

Surface Water and Aquatic Ecosystems Management Plan	Issue Date: September 10, 2021 Revision: For review purposes only
Environment	Document #: BAF-PH1-830-P16-0026

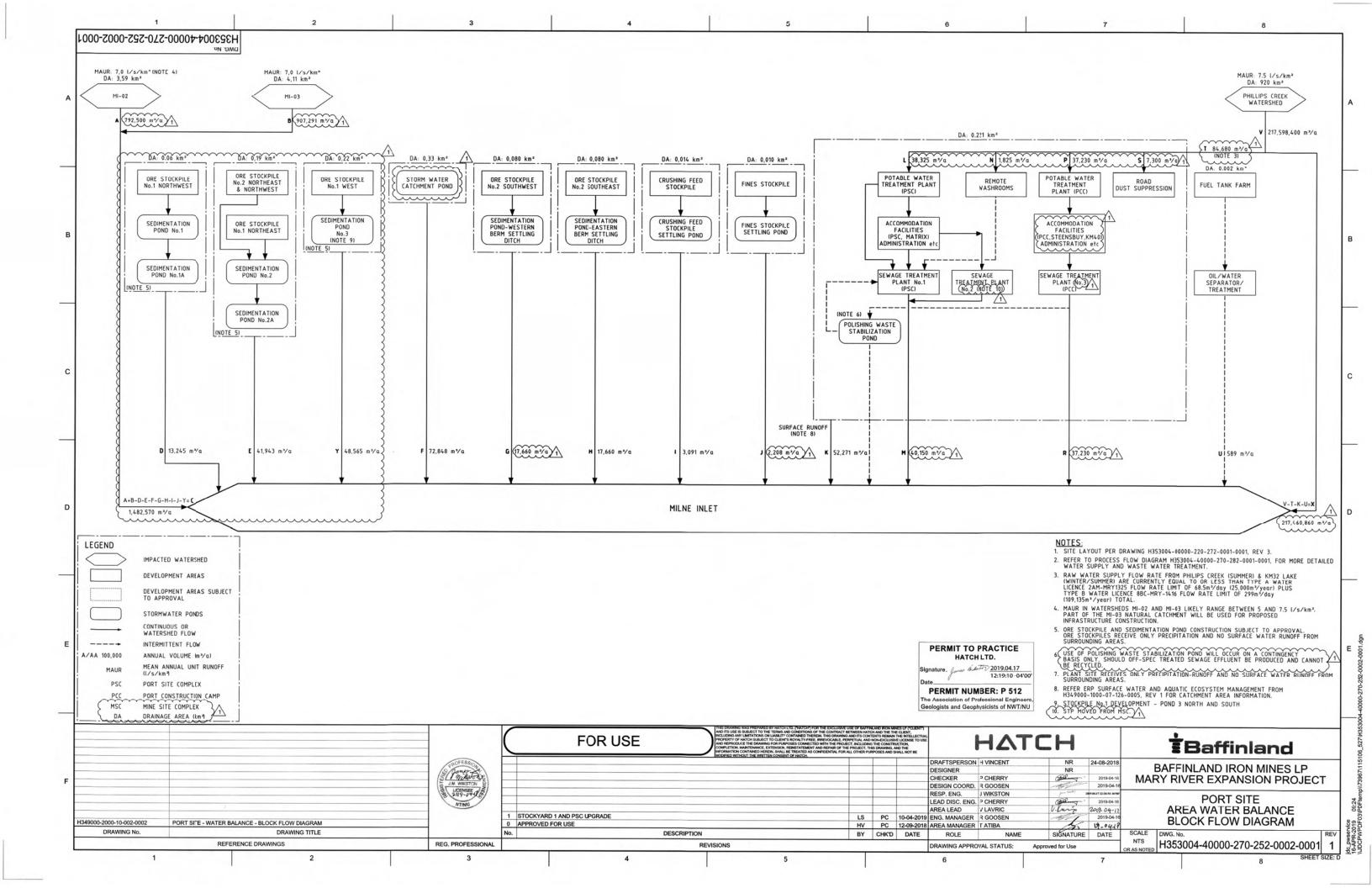
Appendix DDFO Notification Form

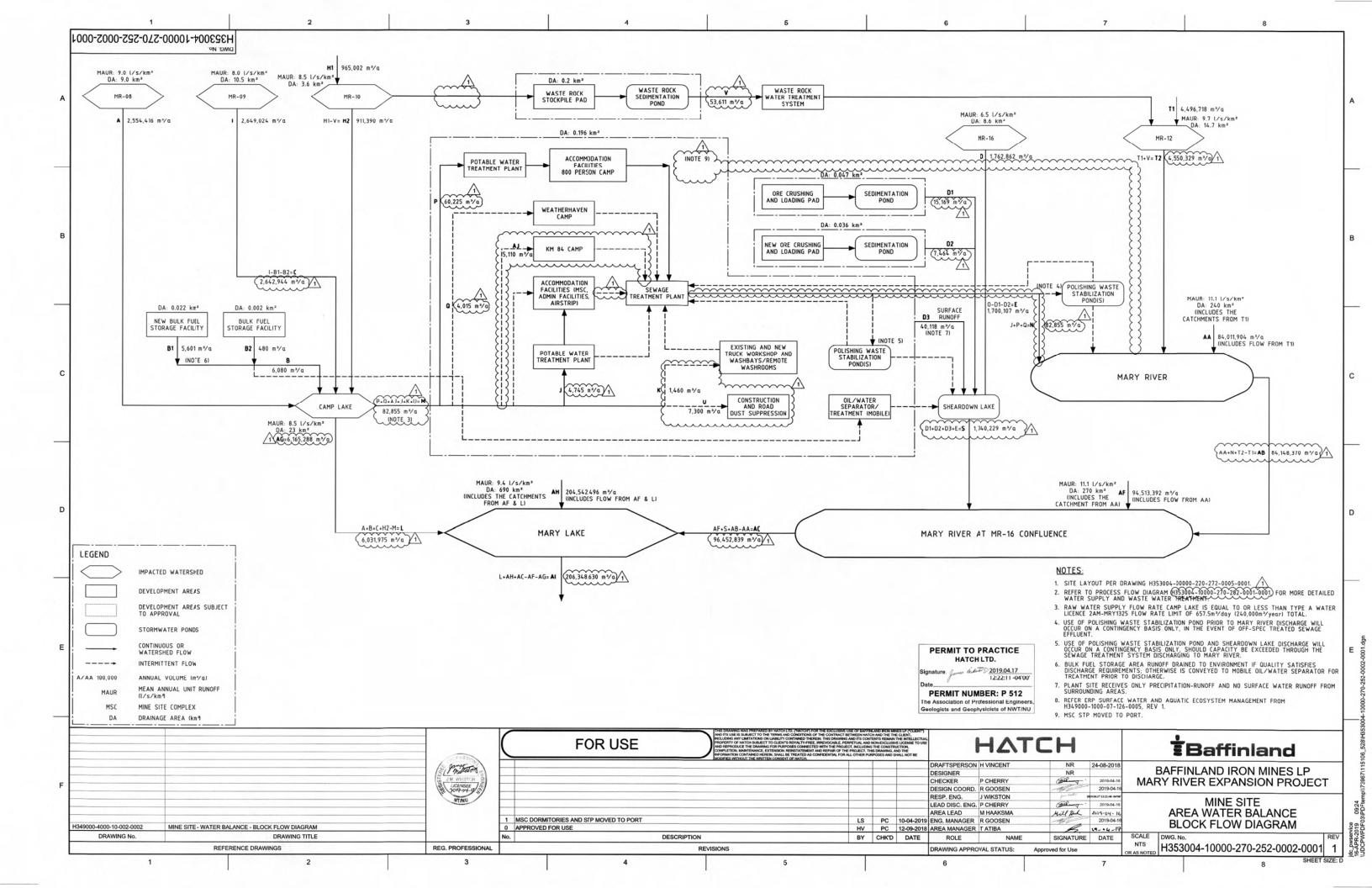
NOTIFICATION FORM

PROPONENT INFORMATION			
NAME:			
STREET ADDRESS:			
CITY/TOWN:	PROVINCE/TERRITO	PRY:	POSTAL CODE:
TEL. NO. (RESIDENCE):	TEL. NO. (WORK):		
FAX NO:	EMAIL ADDRESS:		
CONTRACTOR INFORMATION (pro	ovide this information if a Contractor is working	ng on behalf of the Proponent)	
NAME:			
STREET ADDRESS:			
CITY/TOWN:	PROVINCE/TERRITO	PRY:	POSTAL CODE:
TEL. NO. (RESIDENCE):	TEL. NO. (WORK):		
FAX NO:	EMAIL ADDRESS:		
PROJECT INFORMATION			
Select the codes of practice that are I	peing used (check all applicable boxe	s):	
☐ Beaver dam removal	☐ Culvert ma	aintenance	☐ End of pipe fish screens
☐ Routine maintenance dredging	☐ Temporary	cofferdams and diversion channels	
☐ Temporary stream crossings		,	
Select the type of water body or wate	rcourse at or near your project:		
☐ River, Stream, Creek	☐ Marine (Oc	cean or Sea)	
☐ Lake (8 hectares or greater)	□ Estuary	,	
□ Pond or wetland (pond is less that	•		
PROJECT LOCATION (S) (Append mu	Iltiple project locations on an additional shee		
Name of water body or watercourse		Coordinates of the Project (UTM co- Seconds), if available	-ordinate or Degrees, Minutes,
		Seconds), ii available	
		Easting:	Northing:
		Latitude:	Longitude:
Legal Description		Directions to Access the Project Sit	e
(Plan, Block, Lot, Concession, Townsh	ip, Section, Range)	(i.e., Route or highway number, etc	.)
Proposed Start Date	Click or tap to enter a date.	Proposed Completion Date	Click or tap to enter a date.
(YYYY/MM/DD):	onor or tap to enter a date.	(YYYY/MM/DD):	Onor or tap to enter a date.
We ask that you notify DFO, preferab	ly 10 working days before starting		g in, by mail, email or by fax, this
notification form to the DFO office in			
relation to the code of practice.	,		
•			
		I,	(print name)
	certify that the information g	given on this form is, to the best of	my knowledge, correct and complete.
		Sign	nature Date
		3	

Note: Information about the above-noted proposed work or undertaking is collected by DFO under the authority of the *Fisheries Act* for the purpose of administering the Fish and Fish Habitat Protection Provisions of the *Fisheries Act*. Personal information will be protected under the provisions of the *Privacy Act* and will be stored in the Personal Information Bank DFO-SCI-605. Under the *Privacy Act*, Individuals have a right to, and on request shall be given access to, any personal information about them contained in a personal information bank. Instructions for obtaining personal information are contained in the Government of Canada's Info Source publications available at www.infosource.gc.ca or in Government of Canada offices. Information other than "personal" information may be accessible or protected as required by the provisions of the Access to Information Act.

Aussi disponible en français





Surface Water and Aquatic Ecosystems Management Plan	Issue Date: September 10, 2021 Revision: For review purposes only
Environment	Document #: BAF-PH1-830-P16-0026

Appendix E Site Water Balances

Surface Water and Aquatic Ecosystems Management Plan	Issue Date: September 10, 2021 Revision: For review purposes only
Environment	Document #: BAF-PH1-830-P16-0026

Appendix F Environmental Guidelines for Project Water Crossing Repairs and/or Installations

Roads Management Plan	Issue Date: February 14, 2020	
	Rev.: Rev. 7	
Operations	Document #: BAF-PH1-830-P16-0023	

Appendix C

Environmental Guidelines for Project Water Crossing Repairs, Modifications and/or Installations

Roads Management Plan	Issue Date: February 14, 2020	
	Rev.: Rev. 7	
Operations	Document #: BAF-PH1-830-P16-0023	

C.1 - Water Quality Monitoring Requirements and Guidelines

Prior to, during and following construction work that involves the repair, modification and/or installation of a water crossing (e.g. culvert, bridge), water quality monitoring will be conducted upstream and downstream of the affected water crossing(s). The following subsections discuss the monitored parameters, monitoring methods, sampling/monitoring locations and frequency for each phase of monitoring (pre, during and post).

1. Monitored Parameters

Monitored parameters and the method at which each parameter will be monitored are listed below.

- i. Discrete Water Samples
 - a. Total Suspended Solids (TSS; mg/L)
 - b. Total Dissolved Solids (TDS; mg/L)
 - c. pH (pH units)
- ii. Field Monitoring (in-situ)
 - a. Turbidity (NTU)
 - b. pH (pH units)
 - c. Specific Conductivity (μS/cm)
 - d. Water Temperature (°C)
 - e. Dissolved oxygen (mg/L, %)
 - f. Presence/Absence of Sheen (visual inspection)

2. Methods and Equipment

Field monitored parameters will measured using a calibrated, multi-parameter water quality probe (e.g. YSI). A visual inspection will be conducted to determine the presence or absence of sheen.

Discrete water samples will be collected in accordance with the protocols outlined in Baffinland's Surface Water Sampling Program – Quality Assurance and Quality Control Plan (BAF-PH1-830-P16-0001; QA/QC Plan).

3. Monitoring Locations

Concurrent water sampling and field monitoring will be conducted at locations 100 metres downstream and 50 metres upstream of each water crossing being repaired, modified and/or installed. Field monitoring will also occur at a location 50 metres downstream of the affected water crossing. Deviations from these distances due to safety and/or accessibility concerns will be documented on the *Water Crossing Monitoring Form*.

Monitoring events will start at the monitoring location furthest downstream of the affected water crossing and progress in an upstream direction to prevent monitoring results from being affected by sediment re-suspended during sampling activities (e.g. stream bed disturbance).

Roads Management Plan	Issue Date: February 14, 2020	
	Rev.: Rev. 7	
Operations	Document #: BAF-PH1-830-P16-0023	

4. Water Sampling and Monitoring Frequency

The following subsections discuss the frequency at which water quality monitoring will be conducted at water crossings that are repaired, modified and/or installed. Water quality is monitored prior to, during and following construction. Post-construction monitoring described below has been designed to assess the performance of the water crossing during an open water season and ensure water quality impacts, if any, are acceptable based on applicable water quality action levels.

Table C-1 – Summary of Water Quality Monitoring Frequency

Monitoring	Monitoring Phase		
Method	Pre-Construction	During Construction	Post Construction
Water Sampling	One (1) sampling event at locations 100 m downstream and 50 m upstream of the affected water crossing.	Every eight (8) hours at locations 100 m downstream and 50 m upstream of the affected water crossing. Adaptive water sampling events will also be conducted when downstream flows are suspected of encroaching on TSS and turbidity action levels.	One sampling event in June, July and August at locations 100 m downstream and 50 m upstream of the affected water crossing. Sampling events will occur at least 10 days apart. ²
Field Monitoring	One (1) monitoring event (alongside water sampling event) at locations 100 m and 50 m downstream and 50 m upstream of the affected water crossing.	Every four (4) hours at locations 100 m and 50 m downstream and 50 m upstream of the affected water crossing. Field monitoring will also be conducted alongside adaptive water sampling events outlined above.	Field monitoring will be conducted concurrently with the water sampling events listed above. ²

Notes:

¹Field monitoring should be conducted concurrently with water samples collected every eight (8) hours to allow for TSS/turbidity curve development.

²Additional monitoring may be required if applicable water quality action levels are exceeded. Refer to action response framework for post-construction performance monitoring presented in Section 7, ii.

Operations	Document #: BAF-PH1-830-P16-0023	
Roads Management Plan	Rev.: Rev. 7	
Roads Management Blan	Issue Date: February 14, 2020	

i. Pre-Construction Monitoring

Concurrent water sampling and field monitoring will be conducted at least once at locations 100 metres downstream and 50 metres upstream of the water crossing to be repaired, modified and/or installed. During the same monitoring event, field monitoring will also be conducted at a location 50 metres downstream of the affected water crossing.

ii. During Construction Monitoring

Water samples will be collected at locations 100 metres downstream and 50 metres upstream of the affected water crossing every eight (8) hours. Field monitoring will occur at locations 100 metres and 50 metres downstream and 50 metres upstream of the affected water crossing every four (4) hours. Additional adaptive monitoring events will be conducted if downstream flows are suspected of encroaching on TSS and turbidity action levels, outlined in Section 5 below.

The during construction action response framework, provided below in Section 7, i, will be used for assessing during construction monitoring results and the performance of construction mitigation measures (i.e. silt fences) implemented.

iii. Post-Construction Monitoring

Post-construction water quality monitoring, at a minimum, will consist of three (3) concurrent water sampling and field monitoring events conducted during the open water season following the completion of construction at a water crossing. Water quality will be monitored during high flows (June), medium flows (July) and low flows (August) at locations 100 metres downstream and 50 metres upstream of the water crossing. Water sampling and field monitoring events will occur at least 10 days apart.

For example, a water crossing repaired, modified and/or installed during frozen conditions would be monitored at least once during June, July and August of the following open water season. In contrast, a water crossing repaired, modified and/or installed during July, would be monitored at least once during the following month (August) and once again during June and July of the following year. This approach will ensure that a modified water crossing's performance is assessed and determined to be adequate for varying flow conditions, representative of flow conditions during a typical open water season.

As shown in the post construction action response framework in Section 7, ii, below, additional monitoring events may be required if elevated TSS and/or turbidity are observed during sampling/monitoring events.

Roads Managament Blan	Issue Date: February 14, 2020	
Roads Management Plan	Rev.: Rev. 7	
Operations	Document #: BAF-PH1-830-P16-0023	

5. Water Quality Action Levels

Environmental concerns associated with construction work and the performance of water crossings focus on the potential effects of elevated suspended solids (sedimentation) on aquatic receiving environments. As such, turbidity and TSS monitoring conducted prior to, during and following construction on water crossings will be used to inform mitigation and management actions. Table C-1 outlines the water quality action levels that will be used to assess monitoring results during the first year of implementation. Action levels outlined below will be reassessed following the first year of implementation.

Table C-1 –Water Quality Action Levels

Parameter	Monitoring Phase		
Parameter	Pre-Construction	During Construction	Post Construction
Turbidity (NTU)	None. TSS will be the parameter used to assess the pre-construction water quality conditions near water crossings.	An increase of 25 NTU from background levels (DFO, 1999) ¹ , or an appropriate action level derived from site-specific TSS/turbidity datasets. The turbidity monitoring action	None. TSS will be the parameter used to assess the post-construction water quality conditions near water crossings.
(NTU)		level will be used to inform mitigation and management actions in the field, as outlined in the action response framework detailed in Section 7, i, below.	
TSS (mg/L)	A maximum increase of 50 mg/L from background levels (upstream) when background levels are between 25 and 250 mg/L. A maximum increase of 10% of background levels when background levels are greater than 250 mg/L. ²	A maximum increase of 100 mg/L from background levels (upstream). ³	A maximum increase of 50 mg/L from background levels (upstream) when background levels are between 25 and 250 mg/L. A maximum increase of 10% of background levels when background levels are greater than 250 mg/L. ²

¹ An increase of 25 NTUs approximates to an increase of 100 mg/L TSS (adapted from DFO, 1999)¹

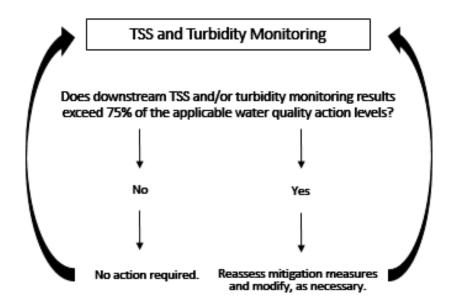
² Based on low risk to aquatic organisms, expressed as an increase over background levels (adapted from DFO, 1999)

¹ Department of Fisheries and Oceans Canada (DFO), 1999. The Effects of Sediment on Fish and their Habitat. ISSN 1480-4883.

Roads Managament Plan	Issue Date: February 14, 2020	
Roads Management Plan	Rev.: Rev. 7	
Operations	Document #: BAF-PH1-830-P16-0023	

³ During construction TSS action level used in Aquatic Effects Monitoring Plan & Surveillance Network Program: Construction of the Inuvik to Tuktoyaktuk Highway (Government of NWT, 2014)

Water quality sampling, in comparison to the Type 'A' Water Licence criteria, will continue to be reported in the NWB/QIA Annual Report for Operations.

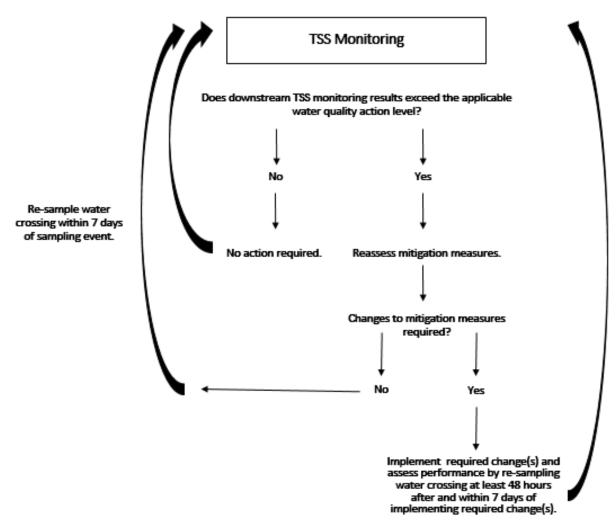

6. Data Management

All data collected during monitoring activities will be documented using the *Water Crossing Monitoring Form*. A *Water Crossing Monitoring Form* will be completed for each water crossing that is repaired, modified and/or installed. All documentation, including photos, will be saved on the onsite Environmental server.

7. Action Response Framework

i. During Construction

The following action response framework will be used to assess the performance of the mitigation measures used during construction activities on water crossings, during periods of flow.



Operations	Document #: BAF-PH1-830-P16-0023		
Roads Management Plan	Rev.: Rev. 7		
Roads Management Blan	Issue Date: February 14, 2020		

ii. Post- Construction

The following action response framework will be used to assess the performance of the water crossings in regards to water quality impacts following construction activities.

8. Data Reporting Requirements and Interpretation

Data collected during the monitoring program will, at a minimum, be presented in the Annual Report prescribed by the Project's Commercial Lease with the QIA and the Type 'A' Water Licence, issued by the NWB. In the Annual Report, Baffinland will present the data, compare the data against the interim water quality actions levels presented in Table C-1 and the Type 'A' Water Licence criteria and outline Baffinland's interpretation of the data and plans for any additional monitoring.

Operations	Document #: BAF-PH1-830-P16-0023		
Roads Management Plan	Rev.: Rev. 7		
Boods Managament Dian	Issue Date: February 14, 2020		

C.2 - Construction and Monitoring Guidelines during Frozen Conditions

2. General

All materials and equipment used for site preparation and construction shall be operated and stored in such a manner that prevents deleterious substances from entering nearby water bodies. Specifically:

- a. Any excavated and stockpiled materials shall be stored and stabilized in a designated area that is at least 31 metres from the ordinary High Water Mark of nearby water bodies.
- b. Any part of a vehicle and/or equipment entering the water shall be free of fluid leaks and externally cleaned/degreased;
- c. Vehicle and equipment washing, re-fuelling, and/or maintenance shall be conducted in a location that is at least 31 metres from the ordinary High Water Mark of nearby water bodies.
- d. Vehicles and equipment involved with construction activities shall be operated in a way that minimizes the disturbance to the banks of the watercourse/waterbody. If disturbance occurs, the banks shall be restored.
- e. Fuel and any other materials associated with the servicing of machinery shall be stored at least 31 metres from the ordinary High Water Mark of nearby water bodies.

3. Typical Scope of Work for Culvert Repair/Installation

The basic construction scope of work expected at a culvert includes the following activities:

- a. Excavate to desired elevation to install new or extend existing culvert(s).
- b. Install new culverts, or new culvert lengths/extensions.
- c. Back fill with compaction to finished grade.
- d. Place rip-rap at culvert inlet and outlet ends, as required.
- e. Clean up loose material around the culvert(s) prior to freshet to mitigate water quality impacts from construction.

4. Monitoring Activities

- a. Take pre, during and post photographs of the affected water crossing, as outlined in the *Water Crossing Monitoring Form*.
- b. Complete post-construction water quality monitoring during next open water season and record results and observations on the *Water Crossing Monitoring Form*, as outlined in Section C.1.
- c. Include affected water crossing in the next biannual geotechnical inspection, prescribed by the Type 'A' Water Licence.
- d. If fish bearing, include affected water crossing in the annual inspection of the Project's fish bearing water crossings, conducted by a Professional Fisheries Biologist.
- e. Record all relevant information on Water Crossing Monitoring Form.

Operations	Document #: BAF-PH1-830-P16-0023		
Roads Management Plan	Rev.: Rev. 7		
Boods Managament Dian	Issue Date: February 14, 2020		

C.3 - Construction and Monitoring Guidelines during Periods of Flow

1. General

All materials and equipment used for site preparation and construction shall be operated and stored in such a manner that prevents deleterious substances from entering nearby water bodies. Specifically:

- a. Any excavated and stockpiled materials shall be stored and stabilized in a designated area that is at least 31 metres from the ordinary High Water Mark of nearby water bodies.
- b. Any part of a vehicle and/or equipment entering the water shall be free of fluid leaks and externally cleaned/degreased;
- c. Vehicle and equipment washing, re-fuelling, and/or maintenance shall be conducted in a location that is at least 31 metres from the ordinary High Water Mark of nearby water bodies.
- d. Vehicles and equipment involved with construction activities shall be operated in a way that minimizes the disturbance to the banks of the watercourse/waterbody. If disturbance occurs, the banks shall be restored.
- e. Fuel and any other materials associated with the servicing of machinery shall be stored at least 31 metres from the ordinary High Water Mark of nearby water bodies.

2. Typical Scope of Work for Culvert Repair/Installation

The basic construction scope of work expected at a culvert includes the following activities:

- a. Excavate to desired elevation to install new or extend existing culvert(s).
- b. Install new culverts, or new culvert lengths/extensions.
- c. Back fill with compaction to finished grade.
- d. Place rip-rap at culvert inlet and outlet ends, as required.
- e. Clean up loose material around the culvert(s) to mitigate water quality impacts from construction.

3. Pre-Construction Activities

Where there are construction activities occurring during periods of flow, the following steps will be taken prior to construction.

- a. Complete a fish assessment prior to construction. Record information on the *Water Crossing Monitoring Form*.
- b. If the stream survey yields the presence of fish, a salvage fishery will be conducted if any in-stream work is anticipated. If fish are present for any in-stream work, a barrier net will be placed downstream of the construction site to prevent additional fish potentially from accessing the construction site. Any fish present upstream of the barrier will be captured (using a backpack electrofisher) and transferred to fish-bearing habitat downstream of the barrier.

Boods Management Dies	Issue Date: February 14, 2020
Roads Management Plan	Rev.: Rev. 7
Operations	Document #: BAF-PH1-830-P16-0023

- c. Take pre-construction photographs of the affected water crossing as outlined in the Water Crossing Monitoring Form.
- d. Complete pre-construction water quality monitoring and record results and observations on the *Water Crossing Monitoring Form*, as outlined in Section C.1.
- e. Install sediment control measures. Ensure sediment control measures are functioning properly prior to the start of construction. Record information on the *Water Crossing Monitoring Form*.
- f. Record all relevant information on Water Crossing Monitoring Form.

4. During-Construction Activities

- a. Complete construction activities.
- b. Take during construction photographs of the affected water crossing as outlined in the *Water Crossing Monitoring Form*.
- c. Complete during construction water quality monitoring and record results and observations on the *Water Crossing Monitoring Form*, as outlined in Section C.1.
- d. Record all relevant information on Water Crossing Monitoring Form.

5. Post-Construction Activities and Performance Monitoring

- a. Take post-construction photographs of the affected water crossing as outlined in the *Water Crossing Monitoring Form*.
- b. Complete post-construction water quality monitoring and record results and observations on *Water Crossing Monitoring Form*, as outlined in Section C.1.
- c. Include affected water crossing in the next biannual geotechnical inspection, prescribed by the Type 'A' Water Licence.
- d. If fishing bearing, include affected water crossing in the annual inspection of the Project's fish bearing water crossings, conducted by a Professional Fisheries Biologist.
- e. Record all relevant information on the Water Crossing Monitoring Form.

Operations	Rev.: Rev. 7 Document #: BAF-PH1-830-P16-0023			
Roads Management Plan	Issue Date: February 14, 2020			

WATER CROSSING MONITORING FORM

WATER CROSSING MONITORING FORM PART 1 - GENERAL INFORMATION

WATER CROSSING ID:													
Construction D	Ouration:					Start (YY/MI	M/DD XX:XX	HRS):	Finish (YY/MIV	I/DD XX:XX HRS):			
During Frozen	Conditions?		,	Yes / No	•								
During Periods of Flow? Yes / No													
	*IF CONSTRUCTION OCCURS DURING PERIODS OF FLOW,												
	COMPLETE ENTIRE FORM (PART 1 & PART 2A, B & C)												
	(PRE, DURING AND POST CONSTRUCTION WATER QUALITY MONITORING)*												
	*IF CONSTRUCTION OCCURS DURING FROZEN CONDITIONS, COMPLETE PART 1 & PART 2C OF THIS FORM												
	COMPLETE PART 1 & PART 2C OF THIS FORM (POST CONSTRUCTION WATER QUALITY MONITORING)*												
				LONSTRUC	TION WAI	ER QUALITT	WONTOKING	3) .					
CROSSING MO	CROSSING MODIFICATION / REPAIR DETAILS If Yes, details of change:												
Change in exist	ting design?		Yes / No		ir Yes, dei	talls of change	e:						
Final Design (e	.g. number o	f culverts, lengt	th, etc.):										
Applicable App	orovals												
TRAN													
DFO Approvals	5												
Notes:													
LOCATION													
Datum:			Zone:										
Easting (m):			Northing (m):			Elevation (fr	om mapping):					
Notes:													
FISH ASSESSMI	FNT PRIOR TO	O CONSTRUCTION	ON										
Date (YY/MM/		o conomocin	<u> </u>										
Fish Present?	,-		Yes / No		If Yes. dis	tance from cr	ossing:			US / DS			
	ic charr prese	ent at crossing?				s / No		If Yes, co	ntact a biologis	· · · · · · · · · · · · · · · · · · ·			
		upstream or d		crossing?		/ No		· · · · · · · · · · · · · · · · · · ·					
Notes:	•	•				•							
SEDIMENT ANI	D EROSION C	ONTROL MEAS	URES										
Measures Insta	alled:							Date installed:					
		1						Date removed:					
	n to stabilize	disturbed areas	5:										
Notes:													
PHOTOS													
	View a	cross water cro	ssing, view fro	m upstrear	m, view fro	om downstrea	am and view	of sediment con	trols employed	•			
	Photo #	Date (YY/MM/DD)	Direction	Vantag	ge Point		Photo #	Date (YY/MM/DD)	Direction	Vantage Point			
Before						After							
Across						Across							
From US	 				From US								
From DS						From DS							
During						Sed. Cont.							
								+					
Across						Across		+					
From US						From US	-						
From DS													
Notes:	otes:												

WATER CROSSING MONITORING FORM PART 2A - PRE-CONSTRUCTION WATER QUALITY MONITORING

ATER CROSSING IE	D:										Pg. (X/X):
Location	Data	T: a			Field	Monitoring			Water Sample	Lab Water Semale	
(e.g. 100 m downstream)	Date (YY/MM/DD)	Time (XX:XX HRS)	Turbidity (NTU)	pH (pH Units)	Sp. Cond. (μS/cm)	Water Temp. (°C)	DO (mg/L)	DO (% Sat.)	Collected (Yes / No)	Lab Water Sample ID	Notes
									_		
									+		
									_		
									1		

Monitoring Frequency:

Water Sampling - At least one (1) sampling event at locations 100 m downstream and 50 m upstream of the affected water crossing, prior to construction.

Field Monitoring - At least one (1) monitoring event (alongside water sampling event listed above) at locations 100 m and 50 m downstream and 50 m upstream of the affected water crossing, prior to construction.

WATER CROSSING MONITORING FORM PART 2B - DURING CONSTRUCTION WATER QUALITY MONITORING

ATER CROSSING ID: Pg. (X/X):											
Location				Field Monitoring				Water Sample	Lab Water Sample		
(e.g. 100 m downstream)	Date (YY/MM/DD)	Time (XX:XX HRS)	Turbidity (NTU)	pH (pH Units)	Sp. Cond. (μS/cm)	Water Temp. (°C)	DO (mg/L)	DO (% Sat.)	Collected (Yes / No)	ID	Notes

Monitoring Frequency:

Water Sampling - Every eight (8) hours at locations 100 m downstream and 50 m upstream of the affected water crossing, during construction.

Field Monitoring - Every four (4) hours at locations 100 m and 50 m downstream and 50 m upstream of the affected water crossing, during construction.

Note: Field monitoring and water sampling shall be conducted concurrently where frequency and locations overlap.

Adaptive water sampling events will also be conducted when downstream flows are suspected of encroaching on TSS and turbidity criteria limits.

WATER CROSSING MONITORING FORM PART 2C - POST CONSTRUCTION WATER QUALITY MONITORING

ATER CROSSING ID: Pg. (X/X):											
Location	Data			Field Monitoring					Water Sample	Lab Water Sample	
(e.g. 100 m downstream)	Date (YY/MM/DD)	Time (XX:XX HRS)	Turbidity (NTU)	pH (pH Units)	Sp. Cond. (μS/cm)	Water Temp. (°C)	DO (mg/L)	DO (% Sat.)	Collected (Yes / No)	ID ID	Notes
					-						

Monitoring Frequency:

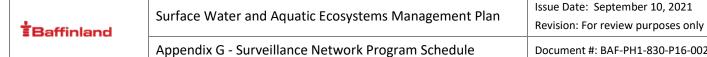
Water Sampling - Three sampling events: once in June, July and August at locations 100 m downstream and 50 m upstream of the affected water crossing. Sampling events will occur at least 10 days apart. Field Monitoring - Field monitoring will be conducted concurrently with water sampling events listed above.

Surface Water and Aquatic Ecosystems Management Plan	Issue Date: September 10, 2021 Revision: For review purposes only
Environment	Document #: BAF-PH1-830-P16-0026

Appendix G Surveillance Network Program Schedule

Surface Water and Aquatic Ecosystems Management Plan	Issue Date: September 10, 2021 Revision: For review purposes only	Page 1 of 16
Appendix G - Surveillance Network Program Schedule	Document #: BAF-PH1-830-P16-0026	

Schedule G.1 - Construction Phase SNP Stations - Milne Port


Sampling	Coordir	linates	Maniharina Danamatana	-	
Location	Easting	Northing	Monitoring Parameters	Frequency	
MP-C-A	503214	7976483			
MP-C-B	502836	7975732			
MP-C-C	503436	7975427	Water Discharge volume (m³) Ammonia (total NH₃-N) Nitrate (total NO₃-N)		
MP-C-D	503651	7976363			
MP-C-E	503736	7976346	рН	Monthly sampling during periods of flow and following significant precipitation events	
MP-C-F	503922	7976304	Conductivity Total suspended solids	ione in goog and proof p	
MP-C-H	504114	7976417	Oil and grease		
MP-C-J	502940	7974760			
MP-C-K	502979	7975333			

Surface Water and Aquatic Ecosystems Management Plan	Issue Date: September 10, 2021 Revision: For review purposes only	Page 2 of 16
Appendix G - Surveillance Network Program Schedule	Document #: BAF-PH1-830-P16-0026	

Schedule G.2 - Construction Phase SNP Stations - Mine Site

Sampling	Sampling Coordin		Manitarina Danamatana	_	
Location	Easting	Northing	Monitoring Parameters	Frequency	
MS-C-A	561263	7913571			
MS-C-B	561454	7913537			
MS-C-C	561110	7913199	NH I I I I I		
MS-C-D	561008	7913280		Monthly sampling during periods of flow and	
MS-C-E	560980	7913388		following significant precipitation events	
MS-C-F	561797	7913278	Total suspended solids Oil and grease		
MS-C-G	561813	7911830	on and grease		
MS-C-H	561162	7912067			
MQ-C-A	559489	7914408			
MQ-C-B	560076	7913888	Acute lethality to rainbow trout (Biol Test Method EPS/1/RM/13) Acute lethality to Daphnia magna (Biological Test Method EPS/1/RM/14)	Name has a second in a desire a second of flow.	
MQ-C-D	559422	7914223	Ammonia (total NH ₃ -N), Nitrate (total NO ₃ -N) pH, Conductivity, Total suspended solids, Oil and grease	Monthly sampling during periods of flow	
MQ-C-E	563351	7912902	pri, Conductivity, Total suspended Solids, Oil and grease		

Page 3 of 16

Document #: BAF-PH1-830-P16-0026

Schedule G.3 - Operation Phase SNP Stations - Milne Port

		Coord	inates		Frequency
Station	Description	Easting	Northing	Monitoring Parameters	
MP-MRY-2	Freshwater Intake at Phillips Creek (Summer)	514503	7964579	Water withdrawal volume (m³)	Recorded Daily
MP-MRY-3	Freshwater Intake from KM32 Lake	521547	7953735	Water withdrawal volume (m³)	Recorded Daily
WS27.1A WS27.1B WS27.1C	Freshwater Intake from KM27 Lake	518956 518513 518616	7958644 7959186 7958667	Water withdrawal volume (m³)	Recorded Daily
MP-01	Facilities (discharge into ditch	503804	7975991	Water discharge volume (m³) BOD₅, pH, TSS, Faecal Coliform, Oil and Grease, NH₃-N, TKN, Total Phosphorus	Monthly
MP-01B	prior to ocean)			Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MP-01a	Milne Port Polishing Waste Stabilization Pond (PWSP)	503625	7976015	Water discharge volume (m³) BOD₅, pH, TSS, Faecal Coliform, Oil and Grease, NH₃-N, TKN, Total Phosphorus	Once Prior to discharge and monthly
	Stabilization Pond (PWSP)			Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MP-02	Milne Port Maintenance Shop Oily water/WWTF	503785	7976209	Water discharge volume (m³) pH, TSS, Ammonia, Total Phosphorous Benzene, Ethylbenzene, Toluene, Oil and Grease, Total Metals: Arsenic, Copper, Lead, Nickel, Zinc	Monthly

Surface Water and Aquatic Ecosystems Management Plan

Issue Date: September 10, 2021 Revision: For review purposes only

Page 4 of 16

Appendix G - Surveillance Network Program Schedule

Document #: BAF-PH1-830-P16-0026

61.11	Description	Coord	linates		_
Station	Description	Easting	Northing	Monitoring Parameters	Frequency
MP-03	Milne Port Bulk Fuel Storage Facility Stormwater	503638	7976272	Water discharge volume (m³) pH, TSS, Benzene, Ethylbenzene, Toluene, Total Lead, Oil and Grease, TPH	Daily Flow, Monthly
MP-04	Milne Port Landfarm Facility Stormwater	503710	7975574	Water discharge volume (m³) pH, TSS, Benzene, Ethylbenzene, Toluene, Total Lead, Oil and Grease, TPH	Daily Flow Reported Monthly
MP-04A	Milne Port Contaminated Snow Dump	503862	7975482	Water discharge volume (m³) pH, TSS, Benzene, Ethylbenzene, Toluene, Total Lead, Oil and Grease, TPH	Monthly
MP-05	Milne Port Ore Stockpile Sedimentation Pond (East)	503469	7976383	Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc. Field Parameters: pH, Temperature, turbidity, specific conductance Acute lethality to rainbow trout	Monthly during the summer
				Acute lethality to Paphnia magna	Annually

Issue Date: September 10, 2021 Surface Water and Aquatic Ecosystems Management Plan Revision: For review purposes only

Page 5 of 16

Appendix G - Surveillance Network Program Schedule Document #: BAF-PH1-830-P16-0026

Charley	Description	Coordinates			F
Station	Description	Easting	Northing	Monitoring Parameters	Frequency
				Water discharge volume (m³)	
				pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH ₃ -N, NO ₃ -N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride.	
MP-06	Milne Port Ore Stockpile Settling Pond (West)	503125	7976364	Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc.	Monthly during the summer
				Field Parameters: pH, Temperature, turbidity, specific conductance	
				Acute lethality to rainbow trout	
				Acute lethality to Daphnia magna	,
	Milne Port Ore Stockpile Stormwater Pond No. 3	502857	7975896	Water discharge volume (m³)	Monthly during the summer
				pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH ₃ -N, NO ₃ -N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride.	
MP-07				Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc.	
				Field Parameters: pH, Temperature, turbidity, specific conductance	
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually

Issue Date: September 10, 2021 Surface Water and Aquatic Ecosystems Management Plan Revision: For review purposes only

Page 6 of 16

Document #: BAF-PH1-830-P16-0026

Appendix G - Surveillance Network Program Schedule

Chatian	Description	Coordinates		Maritania - Barrana Arra	F
Station	Description	Easting	Northing	Monitoring Parameters	Frequency
MP-08	Milne Port Ore Stockpile Stormwater Pond No.4	503357	7974942	Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc. Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MP-09	Milne Port Ore Stockpile Stormwater Pond No.5	503147	7974756	Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc. Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually

Surface Water and Aquatic Ecosystems Management Plan

Issue Date: September 10, 2021

Revision: For review purposes only

Page 7 of 16

Appendix G - Surveillance Network Program Schedule

Document #: BAF-PH1-830-P16-0026

61.11	Description	Coordinates			_
Station		Easting	Northing	Monitoring Parameters	Frequency
MP-10A	MP-10A Lump Ore Stockpile Perimeter Ditching East 503344 7975395		7975395	Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc. Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MP-10B	Lump ore stockpile perimeter ditching West	503126	7975410	Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc. Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MP-11	Milne Port Rail Maintenance Shop Oily water/WWTF	503916	7974980	Water discharge volume (m³) pH, TSS, Ammonia, Total Phosphorous Benzene, Ethylbenzene, Toluene, Oil and Grease, Total Metals: Arsenic, Copper, Lead, Nickel, Zinc	Monthly

Surface Water and Aquatic Ecosystems Management Plan	Issue Date: September 10, 2021 Revision: For review purposes only	Page 8 of 16
Appendix G - Surveillance Network Program Schedule	Document #: BAF-PH1-830-P16-0026	

Chatian		Coordinates			F
Station	Description	Easting	Northing	Monitoring Parameters	Frequency
MP-12	Milne Port Landfill	504076	7974722	Water discharge volume (m³) pH, Alkalinity, Conductivity, TSS, TDS, Oil and Grease, Phenols, TPH, TOC, DOC, Total Trace Metals as Determined by a standard ICP Scan (to include Pb, Li, Mn, Mo, Ni, Se, Si, Tl, Ti, U, V, Zn); and trace Arsenic and Mercury	Daily Monthly
MP-Q1-01	Surface runoff from Quarry Q1	503838	7974472	Water discharge volume (m³) Ammonia (total NH3-N), Nitrate (total NO3-N), pH, Conductivity, Total suspended solids, Oil and grease	Monthly
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	
MP-Q1-02	Surface runoff from Quarry Q1	503827	7975417	Water discharge volume (m³) Ammonia (total NH3-N), Nitrate (total NO₃-N), pH, Conductivity, TSS, Oil and grease	Monthly

Surface Water and Aquatic Ecosystems Management Plan	Issue Date: September 10, 2021 Revision: For review purposes only	Page 9 of 16
Appendix G - Surveillance Network Program Schedule	Document #: BAF-PH1-830-P16-0026	

Schedule G.4 - Operation Phase SNP Stations - Mine Site

Chatian	D	Coordinates			_
Station	Description	Easting	Northing	Monitoring Parameters	Frequency
MS-MRY-1	Freshwater Intake from Camp Lake	557793	7914684	Water withdrawal volume (m³)	Recorded Daily
MS-01	MS-01 Mine Site Sewage Treatment		7975991	Water discharge volume (m³) BOD₅, pH, TSS, Faecal Coliform, Oil and Grease, NH₃-N, TKN, Total Phosphorus	Monthly
MS-01B	MS-01B Facilities	560794 7	7913235	Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MS-01A	Mine Site Polishing/Waste	Coordinates to be finalized.		Water discharge volume (m³) BOD ₅ , pH, TSS, Faecal Coliform, Oil and Grease, NH ₃ -N, TKN, Total Phosphorus	Once prior to discharge and Monthly
	Stabilization Pond (PWSP)			Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MS-02	Mine Site Maintenance Shop Oily Water WWTF	561638	7913222	Water discharge volume (m³) pH, TSS, Ammonia, Total Phosphorous Benzene, Ethylbenzene, Toluene, Oil and Grease, Total Metals: Arsenic, Copper, Lead, Nickel, Zinc	Monthly
MS-MRY-4A, MS-MRY-4B &	Exploration Camp Polishing/Waste Stabilization Ponds	558470	7914237	Water discharge volume (m³) BOD₅, pH, TSS, Faecal Coliform, Oil and Grease, NH₃-N, TKN, Total Phosphorus	Once prior to discharge and Monthly
MS-MRY-4C				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually

Surface Water and Aquatic Ecosystems Management Plan

Issue Date: September 10, 2021 Revision: For review purposes only

Page 10 of 16

Appendix G - Surveillance Network Program Schedule

Document #: BAF-PH1-830-P16-0026

Chatian	Description	Coord	linates		Frequency
Station	Description	Easting	Northing	Monitoring Parameters	
MS-MRY-04	Exploration Camp Sewage	558141	7914427	Water Discharge volume (m³) BOD ₅ , pH, TSS, Faecal Coliform, Oil and Grease, NH ₃ -N, TKN, Total Phosphorus	Monthly
	Treatment Facility			Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MS-03 MS-03B	Mine Site Bulk Fuel Storage Facility Stormwater	561258	7913304	Water discharge volume (m³) pH, TSS, Benzene, Ethylbenzene, Toluene, Total Lead, Oil and Grease, TPH	Daily Flow Reported Monthly
MS-04	Mine Site Fuel Unloading Station Stormwater	Coordinates t	o be finalized.	Water discharge volume (m³) pH, TSS, Benzene, Ethylbenzene, Toluene, Total Lead, Oil and Grease, TPH	Daily Flow Reported Monthly
MS-05	Mine Site Landfarm Facility	Coordinates t	o be finalized.	Water discharge volume (m³) pH, TSS, Benzene, Ethylbenzene, Toluene, Total Lead, Oil and Grease, TPH	Daily Flow Reported Monthly
MS-05B	Mine Site Contaminated Snow Dump	Coordinates to be finalized.		Water discharge volume (m³) pH, TSS, Ammonia, Total Phosphorous Benzene, Ethylbenzene, Toluene, Oil and Grease, Total Metals: Arsenic, Copper, Lead, Nickel, Zinc	Monthly
MS-MRY-6	Exploration Camp Bulk Fuel Storage Facility	558186	7914780	Water discharge volume (m³) pH, TSS, Benzene, Ethylbenzene, Toluene, Total Lead, Oil and Grease, TPH	Daily Flow Reported Monthly

Surface Water and Aquatic Ecosystems Management Plan

Issue Date: September 10, 2021

Revision: For review purposes only

Document #: BAF-PH1-830-P16-0026

Page 11 of 16

Appendix G - Surveillance Network Program Schedule

Station	Description	Coordinates		Monitoring Parameters	Francisco
		Easting	Northing	Monitoring Parameters	Frequency
MS-06	Ore stockpile (crusher pad) pond stormwater	561475	7913000	Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc. Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MS-07	Run of Mine (ROM) Ore Stockpile Pond Stormwater	Coordinates to be finalized.		Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually

Issue Date: September 10, 2021 Surface Water and Aquatic Ecosystems Management Plan

Revision: For review purposes only

Page 12 of 16

Appendix G - Surveillance Network Program Schedule

Document #: BAF-PH1-830-P16-0026

Station	Description	Coordinates		Maritaria - Barrana Arra	F
		Easting	Northing	Monitoring Parameters	Frequency
MS-08	Waste Rock Stockpile West Pond	563492	7916273	Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MS-09	Waste Rock Stockpile East Pond	Coordinates to be finalized.		Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually

Issue Date: September 10, 2021 Surface Water and Aquatic Ecosystems Management Plan

Revision: For review purposes only

Page 13 of 16

Appendix G - Surveillance Network Program Schedule

Document #: BAF-PH1-830-P16-0026

Station	Description	Coordinates		Manufaction Decrees Acres	F
		Easting	Northing	Monitoring Parameters	Frequency
MS10	SDLT-1 Pond Ore Stockpile Stormwater	Coordinates to be finalized.		Water discharge volume (m³)	Monthly during the summer
				pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH ₃ -N, NO ₃ -N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride.	
				Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc.	
				Field Parameters: pH, Temperature, turbidity, specific conductance	
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MS-11	KM105 Pond Stormwater		Water discharge volume (m³)	Monthly during the summer	
					pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH ₃ -N, NO ₃ -N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride.
		Coordinates to be finalized.	Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc.		
					Field Parameters: pH, Temperature, turbidity, specific conductance
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually

Station	Description	Coordinates			_
		Easting	Northing	Monitoring Parameters	Frequency
MS-12	MS-12 Weatherhaven Camp Coo		o be finalized.	Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc. Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually
MS-13	Explosives Magazine Pond	Coordinates to be finalized.		Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc. Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually

Surface Water and Aquatic Ecosystems Management Plan

| Issue Date: September 10, 2021 | Revision: For review purposes only | Page 15 of 16

Appendix G - Surveillance Network Program Schedule Document #: BAF-PH1-830-P16-0026

Station	Description	Coord	inates	Monitoring Devembers	Francis								
		Easting Northing		Monitoring Parameters	Frequency								
MS-14	Quarry QMR2 Pond/Sump	Coordinates to be finalized.		Coordinates to be finalized.		Coordinates to be finalized.		Coordinates to be finalized.		Coordinates to be finalized.		Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride. Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc. Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually								
MS-MRY-09	2008 Bulk Sample Program - Open Pit - Downstream Surface Water Drainage		7914954	Water discharge volume (m³) pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH₃-N, NO₃-N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc Field Parameters: pH, Temperature, turbidity, specific conductance	Monthly during the summer								
				Acute lethality to rainbow trout Acute lethality to Daphnia magna	Annually								

The information contained herein is proprietary to Baffinland Iron Mines Corporation and is used solely for the purpose for which it is supplied. It shall not be disclosed in whole or in part, to any other party, without the express permission in writing by Baffinland Iron Mines Corporation.

Surface Water and Aquatic Ecosystems Management Plan

Issue Date: September 10, 2021
Revision: For review purposes only

Appendix G - Surveillance Network Program Schedule

Document #: BAF-PH1-830-P16-0026

Chahian	Description	Coord	inates	Manitavina Danamatana	Fuermone
Station	Description	Easting Northing		Monitoring Parameters	Frequency
				Water discharge volume (m³)	
				pH, TSS, TDS, Alkalinity, hardness, turbidity, TKN, NH ₃ -N, NO ₃ -N, DOC, TOC, Total Phosphorus, Sulphate, Fluoride, Chloride	
MS-MRY-10	2008 Bulk Sample Program - Ore Stockpile Area - Downstream Surface Water Drainage	563488	7915197	Total and Dissolved Metals: aluminium, arsenic, cadmium, calcium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, sodium, thallium, uranium, zinc	Monthly during the summer
				Field Parameters: pH, Temperature, turbidity, specific conductance	
				Acute lethality to rainbow trout	Annually
				Acute lethality to Daphnia magna	
MS-MRY-13a	Mine Site Non-Hazardous	560754 7912484 560642 7912527		Water discharge volume (m³)	Daily Flow
MS-MRY-13b	Waste Landfill Facility - Downstream Surface Water Drainage			pH, Alkalinity, Conductivity, TSS, TDS, Oil and Grease, Phenols, TPH, TOC, DOC, Total Trace Metals as Determined by a standard ICP Scan (to include Pb, Li, Mn, Mo, Ni, Se, Si, Tl, Ti, U, V, Zn); and trace Arsenic and Mercury	Monthly

Surface Water and Aquatic Ecosystems Management Plan	Issue Date: September 10, 2021 Revision: For review purposes only
Environment	Document #: BAF-PH1-830-P16-0026

Appendix H Northern Corridor Monitoring Program

The information contained herein is proprietary to Baffinland Iron Mines Corporation and is used solely for the purpose for which it is supplied. It shall not be disclosed in whole or in part, to any other party, without the express permission in writing by Baffinland Iron Mines Corporation.

Baffinland	Surface Water and Aquatic Ecosystems Management Plan	Issue Date: September 10, 2021 Rev.: For review purposes only	
	Environment	Document #: BAF-PH1-830-P16-0026	

Appendix H Northern Corridor Monitoring Program

Surface Water and Aquatic Ecosystems Management Plan		Issue Date: June 16, 2021 Rev.: For review purposes only	Page 1 of 12			
	Environment	Document #: BAF-PH1-830-P16-0026				

Purpose and Scope

This Northern Corridor Monitoring Program (NCMP) was developed to monitor the water quality of surface water flows at select water crossing (culverts, bridges) along the Milne Inlet Tote Road (Tote Road) and future North Railway, with a primary focus on monitoring total suspended solids (TSS) concentrations upstream and downstream of water crossings. Prior to the addition of the North Rail, the NCMP was formerly the Tote Road Monitoring Program (TRMP).

Monitoring data collected under the NCMP will be used to:

- a) Inform Project operations of potential water quality impacts from Project activities at water crossings along the Transportation Corridor.
- b) Guide and prioritize Transportation Corridor maintenance work, corrective actions and improvement projects for surface water management infrastructure.
- c) Adjust mitigation measures and management strategies for Project activities along the Transportation Corridor.
- d) Expand the Project's understanding of natural water quality conditions along the Transportation Corridor (upstream) and the natural factors that contribute to changes in surface water quality.

1. Monitored Parameters

Water quality monitoring conducted to date along the Tote Road has identified TSS as a parameter of concern. Observations indicate that sources of TSS can be both Project-related, such as construction activities, and natural, such as bank erosion and streambed scouring during high flow periods.

In addition to TSS, the NCMP will monitor for additional parameters, including metals, nutrients, oil & grease, and routine chemistry, such as dissolved anions, turbidity and total dissolved solids (TDS).

Tables H.1 and H.2 outline the field and analytical parameters that will be monitored under the NCMP.

Parameter Type	Method	Units	Parameter Group
Turbidity	1	NTU	
рН	1	pH units	
Specific Conductivity	1	μS/cm	Crown 1
Water Temperature	1	°C	Group 1
Dissolved Oxygen	1	mg/L, %	
Oil & Grease Sheen	2	Presence/Absence	

TABLE H.1 NORTHERN CORRIDOR MONITORING PROGRAM - FIELD PARAMETERS

NOTES:

- 1. Method 1 In situ testing using a multi-parameter water quality probe (i.e. YSI).
- 2. Method 2 Visual inspection during water sampling event.

Surface Water and Aquatic Ecosystems Management Plan	Issue Date: June 16, 2021 Rev.: For review purposes only	Page 2 of 12			
Environment	Document #: BAF-PH1-830-P16-0026				

TABLE H.2 NORTHERN CORRIDOR MONITORING PROGRAM - ANALYTICAL PARAMETERS

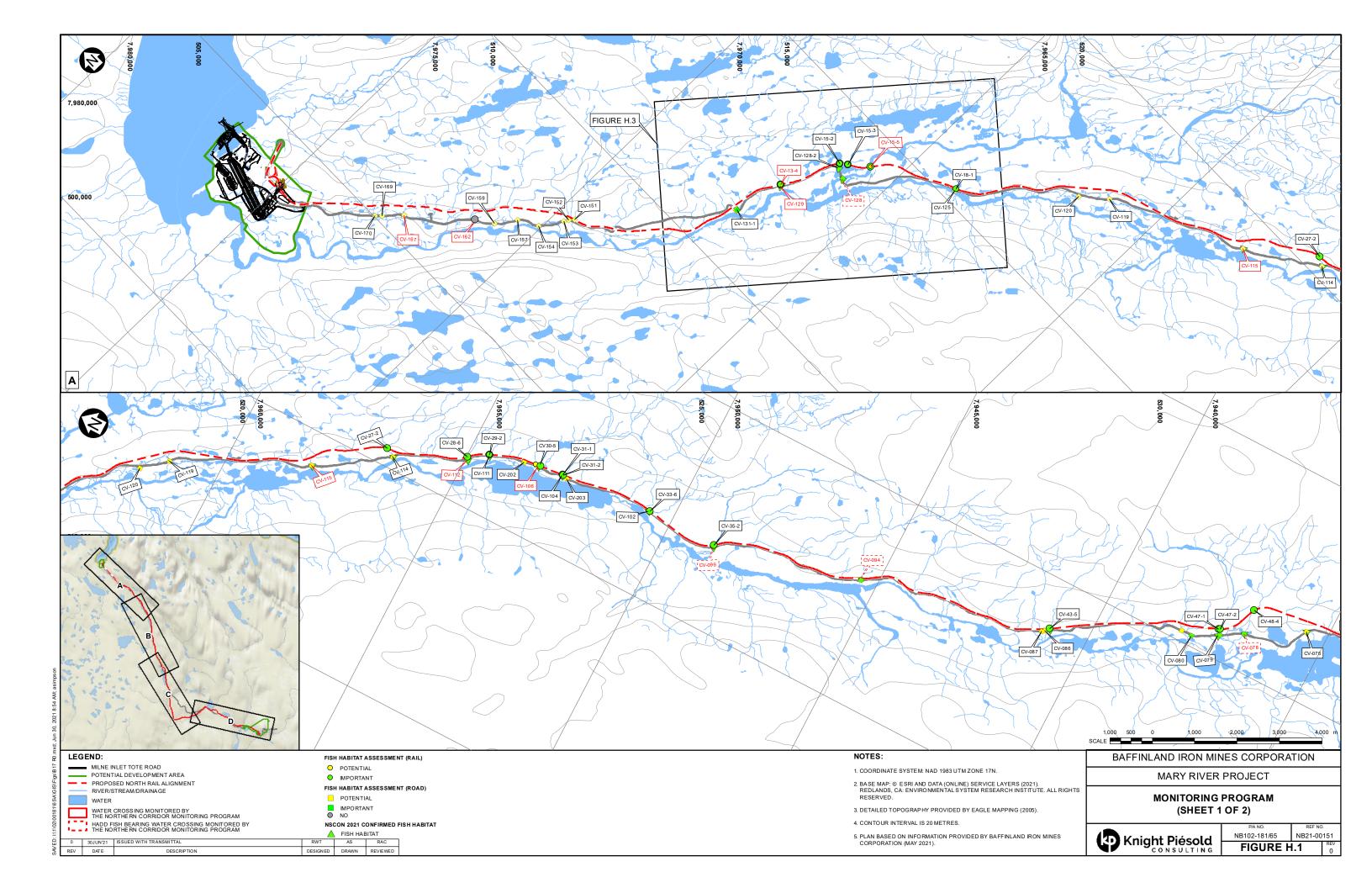
Parameter Type	Method ¹	Units	Parameter Group
рН	3	pH units	
Total Suspended Solids (TSS)	3	mg/L	Crown 2
Total Dissolved Solids (TDS)	3	mg/L	Group 2
Conductivity	3	μS/cm	
Oil & Grease	3	mg/L	Group 3
Hardness	3		
Alkalinity	3	mg/L as CaCO₃	
Chloride (Cl ⁻)	3	mg/L	
Ammonia	3	mg/L N	
Total Phosphorus	3	mg/L N	C
Nitrate (NO ₃ -)	3	mg/L N	Group 4
Nitrite (NO ₂)	3	mg/L N	
Dissolved Organic Carbon (DOC)	3	mg/L N	
Total Organic Carbon (TOC)	3	mg/L N	
Total and Dissolved Metals	3	mg/L	

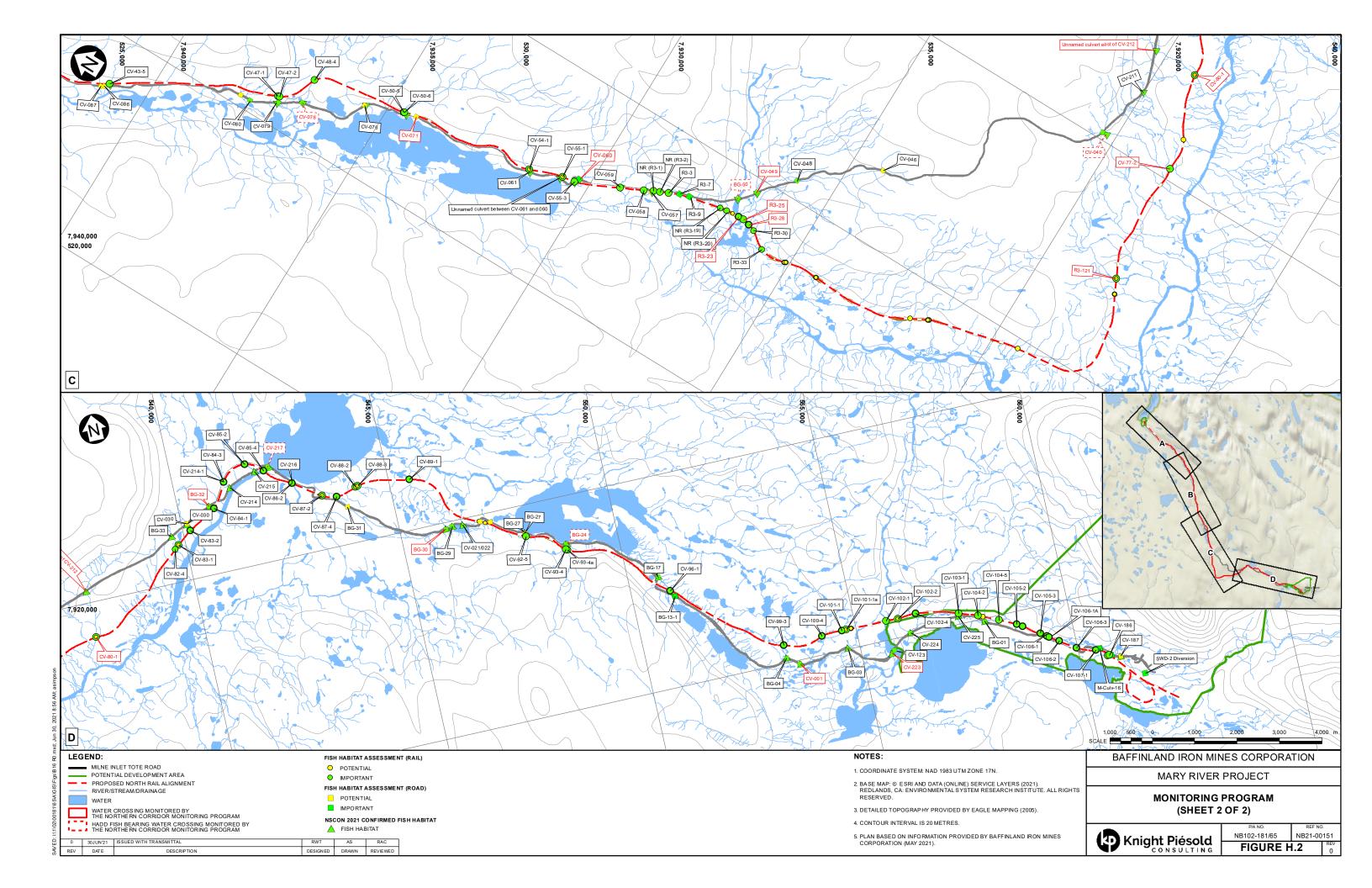
NOTE:

2. Monitoring Methods and Equipment

Field monitored parameters will be measured using a calibrated, multi-parameter water quality probe (e.g. YSI). A visual inspection will be conducted to determine the presence or absence of an oil and grease (hydrocarbon) sheen.

Discrete water samples will be collected, transported and analyzed in accordance with the protocols outlined in Baffinland's Surface Water Sampling Program - Quality Assurance and Quality Control Plan (BAF-PH1-830-P16-0001; QA/QC Plan).


3. Monitoring Locations


Water crossings monitored under the NCMP were selected to give a geographically representative sample set of water crossings for each given watershed intersected by the Northern Corridor (Phillips Creek, Ravn River, Mary River), presented in Figure H.1 and H.2. In selecting the Northern Corridor water crossings to monitor within each watershed, the following factors were considered:

- a) Key depositional habitats downstream of the Northern Corridor (e.g. fish habitat)
- b) Areas historically prone to sedimentation events
- c) Historical borrow source locations
- d) Proximity to the Tote Road and the Proposed North Railway
- e) Existing monitoring locations and programs

^{1.} Method 3 - analytical testing of water samples by an accredited third party laboratory.

The information contained herein is proprietary to Baffinland Iron Mines Corporation and is used solely for the purpose for which it is supplied. It shall not be disclosed in whole or in part, to any other party, without the express permission in writing by Baffinland Iron Mines Corporation.

	Surface Water and Aquatic Ecosystems Management Plan	Issue Date: June 16, 2021 Rev.: For review purposes only	Page 5 of 12			
	Environment	Document #: BAF-PH1-830-P16-0026				

Using the factors and criteria listed above, the following 22 Tote Road water crossings and 19 Rail water crossings, presented in Table H.3, were identified as monitoring locations.

TABLE H.3 WATER CROSSING MONITORED UNDER NCMP

Road Water Crossing	Approximate Tote Road Chainage	Rail Water Crossing	Watershed	Number of Samples
CV167			Phillips Creek	3
CV162	8	-	Phillips Creek	3
CV129	17	CV13-4	Phillips Creek	2
CV128*	17	CV15-5	Phillips Creek	3
CV115	27	-	Phillips Creek	3
CV112	31	CV28-6	Phillips Creek	2
CV106	33	CV30-5	Phillips Creek	2
CV099*	37	CV35-2	Phillips Creek	2
CV094*	41	-	Phillips Creek	2
CV078* 51		CV48-4	Phillips Creek	3
CV071	54	-	Phillips Creek	2
CV060	58	CV-55-3	Phillips Creek	3
BG50*	62	R3-23	Ravn River	3
CV-049	-	R3-25	Ravn River	3
-	-	R3-28	Ravn River	2
-	-	R3-121	Ravn River	2
CV-040*	72	CV-77-2	Ravn River	3
Unnamed culvert east of CV-212	-	CV-80-1	Ravn River	3
BG32	78	CV-84-1	Ravn River	2
CV217*	80	CV-85-4	Ravn River	2
BG30	84	CV-89-1	Ravn River	4
BG24*	87	CV-93-4	Mary River	3
CV001 94		CV-100-4	Mary River	3
CV223	97	CV-102-1	Mary River	3

NOTES:

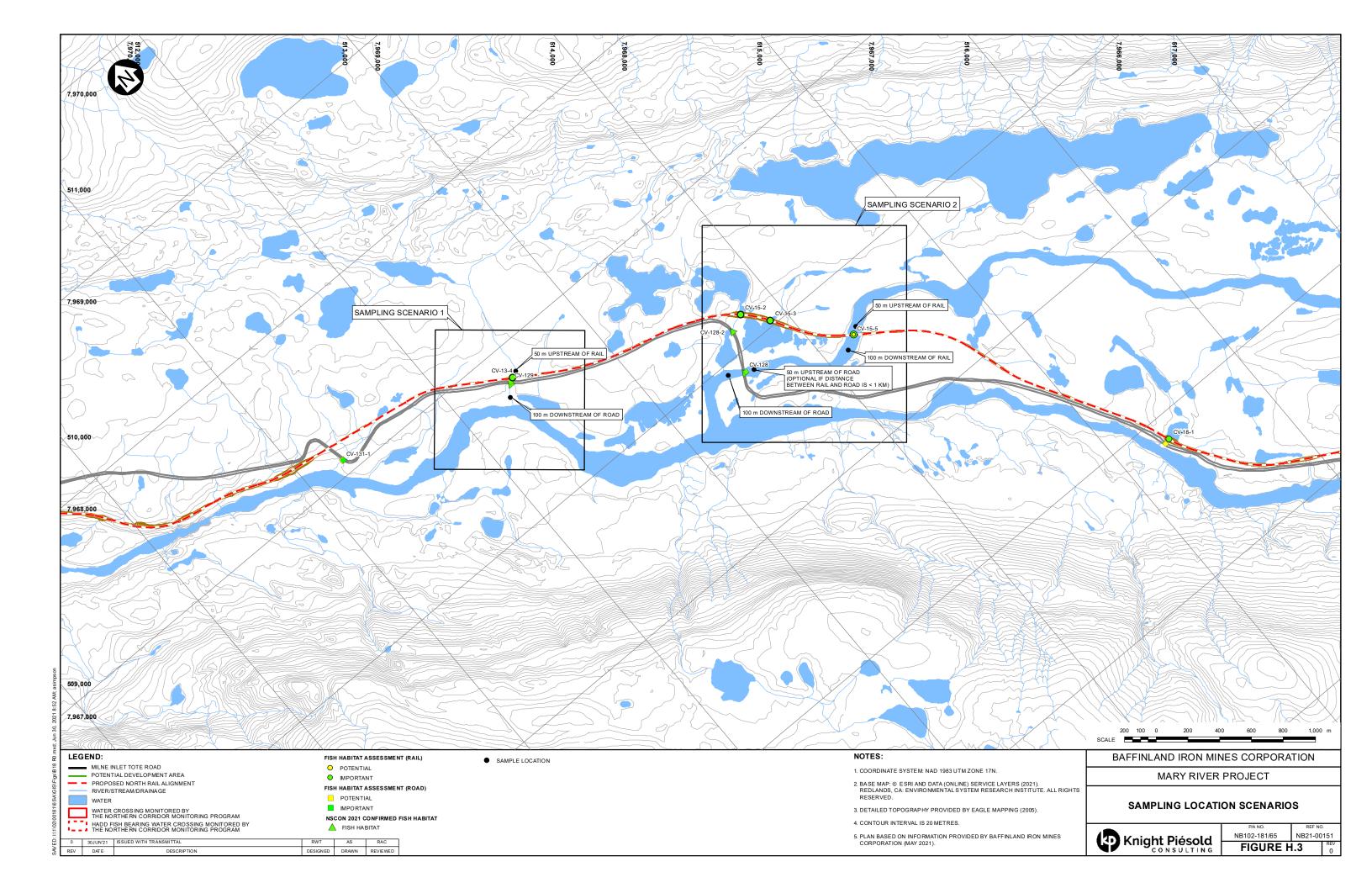
1. Water crossing with an asterisk (*) are HADD fish bearing water crossings.

The information contained herein is proprietary to Baffinland Iron Mines Corporation and is used solely for the purpose for which it is supplied. It shall not be disclosed in whole or in part, to any other party, without the express permission in writing by Baffinland Iron Mines Corporation.

Surface Water and Aquatic Ecosystems Management Plan	Issue Date: June 16, 2021 Rev.: For review purposes only	Page 6 of 12		
Environment	Document #: BAF-PH1-830-P16-0026			

When a water course intersects both the Tote Road and the Railway, the number of samples collected will be determined based on the distance between the crossings and observed water quality results. The following rationale is provided for the expected sampling scenarios along the NCMP.

Sampling Scenario 1 - The Tote Road and Railway are within approximately 100 m of each other. These features will be monitored as one feature and it is proposed that one sample is collected 50 m upstream, and one sample is collected 100 m downstream. A third sample may be required between the Tote Road and the Railway if downstream water quality results do not meet guideline concentrations/values.


Sampling Scenario 2 - The Tote Road and Railway are within approximately 1 km of each other. These features will be monitored as two separate features and up to four samples may be required. Initially, three samples are proposed, one sample will be collected 50 m upstream of the most upstream feature and one sample will be collected 100 m downstream of this feature. The third sample will be collected approximately 100 m downstream of the most downstream feature. A fourth sample may be required 50 m upstream of the most downstream feature if conditions between the Tote Road and the Railway are expected to impact water quality (e.g. erosion).

An example of these sampling scenarios is provided in Figure H.3

4. Monitoring Frequency

Each year water quality monitoring under the NCMP will commence with the start of flows and end with the freeze-up of flows. Water quality monitoring will be divided into two seasons: Freshet and Summer. Freshet will be begin with the start of flows and typically end mid-July. Summer will begin mid-July and end with the freeze-up of flows generally in September. If flows persist in October, another sample may be collected if water quality results did not meet guideline concentrations/values during the previous sampling event. Selected water crossings will be sampled weekly (4 events per month) during Freshet and monthly during the Summer.

Tables H.4 and H.5 outline the frequency of sampling events for the primary parameters (Groups 1 & 2) and additional parameters (Group 4), respectively. As shown in Tables H.4 and H.5, primary parameters will be monitored weekly during Freshet and monthly during Summer while the additional parameters will only be sampled once per season at HADD fish-bearing water crossings. Water samples will be collected for oil & grease (Group 3) during sampling events in which visible hydrocarbon sheen is observed.

Surface Water and Aquatic Ecosystems Management Plan

| Issue Date: June 16, 2021 | Rev.: For review purposes only | Page 8 of 12

Environment Document #: BAF-PH1-830-P16-0026

TABLE H.4 MONITORING FREQUENCY FOR PRIMARY PARAMETERS (GROUPS 1 & 2)1

Month	May		June			July			August			September								
All Water Crossings	F	F	F	F	F	F	F	F	F	F		S			s				S	

NOTES:

- 1. F Indicates Freshet water sampling event.
- 2. S Indicates Summer water sampling event.
- 3. $\,^{1}$ Water samples for Group 3 (oil & grease) will be collected where visible sheen is observed.

TABLE H.5 MONITORING FREQUENCY FOR ADDITIONAL PARAMETERS (GROUP 4)¹

Month	May	June	July	August	September
HADD Fish-Bearing		F		S	
Water Crossings ²					

NOTES:

- 1. F Indicates Freshet water sampling event.
- 2. S Indicates Summer water sampling event.
- 3. ¹Water samples for Group 3 (oil & grease) will be collected where visible sheen is observed.
- 4. ²HADD fish-bearing water crossings are identified in Table E-3.

During each water sampling event, water samples will be collected at a location approximately 100 metres downstream and 50 metres upstream of each monitored water crossing, as access allows. Field monitoring (*in situ*) parameters will be measured at the same locations. Deviations from these established distances due to safety and/or accessibility concerns will be documented on the *NCMP - Sampling Event Monitoring Form*.

Water sampling events will start at the monitoring location furthest downstream of the monitored water crossing and progress in an upstream direction to prevent monitoring results from being affected by sediment re-suspended during sampling activities (e.g. stream bed disturbance).

It should be noted that additional monitoring may be required if the TSS water quality action levels, presented in Section 6 below, are exceeded. Additional sampling requirements and responses to documented TSS exceedances under the NCMP are outlined in the action-response framework presented in Section 6.

5. TSS Water Quality Criteria and Response-Action Framework

The Northern Corridor Monitoring Program will utilize a response-action framework to identify, mitigate and monitor for Project related changes in TSS concentrations, if present. The response framework is outlined in the Figure H.4.

The information contained herein is proprietary to Baffinland Iron Mines Corporation and is used solely for the purpose for which it is supplied. It shall not be disclosed in whole or in part, to any other party, without the express permission in writing by Baffinland Iron Mines Corporation.

Surface Water and Aquatic Ecosystems Management Plan

Issue Date: June 16, 2021

Rev.: For review purposes only

Page 9 of 12

Environment Document #: BAF-PH1-830-P16-0026

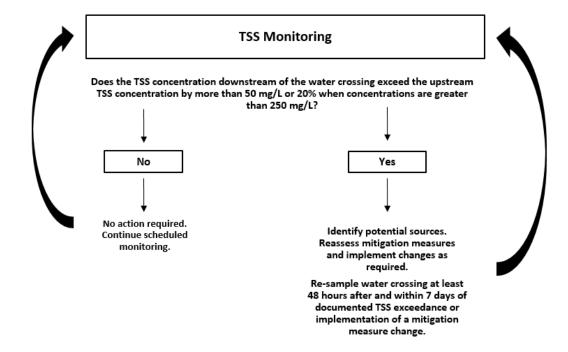


FIGURE H.4 TSS RESPONSE-ACTION FRAMEWORK


To evaluate the potential for a Project related change to concentrations of TSS within the NCMP LSA, water samples will be collected at designated locations approximately 100 m downstream and 50 m upstream of the crossing, as access allows, at the frequency outlined in Section 5.3. Following receipt of analytical results, TSS concentrations at the upstream and downstream location will be compared. When upstream concentrations are less than 250 mg/L, a potential Project related change is defined as a greater than 50 mg/L increase in the downstream concentration. Where concentrations are greater than 250 mg/L in the upstream sample, a potential Project related change is defined as a greater than 20% increase in the downstream sample.

If the results of a sampling event identify a potential Project related change, Baffinland will assess the effectiveness of existing mitigation measures and/or implement new mitigation measures. During the assessment, the water crossing will be evaluated to determine the potential sources of the observed sedimentation event(s) and TSS concentration increases, including natural phenomenon. The water crossing will then be re-sampled at least two (2) days later, but not later than seven (7) days, following receipt of sampling results. The results from the re-sampling will be evaluated to determine if the revised mitigation and/or corrective actions have reduced TSS concentrations below the appropriate action level.

6. Data Management

During each sampling event, a *NCMP - Sampling Event Monitoring Form* will be completed. All documentation, including photos, will be saved on the onsite Environmental server.

The information contained herein is proprietary to Baffinland Iron Mines Corporation and is used solely for the purpose for which it is supplied. It shall not be disclosed in whole or in part, to any other party, without the express permission in writing by Baffinland Iron Mines Corporation.

7. Data Reporting Requirements and Interpretation

Data collected during the NCMP will be presented in the Annual Report prescribed by the Project's Commercial Lease with the QIA and the Type 'A' Water Licence, issued by the NWB. In the Annual Report, Baffinland will present the data, compare the data against the applicable water quality criteria and outline Baffinland's interpretation of the data and plans for any additional monitoring in the upcoming field season.

NORTHERN CORRIDOR MONITORING PROGRAM - SAMPLING EVENT MONITORING FORM

Water Crossing ID Description (e.g. 100	Monitoring Location	Coordinates of Monitoring Location (UTM; NAD83) ¹			_		Field Monitoring						Water Samples	Reason for Sampling (e.g.			Notes	
	Description (e.g. 100 m downstream)	Zone	Easting	Northing	Date (YY/MM/DD) (X	Time (XX:XX HRS)		pH (pH Units)	Sp. Cond. (μS/cm)	Water Temp. (°C)	DO (mg/L)	DO (% Sat.)	Sheen Observed (Yes / No)	Collected Sch	Calcadada d Canadada a Francis	Mitigation Measures Implemented (Yes / No)	Photos IDs	(General Observations, Weather, Deviations from Protocol, etc.)
										(- /			. ,					
													<u> </u>					

Notes:

¹Coordinates will be recorded for sampling events that deviate from the prescribed distances upstream (50 m) and downstream (100 m) of water crossings.

Northern Corridor - Sampling Event Monitoring Form												
Water Crossing ID:									Photos:			
					:		Time:		Upstream:			
Samplers:					era ID:		Weather:		Cross Section:			
YSI Model:					ration:				Downstream:			
Coordinate of Monitoring Location							Easting:					
(UTM; NAD83)				Zone	•		Northing:					
					Sampling Information							
				d sam	pling, follow	-up, e	etc.):					
Water Samp			-	/V /NI\								
Mitigation N	/ieasures	simple	emented	(Y/N)	Field Par	ramet	ters					
					Tield I di							
Time (24-hr) Temp. (°C)				рН	Cor	ond. (µs/cm) Turbidi		ity (NTU) DO (%				
QA/	'QC Sam	ples (Y	′ o N):			Monitoring Location Description						
Field Dup. (01)	Field B (02				Equip. Blank (04)	(e.g.	.g. 100m downstream)					
Notes: (General observations, Deviations from protocol, etc.)												