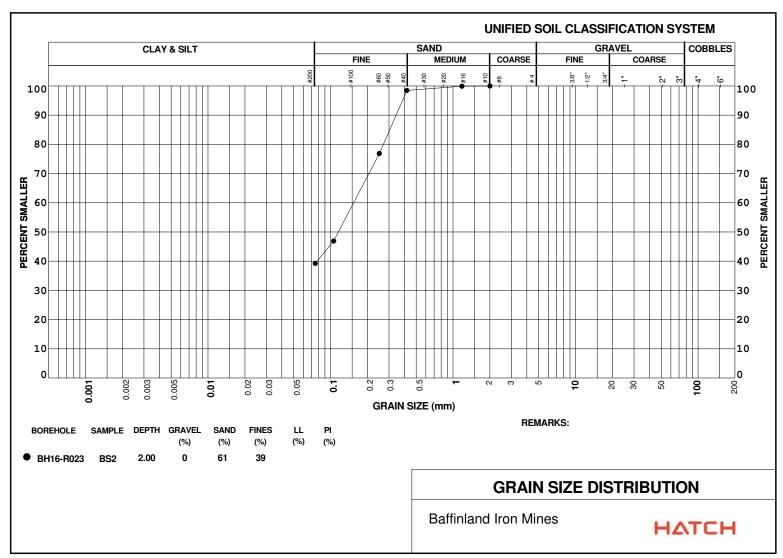


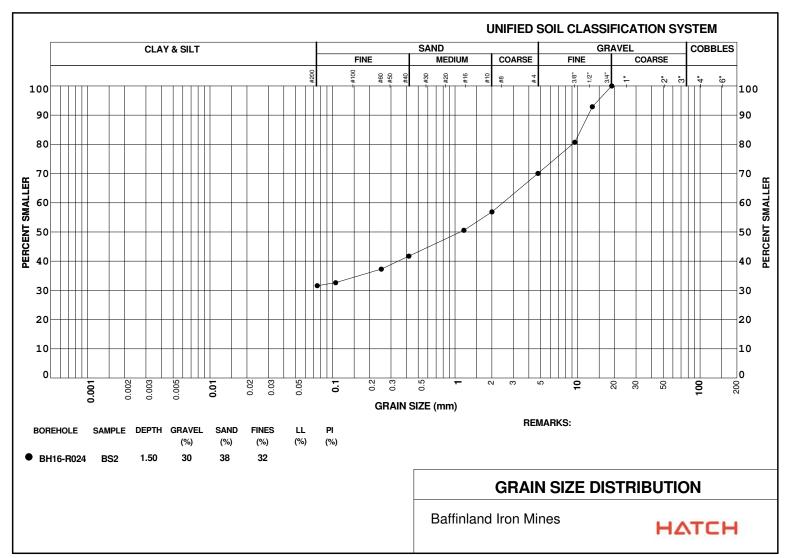


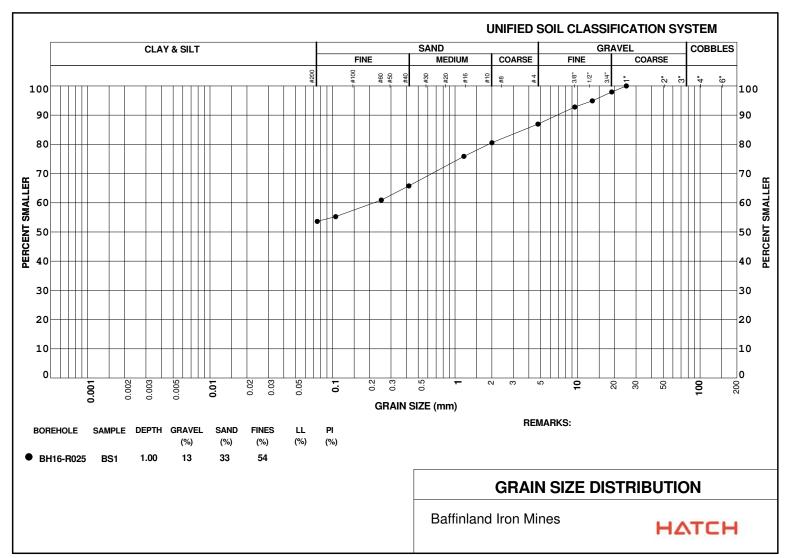


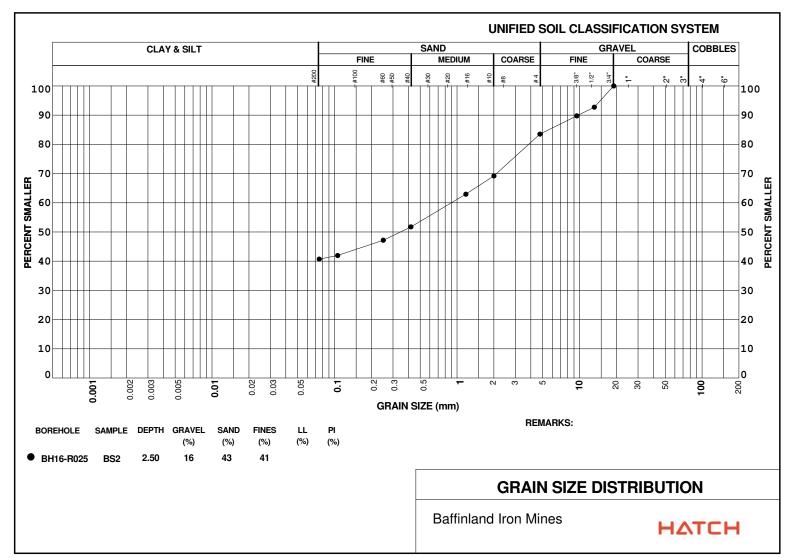


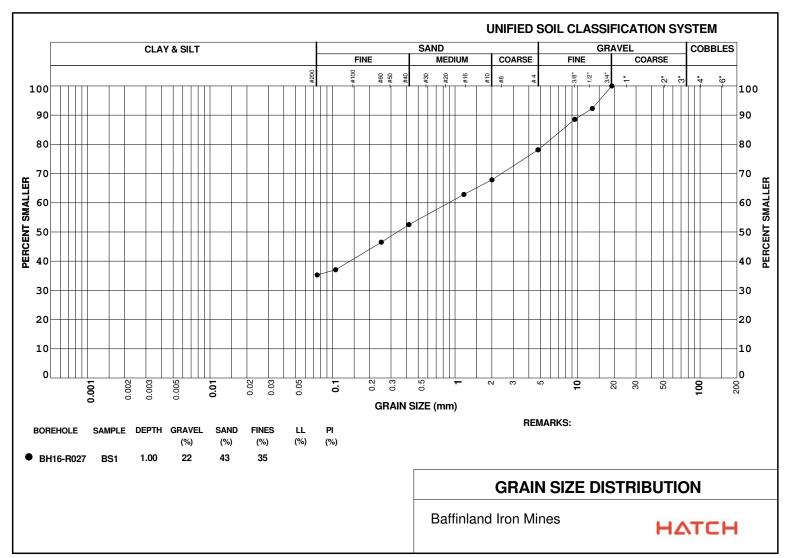


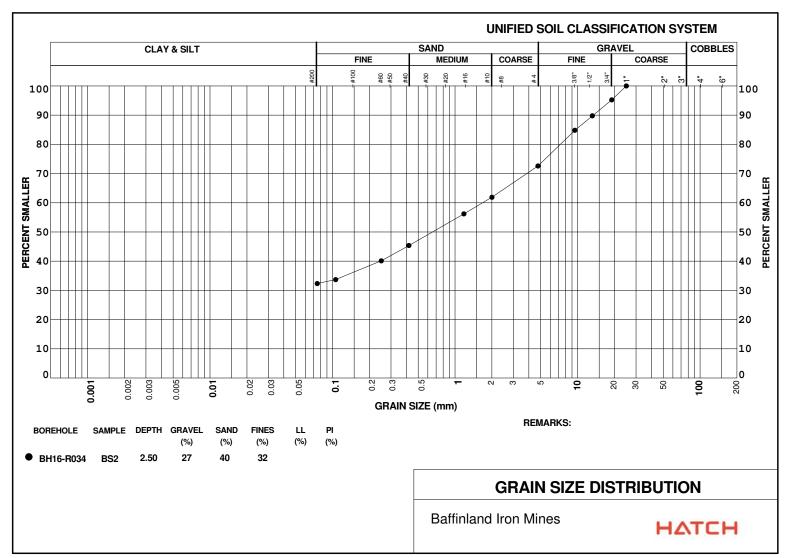


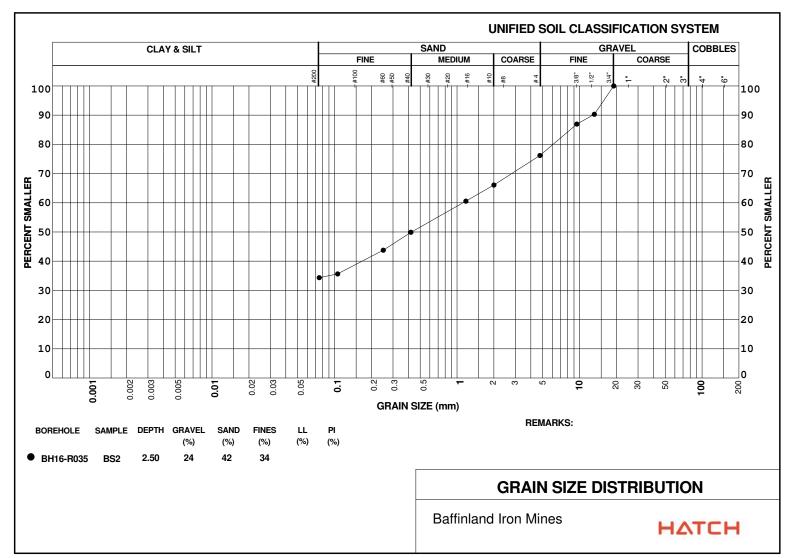


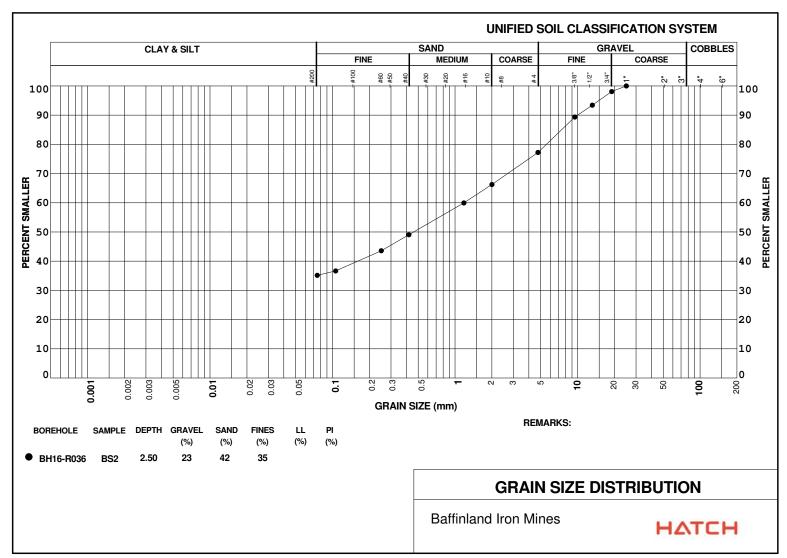


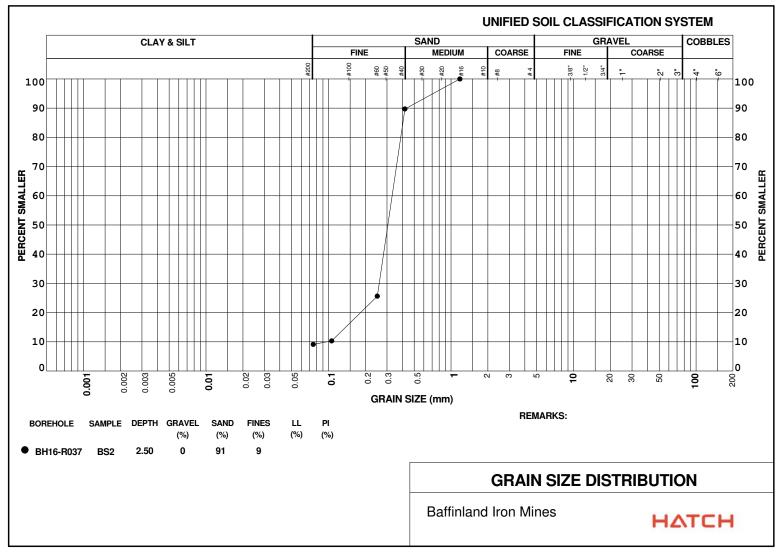


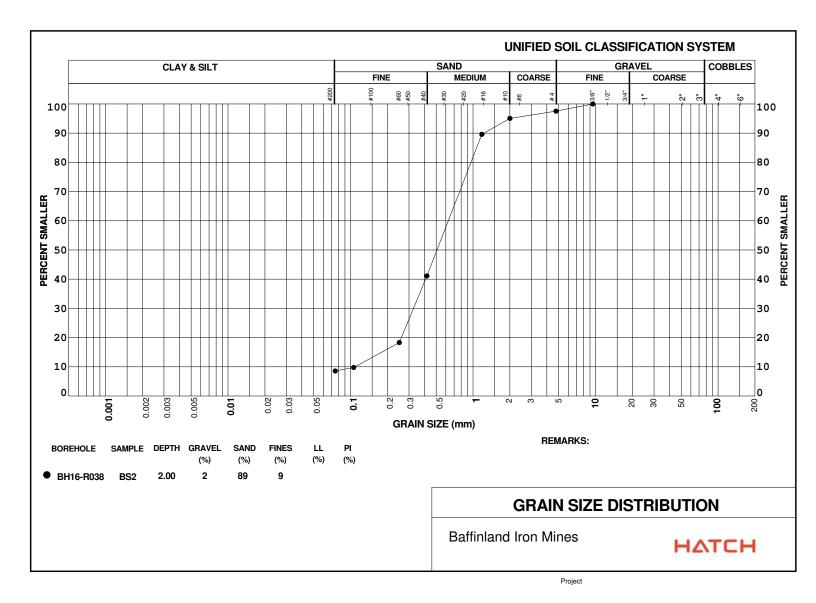


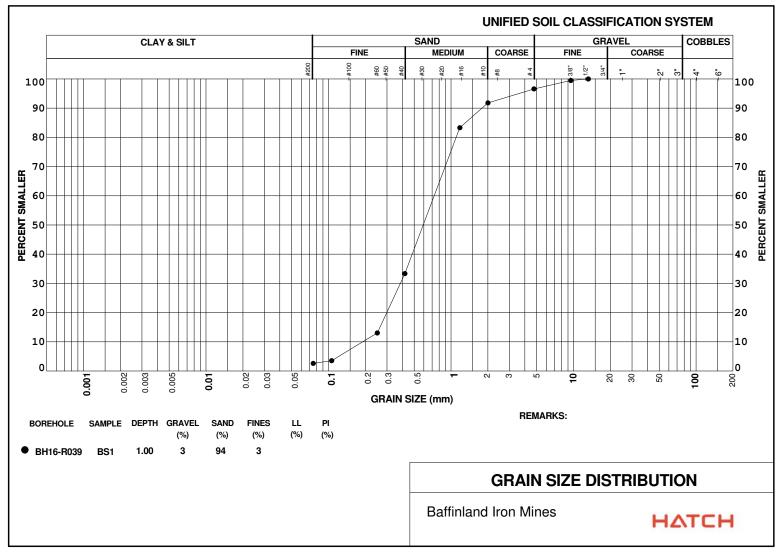


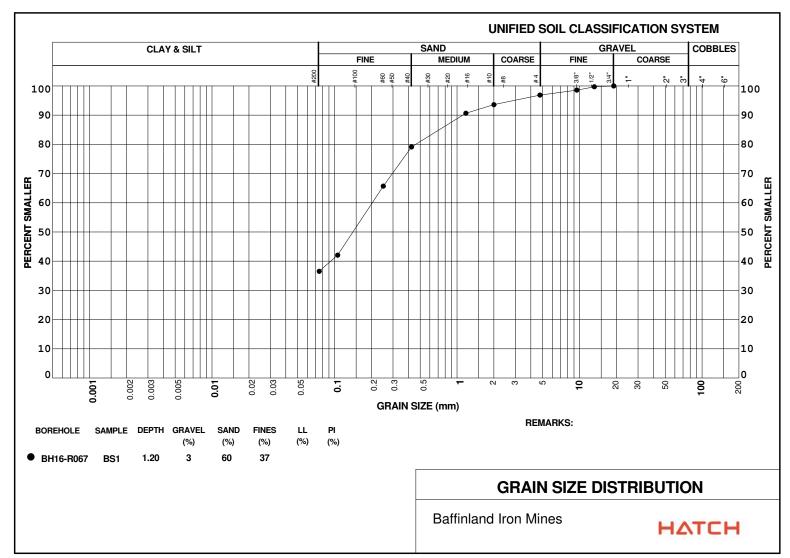


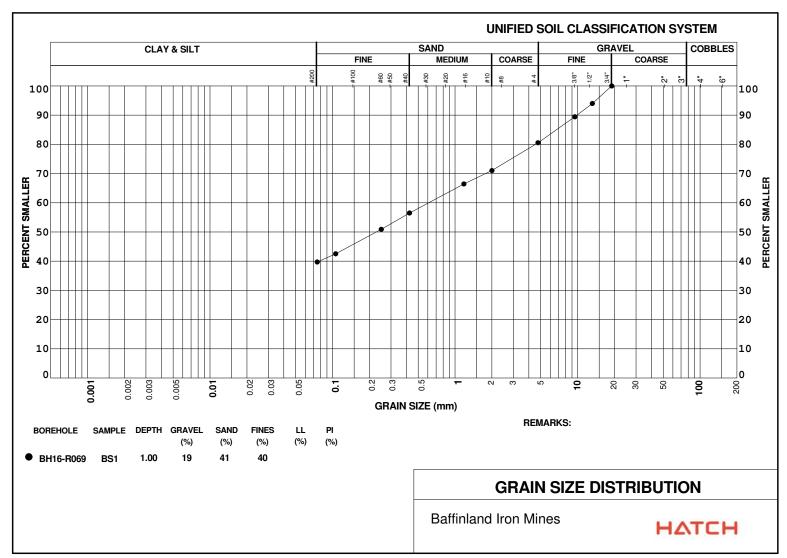


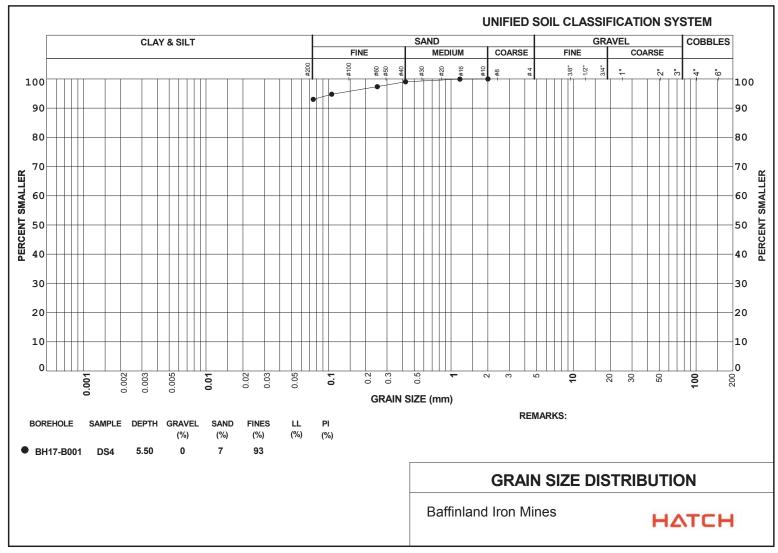


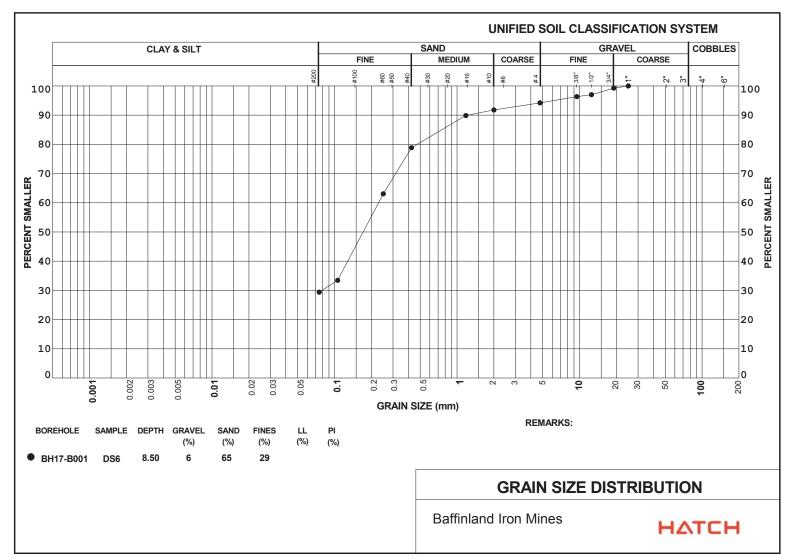


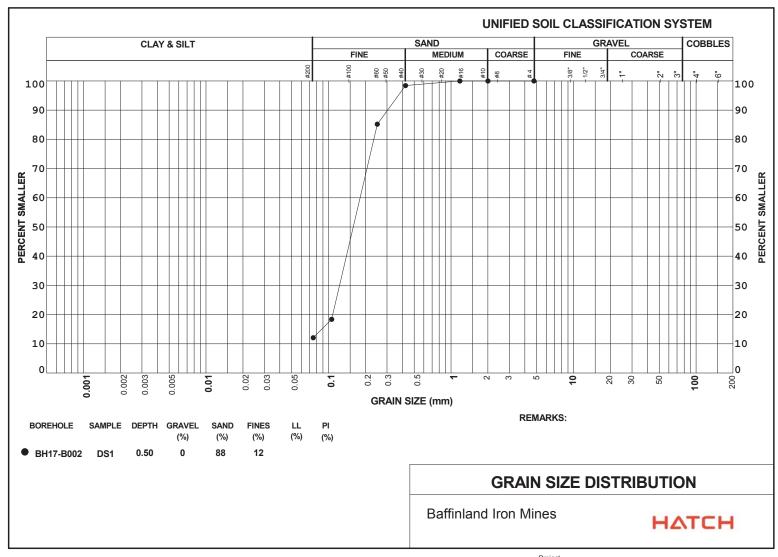


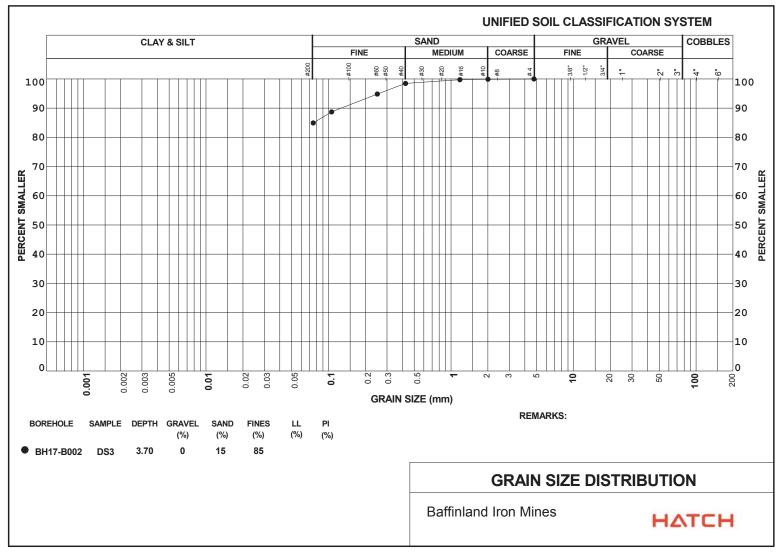


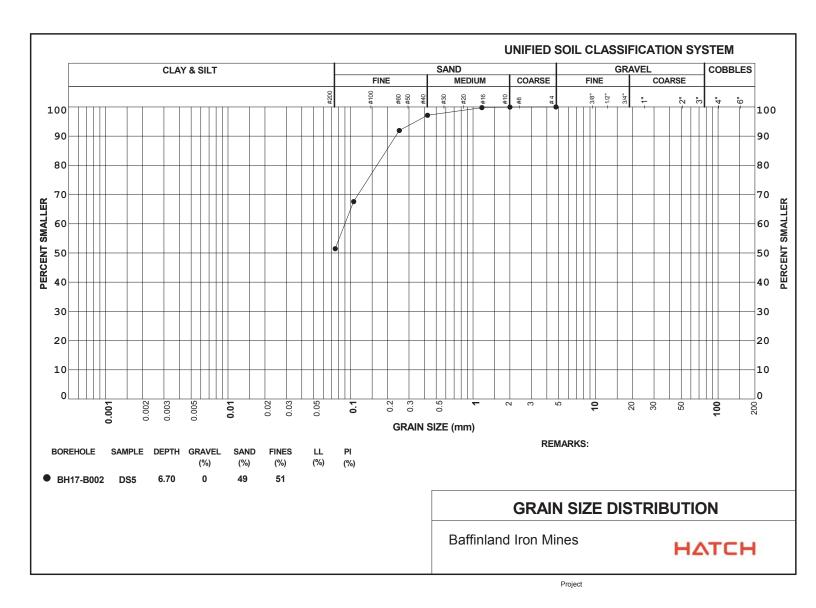


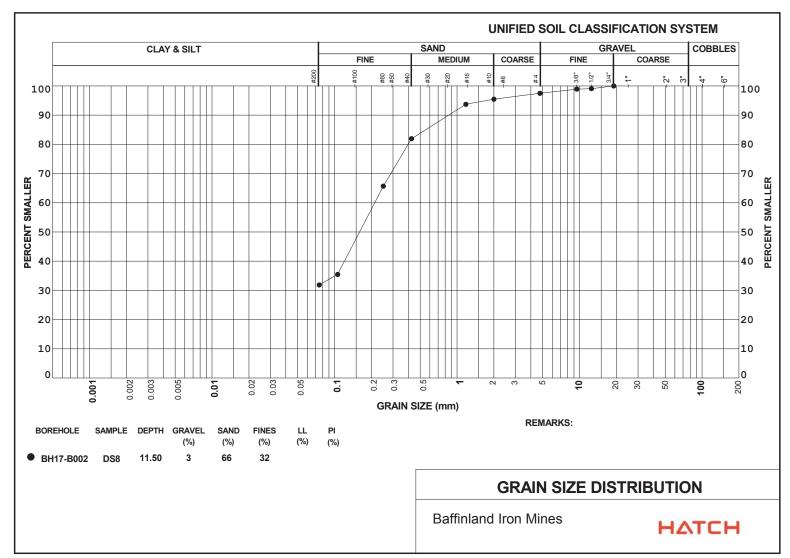


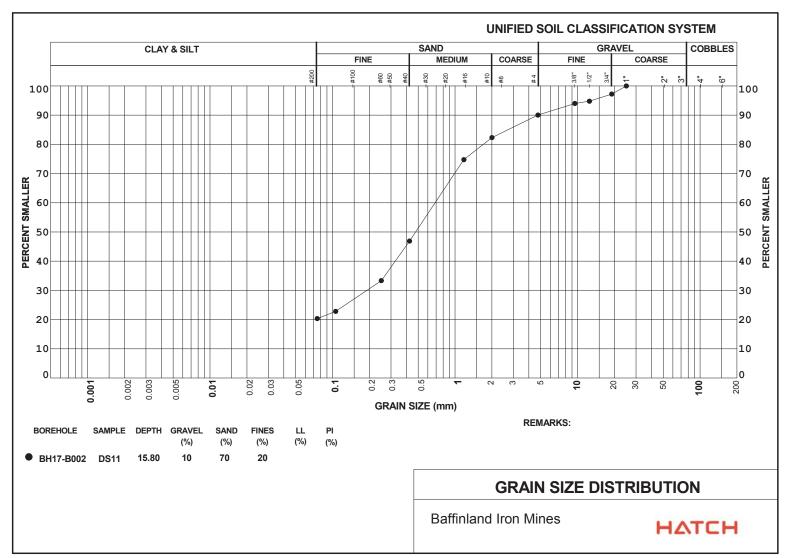


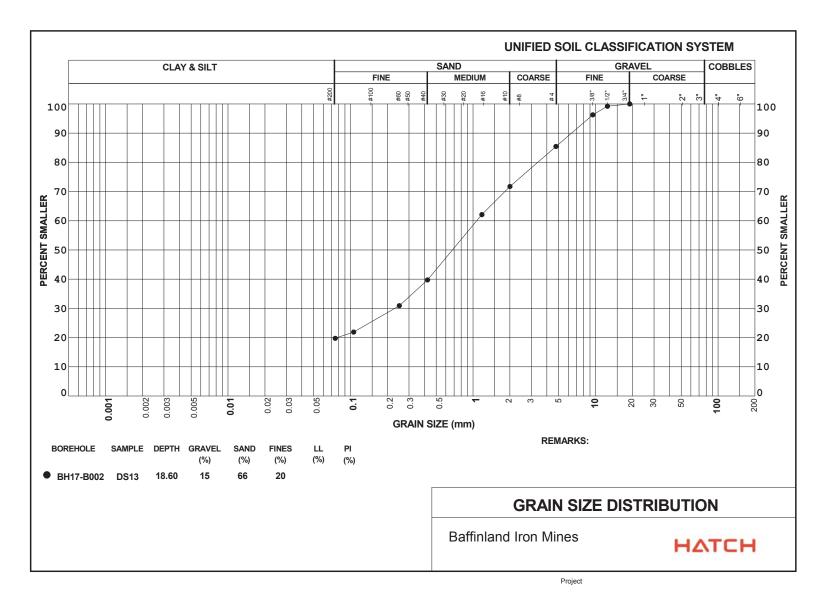


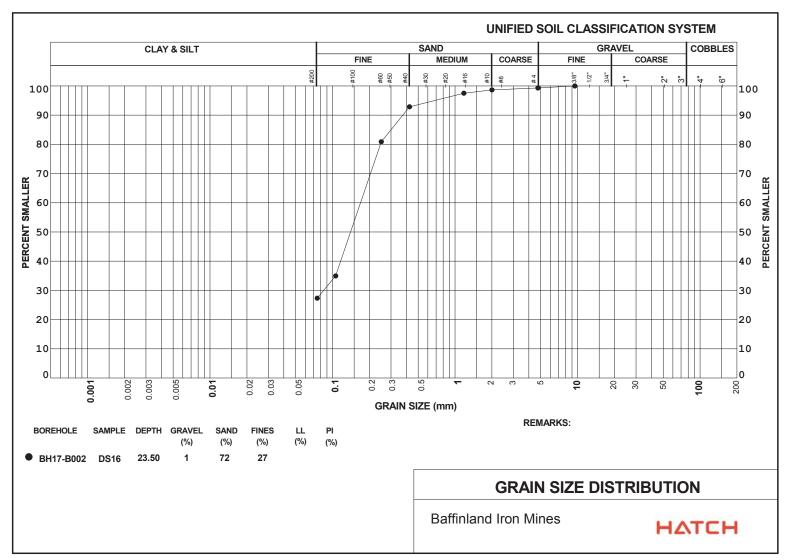


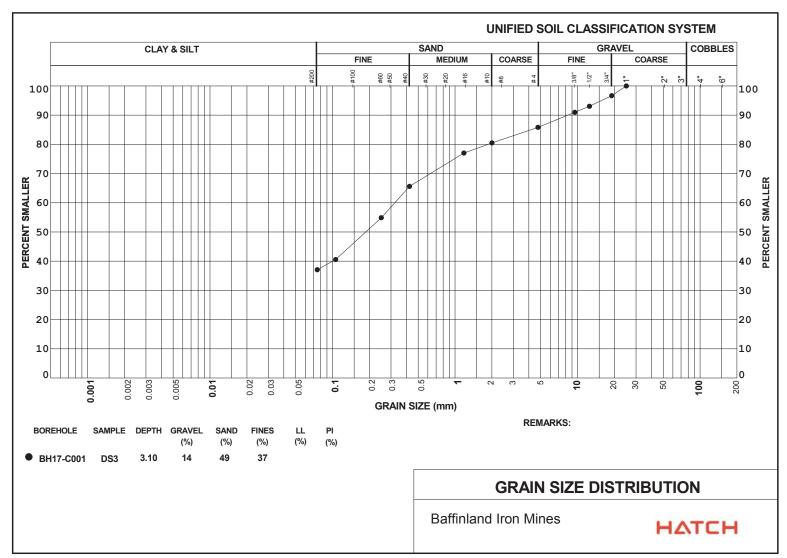


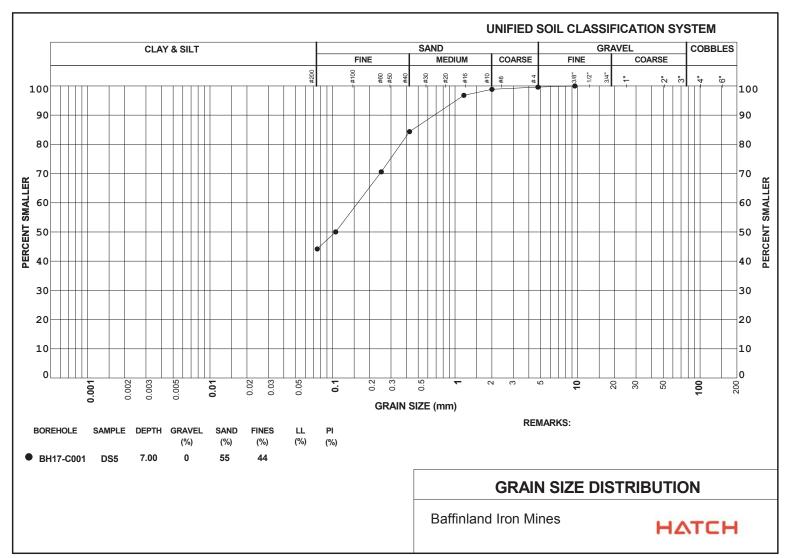


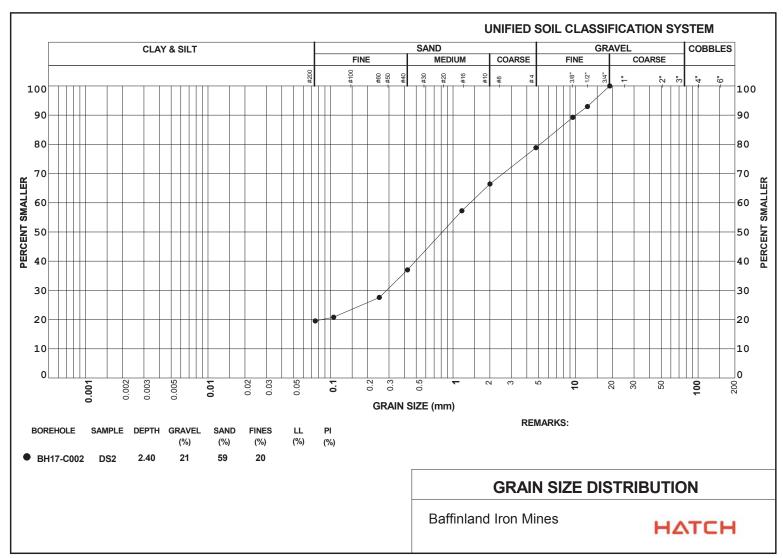


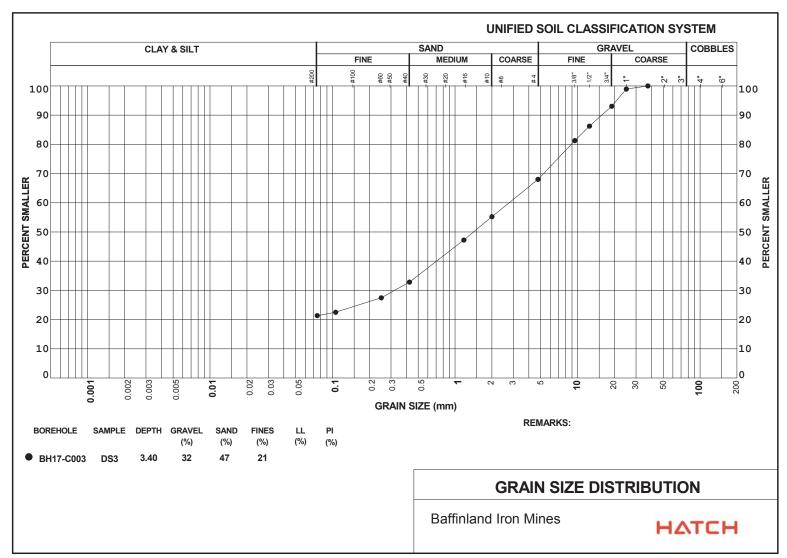


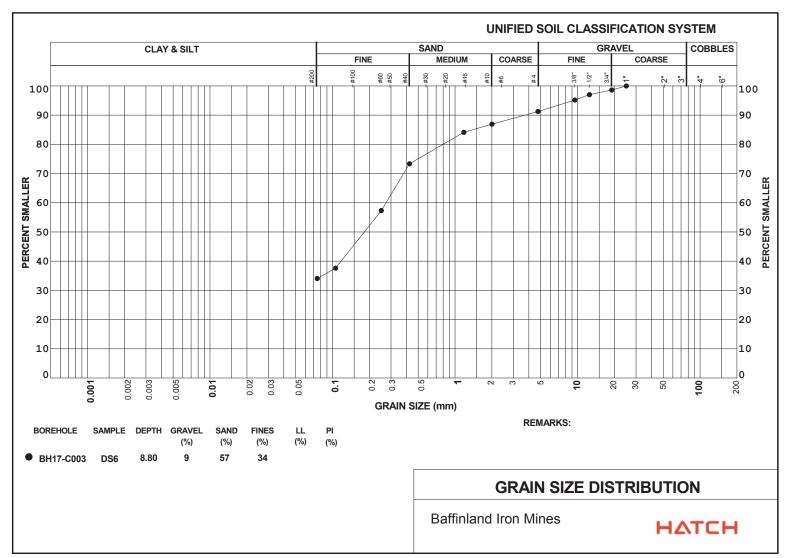


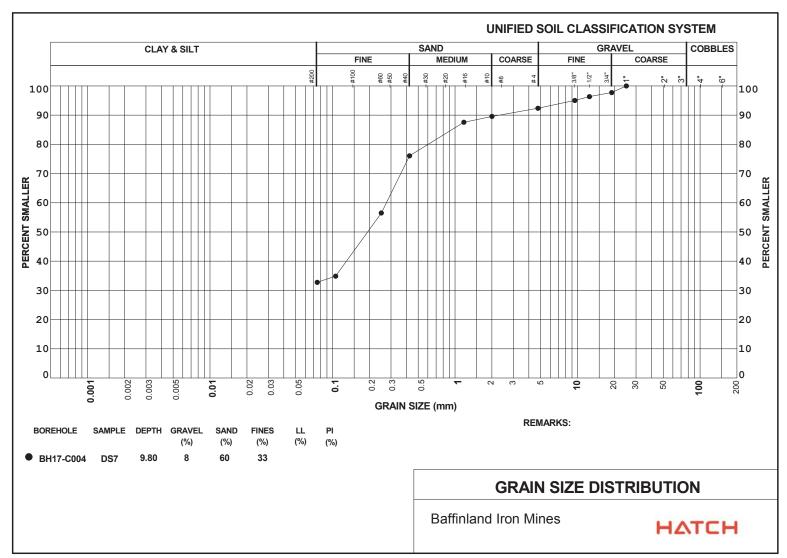


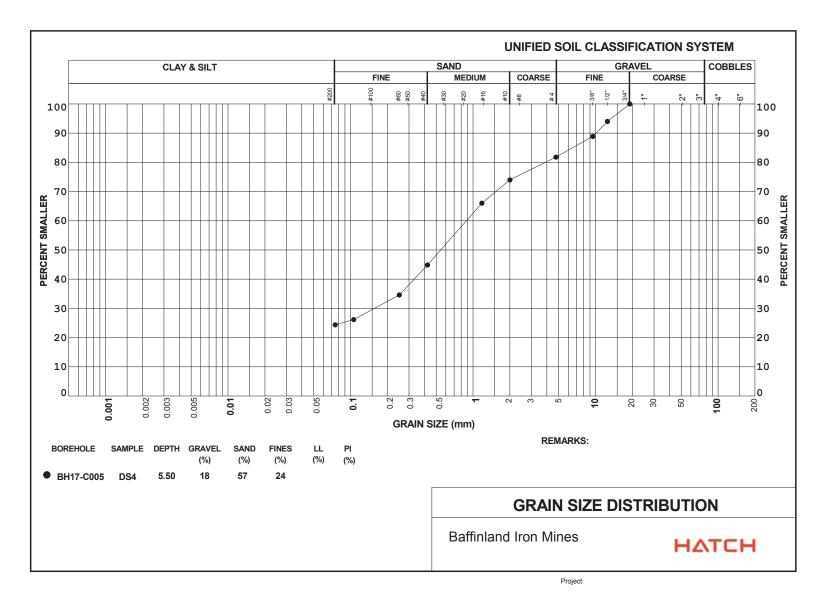


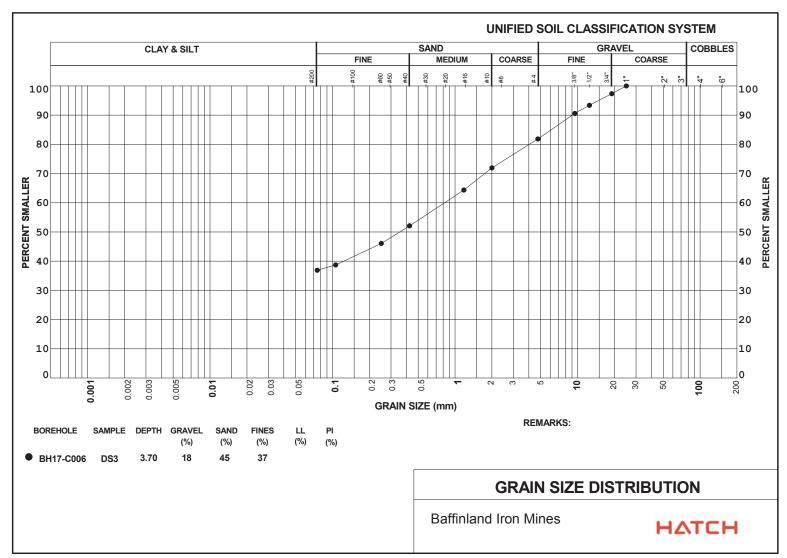


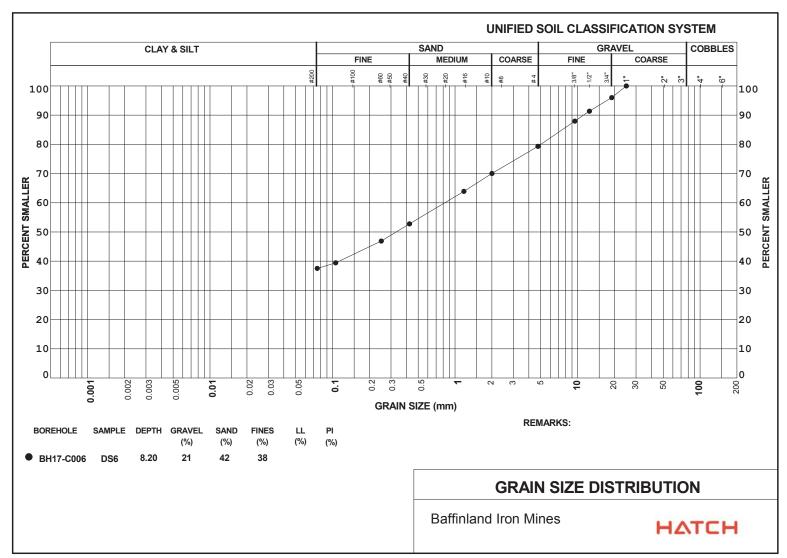


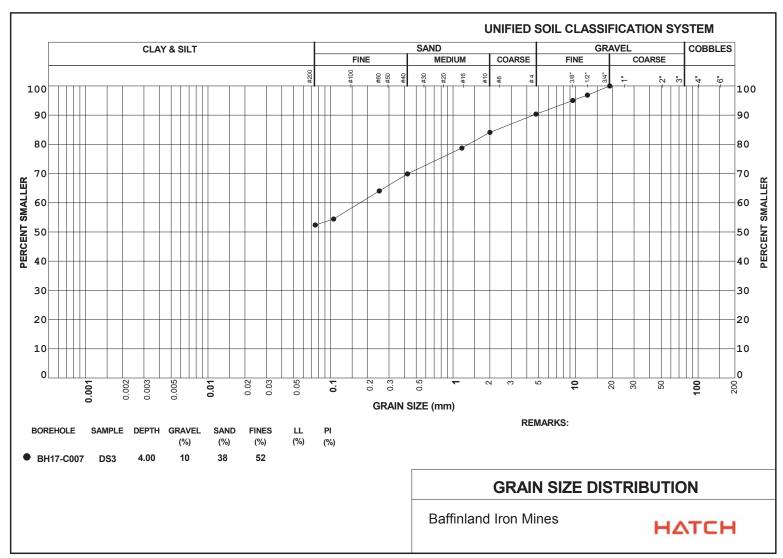


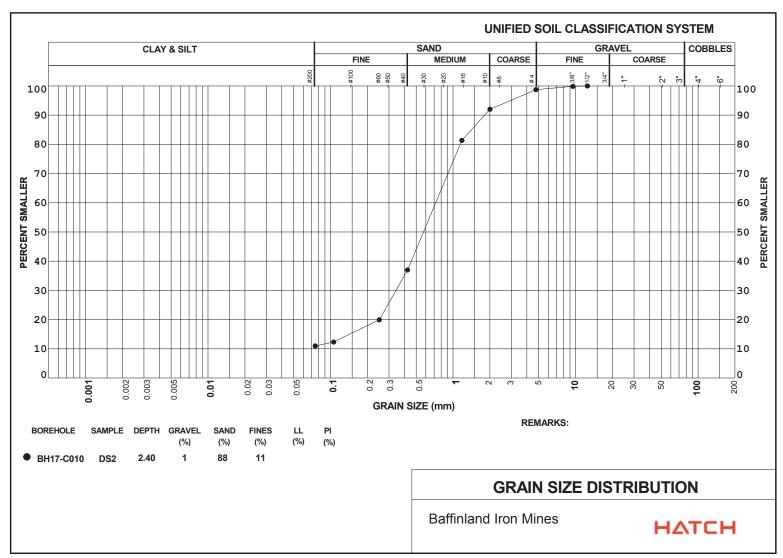


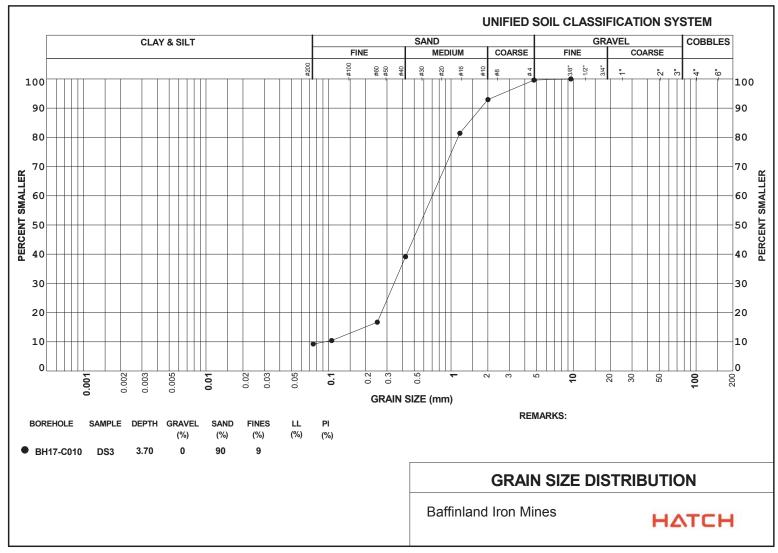


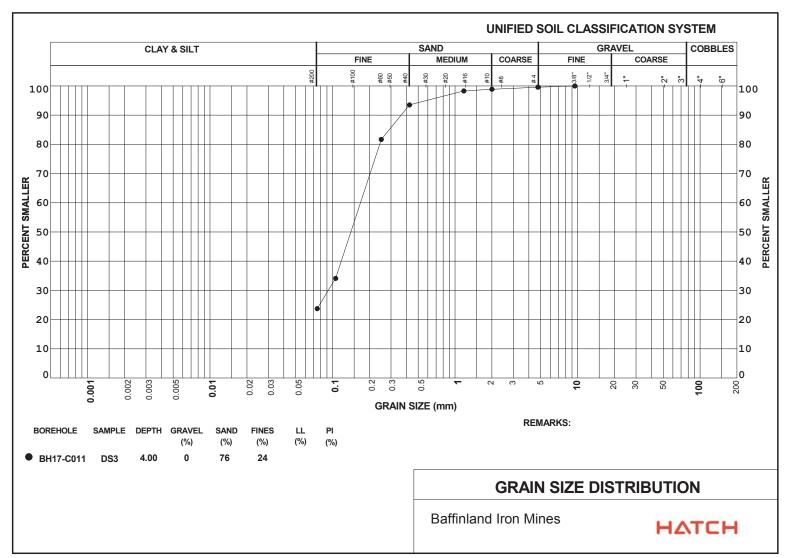


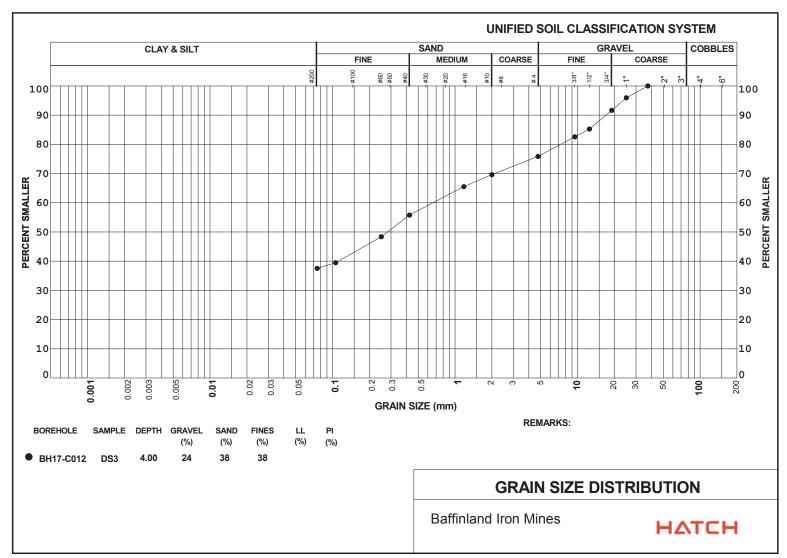


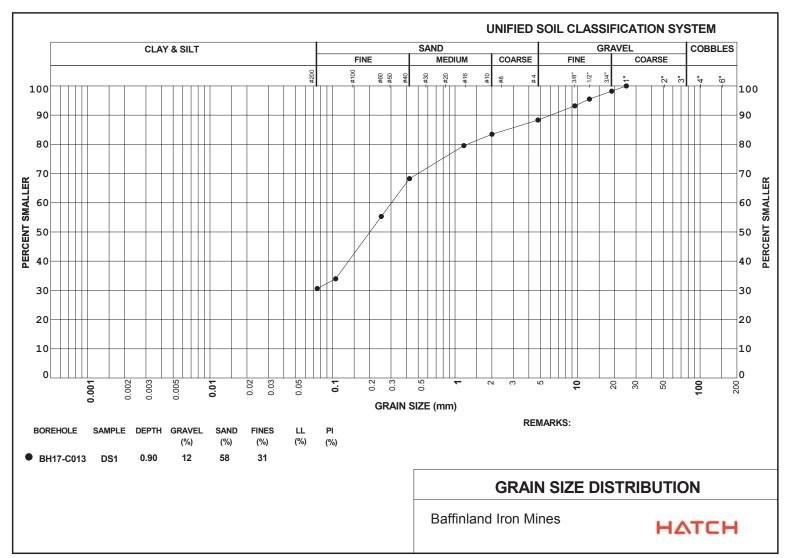


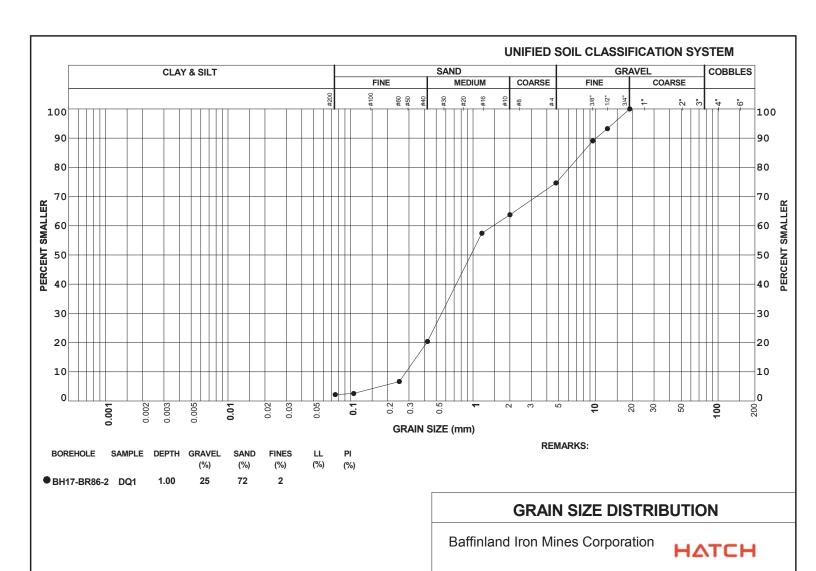


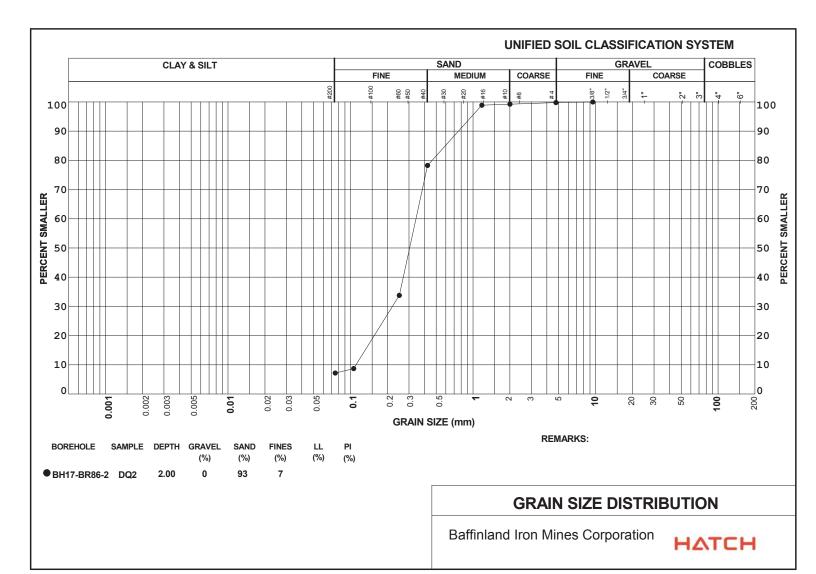


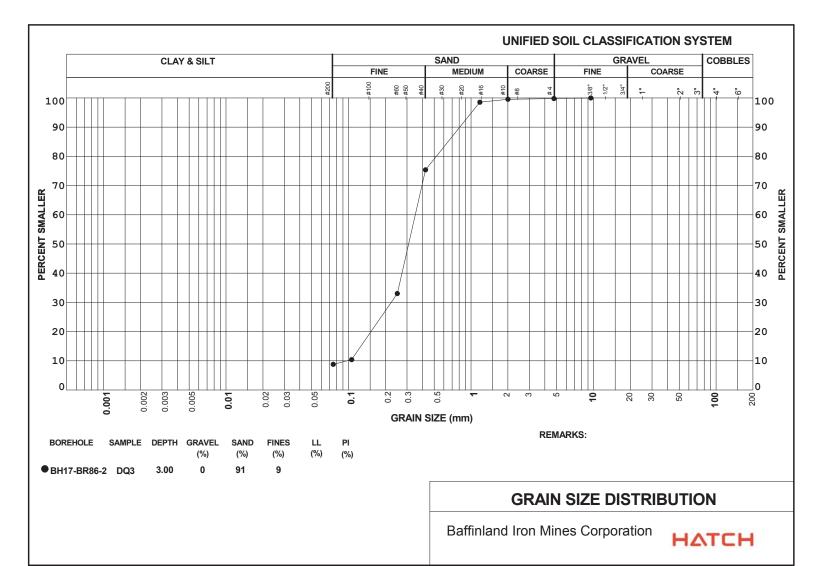


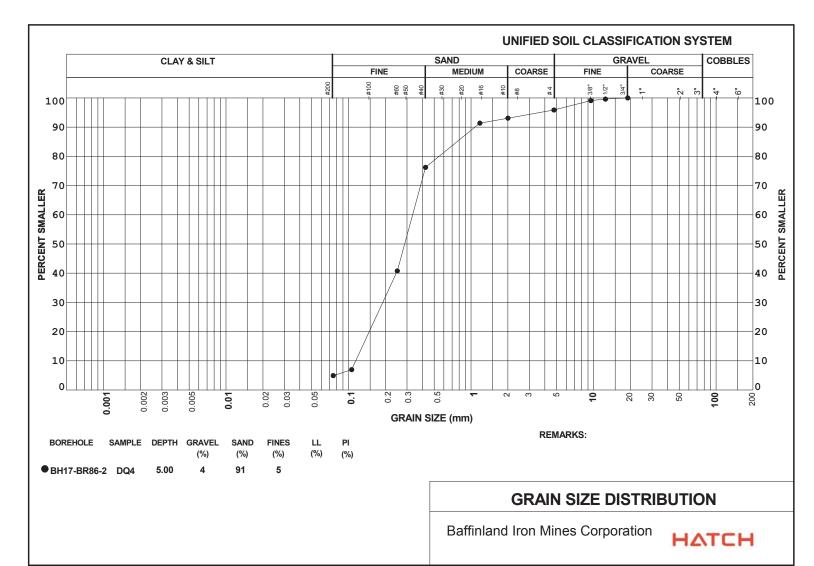


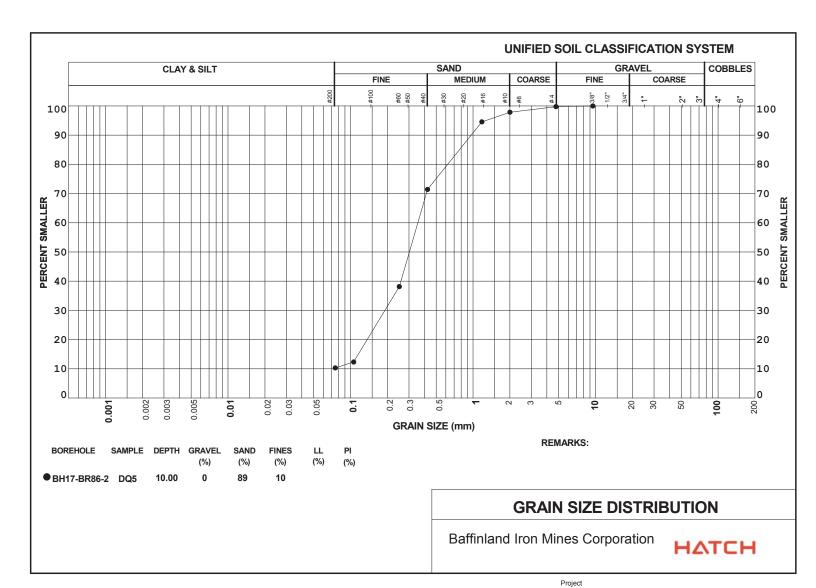


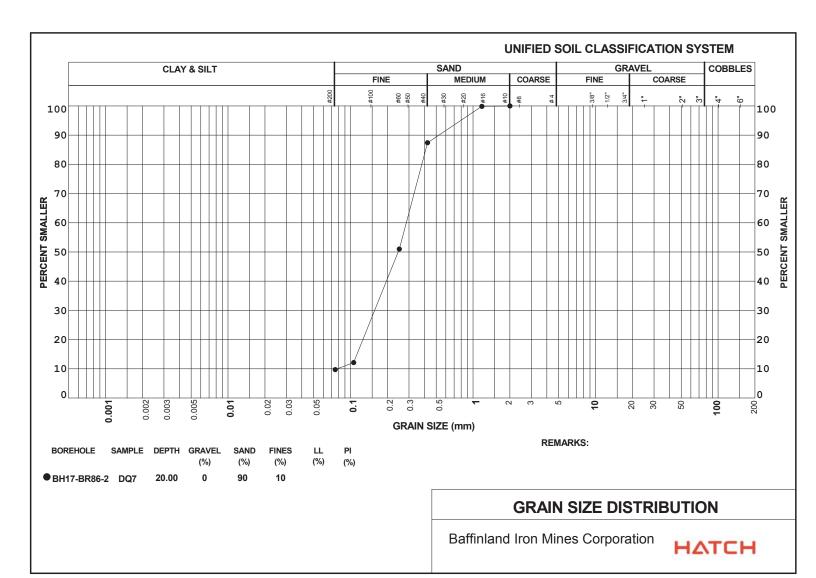


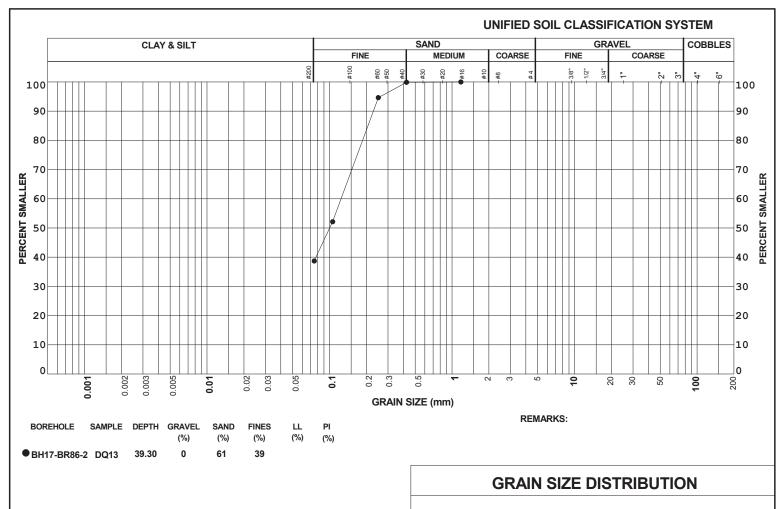


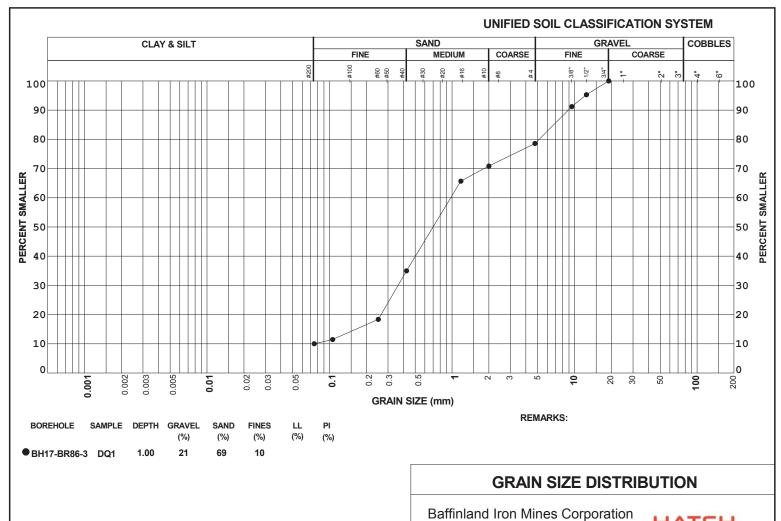


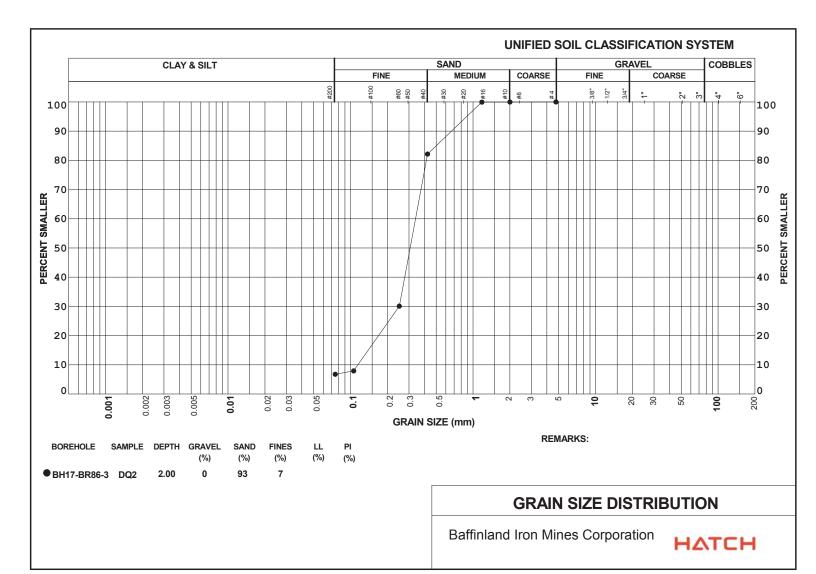


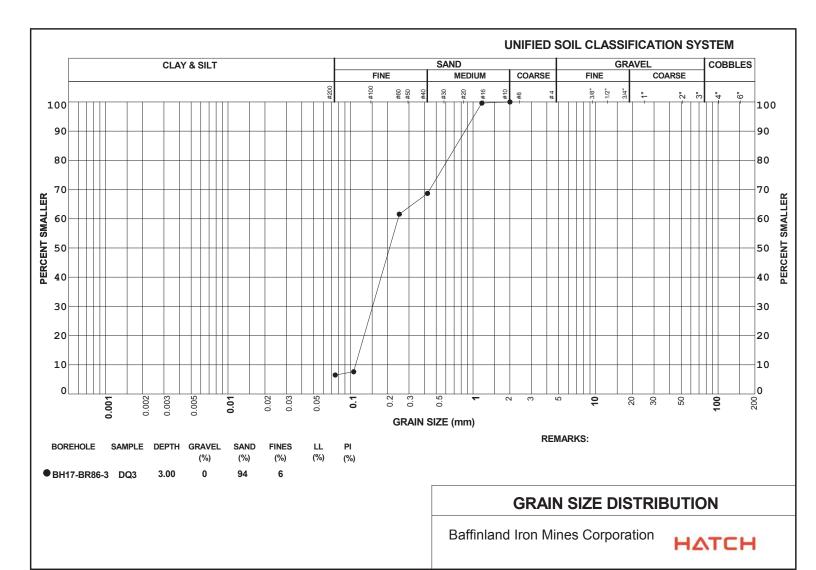


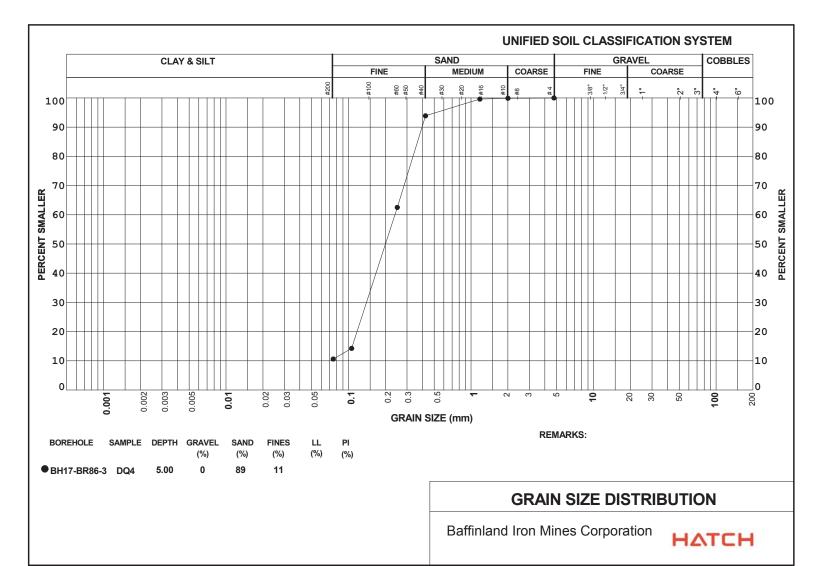

Project

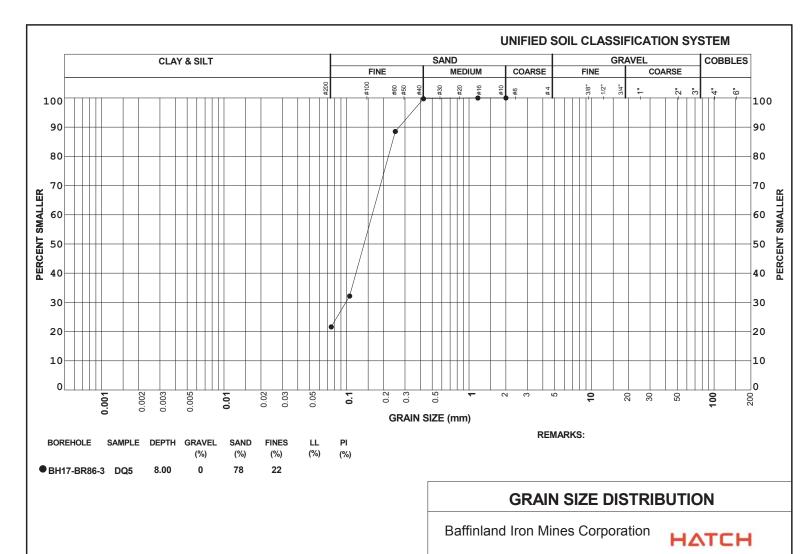


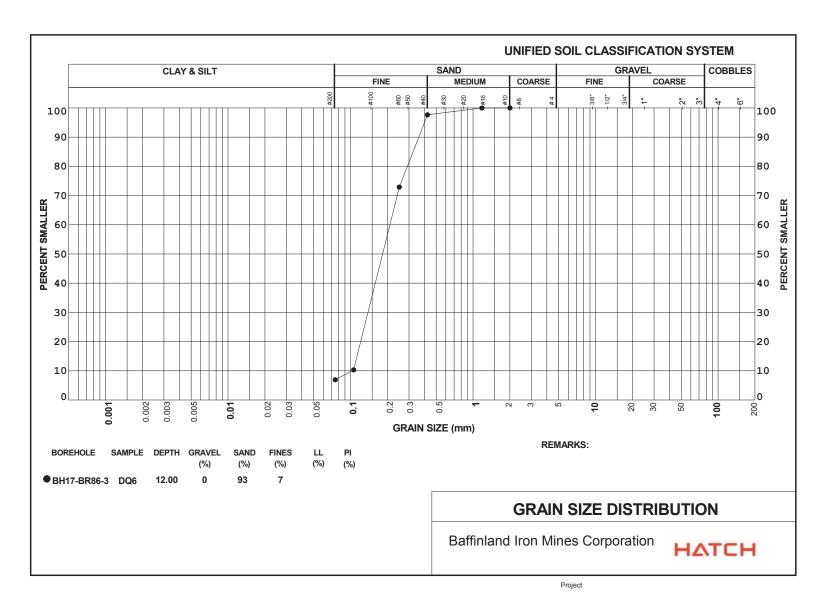


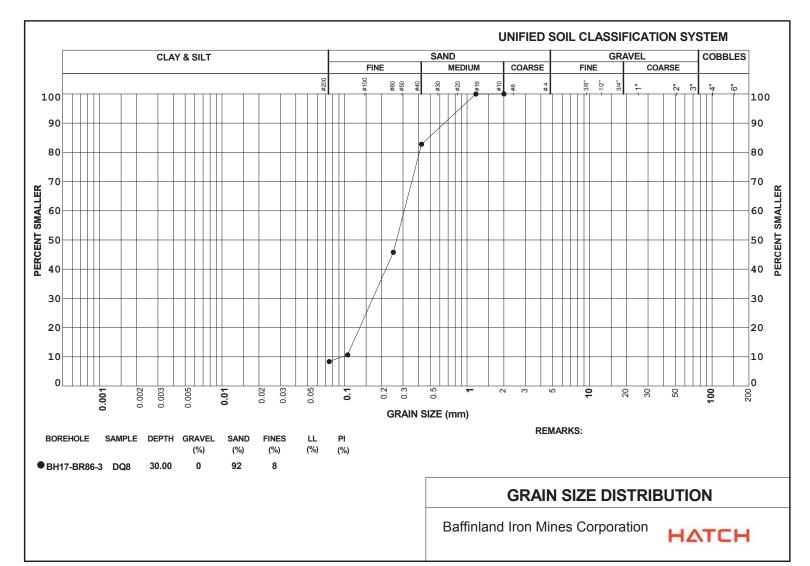


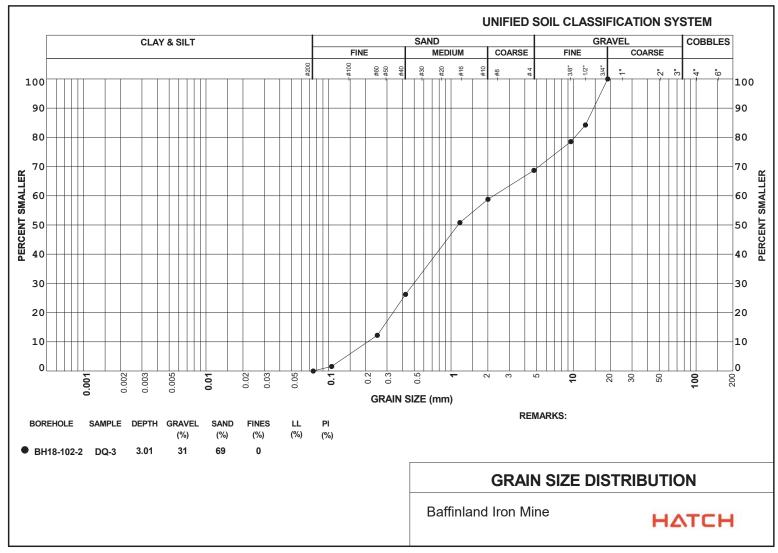

Baffinland Iron Mines Corporation

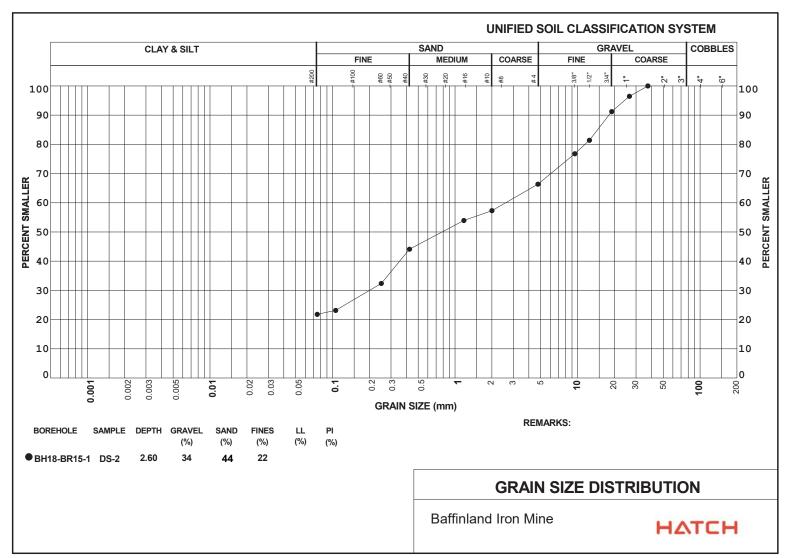


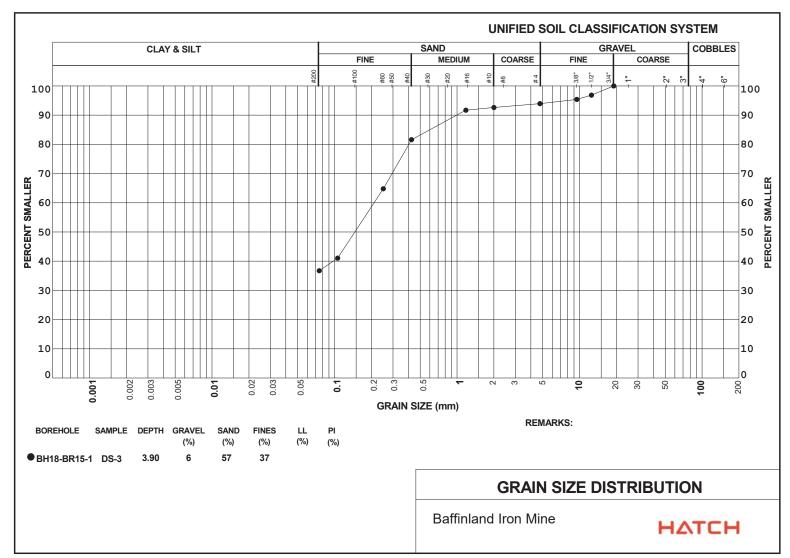


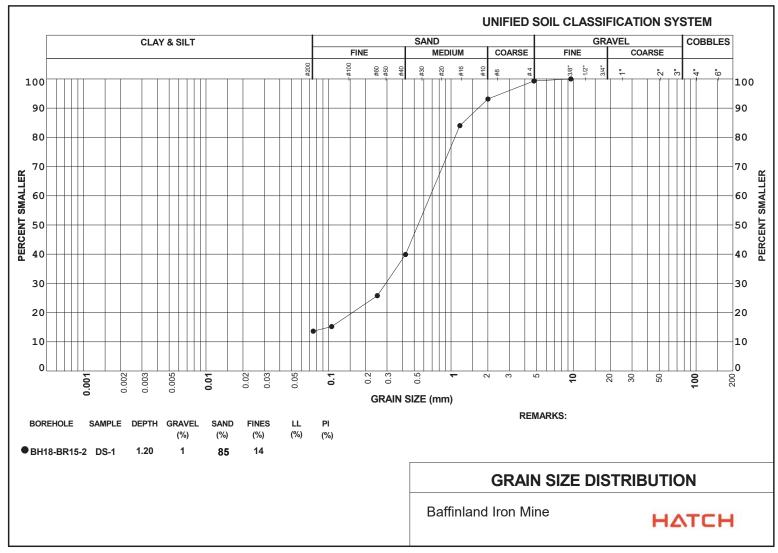


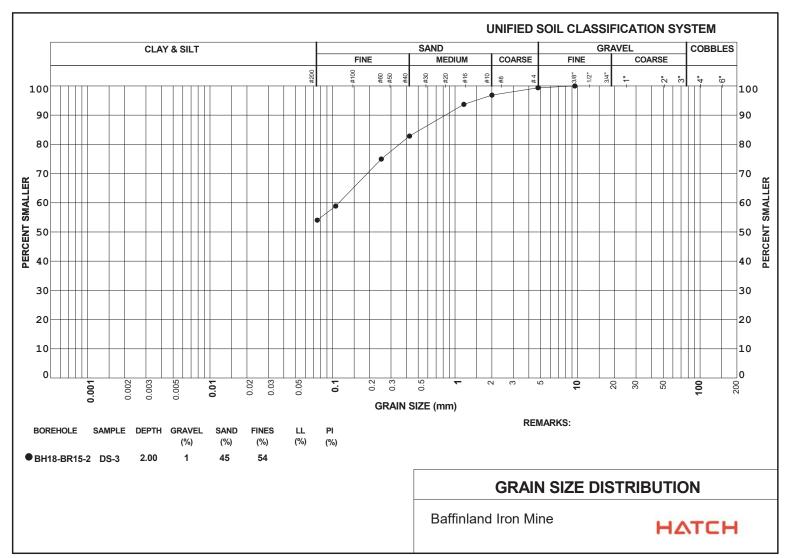


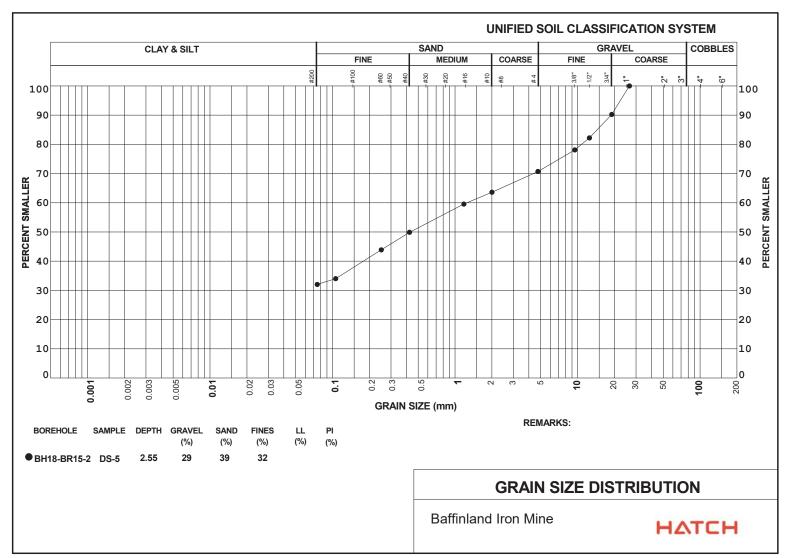


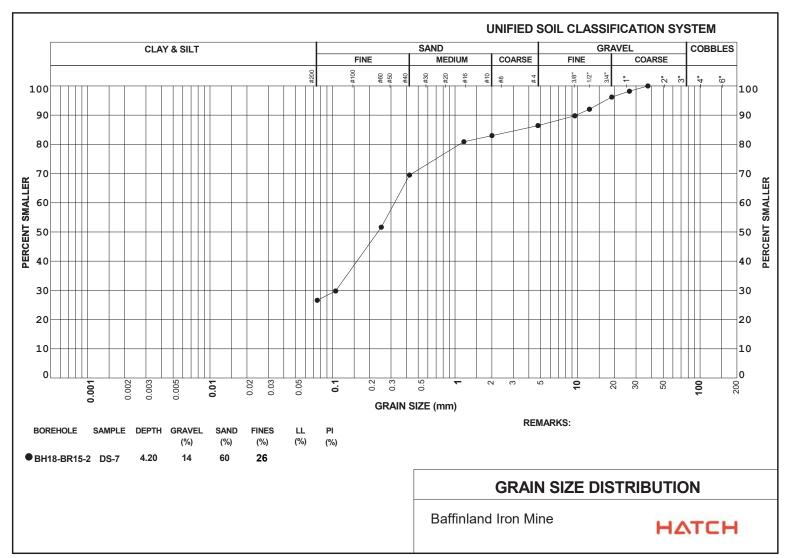


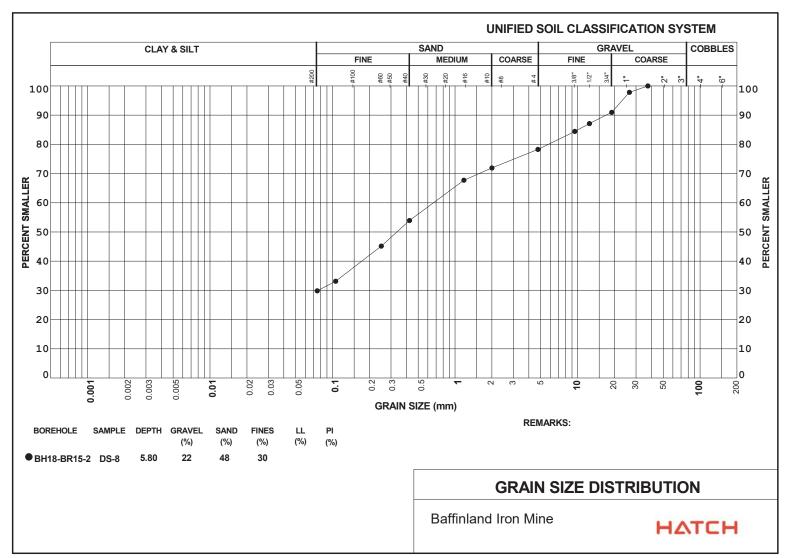

Project

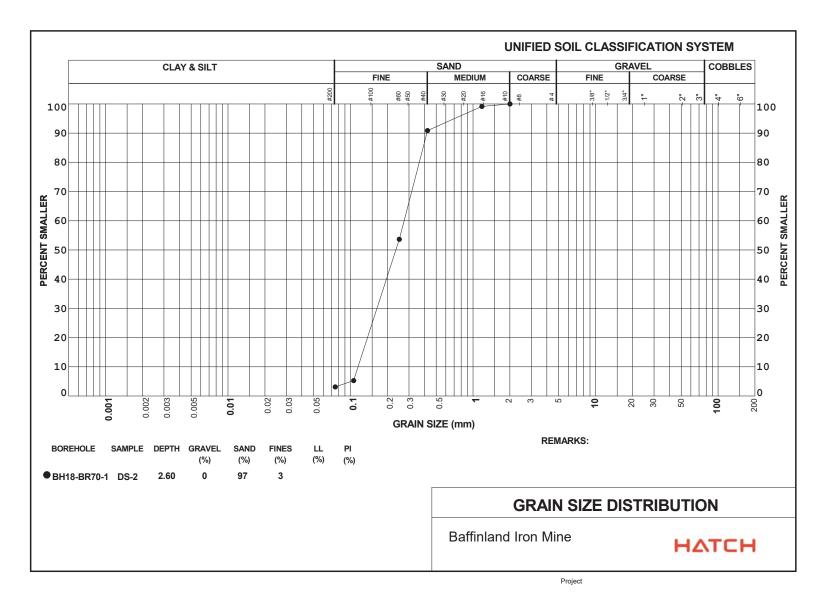


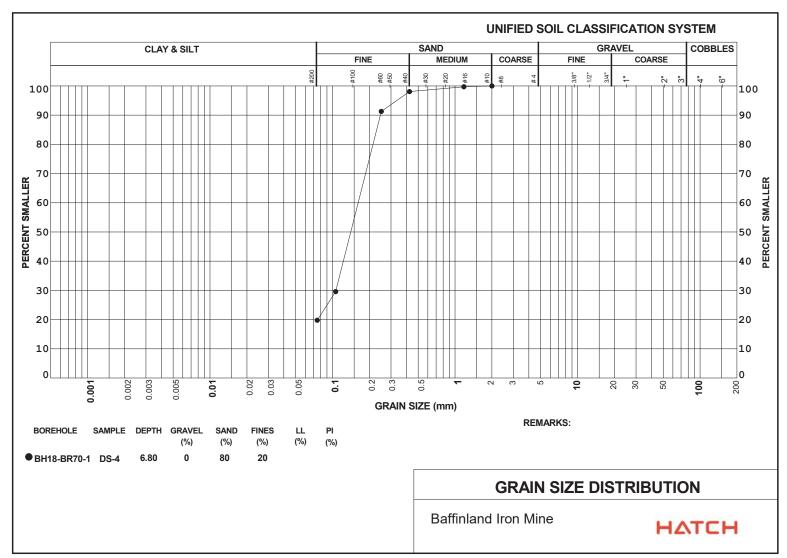


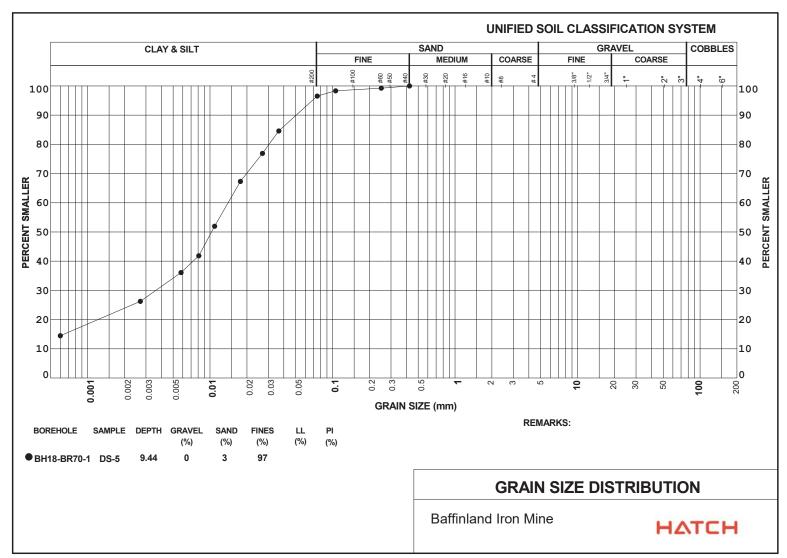


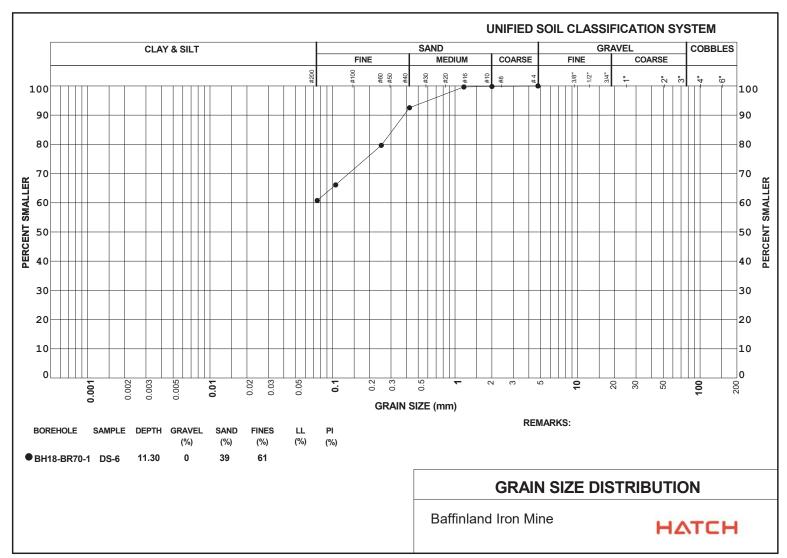


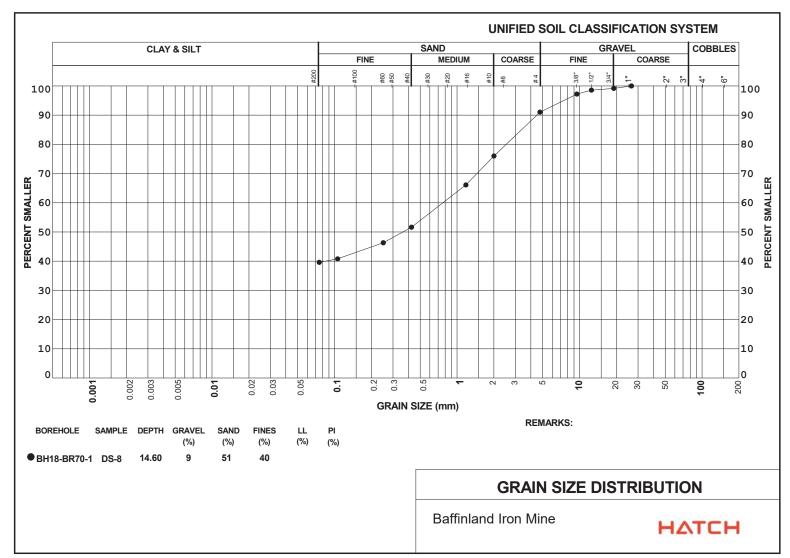


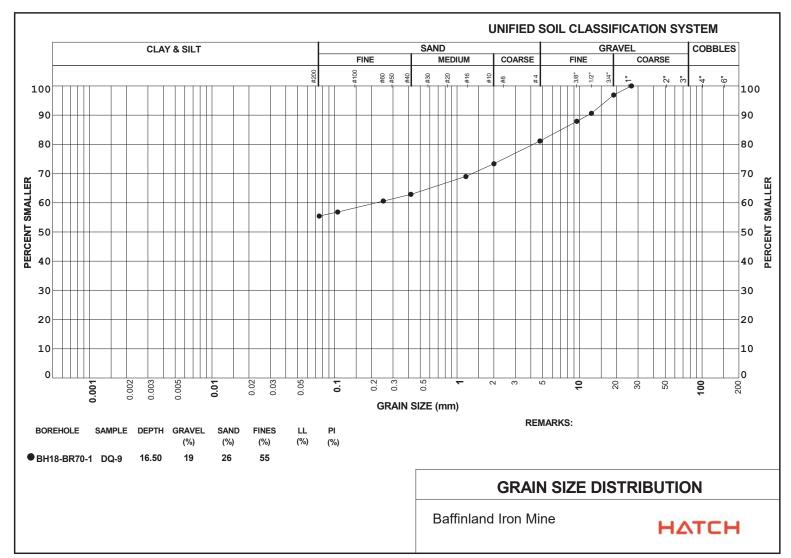


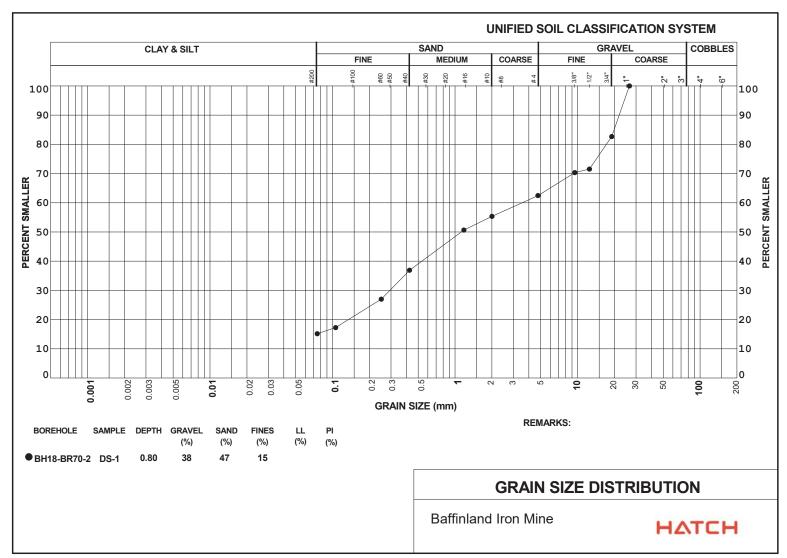




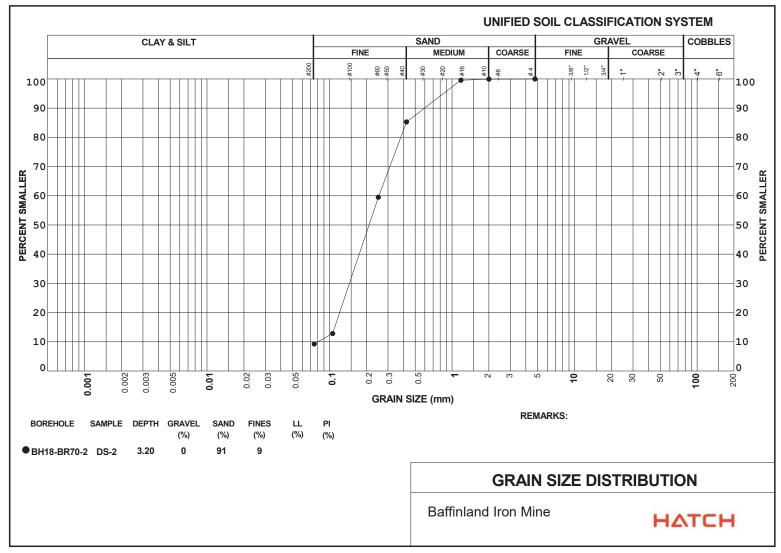


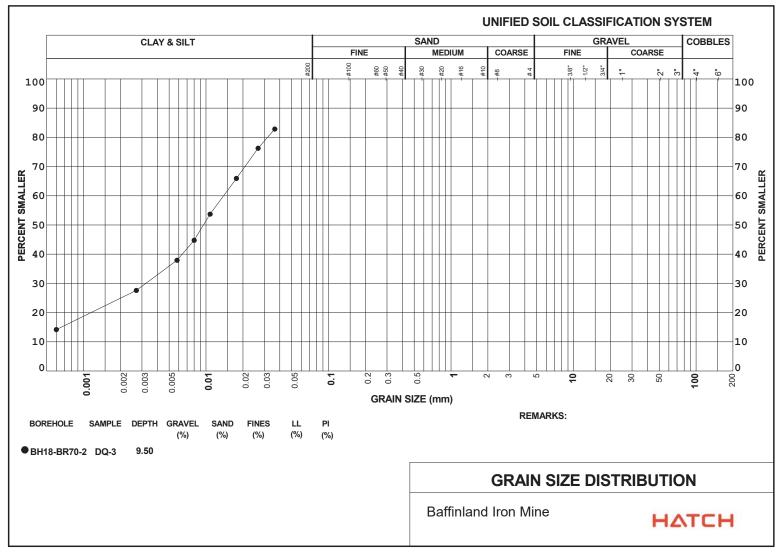


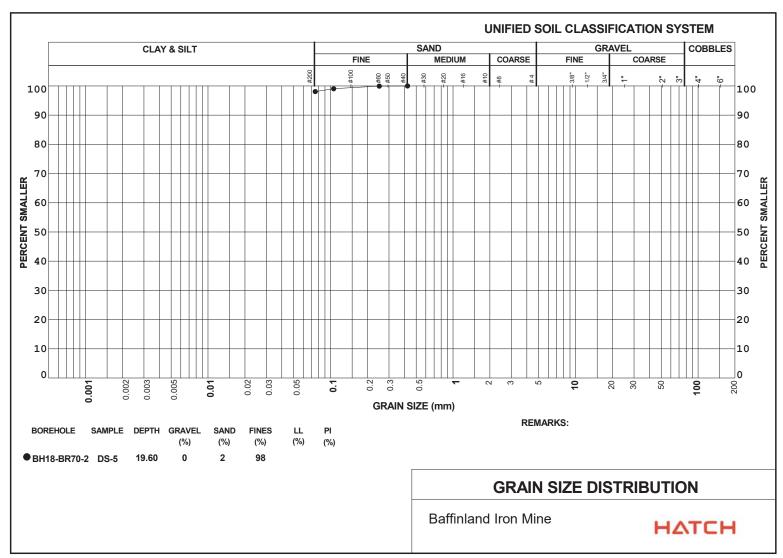












Date: December 17, 2017 Baffinland Iron Mines Corporation

Project Number: H/353004 2275 Upper Middle Rd,

Oakville Ontario.

Project: Mary River Expansion Project Attention:

Sample	As Listed Below
Source	BH17-BR86- 2 – Km 86 Rail Bridge N/W Abutment

Sample I.D	Depth (m)	Salinity Scale (ppt)	Notes
BLANK	NA	0.0	Distilled Water
DQ1	1.00	1.0	
DQ2	2.00	1.0	
DQ4	5.00	1.0	
DQ5	10.00	1.0	
DQ6	11.30	1.0	
BLANK	NA	0.0	Distilled Water
DQ7	20.00	1.0	
DQ8	24.00	1.0	
DQ11	36.40	4.0	
BLANK	NA	0.0	Distilled Water

Comments: Tested with EXTECH Model RF20 Refractometer with automatic temperature compensation.

Reported by: R. Serluca, Lab Tech., Dec. 17, 2017

Name, Title, Date

Reviewed by: W. Hoyle, Feb.16, 2018

Name, Title, Date

Date: December 17, 2017 Baffinland Iron Mines Corporation

Project Number: H/353004 2275 Upper Middle Rd,

Oakville Ontario.

Project: Mary River Expansion Project Attention:

Sample	As Listed Below
Source	BH17- BR86 - 3 – Km 86 Rail Bridge S/E Abutment

Sample I.D	Depth (m)	Salinity Scale (ppt)	Notes
BLANK	NA	0.0	Distilled Water
DQ1	1.00	1.0	
DQ2	2.00	1.0	
DQ3	3.00	1.0	
DQ4	5.00	1.0	
BLANK	NA	0.0	Distilled Water
DQ5	8.00	1.0	
DQ6	12.00	1.0	
DQ8	30.00	1.0	
BLANK	NA	0.0	Distilled Water

Comments: Tested with EXTECH Model RF20 Refractometer with automatic temperature compensation.

Reported by: R. Serluca, Lab Tech., Dec. 17, 2017

Name, Title, Date

Reviewed by: W. Hoyle, Feb. 16, 2018

Name, Title, Date

Date: April 20, 2018 Baffinland Iron Mines
Project Number: H/353004 2275 Upper Middle Rd,

Oakville Ontario.

Project: Mary River Expansion Project Attention: G. Qu

Sample	As Listed Below
Source	BH18-BR15-2 Milne Port

Sample I.D	Depth (m)	Salinity Scale (ppt)	Notes
BLANK	NA	0.0	Distilled Water
DQ1	1.17	NA	Not enough moisture
DQ2	1.5	3.0	
DQ4	2.00	NA	Not enough moisture
DQ9	11.25	NA	Not enough moisture
BLANK	NA	0.0	Distilled Water

Comments: Tested with EXTECH Model RF20 Refractometer with automatic temperature compensation.

Reported by: P. Snable, G.I.T. April 20, 2018

Name, Title, Date

Reviewed by: G. Qu, July 10, 2018.

Name, Title, Date

Date: June 10, 2018 Baffinland Iron Mines
Project Number: H/353004 2275 Upper Middle Rd,

Oakville Ontario.

Project: Mary River Expansion Project Attention: H. Ghiabi

Sample	As Listed Below
Source	BH18-BR70-1

Sample I.D	Depth (m)	Salinity Scale (ppt)	Notes
BLANK	NA	0.0	Distilled Water
DQ1	1.50	0.0	
DQ3	6.20	0.0	
BLANK	NA	0.0	Distilled Water

Comments: Tested with EXTECH Model RF20 Refractometer with automatic temperature compensation.

Reported by: R. Serluca, Lab Tech. June 10, 2018

Name, Title, Date

Reviewed by: G. Qu, July 10, 2018.

Name, Title, Date

Date: June 10, 2018 Baffinland Iron Mines
Project Number: H/353004 2275 Upper Middle Rd,

Oakville Ontario.

Project: Mary River Expansion Project Attention: H. Ghiabi

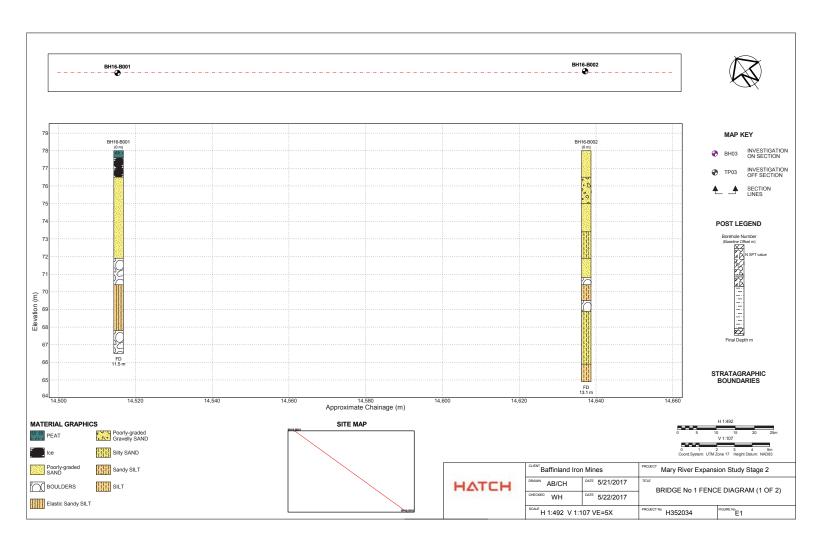
Sample	As Listed Below
Source	BH18-BR70-2

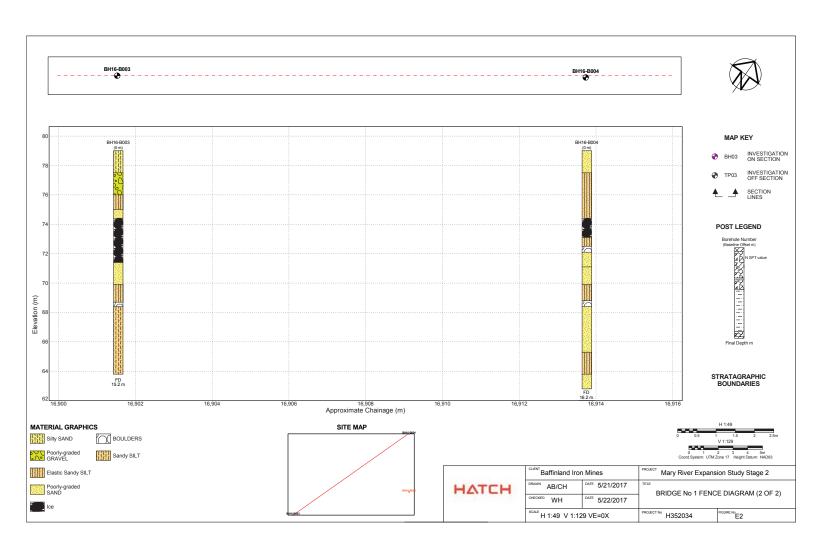
Sample I.D	Depth (m)	Salinity Scale (ppt)	Notes
BLANK	NA	0.0	Distilled Water
DQ1	1.20	0.0	
DQ3	9.50	12.0	
BLANK	NA	0.0	Distilled Water

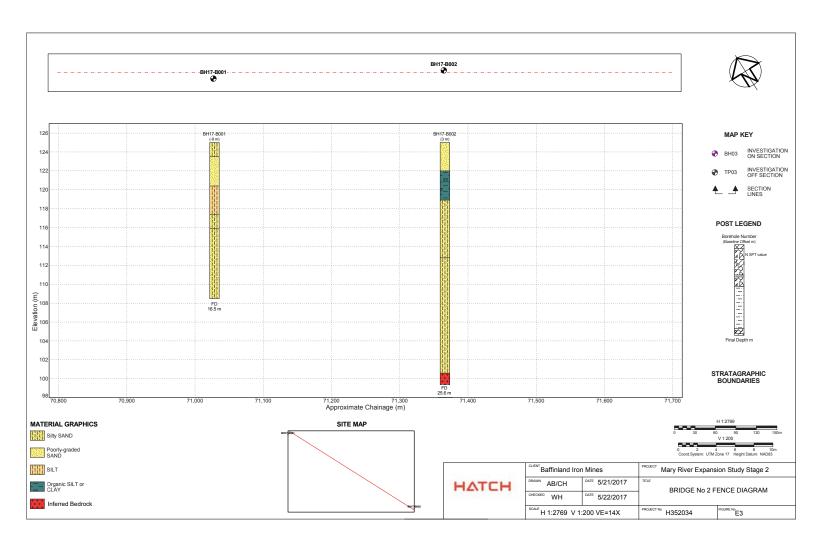
Comments: Tested with EXTECH Model RF20 Refractometer with automatic temperature compensation.

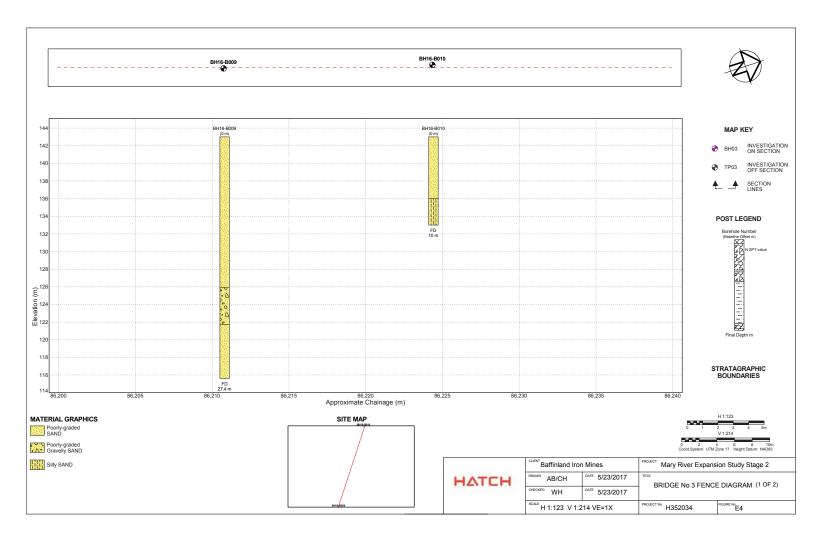
Reported by: R. Serluca, Lab Tech. June 10, 2018

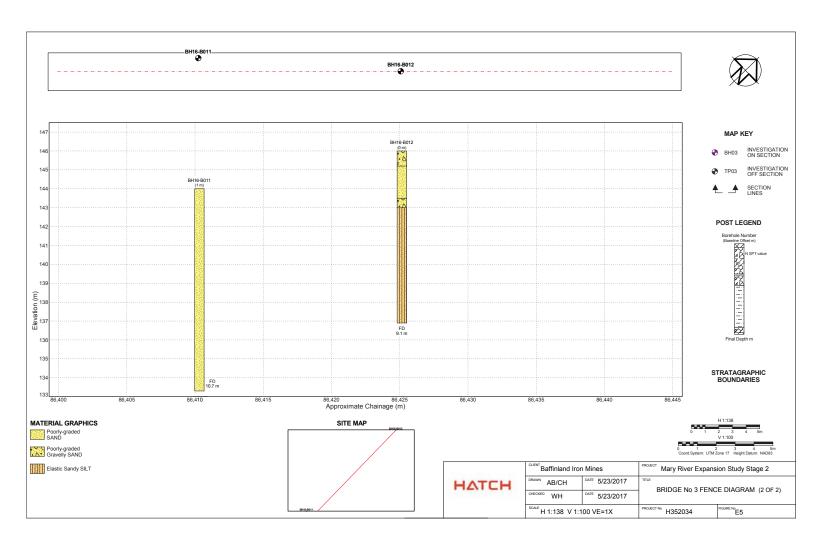
Name, Title, Date

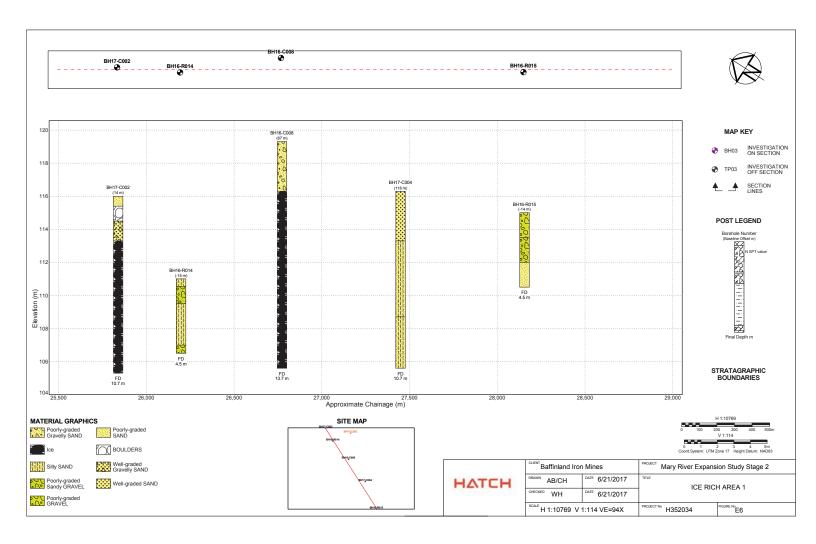

Reviewed by: G. Qu, July 10, 2018.

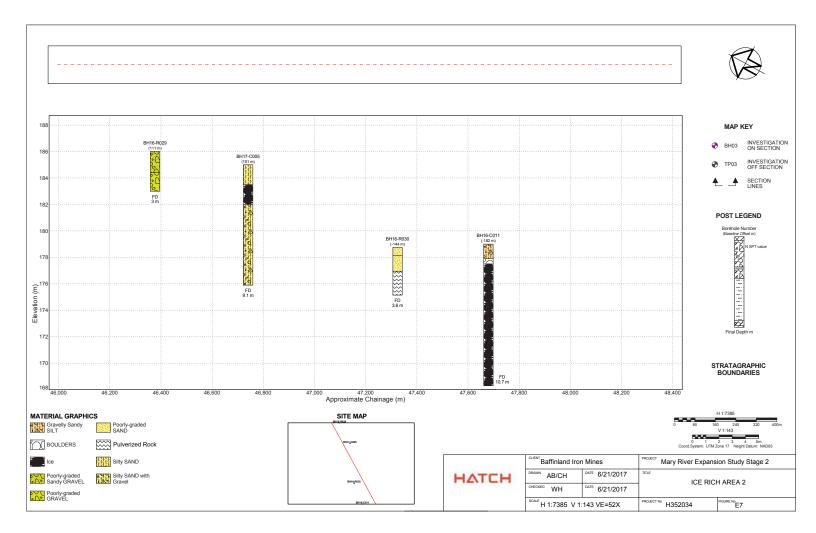

Name, Title, Date

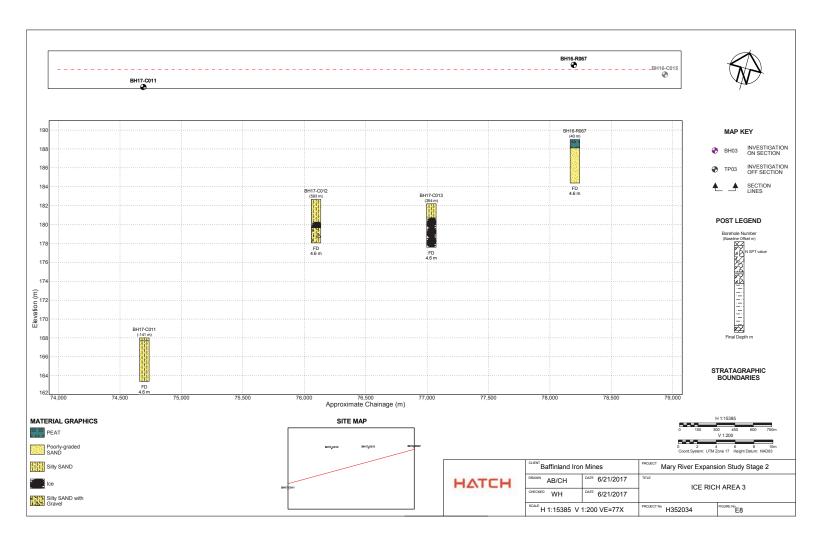


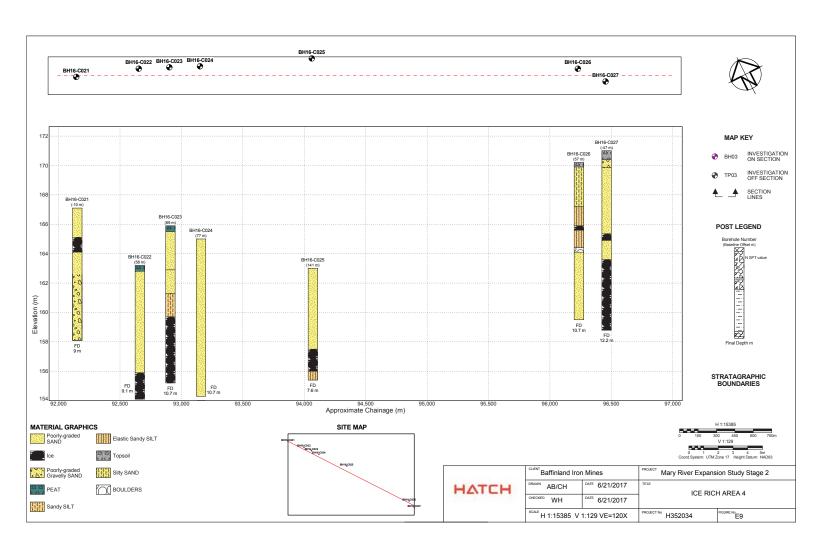


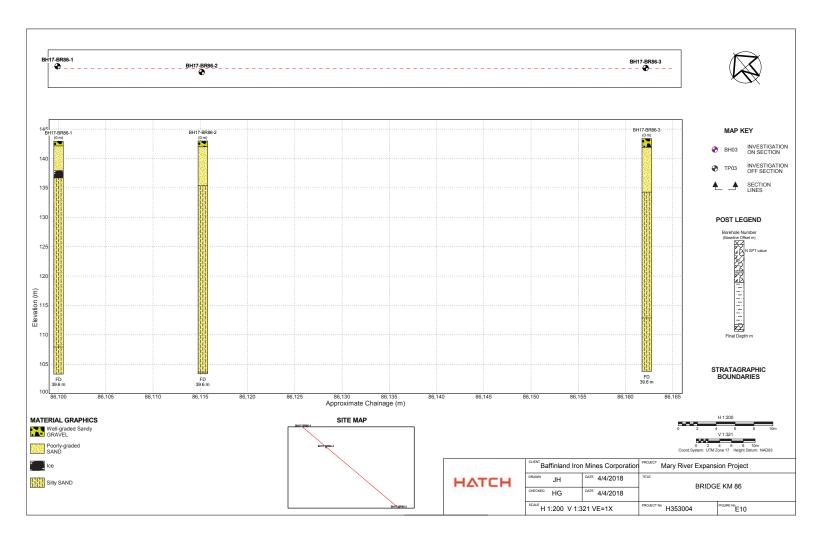

Appendix E Fence Diagrams

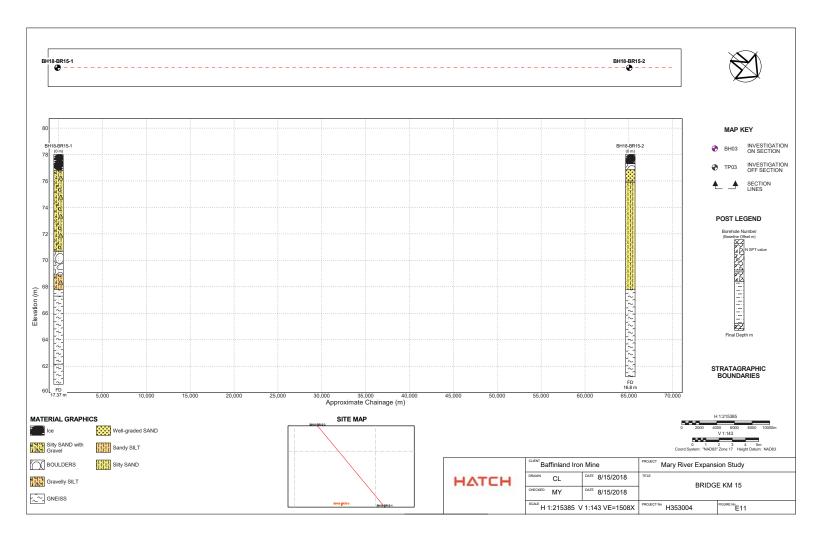


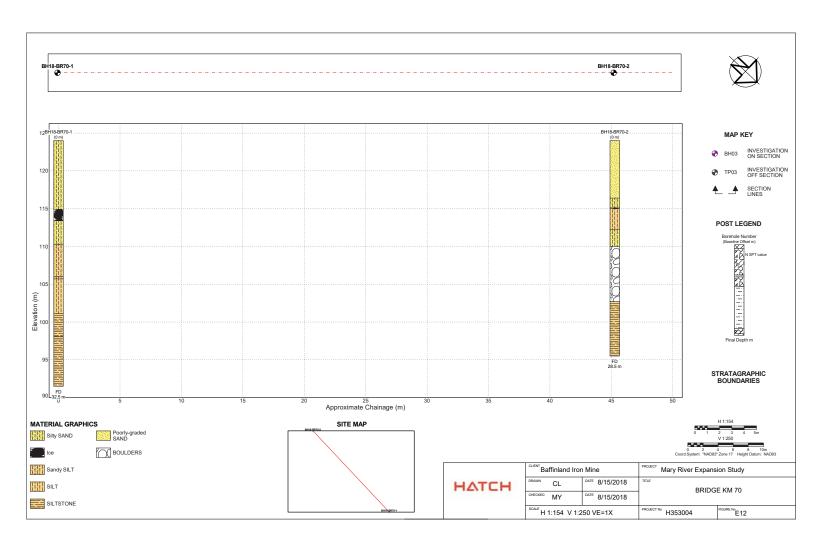












Appendix F Summary of Laboratory Results

Borehole			Moisture			
No.	Sample No.	Depth	Content (%)	Gravel (%)	Sand (%)	Fines (%)
140.	BS-1	1.0	Content (70)			
BH16-R003		1.0				
D1110-11003	BS-3					
	BS-1	0.9	30			
BH16-R004		2.5	10	8	74	18
D1110-1004	BS-3	4.3	10	0	74	10
	BS-1		11			
DU16 D005	<u> </u>	1.0 2.5	11	1	70	10
BH16-R005			40	4	78	18
	BS-3	3.6	10			
DI 140 D000	BS-1					
BH16-R006						
	BS-3					
	BS-1	1.0	13			
BH16-R007		2.5	10	1	87	13
	BS-3	4.0				
	BS-1					
BH16-R008						
	BS-3					
	BS-1	0.9	23			
BH16-R009		2.1				
	BS-3	4.2				
	BS-1	1.0				
BH16-R010	BS-2	3.0				
	BS-3	4.0				
	BS-1	1.0				
BH16-R011	BS-2	2.5	19	0	86	14
	BS-3	4.0	15			
	BS-1	1.0				
BH16-R012		2.5	10	1	81	18
	BS-3	3.8				
	BS-1	1.0				
BH16-R013		2.5	16	0	85	15
Billo Rolo	BS-3	3.5	16		- 00	10
	BS-1	0.8	10			
BH16-R014		2.0	11	11	69	20
51110-11014	BS-3	3.8	11	11	09	20
	BS-1	1.0				
BH16-R015		2.5		2	73	24
פו מאו-מו ופ	BS-3	4.0	13		13	24
	BS-1		32			
DU16 D016		1.0			EF	00
BH16-R016		2.0	15	8	55	28
	BS-3	4.0	00			
DI 140 D047	BS-1	0.0	29			
BH16-R017		2.5				
	BS-3	4.0				
	BS-1	1.0				
BH16-R018		2.5				
	BS-3	4.0				

Rev 0 Page 1 of 10

Borehole		Donth	Moisture	Gravel (%)	Sand (%)	Fines (%)
No.	Sample No.	Depth	Content (%)	Graver (%)	Sanu (%)	Filles (%)
	BS-1	1.0	, ,			
BH16-R019	BS-2	2.5				
	BS-3	4.0				
	BS-1	0.5				
BH16-R020		2.0				
	BS-3	3.5	20	0	57	4:
	BS-1	1.0				
BH16-R021		2.5				
	BS-3	3.4				
	BS-1	0.7				
BH16-R022		1.9				
BITTO TROZZ	BS-3	4.0	9	13	44	4
	BS-1	0.8	3	10		
BH16-R023		2.0		0	61	39
DI 110-11023	BS-3	3.7		U	UI	3
	BS-1	0.0				
BH16-R024		1.5	0	30	38	3:
DH 10-RU24			9	30	30	3,
	BS-3	3.0	8	40	40	4
DUIAO DOOF	BS-1	1.0	18	16	43	4
BH16-R025		2.5	15			
	BS-3	4.0	16			
	BS-1	1.0	27			
BH16-R026		2.5				
	BS-3	4.0	8			
	BS-1	1.0	8	22	43	3
BH16-R027		2.5				
	BS-3	4.0	9			
	BS-1	0.8	3			
BH16-R028		2.0				
	BS-3	3.0				
	BS-1	1.0				
BH16-R029	BS-2	2.5				
	BS-3					
	BS-1	1.0				
BH16-R030	BS-3	1.5	10			
	BS-2	2.5				
	BS-1	0.3				
BH16-R032		2.5				
	BS-3					
	BS-1	1.0				
BH16-R033		2.5	7			
	BS-3	4.0	•			
	BS-1	1.0				
BH16-R034		2.5	8	27	40	3:
21110 11004	BS-3	3.5	9	<u></u>	70	0.
	BS-1	1.0	9			
BH16-R035				24	42	o
BH16-R035	BS-2 BS-3	2.5		24	42	34
	DO-3	4.0				

Rev 0 Page 2 of 10

Borehole			Moisture			
	Sample No.	Depth		Gravel (%)	Sand (%)	Fines (%)
No.	BS-1	1.0	Content (%)			
DU16 D026		2.5	10	23	42	35
BH16-R036			10	23	42	33
	BS-3	4.0				
D1146 D027	BS-1	1.0	20	0	01	
BH16-R037	BS-2	2.5	20	0	91	9
	BS-3	4.0	20			
DI IAC DOSO	BS-1	1.0	40	0	00	0
BH16-R038		2.0	16	2	89	9
	BS-3	4.0	8		0.1	
D1140 D000	BS-1	1.0	20	3	94	3
BH16-R039		2.5				
	BS-3	4.0				
	BS-1	1.0				
BH16-R040		2.5	19			
	BS-3	4.0				
	BS-1					
BH16-R041						
	BS-3					
	BS-1	1.0				
BH16-R042	BS-2	2.5				
	BS-3	4.0	15			
	BS-1	1.0				
	BS-2	2.5				
BH16-R043	BS-3	4.0	15			
	BS-4	6.5				
	BS-5	8.8	7			
	BS-1	1.0				
BH16-R044		2.0	11			
	BS-3	4.0	16			
	BS-1	1.0	8			
BH16-R045		1.0				
2111011010	BS-3	3.6	21			
	BS-1	0.6	21			
	BS-2	1.3	6			
BH16-R046	BS-3	2.3	40			
	BS-4	3.9	22			
	BS-1	1.3	22			
BH16-R053	BS-1	5.5	23			
	BS-1	1.2	23	3	60	37
BH16-R067	BS-1	2.4		3	00	31
לסטא-טווום	BS-3					
	BS-3	4.5				
BH16-R068		1.0				
		2.0				
	BS-3	3.6		40	4.4	40
DI 140 DOSS	BS-1	1.0		19	41	40
BH16-R069		2.5				
	BS-3	4.0			_	
 	BS-1	1.0		0	84	16
BH16-R070		2.4				
	BS-3	3.9				

Rev 0 Page 3 of 10

Borehole			Moisture			(0/)
No.	Sample No.	Depth	Content (%)	Gravel (%)	Sand (%)	Fines (%)
	BS-1	1.2	17			
	BS-2	2.5				
BH16-C007	BS-3	3.5		1	73	26
	BS-4	5.0				
	BS-5	7.3	39			
D1140 0000	BS-1	1.0				
BH16-C008	BS-2	2.5				
	BS-1	0.9				
	BS-2	2.6	13	9	61	30
DI 140 0000	BS-3	3.5				
BH16-C009	BS-4	5.5				
	BS-5	7.3				
	BS-6	8.8				
	BS-1	1.0				
DU16 0010	BS-2	2.5		9	33	58
BH16-C010	BS-3	4.3				
	BS-4	5.3				
	BS-1	1.0				
	BS-2	2.5	100			
	BS-3	4.0	100			
BH16-C011	BS-4	5.8	100			
	BS-5	7.6	100			
	BS-6	8.8	100			
	BS-7	10.0	100			
	BS-1	1.2				
BH16-C012	BS-2	2.0				
	BS-3	4.0				
	BS-1	1.0				
	BS-2	2.5				
BH16-C015	BS-3	3.4				
	BS-4	5.2				
	BS-5	7.0				
	BS-1	1.0				
	BS-2	2.7		25	53	22
BH16-C016	BS-3	4.0				
	BS-4	5.8				
	BS-5	7.3				
	BS-1	1.0				
BH16-C017	BS-2	2.4		3	74	22
PU 10-011	BS-3	4.0				
	BS-4	5.5				
	BS-1	0.6				
DU16 0040	BS-2	2.2	9	1	82	17
BH16-C018	BS-3	4.0				
	BS-4	5.5				

Rev 0 Page 4 of 10

Borehole			Moisture			
No.	Sample No.	Depth	Content (%)	Gravel (%)	Sand (%)	Fines (%)
110.	BS-1	1.0	3011t311t (70)			
BH16-C019	BS-2					
	BS-3	4.5	8			
BH16-C019B		5.8	0	0	98	1
51110 00102	BS-1	1.0	-	Ü		
	BS-2	2.5	8			
	BS-3	4.3				
BH16-C020	BS-4	5.5	8			
	BS-5	6.7				
	BS-6	8.5	11			
	BS-1	1.0				
	BS-2	2.5	14			
BH16-C021		3.5	12			
	BS-4	7.0				
	BS-5	8.7	5	0	67	33
	BS-1	2.4			<u> </u>	
	BS-2	4.4	19	0	98	2
BH16-C022		6.3				
	BS-4	7.3	24			
	BS-5	8.2				
	BS-1	3.7	16	0	93	7
BH16-C023		5.0	17	12	44	45
	BS-3	6.2	15			
	BS-1	3.4				
	BS-2	5.0	18	0	90	10
BH16-C024	BS-3	7.0	18			
	BS-4	8.5				
	BS-5	10.0	14			
	BS-1	2.7				
DU16 C005	BS-2	4.0	15	1	89	10
BH16-C025	BS-3	5.2				
	BS-4	7.0				
	BS-1	2.4		6	69	24
	BS-2	4.0	14	2	77	21
DU16 C026	BS-3	5.5				
BH16-C026	BS-4	7.0	19			
	BS-5	8.5	13			
	BS-6	10.0				
	BS-1	4.0	10	9	72	20
BH16-C027	BS-2	5.0				
	BS-3	7.0	16			
	BS-1	6.3				
BH16-C028	BS-2	8.8	7	0	94	6
DH 10-C028	BS-3	9.6	18			
	BS-4	11.4				

Rev 0 Page 5 of 10

Borehole			Moisture			(0/)
No.	Sample No.	Depth	Content (%)	Gravel (%)	Sand (%)	Fines (%)
	BS-1	0.9	()			
D	BS-2	2.4	21	1	75	25
BH16-C029	BS-3	4.0				
	BS-4	7.0				
	BS-1	1.0				
D	BS-2	2.0	14			
BH16-C030	BS-3	4.0				
	BS-4	5.0	19	3	94	3
BH16-C031	BS-1	1.4				
	BS-1	0.9				
	BS-2	2.4	11	10	71	19
D1140 0000	BS-3	4.4				
BH16-C032	BS-4	5.5				
	BS-5	6.9				
	BS-6	8.9				
DUI40 0004	BS-1	1.4				
BH16-C201	BS-2	2.1				
	BS-1	0.9				
	BS-2	2.5				
BH16-C202		4.0				
	BS-4	5.0				
	BS-5	6.1				
	BS-1	0.9				
	BS-2	2.4				
	BS-3	4.3				
BH16-C203	BS-4	5.5				
	BS-5	7.0				
	BS-6	8.8				
D1140 0004	BS-1	0.9				
BH16-C204	BS-2	2.6				
	BS-1	1.1				
	BS-2	2.5				
BH16-C205		4.0		20	47	35
	BS-4	5.5				
	BS-5	7.0				
	BS-1	1.2				
	BS-2	2.7	53			
BH16-C206		4.0	22			
	BS-4	5.5				
	BS-5	7.3				
	BS-1	0.9				
	BS-2	1.9	12			
BH16-C207		4.0				
3237	BS-4	5.5				
		7.4				

Rev 0 Page 6 of 10

	DS1	0.9				
	DS2	2.1				
BH17-C001	DS3	3.1	7	14	49	37
B1117-C001	DS4	4.9	ı	14	43	31
	DS5	7	3	0	5.5	11
	DS1		<u>ა</u>	0	55	44
		0.9	10	24	FO	20
	DS2	2.4	10	21	59	20
DI 147 C000	DS3	- 4				
BH17-C002	DS4	5.5				
	DS5	7				
	DS6	8.2				
	DS7	10.1				
	DS1	0.9				
	DS2	1.8				
BH17-C003	DS3	3.4	7	32	47	21
	DS4	5.5	9	4	73	23
	DS5	7				
	DS6	8.8	10	9	57	34
	DS1	0.6				
	DS2	2.4				
	DS3	3.7				
BH17-C004	DS4	5.2				
	DS5	7		9	75	17
	DS6	7.9				
	DS7	9.8		8	60	33
	DS1	0.9				
	DS2	2.4				
DI 147 C005	DS3	4				
BH17-C005	DS4	5.5	7	18	57	24
	DS5	7				
	DS6	8.5				
	DS1	0.6				
	DS2	2.4				
D1147 0000	DS3	3.7	14	18	45	37
BH17-C006	DS4	5.2				J.
	DS5	6.7				
	DS6	8.2	16	21	42	38
	DS1	0.9	10			30
	Dea	2.4				
BH17-C006E	DS3	4				
	DS4	5.5				
	DS1	1				
BH17-C007	DS2	1.9				
21117-0007	DS3	4	14	10	38	52
	DS1	0.6	14	10	30	52
BH17-C010	DS2	2.4	14	1	88	11
51117-0010	DS3	3.7	15	0	90	9
			15	U	90	9
DU17 0014	DS1	0.9				
BH17-C011	DS2	2.4		^	76	24
	DS3	4	17	0	76	24

Rev 0 Page 7 of 10

Borehole			Moisture			(0/)
No.	Sample No.	Depth	Content (%)	Gravel (%)	Sand (%)	Fines (%)
	DS1	0.9	()			
BH17-C012	DS2	2.1				
	DS3	4	8	24	38	38
	DS1	0.9	14	12	58	31
BH17-C013	DS2	2.1				
	DS3	4				
	BS-1	0.3				
	BS-2	2.7				
	BS-3	3.5	19	6	66	29
BH16-B001	BS-4	5.5				
	BS-5	6.7				
	BS-6	8.5				
	BS-7	10.3				
	BS-1	1.2				
	BS-2	2.7	11			
	BS-3	4.3				
	BS-4	5.9	14	5	77	19
BH16-B002		7.3				
	BS-6	8.4				
	BS-7	8.8				
	BS-8	11.5				
	BS-9	12.8				
	BS-1	1.1				
	BS-2	1.9	9	24	47	28
	BS-3	4.0				
	BS-4	5.8	100	2	72	26
BH16-B003	BS-5	7.3	23			
B1110 B000	BS-6	8.8				
	BS-7	10.3				
	BS-8	11.5				
	BS-9	13.4				
	BS-10	14.6				
	BS-1	1.0				
	BS-2	2.7				
	BS-3	4.3			_	_
	BS-4	5.8	100	7	54	39
	BS-5	7.3	19	35	44	21
BH16-B004		8.8				
	BS-7	10.5				
	BS-8	11.8				
	BS-9	13.2				
	BS-10	14.5				
	BS-11	15.5				

Rev 0 Page 8 of 10

	BS-1	0.6				
BH16-B009	BS-2	5.0				
	BS-3	9.8	22	0	98	2
	BS-1	0.9				
	BS-2	2.9	11	5	87	8
DUIAO DOAO	BS-3	4.2				
BH16-B010	BS-4	5.1	21	0	98	2
	BS-5	6.4				
	BS-6	9.5	20	0	61	39
DI 146 DO44	BS-1	4.2				
BH16-B011	BS-2	9.0	19	0	98	2
DI 146 D040	BS-1	3.0	12	4	87	9
BH16-B012	BS-2	8.0				
	BS-1	0.6				
	BS-2	2.7				
	BS-3	4.0				
BH16-B013	BS-4	5.8	12	0	53	47
	BS-5	7.3				
	BS-6	8.5				
	BS-7	10.0				
	BS-1	1.0				
	BS-2	2.5				
BH16-B014	BS-3	3.5	12	0	65	35
БП 10-Б0 14	BS-4	5.0				
	BS-5	7.0	1	0	63	37
	BS-6	8.9				
	BS-1	1.0				
	BS-2	2.5	100	17	41	41
	BS-3	4.0				
	BS-4	5.0	11	0	63	37
BH16-B015	BS-5	6.7				
	BS-6	8.0				
	BS-7	10.0	100	15	66	20
	BS-8	11.5				
	BS-9	13.4				
	BS-1	1.0				
	BS-2	2.6				
BH16-B016		3.6	15	0	88	12
	BS-4	5.3		0	67	33
	BS-5	7.2	7	0	66	34

Rev 0 Page 9 of 10

Borehole		Depth	Moisture	Gravel (%)	Sand (%)	Fines (%)
No.	Sample No.		Content (%)	0.0.0. (70)	Gu (70)	
	DS1	0.9				
	DS2	2.4	26	0	93	7
	DS3	4				
	DS4	5.5	37	0	7	93
	DS5	7				
BH17-B001	DS6	8.5	10	6	65	29
	DS7	9.4				
	DS8	11.4		7	30	63
	DS9	13.1	12			
	DS10	14.3				
	DS11	15.5	12			
	DS1	0.5	19	0	88	12
	DS2	2				
	DS3	3.7	37	0	15	85
	DS4	5.1				
	DS5	6.7	24	0	49	51
	DS6	8.2				
	DS7	10.1				
BH17-B002	DS8	11.5	9	3	66	32
БП17-Б002	DS9	12.8				
	DS10	14.5				
	DS11	15.8	11	10	70	20
	DS12	17.4				
	DS13	18.6	8	15	66	20
	DS14	20.1				
	DS15	22.3				
	DS16	23.5	15	1	72	27

Rev 0 Page 10 of 10

	Sample		Moisture	Gravel		
Borehole No.	No.	Depth	Content	(%)	Sand (%)	Fines (%)
	DQ-1	0.5				
	DQ-2	4.4				
	DQ-3	5.6				
	DQ-4	8.9				
	DQ-5	11.9				
	DQ-6	16.0				
BH17-BR86-1	DQ-7	17.0				
	DQ-8	21.0				
	DQ-9	25.5				
	DQ-10	29.5				
	DQ-11	31.9				
	DQ-12	36.0				
	DQ-13	39.0				
	DQ-1	1.0	13.9	25	72	2
	DQ-2	2.0	22.7	0	93	7
	DQ-3	3.0	17.9	0	91	9
	DQ-4	5.0	36.8	4	91	5
	DQ-5	10.0	22.1	0	89	10
	DQ-6	11.3	22.9			
BH17-BR86-2	DQ-7	20.0	21.9	0	90	10
	DQ-8	24.0	24.5			
	DQ-9	30.0	25.9			
	DQ-10	32.5				
	DQ-11	36.4	26.5			
	DQ-12	37.8				
	DQ-13	39.3	25.3	0	61	39
	DQ-1	1.0	13.8	21	69	10
	DQ-2	2.0	22.8	0	93	7
	DQ-3	3.0	24.3	0	94	6
BH17-BR86-3	DQ-4	5.0	25.4	0	89	11
הם 11- סעסט-3	DQ-5	8.0	26.0	0	78	22
	DQ-6	12.0	26.0	0	93	7
	DQ-7	20.0				
	DQ-8	30.0	24.6	0	92	8

Rev A Page 1 of 1

Borehole No.	Sample No.	Depth	Moisture Content	Gravel (%)	Sand (%)	Fines (%)
	DQ-1	1.7	001110111	(,0)		
	DS-2	2.6	6	34	44	22
BH18-BR15-1	DS-3	3.9	11	6	57	37
	DS-4	5.1	7			
	DQ-5	5.8	-			
	DS-1	1.2	14	1	85	14
	DQ-2	1.5				
	DS-3	2.0	63	1	45	54
	DQ-4	2.5				
BH18-BR15-2	DS-5	2.6	9	29	39	32
	DS-6	3.5				
	DS-7	4.2	11	14	60	26
	DS-8	5.8	5	22	48	30
	DQ-9	6.3				
	DQ-1	1.5				
	DS-2	2.6	22	0	97	3
	DQ-3	6.3				
	DS-4	6.8	28	0	80	20
	DS-5	9.4	36	0	3	97
DI 140 DD 70 4	DQ-6	9.6				
BH18-BR70-1	DS-6	11.3	19	0	39	61
	DQ-7	14.3				
	DS-8	14.6	15	9	51	40
	DQ-9	16.5	14.0	19	26	55
	DQ-10	18.2				
	DQ-11	20.9				
	DS-1	8.0	1.0	38	47	15
	DQ-1	1.2	20.0	0	86	14
BH18-BR70-2	DS-2	3.2	15.0	0	91	9
DIT 10-DR/U-2	DQ-3	9.5	23.0	0	2	98
	DQ-4	19.5				
	DS-5	19.6		0	2	98
	DS-2	2.1				
BH18-BR102-2	DQ-3	3.0		31	69	0
DH 10-DK 102-2	DS-4	5.1				
	DQ-5	5.4				

Rev 1 Page 1 of 2

Borehole No.	Sample No.	Depth	Salinity Scale (ppt)
	DQ-1	1.0	1.0
	DQ-2	2.0	1.0
	DQ-4	5.0	1.0
BH17-BR86-2	DQ-5	10.0	1.0
DITIT-DIX00-2	DQ-6	11.3	1.0
	DQ-7	20.0	1.0
	DQ-8	24.0	1.0
	DQ-11	36.4	4.0
	DQ-1	1.0	1.0
	DQ-2	2.0	1.0
	DQ-3	3.0	1.0
BH17-BR86-3	DQ-4	5.0	1.0
	DQ-5	8.0	1.0
	DQ-6	12.0	1.0
	DQ-8	30.0	1.0
	DQ-1	1.2	N/A
BH18-BR15-2	DQ-2	1.5	3.0
DI110-DIX13-2	DQ-4	2.0	N/A
	DQ-9	11.3	N/A
BH18-BR70-1	DQ-1	1.5	0.0
ו-0 ואם-סווום	DQ-3	6.2	0.0
BR18-BR70-2	DQ-1	1.2	0.0
DK 10-DK / U-Z	DQ-3	9.5	12.0

Rev 1 Page 2 of 2

Appendix G Laboratory Certificate of Conformance

CERTIFICATE OF CONFORMANCE

Canadian Council of Independent Laboratories

AGGREGATE LABORATORY CERTIFICATION

This is to certify that

Hatch Geotechnical Laboratory

Located at:

Niagara Falls ON

Has met the Standardization and Interlaboratory Testing Requirements of the CCIL/OSSGA AGGREGATE LABORATORY CERTIFICATION PROGRAM and has qualified under the following categories and test methods:

AGGREGATE QUALITY CONTROL LABORATORY (TYPE C) LS-600/C-702; LS-601/C-117; LS-602/C-136; LS-607; LS-608; LS-621

AGGREGATE PHYSICAL PROPERTY LABORATORY (TYPE D)

LS-706/D698; LS-702/AASHTO T88; LS-703,704/D4318; LS-705/D854; LS-709/D2434

Gil Mc metac

May 1, 2018 - April 30, 2019

GOEDAN Chirman

GIB McINTEE, P. ENG.
CHAIRMAN, CERTIFICATION PROGRAM ADMINISTRATION COMMITTEE

Date

GORDON H. LEAMAN, P. ENG PRESIDENT

Canadian Council of Independent Laboratories

CERTIFICATE OF CONFORMANCE

AGGREGATE LABORATORY CERTIFICATION

This is to certify that

Hatch

Located at:

Niagara Falls ON

Has met the Standardization and Interlaboratory Testing Requirements of the CCIL/OSSGA AGGREGATE LABORATORY CERTIFICATION PROGRAM and has qualified under the following categories and test methods:

AGGREGATE QUALITY CONTROL LABORATORY (TYPE C) LS-600/C-702; LS-601/C-117; LS-602/C-136; LS-607; LS-608; LS-621

AGGREGATE PHYSICAL PROPERTY LABORATORY (TYPE D) LS-706/D698; LS-702/AASHTO T88; LS-703,704/D4318; LS-705/D854; LS-709/D2434

GIB MCINTEE, P. ENG.

May 1, 2017 - April 30, 2018

GOEDAU Alexmuss

GIB WICHTEE, F. ENG.

CHAIRMAN, CERTIFICATION PROGRAM ADMINISTRATION COMMITTEE

Date

GORDON H. LEAMAN, P. ENG.
PRESIDENT

Canadian Council of Independent Laboratories

CERTIFICATE OF CONFORMANCE

AGGREGATE **L**ABORATORY **C**ERTIFICATION

This is to certify that

A Division of Amec Foster Wheeler Americas Limited Amec Foster Wheeler Environment & Infrastructure

Located at

Hamilton ON

Has met the Standardization and Interlaboratory Testing Requirements of the CCIL/OSSGA AGGREGATE LABORATORY CERTIFICATION PROGRAM and has qualified under the following categories and test methods:

AGGREGATE QUALITY CONTROL LABORATORY (TYPE C)

LS-600/C-702; LS-601/C-117; LS-602/C-136; LS-607; LS-608; LS-621

AGGREGATE PHYSICAL PROPERTY LABORATORY (TYPE D)

LS-412/CSA A23.2-2C,-4C; LS-603/C131&535; LS-604/C127; LS-605/C128; LS-606/C88; LS-609/C294,5 (Petrographic Analysts: John Balinski, Martin Little, Amy McCulloch & Ivan Severenski); LS-610/C40; LS-613/D3042; LS-614/CSA A23.2-24A; LS-615/CSA A23.2-26A; LS-617; LS-618/D6928; LS-619/D7428; LS-620/CSA A23.2-25A; LS-623/D698; LS-709/D2434

Superpave Aggregate Consensus Properties AASHTO T176/D2419; LS-629/AASHTO T304; ASTM D4791; ASTM D5821

May 1, 2016 - April 30, 2017

CHAIRMAN, CERTIFICATION PROGRAM ADMINISTRATION COMMITTEE GIB MCINTEE, P. ENG.

Date

GORDON H. LEAMAN, P. ENG PRESIDENT

Appendix H Coarse Aggregate Physical Testing Reports

21 July 2017 File: TB152049

Hatch Ltd.

4342 Queen St. Suite 500 Niagara Falls, Ont. L2E 7J7

Attention: Mr. Ralph Serluca

Dear Sir.

RE: AGGREGATE TESTING – 10" ROCK

GRANITE & DIABASE

We are pleased to present the results of laboratory testing conducted on two samples of 10"rock received in our Amec Foster Wheeler Hamilton laboratory on 27 June 2017. It is understood that a representative of Hatch Ltd. obtained the sample from an unspecified source.

Testing of the 10" rock materials was limited to Mill Abrasion using TMS-004, Track Rock Ballast Specification, rev. 22 Aug. 2013. Oversized samples were crushed to required particle sizes using laboratory Jaw-crusher.

Results of the physical testing can be found in Table 1.

Table 1 – Physical Laboratory Testing Results

,	,	•
Tooting Boguired	NF17-05	NF17-06
Testing Required	(Granitic Gneiss)	(Diabase)
Mill Abrasion	2.7% loss	5.8% loss

If there are any questions concerning this report, please do not hesitate to contact our office.

Yours truly,

Amec Foster Wheeler Environment & Infrastructure

a Division of Amec Foster Wheeler Americas Limited

Reviewed by,

Kristen Hand

Soils & Aggregate Laboratory Supervisor

kh:OL

Ognjenko Lazic

Concrete & Asphalt Laboratory Supervisor

Jog yeaks

amec foster

Amec Foster Wheeler Environment and Infrastructure a Division Amec Foster Wheeler Americas Limited 505 Woodward Avenue, Unit 1 Hamilton, ON L8H 6N6 Canada Tel (905) 312-0700 Fax (905) 312-0771 15 February 2017 File: TB152049

Hatch Ltd.

4342 Queen St., Suite 500 Niagara Falls, ON L2E 7J7 Canada

Attention: Mr. Warren R. Hoyle, P.Geo.

RE: PHYSICAL TESTING OF BEDROCK CORE AND ROCK LUMPS

1.0 INTRODUCTION

We are pleased to present the results of our Amec Foster Wheeler Hamilton laboratory testing conducted on rock lump samples provided by HATCH Limited (HATCH). It is understood the rock lump and bedrock core samples were sampled in January 2017 by a representative of Hatch. These samples were received in our laboratory on 26 January 2017.

2.0 METHODLOGY

A total of four pails of rock grab samples (4-8 inch) and bedrock cores were provided for physical durability testing. The aggregate was crushed using a laboratory crusher at Amec Foster Wheeler Hamilton Laboratory. The material was crushed to produce a 20mm coarse aggregate to be tested.

Testing of the 20mm crushed core samples was limited to:

Resistance of Coarse Aggregate to Degradation	
by Abrasion in the Micro-Deval Apparatus	(CSA A23.2 - 29A)
Sieve Analysis of Coarse and Fine Aggregate	(CSA A23.2 - 2A)
Relative Density and Absorption of Coarse Aggregate	(CSA A23.2 - 12A)
Resistance of Unconfined Coarse Aggregate	
to Freezing and Thawing	(CSA A23.2 - 24A)

The results of testing are summarized in Table 1.

3.0 RESULTS

Table 1. Results of the Physical Testing Crushed Aggregate Sample

			Laboratory T	oot Booulto	
Test Required	Test Method				
100t Roquilou	1 oot motiloa	NF17-01	NF17-02	NF17-03	NF17-04
Relative Density (Specific Gravity)	CSA A23.2 - 12A	2.662	2.655	2.618	2.995
Absorption (%)	CSA A23.2 - 12A	0.82	0.90	0.37	0.45
Micro-Deval Abrasion (% loss)	CSA A23.2 - 29A	10.5	11.0	4.5	7.9
Unconfined Freeze- Thaw (% loss)	CSA A23.2 - 24A	6.7	11.1	1.6	0.8

Presented in Enclosures 1 through 4 are the gradation results of the coarse portion of each sample.

Please contact us if you have any questions, or if we can be of further service evaluating aggregate sources.

Regards,

Amec Foster Wheeler Environment & Infrastructure

a Division of Amec Foster Wheeler Americas Limited

Reviewed by,

Ognjenko Lazic Asphalt & Concrete Laboratory Supervisor

Nogyerto

Kristen Hand Soils & Aggregate Laboratory Supervisor

TB152049 Page 2

LIMITS FOR DELETERIOUS SUBSTANCES AND PHYSICAL PROPERTIES OF AGGREGATE

CSA A23.1 - 14, Table 11 & 12 and A23.2 - 15A & 27A, Rev. August 2014 *Clauses 4.2.3.2.2, 4.2.3.4.3, 4.2.3.5.1, 4.2.3.5.3.3, 4.2.3.5.3.4, 4.2.3.7 & 4.2.3.10.1*

Job No.:	Client:		Sampled By:		Enclosure:	
TB152049	Hatch Ltd.		Client		2	
Name of Testing Laborato	ory:		Telephone No.:	Fax No.:		
Amec Foste	er Wheeler Environment & Infrastructure		(905) 312 - 0700	(905) 312 - 0771		
Sample Lab No.:	Sample Source:					
S018-17			NF17-01			
Sample Type:		Date	Sampled:	Stockpile Quanti	ity (t)	
	Crushed Core		January 2017			

COARSE AGGREGATE

Nominal Max. Size (mm):	Aggregrate Inventory No.:	Gradation Results:	Meets Spec.: (Y/N)
20 mm	n/a	n/a	n/a

Limits for Deleterious Substances and Physical Properties of Aggregates

	Acceptance Limits				Meets
CSA Laboratory Test and Number	Maximum perce	ntage by mass	Reference	Sample	Spec.
	of total	sample	Material Results	Results	
Standard Requirements	Concrete exposed to	Other exposure			Y/N
Standard Requirements	freezing & thawing	conditions			
Clay lumps - A23.2 - 3A †****	0.3 % maximum	0.5 % maximum	-	-	-
Low - density granular materials - A23.2 - 4A‡****	0.5 % maximum	1 % maximum	-	-	-
Material finer than 80 μm - A23.2 - 5A**	1% maximum ¹	1% maximum ¹	-	-	-
Absorption - A23.2 - 12A	-		0.37%	0.82%	-
Flat & elongated particles, Procedure A, 4:1 - A23.2-13A	20.0 % maximum	20.0 % maximum	-	-	-
Micro-Deval test - A23.2 - 29A	17 % maximum	21 % maximum	14.0%	10.5%	Υ
Unconfined freeze-thaw test - A23.2 - 24A‡‡	6 % maximum	10 % maximum	9.5%	6.7%	N/Y
Abrasion loss - A23.2 - 16A and A23.2 - 17A§§	50 % maximum	50 % maximum	-	-	-
Petrographic examination of aggregate - A23.2 -15A	125 maximum	140 maximum	-	-	-
Alkali-Carbonate reactivity - A23.2 - 26A	chem. comp. must p	olot in non-exp. field	-	-	-
Accelerated mortar bar - A23.2 - 25A	maximum 0.15	0% at 14 days	-	-	-
Concrete prism - A23.2 - 14A	maximum 0.04	0% at one year	-	-	-
	Alternative Require	ments***			
MgSO₄ soundness loss - A23.2 - 9A	12 % maximum	18 % maximum	-	-	-

		fogue ako	
Issued By:	Kristen Hand		14 February 2017
•	Print Name	Testing Laboratory Representative Signature	Date

LIMITS FOR DELETERIOUS SUBSTANCES AND PHYSICAL PROPERTIES OF AGGREGATE

CSA A23.1 - 14, Table 11 & 12 and A23.2-15A & 27A, Rev. August 2014 Clauses 4.2.3.2.2, 4.2.3.4.3, 4.2.3.5.1, 4.2.3.5.3.3, 4.2.3.5.3.4, 4.2.3.7 & 4.2.3.10.1

Enclosure: 2

*Limits for deleterious substances not listed in this Table, such as coal, ochre (ironstone), shalestone, siltstone, or argillaceous limestone, shall be specified by the owner to encompass deleterious materials known to be present in a particular region. In the absence of such information, aggregate shall be accepted or rejected in accordance with clause 4.2.3.9

†Clay lumps are defined as fine-grained, consolidated, sedimentary materials of a hydrous aluminosilicate nature.

‡A liquid with a relative density of 2.0 is generally used to separate particles classified as coal or lignite. Liquids with relative densities higher or lower than 2.0 might be required to identify other deleterious low-density materials.

The amount of material of clay size shall be determined by performing a hydrometer analysis as per ASTM D 422 on a sample washed through an 80 µm sieve.

**In the case of crushed aggregate, if material finer than the 80 µm sieve consists of the dust of fracture, essentially free from clay or shale, the maximum shall be 2.0%

‡‡CSA A23.2-24A, a test for coarse aggregate, has good precision and shows fair correlation with the MgSO4 soundness test. For further information, see Rogers, Senior, & Boothe (1989)

§§The abrasion loss shall not be greater than 35% when the aggregate is used in concrete paving or for other concrete surfaces subjected to significant wear. This does not refer to air- cooled iron blast-furnace-slag coarse aggregate. The abrasion loss requirements for coarse aggregate shall be waived provided that the material meets the alternative requirements for Micro-deval detailed in this Table.

***The freeze-thaw requirements for coarse aggregate shall be waived provided that the material meets the laternative requirements for MgSO₄ soundness loss detailed in this Table.

****If the Coarse Aggregate when tested according to A23.2-15A does not show the presence of either clay lumps or low-density granular materials, the requirements for testing in accordance with 3A and 4A may be waived.

¹This limit applies to the amount of material finer than 80µm as determined by washing only.

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATE

CSA A23.2-2A

Enclosure:

Client: Hatch

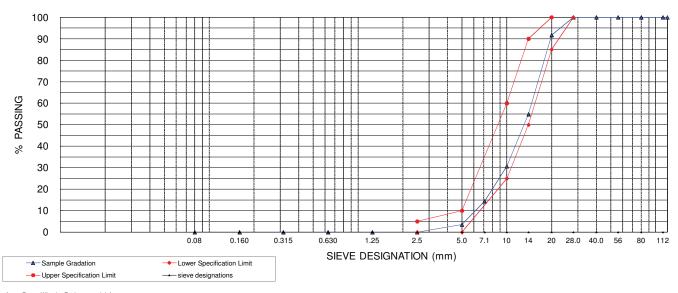
14 February 2017 Date: TB152049 Project No:

Sample Source: NF17-01

S018-17 Lab No:

Sampled By: Client

26 January 2017 Date Received: Date Tested: 6 February 2017


Date Sampled: January 2017 Sample Type:

Crushed Core Specification:

Lab Technician: KΗ

CSA A23.1-14, August 2014, Table 11, Group I, 20-5mm Concrete Stone Grading Requirements for Coarse Aggregate

		1	1	1		1	1									1	1
SIEVE SIZES (mm)	120	112	80	56	40.0	28.0	20	14	10	7.1	5	2.5	1.25	0.630	0.315	0.160	0.08
SPECIFICATIONS	-	-	-	-	-	100.0	85-100	50-90	25-60		0-10	0-5		-	-	-	-
% PASSING	100.0	100.0	100.0	100.0	100.0	100.0	91.7	54.9	30.7	14.4	3.5						
% RETAINING	0.0	0.0	0.0	0.0	0.0	0.0	8.3	45.1	69.3	85.6	96.5						

Amec Foster Wheeler Environment & Infrastructure 505 Woodward Avenue, Unit 1 Hamilton, Ontario L8H 6N6 PH: 905 312 0700 FX: 905 312 0771

TM-MAT-1005A-05

LIMITS FOR DELETERIOUS SUBSTANCES AND PHYSICAL PROPERTIES OF AGGREGATE

CSA A23.1 - 14, Table 11 & 12 and A23.2 - 15A & 27A, Rev. August 2014 *Clauses 4.2.3.2.2, 4.2.3.4.3, 4.2.3.5.1, 4.2.3.5.3.3, 4.2.3.5.3.4, 4.2.3.7 & 4.2.3.10.1*

Job No.:	Client:			Sampled By:		Enclosure:
TB152049		Hatch Ltd		Client		2
Name of Testing Laborato	ory:			Telephone No.:	Fax No.:	
Amec Foster Wheeler Environment & Infrastructure				(905) 312 - 0700	(905) 312 - 0771	
Sample Lab No.:		Sample Source:			•	
S019-17				NF17-02		
Sample Type:			Dat	e Sampled:	Stockpile Quanti	ty (t)
	Crushed C	Core		January 2017		

COARSE AGGREGATE

Nominal Max. Size (mm):	Aggregrate Inventory No.:	Gradation Results:	Meets Spec.: (Y/N)
20 mm	n/a	n/a	n/a

Limits for Deleterious Substances and Physical Properties of Aggregates

	Accepta	Acceptance Limits			Meets
CSA Laboratory Test and Number	Maximum perce	entage by mass	Reference	Sample	Spec.
	of total	sample	Material Results	Results	
Standard Deguirements	Concrete exposed to	Other exposure			Y/N
Standard Requirements	freezing & thawing	conditions			
Clay lumps - A23.2 - 3A †****	0.3 % maximum	0.5 % maximum	-	-	-
Low - density granular materials - A23.2 - 4A‡****	0.5 % maximum	1 % maximum	-	-	-
Material finer than 80 μm - A23.2 - 5A**	1% maximum ¹	1% maximum ¹	-	-	-
Absorption - A23.2 - 12A	-		0.37%	0.90%	-
Flat & elongated particles, Procedure A, 4:1 - A23.2-13A	20.0 % maximum	20.0 % maximum	-	-	-
Micro-Deval test - A23.2 - 29A	17 % maximum	21 % maximum	14.0%	11.0%	Υ
Unconfined freeze-thaw test - A23.2 - 24A‡‡	6 % maximum	10 % maximum	9.5%	11.1%	N
Abrasion loss - A23.2 - 16A and A23.2 - 17A§§	50 % maximum	50 % maximum	-	-	-
Petrographic examination of aggregate - A23.2 -15A	125 maximum	140 maximum	-	-	-
Alkali-Carbonate reactivity - A23.2 - 26A	chem. comp. must p	olot in non-exp. field	-	-	-
Accelerated mortar bar - A23.2 - 25A	maximum 0.15	0% at 14 days	-	-	-
Concrete prism - A23.2 - 14A	maximum 0.04	0% at one year	-	-	-
	Alternative Require	ments***			
MgSO₄ soundness loss - A23.2 - 9A	12 % maximum	18 % maximum			

•	Deint Mana	Testing Laboratory December 19 Company	D-+-
Issued By:	Kristen Hand		14 February 2017

Wag yeaks

LIMITS FOR DELETERIOUS SUBSTANCES AND PHYSICAL PROPERTIES OF AGGREGATE

CSA A23.1 - 14, Table 11 & 12 and A23.2-15A & 27A, Rev. August 2014 Clauses 4.2.3.2.2, 4.2.3.4.3, 4.2.3.5.1, 4.2.3.5.3.3, 4.2.3.5.3.4, 4.2.3.7 & 4.2.3.10.1

Enclosure: 2

*Limits for deleterious substances not listed in this Table, such as coal, ochre (ironstone), shalestone, siltstone, or argillaceous limestone, shall be specified by the owner to encompass deleterious materials known to be present in a particular region. In the absence of such information, aggregate shall be accepted or rejected in accordance with clause 4.2.3.9

†Clay lumps are defined as fine-grained, consolidated, sedimentary materials of a hydrous aluminosilicate nature.

‡A liquid with a relative density of 2.0 is generally used to separate particles classified as coal or lignite. Liquids with relative densities higher or lower than 2.0 might be required to identify other deleterious low-density materials.

The amount of material of clay size shall be determined by performing a hydrometer analysis as per ASTM D 422 on a sample washed through an 80 µm sieve.

**In the case of crushed aggregate, if material finer than the 80 µm sieve consists of the dust of fracture, essentially free from clay or shale, the maximum shall be 2.0%

‡‡CSA A23.2-24A, a test for coarse aggregate, has good precision and shows fair correlation with the MgSO4 soundness test. For further information, see Rogers, Senior, & Boothe (1989)

§§The abrasion loss shall not be greater than 35% when the aggregate is used in concrete paving or for other concrete surfaces subjected to significant wear. This does not refer to air- cooled iron blast-furnace-slag coarse aggregate. The abrasion loss requirements for coarse aggregate shall be waived provided that the material meets the alternative requirements for Micro-deval detailed in this Table.

***The freeze-thaw requirements for coarse aggregate shall be waived provided that the material meets the laternative requirements for MgSO₄ soundness loss detailed in this Table.

****If the Coarse Aggregate when tested according to A23.2-15A does not show the presence of either clay lumps or low-density granular materials, the requirements for testing in accordance with 3A and 4A may be waived.

¹This limit applies to the amount of material finer than 80µm as determined by washing only.

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATE

CSA A23.2-2A

Enclosure: Date:

14 February 2017

Project No:

TB152049

Client: Hatch Ltd Sample Source: NF17-02

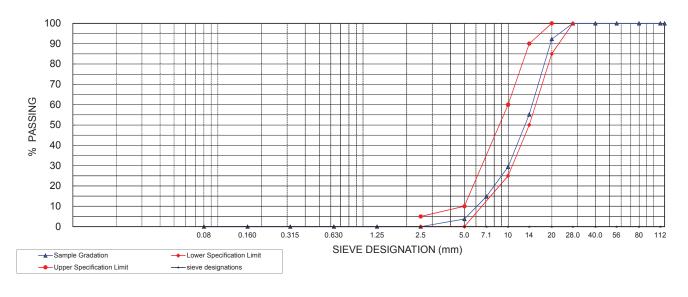
Client

Lab No: **Date Received:**

S019-17 26 January 2017

Sampled By: Date Sampled: January 2017

Date Tested: 6 February 2017


Sample Type: Crushed Core Lab Technician:

Specification:

CSA A23.1-14, August 2014, Table 11, Group I, 20-5mm Concrete Stone

Grading Requirements for Coarse Aggregate

SIEVE SIZES (mm)	120	112	80	56	40.0	28.0	20	14	10	7.1	5	2.5	1.25	0.630	0.315	0.160	0.08
SPECIFICATIONS	-	-	-	-	-	100.0	85-100	50-90	25-60	-	0-10	0-5	-	-	-	-	-
% PASSING	100.0	100.0	100.0	100.0	100.0	100.0	92.3	55.2	29.4	14.8	3.7						
% RETAINING	0.0	0.0	0.0	0.0	0.0	0.0	7.7	44.8	70.6	85.2	96.3						

Amec Foster Wheeler Environment & Infrastructure 505 Woodward Avenue, Unit 1 Hamilton, Ontario LBH 6N6 PH: 905 312 0700 FX: 905 312 0771

TM-MAT-1005A-05

LIMITS FOR DELETERIOUS SUBSTANCES AND PHYSICAL PROPERTIES OF AGGREGATE

CSA A23.1 - 14, Table 11 & 12 and A23.2 - 15A & 27A, Rev. August 2014 *Clauses 4.2.3.2.2, 4.2.3.4.3, 4.2.3.5.1, 4.2.3.5.3.3, 4.2.3.5.3.4, 4.2.3.7 & 4.2.3.10.1*

Job No.:	Client:			Sampled By:		Enclosure:
TB152049	TB152049 Hatch Ltd.			Client	2	
Name of Testing Laboratory:				Telephone No.:		
Amec Foster Wheeler Environment & Infrastructure				(905) 312 - 0700	312 - 0771	
Sample Lab No.:		Sample Source:			•	
S020-17	NF17-03					
Sample Type:			Da	te Sampled:	Stockpile Quanti	ty (t)
Crushed Core				Janaury 2017		

COARSE AGGREGATE

Nominal Max. Size (mm):	Aggregrate Inventory No.:	Gradation Results:	Meets Spec.: (Y/N)
20 mm	n/a	n/a	n/a

Limits for Deleterious Substances and Physical Properties of Aggregates

	Accepta	nce Limits			Meets				
CSA Laboratory Test and Number	Maximum perce	ntage by mass	Reference	Sample	Spec.				
	of total	sample	Material Results	Results					
Ctandard Dagrijaamanta	Concrete exposed to]		Y/N					
Standard Requirements	freezing & thawing	conditions							
Clay lumps - A23.2 - 3A †****	0.3 % maximum	0.5 % maximum	-	-	-				
Low - density granular materials - A23.2 - 4A‡****	0.5 % maximum	1 % maximum	-	-	-				
Material finer than 80 μm - A23.2 - 5A**	1% maximum ¹	1% maximum ¹	-	-	-				
Absorption - A23.2 - 12A	-		0.37%	0.37%	-				
Flat & elongated particles, Procedure A, 4:1 - A23.2-13A	20.0 % maximum	20.0 % maximum	-	-	-				
Micro-Deval test - A23.2 - 29A	17 % maximum	21 % maximum	14.0%	4.5%	Y				
Unconfined freeze-thaw test - A23.2 - 24A‡‡	6 % maximum	10 % maximum	9.5%	1.6%	Y				
Abrasion loss - A23.2 - 16A and A23.2 - 17A§§	50 % maximum	50 % maximum	-	-	-				
Petrographic examination of aggregate - A23.2 -15A	125 maximum	140 maximum	-	-	-				
Alkali-Carbonate reactivity - A23.2 - 26A	chem. comp. must p	lot in non-exp. field	-	-	-				
Accelerated mortar bar - A23.2 - 25A	maximum 0.15	0% at 14 days	-	-	-				
Concrete prism - A23.2 - 14A	maximum 0.040	0% at one year	-	-	-				
Alternative Requirements***									
MgSO ₄ soundness loss - A23.2 - 9A	12 % maximum	18 % maximum							

		Jag ye + Ko	
Issued By:	Kristen Hand	• • • • • • • • • • • • • • • • • • • •	14 February 2017
_	Drint Manna	Tasking Laboratory December 1 Company	D-t-

LIMITS FOR DELETERIOUS SUBSTANCES AND PHYSICAL PROPERTIES OF AGGREGATE

CSA A23.1 - 14, Table 11 & 12 and A23.2-15A & 27A, Rev. August 2014 Clauses 4.2.3.2.2, 4.2.3.4.3, 4.2.3.5.1, 4.2.3.5.3.3, 4.2.3.5.3.4, 4.2.3.7 & 4.2.3.10.1

Enclosure: 2

*Limits for deleterious substances not listed in this Table, such as coal, ochre (ironstone), shalestone, siltstone, or argillaceous limestone, shall be specified by the owner to encompass deleterious materials known to be present in a particular region. In the absence of such information, aggregate shall be accepted or rejected in accordance with clause 4.2.3.9

†Clay lumps are defined as fine-grained, consolidated, sedimentary materials of a hydrous aluminosilicate nature.

‡A liquid with a relative density of 2.0 is generally used to separate particles classified as coal or lignite. Liquids with relative densities higher or lower than 2.0 might be required to identify other deleterious low-density materials.

The amount of material of clay size shall be determined by performing a hydrometer analysis as per ASTM D 422 on a sample washed through an 80 µm sieve.

**In the case of crushed aggregate, if material finer than the 80 µm sieve consists of the dust of fracture, essentially free from clay or shale, the maximum shall be 2.0%

‡‡CSA A23.2-24A, a test for coarse aggregate, has good precision and shows fair correlation with the MgSO4 soundness test. For further information, see Rogers, Senior, & Boothe (1989)

§§The abrasion loss shall not be greater than 35% when the aggregate is used in concrete paving or for other concrete surfaces subjected to significant wear. This does not refer to air- cooled iron blast-furnace-slag coarse aggregate. The abrasion loss requirements for coarse aggregate shall be waived provided that the material meets the alternative requirements for Micro-deval detailed in this Table.

***The freeze-thaw requirements for coarse aggregate shall be waived provided that the material meets the laternative requirements for MgSO₄ soundness loss detailed in this Table.

****If the Coarse Aggregate when tested according to A23.2-15A does not show the presence of either clay lumps or low-density granular materials, the requirements for testing in accordance with 3A and 4A may be waived.

¹This limit applies to the amount of material finer than 80µm as determined by washing only.

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATE

CSA A23.2-2A

Enclosure:

Hatch Ltd.

Date: 14 February 2017 Project No: TB152049

Sample Source:

Client:

NF17-03

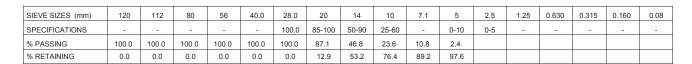
S020-17

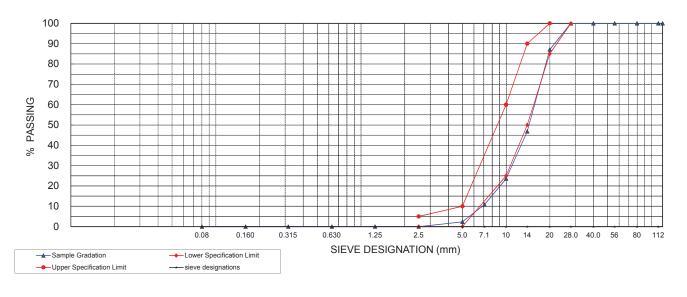
Sampled By: Client **Date Received:** 26 January 2017 **Date Tested:** 6 February 2017

Date Sampled: January 2017 Sample Type: Crushed Core

Lab Technician: ΚH

Lab No:


Specification:


Grading Requirements for Coarse Aggregate

CSA A23.1-14, August 2014, Table 11, Group I, 20-5mm Concrete Stone

#DIV/0!

Fineness Modulus:

Amec Foster Wheeler Environment & Infrastructure 505 Woodward Avenue, Unit 1 Hamilton, Ontario L8H 6N6 Pt: 905 312 0700 FX: 905 312 0771

TM-MAT-1005A-05

LIMITS FOR DELETERIOUS SUBSTANCES AND PHYSICAL PROPERTIES OF AGGREGATE

CSA A23.1 - 14, Table 11 & 12 and A23.2 - 15A & 27A, Rev. August 2014 *Clauses 4.2.3.2.2, 4.2.3.4.3, 4.2.3.5.1, 4.2.3.5.3.3, 4.2.3.5.3.4, 4.2.3.7 & 4.2.3.10.1*

Job No.:	Client:		Sampled By:		Enclosure:
TB152049	Hatch Ltd.		Client		2
Name of Testing Laboratory:			Telephone No.:		
Amec Foster Wheeler Environment & Infrastructure			(905) 312 - 0700 (905) 312 - 0		
Sample Lab No.:	Sample Source:			•	
S021-17		NF17-04			
Sample Type:	·	Date	Sampled:	Stockpile Quanti	ty (t)
Crushed Rock			January 2017		

COARSE AGGREGATE

Nominal Max. Size (mm):	Aggregrate Inventory No.:	Gradation Results:	Meets Spec.: (Y/N)
20 mm	n/a	n/a	n/a

Limits for Deleterious Substances and Physical Properties of Aggregates

	Accepta	nce Limits			Meets				
CSA Laboratory Test and Number	Maximum perce	ntage by mass	Reference	Sample	Spec.				
	of total	sample	Material Results	Results					
Standard Deguirements	Concrete exposed to			Y/N					
Standard Requirements	freezing & thawing	conditions							
Clay lumps - A23.2 - 3A †****	0.3 % maximum	0.5 % maximum	-	-	-				
Low - density granular materials - A23.2 - 4A‡****	0.5 % maximum	1 % maximum	-	-	-				
Material finer than 80 μm - A23.2 - 5A**	1% maximum ¹	1% maximum ¹	-	-	-				
Absorption - A23.2 - 12A	-		0.37%	0.45%	-				
Flat & elongated particles, Procedure A, 4:1 - A23.2-13A	20.0 % maximum	20.0 % maximum	-	-	-				
Micro-Deval test - A23.2 - 29A	17 % maximum	21 % maximum	14.0%	7.9%	Υ				
Unconfined freeze-thaw test - A23.2 - 24A‡‡	6 % maximum	10 % maximum	9.5%	0.8%	Υ				
Abrasion loss - A23.2 - 16A and A23.2 - 17A§§	50 % maximum	50 % maximum	-	-	-				
Petrographic examination of aggregate - A23.2 -15A	125 maximum	140 maximum	-	-	-				
Alkali-Carbonate reactivity - A23.2 - 26A	chem. comp. must p	olot in non-exp. field	-	-	-				
Accelerated mortar bar - A23.2 - 25A	maximum 0.15	0% at 14 days	-	-	-				
Concrete prism - A23.2 - 14A	maximum 0.04	0% at one year	-	-	-				
Alternative Requirements***									
MgSO₄ soundness loss - A23.2 - 9A	12 % maximum	18 % maximum							

		Jog years	
Issued By:	Kristen Hand		14 February 2017
	Drint Name	Testing Laboratory Depresentative Cigneture	Data

LIMITS FOR DELETERIOUS SUBSTANCES AND PHYSICAL PROPERTIES OF AGGREGATE

CSA A23.1 - 14, Table 11 & 12 and A23.2-15A & 27A, Rev. August 2014 Clauses 4.2.3.2.2, 4.2.3.4.3, 4.2.3.5.1, 4.2.3.5.3.3, 4.2.3.5.3.4, 4.2.3.7 & 4.2.3.10.1

Enclosure: 2

*Limits for deleterious substances not listed in this Table, such as coal, ochre (ironstone), shalestone, siltstone, or argillaceous limestone, shall be specified by the owner to encompass deleterious materials known to be present in a particular region. In the absence of such information, aggregate shall be accepted or rejected in accordance with clause 4.2.3.9

†Clay lumps are defined as fine-grained, consolidated, sedimentary materials of a hydrous aluminosilicate nature.

‡A liquid with a relative density of 2.0 is generally used to separate particles classified as coal or lignite. Liquids with relative densities higher or lower than 2.0 might be required to identify other deleterious low-density materials.

The amount of material of clay size shall be determined by performing a hydrometer analysis as per ASTM D 422 on a sample washed through an 80 µm sieve.

**In the case of crushed aggregate, if material finer than the 80 µm sieve consists of the dust of fracture, essentially free from clay or shale, the maximum shall be 2.0%

‡‡CSA A23.2-24A, a test for coarse aggregate, has good precision and shows fair correlation with the MgSO4 soundness test. For further information, see Rogers, Senior, & Boothe (1989)

§§The abrasion loss shall not be greater than 35% when the aggregate is used in concrete paving or for other concrete surfaces subjected to significant wear. This does not refer to air- cooled iron blast-furnace-slag coarse aggregate. The abrasion loss requirements for coarse aggregate shall be waived provided that the material meets the alternative requirements for Micro-deval detailed in this Table.

***The freeze-thaw requirements for coarse aggregate shall be waived provided that the material meets the laternative requirements for MgSO₄ soundness loss detailed in this Table.

****If the Coarse Aggregate when tested according to A23.2-15A does not show the presence of either clay lumps or low-density granular materials, the requirements for testing in accordance with 3A and 4A may be waived.

¹This limit applies to the amount of material finer than 80µm as determined by washing only.

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATE

CSA A23.2-2A

Enclosure: Date:

Hatch Ltd.

14 February 2017 Project No: TB152049

Sample Source:

Specification:

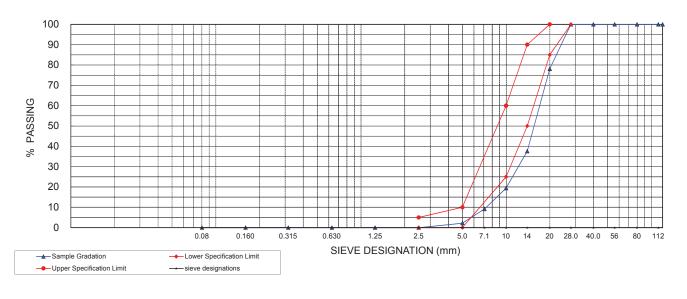
Client:

NF17-04

S021-17 Lab No:

Sampled By: Client **Date Received:** 26 January 2017 Date Tested:

Date Sampled: January 2017 Sample Type: Crushed Rock


Lab Technician:

6 February 2017

CSA A23.1-14, August 2014, Table 11, Group I, 20-5mm Concrete Stone

Grading Requirements for Coarse Aggregate

SIEVE SIZES (mm)	120	112	80	56	40.0	28.0	20	14	10	7.1	5	2.5	1.25	0.630	0.315	0.160	0.08
SPECIFICATIONS	-	-	-	-	-	100.0	85-100	50-90	25-60	-	0-10	0-5	-	-	-	-	-
% PASSING	100.0	100.0	100.0	100.0	100.0	100.0	78.1	37.6	19.4	9.2	2.2						
% RETAINING	0.0	0.0	0.0	0.0	0.0	0.0	21.9	62.4	80.6	90.8	97.8						

Amec Foster Wheeler Environment & Infrastructure 505 Woodward Avenue, Unit 1 Hamilton, Ontario LBH 6N6 PH: 905 312 0700 FX: 905 312 0771

TM-MAT-1005A-05

SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Hatch LTD

Attn: Ralph Serluca

4342 Queen St Suite500 Niagara Falls, ON L2E 6W1,

Phone: 905-374-5200 Fax:905-374-0701 10-July-2017

Date Rec.: 27 June 2017 LR Report: CA13857-JUN17

Copy: #1

CERTIFICATE OF ANALYSIS Partial Report

Analysis	5: NF17-07	6: NF17-08	7: NF17-09
	NI 17-07	141 17-00	NI 17-03
Sample Date & Time	Date:N/A	Date:N/A	Date:N/A
Paste pH	9.89	8.89	8.24
Fizz Rate []	1	1	3
Sample weight [g]	2.05	1.99	2.00
HCI Added [mL]	20.00	20.00	540.00
HCI [Normality]	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10
NaOH to [pH=8.3 mL]	17.48	15.50	109
Final pH	1.14	1.73	1.68
NP [t CaCO3/1000 t]	6.1	11	1077
AP [t CaCO3/1000 t]	0.67	0.67	0.67
Net NP [t CaCO3/1000 t]	5.43	10.6	1077
NP/AP [ratio]	9.10	16.9	1608
Sulphur (total) [%]	0.035	0.042	0.029
Acid Leachable SO4-S [%]	0.04	0.04	0.03
Sulphide [%]	< 0.02	< 0.02	< 0.02
Carbon (total) [%]	0.044	0.061	11.1
Carbonate [%]	0.110	< 0.025	54.1

Brian Graham B.Sc.

Project Specialist

Environmental Services, Analytical

SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA13857-JUN17

*AP (Acid Potential) = % Sulphide Sulphur x 31.25
*Net NP (Net Neutralization Potential) = NP-AP
NP/AP Ratio = NP/AP
*Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material
Samples with a % Sulphide value of <0.02 will be calculated using a 0.02 value.

Appendix I Geological Investigation Safety Plan

Safet	y Management Plan - Geotechnic	Project Number: H352034			
	re-specific Occupational Health and Safety Management F ocumentation is required to demonstrate the veracity of ar hy.		applicable to your project please provide an		
1. Project	Project name	12Mtpa 2016 Field Investigation Program			
Definition	Project description	Geotechnical drilling investigation for Baffinland Iron Mines (BIM) including (i) along proposed rail alignment from Mary River to Milne Port, (ii) Milne Port Infrastructure area, (iii) Bridge structures, (iv) quarries and (v) offshore (marine area associated with dock location.			
	Project location(s) and project work site location(s)	Locations as noted above.			
	What are the safety targets for this project? (Consider LTIs, MTIs, audits etc.)	No incidents.			
	How will safety statistics be measured and reported?	Will be recorded along with weekly progress n	neeting/reports.		
2. Project Roles and Responsibilities	Who is the Project Manager?	James Cleland.			
	Who is the Principal Contractor for the project?	Boart Longyear (BLY).			
	Who is the person on the project team responsible for ensuring compliance with the obligations of the Principal Contractor under the applicable legislation?	BIM, with Hatch as site representative.			

Safety	Management Plan - Geotechnic	al Drilling	Program Project Number: H35	2034
	Who is responsible for:	Responsible:	Who is responsible for:	Responsible:
	identifying, controlling (through elimination or mitigation) and documenting the risks during the design phase of the project	Hatch	managing compliance of all contractors and persons on site with Safe Work Method Statements and the Site Safety Rules.	BLY Lead supported by Hato Staff
	reporting safety aspects of the design to the construction team and plant owner	BLY supported by Hatch.	making sure that all personnel attend the requisafety inductions, have been appropriately trained and keeping records of attendance at induction and other safety training.	ned supported by Hatc
	identifying hazards and assessing the risks associated with all other aspects of the work, and determining and documenting the risk control measures necessary	BLY for all equipment operation	providing contractors and any person involved the work with the Site-specific Safety Manage Plan and any updates.	1
	regularly reviewing and updating hazard identification, risk assessment and measures to control risks	BLY supported by Hatch	managing OHS communication and consultati provisions in accordance with the regulatory a other requirements.	
	 managing compliance on the project with OHS, workplace injury management and workers compensation legislation, regulations, standards and codes 	BIM – supported by BLY and Hatch	preparing, maintaining and making available the register of hazardous substances.	BLY – oversight by Hatch
	assessing and monitoring the safety management capability of contractors and other service providers	ВІМ	ensuring first aid is always available and maintaining first aid stocks.	BLY supported by Hatch FA trained individuals

Safety	/ N	lanagement Plan - Geotechnic	al Drilling I	Program	Project Number: H352034			
	•	Any other project safety responsibility issues?	Weekly progress meeting/reports					
3. Risk Assessment and Management	•	Has a risk assessment with representatives from the plant, subcontractors and other stakeholders in the project been held? If not, how will project hazards be identified?		and will be reviewed with a iewed at the pre-shift meeti	ll site staff. Individual daily ass ngs.	essments will be		
	Where are the results of the risk assessment documented? Is the level of documentation commensurate with the risks involved? BLY has provided RA and safe work procedure which has been reviewed							
	•	What is the plan for managing and regularly reviewing the risks and documenting any additionally identified risks?	Pre-shift meeting will be used for risk review of the work activities and drilling location be updated if major changes occur.					
	•	Is any other risk assessment required on this project? (e.g. HAZOP, CHAZOP, HAZAN?)	NA					
	٠	How will changes in the construction process that might affect the health and safety of any person on the construction site be identified and communicated?	f the work activities and drilling	g locations. JHA's will				
How will an emergency on site be handled? How will people be trained in these procedures? Will use the existing BIM emergency procedures. Need to obtain a copy, assess a make any necessary modifications and review with site Team.								

Safety Manager	ment Plan - Geo	otechni	cal Drilling Program	Project Number: H352034								
e.g. do any	risk management issues? y national or state standard hazards identified?	ds apply to	Travel issues for specific drill locations off of the	e Tote Road.								
	Consider the other following commonly encountered hazards, indication whether they are an issue on this project and what measure taken or put in place to control the hazard:											
	Hazard Y cct be exposed to hazard?	es / No	Details	Control Measure(s) to be implemented								
Existing service electrical, gas	,	lo										
Flammable or	toxic gases Y	'es Die	esel fuel transport to drills.	Diesel fuel will be transported in closed and safe containers.								
Hazardous ma dangerous go presence of a	ods (including	es BL	Υ	As stated in the BLY RA and procedures.								
Molten metals	N	lo										
Electrical	Y	es Po	rtable generators.	As stated in the BLY RA and procedures.								
Fire safety	Y		rtable heating equipment and fuel powered uipment.	As stated in the BLY RA and procedures.								
Internal road s	,		te Road Procedure and BIM Training for individual ving on the Tote Road.	BIM Procedures and communication requirements, Training by BIM trainer, All other controls to be established in pre-shift meetings and JHA's.								

Sa	afety Management Plan - Ge	eotech	nnical Drilling Program	Project Number: H352034
	Mobile equipment	Yes	BLY equipment and loaned BIM equipment.	BIM Procedures and communication requirements.
	Rail interactions	No		
	Overhead cranes	No		
	Isolations and stored energy.	Yes	BLY equipment	As stated in the BLY RA and procedures
	Access to or working around .continuous plant	No		
	Manual handling.	Yes	Drill rods and cores and core boxes, handling tools and equipment.	As stated in the BLY RA and procedures
	Work at heights.	Yes	Possibly required to access drill mast.	As stated in the BLY RA and procedures
	Falling in (Excavations etc.) or falling on (overhead work/ loads).	No		
	Management of safety by contractors.	Yes	BLY with Hatch oversight,	
	Other interfaces with operations.	Yes	Tote Road use by Operations and Services.	BIM communication requirements.
	Other conditions on the construction site eg: lighting, security, disposal of waste.	Yes	Procedures to meet BIM requirements as stated by Environment. Weather conditions are evaluated on a shift basis – weather conditions reviewed and responsible Hatch site leads to monitor during the shift.	Hatch site leads responsible to shut down work due to weather conditions.

Safety	Management Plan - Ge	ote	chi	nic	al Drill	ing Program	Project No	umber: H352034	1		
	Commissioning	NA									
measures and the pe	ified above and in the project risk studions of the standard responsible for ensuring that the read handover to the owners of the plant	neasure	es ar	e imp	lemented. T	he list should consider all phases of	the project	ows. The list inc including design onsible for cont	n, ins	tallat	ion, erection
Risk No.	Description		L	С	Raw RR	Controls		Resp.	L	С	Controlled RR
1	Hazardous materials and dangerous (goods.	1	2	3	MSDS and procedures, BLY with oversight.	Hatch	BLY	1	2	3
2	Electrical – portable generators.		2	2	4	BLY Procedures and Grounding portable generators.	of	BLY	1	2	3
3	Fire Safety – portable heating equipm	ent,	2	2	4	BLY Procedures and MSDS.		BLY	1	2	3
4	Internal road safety/ traffic control/ acc and egress.	cess	2	2	4	Tote Road Procedure and Traini individuals driving on the Tote F travel away from the Tote Road assessed and appropriate corrections applied.	oad. All	BLY/Hatch	1	2	3
5	Mobile equipment.		1	2	3	BLY Procedures. BIM procedure borrowed mobile equipment.	s for	BLY	1	2	3
6	Isolations and stored energy,		2	2	4	BLY Procedures.		BLY	1	2	3

Saf	ety Management Plan - Geote	ch	nic	al Drill	ing Program	Project Numbe	er: H352034	4		
7	Manual handling	1	2	3	BLY Procedures.		BLY 1			3
8	Work at heights	2	2	4	BLY Procedures. BLY with Hate oversight.	ch	BLY	1	2	3
9	Other interfaces with operations.	1	2	3	BLY Procedures. BLY with Hate oversight.	ch	BLY	1	2	3
10	Management of safety by contractors.	1	2	3	BLY Procedures. BLY with Hate oversight.	BLY Procedures. BLY with Hatch BLY/Hatch 1 2 oversight.				
11	Other conditions on the construction site e.g.: lighting, security, disposal of waste,	1	2	3	BLY Procedures. BLY with Hate oversight.	ch BL	_Y/Hatch	1	2	3
4. Design	 How will you ensure that the safety hazar those associated with the construction ph to the designers and considered through 	iase) i	will be	e communica	NA nated	- I				
	 What process will be used to review and that the plant/equipment is safe, eliminate any OHS risks (including those during co- with appropriate legislation and standards 	es, mii nstruc	nimiz	es or control	s					
	Does the project include items of plant for item of plant requires registration with government.				tual NA					
	 Any other safety related design issues? e design changes; obtaining appropriate Of suppliers of plant, equipment and materia identified during design etc. 	HS inf	orma	tion from	and supported by Hatch.	vill be assessed	for safety a	acce	essib	ility by BLY

Safet	y Management Plan - Geotechnical Drilling	Program Project Number: H352034					
5. Occupational Health & Safety Training	What are the minimum induction requirements for access to project site to ensure that work can be undertaken safely? (Tick box if required)	□ Legislative requirement □ Client Specific □ Dept./Hatch Induction (specify)BIM Site Orientation □ Project Specific Induction □ Other (specify): _BLY procedures and BIM procedures/training					
	How will records of attendance at inductions be kept?	It will be reported in the weekly meetings/reports					
	How will records of the type of induction training (including a description of the content of the training) be kept?	NA					
	How will you ensure that all personnel have been appropriately inducted before starting work?	Review with contractor leadership.					
	How will you ensure that visitors to the site are kept safe and made aware of any safety hazards?	Visitors will be escorted					
	How will you ensure that any additional training (required for safe performance of the work) necessitated by a change in the work site is identified and implemented?	Pre-shift meetings will be used to detail any additional hazards and controls.					
	Any other training or induction issues?	NA					
6. Incident Management	Who will be available to respond to any injury or illness?	BLY site leadership supported by Hatch. BIM ERT for serious injuries of incidents.					

Safet	y Management Plan - Geotechnical Drilling	Program	Project Number: H352034
	What first aid facilities are available for the project site(s)?	BLY remote FA Kit	,
	How will incidents be reported?	BLY leadership to BIM sa	fety
	Who will be responsible for investigating incidents and ensuring any corrective actions are followed up and completed?	BLY leadership supporte	d by Hatch
	How will any serious incidents be reported to Hatch management (or Legislative instances if required)?	By Hatch Site staff	
	How will records of incidents be kept?	Records will be documen progress reports.	nted on a daily basis and included in weekly
7. Communication	Where will the signs, containing the name and contact telephone numbers of the principal contractor, be located?	NA	
	Where will this safety management plan be kept to ensure that it is available to all people involved in working on the project (including those working on the work site(s))?	Onsite with BLY leadersh	lip and Hatch.
	How will the project safety targets be communicated to all personnel involved with the project?	Site orientation and revie	wed in pre-shift meetings.
	How will the project safety rules be communicated so that all personnel involved with the project, including personnel on, and visitors to, the work site are made aware of them?	Site orientation and revie	wed in pre-shift meetings.

Safety	Management Plan - Geotechnical Drilling	Program	Project Number: H352034			
	How will you ensure that sub-contractors or other service providers are provided with the relevant parts of the safety management plan before commencement of work?	NA - no subcontractors.				
	 How will you ensure that any change to the safety management plan is communicated to project stakeholders including subcontractors and other service providers? 	Pre-shift meetings.	u .			
	How will you ensure that any changes to the work site likely to affect health and safety are quickly communicated to all affected personnel? (eg. daily pre-start/toolbox meetings)	Pre-shift meetings.				
	Other means to communicate safety matters among the project participants? e.g. safety committees, safety meetings, keeping records of all safety communication etc.	All BIM safety information will be reviewed at Pre-shift meetings.				
3. Access Control	How will you restrict access to the work site(s) to people authorized to do so? (including members of the public)	NA				
Clearance	How will you ensure that other people in the area of the work site (e.g. adjacent operations facilities), or effected by activities on the site, are kept up to date with activities on the site?	Drilling locations will be c memo.	ommunicated in Baffinland daily toolbox			
	How will interactions with adjacent or effected sites and stakeholders be managed?	NA				
	What Personal Protective Equipment will be required to be worn on the work site(s)?	BLY and Baffinland requirements and weather dependant.				

Safet	y Management Plan - Geotechnical Drilling	Program Project Number: H352034					
	Any other access or work clearance issues?	NA					
9. Audits	 What systems will be used to ensure that project team members, subcontractors, other service providers will comply with this safety management plan and other site safety rules? 	BLY and Hatch site leadership.					
	What types of audits will be conducted?	Weekly visible felt leadership inspections.					
	Who will be involved in audits?	NA					
	How often will they be done?	NA					
	Any other auditing issues?	NA					
10. Safe Work Method Statements (for	How will you ensure that subcontractors provide job safety and environmental analysis (JHA), for all work activities assessed as having safety risks, before commencement of work?	Hatch will oversee work activities based on JHA's.					
Job Hazard Analysis)	How will you ensure that the subcontractors comply with the JSEA they have provided?	NA					
	What action will be taken if the subcontractor does not comply with the JHA?	NA NA					
	How will you ensure that the JHA is promptly updated to reflect any changes in the way the work is planned to be carried out?	NA					

Safety	Management Plan - Ge	eotechnical Dri	lling	Program	Project Number: H352034			
	Any other issues regarding JHA?			NA				
11. Hazardous Materials Register	 How will you keep and maintain a ru used during the course of the work? hazardous substances contained in considered a hazard to the project. 	? This register should include		BLY Procedure and requirements.				
	• How will you ensure the register is a working at the work site?	made accessible to all perso	ons	NA				
	Any other hazardous materials issu	es? "		NA .				
12. Review and Update of SMP	How will this plan be monitored, maint the course of the project? Who will be		uring	BLY and Hatch site leader	ship.			
13. Other Issues	Off road travel, Emergency rescue ava Deteriorating weather conditions – dec encounter.	•						
Safety Managemen	t Plan Prepared by:	Date Prepared: 2016-10-12	Reviewed by Principal Contractor: Date: Oct 71, 201/					
Warren Hoyle	,		Principal Contractor Representative: Jarrett Campbell Position: Project Manager Signature free Higher					

Job Hazard Analysis Form

PROJECT/TASK: ZG003 Geotechnical	Marine Drilling Milne Inlet	Dej	Department: Projects Boart Longyear			JOB No.:ZG003					
SUPERVISOR: Emile Beauchamp		LO	LOCATION		I: Future Ore Dock Milne Inlet		TE:	Ma	arch 12 ,2017		
JOB STEP Break the job into steps. Listing work which may be hazardous.	HAZARDS List the hazard or type of harm identified with each step.	Consequence	Likelihood	Risk Ranking	CONTROL MEASURE List the necessary control measures to be followed to eliminate/reduce the identified hazards.	Consequence	Likelihood	6	Person who will ensure		
Pre-job JHA Review.	Missing critical items on the JHA that can lead to an incident	3	2	5	Conduct a pre-job JHA review with Safety and critical team members All workers will have the opportunity to identify changes needed Any changes will be added to this document	1		2	Coakley/Warren Hoyle		
Workers to complete FLRA card in the field at location prior to starting work.	Additional hazards in the area that may not have been identified on the JHA and daily changes that may pose additional danger to the health and safety of workers, the environment and property	3	3	6	Look at immediate work area for hazards that may exist, not identified on the JHA. Have other workers in the group sign off on the FLHA	1	1	2	All workers		
Load Weights – The number and types of vehicles and equipment and their maximum gross weights	Not knowing load calculations will run the risk of breaking through the ice.	5	3	8	All equipment and material shall have posted GVW or gross equipment weight or maximum pull back loads available for use with load-ice thickness tables and shall follow the Ice Safety Plan. Refer to Attachment B for minimum ice thickness required for the drilling operations and Attachment C for further guidelines regarding Ice Safety	4	2	6	Warren Hoyle		

4. General Site	Ice Conditions – Slip falls Ice Conditions – Adequate load bearing capacity	3	2	5	Construct a working platform for outside of drill shack to store drill steel and allow the use of salt Use of traction aids on work boots will be	2	1	3	All Crew
	Inadequate lighting				required for work on ice surfaces.				
	Interaction with a Polar Bear				Apply salt to drill shack decks				
	Cold				Engineered Assessment of minimum ice thickness as referenced in Attachment B				
	Whiteout conditions				for ice thickness required for the drilling operations and Attachment C for further				
	Emergency Procedures				guidelines regarding Ice Safety				
					Place delineators in the snow marking access from the drilling location to the shoreline				
					Existing Baffinland procedure "Safely Working On Fresh And Salt Water Ice" shall be followed				
					Polar Bear Monitor will be available at all times				
					Employees will have appropriate PPE including clothing available for safely working in -40 C and windy conditions				
					Worksite location is approximately 300 meters from the shoreline. No work will be conducted in whiteout conditions and a safety shelter will be available immediately adjacent to the work area				
					Site emergency procedures will be provided and reviewed at site				

5.	Working around water and sea ice	Water may appear to be completely frozen over, but not enough to support persons Falling in water Equipment breaking through ice Workers unaware of potential dangerous conditions	5 4 3	1	6	Ice thickness to be assessed before walking on ice as per BIM Policy. Initial ice profiling will be conducted with an ice auger Floatation suit will be used for the initial ice profiling using an ice auger. Survival Bag (sleeping bag) will be available to reduce the risk of hyperthermia Follow the BIM Working On Ice Procedure (BAF-PH1-320-PRO-005, Rev 0, March 1, 2016) All workers will be required to complete the Alberta Working Safely on Ice Procedure online training	2	1	3	Marion Coakley/Warren Hoyle
6.	Drill testing for ice thickness	Water may appear to be completely frozen over, but not enough to support persons. Large ice cracks or crevices Falling in water Strains/Sprains Slipping on ice Drilling ice with power auger Changes in ice conditions	3	4	7	Traction aids will be used for any ice work Ice thickness to be assessed before walking on ice Floatation suits will be worn by workers while ice auguring, the worker is to be tethered to a primary rescue worker at a distance of 30m Snow must be removed at the hole location so ice can be examined for quality as described in the Ice field guide. Hand shovelling may be necessary If crevices/ cracks greater than 50% of the ice thickness are present, repairs must be made if there is risk of falling through ice into deep water	2	2	4	Warren Hoyle / Marlon Coakley

					Ice thickness for a person to walk on must be a minimum 13 cm. STOP all work if this condition is not met and return to shore. Be aware when using power ice auger that auger bit could bind or jam, have secure footing and grip on auger The ice auger hole spacing will be 20 m along the centreline access and the grid established in the designated work area. Secondary test holes will be augured at 10 m spacing within 250 m of the shoreline, if required based on the variable ice thickness				
					Complete daily inspections of ice surfaces				
					and record on ice log inspection sheet				
Access from Land to Sea Ice	Long distances to walk	4	1	5	Proper warm winter wear to be used	1	1	2	All workers
Snow removal equipment, drill rig	Exposure to cold				Sat phones and digital radio use.				
for borehole access	White Out conditions Risk of falling under sea ice along the shoreline				Rig mats to be used to bridge over the fractured ice transition area if the transition between sea ice and shoreline needs leveling				
	along the shoreline				Buddy system is important to verify presence of frost bite or other cold related concerns				
					Vehicle operators and passengers are not to wear seat belts when working on ice				

8.	Refueling of equipment	Fuel spills	3	2	5	Use of duck ponds with any refueling	3	1	4	All workers
		Regulatory or social impacts				Have sufficient spill cleanup supplies on hand to respond to potential spills				
		Spills into water bodies				Maximize space between refueling vehicle				
9.	Extreme weather exposure when working outdoors or driving to and from the Borehole Location	Stranded work crew in white out conditions Cold emergencies or cold injuries Mechanical equipment failure	4	2	6	BIM has a procedure that is designed for white out conditions – it would be announced on the radio An emergency shelter to be used when in the Marine Drilling areas Emergency Shelter: Heated wooden shack (7' 8" by 7' 8") set on platform with skis Crews to radio from Hatch leads Buddy system to watch out for fellow workers who may not realize they are developing frost bite Workers to dress in arctic gear and layered clothing Proper PPE required Equipment check list Review Tidal charts on a daily basis Workers to take warm up breaks to stay warm and alert	2	1	3	All workers
						At toolbox review weather forecast with crew and prepare accordingly				

Chemical handling- No unusual chemicals other than equipment needs are anticipated to be used.	Spills, leaks Chemical splash Chemical exposure	2	2	4	All products to be stored in secondary containment MSDS to supplied to BIM for review MSDS books to be accessible at the work front MSDS training and WHMIS training completed before arriving to site PPE will be followed as per MSDS recommendations as will first aid and environmental responses Spills response training and supplies to be	1	1	2	Boart Longyear
11. Waste management and Wildlife Encounters	Risk of wildlife encounters due to improper waste controls Regulatory non compliance	3	2	5	kept with the equipment Crews will collect waste daily and transport it back to camp Crews will follow BIM waste management guidelines No placing or storing of food in the back of pickup trucks Secure all small tools and PPE as foxes may carry away small articles from the site	2	2	4	All workers
12. Ecological and Cultural sensitive areas	Risk of causing damage to archeological areas Destroying vegetation Sensitive wildlife and marine life areas Regulatory and reputation damage	3	3	6	Crews have been instructed that there will be NO entry to the area east of the sealift ramp Crews are not to build or alter any inukshuk's or other rock formations on the tundra Permits will be required for the work	2	2	4	All personnel

Assemble Drill on skid platform skid and construct four walls and roofs	General hazards associated with drill assembly Inadequate communication between Boart Longyear and Site Services / mobile equipment operators	2	2	4	FLRA to be complete by Boart Longyear supervisor prior to executing work Boart Longyear Drilling operations SOPs to be followed including Boart Longyear Procedure 4001	1	1	2	Warren Hoyle / Marlon Coakley
14. Auguring holes in ice for sonic drilling and CPT work	Large ice cracks or crevices Falling in water Strains/Sprains Slipping on ice Drilling ice with power auger Changes in ice conditions	3	3	6	Wear traction aids for any ice work PFDs to be worn by workers while ice auguring during the sonic drilling and CPT operations Snow must be removed at the hole location so ice can be examined for quality. Hand shovelling may be necessary Be aware when using power ice auger that auger bit could bind or jam, have secure footing and grip on auger Complete daily inspections of ice surfaces and record on ice log inspection sheet All holes must be marked using an orange spray paint Any hole in ice over 30 cm in diameter must have a physical barrier around the hole	3	2	5	
15. Working around rotating equipment	Entanglement injuries	3	2	5	All equipment guards to be in place and in good working condition No loose clothing or drawstrings that can get pulled into rotating equipment Long hair must be contained to prevent entanglement into rotating equipment	2	1	3	All workers

					If any maintenance is required then energy isolation procedures to be followed				
16. Isolation of energy sources	Potential energy release that causes injury	3	2	5	All crews will follow the BIM Zero Energy State (ZES) procedure Crews to be given the BIM ZES training on site and fully understand the BIM requirements	1	1	2	Boart Longyear Crews BIM H&S
17. Working on equipment	Slip and trip hazards around railings, stairs and uneven ground.	2	2	4	Rails are installed around deck and to be properly maintained in good condition Stairs to be used on equipment A head cage will be used to reduce chance of contact with the rotating head Estops to be in good working order and easily accessible FLRA to be completed daily to review hazards All crews will follow the BIM Zero Energy State (ZES) procedure	1	1	2	Boart Longyear crew
18. Ice monitoring during drilling activities	Excessive deflection in ice	4	3	7	Hatch geotechs crew will monitor ice conditions during drilling including cracks around the work area, monitor freeboard in drilled holes for signs of ice deflection	2	2	4	All crew

19. Spotter activities	Equipment could come in contact with Spotter	4	2	6	Spotter to maintain eye contact with driver Spotter to review FLRA Agreed hand signals to be used with drivers in conjunction with BIM spotter procedure Agreed hand signals will be documented on the FLRA	1	1	2	Boart Longyear crew
					Drivers to immediately stop if the Spotter is out of eye contact				
20. Manual lifting	Pinch point, back injuries, muscle and joint sprains and strains	2	3	5	Work in pairs, FLRA reviews Work with a buddy on heavy or awkward lifts Use proper lifting techniques 100 pound pipes to be handled by two workers	1	1	2	All crew
21. Working with pressure systems	Pressurized water and hydraulic fluids are used on drill and support equipment	3		5	Pre operational inspection Follow all safe work procedures. ZES when maintenance is required.	1	1	2	Boart Longyear crew
22. Falling objects	Potential exists for falling of drill rod and casing falling from overhead	3	2	5	Rigging and slinging training required when working with suspended loads and overhead hazards Perform FLRA	1	1	2	Boart Longyear Hatch Geotec EHS techs
23. High noise and vibration areas on the rigs	Hearing damage	2	2	4	Hearing protection is required by use of ear plugs or muffs.	2	1	3	Boart Longyear Hatch Geotec EHS techs

24. Housekeeping	Potential exists for poor housekeeping causing slip/trips and other hazards	3	2	5	Daily site assessments and toolbox meetings by drillers and site supervisors BIM EHS techs to perform daily inspections	2	2	4	All Crew
25. Fatigue	Potential exists for crew fatigue	2	2	4	Fit for duty confirmation required for all employees, daily FLRA reviews Micro breaks to stretch Proper rest during off shift period	1	1	2	All Crew
26. Working at night or 24 hour darkness	Higher risk of injury due to poor visibility	3	3	6	Hi-vis work gear to be used Use of flashlight and headlamp Workers to stay within 10 meters (30 feet) of the worksites at any time Use of wobble lights and light tower Emergency shelter	1	1	2	All Crew
27. Hot work - welding	Fire risk Burn injuries Welders Flash	2	2	4	Hot work training Use of hot work permits and JHA for any Hot Work Fire Watch required Proper PPE Welding training required	1	1	2	Boart Longyear crew

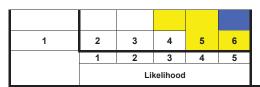
28. Rescue Plan	Rough terrain Further injuries to casualty during transit. Snow storm, white out conditions.	3	3	6	The track unit will be used to pull the survival shack (survival shack is 7' 8" x 7' 8" square) on platform with skis. When an incident has occurred, the Geotechnical Engineer must call a Code 1.	2	2	4	Marlon Coakley/ Warren Hoyle
	Darkness				Provide first aid treatment to the injured person until MRT arrives on site MRT will be dispatched to the location.				
					MRT will transport the casualty. Visibility (whiteout conditions) will hinder rescue time, rescuers will have to wait out the storm, or until the whiteout conditions have subsided.				
29. Cleanup and Demob	Unfrozen open holes Complacency	3	3	6	All drill holes must be filled in with water and snow upon completion of drilling operations A Hatch site representative will confirm safe conditions upon demob All debris must be removed from ice surface and disposed off site per waste management plan BIM safety and environment representatives to attend a post project closeout inspection to document the completion of the clean-up	2	2	4	Boart Longyear

Comments:	

Score		CONSEQUENC	E
	People	Plant	Environment
5 – Very High/ Catastrophic	Multiple Fatalities.	Greater than \$10 Million Loss	Catastrophe, destruction of sensitive environment, worldwide attention. Likely EPA prosecution. More than 30 days delay.
4 – High/ Major	Fatality or Permanent Disabilities.	\$1 Million to \$10 Million Loss	Disaster, high levels of media attention, high cost of clean-up. Offsite environmental harm; more than 10 days delay.
3 - Moderate	Major Injuries - Incapacitations or requiring time of work.	\$100 Thousand to \$1 Million Loss	Major spills, onsite release, substantial environmental nuisance, more than 1day delay. (Leads to additional resources call out i.e. SES).
2 - Low/ Minor	Significant Injuries - Medical Treatments, non-permanent injury.	\$10 Thousand to \$100 Thousand Loss	Significant spills. (Leads to a call out of Site Emergency Response Group).
1 - Very Low/ Insignificant	Minor Injuries – First Aid Treatments (cuts/bruises).	Less than \$10 Thousand Loss	Low environmental impact. Minor Spills less than 80 Litres.

Score	LIKELIHOOD
5 – Almost Certain	The event is expected to occur in most circumstances. Likely to occur frequently - More than 1 per year.
4 – Likely/ Probable	The event will probably occur in most circumstances. Likely to occur several times – 1 per year.
3 - Moderate/ Occasional	The event should occur at some time. Likely to occur at some time – 1 per 5 years.
2 - Remote/ Unlikely	The event could occur at some time. Unlikely but possible. 1 per 10 years.
1 – Rare/ Very Unlikely	The event may occur only in exceptional circumstances. Assumed it may not be experienced. 1 per 100 years.

Job Hazard Analysis Attendees:


Darryl Finlay, Marlon Coakley, Warren Hoyle, Usman Khan, Alex Boissonneault

	Name	, Signature	Date
Written by:	Marion Coakley	Marler Con	Mar 20/2017
Reviewed by:	Warren Hoyle (Hatch)	Warre Hoyla	March 30, 2017
	Darryl Finlay (BIM Safety Coordinator)		Much 20, 2d

Consequence	Risk Rating										
5	6	7	8	9	10						
4	5	6	7	8	9						
3	4	5	6	7	8						
2	3	4	5	6	7						

Risk Rating - Definitions				
Risk Rating	Definitions	Action Required		
8 - 10	Intolerable	Task not to start till the risk is eliminated or reduced. Bring to the immediate attention of management. Formal assessment required. MUST reduce the risk as a matter of priority.		
7	High	Bring to the immediate attention of management. Task not to start till the risk is ellminated or reduced. Further Assessment required. MUST reduce the risk as a matter of priority.		
6	Significant Risk	Bring to the attention of supervision. Review risks and ensure that they are reduced to as low as reasonably practicable. To be dealt with as soon as possible, preferably before the task commences. Introduce some form of hardware to control risk.		
5	Moderate Risk	Needs to be controlled but not necessarily immediately, an action plan to control the risk should be drawn up. Review effectiveness of controls. Ensure responsibilities for		

		control are specified.
2-4	Low Risk	If practical reduce the risk. Ensure personnel are competent to do the task. Manage by routing procedure. Monitor for change

A JHA considers a variety of activities/tasks involved in a job scope and analyses the key hazards (sources of harm) and their consequences (types of harm) eg. Sources of harm - lifting a heavy pipe - manual handling. Types of harm - Back strain.

Main Points - On how to write a JHA.

- Define the task what is to be done.
- Review previous JHA if any have we done it before? Identify the steps what is to be done.
- Identify the hazards of each step.
- Identify who or what could be harmed.

 Give the task a risk rating Consequence + Frequency

 Develop solutions to eliminate or control hazards in each step.

- Review the risk rating after the control system has been implemented. If risk rating unacceptable review the solutions till risk rating acceptable.
- Agree who will implement the control system.
- Document the JHA and discuss with the relevant personnel.

Hierarchy of Hazard Management - Control Measures

These steps outline what should be planned for when deciding what control measures are to be put in place. Whenever possible the highest step should be used first and then progress down the list.

- Eliminate the hazard.
- Substitution.
- Reducing the frequency of a hazardous task.
- Enclosing the hazard.
- Additional procedures. Additional supervision.
- Additional training.
- Instructions / information.
 Some personal protective equipment.

Worker / Visitor review	Sign	nature
Warren Hoyle	Waven Haylo	March 19/2017
Marion Coakley	Marter South	March 19/2017
Usman Khan		
Alex Boissonneault	The same of the sa	- March 19,201
Emile Beauchamp	Int Being	March 19/2017
Samuel Flynn	lam Al	March 19/2017
Ruben Gross	Rely In	MARCH 19/2017
Justin Gross	aut & Som	March 19/2017
Chris Entz	anis Ents	March 19/2017
Doug Roach		7 11 11 11 11 11
Robbie Jordan		
2.5		

Enclosed:

Attachment A – BIM Working on Ice Procedure
Attachment B – On Ice Platform for Geotechnical Drilling
Attachment C – Best Practice for Building and Working Safely on Ice Covers in Alberta
Attachment D – Ice Thickness Assessment
Attachment E – Ice Assessment Drawing

Appendix J Geophysics Assessment

GEOPHYSICS GPR INTERNATIONAL INC.

GEOPHYSICAL INVESTIGATION FOR BAFFINLAND RAILWAY, MARY RIVER PROJECT, NUNAVUT

Prepared for: Baffinland Iron Mines Corporation

Presented to:

4342 Queen Street, Suite 500 Niagara Falls, Ontario L2E 7J7

Geophysics GPR International Inc.
6741 Columbus Road, Unit 14
Mississauga (Ontario) L5T 2G9
Tel.:+1 905.696.0656
info@geophysicsgpr.com
June 2017 T-17001

TABLE OF CONTENTS

1 INTRODUCTION	1
2 METHODOLOGY	3
2.1 Positioning, Topography and Units of Measurement	3
2.2 Ground Penetrating Radar (Georadar).	4
2.3 Seismic Refraction.	5
3 RESULTS	<u>7</u>
3.1 Subsurface Ice Mapping	7
3.2 Deviation Area Bedrock Depth Mapping.	11
3.3 Rail Unloading Area Bedrock Depth Mapping	14
3.4 Bedrock Depth Mapping at Proposed Rail Alignment Km 4.5	14
4 CONCLUSIONS	15
Index of Figures	
Figure 1: Overview map of the investigation area	
Figure 2: Seismic refraction operating principle.	7
Figure 3: Interpreted georadar image showing a typical ice body at Site 1	9
Figure 4: Interpreted georadar image showing a fragment of ice body # 2 at Site 2	10
Figure 5: Example georadar images at Test Site #1 and SL-D4 showing "parallel layering" patter limestone bedrock. Image SL-D3 is typical for sites with deep bedrock contact	* -
Figure 6: Classification of Geological Materials by Seismic Velocities	23
Figure 7: S-wave velocities for given materials	24
<u>Index of Tables</u>	
Table 1: UTM coordinates of seismic lines	3

List of Appendices

APPENDIX A – Seismic Equipment and Methodology Fact Sheets

APPENDIX B - Georadar Fact Sheet and Equipment

APPENDIX C – Drawings T17001-A2-1, T17001-A2-2, T17001-A2-3, T17001-A2-4, T17001-A3-1, T17001-A3-2

1 INTRODUCTION

Geophysics GPR International Inc. was requested by Hatch Ltd. to carry out a geophysical survey to aid in projection and planning of a proposed railway for the Mary River Project, Baffin Island, Nunavut.

The purpose of this investigation was to determine the depth to bedrock and to measure the thickness and extent of subsurface ice.

The seismic refraction and the ground penetrating radar (georadar) methods were applied to measure the depth to bedrock and the georadar method was applied to ice thickness measurements.

Data were collected from April 21st to May 2nd, 2017.

The investigation included the following:

- 1) Georadar mapping of subsurface ice at three sites approximately at Km 26, Km 47, and Km 76 along the proposed rail alignment.
- 2) Depth to bedrock measurements using the seismic refraction and georadar methods at seven sites in the limited access area ("Deviation area") of the proposed rail alignment (approximately from Km 63 to Km 68).
- 3) Depth to bedrock measurements using the seismic refraction method at the rail unloading area site at Milne Port.
- 4) Depth to bedrock measurements using the seismic refraction and georadar methods at the proposed rail alignment Km 4.5 site.

Figure 1 presents an overview map of the investigation area with the locations of the respective sites.

The following report describes the various aspects of the survey including field techniques, survey design, interpretation techniques, and finally an interpretation in the form of bedrock profiles and ice thickness maps.

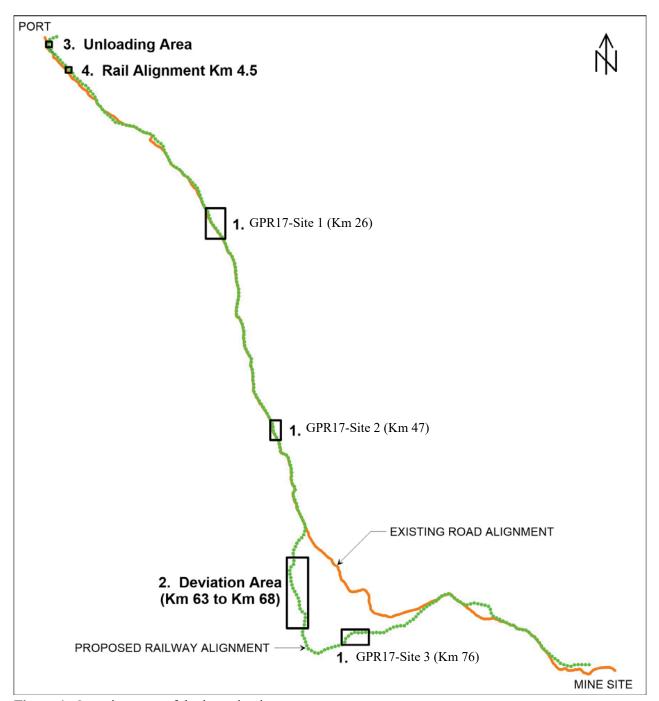


Figure 1: Overview map of the investigation area

2 METHODOLOGY

The Seismic Refraction and Georadar techniques were used for mapping the depth to bedrock. The Georadar method was used to determine ice thicknesses.

2.1 Positioning, Topography and Units of Measurement

The emplacement of the survey areas was determined by the client.

The locations of the georadar survey lines for the purpose of subsurface ice mapping were oriented to align with the design of the proposed railway. Length and number of the lines were chosen based on in-field interpretation of georadar data. Positioning was controlled by the GPS device integrated into the georadar antenna. The UTM coordinates should be accurate to within ± -2.0 m.

Seismic data were collected along ten (10) profiles. Ground penetrating radar data for the purpose of bedrock mapping were collected along the seismic lines. Positioning was controlled by the georadar antenna built-in GPS and by a handheld GPS device. The beginning and end coordinates of the seismic lines are provided in Table 1.

Start (0+00) End (0+69) Seismic Area Methodologies Line Northing **Easting** Northing **Easting** 527599.9 SL17-D1 527599.0 7919317.4 7919386.2 Seismic, Radar SL17-D2 527857.7 7920710.1 527895.1 7920768.4 Seismic, Radar SL17-D3 527564.2 7922077.5 527527.9 7922137.9 Seismic, Radar Deviation SL17-D4 526825.1 7924354.0 526889.1 7924325.9 Seismic, Radar Area SL17-D5 7924618.2 526909.9 526929.1 7924684.4 Seismic, Radar SL17-D6 527259.7 7925605.9 527242.9 7925673.0 Seismic SL17-D7 527184.7 7925311.0 527207.9 7925376.7 Seismic, Radar 503783.5 7974922.0 503792.6 7974990.0 Seismic SL17-M1 Unloading Area SL17-M2 7974917.0 503816.1 7974985.0 Seismic 503804.0 Km 4.5 SL17-R1 505743.6 7972485.5 505690.4 7972529.4 Seismic

Table 1: UTM coordinates of seismic lines

The provided coordinates are NAD83/WGS84, UTM zone 17N.

The topography for the Unloading Area site has been estimated using field observations and borehole elevation data.

The depth measurements are noted as depth from surface.

All geophysical measurements were collected in SI units.

2.2 Ground Penetrating Radar (Georadar)

Basic Theory

Georadar utilises radar technology to obtain a near-continuous profile of the subsurface. The basic principle is to emit an electromagnetic impulse into the ground at a predetermined frequency rate (typically 10 to 80 scans/second). This pulse will travel through the sub-surface and reflect off boundaries of differing dielectric constants (contrasts of EM impedances). The reflected pulse returns to the surface and is recorded by a receiver and displayed in real-time as a cross-sectional image. Only by moving the antennas along a profile directly over the targets can the locations and depths be determined. Examples of radar reflecting boundaries include air/water (water table); water/earth (bathymetry); earth/metal, PVC, or concrete (pipe locating); and differing earth materials (stratigraphic profiles, including bedrock profiles).

The depth of investigation is controlled by the frequency and power of the antenna limited by attenuation and diffraction of the radar signal. Lower frequency antennas provide greater depth penetration at the expense of resolution. The radar signal is attenuated by conductive ground materials (e.g. clays, dissolved salts etc.). The radar signal is diffracted by irregular shaped material (e.g. boulders, debris etc.) that prevents the clear return of the reflected pulse.

More information on the georadar operating principle can be found in Appendix B.

Survey Design

The georadar data were collected with a MALA Ground Explorer system and 160 MHz antenna. This antennas is usually the most appropriate for resolution of stratigraphic layers at greater depths.

Positioning for the georadar survey was controlled by built-in GPS receiver.

For the bedrock mapping survey radar lines were collected along seismic profiles. Prior to data collection, test profiles were collected to determine the optimal time window and gain settings for the given subsurface conditions.

Interpretation Method

Processing of the radar images involved basic horizontal normalization, elevation corrections and gain adjustments.

The vertical scale on all radar images is a two-way time scale representing the time taken for a radar pulse to transmit to a reflector and back to the receiver. In order to convert the time scale to a depth scale a signal velocity must be applied. The velocity with which the pulse travels through the given material is determined by the dielectric constant. This dielectric will vary with the type of material.

Calculating a velocity can be done in many ways but the most reliable method is with a test pit or borehole where the real rock contact can be exposed. Based on in-situ measurements or borehole data, the dielectric value can be approximated depending on the expect material type. An underestimate of the dielectric will result in an over estimate of the signal velocity and in

turn an over estimate of the depths. For this site a dielectric of 4 (velocity of 15 cm/ns) was assumed based on the expected soil type and tables of relative dielectric values for commonly encountered materials. In this case the materials were mostly frozen granular/boulders with high ice content. This velocity model showed good agreement with the borehole data and the estimated time-to-depth conversion error should not exceed 15% for this particular site.

Interpretation of the data is based primarily on the qualitative analysis of three characteristics of radar reflections: continuity, amplitude and shape. The interpreter then identifies reflectors and textures within the radar records that represent subsurface contacts, objects or zones. The true nature of the interpreted features can only be assumed without corroborating evidence.

Ice bodies have a distinctive appearance on radar images. Granular host material appears as "noise" on the images, whereas uniform ice layer looks transparent with clearly defined top and bottom contacts and can be confidently identified. An example of a uniform ice lens is presented in Figure 3.

Non-uniform ice bodies (stratified or containing layers of soil) are more challenging for interpretation since structure irregularities create multiple reflections within the ice body. Often a borehole is needed to confirm the presence of ice. Other features such as increasing depth of investigation in the presence of thick ice layer may corroborate the interpretation. Example of interpreted radar image illustrating the pattern created by non-uniform ice body is presented in Figure 4.

In summary, ability of georadar is limited by the structure of the ice layer being surveyed and its composition. The identification of an ice layer may be impacted by irregularities inside the ice body, such as layering, fractures and soil inclusions. However, it is possible to create two categories of ice lenses, the obvious and less obvious that may need some ground truthing.

2.3 Seismic Refraction

Basic Theory

The seismic refraction method relies on measuring the transit time of the wave that takes the shortest time to travel from the shot-point to each geophone. The fastest seismic waves are the compressional (P) or acoustic waves, where displaced particles oscillate in the direction of wave propagation. The energy that follows this first arrival (including reflected waves, transverse (S) waves and resonance) is not considered under routine seismic refraction interpretation. Figure 2 illustrates the basic operating principle for refraction surveys.

Survey Design

The seismic spread consisted of 24 vibration-monitoring devices (geophones) connected in line (spread) to a seismograph (ABEM Terraloc Mark 6). Spacing between geophones was 3 m for a total length of 69 m per spread. Seismic pulses (shots) were then generated at various locations with respect to the spread. Typically, six shots were executed per seismic spread: two shots on either side of the spread and two shots at a 'far' distance off either side of the spread (typically 45 m and 90 m). A sledgehammer was used as the primary energy source.

Interpretation Method and Accuracy of Results

Interpretation of the seismic data was primarily done using the Hawkins' method. The Hawkins' method allows the computation of the rock depth to every geophone. This method provides information on the thickness of the various overburden layers, depth to bedrock and rock quality. It is based on the closure times of the inner shots. It can calculate the true velocities of the rock using the apparent velocities, measured with information provided by the outer shots. A full description of the strengths and limitations of the refraction seismic method is presented in Appendix A. A basic description of the Hawkins' method can also be found in the article Seismic Refraction Surveys for Civil Engineering by L. Hawkins (1961).

The seismic refraction method typically allows the determination of the bedrock profile with a precision of 10% or better for depths greater than 10 m and a precision of 1 m for depths less than 10 m. The precision in the determination of rock velocities is plus or minus 3%. The vertical contacts (lateral velocity change), usually associated with faults and deep valleys, are generally accurate to within 5 m in width; although, this is somewhat site specific.

The two most significant problem areas for refraction mapping are the "hidden" layer and effect of velocity inversions. A "hidden" layer or "blind zone" is a stratigraphic layer that is not possible to discern from the arrival time data due to insufficient velocity variation or thickness. The unknown presence of a hidden layer has the effect of making the interpreted bedrock depth too shallow. The presence of a "hidden" layer is typically revealed through borehole or test-pit data and calculations can be made to compensate for the presence of such a layer. Without borehole or secondary bedrock depth information, it is not possible to predict the presence of a hidden layer.

Velocity inversions occur when the velocity does not increase with depth. The velocity inversion can result from the presence of a low or high velocity layer. Refractions from low-velocity layers cannot be determined from the arrival time data. The unknown presence of a low velocity layer has the effect of making the interpreted depths deeper than actual depths.

There is always the potential for "hidden" layers, although the likelihood is decreased for shallow sites. For this particular site the only possibility of velocity inversion is caused an unfrozen layer below permafrost, as the permafrost more easily transmits waves (~3000m/s) while the unfrozen layer transmits waves slower (1500-2000m/s). This results in a lower velocity after a higher velocity, resulting in the inversion.

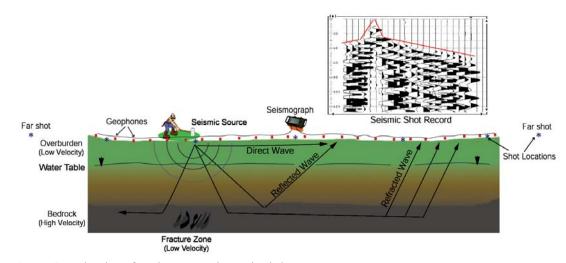


Figure 2: Seismic refraction operating principle

3 RESULTS

3.1 Subsurface Ice Mapping

Georadar data were collected at three sites approximately at Km 26, Km 47, and Km 76 along the proposed rail alignment.

Locations of the survey lines and results of the georadar survey are presented in drawings T17001-A2-1, T17001-A2-2, and T17001-A2-3.

GPR17-Site 1 (Km 26)

A long line 3300 m in length was collected from borehole BH16-R013 to borehole BH17-C004 to delineate potential ice bodies along the proposed rail alignment. The length of the line was chosen based on the borehole information. Eleven cut lines from 130 m to 410 m long were then collected to map ice extents east of the proposed railway. Scanning involved on-site data interpretation and length of the cut lines was controlled by the operator. Locations of the survey lines and results of the survey are presented in Drawing T17001-A2-1.

Distinct subsurface ice bodies were easy interpretable from the georadar images. Uniform ice was identified as a lens-shaped body with little to no signal return (reflection) from within its boundaries. Five separate ice formations were interpreted from the georadar data collected at GPR17-Site 1. Example georadar image showing a typical ice body is presented in Figure 3. The presented line is crossing interpreted ice lens #1 in NW–SE direction.

Drawing T17001-A2-1 provides ice thickness maps for each interpreted ice formation. Top of the ice layers was interpreted to be at a depth range of 1.5 m to 4 m. Ice extends to a maximum depth of 19.5 m below grade.

GPR17-Site 2 (Km 47)

The design of the survey was in general the same as at GPR17-Site 1. First a 1950 m long line was collected along the rail alignment passing the boreholes locations where the ground ice was encountered. Then eight cut lines from 80 m to 420 m long were collected to map ice extents east of the proposed railway. Locations of the survey lines and results of the survey are presented in Drawing T17001-A2-2.

Two ice formations were identified within the georadar data collected at GPR17-Site 2. The ice bodies on the georadar images were less well defined comparing to the data set at GPR17-Site 1. The interpretation was complicated by layered (stratified) ice structure that creates multiple reflections within the ice body. An example georadar image showing a fragment of ice body #2 is presented in Figure 4. The line crosses interpreted ice lens #2 in NW–SE direction. Borehole BH16-C011 is located at chainage 155 m of the presented line.

Drawing T17001-A2-2 provides ice thickness maps for each interpreted ice formation. Top of the ice layers was interpreted to be at a depth range of 1.1 m to 9.4 m. Ice extends to a maximum depth of 20.1 m below grade.

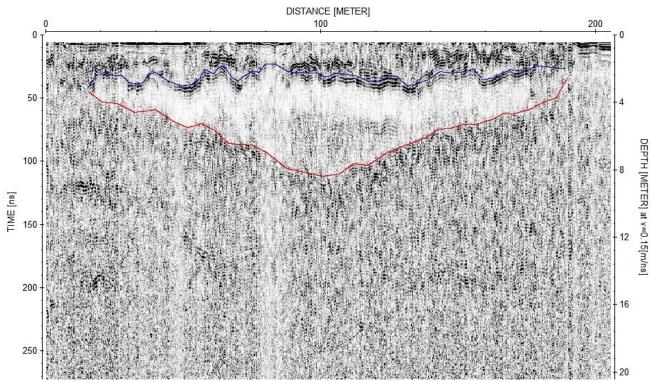
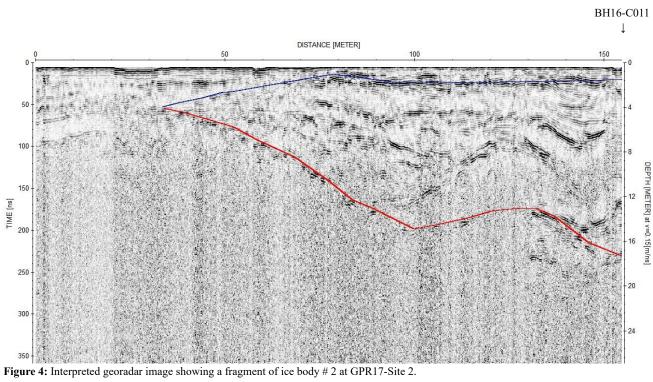



Figure 3: Interpreted georadar image showing a typical ice body at GPR17-Site 1

GPR17-Site 3 (Km 76)

No large ice bodies were found within the geotechnical boreholes at this site, however, some ground ice and individual ice inclusions were encountered. A 3150 m long line was collected along the rail alignment from borehole BH17-C011 to borehole BH17-C013. Two ice lenses were identified within the data collected between boreholes BH17-C011 and BH17-C012. Two cut lines 460 m and 500 m long were then collected to map ice extents east and west of the proposed railway.

Locations of the survey lines and results of the survey including ice thickness maps for each interpreted ice formation are presented in Drawing T17001-A2-3. Of the two lenses interpreted from the georadar images at GPR17-Site 3 lens #1 was clearly identified as an ice body, whereas lens #2 was interpreted with a lesser level of confidence. The pattern on the radar images of the supposed ice lens #2 was similar to that observed at GPR17-Site 2, however, there is no borehole data to confirm that this formation contains ice.

Top of the ice layers was interpreted to be at a depth range of 1.2 m to 4.9 m. Ice extends to a maximum depth of 9.4 m below grade.

3.2 Deviation Area Bedrock Depth Mapping

A total of 7 sites were investigated at the Deviation Area of the proposed rail alignment. Initially it was presumed that the depth to bedrock should not exceed 10 meters and the survey methodology was chosen to ensure the depth of investigation approximately 20 meters below grade. The interpretation of the data proved that at 4 sites top of bedrock was deeper than the maximum investigation depth of the applied refraction technique.

Analysis of the complete data set collected for this project showed that the general compressional (P) wave velocity model consists of three layers.

The upper layer, with a velocity range of 1200 m/s to 3000 m/s, is interpreted as frozen active layer of overburden (layer with lower ice content). This layer extends from surface to a maximum depth of approximately 3.5 m below grade.

The second layer, with a velocity range of 3700 m/s to 5000 m/s, is interpreted as permafrost overburden. Higher velocity values for this layer imply higher boulder content.

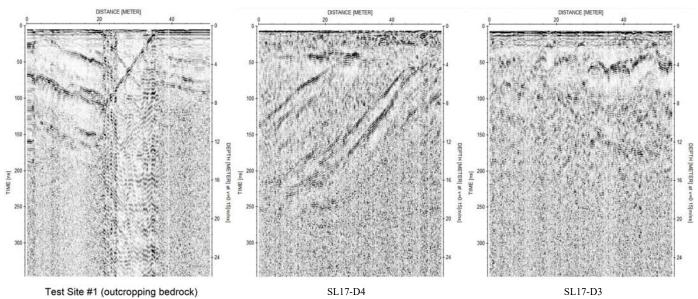
The third layer, with a velocity range of 4700 m/s to 5900 m/s, is interpreted as bedrock. According to geotechnical investigation report provided by the client, from Km 0 approximately to Km 40 of the proposed railway the bedrock is granitic gneiss and from Km 40 to Km 90 the bedrock is limestone. Average measured P-wave velocities were approximately the same for both types of bedrock, with slightly lower values for limestone bedrock.

As it might be seen, there is an overlap in observed velocity ranges for permafrost overburden and bedrock complicating the interpretation of the refraction data and providing additional source of error. To help the interpretation two refraction lines at two different test sites with known bedrock depth were acquired. Test #1 was done above bedrock outcrop with less than 1 m to 1.5 m of overburden and test #2 was done at a borehole location with bedrock 5 to 7 m deep. The second test showed velocity range from 3500 m/s to 4000 m/s for permafrost overburden and both test showed velocity of 5700 m/s for limestone bedrock.

Interpretation of the Deviation area data set was done following these general considerations:

- The three-layer model described above. According to borehole data, the permafrost extends to a considerable depth and probability of a velocity inversion is low.
- The overburden permafrost velocities should not be at a higher end of the observed velocity range (4500 to 5000 m/s) as these values were only observed at sites close to the Milne Port with visibly higher large-size gneiss boulder content on the surface. The average permafrost overburden velocity measured at Deviation area sites was 3900 m/s.
- Velocities higher than 5000 m/s are expected for limestone bedrock.

The radar data was also used in the refraction data interpretation. Analysis of the radar data collected at the Deviation area sites as well as at Km 47 showed that the limestone bedrock have a distinct pattern on the georadar images. It could be described as "parallel layering" appearing at the images as a series of parallel reflections. Figure 5 provides examples of georadar images showing limestone bedrock.


Locations of the survey lines and results of the survey are presented in Drawing T17001-A2-4. The drawing presents P-wave velocity models based on refraction data.

Bedrock was identified at 3 sites. At sites 1 and 6 bedrock depth ranged from 21 m to 26 m. At Site 6 (SL17-D6) depth to bedrock was calculated approximately as the interface was too deep to perform full reciprocal time analysis.

At Site 4 (SL17-D4) a shallow interface was interpreted with the layer velocity of 4700 m/s, which is borderline between permafrost overburden and bedrock. This interface was interpreted as bedrock contact as the georadar image taken at line SL17-D4 was the only one of the seven lines in the Deviation area which had the clear "parallel layering" pattern characteristic to limestone (Figure 5).

At sites 2, 3, 5, and 7 there was no indication of bedrock refraction on seismic records. Some calculations using the above described velocity model show that the bedrock at these locations should be more than 20 m deep.

Test Site #1 (outcropping bedrock) SL17-D4 SL17-D3

Figure 5: Example georadar images at Test Site #1 and SL17-D4 showing "parallel layering" pattern typical for limestone bedrock. Image SL17-D3 is typical for sites with deep bedrock contact.

3.3 Rail Unloading Area Bedrock Depth Mapping

Two seismic refraction lines were performed at the Rail Unloading Area to determine depth to bedrock. The seismic spreads were oriented perpendicular to the actual line of interest (which was the line from borehole BH16-M008 to borehole BH16-M007) due to a busy road crossing the line. Thus, depth to bedrock was determined at two points along the line of interest.

Position of the seismic lines and results of the survey in the form of bedrock profiles are presented in Drawing T17001-A3-1.

Three-layer velocity model described above was used for the interpretation. The upper layer, with a velocity range of 1800 m/s to 3000 m/s, extends from surface to a maximum depth of approximately 2.4 m below grade. The second layer interpreted as permafrost overburden has a velocity of 4300 m/s.

True bedrock P-wave velocities ranged from 5800 to 5900 m/s. Based on the refraction interpretation, the bedrock depth ranged approximately from 12 m to 19 m below grade for line SL17-M1, and approximately from 10.5 m to 12 m below grade for line SL17-M2.

The calculated depth to bedrock at intersections of the seismic profiles with the line of interest is 12.0 m for SL17-M1 and 10.9 m for SL17-M2. It should be noted that these values are not vertical distances from points on surface to bedrock interface, but rather shortest distances which will be different from vertical distances in case of dipping bedrock interface.

3.4 Bedrock Depth Mapping at Proposed Rail Alignment Km 4.5

One seismic refraction line and seven georadar lines were performed at the Proposed Rail Alignment Km 4.5 site for the purpose of bedrock depth mapping.

Position of the survey lines and results of the survey in the form of seismic velocity model and bedrock depth map are presented in Drawing T17001-A3-2.

Seismic refraction interpretation utilized the three-layer velocity model described above. The calculated bedrock depth ranged from 5.0 m to 6.5 m below grade.

Seven georadar lines from 50 m to 85 m long were collected with distance between lines ranging from 20 m to 40 m. Although bedrock contact was not always clearly apparent on the georadar images, corroboration of the georadar data by seismic refraction results allowed to identify bedrock reflection with higher level of confidence. Interpreted example georadar image taken at RL-4 can be seen in Drawing T17001-A3-2.

The interpreted bedrock depth from combined seismic and georadar data sets ranged from 3.0 m to 7.5 m below grade.

4 CONCLUSIONS

A geophysical investigation involving seismic and georadar methodologies was carried out at the Mary River Project, Baffin Island, Nunavut.

The seismic refraction and georadar methods were applied to measure the depth to bedrock and the georadar method was applied to ice thickness measurements.

Subsurface ice mapping was carried out at three sites along the proposed rail alignment. Results of the survey are presented in Drawings T17001-A2-1, T17001-A2-2, and T17001-A2-3 as ice layer extent and thickness maps. Overall georadar data quality was excellent. The subsurface ice was easily identifiable on most of the lines. Total of 9 lens-shaped ice bodies have been delineated. It is possible that these bodies have a high ice percentage. If there are formations with lower ice content and the ice presence is masked by the sand and gravel content it is not certain they can be delineated. However, with some ground truthing through boreholes it may be possible to create a second catagory of ice lense.

Bedrock depth mapping at the Deviation area of the rail alignment using seismic refraction and georadar methods proved the bedrock contact to be deeper than 20 m at all of the investigated sites with the exception of Site 4 (SL17-D4). The bedrock depths at Site 4 ranged from 2.5 m to 3.5 m below grade. Results of the survey are presented in Drawing T17001-A2-4 in form of P-wave velocity models.

Two seismic refraction lines were performed at the Rail Unloading Area to determine depth to bedrock between boreholes BH16-M008 and BH16-M007. Results of the survey in the form of bedrock profiles are presented in Drawing T17001-A3-1.

One seismic refraction line and series of parallel georadar lines were performed at the Proposed Rail Alignment Km 4.5 site to map bedrock depth. Results of the survey in the form of seismic velocity model and bedrock depth map are presented in Drawing T17001-A3-2. The interpreted bedrock depth from combined seismic and georadar data sets ranged from 3.0 m to 7.5 m below grade.

Interpretation of the geophysical data has been performed by Ilia Gusakov, GIT. This report has been written by Milan Situm, P.Geo.

Milan Situm, P.Geo.

Milan Stun

Manager

MILAN SITUM PRACTISING MEMBER 9

APPENDIX A

Seismic Equipment and Methodology Fact Sheets

TERRALOC MK6 FEATURES

Great features in a small seismograph

The Terraloc mark 6 is a high resolution multi-channel seismograph with an 18-bit A/D converter and 3-bit instantaneous floating point (IFP) amplifier. Overall resolution is thus 21 bits. Its dynamic range, 126 dB, eliminates all gain setting hassles and satisfies the most stringent shallow reflection requirements.

7,8" full colour daylight-visible backlit display with VGA resolution
Armoured glass LCD protection
Sealed, Rugged aluminium case protects against weather and rough handling sealed 1.44 MB 3.5" floppy drive
Numeric keyboard
Command keyboard

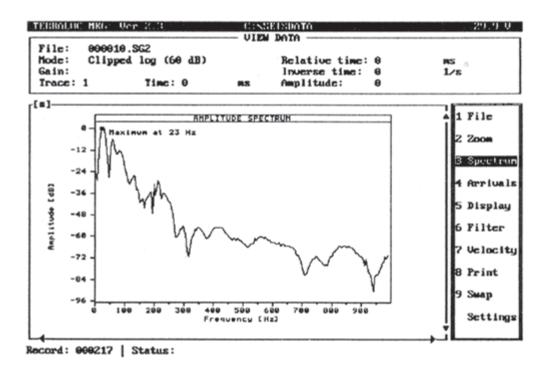
Added Terraloc advantages:

Great for tomography thanks to high sampling rates starting at 25 µs.

Usable with various energy sources (even mini-vabrators) thanks to long record lenghts, auxiliary source signature channel input and built-in correlation software.

provides sophisticated automation. Aversatile digital (TTL) interface (trigger IN/OUT, arming IN/OUT signals) makes it easy to connect several Terralocs and supports handshaking with vibrators and marine seismic energy sources.

Ideal for refraction as well as shallow reflection seismics thanks to built-in roll-along function and a broad spectrum of analog and digital filters


In-field quality control. On-site geophone testing, cable testing and noise monitoring. Wide choice of multior single-trace view modes and frequency spectrum analysis (FFT)

Powerful computer

Fully compatible with your office computer thanks to MS-DOS 6.0 or higher, an internal hard disk, a built-in 1.44mb floppy disk, and compliance with the international SEG-2 format for storing of seismic traces and header information.

Interpretation software can be installed and run right in your Terraloc field unit.

Spectrum analysis helps you select the right filter, and it can also reveal soil properties

Lightweight and easy to use

The compact, lightweight Terraloc mark6 weighs only 16kg (24-channel version) and is less than half the size of its predecessor the popular Terraloc mark 3.

Carefully prepared, logically arranged documentation includes a copies of the operators manual (one for the field, and one to keep in the office), a user's manual for the computer, a complete description of the SEG-2 format and a service manual loaded with detailed technical information and schematics. Also included are a DOS manual and practice records to get you started.

Broad range of viewing provisions.

Scroll through records
Change display settings as desired
Select different time-scales
Select display mode
Select trace mode
Select AGC window length and set time and amplitude scale factors
Analyse single-trace frequency content (FFT)
Calculate refractor velocities
Analyse ground noise
Re-Scale traces individually
Create a geophone test report
Enlarge traces individually (Zoom)

Broad Printer support

The terraloc mark 6 supports a wide range of printers through dynamic link libraries (DLLs) via either the parallel or serial port and new printers can be added easily if required in the future.

Roll-along optimum offset

You can type in numerical values for roll-along start-trace, end-trace and step, you can roll along part of your receiver spread a step at a time. This feature is used in reflection surveys that include CDP stacking.

Expand your system

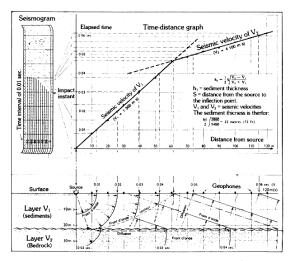
Two or more Mark 6's can easily be linked together to form a larger system. The print-out below is from a 96channel survey in which four 24-channel Terraloc's were connected

Technical Specifications for the Terraloc

Number of channels (larger unit)	4-48 in steps of 4
Additional channels	Easily obtained by linking two or more units together
Up-hole channel	Yes
Sampling rate (selectable)	
Record length (selectable)	
Pre-trig record (selectable)	0-100 % of record length
Pre stack correlation	Yes, cross correlation with reference or any other channel
Delay time	
sampling rate	
Stacking	
Unstack	
First-arrivals picking	Automatic or manual. Times can be saved with record
Trigger inputs	Trigger coil, make/brake, geophone, TTL
A/D converter resolution	
Dynamic range (theoretical/measur	red) 126 / 114 dB
Max input signal	500 mV p-p
Frequency range	
Total harmonic distortion	80 dB
Crosstalk	86 dB
Input impedance	
Noise monitor	

Analog filters

•	Low cut (selectable)	
•	Notch	50 or 60 Hz specify when ordering
•	Anti-aliasing	set automatically based on sampling rate


Digital filters

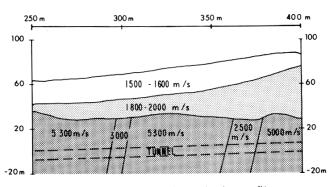
• Bandpass, low-cut, high-cut, bandreject, alpha-beta and remove DC offset Spectrum analysis..... Any single trace

SEISMIC REFRACTION

Seismic refraction consists of recording the length of time taken for an artificially provoked surface vibration to propagate through the earth. By processing the data, the seismic velocities and depths of the underlying rock layers can be determined. These velocities are characteristic of the nature and quality of the bedrock; a fissured, fractured or sheared rock will be characterized by reduced seismic velocities.

The method is generally used to obtain a better geological analysis of the sub-surface and to determine the following characteristics: the quality, profile and depth of bedrock, its nature, degree of alteration and any other physical contrasts. Seismic refraction ensures that maximum information may be gained from geological field work, and that direct investment costs (drilling, excavation), will be reduced.

PRINCIPLE OF SEISMIC REFRACTION


FEATURES

- Precise determination of soil thickness .
- Precise determination of the seismic velocities (rock type and quality).
- Localization and identification of geological units.
- Detailed analysis of soil.
- Year-round use.
- Sea and land surveys (above and below ground).
- Great accessibility possible to rough terrain and remote regions.

AREAS OF APPLICATION

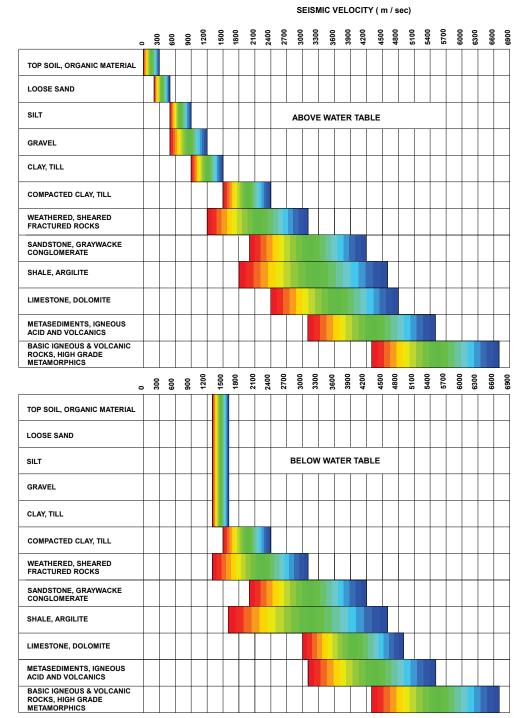
 $\label{lem:civil-Engineering-Mining-Exploration-Exploitation/Petroleum and Gas Sectors/\ Geotechnology/Geology/\ Hydrology.$

- Identification of faults, fractures, shear zones.
- Detection of rock differences (veins, dykes, cavities, etc.).
- Determination of rock topography.
- Evaluation of volume of soil present or to be excavated.
- Excellent complement to geological mapping.
- Recognition of geophysical anomalies such as VLF, gravimetry, etc.
- Drill site selection, better target identification.
- Evaluation of the size, thickness and condition of surface shafts (mining exploitation).
- Mass Rock Quality Determination (MRQD).
- Detection of rock irregularities and breaks.
- Hydrogeology (detection of water tables, veins, reservoirs).
- Excellent complement to any geological analysis.

Interpretation results of a seismic profile

ADDITIONAL REMARKS

Geophysics GPR International Inc. has been recognized for the past fifteen years as a leader in both the application and the development of seismic methods. Seismic refraction is currently used in both civil and mining engineering; the use of lighter high-performance equipment and better tomographical interpretation of the results have contributed to its growing popularity.



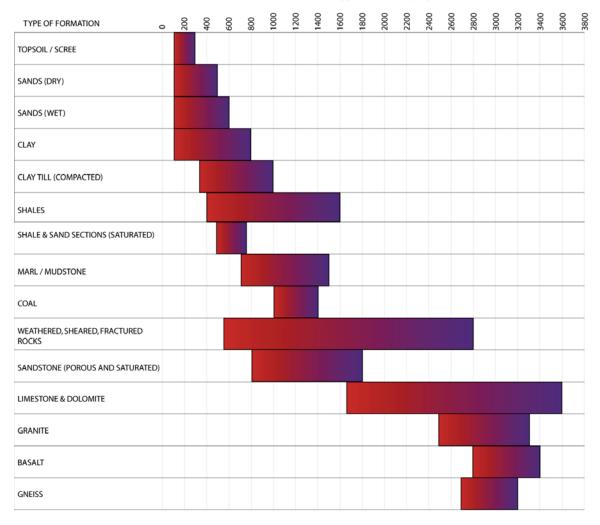
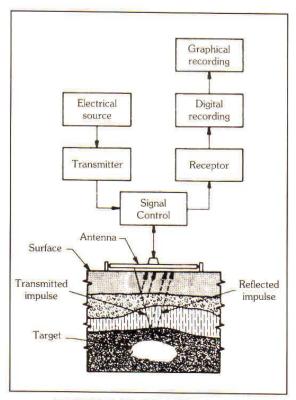


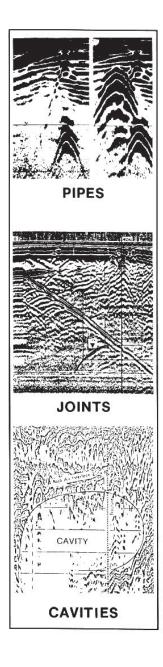
Figure 6: Classification of Geological Materials by Seismic Velocities



 $Typical\ rock\ velocities, Based\ on\ Bourbie, Coussy\ and\ Zinszner, Acoustics\ of\ Porous\ Media, 1987\ with\ modifications\ by\ Geophysics\ GPR.\ Rev\ A.1\ July\ 2011$

Figure 7: S-wave velocities for given materials

GEORADAR


As indicated by its name, georadar combines high resolution radar with geology. The underlying principle is based on the propagation of electromagnetic wave impulses (VHF) that are reflected by anomalies in the terrain (joints, irregularities, interfaces, etc.) at different depths, and then captured by the antenna. The georadar records the time taken by each transmitted signal to complete the cycle in order to calculate the depth of the anomaly. The result is similar to a seismic reflection profile where all the reflections are displayed graphically. This technique is used to solve problems for which there had previously been no practical solution.

PRINCIPLES OF GEORADAR

FEATURES

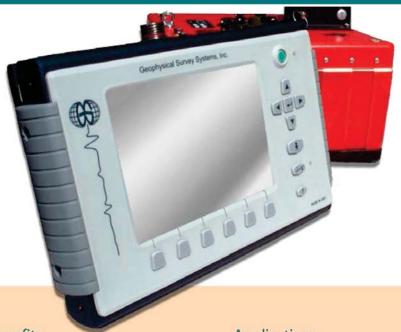
- Penetration of more than 20 metres in certain materials (penetration being inversely proportional to conductivity).
- Surveying in continuous mode.
- Identification of objects measuring only a few centimeters.
- Light and manoeuvrable equipment.
- Detection of conductivity, open spaces and/or holes (cavities).
- Detection of breaks: faults, fractures, joints, cavities.
- Results similar to seismic reflection: continuous underground profile.
- Results available immediately.
- Can be used in land, sea or airborne surveys.

FIELDS OF APPLICATION

Civil Engineering / Mining Exploration-Exploitation / Research / Archaeology / Environment

- Geotechnology: investigation of soils and surface deposits.
- Optimal selection of anchor bolts in mines and quarries.
- Detection of buried pipes before beginning excavation.
- Detection of liquid or gas leakage in soils.
- Detection of cracks in concrete structures.
- Checking material homogeneity.
- Detection of cavities beneath road pavement.
- Determination of water saturation level.
- Detection of girders in reinforced concrete.
- Detection of pollutant leakage in water bodies.
- Inspection of buried disposal sites and or dangerous deposits.
- Continuous measurement of ice thickness.
- Archaeological research: ancient foundations, artifacts.
- Non-destructive method for measuring road pavement thickness.
- Localization and measurement of soil's thickness (swamps, peat bogs).
- Determination of rock beddings (location and thickness).
- Bathymetric studies (depth sounding).
- Calculation of the thickness of permafrost and ice.
- Geotechnical studies for the installation of aqueducts.

SPECIAL FEATURES


The equipment is practical, easy to manoeuvre, and multi-faceted. The field of application of georadar continues to expand in various sectors, particularly in geotechnology (aqueducts), civil engineering (excavation, structures) and mining (structures).

SIR-3000 System by GSSI

Rugged, high-performance GPR data acquisition system

- Benefits
 - · Rugged, lightweight, hand-held and portable
 - · User-friendly
 - High-resolution screen—easy to read in daylight
 - · Large data storage capacity
 - · Compatible with all GSSI ground-coupled antennas
 - · Built with pride in the U.S.A.

Applications

Concrete Inspection

Utility Mapping

Bridge Deck Inspection

Geological Investigation

Archaeology

Forensics/Law Enforcement

Snow/Ice Thickness Measurement

Research

The World Leader in Subsurface Imaging™

Geophysical Survey Systems, Inc. www.geophysical.com

APPENDIX B

Georadar Fact Sheet and Equipment

SIR-3000 System Specifications

System

Antennas:

Compatible with all GSSI ground-coupled antennas

Number of Channels: 1 (one)

Data Storage:

Internal memory: 1 GB Flash memory card

Compact Flash port: Accepts industry standard

CF memory up to 2 GB (user provided)

Processor: 32-bit Intel StrongArm™ RISC

processor @ 206 MHz

Display: Enhanced 8.4" TFT, 800 x 600 resolution,

64K colors

Display Modes: Linescan, O-scope, 3D

Data Acquisition

Data Format: RADAN (dzt)

Scan Rate Examples:

220 scans/sec at 256 samples/scan, 16 bit 120 scans/sec at 512 samples/scan, 16 bit

Sample size: 8-bit or 16-bit, user-selectable

Scan Interval: User-selectable
Number of samples per scan:

256, 512, 1024, 2048, 4096, 8192

Operating Modes:

Free run, survey wheel, point mode

Time Range:

0-8,000 nanoseconds full scale, user-selectable

Gain: Manual or automatic, 1-5 gain points

(-20 to +80 dB)

Filters:

Vertical: Low-Pass and High-Pass IIR and FIR Horizontal: Stacking, Background Removal

Geophysical Survey Systems, Inc. www.geophysical.com

Operating

Operating Temperature:

-10°C to 40°C ambient

Charging Power Requirements:

15 V DC, 4 amps

Battery: 10.8 V DC, internal Transmit Rate: Up to 100 KHz

Input/Output

Available Ports:

Antenna input DC power input Serial RS232 (GPS port) Compact Flash memory USB master and slave

Mechanical

Dimensions:

31.5 (L) x 22 (W) x 10.5 (H) cm 12.4" x 8.7" x 4.1"

Weight: 4.1 kg, (9 lbs) including battery

Environmental: Water resistant

System Includes:

SIR-3000 data acquisition system

Transit case

2 batteries

Battery charger

AC adapter (also works as charger)

User manual

Sunshade

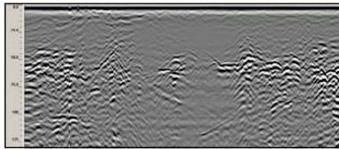
Carrying harness (optional)

Antennas and antenna control cables sold separately

FCC Compliant

13 Klein Drive, PO Box 97 North Salem, NH 03073-0097 Tel: (603) 893-1109 Fax: (603) 889-3984 Sales@Geophysical.com

Copyright © 2005 Geophysical Survey Systems, Inc. All Rights Reserved December, 2005


Model 5104 - 270MHz

Utility Detection and Mapping Engineering/Environmental Geotechnical

The Model 5104 is suited for deeper utility, engineering and geotechnical applications.

Center Frequency:	270 MHz			
Depth Range:	0- 6 m (0 - 18 ft)			
Dimensions:	45 x 45 x 17 cm (18 x 18 x 6.5 in)			
Weight:	8.6 kg (18.5 lbs)			

GPR profile showing bedrock interface.

Model 3207 - 100MHz

Bistatic and Monostatic Operation

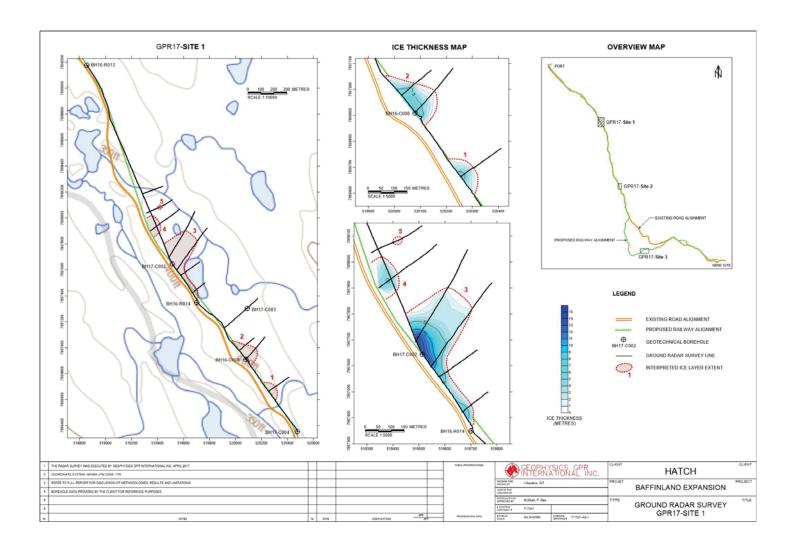
Geotechnical/Environmental Mining

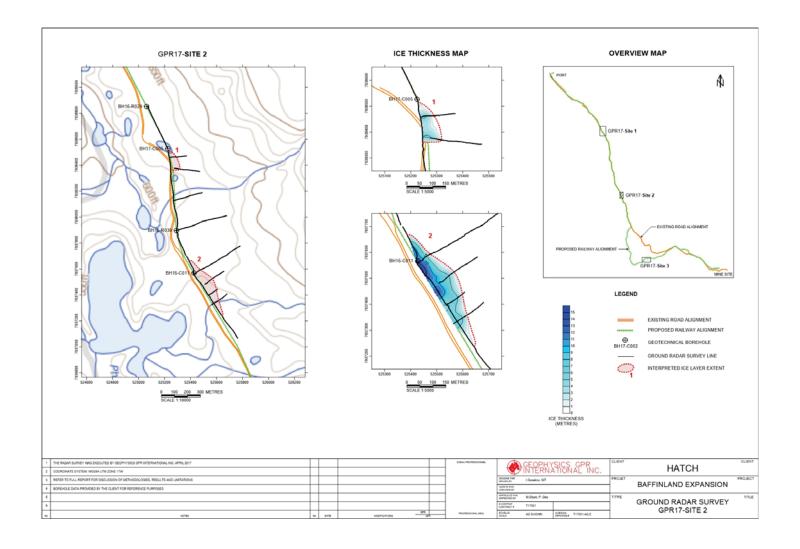
AN MARK THE
The same of the sa

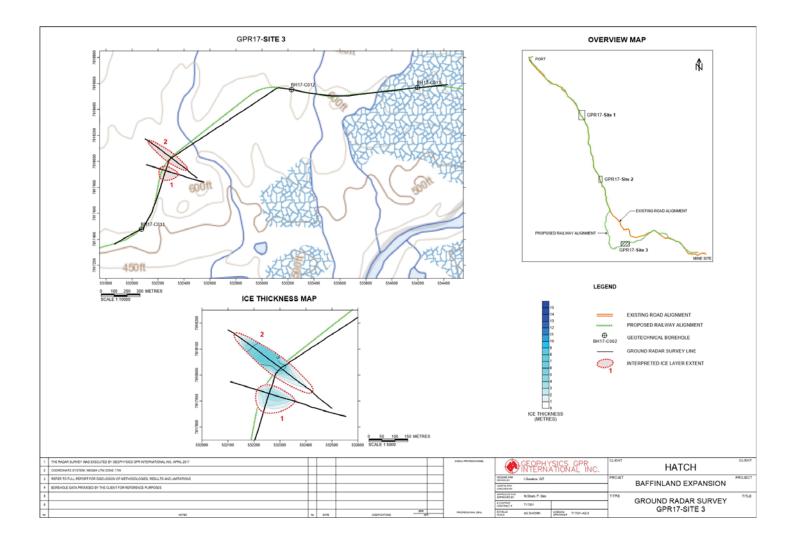
Center Frequency:	100 MHz			
Depth Range:	2 - 15 m (5 - 50 ft) monostatic 0 - 30 m (0-100 ft) bistatic			
Dimensions:	25 x 96 x 56 cm (10 x 38 x 22 in.) monostatic 25 x 96 x 200 cm (10 x 38 x 79 in.) bistatic			
Weight:	13 kg (28 lbs) monostatic 28 kg (61 lbs) bistatic			

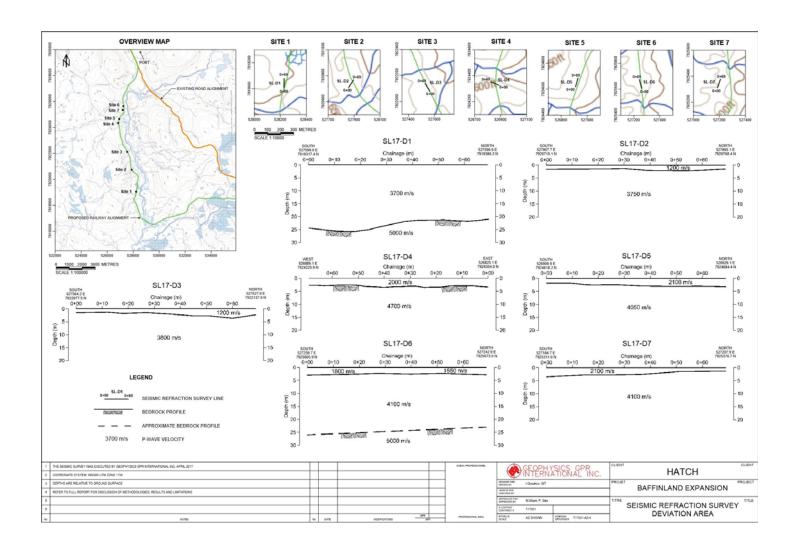
The Model 3207 antenna is used for deep subsurface applications. The 3207AP (monostatic, left) combines the transmit and receive electronics in a single antenna housing. The 3207P (bistatic, right) is a versatile antenna pair that can operate in three different configurations to optimize performance.

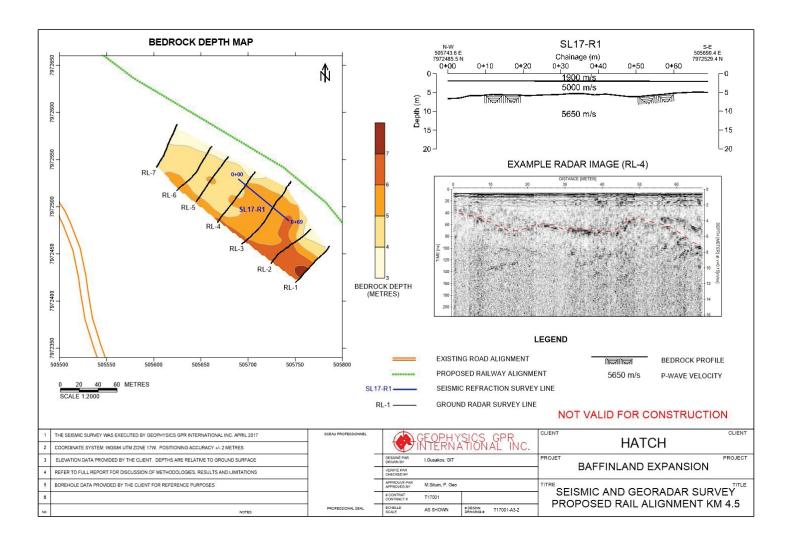
Note: This antenna is currently for use outside the U.S.

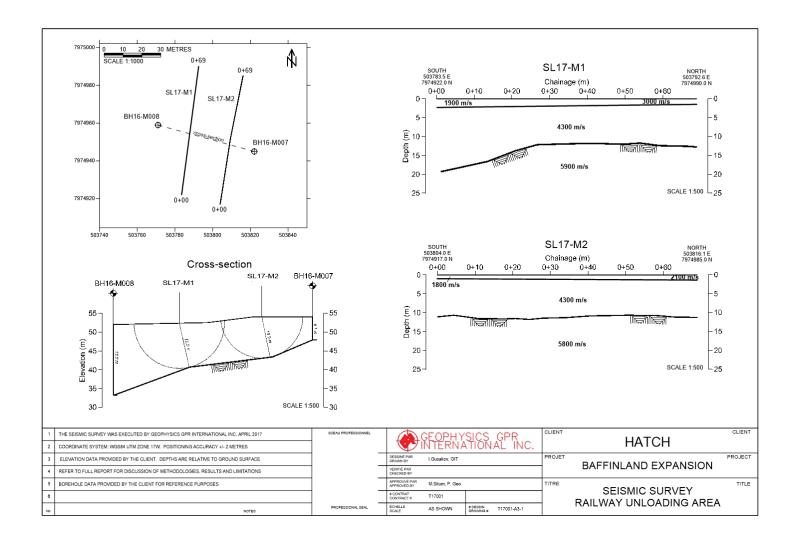

Geophysical Survey Systems, Inc. 12 Industrial Way, Salem, NH 03079-4843 USA Tel: 603-893-1109 / Fax: 603-889-3984 www.geophysical.com / sales@geophysical.com


Copyright © 2005 Geophysical Survey Systems, Inc. All Rights Reserved March, 2006




APPENDIX C


Drawings T17001-A2-1, T17001-A2-2, T17001-A2-3, T17001-A2-4, T17001-A3-1, T17001-A3-2



GEOPHYSICS GPR INTERNATIONAL INC.

GEOPHYSICAL INVESTIGATION FOR BAFFINLAND RAILWAY, MARY RIVER PROJECT, NUNAVUT

PREPARED FOR: Baffinland Iron Mines Corporation

Presented to:

HATCH

4342 Queen Street, Suite 500 Niagara Falls, Ontario L2E 7J7

Project T17001B-Revision#004

April 2018

Geophysics GPR International Inc. 6741 Columbus Road, Unit 14 Mississauga (Ontario) L5T 2G9 Tel.: +1 905.696.0656 info@geophysicsgpr.com January 2018 T-17001B

TABLE OF CONTENTS

List of Appendices

APPENDIX A – Drawings GPR17 – MILNE INLET, GPR17 –KM19, GPR17 –KM20, GPR17 –KM39.6, GPR17 –KM49, GPR17 –KM82.2, GPR17 –KM97, GPR17 –KM100.1, GPR17 –KM109.

APPENDIX B – Georadar Fact Sheet

1 INTRODUCTION

Geophysics GPR International Inc. was requested by Hatch Ltd. to carry out a geophysical survey to aid in projection and planning of a proposed railway for the Mary River Project, Baffin Island, Nunavut.

The purpose of this investigation was to determine the extent of, as well as the thickness of subsurface ice.

The ground penetrating radar (georadar) method was applied to determine the presence of ice and calculate its thickness.

Data was collected from November 3rd to November 15, 2017.

The investigation included the following:

1) Georadar mapping of subsurface ice at nine sites approximately at Km 0, 19.4, 20.5, 39.5, 49.3, 82.2, 97.0, 100.1 and 109 along the proposed rail alignment. Further exploration with gridded georadar lines was conducted in regions both with and without the presence of ice.

Figure 1 presents an overview map of the investigation area with the locations of the respective sites. The following report describes the various aspects of the survey including field techniques, survey design, interpretation techniques, and finally an interpretation in the form ice thickness maps.

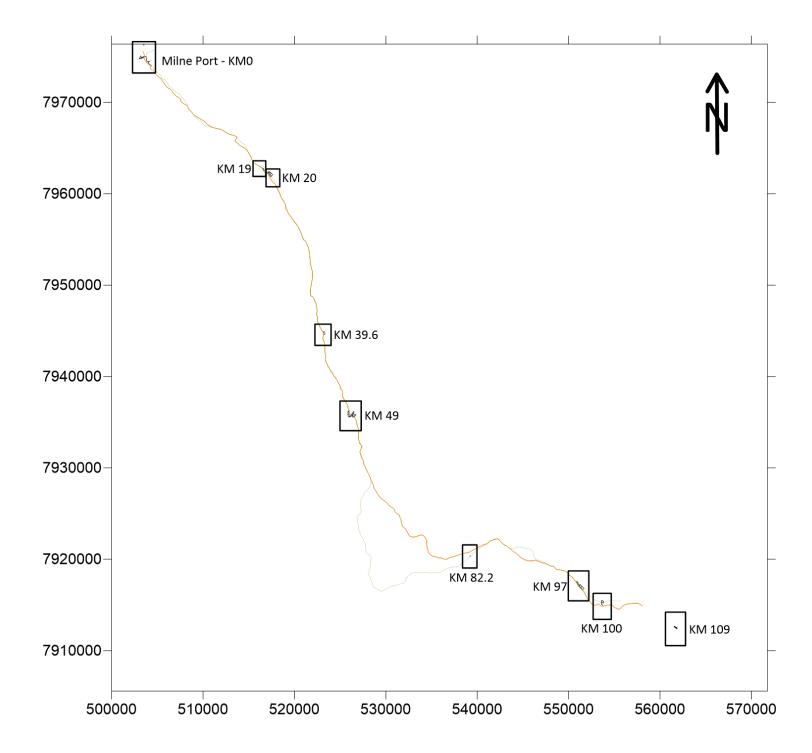


Figure 1: Overview map of the investigation area

2 METHODOLOGY

Georadar was used to determine the presence and thickness of ice.

2.1 Positioning, Topography and Units of Measurement

The emplacement of the survey areas was determined by the client.

The locations of the georadar survey lines for the purpose of subsurface ice mapping were oriented to align with the design of the proposed railway. Length and number of the lines were chosen based on in-field interpretation of georadar data. Positioning was controlled by the GPS device integrated into the georadar antenna. The UTM coordinates should be accurate to within ± 1.00 m.

Table 1: UTM coordinates of GPR survey lines

	Start (0+00)		End (0+69)				Notes
Line No.	D 4:	N T 41.	Easting	NT 41.	Chainage (km)		Hotes
	Easting	Northing		Easting No.	Northing	Start	End
Line 0	502871.8	7976754.0	504000.0	7974502.0	0	2	Milne Port Area
Line 19.4	516252.0	7962974.0	516644.0	7962535.0	19.25	19.85	
Line 20.5	517047.0	7962251.0	517390.0	7961888.0	20.46	20.9	
Line 39.6	523146.0	7944888.0	523216.0	7944604.0	39.6	39.9	
Line 49.3	525992.0	7935880.0	526497.0	7935589.0	49.5	49.9	Rough Terrain
Line 82.2	539154.0	7920274.0	539291.0	7920419.0	82.2	82.4	
Line 97.0	551121.0	7917097.0	551250.0	7916944.0	97.0	97.6	Rough Terrain
Line 100.1	553584.0	7915318.0	553779.0	7915281.0	100.1	100.3	
Line 109.0	561530.0	7912604.0	561844.0	7912356.0	109.0	109.4	

The provided coordinates are NAD83/WGS84, UTM zone 17N.

The depth measurements are noted as depth from surface.

All geophysical measurements were collected in SI units.

In addition to Table 1, further georadar survey lines were created to further explore the given areas. These additional survey lines were generated in a grid-like fashion with the topography dictating the spacing of the lines.

2.2 Ground Penetrating Radar (Georadar)

Basic Theory

Georadar utilises radar technology to obtain a near-continuous profile of the subsurface. The basic principle is to emit an electromagnetic impulse into the ground at a predetermined frequency rate (typically 10 to 80 scans/second). This pulse will travel through the sub-surface and reflect off boundaries of differing dielectric constants (contrasts of EM impedances). The reflected pulse returns to the surface and is recorded by a receiver and displayed in real-time as a cross-sectional image. Only by moving the antennas along a profile directly over the targets can the locations and depths be determined. Examples of radar reflecting boundaries include air/water (water table); water/earth (bathymetry); earth/metal, PVC, or concrete (pipe locating); and differing earth materials (stratigraphic profiles, including bedrock profiles).

The depth of investigation is controlled by the frequency and power of the antenna limited by attenuation and diffraction of the radar signal. Lower frequency antennas provide greater depth penetration at the expense of resolution. The radar signal is attenuated by conductive ground materials (e.g. clays, dissolved salts etc.). The radar signal is diffracted by irregular shaped material (e.g. boulders, debris etc.) that prevents the clear return of the reflected pulse.

More information on the georadar operating principle can be found in Appendix B.

Survey Design

The georadar data were collected with a MALA Ground Explorer system and 160 MHz antenna. This antenna provides a favourable trade off between depth and resolution for ice detection. As well, this antenna has sufficient durability for the terrain and weather conditions for Baffin Island.

Positioning for the georadar survey was controlled by built-in GPS receiver.

Interpretation Method

Processing of the radar images involved basic horizontal normalization, elevation corrections and gain adjustments.

The vertical scale on all radar images is a two-way time scale representing the time taken for a radar pulse to transmit to a reflector and back to the receiver. In order to convert the time scale to a depth scale a signal velocity must be applied. The velocity with which the pulse travels through the given material is determined by the dielectric constant. This dielectric will vary with the type of material.

Calculating a velocity can be done in many ways but the most reliable method is with a test pit or borehole where the real rock contact can be exposed. Based on in-situ measurements or borehole data, the dielectric value can be approximated depending on the expect material type. An underestimate of the dielectric will result in an over estimate of the signal velocity and in turn an over estimate of the depths. For this site a dielectric of 4 (velocity of 15 cm/ns) was assumed based on the expected soil type and tables of relative dielectric values for commonly encountered materials. In this case the materials were mostly frozen granular/boulders with high ice content.

Interpretation of the data is based primarily on the qualitative analysis of three characteristics of radar reflections: continuity, amplitude and shape. The interpreter then identifies reflectors and textures within the radar records that represent subsurface contacts, objects or zones. The true nature of the interpreted features can only be assumed without corroborating evidence.

Ice bodies have a distinctive appearance on radar images. Granular host material appears as "noise" on the images, whereas uniform ice layer looks transparent with clearly defined top and bottom contacts and can be confidently identified. An example of a uniform ice lens is presented in Figure 2.

Non-uniform ice bodies (stratified or containing layers of soil) are more challenging for interpretation since structure irregularities create multiple reflections within the ice body. Often a borehole is needed to confirm the presence of ice. Other features such as increasing depth of investigation in the presence of thick ice layer may corroborate the interpretation.

In summary, ability of georadar is limited by the structure of the ice layer being surveyed and its composition. The identification of an ice layer may be impacted by irregularities inside the ice body, such as layering, fractures and soil inclusions. However, it is possible to create two categories of ice lenses, the obvious and less obvious that may need some ground truthing.

3 RESULTS

3.1 Subsurface Ice Mapping

Georadar data was collected at nine sites approximately at Km 0, 19.4, 20.5, 39.5, 49.3, 82.2, 97.0, 100.1 and 109 along the proposed rail alignment.

Locations of the survey lines and results of the georadar survey are presented in drawings GPR17 – MILNE INLET, GPR17 –KM19, GPR17 –KM20, GPR17 –KM39.6, GPR17 –KM49, GPR17 –KM82.2, GPR17 –KM97, GPR17 –KM100.1, GPR17 –KM109.

KM 0 - GPR17 - MILNE INLET

Multitude of survey lines conducted in the Milne Port area with no evidence of the presence of ice. Georadar penetration of the surface appeared shallow with poor signal attenuation, possibly due to material used for subsurface in port area. Total distance of 1.2km covered.

KM 19 - GPR17 - KM19

Two main survey lines conducted. No apparent ice presence in area. Area was not explored further due to time constraints. Total distance of 1.0km covered.

KM 20 - GPR17 - KM20

No apparent ice presence in area. Grid-like survey conducted to further explore region for ice; two further longitudinal lines, with three additional perpendicular cuts. Total distance of 2.9km covered.

KM 39.6 - GPR17 -KM39.6

No apparent ice presence in area. Latitudinal cuts conducted to further explore region for ice. No longitudinal lines due to topographic obstacle in area. Total distance of 1.5km covered.

KM 49 - GPR17 -KM49

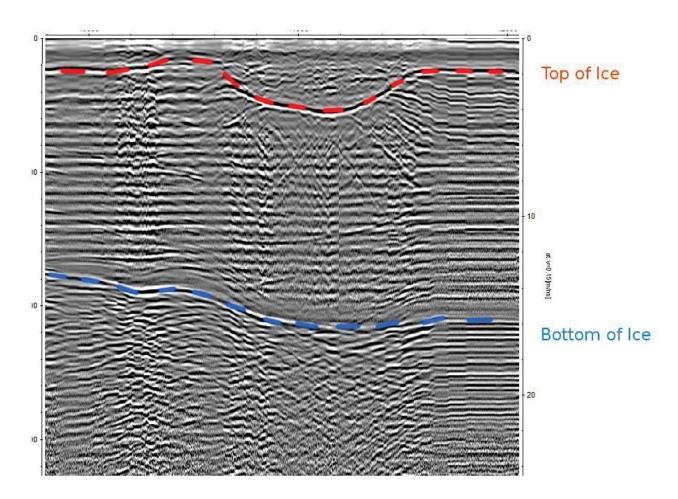
Ice found in region, explored with additional lines where possible. Survey lines constrained due to topography and water in area. Total distance of 4.5km

KM 82.2 - GPR17 -KM82.2

No apparent ice presence in area. Due to distance from tote-road and time constraints no additional surveying was conducted in this area. Total distance of 200m covered.

KM 97 - GPR17 - KM97

No apparent ice presence in area. Area heavily constrained by topographic change. Additional survey lines done around topography to ensure safety maintained. Total distance of 2.2 km covered.


KM 100.1 - GPR17 -KM100.1

No apparent ice presence in area. Area constrained by water. Additional survey lines conducted in area. Total distance of 1.2km covered.

KM 109 - GPR17 -KM109

No apparent ice presence in area. Area constrained by topographic change. Additional survey lines conducted in area. Total distance of 1.2km covered.

Figure 2: Interpreted georadar image showing a typical ice body

4 **CONCLUSIONS**

A geophysical investigation involving Georadar was carried out at the Mary River Project, Baffin Island, Nunavut.

Subsurface ice mapping was carried out at nine sites along the proposed rail alignment. Results of the survey are presented in Drawings GPR17 – MILNE INLET, GPR17 – KM19, GPR17 – KM20, GPR17 – KM39.6, GPR17 – KM49, GPR17 – KM82.2, GPR17 – KM97, GPR17 – KM100.1, GPR17 – KM109. Ice was only found in Km 49, seen in drawing GPR17-KM49.

Interpretation of the geophysical data has been performed by Mauritz van Zyl. This report has been written by Milan Situm, P.Geo.

PRACTISING MEMBER

Milan Situm, P.Geo.

Mila Stur

Manager

APPENDIX A

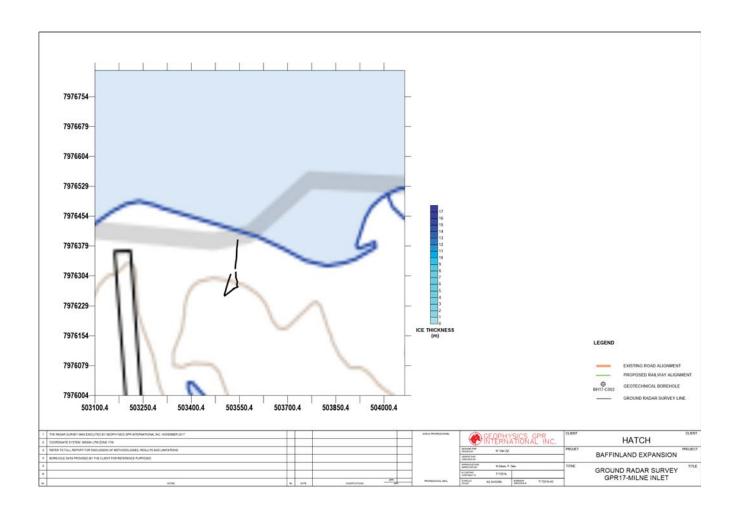
Drawings GPR17 – MILNE INLET,

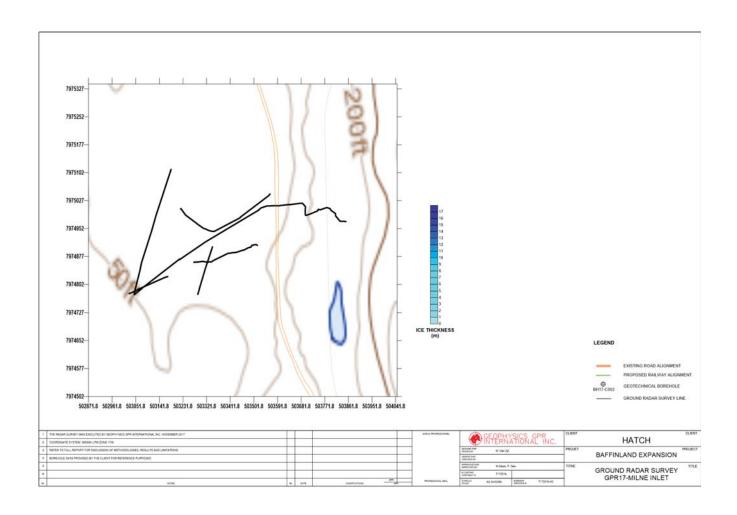
GPR17-KM19,

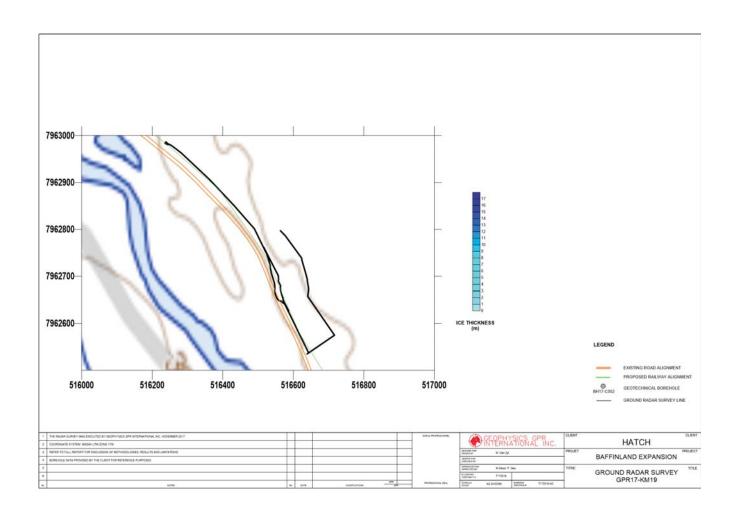
GPR17-KM20,

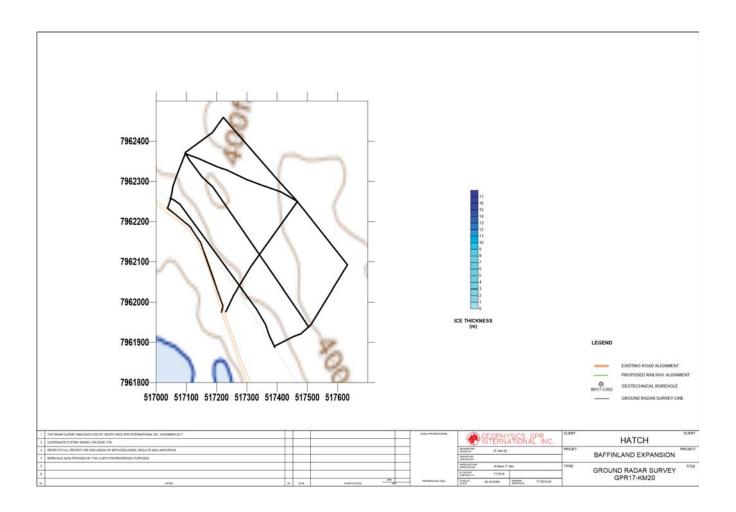
GPR17 -KM39.6,

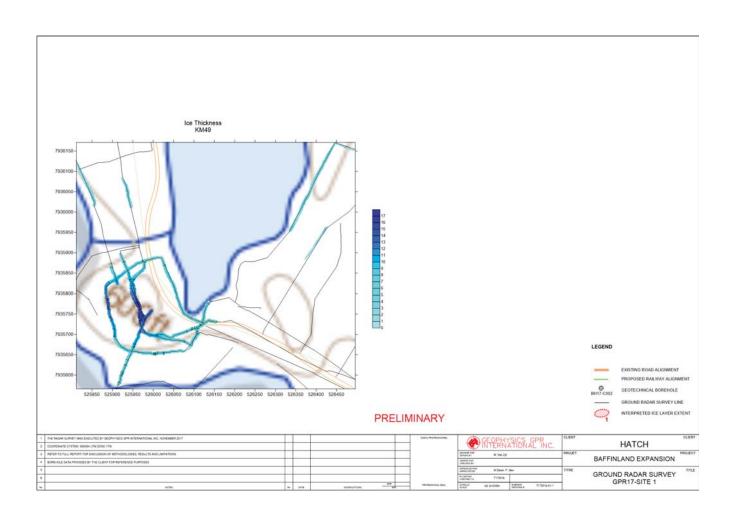
GPR17-KM49, Ice was only found in Km 49, seen in drawing GPR17-KM49.

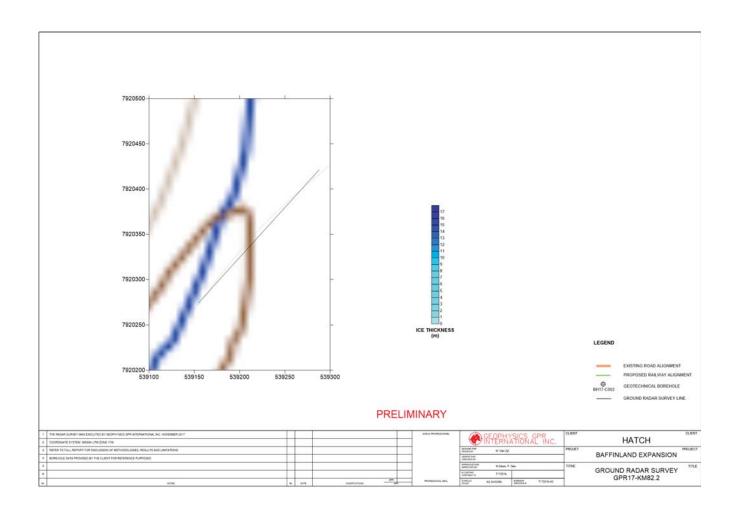

GPR17 - KM82.2,

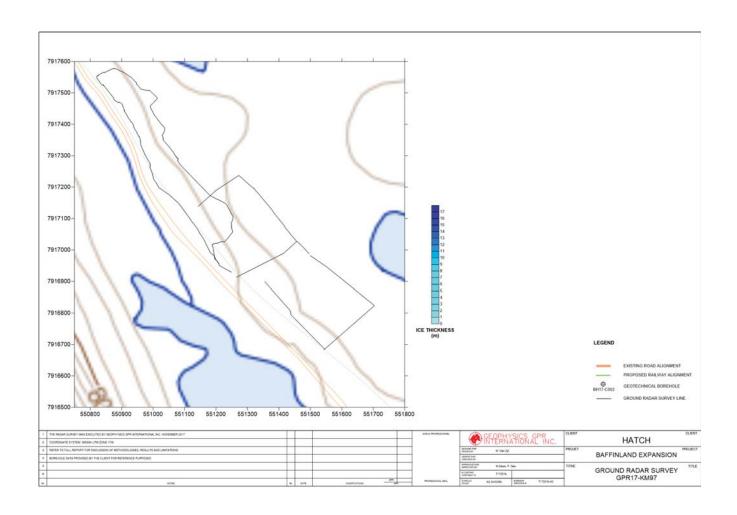

GPR17 - KM97,

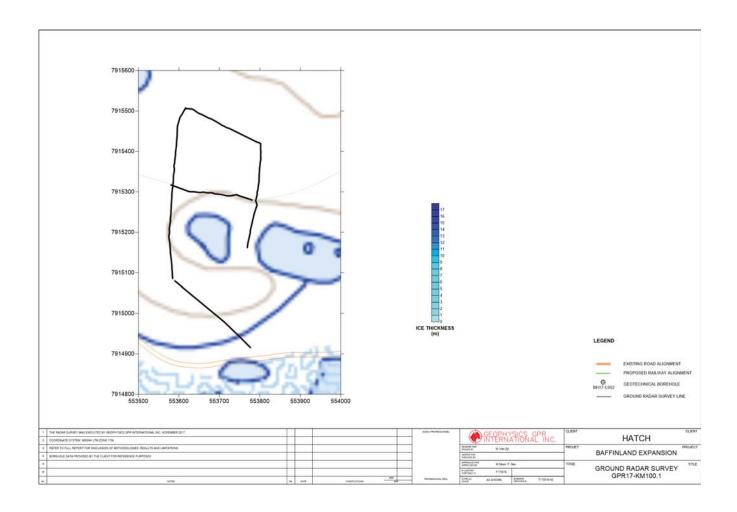

GPR17 -KM100.1,

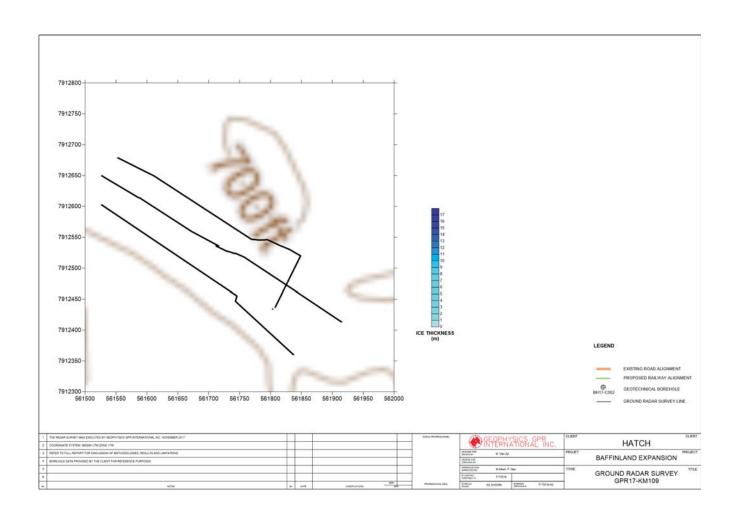

GPR17-KM109.

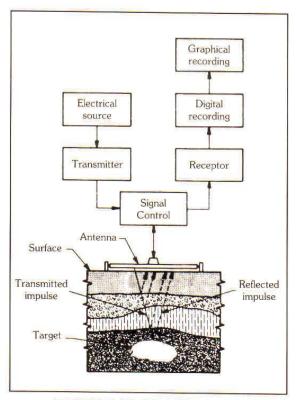








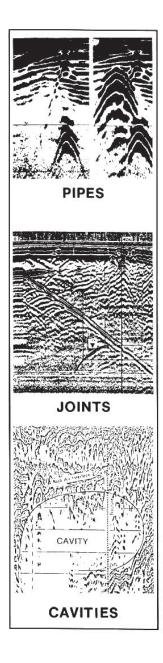




APPENDIX B

Additional Georadar information

GEORADAR


As indicated by its name, georadar combines high resolution radar with geology. The underlying principle is based on the propagation of electromagnetic wave impulses (VHF) that are reflected by anomalies in the terrain (joints, irregularities, interfaces, etc.) at different depths, and then captured by the antenna. The georadar records the time taken by each transmitted signal to complete the cycle in order to calculate the depth of the anomaly. The result is similar to a seismic reflection profile where all the reflections are displayed graphically. This technique is used to solve problems for which there had previously been no practical solution.

PRINCIPLES OF GEORADAR

FEATURES

- Penetration of more than 20 metres in certain materials (penetration being inversely proportional to conductivity).
- Surveying in continuous mode.
- Identification of objects measuring only a few centimeters.
- Light and manoeuvrable equipment.
- Detection of conductivity, open spaces and/or holes (cavities).
- Detection of breaks: faults, fractures, joints, cavities.
- Results similar to seismic reflection: continuous underground profile.
- Results available immediately.
- Can be used in land, sea or airborne surveys.

FIELDS OF APPLICATION

Civil Engineering / Mining Exploration-Exploitation / Research / Archaeology / Environment

- Geotechnology: investigation of soils and surface deposits.
- Optimal selection of anchor bolts in mines and quarries.
- Detection of buried pipes before beginning excavation.
- Detection of liquid or gas leakage in soils.
- Detection of cracks in concrete structures.
- Checking material homogeneity.
- Detection of cavities beneath road pavement.
- Determination of water saturation level.
- Detection of girders in reinforced concrete.
- Detection of pollutant leakage in water bodies.
- Inspection of buried disposal sites and or dangerous deposits.
- Continuous measurement of ice thickness.
- Archaeological research: ancient foundations, artifacts.
- Non-destructive method for measuring road pavement thickness.
- Localization and measurement of soil's thickness (swamps, peat bogs).
- Determination of rock beddings (location and thickness).
- Bathymetric studies (depth sounding).
- Calculation of the thickness of permafrost and ice.
- Geotechnical studies for the installation of aqueducts.

SPECIAL FEATURES

The equipment is practical, easy to manoeuvre, and multi-faceted. The field of application of georadar continues to expand in various sectors, particularly in geotechnology (aqueducts), civil engineering (excavation, structures) and mining (structures).

MALÅ GroundExplorer

GROUND PENETRATING RADAR

GPR with exceptional range and resolution

MALÅ GroundExplorer (GX) is an integrated GPR solution with four MALÅ GX antenna options: GX80, GX160, GX450 and GX750. Through unique hyperstacking HDR technology, MALÅ GX offers significantly faster data acquisition rates, with outstanding signal-to-noise ratio and depth penetration. An easy-to-use GPR solution on a rugged platform, with excellent detection capabilities for a wide range of applications.

MALÅ GX CONTROLLER

 Processor
 1.6 GHz Intel Atom

 Display
 1024 x 768 mm

OS Linux

Memory 8 GB compact Flash memory

Data output resolution 32 bit

Comms Ethernet, WiFi (optional), USB 3.0, RS232 (serial)

GPS Integrated support for built-in GPS, or external GPS

via USB/serial port (NMEA 0183 protocol)

Power supply Internal 12V/20.8 Ah Li-Ion battery,

or any external 10-15 V DC source

Charger Internal. Unit can also be charged from any external

12 - 15 V DC source

 Power consumption
 1.3 - 2.0 A

 Operating time
 8 - 10 h

Dimensions 326 x 216 x 92 mm including handles

326 x 216 x 52 mm excluding handles

Weight 3.2 kg

Operating temp - 20° to + 50° C or 0° to 120° F

Environmental IP 65

GX WIFI OPTION

Wireless standard: IEEE802.11 g
Power consumption: 0,3 A

MALÂ GX ANTENNAS

MALÁ GX750 HDR

Technology MALA Semi-Real- Time pat pending

 Antenna center freq.
 750 MHz

 SNR
 97 dB

 No. of bits
 16 bit

 Scans/second
 > 1290, time window 75 ns

 Survey speed
 460 [km/h] point distance 10 cm

 Bandwidth
 120%, fractional, -10 dB

Time window 75 ns

Positioning Built-in DGPS, external GPS

(NMEA 0183 protocol),

Operating time 5 h

Power supply Interchangeable 12 V

Li-Ion batt, or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 375 x 235 x 170 mm

Weight 3.6 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 65

MALA GX450 HDR

Technology MALA Semi-Real-Time pat pending

Antenna center freq. 450 MHz SNR 101 dB No. of bits > 16 bit

 Scans/second
 > 770, time window 300 ns

 Survey speed
 275 [km/h] point distance 10 cm

 Bandwidth
 >120%, fractional, -10 dB

Time window 300 ns

Positioning Inbuilt DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h
Power supply Interchangeable 12 V

Li-Ion batt, or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 430 x 360 x 180 mm

Weight 5.5 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 65

MALÂ GX160 HDR

Technology MALA Semi-Real-Time pat pending

Antenna center freq. 160 MHz SNR > 107 dB No. of bits > 17 bit

 Scans/second
 > 880, time window 625 ns

 Survey speed
 320 [km/h] point distance 10 cm

 Bandwidth
 >120 %, fractional, -10 dB

Time window 625 ns

Positioning Inbuilt DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h

Power supply Interchangeable 12 V Li-Ion batt.

or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual 720 x 480 x 190 mm

Weight 10.7 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 6

MALÂ GX80 HDR

Technology MALÅ Semi-Real-Time pat pending

Antenna center freq. 80 MHz

SNR > 114.4 dB

No. of bits > 19 bit

 Scans/second
 > 1200, time window 812 ns

 Survey speed
 430 [km/h] point distance 10 cm

 Bandwidth
 >120 %, fractional, -10 dB

Time window 812 ns

Positioning Built-in DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h

Power supply Interchangeable 12 V Li-lon batt.

or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 1010 x 780 x 220 mm

Weight 24,6 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 65

ABEM MALA

Guideline Geo is a world-leader in geophysics and geo-technology offering sensors, software, services and support necessary to map and visualize the subsurface. Guideline Geo operates in four international market areas: Infrastructure – examination at start-up and maintenance of infrastructure, Environment – survey of environmental risks and geological hazards, Water – mapping and survey of water supplies and Minerals – efficient exploration. Our offices and regional partners serve clients in 121 countries. The Guideline Geo AB share (GGEO) is listed on NGM Equity.

GEOPHYSICS GPR INTERNATIONAL INC.

GEOPHYSICAL INVESTIGATION FOR BAFFINLAND RAILWAY, MARY RIVER PROJECT, NUNAVUT

PREPARED FOR: Baffinland Iron Mines Corporation

Presented to:

HATCH

4342 Queen Street, Suite 500 Niagara Falls, Ontario L2E 7J7

6741 Columbus Road, Unit 14
Mississauga (Ontario) L5T 2G9
Tel.: +1 905.696.0656
info@geophysicsgpr.com
May 2018
T-18552

Geophysics GPR International Inc.

May 2018

TABLE OF CONTENTS

<u>1 INTRODUCTION</u>
2 METHODOLOGY3
2.1 Positioning, Topography and Units of Measurement3
2.2 Ground Penetrating Radar (Georadar)5
3 RESULTS6
3.1 Subsurface Ice Mapping6
4 CONCLUSIONS
<u>Index of Figures</u>
Figure 1: Overview map of the investigation area
Tigule 1. Overview map of the investigation area.
Figure 2: Interpreted georadar image showing a typical ice
Index of Tables
<u>Index of Tables</u>
Table 1: UTM coordinates of GPR survey lines
Table 1: U I W Coordinates of GPK survey lines

<u>List of Appendices</u>

 $\label{eq:appendix} A-DRAWINGS\ GPR18_SITE_A,\ GPR18_SITE_B,\ GPR18_SITE_C,\ GPR18_SITE_D,\ GPR18_SITE_E,\ GPR18_SITE_F.$

APPENDIX B – Georadar Fact Sheet

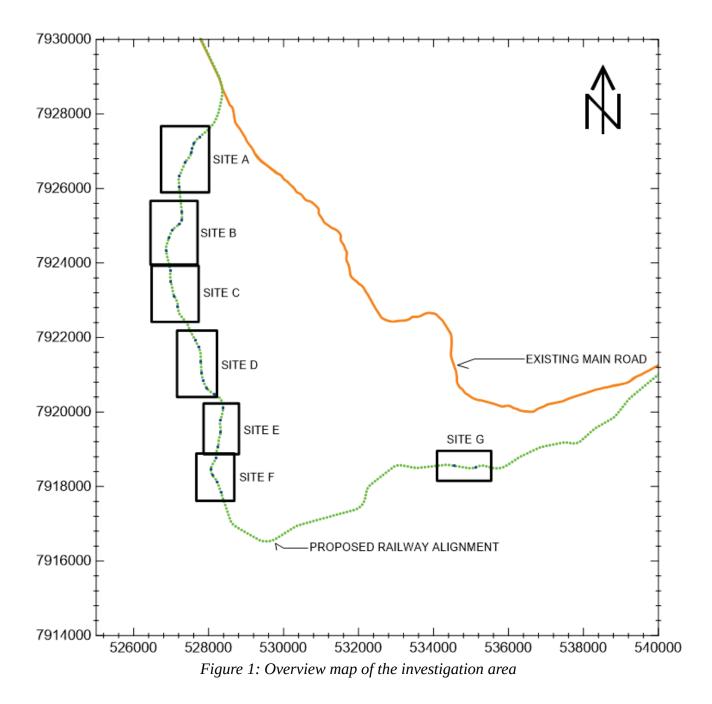
1 INTRODUCTION

Geophysics GPR International Inc. was requested by Hatch Ltd. to carry out a geophysical survey to aid in projection and planning of a proposed railway for the Mary River Project, Baffin Island, Nunavut.

The purpose of this investigation was to determine the extent of, as well as the thickness of subsurface ice.

The ground penetrating radar (georadar) method was applied to determine the presence of ice and calculate its thickness.

Data was collected from April 16 to May 2, 2018.


The investigation included the following:

- 1. Georadar mapping of subsurface ice at seven sites across the 'deviation' of the proposed rail alignment.
- 2. Further exploration with gridded georadar lines were conducted in regions of ice to delineate the extent.

Figure 1 presents an overview map of the investigation area with the locations of the respective sites.

The following report describes the various aspects of the survey including field techniques, survey design, interpretation techniques, and finally an interpretation in the form of ice thickness maps.

2 METHODOLOGY

2.1 Positioning, Topography and Units of Measurement

The emplacement of the survey areas was determined by the client.

The locations of the georadar survey lines for the purpose of subsurface ice mapping were oriented to align with the design of the proposed railway. Length and number of the lines were chosen based on in-field interpretation of georadar data. Positioning was controlled by the GPS device integrated into the georadar antenna. The UTM coordinates should be accurate to within ± 1.00 m.

Table 1: UTM coordinates of GPR survey lines

<u>Point</u>	<u>Chainage</u>	Northing	Easting	
Site A				
a	58.9	7927382.002	527756.0006	
b	59.1	7927213.037	527611.0001	
С	59.2	7927079.046	527557	
d	59.3	7926949.981	527539.0009	
e	59.7	7926703.946	527376.0013	
f	60.1	7926329.02	527225.0004	
Site B				
a	60.4	7926033.002	527218.0006	
b	61	7925358.001	527285.0006	
С	61.2	7925154.024	527288.0003	
d	61.4	7925033.038	527212.0001	
e	61.6	7924885.943	527029.0013	
f	61.9	7924671.045	526944	
g	62.2	7924334.034	526861.0002	
h	62.7	7923796.949	526977.0012	
i	63	7923502.003	526993.0006	
j	63.5	7923106.979	527087.0009	

k	63.8	7922823.019	527178.0004		
Site C					
a	64.7	7921919.978	527644.0009		
b	64.9	7921741.995	527734.0007		
Site D					
a	65.3	7921350.032	527795.0002		
b	65.6	7921050.977	527812.0009		
Site E					
A	65.8	7920854.939	527851.0014		
В	66	7920630.979	527956.0009		
С	66.3	7920475.027	528152.0003		
Site F					
a	66.9	7920106.987	528386.0008		
b	67.2	7919773.977	528306.0009		
С	67.5	7919452.95	528323.0013		
d	68	7919071.027	528247.0003		
e	68.3	7918765.022	528193.0003		
f	68.6	7918471.991	528056.0007		
g	68.7	7918297.02	528103.0002		
h	69	7918131.944	528231.0014		
i	69.3	7917838.974	528329.001		
Site G					
a	77.4	7918561.942	534544.0017		
b	78	7918521.023	535132.0004		
		•			

The provided coordinates are NAD83/WGS84, UTM zone 17N.

The depth measurements are noted as depth from surface.

All geophysical measurements were collected in SI units.

In addition to Table 1, further georadar survey lines were created to further explore the given areas. These additional survey lines were generated in a grid-like fashion with the topography dictating the spacing of the lines.

2.2 Ground Penetrating Radar (Georadar)

Basic Theory

Georadar utilises radar technology to obtain a near-continuous profile of the subsurface. The basic principle is to emit an electromagnetic impulse into the ground at a predetermined frequency rate (typically 10 to 80 scans/second). This pulse will travel through the sub-surface and reflect off boundaries of differing dielectric constants (contrasts of EM impedances). The reflected pulse returns to the surface and is recorded by a receiver and displayed in real-time as a cross-sectional image. Only by moving the antennas along a profile directly over the targets can the locations and depths be determined. Examples of radar reflecting boundaries include air/water (water table); water/earth (bathymetry); earth/metal, PVC, or concrete (pipe locating); and differing earth materials (stratigraphic profiles, including bedrock profiles).

The depth of investigation is controlled by the frequency and power of the antenna limited by attenuation and diffraction of the radar signal. Lower frequency antennas provide greater depth penetration at the expense of resolution. The radar signal is attenuated by conductive ground materials (e.g. clays, dissolved salts etc.). The radar signal is diffracted by irregular shaped material (e.g. boulders, debris etc.) that prevents the clear return of the reflected pulse.

More information on the georadar operating principle can be found in Appendix B.

Survey Design

The georadar data were collected with a MALA Ground Explorer system and 160 MHz antenna. This antenna provides a favourable trade off between depth and resolution for ice detection. As well, this antenna has sufficient durability for the terrain and weather conditions for Baffin Island.

Positioning for the georadar survey was controlled by built-in GPS receiver.

Interpretation Method

Processing of the radar images involved basic horizontal normalization, elevation corrections and gain adjustments.

The vertical scale on all radar images is a two-way time scale representing the time taken for a radar pulse to transmit to a reflector and back to the receiver. In order to convert the time scale to a depth scale a signal velocity must be applied. The velocity with which the pulse travels through the given material is determined by the dielectric constant. This dielectric will vary with the type of material.

Calculating a velocity can be done in many ways but the most reliable method is with a test pit or borehole where the real rock contact can be exposed. Based on in-situ measurements or borehole data, the dielectric value can be approximated depending on the expect material type.

An underestimate of the dielectric will result in an over estimate of the signal velocity and in turn an over estimate of the depths. For this site a dielectric of 4 (velocity of 15 cm/ns) was assumed based on the expected soil type and tables of relative dielectric values for commonly encountered materials. In this case the materials were mostly frozen granular/boulders with high ice content.

Interpretation of the data is based primarily on the qualitative analysis of three characteristics of radar reflections: continuity, amplitude and shape. The interpreter then identifies reflectors and textures within the radar records that represent subsurface contacts, objects or zones. The true nature of the interpreted features can only be assumed without corroborating evidence.

Ice bodies have a distinctive appearance on radar images. Granular host material appears as "noise" on the images, whereas uniform ice layer looks transparent with clearly defined top and bottom contacts and can be confidently identified. An example of a uniform ice lens is presented in Figure 2.

Non-uniform ice bodies (stratified or containing layers of soil) are more challenging for interpretation since structure irregularities create multiple reflections within the ice body. Often a borehole is needed to confirm the presence of ice. Other features such as increasing depth of investigation in the presence of thick ice layer may corroborate the interpretation.

In summary, ability of georadar is limited by the structure of the ice layer being surveyed and its composition. The identification of an ice layer may be impacted by irregularities inside the ice body, such as layering, fractures and soil inclusions. However, it is possible to create two categories of ice lenses, the obvious and less obvious that may need some ground truthing.

3 RESULTS

3.1 Subsurface Ice Mapping

Georadar data was collected at seven sites along the proposed railway deviation. Most sites collected were in the Western region (Sites A - F).

Locations of the survey lines and results of the georadar survey are presented in drawings GPR18_SITE_A, GPR18_SITE_B, GPR18_SITE_C, GPR18_SITE_D, GPR18_SITE_E, and GPR18_SITE_F.

GPR18_SITE_A

Thin ice lenses were possibly detected – neither the shape nor reflection of georadar data appeared well. This could possibly indicate an ice lens with poor homogeneity or structural breakages. Area was explored with subsequent radar profiles; data continued to be generally poor in this area. Estimation of ice depth from surface; 5-8m.

GPR18_SITE_B

The data indicates a considerable amount of ice in this area with varying thickness. The thickest region appeared to have a 12m thick chunk. Estimation of ice depth from surface; 4 to 9m. Topography constrained ability to delineate further.

GPR18_SITE_C

Region appears rich in ice – delineation was able to encapsulate lenses. Estimation of ice depth from surface; 7 to 9m.

GPR18 SITE D

Region appears to have shallow and small ice lenses. Estimation of ice depth from surface; 4 to 5m.

GPR18 SITE E

Single possible ice lens found and delineated. Topography limited the amount of delineation possible. Estimation of ice depth from surface; 4 to 5m.

GPR18_SITE_F

Possible ice lenses found in area – region had poor signal attenuation. Topography also limited the amount of delineation possible. Estimation of ice depth from surface; 6m.

No ice found in Eastern end of delineation, chainage 77.4 to 78km.

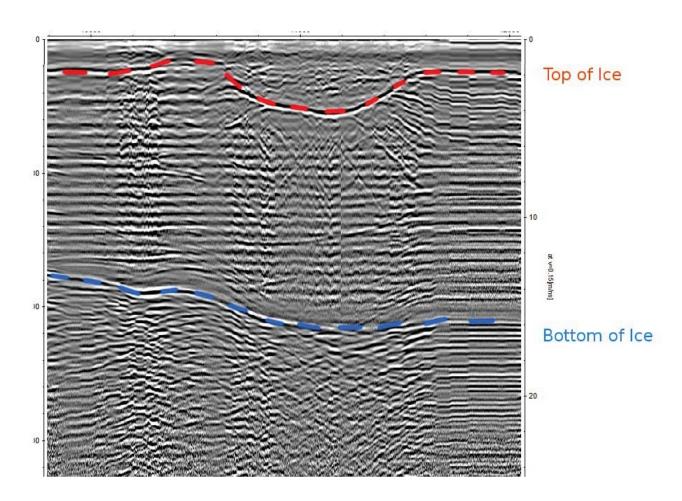


Figure 2: Interpreted georadar image showing a typical ice body

4 CONCLUSIONS

A geophysical investigation involving Georadar was carried out at the Mary River Project, Baffin Island, Nunavut.

Subsurface ice mapping was carried out at nine sites along the proposed rail alignment. Results of the survey are presented in Drawings GPR18_SITE_A, GPR18_SITE_B, GPR18_SITE_C, GPR18_SITE_D_GPR18_SITE_E, and GPR18_SITE_F.

Interpretation of the geophysical data has been performed by Mauritz van Zyl. This report has been written by Milan Situm, P.Geo.

MILAN SITUM PRACTISING MEMBER

Milan Situm, P.Geo.

Milan Stun

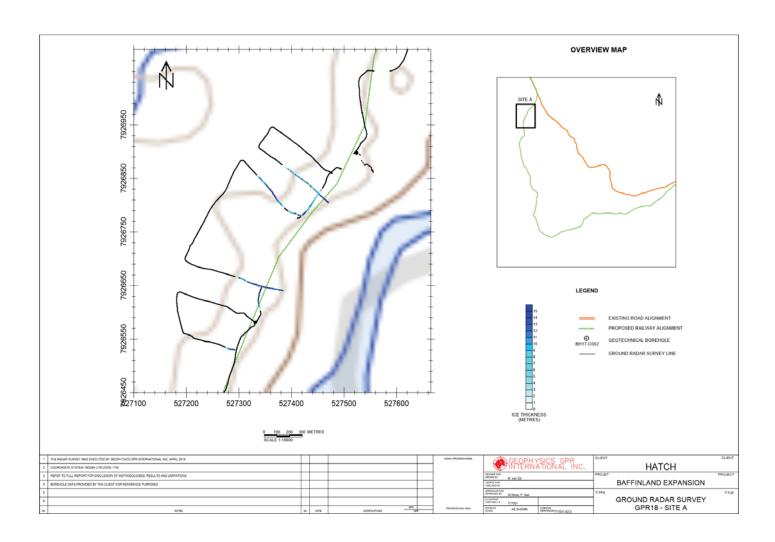
Manager

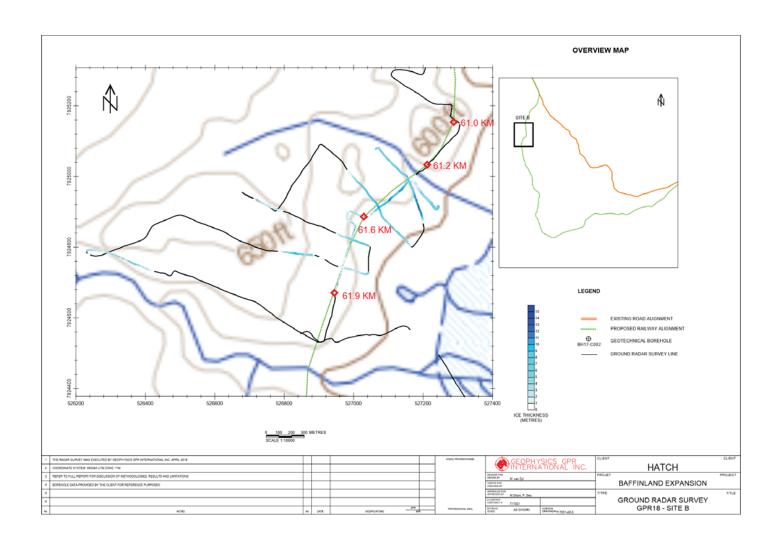
APPENDIX A

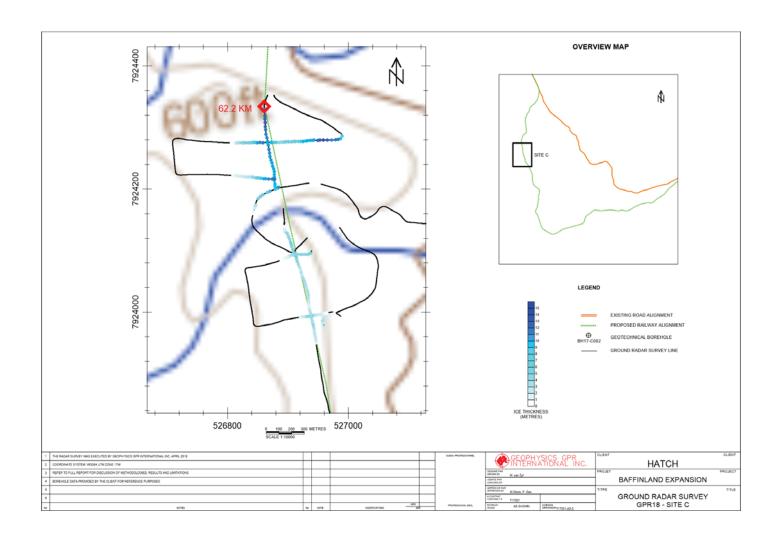
DRAWINGS

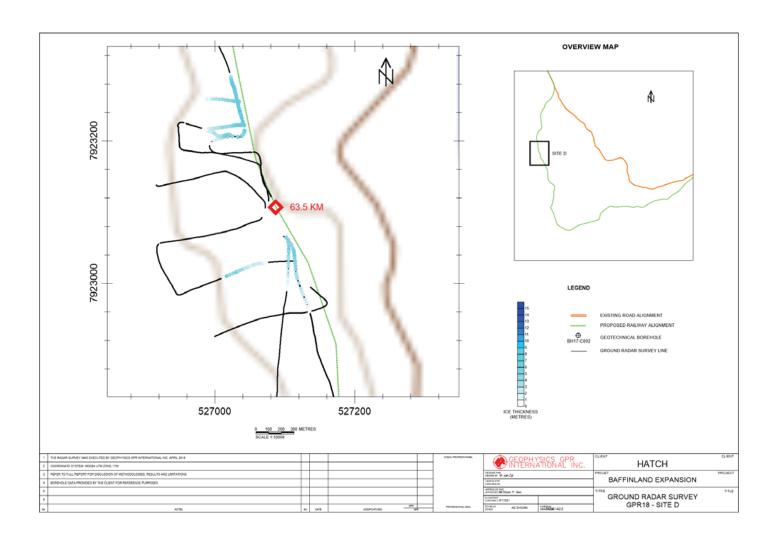
GPR18_SITE_A

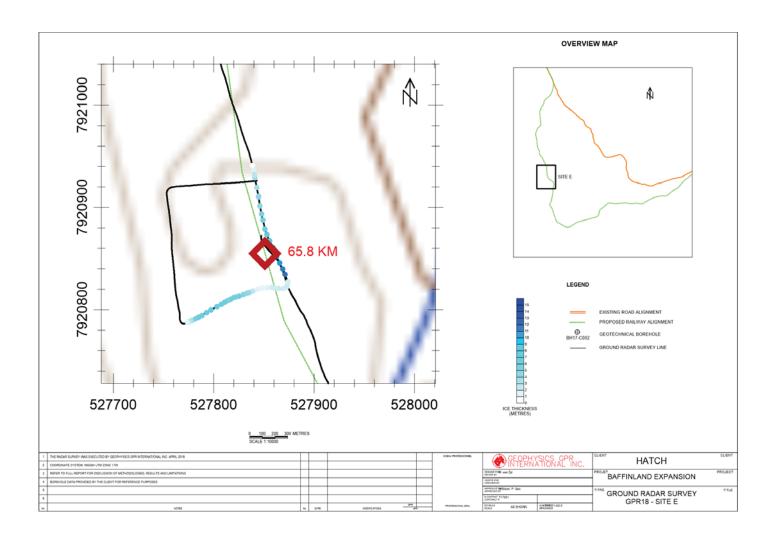
GPR18_SITE_B

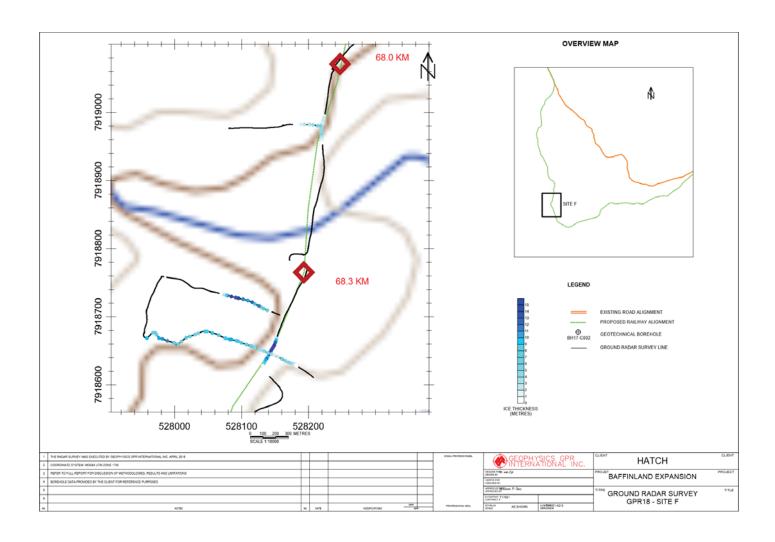

GPR18_SITE_C


 $GPR18_SITE_D$


GPR18_SITE_E


GPR18_SITE_F





APPENDIX B

Additional Georadar information

MALÅ GroundExplorer

GROUND PENETRATING RADAR

GPR with exceptional range and resolution

MALÅ GroundExplorer (GX) is an integrated GPR solution with four MALÅ GX antenna options: GX80, GX160, GX450 and GX750. Through unique hyperstacking HDR technology, MALÅ GX offers significantly faster data acquisition rates, with outstanding signal-to-noise ratio and depth penetration. An easy-to-use GPR solution on a rugged platform, with excellent detection capabilities for a wide range of applications.

MALÅ GX CONTROLLER

 Processor
 1.6 GHz Intel Atom

 Display
 1024 x 768 mm

OS Linux

Memory 8 GB compact Flash memory

Data output resolution 32 bit

Comms Ethernet, WiFi (optional), USB 3.0, RS232 (serial)

GPS Integrated support for built-in GPS, or external GPS

via USB/serial port (NMEA 0183 protocol)

Power supply Internal 12V/20.8 Ah Li-Ion battery,

or any external 10-15 V DC source

Charger Internal. Unit can also be charged from any external

12 - 15 V DC source

 Power consumption
 1.3 - 2.0 A

 Operating time
 8 - 10 h

Dimensions 326 x 216 x 92 mm including handles

326 x 216 x 52 mm excluding handles

Weight 3.2 kg

Operating temp - 20° to + 50° C or 0° to 120° F

Environmental IP 65

GX WIFI OPTION

Wireless standard: IEEE802.11 g
Power consumption: 0,3 A

MALÁ GX ANTENNAS

MALÁ GX750 HDR

Technology MALA Semi-Real- Time pat pending

 Antenna center freq.
 750 MHz

 SNR
 97 dB

 No. of bits
 16 bit

 Scans/second
 > 1290, time window 75 ns

 Survey speed
 460 [km/h] point distance 10 cm

 Bandwidth
 120%, fractional, -10 dB

Time window 75 ns

Positioning Built-in DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder erating time 5 h

Operating time 5 h
Power supply Interchangeable 12 V

Li-Ion batt, or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 375 x 235 x 170 mm

Weight 3.6 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 65

MALA GX450 HDR

Technology MALA Semi-Real-Time pat pending

Antenna center freq. 450 MHz SNR 101 dB No. of bits > 16 bit

 Scans/second
 > 770, time window 300 ns

 Survey speed
 275 [km/h] point distance 10 cm

 Bandwidth
 >120%, fractional, -10 dB

Time window 300 ns

Positioning Inbuilt DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h
Power supply Interchangeable 12 V

Li-Ion batt, or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 430 x 360 x 180 mm

Weight 5.5 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 65

MALÂ GX160 HDR

Technology MALA Semi-Real-Time pat pending

Antenna center freq. 160 MHz SNR > 107 dB No. of bits > 17 bit

 Scans/second
 > 880, time window 625 ns

 Survey speed
 320 [km/h] point distance 10 cm

 Bandwidth
 >120 %, fractional, -10 dB

Time window 625 ns

Positioning Inbuilt DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h

Power supply Interchangeable 12 V Li-Ion batt.

or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual 720 x 480 x 190 mm

Weight 10.7 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 6

MALÂ GX80 HDR

Technology MALÅ Semi-Real-Time pat pending

Antenna center freq. 80 MHz

SNR > 114.4 dB

No. of bits > 19 bit

 Scans/second
 > 1200, time window 812 ns

 Survey speed
 430 [km/h] point distance 10 cm

 Bandwidth
 >120 %, fractional, -10 dB

Time window 812 ns

Positioning Built-in DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h

Power supply Interchangeable 12 V Li-lon batt.

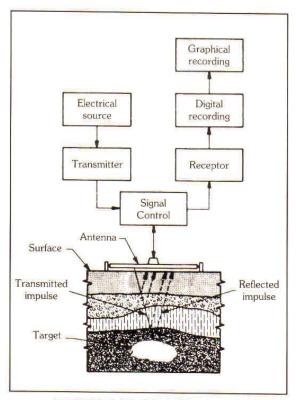
or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 1010 x 780 x 220 mm

Weight 24,6 kg

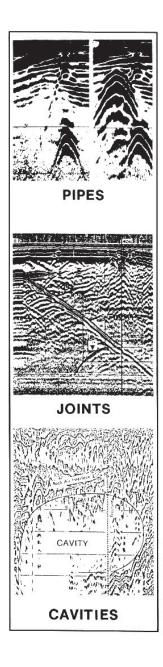
Operating temp. - 20° to + 50° C or 0° to 120° F


Environmental IP 65

ABEM MALA

Guideline Geo is a world-leader in geophysics and geo-technology offering sensors, software, services and support necessary to map and visualize the subsurface. Guideline Geo operates in four international market areas: Infrastructure – examination at start-up and maintenance of infrastructure, Environment – survey of environmental risks and geological hazards, Water – mapping and survey of water supplies and Minerals – efficient exploration. Our offices and regional partners serve clients in 121 countries. The Guideline Geo AB share (GGEO) is listed on NGM Equity.

GEORADAR


As indicated by its name, georadar combines high resolution radar with geology. The underlying principle is based on the propagation of electromagnetic wave impulses (VHF) that are reflected by anomalies in the terrain (joints, irregularities, interfaces, etc.) at different depths, and then captured by the antenna. The georadar records the time taken by each transmitted signal to complete the cycle in order to calculate the depth of the anomaly. The result is similar to a seismic reflection profile where all the reflections are displayed graphically. This technique is used to solve problems for which there had previously been no practical solution.

PRINCIPLES OF GEORADAR

FEATURES

- Penetration of more than 20 metres in certain materials (penetration being inversely proportional to conductivity).
- Surveying in continuous mode.
- Identification of objects measuring only a few centimeters.
- Light and manoeuvrable equipment.
- Detection of conductivity, open spaces and/or holes (cavities).
- Detection of breaks: faults, fractures, joints, cavities.
- Results similar to seismic reflection: continuous underground profile.
- Results available immediately.
- Can be used in land, sea or airborne surveys.

FIELDS OF APPLICATION

Civil Engineering / Mining Exploration-Exploitation / Research / Archaeology / Environment

- Geotechnology: investigation of soils and surface deposits.
- Optimal selection of anchor bolts in mines and quarries.
- Detection of buried pipes before beginning excavation.
- Detection of liquid or gas leakage in soils.
- Detection of cracks in concrete structures.
- Checking material homogeneity.
- Detection of cavities beneath road pavement.
- Determination of water saturation level.
- Detection of girders in reinforced concrete.
- Detection of pollutant leakage in water bodies.
- Inspection of buried disposal sites and or dangerous deposits.
- Continuous measurement of ice thickness.
- Archaeological research: ancient foundations, artifacts.
- Non-destructive method for measuring road pavement thickness.
- Localization and measurement of soil's thickness (swamps, peat bogs).
- Determination of rock beddings (location and thickness).
- Bathymetric studies (depth sounding).
- Calculation of the thickness of permafrost and ice.
- Geotechnical studies for the installation of aqueducts.

SPECIAL FEATURES

The equipment is practical, easy to manoeuvre, and multi-faceted. The field of application of georadar continues to expand in various sectors, particularly in geotechnology (aqueducts), civil engineering (excavation, structures) and mining (structures).

