

ATTACHMENT 5

DESIGN CRITERIA

- 5.1 Civil Design Philosophy5.2 Rail Design Criteria

ATTACHMENT 5.1

CIVIL DESIGN PHILOSOPHY

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

Civil Design Philosophy

			Dugo		Digitally signed by Stanger, Daniel DN: cn=Stanger, Daniel DN: cn=Stanger, Daniel Dn:	
2018-03-12	2	Approved for Use	F Hugo	A Grobbelaar	D Stanger	T Atiba
2017-08-01	1	Approved for Use	F Hugo	A Grobbelaar	N Mason	M Weaver
2017-03-23	0	Approved for Use	F Hugo	A Grobbelaar	J Cleland	M Weaver
Date	Rev.	Status	Prepared By	Checked By	Approved By	Approved By
	Client					

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

Table of Contents

1.	Introduction							
2.	Unit	s and Coordinate System	<i>'</i>					
3.	Refe	rences	<i>'</i>					
	3.1 3.2 3.3 3.4 3.5	Codes, Regulations and Standards General Roads Stormwater Management Reference Documents	2					
4.	Site	Development	3					
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Site Preparation Earthworks Site Grading Infrastructure Facilities, Pads and Laydown Areas Milne Port Stockpile Area Milne Port Design High Tide Retaining Walls Erosion and Sediment Control Quarry Blasting	6					
5.	Road	d Design	7					
		General Road Category Design Vehicle Geometric Design Criteria Pavement Thickness 5.5.7 Design Vehicles, Traffic Volume and Load Parking Signage Bollards Shoulder Barriers (Safety Berms/Guardrails) Utility Berms.	{ { { { { 1					
6.	Stor	mwater Management System	. 12					
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Allowance for Snow Melt Runoff Volume Internal Surface Drainage External Surface Drainage Peak Flow Estimation. Rainfall Intensity. Sedimentation Ponds / Pollution Control Ponds Stockpile Footprint 6.7.1 Stockpile No.1 Runoff. 6.7.2 Stockpile No.2 Runoff Culverts, Roadside Ditches and Berms Drainage Interceptor/Collector Berms	. 12 . 13 . 13 . 13 . 14 . 14					

Appendices:

Appendix A: Typical Layer Works

Appendix B: Document No. H349000-1000-10-122-0001 Civil Design Criteria

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

1. Introduction

This document establishes the Employers requirements for civil design and engineering for the Mary River Expansion Project.

This document is intended to address the key criteria required for the design of site infrastructure at Milne Inlet and the Mine Site.

2. Units and Coordinate System

- 2.1 The International System of Units (SI units and prefixes) shall be used for all design calculations and on all drawings.
- 2.2 The grid coordinates shall be based on: projection Universal Transverse Mercator (UTM) Zone 17 and horizontal datum NAD 83 Canadian Spatial Reference System (CSRS).
- 2.3 Vertical datum shall based on the Canadian Geodetic Vertical Datum of 1928 (CGVD28).

3. References

3.1 Codes, Regulations and Standards

3.1.1 Unless specifically stated otherwise, civil design shall be based on the applicable sections of the latest revisions of the following codes, specifications, standards, regulations and other reference documents. In addition, the design must comply with all laws or regulations of federal and Nunavut territorial authorities.

3.2 General

3.2.1 All applicable federal, territorial (Nunavut) and local laws and regulations:

•	OHSA	Occupational Health and Safety Act
•	CSA	Canadian Standards Association
•	MHSA	Mine Health and Safety Act (Nunavut – S.N.W.T. 1994)
•	OHSR	Occupational Health and Safety Regulations
•	NBCC	National Building Code of Canada (2010)
•	ASTM	American Society for Testing and Materials
•	ASCE	American Society of Civil Engineers
•	NFPA	National Fire Protection Association
•	NRC	Natural Resources Canada – Explosives Safety and Security Branch

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

3.3 Roads

•	TAC	Transportation Association of Canada – Geometric Design Guide for Canadian Roads
•	AASHTO	American Association of State Highway and Transportation Officials
•	USBM	Design of Surface Mine Haulage Roads – A Manual (US Department of the Interior, Bureau of Mines)
•	MSHA	Haul Road Inspection Handbook – MSHA Document Number PH99-I-4
•	MTO	Ministry of Transportation, Ontario – Ontario Traffic Manual.

3.4 Stormwater Management

•	MOE	Ministry of the Environment – Stormwater Management Planning and Design Manual
•	MTO	Ministry of Transportation, Ontario – Drainage Manual
	CDA	Canadian Dam Association – Dam Safety Guidelines

3.5 Reference Documents

Reference will be made to/contents have been used as general guidance from the following documents, articulated during the previous phases of the project, during the development of these criteria:

- H337697-0000-10-122-0001: Stormwater Management and Drainage System Design
- H337697-6170-10-122-0001: Milne Port Drainage System and Stormwater Management Ponds
- H337697-6170-10-122-0002: Mine Site Drainage System, Stormwater and Sediment Management
- H337697-0000-15-124-0004: Geotechnical Data Report Infrastructure
- Standard Specification S311213: Quarried Fill Materials
- Standard Specification S003120: Site Conditions
- NB 102-181/30-7: Baseline Hydrology Report, Knight Piesold, Jan 04, 2012
- Updated Design Peak Flow Assessment. Knight Piesold, 2016
- BIM Early Revenue Phase Tote Road Design Criteria
- H349000-1000-10-122-0001: Civil Design Criteria
- Final Environmental Impact Statement (FEIS), Mary River Project, February 2012
- Nunavut Impact Review Board (NIRB) Project Certificate (No.:005), December 28, 2012
- H349000-2133-10-220-0001: Runoff Coefficient for the Milne Port Ore Stockpile Pad, Project Memo
- H349000-1000-10-220-0001: Stormwater Sedimentation Pond Design Criteria, Project Memo

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

- E349000-1000-00-124-0005: Design Brief Milne Inlet Landfarm, November 2012, EBA File E14101174.
- H353004-00000-228-066-0001: Mary River Snowmelt + Rainfall Frequency Analysis.

<u>/2</u>\

4. Site Development

Site development refers to construction of civil infrastructure to support construction and operation of facilities. The following sections list the site development activities and establish criteria that shall be adhered to when carrying out site development design works.

All site development including toe lines of pads and roads shall be designed and positioned so that it is not closer than 31m from the edge of a stream or waterbody. The edge of a stream or water body shall be defined by using the existing surface obtained from the 1m density lidar survey (2016).

4.1 Site Preparation

- 4.1.1 Temporary drainage systems shall be provided at construction areas prior to construction activities taking place as required to control surface runoff.
- 4.1.2 During the summer months, wetlands or areas with standing water shall be drained and the drying of such shall be promoted prior to construction. Watercourses shall be re-routed with the use of cut-off ditches, or re-aligned engineered channels.
- 4.1.3 Waste material shall be stockpiled in designated areas with the appropriate erosion and sedimentation control measures in place.

4.2 Earthworks

- 4.2.1 Earthworks is defined as the activity of moving soil and/or rock. Earth-moving activities are required to obtain the required design elevations of the ground surface. Earthworks includes cut (if required) and fill for roads, buildings and equipment pads, utility berms, foundation excavation, and construction of ditches, diversion channels and berms, dikes, etc. Earthworks shall be carried out in accordance with the following general guidelines:
 - Existing unsuitable soils shall be removed and replaced with suitable material to be decided by the Resident Engineer
 - Fill materials shall be placed and roller compacted over the proof-rolled subgrade to achieve adequate bearing capacities, as required for specific construction activities
 - Rocks/boulders and similar objects adjacent to areas which shall undergo excavation must be removed or secured, if they potentially endanger workers/machinery.
- 4.2.2 Table 4-1 provides the minimum slope ratios that shall be used in permanent cuts/excavations or fills/embankments. It must be noted that specific studies must be carried out by geotechnical engineers, if these slopes are to be modified with the aim of lowering costs of cut and/or fill.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

Table 4-1: Minimum Slope Ratios

Type of Earthworks	Layer	Ratio H:V
	Overburden (ice-rich)	2:1
Permanent unsupported cuts	Overburden (non-ice-rich)	1.5:1
	Rock (less than 4m)	1:8
	Granular fill	1.5:1
Permanent fills (on natural, firm	Base and Subbase	1.5:1
ground)	Rock fill	1.5:1
ground)	Frozen Permafrost (During 1	1:8
	winter)	

Notes:

- The maximum heights and ratios shall be determined considering slopes with typical geometry and no surcharge.
- The above-listed parameters serve as minimum requirements, and shall be updated/modified based on confirmation/update of the site-specific conditions and/or geotechnical recommendations, or as per BIM's directions.
- Any geometry and load condition not covered by the table above shall be reviewed by the geotechnical engineer.
- 4. The granular fill is assumed to be in a drained condition.
- If the total fill height is greater than 2 m, geotechnical stability analysis and benching requirements shall be considered on a case-specific basis.
- 6. For overburden cut/fill heights of greater than 5 m, 1.5 m wide benching with minimum 2% cross slope shall be provided.
- 7. The absolute minimum fill slope for granular material is 1.5H:1V. However, the desirable slope is 2H:1V.
- 8. The absolute minimum fill slope for rock fill material is 1.25H:1V. However, the desirable slope is 1.5H:1V.
- 9. For the haul road, the fill side slopes shall be 2H:1V, depending on the site conditions and slope stability.
- 10. Stability assessments of some cut and fill slopes may be required.
- 11. For rock cut heights greater than 4 m, 1H:4V slope shall be used with 2 m wide benching and minimum 2% cross slope at every 6 m.
- 4.2.3 Pits, trenches and similar which will later be stabilized by backfill shall be excavated at a safe slope as determined by the field engineer. Slope ratios listed in Table 4-1 shall be used for planning purposes. Slope ratio of 1:8 shall be used for planning purposes for frozen permafrost ground excavated and backfilled during winter.
- 4.2.4 In general, cut activities in permafrost shall be avoided/minimized. However, cut may be required to reduce large fills and high embankments that may affect/endanger slope stability. In addition, within areas where the cut materials can be reused as fill, the suitability of performing cuts in the native soil shall be reviewed by BIM and the geotechnical engineer for requirements of soil treatment/improvement, including geogrids and geotextiles, prior to implementation into the final design.

4.3 Site Grading

- 4.3.1 If applicable, finish grade elevations for roads and yards shall be set a minimum of 100 mm below the finish floor elevation of buildings/sheltered areas, with local ramps provided at doorways, as required.
- 4.3.2 Finish grading and yard grading shall be set to slope away from planned structures at a minimum of 0.5% to 2%, and drain to a storm drainage collection system. For very long-run and localized areas, the slope shall be reduced or increased, depending on the existing ground slope and the grading around the buildings and facilities.
- 4.3.3 Site grading shall produce a useable and easily maintainable ground surface, not subject to flooding or erosion. The rough grades and finish grades shall adhere to the following:

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

- Final road and site grades shall ensure suitable pedestrian and vehicular access to buildings and facilitate adequate drainage of the site
- Building floor elevations shall be established such that the ground floor of the buildings will not be subject to flooding in the event that the storm drainage system fails
- Elevations of buildings/sheltered areas shall be established to permit gravity connections into sanitary sewers if possible, to avoid the need for pumps.

4.4 Infrastructure Facilities, Pads and Laydown Areas

- 4.4.1 Temporary/permanent equipment and construction material laydown areas shall be provided as per the applicable Contract Drawings. The sizes of the footprints shall be optimized to keep disturbed areas to a minimum and still provide enough room for storage of material/equipment and circulation of mobile cranes/vehicles.
- 4.4.2 The subgrades shall be prepared via cut/fill activities prior to pavement installation/placement. The following material shall be used:
 - Type 12 (ROQ 600mm minus).
- 4.4.3 In general, following attainment of the subgrade, the pavement shall be laid on top, with the following minimum thicknesses/material types for infrastructure facility pads and other areas:
 - 300 mm, Type 8 (150 mm minus) base
 - 100 mm, Type 5 (32 mm minus) wearing surface course.
- 4.4.4 Temporary construction pads shall be constructed with:
 - Minimum 300mm fill Type 8 for fill depth <600mm or Type 12 for fill depth>600mm
 - 100 mm, Type 5 (32 mm minus).
- 4.4.5 Depending upon the area and specific requirements such as insulation for permafrost protection, the minimum pavement thicknesses and placement of wearing courses may differ from the above-listed.
- 4.4.6 Sub-grade insulation shall be installed under the footprint of all slab-on-grade and similar buildings to reduce heat transfer into the underlying permafrost. Sub-grade insulation shall comply with geotechnical recommendations.
- 4.4.7 Refer to Appendix A for typical layer works.

4.5 Milne Port Stockpile Area

- 4.5.1 The lump ore stockpile (Stockpile No. 2) shall be situated on an earthworks platform that shall be used as a laydown area before the stockpile becomes operational. The laydown area shall be designed to be a minimum of 300mm below the reclaim level.
- 4.5.2 The fine ore stockpile (Stockpile No. 1) shall be situated on the existing stockpile area. Additional earthworks will be constructed where required to ensure that there is sufficient area for the stockpile placement.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

4.6 Milne Port Design High Tide

- 4.6.1 The design High Tide levels for the Project shall be as follows:
 - The Higher High Water Level (HHWL) for large tides at the Milne Port is +2.3 m above Chart Datum (CD) which corresponds to +1.1 m above Mean Sea Level (MSL)
 - The Highest Astronomical Tide (HAT) at the Milne Port is +2.4m above CD which corresponds to +1.2 m above MSL
 - The Lower Low Water Level (LLWL) for large tides at the Milne Port is +0.0 m above CD which corresponds to -1.2 m below MSL.

4.7 Retaining Walls

- 4.7.1 Retaining walls and structures shall be designed based on site-specific conditions. Lateral pressure coefficients for design of retaining walls shall be as per the geotechnical recommendation.
- 4.7.2 Retaining walls shall be avoided to the greatest extent possible. Concrete, gabion walls, crib walls, reinforced earth and/or other systems of retaining structures shall be used, if required.

4.8 Erosion and Sediment Control

- 4.8.1 Erosion and sediment control measures shall be installed as required, in and around the project sites to minimize sediment transport off the site.
- 4.8.2 Control measures shall be designed to:
 - · Minimize the size of disturbed areas
 - Remove sediments from on-site runoffs prior to the runoff leaving the sites
 - Prevent sediments from off-site runoffs flowing across disturbed areas
 - Reduce runoff velocity flowing across the site
 - Meet local requirements for erosion and sediment control plans as defined in the FEIS.
- 4.8.3 A minimum set back of 31 m from fish-bearing streams and lakes or water bodies shall be provided. Any exception to this shall be consulted with and approved by the Project's environmental team.

4.9 Quarry Blasting

- 4.9.1 The minimum distance that dwelling units (living quarters) shall be positioned away from the quarry will be 600m.
- 4.9.2 The minimum distance that roads, rail lines and project working areas shall be positioned away from the quarry is 300m.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

5. Road Design

5.1 General

- 5.1.1 The access roads at the two project sites may be temporary or permanent. An access road is defined as temporary if it will be used only during the construction period including site predevelopment or site capturing. Permanent roads are defined as roads that are required for operarations. Permanant roads may be primary secondary or tertiary depending on frequency and type of traffic.
- 5.1.2 The design and construction of mine haul roads, access and internal site roads at the project sites shall provide a safe environment for construction, operations and maintenance personnel, and shall facilitate the mining operations, ore transport and port operations in an efficient manner. In addition, the design shall comply with the relevant standards, guidelines, acts, approvals, permits, and other contractual environmental requirements of Baffinland as defined in Section 3 of this document.

5.2 Road Category

- 5.2.1 For the purposes of this design criteria, the roads are classified in three categories:
 - Mine Haul Roads The purpose of this type of road is for the mining operation at the
 mine site hauling of ore from the open pit to the crusher pad and for maintenance
 purposes, from the crusher pad to the maintenance building. The mine haul road shall
 be segregated from the other project roads for safety considerations, and shall
 comply with the applicable Nunavut MHSA.
 - Primary Roads These roads provide two-way access. Frequent traffic is expected.
 - Secondary Roads These roads provide two-way access to various facilities/areas within each site, where light vehicles will travel in both directions. They are expected to be used daily.
 - **Tertiary Roads** These roads are generally single lane width and are used in areas where traffic is infrequent / rare.
 - Temporary Roads These roads provide access for construction only and are not required for ongoing operation.
- 5.2.2 Special purpose roads, such as for module transport, may be required and will be determined on a case by case basis.

5.3 Design Vehicle

- 5.3.1 The following design vehicles shall be utilized for the design of the associated project roadways:
 - CAT 793F Haul Truck for the Mine Haul Road
 - Other types of design vehicles have been used for the remainder of the Project roadways and a fire truck has been considered as the minimum design vehicle for fire access routes.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

5.4 Geometric Design Criteria

5.4.1 All roads shall be designed as gravel roads and shall accommodate the design vehicle specified in Section 5.3 of this document. The roads' geometric design parameters are specified below:

Table 5-1: Road Geometric Design Criteria

Road Type	Mine Haul Road	Primary Road	Secondary Road	Tertiary & Temporary Roads
Number of Lanes	2	2	2	1
Design Speed (km/h)	50	60	40	40
Posted Speed (km/h)	40	50	30	30
Total Road Width (m)	25	10	6	4
Minimum Horizontal Curve C/L Radius (m)	100	35	35	35
Minimum Intersection Inner Radius (m)	30	15	15	15
Minimum Cross Slope (%)	3	2	2	2
Maximum Grade (%)	10	10	10	10
Minimum K Value (Vertical Sag Curve)	12	8	8	8
Minimum K Value (Vertical Crest Curve)	16	4	4	4
Maximum Super-elevation (%)	4	4	4	4
Minimum Vertical Clearance	9	7	5	5

Notes:

- 1. The road design parameters are based on the desirable design speeds. Specific parameters such as the minimum turn radii may be modified for some areas locally on a case-by-case basis, via adjustment of the design speeds.
- The Haul Road width shall be based on the Nunavut Mine Health and Safety Act which requires a minimum travel width
 three times the width of the widest haulage vehicle for dual lane traffic and two times the width of the widest haulage
 vehicle for single lane traffic.
- Shoulder barriers (safety berms or guardrails) for the Haul Road shall be based on the Nunavut Mine Health and Safety Act which requires shoulder barriers of at least ³/₄ the height of the largest tire of any vehicle using the road and shall be provided along the edge of the haul road wherever a drop-off greater than 3.0m exists. For CAT 777G, the shoulder barrier (safety berm or guardrail) height shall be 2.0 m based on standard tire 27.00 R49 (E4).
- Total road width includes shoulder width and snow allowance but doesn't include the safety berm width for the haul road.
- 5. Widening shall be provided in roadway curves as necessary.
- 6. Need for geotextiles or geogrids shall be considered on a case-specific basis.
- 7. For the Tote Road design criteria, refer to H349000-3100-10-122-0001.
- 8. Provide safety stations, emergency ramps or escape lanes in accordance with the local and mine safety requirements. Hatch will only provide two escape ramps at the most critical locations as per BIM's instruction. Escape ramp design shall be carried out as per the USBM manual.
- 9. For cut/fill heights of greater than 5 m, provide 1.5 m wide benching with minimum 2% cross slope at every 5 m.
- 10. The ramp leading down to the sea lift from the laydown area at the Milne Port shall have a maximum grade of 8%.
- 11. The maximum grade for ramps to the buildings is 6%.
- 12. Fill toe key shall be provided in areas where the existing ground is steeper than 3H:1V away from the road.
- 13. Design speeds may be reduced locally if needed.
- 5.4.2 The following general rules shall apply to the geometric design of the project roads:
 - Roadway grades shall not exceed the maximum grades specified in Table 5-1 except for short ramps which shall be considered on a case-specific basis
 - Signage shall be provided for speed and caution at steep horizontal and/or vertical curves, and where the design criteria can't be met

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

> Traffic signs and shoulder barriers (safety berms or guardrails), shall be placed at the outer edges of the roads, as required.

5.5 Pavement Thickness

- 5.5.1 For the project internal site roads, the subgrades shall be prepared via cut/fill activities prior to pavement installation/placement. Type 12 Run-of-Quarry and/or suitable earth fill material shall be used for subgrade where appropriate and approved by the Engineer. Otherwise type 8 (150mm minus) shall be used. The voids of each layer of Type 12 material shall be filled with rock fragments prior to placement of the next layer.
- 5.5.2 Pavement thickness for each road type shall comply with Table 5-2.

Table 5-2: Pavement Thickness

Road Type	Primary / Secondary Roads	Tertiary & Temporary Roads	
Base (Type 8) note: refer to 5.5.4 below	300 mm	300 mm	
Surface (Type 5)	100 mm	100 mm	

- 5.5.3 Pavement details for mine haul road to be confirmed.
- 5.5.4 Sub-base fill shall be placed as required to achieve specified sub-base elevations with minimum thickness as specified and:
 - For sub-base fill depth >600mm Type 12 shall be used. Where no base is placed over the Type 12 the top of Type 12 material shall be chinked with smaller rock fragments and compacted to minimize infiltration of Surface Type 5 material
 - For sub-base fill depth <600mm Type 8 material shall be used.
- 5.5.5 Pavement thickness for special purpose roads shall be determined on a case by case basis.
- 5.5.6 Refer to Appendix A for typical layer works.

5.5.7 Design Vehicles, Traffic Volume and Load

- 5.5.7.1 Vehicle types have been selected for the project roads based on the expected usage and transportation requirements of the area (Section 5.3).
- 5.5.7.2 All pavement, slabs, bridges, trenches, trench covers and underground installations accessible to trucks shall be designed to withstand the load associated with an HS 20-44 wheel load or its equivalent, as defined by the American Association of State Highway and Transportation Officials (AASHTO) under Standard Specification for highway bridges. However, within areas of special equipment operation, this shall be considered as per the actual vehicle loading.

5.6 Parking

5.6.1 Parking areas shall be designed to accommodate their intended use. In general, all parking areas shall be surfaced with granular materials.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

- 5.6.2 Vehicle parking area design shall adhere to the following:
 - The area shall be graded to direct stormwater away from the parking
 - Alignment and gradients shall be coordinated with the grading plans to control drainage
 - Walking distance from parking areas shall be kept to a minimum
 - Barrier-free parking spaces as well as walkways shall be provided according to the applicable regulations
 - Designated turnaround areas shall be provided at dead ends
 - Parking lot design criteria shall be as shown in Table 5-3.

Table 5-3: Parking Lot Design Criteria

Topic	Criteria
Gradient	Maximum 5%
	Minimum 0.5%
	Optimum 2%
Cross Slope	Maximum 5%
	Minimum 2%
	Optimum 3%
Pavement Structure	300 mm Type 8 (150 mm minus) subbase
	100 mm Type 5 (32 mm minus) base/wearing
	surface course
Parking Stall	Driving Lane
Dimensions	• Width 7.5 m
	Standard
	Depth 6 m
	Width 2.75 m
	Barrier-free
	Depth 6 m
	Width 3.5 m
	Access Aisle Width 1.5 m

5.7 Signage

- 5.7.1 Traffic control signs and road edge markers shall be provided as required to ensure safe movement in and about the site.
- 5.7.2 Direction and information signs for both vehicle and pedestrian traffic shall be provided for parking areas, restricted areas, shipping and receiving.
- 5.7.3 Primary identification signs shall be free-standing and sited according to the applicable standards as listed in Section 3.3.
- 5.7.4 Other signs shall be free-standing, fence-mounted or wall-mounted.
- 5.7.5 Security signs shall be provided at the sites and along the site property boundaries.
- 5.7.6 Signs for the site access roads shall be compliant with the local traffic regulations.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

- 5.7.7 Signs shall be lighted, if deemed necessary.
- 5.7.8 All signs and pavement markings (if applicable) shall be well maintained during the construction and operational periods.

5.8 Bollards

- 5.8.1 Concrete blocks and /or tires shall be provided where required to protect buildings and hazardous areas.
- 5.8.2 Where available, tires must be used. If tires are not available, concrete blocks must be placed be placed based on the engineer's recommendations.

5.9 Shoulder Barriers (Safety Berms/Guardrails)

- 5.9.1 Shoulder barriers (earth safety berms or guardrails) shall be provided in accordance with the Nunavut Mines Health and Safety Act.
- 5.9.2 Barriers shall be provided where a 3.0 m or more drop-off exists at the edge of vehicular areas including roads, pads, lay down areas and similar.
- 5.9.3 Height of barrier shall be minimum 0.75 times the maximum wheel diameter of traffic expected to operate in the area, including:
 - For areas where heavy mining equipment travels barrier height shall be minimum 2.7m high (based on CAT793 F tire, 40.00R57)
 - For general vehicular areas barrier height shall be minimum 1.0m high (based on typical transport, vac and tanker trucks used on site).
- 5.9.4 Safety berms side slopes shall be 1H:1V.
- 5.9.5 Discontinuous openings shall be provided in berms at maximum 25 m spacing for drainage and snow clearance, with openings smaller than half the blade width of vehicles constructing or maintaining the berms.
- 5.9.6 Runaway vehicle collision berms or escape lanes shall be provided in accordance with industry requirements as described in the Nunavut MHSA.

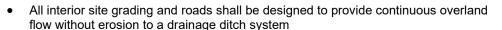
5.10 Utility Berms

5.10.1 Utility berms may travel along the project roadways to the greatest extent possible, shall be of trapezoidal cross-sections. Berms with power cables shall be minimum 0.6 m high from the road edge or the existing ground, and shall have maximum fill side slopes of 1.5H:1V, as validated by the geotechnical engineer. They shall be constructed with the use of 300 mm of granular Type 8 (150 mm minus) and 50 mm of granular Type 5 (32 mm minus) material. Berms for pipes may be level with adjacent roads or pipe may be placed directly on existing grade without berm construction where risk of damage is low.

The top width of utility berms will depend on the pipe and cable duct sizes. Utility berms shall cross roadway intersections through utility sleeves. After crossing the intersections, they shall resume the alignments within the utility berms.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

6. Stormwater Management System


6.1 Allowance for Snow Melt Runoff Volume

for designing stormwater infrastructure.

An investigation into Snowmelt was done as per *H353004-00000-228-066-0001*: Snowmelt+ Rainfall Frequency Analysis. It was found that the combination of rainfall and snowmelt in the start of spring has a lower impact on the size of stormwater infrastructure than rainfall during the middle of the wet season (at higher intensities and total precipitation). For this reason, only the runoff methods as specified in the *Baseline Hydrology Report*, *January 4. North Bay, Ontario. Ref. No. NB102-181/30-7, Rev 1* and updated in *VA16-01950 on 13 December 2016* by Knight Piésold Consulting will be used

6.2 Internal Surface Drainage

6.2.1 Internal surface drainage areas are defined as areas where the catchment consists out of areas where the natural surface has been disturbed through excavation, mining activity or bulk earthworks such as the construction of pads and roads. The general criteria for the site internal storm water management systems are described below.

- All drainage ditches should be of trapezoidal cross sections, where possible
- Ditches shall be designed to convey a 1 in 25 year flood event
- Provision must be made to ensure that there is a safe flow path for events up to the 1 in 100 year event, such that the runoff will not flood key mining areas, cause significant erosion, pick up excessive contaminants or cause other significant problems
- Ditch freeboard, minimum depth, minimum width, side slope, longitudinal slope and maximum permissible velocities shall be as per Table 6-1
- For supercritical flow conditions, the ditches shall be designed to maintain the energy line within the ditch or 300mm freeboard, whichever is higher
 - Minimum set back distance of structures from top of drainage ditch slopes shall be 3 m
- Roof and yard drainage shall be collected in open ditches
- Appropriately sized rip rap shall be provided at locations throughout the stormwater drainage system which are susceptible to erosion, including ditch sections subject to high-velocities (greater than 1.5 m/s), sections of super critical flow, ditch outlets, storm sewers outfalls, and culverts inlets and outlets
- If the ditch is in rock, no rip rap is required
- Energy dissipaters shall be used where the flow velocities may reach values high enough to cause severe erosion or hydraulic jumps.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

6.3 External Surface Drainage

External surface drainage areas are defined as areas where the catchment consists of undisturbed areas where the environment is mostly in its natural state. Criteria for drainage of the external areas are as follows:

- <u>/2</u>\
- Runoff from undisturbed areas surrounding the mine site shall be collected in perimeter ditches and diverted around and/or through the site perimeter
- To the extent possible, these perimeter ditches shall be designed to discharge at locations that best retain the characteristics of the existing (i.e., pre-development) natural drainage patterns
- Diversion ditches shall be designed to convey the 1 in 100 year flood event
- Ditch freeboard, minimum depth, minimum width, side slope, longitudinal slope and maximum permissible velocities shall be as per Table 6-1
- For supercritical flow conditions, the ditches shall be designed to maintain the energy line within the ditch.

$\stackrel{\wedge}{2}$

6.4 Peak Flow Estimation

For flow estimation refer to *NB 102-181/30-7: Baseline Hydrology Report, Knight Piesold, Jan 04, 2012* and updated in *VA16-01950 on 13 December 2016.*

6.5 Rainfall Intensity

Rainfall intensities must be based on *NB 102-181/30-7: Baseline Hydrology Report, Knight Piesold, Jan 04*, 2012 and updated in *VA16-01950 on 13 December 2016.*

6.6 Sedimentation Ponds / Pollution Control Ponds

The design of the sedimentation ponds shall be based on the Civil Design Criteria Document No. H349000-1000-10-122-0001 (Appendix B) that was used for a previous phase of Mary River Mine with the following exception:

- Runoff coefficient to estimate runoff shall be 0.9.
- Ponds shall be operated as empty to ensure enough capacity is available to accommodate the design volumes. Failure to empty the ponds will result in overflow occurring and the prescribed TSS will not be achieved.

- All sedimentation ponds shall be lined with appropriate impermeable geomembrane material. Geomembrane material shall be exposed (not covered with granular material) except where the material will be anchored.
- $\sqrt{2}$
- It is assumed that all runoff captured by the sedimentation ponds are non-acid generating and can be discharged to the environment once the TSS levels are within the acceptable range.

6.7 Stockpile Footprint

The following sections will cover runoff that can be expected from the Stockpile No. 1 and No. 2 areas.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

6.7.1 Stockpile No.1 Runoff

 $\sqrt{2}$

Runoff from Stockpile No.1 would drain towards the existing sedimentation pond to the North West of the stockpile. The existing pond size will be determined from survey information and evaluated to determine if it meets the required design criteria as stated in Section 6.6.

6.7.2 Stockpile No.2 Runoff

The entire stockpile area would be surrounded by adequately sized berms to prevent any water from discharging into the natural environment from the stockpiles. Water shall be tested for the required TSS before pumping into the natural environment.

6.8 Culverts, Roadside Ditches and Berms

- 6.8.1 Drainage ditches and culverts shall be designed for return periods as prescribed in Section 6.2 and Section 0 with peak flows calculated as per Section 6.4. such that the inlet headwater level does not exceed the bottom of the road subbase. Their analysis and design shall consider design flow, culvert size and material, entrance structure layout, outlet structure layout and erosion protection.
- 6.8.2 Drainage ditch design shall also be subject to the criteria stated in Table 6-1.

Table 6-1: Drainage Ditch and Culvert Design Criteria

Maximum permissible flow v	1.5			
	Minimum ditch and culvert slope (%)			
		0.2		
Ditch side slopes (H: V)	Rock	1:4		
	2:1			
Minimum culvert diameter (n	600			
Berm Side Slopes (H:V)	2:1			
Berm Top Width (mm)	500			
Ditch and Berm Freeboard F	Requirement of Sub-Critical Flow (mm)	300		

- 6.8.3 Loading over culverts and pipes shall be in accordance with AASHTO HS 20-44, except for areas of special equipment operation, which shall consider actual vehicle loading. The minimum cover for culverts shall be 600 mm, or as required by the differing specific design vehicle.
- 6.8.4 Fish-bearing culverts shall be minimum 1,000 mm diameter and only one pipe shall be embedded by 10% of the pipe diameter.
- 6.8.5 All culverts shall be Corrugated Steel Pipe (CSP).
- 6.8.6 Apply Manning's n values as per the following:
 - n = 0.025 for gravel ditches
 - n = 0.040 for rip rap ditches
 - n = 0.024 for all CSP pipe. 0.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

6.9 Drainage Interceptor/Collector Berms

- 6.9.1 Drainage berms diverting overland flow from the waste rock drainage area to the sedimentation ponds shall detail as per Table 6-1 above and 0.5 m top width.
- 6.9.2 Rip rap and other energy dissipation measures shall be provided to protect against erosion.

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004 Design Criteria Civil Design Philosophy

Appendix A: Typical Layer Works

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

Item	Sub-Base	Base	Surface	Comments	
Rail Embankment	Type 12	Type 22 (-50)	Ballast	Pefer to rail design for additional details	
Kali Elibalikilelit	>550 mm	150 mm	per rail detail	Refer to rail design for additional details	
Construction Loudouin Bod	Type 12*	-	Type 5 (-32)		
Construction Laydown Pad	>300 mm	-	100 mm		
General Operations Areas and Pads for Equipment /	Type 12*	Type 8 (-150)	Type 5 (-32)	Pads constructed directly on excavated rock do not require	
Structures (unheated)	-	300 mm	100 mm	sub-base fill	
	Type 12*	Type 8 (-150)	Type 5 (-32)	Styrofoam insulation installed in the Base fill (500mm below	
Slab-on-Grade Building on Permafrost	-	300 mm	500 mm	finished grade), total thickness with insulation 650mm.	
	Type 8 (-150)	Type 22 (-50)	Ballast	To be confirmed by Geotechnical based on updated borehole	
Stacker/Reclaimer Berm	>1.85m	150 mm	per S/R rail detail	data and final design for S/R equipment	
Ore Stockpile Pads	Type 12*	-	Iron Ore **	Primary crusher feed area, rail loading stockpile area, fines	
(where developed pad required)	-	-	200 mm	intermediate pile, and fines stockpile area (existing SL pile)	
	Type 12*	Type 8 (-150)	Type 5 (-32)		
Road - Primary / Secondary	-	300 mm	100 mm		
	Type 12*	-	Type 5 (-32)		
Road - Tertiary / Temporary	>300 mm	-	100 mm		
	Type 12*	-	-	Sub-base and surface requirements for Mine Haul Road /	
HME Operating Roads / Areas	-	-	-	HME operating areas to be confirmed	
	Type 12	Type 8 (-150)	Type 5 (-32)	Design and requirements to be confirmed based on final	
Heavy Module Transport Road	>600 mm	300 mm	100 mm	module transport equipment and loads	
Mine Haul Road	Type 12	Type 8 (-150)	Type 5 (-32)	This pavement design is applicable to the CAT 793	
milie Haul Noau	800 mm	600 mm	200 mm	This pavement design is applicable to the CAT 793	

Notes:

1. Sub-Grad fill depth as required to achieve final grad. Use Type 8 instead of Type 12 for depth <600mm.

H353004-00000-200-210-0001, Rev. 2

2

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

- 2. Iron ore used to surface stockpile pads may be on-spec or off-spec as supplied by BIM operations.
- Material Types:
 - a. Type 12 ROQ nominally, <600mm (maximum permitted 1000mm)
 - b. Type 8 Jaw crushed or similar, <150mm
 - c. Typed 5 Crushed Aggregate, <32mm
 - d. Type 22 Rail sub-ballast, <50mm

Baffinland Iron Mines Corporation: Mary River Expansion Project H353004

Design Criteria Civil Design Philosophy

Appendix B: Document No. H349000-1000-10-122-0001 Civil Design Criteria

Design Criteria Civil

Baffinland Iron Mines Corporation: Mary River Project H349000

Civil

						1/1
			antal	Straf	Klobas	1 Char
2013-08-28	1	Approved for Use	A. Mohebkhani	S. Hassan	S. Perry	D. Matthews
2013-03-20	0	Approved for Use	A. Mohebkhani	S. Hassan	S. Perry	D. Matthews
DATE	REV.	STATUS	PREPARED BY	CHECKED BY	APPROVED BY	APPROVED BY

Civil

Baffinland Iron Mines Corporation: Mary River Project H349000

Table of Contents

1.	Intro	ductionduction	. 1	
	1.1	Safety	. 1	
2.	Othe	er Project Design Criteria		
3.	Units and Coordinate System			
4.	Refe	rences	. 2	
	4.1 4.2 4.3 4.4 4.5	Codes, Regulations and Standards	. 2	
5.	Site	Development	. 4	
Ο.	5.1	Site Preparation	. 4	
	5.2 5.3 5.4	Earthworks	. 6	
	5.4 5.5 5.6	Infrastructure Facilities, Laydown and Ore Stockpile Areas Landfarm	. 6	
	5.7	Milne Port Design High Tide	. 7	
	5.8 5.9	Retaining Walls Erosion and Sediment Control		
		Construction and Permanent Fencing		
		Explosives Magazine Pads and Earth Barricades		
6.	Road	d Design	. 9	
•-	6.1	General		
	6.2	Road Category		
	6.3	Design Vehicle		
	6.4	Geometric Design Criteria		
	6.5 6.6	Pavement Design		
	0.0	Pavement Thickness		
		6.6.6 Design Vehicles, Traffic Volume and Load		
	6.7	Parking	12	
	6.8	Signage		
	6.9 6.10	BollardsShoulder Barriers (Safety Berms/Guardrails)		
		Utility Berms		
			-	

Civil

Baffinland Iron Mines Corporation: Mary River Project H349000

7.	Stor	mwater Management System	14
	7.1	Internal Surface Drainage	14
		External Surface Drainage	
		7.2.1 Peak Flow Estimation	
		Rainfall Intensity	
		Sedimentation Ponds	
	7.5	Off-Spec and Treated Effluent Ponds	.18
	7.6	Culverts and Roadside Ditches	18
	7.7	Drainage Interceptor/Collector Berms	19

Civil

/1

Baffinland Iron Mines Corporation: Mary River Project H349000

1. Introduction

- The Mary River project site is located in northern Baffin Island, in Nunavut Territory of the Canadian Arctic. The Project currently consists of activities which entail mining high grade iron ore, at a production rate of 3.5 million tonnes per annum, stockpiling it throughout the year at the Milne Port, and shipping the material during the summer months. Development of this Project includes the infrastructure construction and operational activities associated with the Milne Port and Mine Site areas along with upgrading the 100 km Tote Road connecting the two sites. All associated project infrastructure shall be based on a 5 year design life, with the exception of the laydown areas, for which a 1 year design life shall be considered.
- The purpose of this document is to provide the necessary information required for the design of infrastructure at the two project sites (Milne Port and Mine Site). The works covered by this criteria include earthworks, site grading, internal roads, stormwater drainage system and the earthworks for service utilities, to be implemented at the project sites. The design criteria proposed in this document shall be treated as minimum requirements for the intended infrastructure design. Refer to Section 2 of this document for a list of other design criteria and technical design documents from the pertinent disciplines. Where a conflict between the various design criteria occurs, the most stringent shall apply.
- This document is intended to address the key criteria required for the design of site infrastructure.

1.1 Safety

The consideration of personnel safety in all stages of the design, construction and operation is paramount. Prime consideration shall be given to safety and reliability to:

- Maximize health and safety for all personnel.
- Minimize environmental impacts.
- Maximize the security of equipment.

2. Other Project Design Criteria

- 2.1 This design criteria document shall be read in conjunction with other documents which may already exist or will be developed as the project proceeds. These documents include the following:
 - Tote Road Design Criteria (H349000-3100-10-122-0001).
 - Structural Design Criteria (H349000-1000-35-122-0001).
 - Foundation Design Criteria (H349000-1000-35-122-0002).
 - Aerodrome Design Criteria (H349000-1000-00-109-0001).
 - Layout Design Criteria (H349000-1000-50-122-00030.
 - Foundation Design Basis (H349000-1000-30-109-0001) For Non-Process buildings.

Baffinland Iron Mines Corporation: Mary River Project H349000

Civil

3. Units and Coordinate System

- 3.1 The International System of Units (SI units and prefixes) shall be used for all design calculations and on all drawings.
- 3.2 The grid coordinates shall be based on: projection Universal Transverse Mercator (UTM) Zone 17 and horizontal datum NAD 83 Canadian Spatial Reference System (CSRS).
- 3.3 Vertical datum shall based on the Canadian Geodetic Vertical Datum of 1928 (CGVD28).

4. References

4.1 Codes, Regulations and Standards

4.1.1 Unless specifically stated otherwise, civil design shall be based on the applicable sections of the latest revisions of the following codes, specifications, standards, regulations and other reference documents. In addition, the design must comply with all laws or regulations of federal and Nunavut territorial authorities.

4.2 General

4.2.1 All applicable federal, territorial (Nunavut) and local laws and regulations.

•	OHSA	Occupational Health and Safety Act
•	CSA	Canadian Standards Association
•	MHSA	Mine Health and Safety Act (Nunavut – S.N.W.T. 1994)
•	OHSR	Occupational Health and Safety Regulations
•	NBCC	National Building Code of Canada (2010)
•	ASTM	American Society for Testing and Materials
•	ASCE	American Society of Civil Engineers
•	NFPA	National Fire Protection Association
•	NRC	Natural Resources Canada – Explosives Safety and Security Branch

4.3 Roads

•	TAC	Transportation Association of Canada – Geometric Design Guide for Canadian Roads
•	AASHTO	American Association of State Highway and Transportation Officials
•	USBM	Design of Surface Mine Haulage Roads – A Manual (US Department of the Interior, Bureau of Mines)
•	MSHA	Haul Road Inspection Handbook – MSHA Document Number PH99-I-4
•	MTO	Ministry of Transportation, Ontario – Ontario Traffic Manual

 \triangle

Baffinland Iron Mines Corporation: Mary River Project H349000

Civil

4.4 Stormwater Management

 MOE Ministry of the Environment - Stormwater Management Planning and Design Manual

MTO Ministry of Transportation, Ontario – Drainage Manual
 CDA Canadian Dam Association – Dam Safety Guidelines

1

4.5 Reference Documents

Reference will be made to/contents have been used from the following documents, articulated during the previous phases of the project, during the development of these criteria:

- H337697-0000-10-122-0001: Stormwater Management and Drainage System Design.
- H337697-6170-10-122-0001: Milne Port Drainage System and Stormwater Management Ponds.
- H337697-6170-10-122-0002: Mine Site Drainage System, Stormwater and Sediment Management.
- H337697-0000-15-124-0004: Geotechnical Data Report Infrastructure.
- Standard Specification S311213: Quarried Fill Materials.
- Standard Specification S003120: Site Conditions.
- NB 102-181/30-7: Baseline Hydrology Report, Knight Piesold, Jan 04, 2012.
- BIM Early Revenue Phase Mine Haul Road Design Criteria.
- BIM Early Revenue Phase Tote Road Design Criteria.
- H349000-3000-00-124-0001: NB102-00181 Bulk Sampling Program Road Upgrade Design Summary.
- Final Environmental Impact Statement (FEIS), Mary River Project, February 2012.
- Nunavut Impact Review Board (NIRB) Project Certificate (No.:005), Dec 28, 2012.
- H349000-4221-10-220-0001: Number of Runaway Truck Arresting Provisions for the Mine Haul Road, Project Memo.

 H349000-2133-10-220-0001: Runoff Coefficient for the Milne Port Ore Stockpile Pad, Project Memo.

H349000-1000-15-122-0001: Geotechnical Design Criteria

 H349000-1000-10-220-0001: Stormwater Sedimentation Pond Design Criteria, Project Memo.

 E349000-1000-00-124-0005: Design Brief – Milne Inlet Landfarm, November 2012, EBA File E14101174.

Baffinland Iron Mines Corporation: Mary River Project H349000

Civil

5. Site Development

Site development refers to construction of civil infrastructure to support construction and operation of facilities. The following sections list the site development activities and establish criteria that shall be adhered to when carrying out site development design works.

5.1 Site Preparation

- 5.1.1 Construction areas shall be cleared of vegetation, and temporary drainage systems shall be provided prior to construction activities taking place within the proposed areas for the new site facilities.
- 5.1.2 Topsoil and/or existing roots shall be removed to a minimum depth of 150 mm, if required, from all areas where buildings, roads, yards and services are to be constructed, and shall be stockpiled in designated areas. Disposal options shall include on-site reuse, development of a designated stockpile area for disposal, or removal by truck to off-site areas, as instructed by the Company.
- 5.1.3 During the summer months, wetlands or areas with standing water shall be drained and the drying of such shall be promoted prior to construction. Watercourses shall be re-routed with the use of cut-off ditches, or re-aligned engineered channels.
- 5.1.4 Waste material shall be stockpiled in designated areas with the appropriate erosion and sedimentation control measures in place.

1

5.2 Earthworks

5.2.1 Earthworks is defined as the activity of moving soil and/or rock. Earth-moving activities are required in order to obtain the required design elevations of the ground surface. Earthworks includes cut (if required) and fill for roads, buildings and equipment pads, utility berms, foundation excavation, and construction of ditches, diversion channels and berms, dikes, etc. Earthworks shall be carried out in accordance with the following general guidelines:

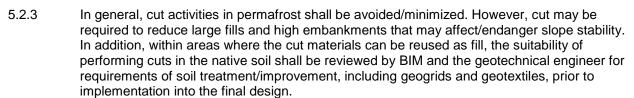
- Existing unsuitable soils shall be removed and replaced with suitable material.
- Fill materials shall be placed and compacted over the proof-rolled subgrade in order to achieve adequate bearing capacities, as required for specific construction activities.
- Rocks/boulders and similar objects adjacent to areas which shall undergo excavation must be removed or secured, if they potentially endanger workers/machinery.
- The following criteria shall be used to determine the suitability of the soil for fill:
 - Satisfactory soil: ASTM D 2487 Soil Classification Groups GW, GP, GM, SW, SP, and, SM, or a combination of these groups; non ice-rich, free of debris, waste, vegetation and other deleterious matter.

Unsatisfactory soil: According to ASTM D 2487 Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH and PT; according to AASHTO M145 Soil Classification Groups A-2-6, A-2-7, A-4, A-5, A-6 and A-7 or a combination of these groups. Also, ice-rich soils or soils containing traces of contamination and/or organic materials.

 Water shall be diverted away from excavations, so it does not saturate the side slopes.

Baffinland Iron Mines Corporation: Mary River Project H349000

- If pipes are located in the vicinity of the slopes, erosion control measures shall be in place as mitigation for eventual leaks.
- No loads, including excavated material, traffic of vehicles or heavy machinery shall be allowed near the crest of the slopes (at a distance equal to the height of the excavation) if the slope-support solutions did not take such loads into account.
- Dust control measures shall be in place.
- For delineation of the project development boundaries, the minimum setback from freshwater aquatic environments, including fish-bearing streams and water bodies shall be as per NIRB Project Certification No.005. In general, a minimum 5 m set back shall be provided for non fish-bearing water bodies and streams, due to the potential risks of erosion and slope stability.
- Culvert installation in fish-bearing streams shall follow DFO guidelines.
- 5.2.2 Table 5-1 provides the minimum slope ratios that shall be used in cuts/excavations or fills/embankments. It must be noted that specific studies must be carried out by geotechnical engineers, if these slopes are to be modified with the aim of lowering costs of cut and/or fill.


Table 5-1: Minimum Slope Ratios

Type of Earthworks	Layer	Ratio H:V
	Overburden (ice-rich)	2:1
Permanent unsupported cuts	Overburden (non ice-rich)	1.5:1
	Rock (less than 4m)	1:8
Permanent fills (on natural, firm	Granular fill	1.5:1
ground)	Base and Subbase	1.5:1
	Rock fill	1.5:1

Notes:

- 1. The maximum heights and ratios shall be determined considering slopes with typical geometry and no surcharge.
- 2. The above-listed parameters serve as minimum requirements, and shall be updated/modified based on confirmation/update of the site-specific conditions and/or geotechnical recommendations, or as per BIM's directions.
- 3. Any geometry and load condition not covered by the table above shall be reviewed by the geotechnical engineer.
- The granular fill is assumed to be in a drained condition.
- If the total fill height is greater than 2 m, geotechnical stability analysis and benching requirements shall be considered on a case-specific basis.
- For overburden cut/fill heights of greater than 5 m, 1.5 m wide benching with minimum 2% cross slope shall be provided.
- The absolute minimum fill slope for granular material is 1.5H:1V. However, the desirable slope is 2H:1V.
- The absolute minimum fill slope for rock fill material is 1.25H:1V. However, the desirable slope is 1.5H:1V.
- 9. For the haul road, the fill side slopes shall be 2H:1V, depending on the site conditions and slope stability.
- 10. Stability assessments of some cut and fill slopes may be required.
- 11. For rock cut heights greater than 4 m, 1H:4V slope shall be used with 2 m wide benching and minimum 2% cross slope at every 6 m.

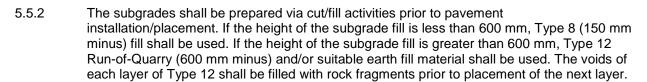
Baffinland Iron Mines Corporation: Mary River Project H349000

Civil

5.3 Backfilling

5.3.1 The gradation of fill material shall be within the Type 5 (32 mm minus) gradation limit for finish grading, within the Type 8 (150 mm minus) and/or suitable earth fill material gradation limit for rough grading, and Type 12 (600 mm minus) and/or suitable earth fill material gradation limit for the rest of the mass backfill. The surface voids of each layer of Type 12 (i.e. Run-of-Quarry material) shall be filled with rock fragments prior to the next layer being placed.

5.4 Site Grading


5.4.1 If applicable, finish grade elevations for roads and yards shall be set a minimum of 100 mm below the finish floor elevation of buildings/sheltered areas, with local ramps provided at doorways, as required.

- 5.4.2 Finish grading and yard grading shall be set to slope away from planned structures at a minimum of 0.5% to 2%, and drain to a storm drainage collection system. For very long-run and localized areas, the slope shall be reduced or increased, depending on the existing ground slope and the grading around the buildings and facilities.
- 5.4.3 Site grading shall produce a useable and easily maintainable ground surface, not subject to flooding or erosion. The rough grades and finish grades shall adhere to the following:
 - Final road and site grades shall ensure suitable pedestrian and vehicular access to buildings and facilitate adequate drainage of the site.
 - Building floor elevations shall be established such that the ground floor of the buildings will not be subject to flooding in the event that the storm drainage system fails.
 - Elevations of buildings/sheltered areas shall be established to permit gravity connections into sanitary sewers if possible, to avoid the need for pumps.

5.5 Infrastructure Facilities, Laydown and Ore Stockpile Areas

5.5.1 Temporary/permanent equipment and construction material laydown areas shall be provided as per the applicable Contract Drawings. The sizes of the footprints shall be optimized to keep disturbed areas to a minimum and still provide enough room for storage of material/equipment and circulation of mobile cranes/vehicles.

- 5.5.3 In general, following attainment of the subgrade, the pavement shall be laid on top, with the following minimum thicknesses/material types for infrastructure facility pads and other areas:
 - 300 mm, Type 8 (150 mm minus) subbase.
 - 100 mm, Type 5 (32 mm minus) base/wearing surface course.

Baffinland Iron Mines Corporation: Mary River Project H349000

Civil

- 5.5.4 Depending upon the area and specific requirements such as insulation for permafrost protection, the minimum pavement thicknesses and placement of wearing courses may differ from the above-listed.
- 5.5.5 There shall be no insulation under "fold-away" and "fabric" buildings constructed on non-frost susceptible ground material (typical for Milne Port).

 $\sqrt{1}$

5.5.6 Insulation shall be provided under "fold-away" and "fabric" buildings constructed on frost susceptible ground material (typical for Mine Site).

1

5.5.7 Frost susceptible and ice-rich soils shall be excavated to the extent required and backfilled with Type 12 Run-of-Quarry (600 mm minus). Non-frost susceptible soils with no visible ice shall not be excavated.

1

5.6 Landfarm

5.6.1 Both the Milne Port and Mine Site landfarms shall be designed as per the criteria listed in Section 3.2 of Annex 5 in the FEIS, Attachment 5: Waste Management Plan for Construction Operation, and Closure: Appendix 10D-4.

 \triangle

5.6.2 The overall geometry as well as the liner details shall be as per Figure 3, "Hydrocarbon Impacted Soils Storage and Landfarm Facility – Preliminary Design of Landfarm Facility" contained within Attachment 5.

 $\sqrt{1}$

5.6.3 EBA Engineering Consultants Ltd. has already carried out the design for the Milne Port Landfarm.

1

5.6.4 Milne Port and Mine Site Hazardous Waste Containment designs shall be carried out as per environmental requirements. They shall be lined, and shall contain sumps.

<u>/1</u>\

5.7 Milne Port Design High Tide

5.7.1 The design High Tide levels for the Project shall be as follow:

<u>_1</u>

 The Higher High Water Level (HHWL) for large tides at the Milne Port is +2.3 m above Chart Datum (CD) which corresponds to +1.1 m above Mean Sea Level (MSL).

1

 The Highest Astronomical Tide (HAT) at the Milne Port is +2.4m above CD which corresponds to +1.2 m above MSL.

^

 The Lower Low Water Level (LLWL) for large tides at the Milne Port is +0.0 m above CD which corresponds to -1.2 m below MSL.

5.7.2 The toe of ramp and earthworks pad leading down to the sea lift from the laydown area, including the designated turnaround area at the beach within the Milne Port shall have a design elevation greater than +1.2 m above MSL.

5.7.3 Landing pad elevation at the beach shall be minimum 7' (2.15 m) above the average between the HHWL and LLWL (i.e. +3.3 m above CD which corresponds to +2.1 m above MSL).

Baffinland Iron Mines Corporation: Mary River Project H349000

Civil

5.8 Retaining Walls

- 5.8.1 Retaining walls and structures shall be designed based on site-specific conditions. Lateral pressure coefficients for design of retaining walls shall be as per the geotechnical recommendation.
- 5.8.2 Retailing walls shall be avoided to the greatest extent possible. Concrete, gabion walls, crib walls, reinforced earth and/or other systems of retaining structures shall be used, if required.

5.9 Erosion and Sediment Control

- 5.9.1 Erosion and sediment control measures shall be installed as required, in and around the project sites in order to minimize sediment transport off the site.
- 5.9.2 Control measures shall be designed to:
 - Minimize the size of disturbed areas.
 - Remove sediments from on-site runoffs prior to the runoff leaving the sites.
 - Prevent sediments from off-site runoffs flowing across disturbed areas.
 - Reduce runoff velocity flowing across the site.
 - Meet local requirements for erosion and sediment control plans as defined in the FEIS.
- 5.9.3 A minimum set back of 30 m from fish-bearing streams and lakes or water bodies shall be provided. Any exception to this shall be consulted with and approved by the Project's environmental team.

1

5.10 Construction and Permanent Fencing

- 5.10.1 Chain link fence, where required, shall be galvanized, with a minimum height of 1.8 m.
- 5.10.2 Two strands of barbed wire shall be bracketed off the top of the fence for safety reasons, where required by the Company.
- 5.10.3 Fencing within the sites shall be provided as required and as directed by the Company.

5.11 Explosives Magazine Pads and Earth Barricades

- 5.11.1 Explosives magazine pads shall be designed as per the criteria in Section 5.5 of this document.
- 1
- 5.11.2 Geometry of the Explosives Magazine Earth Barricades shall be designed in accordance with the Quantity-Distance Principles Manual from the Natural Resources Canada, Explosives Safety and Security Branch.

Civil

Baffinland Iron Mines Corporation: Mary River Project H349000

6. Road Design

6.1 General

- 6.1.1 The access roads at the two project sites may be temporary or permanent. An access road is defined as temporary if it will be used only during the construction period, including site predevelopment or site capturing. If an access road will be used during the operational period as well, it is defined as permanent. A 100 km roadway provides access from the Mine Site to the Milne Port (Tote Road), the design criteria for which is included in a separate document. In addition, there is a mine haul road along with internal site roads at the Mine Site, and internal site roads only within the Milne Port, in order to accommodate the mining operations.
- The design and construction of mine haul roads, access and internal site roads at the project sites shall provide a safe environment for construction, operations and maintenance personnel, and shall facilitate the mining operations, ore transport and port operations in an efficient manner. In addition, the design shall comply with the relevant standards, guidelines, acts, approvals, permits, and other contractual environmental requirements of Baffinland as defined in Section 2 of this document.

6.2 Road Category

- 6.2.1 For the purposes of this design criteria, the roads are classified in three categories:
 - Mine Haul Roads The purpose of this type of road is for the mining operation at the
 mine site hauling of ore from the open pit to the crusher pad and for maintenance
 purposes, from the crusher pad to the maintenance building. The mine haul road shall
 be segregated from the other project roads for safety considerations, and shall comply
 with the applicable Nunavut MHSA.
 - Permanent Access and Internal Site Roads These roads provide two way access to and link the various facilities/areas within each site, where B-Trains will travel in both directions.
 - Facility Service Roads These roads provide two way access to various facilities/areas within each site, where light vehicles will travel in both directions.
 - Tote Road 100 km road providing access from the Mine Site to the Milne Port.

6.3 Design Vehicle

- The following design vehicles shall be utilized for the design of the associated project roadways:
 - CAT 777G Haul Truck for the Mine Haul Road.
 - B-Train (12 axle) for Permanent Access Roads and Internal Plant Roads (150 metric tonnes payload) that need to be utilized by the Tote Road trucks.
 - CAT 740B for Waste Rock Drainage Pond/Berm.
 - Other types of design vehicles have been used for the remainder of the Project roadways and a fire truck has been considered as the minimum design vehicle for fire access routes.

Civil

Baffinland Iron Mines Corporation: Mary River Project H349000

6.4 Geometric Design Criteria

6.4.1 All roads shall be designed as gravel roads and shall accommodate the design vehicle specified in Section 6.3 of this document. The roads' geometric design parameters are specified below.

Table 6-1: Geometric Design Criteria

Road Type	Permanent Internal Plant Road	Infrastructure Facility Service Road	Haul Road – Open Pit to Crusher Pad	Waste Rock Dump Road	Haul Road Switchback	Truck Escape Ramps
Number of Lanes	2	2	2	1	2	1
Design Speed (km/h)	30	30	50	30	30	90
Posted Speed (km/h)	20	20	40	20	20	-
Total Road Width (m)	9.2	8 or 6	20	13	20	9
Minimum Horizontal Curve C/L Radius (m)	35	35	100	50	35	280
Minimum Intersection Inner Radius (m)	15	15	30	30	30	-
Minimum Cross Slope (%)	2	2	3	3	3	3
Maximum Grade (%)	10	10	10	10	8	20
Minimum K Value (Vertical Sag Curve)	8	8	12	8	8	3
Minimum K Value (Vertical Crest Curve)	4	4	16	4	4	-
Maximum Super- elevation (%)	4	4	4	4	4	6
Minimum Vertical Clearance	7	5	9	9	9	-

Notes:

- The road design parameters are based on the desirable design speeds. Specific parameters such as the minimum turn radii may be modified for some areas locally on a case-by-case basis, via adjustment of the design speeds.
- The Haul Road width shall be based on the Nunavut Mine Health and Safety Act which requires a minimum travel width three times the width of the widest haulage vehicle for dual lane traffic and two times the width of the widest haulage vehicle for single lane traffic.
- 3. Shoulder barriers (safety berms or guardrails) for the Haul Road shall be based on the Nunavut Mine Health and Safety Act which requires shoulder barriers of at least ¾ the height of the largest tire of any vehicle using the road and shall be provided along the edge of the haul road wherever a drop-off greater than 3.0m exists. For CAT 777G, the shoulder barrier (safety berm or guardrail) height shall be 2.0 m based on standard tire 27.00 R49 (E4).
- 4. Total road width includes shoulder width and snow allowance but doesn't include the safety berm width for the haul road.
- For the single lane Haul Road from the crusher pad to the maintenance building, pullouts shall be provided at every 100m.
- 6. Widening shall be provided in roadway curves as necessary.
- 7. Need for geotextiles or geogrids shall be considered on a case-specific basis.
- 8. For the Tote Road design criteria, refer to H349000-3100-10-122-0001.
- Provide safety stations, emergency ramps or escape lanes in accordance with the local and mine safety requirements.
 Hatch will only provide two escape ramps at the most critical locations as per BIM's instruction. Escape ramp design shall be carried out as per the USBM manual.
- 10. For cut/fill heights of greater than 5 m, provide 1.5 m wide benching with minimum 2% cross slope at every 5 m.
- 11. The ramp leading down to the sea lift from the laydown area at the Milne Port shall have a maximum grade of 8%.
- 12. The maximum grade for ramps to the buildings is 6%.
- 13. Fill toe key shall be provided in areas where the existing ground is steeper than 3H:1V away from the road.
- 14. Design speeds may be reduced locally if needed.

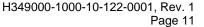
Civil

Baffinland Iron Mines Corporation: Mary River Project H349000

- 6.4.2 The following general rules shall apply to the geometric design of the project roads:
 - Roadway grades shall not exceed the maximum grades specified in Table 6-1, except for short ramps which shall be considered on a case-specific basis.
 - Signage shall be provided for speed and caution at steep horizontal and/or vertical curves, and where the design criteria can't be met.
 - Light poles, traffic signs and shoulder barriers (safety berms or guardrails), shall be placed at the outer edges of the roads, as required.

6.5 Pavement Design

The design of pavement structures requires information such as the expected pavement service life, design vehicle traffic volume, loads, and geotechnical information such as soil type and California Bearing Ratio (CBR).


6.6 Pavement Thickness

- 6.6.1 For the project internal site roads, the subgrades shall be prepared via cut/fill activities prior to pavement installation/placement. If the height of the subgrade fill is less than 600 mm, Type 8 (150 mm minus) material shall be used. If the height of the subgrade fill is greater than 600 mm, Type 12 Run-of-Quarry and/or suitable earth fill material shall be used. The voids of each layer of Type 12 material shall be filled with rock fragments prior to placement of the next layer.
- The following minimum internal site road pavement thicknesses shall be used throughout the project:
 - 300 mm, Type 8 (150 mm minus) subbase.
 - 100 mm, Type 5 (32 mm minus) base/surface course for low speed light vehicle traffic roads and low speed B-Train traffic roads.
 - 200 mm, Type 5 (32 mm minus) base/surface course for medium to high speed B-Train traffic roads.
- 6.6.3 The following minimum haul road pavement thicknesses shall be used throughout the project:
 - 300 mm, Type 8 (150 mm minus) subbase.
 - 300 mm, Type 8 (150 mm minus) base.
 - 200 mm, Type 5 (32 mm minus) base/surface course.
 - 900 mm, Type 12 Run-of-Mine structural subgrade (varies depending on the actual site conditions).
- The ramp and earthworks pad leading down to the sea lift from the laydown area, including the designated turnaround area at the beach within the Milne Port shall contain the following pavement thickness:
 - 300 mm, Type 8 (150 mm minus) subbase.
 - 200 mm, Type 5 (32 mm minus) base/surface course.
 - 100 mm Type 3 (19 mm minus) wearing course.

 $\sqrt{1}$

Baffinland Iron Mines Corporation: Mary River Project H349000

Civil

6.6.5 Pavement Service Life

The service life of the site pavements, prior to any structural rehabilitation work being required, shall be 5 years, unless noted otherwise for specific items.

6.6.6 Design Vehicles, Traffic Volume and Load

- Vehicle types have been selected for the project roads based on the expected usage and transportation requirements of the area (Section 6.3).
- All pavement, slabs, bridges, trenches, trench covers and underground installations accessible to trucks shall be designed to withstand the load associated with an HS 20-44 wheel load or its equivalent, as defined by the American Association of State Highway and Transportation Officials (AASHTO) under Standard Specification for highway bridges. However, within areas of special equipment operation, this shall be considered as per the actual vehicle loading.

6.7 Parking

- 6.7.1 Parking areas shall be designed to accommodate their intended use. In general, all parking areas shall be surfaced with granular materials.
- 6.7.2 Vehicle parking area design shall adhere to the following:
 - The area shall be graded to direct stormwater away from the parking.
- .

/1

- Alignment and gradients shall be coordinated with the grading plans to control drainage.
- Walking distance from parking areas shall be kept to a minimum.
- Barrier-free parking spaces as well as walkways shall be provided according to the applicable regulations.
- Designated turnaround areas shall be provided at dead ends.
- Parking lot design criteria shall be as shown in Table 6-2.

Table 6-2: Parking Lot Design Criteria

Topic	Criteria
Gradient	Maximum 5%
	Minimum 0.5%
	Optimum 2%
Cross Slope	Maximum 5%
	Minimum 2%
	Optimum 3%
Pavement Structure	300 mm Type 8 (150 mm minus) subbase 100 mm Type 5 (32 mm minus) base/wearing surface course 50mm wearing course
Parking Stall Dimensions	Driving Lane Width 7.5 m Standard

Baffinland Iron Mines Corporation: Mary River Project H349000

_		Civil	

Topic	Criteria	
	Depth 6 m	
	• Width 2.75 m	
	Barrier-free	
	Depth 6 m	
	• Width 3.5 m	
	Access Aisle Width 1.5 m	

6.8 Signage

- 6.8.1 Traffic control signs and road edge markers shall be provided as required to ensure safe movement in and about the site.
- 6.8.2 Direction and information signs for both vehicle and pedestrian traffic shall be provided for parking areas, restricted areas, shipping and receiving.
- 6.8.3 Primary identification signs shall be free-standing and sited according to the applicable standards as listed in Section 4.3.
- 6.8.4 Other signs shall be free-standing, fence-mounted or wall-mounted.
- 6.8.5 Security signs shall be provided at the sites and along the site property boundaries.
- 6.8.6 Signs for the site access roads shall be compliant with the local traffic regulations.
- 6.8.7 Signs shall be lighted, if deemed necessary.
- 6.8.8 All signs and pavement markings (if applicable) shall be well maintained during the construction and operational periods.

6.9 Bollards

6.9.1 Bollards, if required, shall be provided at building entrances and around hazardous areas such as tanks and transformers. Bollards shall be 1.2 m high, 150 mm diameter schedule 40 CS pipes.

6.9.3 Bollards shall be painted and coated such that they provide clear reflection off of vehicle headlights.

6.10 Shoulder Barriers (Safety Berms/Guardrails)

- 6.10.1 Shoulder barriers (earth safety berms or guardrails) shall be provided where a 3.0 m or more drop-off exists at the edge of roads.
- 6.10.2 Shoulder barriers shall be installed where the horizontal distance from the edge of a travelled lane to an obstruction is less than 1.0 m

 \triangle

Civil

Baffinland Iron Mines Corporation: Mary River Project H349000

6.10.3 Earth/safety berms for the Mine Haul Road from the open pit to the crusher pad and from the crusher pad to the maintenance building shall have heights of 2.0 m, and side slopes of 1H:1V.

6.10.4 Safety berms for the internal roads shall have heights of 1.0 m and side slopes of 1H:1V.

6.10.5 Discontinuous openings shall be provided in berms at maximum 25 m spacing for drainage and snow clearance, with openings smaller than half the blade width of vehicles constructing or maintaining the berms.

6.10.6 Runaway vehicle collision berms or escape lanes shall be provided in accordance with industry requirements as described in the Nunavut MHSA.

6.11 Utility Berms

Otility Berms shall travel along the project roadways to the greatest extent possible, shall be of trapezoidal cross-sections, shall be minimum 0.6 m high from the road edge or the existing ground, and shall have maximum fill side slopes of 1.5H:1V, as validated by the geotechnical engineer. They shall be constructed with the use of 300 mm of granular Type 8 (150 mm minus) and 100 mm of granular Type 5 (32 mm minus) material. If the height of the subgrade fill is less than 600 mm, Type 8 (150 mm minus) fill shall be used. If the height of the subgrade fill is greater than 600 mm, Type 12 Run-of-Quarry and/or suitable earth fill material shall be used. The voids of each layer of Type 12 material shall be filled prior to placement of the next layer. The top width of utility berms will depend on the pipe and cable duct sizes. Utility berms shall cross roadway intersections through utility sleeves. After crossing the intersections, they shall resume the alignments within the utility berms.

7. Stormwater Management System

7.1 Internal Surface Drainage

- 7.1.1 The general criteria for the site internal stormwater management system are described below.
 - All interior site grading and roads shall be designed to provide continuous overland flow without erosion to a drainage ditch system.
 - All drainage ditches should be of trapezoidal cross sections, where possible.

- Ditches shall be designed to convey a 1 in 25 year flood event.
- Provision must be made to ensure that there is a safe flow path for events up to the 1 in 100 year event, such that the runoff will not flood key mining areas, cause significant erosion, pick up excessive contaminants or cause other significant problems.
- Ditch freeboard, minimum depth, minimum width, side slope, longitudinal slope and maximum permissible velocities shall be as per Table 7-2.
- Minimum set back distance of structures from top of drainage ditch slopes shall be 3 m.
- Roof and yard drainage shall be collected in open ditches.

Civil

Baffinland Iron Mines Corporation: Mary River Project H349000

- Rip rap shall be provided at locations throughout the storm drainage system which are susceptible to erosion, including ditch sections subject to high-velocities (greater than 1.5 m/s), sections of super critical flow, ditch outlets, storm sewers outfalls, and culverts inlets and outlets.
- If the ditch is in rock, no rip rap is required.
- Energy dissipaters shall be used where the flow velocities may reach values high enough to cause severe erosion or hydraulic jumps.

7.2 External Surface Drainage

Criteria for drainage of the external area are as follow:

- Runoff from undisturbed areas surrounding the mine site shall be collected in perimeter ditches and diverted around and/or through the site perimeter.
- To the extent possible, these perimeter ditches shall be designed to discharge at locations that best retain the characteristics of the existing (i.e. pre-development) natural drainage patterns.
- Diversion ditches shall be designed to convey the 1 in 100 year flood event.
- Ditch freeboard, minimum depth, minimum width, side slope, longitudinal slope and maximum permissible velocities shall be as per Table 7-2.

7.2.1 Peak Flow Estimation

For catchment areas greater than 0.5 km²:

/1\

Runoff peak flow estimation shall be based on the following equations developed by Knight Piésold Consulting:

$$Q_2 = 1.1 A^{0.79}$$

$$Q_5 = 1.7 A^{0.77}$$

$$Q_{10} = 2.0 A^{0.76}$$

$$Q_{25} = 2.6 A^{0.75}$$

$$Q_{100} = 3.5 A^{0.73}$$

$$Q_{200} = 3.9 A^{0.73}$$

Where:

Q=peak flow instantaneous flow in m³/s

A = drainage area in km^2 ($0.5 km^2 \le A \le 1000 km^2$)

For catchment areas less than 0.5 km²:

The Rational Method shall be used for peak flow estimation, as follows:

Q = 0.28 CIA

Where:

Q = peak instantaneous flow in m³/s

A = drainage area in km²

Civil

Baffinland Iron Mines Corporation: Mary River Project H349000

C = runoff coefficient = 0.90 (for all drainage areas except the Milne Port Ore Stockpile footprint, for which C = 0.0, as per BIM's instructions).

 $\sqrt{1}$

I = rainfall intensity corresponding to the time of concentration (mm/hr), estimated using Table 7-1 below.

Time of Concentration shall be computed with the modified Kirpich equation:

 $T_c = 0.06628 (L^{0.77}/S^{0.385})$

Where:

 T_{c} = time of concentration (hours)

L = main channel length (km)

S = main channel slope (m/m)

Minimum $T_c = 10 \text{ min}$

7.3 Rainfall Intensity

7.3.1 Table 7-1 displays the Intensity-Duration-Frequency data which shall be used for peak flow runoff approximation, developed by Knight Piesold consulting:

Duration 2 yrs 5 yrs 10 yrs 15 yrs 20 yrs 25 yrs 50 yrs 100 yrs 200 yrs 5 min 9.5 12.0 14.0 15.1 15.9 16.5 18.3 20.1 22.0 10 min 10.5 7.2 9.0 11.3 11.9 12.4 13.7 15.1 16.5 8.7 15 min 6.0 7.5 9.4 9.9 10.3 11.4 12.6 13.7 6.3 7.3 7.9 30 min 5.0 8.3 8.6 9.5 10.5 11.4 1 hr 4.0 5.2 6.1 6.6 7.0 7.3 8.1 9.0 9.9 2 hr 3.0 3.9 4.6 5.0 5.2 5.5 6.1 6.8 7.4 6 hr 2.0 2.7 3.3 3.6 3.9 4.0 4.6 5.1 5.7 2.7 12 hr 1.3 1.8 2.2 2.4 2.6 3.1 3.4 3.8 24 hr 1.0 1.4 1.7 1.9 2.0 2.1 2.4 2.7 3.0

Table 7-1: Rainfall Intensity (mm/h)

7.3.2 Figure 7-1 displays the 200 year design storm distribution:

Civil

 $\sqrt{1}$

 $\sqrt{1}$

Baffinland Iron Mines Corporation: Mary River Project H349000

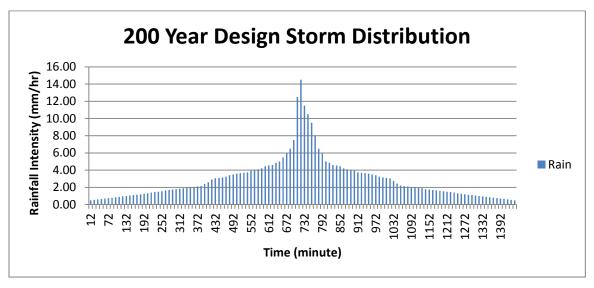


Figure 7-1: 200 Year Storm Distribution

7.3.3 The 200 year 24-hour balanced storm depth is 71 mm.

7.4 Sedimentation Ponds

- 7.4.1 Sedimentation ponds shall only be provided at the Milne Port Ore Stockpile area, Mine Site Crushing and Screening area and the Mine Site Waste Rock Drainage area. For all other areas, including infrastructure facility pads, laydown areas and roads, the water is considered to be clean and no sedimentation ponds shall be provided.
- 7.4.2 The general design criteria for the project sedimentation ponds are as follow:
 - Ponds shall be sized based on 1 in 10 year, 24 hour design storm volumes.
 - Runoff coefficient to estimate runoff shall be 0.9 for all drainage areas except the Milne Port Ore Stockpile footprint, for which the runoff coefficient shall be 0.0 as per BIM's instructions.
 - Sedimentation shall be for Total Suspended Solids (TSS) ≤ 30 mg/l for a single sample and TSS ≤ 15 mg/l for the monthly average.
 - Sedimentation ponds shall contain emergency overflow weirs of sufficient capacity to safely convey a 1 in 200 year return period storm event or the Probable Maximum Flood (PMF), maximum wind-induced waves, or unexpected operational difficulties.
 - Emergency overflow weirs shall be designed to handle applicable design storms, such that the pond high water level does not increase past the set freeboard elevation.
 - Emergency overflow weirs shall be designed as broad-crested weirs with rip rap.
 - Gabion mattresses shall be provided at the downstream locations of emergency overflow weirs as energy dissipation measures to protect against erosion.
 - The following broad-crested weir capacity flow equation shall be used for sizing the Project emergency overflow weirs:

Baffinland Iron Mines Corporation: Mary River Project H349000

Civil

 $Q = CLH^{3/2}$ Where:

Q = Peak instantaneous flow (m³/s)

C = Weir discharge coefficient

L = Width of weir (m)

H = Depth of flow (m), measured 2.5H upstream of the weir discharge point

 Deep sedimentation ponds shall be avoided as much as possible. Sedimentation pond depths shall be kept to less than 5 m, to avoid non-compliant TSS removal/efficiency and other safety concerns.

Berm/embankment side slopes for the ponds shall be 3H:1V.

• Mine Site Ore Crushing and Screening and Waste Rock Drainage sedimentation ponds shall be lined and the discharge from the ponds shall be controlled.

• Milne Port Ore Stockpile pond(s) can be lined/unlined and depending on its impact to the environment and permafrost as well as geotechnical stability, the discharge from the pond(s) can be controlled/uncontrolled.

• Ponds with storage volumes greater than 30,000 m3 and heights exceeding 2.5 m shall be classified as dams and shall meet the dam safety requirements as per the Canadian Dam Association's Dam Safety Guidelines (CDA 2007).

7.5 Off-Spec and Treated Effluent Ponds

7.5.1 The off-spec effluent pond at the Milne Port shall be sized based on the storage requirements specified in the event that the sewage treatment plant does not meet effluent discharge criteria and/or the system halts operations due to technical difficulties.

7.5.2 The treated effluent pond at the Mine Site shall be sized based on the requirements for 10 months storage of treated sewage generated at the Mine Site during the period in which the body of water receiving the discharge (i.e. Mary River) is frozen.

7.5.3 The ponds shall have minimum freeboards of 0.3 m.

7.5.4 The ponds shall have side slopes of not steeper than 3H:1V.

7.5.5 The effluent ponds shall be lined.

7.6 Culverts and Roadside Ditches

- 7.6.1 Drainage ditches and culverts for all internal/access roadways and vehicle access points shall be designed to convey the runoff peak flow from a 1 in 25 year return period storm, such that the inlet headwater level does not exceed the bottom of the road subbase. Their analysis and design shall consider design flow, culvert size and material, entrance structure layout, outlet structure layout and erosion protection.
- 7.6.2 Drainage ditch design shall also be subject to the criteria stated in Table 7-2.

Baffinland Iron Mines Corporation: Mary River Project H349000

Civil

Table 7-2: Drainage Ditch and Culvert Design Criteria

Maximum permissible flow veloc	1.5	
Minimum ditch and culvert slope	e (%)	0.3
Minimum freeboard for ditch (mi	m)	300
Minimum ditch depth for interna	I roads and other areas (mm)	300
Minimum ditch bottom width for	internal roads and other areas (mm)	500
Minimum rock ditch depth for haul road (mm)		500
Minimum ditch bottom width for haul road (mm)		1000
Ditch side slopes (H:V)	Rock	1:4
	Soil	2:1
Minimum culvert diameter (mm)		500

- 7.6.3 All culverts shall have 50 mm diameter steam pipes welded at the top inner sides for prevention of water from freezing.
- 7.6.4 Loading over culverts and pipes shall be in accordance with AASHTO HS 20-44, except for areas of special equipment operation, which shall consider actual vehicle loading. The minimum cover for culverts shall be 600 mm, or as required by the differing specific design vehicle.
- 7.6.5 Fish-bearing culverts shall be minimum 1,000 mm diameter and only one pipe shall be embedded by 10% of the pipe diameter.

7.6.6 All culverts shall be Corrugated Steel Pipe (CSP).

7.6.7 Apply Manning's n values as per the following:

- n = 0.025 for gravel ditches
- n = 0.040 for rip rap ditches
- n = 0.024 for all CSP pipe.

7.7 Drainage Interceptor/Collector Berms

- 7.7.1 Drainage berms diverting overland flow from the waste rock drainage area to the sedimentation ponds shall be a minimum of 1.0 m high with 1.5H:1V side slopes and 0.5 m top width.
- 7.7.2 Rip rap and other energy dissipation measures shall be provided to protect against erosion.

ATTACHMENT 5.2

RAIL DESIGN CRITERIA

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Design Criteria
Railway Design Criteria and Design Rational

Mary River Expansion Project Railway Design Criteria and Design Rational

			0		*	
				4.		
,			Jeffer	/hill	Author.	- Jay Pithme
2017-11-28	0	Approved for Use	A. Aquil	F. van Biljon	F. van Biljon	F. Pittman
Date	Rev.	Status	Prepared By	Checked By	Approved By	Approved By
HATCH			Client			

Baffinland Iron Mines LP: Mary River Expansion Project H353004

Table of Contents

1.	Gene	eral	1
	1.11	Introduction Jurisdictional Authority Project Scope Definition Project Objectives Project Language Rail Classification Design Context Scope Safety Units of Measure Limits of Project Assumptions and Exclusions	1 1 2 2 3
2.	Refe	rences, Acronyms, Design Codes, Standards and Regulations	. 4
	2.2 2.3 2.4	Other Regulations Other Project Design Criteria Reference Documents	. 5
3.	Site	Conditions	. 6
4.	Oper	rations	. 6
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Traffic Axle Load Speed Ore Trains Design Train Length Other Trains Passing Tracks and Tracks at Terminals 4.7.1 Passing Loops 4.7.2 Mine Side Track Layout 4.7.3 Port Side Track Layout Hi-Rail Refuges	7 7 8 8 8
5.	Rail	Alignment	10
	5.1 5.2	General Horizontal Alignment 5.2.5 Tote Road Interface 5.2.6 Curve Radius 5.2.7 Spiral Curves (Transitioned Curves) 5.2.8 Minimal Tangent Length	11 11 11 12
	5.3	Vertical Alignment	13 13
6.	Geot	technical Recommendation and Earthworks	15
	6.1	Geotechnical Data	15

Baffinland Iron Mines LP: Mary River Expansion Project H353004

	6.2	Embankment Stability	
		6.2.1 Sub-grade Properties	
		6.2.2 Recommended Cross Sections for Embankments	
		6.2.3 Recommended Cross Sections for Excavations	
	6.3	Line Sections to Apply Typical Cross Sections	
	6.4	Settlement Considerations	
	6.5	Rock Fill Criteria	21
7.	Hyd	rology	23
	7.1	Introduction	
	7.2	Methodology	
	1.2	7.2.1 Design Peak Flows	
		7.2.2 Flood Return Period	
		7.2.4 Design Velocities	
0	D ": 4	<u> </u>	
8.		ge and Culvert Design Criteria	
	8.1 8.2	IntroductionTitle Block	
	8.3	References for Design Standards	
	8.4	Bridge Geometry	
	0.4	8.4.1 Design Requirements	
		8.4.2 Datum	
		8.4.3 Control Line	
		8.4.4 Coordinate System	
		8.4.5 Span Lengths	
		8.4.6 Horizontal and Vertical Clearance from Obstructions	
		8.4.7 Vertical Clearance of Water Crossings	
		8.4.8 Walkways	
		8.4.9 Fixity	
	8.5	Bridge Design Parameters and Loading	
		8.5.1 Ballasted Deck	
		8.5.2 Vertical Displacements and Camber	
		8.5.3 Lateral/Longitudinal Displacements	
		8.5.4 Live Load	31
		8.5.5 Centrifugal Force	31
		8.5.6 Fatigue Stress Cycles	31
		8.5.7 Braking and Traction Forces	31
		8.5.8 Bearing Friction Forces	32
		8.5.9 Walkway Loads	32
		8.5.10 Snow Loads	
		8.5.11 Snow and Walkway Combination	
		8.5.12 Ice Accretion Loads	
		8.5.13 Wind Load on Structure	
		8.5.14 Wind Load on Live Load	
	8.6	Other Lateral Forces	
		8.6.1 Temperature Range	
		8.6.2 Earth Pressure	
	8.7	In Stream Ice Loads	
	8.8	Stream Forces	
	8.9	Seismic Effects	35

Baffinland Iron Mines LP: Mary River Expansion Project H353004

		8.9.1 General	
		8.9.2 Load Combinations for Structural Check – Concrete Elements	
	8.10	Load Combinations for Structural Check – Steel Elements	
		8.10.1 General	37
		8.10.2 Bearing Replacement	
		8.10.3 Utilities	
	8.11	Bridge Materials	
		8.11.1 Concrete	
		8.11.2 Concrete Protection for Reinforcement	
		8.11.3 Structural Steel	
		8.11.4 Corrosion Allowance	
		8.11.5 Bolts	
		8.11.6 Joints	
		8.11.7 Bearings	
		8.11.8 Waterproofing	40
	8.12	Bridge Geotechnical Parameters	
		8.12.1 Ad Freeze Piles	40
	8.13	Other Bridge Design Considerations	
		8.13.1 Guard Rails	
		8.13.2 Fish Passage	
	0.44	8.13.3 Scour Protection	
		Bridge Options	
	8.15	Culvert Geometry	
		8.15.1 Dimensions	
	0.40	8.15.2 Vertical Clearance	
	8.16	Culvert Design Rational	
		8.16.1 General	
		8.16.3 Requirements for Fish Bearing Crossings	
_	_	·	
9.	ırac	k	
	9.1	Design Standards	
	9.2	Track Structure Design Conditions	45
		9.2.1 Train Loading	
		9.2.2 Sub-grade Loading	45
		9.2.3 Key Track Structure Parameters	
	9.3	Rail	
		9.3.1 General	
		9.3.2 Rail Dimensions and Tolerances	
		9.3.3 Steel Quality	
		9.3.4 Rail End Drilling and Hardening	
	9.4	Ties	
		9.4.1 Yards, Mainline and Sidings	
		9.4.2 Spacing Tolerance	
	9.5	Fastenings	
	0.0	9.5.1 Steel Ties	
	9.6	Ballast	
	9.7	Turnouts	
		9.7.1 General	
		977 LUMOUT LIES	50

Baffinland Iron Mines LP: Mary River Expansion Project H353004

		9.7.3 Main Line	
		9.7.4 Yards and Backtracks	
	0.0	9.7.5 Snow Elimination	
	9.8	Joints	
		9.8.2 Insulated Joints	
		9.8.3 Welded Joints	
	9.9	Other Track Materials	
		9.9.1 Guard Rails	
		9.9.2 Derails	
	0.40	9.9.3 Stop Blocks (Bumping Posts)	
		Track Signs	
	9.11	Crossings	
		9.11.2 Animal Crossings	
	9 12	Clearances	
	0	9.12.1 Clearance Diagrams	
		9.12.2 Track Spacing	
		9.12.3 Right-of-Way Fencing	54
		Track Construction	
	9.14	Track Maintenance	
		9.14.1 Track Maintenance Conditions	
		9.14.2 Maintenance of Way Vehicles	
		9.14.3 Maintenance Bases and Sidings	
10.	Rolli	ng Stock	55
	10.1	Locomotives	55
	10.2	Cars	55
11	Rolli	ng Stock Facilities	57
		Functional Design Criteria for Diesel-Electric Locomotive Depot	
		Main Workshop Facility for Diesel-Electric Locomotives	
		Rolling Stock Maintenance Facility Stores and Offices	
		,	
12.	Desi	gn Criteria Summary	60
		List of Tables	
Tal	ole 6-1	: Type of Embankment Section along the Rail Alignment	20
		2: Summary of Embankment Recommendation and Estimated Settlement	
		3: Type 12 Fill - Run of Quarry	
Tal	ole 6-4	l: Type – Ballast	22
		5: Type 26 Fill – Sub-ballast	
		: Group Loading Combination – Service Load Design (MRE Clause 8-2.2.4 Table 8-2-4)	
		2: Group Loading Combination Load Factor Design (MRE Clause 8-2.2.4 Table 8-2-5)	
		B: Group Loading Combination (MRE Chapter 15)	
	าเอเน∵		
Tal			
	ole 9-2	2: Ballast Physical Specification	49
Tal	ole 9-2 ole 9-3		49 53

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Design Criteria
Railway Design Criteria and Design Rational

Table 12-1: General Design	61
Table 12-2: Site Conditions	61
Table 12-3: Operations	61
Table 12-4: Alignment	61
Table 12-5: Earthworks	61
Table 12-6: Hydrology	
Table 12-7: Bridges and Culverts	62
Table 12-8: Track	62
Table 12-9: Yards and Sidings	63
Table 12-10: Rolling Stock	
Table 12-11: Rolling Stock Facilities	64
List of Figures	
Figure 4-1: Midway Passing Loop and Backtrack	g
Figure 4-2: Mine Track Diagram	
Figure 4-3: Port Side Track Diagram	
Figure 4-4: Typical Arrangement for Level Crossing	
Figure 6-1: Typical Cross Section Embankments	
Figure 6-2: Typical Cross Section in Ice Rich Permafrost	
Figure 6-3: Typical Cross Section of Cut in Sedimentary Bedrock Ledges	
Figure 6-4: Typical Cross Section of Granitic Rock Cut	
Figure 6-5: Typical Cross for a Cut-off Drain	
Figure 8-1: Clearance Box for Plan Curvature up to 3 Degrees (R ≥ 600 m)	
Figure 8-2: Clearance Box for Tangent Track	
Figure 8-3: Culvert Section with Erosion Protection	
Figure 8-4: Single Pipe Culvert with Minimum Backfill Requirements	
Figure 8-5: Plan – Multiple Pipe Culvert with Erosion Protection	
Figure 8-6: Multiple Pipe Culvert with Fish Passing	
Figure 9-1: Typical Cross Section – Superstructure	
Figure 9-2: Typical Cross Section – Double Track in Sidings – Superstructure	
Figure 9-3: Typical Cross Section – Caribou Crossing	
Figure 10-1: Structure Gauge Plate M	

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Design Criteria
Railway Design Criteria and Design Rational

1. General

1.1 Introduction

- 1.1.1 This revised document incorporates the adjustments made to the rail and embankment designs subsequent to the value improvement processes (VIP) workshop conducted on the outcomes of the initial pre-feasibility capital requirements for the project and should be read with document H352034-300-200-210-0001 Rev. 0 as initial baseline for design.
- 1.1.2 It outlines the adjusted Design Criteria that govern the design for the Railway between the Iron Ore Mine at Mary River and Milne Port to the North and inclusive of the loading, discharging and maintenance facilities and rail infrastructure at each end. This project is specifically associated with the optimization of the Expansion Study Stage II rail studies for Baffinland Expansion 12 million tonnes per annum (Mtpa) Mine Option.
- 1.1.3 The design codes and standards referenced in this document, engineering and other work done on the Steensby Project, the Tote Road, the Concept Scoping Studies for the rail line to Milne Port and the twice a day optimization progress calls with BIM, subsequent to the prefeasibility VIP workshop, guided the optimization measures for the railway system's capital requirements.

1.2 Jurisdictional Authority

1.2.1 The railway will be operated and maintained by Baffinland Iron Mines (BIM) during the life of the mine as a private, dedicated railway system.

1.3 Project Scope Definition

- 1.3.1 The Mary River Expansion Study Stage II Phase has been planned as a means to further develop the Mary River deposit and in an effort to curb high operating cost of the Tote road operation.
- 1.3.2 The adjusted aligned 110 km standard gauge rail line and railway system will be designed to allow year round railing of iron ore from Mary River Mine to Milne Port using the rolling stock and support equipment that will be able to remain functional in these extreme conditions in a sustainable manner.
- 1.3.3 Due to the unknowns regarding train operations in extreme weather for the site, provision has been made for the loss of 21 operating days per calendar year in designing train plans and operating plans and considering capacity issues.

1.4 Project Objectives

1.4.1 The objective of the project is to provide a reliable, all-season transport system to move 12 million tonnes per annum (Mtpa) of iron ore from the Mary River mine site to Milne Port, considering potential upgrades in future to exploit the full potential of the mine and the logistics chain. In an effort to optimize the capital requirements, the transport system will initially not make provision for the transportation of fuel, supplies, equipment and waste.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

1.5 Project Language

1.5.1 The project language will be Canadian English.

1.6 Rail Classification

1.6.1 The railway system is classified as a standard gauge heavy haul system for permitting purposes, although other traffic might be operated on the line in future, the traffic allowed for in this optimized Mary River Expansion Study – Stage II, will be iron ore operating unit trains.

1.7 Design Context

1.7.1 The Rail Design Criteria will be based in general on AREMA but also following a "best practices" approach based on the Consultant's experience in rail design to incorporate other applicable codes and practises as well as on instruction from the client, BIM and their officials, inside the best practise approach for safe and optimized rail system operations. Section 2 to follow provides a representation of the codes, standards and practises consulted and applied in the design process.

1.8 Scope

- 1.8.1 The criteria in this document apply to the civil engineering and operational design of the railway system between Mary River Mine and Milne Port including all relevant and related infrastructure, equipment and facilities at the end points and potentially on route.
- 1.8.2 It includes an occupancy control system and the existing telecommunications back bone. The Tote road is supported by full coverage communications by microwave towers as back bone and repeaters along the road for full coverage. The Mary River Expansion Study Stage II will need to assess if more repeaters are required for the rail route deviations, considering fiber optic connections between towers and repeaters as enhancement of the backbone, especially deviation 8 around km 67 hill, to support full rail coverage for crew to control room communications and uninterrupted support for the radio distributed power (RDP) for the locomotives on the ore unit trains.

1.9 Safety

- 1.9.1 The consideration of personnel safety in all stages of the design, construction and operation is paramount. Prime consideration will be given to safety and reliability to:
 - Maximize health and safety for all personnel using the railway system and other systems adjoining and running in parallel to the railway system.
 - Minimize environmental impacts during the design process to assist in construction and operation.
 - Maximize the security of equipment.
 - Maximize continuity and sustainability of service (i.e. minimize time any element in the rail system is out of service).
 - Special attention is required by BIM to formalize operating rules regarding the access to failed trains for inspection and repairs, as the optimized design does not allow for shoulders on the sub-ballast layer that can serve as footpath for personnel.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

Ensuring safe layout and user rules for crossings at grade.

1.10 Units of Measure

1.10.1 The International System (SI) will be used as the project standard.

1.11 Limits of Project

- 1.11.1 The project limits of the rail system are from the Milne Port off-loading area and port yard facilities to Mary River Mine Site loading facilities, dead-end spur.
- 1.11.2 This includes construction of refuges for Hi-Rail on-track maintenance equipment, crossings and wayside condition monitoring equipment.

1.12 Assumptions and Exclusions

- 1.12.1 The design criteria for the standard gauge rail are based on the following assumptions:
 - The primary usage of this railway is for transporting of primary crushed iron ore from the
 mine site loading facility to an off-loading facility above the stockyard for the crusher at
 Milne Port. Although other commodities will potentially be transported between the mine
 and port in future after further upgrades, such other usage is not considered for the
 optimization of the pre-feasibility design.
 - The operating speed for all trains, loaded or empty, will be 60 km/h in both directions. The design speed will be 75 km/h. Operating speeds are unlikely to be adjusted upwards in future. The geometric design criteria for safe operation is based on these operational requirements and loading factors. Where these geometric design criteria cannot be met, due to site conditions imposed by impacts of permafrost, topography and cost, minimum acceptable geometric design criteria and mitigating operating rules like speed restrictions will be proposed.
 - The typical heavy haul Diesel Electric Locomotives (3,280kW) that will be used on the line will have 33 tonnes axle loads (TAL), whilst the typical standard gauge gondola ore cars will have a practical capacity to carry 108 tonnes iron ore with a tare weight of 22 metric tonnes or 32.5 TAL.
 - The railway will be operated and maintained by BIM as a privately owned railway system.
 - The train operating plan, crew strategy and related functions are covered in Section 4.
 - Rolling Stock and facilities are covered under Sections 9 and 10.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

2. References, Acronyms, Design Codes, Standards and Regulations

- 2.1 Unless specifically stated elsewhere, the rail will be designed in accordance with this criteria read along with applicable sections of the latest revisions of the codes, specifications and standards listed alphabetically below. If there is any conflict between this criteria and other relevant design standards, the discrepancies will be assessed and recommended to include practical best practice for the extreme weather conditions and experienced based best practice on a case by case basis.
 - AASHTO American Association of State Highway and Transportation Officials.
 - ACI American Concrete Institute.
 - All applicable federal, territorial and local laws and regulations.
 - AREMA American Railway Engineering and Maintenance-of-Way Association, Manual of Recommended Practice.
 - AREMA Communications and Signals Manual of Recommended Practice.
 - ASTM American Standards for Testing and Materials.
 - AWS American Welding Society.
 - CAN/CSA-S6 Canadian Highway Bridge Design Code.
 - CENELEC European Committee for Electrotechnical Standardisation, Standards for Railway Signalling.
 - CSA Canadian Standards Association.
 - Developing and Managing Transportation Infrastructure in Permafrost Regions, TAC-ATC: 2010.
 - Fisheries Act (Canada).
 - FRA Federal Railway Administration (USA).
 - IEC International Electrotechnical Commission.
 - ISO International Standards Organization.
 - Northern Land Use Guidelines: Access Roads and Trails, Indian and Northern affairs Canada; Volume 5; 2010.
 - Ontario MoE, Stormwater Management Planning and Design Manual, 2003. 2.1.2 In addition, the design must comply with all laws and regulations of local authorities; in the event of conflicting requirements, the most stringent will govern as confirmed with the Engineer. TSB Transportation Safety Board (Canada).
 - RTC Rail Traffic Controller (modeling software).
 - UFC Unified Facilities Criteria, Subarctic Construction.
 - USACE United States Army Corp of Engineers Mine Health and Safety Act.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

2.2 Other Regulations

- 2.2.1 All applicable federal, provincial and local laws and regulations apply to the Mary River Expansion Study Stage II:
 - INAC Indian and Northern Affairs Canada.
 - OSHA Occupational Safety and Health Administration.
 - OSHR Occupational Health and Safety Regulations.
 - NBCC National Building Code of Canada.
 - NFPA National Fire Protection Association.
 - CFEM Canadian Foundation Engineering Manual.
 - MNR Ontario Ministry of Natural Resources.
 - MOE Ontario Ministry of the Environment.
 - MSHA Mine Safety and Health Administration Handbook Number PH99-I-4.

2.3 Other Project Design Criteria

- 2.3.1 This Design Criteria must be read in conjunction with other documents which may already exist or will be developed as the project proceeds. These documents include the following:
 - Canarail: Railway Design Brief Report dated November 2011 to Baffinland Iron Mines Corporation, Steensby Project, Revised Feasibility Study.
 - Hatch: Baffinland Iron Mines Corporation Mary River Project, Optimization Study Report 28 March 2012.
 - Sub-sections of design criteria and specifications, linked to these two studies as well as that of the Tote road.
 - Minimum standards, like the lack of ballast shoulders or the lack of benches on high embankments, have been applied after a project optimization process was completed. So although this configuration is structurally sound it is not a conventional design approach.

2.4 Reference Documents

- 2.4.1 Reference will be made to the following documents when reading these criteria:
 - Baffinland Rail Scoping Study.
 - H353004-00000-200-078-0008, the standard specification for Site Data, dated 2016-12-14.
 - NB102-00181/39-A.01, Updated Design Peak Flow Assessment, by Knight and Piésold dated, 2016-12-13.
 - H352034-3000-228-030-0001, the Project Hydrology Review Memo on the assessment of the Tote road Hydrology, dated 2016-08-18.

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Design Criteria
Railway Design Criteria and Design Rational

- H353004-00000-200-024-0001, Hydraulic Design of Drainage Structures, dated 2017-02-02
- H352034-3000-224-030-0003, Rail Tie Type Trade-off for Extreme Cold Weather Heavy Haul Operations.

3. Site Conditions

- 3.1 The standard gauge rail line follows the Tote road alignment between Mary River Mine and the Milne Port to a large extent with 10 pertinent deviations of which deviation 8 around/over the hill at 67 km is the most challenging due to the nature of the topography and the noncohesive sands and sand and gravel of the undulated hills.
- 3.2 Site conditions are referenced from document H353004-00000-200-078-0008, the standard specification for Site Data, dated 2016-12-14.
- 3.3 Refer to the Site Conditions Specification for design temperatures, design wind parameters, seismic parameters, hydrology and snow load design parameters.

4. Operations

The operating requirements dictate the design parameters and criteria for the track, supporting infrastructure and systems that need to be developed inside the environmental and other constraints to support a sustainable operating model irrespective of the optimizing measures taken.

Operating conditions are extreme for equipment, infrastructure and personnel. Consensus has been reached that an initial reasonable operating plan needs to be adapted now with the view to exploit the learning curve of operations experience and the behaviour of the optimized infrastructure to consider adjustment for better efficiencies.

4.1 Traffic

- 4.1.1 The primary usage of this railway is for transporting of primary crushed iron ore from the mine site loading facility to an off-loading facility above the stockyard for the crusher at Milne Port. Other commodities initially considered for transportation by rail between the mine and port, will continue to be road transported over the Tote.
- 4.1.2 The ore trains will be unit trains dedicated to ore traffic configured to remain as a complete train-set throughout the operation cycle with at least one locomotive at each end. Trains will only be uncoupled for other than daily provisioning for planned or emergency maintenance purposes on cars or locomotives. "Not-to-go" (bad order cars) will be replaced as required, mainly port side. Train sets and locomotives need to be turned at the portside triangle on a frequency to be determined to ensure even wheel wear.
- 4.1.3 The railway will transport 12Mtpa of dry primary crushed iron ore equivalent to approximately 12.24Mtpa of wet iron ore (2% moisture content).
- 4.1.4 The mixed other traffic will be road transported over the Tote road during at least the first 5 years of operation, when further upgrading of the rail line can potentially be considered.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

4.2 Axle Load

- 4.2.1 The typical heavy haul Diesel Electric Locomotives (3,280 kW) that will be used on the line will have 33 tonnes axle load (TAL), whilst the ore cars to be procured will have capacity to carry 108 metric tonnes iron ore with a tare weight of 22 tonnes or 32.5 TAL. During the ramp-up phase cars can be loaded to a payload of 98 tonnes per car or 30 TAL while the track and formation settles in after which full capacity loading will be considered and authorised.
- 4.2.2 The system and support infrastructure will be designed for 32.5 TAL.

4.3 Speed

- 4.3.1 The operating speed for all trains, loaded or empty, will be 60 km/h in both directions. The design speed will be 75 km/h. The design speed has basically the purpose to calculate dynamic forces for bridge structures and other support infrastructure as well as rail superstructure on the main line.
- 4.3.2 Higher operating speeds are not recommended due to the very small impact faster running times will have on the total cycle time. RTC modelling indicated that a 10 minute saving on running time applies at 65 km/h relative to 60 km/h for the loaded train as an example, as the loaded train can't maintain 60 km/h or 65 km/h continuously over the whole line due to the topography and the alignment. Higher speeds increase the maintenance effort on the track exponentially, so the higher speed value trade-off is debateable, whilst terminal dwell time makes up the largest part of the cycle time in any way.
- 4.3.3 The geometric design criteria for safe operation is based on these operational requirements and loading factors. Where these geometric design criteria cannot be met, due to site conditions imposed by impacts of permafrost, topography and cost of earthworks, minimum acceptable geometric design criteria and mitigating operating rules like speed restrictions are proposed.
- 4.3.4 During the spring/summer thaw period there is a possibility that temporary speed restrictions might be imposed over sections of the line if the effects of the permafrost prove to be a concern. This will be determined by intensified track and substructure inspection and monitoring on a daily basis or even on a train by train basis where the maintenance engineer can decide to what speed the operating speed could be reduced or even to suspend operations for a determined period.

4.4 Ore Trains

- 4.4.1 The ore train configuration and recommendations are presented in the revised static evaluation combined with the Rail Traffic Controller (RTC) dynamic simulation report H352034-3000-200-230-0001.
- 4.4.2 A specific train configuration is recommended for the optimized alignment and facilities as a workable and sustainable solution. This configuration, as do all the others analyzed, requires a passing loop close to the middle of the line and a departure siding at each terminal.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

- 4.4.3 Operate 2 train sets of 80 cars and 2 locomotives. Required car fleet is 168 ore cars and 5 Locomotives (1 spare/exchange locomotive and 8 cars) (3,280 kW). One locomotive at each end of the train.
- 4.4.4 It is assumed that BIM will start off operating shorter trains during the ramp-up period to solve all operating challenges, potential distributed power test trains, crew training and to allow for ballast and formation consolidation before the full train configuration is implemented.

4.5 Design Train Length

The train design length is 900 m (80 x 10.56 (including stretch) + 2 x 22.7).

4.6 Other Trains

4.6.1 Only ore trains are considered for the optimized rail system proposed and other trains will only be considered during potential future upgrading phases.

4.7 Passing Tracks and Tracks at Terminals

4.7.1 Passing Loops

- 4.7.1.1 The RTC modeling concluded the location of a passing loop close to the 56 km chainage, based on running times of the loaded and empty trains.
- 4.7.1.2 The mid-way passing loop could be fit between 55,886 km and 56,947 km, providing a clearance of 900 m, fit for maximum 80 car train length. The switches need to be installed on tangent track and not inside vertical curves.

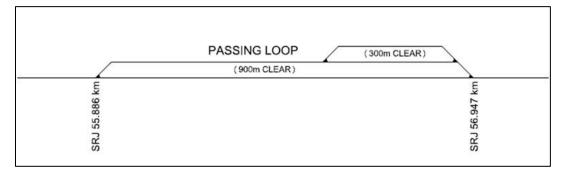


Figure 4-1: Midway Passing Loop and Backtrack

Baffinland Iron Mines LP: Mary River Expansion Project H353004

4.7.2 Mine Side Track Layout

4.7.2.1 The Mine side track facilities have been rationalized and are represented in Figure 4-2 below:

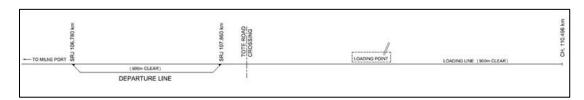


Figure 4-2: Mine Track Diagram

- 4.7.2.2 The mainline runs past the front-end loader loading bank into a dead-end.
- 4.7.2.3 A siding of 900m clearance is also required, located in the vicinity where the freight siding was recommended initially.
- 4.7.2.4 The loading bank operations are based on 3 front-end loaders in the Static and Dynamic analysis.

4.7.3 Port Side Track Layout

- 4.7.3.1 The port side terminal and yard layout have been optimized and is presented in Figure 4-3 below:
- 4.7.3.2 The mainline will run straight into the elevated area adjacent to the quarry (Q1), through the off-loading facility into a dead-end. Clearances on both sides of the dumper must allow for 900m maximum train lengths, incorporating the tippler run-around section for empty train returns. The run-around section will tie back to the mainline in front of the dumper but will also run straight into a departure siding with 900 m clearance to allow a newly arrived loaded train to position in front of the tippler with an empty train waiting in the siding for inspection before departure back to the mine and for shunting movements if bad order cars need to be exchanged etc. Daily service and provisioning will be done by mobile units to the stationary train on the departure siding in order to enable the locomotives to be provisioned while still coupled to the empty cars.

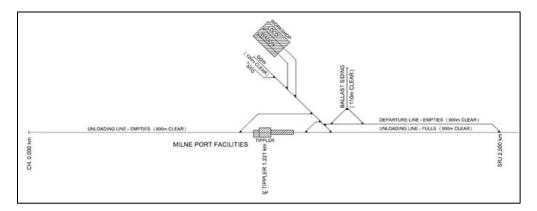


Figure 4-3: Port Side Track Diagram

Baffinland Iron Mines LP: Mary River Expansion Project H353004

- 4.7.3.3 An additional gather will tie onto the departure siding with four spurs that will go into the Locomotive and car maintenance facilities, for bad-order cars and good order cars for car exchange. Space for a second potential future line adjacent to the dumper empty car spur is provided as a shunting spur that could take a full train length for shunting and operational flexibility in future.
- 4.7.3.4 Provision for a ballast siding into the quarry area has been allowed for with another connection back to the departures siding that could serve as a triangle for cars and locomotives to be rotated for change of direction of travel and in support of wheel wear management.
- 4.7.3.5 The cycle time through the port terminal, including all these activities, has the most prominent impact on the train plan.

4.8 Hi-Rail Refuges

- 4.8.1 Track maintenance personnel and on-track maintenance machinery, must clear the line to let trains pass to minimize train operations interference and delays.
- 4.8.2 All track-bound equipment use the passing loop back track or the sidings at the terminals for this purpose. However, vehicles used for regular inspection and daily light maintenance are utility vehicles equipped with road/rail functionality, or referred to as "Hi-Rail" equipment.
- 4.8.3 These vehicles can clear the track at any location provided with a level surface at rail level of approximately 4 m wide, typically at level-crossings or purpose made refuges.
- 4.8.4 The locations for such refuges or level crossings should be carefully planned with the rail operations and maintenance contractor and will typically be at not more than 10 km intervals where geometric conditions are practical and safe and can coincide with normal level crossings at grade such as the access roads or track maintenance access roads as well as the Tote Road level crossings.

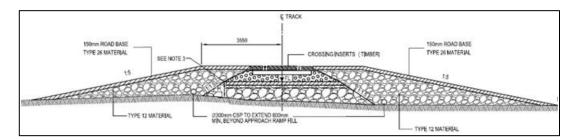


Figure 4-4: Typical Arrangement for Level Crossing

5. Rail Alignment

5.1 General

5.1.1 The design criteria relevant to the rail alignment has been based on design criteria related to heavy haul railway operations and support infrastructure.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

- 5.1.2 The basic objective is to have the gradients as flat as possible and the radii as large as possible. In some locations this is not possible due to the topography and the geotechnical considerations.
- 5.1.3 The emphasis for the optimizing actions was on an alignment that promotes operational safety and low maintenance, applying minimum design standards for optimizing purposes. The design speed is 75 km/h for both loaded and unloaded trains and the operating speed is 60 km/h. The commonly used design standard for North America heavy haul industrial track design and upgrades forms the basis of the design standards followed, unless alternative standards are specifically referenced.

5.2 Horizontal Alignment

- 5.2.1 The rail will predominantly be on an embankment of Type 12 rock fill between 700 mm and 1500 mm thick, above the natural ground level (NGL), measured on the high end of the cross fall under the ballast toe. The 1500 mm thick section had been designed for ice rich soil sections on the alignment.
- 5.2.2 Unevenness or cross fall in the NGL will be smoothed out with more run of quarry backfill Type 12 of varying thickness.
- 5.2.3 There will be no benches between topside of the embankment to the toe of the rock fill. There is no shoulder on the sub ballast layer and the ballast shoulder will vary from 300 mm to 600 mm depending on the curve radius for lateral support for the continuously welded track on steel ties.
- 5.2.4 On these curves where the outside leg of the track gets super elevated the top of formation or top of sub-ballast is widened from the standard 2624 mm to accommodate the wider ballast shoulder as well as the effect of the super elevation.

5.2.5 Tote Road Interface

- 5.2.5.1 Road accidents on the Tote Road should be prevented from having an impact on rail operations and vice versa.
- For the optimized preliminary design the rail centerline will be off-set at 15 m from the Tote road centerline where the track and the road are at the same grade. Where the track embankment height increases or where the track is lower than the road, each case should be evaluated on its merits to determine the off-set of the embankment toes or cut-line of cuttings to maintain a safety barrier in which safety measures can be installed to keep impact between the two modes isolated.
- 5.2.5.3 For each locations where the rail alignment interferes with the existing road alignment, more detailed analysis need to be performed to determine whether the rail alignment can be adjusted or whether the road will have to be diverted.

5.2.6 Curve Radius

5.2.6.1 The approach for a heavy haul line, or any rail line for that matter, is to install the largest radii possible while still balancing the required earthworks and other design and cost parameters.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

Large curves (or straight track) are better for rail/wheel interaction than small radii curves and therefore better for maintenance purposes.

- 5.2.6.2 The design brief from BIM for the Mary River Expansion Study Stage II phase railway, was initially that the horizontal alignment should stay alongside the Tote road and as far as possible inside the previously demarcated areas in which the development was scoped for permitting purposes. This brief was still respected during the optimization efforts except for locations where rock is present for cut to fill and where obvious geometric optimizing opportunities can be exploited.
- 5.2.6.3 The approach is therefore to design for a nominal radius of 500 m as the rule and an absolute minimum of 230 m as an exception for horizontal curves. (60 km/h speed restriction will apply to curves with radii of 230 m, coinciding with the operating speed). The RTC simulation model outputs will be analysed to consider the speed profile and energy consumption in order to adjust the alignment to exploit further optimization opportunities during the Expansion Study Stage II phase.

5.2.7 Spiral Curves (Transitioned Curves)

5.2.7.1 Spiral lengths of horizontal curves (transition curves from tangent track to circular track) are calculated for each radii according to the AREMA manual for spirals and a design speed of 75 km/h, as follows:

Spiral Length (m)	Curve Radii Range (m)
300	230 to 249
270	250 to 274
240	275 to 299
210	300 to 399
180	400 to 424
150	425 to 549
120	550 to 699

5.2.7.2 In areas with difficult topographical challenges and constraints AREMA allows spiral lengths to be compromised to the following:

Spiral Length(m)	Curve Radii Range(m)
150	230 to 274
120	275 to 324
90	325 to 474
60	475 to 949
30	>950

5.2.7.3 These spirals are normally staked in 30 m stations for construction purposes, hence the lengths of multiples of 30.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

- 5.2.7.4 As AREMA bases these calculations amongst others on "passenger comfort" it was already recommended for the pre-feasibility design to follow the adaption of constant transitional curve lengths according to the South African standard for heavy haul rail lines analyzed and proven to be effective over many years for track maintenance and rolling stock behavior purposes. This approach is applied for the optimizing efforts for the rail alignment.
 - Spiral Length = 60 m for curve radius R ≤ 300 m.
 - Spiral Length = 80 m for curve radius R > 300 m.
- 5.2.7.5 These spirals are staked in 20 m stations for construction purposes in preparing and shaping the sub-grade, formation and track.

5.2.8 Minimal Tangent Length

- 5.2.8.1 Minimum tangent track between spirals of reverse curves is 20 m in order for the bogies of one car to settle and to prevent them from being on cant applied in opposite grades.

 Transition curves can be butted in compounded and circular curves on running lines.
- 5.2.8.2 No spirals are required in yard track.
- 5.2.8.3 Apply the full applicable super elevation (cant) over the length of the spirals on both ends of the circular curve in order to have the full and constant cant on the circular section of the curve. Cant will be applied for 60 km/h operating speed and less cant based on the actual speed profile, for curves where the train goes slower due to gradients or speed restrictions.

5.3 Vertical Alignment

5.3.1 Curve Lengths

- 5.3.1.1 Vertical curvature will be applied between different grades at a rate of change not more than 0.040m/20m/20m (K=100).
- 5.3.1.2 Vertical curves are to be avoided in horizontal curves, however if it cannot be avoided and any other design criteria is compromised, vertical curves can be fitted to the circular sections of horizontal curves.

5.3.2 Ruling Gradient

- 5.3.2.1 A ruling grade of 1.5% (1 to 66.7 1:66.7) facing loaded ore trains will be designed for.

 Grades on curves must be compensated to allow for an equivalent lesser gradient in curves.
- 5.3.2.2 Exceptional Grades: A ruling grade of 3.0% (1:33) facing empty ore trains or loaded general freight- and mixed trains (Fuel, material and equipment) will be designed for as an absolute maximum and as an exception, for grades on inclines/declines less than an ore train length. Grades on curves will be compensated to allow for an equivalent lesser gradient in curves.
- 5.3.2.3 Exceptional Grades occur at only 3 locations over the entire 110 km mainline or approximately 3 km out of 110 km. The steepest grade in 2 of these locations is compensated to 1:35 due to the horizontal curves of radius 700 m in these same sections.

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Design Criteria
Railway Design Criteria and Design Rational

- 5.3.2.4 A ruling grade of 2% (1:50) facing empty ore trains or loaded general freight- and mixed trains (Fuel, material and equipment) will be designed for, for grades on inclines/declines more than an ore train length. Where the fill requirements can be enhanced and where the preceding grade is not steeper than 1% (1:100) a grade of 2.2% (1:45) will be allowed for sections longer than an ore train as an absolute maximum.
- 5.3.2.5 Grades on curves must be compensated to allow for an equivalent lesser gradient in curves in order to compensate for the higher rolling resistance of rail/wheel interaction through curves in relation to the radius of any specific curve.
- 5.3.2.6 The relatively steep gradients are necessary to adjust to the very challenging topography in the relevant corridor footprint and an effort to minimize the need for extensive excavations in the extreme permafrost conditions of Baffin Island and also to prevent extensive new permitting applications and environmental impact.
- 5.3.2.7 These gradients fall outside the relevant "range" of gradients normally associated with heavy haul rail operations (refer to Project Benchmarking Memo H352034-3000-224-030-0001), but has been thoroughly analyzed with our in-house traction and adhesion tools to prove sustainability with the optimized alignment as base. Further compromise of gradients to optimize earthworks is not recommended.
- 5.3.2.8 Allow in general one vertical grade direction change over one ore train length of track and as an exception 2 grade direction changes over one ore train length of track in places where the other vertical- and civil design criteria will be compromised if this exception is not allowed for.
- 5.3.2.9 The train design length of 900m now makes provision for the maximum number of 80 cars per train with 2 locomotives on RDP.
- 5.3.2.10 The optimized design based on the pre-feasibility design length of 775 m has not been compromised, as the grade changes per grade allowed also accommodates the 900 m design length.
- 5.3.2.11 Gradients in other locations:
 - Gradients in passing tracks: 0-0.25%.
 - Gradients in yard tracks: 0-0.125%.
 - Unloading facilities: 0-0.1%.
 - Loading facilities and attended trains: 0 0.25%

5.3.3 Grade Compensation

5.3.3.1 The measure of elevation for a ruling grade (1:X) = (20/X)m per 20 m of track; the reduction in elevation for a curve of radius (R) and a ruling grade (1:X) = (14/R)m/20m; so the measure of elevation for compensated ruling grade = ((20/X)-(14/R))m/20m.

Therefore compensated equivalent ruling grade in such a curve = 1: 20/((20/X)-(14/R)).

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Design Criteria
Railway Design Criteria and Design Rational

6. Geotechnical Recommendation and Earthworks

Report number H352034-3000-229-230-0001, a summary of the preliminary geotechnical recommendations for the railway embankment design, based on the existing Tote Road geotechnical investigation data, as part of the Mary River Expansion Study – Stage II, served as basis for the preliminary earthworks design criteria for the purpose of the estimation of earthworks quantities for the Mary River Expansion Study – Stage II. These recommendations had been revised for the optimizing exercise subsequent to another site assessment by Hatch that coincided with the VIP workshop. Further optimization and detailing can be considered for the feasibility study as geotechnical drilling and testing are currently conducted on the optimized alignment footprint.

The following paragraphs provide a record of optimizing decisions related to the earthworks.

6.1 Geotechnical Data

6.1.1 The site assessment report and various daily calls are referenced and linked to the cross sections for embankments and excavation on/in ice rich soils, rock and rock plates.

6.2 Embankment Stability

6.2.1 Sub-grade Properties

As part of the Tote road upgrade project in 2007/2008, Knight Piesold identified four categories of frost/thaw susceptibility to delineate the road bed foundations and the foundation conditions along the Tote Road.

These views were further enhanced by the site visit and assessment by Hatch and the following typical cross sections were recommended and applied for the MTO's to specific sections on the optimized alignment:

Baffinland Iron Mines LP: Mary River Expansion Project H353004

6.2.2 Recommended Cross Sections for Embankments

Two standard embankment sections were introduced as per the schematic in Figure 6-1

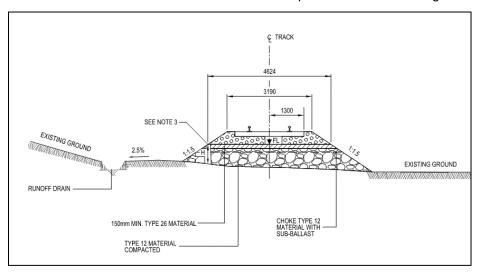


Figure 6-1: Typical Cross Section Embankments

The following observations apply:

- 6.2.2.1 For radii (R) > 800 m and tangent track the top of formation is 4624 mm, which is the top of sub ballast and base of ballast, therefore no sub ballast shoulder;
- 6.2.2.2 For 400 m < R ≤ 800 m the top of formation is 4900 mm, which is the top of sub ballast and base of ballast, therefore no sub ballast shoulder. The ballast shoulder is increased to 400 mm to the outside rail of the curve and this outside rail is super elevated between 54 mm and 86 mm, hence the top of sub ballast increases from 4624 mm to 4900 mm to the outside of the curve;
- 6.2.2.3 For R ≤ 400 m the top of formation is 5100 mm, which is the top of sub ballast and base of ballast, therefore no sub ballast shoulder. The ballast shoulder is increased to 600 mm to the outside rail of the curve and this outside rail is super elevated between 108 mm and 173 mm, hence the top of sub ballast increases form 4624 mm to 5100 mm to the outside of the curve;

6.2.2.4 Material Definition:

- Type 12: Minus 1 m run of quarry rock fill.
- Type 25: Minus 75 mm crushed rock for ballast layer.
- Type 26: Minus 50 mm crushed rock for sub ballast layer and to choke top of Type 12 fill.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

- 6.2.2.5 Minimum Embankment Thickness (H) (Type 12 Plus Sub Ballast):
 - Measured under the ballast toe on the high-end of the cross fall.
 - H = 700 mm Standard Dimension.
 - H = 1500mm on ice rich Permafrost.
 - 1800 g/m² non-woven geotextile under Type 12 material on ice rich Silt.

6.2.3 Recommended Cross Sections for Excavations

- 6.2.3.1 Excavation in ice rich permafrost needs to be avoided. In locations where excavation is not avoidable the excavation should be day lighted to the low side of the side slope as illustrated in the schematic in Figure 6-2.
- 6.2.3.2 In locations where daylighting is not possible the side slope on the other side will be a mirror image of the slope in the figure to a height where it cuts the natural ground level. Snow trap mitigation will need to be detailed for Expansion Study Stage II phase.
- 6.2.3.3 The side slopes of 1V:2H of the excavation is covered by a layer of 500 g/m² non-woven geotextile and a 500 mm cover of selected Type 12 material.
- 6.2.3.4 The layerworks for the embankment is the standard 700 mm under the ballast toe plus 100 mm polystyrene layer for a total of 800 mm from top of sub ballast to top of excavated permafrost.
- 6.2.3.5 The polystyrene layer is overlain by a 1000 g/m² geotextile for protection.
- 6.2.3.6 The standard widths of the top of formation apply for tangent track to curves of less than 400m radii i.e 4624, 4900 mm and 5100 mm.

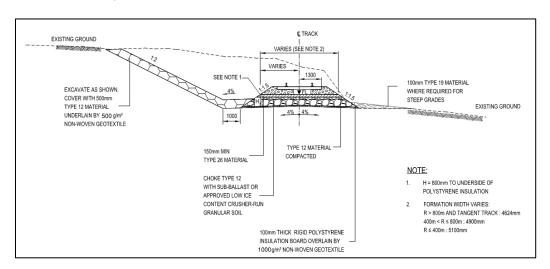


Figure 6-2: Typical Cross Section in Ice Rich Permafrost

6.2.3.7 Excavation in sedimentary bedrock ledges is illustrated in Figure 6-3 below:

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Design Criteria
Railway Design Criteria and Design Rational

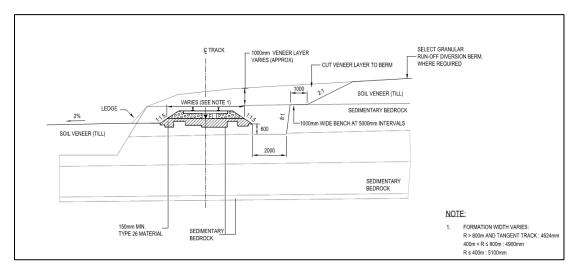


Figure 6-3: Typical Cross Section of Cut in Sedimentary Bedrock Ledges

- 6.2.3.8 The side slopes of the cut through the sedimentary bedrock is 8V:1H and through the soil veneer (till) 1V:2H.
- 6.2.3.9 The Type 26 sub ballast thickness is a minimum of 150 mm and the unevenness of the cut in the bedrock is smoothed with sub ballast Type 26.
- 6.2.3.10 The standard widths of the top of formation apply for tangent track to curves of less than 400m radii i.e 4624, 4900 mm and 5100 mm.
- 6.2.3.11 Excavation in for cuts in granitic rock is as per Figure 6-4 below:

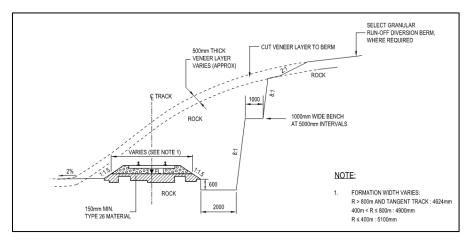


Figure 6-4: Typical Cross Section of Granitic Rock Cut

6.2.3.12 The side slopes of the cut through the granitic rock is 8V:1H and through the soil veneer (till) 1V:2H.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

- 6.2.3.13 The Type 26 sub ballast thickness is a minimum of 150 mm and the unevenness of the cut in the rock is smoothed with sub ballast Type 26.
- 6.2.3.14 The standard widths of the top of formation apply for tangent track to curves of less than 400m radii i.e 4624, 4900 mm and 5100 mm.
- 6.2.3.15 A typical cut-off drain will be required in some instances where there a stream crossing the rail alignment but where the positioning of a drainage culvert is impossible due to the rail alignment being in a cut and the daylighting of such a culvert is imposiosble or cost prohibitive. The figure below illustrates what this typical detail will entail.

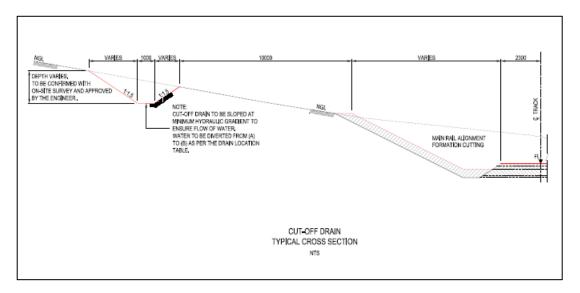


Figure 6-5: Typical Cross for a Cut-off Drain

6.3 Line Sections to Apply Typical Cross Sections

6.3.1 Chainages where to apply the different configurations of the typical cross sections are summarized in Table 6-1 below. The rail chainages in the table offer potential further optimization of better sub grade conditions for the feasibility study and subsequent to the outcome of the geotechnical evaluation currently underway.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

Table 6-1: Type of Embankment Section along the Rail Alignment

Chainage			Embankments	Reference	Excavation	Reference	Remarks Sub grade
From km	To km	Length km	Profile for Layer Works	Embankment Type	Profile for Cut	Cut Type	NS = Non Susceptible PS = Potentially Susceptible MS = Moderately Susceptible HS = Highly Susceptible
0	8.9	8.9	700mm Standard or 150 mm minimum	Figure 6-1	Rock Cut	Figure 6-4	NS
8.9	14.2	5.3	700mm Standard or 150 mm minimum	Figure 6-1	Rock Cut	Figure 6-4	NS
14.2	15.2	1	1500mm Permafrost or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	HS
15.2	30	14.8	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	PS & NS
30	43	13	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	PS
43	53	10	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	NS
53	62	9	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	PS
62	68	6	700mm Standard or 150 mm minimum	Figure 6-1	Ledge Rock Cut	Figure 6-3	NS
68	76	8	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	PS
76	80	4	1500mm Permafrost or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-3	MS
80	86.25	6.25	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	PS
86.25	87.25	1	1500mm Permafrost or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	MS
87.25	89.5	2.25	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	PS
89.5	92	2.5	700mm Standard or 150 mm minimum	Figure 6-1	Rock Cut	Figure 6-4	NS
92	95.4	3.4	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	PS
95.4	95.78	0.38	700mm Standard or 150 mm minimum	Figure 6-1	Rock Cut	Figure 6-4	NS
95.78	100	4.22	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	PS
100	104	4	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	NS
104	109	5	700mm Standard or 800 mm in cuts	Figure 6-1	Permafrost	Figure 6-2	PS

Note: ¹⁻ The road foundation classifications are approximate. Foundations Classifications were based on report by Knight Piesold and adjusted to rail chainages and inputs from the Hatch site assessment.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

6.4 Settlement Considerations

- 6.4.1 Settlement of embankments in permafrost and thaw circumstances offer a challenge in the embankment design process. The requirement is to define settlement allowances during the design process. Careful construction planning to prioritize high embankments to exploit the early settlement under load before the final layer works is one measure to mitigate settlement disruption, as well as strategies to correct settlement during maintenance interventions.
- 6.4.2 Preloading of the formation will be managed by considering the use of the formation by construction equipment and road vehicles where appropriate.
- 6.4.3 Table 6-2 provides a summary of the condition of the sub-grade discussed above and linked to certain line sections. It also indicates the estimated settlement considerations linked to these sections.

Table 6-2: Summary of Embankment Recommendation and Estimated Settlement

Embankment Section	Ground Frost/Thaw Susceptibility	Frost/Thaw Ground Ice Classification		Thaw Settlement Estimate (mm)	Typical Section
	Non Susceptible	Non to low	Segregated ice is not visible by eye1	<20	
Fill Cut	Potentially Susceptible	Low to Mediate	Segregated ice is visible by eye, less than 25 mm (1") in thickness ¹	20-100	Figure 6-1
Fill	Moderately Susceptible	Mediate to High	Ice greater than 25 mm (1") thickness ¹	100-300	
Cut	Highly Susceptible	Very High	Ice greater than 0.3 m	>300	Figure 6-1

Notes: 1- Classification is based on Unified Soil Classification System of Frozen Soils; 2- Based on Roujanski et. al. (2010).

6.5 Rock Fill Criteria

- 6.5.1 The geotechnical recommendation is to use rock fill Type 12 for the embankment support under the sub ballast layer for backfill and to smooth the natural ground level (NGL) or to fill where the NGL has a cross fall. Type 26 is the recommended good crushed and graded stone/rock for the sub ballast layer and a choke layer between sub ballast and the Type 12 rock fill. The grading for Type 25, recommended for ballast, is too fine and an alternative grading is provided, more common for use for heavy haul rail lines.
- 6.5.2 The following is a summary of the gradations for materials to be used for railway embankment fill in Expansion Study Stage II stage. Types 12 fill is recommended for use as fill material to be placed over the weak native sub-grade to prepare an appropriate foundation for embankment fill construction. The gradation for Type 12 run of quarry fill is shown in Table 6-3.

Table 6-3: Type 12 Fill - Run of Quarry

Nominal Sieve Size (mm)	Percentage Finer Than (By Weight)
1000	100
600	95 - 100

Baffinland Iron Mines LP: Mary River Expansion Project H353004

300	50 - 100
150	0 - 80
19	0 - 30
4.75	0 - 10

6.5.3 Table 6-4 and Table 6-5 summarize materials for ballast and sub-ballast. It should be noted that the grading for ballast had been changed from the Type 25 grading considered by the geotechnical team based on a track design basis. The appropriate "Type" to be confirmed, but ballast is further specified under Section 9.5.1.1.

Table 6-4: Type - Ballast

Nominal Sieve Size (mm)	Percentage Finer Than (By Weight)
73	100
63.0	90 – 100
53.0	40 – 70
37.5	10 – 30
26.5	0 – 5
19.0	0-1
13.2	0

Table 6-5: Type 26 Fill – Sub-ballast

Nominal Sieve Size (mm)	Percentage Finer Than (By Weight)
50	100
13.2	60 – 80
4.75	20 – 45
1.18	0 – 15
0.075	0 – 5

Baffinland Iron Mines LP: Mary River Expansion Project H353004

7. Hydrology

7.1 Introduction

- 7.1.1 The hydraulic design for culverts and bridge structures for the Tote road was based on 1 in 5 years return flood period, whilst normally 1:50 for culverts and 1:100 return floods and intensities for major structures are considered for railway line designs. For this project the design was for 1:200.
- 7.1.2 The hydrologic analysis for the Tote road had been reviewed refer to document H352034-3000-228-030-0001 titled the In-Principle Review of Previous Tote Road Hydrology Assessments, dated 2016-08-18.
- 7.1.3 Baffinland Iron Mine requested Knight Piésold to complete an update of previous studies concerning the design peak flows for the region and to incorporate the most resent stream flow data. Refer to Knight Piésold document number NB102-00181/39-A.01.

7.2 Methodology

7.2.1 Design Peak Flows

- 7.2.1.1 In the Hatch memo referenced in 7.1.3 Hatch raised queries with regard to the method used to derive the design peak flows. Following the updated design peak flows as presented in the report referenced in 7.1.4 the following methodology would be adopted by the project for the design of drainage structures.
- 7.2.1.2 Drainage structure locations will be identified along the proposed rail alignment, some of these structures will be to facilitate cross-drainage and others will be to perform the function of balancing culverts to balance the water that may collect in a low spot from either side of the rail alignment.
- 7.2.1.3 Catchments will be delineated by the project for all drainage structures, excluding the rail over river bridges which will be delineated by the responsible engineer to be appointed under procurement package CC003.
- 7.2.1.4 The delineated catchments will be used in conjunction with the formulas presented as output from 7.1.4 to calculate the associated run-off flows for a 1:200 year flood.
- 7.2.1.5 The flow volumes calculated in 7.1.5.3 will be used to determine the ultimate sizing of the culvert structure in terms of number and size of barrels.
- 7.2.1.6 Baffinland Iron Mine supplied information concerning which drainage structures are located in fish bearing streams. BIM will also supply stream flow data for fish bearings streams which, have been monitored on site so as to enable the project to determine the 3-day delay for a 1:10 year flood. This information will then be used to size the drainage structures. It is impossible to have stream flow data for every fish bearing stream. Thus the project will use ratios based on the known flow in monitored stream to scale the flow up or down for other fish bearing streams where no stream flow data is available.

7.2.2 Flood Return Period

7.2.3 One in one hundred year return period.

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Railway Design Criteria and Design Rational

7.2.4 Design Velocities

- 7.2.5 Velocities of water flow through culverts less than 3 m/s subcritical flow. Normal culvert, embankment and stream side slopes treatment against erosion will be applied.
- 7.2.6 For velocities determined as more than 3 m/s and less than 5 m/s applicable treatment to normalize the flow will be recommended for erosion protection and/or fish bearing streams.
- 7.2.7 For flows higher than 5 m/s special treatment must be considered on a case by case approach.

8. Bridge and Culvert Design Criteria

8.1 Introduction

- 8.1.1 This section describes the design elements and criteria for the railway bridges and major culvert structures that are to be designed and constructed for the Project.
- 8.1.2 This section will be a live document that will be revised once outstanding information becomes available. The values and information not yet available is highlighted in the relevant sub sections. Additional geotechnical investigations and drilling work as well as bathymetry data will be obtained in the first and second quarter of 2018.

8.2 Title Block

- 8.2.1 Each structure will be referred to by a prefix of either BR (for bridges) or CV (for culverts), an ID number indicating the kilometer station and a serial number that identifies multiple structures within the same kilometer of track. E.g. BR-68-1, CV-34-3. Zero km is Port Side and 107km Mine Side.
- 8.2.2 Where a bridge or culvert is located at a kilometer station, the lower km station will be used.

8.3 References for Design Standards

Design	Design Method	Code
Steel Design	Service load design (working stress design)	Chapter 15 of the Manual for Railway Engineering (MRE), as published by the American Railway Engineering and Maintenance-of-Way Association (AREMA).
Concrete Design	Service Load design (working stress design)	Chapter 8 the Manual for Railway Engineering (MRE) as published by the American Railway Engineering and Maintenance-of-Way Association (AREMA)
Prestressed Concrete Design		Part 17 of Chapter 8 of the Manual for Railway Engineering (MRE) as published by the American Railway Engineering and Maintenance-of-Way Association (AREMA).

Baffinland Iron Mines LP: Mary River Expansion Project H353004

Design	Design Method	Code
Seismic design		Chapter 9 the Manual for Railway Engineering (MRE) as published by the American Railway Engineering and Maintenance-of-Way Association (AREMA).

8.3.1 The standards addressed above will be supplemented by the CSA Standard S6 "Canadian Highway Bridge Design Code" (S6). The use of this code and the requirements will be highlighted in the relevant sections below.

8.4 Bridge Geometry

8.4.1 Design Requirements

- Number of tracks = 1
- Number of service roads = 0
- Number of walkways = 2 (1 each side of bridge)
- Design life = 20 years

8.4.2 *Datum*

8.4.2.1 The geographical coordinate system used is:

Name: UTM84-17N

Description: WGS 1984 UTM, Zone 17 North

8.4.3 Control Line

- 8.4.3.1 The horizontal control line used for the basis of the project is the centre line of track and all transverse dimensions will be taken relative to this control line. The transverse dimension will NOT be taken from the centreline of the structure.
- 8.4.3.2 The vertical control line used for the basis of the project is the top of the sub-ballast layer.

8.4.4 Coordinate System

- 8.4.4.1 The structures will be dimensioned in ground coordinates and stationing provided in grid coordinates.
- 8.4.4.2 The conversion between ground and grid coordinates is currently undefined and each structure will be located relative to a single grid point located along the control line at the low station centreline of bearing.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.4.5 Span Lengths

- 8.4.5.1 The Span length of a bridge is defined by the distance between the bearing centrelines on the foundations and measured along the control centreline. Span lengths are provided in metres. Standard span lengths has been considered for similar girder type bridges.
- 8.4.5.2 For fabrication purposes, "Girder Lengths" are specified at temperatures of 20°C.
- 8.4.5.3 "Span Lengths" are set according to bearings being centred at a temperature of -15°C.
- 8.4.5.4 As measurements are being taken between foundation units, not along the superstructure, the "Span Lengths" are equally correct at any temperature.
- 8.4.5.5 The following relationship therefore results:
- 8.4.5.6 Span Length= Girder Length \times (1- (20 + 15) \times 12e-6) = 0.99958 \times Girder Length.
- 8.4.5.7 A minimum allowance of 20 mm will be provided on each Girder Length in order to allow for the temperature difference as well as grid to ground conversions.

8.4.6 Horizontal and Vertical Clearance from Obstructions

- 8.4.6.1 For each single track structure, the minimum clear width of the ballast zone is 3.600 m, as measured at the top of concrete/steel deck level. The side walls of the ballast pan will be sloped outwards at a slope of 2V:1H.
- 8.4.6.2 Minimum clearance box required for trains is as follows:

Width (Horizontal):

- For plan curvature up to 3 degrees (R ≥ 600m): 5715 mm:
 - This value is based on the AREMA clearance box width of 5486 mm plus an allowance of 78.2 mm per degree of curvature, in accordance with Table 28-1-1 in Part 1 of Chapter 28 of the 2009 edition of the Manual for Railway Engineering (MRE) as published by the American Railway Engineering and Maintenance-of-Way Association (AREMA), at a maximum curvature of 3 degrees. Structure may intrude into a triangle at the bottom corners. The triangle is 1219.2 mm high by 914 mm wide at the base. See sketch below.
- For tangent track: 5486 mm:

An allowance is defined by the distance of the obstruction to the curved tangent track. This increase is given per degree of curvature. The allowance will be applied if the tangent track is curved within 24.384 m of the obstruction. At the bottom corner's, structure may intrude into a triangle that is 1219 mm high by 914 mm wide at the base. This is in accordance with Part 1 of Chapter 28 of the 2009 edition of the Manual for Railway Engineering (MRE) as published by the American Railway Engineering and Maintenance-of-Way Association (AREMA). See sketch below.

Design Criteria
Railway Design Criteria and Design Rational

Height (Vertical):

• For plan curvature up to 3 degrees ($R \ge 600$ m) and tangent track the height clearance is required to be 7010 mm from top of rail.

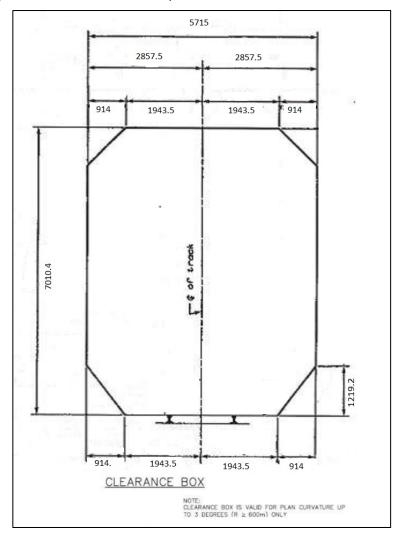


Figure 8-1: Clearance Box for Plan Curvature up to 3 Degrees (R ≥ 600 m)

Design Criteria
Railway Design Criteria and Design Rational

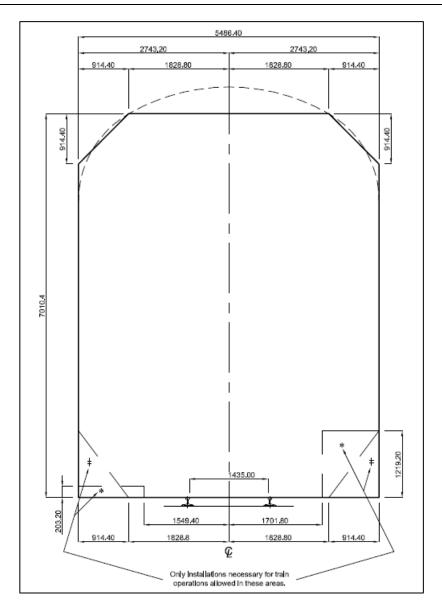


Figure 8-2: Clearance Box for Tangent Track

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.4.7 Vertical Clearance of Water Crossings

- 8.4.7.1 The freeboard of the bridge is defined as the open space from the soffit of the bridge to the top of the water level at a given flow. The minimum allowable freeboard will be 0.30 meters.
- 8.4.7.2 For the purpose of this the design the following freeboard must be maintained for water crossings:
 - All Streams:
 - 0.30 meters above 1 in 200 year flow elevation (High water level).
 - 0.60 meters above the 1 in 25 years flow elevation.
 - Navigable streams only:
 - 1.5 meters above the average annual high water elevation (Normal Water Level), unless noted otherwise.

8.4.8 Walkways

- 8.4.8.1 Where required on bridges for maintenance access, walkways will be provided on both sides of the structures. Walkways will have a minimum width of 700 mm.
- 8.4.8.2 Guardrails will be provided on the exterior side of the walkway. The guardrails may not be inside of the required clearance box. The guardrail height will be 1050 mm above the walking surface of the walkway.
- 8.4.8.3 There will be no permanent fixtures inside of the clearance box. Refuge bays will be provided, where pedestrians on the walkway would be located inside the clearance box, at a maximum spacing of 45 meters.

8.4.9 *Fixity*

The fixity on the spans will be as follows:

- One end fixed translationary (X, Y, Z).
- One end will be fixed transversely (Y).

8.5 Bridge Design Parameters and Loading

8.5.1 Ballasted Deck

8.5.1.1 Bridges will be assessed on a case by case basis as whether the bridge will have a ballasted deck or open deck.

The criteria basis for this will be:

- Environmental Constraints
- Axle Loading

Design Criteria
Railway Design Criteria and Design Rational

- Bridge Strength
- Settlement of piles due to permafrost and alignment of track.
- 8.5.1.2 Elevations will be set based on an assumed ballast depth of 478 mm below base of rail for wooden ties and the ties will extend as far as the extension of the guardrails, and as such also serve as a transition section between the steel ties on the mainline and the hardwood sleepers on the bridges.
- 8.5.1.3 For the design of the bridge, the load due to ballast will be based on a depth of 750 mm (approximately 1.5 x design depth from below base of rail), allowance includes for a maintenance tamp. Ballast pans and ballast retaining structures will be designed for a ballast depth of 750 mm.
- 8.5.1.4 Drainage from the ballast pan will be designed to accommodate and contain any liquid spill that occurs in the vicinity of the bridge. Expansion joints will be designed to contain any liquid spill that occurs in the vicinity of the bridge. The flow of the liquid will be able to be contained.

8.5.2 Vertical Displacements and Camber

- 8.5.2.1 The allowable vertical displacements under live load and impact will be less than:
 - Span / 800
- 8.5.2.2 Spans must be cambered as defined in AREMA Chapter 15 Part 1 Article 1.2.10. All structures must be cambered for dead load. All cambering of spans must be subject to the Contractor's designer's discretion.

8.5.3 Lateral/Longitudinal Displacements

- 8.5.3.1 The allowable lateral displacement within a span shall be less than:
 - For tangential track

 $0.028L^{2}$

• For curved sections

 $0.066L^{2}$

Where:

The resulting deflection is in mm.

L = span length (m).

The allowable lateral displacement at a pier shall be less than:

For tangential track

 $0.028D^{2}$

For curved sections

 $0.066D^{2}$

Design Criteria
Railway Design Criteria and Design Rational

Where:

The resulting deflection is in mm.

D = sum of the two span lengths adjacent to the pier (m).

The allowable longitudinal displacement of the superstructure shall be less than:

- 50 mm for load combinations including seismic loads
- 28 mm for all other load combinations.

Note: for load combinations including seismic loads, the allowable deflections are for serviceability level.

8.5.4 Live Load

- 8.5.4.1 The defined live load model in MRE Clause 15-1.3.3 is Cooper E-80. For the purposes of the design of the structures for this project, the live load will be based on Cooper E-90 (Cooper E-80 + 12.5%).
- 8.5.4.2 The impact loading shall be applied in accordance with MRE Clause 15-1.3.3.
- 8.5.4.3 The alternate live load on the 4 axles shown in MRE Figure 15-1-3 shall also be checked.
- 8.5.4.4 MRE Clause 15-1.3.4 shall be used to distribute the live loads between the load-carrying members.
- 8.5.4.5 In accordance with MRE Clause 15-1.3.3 pattern loading will be used on multi span bridges to achieve the greatest live load stress. For single span bridges the greatest live load stress will be determined by applying different scenarios of the Cooper E-100 and alternative live load on 4 axles.

8.5.5 Centrifugal Force

- 8.5.5.1 Centrifugal forces shall be applied in accordance with MRE Clause 15-1.3.6 to structures located on curves.
- 8.5.5.2 The design speed of 75 km/h shall be assumed when applying the equations.

8.5.6 Fatigue Stress Cycles

- 8.5.6.1 MRE Clause 15-1.3.13 shall be used to design the steel structures for fatigue resistance.
- 8.5.6.2 All elements shall be designed for more than 2,000,000 stress cycles.

8.5.7 Braking and Traction Forces

8.5.7.1 Longitudinal forces shall be determined in accordance with MRE Clause 15-1.3.12.

Baffinland Iron Mines LP: Railway Design Criteria and Design Rational Mary River Expansion Project

H353004

8.5.8 Bearing Friction Forces

8.5.8.1 The longitudinal forces due to bearing friction will be based on an assumed coefficient of friction of 15%.

8.5.9 Walkway Loads

- 8.5.9.1 For design purposes, any area extending beyond the required clearance box shall be considered to be walkway.
- 8.5.9.2 Walkway load = 5.0 kPa.

8.5.10 Snow Loads

- 8.5.10.1 The ground snow load in the area is approximately 2.0 kPa in accordance with the 2005 National Building Code of Canada.
- 8.5.10.2 A snow load of 3 kPa will applied to all structures. The additional 1 kPa is to account for any unforeseen weather and for any uncertainty in the National Building Code of Canada.

8.5.11 Snow and Walkway Combination

- 8.5.11.1 Snow and walkway loading will not be considered to occur simultaneously.
- 8.5.11.2 Snow and walkway load cases will be considered as follows:
 - a) 5.0 kPa over the walkway areas (any areas outside the clearance box width) in combination with train loads.
 - b) 3.0 kPa over the entire width of the bridge, not in combination with train loads.
- 8.5.11.3 The above indicates that load case a) will govern the design. Thus explicit consideration of snow load is not required.

8.5.12 Ice Accretion Loads

- 8.5.12.1 S6 Figure A.3.1.4 is used for to determine the ice accretion load.
- 8.5.12.2 The figure indicates that 12 mm of ice thickness is required. A safety of 1.25 is used on the value.
- 8.5.12.3 Ice thickness = 15 mm.
- 8.5.12.4 Ice load = 15 mm \times 9.81 kN/m³ = 0.15 kN/m².
- 8.5.12.5 Ice accretion load will be considered a dead load for the purpose of load combinations.

8.5.13 Wind Load on Structure

8.5.13.1 Wing load on structures will be determined in accordance with MRE Clause 15-1.3.8.

Railway Design Criteria and Design Rational

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.5.14 Wind Load on Live Load

8.5.14.1 Wind load on live load shall be determined in accordance with MRE Clause 15-1.3.7 (a).

8.6 Other Lateral Forces

Any other additional forces that result from equipment and maintenance shall be determined and applied in accordance with MRE Clause 15-1.3.9.

8.6.1 Temperature Range

- 8.6.1.1 CSA S6 Figure A3.1.1:
 - Maximum mean daily temperature = 10°C
- 8.6.1.2 CSA S6 Figure A3.1.2:
 - Minimum mean daily temperature = -35°C
- 8.6.1.3 Two types of superstructures are provided below in accordance with CSA S6 Clause 3.9.3.
- 8.6.1.4 Type A: steel or aluminum beam, box, or deck truss systems with steel decks and truss systems that are above the deck.
- 8.6.1.5 Type B: steel or aluminum beam, box, or deck truss systems with concrete decks.
- 8.6.1.6 For a Type 'A' superstructure:
 - Maximum effective temperature: 10°C + 25°C = 35°C
 - Minimum effective temperature: -35°C 15°C = -50°C
- 8.6.1.7 CSA S6 Figure A3.1.1:
 - Assumed structure depth = 1 m
 - Reduction to maximum effective temperature = 3.5°C
 - Increase to minimum effective temperature = 5.5°C
 - Maximum Temperature = 35°C − 3.5°C = 31.5°C ≈ +35°C
 - Minimum Temperature = -50°C + 5.5°C = -44.5°C ≈ -45°C
 - Range = 35°C + 45°C = 80°C
- 8.6.1.8 For a Type 'B' superstructure:
 - Maximum effective temperature: 10°C + 20°C = 30°C
 - Minimum effective temperature: -35°C 5°C = -40°C

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.6.1.9 CSA S6 Figure 3.5:

- Assumed structure depth = 1.5 m
- Reduction to maximum effective temperature = 3.5°C
- Increase to minimum effective temperature = 5.5°C
- Maximum Temperature = 30°C − 3.5°C = 26.5°C ≈ +30°C
- Minimum Temperature = -40°C + 5.5°C = -35.5°C ≈ -35°C
- Range = 30°C + 35°C = 65°C
- The thermal coefficient of steel = 12 × 10⁻⁶/°C
- The thermal coefficient of concrete = 10 × 10⁻⁶/°C
- 8.6.1.10 The design temperatures above will be used for the structural design of the bridges according to the type classification.
- 8.6.1.11 The material requirements will be governed by the site Climatic Data. This information indicates that the average temperature is -15°C and will be used as the temperature that the bearings are centred at.

8.6.2 Earth Pressure

- 8.6.2.1 The active pressure will be determined using the following parameters:
 - Unit weight for soil = 20.0 kN/m³
 - 'at rest' coefficient = 0.50
- 8.6.2.2 The above is to be confirmed with the geotechnical engineer during the project.

8.7 In Stream Ice Loads

- 8.7.1 The requirement of ice loading on the structure will be determined during the project based on hydrological information.
- 8.7.2 Where in stream ice loads are required, these shall be determined in accordance with CSA S6 clause 13.2.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.8 Stream Forces

8.8.1 Stream forces will be calculated by the following formula:

Pa=K x Va²

P_a = average stream pressure (kPa)

V_a = average stream velocity (m/s)

K = drag constant:

- = 0.725 for square-ended pier
- = 0.360 for semi-circular pier
- = 0.400 for a wedge-shaped nose <90°
- 8.8.2 Forces will be distributed to the pier assuming a triangular pressure distribution of 2Pa at water surface and 0 at riverbed.

8.9 Seismic Effects

8.9.1 General

- 8.9.1.1 Seismic analysis will be carried out using a linear elastic analysis. Response spectra will be based on MRE Clause 1.4.4.3.
- 8.9.1.2 The peak ground acceleration (PGA) proposed value is 0.4g and is to be confirmed from the following website:

http://earthquakescanada.nrcan.gc.ca/hazard/interpolator/

8.9.1.3 MRE Clause 9-1. The Site Coefficient (MRE Clause 9-1.4.4.1) shall be taken as 1.0 for all locations, subject to confirmation by the geotechnical engineers.

8.9.2 Load Combinations for Structural Check – Concrete Elements

- 8.9.2.1 Service Load Design
- 8.9.2.2 The load combinations contained in the table below will be checked. The last column of the table indicates the allowable multiplier to be applied to the working stresses for each combination depending on the specified code.
- 8.9.2.3 The table below indicates the group loading combination for SERVICE LOAD DESIGN.
- 8.9.2.4 Groups I-VIII taken directly from MRE Clause 8-2.2.4 Table 8-2-4.
- 8.9.2.5 Group IX is adapted from a combination specified in MRE Clause 9-1.4.6, this specifies requirements for load factor design (LFD) only. The combination has been determined by comparison with other working stress combinations specified in MRE Chapter 8 and with load combination specified in MRE Clause 8-1.4.6 for steel structures.

Railway Design Criteria and Design Rational

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.9.2.6 Group IX only applies to the "Serviceability" seismic load case. For other seismic load cases, yielding is assumed to occur and these checks not based on material stresses but are based on displacement demands.

Table 8-1: Group Loading Combination – Service Load Design (MRE Clause 8-2.2.4 Table 8-2-4)

Group	D+	LL+I	LL Min	LF	CF	WL	WU	WLL	ICE	EQ	%
I	1	1			1						100
II	1					1					125
III	1	1		1	1	0,5		1			125
IV	1	1			1						125
V	1					1					140
VI	1	1		1	1	0,5		1			140
VII	1	1			1				1		140
VIII	1					1			1		150
IX	1									1	150

Note:

D+ includes D (dead load), E (earth pressure), B (buoyancy), SF (stream force) and the weight of accreted ice.

LL+I = train loads + impact + 5.0 kPa walkway loads outside of clearance box.

LL Min = Minimum live load per MRE 15-1.3.10 "Stability Check".

LF = longitudinal force (braking and traction) + bearing friction effects

CF = centrifugal force

WL = wind on loaded structure

WU = wind on unloaded stricture

WLL = wind on live load

ICE = ice loads (down drag and impact – not accretion)

EQ = seismic loads

Baffinland Iron Mines LP: Railway Design Criteria and Design Rational

Mary River Expansion Project H353004

8.9.2.7 Load Factor Design

- The load combinations contained in the table below will be checked.
- The table below indicates the group loading combination for LOAD FACTOR DESIGN.
- The load factors provided below are only intended for designing structural members by the load factor design concept. The actual loads should not be increased by these factors when designing for foundations, checking foundation stability.

Table 8-2: Group Loading Combination Load Factor Design (MRE Clause 8-2.2.4 Table 8-2-5)

Group	D+	LL+I	LL Min	LF	CF	WL	WU	WLL	ICE	EQ
I	1.4	2.33			1.4					
IA	1.8	1.8			1.8					
II	1.4					1.4				
III	1.4	1,4		1.4	1.4	0.5		1.4		
IV	1.4	1.4			1.4					
V	1.4					1.4				
VI	1.4	1,4		1.4	1.4	0.5		1.4		
VII	1									1
VIII	1.4	1.4							1.4	
IX	1.2					1.2			1.2	

Note:

D+ includes D (dead load), E (earth pressure), B (buoyancy), SF (stream force) and the weight of accreted ice.

LL+I = train loads + impact + 5.0 kPa walkway loads outside of clearance box.

LL Min = Minimum live load per MRE 15-1.3.10 "Stability Check".

LF = longitudinal force (braking and traction) + bearing friction effects

CF = centrifugal force

WL = wind on loaded structure

WU = wind on unloaded stricture

WLL = wind on live load

ICE = ice loads (down drag and impact – not accretion)

EQ = seismic loads

8.10 Load Combinations for Structural Check – Steel Elements

8.10.1 *General*

- 8.10.1.1 The load combinations contained in the table below will be checked.
- 8.10.1.2 The last column of the table indicates the allowable multiplier to be applied to the working stresses for each combination depending on the specified code.
- 8.10.1.3 The table below indicates the load combinations with Groups I-III taken from Chapter 15.
- 8.10.1.4 Group II applies to only to the members which are subjected to wind load only.

Railway Design Criteria and Design Rational

Baffinland Iron Mines LP: Mary River Expansion Project H353004

- 8.10.1.5 Group IX is taken from MRE Chapter 9 with consistency being maintained with the concrete load combination in the previous section with regard to the naming.
- 8.10.1.6 Group IX applies only to the "Serviceability" seismic load case. For other seismic load cases, yielding is assumed to occur and these checks not based on material stresses but are based on displacement demands.

Table 8-3: Group Loading Combination (MRE Chapter 15)

Group	D+	LL+I	LL Min	LF	CF	WL	WU	WLL	ICE	EQ	%
I	1	1			1						100
IA	1		1		1						100
II							1				100
III	1	1		1	1	1		1	1		125*
IIIA	1						1		1		125*
IX	1									1	150*

^{*}The specified increase in allowable stress shall not be applied to floor beam hangers or bolts.

Notes:

D+ includes D (dead load), E (earth pressure), B (buoyancy), SF (stream force) and the weight of accreted ice.

LL+I = train loads + impact + 5.0 kPa walkway loads outside of clearance box.

LL Min = Minimum live load per MRE 15-1.3.10 "Stability Check". Walkway load not included.

LF = longitudinal force (braking and traction) + bearing friction effects

CF = centrifugal force

WL = wind on loaded structure

WU = wind on unloaded structure

WLL = wind on live load

ICE = ice loads (down drag and impact – not accretion)

EQ = seismic loads

8.10.2 Bearing Replacement

- 8.10.2.1 The structure will be designed taking into account the bearing replacement or shimming.

 Jacking points on the structure will be indicated. This will avoid the future requirements for additional foundations or support frames.
- 8.10.2.2 The jacking points will be designed for dead load only.

8.10.3 Utilities

8.10.3.1 Where required, ducts shall be installed on the bridges for the passage of utilities. Ducts will be surface mounted. The size, location and number of, will be determined during the project.

8.11 Bridge Materials

8.11.1 Concrete

8.11.1.1 Cast in-situ concrete will be avoided where possible due to the constraints on construction. However, if the design requirement does not allow for steel or precast concrete, cast insitu shall be used.

Railway Design Criteria and Design Rational

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.11.1.2 The following shall apply:

Cast in-situ Concrete Design: 28-day compressive strength of 35Mpa

Sika Grout Arctic 100 material is to be used or

Air entrapment design is to be used

8.11.1.3 Precast reinforced concrete design: 28-day compressive strength of 45 MPa.

8.11.2 Concrete Protection for Reinforcement

8.11.2.1 The minimum clear cover for reinforcement shall be as described below:

Cast against/permanently exposed to earth: 75 mm

All other locations:
 50 mm

8.11.3 Structural Steel

8.11.3.1 All exposed structural steel is to be atmospheric corrosion resistant (weathering steel) Grade 350AT, Category 4 or approved equivalent and shall conform to CSA Standard G40.1.

8.11.4 Corrosion Allowance

8.11.4.1 A corrosion allowance of 1.5 mm (1/16") shall be deducted from the nominal thickness for sheet products only.

8.11.5 **Bolts**

8.11.5.1 All bolts will be 7/8" diameter (22 mm) type A325 (weathering steel).

8.11.6 *Joints*

- 8.11.6.1 Integral abutments with no joints will be considered for bridges with spans less than 50 m.
- 8.11.6.2 Where integral abutment joints are not possible, standard expansion joints will be designed.

8.11.7 Bearings

- 8.11.7.1 Bearings shall be self-lubricating bearings.
- 8.11.7.2 The coefficient of friction at expansion locations is assumed to be 15% for the design. No additional factor of safety is required on the 15%.
- 8.11.7.3 The friction forces due to temperature movements are assumed to arise from dead load only. Live load is not included.
- 8.11.7.4 If self-lubricating spherical bearings are selected then the friction forces will arise as a result of live load rotation.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.11.7.5 For multi-span bridges, the worst loading case will arise when a single span is loaded. This is due to the bearings on adjacent span at any pier acting in different directions. For this load case, the 15% coefficient of friction will be used in combination with the total dead load and live load reaction.

8.11.8 Waterproofing

- 8.11.8.1 No waterproofing membrane will be used.
- 8.11.8.2 For all steel deck plates that are susceptible to crevice corrosion will be galvanised.

8.12 Bridge Geotechnical Parameters

8.12.1 Ad Freeze Piles

- 8.12.1.1 Geotechnical parameters relating to the foundations will be completed when further investigations and details become available.
- 8.12.1.2 The proposal for the adfreeze piles is to incorporate a welded steel grade beam as a pile cap rather that a concrete pile cap.

8.13 Other Bridge Design Considerations

8.13.1 Guard Rails

8.13.1.1 Guard rails shall be provided on all tracks installed on bridges and shall extend 20 m beyond either side of the structure.

8.13.2 Fish Passage

8.13.2.1 The bridge crossings will be assessed to determine if the crossing is over a fish habitat. Where bridges are crossing over fish habitats, the environmental recommendations and hydraulic report will provide the requirements.

8.13.3 Scour Protection

8.13.3.1 Scour protection will be determined on a case by case basis and will be determined by the hydraulic report.

8.14 Bridge Options

- 8.14.1 The rail girder bridge that has been considered for the structure:
 - Through Plate Girder (TPG)
- 8.14.2 The rail bridge deck that has been considered for the structure:
 - Ballasted Deck that comprises of a concrete deck or steel deck to contain the ballast.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.15 Culvert Geometry

- The hydrology in terms of flows, peak flows and intensities for the related catchment areas for each river or stream, the new rail alignment will cross, had been reviewed and determined for 1 in 200 year return periods. This will guide bridge and culvert basic hydraulic sizing and the necessary adjustments (over compensation) to accommodate the uncertainties associated with arctic hydrology and the influence of ice and snow on the hydraulics.
- The Expansion Study Stage II costing are based on using galvanised corrugated steel pipes pending further investigation to use pre-fabricated concrete box culverts. Pre-fabricated box culverts and culvert bottom slabs are normally up to 3 tonnes per unit, requiring mechanical handling through all the transport mode changes in the logistics chain from manufacturer to installation on site. The trade-off in culvert unit choice can be concluded once the hydraulics had been completed and the material take-off for culverts are detailed, and priced by the contractors during the next phase of the project. It is noted that box culverts are seen as environmentally more friendly bridging fish bearing water ways.

8.15.1 Dimensions

- 8.15.1.1 Culvert diameter or size will be standardized to maximum 4 standard sizes that will either be used as single or multiple culvert combinations for each water way or run-off path where culverts need to be installed. Single pipe culverts will be favored where possible. Dimensions will vary depending on:
 - Peak flow volumes.
 - The hydraulic gradient of the stream crossing at the track location.
 - The proximity to the Tote road culvert in the same stream or run-off path, implying
 potential downstream mitigating protection of the rail formation for back damming.
 - Minimum cover over the culvert and support bedding under the culvert; and
 - Fish passage considerations.
- 8.15.1.2 The four standard sizes ø900 mm, ø1200 mm, ø1500 mm and ø1800 mm will then be installed as single or multiple culverts rounded up to the next full size to determine number of pipes or pre-fabricated units required per location. For grade crossings and caribou crossings ø600 mm will be used to ensure there is drainage underneath crossings of the rail alignment.

8.15.2 Vertical Clearance

- 8.15.2.1 The vertical clearance for culverts shall be determined by considering the 5 dimension drivers above, the upstream storage conditions and the potential damming effect in closer proximity to the Tote road culverts for the water course, by providing mitigating protection for the rail formation on the downstream side with geotextile or anti-seepage walls.
- 8.15.2.2 The risk of overtopping shall be assessed for the design criteria employed with the purpose to mitigate storm water damage to the rail embankment by anti-seep walls or membranes on both sides or appropriate other measures where required.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.16 Culvert Design Rational

8.16.1 *General*

- 8.16.1.1 Culvert design shall consider the following:
 - Prevent water accumulation on the sides of embankments.
 - Divert water and ice away from the toe of the embankment.
 - Provide cut-off drains or berms for dispersed flow and accumulate through appropriate culvert in the proximity.
 - Provide appropriate embankment protection where required.
 - The culvert shall be sloped in the direction of flow at the same grade as the water path
 grade, such that the centre of inlet- and the centre of outlet is as close as possible to the
 centre of the water path and the direction/orientation of the water path.
 - Provide appropriate inlet and outlet protection and treatment, linked to the water flow velocity to prevent piping through the embankment and erosion of the water path sides and the embankment.
 - The water shall be channelled with a down chute at such low spots in cuttings into the drop inlet or calming pond.
 - Provide culvert barrel treatment, scour holes, wing walls and drop inlets where grades are too steep and water velocity >5 m/s.
 - Provide oversized culvert with weirs, cut-off collars both ends and natural stones inside culverts where water velocity <5, but >4 m/s.
 - Provide wing walls both ends where water velocity is <4, but >3 m/s.
 - Provide basic inlet and outlet protection where water flow velocity is subcritical (<3 m/s).

8.16.2 Typical Culvert Sections

8.16.2.1 The culvert dimension considerations in 8.15.1 will guide culvert sizing. Culvert bedding, support, cover and backfill measures are as important. Differential settlement under the embankment weight and train loading as per 8.5.4 and 8.5.5 needs to be prevented. The following Figures provide the basics for culvert configurations and are excerpts of drawings H352034-3000-220-294-0001 and H352034-3000-220-294-0002.

Design Criteria
Railway Design Criteria and Design Rational

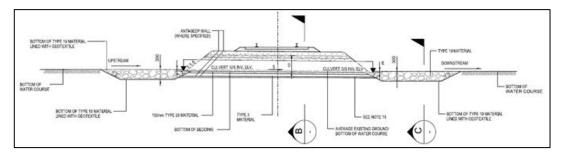


Figure 8-3: Culvert Section with Erosion Protection

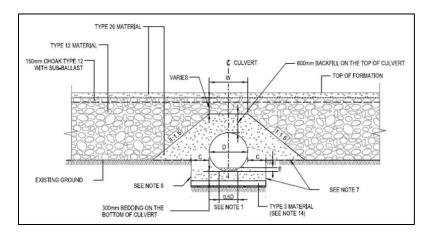


Figure 8-4: Single Pipe Culvert with Minimum Backfill Requirements

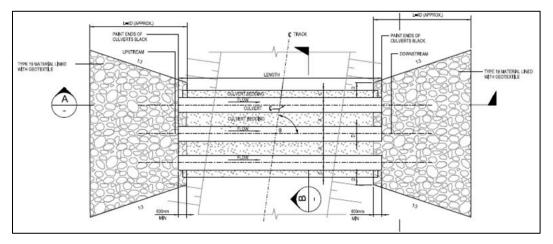


Figure 8-5: Plan – Multiple Pipe Culvert with Erosion Protection

Baffinland Iron Mines LP: Mary River Expansion Project H353004

8.16.3 Requirements for Fish Bearing Crossings

- 8.16.3.1 The following criteria shall apply to fish bearing streams to ensure the protection of fish habitats where culverts need to be installed:
 - Identify culverts located in fish bearing crossings.
 - Design to assist in minimum disruption of fish migration or movement with reference to over sizing, 20% of diameter below natural stream grade (Figure 8-6), light and appropriate measures to control water velocity through culvert.
 - In multiple culvert configurations provide at least in a single culvert the fish passage promoting measures.
 - Fish bearing culverts will be assessed on a case by case basis to install appropriate fish
 passing promoting measures where required.

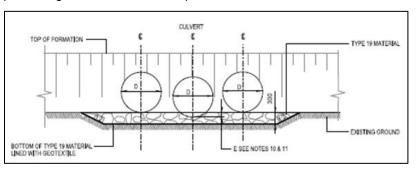


Figure 8-6: Multiple Pipe Culvert with Fish Passing

9. Track

The track design standards have been carried over from document "FULL DESIGN BRIEF 2-04-2012", the Steensby Report, being the property of BIM and reviewed to be a good application of the North American Standards by Consultants experienced in North American and Canadian railway design. A few adjustments have been made which will be highlighted where applicable. Further adaption to minimum standards has been followed to optimize the rail design. A steel tie system will be installed for the optimized approach but the criteria for a wood tie system is included for reference purposes.

9.1 Design Standards

- 9.1.1 The operating conditions described in Section 4, guide and dictate what standards and procedures is required to provide the infrastructure to support sustainable capacity deliveryand operations for the rail system.
- 9.1.2 The design of the components is mainly based on AREMA standards and codes of practice and shall conform to CN standards for Class 3 track and the standards and guidelines set forth by the Canadian Transportation Commission (CTC). In the absence of a suitable AREMA standard, other international standards (i.e. UIC, etc.), may be used.

Railway Design Criteria and Design Rational

Baffinland Iron Mines LP: Mary River Expansion Project H353004

9.1.3 A full list of all the codes and procedures to consider is provided as Section 2 of this document.

9.2 Track Structure Design Conditions

9.2.1 Train Loading

9.2.1.1 The train loadings (design speeds and axle loads) on the track structure associated with the railway are summarized as follows:

Maximum design speed : All trains both directions; 75 km/h (loaded and empty)

Annual Traffic : Iron Ore Traffic (Dry) 12 Mtpa; (Humid)12.24 Mtpa

Axle Load : Ore Train* 32.5 tonnes (all trains)

9.2.2 Sub-grade Loading

9.2.2.1 The track structure shall be designed to dissipate train loads through the track structure to produce a maximum loading on the sub-grade of 170 kPa as per Chapter 16 – Section 10.3.2.1 of AREMA.

9.2.3 Key Track Structure Parameters

- 9.2.3.1 The track structure required for the described heavy haul operation can be configured as follows:
 - Rail 136 lb RE (67.4 kg/m))

Welded/jointed Welded mostly with possible jointed track in yards and
 aidia re

sidings.

• Ties Timber (178 mm x 229 mm x 2.6 m).

Tie spacing (mm)
 540

- Fastenings Pandrol "e"-clips with 18" Victor tie plates; welded shoulders for steel ties.
- Screw spikes Pandrol "e"-clips with welded rail seat.

• Ballast depth (mm) 300

Ballast + tie depth (mm) 478

Ballast shoulder width (mm) tangent/curves 300/350

Ballast shoulder slope
 1V: 1.5H

Sub-ballast cross-slope
 0.00% (Top)
 0.00% (Bottom)

- Minimum sub-ballast shoulder width is 0 mm
- Typical cross-sections for main track, siding and yard tracks are shown in the sections below, Figure 9-1 and Figure 9-2 (Drawing H352034-3000-220-294-0003).

Design Criteria
Railway Design Criteria and Design Rational

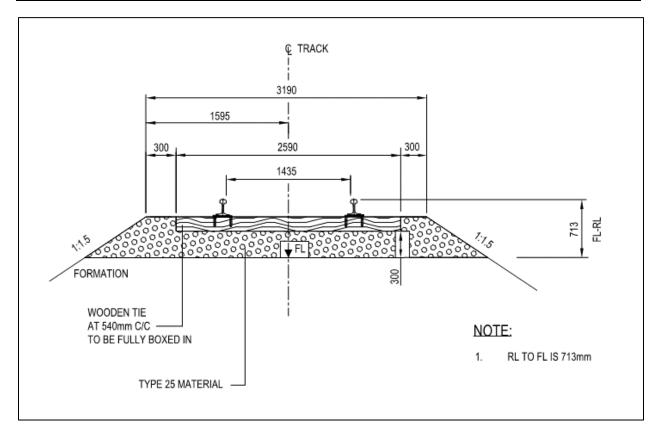


Figure 9-1: Typical Cross Section - Superstructure

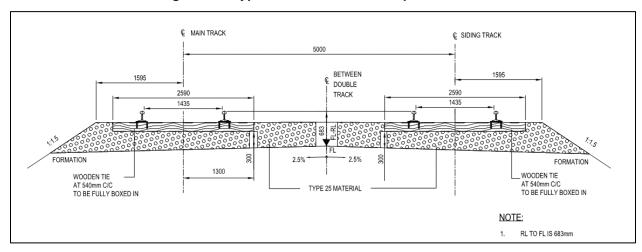


Figure 9-2: Typical Cross Section – Double Track in Sidings – Superstructure

Baffinland Iron Mines LP: Mary River Expansion Project H353004

9.3 Rail

9.3.1 General

- 9.3.1.1 Selection of a rail section for the Baffinland Iron Mines Railway System between Mary River and Milne Port is based on the following criteria:
 - Design axle loads.
 - Annual tonnage.
 - Alignment curvature and gradient.
 - Maximum Train design speeds.
 - Extreme climate conditions.
 - Type of rolling stock.
 - Maintenance requirements are somehow compromised with the absence of sub ballast shoulder.
 - Ease of welding.

9.3.2 Rail Dimensions and Tolerances

- 9.3.2.1 The rail shall be 136 RE profile for the entire network in accordance with AREMA, Chapter 4.
- 9.3.2.2 The rail shall be purchased in minimum lengths of 24 m (80 ft.) to support a modular panel installation concept.

9.3.3 Steel Quality

- 9.3.3.1 AREMA, Manual for Railway Engineering, Volume 1, Chapter 4, Sections 2.1.4.1 and 2.1.4.2 list two types of steel, namely, standard chemistry and low alloy chemistry. In addition, the respective tables identify the chemical composition, hardness and tensile properties. With respect to hardness the standard chemistry rail lists two types; standard and high strength rail, while the low alloy chemistry lists three types; standard, intermediate and high.
- 9.3.3.2 The rail shall be 136RE; AHH grade with minimum yield strength of 130,000 psi, for both mainline track and yard track. The low alloy steel is being recommended on the basis of improved welding characteristics, improved wear characteristics at weld joint areas and superior resistance to wear (longer life).
- 9.3.3.3 All rails shall be rolled using clean regular carbon steel with an emphasis on the cleanliness of the steel and reduction of inclusions in the rail during the manufacturing process. Premium steel has not been considered due to its predisposition to brittle fracture during extreme cold weather.
- 9.3.3.4 A major criterion in the selection of a Contractor shall be their ability to roll rails using clean steel and guarantee the durability and cleanliness of the steel in sub -50°C temperatures.

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Railway Design Criteria and Design Rational

9.3.4 Rail End Drilling and Hardening

- 9.3.4.1 Rail for use in continuously welded sections shall be supplied undrilled.
- 9.3.4.2 Rail for use in jointed track shall be drilled to accommodate a 90 mm long, 6-hole joint bar (fishplate). Jointed rail shall only be used in yards and sidings and as such end hardening is not required.
- 9.4 Ties

9.4.1 Yards, Mainline and Sidings

9.4.1.1 All ties shall be untreated hardwood no 1 ties.

9.4.2 Spacing Tolerance

- 9.4.2.1 The tolerance on the tie spacing shall be +/- 10 mm along the mainline and +/- 15 mm in yards and along sidings with no cumulative tolerance over any distance (if in one crib the tie spacing is above the nominal spacing the adjacent crib shall not be above nominal to facilitate continuous action tamping).
- 9.4.2.2 Tie spacing in the yards and mainline is 540 mm.

9.5 Fastenings

9.5.1 Steel Ties

- 9.5.1.1 Fastenings Pandrol "e"-clips with 18" Victor tie plates (hardwood) for curves with radii <875m with screw spikes.
- 9.5.1.2 "AREMA" tie plates for curves with radii >875m with cut spikes.

9.6 Ballast

- 9.6.1 Ballast shall be composed of crushed rock or a material of comparable character and shall be in accordance with AREMA, Chapter 1, Part 2. The ballast material shall be a hard, dense, strong and angular material with a durable particle structure providing sharp corners and cubicle fragments with a minimum of flat and elongated particles. It shall be free from clay, shale or an excess dust or other undesirable substances or materials. The ballast must have high wear and abrasive qualities to withstand the impact of traffic loads and track maintenance by heavy tamping machines without excessive degradation. The ballast must also provide high resistance to temperature change, chemical attack, low absorption properties and should be free of cementing properties.
- 9.6.2 Testing procedures will be in accordance with the AREMA, Chapter 1, Section 2.8 and conform to ASTM specifications and associated testing procedure, the ballast requirements are prescribed by the code and the Ballast Grading Requirements (AREMA size No. 4) or as in Figure 9-1 below:

Railway Design Criteria and Design Rational

Baffinland Iron Mines LP: Mary River Expansion Project H353004

Table 9-1: Ballast Crushed Stone Grading

Nominal Sieve Size (mm)	Percentage Finer Than (By Weight)
73	100
63.0	90 – 100
53.0	40 – 70
37.5	10 – 30
26.5	0 – 5
19.0	0-1
13.2	0

Table 9-2: Ballast Physical Specification

Laboratory Test	Standard	Values
Los Angeles Abrasion Test (LAA)	ASTM C 535-69	< 35% weight loss
Mill Abrasion Test (MA)	Non-standard test	<5% weight loss
LLA + 5(MA)	_	<50%
Degraded Aggregate Cement Value (CV)	Non-standard test	<(1.0 +0.2xMA)
Bulk Specific Gravity	ASTM C127	>2.6
Magnesium soundness test	ASTM C88-76 x 5 cycles	≤8% weight loss
Water Absorption	-	≤1.5%

9.7 Turnouts

9.7.1 General

- 9.7.1.1 Turnout for use on the rail system shall be referred to under the designation relating to the "frog (crossing) number" as described on pages 6-35 and 6-36 in Section 6.5 Turnouts of the Practical Guide to Railway Engineering, AREMA 2003. Without limiting their completeness, the turnouts shall consist of the following components:
 - Switch and crossing assemblies.
 - All special and running rails.
 - All rail braces, stretcher bars, castings, check rails, other track material, track appurtenances and miscellaneous items required to make the turnout installation complete.
 - A complete set of steel turnout ties.
- 9.7.1.2 The design of the turnouts shall conform to the most recent edition of AREMA Plans and Specifications. They shall be designed to support the operating conditions set forth in the Operating Requirements Section.
- 9.7.1.3 No. 9 shall conform to the 136 RE rail profile. AREMA standards permit 32 km/h operating speeds through the diverted track for No. 9 lateral turnouts. Operating speed on the mainline is 60 km/h to a maximum of 75km/h as the design speed.

Railway Design Criteria and Design Rational

Baffinland Iron Mines LP: Mary River Expansion Project H353004

9.7.2 Turnout Ties

- 9.7.2.1 Track ties for all turnouts within the yard shall be steel ties in accordance with an AREMA No. 9 turnout.
- 9.7.2.2 Track ties along mainline turnouts shall be steel ties in accordance with an AREMA No. 9 turnout.

9.7.3 Main Line

9.7.3.1 The No.9 turnout shall have the geometry conforming to AREMA Plan No. 910-41 with 5,030mm (16 feet 6 inches) straight Samson switch points for standard gauge track. The ties shall be hardwood ties with fastenings designed for this turnout. The tie spacing and lengths shall be in accordance with AREMA specifications.

9.7.4 Yards and Backtracks

9.7.4.1 The No. 9 turnout shall have the geometry conforming to AREMA Plan No. 910-41 with 5,030mm (16 feet 6 inches) straight Samson switch points for standard gauge track. The ties shall be hardwood ties and fastenings. The tie spacing and lengths shall be in accordance with AREMA Plan No.912-58 as described in the AREMA, Portfolio of Trackwork Plans for the No. 9 Switches, latest edition.

9.7.5 Snow Elimination

9.7.5.1 All mainline and yard turnouts shall be equipped with automatic cold air blowers to ensure that no snow settles between the switch points and the stock rails.

9.8 Joints

9.8.1 Standard Joint Bars

- 9.8.1.1 Joint bars shall be toeless and conform to the profile presented in AREMA, Chapter 4, Part 3, Fig. 4-3-3 for 136RE rail section with the following bolt hole properties:
 - Oval shaped with 1-5/16" diameter.
 - Track bolts: 1 1/8" x 5 7/8" oval shape.
- 9.8.1.2 Rail drilling, bar punching and bolts shall be in accordance with AREMA, Chapter 4, Part 3, Table 4-3-1. All nuts and bolts shall be manufactured in accordance with AREMA, Chapter 4, Section 3.5.

9.8.2 Insulated Joints

9.8.2.1 Insulated joints are not considered as the signaling and control systems will be radio order controlled for a dark territory systems approach.

9.8.3 Welded Joints

9.8.3.1 If the modular installation concept is used the panels will be continuously welded with an ontrack butt welding machine. The process shall conform to the requirements of AREMA, Chapter 4, Section 3.1.12. All welds for CWR shall be electric flash-butt welds.

Baffinland Iron Mines LP: Mary River Expansion Project H353004

9.8.3.2 Aluminothermic welds may be used where space does not permit flash-butt welding and for closure welds when de-stressing rails. Aluminothermic rail welds shall be made using full preheat welding kits (molds, charges, etc.), designed for 136RE rail with the metallurgical properties described in the applicable sections

9.9 Other Track Materials

9.9.1 Guard Rails

- 9.9.1.1 Guard rails shall be provided on all tracks installed on bridges and shall extend 20 m beyond either side of the structure. They shall also be provided in locations such as running in close proximity to sensitive water bodies.
- 9.9.1.2 Guard rails shall be designed in accordance with AREMA, Chapter 7, Section 3.6.2. They shall consist of 2 additional rails located inside the running rails. All guard rails shall be fastened using 12" tie plates for 5 ½" rail base width as per AREMA, Chapter 5, Part 1, Section 1.3, Figure 5-1-4 and standard spikes. It is not required for guard rails to have the same section as the running rails and may be second hand rail with the same base of rail dimension.

9.9.2 Derails

- 9.9.2.1 Derails shall be installed wherever the possibility exists that equipment left standing on tracks, other than main tracks or sidings may be moved by wind, or gravity, or both, so as to obstruct a main track or siding. Derails shall be installed on both ends of tracks where unattended locomotives are regularly stored.
- 9.9.2.2 The sliding derail shall be the preferred derail, as it provides derailing protection for all types of cars and units that are stored on sidings or backtracks regardless of the grades involved.
- 9.9.2.3 The model, size and hand of derail shall be selected to match the specific rail section height. A right hand or left hand derail shall be used where derailing protection is required (a right hand derail is one which derails to the right when looking in the direction of the movement to be controlled).

9.9.3 Stop Blocks (Bumping Posts)

9.9.3.1 Bumping posts shall be provided at the ends of all dead end tracks. All bumping posts shall be steel fabricated triangle units compatible with 136RE rail sections. In addition, they shall be equipped with a strengthening "middle rail" and a shock-free cushion head.

9.10 Track Signs

- 9.10.1 The design of the line shall make provision for appropriate way-side signs required for the safe operation of trains. Signs shall be provided for:
 - Whistle posts.
 - Kilometer and half kilometer point markers.
 - Permissible running speeds.

Design Criteria
Railway Design Criteria and Design Rational

- Bridge structure and major river identification.
- Station (siding) names.
- Registered clearance and bridge markers.
- Snow and flangers.
- Derails.
- Yard limits.
- Level crossings (Skidoo crossing and animal crossing signs); and
- Other miscellaneous signs required for safe operation.
- 9.10.2 Way-side signs shall be provided in English and Inuktituk. The design of all signs shall follow the guidelines in AREMA, Chapter 1, Part 7.
- 9.10.3 Optimization and appropriate elimination of track signs will be pursued further in the feasibility study.

9.11 Crossings

9.11.1 Crossings and Refuges (Set-offs)

- 9.11.1.1 At various locations along the rail line, refuges or set-offs and vehicle crossings are required to accommodate the entrance and exit of track maintenance vehicles. All set-offs shall be constructed using a set of 205 mm (8 in) x 205 mm (8 in) wood planks fastened to the ties using suitable hook bolts. A minimum of 76 mm (3") shall be maintained between the gauge face of the rail and the nearest wood plank to ensure the wheel flange of rail cars will not be impeded.
- 9.11.1.2 The track structure shall remain the same as the typical cross-section shown in the cross section drawings and Figure 4-4 in Section 4 above. Road base Type 26 fill material shall be used as an approach material and shall be graded flush with the timber planks between the rails on top of the ties.
- 9.11.1.3 Where crossings are required in yards, wooden track ties shall be substituted for the ties in the standard yard track structure.

9.11.2 Animal Crossings

9.11.2.1 To assist the caribou in crossing over the track the following typical detail illustrates the proposed crossing. A total of 11 crossings has been included in the design and the final locations will be confirmed by BIM.

Design Criteria
Railway Design Criteria and Design Rational

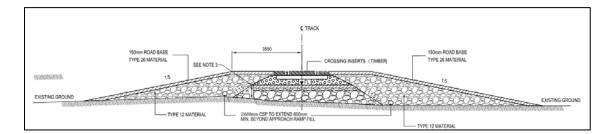


Figure 9-3: Typical Cross Section – Caribou Crossing

9.12 Clearances

9.12.1 Clearance Diagrams

- 9.12.1.1 The clearance enveloped developed is based on Transport Canada's *Standards Respecting Railway Clearances* (TC E-5) and the general clearance envelope outlined in AREMA, Chapter 28, Section 1.2, Figure 28-1-1.
- 9.12.1.2 The TC E-5 also requires a lateral allowance for track curvature of 25.4 mm per degree of curvature.

Curve Radius (m)	Curve Radius (degrees)	Additional Lateral Clearance (mm)
1746	1	25.4
873	2	50.8
582	3	76.2
436	4	101.6
349	5	127
291	6	152.4
249	7	177.8
218	8	203.2

Table 9-3: Lateral Clearance Requirements for Curved Track

Baffinland Iron Mines LP: Mary River Expansion Project H353004

9.12.2 Track Spacing

9.12.2.1 The design of all tracks shall respect the track spacing defined in Table 9-4.

Table 9-4: Track Spacing

Facilities	Minimum Track Spacing - TCE-5(m)	Design Spacing (m)
Tangent Tracks between Mainline and Sidings	4.27	5.00
Yard Tracks	4.11	≥ 5.0 (Purpose made)
Parallel Ladder Tracks	5.49	5.50

9.12.2.2 The minimum distance between track centers shall be increased by 50.8 mm (2") per degree of curvature. A 5.0 m track spacing shall be used to provide an allowance for curves up to 4 degrees (R=436 m). If a siding curve adjacent to a mainline track exceeds 4 degrees then an additional track spacing of 50.8 mm per degree is required.

9.12.3 Right-of-Way Fencing

9.12.3.1 The railway right-of-way shall not be fenced and neither the yards and terminals.

9.13 Track Construction

9.13.1 The specific requirements shall be in accordance with AREMA, Manual of Railway Engineering, Volume 1, Chapter 5, Part 4 and Part 5. These shall be developed and detailed in the specifications. The requirements shall consider the current, most appropriate construction practices and methods that are expected of an international contractor. The use of heavy automatic mechanized machinery will be required. It is expected that bidders will be provided an opportunity to propose alternate methods to construct the track structure that meets the requirements at the most economic cost.

9.14 Track Maintenance

9.14.1 Track Maintenance Conditions

9.14.1.1 Sub ballast shoulders have been scaled down to zero for the optimizing exercise. In certain areas particularly with high embankments, long term slow settlement is anticipated due to ice creep. These locations will need to be revisit during the Mary River Expansion Study – Stage II in order to consider wider sub ballast shoulders to suit.

9.14.2 Maintenance of Way Vehicles

9.14.2.1 All track maintenance vehicles must be equipped for cold-weather conditions including supplemental heating (portable heaters) and storage for arctic survival equipment. A list of the maintenance of way (MoW) vehicles required is shown in the Operating Plan.

9.14.3 Maintenance Bases and Sidings

- 9.14.3.1 Infrastructure maintenance teams shall be based at both Mary River and Milne Port, the principal shop of MoW equipment shall be in the Consolidated Maintenance Facility at Milne.
- 9.14.3.2 The main line siding is provided with a back track for MoW use. Siding location will still be confirmed

Baffinland Iron Mines LP: Mary River Expansion Project H353004

10. Rolling Stock

10.1 Locomotives

- 10.1.1 The locomotives must be diesel-electric locomotives and be able to operate in the harsh and extreme cold environment. Locomotives that are successfully operated under these extreme cold conditions are the EMD SD70 ACEM and the General Electric (GE AC4400) locomotives. The new AC traction motor configuration provides more optimized energy consumption and will be the preferred locomotives for this application.
- The locomotives to be standard gauge configuration in order to run on 1435 mm gauge. The locomotives to be equipped with dynamic braking capability as well as distributed power (cable and radio control capability) in order to run multiple locomotives on the train. Each locomotive to be connected with the back to the train and cab facing forward, as there is no balloon at the port or the mine sites for the train to turn around. The locomotives need to be equipped with F-type couplers that can absorb the maximum pull and compression force of 1600 kN. The locomotives to be equipped with airbrake braking system.
- 10.1.3 The locomotive must have a co-co bogie configuration as the axle loading on the perway will be designed for 32.5 tonnes per axle loading, so typical 198 metric tonnes and 33 tonnes axle loads.
- 10.1.4 The locomotives must be equipped with an onboard toilet facility.

10.2 Cars

- 10.2.1 The ore cars to be of standard gauge configuration with 1435 mm gauge and the open top gondola type car that can be tipped by means of a rotary tippler. The cars must be coupled by means of a rotating coupler on each side of the car. This will enable the off-loading of a single car per cycle through the single cell rotary tippler.
- 10.2.2 The cars must be equipped with an air-brake braking system and the drawbar and coupler configuration must be the F-type coupler.
- 10.2.3 The ore cars will be designed to accommodate a maximum loaded axle load of 32.4 tonnes per axle and must be equipped with self-steering bogies.
- 10.2.4 The car must have a tare weight of 22 metric tonnes.
- The cars must fit within the minimum rail structure gauge tolerances at a width of 5750 mm. This value is based on the AREMA clearance box width of 5486 mm plus an allowance of 80 mm per degree of track curvature at a maximum curvature of 3 degrees. At the bottom corners, structure may intrude into a triangle that is 1220 mm high by 915 mm wide at the base.
- 10.2.6 Height: 7010 mm from top of rail.

Design Criteria
Railway Design Criteria and Design Rational

10.2.7 The rail structure clearance gauge for both locomotives and cars are indicated by the drawing below:

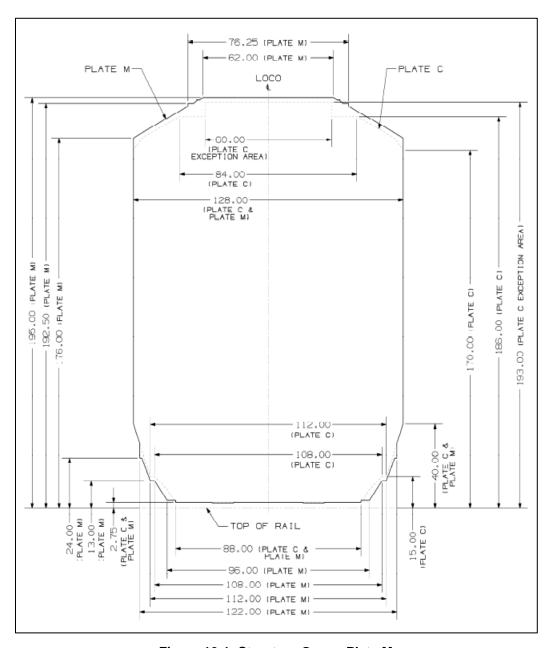


Figure 10-1: Structure Gauge Plate M

Baffinland Iron Mines LP: Mary River Expansion Project H353004

11. Rolling Stock Facilities

11.1 Functional Design Criteria for Diesel-Electric Locomotive Depot

11.1.1 The new locomotive maintenance depot facility will be located at the port of Milne and must be designed to perform all maintenance activities on the diesel-electric locomotives that will be used for the main line operation as well as for the shunt mobile located at the maintenance facility. The original designed facilities have been scaled down on floor space for the optimized operations, office requirements and other amenities have been planned to be modular prefabricated units.

11.2 Main Workshop Facility for Diesel-Electric Locomotives

- 11.2.1 The facility must provide for minor and major repairs which must include for A, B and C shedding that will include but not be limited to the following activities:
 - Unscheduled repairs.
 - Scheduled repairs.
 - Unscheduled maintenance.
 - Scheduled maintenance.
 - Component exchange (Blower motors, traction motors, compressors, radiators, turbo charger, alternator, electronic control cards, valves, cables etc.) Repair of these components will be by OEM's).
 - Wheel cutting.
 - Minor engine repairs.
 - Fuelling.
 - Sanding.
 - Attend to driver trip report faults.
 - Oil top-up on sub-systems.
 - Electronic cards/modules exchange.
 - Toilet servicing.
- The locomotive maintenance facility must be fully enclosed in a maintenance building/shed and one locomotive must be able to be serviced in the facility at any given time. The servicing line must be equipped with a pit that will allow maintenance staff to enter underneath the locomotive when stationary on the rail line inside the workshop. Access stairs to be provided at both ends of the pit and adequate lighting to be provided inside the pits.
- Mobile scissor jack platforms will be provided to allow maintenance staff to obtain access to both sides of the locomotives and perform maintenance activities. The scissor jack platforms must also be able to lift small components (max. 500 kg) that must be installed on the locomotive. Further consideration to fixed working platforms will be given during the feasibility phase.

Baffinland Iron Mines LP: Railway Design Criteria and Design Rational
Mary River Expansion Project
H353004

- 11.2.4 One overhead crane with a capacity of 45 tonnes must be provided to traverse the locomotive area and 10t for the car workshop area and move heavy components within the depot. A forklift with lifting capacity of 15 ton will be used for other lifting activities inside the workshop.
- 11.2.5 The locomotive inspection platforms and pit areas will be equipped with 380V and 220V power connections as well as compressed air sockets for electrical and pneumatic maintenance tools being used by the maintenance staff.
- The pits will be designed to allow for easy construction as well as allow the cleaning of the locomotive below deck equipment and bogies during inspection cycles. The floor design allows for the drainage and collection of effluent from the pit area which will then be treated on site. Adequate light to be provided inside the pits in order for staff to perform inspections. These lights must be waterproof and adhere to IP65 standards.
- 11.2.7 The locomotive maintenance facility must be able to maintain the dedicated locomotive fleet of 5 mainline diesel-electric locomotives and one shunt mobile.
- The facility must have adequate space for storage of locomotive components in the prescribed manner and this facility must form part of the main shed structure.
- 11.2.9 Office provision must also be made to accommodate the required staff levels at the depot and must link to the main shed structure.
- 11.2.10 The locomotive daily servicing and provisioning will take place on the departure siding by means of mobile fueling, sanding and maintenance equipment.

11.3 Main Workshop Facility for Iron Ore Cars

- 11.3.1 The requirement for car maintenance on the dedicated gondola type fleet is that all maintenance activities will be conducted at the new Milne car maintenance depot.
- 11.3.2 All scheduled and unscheduled work will be conducted at this new facility.
- 11.3.3 The maintenance cycle of the iron ore car fleet is based on a 2 year lifting cycle which is derived from the annual kilometres travelled and the associated hollow wear on the wheel sets.
- Designs of the car maintenance workshop have been scaled down to accommodate two ore cars per cycle in the workshop.
- 11.3.5 The following ore car maintenance facility functional design criteria was used in the design of the facility:
 - Light repairs.
 - Scheduled maintenance.
 - Unscheduled maintenance.
 - The facility must be able to handle two ore cars in the enclosed area.

Design Criteria
Railway Design Criteria and Design Rational

- The maintenance facility must be located such that quick turnaround time of cars to be serviced can be achieved.
- Calculations for workshops are based on 365 working days per year.
- Working of day time shifts only.
- Wheel set changes are required at 4 mm hollow wear limit.
- Maintenance on ore car components are based on an exchange principle and sub component repairs are send away for repairs.
- The ore car maintenance facility must be able to maintain the dedicated ore car fleet of 168 cars.
- The facility must be designed to handle the 2, 4, 6, 8 year maintenance cycles for liftings on the cars and equipment must be able to conduct all these scheduled liftings in the depot.
- The depot must be equipped with lifting jacks that can conduct body and bogie lifts inside the main structure of the depot.
- A separate bogie repair area adjacent to the lifting line must be provided to conduct all maintenance on bogie frames, wheels, sub-assemblies, brake systems, couplers, draw gear and body repairs.
- Provision must be made for full brake system testing after the lifting process and must be conducted by means of a single car brake testing system.
- Provision must also be made in the maintenance depot for a wheel lathe that will be required to cut and profile car wheels of the ore car fleet. The locomotive wheel cuts will be performed by means of a portable wheel lathe which will not require a body lift of the locomotive,
- The facility must have adequate space for storage of car components in the prescribed manner and the facility must be linked to the main shed structure.
- Office provision must also be made to accommodate the required staff levels at the depot and must be linked to the man shed structure.
- Provision must be made for store of the following items: oil, rubber pipe, cleaning agents, small parts, coupler and draw gear, bearings, brake valves, knuckles, seals, gas bottles, lubricants and filters and must be linked to the main shed structure.
- 11.3.6 The following activities will be conducted at the ore car maintenance facility:
 - Scheduled repair.
 - Unscheduled repair.
 - Body repairs.
 - Bogie repairs.
 - Wheel cutting and re-profiling.
 - Bearing replacements.

Design Criteria
Railway Design Criteria and Design Rational

- Bogie frame repairs and alignment.
- Draw gear replacement.
- Brake system component replacement.
- Body Painting and Stencilling.

11.4 Rolling Stock Maintenance Facility Stores and Offices

- 11.4.1 The rolling stock maintenance workshop is designed as a single building that provides space for the locomotive repair and car repair. Stores and offices have been moved adjacent to the workshop in modular format for the optimizing process.
- 11.4.2 The stores for both locomotive and ore car spares are located on the ground floor of the workshop facility and offices are housed adjacent to the workshop. The stores layout is designed with separate areas for locomotives and cars. Provision must be made for parts received- and dispatch counters with the actual stores located in-between. Space allowance must be made based on the spares requirements of the cars and locomotives.
- 11.4.3 The bigger component store is equipped with wider doors to allow the delivery and collection of heavy parts by means of a forklift directly from the workshop area. An open area store for larger and heavier components is allowed for. The smaller store areas must be equipped with shelving to increase storage space of the smaller components. The store for small parts provides access for individuals only with no need for access for forklifts.
- 11.4.4 Allowance must also be made for a dark and ventilated store room required for all the rubber pipes and seals. Provision must also be made for a locomotive battery store with battery recharging equipment and with suitable ventilation.
- 11.4.5 Provision is made for two compressor rooms that house a compressor for the car brake testing bays and a separate compressor that will supply air to the rest of the car and locomotive workshop areas. A separate gas and cleaning agent store must be provided and these are all situated outside the main building, some 25 m away from the main maintenance building. A run-off water collection treatment facility must be provided for the effluent generated inside the workshop area and must be disposed after treatment.

12. Design Criteria Summary

- This Section is a high level tabular summary of the design criteria covered in the preceding Sections of this design rational for the major elements of the optimized track, supporting infrastructure, operations and rolling stock for the railway between Mary River Mine and Milne Port associated with the Expansion Study Stage II upgrades.
- 12.2 The tables also provide cross reference to the section numbers where these criteria are discussed.

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Railway Design Criteria and Design Rational

Table 12-1: General Design

Item	Element	Design Criteria	Section
1.	Project Language	Canadian English	1.5
2.	Rail Classification	Standard Gauge- heavy Haul Railway	1.6
3.	Design Context	Mainly AREMA based, and all codes specified	1.7
4.	Units of Measure	International System (SI)	1.10

Table 12-2: Site Conditions

Item	Element	Design Criteria	Section
1.	Site Conditions	Defined Table 3.1	3.2
2.	Design Base	Standard Specification (H349000-S003120)	3.2

Table 12-3: Operations

Item	Element	Design Criteria	Section
1.	Ore Traffic	12 Mtpa (12.24 Mtpa – wet (2%moisture))	4.1.3
2.	Locomotive Axle Load	33 tonnes	4.2
3.	Car Axle Payload - Initially	30 tonnes	4.2
4.	Maximum Car Axle Load	32.5 tonnes	4.2
5.	Train Design Speed	75 km/h	4.3
6.	Operating Speed	60 km/h	4.3
7.	Locomotives per Train	2	4.4.2
8.	Cars per Train	80	4.4.2
9.	Train Design Length (80)	900 m	4.5
12.	Gross Weight Loaded (72)	9750 tonnes	4.5
13.	Gross Weight Empty (72)	1974 tonnes	4.5
14.	Net Weight (72)	7776 tonnes	4.5
15.	Trainloads per day (72)	6 Loads/day	4.5

Table 12-4: Alignment

Item	Element	Design Criteria	Section
	Horizontal Alignment		5.2
1.	Minimum off-set from Tote Road	15 m	5.2.1
2.	Curve Radius Target	≥ 1000 m	5.2.2
3.	Curve Radius Minimum Target	500 m	5.2.2
4.	Curve Radius Absolute Minimum	230 m	5.2.2
5.	Transition Curves R > 300 m	80 m	5.2.3
6.	Transition Curves R ≤ 300 m	60 m	5.2.3
7.	Tangent Length between Reverse Curves	20 m	5.2.4
	Vertical Alignment		5.3
1.	Vertical Curve rate of Change	0.040 m/20 m/20 m; K=100	5.3.1
2.	Ruling Gradient facing Loaded	1.5% (1:67)	5.3.2
3.	Ruling Gradient facing Empty	2.0% (1:50)	5.3.2
4.	Exceptional facing Empty < 775 m	3.0% (1:33)	5.3.2
5.	Allowed Facing Empty > 775; G>1% to follow	2.2% (1:45)	5.3.2
6.	Grade Compensation for G=1:X in Radius (R)	1: 20/((20/X)-(14/R)).	5.3.3
7.	Gradients in Passing Track	0 to 0.25%	5.3.2.11
8.	Exceptional facing Empty < 775 m	0 to 0.125%	5.5.2.5
9.	Allowed Facing Empty > 775; G>1% to follow	0 to 0.1%	5.5.2.6

Table 12-5: Earthworks

Baffinland Iron Mines LP: Mary River Expansion Project H353004

Item	Element	Design Criteria	Section
	Embankments		6.2
1.	Typical Side Slopes	1V:1.5H	6.2.1
2.	Sub Ballast Layer 150 mm	Type 26 Crushed Rock	6.2.2
4.	2nd Layer 550 mm in Non-Susceptible & Potentially Susceptible to Ice soils, choked with Type 26	Type 12 run of quarry rock fill	6.2.2
5.	2nd Layer 1350mm in Moderately Susceptible & Highly Susceptible to Ice soils, choked with Type 26	Type 12 run of quarry rock fill	6.2.2
6.	Geotextile below 1350 mm layer	1800 g/m² Stiff Woven	6.2.2
	Sub-grade Cuttings		6.2.3
1.	Cut side slopes in rock	1V:8H	6.2.3
2.	Cut side slopes ice rich soils	1V:2H (for pre feasibility)	6.2.3
3.	Layer Work, Geotextiles and Polystyrene Insulation	Section 6.2.2	6.2.2
4.	Grading Layer Works	Table 6-3 to 6-5	6.5
5.	Recovery of cut frozen ground for fills	Cut to spoil for FS	

Table 12-6: Hydrology

Item	Element	Design Criteria	Section
1.	Design Peak Flows	Extrapolated from Tote study	7.2.1
2.	Flood Return Period	200 years	7.2.2
3.	Design Flows	Q100: V = 3m/sec	7.2.3

Table 12-7: Bridges and Culverts

Item	Element	Design Criteria	Section
1.	The design Criteria for Bridges and Culverts are		
	already in concise summarized format and very		8
	comprehensive in the Section indicated		

Table 12-8: Track

Item	Element	Design Criteria	Section
	Track Superstructure – Rail		9.3
1.	Mainline, sidings and yards	136 RE	9.3.2
2.	Mainline Joints	Welded	9.3.2
3.	Yard & Siding Joints	Jointed and Welded	9.3.2
4.	Mainline Ties	Untreated Hardwood Ties	9.4.1
5.	Yard & Siding Ties	Untreated Hardwood Ties	9.4.1
6.	Mainline Tie Spacing	540 mm	9.4.1
7.	Yard & Siding Tie Spacing	540 mm	9.4.3
8.	Curves < R400m Tie Spacing	540 mm	9.4.3
9.	Mainline, sidings and yards Fastenings	Pandrol "e"-clips	9.5.1
10.	Mainline Turnouts	AREMA No. 9	9.7
11.	Yard Turnouts	AREMA No. 9	9.7.4
	Ballast		9.6
1.	Ballast Shoulder General	300 mm	9.6
2.	Ballast Shoulder on outside of Curves < 350m	600 mm if LWR	9.6
3.	Ballast Volume	1600 m³/km	9.6
4.	Sub Ballast Depth	150 mm	9.6
5.	Ballast cover between Sub Ballast & Tie	300 mm	9.6
6.	Ballast +Tie Height	312 mm	9.6
7.	Ballast Shoulder Slope	1:2	9.6
8.	Ballast Grading & Properties	Table 9-1 and 9-2	9.6

Baffinland Iron Mines LP: Mary River Expansion Project H353004

Table 12-9: Yards and Sidings

Item	Element	Design Criteria	Section
	Milne Tippler Yard		4.7.3
1.	Loading Lines	Part of Mainline km's	4.7.3
2.	Departure Loop	900 m	4.7.3
3.	Loco Run-around Loop	347 m	4.7.3
4.	Loco Workshop Spur	390 m	4.7.3
5.	Car Workshop Spur	215 m	4.7.3
6.	Bad Order Car Spur	205 m	4.7.3
7.	Good Order Car Spur	160 m	4.7.3
8.	Quarry Spur and Y	400 m	4.7.3
9.	Cross Over	120 m	4.7.3
	Passing Loop (km's 56.017 to 57.490)		4.7.1
1.	Siding	900 m	4.7.1
2.	Back Track	350 m	4.7.1
	Mary River Mine Yard		4.7.2
1.	Loading Line right through to Stop Block	Part of Mainline km's	4.7.2
2.	Departure Siding	900 m	4.7.2

Table 12-10: Rolling Stock

Item	Element	Design Criteria	Section
	Locomotives		10.1
1.	Fleet Size	4+1 for exchange	4.4.2
2.	Locomotive Type	Diesel Electric	10.1.1
3.	Traction	AC Traction Motors	10.1.1
4.	Horsepower	3,280 kW	10.1.2
5.	Special Specifications	Extreme Cold Weather	10.1.2
6.	Co-Co	6 axles	10.1.3
7.	Minimum Axle load	32 tonnes/axle	10.1.3
8.	Maximum Axle load	33 tonnes/axle	10.1.3
9.	Maximum Length	23 m	10.1.3
10.	Vehicle Gauge	"Plate M" AAR S-2028	10.1.1
11.	Loco Wheel track Gauge	Standard 1,435 mm	10.1.1
	Ore Cars		10.2
1.	Fleet Size	180	4.4.2
2.	Car Tare Weight	22 tonnes	10.2.3
3.	Maximum Payload @ 32.5 t/axle	108 tonnes	10.2.3
4.	Coupler to Coupler Length	10.5 m (10.65m incl. Stretch)	10.2.4
5.	Car Width	3.2 m	10.2.4
6.	Maximum Car Height	7.01 m from top of rail	10.2.4

Baffinland Iron Mines LP: Mary River Expansion Project H353004 Railway Design Criteria and Design Rational

Table 12-11: Rolling Stock Facilities

Item	Element	Design Criteria	Section
	Locomotive Service (in line servicing in the yards)		11.2
1.	 Re-Fueling Sanding Provisioning and Hygiene Lubrication Daily Service Tasks Attend to driver trip report faults Oil top-up on sub-systems Electronic cards/modules exchange Windscreen replacement Windscreen wipers replacement 	Mobile equipment & provisioning done on departure siding.	11.2.10
	Locomotive Maintenance Facility		11.2
2.	 Unscheduled repairs Scheduled repairs Unscheduled maintenance Scheduled maintenance Component exchange (Blower motors, traction motors, compressors, radiators, turbo charger, alternator etc.). Wheel cutting Engine repairs 	1 track extended outside workshop;1 locomotive	11.2.1
	Car Maintenance Facility		11.3
3.	 Scheduled repair Unscheduled repair Body repairs Bogie repairs Wheel cutting and re-profiling Bearing replacements Bogie frame repairs Draw gear replacement Brake system component replacement Body Painting and Stencilling. 	1 track 2 cars	11.3.6
	Stores and Offices		11.4
4.	 Loco and Car shops under one roof Stores accommodated inside the building and modular offices outside and linked to workshop 	2 track bays, parts exchange and repair and other facilities integrated	1.4.1 to 11.4.5