4 CONCLUSIONS

A geophysical investigation involving Georadar was carried out at the Mary River Project, Baffin Island, Nunavut.

Subsurface ice mapping was carried out at nine sites along the proposed rail alignment. Results of the survey are presented in Drawings GPR17 – MILNE INLET, GPR17 – KM19, GPR17 – KM20, GPR17 – KM39.6, GPR17 – KM49, GPR17 – KM82.2, GPR17 – KM97, GPR17 – KM100.1, GPR17 – KM109. Ice was only found in Km 49, seen in drawing GPR17-KM49.

Interpretation of the geophysical data has been performed by Mauritz van Zyl. This report has been written by Milan Situm, P.Geo.

PRACTISING MEMBER

Milan Situm, P.Geo.

Mila Stur

Manager

APPENDIX A

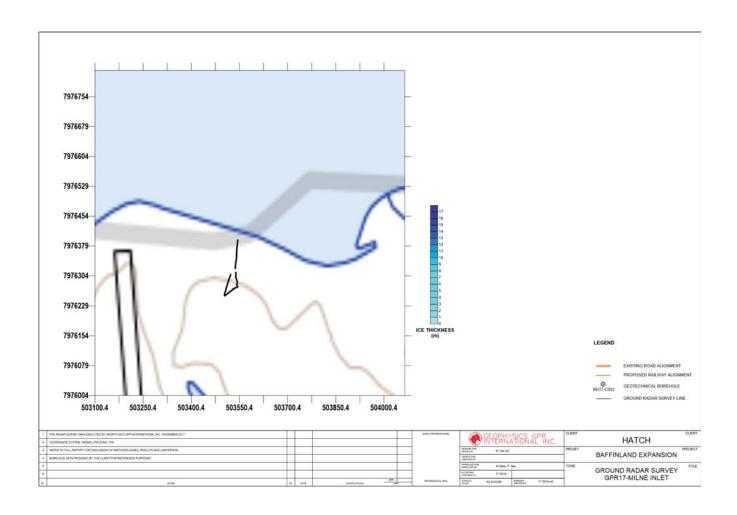
Drawings GPR17 – MILNE INLET,

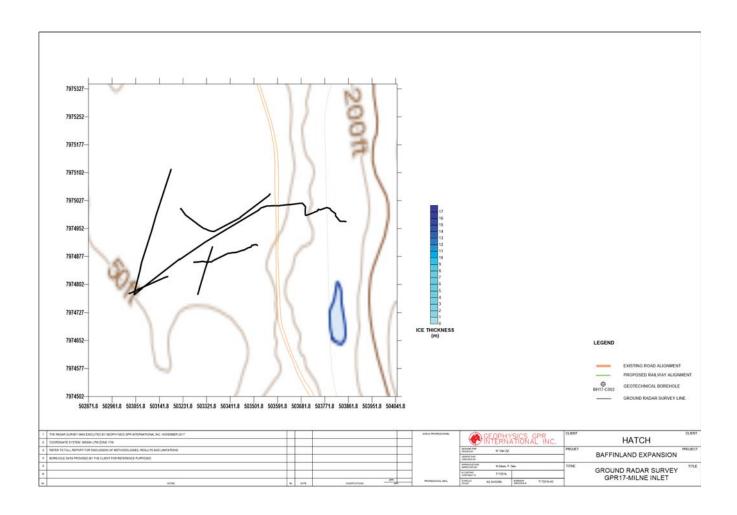
GPR17-KM19,

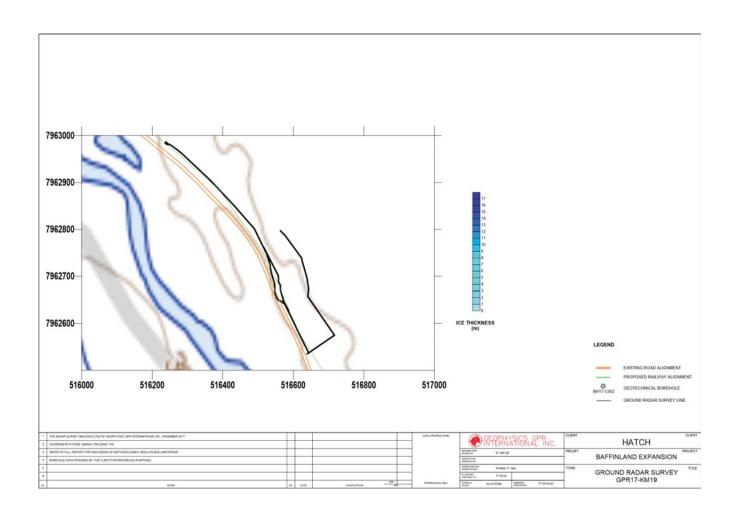
GPR17-KM20,

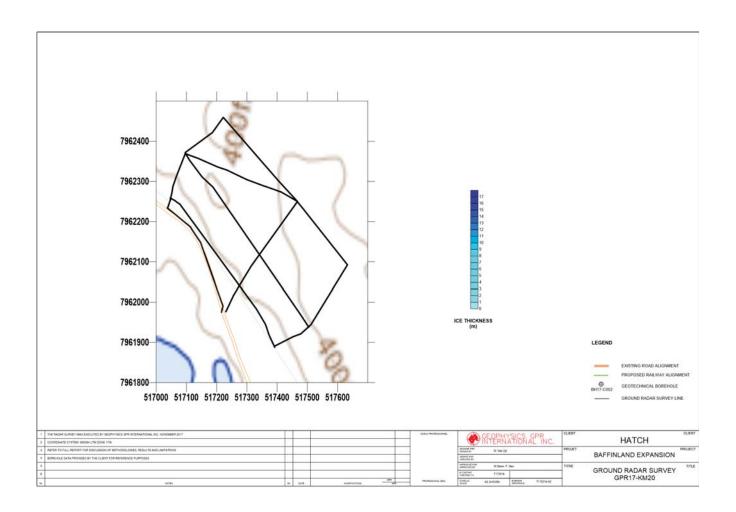
GPR17 -KM39.6,

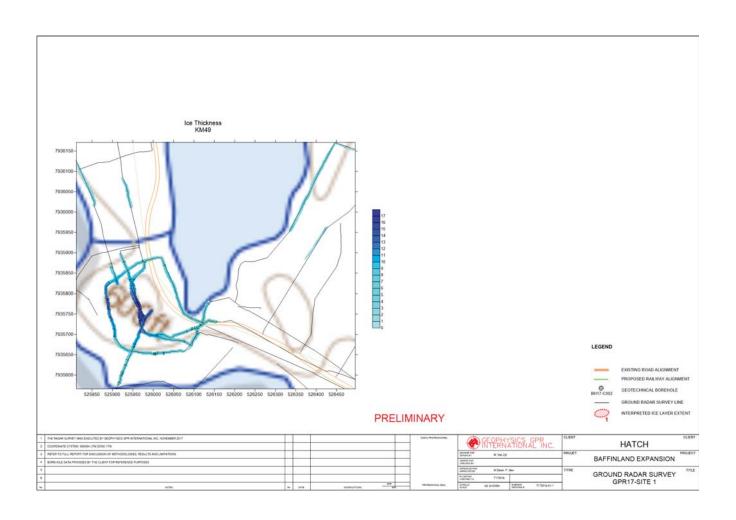
GPR17-KM49, Ice was only found in Km 49, seen in drawing GPR17-KM49.

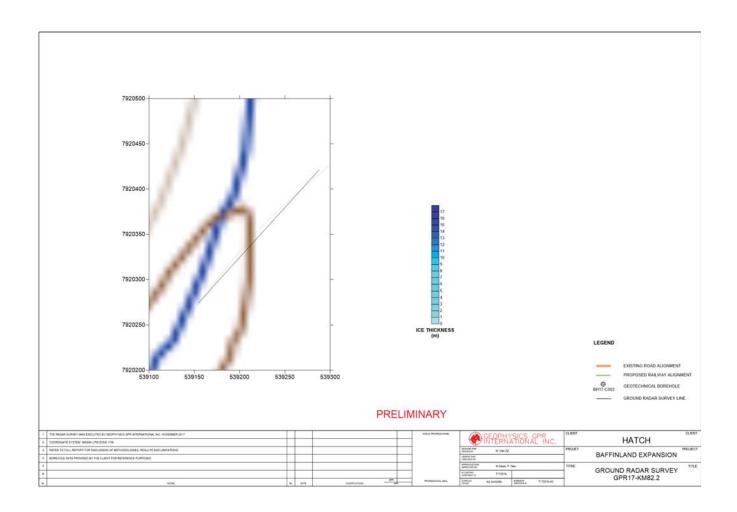

GPR17 - KM82.2,

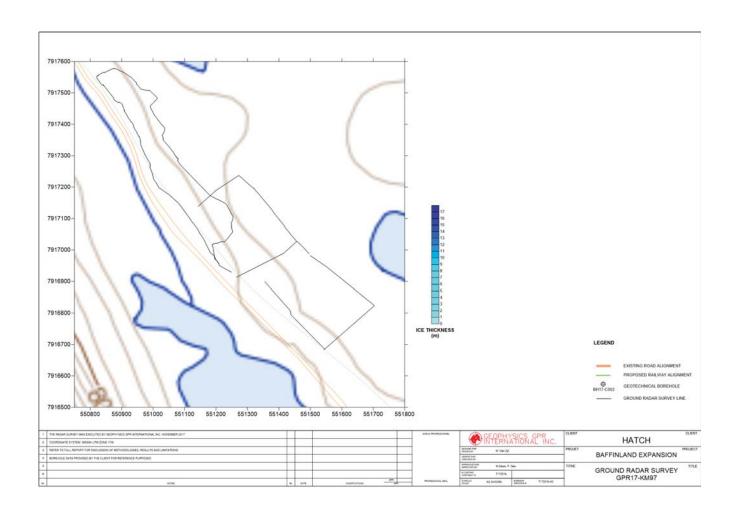

GPR17 - KM97,

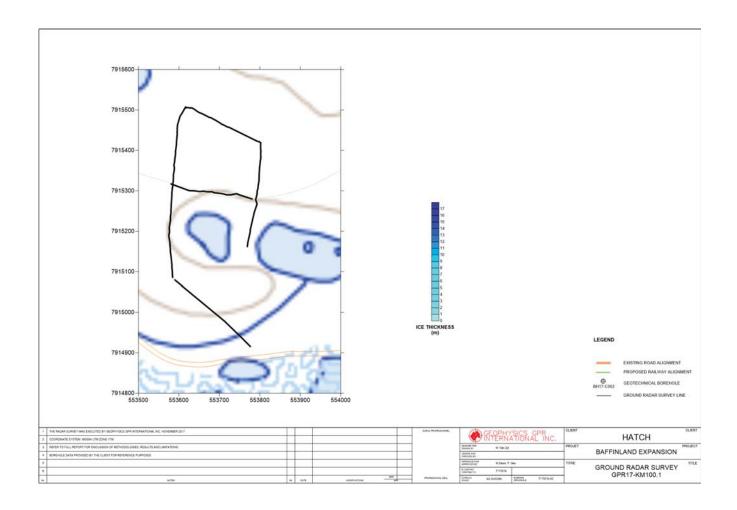

GPR17 -KM100.1,

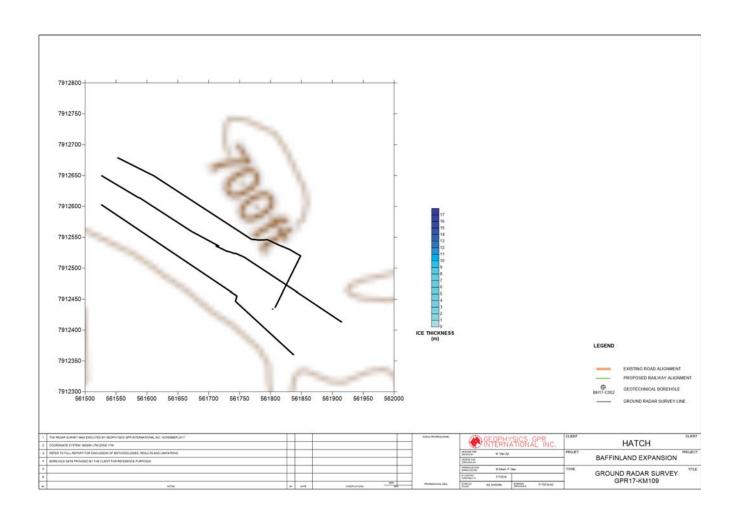

GPR17-KM109.

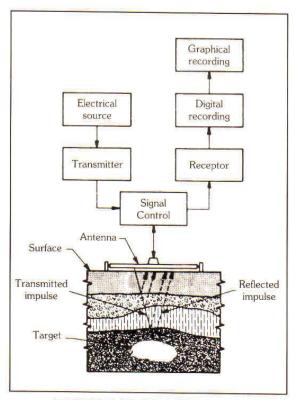








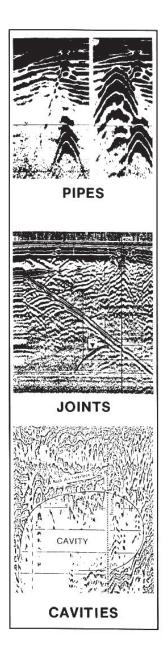




APPENDIX B

Additional Georadar information

GEORADAR


As indicated by its name, georadar combines high resolution radar with geology. The underlying principle is based on the propagation of electromagnetic wave impulses (VHF) that are reflected by anomalies in the terrain (joints, irregularities, interfaces, etc.) at different depths, and then captured by the antenna. The georadar records the time taken by each transmitted signal to complete the cycle in order to calculate the depth of the anomaly. The result is similar to a seismic reflection profile where all the reflections are displayed graphically. This technique is used to solve problems for which there had previously been no practical solution.

PRINCIPLES OF GEORADAR

FEATURES

- Penetration of more than 20 metres in certain materials (penetration being inversely proportional to conductivity).
- Surveying in continuous mode.
- Identification of objects measuring only a few centimeters.
- Light and manoeuvrable equipment.
- Detection of conductivity, open spaces and/or holes (cavities).
- Detection of breaks: faults, fractures, joints, cavities.
- Results similar to seismic reflection: continuous underground profile.
- Results available immediately.
- Can be used in land, sea or airborne surveys.

FIELDS OF APPLICATION

Civil Engineering / Mining Exploration-Exploitation / Research / Archaeology / Environment

- Geotechnology: investigation of soils and surface deposits.
- Optimal selection of anchor bolts in mines and quarries.
- Detection of buried pipes before beginning excavation.
- Detection of liquid or gas leakage in soils.
- Detection of cracks in concrete structures.
- Checking material homogeneity.
- Detection of cavities beneath road pavement.
- Determination of water saturation level.
- Detection of girders in reinforced concrete.
- Detection of pollutant leakage in water bodies.
- Inspection of buried disposal sites and or dangerous deposits.
- Continuous measurement of ice thickness.
- Archaeological research: ancient foundations, artifacts.
- Non-destructive method for measuring road pavement thickness.
- Localization and measurement of soil's thickness (swamps, peat bogs).
- Determination of rock beddings (location and thickness).
- Bathymetric studies (depth sounding).
- Calculation of the thickness of permafrost and ice.
- Geotechnical studies for the installation of aqueducts.

SPECIAL FEATURES

The equipment is practical, easy to manoeuvre, and multi-faceted. The field of application of georadar continues to expand in various sectors, particularly in geotechnology (aqueducts), civil engineering (excavation, structures) and mining (structures).

MALÅ GroundExplorer

GROUND PENETRATING RADAR

GPR with exceptional range and resolution

MALÅ GroundExplorer (GX) is an integrated GPR solution with four MALÅ GX antenna options: GX80, GX160, GX450 and GX750. Through unique hyperstacking HDR technology, MALÅ GX offers significantly faster data acquisition rates, with outstanding signal-to-noise ratio and depth penetration. An easy-to-use GPR solution on a rugged platform, with excellent detection capabilities for a wide range of applications.

MALÅ GX CONTROLLER

 Processor
 1.6 GHz Intel Atom

 Display
 1024 x 768 mm

OS Linux

Memory 8 GB compact Flash memory

Data output resolution 32 bit

Comms Ethernet, WiFi (optional), USB 3.0, RS232 (serial)

GPS Integrated support for built-in GPS, or external GPS

via USB/serial port (NMEA 0183 protocol)

Power supply Internal 12V/20.8 Ah Li-Ion battery,

or any external 10-15 V DC source

Charger Internal. Unit can also be charged from any external

12 - 15 V DC source

 Power consumption
 1.3 – 2.0 A

 Operating time
 8 – 10 h

Dimensions 326 x 216 x 92 mm including handles

326 x 216 x 52 mm excluding handles

Weight 3.2 kg

Operating temp - 20° to + 50° C or 0° to 120° F

Environmental IP 65

GX WIFI OPTION

Wireless standard: IEEE802.11 g
Power consumption: 0,3 A

MALÂ GX ANTENNAS

MALÁ GX750 HDR

Technology MALA Semi-Real- Time pat pending

 Antenna center freq.
 750 MHz

 SNR
 97 dB

 No. of bits
 16 bit

 Scans/second
 > 1290, time window 75 ns

 Survey speed
 460 [km/h] point distance 10 cm

 Bandwidth
 120%, fractional, -10 dB

Time window 75 ns

Positioning Built-in DGPS, external GPS

(NMEA 0183 protocol),

Operating time 5 h

Power supply Interchangeable 12 V

Li-Ion batt, or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 375 x 235 x 170 mm

Weight 3.6 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 65

MALA GX450 HDR

Technology MALA Semi-Real-Time pat pending

Antenna center freq. 450 MHz SNR 101 dB No. of bits > 16 bit

 Scans/second
 > 770, time window 300 ns

 Survey speed
 275 [km/h] point distance 10 cm

 Bandwidth
 >120%, fractional, -10 dB

Time window 300 ns

Positioning Inbuilt DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h
Power supply Interchangeable 12 V

Li-Ion batt, or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 430 x 360 x 180 mm

Weight 5.5 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 65

MALÂ GX160 HDR

Technology MALA Semi-Real-Time pat pending

Antenna center freq. 160 MHz SNR > 107 dB No. of bits > 17 bit

 Scans/second
 > 880, time window 625 ns

 Survey speed
 320 [km/h] point distance 10 cm

 Bandwidth
 >120 %, fractional, -10 dB

Time window 625 ns

Positioning Inbuilt DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h

Power supply Interchangeable 12 V Li-Ion batt.

or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual 720 x 480 x 190 mm

Weight 10.7 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 6

MALÂ GX80 HDR

Technology MALÅ Semi-Real-Time pat pending

Antenna center freq. 80 MHz

SNR > 114.4 dB

No. of bits > 19 bit

 Scans/second
 > 1200, time window 812 ns

 Survey speed
 430 [km/h] point distance 10 cm

 Bandwidth
 >120 %, fractional, -10 dB

Time window 812 ns

Positioning Built-in DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h

Power supply Interchangeable 12 V Li-lon batt.

or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 1010 x 780 x 220 mm

Weight 24,6 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 65

ABEM MALA

Guideline Geo is a world-leader in geophysics and geo-technology offering sensors, software, services and support necessary to map and visualize the subsurface. Guideline Geo operates in four international market areas: Infrastructure – examination at start-up and maintenance of infrastructure, Environment – survey of environmental risks and geological hazards, Water – mapping and survey of water supplies and Minerals – efficient exploration. Our offices and regional partners serve clients in 121 countries. The Guideline Geo AB share (GGEO) is listed on NGM Equity.

GEOPHYSICS GPR INTERNATIONAL INC.

GEOPHYSICAL INVESTIGATION FOR BAFFINLAND RAILWAY, MARY RIVER PROJECT, NUNAVUT

PREPARED FOR: Baffinland Iron Mines Corporation

Presented to:

HATCH

4342 Queen Street, Suite 500 Niagara Falls, Ontario L2E 7J7

6741 Columbus Road, Unit 14
Mississauga (Ontario) L5T 2G9
Tel.: +1 905.696.0656
info@geophysicsgpr.com
May 2018
T-18552

Geophysics GPR International Inc.

May 2018

TABLE OF CONTENTS

<u>1 INTRODUCTION</u>
2 METHODOLOGY3
2.1 Positioning, Topography and Units of Measurement3
2.2 Ground Penetrating Radar (Georadar)5
3 RESULTS6
3.1 Subsurface Ice Mapping6
4 CONCLUSIONS
<u>Index of Figures</u>
Figure 1: Overview map of the investigation area
Tigule 1. Overview map of the investigation area.
Figure 2: Interpreted georadar image showing a typical ice
Index of Tables
<u>Index of Tables</u>
Table 1: UTM coordinates of GPR survey lines
Table 1: U I W Coordinates of GPK survey lines

<u>List of Appendices</u>

 $\label{eq:appendix} A-DRAWINGS\ GPR18_SITE_A,\ GPR18_SITE_B,\ GPR18_SITE_C,\ GPR18_SITE_D,\ GPR18_SITE_E,\ GPR18_SITE_F.$

APPENDIX B – Georadar Fact Sheet

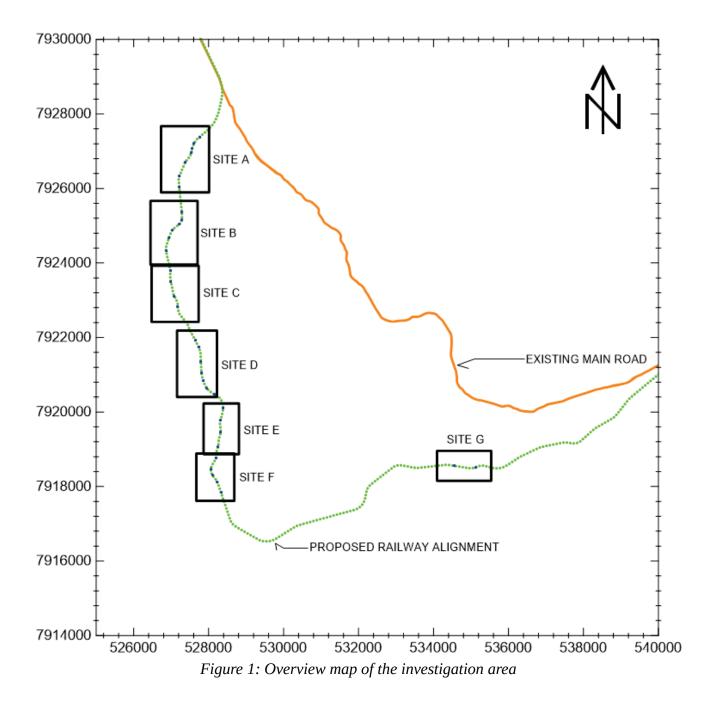
1 INTRODUCTION

Geophysics GPR International Inc. was requested by Hatch Ltd. to carry out a geophysical survey to aid in projection and planning of a proposed railway for the Mary River Project, Baffin Island, Nunavut.

The purpose of this investigation was to determine the extent of, as well as the thickness of subsurface ice.

The ground penetrating radar (georadar) method was applied to determine the presence of ice and calculate its thickness.

Data was collected from April 16 to May 2, 2018.


The investigation included the following:

- 1. Georadar mapping of subsurface ice at seven sites across the 'deviation' of the proposed rail alignment.
- 2. Further exploration with gridded georadar lines were conducted in regions of ice to delineate the extent.

Figure 1 presents an overview map of the investigation area with the locations of the respective sites.

The following report describes the various aspects of the survey including field techniques, survey design, interpretation techniques, and finally an interpretation in the form of ice thickness maps.

2 METHODOLOGY

2.1 Positioning, Topography and Units of Measurement

The emplacement of the survey areas was determined by the client.

The locations of the georadar survey lines for the purpose of subsurface ice mapping were oriented to align with the design of the proposed railway. Length and number of the lines were chosen based on in-field interpretation of georadar data. Positioning was controlled by the GPS device integrated into the georadar antenna. The UTM coordinates should be accurate to within ± 1.00 m.

Table 1: UTM coordinates of GPR survey lines

<u>Point</u>	<u>Chainage</u>	Northing	Easting	
Site A				
a	58.9	7927382.002	527756.0006	
b	59.1	7927213.037	527611.0001	
С	59.2	7927079.046	527557	
d	59.3	7926949.981	527539.0009	
e	59.7	7926703.946	527376.0013	
f	60.1	7926329.02	527225.0004	
Site B				
a	60.4	7926033.002	527218.0006	
b	61	7925358.001	527285.0006	
С	61.2	7925154.024	527288.0003	
d	61.4	7925033.038	527212.0001	
e	61.6	7924885.943	527029.0013	
f	61.9	7924671.045	526944	
g	62.2	7924334.034	526861.0002	
h	62.7	7923796.949	526977.0012	
i	63	7923502.003	526993.0006	
j	63.5	7923106.979	527087.0009	

k	63.8	7922823.019	527178.0004		
Site C					
a	64.7	7921919.978	527644.0009		
b	64.9	7921741.995	527734.0007		
Site D					
a	65.3	7921350.032	527795.0002		
b	65.6	7921050.977	527812.0009		
Site E					
A	65.8	7920854.939	527851.0014		
В	66	7920630.979	527956.0009		
С	66.3	7920475.027	528152.0003		
Site F					
a	66.9	7920106.987	528386.0008		
b	67.2	7919773.977	528306.0009		
С	67.5	7919452.95	528323.0013		
d	68	7919071.027	528247.0003		
e	68.3	7918765.022	528193.0003		
f	68.6	7918471.991	528056.0007		
g	68.7	7918297.02	528103.0002		
h	69	7918131.944	528231.0014		
i	69.3	7917838.974	528329.001		
Site G					
a	77.4	7918561.942	534544.0017		
b	78	7918521.023	535132.0004		
		•			

The provided coordinates are NAD83/WGS84, UTM zone 17N.

The depth measurements are noted as depth from surface.

All geophysical measurements were collected in SI units.

In addition to Table 1, further georadar survey lines were created to further explore the given areas. These additional survey lines were generated in a grid-like fashion with the topography dictating the spacing of the lines.

2.2 Ground Penetrating Radar (Georadar)

Basic Theory

Georadar utilises radar technology to obtain a near-continuous profile of the subsurface. The basic principle is to emit an electromagnetic impulse into the ground at a predetermined frequency rate (typically 10 to 80 scans/second). This pulse will travel through the sub-surface and reflect off boundaries of differing dielectric constants (contrasts of EM impedances). The reflected pulse returns to the surface and is recorded by a receiver and displayed in real-time as a cross-sectional image. Only by moving the antennas along a profile directly over the targets can the locations and depths be determined. Examples of radar reflecting boundaries include air/water (water table); water/earth (bathymetry); earth/metal, PVC, or concrete (pipe locating); and differing earth materials (stratigraphic profiles, including bedrock profiles).

The depth of investigation is controlled by the frequency and power of the antenna limited by attenuation and diffraction of the radar signal. Lower frequency antennas provide greater depth penetration at the expense of resolution. The radar signal is attenuated by conductive ground materials (e.g. clays, dissolved salts etc.). The radar signal is diffracted by irregular shaped material (e.g. boulders, debris etc.) that prevents the clear return of the reflected pulse.

More information on the georadar operating principle can be found in Appendix B.

Survey Design

The georadar data were collected with a MALA Ground Explorer system and 160 MHz antenna. This antenna provides a favourable trade off between depth and resolution for ice detection. As well, this antenna has sufficient durability for the terrain and weather conditions for Baffin Island.

Positioning for the georadar survey was controlled by built-in GPS receiver.

Interpretation Method

Processing of the radar images involved basic horizontal normalization, elevation corrections and gain adjustments.

The vertical scale on all radar images is a two-way time scale representing the time taken for a radar pulse to transmit to a reflector and back to the receiver. In order to convert the time scale to a depth scale a signal velocity must be applied. The velocity with which the pulse travels through the given material is determined by the dielectric constant. This dielectric will vary with the type of material.

Calculating a velocity can be done in many ways but the most reliable method is with a test pit or borehole where the real rock contact can be exposed. Based on in-situ measurements or borehole data, the dielectric value can be approximated depending on the expect material type.

An underestimate of the dielectric will result in an over estimate of the signal velocity and in turn an over estimate of the depths. For this site a dielectric of 4 (velocity of 15 cm/ns) was assumed based on the expected soil type and tables of relative dielectric values for commonly encountered materials. In this case the materials were mostly frozen granular/boulders with high ice content.

Interpretation of the data is based primarily on the qualitative analysis of three characteristics of radar reflections: continuity, amplitude and shape. The interpreter then identifies reflectors and textures within the radar records that represent subsurface contacts, objects or zones. The true nature of the interpreted features can only be assumed without corroborating evidence.

Ice bodies have a distinctive appearance on radar images. Granular host material appears as "noise" on the images, whereas uniform ice layer looks transparent with clearly defined top and bottom contacts and can be confidently identified. An example of a uniform ice lens is presented in Figure 2.

Non-uniform ice bodies (stratified or containing layers of soil) are more challenging for interpretation since structure irregularities create multiple reflections within the ice body. Often a borehole is needed to confirm the presence of ice. Other features such as increasing depth of investigation in the presence of thick ice layer may corroborate the interpretation.

In summary, ability of georadar is limited by the structure of the ice layer being surveyed and its composition. The identification of an ice layer may be impacted by irregularities inside the ice body, such as layering, fractures and soil inclusions. However, it is possible to create two categories of ice lenses, the obvious and less obvious that may need some ground truthing.

3 RESULTS

3.1 Subsurface Ice Mapping

Georadar data was collected at seven sites along the proposed railway deviation. Most sites collected were in the Western region (Sites A - F).

Locations of the survey lines and results of the georadar survey are presented in drawings GPR18_SITE_A, GPR18_SITE_B, GPR18_SITE_C, GPR18_SITE_D, GPR18_SITE_E, and GPR18_SITE_F.

GPR18_SITE_A

Thin ice lenses were possibly detected – neither the shape nor reflection of georadar data appeared well. This could possibly indicate an ice lens with poor homogeneity or structural breakages. Area was explored with subsequent radar profiles; data continued to be generally poor in this area. Estimation of ice depth from surface; 5-8m.

GPR18_SITE_B

The data indicates a considerable amount of ice in this area with varying thickness. The thickest region appeared to have a 12m thick chunk. Estimation of ice depth from surface; 4 to 9m. Topography constrained ability to delineate further.

GPR18_SITE_C

Region appears rich in ice – delineation was able to encapsulate lenses. Estimation of ice depth from surface; 7 to 9m.

GPR18 SITE D

Region appears to have shallow and small ice lenses. Estimation of ice depth from surface; 4 to 5m.

GPR18 SITE E

Single possible ice lens found and delineated. Topography limited the amount of delineation possible. Estimation of ice depth from surface; 4 to 5m.

GPR18_SITE_F

Possible ice lenses found in area – region had poor signal attenuation. Topography also limited the amount of delineation possible. Estimation of ice depth from surface; 6m.

No ice found in Eastern end of delineation, chainage 77.4 to 78km.

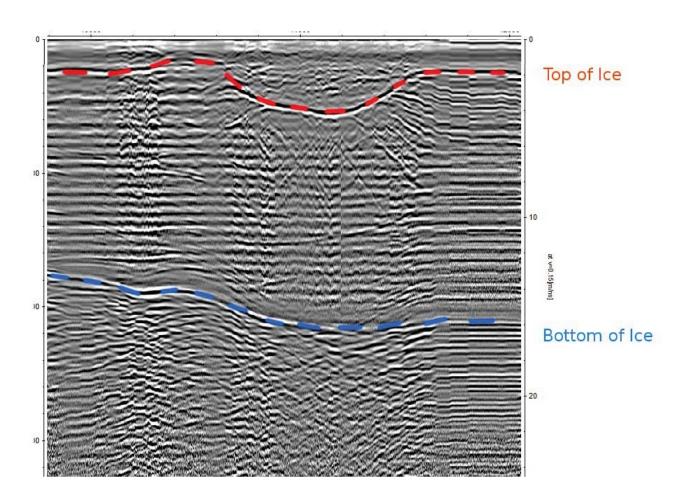


Figure 2: Interpreted georadar image showing a typical ice body

4 CONCLUSIONS

A geophysical investigation involving Georadar was carried out at the Mary River Project, Baffin Island, Nunavut.

Subsurface ice mapping was carried out at nine sites along the proposed rail alignment. Results of the survey are presented in Drawings GPR18_SITE_A, GPR18_SITE_B, GPR18_SITE_C, GPR18_SITE_D_GPR18_SITE_E, and GPR18_SITE_F.

Interpretation of the geophysical data has been performed by Mauritz van Zyl. This report has been written by Milan Situm, P.Geo.

MILAN SITUM PRACTISING MEMBER

Milan Situm, P.Geo.

Milan Stun

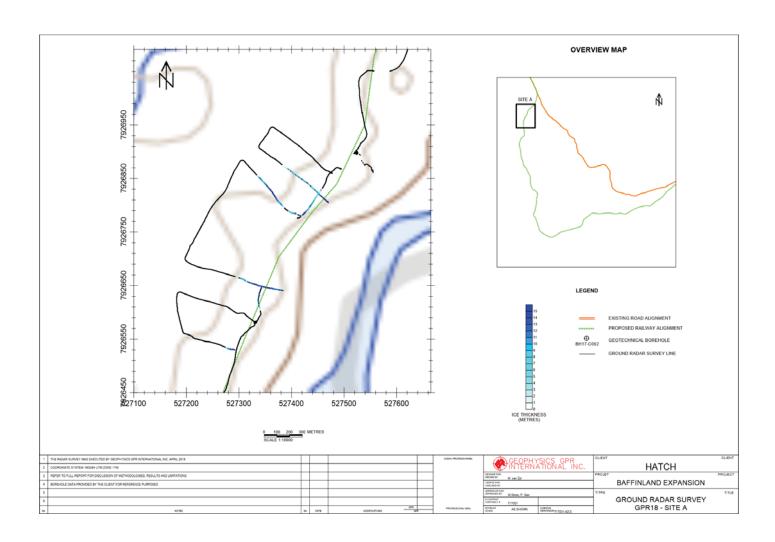
Manager

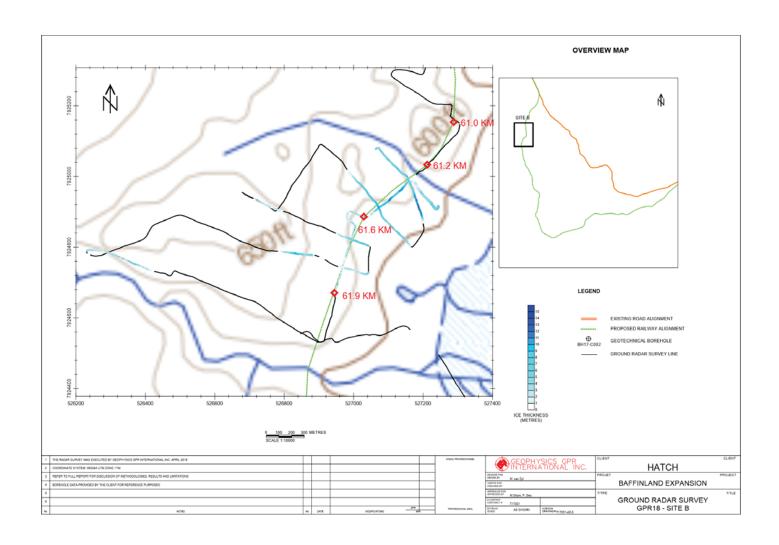
APPENDIX A

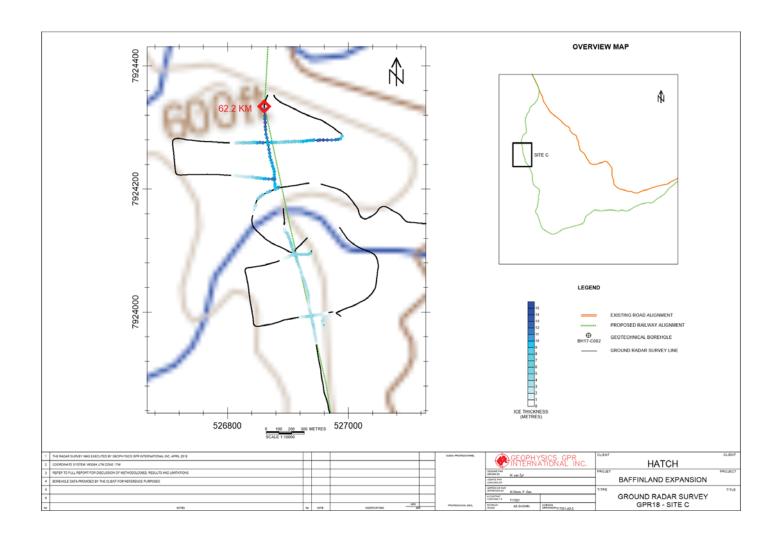
DRAWINGS

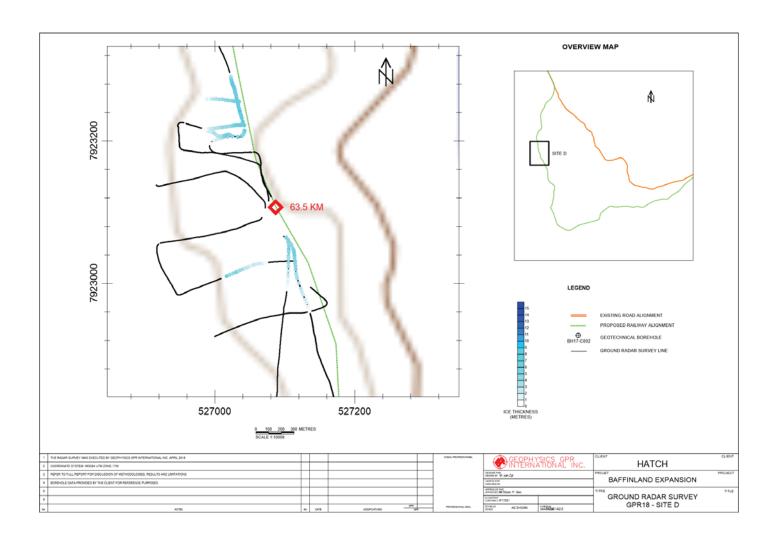
GPR18_SITE_A

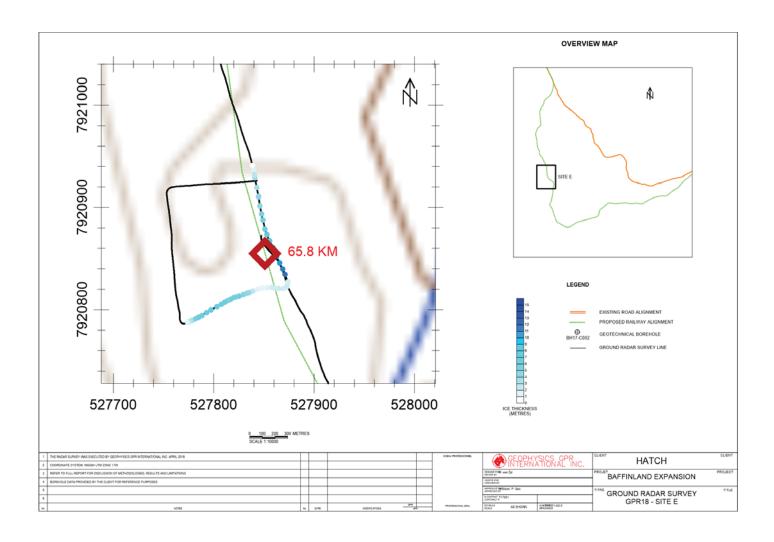
GPR18_SITE_B

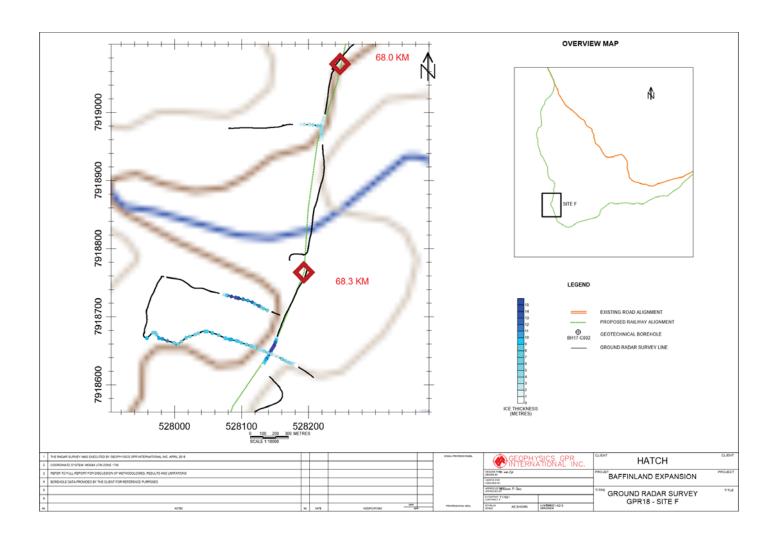

GPR18_SITE_C


 $GPR18_SITE_D$


GPR18_SITE_E


GPR18_SITE_F





APPENDIX B

Additional Georadar information

MALÅ GroundExplorer

GROUND PENETRATING RADAR

GPR with exceptional range and resolution

MALÅ GroundExplorer (GX) is an integrated GPR solution with four MALÅ GX antenna options: GX80, GX160, GX450 and GX750. Through unique hyperstacking HDR technology, MALÅ GX offers significantly faster data acquisition rates, with outstanding signal-to-noise ratio and depth penetration. An easy-to-use GPR solution on a rugged platform, with excellent detection capabilities for a wide range of applications.

MALÅ GX CONTROLLER

 Processor
 1.6 GHz Intel Atom

 Display
 1024 x 768 mm

OS Linux

Memory 8 GB compact Flash memory

Data output resolution 32 bit

Comms Ethernet, WiFi (optional), USB 3.0, RS232 (serial)

GPS Integrated support for built-in GPS, or external GPS

via USB/serial port (NMEA 0183 protocol)

Power supply Internal 12V/20.8 Ah Li-Ion battery,

or any external 10-15 V DC source

Charger Internal. Unit can also be charged from any external

12 - 15 V DC source

 Power consumption
 1.3 – 2.0 A

 Operating time
 8 – 10 h

Dimensions 326 x 216 x 92 mm including handles

326 x 216 x 52 mm excluding handles

Weight 3.2 kg

Operating temp - 20° to + 50° C or 0° to 120° F

Environmental IP 65

GX WIFI OPTION

Wireless standard: IEEE802.11 g
Power consumption: 0,3 A

MALÁ GX ANTENNAS

MALÁ GX750 HDR

Technology MALA Semi-Real- Time pat pending

 Antenna center freq.
 750 MHz

 SNR
 97 dB

 No. of bits
 16 bit

 Scans/second
 > 1290, time window 75 ns

 Survey speed
 460 [km/h] point distance 10 cm

 Bandwidth
 120%, fractional, -10 dB

Time window 75 ns

Positioning Built-in DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder erating time 5 h

Operating time 5 h
Power supply Interchangeable 12 V

Li-Ion batt, or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 375 x 235 x 170 mm

Weight 3.6 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 65

MALA GX450 HDR

Technology MALA Semi-Real-Time pat pending

Antenna center freq. 450 MHz SNR 101 dB No. of bits > 16 bit

 Scans/second
 > 770, time window 300 ns

 Survey speed
 275 [km/h] point distance 10 cm

 Bandwidth
 >120%, fractional, -10 dB

Time window 300 ns

Positioning Inbuilt DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h
Power supply Interchangeable 12 V

Li-Ion batt, or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 430 x 360 x 180 mm

Weight 5.5 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 65

MALÂ GX160 HDR

Technology MALA Semi-Real-Time pat pending

Antenna center freq. 160 MHz SNR > 107 dB No. of bits > 17 bit

 Scans/second
 > 880, time window 625 ns

 Survey speed
 320 [km/h] point distance 10 cm

 Bandwidth
 >120 %, fractional, -10 dB

Time window 625 ns

Positioning Inbuilt DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h

Power supply Interchangeable 12 V Li-Ion batt.

or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual 720 x 480 x 190 mm

Weight 10.7 kg

Operating temp. - 20° to + 50° C or 0° to 120° F

Environmental IP 6

MALÂ GX80 HDR

Technology MALÅ Semi-Real-Time pat pending

Antenna center freq. 80 MHz

SNR > 114.4 dB

No. of bits > 19 bit

 Scans/second
 > 1200, time window 812 ns

 Survey speed
 430 [km/h] point distance 10 cm

 Bandwidth
 >120 %, fractional, -10 dB

Time window 812 ns

Positioning Built-in DGPS, external GPS

(NMEA 0183 protocol),

wheel encoder

Operating time 5 h

Power supply Interchangeable 12 V Li-lon batt.

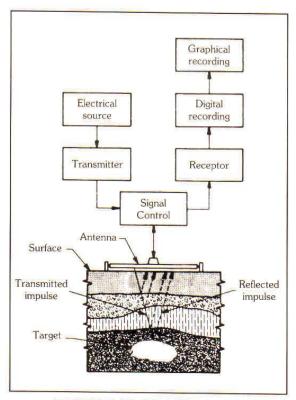
or ext. 12 V DC source

Power consumption 1.3 A

Acq. mode Wheel, time or manual Dimensions 1010 x 780 x 220 mm

Weight 24,6 kg

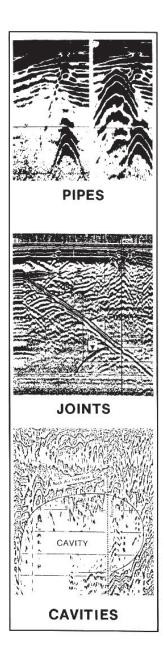
Operating temp. - 20° to + 50° C or 0° to 120° F


Environmental IP 65

ABEM MALA

Guideline Geo is a world-leader in geophysics and geo-technology offering sensors, software, services and support necessary to map and visualize the subsurface. Guideline Geo operates in four international market areas: Infrastructure – examination at start-up and maintenance of infrastructure, Environment – survey of environmental risks and geological hazards, Water – mapping and survey of water supplies and Minerals – efficient exploration. Our offices and regional partners serve clients in 121 countries. The Guideline Geo AB share (GGEO) is listed on NGM Equity.

GEORADAR


As indicated by its name, georadar combines high resolution radar with geology. The underlying principle is based on the propagation of electromagnetic wave impulses (VHF) that are reflected by anomalies in the terrain (joints, irregularities, interfaces, etc.) at different depths, and then captured by the antenna. The georadar records the time taken by each transmitted signal to complete the cycle in order to calculate the depth of the anomaly. The result is similar to a seismic reflection profile where all the reflections are displayed graphically. This technique is used to solve problems for which there had previously been no practical solution.

PRINCIPLES OF GEORADAR

FEATURES

- Penetration of more than 20 metres in certain materials (penetration being inversely proportional to conductivity).
- Surveying in continuous mode.
- Identification of objects measuring only a few centimeters.
- Light and manoeuvrable equipment.
- Detection of conductivity, open spaces and/or holes (cavities).
- Detection of breaks: faults, fractures, joints, cavities.
- Results similar to seismic reflection: continuous underground profile.
- Results available immediately.
- Can be used in land, sea or airborne surveys.

FIELDS OF APPLICATION

Civil Engineering / Mining Exploration-Exploitation / Research / Archaeology / Environment

- Geotechnology: investigation of soils and surface deposits.
- Optimal selection of anchor bolts in mines and quarries.
- Detection of buried pipes before beginning excavation.
- Detection of liquid or gas leakage in soils.
- Detection of cracks in concrete structures.
- Checking material homogeneity.
- Detection of cavities beneath road pavement.
- Determination of water saturation level.
- Detection of girders in reinforced concrete.
- Detection of pollutant leakage in water bodies.
- Inspection of buried disposal sites and or dangerous deposits.
- Continuous measurement of ice thickness.
- Archaeological research: ancient foundations, artifacts.
- Non-destructive method for measuring road pavement thickness.
- Localization and measurement of soil's thickness (swamps, peat bogs).
- Determination of rock beddings (location and thickness).
- Bathymetric studies (depth sounding).
- Calculation of the thickness of permafrost and ice.
- Geotechnical studies for the installation of aqueducts.

SPECIAL FEATURES

The equipment is practical, easy to manoeuvre, and multi-faceted. The field of application of georadar continues to expand in various sectors, particularly in geotechnology (aqueducts), civil engineering (excavation, structures) and mining (structures).

