



## Baffinland Iron Mines Corporation Mary River Expansion Project

Geotechnical Recommendations for Dumper Load-out Tunnel and Indexer

|            |      |                     |             |                | $\sim$ $\sim$ |       |             |
|------------|------|---------------------|-------------|----------------|---------------|-------|-------------|
|            |      |                     | alles       | Waren F. Horle | N ha          | N     | Jay Pithne  |
| 2018-07-30 | 0    | Approved for<br>Use | G Qu        | W Hoyle        | D Sta         | nger  | R Stefan    |
| Date       | Rev. | Status              | Prepared By | Checked By     | Approv        | ed By | Approved By |
| ΗΔΤCΗ      |      |                     |             |                | Client        |       |             |





#### **DISCLAIMER**

This Report has been prepared by Hatch Ltd. ("Hatch") for the sole and exclusive benefit of Baffinland Iron Mines Corporation (the "Client") for the sole purpose of assisting the Client to identify potential options to increase production from the Mary River mine, and may not be provided to, used or relied upon by any other party without the prior written consent of Hatch.

Any use of this report by the Client is subject to the terms and conditions provided in the ArcelorMittal General Service Agreement, dated November 14, 2014, including the limitations on liability set out therein. Without limiting the foregoing, Hatch explicitly disclaims all responsibility for losses, claims, expenses or damages, if any, suffered by a third party as a result of any reliance on this Report, including for any decisions made or actions made by such a third party and based on this Report ("Claims"), and such third party's use or review of the Report shall constitute its agreement to waive all such Claims and release Hatch in respect thereof.

This report is meant to be read, and sections should not be read or relied upon out of context. While it is believed that the information contained herein is reliable under the conditions and subject to the limitations set forth herein, this Report is based in part on information not within the control of Hatch and Hatch therefore cannot and does not guarantee the accuracy of such information based in whole or in part on information not within the control of Hatch. The comments in it reflect Hatch's professional judgment in light of the information available to it at the time of preparation.

This report contains the expression of the professional opinion of Hatch exercising reasonable care, skill and judgment and based upon information available at the time of preparation. Hatch has conducted this investigation in accordance with the methodology outlined herein. It is important to note that the methods of evaluation employed, while aimed at minimizing the risk of unidentified problems, cannot guarantee their absence. The quality of the information, conclusions and estimates contained herein is consistent with the intended level of accuracy as set out in this report, as well as the circumstances and constraints under which this report was prepared.

| Client's Signature: |
|---------------------|
| Name:               |
| Title:              |
| Date:               |





## **Table of Contents**

| 1. | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2. | Geotechnical Site Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                          |
| 3. | Climate Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                          |
| 4. | Load-out Tunnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                          |
|    | <ul> <li>4.1 Design Input / Criteria</li> <li>4.2 Design Parameters</li> <li>4.3 Bearing Capacity</li> <li>4.3.1 Scenario (a)</li> <li>4.3.2 Scenario (b1)</li> <li>4.3.3 Scenario (b2)</li> <li>4.4 Settlement</li> <li>4.5 Bearing Capacity Summary</li> <li>4.6 Thermal Analyses</li> <li>4.7 Design Considerations and Recommendations</li> <li>4.7.1 General - Rockfill Pad Configuration (base-case)</li> <li>4.7.2 Rockfill Pad Configuration For Tunnel Footing With High Loading Pressure</li> <li>4.7.3 Insulation</li> <li>4.7.4 Construction Schedule</li> <li>4.7.5 Excavation /Backfill</li> <li>4.7.6 Foundation Preparation</li> </ul> |                            |
| 5. | 4.7.7 Tunnel Cover (i.e., Backfill) Materials 4.7.8 Permanent Cut Slope 4.7.9 Drainage  Indexer Foundation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>11                   |
|    | 5.1 Structural Design Input 5.2 Bearing Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12<br>13<br>13<br>14<br>15 |
| 6. | Dumper Foundation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                         |
|    | 6.1 Bearing Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16                         |
| 7. | Assumptions and Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                         |
| Ω  | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                         |





#### List of Tables

| Table 4-1: Design Parameter Summary<br>Table 4-2: Bearing Capacity Assessment Summary<br>Table A-1: N-factors to be Used in Modelling | 5  |
|---------------------------------------------------------------------------------------------------------------------------------------|----|
| List of Figures                                                                                                                       |    |
| Figure 1: Typical Cross-section of Load-out Tunnel                                                                                    | 3  |
| Figure 2: Typical Rockfill Pad Configuration for Load-out Tunnel                                                                      | 7  |
| Figure 3: Insulation Pad Configuration (Cross Section) for Load-out Tunnel Segment near the Exit                                      | 7  |
| Figure 4: Insulation Pad Configuration (Longitudinal Section) for Load-out Tunnel Segment near the                                    |    |
| Exit                                                                                                                                  | 8  |
| Figure 5: Effect of Deformation on Earth Pressure in Cohesionless Material                                                            | 14 |
| Figure A-1: Mean Monthly Temperatures for Pond Inlet NU (1981-2010)                                                                   |    |

## List of Appendices

**Appendix A 1 Thermal Analyses** 

Appendix A2 Geotechnical Profile, Load-out Tunnel Configuration and Load Update

Appendix A3 Borehole Logs and Geophysical Survey Data

**Appendix B Indexer Slab Drawings** 





## 1. Introduction

Hatch has been retained by Baffinland Iron Mines Ltd. (BIM) to design a Bulk Material Handling (BMH) system at the Milne Inlet Port for the Mary River Expansion Project.

The BMH system consists of a rail car dumper (tippler) located at the terminus of the mine-to-port railway, an indexer to push the rail car in the dumper, a loadout tunnel connecting with the dumper, a raw ore stockpile with embedded loadout tunnel, crushing and screening plants, and conveyor systems to transfer materials from the dumper through the crushing and screen plants to a longitudinal bucket-wheel stacker/reclaimer.

This memo provides geotechnical recommendations to support the design of (1) the foundation of the dumper loadout tunnel and (2) the foundation for the indexer mat and the dumper. Guideline and information from literature and engineering practice were used to develop these recommendations, as well as site conditions obtained from the previous investigation program (Hatch, 2017, Rev. 2). The design assumes that the dumper and the load-out tunnel are non-heated structures.

## 2. Geotechnical Site Information

The locations of the geotechnical site investigation are shown in the borehole layout drawing in Appendix A2, as well as a cross-section with the boreholes within the footprint of the structures. In summary, a total of five boreholes (BH16-M-007, BH16-M-008, and BH17-M008R, BH17-EBC-1 and BH17-EBC-2) were drilled in the vicinity of the dumper and loadout tunnel. BH17-M008R was drilled at the same location but slightly offset from BH16-M-008 to obtain bedrock information. A series of seismic line surveys were also performed to investigate the bedrock depth with calibration using bedrock information encountered in BH16-M-007, BH16-M-008 and BH16-M-008R. Appendix A3 provides the borehole reports and the seismic line survey data, while borehole reports BH17-EBC-1 and BH17-EBC-2 are presented in "draft" version as the investigation / laboratory testing program is still in progress at the time of this report preparation.

The subsurface conditions encountered at the site are highlighted as follows:

- The deposit at the hill crest comprises of a deposit of glacial fluvial sand to sand and gravel overlying till and then bedrock, while down the hill, the deposit consists of silts, silty sands and sands and gravels overlying till sitting on bedrock. A cobble and gravel layer was encountered right above bedrock in BH17-EBC-1 and BH17-EBC-2.
- Ground ice was encountered in borehole BH17-EBC-1. About 6 m of thick ground ice was encountered close to the surface of the native deposit. BH17- EBC-1 is located on the slope near the crest of the hill. A 3 m thick fill was placed to allow the access of the drilling rig. Under a 0.4 m thick surficial native gravel, the ground ice was encountered from el. 48.2 m to el. 42.2 m, with a 0.3 m thick interbedded sand layer from el. 46.5 m to el. 46.2 m. Below this interbedded sequence is a sand layer and a till deposit overlying a cobble and gravel layer and then bedrock. No ground ice was found at the corresponding elevations in the two nearby boreholes located





approximately 30 m north (BH16-M-008) and 40 m south (BH17-EBC-2) of BH17-EBC-1. It is possible that the ground ice found in BH17-EBC-1 formed from a run-off stream.

 The bedrock at the site generally dips from east to west down the hill. The bedrock is granitic gneiss with RQD values varying from 64% to 68% as encountered in BH17-M-008R.

#### 3. Climate Conditions

The site is in a continuous permafrost zone with a mean annual air temperature of about -15°C, as per the mean monthly air temperature data from Pond Inlet, NU (1981-2010) extracted from the Government of Canada website. Climate information was summarized in Hatch Geotechnical Design Basis document (H353004-00000-229-210-0001, 2018). The global warming effect was taken into account according to the Intergovernmental Panel on Climate Change (IPCC) long term climate change studies. A temperature adjustment was applied considering global warming for the period spanning from 2010 to 2039 (see details in Hatch, 2018, H353004-00000-229-210-0001).

## 4. Load-out Tunnel

## 4.1 Design Input / Criteria

The load-out tunnel is an approximately 5.5 m high arch with a 7 m+/- wide span. It will be constructed by cut-and-cover method. The thin-plate arch will be founded on two (2) concrete footings. The design is being optimized to shorten the length of the tunnel. The total length of the tunnel is not finalized at the time of preparing this report.

The following provides the load-out tunnel footing information:

- Footing Size: 2.5 m (Width) x 0.8 m (Thickness), Reference drawing 2017-01195-S08, dated on 06/17/2017, by AIL (Atlantic Industries Limited).
- Footing Elevation (The upper side of the concrete footings): el. 39.1 m to 39.5 m (Preliminary Design dated November 2017).
- Footing Bearing Capacity: 500 kPa (SLS) as per a clarification email from AIL, dated on 07/20/2017.
- An updated footing bearing capacity sketch was received on May 2, 2018 noting that
  the bearing loadings for the footing near the dumper (about 16 m long) are increased
  to 680 kPa (SLS) and 820 kPa (ULS). The recommendations to address the updated
  loading pressure are provided in Section 4.7.2.
- Total settlement criteria is 75 mm and differential settlement along transverse direction is 25 mm as per a clarification email from AIL, dated on 07/20/2017.
- tklS specified the settlement criteria for both the dumper loadout reclaim tunnel and the primary stockpile tunnel on 12/10/2017. The total settlement is less than 20 mm.





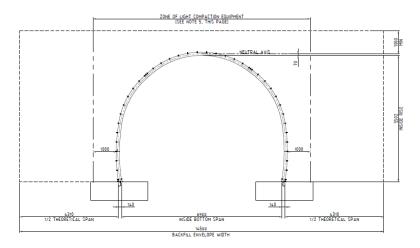



Figure 1: Typical Cross-section of Load-out Tunnel

(Reference drawing 2017-01195-S08, dated on 06/17/2017, by AIL)

## 4.2 Design Parameters

Table 4-1 summarizes the key design parameters used in the calculations.

Material Unit **Deformation Modulus Effective** Frozen Soil Weight Allowable Bearing **Friction Angle**  $(kN/m^3)$ Capacity (♡) (kPa) Rockfill 40 70 MPa 20 Native Sandy 18 32 80 MPa\* 380kPa Soil (ice below - 4° C content typically less than 20%)

**Table 4-1: Design Parameter Summary** 

Note: \* Equivalent deformation modulus for long-term deformation. Applicable for low ice content permafrost(less than 20%), which is likely the native foundation soil below the tunnel footing as per the available borehole investigation. The parameters were estimated as per the literature test studies by Tsytoich et al. (1973) and Zhu and Carbee (1984) (see Hatch Geotechnical Design Basis, 2018).

## 4.3 Bearing Capacity

The native foundation soil is expected between el. 36.8 m and 37.2 m, considering the concrete footing thickness (0.8 m) and the rockfill pad thickness (1.5 m). At this elevation range, the native foundation soil is expected to be silty sand (till) and possible sand and gravel as inferred from the existing borehole investigation data (see Appendix A2).





The allowable bearing capacity of the tunnel foundation is estimated based on the following assumptions:

- A factor of safety of 2.5 is applied to the ultimate bearing capacity to obtain the allowable bearing capacity.
- The foundation bearing capacity was checked for the following scenarios:
  - (a) Bearing capacity of a two-layer foundation system with a top rockfill layer and an underlying native soil layer. The parameters for the rockfill and underlying soil are listed in Table 4-1. A weighted average friction angle for the two-layer foundation is to be calculated as per the recommendation by Bowles (1988).

$$\phi = \frac{d_1 \phi_1 + (H - d_1) \phi_2}{H}$$

Where the influence depth H = 0.5 x B x tan (45 +  $\phi_1$  /2), where  $\phi_1$  is the friction angle for the top layer,  $\phi_2$  for the bottom layer,  $d_1$  is the thickness of the top layer, B is the footing width.

(b) Bearing capacity of the lower soil. Its bearing capacity was checked for two scenarios: (b1) bearing capacity assuming the permafrost is unbonded (i.e., friction only), and (b2) bearing capacity assuming the permafrost is well bonded (i.e., cohesion only).

Meyerhof's general bearing capacity equation (Das, 2007) was used to calculate the bearing capacity. Meyerhof's equation is (i.e., for zero cohesion):

$$q_u = qN_q F_{qs} F_{qd} + \gamma' BN_y F_{ys} F_{yd}$$
 (Equation 1)

where q is the surcharge load at the bottom of the foundation,  $N_q$  and  $N_y$  are bearing capacity factors, B is the foundation width,  $F_{qs}$  and  $F_{rs}$  are shape factors, and  $F_{qd}$  and  $F_{yd}$  are depth factors.  $\gamma'$  is the unit weight of soil.

Table 4-2 summarized the analyses results.

## 4.3.1 Scenario (a)

Using Eqn. 1, the allowable bearing capacity of the two-layer system is 500 kPa, satisfying the required design load (500kPa). The parameters for the rockfill and underlying soil are listed in Table 4-1.

## 4.3.2 Scenario (b1)

As the foundation soil contains a relatively low water content and may not develop full ice bond among particles, the foundation bearing capacity was checked assuming it would behave as an unbonded (i.e., cohesionless) granular material. The allowable bearing capacity based on the silty sand (shear strength) is 650 kPa, using the 2:1 stress distribution rule.

 $q_{allow} = q_{soil\_allowable} \times \lfloor (1.5m + B)/B \rfloor = 360kPa \times \lfloor (1.5m + 2.5m)/2.5m \rfloor \approx 650\;kPa$ 





#### 4.3.3 Scenario (b2)

Assuming the permafrost is well bonded, the allowable bearing capacity for the footing is estimated to be 550 kPa assuming the underlying permafrost can be maintained at a temperature below - 4° C. The 2:1 stress distribution rule was used to estimate the stress on the lower permafrost layer.

$$q_{allow} = 380 kPa \times \lfloor (1.5m + B)/B \rfloor \approx 550 \; kPa$$

In summary, the 1.5 m thick rockfill pad will satisfy the bearing capacity requirement given that the temperature of underlying permafrost is below -4°C. As shown in the next section, an insulation layer (150 mmm Styrofoam HL 100 or equivalent) is required to achieve the temperature requirement.

| Case    | Case Description                           | Allowable<br>Bearing<br>Capacity<br>(kPa) | Required<br>Bearing<br>Capacity<br>(kPa) |
|---------|--------------------------------------------|-------------------------------------------|------------------------------------------|
| Case A  | Rockfill and Soil                          | 500                                       | 500                                      |
| Case B1 | Underlying Soil (Friction Strength)        | 650                                       | 500                                      |
| Case B2 | Underlying Soil (Permafrost Bond Strength) | 550                                       | 500                                      |

**Table 4-2: Bearing Capacity Assessment Summary** 

#### 4.4 Settlement

For the proposed rockfill pad foundation and the SLS load, the load-out tunnel is expected to be less than 70 mm for total settlement and 35 mm for differential settlement in the transverse direction.

- The expected total and differential settlement satisfies the requirement by AIL (Total settlement is less than 75 mm as per a clarification email from AIL, dated on 07/20/2017).
- The expected total settlement of the rockfill pad foundation exceeds the settlement requirement of 20 mm by tklS on 12/10/2017. Releveling the conveyor in the load-out tunnel may be required. Alternatively, pile foundation can be considered.

The load-out tunnel is to be constructed by cut-and-cover method. Considering the tunnel's opening size (about 5.5 m high and 7 m span), the overall net loads due to the backfill to foundation soil is expected to be low.

The load-out tunnel is expected to be founded on permafrost for the west section near the tunnel exit and on bedrock for its east end (near the tie-in to the dumper). The transition zone from the permafrost soil to bedrock foundation should be graded in a way to minimize the differential settlement of the tunnel footings.

The thaw settlement is excluded in this report as the design includes a rockfill and insulation pad to prevent permafrost thaw during operation. The construction should be carried out in cold seasons to avoid any potential thaw settlement during construction (see Section 4.7 for details).





## 4.5 Bearing Capacity Summary

In summary, for the for the 2.5 m wide footing with a 1.5 m thick rockfill pad, the bearing capacity for serviceability limit state is 500 kPa with the total settlement less than 75 mm and a differential settlement of 25 mm. The factored bearing capacity in ultimate limit state (Factored ULS) is 630 kPa (=500kPa x 2.5 x0.5) with a geotechnical resistance factor of 0.5.

## 4.6 Thermal Analyses

Thermal analyses were performed to evaluate the temperature regime in the foundation below the tunnel. Appendix A1 summarizes the methodologies and details of the thermal analyses. Figure A-1 presents the general material and boundary conditions.

- (1) Case with Insulation: In this case, an insulation pad is used in the model to control the temperature at underlying native sand. With the insulation pad, the temperature of the underlying permafrost is about -6°C (see Figure A2 for the temperature contours 2 years after construction and Figure A3 for 20 years after construction in Appendix A1), which satisfies the temperature requirement of -4°C.
- (2) Case Without Insulation: Without insulation, the temperature of the underlying permafrost is about -2°C in the warmest summer (see Figure A4 and Figure A5 in Appendix A1). The permafrost at -2°C will not provide sufficient bearing capacity for the design load.

Based on the thermal modelling, a 150 mm thick insulation pad is required to control the permafrost temperature to ensure the required bearing capacity for the footing.

It is noted that the active zone may temporarily extend to the tunnel base for a short duration in summer (see Figure A6 in Appendix A). Accordingly, the backfill material adjacent to the tunnel must be free-drain granular to allow efficient drainage of any water. The drainage pipe is not recommended as it would be blocked by ice.

## 4.7 Design Considerations and Recommendations

## 4.7.1 General - Rockfill Pad Configuration (base-case)

A 1.5 m thick layer of rockfill is required below the loadout tunnel footings to ensure adequate bearing capacity up to 500 kPa.

Figure 2 illustrates the recommended rockfill pad configuration. The rockfill pad consists of mainly coarse rockfill (Type 8 Fill) underlain by a non-woven geotextile placed on the permafrost. The upper surface of the rockfill has a 100mm thick layer of leveling material (Type 9 Fill) underlain by a 150 mm thick transition layer (Type 5 Fill). The insulation pad is placed between the footings with a cushion layer of TY 5.

Near the tunnel exit, the insulation pad should be placed all around the footing and extent to tie-in with the excavation boundary to preserve the underlying permafrost and minimize the water migration, as shown in Figure 3 and Figure 4.

The construction for the rockfill pad shall be carried out in cold seasons to avoid disturbance of the underlying permafrost (see Section 4.7.4 for details).





The permafrost below the foundation may contain ground ice / ice-rich soil, which may lead large creep settlement of the tunnel. If encountered, the ground ice or ice-rich soil must be removed i.e. over-excavated (see Section 4.7.5 for details) and the excavation backfilled with rockfill. A non-woven geotextile separator is required between rockfill and the permafrost. If the ground ice / ice-rich soil is not removed, large post construction settlement will likely occur induced by ground-ice/ ice-rich soil creep.

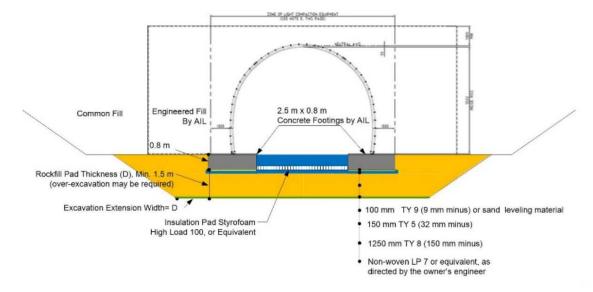



Figure 2: Typical Rockfill Pad Configuration for Load-out Tunnel

(Over-excavation from the underside of the footing may be required if the ground ice / ice-rich soil is encountered)

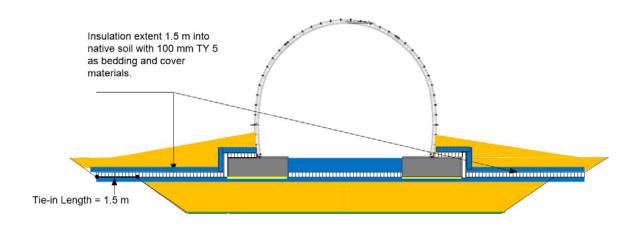



Figure 3: Insulation Pad Configuration (Cross Section) for Load-out Tunnel Segment near the Exit





(Applicable for the tunnel section 15 m into backfill or extending to where the external backfill over the tunnel foundation is 5 m thick, whichever is longer. The insulation pad shall be placed all round the footing at the exit including the front side).

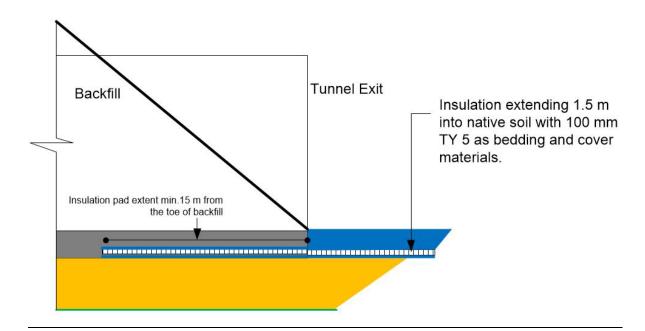



Figure 4: Insulation Pad Configuration (Longitudinal Section) for Load-out Tunnel Segment near the Exit

#### 4.7.2 Rockfill Pad Configuration For Tunnel Footing With High Loading Pressure

An updated footing bearing capacity sketch was received on May 2, 2018, as shown in the Sketch 3 in Appendix A2. For the tunnel section (about 16 m long) near the dumper, the loading pressure are 680 kPa (SLS) and 820 kPa (ULS), which are higher than the loading capacity of the base-case rockfill pad configuration. The following provides geotechnical recommendation to address the high loading pressure expected for the tunnel section near the dumper.

The foundation soil below the footing of this section is likely silty sand till with a thickness less than 10 m overlying bedrock as shown in the Sketch 2 in Appendix A2.

The footing of this tunnel section should be founded either on bedrock or on a thicker rockfill pad.





- A 2.5 m thick rockfill pad below the 2.5 m wide footing will provide a factored ultimate limit state capacity of 850 kPa and a serviceability limit state bearing capacity of 700kPa (SLS) corresponding a settlement less than 70 mm and a differential settlement less than 35 mm. The alternative options are to use a larger-size footing or use pile foundation to reduce the settlement, likely with a higher cost.
- For the bedrock foundation, the recommended bearing capacities are 1.0 MPa for the SLS state corresponding to a settlement less than 25 mm and 1.5 MPa for the Factored ULS state.

#### 4.7.3 Insulation

The backfill for the load-out tunnel will serve as insulation for the foundation permafrost. Additionally, the temperature of the permafrost below the tunnel floor is expected to rise during the summer due to the air temperature fluctuations in the tunnel. A styrofoam insulation layer (insulation material) was been designed to control the temperature of the native permafrost, which is required to ensure sufficient bearing capacity as specified in Section 4.1. Accordingly, proper installation of the insulation material is critical to ensure satisfactory performance of the tunnel.

The insulation layer will be placed at the base level of the tunnel with layers placed such that the panels overlap the joints in the underlying layer. It is noted that the insulation material should not be placed directly beneath the footing, due to the insufficient long-term compressive strength of insulation pads (230 kPa for Styrofoam HL 100, with a factor of safety 3 as per product sheet recommendation to avoid long-term creep).

## 4.7.4 Construction Schedule

The excavation and foundation backfill placement for the loadout tunnel should be carried out during the cold seasons (October to April) when the daytime temperatures are below 0°C. Construction during the summer (June to September) will significantly increase the risk of thawing the underlying permafrost, instability of the high side slopes over 10 m, and the cost of the work. As such, the construction for foundation in the summer (June to September) is not recommended.

#### 4.7.5 Excavation /Backfill

The contractor should be fully responsible for construction safety. The safe slope gradient for temporary excavations depends on the construction methodology, permafrost material, and the season/temperature during construction. In general, an overall slope gradient of 1.5H:1V should be adequate for the temporary cut into the permafrost with blasting.

The limited geotechnical investigations undertaken for design indicate the presence of random ground ice. As a result, the side slopes for the cut may need to be locally laid back at flatter gradients than 1.5H:1V if ground ice is encountered.





Furthermore, the excavation may need to be deepened to remove ground ice below the rockfill pad. Since the excavation will be done by drill and blast method, this may be difficult to do if the excavation has progressed significantly prior to encountering the ground ice. Accordingly, the contractor should probe the ground with drill rigs prior to executing the excavation to adequately plan and adapt to the presence of ground ice. Sonic drill rigs give the best results. An excavation plan (i.e. depth and slope gradients) should be developed based on the probe hole drilling prior to commencing production drill-and-blast excavation.

During excavation construction, shallow slope sloughing should be expected and a maintenance program should be carried out to maintain the slopes. The contractor will probably need to cover the excavated slope with insulation materials and/or a layer of crushed rock as the excavation is advanced to protect the slopes.

The contractor should remove snow efficiently during the backfill construction.

If the general backfill construction of the load-out tunnel extends to the spring freshet, then run-off will need to be controlled and diverted away from the work area. The introduction of water and warmer temperatures to the base of the excavation will lead to disturbance of the permafrost and contribute to poor performance of the tunnel after construction.

A qualified engineer with artic construction experience should be on site supervising the construction to ensure QA/QC. After completing the excavation, periodical inspections will be required during construction of the plate-arch tunnel.

#### 4.7.6 Foundation Preparation

Ground ice or ice rich permafrost, if encountered below the foundation base from the probing program, should be completely excavated. Over excavated areas should be backfilled with a 150 mm cushion granular material at the base followed by rockfill.

A qualified geotechnical engineer shall inspect and approve the foundation base prior to backfilling.

#### 4.7.7 Tunnel Cover (i.e., Backfill) Materials

The tunnel cover (i.e., backfill) material will be specified by the tunnel supplier (AIL).

The common fill can be rockfill (run of quarry) or pit-run materials free of ice and snow, as approved by the Engineer.

The backfill material for the rockfill pad are either crusher-run granular fill, rockfill or approved material by the Engineer.

It is critical to properly place and compact the foundation rockfill pad as per the project specifications (Hatch, H353004-00000-221-078-0001, Rev. 1). A test rockfill compaction pad is recommended to verify the compaction achieved at site.

As a minimum the following shall be satisfied:

a. Rockfill shall be compacted by 5 passes of a 10 ton vibratory roller with vibrations in the range of 1200 to 1500 vpm and the roller speed of about 2 mph (3.2 km/h). One





pass is defined as a full cover the fill area. Alternative compactors such as heavy loaded rubber-tired haul trucks can only be used as per a written approval from the Engineer.

- b. TYPE 5 Fill (crusher-run 32 mm minus material) or TYPE 9 Fill (9 mm minus): the material must be placed in lifts not exceeding 200 mm.
- c. TYPE 8 Fill (crusher-run 150 mm minus): the rockfill must be placed in lifts not exceeding 500 mm. The placement shall avoid segregation and nesting of coarse particles.
- d. TYPE 12 (run-of-mine, typically 600 mm minus): the rockfill must be placed in lift not exceeding 1000 mm, or as approved by the Engineer.

#### 4.7.8 Permanent Cut Slope

Permanent cut slope is required near the tunnel exit.

The overall slope of the permanent cut less than 15 m is recommended to be executed at a gradient of 2.5H:1V or flatter. A benched slope is recommended to better control the erosion (i.e., 5 m high and 2.5 m wide bench with a 2H:1V side slope may be considered). Locally flattening of the slope will be required where ice and very ice-rich soil is encountered.

A thermal protection layer should be placed on the slopes of permanent cuts into native soil and engineered fill. The protection layer should comprise a 1 to 2 m thick layer of rockfill (run of quarry or jaw-run rockfill) or equivalent as approved by the engineer. A toeberm may be required to protect the toe from causing local slope instability due to potentially softening of the toe during thaw seasons, particularly where ice-rich permafrost is encountered.

## 4.7.9 Drainage

Proper drainage is an important component to ensure a satisfactory performance of the load-out tunnel.

- (1) Grade the tunnel base downward from the dumper toward the exit. Crown the backfill granular between the tunnel footings.
- (2) Runoff collection and diversion systems should be provided to efficiently direct run off away from the tunnel and slope benches. Grade the ground surface away from the tunnel exit at a 2% minimum gradient.
- (3) For the backfill above the tunnel, it is recommended to cap the tunnel backfill (i.e., the rockfill and crusher run fills specified by AIL) with select thawed native material collected from the excavation. A geotextile separator should be installed between the cap material and the underling coarse rockfills and granular materials. The cap should be sloped and graded such that water does not pond or collect on top of the tunnel. Design the finished grades around the works to minimize the amount of runoff that may enter the area after putting the tunnel into service.





(4) A sufficient temporary drainage system should be provided during excavation construction, if the construction period extends in above-zero-temperature seasons, to avoid any ponding water in the excavated areas. Drainage ditch, sump and pump should be prepared to efficiently drain the run off or meltwater to avoid any ponding water at the base of the excavation during construction. The ditches with concentrated waterflow and sumps at the base should be lined.

#### 5. Indexer Foundation

## 5.1 Structural Design Input

The indexer slab is a mat foundation consisting of pre-casted concrete blocks reinforced by post-tensioned cables. Appendix B provides the preliminary design drawings for the indexer.

The preliminary structure design input is summarized below:

- Foundation Size: 8 m wide, 25 m long, and 1 m thick (Preliminary)
- Foundation Shear Key: 1 m wide and 3 m deep (Preliminary).

## 5.2 Bearing Capacity

The indexer slab is expected to be found on well compacted rockfill. The rockfill below the indexer mat is about 15 m thick to the bedrock.

The factored geotechnical resistance at the ultimate limit state is very high (over 500 kPa) for the mat foundation. Typically, the ultimate limit resistance will not govern the design for mat foundations.

Serviceability Limit State (SLS) geotechnical reaction is 200 kPa corresponding to 25 mm elastic settlement.

The creep-related settlement of the rockfills is likely small in the light of the following conditions:

- (1) The rockfill is laterally confined by the dumper wall and the adjacent soil.
- (2) The rockfill below the active zone is kept frozen.
- (3) The parent rock for the rockfill is granite gneiss with a high to very high strength. The rockfill is to be well compacted.

There are very few studies for the creep settlement of frozen rockfills. A recent case-study for the Doris Dam (10 m high dam on permafrost with rockfill shells and a cut-off core, see Miller and Rykaart 2016) concluded that there is negligible creep settlement at the crest (less than the survey accuracy of 10 mm) 4 years after construction. For unfrozen rockfill, the study by Clements (1984) suggests the range of post-construction long-term settlement of compacted rockfill dams is from 0% to 0.25% of dam height (the dam height in the study ranging from approximate 60 m to 180 m) provided the rockfill is placed in lifts and compacted. It is noted that the settlement observations are based on rockfill dams without lateral confinement and with impacts of water impounding. Sherard and Cooke





(1987) suggested that the half of the rockfill creep occurs during the first 5 years and the other half in 100 years.

As such, the creep settlement of the backfilled rockfill (about 15 m thick) is expected to be in the order of 30 mm for the design life of 20 years. As a result, the indexer should be designed taking into account the elastic and creep settlements.

## 5.3 Subgrade Modulus

The mat foundation with an 8 m width can be designed base on a modulus of subgrade reaction of 10 MPa/m for compacted rockfill.

## 5.4 Sliding Friction Angle

For the pre-cast concrete foundation founded on granular or rockfill, the friction angle of 24 degrees (friction coefficient of 0.45) is recommended as per Hatch geotechnical design criteria (Hatch, 2017, H352004-0000-229-078-0001).

## 5.5 Lateral Resistance of Shear Key

It is understood that a shear key may be used in the mat foundation design to resist the lateral load. The shear key should be designed using a coefficient of lateral earth pressure K from  $K_0$  (0.36) upto  $K_p$  /5 (0.9) in order to limit the lateral movement required to mobilize the lateral resistance of the key. A lower factor of safety to  $K_p$  can be used if the lateral deflection of the shear key is allowed within the design tolerance level as determined by the structural design engineer.

Figure 5 illustrates the relationship between the deflection and lateral earth pressure coefficient for reference (CFEM,2006).





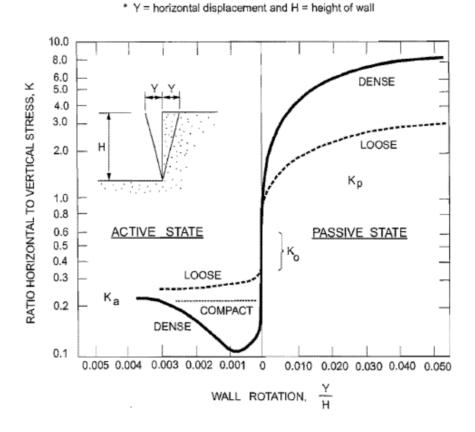



Figure 5: Effect of Deformation on Earth Pressure in Cohesionless Material

## 5.6 Lateral Earth Pressures

The lateral earth pressure on the shear key and dumper walls should be calculated as per the following expression, assuming a triangular pressure distribution:

$$p = k (\gamma h + q)$$

where p= the pressure in kPa acting against the wall surface at depth, h, below the finished ground surface

k = lateral earth pressure coefficient;

 $\gamma$  = the bulk unit weight of the retained backfill;

h = depth below the ground surface at which the pressure, p, is to computed; and

q = the value of any adjacent surcharge in kPa which may acting close to the wall (including traffic loads).

The above equation assumes that a non-frost susceptible and free-draining granular backfill adjacent to the dumper's wall, to prevent the frost heave pressure behind the wall.





The physical properties of well compacted rockfill are presented as follows:

#### Compacted Rockfill

Angle of Internal Friction ( $\phi$ ) = 40° (unfactored)

Coefficient of Lateral Earth Pressures:

K<sub>a</sub> = 0.22 (unfactored)

 $K_0 = 0.36$  (unfactored)

 $K_p = 4.6$  (unfactored)

#### Notes:

K<sub>a</sub> is the active earth pressure coefficient for a soil loading an unrestrained structure; and

K<sub>o</sub> is the earth pressure coefficient at rest for a soil loading a restrained structure.

 $K_p$  is the earth pressure coefficient a soil loading to a passive failure state.

The dumper structure design shall account for the additional lateral earth pressure caused by the surcharge of the indexer and the lateral load transferred from the indexer to the dumper wall.

#### 5.7 Backfill

The backfill below the mat foundation should be crusher-run, free-drained, and non-frost susceptible rockfills.

A layer of TYPE 5 (32 mm minus), minimum 300 mm thick, should be placed immediately below the indexer foundation as a leveling course.

TYPE 5 (typically 3 m wide) is recommended to be placed adjacent to any vertical concrete/steel structures to serve as a protection layer from direct contact with large-sized rockfills.

The general backfill rockfill should be TYPE 8 (150 mm minus). A geotextile should be used to separate the native soil and the rockfill backfill.

The backfill should be placed and compacted as per Hatch specification and the notes in the construction drawings.

## 5.8 Drainage

Runoff collection and diversions systems should be provided to efficiently direct run off away from the dumper and the mat foundation.

## 6. Dumper Foundation

## 6.1 Bearing Capacity

The dumper should be found directly on bedrock. The bedrock properties below the dumper foundation are expected to be similar to the rock mass encountered in BH 17-008R, BH17-EBC-1 and BH17-EBC-2.





The bearing capacity of sound rock foundation was estimated using the approach recommended by CFEM (2006)

$$q_{allowable} = K_{sp} \times q_{u-core}$$

where  $q_{u-core}$  is the unconfined compression strength of the intact rock (i.e., 23.6MPa as per BH 17-008R). The coefficient of  $K_{sp}$  is selected as 0.05, as per the bedrock condition.

Serviceability Limit State (SLS) geotechnical reaction is 1 MPa for the bedrock foundation.

The rock surface should be prepared by removing loose or weathered materials for a competent surface. The bedrock foundation condition should be inspected and approved by a qualified geologist or geotechnical engineer prior to foundation construction. The blasting should be designed and performed in a way to minimize over-blasting. A lean concrete slab is recommended to level the blasted surface below the pre-cast concrete structure. If using granular leveling materials as alternative, the differential settlement due to the compression of the granular in depression should be taken into account in the structure design.

#### 6.2 Drainage

Runoff collection, and ground grading should be provided to efficiently direct run off away from the dumper. Temperately drainage during construction should be provided to sufficiently control run-off water from ponding at foundation level.

#### 6.3 Backfill

The backfill below the mat foundation should be crusher-run, free-drained, and non-frost susceptible rockfills.

TYPE 5 (typically 3 m wide) is recommended to be placed adjacent to any vertical concrete/steel structures to serve as a protection layer from direct contacting with large-sized rockfills.

An insulation pad (two layers of Styrofoam HL 100) is recommended to be placed against the wall to keep the permafrost state of the backfill and minimize potential degradation from the freeze/thaw effect.

The general backfill rockfill should be TYPE 8 (150 mm minus). TYPE 12 (run of quarry) may be used where the settlement is not a concern. A geotextile should be used to separate the native soil and the rockfill backfill.

The backfill should be placed and compacted as per Hatch specification and the notes in the construction drawings.

# 7. Assumptions and Limitations

This report and the engineering described herein is based on five boreholes advanced into the permafrost near the project site. The boreholes indicate the presence of ground ice in the permafrost; the distribution of the ground ice appears to be random. As a result, construction should be coupled with sufficient pre-drilling and probing at major cuts and in





the foundation of major structures to delineate the ground ice to reduce uncertainties. Based on the results of the probing, excavations for the foundations and load out tunnels may need to be adjusted to take into account the presence of ground ice or ice rich soil. The construction approach will need to be observational or adaptive.

Additionally, the recommendations in this report are based on the results of calculations performed using deformation and creep properties for permafrost from the literature. Site specific creep tests have not been performed, and as a result, there is residual risk of applying the engineering parameters from literature to assess the performance of the infrastructure. Hatch has used reasonable judgment and has consulted with experts to develop parameters for the permafrost. During construction, site-specific load tests and creep tests should be conducted on the permafrost to verify design parameters. The tests should consist of in situ plate load tests with temperature monitoring and/or temperature controlled triaxial compression tests on the permafrost, to confirm the strength, deformation and creep parameters used for design. Some adaptation of the design may be required based on these tests.

The design recommendations given in this report are applicable only to the project described in the text and then only if constructed substantially in accordance with the details stated in this report.





## 8. References

- 1. Hatch, 2012, "Geotechnical Data Report -Infrastructure" (ref H337697-0000-15-1240004, Rev. C), April 05, 2012.
- 2. Hatch, 2016, "Geotechnical Criteria for Building Foundations at Milne Inlet", H352004-0000-229-078-0001, Rev. 0, Dec. 15, 2016.
- Hatch, 2016, "Preliminary Geotechnical Recommendation for Infrastructures at Milne Inlet", H352004-0000-229-230-0002, Rev. 0, Sept. 01, 2016.
- 4. Hatch, 2017, "2016 Milne Port Geotechnical Investigation Factual Data Report", (ref H352034-1000-229-230-0002), Rev.2.
- Hatch, 2018, "Hatch Geotechnical Design Basis", H353004-00000-229-210-0001, Rev. A, 2018.
- 6. Das, Braja, 2007, "Principles of Foundation Engineering", Sixth Edition, Thomson.
- 7. Andersland, B.A., Ladani, B., 2004, "Frozen Ground Engineering", Second Edition, ASCE, John Wiley and Sons, Inc.
- 8. Canadian Geotechnical Society, 2006, "Canadian Foundation Engineering Manual", Fourth Edition.
- 9. Bowles, J.E. "Foundation Analyses And Design" Fourth Edition.
- 10. Johnston G.H., 1971, "Permafrost Engineering Design and Construction".
- 11. Tsytovich, N.A., Kronik, Ya.A., Markin, K.F., Aksenov, V.I. Physical and Mechanical Properties of Saline Soils. Proc. 2<sup>nd</sup> International Conference on Permafrost (1973), Yakutsk, USSR Contributin, U.S. National Academy of Sciences, pp. 238-247.
- 12. Zhu, Y. and Carbee, D.L., 1984. Uniaxial compressive strength of frozen silt under constant deformation rates. Cold Regions Science and Technology, 9(1), pp.3-15.
- 13. Clements, R.P. 1984 Post-construction deformation of rockfill dams. Journal of Geotechnical Engineering, 110: 1384-1414.
- 14. Sherard, J.L. and Cooke, J.B. 1987. Concrete-face rockfill dam I. Assessment. Journal of Geotechncail Engineering, 113: 1096-1112.
- 15. Miller, M. and Rykaart, M. 2016, Frozen core dam performance: four years post construction. Canadian Dam Association. Halifax.





# **Appendix A1 Thermal Analyses**





#### Appendix A1

#### **Thermal Analyses**

Two-dimensional finite element modelling, with commercially available software (Temp/W), was used to predict the thermal regime for the tunnel foundation.

The air temperature is based on the mean monthly air temperature from Pond Inlet, NU (1981-2010) extracted from the government of Canada website, see Figure A-1.

The global warming effect was taken into account according to the Intergovernmental Panel on Climate Change (IPCC) long term climate change studies. A temperature adjustment was applied considering to global warming for the period spanning from 2010 to 2039 (Hatch 2018).

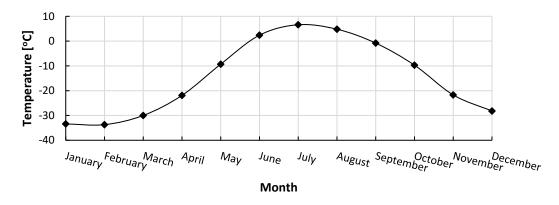



Figure A-1: Mean Monthly Temperatures for Pond Inlet, NU (1981-2010)

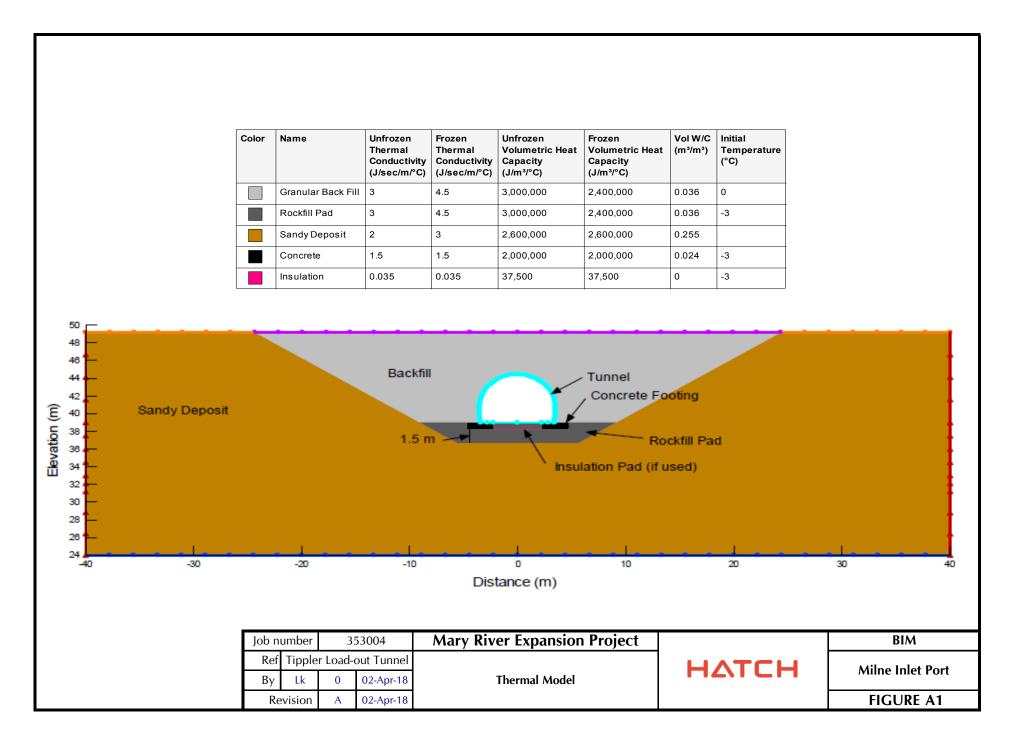
Surface boundary conditions at the site were obtained based on the n-factors which was used to correlate air temperatures to ground surface temperatures during cold seasons (n<sub>f</sub>) and thaw seasons (n<sub>f</sub>). Values of n<sub>f</sub> and n<sub>f</sub> used in the analysis were summarized in Table A-1. Typically, n<sub>f</sub> is less than 1 considering the impact of snow accumulation/insulation over ground surface during winter while n<sub>f</sub> is more than 1 considering the impact of radiation.

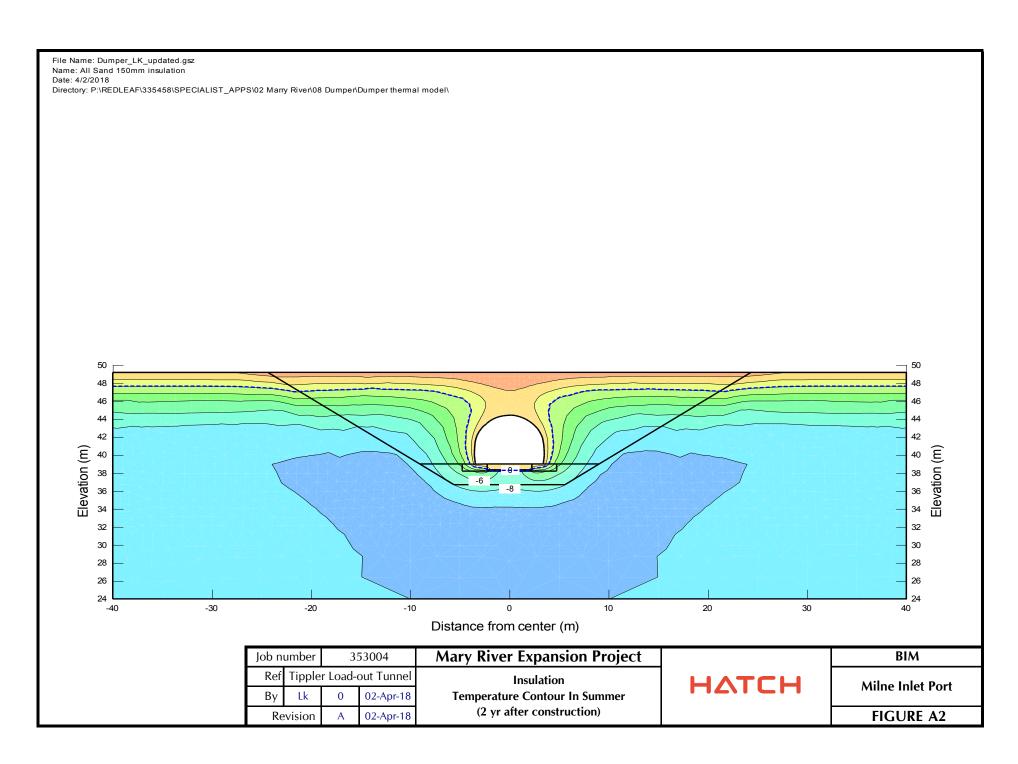
Inside the tunnel, the n factor of 1 was used assuming that the ground surface temperature is same as the air temperature. It is noted that in summer the air temperature in the tunnel could be colder than the air temperature outside while in winter, the inside air temperature in the tunnel becomes is likely warmer than the outside air temperature. There is no sufficient data/study to quantify the two opposite effects. As such, this study assumed that the air temperature in tunnel is same.

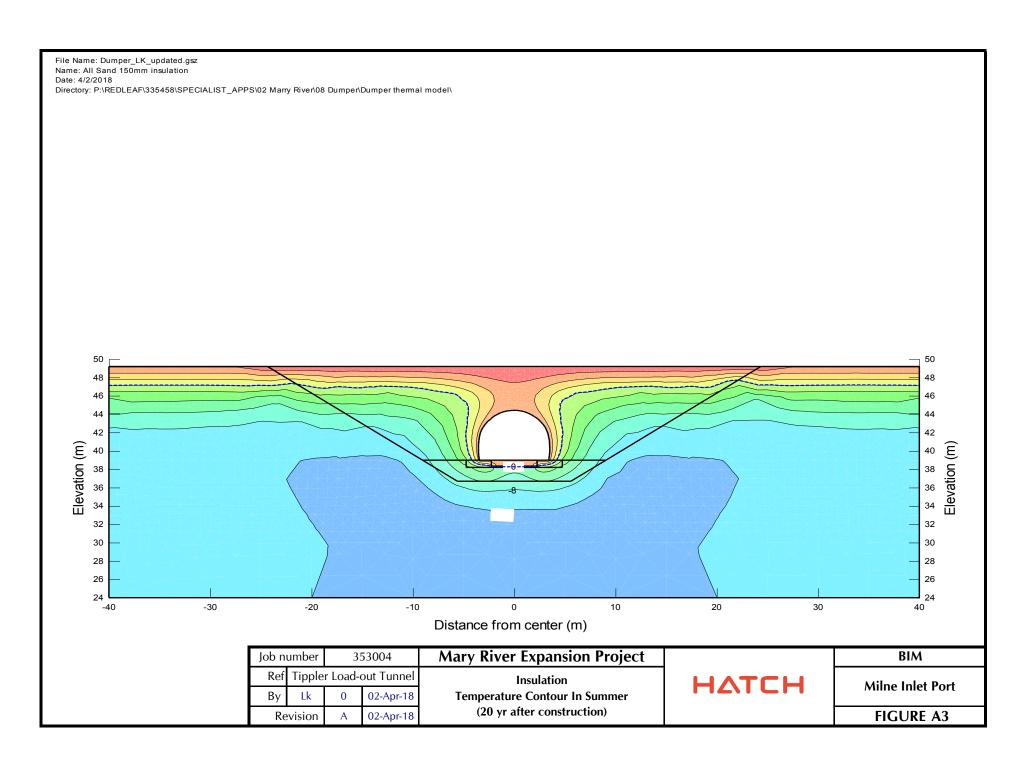
The available thermistor data from the Mary River site (Hatch, 2012) indicate that ground temperature reaches equilibrium (at -10° C) below 15m depth, thus the bottom boundary was assumed to be 15m below the ground surface, with a constant temperature of -10° C.

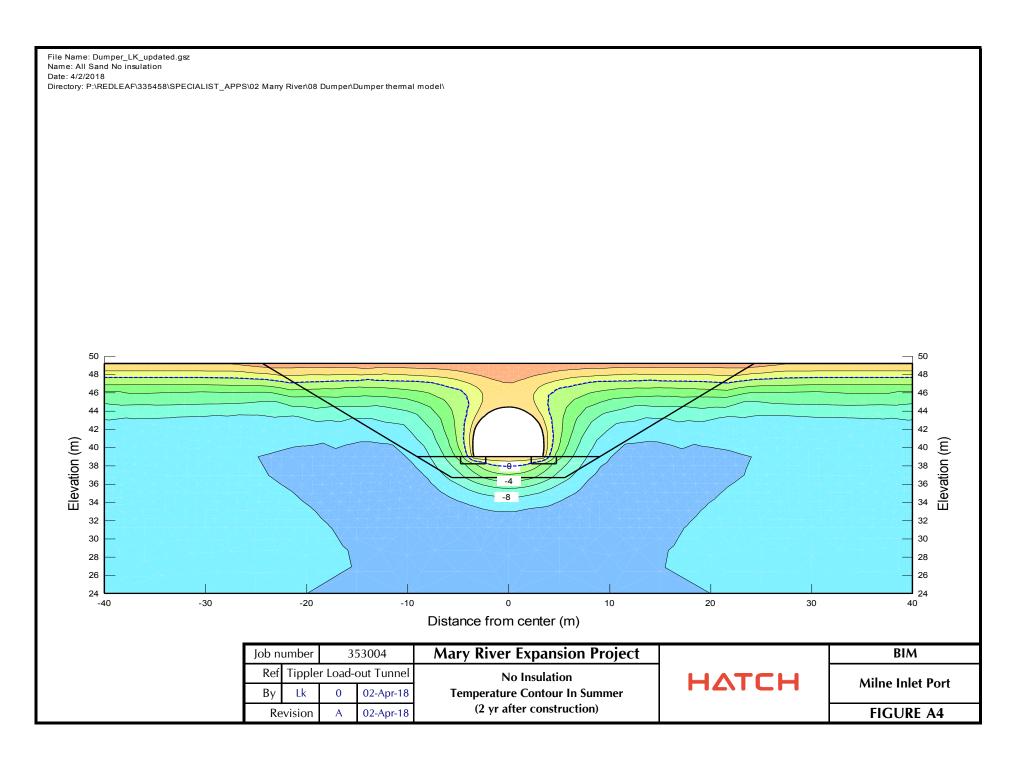
The initial temperature of the foundation rockfill is -3° C degree and the other backfill materials are set as 0° C degree.

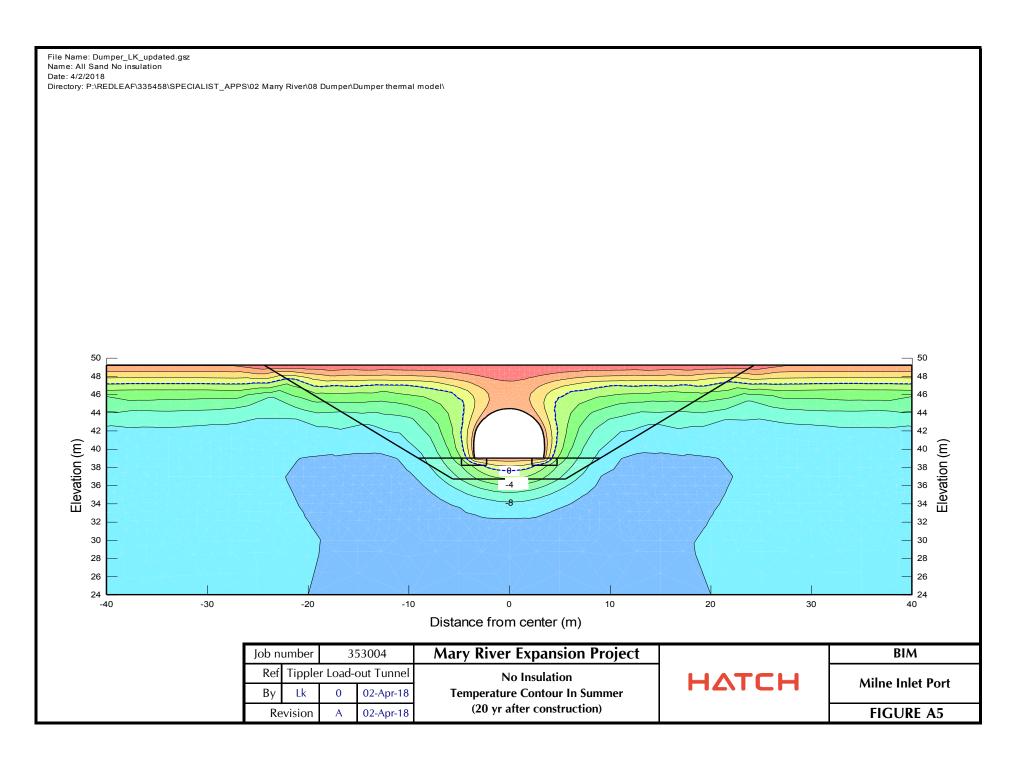


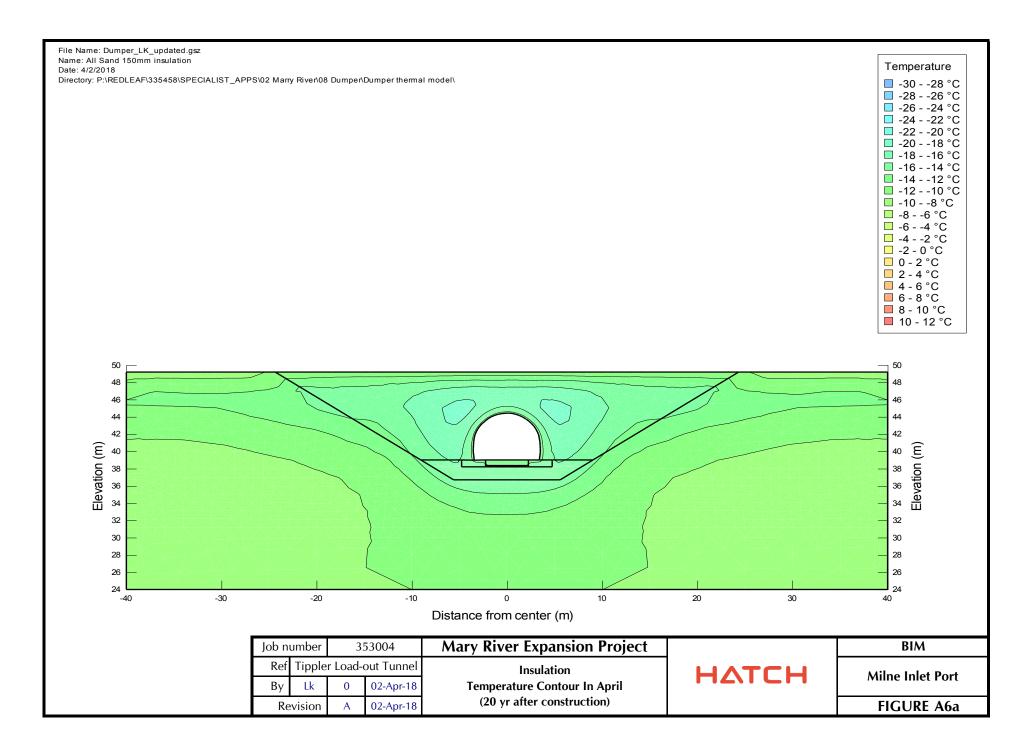


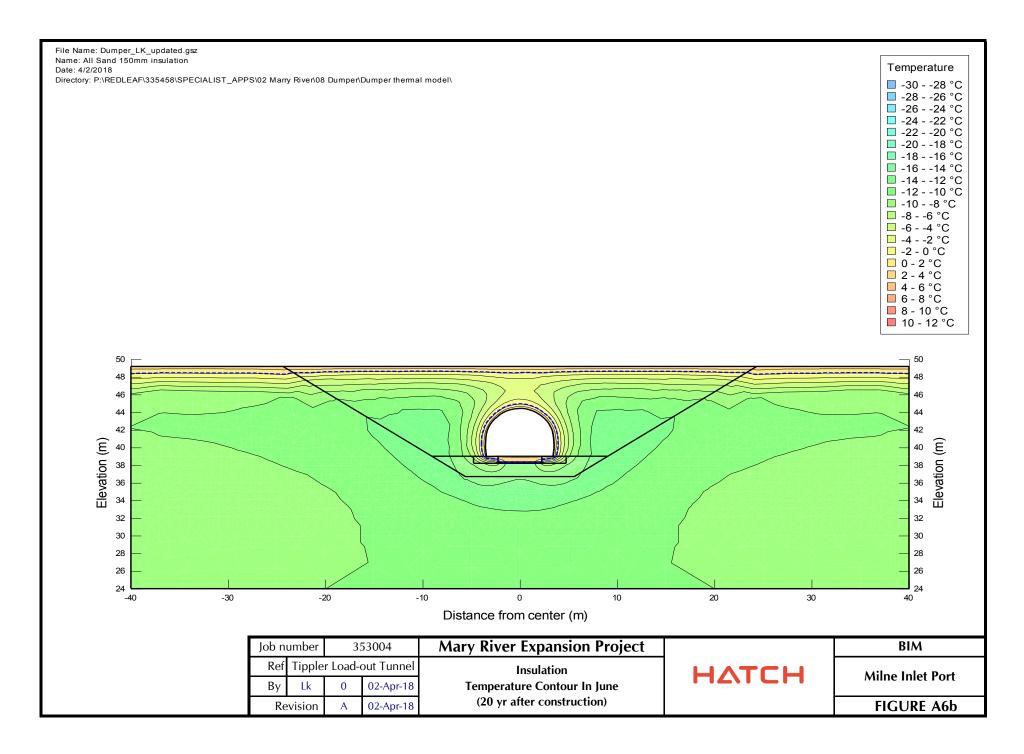


Table A-1: N-factors to be Used in Modelling

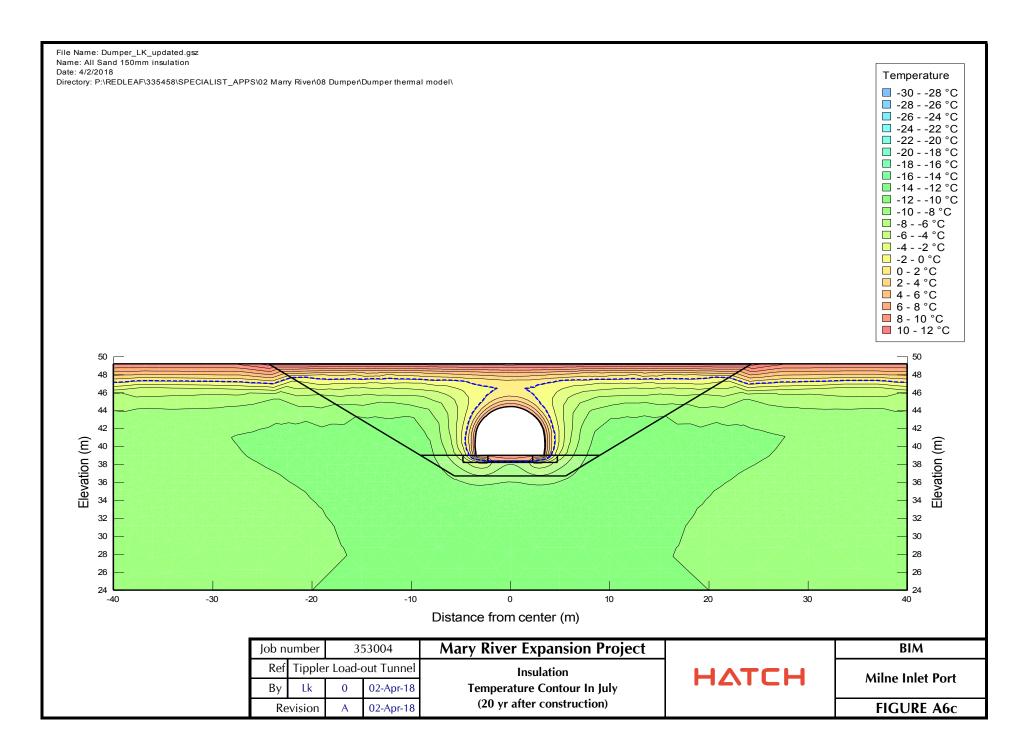

| Matarial                     | N – factors                |                           |  |  |
|------------------------------|----------------------------|---------------------------|--|--|
| Material                     | Freezing (n <sub>f</sub> ) | Thawing (n <sub>t</sub> ) |  |  |
| Native Sand                  | 0.7                        | 1.2                       |  |  |
| Rockfill / Granular Backfill | 0.8                        | 1.5                       |  |  |
| Tunnel Inside Boundary       | 1                          | 1                         |  |  |

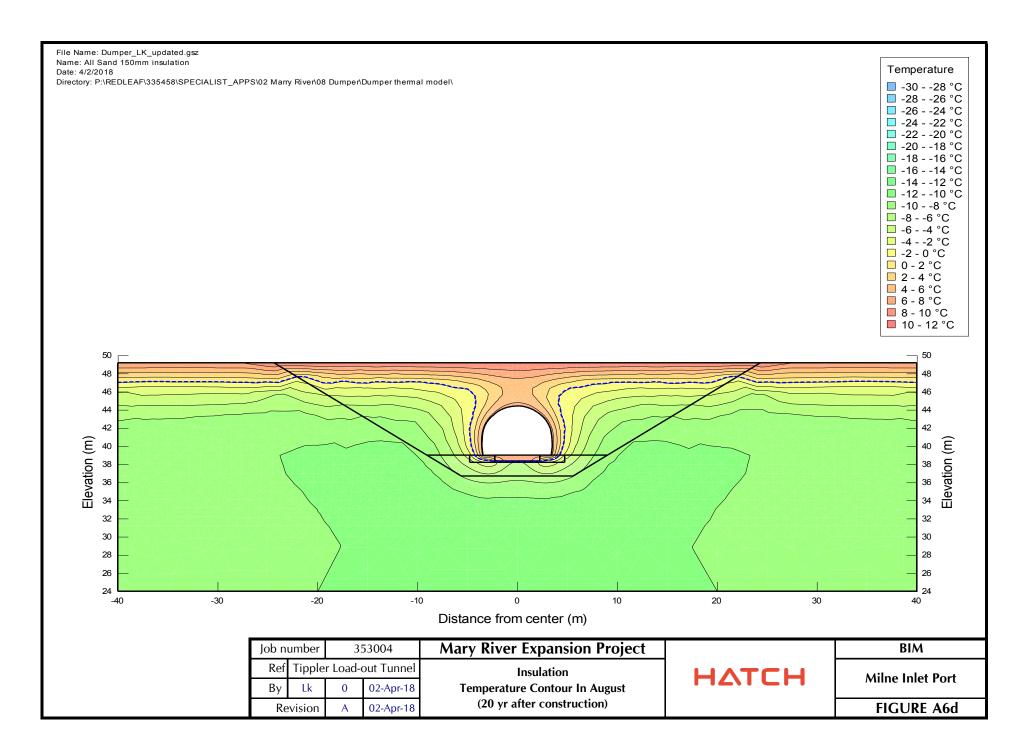

The following two cases were analyzed:

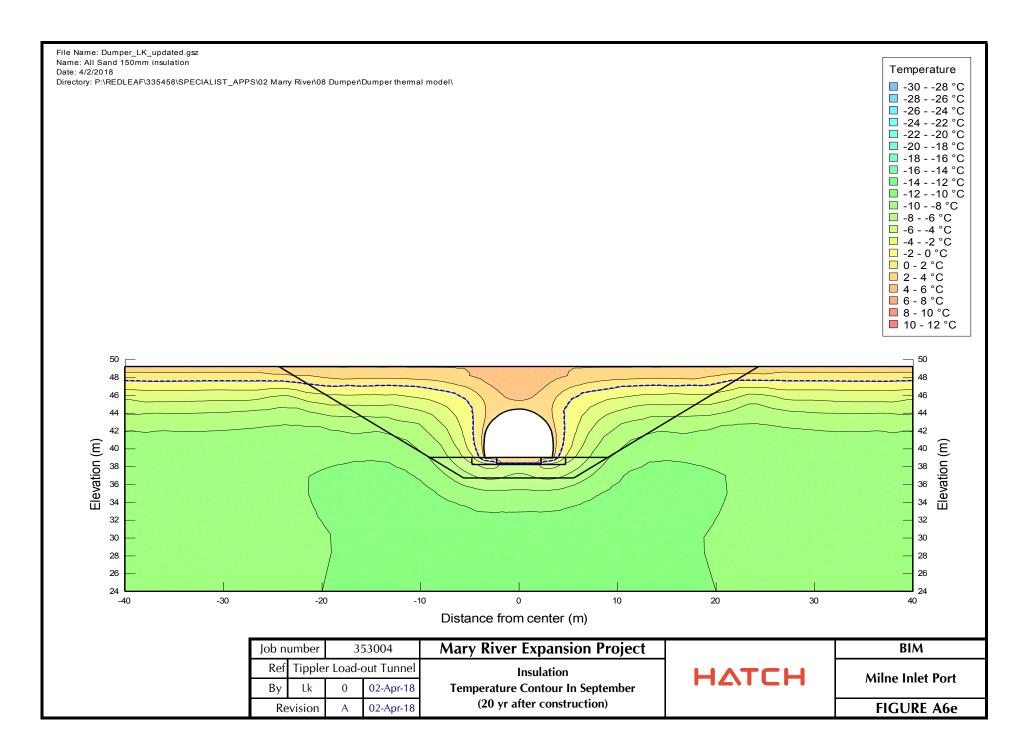

- (1) Thermal model of load-out tunnel with 100 mm insulation pad.
- (2) Thermal model of load-out tunnel without insulation.

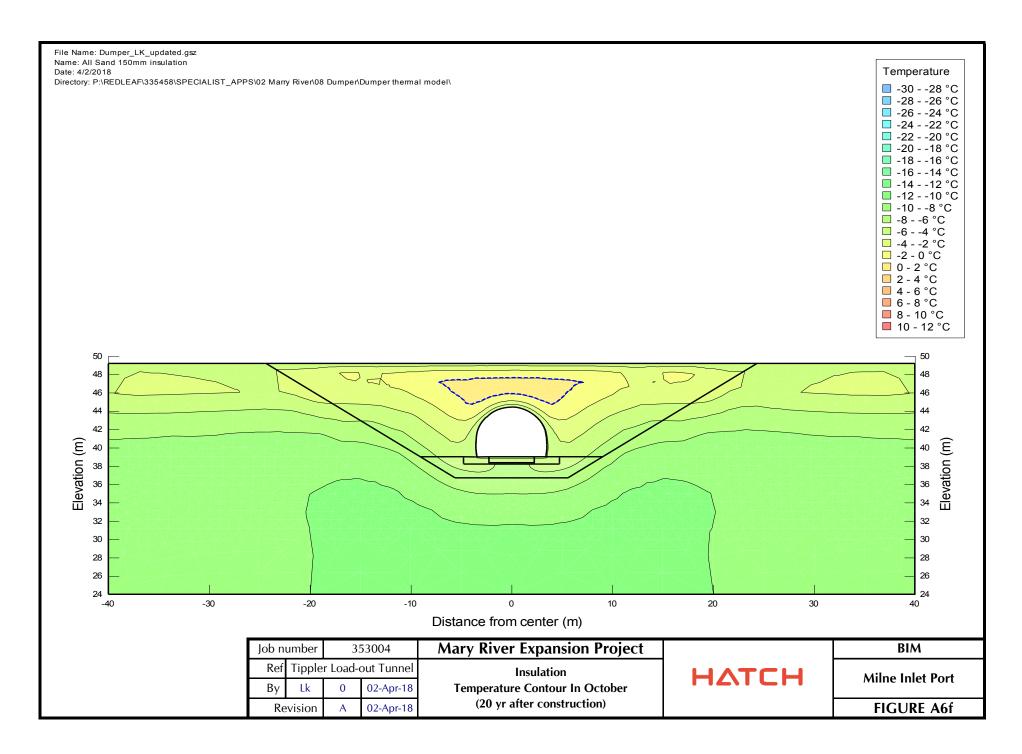


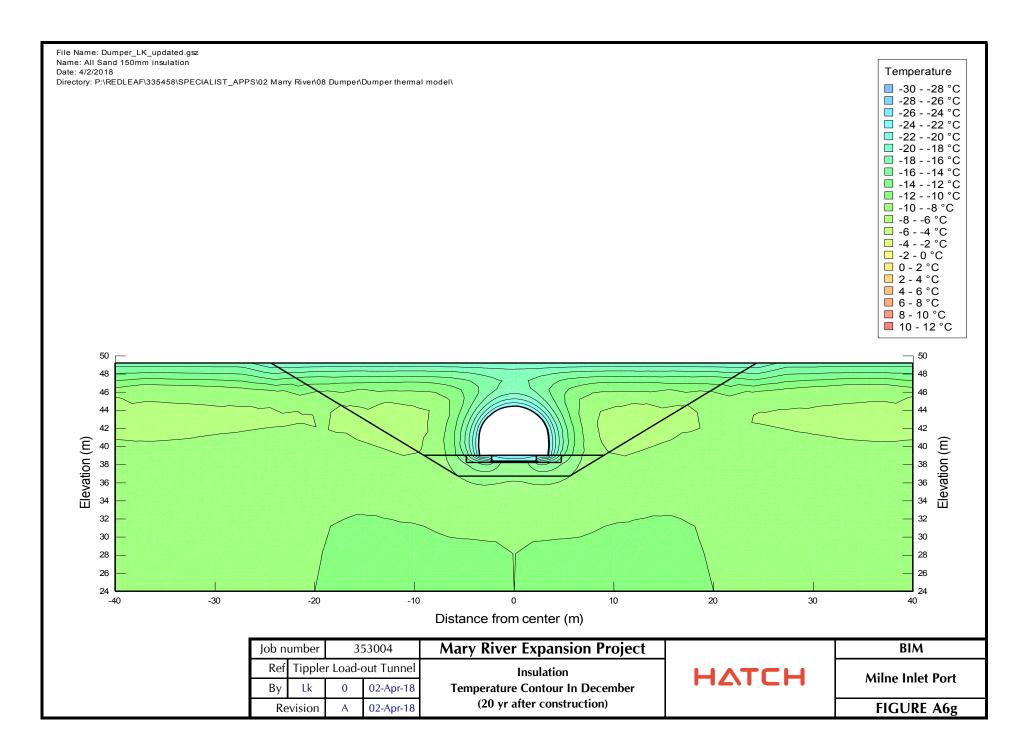



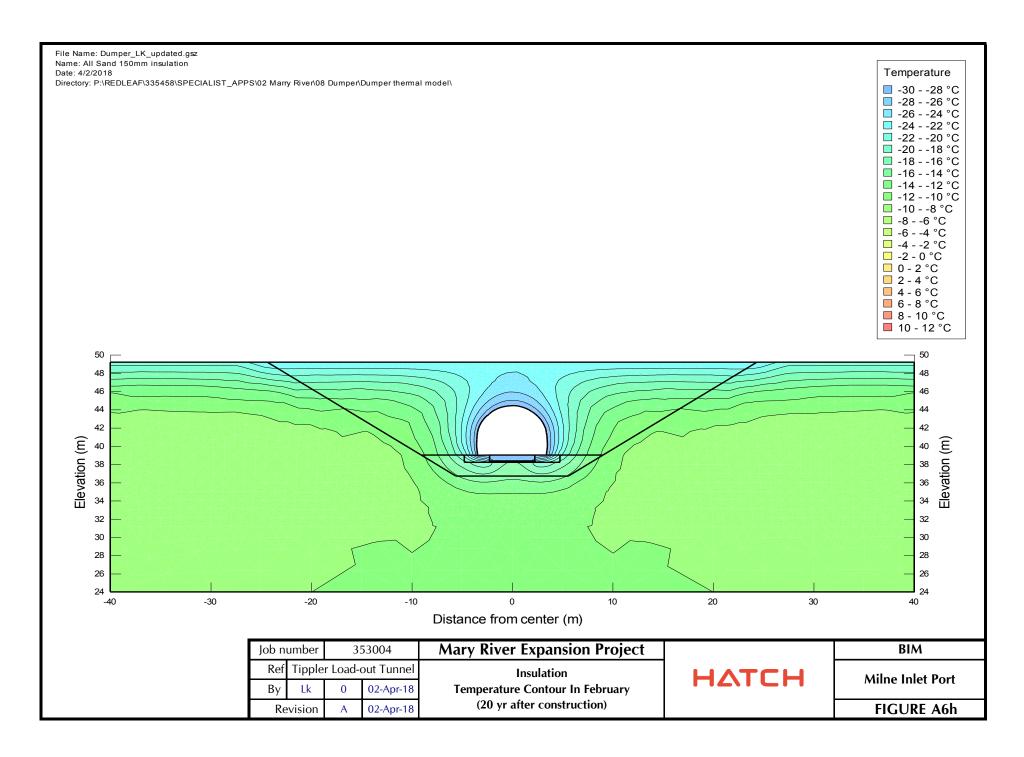



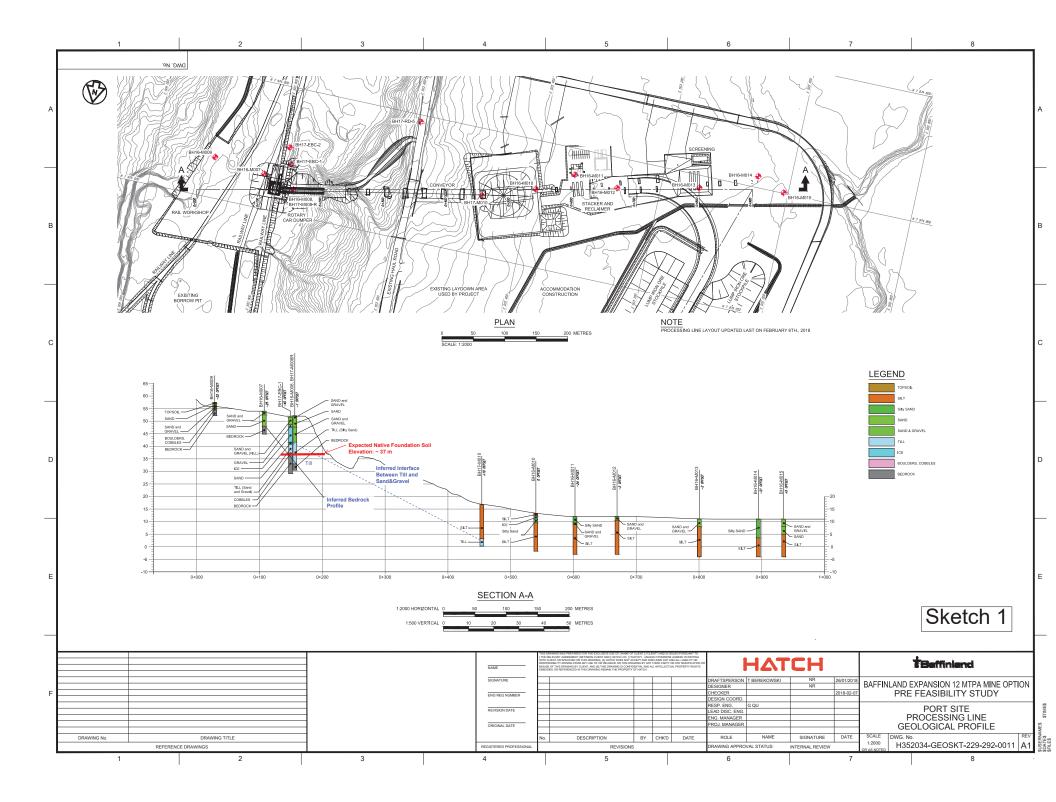



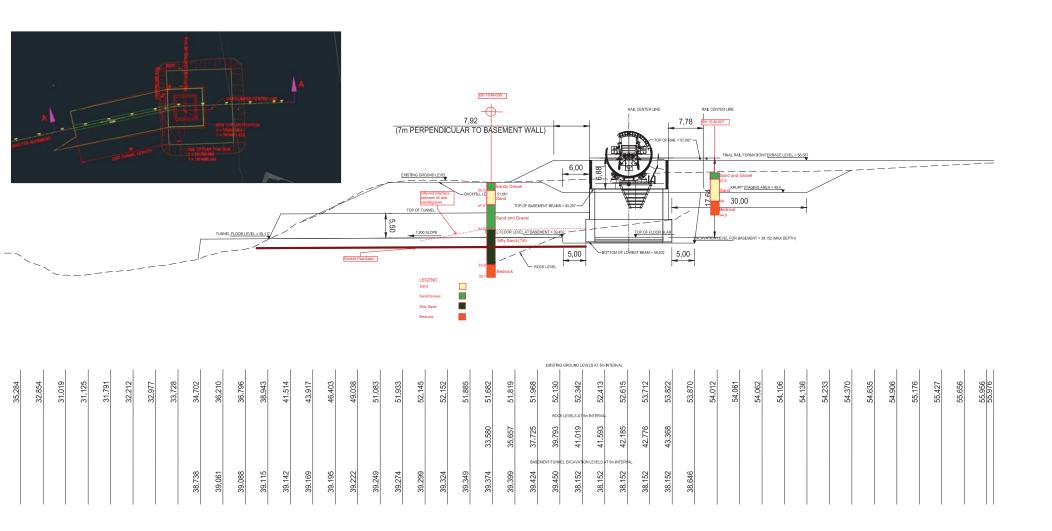


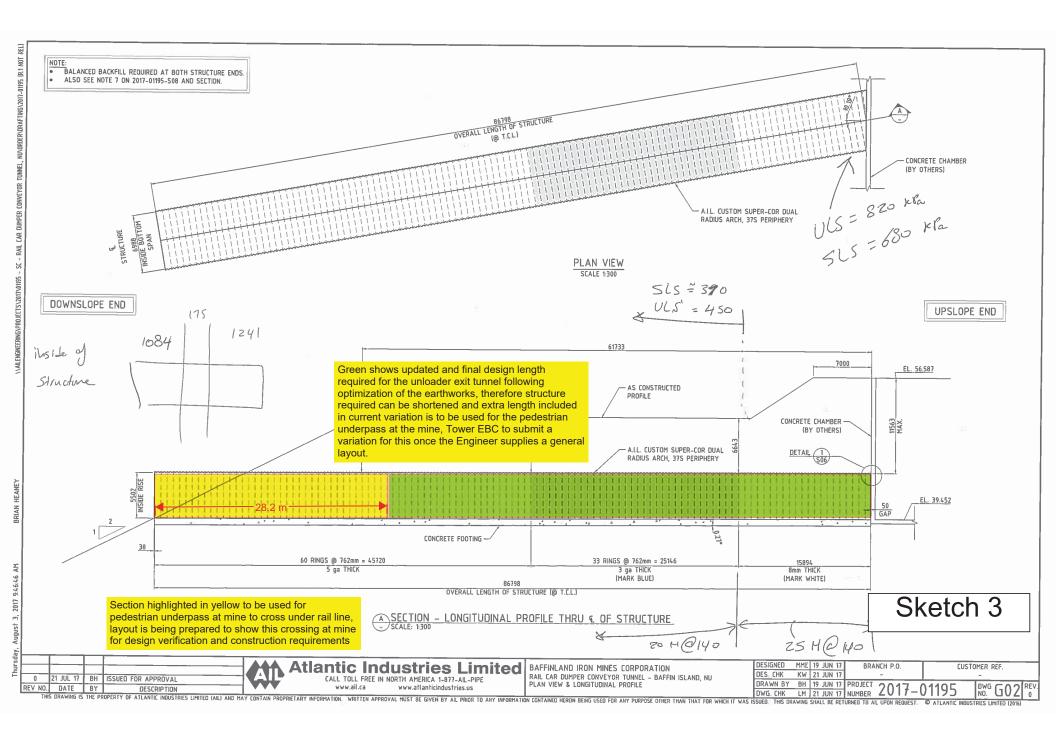







Baffinland Iron Mines Corporation - Mary River Expansion Project Geotechnical Recommendations for Dumper Load-out Tunnel and Indexer - July 30, 2018

# Appendix A2 Geotechnical Profile, Load-out Tunnel Configuration and Load Update











Baffinland Iron Mines Corporation - Mary River Expansion Project Geotechnical Recommendations for Dumper Load-out Tunnel and Indexer - July 30, 2018

## Appendix A3 Borehole Logs and Geophysical Survey Data

## **BOREHOLE REPORT**

#### **BH17-EBC-1**

Sheet 1 of 4

Client: **Baffinland Iron Mines Corporation** 

Project No.: H353004

Easting: 503,783.4 m

**Bottom Elevation:** 

**Total Depth:** 

Project:

Mary River Expansion Project

Northing: Surface Elevation: **NAD 83** 

7,974,920.8 m 51.59 m

Location:

Rail Indexer Foundation

Platform: Ground

Datum:

29.92 m

21.7 m

| Contract                  | or: Bo    | art L  | ong    | year        | Rig Type/ Mounting: MiniSonic Rig                                                                                                          | Date I                     | .og      | ged         | d: 9/19/2   | 2017                  |                          | Lo | gge   | d By  | :   |  | R          |
|---------------------------|-----------|--------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-------------|-------------|-----------------------|--------------------------|----|-------|-------|-----|--|------------|
| Oriller:                  | Br        | ent N  | /AcAr  | ndrew       | Hole Diameter (mm): 100 mm                                                                                                                 | Date I                     | Rev      | iew         | red: 1/26/2 | 2018                  |                          | Re | eviev | ved E | Зу: |  | G          |
| Elevation (m)             | Depth (m) | Method | Casing | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. | Frozen Soil<br>Description | Recovery | Sample Type | M<br>Cont   | oisture<br>ent Profil | e<br>100                 |    |       |       |     |  | Oth<br>Tes |
| -<br>-<br>-<br>-50.6      | 1.0-      |        |        |             | SAND and GRAVEL (FILL): Brown. Material placed to create level drilling platform.                                                          | Unfrozer                   |          |             |             | <br> <br> <br> <br>   | <br> <br> <br> <br> <br> |    |       |       |     |  |            |
|                           | 3.0-      |        |        |             | SAND and GRAVEL with Silt: Brown and grey, frozen.  ICE, trace Silt: Grey to white.                                                        | Nbn                        |          |             |             |                       | <br> <br> <br> <br> <br> |    |       |       |     |  |            |
|                           | 5.0-<br>- |        |        | ••••        | SAND, trace Silt: Brown, frozen. Ice poor soil. ICE, trace Silt: White/clear.                                                              | Nbn<br>ICE                 |          | / /         |             |                       | <br> <br> <br> <br>      |    |       |       |     |  |            |
|                           | 6.0-      |        |        |             |                                                                                                                                            |                            |          |             |             | <br> <br> <br>        | <br> <br> <br>           |    |       |       |     |  |            |
| -<br>-<br>-<br>-<br>-43.6 | 8.0-      |        |        |             |                                                                                                                                            |                            |          |             |             |                       | <br> <br> <br>           |    |       |       |     |  |            |
| -<br>42.6<br>-<br>-       | 9.0-      |        |        |             | SAND, trace Silt: Light brown, occasional thin ice lenses. Ice poor soil.                                                                  | Nbn-Vs                     |          | V           |             |                       | <br> <br> <br>           |    |       |       |     |  |            |

Project:

## **BOREHOLE REPORT**

#### **BH17-EBC-1**

Sheet 2 of 4

51.59 m

Client: **Baffinland Iron Mines Corporation** 

Mary River Expansion Project

Location: Rail Indexer Foundation Project No.: H353004

Datum: NAD 83

Platform: Ground Easting: 503,783.4 m

Northing: 7,974,920.8 m

**Bottom Elevation:** 29.92 m

Surface Elevation:

**Total Depth:** 21.7 m

| Co    | ontract                                                      | or: Bo                             | art L  | ong    | year        | Rig Type/ Mounting: MiniSonic Rig                                                                                                                                                                          | Date L                     | .ogge    | ed           | : 9/19/2017                 |      | ged By |     | 21.7 m<br>R.S  |                                 |
|-------|--------------------------------------------------------------|------------------------------------|--------|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|--------------|-----------------------------|------|--------|-----|----------------|---------------------------------|
| Dr    | iller:                                                       | Br                                 | ent N  | ИсAı   | ndrew       | Hole Diameter (mm): 100 mm                                                                                                                                                                                 | Date F                     | Revie    | we           | ed: 1/26/2018               | Revi | ewed   | Ву: | G.Q            |                                 |
| Water | Elevation (m)                                                | Depth (m)                          | Method | Casing | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.                                                                 | Frozen Soil<br>Description | Recovery | Sample I ype | Moisture<br>Content Profile |      |        |     | Other<br>Tests |                                 |
|       |                                                              | 11.0-                              |        |        |             | SAND and GRAVEL some Silt: Brown. Ice poor soil.  COBBLES and BEDROCK: Biege and                                                                                                                           | Nbn                        |          | V V          |                             |      |        |     |                |                                 |
|       | -<br>-37.6<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 14.0-<br>-<br>-<br>-<br>-<br>15.0- |        |        |             | brown, pulverized cobbles and bedrock, dry powdery, with layers of brown silty sand and gravel, moist. Top of poor quality bedrock, 14.04 m.  Start of Coring at 14.0m.  Continued on Rock Core Log sheet. |                            | \$       |              |                             |      |        |     |                |                                 |
|       | -<br>-<br>-35.6<br>-<br>-<br>-                               | 16.0 <del>-</del>                  |        |        |             |                                                                                                                                                                                                            |                            |          |              |                             |      |        |     |                | -<br> -<br> -<br> -<br> -       |
|       | -34.6<br>-<br>-<br>-<br>-33.6<br>-                           | 17.0-<br>-<br>-<br>-<br>18.0-<br>- |        |        |             |                                                                                                                                                                                                            |                            |          |              |                             |      |        |     |                | +                               |
|       | -<br>-32.6<br>-<br>-<br>-<br>-<br>31.6<br>tes:               | 19.0-                              | -      |        |             |                                                                                                                                                                                                            |                            |          |              |                             |      |        |     |                | -<br> -<br> -<br> -<br> -<br> - |

BAFFINLAND GINT LIBRARY,GLB Log ICE BOREHOLE RAIL INDEXER BOREHOLES 2017\_REV B.GPJ <-DrawingFile>> 04/04/2018 14:30

**Baffinland Iron Mines Corporation** 

Mary River Expansion Project

Client:

Project:

## **BOREHOLE LOG**

\*ROCK CORE FORMAT\*

Datum:

Project No.: H353004

**NAD 83** 

**BH17-EBC-1** 

Sheet 3 of 4

Easting:

503,783.4 m

Northing:

7,974,920.8 m

51.59 m

Surface Elevation:

|                                                                                                                                                |       | Loc                                                                          | atio                                                                                       | n:     | R                          | ail Ir                                | ndexe                                   | r Foundation                                                                                                                                                                                                                                                                                          | DI                  | atfor                      | m·                                                           | Gr      | ound                                         |                                                  | Во     | tton                 | n Elevation: 29.92 m                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------|----------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|--------------------------------------------------------------|---------|----------------------------------------------|--------------------------------------------------|--------|----------------------|--------------------------------------------------------------------------------------------------------|
|                                                                                                                                                | Co    | otract                                                                       | or: Bo                                                                                     | ort I  |                            |                                       |                                         | ne/ Mounting: MiniSonic Rig Bearing:                                                                                                                                                                                                                                                                  | N/A                 |                            |                                                              |         |                                              | 117                                              |        |                      | Depth: 21.7 m                                                                                          |
|                                                                                                                                                | Dril  |                                                                              |                                                                                            |        | •                          |                                       | • • • • • • • • • • • • • • • • • • • • | ameter (mm): 100 mm Plunge:                                                                                                                                                                                                                                                                           | Vertica             |                            |                                                              |         | 9/19/20                                      |                                                  |        | -                    | d By: R.S                                                                                              |
| ŀ                                                                                                                                              |       |                                                                              | <u> </u>                                                                                   |        |                            |                                       |                                         | Rock Description                                                                                                                                                                                                                                                                                      | Vertice             |                            |                                                              | conca   | . 1/20/20                                    | Defect                                           |        | VICV                 | Defect Description                                                                                     |
|                                                                                                                                                | Water | Elevation (m)                                                                | Depth (m)                                                                                  | Method | Run #/TCR                  | Graphic Log                           | Geological<br>Unit                      | ROCK TYPE; Grain size, texture and fabric, colour, general defect condition minor constituents.                                                                                                                                                                                                       | S,                  | Weathering/<br>Cementation | Estim<br>Stren                                               | ngth    | Is <sub>(50)</sub><br>[UCS]<br>MPa           | Spacing mm [000]                                 | RQD %  | Defect Log           | Inclination, type, infill,<br>amount, aperture, planarity,<br>roughness, frequency<br>Specific General |
| HATCH LIBRARY DEVELOPMENT COPY GLB Log CORED BOREHOLE RAIL INDEXER BOREHOLES 2017_REV B.GPJ < <drawingfile>&gt; 04/04/2018 14:53</drawingfile> |       | - 39.6 - 38.6 - 37.6 - 37.6 - 33.6 - 33.6 - 33.6 - 33.6 - 33.6 - 33.6 - 33.6 | 11.0 — 12.0 — 13.0 — 13.0 — 14.0 — 15.0 — 16.0 — 17.0 — 18.0 — 19.0 — 19.0 — 19.0 — 19.0 — |        | 6/99 5/106 4/88 3/96 2/100 | * * * * * * * * * * * * * * * * * * * |                                         | Resuming in Rock Core Format 14 BEDROCK: Granitic Gneiss, mediur coarse grained, hard to very hard, pinkish-grey colour. Fractures are generally vertical, between 0 to 15 degrees and horizontal, from 70 to 9 degrees.  Numerous joints and fractures infille with clayey-silt and fine sand throug | m to<br>90          |                            |                                                              |         | Dia 75.5 — — — — — — — — — — — — — — — — — — |                                                  | 0 44 9 |                      | - Cz                                                                                                   |
| HATCH LIBRARY DEVI                                                                                                                             | Note  | es:                                                                          |                                                                                            |        |                            |                                       |                                         | Defect PI Planarity Description Legend Cu Curv. Un Un Un St Step                                                                                                                                                                                                                                      | ular<br>ed<br>ilose | Jt S<br>Pt F<br>Sh S       | Orilling Ind<br>Joint<br>Parting or<br>Shear Se<br>Crushed S | n Conta | Cz Ci<br>ct Fz Fr                            | eam<br>rushed Zone<br>ractured Zone<br>reak Band | •      | Ro<br>Sm<br>Po<br>SI | Rough cn Clean Smooth sn Stained Polished vn Veneer Slickenside cg Coating                             |



## **BOREHOLE LOG**

\*ROCK CORE FORMAT\*

**BH17-EBC-1** 

Easting:

Northing:

Surface Elevation:

**Bottom Elevation:** 

Sheet 4 of 4

503,783.4 m

7,974,920.8 m

51.59 m

29.92 m

Client: **Baffinland Iron Mines Corporation** Project No.: H353004

Project: Mary River Expansion Project Datum:

Location: Rail Indexer Foundation

Platform: Ground

**NAD 83** 

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Bearing: N/A Date Logged: 9/19/2017 Total Depth: 21.7 m Logged By: R.S

|                                                                                                                                                                                                                                          | Dril  | ler:                       | Br               | ent N  | /lcAr     | drew                                                                                                                                         | Hole Di            | ameter (mm): 100 mm Plunge: Vertica                                                                                                                                                                      | al D                       | ate Checked                                                                 | : 1/26/20                               | 18                                                                                           | Re    | view                 | ved By: G.Q                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|------------------|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|-------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                          | Water | Elevation (m)              | Depth (m)        | Method | Run #/TCR | Graphic Log                                                                                                                                  | Geological<br>Unit | Rock Description  ROCK TYPE;  Grain size, texture and fabric, colour, general defect conditions, minor constituents.                                                                                     | Weathering/<br>Cementation | Estimated<br>Strength<br>표돗교의                                               | Is <sub>(50)</sub><br>[UCS]<br>MPa      | Defect<br>Spacing<br>mm [100]<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000 | RQD % | Defect Log           | Defect Description  Inclination, type, infill, amount, aperture, planarity, roughness, frequency  Specific General                                                                                                                                                                                                                                                                                                                                     |
| -                                                                                                                                                                                                                                        | -     | -<br>-<br>-<br>-<br>- 30.6 | 21.0 —           | -      | 7 / 100   | + + +<br>+ + + |                    | BEDROCK: Granitic Gneiss, medium to coarse grained, hard to very hard, pinkish-grey colour. Fractures are generally vertical, between 0 to 15 degrees and horizontal, from 70 to 90 degrees. (Continued) |                            | (C)                                                                         | -<br>-<br>-<br>-<br>-<br>Dia -<br>147.9 |                                                                                              | 86 R  |                      | - 85° Jt PI Sm Silt sn - 10° CZ I FR Silt sn - 10° CZ I FR Silt Silt sn - 10° CZ I FR Silt sn |
| -                                                                                                                                                                                                                                        |       | -<br>29.6<br>-<br>-        | 22.0 —<br>-<br>- |        |           |                                                                                                                                              |                    | To Target Depth.  Drillhole BH17-EBC-1 terminated at 21.7m.                                                                                                                                              |                            |                                                                             | -<br>-<br>-<br>-                        |                                                                                              |       |                      | +10° DI ir Ro Silt<br>+10° DI ir Ro Silt<br>+10° DI ir Ro Silt<br>+10° DI ir Ro Silt                                                                                                                                                                                                                                                                                                                                                                   |
| 14:53                                                                                                                                                                                                                                    |       | - 28.6<br><br>             | 23.0 —           |        |           |                                                                                                                                              |                    |                                                                                                                                                                                                          |                            |                                                                             | -<br>-<br>-<br>-<br>-                   |                                                                                              |       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BOREHOLE RAIL INDEXER BOREHOLES 2017_REV B.GPJ < <drawingfile>&gt; 04/04/2018 14:53</drawingfile>                                                                                                                                        |       | -<br>27.6<br>-<br>-        | 24.0 —<br>-<br>- |        |           |                                                                                                                                              |                    |                                                                                                                                                                                                          |                            |                                                                             | -<br>-<br>-<br>-<br>-                   |                                                                                              |       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| REV B.GPJ < <drawin< td=""><td></td><td>-<br/> 26.6<br/>-<br/>-</td><td>25.0 —<br/>-<br/>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-<br/>-<br/>-<br/>-</td><td></td><td></td><td></td><td></td></drawin<> |       | -<br>26.6<br>-<br>-        | 25.0 —<br>-<br>- |        |           |                                                                                                                                              |                    |                                                                                                                                                                                                          |                            |                                                                             | -<br>-<br>-<br>-                        |                                                                                              |       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BOREHOLES 2017_                                                                                                                                                                                                                          |       | -<br>25.6<br>-<br>-<br>-   | 26.0 —           |        |           |                                                                                                                                              |                    |                                                                                                                                                                                                          |                            |                                                                             |                                         |                                                                                              |       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HOLE RAIL INDEXER                                                                                                                                                                                                                        |       | 24.6<br>-<br>-<br>-        | 27.0 —           |        |           |                                                                                                                                              |                    |                                                                                                                                                                                                          |                            |                                                                             | -<br>-<br>-<br>-                        |                                                                                              |       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                          |       | -<br>-<br>-                | 28.0 —           |        |           |                                                                                                                                              |                    |                                                                                                                                                                                                          |                            |                                                                             | -<br>-<br>-<br>-<br>-                   |                                                                                              |       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| OPMENT COPY.GLB                                                                                                                                                                                                                          |       | -<br>-<br>-                | 29.0 —           |        |           |                                                                                                                                              |                    |                                                                                                                                                                                                          |                            |                                                                             | -<br>-<br>-<br>-                        |                                                                                              |       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED                                                                                                                                                                                             | Note  |                            | 50.0             |        |           |                                                                                                                                              | _                  | Defect PI Planarity Description Legend PI Planar Un Undulose St Stepped                                                                                                                                  | Jt J<br>Pt F<br>Sh S       | Drilling Induced<br>Joint<br>Parting on Conta<br>Shear Seam<br>Crushed Seam | Cz Cri                                  | am<br>ushed Zone<br>actured Zone<br>eak Band                                                 |       | Ro<br>Sm<br>Po<br>SI | ughness Infill Amount Rough cn Clean Smooth sn Stained Polished vn Veneer Slickenside cg Coating                                                                                                                                                                                                                                                                                                                                                       |

Project:

## **BOREHOLE REPORT**

#### **BH17-EBC-2**

Sheet 1 of 4

Client: **Baffinland Iron Mines Corporation** Project No.: H353004

> Mary River Expansion Project Datum:

Location: Rail Indexer Foundation

**NAD 83** 

Platform: Ground Easting: 503,790.9 m

Northing: 7,974,895.2 m Surface Elevation: 54.05 m

**Bottom Elevation:** 32.21 m

**Total Depth:** 21.8 m

| <u> </u>               |                                         |        |        |             | Hole Diameter (mm): 100 mm                                                                                                                                                                                                                                                                                                                                                                                        |                            |                         | Τ       |                             |    |  |  |  | G.           |
|------------------------|-----------------------------------------|--------|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|---------|-----------------------------|----|--|--|--|--------------|
| Water<br>Elevation (m) | Depth (m)                               | Method | Casing | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.                                                                                                                                                                                                                                                                        | Frozen Soil<br>Description | Recovery<br>Sample Type | odi odi | Moisture<br>Content Profile | 00 |  |  |  | Othe<br>Test |
|                        | 1.0— 1.0— 1.0— 1.0— 1.0— 1.0— 1.0— 1.0— |        |        |             | SAND and GRAVEL trace Cobbles: Brown, well graded up to 75 mm. Cobbles recovered are partially pulveriszed to dry, beige rock flour. Ice poor soil.  SAND trace Silt: Brown, well graded. Ice poor soil.  SAND and GRAVEL trace Silt: Brown, wet, well graded. Ice poor soil.  GRAVEL with SAND, trace Silt. Brown, well graded. Ice poor soil.  GRAVEL with SAND, trace Silt. Brown, well graded. Ice poor soil. | Nbn<br>Nbn<br>Nbn          |                         |         |                             |    |  |  |  |              |

BAFFINLAND GINT LIBRARY,GLB Log ICE BOREHOLE RAIL INDEXER BOREHOLES 2017\_REV B.GPJ <-DrawingFile>> 04/04/2018 14:30

Notes:

## **BOREHOLE REPORT**

#### **BH17-EBC-2**

Sheet 2 of 4

Client: Baffinland Iron Mines Corporation Project No.: H353004

Project: Mary River Expansion Project Datum: NAD 83 Northing: 7,974,895.2 m

Surface Elevation: 54.05 m

Location:Rail Indexer FoundationPlatform:GroundBottom Elevation:32.21 mTotal Depth:21.8 m

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Date Logged: 9/24/2017 Logged By: R.S

Driller: Brent McAndrew Hole Diameter (mm): 100 mm Date Reviewed: 1/26/2018 Reviewed By: G.O.

| _      | Oriller:                      | Br                                 | ent N  | ЛсАr   | ndrew       | Hole Diameter (mm): 100 mm                                                                                                                                | 8                          |          | Revi        | ewed            | Ву:                      |     | G.Q |  |  |  |                |   |
|--------|-------------------------------|------------------------------------|--------|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-------------|-----------------|--------------------------|-----|-----|--|--|--|----------------|---|
| W/040r | Elevation (m)                 | Depth (m)                          | Method | Casing | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.                | Frozen Soil<br>Description | Recovery | Sample Type | Mois<br>Content | sture<br>t Profile<br>50 | 100 |     |  |  |  | Other<br>Tests |   |
|        |                               | 11.0-                              |        |        |             | GRAVEL and SAND with SAND, some Sit: Brown and grey. Recovery by HQ core barrel. Silt and sand content is estimated from wash water recovery. (Continued) |                            |          |             |                 |                          |     |     |  |  |  |                |   |
|        | -41.1                         | 13.0-                              |        |        |             | Start of Coring at 13.3m. Continued on Rock Core Log sheet.                                                                                               |                            |          | _           |                 |                          |     |     |  |  |  |                |   |
|        |                               | 14.0-<br>-<br>-<br>-<br>-<br>15.0- |        |        |             | Continued on Nock Core Log Sneet.                                                                                                                         |                            |          |             |                 |                          |     |     |  |  |  |                |   |
|        | -38.1                         | 16.0-                              |        |        |             |                                                                                                                                                           |                            |          |             |                 |                          |     |     |  |  |  |                |   |
|        | -<br>37.1                     | -<br>17.0-<br>-<br>-               |        |        |             |                                                                                                                                                           |                            |          |             |                 |                          |     |     |  |  |  |                |   |
|        | -36.1<br>-<br>-<br>-<br>-35.1 | 18.0-                              |        |        |             |                                                                                                                                                           |                            |          |             |                 |                          |     |     |  |  |  |                | + |
|        | 34.1                          | 20.0-                              |        |        |             |                                                                                                                                                           |                            |          |             |                 |                          |     |     |  |  |  |                | - |

**Baffinland Iron Mines Corporation** 

Mary River Expansion Project

Client:

Project:

## **BOREHOLE LOG**

\*ROCK CORE FORMAT\*

Datum:

Project No.: H353004

**NAD 83** 

**BH17-EBC-2** 

Sheet 3 of 4

Easting:

503,790.9 m

Northing:

7,974,895.2 m

Surface Elevation:

54.05 m

|                                                                                                                                                |                         |           |        |                                  | ,                                      |                    |                                                                                                                                                                                                                                                    | _                                               | ataiii                     | • 11/-                                                                       | വ രാ                        |                                                       | _        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|--------|----------------------------------|----------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------|------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|----------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                | Loc                     | catio     | n:     | F                                | Rail I                                 | ndexe              | er Foundation                                                                                                                                                                                                                                      | F                                               | latfor                     | <b>m</b> : Gr                                                                | ound                        |                                                       |          |                      | n Elevation: 32.21 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                |                         |           |        |                                  |                                        |                    |                                                                                                                                                                                                                                                    |                                                 | _                          |                                                                              |                             |                                                       |          |                      | <b>Depth:</b> 21.8 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                |                         |           |        | _                                | -                                      |                    |                                                                                                                                                                                                                                                    | aring: N/A                                      |                            | ate Logged:                                                                  |                             |                                                       | Lo       | gged                 | d By: R.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D                                                                                                                                              | riller:                 | В         | rent N | McAr                             | ndrew                                  | Hole Di            | iameter (mm): 100 mm Plu                                                                                                                                                                                                                           | ınge: Verti                                     | cal D                      | ate Checked                                                                  | : 1/26/20                   | 18                                                    | Re       | view                 | red By: G.Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                | (E)                     | _         |        | <u>~</u>                         | g                                      | ल                  | Rock Description                                                                                                                                                                                                                                   | ı                                               |                            | Fatimated                                                                    | la.                         | Defect                                                |          |                      | Defect Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                | Elevation (m)           | Depth (m) | ٦      | Run #/TCR                        | Graphic Log                            | Geological<br>Unit | ROCK TYPE;                                                                                                                                                                                                                                         |                                                 | Weathering/<br>Cementation | Estimated<br>Strength                                                        | Is <sub>(50)</sub><br>[UCS] | Spacing mm                                            |          | Log                  | Inclination, type, infill,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Water                                                                                                                                          | evat                    | l th      | Method | #                                | ab                                     | ⊢ĕo⊓               | Grain size, texture and colour, general defect col                                                                                                                                                                                                 | fabric,                                         | athe                       |                                                                              | MPa                         | 0 [100]                                               | %        | Defect Log           | amount, aperture, planarity, roughness, frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Š                                                                                                                                              |                         | å         | ĭ      | 銐                                | ් ලි                                   | 9                  | minor constituents                                                                                                                                                                                                                                 | S.                                              | နို ဗိ                     | FKLMIKE                                                                      |                             | 2000<br>600<br>200<br>200<br>200<br>200<br>200<br>200 | Rab      | De                   | Specific General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED BOREHOLE RAIL INDEXER BOREHOLES 2017_REV B.GPJ < <drawingfile>&gt; 04/04/2018 14:53</drawingfile> | - 42 41 40 39 38 37 36. | 1 13.0 -  |        | 13/97 12/105 11/130 10/103 9/107 | ************************************** |                    | Resuming in Rock Core Form BEDROCK: Granitic Gneiss, coarse grained, hard to very hinkish-grey colour. Fractures generally vertical, between 0 degrees and horizontal, from degrees.  Numerous joints and fractures with clayey-silt and fine sand | medium to nard, s are to 15 70 to 90 s infilled |                            |                                                                              | Dia - 157.4                 |                                                       | 42 48 48 |                      | Di — 10° DI ir Ro — 10° Cz ir Ro Silt — 10° Jt PI Ro 3 mm clay sn 10° Jt PI Ro 3 itt sn 10° Cz ir Ro 65° Jt PI Sm Silt — 10° DI ir Ro Silt — 10° Jt PI Sm Silt sn Cz — 10° Jt PI Sm Silt sn Cz — 10° Jt PI Sm Silt sn Cz — 10° Jt PI Sm Silt sn Co Jt |
| ATCH LIBRARY DEVELOF                                                                                                                           | <sub>34.</sub>          | 1 20.0 –  |        | l                                | + + +                                  |                    | Defect P Description Ir Legend C S                                                                                                                                                                                                                 | r Irregular<br>u Curved<br>n Undulose           | Jt s<br>Pt I<br>Sh s       | Drilling Induced<br>Joint<br>Parting on Contar<br>Shear Seam<br>Crushed Seam | Cz Cı<br>ct Fz Fr           | eam<br>rushed Zone<br>actured Zone<br>eak Band        | e<br>e   | Ro<br>Sm<br>Po<br>SI | ughness Infill Amount Rough cn Clean Smooth sn Stained Polished vn Veneer Slickenside cg Coating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



**Baffinland Iron Mines Corporation** 

Mary River Expansion Project

Client:

Project:

## **BOREHOLE LOG**

\*ROCK CORE FORMAT\*

Datum:

**BH17-EBC-2** 

Sheet 4 of 4

503,790.9 m

Easting: Project No.: H353004

**NAD 83** 

Northing: 7,974,895.2 m

Surface Elevation: 54.05 m

|       | L                     | oca           | atior                      | ղ։       | R         | ail Ir                                                                                                   | ndexe              | r Foundation                                                                                            | 1                                                              |                                    | PI      | atforr                     | n:     | Gr                  | ound                               |                                  |       |            | n Elevation: 32.21 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|-------|-----------------------|---------------|----------------------------|----------|-----------|----------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------|---------|----------------------------|--------|---------------------|------------------------------------|----------------------------------|-------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|       | Contra                | acto          | or: Bo                     | art L    | ong       | year                                                                                                     | Rig Typ            | e/ Mounting: Mi                                                                                         | niSonic Rig                                                    | Bearing:                           | N/A     | Da                         | ate Lo | ogged:              | 9/24/20                            | 17                               | 1     |            | Depth: 21.8 r<br>d By: R.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|       | Driller               | :             | Bre                        | ent N    | ЛсAr      | ndrew                                                                                                    | Hole Di            | ameter (mm): 10                                                                                         | 0 mm                                                           | Plunge:                            | Vertica | al <b>D</b> a              | ate Cl | hecked              | : 1/26/20                          | 18                               |       |            | red By: G.(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|       | water                 | Elevation (m) | Depth (m)                  | Method   | Run #/TCR | Graphic Log                                                                                              | Geological<br>Unit | Grain siz<br>colour, ge                                                                                 | ROCK TYP<br>ze, texture a<br>neral defector constitu           | E;<br>and fabric,<br>t condition   | ıs,     | Weathering/<br>Cementation | Stre   | mated<br>ength<br>≅ | Is <sub>(50)</sub><br>[UCS]<br>MPa | Defect<br>Spacing<br>mm<br>[001] | 8 8   | Defect Log | Defect Description  Inclination, type, infill, amount, aperture, planarity, roughness, frequency  Specific Gen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|       | -<br>-<br>-<br>-<br>- | 33.1          | 21.0 —                     |          | 14 / 100  | + + +<br>+ + +<br>- + + |                    | BEDROCK: Gi<br>coarse grained<br>pinkish-grey of<br>generally vertic<br>degrees and h<br>degrees. (Cont | l, hard to ve<br>blour. Fracti<br>cal, betwee<br>orizontal, fr | ery hard,<br>ures are<br>n 0 to 15 |         |                            |        |                     | -<br>-<br>-<br>-<br>-              |                                  | 42 42 |            | 185" JI PI SM SIII SN -20" JI PI SM SIII SN -15" JI PI SM SIII SN -15" JI PI SM SIII SN -0" DI IF RO 85" JI PI SM SIII SN -0" DI IF RO 20" JI PI SM SIII SN -15" JI PI SM SIII SN -15" JI PI SM SIII SN -15" JI PI SM SIII SN -25" DI IF RO -10" JI PI SM SIII SN -25" DI IF RO -25" JI PI SM SIII SN -25" JI PI SM |   |
|       | -<br>-<br>-           | 32.1          | 22.0 —                     |          |           |                                                                                                          |                    | To Target Dep<br>Drillhole BH1<br>21.8m.                                                                |                                                                | rminated a                         | at      |                            |        |                     | -<br>-<br>-<br>-<br>-<br>-<br>-    |                                  |       |            | -0" DI I'RO -0" DI I'RO -0" DI I'RO -0" DI I'RO -0" JP IRO SIII sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 0.1.0 | -<br>-<br>-<br>-      | 30.1          | 24.0 —<br>-<br>-<br>-<br>- |          |           |                                                                                                          |                    |                                                                                                         |                                                                |                                    |         |                            |        |                     | -<br>-<br>-<br>-                   |                                  |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|       | - :<br>-<br>-<br>-    | 29.1          | 25.0 —<br>-<br>-           |          |           |                                                                                                          |                    |                                                                                                         |                                                                |                                    |         |                            |        |                     | -<br>-<br>-                        |                                  |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|       | -<br> -<br> -<br> -   | 28.1          | 26.0 —                     |          |           |                                                                                                          |                    |                                                                                                         |                                                                |                                    |         |                            |        |                     | -<br>-<br>-<br>-                   |                                  |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|       | -<br>-<br>-<br>-      | 27.1          | 27.0 —<br>-<br>-<br>-      |          |           |                                                                                                          |                    |                                                                                                         |                                                                |                                    |         |                            |        |                     | -<br>-<br>-<br>-                   |                                  |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 3     | -<br>-<br>-<br>-      | 26.1          | 28.0 —<br>-<br>-<br>-      |          |           |                                                                                                          |                    |                                                                                                         |                                                                |                                    |         |                            |        |                     | -<br>-<br>-<br>-                   |                                  |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 200   | -<br>-<br>-<br>-<br>- | 25.1          | 29.0 —<br>-<br>-<br>-<br>- |          |           |                                                                                                          |                    |                                                                                                         |                                                                |                                    |         |                            |        |                     | -<br>-<br>-<br>-                   |                                  |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| -     | lotes:                | 24.1          | 30.0                       | <u> </u> |           |                                                                                                          |                    |                                                                                                         |                                                                | Planarity                          |         | Type                       |        |                     |                                    |                                  |       | D.         | ughness Infill Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = |

Notes:

HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED BOREHOLE RAIL INDEXER BOREHOLES 2017\_REV B.GPJ <<DrawingFile>> 04/04/2018 14:53

Defect Description <u>Legend</u>

<u>Planarity</u>

Planar Irregular Curved Undulose Stepped

<u>Type</u> Drilling Induced Sm Joint Cz Parting on Contact Fz Shear Seam Band Crushed Seam DI Jt Pt Sh Cs

Seam Crushed Zone Fractured Zone Weak Band

Roughness Rough Smooth Polished Slickenside Ro Sm Po Sl

Infill Amount Clean Stained Veneer Coating cn sn vn cg

Project:

Contractor: Boart Longyear

## **BOREHOLE REPORT**

#### BH17-M008-R

Sheet 1 of 4

Client: **Baffinland Iron Mines Corporation** 

Mary River Expansion Project

Rig Type/ Mounting: MiniSonic Rig

Location: Rail Indexer Foundation Project No.: H353004

Datum: **NAD 83** 

Platform: Ground

Date Logged: 9/17/2017

Easting: 503,772.0 m

Northing: 7,974,960.0 m Surface Elevation: 52.00 m

**Bottom Elevation:** 30.01 m

**Total Depth:** 22.0 m Logged By: R.S

| Drille | r:                                                                                                        | Bre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ent N  | /lcAn  | drew        | Hole Diameter (mm): 100 mm                                                                                                                                                    | Date F                     | Revi     | iew         | <b>ved:</b> 1/26 | 6/2018                    | Re | eview | ed E | By: |  | G.Q            |  |
|--------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-------------|------------------|---------------------------|----|-------|------|-----|--|----------------|--|
| Water  | Elevation (m)                                                                                             | Depth (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method | Casing | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.                                    | Frozen Soil<br>Description | Recovery | Sample Type | Cor              | Moisture<br>ntent Profile |    |       |      |     |  | Other<br>Tests |  |
|        | <b>∆0</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - | Meth   | Casi   | Grap        | (size, grading, shape, roundness), colour, structure, accessory components.  NO SAMPLES TAKEN IN OVERBURDEN. Advanced sonic tube to refusal and began diamond coring bedrock. | Description                | Recover  | Samble      |                  | 50 100                    |    |       |      |     |  |                |  |
| -4     | 13.0                                                                                                      | 9.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        |             |                                                                                                                                                                               |                            |          |             |                  |                           |    |       |      |     |  | -              |  |

BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL INDEXER BOREHOLES 2017\_REV B.GFJ <<DrawingFile>> 04/04/2018 14:30

Notes: Redrill of BH16-M008. Elevation is approximate.

## **BOREHOLE REPORT**

#### BH17-M008-R

Sheet 2 of 4

Client: **Baffinland Iron Mines Corporation** 

Project No.: H353004

Northing:

Surface Elevation:

**Bottom Elevation:** 

**Total Depth:** 

Logged By:

Easting:

503,772.0 m 7,974,960.0 m

Project: Mary River Expansion Project

**NAD 83** 

52.00 m 30.01 m

Location: Rail Indexer Foundation

Platform: Ground

22.0 m R.S

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Date Logged: 9/17/2017

Datum:

| Dri                                                                                                                                   | ller:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bre       | ent N  | 1cAn   | drew        | Hole Diameter (mm): 100 mm                                                                                                                                                 | Date F                     | levi     | iew         | ed: 1/26 | 6/2018                    |     | Re | view | ved I | Ву: | <br> | G.Q            |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-------------|----------|---------------------------|-----|----|------|-------|-----|------|----------------|
| Water                                                                                                                                 | Elevation (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth (m) | Method | Casing | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.                                 | Frozen Soil<br>Description | Recovery | Sample Type | Cor      | Moisture<br>ntent Profile | 100 |    |      |       |     |      | Other<br>Tests |
| BAFFINLAND GINT LIBRARY.GLB Log ICE BOREHOLE RAIL INDEXER BOREHOLES 2017_REV B.GPJ < <drawingfile>&gt; 04/04/2018 14:30</drawingfile> | Depth (Part of the Part of the |           |        |        |             | NO SAMPLES TAKEN IN OVERBURDEN. Advanced sonic tube to refusal and began diamond coring bedrock. (Continued)  Start of Coring at 17.4m.  Continued on Rock Core Log sheet. |                            |          |             |          |                           |     |    |      |       |     |      |                |
| Note                                                                                                                                  | Notes: Redrill of BH16-M00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |        |        |             | elevation is approximate.                                                                                                                                                  |                            |          |             |          |                           |     |    |      |       |     |      |                |

## **BOREHOLE LOG**

\*ROCK CORE FORMAT\*

Client: **Baffinland Iron Mines Corporation** Project No.: H353004

Project: Mary River Expansion Project

Location: Rail Indexer Foundation

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Bearing: N/A

Datum: **NAD 83** 

Platform: Ground

**Date Logged:** 9/17/2017

## BH17-M008-R

Easting:

Surface Elevation:

Sheet 3 of 4

52.00 m

503,772.0 m

Northing: 7,974,960.0 m

**Bottom Elevation:** 30.01 m

Total Depth: 22.0 m Logged By: R.S

|                                                                                                   |       |                         |                  |        |               | ,                                       |                    |                                                                                                                                                                                                                                                                                 |                            |                      |                                         | - 5.         | ,          |                                    |                                |                               |      | ,     | 33-                  | R.5                                                                                                                |
|---------------------------------------------------------------------------------------------------|-------|-------------------------|------------------|--------|---------------|-----------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|-----------------------------------------|--------------|------------|------------------------------------|--------------------------------|-------------------------------|------|-------|----------------------|--------------------------------------------------------------------------------------------------------------------|
| ļ                                                                                                 | Dril  | ler:                    | Br               | ent N  | <b>/IcA</b> n | drew                                    | Hole Di            | ameter (mm): 100 mm Plunge: Vert                                                                                                                                                                                                                                                | cal                        | Da                   | te C                                    | he           | cked       | i: 1/26/20                         | )18                            |                               |      | Re    | view                 | ved By: G.Q                                                                                                        |
|                                                                                                   | Water | Elevation (m)           | Depth (m)        | Method | Run #/TCR     | Graphic Log                             | Geological<br>Unit | Rock Description  ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.                                                                                                                                                             | Weathering/<br>Cementation | ב                    | Sti                                     | ima<br>enç   |            | Is <sub>(50)</sub><br>[UCS]<br>MPa | Sp                             | Defe<br>paci<br>mm            | ing  | RQD % | Defect Log           | Defect Description  Inclination, type, infill, amount, aperture, planarity, roughness, frequency  Specific General |
| BOREHOLE RAIL INDEXER BOREHOLES 2017_REV B.GPJ < <drawingfile>&gt; 04/04/2018 14:57</drawingfile> |       | - 40.0 - 40.0 39.0 37.0 | -<br>-<br>-      |        |               |                                         |                    | Resuming in Rock Core Format 17.4m.                                                                                                                                                                                                                                             |                            |                      |                                         |              |            |                                    |                                |                               |      |       |                      |                                                                                                                    |
| HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED BOREHOLE RAIL                                        |       | -<br>-<br>-             | 18.0 —           |        | 1 / 101       | + + + + + + + + + + + + + + + + + + +   |                    | BEDROCK: Granitic Gneiss, medium to coarse grained, hard to very hard, pinkish-grey colour. Fractures are generally vertical, between 0 to 15 degrees and horizontal, from 70 to 90 degrees.  Numerous joints and fractures infilled with clayey-silt and fine sand throughout. |                            |                      |                                         |              |            |                                    |                                | <br> <br> <br> <br> <br> <br> |      | 0     |                      | −10° DI Ir Ro<br>∼10° ut Ir Sm Clay infill 40mm sn<br>−DI                                                          |
| LOPMENT COPY                                                                                      | -     | -<br>-<br>- 32.0        | -<br>-<br>20.0 — |        | 2 / 98        | + + + + + + + + + + + + + + + + + + + + |                    |                                                                                                                                                                                                                                                                                 |                            |                      |                                         |              |            | Dia -<br>47.2<br>Dia -<br>23.6     | -                              |                               |      | 64    |                      | DI<br>Fz<br>10° Jt PI Sm Silt sn                                                                                   |
| DEVE                                                                                              | Note  | s: R                    | edrill o         | f BH   | 16-M          | 008. E                                  | levation           | is approximate. <u>Planarity</u>                                                                                                                                                                                                                                                | Тур                        | e                    |                                         |              |            |                                    |                                |                               |      |       | Ro                   | ughness Infill Amount                                                                                              |
| HATCH LIBRARY                                                                                     |       |                         |                  |        |               |                                         |                    | DefectPIPlanarDescriptionIrIrregularLegendCuCurvedUnUnduloseStStepped                                                                                                                                                                                                           | DI<br>Jt<br>Pt<br>Sh<br>Cs | Dr<br>Jo<br>Pa<br>Sh | illing<br>int<br>irting<br>iear<br>ushe | on (<br>Sear | Conta<br>n | Cz Cr<br>act Fz Fr                 | eam<br>rushe<br>ractui<br>'eak | red 2                         | Zone |       | Ro<br>Sm<br>Po<br>Sl | Rough cn Clean<br>Smooth sn Stained<br>Polished vn Veneer<br>Slickenside cg Coating                                |



**Baffinland Iron Mines Corporation** 

Mary River Expansion Project

Client:

Project:

## **BOREHOLE LOG**

\*ROCK CORE FORMAT\*

Datum:

Project No.: H353004

**NAD 83** 

Sh

BH17-M008-R

Sheet 4 of 4

Easting:

503,772.0 m

Northing:

7,974,960.0 m 52.00 m

Surface Elevation:

|                                                                                                                                                                                                                                                     | Location: Rail Indexer Foundation |                                                                  |           |                                                |                      |                                       |                    |                                           |                                                                                                            |                                    | PI      | atfori                     | n:     | Gr                    | ound                                                |             |                               |       |                | n Elevation:                                                                                                                                                                                                                                 | 30.01 m                          |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------|-----------|------------------------------------------------|----------------------|---------------------------------------|--------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|---------|----------------------------|--------|-----------------------|-----------------------------------------------------|-------------|-------------------------------|-------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---|
|                                                                                                                                                                                                                                                     | Con                               | ontractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Bear |           |                                                |                      |                                       |                    |                                           | Bearing:                                                                                                   | N/A                                | р       | ate I o                    | uaeq.  | 9/17/20               | 17                                                  |             |                               |       | epth:<br>d By: | 22.0 m                                                                                                                                                                                                                                       |                                  |   |
|                                                                                                                                                                                                                                                     | Drill                             |                                                                  |           | rent McAndrew Hole Diameter (mm): 100 mm Plung |                      |                                       |                    |                                           |                                                                                                            |                                    | Vertica |                            |        |                       | 3/1//20<br>I: 1/26/20                               |             |                               |       |                | red By:                                                                                                                                                                                                                                      | R.S                              |   |
|                                                                                                                                                                                                                                                     |                                   |                                                                  |           |                                                | D - Book Description |                                       |                    |                                           |                                                                                                            |                                    | Vertice |                            | 410 01 | iconca                | 1/20/20                                             | Defe        | act                           |       | VICW           | Defect De                                                                                                                                                                                                                                    | G.Q<br>escription                | • |
|                                                                                                                                                                                                                                                     | Water                             | Elevation (m)                                                    | Depth (m) | Method                                         | Run #/TCR            | Graphic Log                           | Geological<br>Unit | colour,                                   | ROCK TYP<br>size, texture a<br>general defect<br>minor constitu                                            | PE;<br>and fabric,<br>et condition |         | Weathering/<br>Cementation | Stre   | nated<br>ength<br>≅ _ | Is <sub>(50)</sub><br>[UCS]<br>MPa                  | Space mr    | cing<br>n                     | RQD % | Defect Log     | Inclination,<br>amount, apert<br>roughness,<br>Specific                                                                                                                                                                                      | type, infill,<br>ure, planarity, |   |
|                                                                                                                                                                                                                                                     |                                   |                                                                  | 21.0 —    |                                                | 3/97 2/98            | + + + + + + + + + + + + + + + + + + + |                    | coarse grai<br>pinkish-gre<br>generally v | : Granitic Gnei<br>ned, hard to vo<br>y colour. Fract<br>ertical, betwee<br>d horizontal, fr<br>Continued) | ery hard,<br>ures are<br>n 0 to 15 |         |                            |        |                       | Dia - 94.4 _ [57.9] - [46.1] - [94.8] - Dia - 100.7 | <b>&gt;</b> | <br>                          | 68    |                | -10° DI ir Ro 10° JI ir Ro 50° JI ir Ro Silt sn -0° JI ir Ro Silt sn -0° JI ir Ro 0° JI ir Ro |                                  |   |
|                                                                                                                                                                                                                                                     |                                   | — 30.0<br>·                                                      | 22.0 —    |                                                |                      |                                       |                    | To Target [                               | •                                                                                                          | _                                  |         |                            |        |                       | - 100.7                                             |             | İ                             |       |                | 10° DI Ir Ro                                                                                                                                                                                                                                 |                                  |   |
| 8 14:57                                                                                                                                                                                                                                             |                                   | . 29.0                                                           | 23.0 —    |                                                |                      |                                       |                    | Drillhole I<br>22.0m.                     | BH17-M008-R 1                                                                                              | terminated                         | l at    |                            |        |                       | -<br>-<br>-<br>-<br>-                               |             | <br> <br> <br> <br> <br> <br> |       |                |                                                                                                                                                                                                                                              |                                  |   |
| < <drawngfile>&gt; 04/04/2018 14:57</drawngfile>                                                                                                                                                                                                    |                                   | - 28.0<br>- 28.0                                                 | 24.0 —    |                                                |                      |                                       |                    |                                           |                                                                                                            |                                    |         |                            |        |                       |                                                     |             |                               |       |                |                                                                                                                                                                                                                                              |                                  |   |
| REV B.GPJ < <drav< td=""><td></td><td>— 27.0</td><td>25.0 —</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drav<> |                                   | — 27.0                                                           | 25.0 —    |                                                |                      |                                       |                    |                                           |                                                                                                            |                                    |         |                            |        |                       |                                                     |             |                               |       |                |                                                                                                                                                                                                                                              |                                  |   |
| BOREHOLES 2017                                                                                                                                                                                                                                      |                                   | - 26.0                                                           | 26.0 —    |                                                |                      |                                       |                    |                                           |                                                                                                            |                                    |         |                            |        |                       |                                                     |             |                               |       |                |                                                                                                                                                                                                                                              |                                  |   |
| HOLE RAIL INDEXER                                                                                                                                                                                                                                   | -                                 |                                                                  | 27.0 —    |                                                |                      |                                       |                    |                                           |                                                                                                            |                                    |         |                            |        |                       | -<br>-<br>-<br>-                                    |             |                               |       |                |                                                                                                                                                                                                                                              |                                  |   |
| IENT COPY.GLB Log CORED BOREHOLE RAIL INDEXER BOREHOLES 2017_REV B.GPJ                                                                                                                                                                              |                                   | - 24.0<br>- 23.0                                                 | 29.0 —    |                                                |                      |                                       |                    |                                           |                                                                                                            |                                    |         |                            |        |                       | -<br>-<br>-<br>-<br>-<br>-                          |             | <br> <br> <br> <br> <br> <br> |       |                |                                                                                                                                                                                                                                              |                                  |   |
| ENT                                                                                                                                                                                                                                                 | ŀ                                 | .                                                                | -         | 1                                              |                      |                                       |                    |                                           |                                                                                                            |                                    |         |                            |        |                       | -                                                   |             |                               |       |                |                                                                                                                                                                                                                                              |                                  |   |

HATCH LIBRARY DEVELOPMENT COPY.GLB |

Notes: Redrill of BH16-M008. Elevation is approximate.

Defect Description Legend Planarity
Pl Planar
Ir Irregular
Cu Curved
Un Undulose
St Stepped

Type

IT DI Drilling Induced Sm
Ilar Jt Joint C2
Idd Pt Parting on Contact F2
Iose Sh Shear Seam Band
Idd Cs Crushed Seam

Sm Seam Cz Crushed Zone Fz Fractured Zone Band Weak Band Roughness
Ro Rough
Sm Smooth
Po Polished
SI Slickenside

Infill Amount

cn Clean
sn Stained
vn Veneer
cg Coating

## **BOREHOLE REPORT**

#### BH16-M008

Easting:

Sheet 1 of 3

503,771.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Milne Port Train Unloading Datum: NAD83

Platform: Ground

Northing: 7,974,959.0 m Surface Elevation: 52.00 m

**Bottom Elevation:** 30.66 m

**Total Depth:** 21.3 m

| Oriller:                      | E.I                               | Bead      | cham     | ıp          | Hole Diameter (mm): 96                                                                                                                     |                    | Da                   | te R        | evi        | ewed:2/10/2017 | R                   | evie           | wed          | By:           |              |               | SH/W       |
|-------------------------------|-----------------------------------|-----------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------|------------|----------------|---------------------|----------------|--------------|---------------|--------------|---------------|------------|
| Elevation (m)                 | Depth (m)                         | Method    | Casing   | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. | Moisture Condition | Consistency/ Density | Sample Type | Recovery % | Blows          | Field Water Content | Percent Gravel | Percent Sand | Percent Fines | Liquid Limit | Plastic Index | Oth<br>Tes |
| - 50.0 C - 48.0 C - 48.0      | 2.0-                              |           |          |             | SANDY GRAVEL: Rounded to sub angular gravel, coarse grained sand, well graded  SAND: Coarse to fine grained  3.00 m to 4.60 m: Some SILT   |                    |                      |             |            |                | 18                  | 0              | 73           | 27            |              |               |            |
| -<br>-<br>46.0                | 6.0-                              |           |          |             | SAND and GRAVEL: Coarse grained sand  6.90 m to 7.60 m: Zone of inferred                                                                   |                    |                      |             |            |                |                     |                |              |               |              |               |            |
|                               | 8.0-<br>-<br>-<br>-<br>-<br>10.0- | Vibracore | H-Casing |             | cobbles                                                                                                                                    |                    |                      |             |            |                | 20                  |                |              |               |              |               |            |
| 40.0                          | 12.0-                             |           |          |             | SILTY SAND, some GRAVEL: Fine to coarse, subangular gravel                                                                                 |                    |                      |             |            |                | 9                   |                |              |               |              |               |            |
| 38.0<br>                      | -<br>14.0-<br>-<br>-              |           |          |             | 12.20 m to 12.60 m: GRAVELLY SILTY SAND  13.80 m to 15.40 m: SILTY SAND                                                                    |                    |                      |             |            |                |                     |                |              |               |              |               |            |
| -36.0<br>-<br>-<br>-<br>-34.0 | 16.0-                             |           |          |             |                                                                                                                                            |                    |                      |             |            |                |                     |                |              |               |              |               |            |
| 32.0                          | -                                 |           | [18.8]   | 9 b         | Start of Coring at 18.8m. Continued on Rock Core Log sheet.                                                                                |                    |                      |             |            |                |                     |                |              |               |              |               |            |

## **BOREHOLE REPORT**

## BH16-M009

Sheet 1 of 2

503,904.0 m

7,974,935.0 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2 Datum:

Location: Milne Port Train Unloading NAD83

Platform: Ground

**Bottom Elevation:** 

Surface Elevation:

Easting:

Northing:

52.32 m

57.50 m

| Contractor:   |           |           |          |             | Rig Type/ Mounting: MiniSonic Rig                                                                                                                                                                                                                                                                                                           |                    |                      |             |            | _     | l: 10/4/2016 |                     | ogge           |              |               |              |               | N            |
|---------------|-----------|-----------|----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------|------------|-------|--------------|---------------------|----------------|--------------|---------------|--------------|---------------|--------------|
| Oriller:      | San       | nuel      | Fly      | nn<br>T     | Hole Diameter (mm): 96                                                                                                                                                                                                                                                                                                                      |                    | Dat                  | e R         | levi       | iew   | ed:2/10/2017 | +                   | eviev          | ed I         | Ву:           |              |               | SH/W         |
| Elevation (m) | Depth (m) | Method    | Casing   | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.                                                                                                                                                                                                  | Moisture Condition | Consistency/ Density | Sample Type | Recovery % | Blows |              | Field Water Content | Percent Gravel | Percent Sand | Percent Fines | Liquid Limit | Plastic Index | Othe<br>Test |
|               |           | Vibracore | H-Casing |             | ORGANICS: Organic soil GRAVELLY SAND: Light brown to grey, angular to subgranular gravel, medium to coarse grained sand SAND and GRAVEL: Grey to light brown, Fine to coarse grained sand, angular to subangular gravel Inferred BOULDERS with SAND: Coarse to fine grained sand Start of Coring at 3.7m. Continued on Rock Core Log sheet. |                    |                      | <u>Ø</u>    | α.         |       |              |                     |                |              |               |              |               |              |

Client:

## **BOREHOLE REPORT**

## BH16-M010

Sheet 1 of 1

Easting: 503,394.0 m **Baffinland Iron Mines** Project No.: H352034

Northing: 7,974,877.0 m Project: Mary River Expansion Study Stage 2 Datum: Surface Elevation: 13.30 m NAD83

**Bottom Elevation:** -1.90 m Location: Milne Port Crusher Platform: Ground **Total Depth:** 15.2 m

|                                                                                                                 | Con   | tracto                                | or: Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | art l     | ong         | year        | Rig Type/ Mounting: MiniSonic Rig                                                                                                          |                    | Da                   | te L        | ogge       | ed:   | 12/9/2016                   | Lo                  | ogge           | d By         | :             |              |               | MR             |   |
|-----------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------|------------|-------|-----------------------------|---------------------|----------------|--------------|---------------|--------------|---------------|----------------|---|
| L                                                                                                               | Drill | er:                                   | Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | chae      | el Sc       | ott         | Hole Diameter (mm): 96                                                                                                                     |                    | Da                   | te R        | evie       | we    | <b>d</b> :2/10/2017         | R                   | eviev          | ved I        | Зу:           |              |               | SH/WH          |   |
|                                                                                                                 | Water | Elevation (m)                         | Depth (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method    | Casing      | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. | Moisture Condition | Consistency/ Density | Sample Type | Recovery % | Blows | Moisture<br>Content Profile | Field Water Content | Percent Gravel | Percent Sand | Percent Fines | Liquid Limit | Plastic Index | Other<br>Tests |   |
| וסיארו כבס בעש סטוב וסבר ואור חבוסווווויות בססק ארת סטו אינות וחבר של אינות וחבר בססק ארת סטו אינות היא היא היא |       | □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ | 10.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- 11.0- | Vibrocore | H-Casing Ca |             |                                                                                                                                            | Moist              | Consi                | Samp        | Keco       | Plow  |                             | 28                  | 0              | 16           |               | bJT          | Plas          |                |   |
| 3                                                                                                               | Note  | <u>6.7</u><br>S:                      | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |             |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               |                | F |

BAFFINLAND GINT LIBRARY GLB Log SOIL BOREHOLE RAIL ALIGNMENT ALL\_WITH ICE LOG\_REV 3.GPJ <-CrawingFile>> 02/10/2017 17:43

## **BOREHOLE REPORT**

## BH16-M011

Sheet 1 of 1

503,339.0 m

7,974,868.0 m

12.00 m

-3.20 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Milne Port Crusher

BAFFINLAND GINT LIBRARY.GLB Log SOIL BOREHOLE RAIL ALLGNMENT ALL\_WITH ICE LOG\_REV 3.GPJ <<DrawingFile>> 02/10/2017 17:43

Datum: NAD83

Platform: Ground **Bottom Elevation:** 

Surface Elevation:

Easting:

Northing:

**Total Depth:** 15.2 m

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contr  | acto          | or: Bo                                                                                         | oart L    | _ong     | year        | Rig Type/ Mounting: MiniSonic Rig                                                                                                          |                    | Da                   | te Lo       | ogg        | ed:   | 12/4/2016                   |                     |                | Jepti<br>d By |               |              |               | 15.2 m<br>MR   |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|------------------------------------------------------------------------------------------------|-----------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------|------------|-------|-----------------------------|---------------------|----------------|---------------|---------------|--------------|---------------|----------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drille | r:            | Mi                                                                                             | chae      | el Sc    | ott         | Hole Diameter (mm): 96                                                                                                                     |                    | Da                   | te R        | evie       | we    | <b>d</b> :2/10/2017         | Re                  | eviev          | ved I         | Зу:           |              |               | SH/WH          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water  | Elevation (m) | Depth (m)                                                                                      | Method    | Casing   | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. | Moisture Condition | Consistency/ Density | Sample Type | Recovery % | Blows | Moisture<br>Content Profile | Field Water Content | Percent Gravel | Percent Sand  | Percent Fines | Liquid Limit | Plastic Index | Other<br>Tests |          |
| NAIL ALL WITH OLL OUT TO STORY STORY OF |        | 3.0           | 2.0-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Vibrocore | H-Casing |             | SAND and GRAVEL: Light brown, moist, subangular gravel SILT, trace SAND: Dark grey, moist                                                  |                    |                      |             |            |       | •                           | 16                  | 0              | 68            | 32            |              |               | -              |          |
| GINI LIBRARY.GLB LOG SOIL BOREHOLE R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -      | 6.0           | 16.0-<br>-<br>-<br>-<br>18.0-<br>-                                                             |           |          |             | Drillhole BH16-M011 terminated at 15.2m.                                                                                                   |                    |                      |             |            |       |                             |                     |                |               |               |              |               | -              |          |
| - INCAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes: | 8.0_ I        | 20.0                                                                                           |           |          |             | 1                                                                                                                                          | <u> </u>           |                      | <u> </u>    |            |       |                             |                     | 1              |               |               |              |               |                | <u>=</u> |

## **BOREHOLE REPORT**

#### BH16-M012

Sheet 1 of 1

503,268.0 m

7,974,848.0 m

12.00 m

-3.20 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Milne Port Generator

Datum: NAD83

Platform: Ground **Bottom Elevation:** 

Easting:

Northing:

Surface Elevation:

**Total Depth:** 

15.2 m Logged By:

Contractor: Boart Longyear Rig Type/ Mounting: MiniSonic Rig Date Logged: 12/8/2016 MR Driller: Michael Scott Hole Diameter (mm): 96 Date Reviewed: 2/10/2017 Reviewed By: SH/WH

|                                                                                                   | Water | Elevation (m)        | Depth (m)   | Method    | Casing   | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. | Moisture Condition | Consistency/ Density | Sample Type | Recovery % | Blows | Moisture<br>Content Profile | Field Water Content | Percent Gravel | Percent Sand | Percent Fines | Liquid Limit | Plastic Index | Other<br>Tests |
|---------------------------------------------------------------------------------------------------|-------|----------------------|-------------|-----------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------|------------|-------|-----------------------------|---------------------|----------------|--------------|---------------|--------------|---------------|----------------|
|                                                                                                   |       | -<br>-<br>-<br>-10.0 | 2.0-        |           |          |             | SAND and GRAVEL, some SILT, trace<br>COBBLES: Light brown, rounded<br>SILT, some SAND: Dark grey                                           |                    |                      |             |            |       | •                           | 6                   | 39             | 45           | 17            |              |               | _              |
|                                                                                                   |       |                      | 4.0-        |           |          |             |                                                                                                                                            |                    |                      |             |            |       |                             | 21                  | 0              | 16           | 84            |              |               | -<br>-<br>-    |
|                                                                                                   |       | -<br>-<br>6.0        | 6.0-        |           |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              |
| 02/10/2017 17:43                                                                                  |       | -<br>                | 8.0-        | Vibrocore | H-Casing |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               |                |
| 3.GPJ < <drawingfile>&gt;</drawingfile>                                                           |       | -<br>2.0<br>         | 10.0-       |           |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              |
| HOLE RAIL ALIGNMENT ALL_WITH ICE LOG_REV 3.GPJ < <drawingfile>&gt; 02/10/2017 17:43</drawingfile> |       |                      | 12.0-       |           |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              |
| L ALIGNMENT A                                                                                     |       | <del></del>          | 14.0-       |           | [15.2]   |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               |                |
| BOREHOLE RA                                                                                       |       |                      | 16.0-       |           |          |             | To Target Depth.  Drillhole BH16-M012 terminated at 15.2m.                                                                                 |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              |
| 3LB Log SOIL                                                                                      |       | -<br>-<br>6.0        | 18.0-       |           |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              |
| BAFFINLAND GINT LIBRARY.GLB Log SOIL BORE                                                         |       | -<br>-<br>-          | -<br>-<br>- |           |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | <br> -<br> -   |
| BAFFINLAND                                                                                        | Note  | es:                  | 20.0        |           |          |             |                                                                                                                                            |                    |                      |             |            |       | 1 1 1                       |                     |                |              |               |              |               |                |

Location:

BAFFINLAND GINT LIBRARY GLB Log SOIL BOREHOLE RAIL ALIGNMENT ALL\_WITH ICE LOG\_REV 3.GPJ <<DrawingFile> 02/10/2017 17:43

Notes:

## **BOREHOLE REPORT**

## BH16-M013

Sheet 1 of 1

503,140.0 m

7,974,820.0 m

Easting: Client: **Baffinland Iron Mines** Project No.: H352034 Northing:

Project: Mary River Expansion Study Stage 2

Milne Port Screening

Datum: NAD83

Platform: Ground Surface Elevation: 11.00 m **Bottom Elevation:** -4.20 m

|   |                    |               | _              |            |          |             |                                                                                                                                            | <i>)</i>           |                      | Giodila     |            |       | Deptl                       |                     |                |              | 15.2 m        |              |               |                |                     |
|---|--------------------|---------------|----------------|------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------|------------|-------|-----------------------------|---------------------|----------------|--------------|---------------|--------------|---------------|----------------|---------------------|
|   |                    |               | or: Bo         |            | ·        | •           | Rig Type/ Mounting: MiniSonic Rig                                                                                                          |                    |                      |             |            |       | 12/5/2016                   |                     |                | d By         |               |              |               | MR             |                     |
| ŀ | Drille             |               | Mid            | chae       | I Sc     | ott         | Hole Diameter (mm): 96                                                                                                                     |                    |                      | te R        | evie       | we    | ed:2/10/2017                | +                   | eviev          | ved I        | 3y:<br>│      |              |               | SH/WH          | +                   |
|   | Water              | Elevation (m) | Depth (m)      | Method     | Casing   | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. | Moisture Condition | Consistency/ Density | Sample Type | Recovery % | Blows | Moisture<br>Content Profile | Field Water Content | Percent Gravel | Percent Sand | Percent Fines | Liquid Limit | Plastic Index | Other<br>Tests |                     |
| İ |                    |               |                |            |          |             | Organic soil and GRAVEL                                                                                                                    |                    |                      |             | Ť          |       |                             |                     |                |              |               |              |               |                | t                   |
|   | -<br>-<br>-        | 9.0           | 2.0—           |            |          |             | GRAVELLY SAND, some SILT: Light brown, medium to coarse grained sand, rounded to subangular gravel                                         |                    |                      |             |            |       |                             | 25                  | 32             | 48           | 20            |              |               |                |                     |
|   | -                  |               | -              |            |          |             | SILT, some SAND: Dark grey                                                                                                                 |                    |                      |             |            |       |                             |                     |                |              |               |              |               |                | -                   |
|   | -<br>-<br>-        | 7.0           | 4.0—<br>—<br>— |            |          |             | , ,                                                                                                                                        |                    |                      |             |            |       |                             | 21                  | 5              | 33           | 61            |              |               |                | -<br> -<br> -       |
|   | L                  | 5.0           | 6.0-           |            |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              | ļ                   |
|   | -<br>-<br>-        |               | -<br>-         | Vibrocore  | H-Casing |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               |                | -                   |
|   | -                  | 3.0           | 8.0-           | \<br> <br> | H        |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              | -<br>-<br>-         |
|   | _                  | 1.0           | 10.0-          |            |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              | -<br> -             |
| 5 | -                  | -1.0          | 12.0-          |            |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              | [<br>-<br>-         |
|   | -                  | -3.0          | 14.0—          |            |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               |                | -                   |
|   |                    |               | _              |            | [15.2]   |             |                                                                                                                                            |                    |                      | Ħ           |            |       |                             |                     |                |              |               |              |               |                | F                   |
|   | -<br>-<br>-<br>-   | -5.0          | 16.0-          |            |          |             | To Target Depth.  Drillhole BH16-M013 terminated at 15.2m.                                                                                 |                    |                      |             |            |       |                             |                     |                |              |               |              |               |                | -<br> -<br> -<br> - |
|   | <br> -<br> -<br> - | -7.0          | 18.0-          |            |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               |                | -                   |
| - |                    | -9.0          | 20.0           |            |          |             |                                                                                                                                            |                    |                      | Ш           |            | _     |                             |                     |                |              |               |              |               |                | #                   |

BAFFINLAND GINT LIBRARY GLB Log SOIL BOREHOLE RAIL ALIGNMENT ALL\_WITH ICE LOG\_REV 3.GPJ <<DrawingFile> 02/10/2017 17:43

## **BOREHOLE REPORT**

## BH16-M014

Sheet 1 of 1

503,052.0 m

7,974,782.0 m

11.00 m

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Milne Port Tail Pulley

NAD83

Platform: Ground

Datum:

**Bottom Elevation:** -4.20 m

Easting:

Northing:

Surface Elevation:

**Total Depth:** 15.2 m

|                              | Driller:               | М         | icha             | el S     | Scot | tt          | Hole Diameter (mm): 96                                                                                                                     |                    | Dod                  | _           |       |     |                             |                     |                |              |               |              |               |                |
|------------------------------|------------------------|-----------|------------------|----------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------|-------|-----|-----------------------------|---------------------|----------------|--------------|---------------|--------------|---------------|----------------|
|                              | (E)                    |           |                  | - 1      |      |             | Hole Blameter (Hill). 50                                                                                                                   |                    | Dai                  | e Re        | view  | ved | <b>i</b> :2/10/2017         | Re                  | eviev          | ved I        | Зу:           |              |               | SH/WH          |
|                              | Water<br>Elevation (m) | Depth (m) | Method           | Casing   | 8    | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. | Moisture Condition | Consistency/ Density | Sample Type | Blows |     | Moisture<br>Content Profile | Field Water Content | Percent Gravel | Percent Sand | Percent Fines | Liquid Limit | Plastic Index | Other<br>Tests |
|                              | -<br>-<br>-<br>-9.0    | 2.0       | -<br>-<br>-<br>- |          |      |             | GRAVELLY SILTY SAND: Grey to brown, angular to subangular gravel  SILTY SAND: Grey                                                         |                    |                      |             |       |     | •                           | 6                   | 22             | 52           | 26            |              |               | -              |
|                              |                        | 4.0       |                  |          |      |             |                                                                                                                                            |                    |                      |             |       |     |                             | 21                  | 0              | 78           | 22            |              |               | -              |
| griless ozrituzuti it.45     | -<br>-<br>-3.0         | 8.0       | Vibrocore        | H-Casing | 6    |             | SILT, some SAND: Dark grey, fine grained sand                                                                                              |                    |                      |             |       |     |                             |                     |                |              |               |              |               | -              |
| HICELOGEREV 3.GPJ << Drawing |                        | 12.0      |                  |          |      |             |                                                                                                                                            |                    |                      | _           |       |     |                             |                     |                |              |               |              |               | -              |
| L ALIGINIMEN I ALL           | -<br>3.0<br>-          | 14.0-     | -<br>-<br>-      | [15      | .2]  |             |                                                                                                                                            |                    |                      |             |       |     |                             |                     |                |              |               |              |               | -              |
| 3 SOIL BOREHOLE KAIL         |                        | 16.0      | -<br>-<br>-      |          |      |             | To Target Depth.  Drillhole BH16-M014 terminated at 15.2m.                                                                                 |                    |                      |             |       |     |                             |                     |                |              |               |              |               |                |
| LAND GINT LIBRARY.GLB LOG    |                        | 18.0      |                  |          |      |             |                                                                                                                                            |                    |                      |             |       |     |                             |                     |                |              |               |              |               | -              |

BAFFINLAND GINT LIBRARY GLB Log SOIL BOREHOLE RAIL ALIGNMENT ALL\_WITH ICE LOG\_REV 3.GPJ <<DrawingFile> 02/10/2017 17:43

## **BOREHOLE REPORT**

## BH16-M015

Sheet 1 of 1

Client: **Baffinland Iron Mines** Project No.: H352034

Project: Mary River Expansion Study Stage 2

Location: Milne Port Tail Pulley Alt.

NAD83

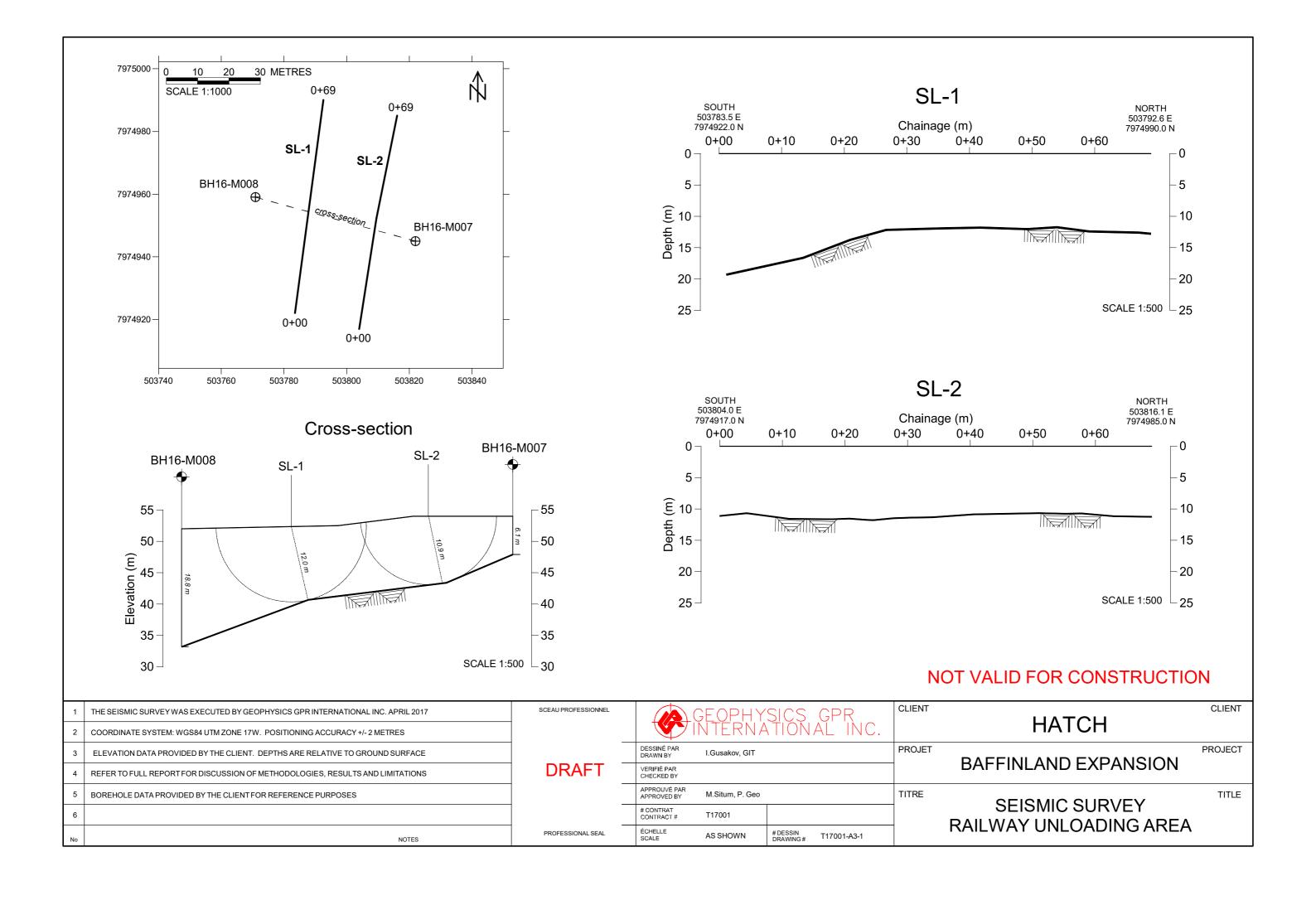
Platform: Ground

Datum:

Easting:

Northing:

Surface Elevation:

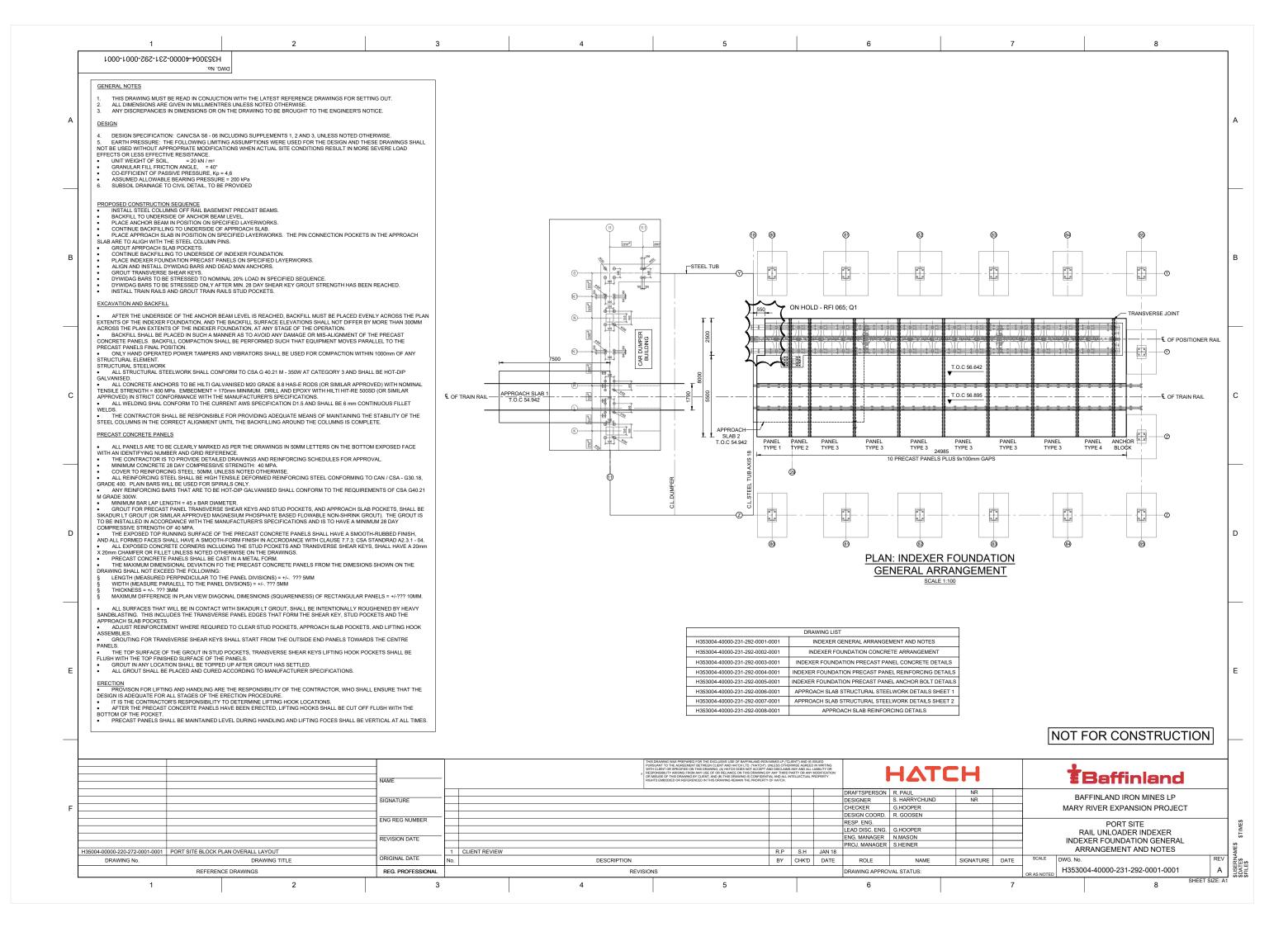

7,974,799.0 m 11.00 m

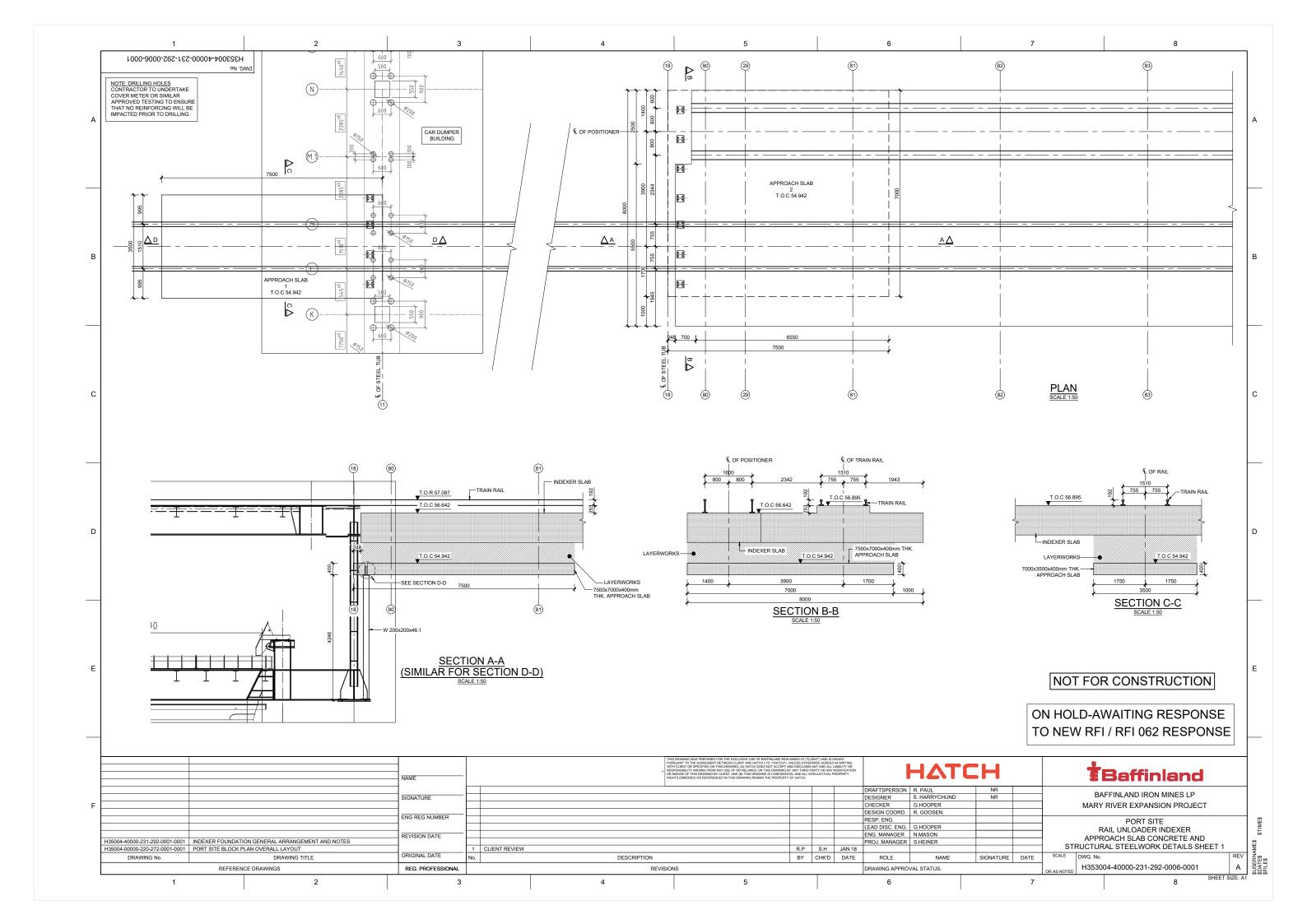
503,007.0 m

**Bottom Elevation:** -4.20 m

**Total Depth:** 15.2 m

|                     | Contract               | or: Bo     | oart I    | ong      | year        | Rig Type/ Mounting: MiniSonic Rig                                                                                                          |                    | Da                   | te L        | ogg        | ed:   |                             | l                   | gge            |              |               |              |               | MR             |   |
|---------------------|------------------------|------------|-----------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------|------------|-------|-----------------------------|---------------------|----------------|--------------|---------------|--------------|---------------|----------------|---|
|                     | Driller:               | Mi         | chae      | el Sc    | ott         | Hole Diameter (mm): 96                                                                                                                     |                    | Da                   | te R        | evie       | we    | <b>d</b> :2/10/2017         | Re                  | eview          | ved E        | Зу:           |              |               | SH/WH          |   |
|                     | Water<br>Elevation (m) | Depth (m)  | Method    | Casing   | Graphic Log | Soil Description  TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. | Moisture Condition | Consistency/ Density | Sample Type | Recovery % | Blows | Moisture<br>Content Profile | Field Water Content | Percent Gravel | Percent Sand | Percent Fines | Liquid Limit | Plastic Index | Other<br>Tests |   |
|                     | -<br>-<br>-<br>-9.0    |            |           |          |             | SAND and GRAVEL, trace SILT, trace COBBLES: Light brown to grey, fine to coarse grained sand, rounded gravel                               |                    |                      |             |            |       | •                           | 1                   | 32             | 59           | 10            |              |               | -              | - |
|                     | -<br>-<br>-<br>-7.0    | 4.0-       | -         |          |             | SAND, trace SILT: Light brown, fine to coarse grained sand,                                                                                |                    |                      |             |            |       |                             | 14                  | 15             | 71           | 14            |              |               | -              |   |
|                     | -<br>5.0<br>-          | 6.0-       |           | Đ.       |             | SILT, some SAND: Dark grey to brown                                                                                                        | -                  |                      |             |            |       |                             |                     |                |              |               |              |               | -              |   |
| UZ/1U/ZU1/ 11.40    | -<br>3.0<br>-          | 8.0-       | Vibrocore | H-Casing |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | =              | - |
| PJ SSUIAWIIIYIII    | -<br>1.0<br>-          | 10.0-      |           |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              | - |
| HICE LUG_REV S.O.   |                        | 12.0-      |           |          |             |                                                                                                                                            |                    |                      |             |            |       |                             | 24                  |                |              |               |              |               | -              | - |
| LIGINIMEN I ALL_WIT | -<br>3.0<br>           | 14.0-      |           | [15.2]   |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              |   |
| UIL BUREHULE NAIL 1 |                        | 16.0-      |           | 1.0.2    | <u></u>     | To Target Depth.  Drillhole BH16-M015 terminated at 15.2m.                                                                                 |                    |                      |             |            |       |                             | 27                  |                |              |               |              |               | -              | - |
| LIBRARY.GLB LOG SU  |                        | 18.0-<br>- |           |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               | -              | - |
| TINLAIND GILL       | Notes:                 | 20.0       | <u></u>   |          |             |                                                                                                                                            |                    |                      |             |            |       |                             |                     |                |              |               |              |               |                | : |






Baffinland Iron Mines Corporation - Mary River Expansion Project Geotechnical Recommendations for Dumper Load-out Tunnel and Indexer - July 30, 2018

## Appendix B Indexer Slab Drawings



