

Baffinland Iron Mines Corporation Mary River Expansion Project

Foundation Recommendations for Rail Bridges

			25	288.	Hrim	Juy Pottma
2019-01-30	0	Approved for Use	E Tiedje	K S Ho	H Ghiabi	
Date	Rev.	Status	Prepared By	Checked By	Approved By	Approved By
HATCH					Client	

Table of Contents

1.	Intro	duction and Background	. 1
2.	Avai	lable Subsurface Information	. 1
		ndation Recommendations	
	3.1	Rock-Socketed Piles	
	3.2	Adfreeze Piles	. 2
	3.3	Scour Protection	. 3
	3.4	Thermal Analysis	. 3
	3.5	Lateral Resistance	. 4
	3.6	Bridge Abutments/Backwalls	. 6
4.	Site	Specific Recommendations	. 6
	4.1	Bridge No. 15-1	. 6
	4.2	Bridge No. 70-2	
	4.3	Bridge No. 86-3	
	4.4	Bridge No. 102-4	
5.	Refe	rences	ç

List of Appendices

Appendix A Ground Temperature Modelling

Appendix B Lateral Pile Analysis

Appendix C Reference Borehole Logs

1. Introduction and Background

This report provides geotechnical recommendations for the design of deep foundations to support four separate railway bridges, associated with the development of a 110 km long rail line on Baffin Island. The rail line is developed by Baffinland Iron Mines Corp. (BIM) to facilitate the increased production from the Mary River Iron Mine.

It is understood from preliminary designs that the rail bridges will consist of multi-span, steel through plate girders supported on multiple deep foundations, specifically prefabricated steel pipe adfreeze piles, at the bridge abutment locations. All bridges are crossing existing waterways and a separate hydrotechnical scour analysis is being prepared by Hatch at all bridge sites.

2. Available Subsurface Information

In 2018, a geotechnical investigation was conducted by Hatch on behalf of BIM in support of the rail line development. Table 2-1 outlines the available boreholes relevant to the bridge locations.

Table 2-1: Summary of Available Boreholes

Bridge	Available BHs	Ground Surface Elevation (m)	Depth (m)
No. 15-1	BH18-BR15-1	78.0	17.4
	BH18-BR15-2	78.0	16.8
No. 70-2	BH18-BR70-1	124.0	32.5
	BH18-BR70-2	124.0	28.5
No. 86-3	BH18-BR86-1	142.9	39.6
	BH18-BR86-2	143.0	39.6
	BH18-BR86-3	143.4	39.6
No. 102-4	BH18-BR102-1	168.0	9.7
	BH18-BR102-1	166.0	16.9

3. Foundation Recommendations

3.1 Rock-Socketed Piles

Rock-socketed steel pipe piles are the preferred foundation type, where competent bedrock can be practically and economically reached. These foundations have a higher axial capacity and are not typically susceptible to long-term settlement, as compared to adfreeze piles.

Rock-socketed steel pipe piles are constructed by predrilling installation holes to the specified depth and about 100 mm wider than the diameter of the pile. Prior to inserting the steel pipe piles, the holes and hole bottoms should be free of loose soil, rock or ice. Within the rock-socket zone the steel pipes are perforated with slot holes. Grout is poured through the centre of the piles and flows through the slots to fill the annulus space in the rock socket. The grout should be placed to a height of at least 2.0 m above the design bedrock elevation. After grouting, the pile should be lightly vibrated to consolidate the grout and set the surface contact with the pile and bedrock. The remaining annulus space from the grout to the active zone should be backfilled with sand-slurry, and within the active zone with dry sand or approved drill cuttings, as outlined in Section 3.2.

The capacity of rock-socketed steel pipe piles is typically governed by the bond strength at the steel-grout and rock-grout interfaces, i.e., shaft resistance. End bearing resistance should not be relied upon, unless the following conditions are met 1) the base of the pile socket is visually inspected (i.e., CCTV camera) and confirmed to be free of water, mud, ice, or loose material, and 2) the piles are seated in placed before grouting using several strikes from a pile driving hammer. End bearing has not been considered in these recommendations. For a 610 mm pile, and in accordance with the Canadian Foundation Engineering Manual, 4th Ed., Chapter 18, the elastic settlement of the shear socket is estimated to be less than 1 mm per 1000 kN of applied axial load, which is considered acceptable for this project. Significant long-term settlement is not anticipated.

The grout used in the rock-socket should have a minimum compressive strength of 25 MPa. The grout should be specifically designed for arctic applications, with a high early strength and capable of properly curing when placed on a substrate with a minimum temperature of -10 °C.

Prior to installation, the surface of the steel piles within the socket zone should be clean and free of grease, paint, varnish, or similar coatings. However, the upper portion of the piles within the active soil zone should be treated to prevent shear stress development on the piles due to frost heave uplift and thawing-induced down-drag forces. The recommended approach is to wrap the piles with at least three layers of polyethylene sheets. In areas where significant scour is anticipated, active zone treatment may not be practical.

3.2 Adfreeze Piles

Adfreeze piles, or slurry piles, installed in permafrost may be considered where the use of rock-socketed piles is not practical (e.g., very deep bedrock surface).

Adfreeze piles are constructed by first drilling the installation hole to the specified depth. The steel pile is inserted and temporarily braced while the annulus space is backfilled with a water-sand slurry. The slurry is consolidated in place by either inserting a manual 'pencil' vibrator or vibrating the pile. The bracing is left in place while the slurry freezes. The diameter of the drilled installation holes should be 100 mm to 200 mm larger than the pile diameter. In general, larger installation holes may be required for deeper installations. The sand used in the slurry should be clean and well graded with a maximum particle size of 2.0 mm and no more than 5% (by weight) of particles passing 75µm. The water should be clean, fresh water. At the time of placement, the temperature of the slurry should be between 5 °C and 10 °C. If the slurry is too cold, it may prematurely freeze during placement; if too warm, the heat from the slurry may cause excessive disturbance to the permafrost. The slurry in the annulus should extend from the pile toe to a depth of 2.0m below the final grade. The upper 2.0m annulus space should be backfilled with dry sand or approved drilling cuttings. At a minimum, the bottom 1.0 m of the inside of the pile should be filled with slurry, the remaining space inside the piles may be left empty or backfill with soil cuttings. Depending on the location and time of year, a temporary steel casing may be required in areas of thawed soil to prevent the ingress of water into the installation hole.

The axial capacity of adfreeze piles is governed by the interface bond between steel and the frozen slurry. This bond is susceptible to both short-shear failure as well as continuous long-term creep deformation under sustained loads. The appropriate load combinations used for short-term and long-term conditions should be selected by the structural engineer. The allowable long-term pile settlement should be selected based on project requirements.

Prior to installation, the surface of the steel piles within the slurry filled adfreeze zone should be clean and free of grease, paint, varnish, or similar coatings. Although not considered in this design, higher short-term capacities could be obtained by sandblasting the outside of the pile or installing steel ring flanges around the perimeter at regular intervals.

Similar to the rock-socketed piles, the pile surface within the active soil zone should be sufficiently treated to prevent frost heave or down-drag forces.

3.3 Scour Protection

Adequate scour protection should be provided where ever significant scour is anticipated, in accordance with AREMA standards. Please refer to the associated Hydraulic Report for details regarding the scour assessment and recommendations for scour protection (H353004-35000-220-230-0002).

3.4 Thermal Analysis

Site specific, 1-D thermal analysis has been performed and presented in Appendix A. The objective of the thermal analysis is to define the thickness of the active zone and the maximum temperature of the permafrost. It is noted that heat transport due to advection in the overlying water bodies, which is expected to increase the active zone thickness, has not been accounted for in the thermal analysis. To account for this, the recommended design

thickness for the active zone has been conservatively adjusted, based on available ground temperature data, the hydraulic/scour analysis, and site experience.

It is noted, that limited ground temperature within the waterways is available at two of the four bridge sites. This field information has been used to support the assumptions made with regards to the active zone thickness at other bridge sites.

3.5 Lateral Resistance

Lateral pile analyses were performed using the software GROUP (Version 2016.10.13, by Ensoft) to estimate the maximum displacements of the pile caps and the maximum bending moment, shear force, and axial force within the individual piles. Pile group configurations and loading conditions were provided by the structural designer. All structural loads were unfactored in the analysis. The structural capacity of the pile sections must be confirmed by the structural designer.

Pile sections were modeled as short-column, linear elastic elements and Table 3-1 summarizes the section parameters considered for all locations. At the pile-cap connection, pinned conditions were considered at all pier locations, whereas fixed conditions about the lateral axis were considered at the abutment locations. The pile cap was considered as a rigid body.

Table 3-1: Steel Pipe Pile Section Details for the Lateral Analysis.

Parameter	Value
Outside Diameter	610 mm
Wall Thickness	19 mm
Elastic Modulus	200 GPa

A total of 12 cases were analyzed and the results are summarized below in Table 3-2. presents the primary input parameters and detailed output results for each case. The elevation of the base of the pile caps was determined from the bridge design drawings. Ground surface elevations for piers (Regular Bents and Super Bents) follows the post scour ground elevations recommended in the Hydraulic Report, assuming worst-case conditions. At the abutments, a design ground elevation of 1.0 m below the pile cap base was selected.

It is noted that Case 4.1 involves a large distance between the post scour ground surface and the base of the pile cap (11.2m). No structural bracing was considered between piles above the ground surface. This ground clearance is considered excessive for the modelling methodology used and special caution should be used by the structural designer for this case.

Table 3-2: Summary of Lateral Analysis Results

		Dila		Max Pile Cap Displacement (mm)			Individual Pile Structural Loads		
Case	Bridge	Pile Group Type	Loading Type ¹	Longitudinal	Lateral	Vertical	Max Bending Moment (kN- m)	Max Shear Force (kN)	Max Axial Force (kN)
1.1	15-1	Regular Bent	Regular	11.7	2.9	0.8	212.9	279.3	841.5
1.2	15-1	Regular Bent	Elevated	15.6	2.9	0.8	277.8	322.7	859.6
1.3	15-1	Super Bent	Regular	12.7	2.9	0.7	194.5	268.1	797.6
1.4	15-1	Abutment	Regular	5.8	0.3	0.1	211.5	252.4	1150.1
2.1	70-2	Regular Bent	Regular	20.8	4.4	1.0	255.5	230.7	867.9
2.2	70-2	Regular Bent	Elevated	27.8	4.4	1.0	334.2	299.7	886.9
2.3	70-2	Super Bent	Regular	18.8	3.9	0.8	221.8	207.9	807.9
2.4	70-2	Abutment	Regular	6.6	0.3	0.3	242.8	192.4	941.3
3.1	86-3	Regular Bent	Regular	33.0	4.2	1.0	427.1	405.4	906.8
3.2	86-3	Abutment	Regular	7.2	0.2	0.3	251.8	218.7	1011.6
4.1 ²	102-4	Regular Bent	Regular	147.3	8.0	1.2	788.5	1168.9	1005.2
4.4	102-4	Abutment	Regular	6.6	0.3	0.1	250.9	227.4	1211.6

Notes:

¹ Loading type refers to the design longitudinal load.

² Clearance between the ground surface and the bottom of the pile cap is considered excessive for the analysis method used, values should be considered with caution.

3.6 Bridge Abutments/Backwalls

It is understood that the bridge approaches will be supported laterally at the abutments using precast concrete backwalls. The surface of the backwall should be treated with an adfreeze bond-breaker consisting of a thin layer of cold-temperature grease followed by at least three (3) layers of 6 mils polyethene sheeting. To minimize seasonal frost heave forces, the underside of the abutment and the soil-facing side of the backwall should be lined with a 150mm thick polyethylene void form. The void form will provided a secondary function as insulation. The abutments should be backfilled with free-draining, crushed granular fill, such as Type 25 Fill. The lateral earth pressure acting on the backwall may be determined using a triangular earth pressure profile, with a lateral earth pressure coefficient of $K_a = 0.24$.

4. Site Specific Recommendations

4.1 Bridge No. 15-1

Table 4-1: Summary of Foundation Design Recommendations for Bridge No. 15-1

Overburden Soils	Silty Sand to Sandy Silt	
	Occasional Cobbles and Boulders	
	Ice-poor to Ice-rich	
Bedrock	Gneiss	
Design Top of Permafrost Elevation	Piers: 72.8 m	
	Abutments: 75.0 m	
Design Top of Bedrock Elevation	66.5 m	
Depth of Frost Treatment	2.5 m	

Rock-socketed steel pipe piles are recommended for Bridge No. 15-1. The piles may be designed with an allowable shaft capacity of 500 kPa at the pile-grout interface, for the length of socket installed below the design top of bedrock elevation. The socket length should be a minimum of 2.0 m and a maximum of 6.0 m in length. The structural capacity of the piles must be confirmed by the structural engineer.

In accordance with Table 9-1-6 of the 2018 AREMA Manual, Bridge No.15-1 should be considered Site Class B for seismic design.

4.2 Bridge No. 70-2

Table 4-2: Summary of Foundation Design Recommendations for Bridge No. 70-2

Overburden Soils	Silt to Sandy Silt to Silty Sand to Sand,	
	Occasional Cobbles and Boulders,	
	Ice-poor to Ice-rich	
Bedrock	Siltstone to Dolomitic Limestone	
Design Top of Permafrost Elevation	Piers: 118.9 m	
	Abutments: 122.3 m	
Design Top of Bedrock Elevation	100.5 m	
Depth of Frost Treatment	2.5 m	

Bridge No. 70-2 may be supported on adfreeze piles installed into the overburden soils. The adfreeze piles may be designed with a factored short-term allowable shaft capacity of 150 kPa at the pile-slurry interface for the portion installed below the design active zone, or a minimum of 2.5 m below the final ground surface. The long-term shaft capacity is dependent on the permitted pile settlement, as outlined in Table 4-3. The adfreeze piles shall have a minimum embedment length of 7.0 m and a maximum embedment of 25.0 m below the design top of permafrost elevation. The structural capacity of the piles must be confirmed by the structural engineer.

Table 4-3: Allowable Long-term Adfreeze Shaft Capacities for Bridge No. 70-2

Allowable Long-Term Settlement	50 mm /	30 mm /	15 mm /
	25 years	25 years	25 years
Allowable Long-Term Shaft Stress	51 kPa	42 kPa	31 kPa
(unfactored)			

As an alternative, rock-socketed steel pipe piles may be considered for Bridge No. 70-2. The piles may be designed with an allowable shaft capacity of 500 kPa at the pile-grout interface, for the length of socket installed below the design top of bedrock elevation. The socket length should be a minimum of 2.0 m and a maximum of 6.0 m in length. The structural capacity of the piles must be confirmed by the structural engineer.

In accordance with Table 9-1-6 of the 2018 AREMA Manual, Bridge No.70-2 should be considered Site Class C for seismic design.

4.3 Bridge No. 86-3

Table 4-4: Summary of Foundation Design Recommendations for Bridge No. 86-3

Overburden Soils	Sand,
	Ice-poor to Ice-rich
Bedrock	Not Available
Design Top of Permafrost Elevation	Piers: 138.2 m
	Abutments: 141.4 m
Design Top of Bedrock Elevation	Not Available (below 103.3m)
Depth of Frost Treatment	2.5 m

Bridge No. 86-3 may be founded on adfreeze pile installed in the underlying permafrost soils. The adfreeze piles may be designed with a factored short-term allowable shaft capacity of 150 kPa at the pile-slurry interface for the portion installed below the design active zone, or a minimum of 2.5 m below the final ground surface. The long-term shaft capacity is dependent on the permitted pile settlement, as outlined in Table 4-5. The adfreeze piles shall have a minimum embedment length of 7.0 m and a maximum embedment of 25.0 m below the design top of permafrost elevation. The structural capacity of the piles must be confirmed by the structural engineer.

Table 4-5: Allowable Long-term Adfreeze Shaft Capacities for Bridge No. 86-3

Allowable Long-Term Settlement	50 mm /	30 mm /	15 mm /
	25 years	25 years	25 years
Allowable Long-Term Shaft Stress	55 kPa	45 kPa	33 kPa
(unfactored)			

In accordance with Table 9-1-6 of the 2018 AREMA Manual, Bridge No.86 should be considered Site Class C for seismic design.

4.4 Bridge No. 102-4

Table 4-6: Summary of Foundation Design Recommendations for Bridge No. 102-4

Overburden Soils	Gravelly Sand to Sand and Gravel
	Occasional Cobbles and Boulders,
	Ice-poor to Ice-rich
Bedrock	Gneiss
Design Top of Permafrost Elevation	Piers: 156.7 m
	Abutments: 164.9 m
Design Top of Bedrock Elevation	156.5 m
Depth of Frost Treatment	2.5 m

Rock-socketed steel pipe piles are recommended for Bridge No. 102-4. The piles may be designed with an allowable shaft capacity of 500 kPa at the pile-grout interface, for the length of socket installed below the design top of bedrock elevation. The socket length should be a minimum of 2.0 m and a maximum of 6.0 m in length. The structural capacity of the piles must be confirmed by the structural engineer.

In accordance with Table 9-1-6 of the 2018 AREMA Manual, Bridge No. 102-4 should be considered Site Class B for seismic design.

5. References

- AREMA Manual, 2018
- H353004-10000-229-230-0005, Rev. 2, 2016-2017-2018 Rail Geotechnical Investigation Factual Data Report.
- H353004-35000-220-230-0002, Rev. 0, Rail Bridge Design Hydraulic Report
- H353004-00000-229-210-0001, Rev. 0, Geotechnical Design Basis.
- EBA 2008, Memorandum: Mary River Pile Foundations Revision C, File: E14101009.001
- Andersland, B.A., Ladanyi, B., 2004, "Frozen Ground Engineering", Second Edition, ASCE, John Wiley and Sons, Inc.
- Nixon, J.F., 1978, "Foundation Design Approaches in Permafrost Area", Canadian Geotechnical Journal, 1978, Vol.15, pp.96-112.
- Weaver, J.S, Morgenstern, N.R. "Pile Design in Permafrost", Canadian Geotechnical Journal, 1981, Vol. 18, 357-370.

Canadian Foundation Engineering Manual, 4th Ed.

Appendix A Ground Temperature Modelling

A.1 Approach

The ground temperature profile was modelled using the Finite Element Method (Temp/W, (GeoStudio 2016, version 8.16) for each bridge site based on site-specific subsurface conditions. The primary objective of this analysis is to support the foundation design of the four rail bridges, which are underlain by permafrost. The variation in the seasonal fluctuation ground temperatures with depth has been estimated, including the thickness of the active zone, for each bridge site.

A.1.1 Soil Model

All subsurface layers (soil and bedrock) have been modelled using the Simplified Thermal Model, which considers two physical states: frozen (≤ 0°C) and unfrozen (> 0 °C) each with unique thermal properties. The model accounts for the heat released/absorbed due to the latent heat of fusion of the pore water. Instantaneous freezing is considered to occur at 0 °C. This soil approach is considered acceptable for modelling granular soils and rock.

The model only considers heat transport in the in the soils through conduction only.

A.1.2 Boundary Conditions and Initial Conditions

The upper thermal boundary was considered as a defined temperature condition (i.e. prescribed ground surface temperature). The mean monthly air temperature from Pond Inlet, NU (as published by the Government of Canada) has been used as the basis of the site temperatures. As discussed in the Geotechnical Design Basis report, it is recommended that the considered mean daily air temperature be increased to account for the anticipated effects of global over the design life of the railway bridges. For this analysis, the mean air temperature has been increased by 50% of this recommended temperature increase between 2010 and 2039, as outlined in Table A-1. The ground surface temperature was equated to the mean daily air temperature using a freezing factor (n_i) and thawing factor (n_i) where appropriate. These parameters are intended to account for factors such as snow cover and radiated heat transport and are typically a function of the ground surface conditions. For the purposes of this analysis, the following factors were conservatively selected for all four bridge sites: $n_i = 0.9$ and $n_t = 2.0$ (Andersland and Ladanyi, 2004).

The lower thermal boundary (depth of 25.0m) was modelled as a unit-flux boundary with a constant value of 0.06 J/s/m². The sides boundaries of the model were considered as zero-flux, leading to 1D conditions for this analysis.

The initial temperature of the model was a uniform value of -10 $^{\circ}$ C, with a ground surface temperature corresponding to January. The upper and lower boundary conditions were applied for a total of 10 years (cycling between years) and the final year (January to December) was used to determine the minimum and maximum temperature profiles for each site. After 10 years, the temperature at the lower boundary condition varied between -10.0 $^{\circ}$ C and -10.5 $^{\circ}$ C across all sites.

Table A-1: Considered Mean Air Temperature

Month	Mean Daily Average Temperature, Pond Inlet NU (1981 – 2010) (°C)	Recommended Mean Temperature Increase from 2010 to 2039 [Geotechnical Design Basis] (°C)	Considered Mean Daily Air Temperature, [100% Mean Daily Average Temperature + 50% Mean Temperature Increase] (°C)
January	-33.4	3.8	-31.5
February	-33.7	3.8	-31.8
March	-30.0	2.7	-28.7
April	-21.9	2.7	-20.6
May	-9.3	2.7	-8.0
June	2.4	1.9	3.4
July	6.6	1.9	7.6
August	4.8	1.9	5.8
September	-0.8	3.5	1.0
October	-9.7	3.5	-8.0
November	-21.7	3.5	-20.0
December	-28.2	3.8	-26.3

A.2 Site Specific Temperature Profiles

Site specific ground temperature profiles were determined for each bridge site based on the observed subsurface conditions, as outlined in the Rail Geotechnical Investigation Factual Data Report. Thermal properties were interpreted based on the reported information, the Geotechnical Baseline Report, and published values (Andersland and Ladanyi, 2004; GEO-SLOPE), where appropriate.

A.2.1 Bridge No. 15-1

Table A-2: Temp/W Model Input Parameters, Bridge No. 15-1

Stratigraphic Unit	Silty Sand	Gneiss (Bedrock)
Depth Below Ground Surface	0.0 m – 10.7 m	10.7 m – 25.0 m
Frozen Thermal Conductivity	2.8 J/s/m/°C	2.5 J/s/m/°C
Unfrozen Thermal Conductivity	1.8 J/s/m/°C	2.5 J/s/m/°C
Frozen Volumetric Heat Capacity	2.6e6 J/m ³ /°C	2.7e6 J/m ³ /°C
Unfrozen Volumetric Heat Capacity	1.9e6 J/m³/°C	2.7e6 J/m ³ /°C
Volumetric Water Content	0.41 m ³ /m ³	0.03 m ³ /m ³

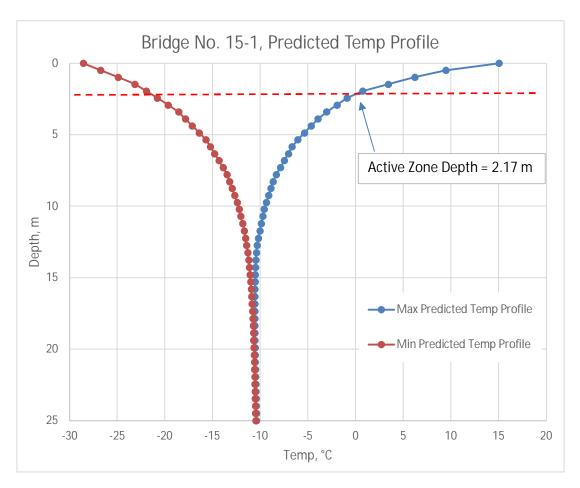


Figure A-1: Predicted Ground Temperature Profile at Bridge No. 15-1

A.2.2 Bridge No. 70-2

Table A-3: Temp/W Model Input Parameters, Bridge No. 70-2

Stratigraphic Unit	Sandy Silt
Depth Below Ground Surface	0.0 m – 25.0 m
Frozen Thermal Conductivity	2.2 J/s/m/°C
Unfrozen Thermal Conductivity	1.4 J/s/m/°C
Frozen Volumetric Heat Capacity	2.5e6 J/m ³ /°C
Unfrozen Volumetric Heat Capacity	1.9e6 J/m ³ /°C
Volumetric Water Content	0.41 m ³ /m ³

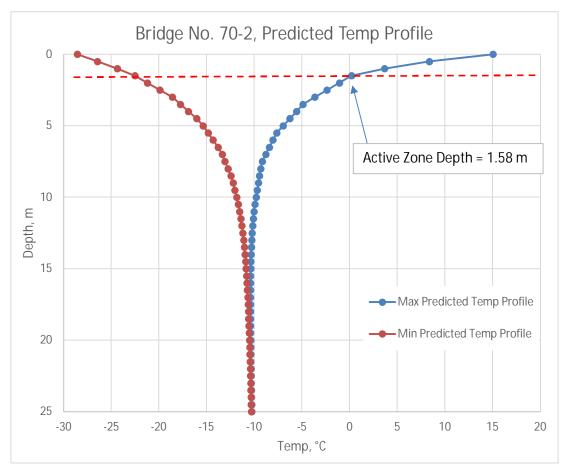


Figure A-2: Predicted Ground Temperature Profile at Bridge No. 86-3

H353004-35000-229-230-0001, Rev. 0

A.2.3 Bridge No. 86-3

Table A-4: Temp/W Model Input Parameters, Bridge No. 86-3

Stratigraphic Unit	Sand to Sand and Gravel
Depth Below Ground Surface	0.0 m – 25.0 m
Frozen Thermal Conductivity	3.0 J/s/m/°C
Unfrozen Thermal Conductivity	1.5 J/s/m/°C
Frozen Volumetric Heat Capacity	2.8e6 J/m ³ /°C
Unfrozen Volumetric Heat Capacity	1.9e6 J/m³/°C
Volumetric Water Content	0.45 m ³ /m ³

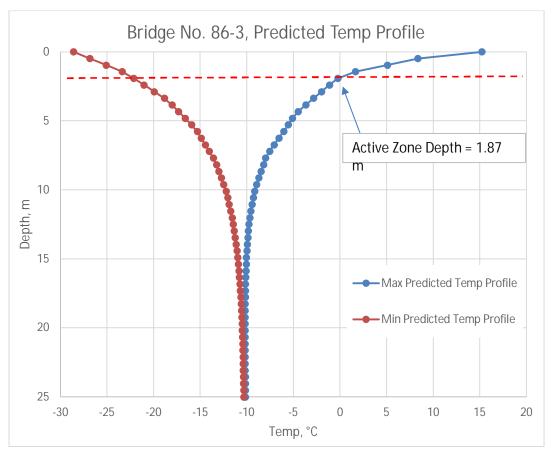


Figure A-3: Predicted Ground Temperature Profile at Bridge No. 86-3

H353004-35000-229-230-0001, Rev. 0

A.2.4 Bridge No. 102-4

Table A-5: Temp/W Model Input Parameters, Bridge No. 102-4.

Stratigraphic Unit	Sand to Sand and Gravel	Gneiss (Bedrock)
Depth Below Ground Surface	0.0 m – 8.5 m	8.5 m – 25.0 m
Frozen Thermal Conductivity	3.0 J/s/m/°C	2.5 J/s/m/°C
Unfrozen Thermal Conductivity	1.5 J/s/m/°C	2.5 J/s/m/°C
Frozen Volumetric Heat Capacity	2.8e6 J/m ³ /°C	2.7e6 J/m ³ /°C
Unfrozen Volumetric Heat Capacity	1.9e6 J/m ³ /°C	2.7e6 J/m ³ /°C
Volumetric Water Content	0.45 m ³ /m ³	0.03 m ³ /m ³

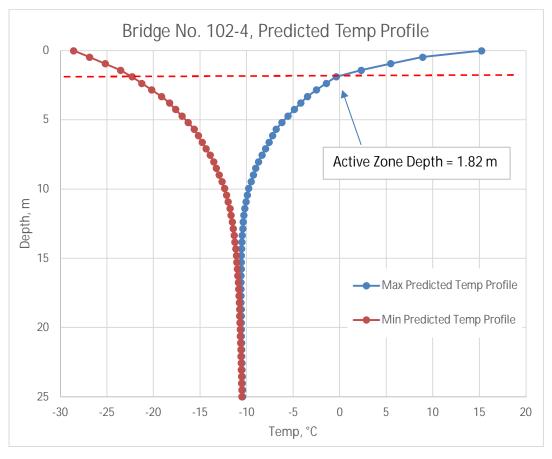
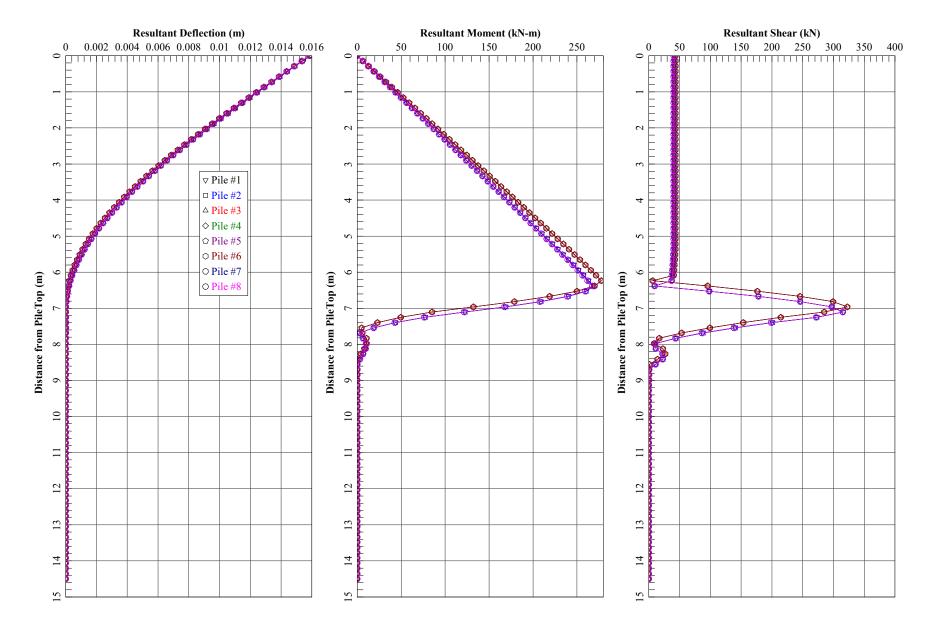


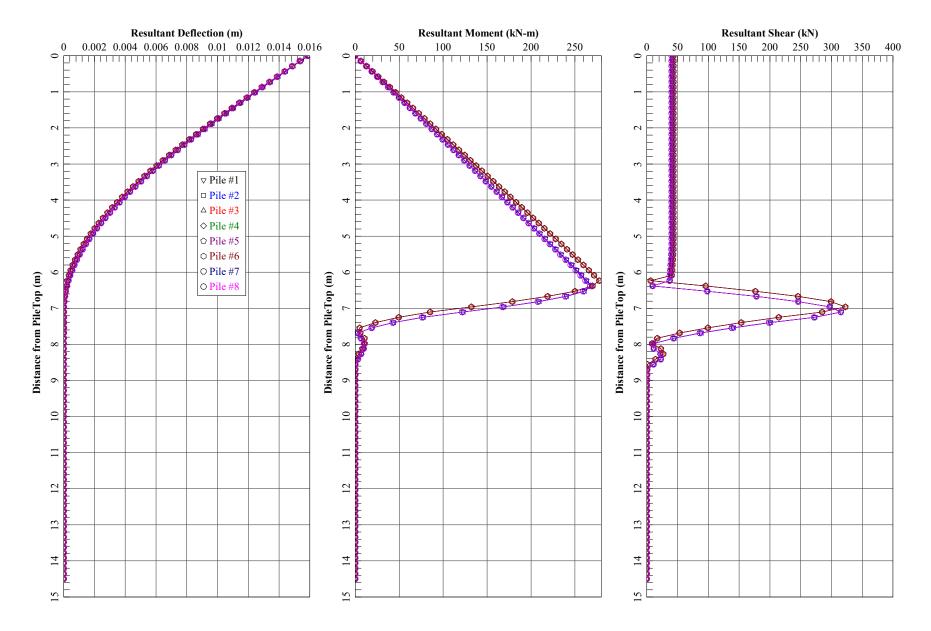
Figure A-4: Predicted Ground Temperature Profile at Bridge No. 102-4

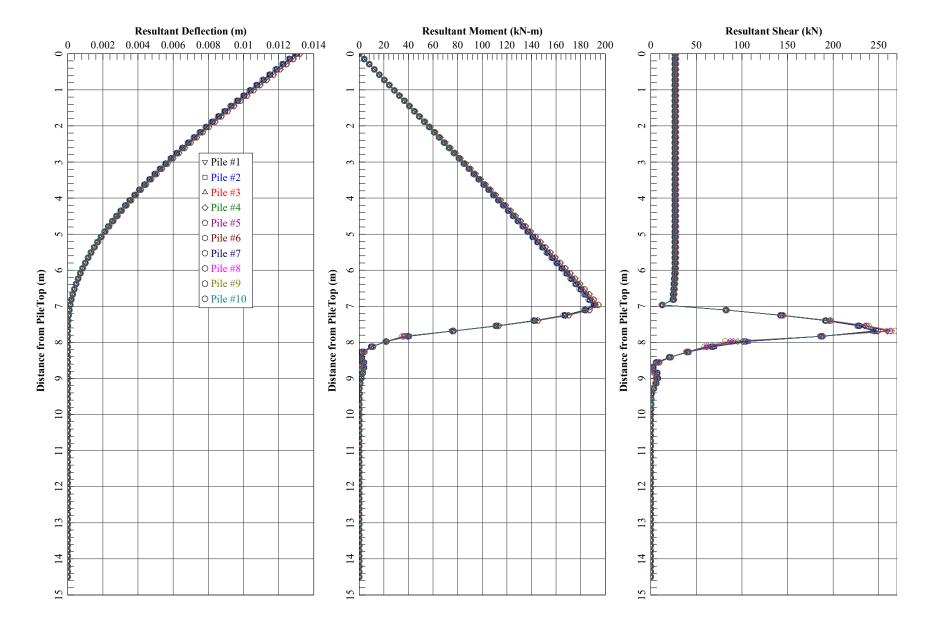
H353004-35000-229-230-0001, Rev. 0

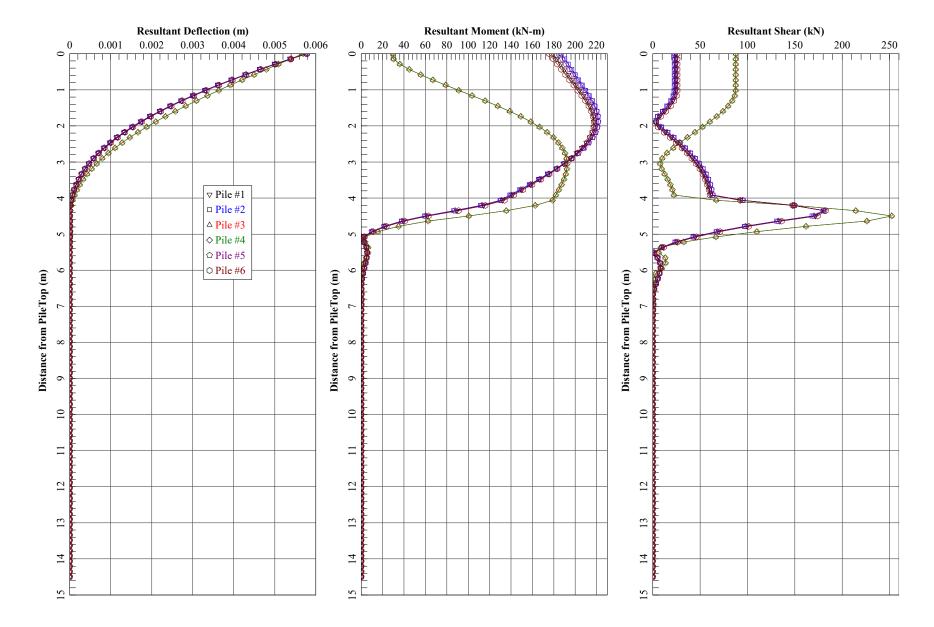
A.3 References

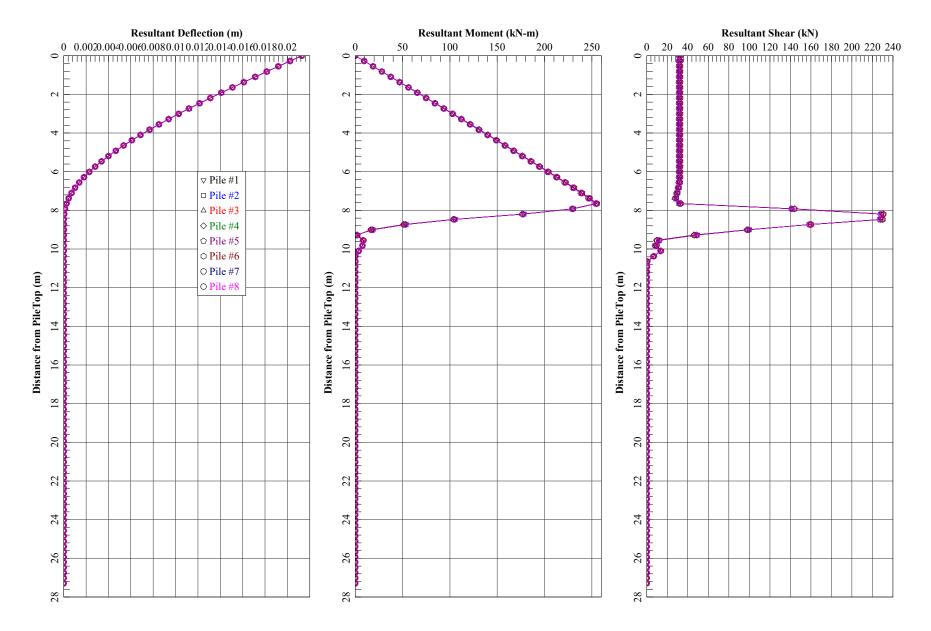
- Andersland, B.A., Ladanyi, B., 2004, "Frozen Ground Engineering", Second Edition, ASCE, John Wiley and Sons, Inc.
- H353004-10000-229-230-0005, Rev. 2, 2016-2017-2018 Rail Geotechnical Investigation Factual Data Report.
- H353004-00000-229-210-0001, Rev. 0, Geotechnical Design Basis.
- GEO-SLOPE International Inc., 2014, "Thermal Modelling with TEMP/W An Engineering Methodology".

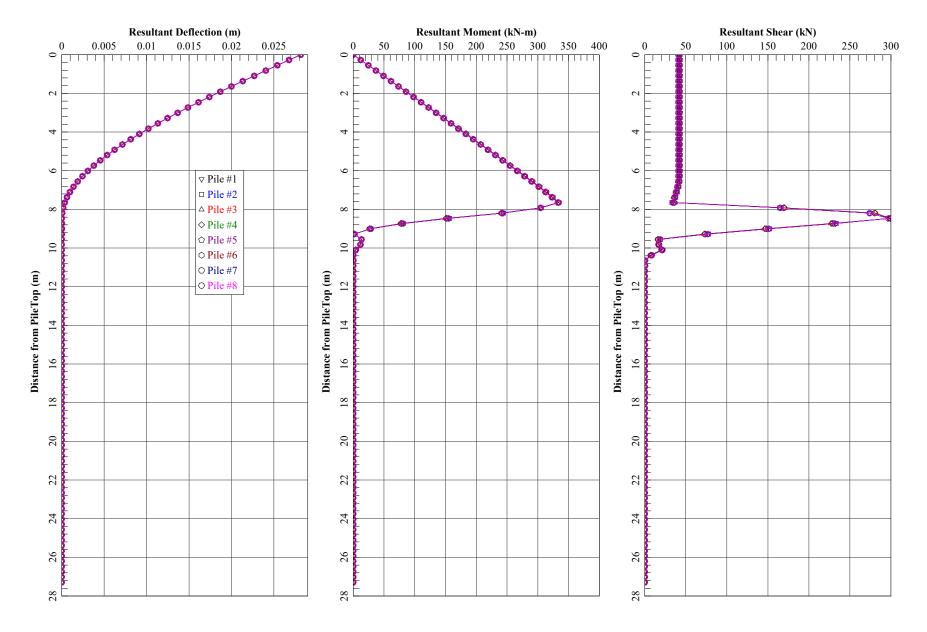

Appendix B Lateral Pile Analysis

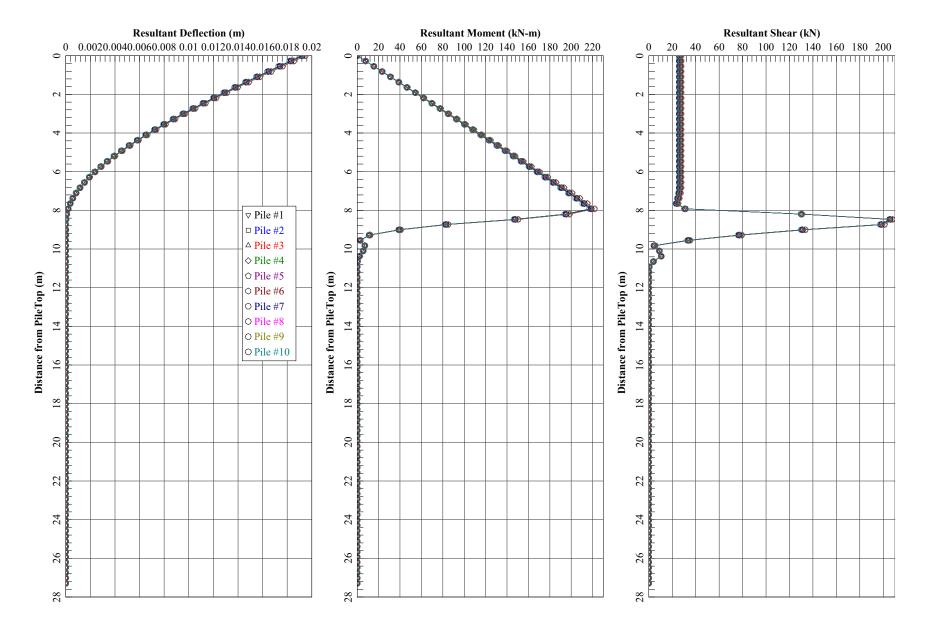

Case Number	1.1	1.2	1.3	1.4
Bridge	15-1	15-1	15-1	15-1
Structural Element	Regular Bent	Regular Bent High Load	Super Bent	Abutment
Pile Connection Type	Pinned	Pinned	Pinned	Fixed-y
W -				,
Inputs				
Ground Surface Elevation (m)	73.8	73.8	73.2	78.0
Ground Water Elevation (m)	78.5	78.5	78.5	78.5
Top of Pile Elevation (m)	79.0	79.0	79.0	79.0
Pile Tip Elevation (m)	64.5	64.5	64.5	64.5
Ground Clearence (m)	5.2	5.2	5.8	1.0
,				
Soil Stratigraphy				
Layer 1				
Description	Active Zone Silt-Sand	Active Zone Silt-Sand	Active Zone Silt-Sand	Active Zone Rock Fill
Top Elevation (m)	73.8	73.8	73.2	78.0
Thickness (m)	1.0	1.0	1.0	3.0
Unit Weight (kN/m^3)	19	19	19	19
Saturated Unit Weight (kN/m^3)	19	19	19	19
P-Y Model	API Sand	API Sand	API Sand	API Sand
Friction Angle (deg)	30	30	30	38
Initial Modulus of Subgrade Reaction (kPa/m)	12000	12000	12000	30000
ilitial Woulds of Subgrade Reaction (KFa/III)	12000	12000	12000	30000
Layer 2				
Description	Permafrost Sand-Silt	Permafrost Sand-Silt	Permafrost Sand-Silt	Permafrost Sand-Silt
Top Elevation (m)	72.8	72.8	72.2	75.0
Thickness (m)	6.8	6.8	6.2	9.0
Unit Weight (kN/m^3)	19	19	19	19
Saturated Unit Weight (kN/m^3)	19	19	19	19
P-Y Model	Stiff Clay without Free Water			
Strain Factor	0.001875	0.001875	0.001875	0.001875
Undrained Shear Strength (kPa)	1800	1800	1800	1800
Officialited Stream Strength (KFa)	1800	1800	1800	1800
Layer 3				
Description	Bedrock Gneiss	Bedrock Gneiss	Bedrock Gneiss	Bedrock Gneiss
Top Elevation (m)	66.0	66.0	66.0	66.0
Thickness (m)	20.0	20.0	20.0	20.0
	25	25.0	25.0	25
Unit Weight (kN/m^3)	25	25	25	25
Saturated Unit Weight (kN/m^3) P-Y Model				
	Strong Rock (Vuggy Limestone) 40000			
Uniaxial Compressive Strength (kPa)	40000	40000	40000	40000
Outputs				
Pile Cap Displacements				
Lat-max (mm)	2.9	2.9	2.9	0.3
	2.9	15.6	2.9 12.7	5.8
Long-max (mm) Vert-max (mm)	0.8	0.8	0.7	0.1
Idividual Pile Loads	0.8	0.8	0.7	0.1
	212.9	277.8	194.5	221.5
Bending Moment-max (kN-m)	279.3	322.7		252.4
Shear Force-max (kN)	279.3 841.5	322.7 859.6	268.1 797.6	252.4 1150.1
Axial Force-max (kN)	841.5	859.6	797.6	1150.1

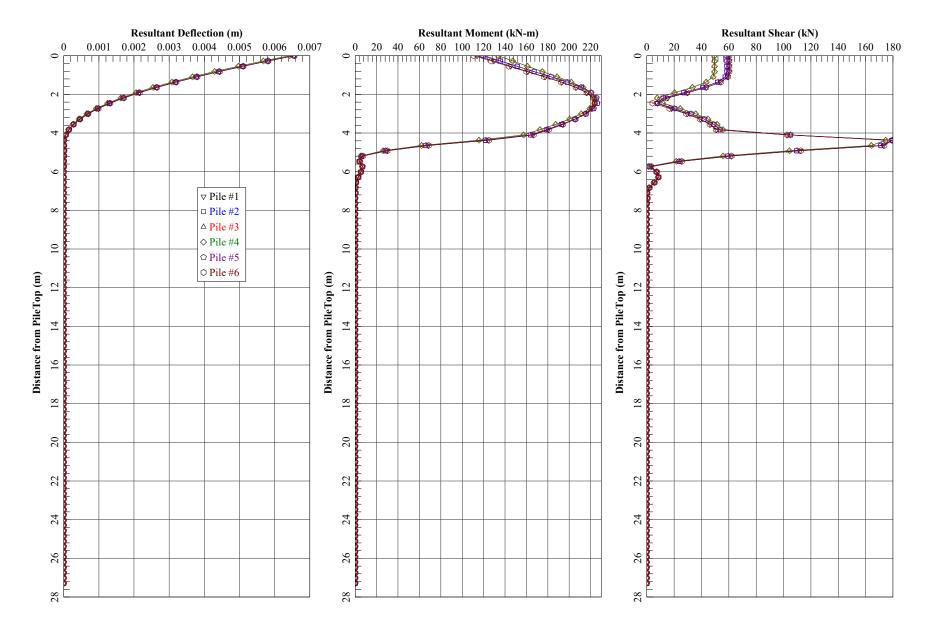

Case Number	2.1	2.2	2.3	2.4
Bridge	70-2	70-2	70-2	70-2
Structural Element	Regular Bent	Regular Bent_High Load	Super Bent	Abutment
Pile Connection Type	Pinned	Pinned	Pinned	Fixed-y
Inputs				
Ground Surface Elevation (m)	119.9	119.9	119.6	125.3
Ground Water Elevation (m)	126.0	126.0	126.0	126.0
Top of Pile Elevation (m)	126.3	126.3	126.3	126.3
Pile Tip Elevation (m)	99.0	99.0	99.0	99.0
Ground Clearence (m)	6.4	6.4	6.7	1.0
e de la contraction de				
Soil Stratigraphy Layer 1				
Description	Active Zone_Silt-Sand	Active Zone_Silt-Sand	Active Zone_Silt-Sand	Active Zone_Rock Fill
Top Elevation (m)	119.9	119.9	119.6	125.3
Thickness (m)	1.0	1.0	1.0	3.0
Unit Weight (kN/m^3)	19	19	19	19
Saturated Unit Weight (kN/m^3)	19	19	19	19
P-Y Model	API Sand	API Sand	API Sand	API Sand
Friction Angle (deg)	30	30	30	38
Initial Modulus of Subgrade Reaction (kPa/m)	12000	12000	12000	30000
Layer 2				
Description	Permafrost_Sand-Silt	Permafrost_Sand-Silt	Permafrost_Sand-Silt	Permafrost_Sand-Silt
Top Elevation (m)	118.9	118.9	118.6	122.3
Thickness (m)	18.4	18.4	18.1	21.8
	19	19	19	19
Unit Weight (kN/m^3)				
Saturated Unit Weight (kN/m^3)	19	19	19	19
Saturated Unit Weight (kN/m^3) P-Y Model	19 Stiff Clay without Free Water	19 Stiff Clay without Free Water	19 Stiff Clay without Free Water	19 Stiff Clay without Free Water
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor	19 Stiff Clay without Free Water 0.001875	19 Stiff Clay without Free Water 0.001875	19 Stiff Clay without Free Water 0.001875	19 Stiff Clay without Free Water 0.001875
Saturated Unit Weight (kN/m^3) P-Y Model	19 Stiff Clay without Free Water	19 Stiff Clay without Free Water	19 Stiff Clay without Free Water	19 Stiff Clay without Free Water
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa)	19 Stiff Clay without Free Water 0.001875	19 Stiff Clay without Free Water 0.001875	19 Stiff Clay without Free Water 0.001875	19 Stiff Clay without Free Water 0.001875
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor	19 Stiff Clay without Free Water 0.001875	19 Stiff Clay without Free Water 0.001875	19 Stiff Clay without Free Water 0.001875	19 Stiff Clay without Free Water 0.001875
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3	19 Stiff Clay without Free Water 0.001875 1200	19 Stiff Clay without Free Water 0.001875 1200	19 Stiff Clay without Free Water 0.001875 1200	19 Stiff Clay without Free Water 0.001875 1200
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m)	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m)	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3)	Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3)	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa)	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa) Initial Modulus (kPa)	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa) Initial Modulus (kPa) Strain Factor RQD (5)	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa) Initial Modulus (kPa) Strain Factor RQD (5) Outputs	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa) Initial Modulus (kPa) Strain Factor RQD (5) Outputs Pile Cap Displacements	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa) Initial Modulus (kPa) Strain Factor RQD (5) Outputs Pile Cap Displacements Lat-max (mm)	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa) Initial Modulus (kPa) Strain Factor RQD (5) Outputs Pile Cap Displacements Lat-max (mm) Long-max (mm)	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 3.9 18.8	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa) Initial Modulus (kPa) Strain Factor RQD (5) Outputs Pile Cap Displacements Lat-max (mm) Long-max (mm) Vert-max (mm)	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa) Initial Modulus (kPa) Strain Factor RQD (5) Outputs Pile Cap Displacements Lat-max (mm) Long-max (mm) Vert-max (mm) Idividual Pile Loads	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 4.4 20.8 1.0	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 4.4 27.8 1.0	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 3.9 18.8 0.8	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 0.3 6.6 0.3
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa) Initial Modulus (kPa) Strain Factor RQD (5) Outputs Pile Cap Displacements Lat-max (mm) Long-max (mm) Vert-max (mm) Idividual Pile Loads Bending Moment-max (kN-m)	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 4.4 20.8 1.0	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 4.4 27.8 1.0	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 3.9 18.8 0.8	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 0.3 6.6 0.3
Saturated Unit Weight (kN/m^3) P-Y Model Strain Factor Undrained Shear Strength (kPa) Layer 3 Description Top Elevation (m) Thickness (m) Unit Weight (kN/m^3) Saturated Unit Weight (kN/m^3) P-Y Model Uniaxial Compressive Strength (kPa) Initial Modulus (kPa) Strain Factor RQD (5) Outputs Pile Cap Displacements Lat-max (mm) Long-max (mm) Vert-max (mm) Idividual Pile Loads	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 4.4 20.8 1.0	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 4.4 27.8 1.0	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 3.9 18.8 0.8	19 Stiff Clay without Free Water 0.001875 1200 Bedrock_Limestone 100.5 20.0 25 25 Weak Rock 15000 1000000 0.0005 70 0.3 6.6 0.3

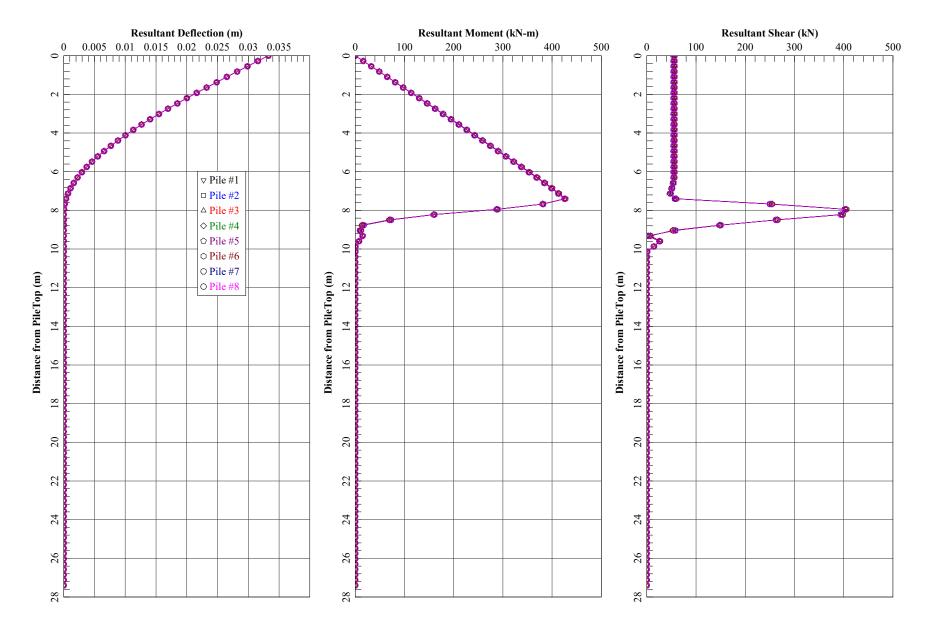

Case Number	3.1	3.2
Bridge	86-3	86-3
Structural Element	Regular Bent	Abutment
Pile Connection Type	Pinned	Fixed-y
Inputs		
Ground Surface Elevation (m)	139.2	144.4
Ground Water Elevation (m)	144.5	144.5
Top of Pile Elevation (m)	145.4	145.4
Pile Tip Elevation (m)	118.0	118.0
Ground Clearance (m)	6.2	1.0
Soil Stratigraphy		
Layer 1		
Description	Active Zone_Sand	Active Zone_Rock Fill
Top Elevation (m)	139.2	144.4
Thickness (m)	1.0	3.0
Unit Weight (kN/m^3)	19	19
Saturated Unit Weight (kN/m^3)	19	19
P-Y Model	API Sand	API Sand
Friction Angle (deg)	32	38
Initial Modulus of Subgrade Reaction (kPa/m)	18000	30000
Layer 2		
Description	Permafrost Sand	Permafrost Sand
Top Elevation (m)	138.2	141.4
Thickness (m)	30.0	30.0
Unit Weight (kN/m^3)	19	19
Saturated Unit Weight (kN/m^3)	19	19
P-Y Model	Stiff Clay without Free Water	Stiff Clay without Free Water
Strain Factor	0.001875	0.001875
Undrained Shear Strength (kPa)	1800	1800
onaramea onear outengan (iii a)	1000	1000
Outputs		
Pile Cap Displacements		
Lat-max (mm)	4.2	0.2
Long-max (mm)	33.0	7.2
Vert-max (mm)	1.0	0.3
Idividual Pile Loads		
Bending Moment-max (kN-m)	427.1	251.8
Shear Force-max (kN)	405.4	218.7
Axial Force-max (kN)	906.8	1011.6

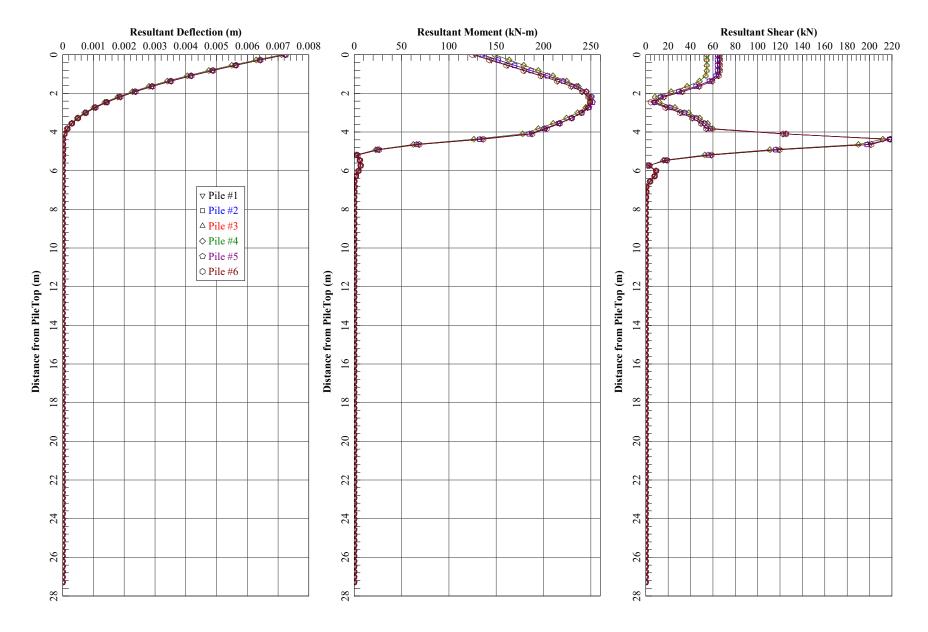

4.2	4.1	Case Number
102-4	102-4	Bridge
Abutmen	Regular Bent	Structural Element
Fixed-	Pinned	Pile Connection Type
		Inputs
167.9	157.7	Ground Surface Elevation (m)
163.5	163.5	Ground Water Elevation (m)
168.9	168.9	Top of Pile Elevation (m)
153.5	153.5	Pile Tip Elevation (m)
1.0	11.2	Ground Clearence (m)
		Soil Stratigraphy
		Layer 1
Active Zone Rock Fil	Active Zone Sand-Gravel	Description
167.9	157.7	Top Elevation (m)
3.0	1.0	Thickness (m)
20	19	Unit Weight (kN/m^3)
20	19	Saturated Unit Weight (kN/m^3)
API Sana	API Sand	P-Y Model
38	32	Friction Angle (deg)
30000	18000	Initial Modulus of Subgrade Reaction (kPa/m)
		Layer 2
Permafrost_Sand-Grave	Permafrost_Sand-Gravel	Description
164.9	156.7	Top Elevation (m)
8.4	0.2	Thickness (m)
19	19	Unit Weight (kN/m^3)
19	19	Saturated Unit Weight (kN/m^3)
Stiff Clay without Free Water	Stiff Clay without Free Water	P-Y Model
0.001875	0.001875	Strain Factor
1800	1800	Undrained Shear Strength (kPa)
		Layer 3
Bedrock_Gneis	Bedrock_Gneiss	Description
156.5	156.5	Top Elevation (m)
20.0	20.0	Thickness (m)
25	25	Unit Weight (kN/m^3)
25	25	Saturated Unit Weight (kN/m^3)
Strong Rock (Vuggy Limestone)	Strong Rock (Vuggy Limestone)	P-Y Model
40000	40000	Uniaxial Compressive Strength (kPa)
		Outputs
		Pile Cap Displacements
0.3	8.0	Lat-max (mm)
6.6	147.3	Long-max (mm)
0.0		
	1.2	Vert-max (mm)
0.:	1.2	
0.5	1.2 788.5	Idividual Pile Loads
		Vert-max (mm) Idividual Pile Loads Bending Moment-max (kN-m) Shear Force-max (kN)

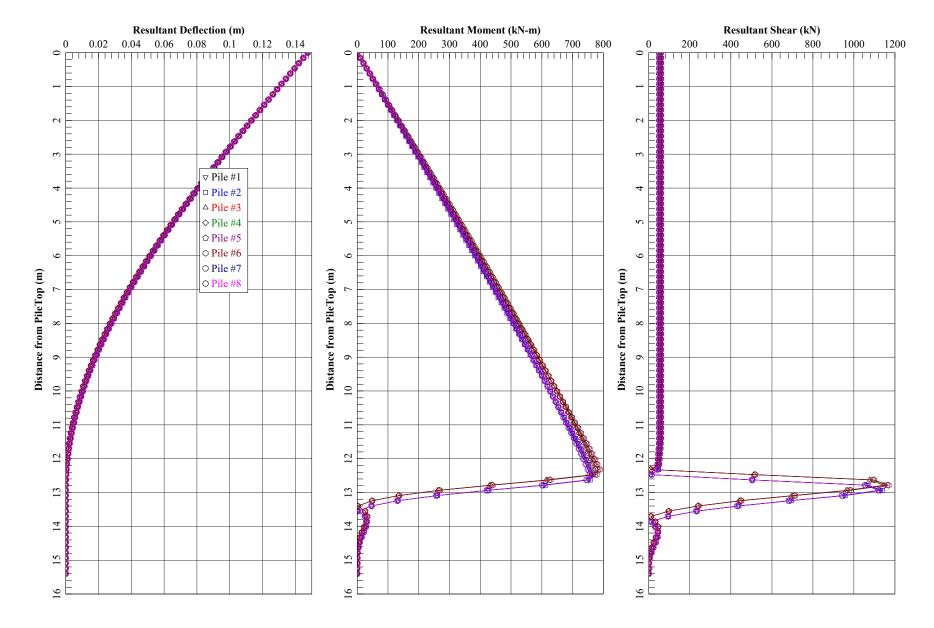


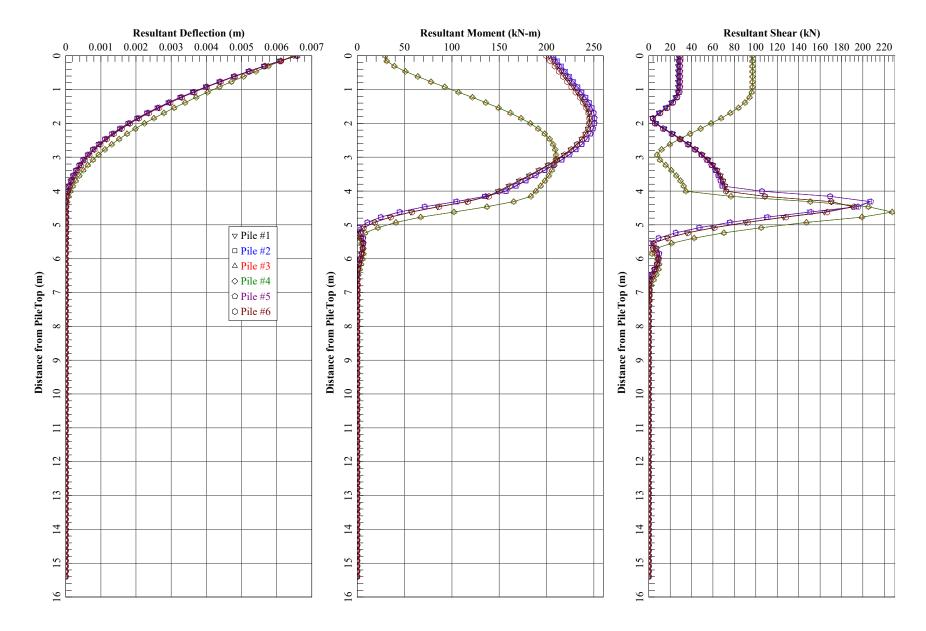












Baffinland Iron Mines Corporation - Mary River Expansion Project Foundation Recommendations for Rail Bridges - January 30, 2019

Appendix C Reference Borehole Logs

BOREHOLE REPORT

BH18-BR15-1

Easting:

Sheet 1 of 3

555,758.0 m

Client: Baffinland Iron Mine

Project: Mary River Expansion Study

Location: Bridge 15 (Kilometer 18) Project No.: H353004

Datum: NAD83

Platform:

Northing: 7,915,441.0 m

Surface Elevation: 78.00 m **Bottom Elevation:** 60.63 m

Total Depth: 17.4 m Logged By:

Ī	ller:				drew	Hole Diameter (mm): 100	Date R			- 4	-				+	eviev		_ , .			
	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	M Cont	oistur ent Pr 25	e ofi l e	50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Oth Tes
٦	-					SNOW	ICE			Ī											
ł	-	-	ł			ICE	ICE				- 1		- [
	- - 77.0	1.0-									j	į	ĺ								
	-	-			141	SILTY SAND, some GRAVEL: fine to	Nf														
Ì	-	-				medium grained sand, brownish grey.	inferred						-								
	- 76.0	2.0-	1	ķ	010																
	-	-	-	ļ			Possible														
	-	-	1	ķ	100		ice feature,				•										
ŀ	-	-	-	ļ			all		/		-				6	34	44	22			
	—75 <u>.</u> 0	3.0-		ķ	1 V 4		melted.														
	-	-			PLD																
	-	-		ķ																	
	 74.0	4.0-	1	ŀ							٦				11	6	57	37			
	-	-	-		100	4.20 m - 4.30 m: Boulder inferred with silty sand layer.					ĺ		ĺ								
ļ	-	-			PO	only said layer.					İ	İ	į								
	 73.0	5.0-	-	ķ							• i	i	i								
	-	-			pl b							i	i		7						
	-	-	$\left \cdot \right $	ļ							i	i	i								
ļ	- 72.0	6.0-		ţ	D C																
	-	-	1																		
	-	-	-		POIC						 	 	 								
	- 71.0	7.0-									I I	l I	I I								
	-	-	-		POIS						 		 								
	-	-		İ	\bigcap	COBBLES and BOULDERS: Cobble at 7.75 m and 8.90 m.															
	-	-	100		N N	7.75 III aliu 0.30 III.															
ļ	—70.0 —	8.0-	Mini Sonic Drilling Rig BL100	ļ	()																
	-	-	ing R																		
ļ	-	-	□ri∭	ļ	$\mathbb{Q}^{(}$																
ļ	69.0	9.0-	Sonic		14:1	MUD SLURRY with GRAVEL to	Nf														
	-	-	Mini			COBBLES: Coarse gravel (26 mm).	inferred														
	-	-	1		2016																
_	68.0	10.0-		ŀ	1 1/1/1																

BOREHOLE REPORT

BH18-BR15-1

Sheet 2 of 3

Client: Baffinland Iron Mine

Project No.: H353004

Easting: 555,758.0 m Northing:

Project: Mary River Expansion Study

NAD83

7,915,441.0 m Surface Elevation: 78.00 m

Location: Bridge 15 (Kilometer 18) Datum: Platform:

Bottom Elevation: 60.63 m **Total Depth:** 17.4 m

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig

Date Logged: 3/11/2018

Logged By: MY/PS

L	Dril	ler:	Brei	nt M	lcAr	drew	Hole Diameter (mm): 100	Date F	Revi	iew	/ed	l:	F	evie	wed	Ву:			
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	- - - - 67.0	11.0-				ROCK: 60% mafic, 10-15% red mineral, 10% black elongate, reflective. Refusal on hard rock. Start of Coring at 10.7m. Continued on Rock Core Log sheet.												-
4	-	- - - 66.0 -	12.0-																- - - -
HATCHLIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <drawingfile>> 29/08/2018 11:14</drawingfile>	- - - -	- 65,0 - - -	13.0-																-
STIGATION - V7.GPJ < <drain< td=""><td>- - -</td><td>64.0 63.0</td><td>14.0-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drain<>	- - -	64.0 63.0	14.0-																-
2018 GEOTECHNICAL INVE	-	- - - 62.0 -	16.0-																- - - -
DREHOLE GINT LOGS MR.	-	- 61.0 - - -	17.0-																-
NT COPY.GLB Log ICE BC	 - - - - -	60.0 59.0	18.0-																-
CH LIBRARY DEVELOPME	Note	- - - - -58.0	20.0																

Client:

Project:

Location:

BOREHOLE LOG

ROCK CORE FORMAT

BH18-BR15-1

Sheet 3 of 3

Easting:

555,758.0 m

Northing:

7,915,441.0 m 78.00 m

Surface Elevation: **Bottom Elevation:**

60.63 m

Total Depth:

17.4 m

Logged By:

MY/PS

Date Logged: 3/11/2018

Project No.: H353004

NAD83

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A°

Baffinland Iron Mine

Mary River Expansion Study

Bridge 15 (Kilometer 18)

Platform:

Datum:

D	riller:	Е	Brent	McAi	ndrew	Hole Di	ameter (mm): 100 Plunge: °	D	ate C	hecked	i:		Re	view	ved By:
Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	Str	imated ength : ᡓ ᠴ 弓 ፱	Is ₍₅₀₎ [UCS] MPa	Defect Spacing mm [001] 000 000 000 000 000	RQD %	Defect Log	Defect Description Indination, type, infill, amount, aperture, planarity, roughness, frequency Specific General
3/2018 11:10	- - - - - - - -	.0 11.0		2/105 1/130			Resuming in Rock Core Format 10.7m. BEDROCK: Granitic gneiss alternating with mafic bands. 12.58 m: Mafic matrix with white minerals peppered throughout, medium grain size						76		Fz -3° Jt PI Sm -5° Jt PI Sm -DI -40° Jt PI Sm -10° Jt PI Sm cg -90° Jt PI Sm -85° Jt PI Sm -90° Jt PI Sm -75° Jt PI Sm Fz 0° Jt PI Sm Soil cg
BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <drawingfile>> 29/08/2018 11:10</drawingfile>	- - - 64 - - - - 63			5/101 4/154 3/96			grain size. 14.80 m - 15.85 m: Dark mafic to ultramafic matrix, black visable minerals.				- - - - - -		86 43		Cz 30° Jt Pl Ro Rust staining sn 80° Jt Pl Ro Rust staining sn 90° Jt Pl Sm 45° Jt Pl Ro Rust sn 30° Jt Pl Ro Rust sn 30° Jt Pl Ro Pust sn 30° Jt Pl Sm Darker staining 0° Jt Pl Ro 45° Jt Pl Sm -70° Jt Pl Ro DI Fl Ro DI Fl Ro
IINT LOGS MR 2018 GEOTECHNICAL	- 62 61	.0 16,0	- - - - - - - - - - - - - - - - - - -	66 / 9			15.85 m - 15.95 m: Granitic gneiss. 15.95 m - 17.22 m: Mafic matrix. 17.22 m: Mafic matrix with red banding,				- - - - -		96	/	DI -45° Jt PI Sm 45° Jt PI Sm Some staining, infill cg DI -40° Jt PI Sm Staining sn
	- - -	.0 18.0					granitic gneiss. To Target Depth. Drillhole BH18-BR15-1 terminated at 17.4m.				- - - - -				
HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED	58 otes:	.0 20.0					Defect Planarity Description Ir Irregular Legend Cu Curved Un Undulose St Stepped	Jt S Pt F Sh S	Orilling Joint Parting Shear S	Induced on Conta Seam d Seam	Cz Cı nct Fz Fr	eam rushed Zone ractured Zone (eak Band		Ro Sm Po SI	Rough cn Clean Smooth sn Stained Polished vn Veneer Slickenside cg Coating

HATCH LIBRARY DEVELOPMENT COPY GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GFJ <-DrawingFile>> 29/08/2018 11:14

Notes:

BOREHOLE REPORT

BH18-BR15-2

78.00 m

Client: Baffinland Iron Mine

Project: Mary River Expansion Study

Location: Bridge 15 (Kilometer 18) Project No.: H353004

Datum: NAD83

Platform:

Easting: 514,211.0 m

Northing: 7,965,645.0 m Surface Elevation:

Bottom Elevation: 61.20 m

Total Depth: 16.8 m

	Contra	ctor: Bo	oart I	ong	year	Rig Type/ Mounting: Sonic Drill Rig	Date L	.ogg	ed:	3/12/2018				peptr d By:				16.8 m MY/PS
	Driller:	Br	ent I	ИсАі	ndrew	Hole Diameter (mm): 100	Date F	Revie	ewe	d:		Re	view	ved E	Зу:			
	Water Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 25	50	Field Water Content	Percent Grave	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		-				ICE	ICE											
	777.0	1.0-				BOULDERS to COBBLES: Grey with red viens.	Nf											
	- - -	-				SAND, trace SILT: Fine to medium grained, light brown, red, and black.	Nbn - Vx		////			14	1	85	14			
	- 76.0	2.0-				SANDY SILT: Grey.	Nbn	5			>>•	63	1	45	54			+
	- - -	-				SILTY SAND, trace to some GRAVEL: Fine to medium grained, brownish grey.		WI /	1/1/			9	29	39	32			
270007	—75.0 - -	3.0-					Nf	_										
2	—74.0) 4.0-				3.90 m: Trace boulders, sub-rounded to rounded gravel and boulders.			/									
	_	-				Tourided graver and boulders.	Nf		//			11	14	60	26			-
	—73,0 —	5.0-				5.20 m: Some gravel, trace boulders.	inferred											-
5									7			5	22	48	30			
	—72.0 - -	6.0-							//									
	71.0	7.0-																-
1	-	-	BL100															
2	- 70.0	8.0-	ling Rig B			7.80 m: Trace cobbles.												-
	69.0	9.0-	Mini Sonic Drilling Rig			8.50 m - 8.70 m: Trace boulders, coarsening downwards, sub-angular to sub-rounded.												- - - -
עונו הרגורה		- 10.0-				9.45 m - 9.80 m: Boulders, dark matrix with granitic crystals.	Nf											

BOREHOLE REPORT

BH18-BR15-2

Client: Baffinland Iron Mine

Project No.: H353004

Project:

Contractor: Boart Longyear

Mary River Expansion Study

Northing: Surface Elevation:

514,211.0 m 7,965,645.0 m

NAD83

78.00 m 61.20 m

Location: Bridge 15 (Kilometer 18)

Platform:

Datum:

Total Depth:

Rig Type/ Mounting: Sonic Drill Rig **Date Logged:** 3/12/2018

Logged By:

Bottom Elevation:

Easting:

16.8 m MY/PS

Dr	iller:	Bre	ent N	/lcAr	ndrew	Hole Diameter (mm): 100	Date F	Revie	ew	ed:	R	eview	ved E	Зу:			
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 25 50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - -	- - -				10.00 m - 10.15 m: Boulders, dark matrix with granitic crystals. Start of Coring at 10.2m. Continued on Rock Core Log sheet.			+								-
	67 <u>.</u> 0 	11.0- - - -															-
	66.0 	12.0— — —															- - - -
	65.0 	13,0-															
	- 64.0 - -	14.0— — —															
		15.0— - -															
	- 62.0 - -	16.0— —															-
	- 61.0 -	17.0—															-
, , , , , , , , , , , , , , , , , , ,	- 60.0 -	18.0—															-
	- - 59.0 -	19.0-															-
	58.0	20.0															

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ «-DrawingFile» 29/08/2018 11:14

Notes:

BOREHOLE LOG

ROCK CORE FORMAT

BH18-BR15-2

Sheet 3 of 3

514,211.0 m

7,965,645.0 m

78.00 m

61.20 m

16.8 m

MY/PS

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Bridge 15 (Kilometer 18) Platform:

Bottom Elevation: Total Depth:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° **Date Logged:** 3/12/2018 Logged By: Driller: Brent McAndrew Hole Diameter (mm): 100 Date Checked: Plunge:

Reviewed By:

Easting:

Northing:

Surface Elevation:

Dri	ller:	Br	ent l	McAr	ndrew	Hole Di	ameter (mm): 100 Plunge: °	L	ate Ch	ecked	1:			Re	view	ved By:		
Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, Resuming MiROCROSHUFBI mat 10.2m.	Weathering/ Cementation	Estim Strei ∐ → ⊥ ≥	ngth	Is ₍₅₀₎ [UCS] MPa	Sp r	efect acing nm [001]	%	Defect Log	Indina	Descript tion, type, int aperture, plan ness, frequer	īII.
	-	-			~~		BEDROCK: Granitic gneiss, grey matrix with red veins.				-							
	- - - 67.0	11.0 —					10.70 m - 11.10 m: mafic matrix with plagioclase and granitic banding (gneissic banding).											
	-	-					Crushed rock, up to 30 cm.				_		1					
0	66.0 - -	12.0 —									-							
13/2018 11:1	- - - 65.0	13.0 —									-		İ					
JFile>> 29/0	- - -	-									-		i					
J < <drawing< td=""><td>- 64.0 -</td><td>14.0 —</td><td></td><td></td><td></td><td></td><td>13.70 m - 13.85 m: Pulverized rock.</td><td></td><td></td><td></td><td>_</td><td></td><td>İ</td><td></td><td></td><td></td><td></td><td></td></drawing<>	- 64.0 -	14.0 —					13.70 m - 13.85 m: Pulverized rock.				_		İ					
ON - V7.GP.	- - -	-	-								-		1					
NESTIGATI	63.0 - -	15.0 —	1								- -							
CHNICAL IN	- - - 62.0	16.0 —					15.50 m: Thicker plagioclase beds, thicker clasts (granite)				- -		İ					
:018 GEOTE	- - -	-	1								- -							
LOGS MR 2	- 61.0	17.0 —			<u> </u>		To Target Depth. Drillhole BH18-BR15-2 terminated at				_		1					
HOLE GINT	- - -	-	1				16.8m.				-		i I					
RED BORE	— 60.0 - -	18.0 —									-							
LB Log CO	- - - 59.0	19.0 —											İ					
NT COPY.G	_ _ _	- -	-								- -							
Not Not		20.0 —						<u> </u>			-		1		<u>_</u>		1.69.4	
HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <drawningfile>> 29/08/2018 11:10 2</drawningfile>	с э.						Defect PI Planarity Description Legend Cu Curved Un Undulose St Stepped	Jt . Pt ! Sh :	Orilling Ind Joint Parting or Shear Se Crushed S	n Conta	Cz Cr act Fz Fr		d Zone ed Zon and		Ro Sm Po SI	Smooth	vn Ver	an ined

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-1

Sheet 1 of 4

Easting: Client: **Baffinland Iron Mines Corporation** Project No.: H353004

Project: Mary River Expansion Project Datum: NAD83

Location: North West Abutment Platform:

> Rig Type/ Mounting: MiniSonic Rig Date Logged: 10/1/2017

Ground

542,257.3 m

Northing: 7,922,181.7 m Surface Elevation: 142.93 m

Bottom Elevation: 103.33 m

Total Depth: 39.6 m Logged By: R.S

"	muacu	JI. DO	art	-0119	lycai	rig Type, Mounting. Williadille rig	Date	-09	jec	ч.	10/1/2017	-	Jyye	и Бу	•			R.S
Dr	iller:	Bre	ent N	/IcA	ndrew	Hole Diameter (mm): 100 mm	Date	Revi	ew	/ed	1: 2/10/2018	R	eviev	ved E	Зу:			H <u>.</u> G
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soi Description	Recovery	Sample Type	0 +	Moisture Content Profile 25 50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	_	_			H	Sandy GRAVEL, trace Silt: Brown.	unfrozer			Ħ								
	_ _ 141.9 _ _	- - 1.0- - -				SAND, trace Silt: Brown to greyish-brown, medium to fine grained, well graded. Ice poor soil.	Nbn											-
	140.9 	2.0— — —																-
	139 <u>.</u> 9 	3.0-																-
		4.0-								i								-
		5.0— — — — —				ICE	ICE	[i								
	- - - - - - 135.9	7.0-				SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine grained. Ice poor soil.	Nbn											
	- - - -134.9 -	- - 8.0-																
	133.9 	9.0-						Ī										-
	132.9 	10.0— — — —																-
<u> </u>	131.9	11.0				1				Ц			<u> </u>		_			

Notes: Hole not located directly on abutment.

HATCH LIBRARY V1.01 GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Project:

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-1

Sheet 2 of 4

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Rig Type/ Mounting: MiniSonic Rig

Location: North West Abutment Project No.: H353004

Datum: NAD83

Platform: Ground

Date Logged: 10/1/2017

Easting: 542,257.3 m

Northing: 7,922,181.7 m Surface Elevation: 142.93 m

Bottom Elevation: 103.33 m

Total Depth: 39.6 m Logged By: R.S

			JI. DO	aitL	Jong	yeai	rig Type/ Mounting. Willingonic rig	Date	.og	gec	J. 10/1/2017		LO	yyeu	ь Бу.				R.S
L	Drille	er:	Bre	ent N	1AoN	ndrew	Hole Diameter (mm): 100 mm	Date F	Revi	ew	/ed:2/10/2018		Re	view	ed E	By:			H <u>.</u> G
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 25 !	50 	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - - -	-130.9	- - 12.0- - -				SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine grained. Ice poor soil. (Continued)	Nbn (Continue	ed)										-
	-	-129.9 -128.9	13.0— — — — — — —————————————————————————																- - -
	-	-127.9	15.0 																-
	-	-126.9	16.0— — — — — — —																- - - - -
	- - - -	-124.9	- - 18.0- -																<u>-</u>
יייר בייר בי	- - - - -	-123.9	19.0—																
במה וכר כמוירות יי	-	-122.9 -121.9	20.0-																
	-	-120.9	- - - - 22.0-																

HATCH LIBRARY V1.01 GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Notes: Hole not located directly on abutment.

Project:

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-1

Sheet 3 of 4

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Rig Type/ Mounting: MiniSonic Rig

Location: North West Abutment Project No.: H353004

Datum: NAD83

Platform: Ground

Date Logged: 10/1/2017

Easting: 542,257.3 m

Northing: 7,922,181.7 m Surface Elevation: 142.93 m

Bottom Elevation: 103.33 m

Total Depth: 39.6 m Logged By: R.S

				9	,	g .,p.,		- 3.						99-					Ν.5	
Dr	iller:	Bre	ent N	ЛсАr	ndrew	Hole Diameter (mm): 100 mm	Date I	Revi	iev	vec	d:2/10/2018		+	view	ed E	Зу:			H.G	_
ē	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour,	Frozen Soil Description	Recovery	, Type	;	Moisture Content Profile		Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Water	Ele	Dep	Met	Cas	Gra	structure, accessory components.	Description	Recove	Sample	0) 25	50 ————————————————————————————————————	Field	Perce	Perce	Perce	Liqui	Plast		
		_			排註	SAND, trace Silt: Alternating layers of	Nbn			$\dagger \dagger$		\top								‡
	-	-				grey sand and brown silty sand, poorly graded, medium to fine grained. Ice	(Continue	∌ d)												F
	F	_				poor soil. (Continued)														F
	—119 . 9	23.0																		t
	-	_																		F
		_									! ! !									t
	-118.9	24.0																		+
	-	_																		F
		=																		L
	117.9	25.0																		Ŧ
	-	_									liii									t
	-	-																		F
	116.9	26.0																		ļ
		-																		E
	-	_									! ! !									F
	- 115.9	27.0-																		1
1	-	-																		F
	-	_			辯禁															F
8	- 114.9	28.0-																		ŀ
2	-	_									liii									F
2	-	_																		þ
		-																		F
5	—113 <u>.</u> 9	29.0-																		Ŧ
		_				29.30m to 29.4m: Some fine gravel.					! ! !									Ė
	-	-																		ŀ
	—112 <u>.</u> 9	30.0																		ţ
	-	-																		ŀ
8	F	_																		F
-	—111.9 —	31.0									liii									t
5	-	-																		ŀ
3		-																		ļ
3	110.9	32.0																		+
	F	-																		F
		-																		t
<u> </u>	109.9	33.0																		\downarrow

HATCH LIBRARY V1.01 GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Notes: Hole not located directly on abutment.

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-1

Sheet 4 of 4

Client: Baffinland Iron Mines Corporation Project N

Rig Type/ Mounting: MiniSonic Rig

Project: Mary River Expansion Project

Location: North West Abutment

Project No.: H353004

Datum: NAD83

Platform: Ground

Date Logged: 10/1/2017

Easting: 542,257.3 m

 Northing:
 7,922,181.7 m

 Surface Elevation:
 142.93 m

Bottom Elevation: 103.33 m

Total Depth: 39.6 m

Total Depth: 39.6 m Logged By: R.S

					,			- 30	,					33-1					14.5	
Dr	iller:	Bre	ent N	AON	ndrew	Hole Diameter (mm): 100 mm	Date F	levi	ew	vec	d:2/10/2018			view	ed E	Зу:			H.G	_
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	50 	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
		- - - 34.0- - -				SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine grained. Ice poor soil. (Continued)	Nbn (Continue													
		35.0— - - -				SAND, with SILT: Brown, fine grained. Ice poor soil.	Nbn													
	106.9 	36.0— — — —																		+
		37.0— — — — — — 38.0—				35.0m to 37.8m: Dark brownish-grey.														
770 00000000000000000000000000000000000		- - 39.0- -																		
	102.9 	40.0 				To Target Depth. Drillhole BH17-BR86-1 terminated at 39.6m.														
	101.9 	41.0— - -																		-
	100.9 	42.0— — —																		
2		43.0— - - -																		
	98.9	44.0																		\downarrow

Notes: Hole not located directly on abutment.

HATCH LIBRARY V1.01 GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

BOREHOLE REPORT

BH17-BR86-2

Sheet 1 of 4

Client: Baffinland Iron Mines Corporation Project No.: H353004

Project: Mary River Expansion Project Datum: NAD83 Northing: 7,922,171.3 m

Surface Elevation: 142.97 m

Location:North West AbutmentPlatform:GroundBottom Elevation:103.37 mTotal Depth:39.6 m

Contractor:Boart LongyearRig Type/ Mounting:MiniSonic RigDate Logged:10/26/2017Logged By:U.K and R.SDriller:Brent McAndrewHole Diameter (mm):100 mmDate Reviewed:2/10/2018Reviewed By:H.G

	Drille	r:	Bre	ent N	/A⊃N	ndrew	Hole Diameter (mm): 100 mm	Date F	Reviev	we	d:2/10/2018	R	evie	ved l	Ву:			H.G
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery Sample Type	246 234	Moisture Content Profile) 25 50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - - - -	42.0	- - - 1.0- - -				Sandy GRAVEL, trace SILT: Brown. SAND, trace SILT: Brown and greysishbrown. Ice poor soil.	unfrozen Nbn				14	25	72	2			- - - - - - - -
	- - -	40.0	2.0-									23		93	7			- - - - -
	- - - - 1:	39.0	4.0-															-
0.00120101021	- - -1: - -	38.0	5.0— - - -				4.6m to 6.1m: Uniform brown colour, trace multi-coloured fine gravel.					37	4	91	5			 - - - - - - -
NI S.O. S. C. C. C. C. C. C. C. C. C. C. C. C. C.	- - -	37.0	6.0— - - - 7.0—															-
I OO NAIL BNIDGE ABUTINE	- - 1: - -	35.0	8.0 -				SAND, trace to some Silt: Alternating layers of grey sand and brown silty-sand, poorly graded. Ice poor soil.	Nbn										
רטט ועב פטייבוועבר יייי	- - -	34.0	9.0-									22	0	89	11			-
I VIOLOED	-	32.0	- - - 11.0															-

Notes: Hole is directly on North West Abutment.

HATCH LIBRARY V1.01 GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Project:

BOREHOLE REPORT

BH17-BR86-2

Sheet 2 of 4

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Location: North West Abutment Project No.: H353004

Datum: NAD83

Platform: Ground Easting: 542,268.6 m

Northing: 7,922,171.3 m Surface Elevation: 142.97 m

Bottom Elevation: 103.37 m

Total Depth: 39.6 m Logged By:

Co	ontract	or: Bo	art I	ona	vear	Rig Type/ Mounting: MiniSonic Rig	Date Logged:	10/26/2017	1	ogge					.K and R.S
														U	
Dr	iller:	Bre	ent l	VICA	ndrew	Hole Diameter (mm): 100 mm	Date Reviewe	u. Z/ 1U/ZU 10	+	eviev	vea L	∍у: 			H.G
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Recovery Sample Type	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
Wate		14.0	Meth	Casir	Grap	(size, grading, shape, roundness), colour, structure, accessory components. SAND, trace to some Silt: Alternating layers of grey sand and brown silty-sand, poorly graded. Ice poor soil. (Continued)	Description General Republic R	25 50	23	Percen	Percen	Percen	Liquid	Plastic	
		19.0-							22	0	90	10			- - - - - - - - - -
		21.0-													-

HATCH LIBRARY V1.01 GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Notes: Hole is directly on North West Abutment.

Project:

BOREHOLE REPORT

BH17-BR86-2

Easting:

Northing:

Sheet 3 of 4

542,268.6 m

7,922,171.3 m

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Location: North West Abutment Project No.: H353004

Datum: NAD83

Platform: Ground

Date Logged: 10/26/2017

Surface Elevation: 142.97 m

Bottom Elevation: 103.37 m

Total Depth: 39.6 m Logged By: U.K and R.S

Driller: Brent McAndrew Hole Diameter (mm): 100 mm Date Reviewed: 2/1 Company		Reviewed By:	H.G
Soil Description Soil Description Type; plasticity or particle characteristics Frozen Soil		=	
Material Application Applicati	Moisture ontent Profile	Field Water Content Percent Gravel Percent Sand Percent Fines	Dither Tests Other Tests
SAND, trace to some Silt: Alternating layers of grey sand and brown silty-sand, poorly graded. Ice poor soil. (Continued)		25	

BOREHOLE REPORT

BH17-BR86-2

Sheet 4 of 4

Client: Baffinland Iron Mines Corporation Project No.: H353004

Project: Mary River Expansion Project Datum: NAD83 Northing: 7,922,171.3 m
Surface Elevation: 142.97 m

Location:North West AbutmentPlatform:GroundBottom Elevation:103.37 mTotal Depth:39.6 mIntractor:Boart LongyearRig Type/ Mounting:MiniSonic RigDate Logged:10/26/2017Logged By:U.K. and R.S.

 Contractor:
 Boart Longyear
 Rig Type/ Mounting:
 MiniSonic Rig
 Date Logged:
 10/26/2017
 Logged By:
 U.K and R.S

 Driller:
 Brent McAndrew
 Hole Diameter (mm):
 100 mm
 Date Reviewed:
 2/10/2018
 Reviewed By:
 H.G

L	Drill	er:	Bre	ent iv	VICA	ndrew	Hole Diameter (mm): 100 mm	Date Reviewed:2/10/2018	l k	evie	ved I	Ву:			H <u>.</u> G
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description A book of the content of t	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	-109.0	- - - 34.0- - -				SAND, trace to some Silt: Alternating layers of grey sand and brown silty-sand, poorly graded. Ice poor soil. (Continued)	Nbn (Continued)							
	-	-108.0 -107.0	35.0— - - - 36.0—												-
	-	-106.0	- - 37.0- - -				37.4m to 39.3m: Trace Organics, dark		27						-
000000000000000000000000000000000000000	-	-105.0 -104.0	38.0— - - - - 39.0—				brownish-grey to black, thin lenses of organics.								-
Singline Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.	-	-103.0	40.0-				SAND, and SILT: Brown, fine grained. lce poor soil. To Target Depth. Drillhole BH17-BR86-2 terminated at 39.6m.	Nbn	25	0	61	39			-
L INNI OU IVAIL DINIDOL ADO	-	-102.0 -101.0	41.0— - - - - 42.0—												-
VI.U. GLB LOG ICE BOREHOL	-	-100.0	- - 43.0- - -												
- Y-Y-Y-		99.0	44.0												

Notes: Hole is directly on North West Abutment.

HATCH LIBRARY V1.01 GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Notes: Hole is directly on South East Abutment

BOREHOLE REPORT

BH17-BR86-3

Sheet 1 of 4

542,304**.**8 m

Easting: Client: **Baffinland Iron Mines Corporation** Project No.: H353004

Project: Mary River Expansion Project Datum: NAD83

Location: South East Abutment Platform: Ground

> Date Logged: 10/22/2017 Rig Type/ Mounting: MiniSonic Rig

Northing: 7,922,141.4 m Surface Elevation: 143.38 m

Bottom Elevation: 103.78 m **Total Depth:** 39.6 m

Co	ntracto	or: Bo	art L	.ong	year	Rig Type/ Mounting: MiniSonic Rig	Date L	.ogç	ged	d: 10/22/2017	Lo	ogge	d By	:			U.K	
Dri	ller:	Br	ent N	ΛοΛι	ndrew	Hole Diameter (mm): 100 mm	Date F	Revi	ew	red:2/10/2018	Re	eviev	ved E	Зу:			H <u>.</u> G	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 25 50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests	
Water	PA		Metho	Casin	Graph Graph	(size, grading, shape, roundness), colour, structure, accessory components. SAND with Gravel, trace Silt: Brown. SAND, trace to some SILT: Brown and greysish- brown, medium to fine grained. Ice poor soil. 6.1m to 9.0m: Colour changes to uniform dark brown.	Description unfrozen Nbn		Sample T,	0 25 50	14 23 24 25	0 0	93 94 89	10 7 6	r Jdnig ri	Plastic I	lests	
,	- - - - - - - - - - - - - - - - - - -	10.0-				grey sand and brown silty sand, poorly graded, medium to fine. Ice poor soil.												

Project:

BOREHOLE REPORT

BH17-BR86-3

Sheet 2 of 4

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Location: South East Abutment Project No.: H353004

Datum: NAD83

Platform: Ground Easting: 542,304**.**8 m

Northing: 7,922,141.4 m Surface Elevation: 143.38 m

Bottom Elevation: 103.78 m

Total Depth: 39.6 m

Driller: Brent McAndrew Hole Diameter (mm): 100 mm Date Reviewed: 2/10/2018	Logged By: 39.6 m
Soil Description Type: plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components. SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine. Ice poor soil. (Continued)	
SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine. Ice poor soil. (Continued)	
SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine. Ice poor soil. (Continued) (Continued)	Other Liquid Limit Percent Sand Percent Sand Percent Single Water Content Description of the Content D
	26 0 93 7
-129.4 14.0	
-128.4 15.0	
15.2m to 16.8m: Silty sand layers are dark brown.	

HATCH LIBRARY V1.01 GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

Notes: Hole is directly on South East Abutment

Project:

Contractor: Boart Longyear

BOREHOLE REPORT

BH17-BR86-3

Sheet 3 of 4

U.K

Client: **Baffinland Iron Mines Corporation**

Mary River Expansion Project

Rig Type/ Mounting: MiniSonic Rig

Location: South East Abutment Project No.: H353004

Datum: NAD83

Platform: Ground

Date Logged: 10/22/2017

Easting: 542,304**.**8 m

Northing: 7,922,141.4 m Surface Elevation: 143.38 m

Bottom Elevation: 103.78 m **Total Depth:** 39.6 m Logged By:

L	Driller	:	Bre	ent N	ΛcΑι	ndrew	Hole Diameter (mm): 100 mm	Date Reviewed: 2/10/2018	Rev	/iew	ed E	Зу:			H.G
	Water Flevation (m)	-Icvation (iii)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	zen Soil Zenition Zen	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	0.4	- - - - 23.0-	N	<u> </u>		SAND, trace Silt: Alternating layers of grey sand and brown silty sand, poorly graded, medium to fine. Ice poor soil. (Continued)	on Continued)							-
	- - - - -11!	9.4	- - 24.0- - -				23.0m to 24.5m: Colour changes to dark brown, layers are now brown and dark brown.								
	- 111 - - -	8.4	25.0— - - -												
	—11: - - - -		26.0— — — — — — — —												
100 00 00 00 00 00 00 00 00 00 00 00 00	- - - - -11!	5.4	28.0				27.4m to 30.5m: Colour changes to grey, layers are now light and dark grey.								+
O INICIAL STORY	- - - 114 - -	4.4	29 <u>.</u> 0—												
מון מס יי ייור בי יוב בי ייב	- 11: - - -	3.4	30.0-				SAND, trace SILT: Brown to grey. Ice poor soil.		25	0	92	8			-
מל וכר הסיינייכני			31.0- - - - - 32.0-												
מוני אויסוסרום די	- - - -	0.4	32.0												-

Notes: Hole is directly on South East Abutment

HATCH LIBRARY V1.01 GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

BOREHOLE REPORT

BH17-BR86-3

Sheet 4 of 4

542,304.8 m

Client: Baffinland Iron Mines Corporation Project No.: H353004

Project: Mary River Expansion Project Datum: NAD83 Northing: 7,922,141.4 m

Surface Elevation: 143.38 m

Location:South East AbutmentPlatform:GroundBottom Elevation:103.78 mTotal Depth:39.6 m

Contractor:Boart LongyearRig Type/ Mounting:MiniSonic RigDate Logged:10/22/2017Logged By:U.KDriller:Brent McAndrewHole Diameter (mm):100 mmDate Reviewed: 2/10/2018Reviewed By:H.G

	Drill	er:	Br€	ent N	/lcAr	ndrew	Hole Diameter (mm): 100 mm	Date F	evi	iew	ed:2/1	10/2018	R	eviev	ed E	Зу:			H.G
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.		Recovery	Sample Type	Co 0	Moisture ontent Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		-109.4	34.0—				SAND, trace SILT: Brown to grey. Ice poor soil. (Continued)	Nbn (Continue	ed)										
		-108.4	35.0— — —																-
		-107.4 -106.4	36.0- - - - - 37.0-																- - - - -
18 16:27		-105.4	38.0—																
< <pre><<drawingfile>> U5/U3/Z018 16:27</drawingfile></pre>		-104.4	39.0-				To Tourset Donath												-
86 RAIL BRIDGE ABUTMENTS.GPJ < <c< th=""><th>-</th><th>-103.4</th><th>40.0— - - - -</th><th></th><th></th><th></th><th>To Target Depth. Drillhole BH17-BR86-3 terminated at 39.6m.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>- - - -</th></c<>	-	-103.4	40.0— - - - -				To Target Depth. Drillhole BH17-BR86-3 terminated at 39.6m.												- - - -
LE KIN 80 KAIL BRIDGE	-	-102.4 -101.4	41.0— — — — 42.0—																- - - -
IRARY VI.01.GLB LOG ICE BOREHOLE KM	-	-100.4	43.0-																-
4AKY V1.01.0	-	99.4	- - 44.0																

Notes: Hole is directly on South East Abutment

HATCH LIBRARY V1.01.GLB Log ICE BOREHOLE KM 86 RAIL BRIDGE ABUTMENTS.GPJ <<DrawingFile>> 05/03/2018 16:27

BOREHOLE REPORT

BH18-BR70-1

Sheet 1 of 5

529,138.0 m

7,916,667.0 m

Client: Baffinland Iron Mine

Project No.: H353004 Datum:

Project:

Driller:

Mary River Expansion Study

NAD83

Surface Elevation: 124.00 m

Easting:

Northing:

Location: Proposed Bridge 70 Abutment Platform:

Bottom Elevation: 91.50 m **Total Depth:** 32.5 m

Contractor: Boart Longyear

Rig Type/ Mounting: Sonic Drill Rig

Date Logged: 4/13/2018

Logged By: YF/MY

Brent McAndrew Hole Diameter (mm): 100 Date Reviewed: Reviewed By:

riller	•	Dien	IVIC	And	arew	Hole Diameter (mm): 100	Date F	ev	iew	eu	4.		+	viev	ved I	⊃у.	_		
Vater	Elevation (III)	Depth (m)	Casing	Casilig	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0	Moisture Content Profile	50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
- - -	23.0	1.0-		11 11 14 14 14 14 14 14 14 14 14 14 14 1		SILTY SAND: Greyish brown, fine to medium grained.	Nbn		N										
-	21.0	3.0-				3.00 m: Saline smelling dark organic layer. 3.30 m: Banding of silt. 3.70 m: Organic layer. 4.20 m: Micaceous minerals, organics.	Nbn to Vx		Z				22	0	97	3			
-	9.0	5.0-		14 14 14 14 14 14 14 14 14 14 14 14 14 1			Nbn												
-	6.0	7.0-				7.60 m: Interbedded silt and organic layers, pungent organics.	Vr to Vx						28	0	80	20			
- 11: - - -	5.0	9.0-				ICE and SOIL: Silt, trace sand, grey.	I+S		MZ				36	0	3	97			

BOREHOLE REPORT

BH18-BR70-1

Easting:

Sheet 2 of 5

529,138.0 m

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study

Location: Proposed Bridge 70 Abutment

Datum: NAD83

Platform:

Northing: 7,916,667.0 m Surface Elevation: 124.00 m

Bottom Elevation: 91.50 m

Total Depth: 32.5 m Logged By: YF/MY

С	ontract	or: Bo	art L	.ong	year	Rig Type/ Mounting: Sonic Drill Rig	Date L	.ogg	jed:	: 4/13/2018			d By				32.5 m YF/MY
D	riller:	Br	ent N	/IcAı	ndrew	Hole Diameter (mm): 100	Date F	Revi	ewe	ed:	Re	viev	ved E	Ву:			
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 25 50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	-				ICE and SOIL: Silt, trace sand, grey. (Continued)	I+S (Continue										
	113.0	11.0=				SILTY SAND: Brownish grey, stratified, possible laminated organics.	Nbn										-
	- - -	- -				11.30 m - 11.45 m: Clay layers.			Z		19	0	39	61			
	-112.0	12.0-				11.80 m - 12.00 m: Inferred boulder.											
	-	-				12.25 m - 12.30 m: Trace gravel, grey.											-
	111.0	13.0-				12.70 m - 13.05 m: Inferred boulder.											
	- -	-				13.30 m: Cobbles.											
		14.0- - - - - 15.0-				SANDY SILT, trace GRAVEL: Grey.	Nbn	i i	N	•	15	9	51	40			
		- - - 16.0-				15.20 m, 16.40 m: Cobbles, greyish brown.											-
	- - - - -107.0	- - - 17.0-									14	19	26	55			-
	-	- - -				17.40 m - 18.00 m: Boulders	Nbn inferred										
	106.0 	18.0-				SANDY SILT, trace CLAY: Dark grey. SILT, trace GRAVEL, trace SAND: Grey, coarse grained sand.	Nbn inferred Nbn										-
	105.0 	19.0-				Grey, coarse granieu sanu.	inferred										
	104.0	20.0				19.80 m - 21.70 m: Trace to some											

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:14 Notes:

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <DrawingFile>> 29/08/2018 11:14

BOREHOLE REPORT

BH18-BR70-1

Sheet 3 of 5

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study

Location: Proposed Bridge 70 Abutment

Datum: NAD83

Platform:

Easting: 529,138.0 m

Northing: 7,916,667.0 m Surface Elevation: 124.00 m

Bottom Elevation: 91.50 m

Total Depth: 32.5 m Logged By: YF/MY

	Cont	racto	or: Bo	art L	ong	ıyear	Rig Type/ Mounting: Sonic Drill Rig	Date Logg	ed:	4/13/2018		gged	-				YF/MY
	Drille	er:	Br	ent l	ИсА	ndrew	Hole Diameter (mm): 100	Date Revie	we	d:	Re	view	ed E	Зу:			
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Sample Lype	Moisture Content Profile	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	-	103.0	21.0=				angular fine to medium gravel, trace cobbles. SILT, trace GRAVEL, trace SAND: Grey, coarse grained sand. (Continued)	Nbn inferred (Continued)									-
	-	102.0	- 22.0- - -				21.70 m: Angular gravel in a silt matrix. Inferred as rock flour, cobbles, gravel, boulders, white to grey dust.										- - - - -
	-	101.0	23.0-				BEDROCK (Inferred): Rock dust.										
6	- - -	100.0	24.0- - -			臺											
	- - - -	99.0	25.0- - -														- - - - -
	-	98.0	26.0- - -				Start of Coring at 25.9m. Continued on Rock Core Log sheet.	-									- - - -
ONLINGT CITY	- - - -	97.0	27.0- - - -														-
יייי ביש יייי	- - - -	96.0	28.0- - - -														-
DEVELOT WILLS	-	95.0	29.0- - - -														-
: =	Notes	94.0	30.0		<u> </u>									<u> </u>			

HATCH LIBRARY DEVELOPMENT COPY, GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7. GPJ <<DrawngFile>> 29/08/2018 11:10

BOREHOLE LOG

ROCK CORE FORMAT

Client: **Baffinland Iron Mine** Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Proposed Bridge 70 Abutment Platform:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° Date Logged: 4/13/2018

BH18-BR70-1

Sheet 4 of 5

Easting: 529,138.0 m

Northing: 7,916,667.0 m Surface Elevation: 124.00 m

Bottom Elevation: 91.50 m

Total Depth: 32.5 m Logged By: YF/MY

Cor	tracto	or: Bo	art L	ong	year	Rig Typ	be/ Mounting: Sonic Drill Rig Bearing: N/A°	ı	Date Logged:	4/13/20)18	Log	gged	d By: YF/MY
Dril	ler:	Bre	ent N	ЛсАr	ndrew	Hole Di	ameter (mm): 100 Plunge: °		Date Checked	l:		Rev	/iew	red By:
Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	Estimated Strength ボチェミュラゴ	Is ₍₅₀₎ [UCS] MPa	Defect Spacing mm [00 000 000 000 000 000 000 000 000	RQD %	Defect Log	Defect Description Inclination, type, infill, amount, aperture, planarity, roughness, frequency Specific General
		22.0 — 22.0 — 23.0 —												
		26.0 — - - - - 27.0 — -		18 / 101			Resuming in Rock Core Format 25.9m. BEDROCK: Siltstone to dolomitic limestone, grey with dark grey / black streaks, fine to very fine grained, medium strong rock. 25.98 m - 27.02 m: Silt seams. 27.32 m - 27.36 m: Silt seams. 27.40 m - 28.60 m: Irregular black					64		-90° Jt PI Sm -90° Jt PI Sm Silt, light brown cg DI -90° Jt PI Sm Yellowish brown coating -90° Jt PI Sm Yellowish brown coating -90° Jt PI Sm Silt cg -90° Jt PI Sm Silt cg -90° Jt PI Sm Silt cg -90° Jt PI Sm -50° Jt PI Sm -50° Jt PI Sm -50° Jt PI Sm -90° Jt PI Sm
	95.0	28.0 — - - 29.0 — - - - - - - - - - - - - -		20 / 86 19 / 72			bands, bioturbated with mud seams, strong rock (excepting weak seams). 27.82 m - 27.83 m: Silt seams. 28.60 m - 29.50 m: No visible mud, but some core loss. 29.50 m - 31.00 m: Bioturbated, 5 cm mud seam, strong rock.			- - - - - - - -		58 83 42		Sm -90" Jt Pl Sm -90" Jt Pl Sm -90" Jt Pl Sm -90" Jt Pl Sm -90" Jt Pl Sm -90" Jt Pl Sm -90" Jt Pl Sm -90" Jt Pl Sm -90" Jt Pl Sm Silt cg -90" Jt Pl Sm Silt cg -90" Jt Pl Sm
Note					_		Defect Pl Planarity Description Ir Irregular Legend Cu Curved Un Undulose St Stepped	Type DI Jt Pt Sh Cs	Drilling Induced Joint Parting on Conta Shear Seam Crushed Seam	Cz Cr ct Fz Fr	eam rushed Zone actured Zone eak Band		Ro Sm Po SI	ughness Infill Amount Rough cn Clean Smooth sn Stained Polished vn Veneer Slickenside cg Coating

Client:

BOREHOLE LOG

ROCK CORE FORMAT

Project No.: H353004

Project: Mary River Expansion Study

Baffinland Iron Mine

Datum: NAD83

Location: Proposed Bridge 70 Abutment Platform:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° Date Logged: 4/13/2018

BH18-BR70-1

Sheet 5 of 5

Easting: 529,138.0 m

Northing: 7,916,667.0 m Surface Elevation: 124.00 m

Bottom Elevation: 91.50 m

Total Depth: 32.5 m Logged By: YF/MY

Co	ontract	or: Bo	oart I	ong	year	Rig Typ	De/ Mounting: Sonic Drill Rig Bearing: N/A°		ate Log	gged:	4/13/20	118	Log	gged	d By: YF/MY
Dr	iller:	Br	ent I	МсА	ndrew	Hole Di	iameter (mm): 100 Plunge: °		ate Che	ecked	:		Rev	view	red By:
Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	Estim Strer	ngth	Is ₍₅₀₎ [UCS] MPa	Defect Spacing mm [001] 0007 0007	RQD %	Defect Log	Defect Description Inclination, type, infill, amount, aperture, planarity, roughness, frequency
	- - - - - 93.0 - - - - - - -	31.0 —		22/103 21/103			BEDROCK: Siltstone to dolomitic limestone, grey with dark grey / black streaks, fine to very fine grained, medium strong rock. (Continued)		H H	T	- - - - - - - - -	22	95 Re		Specific General 90" Jt PI Sm Silt og 190" Jt PI Sm 190" Jt Ir Ro 190" Jt Ir Ro 190" Jt PI Sm 190" Jt PI Sm 190" Jt PI Sm 190" Jt PI Sm 190" Jt PI Sm 100" Jt PI Ro DI
	- - - 91.0 -	33.0 —					To Target Depth. Drillhole BH18-BR70-1 terminated at 32.5m.								
	- - - 90.0 -	34.0 —									- - -				
	- - - 89.0 -	35.0 —									- - -				
	- - 88.0 -	36.0 —									- - -				
	- - - 87.0 -	37.0 —									- - - -				
	- - 86.0 -	38.0 —									- - - -				
	- - 85.0 - -	39.0 —									- - - -				
No	_{84.0}	40.0 —					<u>Planarity</u>	Type			_			Ro	ughness Infill Amount

HATCH LIBRARY DEVELOPMENT COPY, GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7. GPJ <<DrawngFile>> 29/08/2018 11:10

<u>Defect</u> Description Legend

<u>Planarity</u> Planar

Type DI Jt Pt Sh Cs Irregular Curved Undulose Stepped

Drilling Induced Seam Crushed Zone Fractured Zone Weak Band Joint Cz
Parting on Contact Fz Shear Seam Crushed Seam

Ro

Roughness Rough Smooth Polished Slickenside Infill Amount Clean Stained Veneer Coating sn vn cg

BOREHOLE REPORT

BH18-BR70-2

Sheet 1 of 4

124.00 m

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study

Location: Proposed Bridge 70 Abutment

Datum: NAD83

Platform:

Easting: 529,107.0 m Northing: 7,916,700.0 m

Surface Elevation:

Bottom Elevation: 95.50 m

Total Depth: 28.5 m

7	ler:			VICAI	ndrew	Hole Diameter (mm): 100	Date Re	evi	ew	eu.		+	VIEV	ved I	Б у .			
	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Pro	file 50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Othe Test
1	-					SAND, trace to some SILT: Light brown, fine to medium grained.	Nbn				Ţ							
İ	-		1															
İ	123.0	1.0	1									1	38	47	15			
	-		1									20	0	86	14			
	-		1				Nbe				i l							
	—122.0 -	2.0	1							j j	j							
	-		1															
	121.0	3.0	1															
	-		1							•		15	0	91	9			
	-		-															
	120.0	4.0	-								i							
	-		1							j j	i							
	-		1															
	 119.0 	5.0	1															
	- -																	
	- 118.0	6.0	-															
	-		-			6.10 m: With fine black organic layers.												
	-		1							1 i i	i l							
	 117.0	7.0	_			7.00 m - 7.10 m: Silt, some sand.												
	-]															
	-		1		淵	SAND interbedded with SILT.	Nbe											
	—116.0 –	8.0																
	-		1			8.30 m: Becoming finer with depth.	Vr											
	 115.0	9.0	1			\ ICE: 40% soil	ICE											
	-		1			SILT, some CLAY: Dark brown.	Vr - Vs				j							
	- - -	10.0	-			9.70 m - 10.10 m: Ice lenses, snow like.						23	0	2	98			

BOREHOLE REPORT

BH18-BR70-2

Client: Baffinland Iron Mine

Project No.: H353004

Project:

Mary River Expansion Study

NAD83

7,916,700.0 m 124.00 m

529,107.0 m

Location: Proposed Bridge 70 Abutment

Platform:

Bottom Elevation:

Surface Elevation:

Easting:

Northing:

95.50 m

Contractor: Boart Longyear

Rig Type/ Mounting: Sonic Drill Rig

Date Logged: 4/17/2018

Datum:

Total Depth: 28.5 m Logged By: YF/MY

Dr	iller:	- 				Hole Diameter (mm): 100	Date Reviewed: Reviewed By:	
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Percent Soil Description Woisture Content Profile Mater Content Sand Description O 25 50 Description Figure Content Fines Nother Content Fines O 25 50 Description Figure Content Fines O 25 50 Description Figure Content Fines O 25 50 Description O 25 5	
		11.0-				SILT, some CLAY: Dark brown. (Continued) 10.50 m - 10.70 m: Fine to medium sand, trace silt. 10.70 m - 10.75 m: Ice, snow like. 10.75 m: Fine sand, interbedded with darker brown silt.	Vr - Vs (Continued)	- - - - - -
	- 112.0 - -	12.0-				SILTY SAND, trace GRAVEL: Dark brown with layers of yellow, angular gravel.		- - -
		13.0-				12.70 m - 12.90 m: White to grey limestone cobbles. 12.90 m: Fine to medium gravel, angular to sub-rounded.		-
	_ 110.0 _ _ _	14.0— — —				13.60 m - 13.70 m: Becoming darker brown. COBBLES: Limestone in possible rock floor.		- - - - -
		15.0— - 16.0—				14.90 m - 15.20 m: Highly disturbed, dark grey wilt wirh angular gravel, inferred rock. 15.20 m - 16.80 m: Potential bedrock surface, grey angular gravel size pieces in majority crushed grey silt sized matrix.	Nf	- - - - - -
	- - - - - - - - - - -	17.0— - - - - - 18.0—			999	17.10 m: Fractured rock, weathered top layer, 5 mm pockets of silt with 10 cm silt pocket below, very fine grained, laminated to fractured to full of holes.		- - - - - -
		19.0—			99	18.30 m - 18.75 m: Loss of fines. 18.75 m - 19.30 m: Laminated, very fine grained.		- - -
	104.0	20.0				19.35 m - 19.60 m: Silt, grey, pieces of rock, likely bedrock, thin horizontal laminations, smooth, horizontal		-

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:14 Notes:

Project:

Contractor: Boart Longyear

BOREHOLE REPORT

BH18-BR70-2

Easting:

Northing:

Sheet 3 of 4

529,107.0 m

7,916,700.0 m

Client: Baffinland Iron Mine

Project i

Rig Type/ Mounting: Sonic Drill Rig

Location: Proposed Bridge 70 Abutment

Mary River Expansion Study

Project No.: H353004

Datum: N

NAD83

Platform:

Date Logged: 4/17/2018

Surface Elevation: 124.00 m

Bottom Elevation: 95.50 m

Total Depth: 28.5 m

Logged By: YF/MY

Dr	iller:	Brent McAndrew			drew	Hole Diameter (mm): 100	Date F	Date Reviewed:								view	,				
Water	Elevation (m)	Depth (m)	Depth (m) Method Casing Graphic Log		Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description Frozen Soil Description Descri							50 	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
		- - - - 21.0-				fractures, silt seams present. COBBLES: Limestone in possible rock floor. (Continued)					 		 								-
		22.0-				21.20 m - 22.10 m: Fractured zone, fresh, strong. Start of Coring at 21.3m. Continued on Rock Core Log sheet.			_			 	 								-
File>> 29/08/2018 11:14	_ _ 101.0 _ _ _	23.0-																			-
REHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ < <drawingfile>> 29/08/2018 11:14</drawingfile>		24.0-									 		 								-
OTECHNICAL INVESTIGA	99.0 98.0	25.0-									 		 								
GIN I LOGS MR 2018 GE	- - - 97.0	27.0-																			
ILB LOG ICE BUREHULE		28.0-																			
HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BO Z D Z	95.0 	29.0-									 		 								-
No.	_{94.0} tes:	30.0									<u>i</u>	<u>i</u>	İ								

Baffinland Iron Mine

Client:

BOREHOLE LOG

ROCK CORE FORMAT

Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Surface Elevation: 124.00 m **Bottom Elevation:** 95.50 m Location: Proposed Bridge 70 Abutment Platform: Total Depth: 28.5 m Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° Date Logged: 4/17/2018 Logged By: YF/MY Driller: Brent McAndrew Hole Diameter (mm): 100 Plunge: Date Checked: Reviewed By: Ξ **Rock Description Defect Description** Graphic Log Geological Unit Defect Run #/TCR Weathering/ Cementation Estimated Is₍₅₀₎ Spacing Ξ Elevation Log ROCK TYPE: Strength Inclination, type, infill, amount, aperture, planarity, Method mm Depth (Grain size, texture and fabric. Water Defect I 6 % roughness, frequency colour, general defect conditions, **3**00 2000 2000 2000 2000 2000 minor constituents. ᇁᆂᄑᄝᄀᆿᆿ General _103.0 21.0 Resuming in Rock Core Format 21.3m. BEDROCK: Siltstone to dolomitic limestone. -102.0 22.0 22.10 m - 24.00 m: Fractured, crystal filled (white, medium grade) voids from HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:10 23.30 m, fresh, strong. -101.0 23.0 -100.0 24.0 24.00 m - 25.50 m: Void to 24.40 m, becoming beige 24.50 m - 24.70 m, mottled. 99.0 25.0 25.50 m - 27.00 m: Beige mottled from 25.60 m - 26.00 m, decreasing in beige 98.0 26.0 concentrate after, fresh. 97.0 27.0 27.00 m - 28.50 m: Beige mottled grey mudstone, becoming more banded, strong, fresh, one vein at 28.00 m. 96.0 28.0 To Target Depth. Drillhole BH18-BR70-2 terminated at 95.0 29.0 28.5m.

Notes:

<u>Defect</u> Description Legend

<u>Planarity</u>

<u>Type</u> Planar DI Irregular Curved Undulose Stepped

Drilling Induced Joint Cz Parting on Contact Fz Band Shear Seam Crushed Seam

Seam Crushed Zone Fractured Zone Weak Band

Roughness Rough Smooth Polished Slickenside Ro

BH18-BR70-2

Easting:

Northing:

Sheet 4 of 4

529.107.0 m

7,916,700.0 m

Infill Amount Clean Stained Veneer

cq

Coating

BOREHOLE REPORT

BH18-102-1

555,763.0 m

Client: Baffinland Iron Mine

Project No.: H353004

Project:

Mary River Expansion Study

NAD83

Datum:

Northing: 7,915,435.0 m Surface Elevation: 168.00 m

Location: Proposed Bridge 102 Abutment

Platform:

158.35 m **Total Depth:** 9.7 m

Bottom Elevation:

Easting:

Contractor: Boart Longyear Driller: Brent McAndrew						Rig Type/ Mounting: Sonic Drill Rig	Date L					2018						l By:				9.7 r YF/M							
Dril	ller:	Bre	ent N	/lcAn	drew	Hole Diameter (mm): 100	Date F	levi	iew	ed:				_	Reviewed By:														
Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	0 +	N Con		ure Profile	e 50	Field Water Content		Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests							
					\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}2\)\(\frac{1}\)\(\frac{1}\2\)\(\frac{1}\2\)\(\frac{1}	PEAT: Frozen with roots.				\dagger						T													
	- -	-				GRAVEL: Two boulders.	Nf																						
	—167.0 —	1.0-			. O.	GRAVELLY SAND with COBBLES: Brown.	-						 																
-	- -	-			· A.·	Start of Coring at 1.3m. Continued on Rock Core Log sheet.																							
-	 166.0 	2.0-																											
-	- - -	-											 																
-	 165.0 	3.0-											 																
ŀ	-	-																											
-	 164.0	4.0									i																		
ļ	-	-									i																		
	- -	-																											
}	—163.0 —	5.0-																											
-	-	-																											
-	-	_																											
ļ	 162.0 	6.0-											 	 															
ļ	- -	-											 	 															
-	- 161.0	7.0-] 															
-	-	-											! 	1															
F	-	-											'	1															
ļ	- 160.0	8.0-									i																		
ŀ	- -	-									i																		
-	-	-																											
ŀ	 159.0	9.0-																											
F	-	-																											
ļ	-	-																											
lote	—158.0	10.0														_													

BOREHOLE LOG

ROCK CORE FORMAT

BH18-102-1

Easting:

Northing:

Surface Elevation:

Roughness

Smooth Polished

Slickenside

Ro Rough Infill Amount

Stained Veneer

Coating

cn Clean

cq

Sheet 2 of 3

555.763.0 m

7,915,435.0 m

168.00 m

158.35 m

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Proposed Bridge 102 Abutment Platform:

Bottom Elevation:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° Date Logged: 4/7/2018

Total Depth: 9.7 m Logged By: YF/MY

Driller: Brent McAndrew Hole Diameter (mm): 100 Date Checked: Reviewed By: Ξ **Rock Description Defect Description** Graphic Log Geological Unit Defect Run #/TCR Weathering/ Cementation Estimated Is₍₅₀₎ Spacing Ξ Elevation Log ROCK TYPE: Strength Inclination, type, infill, amount, aperture, planarity, Method mm Depth (Grain size, texture and fabric, Water Defect I 6 % roughness, frequency colour, general defect conditions, **3**00 2000 2000 2000 2000 2000 minor constituents. ᇁᆂᄑᄝᄀᆿᆿ General -167.0 1.0 Resuming in Rock Core Format 1.3m. BEDROCK: Gneiss, red plagioclase feldspar, coarse to very coarse grained, strong to very strong rock, fresh. -166.0 2.0 1.73 m: One discontinuity angled approx. 30 deg, black coated, 8 mm black alteration zone. 2.09 m - 2.31 m: Fractured area. 2.31 m - 2.91 m: Becoming coarser 3.0 -165.0 grained. 3.00 m: Becoming grey with pink (7 mm) veins, medium grained, strong to very 3.53 m - 3.74 m: Black biotite mica, -164.0 4.0 fractured zone, irregularly oriented 0.5 mm - 5 mm crystals. 3.74 m - 4.54 m: Quartzo feldspathic gneiss, grey to pink, very strong to -163.0 5.0 strong. 4.54 m - 4.85 m: Potassium feldspar rich, pink, fractured zone. 4.85 m - 4.96 m: Possibly chloritized, 2 mm vein, medium grained, medium -162.0 6.0 strong. 4.91 m - 4.93 m: Clay vein, weak. 4.96 m - 5.06 m: Some gneissic banding, red/black fine grained, strong. -161.0 7.0 5.06 m - 5.26 m: Broken core, clay rich vein, fine to medium grained, red/black, chlorite infilled joints. 5.26 m - 6.01 m: Trace potassium feldspar banding, quartz rich, strong 8.0 -160.0 grey, fine. 6.06 m - 6.36 m: Quartzo feldspar with black biotite banding, potassium feldspar rich, red, chlorite infilled joints. 159.0 9.0 6.36 m - 6.59 m: Quartz and feldspar, 8.12 m - 8.26 m: Gneiss, grey pink, strong. 8.26 m - 8.30 m: Possible clay zone Notes:

Planarity

Planar

Irregular Curved

Undulose Stepped

<u>Defect</u>

Description Legend

Type

Drilling Induced

Shear Seam Crushed Seam

Joint Cz Parting on Contact Fz

Seam

Band

Crushed Zone Fractured Zone

Weak Band

DI

LIBRARY DEVELOPMENT COPY.GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <<DrawingFile>> 29/08/2018 11:10 HATCH

Client:

Project:

Location:

BOREHOLE LOG

ROCK CORE FORMAT

BH18-102-1

Sheet 3 of 3

Easting:

555,763.0 m

Northing:

7,915,435.0 m 168.00 m

Surface Elevation: **Bottom Elevation:**

158.35 m

9.7 m

Total Depth: Logged By:

YF/MY

Proposed Bridge 102 Abutment Platform: Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° Date Logged: 4/7/2018

Mary River Expansion Study

Baffinland Iron Mine

Datum:

Project No.: H353004

NAD83

Dr	iller:	Bre	ent l	ИсАr	ndrew	Hole Di	iameter (mm): 100 Plunge: °	0	ate C	hecked	:		Rev	view	red By:	
Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	minor constituents.	Weathering/ Cementation	Est Sti	imated rength	Is ₍₅₀₎ [UCS] MPa	Defect Spacing mm [001] 09 0000	1 1의		Defect Description Inclination, type, infill, amount, aperture, planarity, roughness, frequency Specific Genera	al
		- - - 11.0 — - - - - 12.0 —					possibly chloritized, weak. 8.30 m - 8.61 m: Fine to medium grained, grey. 8.61 m - 8.87 m: Band of quartz to potasium feldspar, coarse grained, pink. Remainder fine to medium grained, grey, possible possible chlorite veins, trace pyrite, black biotite veins. To Target Depth.				- - - - - -					
	- - - - -155.0 - - -	- - -					Drillhole BH18-102-1 terminated at 9.7m.				- - - - - - -					
	154.0 153.0 	- - -									- - - - - -					
	- 152.0 - -	16.0 — - -									- - - -					
	- 151.0 - -	17.0 — - -									- - - -					
	150.0 	- 18.0 — - -									- - - -					
	- 149.0 - -	19.0 — - - -									- - - -					
No		20.0 —					Planarity	Type			_			Po	ughness Infill Amount	=

HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:10

Defect Description Legend

<u>Planarity</u> Planar Irregular Curved Undulose Stepped

<u>Type</u> DI Jt Pt Sh Cs Drilling Induced Joint Cz Parting on Contact Fz Shear Seam Crushed Seam

Seam Crushed Zone Fractured Zone Weak Band

Roughness Rough Smooth Polished Slickenside Ro

Infill Amount Clean Stained Veneer Coating

cg

HATCH LIBRARY DEVELOPMENT COPY.GLB Log ICE BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:14

BOREHOLE REPORT

BH18-102-2

Sheet 1 of 3

Client: Baffinland Iron Mine

Project: Mary River Expansion Study

Location: Proposed Bridge 102 Abutment Project No.: H353004

Datum: NAD83

Platform:

Easting: 555,674.0 m

Northing: 7,915,409.0 m Surface Elevation: 166.00 m

Bottom Elevation: 149.10 m

Total Depth: 16.9 m

	Contra	acto	or: Bo	art l	ong	year	Rig Type/ Mounting: Sonic Drill Rig	c Drill Rig Date Logged: 4/8/2018 Logged By:										16.9 m YF/MY
	Driller	r:	Br	ent l	ИсА	ndrew	Hole Diameter (mm): 100	Date F	Revi	ew	ed:	Re	view	ved E	Зу:			
	Water	Elevation (m)	Depth (m)	Method	Casing	Graphic Log	Soil Description TYPE; plasticity or particle characteristics (size, grading, shape, roundness), colour, structure, accessory components.	Frozen Soil Description	Recovery	Sample Type	Moisture Content Profile 0 25 50	Field Water Content	Percent Gravel	Percent Sand	Percent Fines	Liquid Limit	Plastic Index	Other Tests
	- - - - 16	65.0	- - - 1.0-				SAND and GRAVEL: Medium grained sand, brown, slightly moist. GRAVELLY SAND, trace BOULDERS: Fine sand, possible boulder dust.	Nf inferred Nf inferred										-
+1:14	- - 16 - - -	64.0	2.0-	-			GRAVELLY SAND, trace SILT: Medium to coarse grained, brownish grey to brown, subrounded to subangular.	Nf inferred										- - - - - -
SUI damingrilless zarouzon	-	62.0	3.0-				3.40 m and 3.70 m: Cobbles						31	69	0			+
VVESTIGATION - VICTOR OF A	- - - 16	61.0	- - - 5.0-				SAND, some GRAVEL, trace SILT: Medium to fine grained, brownish grey. 4.70 m: Inferred boulder. 5.00 m and 5.30 m: Cobble.	Nf inferred		//								
	- - 16 -	60.0	- 6.0- - -			99	GRAVEL to COBBLES: Mixed igneous / metamorphic, washed. 5.6m: Organic / sulfur layer.											-
SILINGE GIRT EGGS IN	15 	59.0	7.0- - - -			999												- - - -
יטר זיים ביט זייר בי	—15 - - - -	58.0	8.0- - - -			9	Start of Coring at 8.7m.	-		_								
IDRAR I DEVELOTIVILIE :	-	57.0	9.0-				Continued on Rock Core Log sheet.											-
ا نـ ا د	Notes:																	

BOREHOLE LOG

ROCK CORE FORMAT

Client: Baffinland Iron Mine Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Proposed Bridge 102 Abutment Platform:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° Date Logged: 4/8/2018 Logged By: Driller: Brent McAndrew Hole Diameter (mm): 100

Date Checked: Reviewed By:

Ξ **Rock Description Defect Description** Graphic Log Geological Unit Defect Run #/TCR Weathering/ Cementation Estimated Is₍₅₀₎ [UCS] Spacing Ξ Elevation Log ROCK TYPE: Strength Method Inclination, type, infill, amount, aperture, planarity, mm Depth (Grain size, texture and fabric, Water Defect I 100 % roughness, frequency colour, general defect conditions, ROD 2000 2000 200 200 200 200 200 minor constituents. ᇁᆂᄑᄝᄀᅿᆿ Specific General -165.0 1.0 -164.0 2.0 HATCH LIBRARY DEVELOPMENT COPY.GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7.GPJ <-DrawingFile>> 29/08/2018 11:10 -163.0 3.0 162.0 4.0 -161.0 5.0 6.0 -160.0 -159.0 7.0 -158.0 8.0 Resuming in Rock Core Format 8.7m. BEDROCK: Gneiss, visible medium to 135 7 coarse grains, red, black, and grey, 6 DI DI 10° Jt PI Sm 20° Jt PI Sm Red stains sn strong to very strong. Fz 22 Notes: <u>Planarity</u> <u>Type</u> Roughness Infill Amount <u>Defect</u> Planar DI Drilling Induced Clean Sm Seam Ro cn

Description Legend

Irregular Curved Undulose Stepped

Joint Cz Parting on Contact Fz Shear Seam Crushed Seam

Crushed Zone Fractured Zone Band Weak Band

Rough Smooth Polished Slickenside

BH18-102-2

555.674.0 m

7,915,409.0 m

166.00 m

149.10 m

16.9 m

YF/MY

Easting:

Northing:

Total Depth:

Surface Elevation:

Bottom Elevation:

Stained Veneer Coating cq

Baffinland Iron Mine

Client:

HATCH LIBRARY DEVELOPMENT COPY, GLB Log CORED BOREHOLE GINT LOGS MR 2018 GEOTECHNICAL INVESTIGATION - V7. GPJ <<DrawngFile>> 29/08/2018 11:10

BOREHOLE LOG

ROCK CORE FORMAT

Project No.: H353004

Project: Mary River Expansion Study Datum: NAD83

Location: Proposed Bridge 102 Abutment Platform:

Contractor: Boart Longyear Rig Type/ Mounting: Sonic Drill Rig Bearing: N/A° **Date Logged:** 4/8/2018

Surface Elevation: **Bottom Elevation:**

Easting:

Northing:

Total Depth: 16.9 m YF/MY

BH18-102-2

Sheet 3 of 3

555,674.0 m

7,915,409.0 m

166.00 m

149.10 m

Logged By:

Rough Smooth Polished Slickenside

Ro

Seam Crushed Zone Fractured Zone Weak Band

Clean Stained Veneer Coating

cn sn vn cg

"	miraci	UI. DU	aill	Long	year	riy iy	be/ Mounting: Sonic Drill Rig Bearing: N/A	yye	d By: YF/MY							
Dr	iller:	Br	ent I	McAı	ndrew	Hole Di	iameter (mm): 100 Plunge: °	D	ate Ched	cked	:		Reviewed By:			
Water	Elevation (m)	Depth (m)	Method	Run #/TCR	Graphic Log	Geological Unit	Rock Description ROCK TYPE; Grain size, texture and fabric, colour, general defect conditions, minor constituents.	Weathering/ Cementation	Estima Streng	gth	Is ₍₅₀₎ [UCS] MPa	Defect Spacing mm [001] 000 000 000 000 000 000 000 000 000	RQD %	Defect Log	Defect Description Inclination, type, infill, amount, aperture, planarity, roughness, frequency Specific General	
	- - - - 155.0	- - - 11.0 —		10 / 98			BEDROCK: Gneiss, visible medium to coarse grains, red, black, and grey, strong to very strong. <i>(Continued)</i> 10.90 m: Possible porphyriticm, no gneissic banding.						22		Cz —90° Jt Pl Sm —40° Jt Cu Sm	
	- - - 154.0 -	12.0 —		12/115 11/7							- - - - -		87 43		70° Jt PI Sm Orange stains sn DI 75° Jt PI Sm Fz —45° Jt PI Sm Rust staining sn Fz	
	- 153.0 - -	13.0 —		13 / 115	~,~,~,~,~,		12.50 m: Two weathered / soft zones / seams at 13.00 m and 13.30 m, 4 mm, one visible joint, non stained.				- - - -		99 —		DI "30" Jt PI Sm sn -80" Jt PI Sm scg -50" Jt PI Sm cg Fz -20" Jt PI Sm -75" Jt PI Sm -75" Jt Cu Ro Rust stain, silt infill sn	
	- 152.0 - - - - - 151.0	- - -		14 / 91			13.70 m: Minor gneissic banding, becoming iron stained, black, weak.				- - - -		49		−DI −70° Jt Cu Sm Rusty infill sn Fz −80° Jt PI Sm Rust infill sn −DI 55° Jt PI Ro Black silty infill cg	
	- - - - - -150.0	- - -		106 15/117			15.70 m: Potassium felspar and quartz rich core, medium grained, red.				- - - -		40		7.75° Jt 180° Jt Pl Sm infill cg 90° Jt Cu Sm 20° Jt Cu Sm Black silt sn Fz —45° Jt Cu Sm Rusty sn Cz	
	- - - -149.0	- - 17.0 —		16 / 106			16.40 m: Quartz vein, very stained. To Target Depth.				- - - -		24		45° Jt Cu Sm sn 45° Jt Pl Sm infill cg 80° Jt Pl Sm Rusty sn \DI 50° Jt Cu Sm	
1	- - - 148.0	- - 18.0 —					Drillhole BH18-102-2 terminated at 16.9m.				- - - -					
מאבס המאבים	- - - 147.0	- - 19.0 —									- - - -					
No	146.0 tes:	20.0					<u>Planarity</u>	Type			-			Ro	ughness Infill Amount	

DI Jt Pt Sh Cs

Drilling Induced

Shear Seam Crushed Seam

Joint Cz Parting on Contact Fz

Planar

Irregular Curved Undulose Stepped

Defect

Legend

Description