
Baffinland Iron Mines Corporation Mary River Project Application and Supporting Information to Renew Type A Water Licence 2AM-MRY1325

APPENDIX L3

Surface Water, Aquatic Ecosystem Management Plan

(Pages L3-1 to L3-62)

Baffinland Iron Mines Corporation

Surface Water and Aquatic Ecosystem Management Plan

BAF-PH1-830-P16-0026

Rev 7

Prepared By: Kendra Button Department: Environment

Title:

Environmental Coordinator

Date:

Signature:

Approved By: Francois Gaudreau

Department: Operations

Title:

General Manager

Date:

March 31, 2021

Signature:

Surface Water and Aquatic Ecosystem Management Plan
--

Sustainable Development

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Document #: BAF-PH1-830-P16-0026

Page 2 of 44

DOCUMENT REVISION RECORD*

issue Date MM/DD/YY	Revision	Prepared By	Approved By	Issue Purpose
3/17/2016	4	AV	JM	In support of the 2016 Work Plan
3/31/2019	5	AV	СМ	Document issued for use.
4/29/2020	6	КВ	ВМ	Document issued for use.
3/31/2021	7	кв 🎶	#G	Document issued for use.

^{*}For revisions prior to Rev. 4, refer to previous revisions of the Plan.

Item No.	Description of Change	Relevant Section
1	Restructured the relationship to other management plans to summarize information provided in the referenced plans and listed MDMER regulations.	Section 1 Introduction
2	Added responsibilities for the management of snow stockpiles, surface water management ponds, water treatment systems and training exercises.	Section 4 Roles & Responsibilities
3	Updated text on the management of the Run of Mine Ore Stockpile Facility.	Section 4 Roles & Responsibilities
4	Additions to mitigation measures and fish protection measures.	Section 6 Mitigation Measures
5	Added water management details to Milne Port Ore Stockpile Facilities, dust suppressant details and restructured to eliminate text duplication that was applicable to both Milne and Mary.	Section 7 Surface Water Management
6	Added additional routine inspections.	Section 9 (Monitoring)
7	Updated monitoring site coordinates. Removed MP-03 as it is comprehensively covered in the FWSSWMP and only receives storm water inputs.	Section 9 (Monitoring)

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Document #: BAF-PH1-830-P16-0026

Page 3 of 44

Sustainable Development

TABLE OF CONTENTS

1	INTRO	DDUCTION	6
	1.1 Pur	oose	6
	1.2 Reg	ulatory Framework	6
	_	ationship to Other Management Plans	
		·	
2	BAFFI	NLAND'S CORPORATE POLICIES	<i>7</i>
3	TARG	ETED VALUED ECOSYSTEM COMPONENTS	8
4	ROLES	S AND RESPONSIBILITIES	9
	4.1.1	Chief Operations Officer (COO) / General Manager	9
	4.1.2	Mine Operations Manager / Superintendent	9
	4.1.3	Crushing Manager / Superintendent	9
	4.1.4	Site Services Manager / Superintendent	9
	4.1.5	Road Maintenance Manager / Superintendent	10
	4.1.6	Environment (Sustainable Development) Department	
	4.1.7	All Departmental Supervisors	
	4.1.8	All Project Personnel	11
5	REGIO	ONAL LANDSCAPE, CLIMATE AND HYDROLOGY	11
	5.1 Reg	ional Landscape, Climate and Hydrology	11
	5.2 lmp	lementing Erosion and Sediment Control Measures in the Arctic	12
6	MITIG	GATION MEASURES	13
	6.1 Gen	eral Erosion and Sedimentation Mitigation Measures	13
	6.1.1	SURFACE MATERIAL MANAGEMENT	
	6.2 Eros	sion and Sedimentation Controls	14
	6.3 Eros	sion and Sedimentation Mitigation Measures at Water Crossings	19
	6.4 Miti	igation Measures for Fish and Fish Habitat	22
	6.4.1	Freshet Mitigation	22
	6.4.2	Fish Protection	22
	6.4.3	Operating Equipment In and Near Water	23
7	SURF	ACE WATER MANAGEMENT	25
	7.1 Milr	ne Port and Mine Site	25
	7.1.1	Impacts on Surface Water	25

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Document #: BAF-PH1-830-P16-0026

Page 4 of 44

	7.1.2	Milne Port Landfarm Facility	26
	7.1.3	Milne Port Ore Stockpile Facility	26
	7.1.4	Landfill Facility	
	7.1.5	Surface Water Direction and Quantity	
	7.1.6	Mitigation Measures	27
•	7.2 Tote	Road	28
	7.2.1	Impacts on Surface Water	28
	7.2.2	Mitigation Measures	28
8	SURFA	CE WATER MANAGEMENT – MINING OPERATIONS	29
	8.1.1	Mitigation Measures	29
	8.1.2	Deposit No. 1 Mining Facilities	29
9	MONI	TORING	33
9	9.1 Rout	ine Inspections	33
!	9.2 Trigg	er Action Response Plan (TARP) for Potential Erosion and Sediment	34
!	9.3 Snov	v Management Monitoring	36
9	9.4 Area	-Specific Surface Water and Aquatic Ecosystem Monitoring	36
!	9.4 Area 9.4.1	-Specific Surface Water and Aquatic Ecosystem Monitoring Milne Port and Mine Site	
9		·	36
!	9.4.1	Milne Port and Mine Site	36 40
	9.4.1 9.4.2 9.4.3	Milne Port and Mine Site Tote Road	36 40 42
	9.4.1 9.4.2 9.4.3 9.5 Gro u	Milne Port and Mine Site Tote Road Steensby Port	36 40 42
!	9.4.1 9.4.2 9.4.3 9.5 Gro u	Milne Port and Mine Site Tote Road Steensby Port Indwater Monitoring	36 40 42 42
!	9.4.1 9.4.2 9.4.3 9.5 Grou 9.6 Type 9.7 Mon	Milne Port and Mine Site Tote Road Steensby Port Indwater Monitoring 'B' Water Licence Monitoring	3640424242
:	9.4.1 9.4.2 9.4.3 9.5 Grou 9.6 Type 9.7 Mon 9.8 Char	Milne Port and Mine Site Tote Road Steensby Port Indwater Monitoring 'B' Water Licence Monitoring itoring at Project Quarries and Borrow Sources	364042424242
10	9.4.1 9.4.2 9.4.3 9.5 Grou 9.6 Type 9.7 Mon 9.8 Char	Milne Port and Mine Site Tote Road Steensby Port Indwater Monitoring 'B' Water Licence Monitoring itoring at Project Quarries and Borrow Sources Inges to Monitoring Programs	36404242424242
10	9.4.1 9.4.2 9.4.3 9.5 Grou 9.6 Type 9.7 Mon 9.8 Char 10.1Data	Milne Port and Mine Site Tote Road Steensby Port Indwater Monitoring 'B' Water Licence Monitoring itoring at Project Quarries and Borrow Sources Inges to Monitoring Programs MANAGEMENT AND REPORTING	

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Document #: BAF-PH1-830-P16-0026

Page 5 of 44

LIST OF TABLES

Table 6-1 – Sediment and Erosion Controls	14
Table 6-2 – Control Measures at Water Crossings	20
Table 9-1 – Routine Inspections and Monitoring Requirements	33
Table 9-2 - Trigger Action Response Plan - Erosion and Sediment Release Events	35
Table 9-3 – Milne Port – Water Licence Monitoring Stations	37
Table 9-5 - Project Quarries and Borrow Sources – Water Licence Monitoring Stations	43
Table 10-1 – Reporting Summary for Monitoring Programs	44

LISTS OF APPENDICES

Appendix A – Corporate Policies

Appendix B – Site Water Balance Figures

Appendix C – Site Drainage and Monitoring Figures

Sustainable Development

Sustainable Development	Document #: BAF-PH1-830-P16-0	0026
	Next Revision: March 31, 2022	
Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	
	Issue Date: March 31, 2021	Page 6 of 44

1 INTRODUCTION

As required by Baffinland Iron Mines Corporation's (Baffinland) Type 'A' Water Licence No. 2AM-MRY1325 – Amendment No. 1 (Type 'A' Water Licence), issued by the Nunavut Water Board (NWB), the Surface Water and Aquatic Ecosystem Management Plan (SWAEMP) has been updated to reflect current operations at the Mary River Project (the Project). This Plan is a living document and will be revised, as required, based on future work scope modifications and associated approvals and in accordance with Baffinland's Type 'A' Water Licence, Commercial Lease – Q13C301 (Commercial Lease) between Baffinland and the QIA, the Project Certificate No. 005 (Project Certificate) issued by the Nunavut Impact Review Board (NIRB) and any subsequent requirements which may be issued for the Project.

1.1 Purpose

The purpose of this Plan is to outline how potential Project impacts on the quality and quantity of surrounding waters will be managed throughout the lifecycle of the Project. Management processes and procedures include practices implemented at the Project to limit the potential for adverse impacts to receiving waters, aquatic ecosystems, fish and fish habitat. This document details the systems in place to mitigate and manage drainage and runoff at Project facilities, address non-point discharges to surface waters, and assess those discharges in terms of water quality relative to their receiving water systems.

This document identifies the management strategies and general mitigation measures related to controlling sedimentation and erosion effects on aquatic ecosystems. Applicable monitoring programs and roles and responsibilities are identified.

1.2 REGULATORY FRAMEWORK

This Plan outlines the Project's policies and procedures to ensure compliance with the relevant terms, conditions and regulations outlined in the following regulatory instruments:

- Project Certificate No. 005;
- Type 'A' Water Licence (2AM-MRY1325);
- Type 'B' Water Licence (2BE-MRY1421);
- Commercial Lease;
- Milne Inlet Tote Road (Tote Road) Fisheries Authorization No. NU-06-0084 (DFO, 2007), and subsequent amendments for Project fish bearing water crossings; and,
- Metal and Diamond Mining Effluent Regulations (MDMER).

Project activities are monitored for compliance with the regulatory instruments listed above. Where it is determined that Project activities fail to comply with the regulatory requirements, further assessment shall be completed to modify activities such that compliance is achieved or mitigation methods shall be implemented.

	Sustainable Development	Document #: BAF-PH1-830-P16-0	0026
		Next Revision: March 31, 2022	
	Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	
		Issue Date: March 31, 2021	Page 7 of 44

1.3 Relationship to Other Management Plans

Project activities have the potential to affect site water quality, fish habitat, vegetation and other environmental components. Therefore, this Plan must be viewed in consideration with the following Environmental Management and Monitoring Plans for the Project.

Referenced Management Plan	Document Reference Number	Information Provided by Referenced Plan
Environmental Protection Plan	BAF-PH1-830-P16-0008	Provides relevant environmental protection measures
Fresh Water Supply, Sewage and Wastewater Management Plan (FWSSWMP)	BAF-PH1-830-P16-0010	Describes plans for managing fresh water supplies and the disposal of effluents (sewage, oily water and mine contact water)
Aquatic Effects Monitoring Plan BAF-PH1-830-P16-0039		Monitors changes in the local aquatic environment from multiple Project stressors (effluent discharges, sedimentation, dust deposition)
Road Management Plan	BAF-PH1-830-P16-0023	Describes mitigation for managing dust along project roadways and specifically the Tote Road, including the application of dust suppressants
Snow Management Plan BAF-PH1-300-P16-00		Includes operational protocols and plans developed to manage freshet's high flows and mitigate freshet's potential negative impacts on surface water quality and associated infrastructure
Sampling Program - Quality Assurance and Quality Control (QA/QC) Plan	BAF-PH1-830-P16-0001	Describes sampling methodologies and related QA/QC measures for sampling and testing water, sediment and effluents

2 BAFFINLAND'S CORPORATE POLICIES

Baffinland's Sustainable Development Policy (BAF-PH1-800-POL-0002) identifies Baffinland's commitment internally and to the public to operate in a manner that is environmentally responsible, safe, fiscally responsible and respectful of the cultural values and legal rights of Inuit.

Baffinland's Health, Safety and Environment Policy (BAF-PH1-800-POL-0001) is the company's commitment to achieve a safe, health and environmentally responsible workplace.

All employees and contractors are expected to comply with the contents of both above mentioned policies, which are included in Appendix A.

Sustainable Develonment	Document #: BAF-PH1-830-P16-0	0026
	Next Revision: March 31, 2022	
Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	
	issue Date: March 31, 2021	Page 8 of 44

Janua Datas March 21 2021

3 TARGETED VALUED ECOSYSTEM COMPONENTS

Baffinland has identified the following targeted valued ecosystem components (VECs) to serve as indicators subject to this Plan:

- Water quantity;
- Surface water quality;

Sustainable Development

- Aquatic ecosystems;
- Fish; and,
- Fish habitat.

The protection of regional water quality and quantity is critical to the residents of Baffin Island. Long-term downstream users (i.e., local residents) have not been identified; however, there is potential for incidental water-use by hunters and visitors on adjacent lands. Potential for effects to fish and fish habitat from either water withdrawal exceedances or compromised water quality and/or quantity have been identified.

Project activities will influence surface water through the following pathways:

- Water intakes required for potable water in camps, dust suppression and construction;
- Tote Road water crossings (i.e. culverts, bridges, etc.) and road maintenance;
- Sewage treatment and disposal at Milne Port and the Mary River Mine Site (Mine Site);
- Runoff from waste rock and ore stockpiles;
- Potential surface water runoff generated from developed Project areas; and,
- General site runoff from land disturbances.

A complete matrix of Project interaction with identified VECs is provided in the Project's Amended Final Environmental Impact Statement (FEIS), Volume 7 – Freshwater Aquatic Environment.

Baffinland
EB affinland

Sustainable Davelenment	Document #: BAF-PH1-830-P16-0	1026
	Next Revision: March 31, 2022	
Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	
	Issue Date: March 31, 2021	Page 9 of 44

4 ROLES AND RESPONSIBILITIES

Responsibilities for water management and monitoring at the Project are as follows.

4.1.1 CHIEF OPERATIONS OFFICER (COO) / GENERAL MANAGER

- Reports to the Chief Executive Officer
- Responsible for providing oversight for all Project operations and allocating the necessary resources for the operation, maintenance and management of Project infrastructure.

4.1.2 MINE OPERATIONS MANAGER / SUPERINTENDENT

- Reports to the COO / General Manager
- Provides oversight for all Deposit No. 1 mining operations, including the operation, construction
 and maintenance of surface water management infrastructure at Deposit No. 1 mining areas,
 Waste Rock Facility, Run of Mine Ore Stockpile Facility, and along the Mine Haul Road, including
 culverts, ditches, contact water, surface water management ponds and associated water
 treatment systems.
- In communication with the Environment Department, develop response plans to possible erosion and sediment issues from freshet and severe weather periods.

4.1.3 Crushing Manager / Superintendent

- Reports to the COO / General Manager
- Provides oversight for all ore crushing operations, including the operation, construction and maintenance of surface water management infrastructure at the Crusher Facility, including culverts, ditches, surface water management ponds and any associated water treatment systems.
- In communication with the Environment Department, develop response plans to possible erosion and sediment issues from freshet and severe weather periods.

4.1.4 SITE SERVICES MANAGER / SUPERINTENDENT

- Reports to the COO / General Manager
- Provides oversight for all Site Services operations, including the operation, construction and maintenance of surface water management infrastructure associated with Project service roads, snow stockpiles, and camp laydowns at the Mine Site and Milne Port, including culverts, ditches, surface water management ponds and any associated water treatment systems.
- Responsible for managing water retained in containment areas associated with Project bulk fuel facilities and hazardous materials/waste storage areas, including landfarm and landfill facilities.
- In communication with the Environment Department, develop response plans to possible erosion and sediment issues from freshet and severe weather periods.

Sustainable Development	Document #: BAF-PH1-830-P16-0	0026
	Next Revision: March 31, 2022	
Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44
	Issue Date: March 31, 2021	Page 10 of

4.1.5 ROAD MAINTENANCE MANAGER / SUPERINTENDENT

- Reports to the COO / General Manager
- Provides oversight for all Road Maintenance operations, including the operation, construction and maintenance of surface water management infrastructure for the Tote Road that runs between Milne Port and the Mine Site, including culverts, bridges, ditches and swales and snow stockpiles.
- In communication with the Environment Department, develop response plans to possible erosion and sediment issues from freshet and severe weather periods.

4.1.6 Environment (Sustainable Development) Department

- Support the management of the Project's surface water management infrastructure by advising operational departments and obtaining the appropriate regulatory approvals for necessary changes and modifications.
- Advise operational departments on the implementation of the appropriate controls to manage surface water flows and effluents at the Project, including the implementation of sedimentation and erosion controls outlined in Section 5 of this Plan.
- The on-site Environment Department will have the lead role in conducting and managing all onsite aquatic effects monitoring programs at the Project, discussed in Section 4 of this Plan.
- Conduct inspections and monitoring to ensure compliance with applicable regulations and commitments.
- Report incidents to senior management and the appropriate regulatory agencies and stakeholders.
- Provide training sessions to operational departments on the appropriate mitigation measures and strategies for managing surface water flows and effluents at the Project.
- Taking a lead on planning and implementing an annual MDMER Emergency Response Plan exercise with Mine Operations and/or Crushing departments.
- The on-site Environmental Superintendent, in concert with the corporate Sustainable Development team, is responsible for data management and reporting related to surface water management and monitoring.

4.1.7 ALL DEPARTMENTAL SUPERVISORS

- Report to their respective Departmental Manager / Superintendent
- Responsible for reading and understanding applicable sections of this Plan and directing
 departmental personnel on the appropriate mitigation measures and strategies for managing
 surface water flows and effluents in their Project area.
- Report any visual observations, or reports, of erosion and sediment issues to the Environment Department.
- Assist in implementing appropriate erosion and sediment control measures.

Sustainable Development	Document #: BAF-PH1-830-P16-	0026
	Next Revision: March 31, 2022	
Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44
	issue Date: March 31, 2021	Page 11 of

Janua Datas March 21 2021

4.1.8 ALL PROJECT PERSONNEL

Sustainable Development

- Responsible to comply with the requirements of this Plan in the management of surface water flows and effluents at the Project.
- Report any visual observations of erosion and sediment issues to their respective supervisors.
- Assist in implementing appropriate erosion and sediment control measures.

5 REGIONAL LANDSCAPE, CLIMATE AND HYDROLOGY

The Qikiqtani Region is characterized by long cold winters and short cool summers, with continuous daylight from approximately May to August, and continuous darkness from November through February.

5.1 REGIONAL LANDSCAPE, CLIMATE AND HYDROLOGY

The Project lies within the zone of continuous permafrost, with an active layer thickness of up to two metres and a permafrost depth that may be as much as 610 m deep, based on extrapolation from temperature gradients measured in a 400 m-deep thermistor-instrumented drill hole located on site (Baffinland, 2012; Volume 3). The presence of permafrost greatly increases ground stability at depth but at surface it can affect the rates of soil erosion through the formation of ice wedges and patterned ground, pingos and palsas, massive ground ice, thermokarst, and mass wasting (i.e. solifluction).

Regional data near the Project indicate a mean annual temperature of approximately -15°c. The frigid temperatures result in very low precipitation values for northern Baffin Island due to the combined effect of the low moisture carrying capacity of cold air and the scarcity of liquid water throughout much of the year. According to Natural Resources Canada, the mean annual total precipitation ranges from 200 to 400 mm in the Project area, classifying it as semi-arid (Baffinland, 2012; Appendix 5A).

The extreme temperatures of the region, combined with permafrost ground conditions, result in a short period of runoff that typically occurs from June to September, extending into October in watersheds with significant lake surface areas. All rivers and creeks, with perhaps the exception of the very largest systems are frozen solid to the bottom during the winter months. The peak runoff period is quite short and the volume of the annual hydrograph is low, relative to the rest of Canada, due to the region's very low average annual precipitation (Baffinland, 2012; Appendix 7A). However, the proportion of annual precipitation that is realized as runoff is very high, due to low temperatures (low evaporation) and the permafrost ground conditions (low infiltration) and minimal vegetative cover (minimal uptake by plants). The groundwater flow is restricted to the upper one to two metres within the summer active layer.

Peak instantaneous flows are significant due to frozen ground conditions and the lack of tall vegetation to provide subsurface root systems. This in turn produces very rapid basin runoff response. In larger watersheds, peak instantaneous flows are typically produced by snowmelt during the freshet, but in smaller watersheds (less than a few hundred square kilometres) rainfall, or rain on snow, may produce

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 12 of 44

Sustainable Development

Document #: BAF-PH1-830-P16-0026

the largest events and may occur at any time during the non-freeze period. Flood water levels in the smaller watersheds typically rise and fall very quickly with run-off response (Baffinland, 2012; Appendix 7A).

Baffinland continues to conduct hydrology monitoring at the Project, as required by the Project Certificate (conditions regarding the AEMP) and Type 'A' Water Licence. Details on the ongoing hydrology monitoring conducted at the Project is provided in Section 9 of this Plan.

5.2 IMPLEMENTING EROSION AND SEDIMENT CONTROL MEASURES IN THE ARCTIC

A greater level of understanding of the unique site conditions that influence the selection of appropriate sediment and erosion control measures has been achieved through the ongoing construction and operation of the Project. Influences from climate, topography, and limited vegetation combine to produce short-term, high intensity discharges throughout May, June and July. Due to the impeded vegetation growth rate, sediment and erosion control techniques that involve vegetative covers (i.e., hydro seeding and the use of erosion control blankets) have been dismissed as potential mitigation options. Furthermore, straw bales are not permitted in the Arctic due to the possibility of introducing foreign species.

Surface Water and Aquatic Ecosystem Management Plan

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 13 of 44

Document #: BAF-PH1-830-P16-0026

6 MITIGATION MEASURES

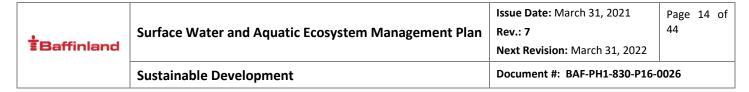
Sustainable Development

6.1 GENERAL EROSION AND SEDIMENTATION MITIGATION MEASURES

Ongoing construction and operations at the Project have the potential for soil disturbance and water diversions requiring sediment and erosion control planning to manage site contact water. Best management practices, including preventative measures, shall be implemented throughout the lifecycle of the Project. The following section outlines the general measures used to mitigate potential environmental impacts arising from site contact water.

Monitoring of Project stream and river crossings, lakes and ponds adjacent to construction and operational areas will be completed during the life of the Project as outlined in Section 9 of this Plan. Subject to site-specific conditions, a variety of civil design structures or additional controls may be required to prevent localized erosion.

The deposition of debris or sediment into or onto any water body during any activity, including the construction of access roads, site laydown pads and areas of other earthworks, is prohibited. To prevent sedimentation into adjacent water bodies, stockpiling of debris must take place at a distance greater than 31 m from the ordinary high-water mark of nearby water bodies. In addition, removal of material below the ordinary high-water mark of any water body is prohibited, unless otherwise approved by the NWB.


All Project infrastructure and activities that have the potential to influence any watercourse (i.e., culvert modifications, diversion of watercourses, modifications to the Milne Inlet Tote Road, and other areas of the Project site), will be designed and constructed in a manner that is consistent with the approach presented in the FEIS and the conditions of existing permits and authorizations. Construction and operational activities are prohibited from preventing and/or restricting the movement of water in identified fish bearing streams and rivers without the appropriate approvals.

Prior to the development of new water related infrastructure and/or facilities, Baffinland will conduct an assessment to ensure sensitive landforms are not negatively impacted (i.e., ice-rich soils or easily erodible soil). Where it is determined that the infrastructure and/or facility developments will not negatively impact sensitive landforms, Baffinland will continue to ensure that all regulatory requirements are met.

6.1.1 SURFACE MATERIAL MANAGEMENT

The removal of surface material in Arctic regions can cause the underlying permafrost to melt and result in the pooling of water, destabilization of landforms and sedimentation and erosion issues. To mitigate possible permafrost degradation from surface material removal, the following measures will be implemented throughout the Project.

 Removal of surface material should be avoided where possible to reduce permafrost degradation and will occur only at approved locations;

- Areas will be graded by filling in low areas rather than cutting into high areas, where feasible;
- Pooling water will be diverted from low-lying areas through constructed drainages or pumping;
- The grade of low-lying areas with pooling water resulting from the removal of surface material will be restored with material from other construction projects when possible;
- Erosion control will be evaluated for areas where removal of surface material is required;
- Use of insulating material or erosion control material, such as concrete fabric or riprap, will be utilized to reduce erosion and potential permafrost degradation, as required;
- Fill material placed below 31m of the high water level mark, where specifically authorized, will be either erosion resistant or protected from erosion and only clean fill will be used; and,
- No waste material resulting from work activities will be left in a manner such that it can enter the water (e.g., by being left on the ice).

Additional guidance for managing surface material and mitigating permafrost degradation are provided in Baffinland's EPP (BAF-PH1-830-P16-0008) and Borrow Pit and Quarry Management Plan (BAF-PH1-830-P16-0004).

6.2 Erosion and Sedimentation Controls

Table 6-1 outlines the sedimentation and erosion controls used at the Project. These controls may be used alone or in combination to achieve a more effective control.

Table 6-1 – Sediment and Erosion Controls

Armouring and Riprap			
Description	A rock lining used as a barrier between water flow and materials that are susceptible to		
	erosion. Quarry rock and/or naturally occurring granular borrow material are used to		
	protect underlying fine-grained material from scour and erosion.		
Installation Locations	In areas of cuts and/or excavations and on exposed erodible slopes i.e. on the upstream and downstream ends of culverts. May also be installed at locations where existing		
	flows may cause erosion of the present surface materials, specifically where flows may		
	become concentrated.		
Substitute	Water diversion, berms, sumps and/or silt fencing may be used where armouring is not		
	practical or where there is low risk of impacts to downstream receptors.		
Performance Issues/	Potential limited material in various sizes available. Limited suitability for certain higher		
Limitations	slope grades.		
Benefits	Materials are local and are an effective long term solution for preventing erosion and		
	re-suspension of susceptible fine grained materials. They may also be installed over		
	non-woven geotextile (see below) to provide additional protection.		
Gabion Baskets	Gabion Baskets		
Description	Metal wire baskets filled with rip rap are used for slope stabilization by armoring the		
	existing bank where erosion is weakening the slope.		
Installation Locations	Eroding slopes and embankments that require stabilization to stop erosion.		
Performance	Requires a lot of manpower, material and equipment to fill and install each gabion		
Issues/Limitations	basket.		

Sustainable Development

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 15 of 44

Document #: BAF-PH1-830-P16-0026

Benefits	Gabions can withstand strong erosion forces, providing significant stabilization to
	eroding slopes.
Concrete Fabric	
Description	Flexible concrete impregnated fabric installed along a ground surface or structure to
	prevent erosion of the underlying material and/or sediments. Rolled out at desired
	location and sprayed with water to set impregnated concrete.
Installation Locations	Installed in swales, ditches and areas with concentrated flows as well as along
	embankments and slopes.
Substitute	Riprap coupled with geotextile
Performance	Expensive. Large installations require heavy equipment for installation. Installation
Issues/Limitations	issues in colder temperatures.
Benefits	Permanent solution to control erosion and sedimentation. Quick installation with
	concrete achieving 80% strength within 24 hours. No mixing plant or equipment
	required.
Geotextile – Woven and	
Description	Low erodible lining material installed for temporary erosion control.
Installation Locations	Along stream embankments, water channels and/or ditches.
Performance	Required to be securely anchored and properly keyed-in in order to be effective.
Issues/Limitations	Installed material is difficult to remove when it is no longer required.
Benefits	Easy to install and an effective erosion barrier that can be installed along a variety of
	embankments.
Polyacrylamides/Floccul	ants
Description	Sediment and Turbidity Control Applicator Logs are solid form flocculants that are
	placed directly in the impacted watercourse to efficiently bind to particulate matter
	causing it to settle out providing clarification. Flocculants can also be used as an
	additive to surface water management ponds or sumps (temporary or permanent).
Installation Locations	Along stream embankments or directly in impacted channels and/or ditches. Product
	can also be used to settle out suspended sediment in dedicated/temporary surface
	water management ponds/sumps as required.
Performance Issues	Performance issues in colder temperatures.
Benefits	Cost effective.
Silt Fence	
Description	Woven geotextile or fabric barrier that impedes the flow of surface water which
	potentially may cause suspended solids to be deposited upstream of installation.
	Typically supported using rebar (secured to the fabric) and may be placed using
	methods such as digging a trench and backfilling material to ensure stability. Attempts
	are made to install silt fence in lines of equal elevation (along contour lines) to prevent
	flow channelling.
	Standards for installation including trench excavation, insertion of fabric, and backfilling
	and compacting.
Installation Locations	Used in areas where surface water could potentially come into contact with disturbed
	sites causing elevated suspended solids. Typical installation locations are:
	Downstream of drilling activities
	Along roads where surface runoff is expected
	Surrounding stockpiles of material or drill cuttings
Performance Issues	Not permeable enough to be placed in streams with greater higher flows. Difficult to
	install rebar and dig trenches due to frozen ground conditions, weight and susceptibility
	install rebar and dig trenches due to frozen ground conditions, weight and susceptibility

Sustainable Development

Issue Date: March 31, 2021 **Rev.: 7**

Next Revision: March 31, 2022

Page 16 of 44

Document #: BAF-PH1-830-P16-0026

	to wind. Silt fence with wooden stakes may not be durable enough for installation in
Arctic conditions.	
	Annual snow management activities at culvert inlet/ outlets prevent predictive,
	preventative installations in the fall in anticipation for freshet.
Substitutes	Coir logs, spring berms, sand bags.
Benefits	Effective in shoreline construction work where they are used to surround the
	installation of culvert crossings installed during open-water conditions.
	Can be used as diversion barriers around erosion prone areas and as flow impediment.
	Can be installed in a diagonal, staggered formation to create meanders and slow flow
	in higher velocity waters that would otherwise flow over a silt fence if installed across
	the flow.
Diversion/Collection Ch	annel or Berm
Description	Diversion/collection channels or berms are used to locally direct surface water runoff.
	Constructed using suitable materials to divert the surface water without causing
	erosion or suspension of additional sediment. Additionally, collection channels or
	berms may be constructed to collect runoff emerging from an area of soil disturbance
	or source of contamination. Also, used to ensure runoff is directed to a constructed
	mitigation measure such as an in-ground sump.
Installation Locations	Used in locations where diversion and/or collection of surface water is required.
	Diversion structures are installed to prevent runoff from entering a site where the
	surface soil has been disturbed and would cause suspension of sediment, or has been
	impacted in any way that would impact water quality. May be constructed to collect
	runoff emerging from an area of soil disturbance.
Performance Issues/	Permeability of the berms may be too high depending on material size availability.
Limitations	Surface material of the channel or berm must not contain fine grained material that
	could contribute to additional suspended solids.
Substitute	Silt fences can be used as an alternative to construction of a channel or berm for lower
	flows.
Benefits	Effective method to direct runoff to a constructed mitigation measure such as an in-
	ground sump.
Check Dams	
Description	Constructed to slow surface runoff flows and create pooling to allow for suspended
	sediment particles to settle out. Designed to allow water to slowly flow through or over
	the check dam.
	Constructed using larger aggregate for the base, geotextile liner on the upslope side,
	and smaller aggregate to cap the berm.
Installation Locations	Across small valleys, natural depressions or ditches where there is surface runoff.
Performance Issues/	Potential limited material available in the various sizes required. Requires maintenance
Limitations	to excavate sediment build-up on the upslope side.
Substitutes	Containment Berms coupled with pumping.
Benefits	Surface water flow directions are unaltered. Sediment has time to settle out before
	reaching the receiving environment.
Containment Berm	
Description	Constructed to establish a sump, basin or pond to contain or collect water. The sump
Description	Constructed to establish a sump, basin or pond to contain or collect water. The sump could be used to contain discharge water to allow settling of sediment before discharge

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 17 of 44

Sustainable Development #: BAF-PH1-830-P16-0026

	Constructed using native soils or acceptable man-made products which are nominally
	compacted to provide strength for the structure. Berm heights are minimized (typically
	<1 m).
Installation Locations	Across small valleys or around natural depressions to augment the capacity of the low-
mistaliation Locations	lying terrain.
Performance Issues	Care must be taken when constructing berms to ensure the base is on a solid
Performance issues	foundation. Pumping required for a controlled discharge of the berm. Permeability of
	the berm may be too high depending on material size availability.
Substitutes	In-ground sumps or portable containment sumps or tanks can be used in place of a
Substitutes	containment berm.
Benefits	Effective structure in forming sumps, basins or ponds to contain water and settle out
belletits	suspended solids prior to discharge or reuse.
In Ground Sumn	suspended solids prior to discharge or reuse.
In-Ground Sump	Constructed to establish a surrough asia and and the santain and all attended a similar to
Description	Constructed to establish a sump, basin or pond to contain or collect water, similar to
	the containment berm. Constructed by excavating a depression into soil to provide
La skallakia a La sakia a	water containment.
Installation Locations	Used in areas where excavation of soil is possible and other control measures are
Doufourous as issued	impractical or ineffective.
Performance issues/	Requires regrading of the excavated area when the sump is no longer needed to restore
Limitations	natural drainage patterns. Flows from the active layer in the ground may enter the
	sump, requiring management of additional water.
Substitutes	Containment berms, or portable containment sumps or tanks can be used in place of
	an in-ground sump.
Benefits	Excavated material from the sump can be used to construct a containment berm
	surrounding the sump to augment the capacity of the sump.
Portable Containment S	•
Description	Used to establish a sump to contain water from a source such as a drill rig. Where
	required, can be connected together in a series to provide additional containment or
	settling capacity if required.
	Collected sediment or drill cuttings from the portable containment sumps are removed
	from the sumps as necessary and disposed of in pit locations approved by Baffinland
	management and located at distances of at least 31 m from water bodies.
Installation Locations	Used in areas where containment berms or in-ground sumps are impractical such as
	steep topography or in areas where overburden is not readily available.
Substitutes	Containment berms or in-ground sumps can be used in place of a portable containment
- C:	sump.
Benefits	Requires minimal excavation or construction to provide a level base for the sump.
Geotubes	
Description	A woven tube of geosynthetic fabric into which water is pumped to filter out and
	remove suspended solids in impacted water. Water pumped into the tube diffuses
	through the geosynthetic fabric across the length of the tube.
	Popular water treatment option for dewatering projects. Can be combined with
	Polyacrylamides/Flocculants to improve the sediment collection performance of the
In and Hank Co. 11	geotube.
Installation Locations	Installed downstream of a pump on ground that is not erosion prone to prevent
Danfanna	erosion and the suspension of sediments downstream of geotube.
Performance	Non-passive water treatment method. Requires active pumping. Effectiveness limited
issues/Limitations	by a maximum influx/pumping rate. Limited by the geotube material pore size in

Issue Date: March 31, 2021

Next Revision: March 31, 2022

Page 18 of 44

Sustainable Development	Document #: BAF-PH1-830-P16-0026

	comparison to targeted sediment particle size and the physical area available for geotube placement
Substitutes	Containment berms, portable containment sumps or tanks and/or chemical treatment can be used in place of a geotube to settle out suspended solids.
Benefits	Easy to deploy, inexpensive compared to chemical treatment or water filtering options. Can also be used as a containment berm to augment the capacity of a sump or temporary surface water management pond.
Bag Filters	
Description	Water treatment method where bag filters installed in line during active pumping filter out suspended solids.
Installation Locations	Installed in the discharge line to filter out suspended solids before the water is released to the receiving environment.
Performance issues/Limitations	Ineffective once they become clogged with sediment, and require regular replacement and disposal. Requires monitoring of inlet pressures to ensure filters are changed. Limited by the filter pore size in comparison to targeted sediment particle
	size.
Substitutes	Geotubes, containment berms and portable sumps.
Benefits	Suspended sediments are captured in the bag filter, enabling both sediment removal and easy disposal of the sediment.
Spring Berms	
Description	Made up of a loose spring/coil covered with a geosynthetic fabric for filtering turbid water and removing suspended sediments.
Installation Locations	Across small channels and/or shallow outlets of in-ground sumps or ponds.
Performance issues / Limitations	Limited by the berm material pore size in comparison to targeted sediment particle size.
Substitutes	Silt fences or containment berms can be used in place of a spring berm.
Benefits	Easy to deploy, low cost and effective when combined with other mitigation measures.
Coir Logs	
Description	Coir fibre rolls constructed from coconut husks for filtering turbid water and removing suspended sediments.
Installation Locations	Across small channels and/or shallow outlets of in-ground sumps or ponds.
Performance issues /	Ineffective once when they become clogged with sediment. Heavy when wet and full
Limitations	of sediment, impeding effective removal.
Substitutes	Silt fences, spring berms.
Benefits	Natural, biodegradable option for removing suspended sediments. Minimal resources required for installation.
Floating Silt Curtains	
Description	Floating panels/sections made of geosynthetic fabric used to contain and limit the spread of turbid water in low flow environments (i.e. lakes, marine environment). Suspended vertically in the water column using floats and weights on the top and bottom of each section, respectively. Additional anchors used on shore to fix silt curtain in place.
Installation Locations	Installed in low flow environments such as stream/lake outfalls or in open water for large construction projects.
Performance issues/Limitations	Limited to low flow environments. Cannot be used to treat suspended solids in high flow environments (i.e. rivers, large streams). Effective deployment of multiple sections

Sustainable Development	Document #: BAF-PH1-830-P16-0	0026
	Next Revision: March 31, 2022	
Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44
	Issue Date: March 31, 2021	Page 19 of

	for large construction projects requires a significant level of knowledge, expertise,
	equipment and manpower.
Substitutes	None.
Benefits	Effective at containing turbid water/suspended solids in low flow/ open water settings. Able to connect multiple panels together for large scale construction projects (i.e. marine docks) or use single sections for small scale sedimentation control at stream/lake outfalls.
Molecords	
Description	Strips of fabric made of chenille fibers engineered to ensure rapid adhesion to particulates and suspended solids in turbid water. Turbid water streams are directed through draped sections of partially submerged molecords to remove suspended solids and particulates in impacted water.
Installation Locations	Used in multiple applications. Typical setups involve pumping turbid water through a series of molecords draped over a holding tank to remove particulates in turbid water.
Performance	Limited effective lifespan. Must be replaced regularly based on particulate levels in
issues/Limitations	impacted water streams requiring treatment.
Substitutes	Chemical treatment (i.e. flocculants)
Benefits	Effective alternative to chemical treatment. Effective at removing particulates without changing water chemistry. Easy to deploy.

6.3 EROSION AND SEDIMENTATION MITIGATION MEASURES AT WATER CROSSINGS

Culverts that are installed along water crossings shall meet the following criteria:

- Install culverts at the same slope as the existing stream, where feasible;
- Minimize culvert lengths;
- Culverts with lengths that exceed 50 m may be considered barriers to fish passage due to darkness. Examine and consider methods to provide light inside culverts, where applicable;
- Compare culvert velocities to the velocity in the existing watercourse to determine fish passage potential. This information can be used to reassess design velocities under proposed conditions with the culvert installed; and
- With the channelization of flows and conveyance in culverts, the velocity of the flows may
 increase. This may be mitigated by placing rocks and boulders or manufactured culvert baffles
 inside the culverts (stream replication) to provide greater friction, thereby reducing velocities and
 increasing the flow depth and to provide resting locations for fish. Boulders may be bolted into
 place.

Table 6-2 outlines the mitigation measures implemented at the Project to control sedimentation and erosion at Project water crossings.

Sustainable Development	Document #: BAF-PH1-830-P16-	0026
	Next Revision: March 31, 2022	
Surface Water and Aquatic Ecosystem Management Pla	n Rev.: 7	44
	Issue Date: March 31, 2021	Page 20 of

Table 6-2 – Control Measures at Water Crossings

Pumping	
Description	Pumps are used to transfer water from one side of the road/structure to another.
Installation Locations	At crossings where culverts are not installed, incorrectly installed, blocked, or not allowing sufficient flow. Pumping is required prior to culvert installation for dewatering. Pumps may also be used as a temporary solution during freshet or prior to culvert installation.
Performance Issues/Limitations	Ineffective during high flows. Erosion control measures are required at pump discharge points. The associated risk of fuel spills requires secondary containment. Temporary solution requiring additional resources. Additional considerations and mitigation measures (e.g. fish intake screens) are required in conjunction with pumping for fish bearing watercourses.
Substitutes	Siphons can be used as an alternative, but require a pump to prime the system and sufficient slope between upstream and downstream locations.
Benefits	Effective temporary solution to lower water levels in places where water levels are high or prior to culvert installation. Also, useful at low flow locations where culverts have not been installed.
Culvert	
Description	Pipes installed through embankments to allow the passage of water while maintaining access over the site. The size and/or number of culverts required for installation is determined by a hydraulic design study, conducted to assess suitable hydraulic design criteria to avoid flooding or washouts. Culvert flow capacities are assigned using hydraulic analysis methods assuming an appropriate return period with allowance for ice accumulation. Permitting process may be required for watercourses where authorizations are required depending upon watercourse classifications.
Installation Locations	At points where roads intersect streams, rivers or seasonal drainages (freshet) or at locations where there is potential for water to flow over roads.
Performance Issues/Limitations	Potential for siltation during installation. Requires labour, equipment and materials (compacted backfill) for proper installation. Concentration of flows cause potential for erosion at downstream discharge points. Increased velocities may prevent fish passage upstream through the culvert. Culverts may become perched, requiring installation of fish ladders. Clearing of snow and/or ice prior to spring freshet is required to minimize the potential for blockages, however also has the potential for damaging culvert mouths if not adequately marked
Benefits	High flow capacities can be achieved depending on culvert selection. Culverts also permit fish passage under roads where crossings have been identified as fish habitat.
French Drain	
Description	A ditch or channel filled with rock to provide a flow path for water. The rock material can be covered with a non-woven geotextile to prevent the ingress of finer material which could reduce the permeability of the drain.
Installation Locations	At points where roads intersect streams/drainages and where fish passage is not a consideration. May be used as an alternative for a culvert if culverts are not available.

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 21 of 44

Sustainable Development #: BAF-PH1-830-P16-0026

Performance				
Issues/Limitations	performance has not been assessed. Susceptible to blockage by siltation. Design			
	capacity is not as well defined as those for a culvert. Clean rock fill is critical to the			
performance of the French Drain.				
Benefits	Constructed of natural local and/or local materials.			
Bridge				
	Bridges are required for the crossing of larger streams or rivers where culvert crossings			
Description	are not feasible. The installation of bridges requires hydraulic design studies			
Description	undertaken to evaluate suitable hydraulic design criteria to avoid flooding or any			
	unexpected damage to the adjacent ground.			
	Bridge locations are assessed using a river hydraulics analysis assuming an appropriate			
	return period with an allowance for ice accumulation. Typically rest on foundations			
Installation Locations	constructed on either side of the watercourse. Typically installed at locations where			
	hydraulic efficiency, fish habitat, and/or fish passage are considered important.			
	Permitting process may be required for watercourses where authorizations are			
Performance Issues/	required depending upon watercourse classifications.			
Limitations	Possibility for sediment on the bridges from vehicle crossings to build up and release			
	into the water, requiring routing maintenance to ensure the platform prevents this			
	release.			
Benefits	Can maintain the original stream width (assuming no mid-stream support columns) and			
	streambed materials, and has increased hydraulic efficiency.			
Arch Culvert				
	A culvert consisting of an arch with an open bottom such that native streambed is			
Description	exposed. Arch culverts typically rest on foundations constructed on either side of the			
	watercourse.			
Installation Locations	Typically installed at locations where hydraulic efficiency, fish habitat, and/or fish			
installation Locations	passage are considered important.			
	Reduced potential for siltation during installation as water diversion structures are			
Performance typically not needed. Requires labour, equipment and materials (compacted back)				
Issues/Limitations	for proper installation. Clearing of snow and/or ice prior to spring freshet is required to			
	minimize the potential for blockages.			
D (::	Maintains the original stream width and streambed materials and has increased			
Benefits	hydraulic efficiency.			
Armouring				
Description	Used as a barrier between water flow and roadside material. Clean quarry rock and/or			
•	clean naturally occurring granular borrow material are used to protect underlying fine-			
	grained material from scour and erosion around crossings. May be combined with an			
	underlying non-woven geotextile.			
Installation Locations	Around culvert inlet/ outlets, typically on exposed erodible slopes.			
Benefits				
fine grained materials from runoff into crossings.				
Temporary Steel Pipes				
Description Temporary steel pipes may be installed to limit water interaction with site				
infrastructure and roads during the freshet period and severe weather events.				
Benefits	This is an effective measure to limit sediment and erosion issues short term.			
DEHEIRS	This is an effective measure to mint seament and effosion issues short term.			

Sustainable Development		Document #: BAF-PH1-830-P16-0026	
		Next Revision: March 31, 2022	
	Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44
		Issue Date: March 31, 2021	Page 22 of

6.4 MITIGATION MEASURES FOR FISH AND FISH HABITAT

The following subsections discuss the mitigation measures implemented at the Project to protect fish and fish habitat.

6.4.1 Freshet Mitigation

Extreme flows occurring during freshet can result in significant erosion and damage to water crossing structures. Operational procedures and plans, including the Snow Management Plan (BAF-PH1-300-P16-0002), Roads Management Plan (BAF-PH1-830-P16-0023) and the Sedimentation Mitigation Action Plan (Golder, 2016), have been developed to manage freshet's high flows and mitigate freshet's potential negative impacts on surface water quality and associated infrastructure. Project procedures and plans include the following measures:

- Physically marking fish-bearing water crossings so that they can be easily identified in the spring, prior to snow/ice melt;
- Clearing snow from roads adjacent to water crossings and stockpiling snow in approved locations as outlined in the Snow Management Plan (BAF-PH1-300-P16-0002);
- Monitoring snow stockpiles during freshet as outlined in the Snow Management Plan (BAF-PH1-300-P16-0002);
- Monitoring culverts for clearance of snow and ice prior to the onset of freshet;
- Re-establishing flows by removing snow and ice blockages through excavation and steaming prior to, and during, freshet;
- Implementing the appropriate erosion and sedimentation mitigation measures, as outlined in Section 6.2 and 6.3 of this Plan;
- Ensuring sufficient fish migration passage through routine monitoring and mitigation; and,
- Monitoring Project water crossings and completing the appropriate repairs/modifications.

6.4.2 FISH PROTECTION

Fish and fish habitat are present throughout streams and water bodies near Project infrastructure and have been identified as an important VEC for the Project. As such, several operational protocols and plans, including the Snow Management Plan (BAF-PH1-300-P16-0002), Dust Mitigation Action Plan (Golder, 2016) and Sedimentation Mitigation Action Plan (Golder, 2016), have been developed to prevent and mitigate negative impacts on fish and fish habitat at the Project. Project protocols and plans include the following measures:

- Construction of rocky ramps at locations where scour and erosion at culvert outlets are problematic;
- Monitoring Project water crossings and completing the appropriate repairs/modifications to improve fish passage;
- Maintaining the natural channel width within crossing structures as much as possible;
- All fill placed under and around culvert will be clean and devoid of organics and silt;

Sustainable Development

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 23 of 44

Document #: BAF-PH1-830-P16-0026

- Adhering to the Fisheries and Oceans Canada (DFO) guidance "Guidelines for Use of Explosives In or
- Using silt curtains to prevent the dispersion of sediments during work activities in/near marine waters (dredging, piling, backfilling) and/or freshwater lakes;

Near Canadian Fisheries Waters, 1998" for work in or near fish bearing water, where feasible1;

- Ensuring compliance for Project activities with the No-Net-Loss principle (DFO, 2001) to prevent or mitigate direct or indirect fish and fish habitat losses;
- Continued implementation of the Dust Mitigation Action Plan (Golder, 2016), Sedimentation Mitigation Action Plan (Golder, 2016) and Tote Road Earthworks Execution Plan (TREEP; Golder, 2017;) to address surface water drainage and water quality concerns at Project sites and mitigate potential impacts to fish and fish habitat;
- Implementing the appropriate erosion and sedimentation mitigation measures, as outlined in Section 6.2 and 6.3 of this Plan;
- Culvert maintenance will be planned outside of the restricted activity window, June 30 September
 1, where there is water flowing and spawning habitat is present or at sites where fall spawning
 movements are occurring to avoid effects on Arctic Char spawning and egg incubation. If unplanned
 culvert maintenance is required during this restricted activity window, the DFO will be consulted if
 instream work is required for applicable in-water work guidelines. Culverts will be isolated from flow
 prior to construction work;
- If dewatering is required, salvage fish prior to dewatering and release to adjacent surface waters; if water is pumped from within a cofferdam prior to fish salvage, screens meeting criteria set out by DFO will be used;
- Design mitigation for potential effects of increased flows on fish habitat include channel widening, regrading, construction of habitat features (in fish bearing streams), and channel stabilization;
- All water intake hoses shall be equipped with a screen of an appropriate mesh size (as approved by the DFO) to ensure that fish are not entrained. Additionally, operators will ensure the water intake hoses withdraw water at such a rate that fish do not become impinged on the screen. Additional guidance regarding fish screens on water intakes is provided below; and,
- In developing Project quarries, efforts are made to ensure that a minimum 100 m naturally-vegetated buffer between the high-water mark of any fish-bearing water bodies and any permanent quarries with potential for acid rock drainage or metal leaching is maintained.

6.4.3 OPERATING EQUIPMENT IN AND NEAR WATER

Surface water runoff from areas of intense vehicular activity is susceptible to contamination from minor spills and/or leakage of machinery and equipment. Additionally, machinery and equipment can cause

¹ At locations where compliance with the DFO guidelines cannot be achieved, consultation with DFO will take place prior to blasting. Consultations with DFO and the QIA may be required to identify Project specific thresholds for blasting that would exceed the requirements of DFO Guidelines for the Use of Explosives in or Near Canadian Fisheries Waters.

Surface Water and Aquatic Ecosystem Management Plan Rev.: 7 Next Revision: March 31, 2021 Page 24 of 44 Page 24 of 44

Sustainable Development #: BAF-PH1-830-P16-0026

inadvertent sedimentation and/or erosion. As such, the following mitigation measures will be followed to minimize potential impacts:

- Machinery will arrive at site in a clean condition and free of fluid leaks, invasive species and noxious weeds;
- Erosion and sediment control measures will be implemented prior to the start of any construction and maintained until all disturbed ground has been permanently stabilized;
- Low vegetative cover within 100 metres of a waterbody will be preserved unless effective erosion and sediment control measure are in place to protect water quality;
- Measures for managing water flowing onto the site, as well as water being pumped/diverted from
 the site, will be implemented such that sediment is filtered out prior to the water entering the
 waterbody (e.g., by discharging water to a vegetated area or to an area further from a waterbody);
- No waste material resulting from work activities will be left in a manner such that it can enter the water;
- Machinery will be refuelled and serviced, and fuel and other materials will be stored at least 31 m from the high water mark; and,
- Limit fording of the watercourses by machinery to a one-time event (i.e., over and back), and only if no alternative crossing method is available. If repeated crossings of the watercourse are required, a temporary crossing structure will be constructed; and,
- Temporary ice crossings used in the winter season will have all sediment and impacted snow removed from the crossing prior to spring freshet, and the surface of the ice scarified to promote breakup.

Sustainable Development	Document #: BAF-PH1-830-P16-0026	
	Next Revision: March 31, 2022	
Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44
	Issue Date: March 31, 2021	Page 25 of

7 SURFACE WATER MANAGEMENT

The following subsections describe how surface water runoff is managed at Milne Port, the Mine Site, and along the Tote Road, with the exception of mining operations. This section describes general surface water management for infrastructure not directly associated with the mining operations such as access roads, waste management facilities, laydowns and accommodation complexes. Refer to Section 8 of this Plan for information on the surface water management strategies associated with Deposit No. 1 mining operations.

Water balance and general site drainage/monitoring figures for the Project's Milne Port and Mine Site have been developed and are presented in Appendices A and B, respectively.

7.1 MILNE PORT AND MINE SITE

Key activities at Milne Port focus on managing ore transported to the Port from the Mine Site and materials and equipment received annually by conventional sealifts. During the open-water season (July – October), stockpiled ore is loaded onto ore carrier vessels for shipment while materials and equipment received by sealift vessels are unloaded using barges. Equipment and materials received from sealift vessels are placed in designated laydowns at Milne Port or transported overland by trucks to the Mine Site via the Tote Road. The Mine Site is located approximately 100 km inland from Milne Port. Main activities at the Mine Site include the management of the Project aerodrome, waste management facilities, and the mining, crushing and hauling of ore from the Nuluujaak Pit at Deposit No. 1.

7.1.1 IMPACTS ON SURFACE WATER

Surface water runoff from areas of intense vehicular activity is susceptible to contamination from minor spills and/or leakage of machinery and equipment. Mitigation measures identified in Section 5 of this Plan will be implemented at these sites to divert non-contaminated surface runoff away from these areas and minimize the potential for contamination. Surface water suspected to be impacted by hydrocarbons will be addressed using spill response absorbents and/or by transporting impacted surface water to containment areas, such as the Milne Port Landfarm Facility east cell (MP-04A; refer to Section 7.1.2) or the Mine Site Hazardous Materials Containment Area 7 (MS-HWB-7) for temporary storage and subsequent treatment and discharge using the Project's mobile Oily Water Treatment System (OWTS).

Storage of hazardous materials (i.e. fuel and other hazardous materials) are contained within approved impermeable containment areas (lined with geomembranes). As required by the Type 'A' Water Licence, water within containment areas (i.e. hazardous materials containment, surface water management ponds, etc.) will be sampled and demonstrated to be in compliance with the relevant water quality discharge criteria prior to being discharged to the receiving environment.

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 26 of 44

Sustainable Development

Document #: BAF-PH1-830-P16-0026

7.1.2 MILNE PORT LANDFARM FACILITY

The Milne Port Landfarm Facility (Landfarm Facility) consists of two geomembrane lined containment cells. The larger west cell is used as a landfarm for the biotreatment of soils contaminated by hydrocarbons from spills during the remediation season, or backhauled as required. The smaller east cell is used to contain hydrocarbon contaminated snow generated during winter operations. The east cell is also used as a repository for other sources of oily water at Milne Port and provides a practical location where oily water can be effectively treated at Milne Port using the Project's mobile OWTS, or backhauled as required. As required by the Type 'A' Water Licence, hydrocarbon contaminated water contained with the Landfarm Facility is treated if necessary, sampled and demonstrated to be in compliance with relevant water quality discharge criteria prior to discharge. To prevent erosion and associated sedimentation concerns from such discharges, the appropriate erosion and sedimentation controls are installed (i.e. energy dissipaters, silt fences) at and downstream of the discharge outfall.

Mitigation measures for the landfarm are described in the Landfarm Operation Maintenance and Monitoring Manual (BAF-PH1-320-T07-0005).

7.1.3 MILNE PORT ORE STOCKPILE FACILITY

The Milne Port Ore Stockpile Facility (Ore Stockpile Facility) is equipped with surface water management ponds to manage and monitor runoff retained within its footprint. Surface water runoff is directed to the surface water management ponds by a network of ditches that run along the Ore Stockpile Facility's perimeter. Additional surface water management ponds and associated ditch infrastructure may be required to retain water from approved Ore Stockpile Facility expansions. Diversion berms may be constructed to direct water on the ore stockpile pad to the appropriate surface water management pond, and water from one surface water management pond may be pump transferred to another if increased inflows require increased capacity in that pond. The surface water management ponds have been designed to temporarily retain the Ore Stockpile Facility's surface water runoff and allow for the settling of the runoff's sediment load prior to being discharged to the receiving environment (Milne Inlet). As required by the Type 'A' Water Licence, runoff retained in the surface water management ponds is sampled and demonstrated to be in compliance with relevant water quality discharge criteria prior to discharge.

Mitigation for managing dust originating from stockpiling activities includes the application of DusTreat[©] and other dust suppressant products as approved by the Government of Nunavut. Dust suppressants will be applied in accordance with applicable guidelines to minimize runoff into local watercourses.

7.1.4 LANDFILL FACILITY

The Mine Site Landfill Facility is located just south of the NE Basin of Sheardown Lake. Both facility's monitoring stations, MS-MRY-13A and MS-MRY-13B, are sampled monthly during the open water season and are situated on a small stream down gradient of the Landfill Facility. The small stream drains into the

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 27 of 44

Sustainable Development #: BAF-PH1-830-P16-0026

NE Basin of Sheardown Lake on its southern shoreline. All runoff and seepage from the Landfill Facilities at Monitoring Stations MS-MRY-13A and MS-MRY-13B will not exceed the following Effluent quality limits listed in Table 7 of the Type 'A' Water License. Mitigation measures related to the landfill are addressed in the Landfill Operation Maintenance and Monitoring Manual (BAF-PH1-320-T07-0004; Appendix K of the Waste Management Plan).

7.1.5 SURFACE WATER DIRECTION AND QUANTITY

The general drainage/monitoring figures for Milne Port and Mine Site provided in Appendix B show the local drainage routes and their flow direction. Estimated surface water runoff quantities for catchment areas were outlined in a Knight Piésold report provided in the FEIS, Volume 7 – Freshwater Aquatic Environment.

7.1.6 MITIGATION MEASURES

Mitigation measures will include periodic site inspections, as outlined in Baffinland's EPP (BAF-PH1-830-P16-0008), to ensure existing drainage routes are maintained and surface water infrastructure is operating as designed. Erosion and sedimentation controls as outlined in Sections 6.2 and 6.3 of this Plan will be utilized as required to address erosion and sedimentation concerns from construction and ongoing operations. Routine monitoring shall be completed to ensure compliance with applicable regulations and prescribed threshold values.

To minimize impacts on surface drainage and water quality, the Project footprint (i.e. laydowns, roads, quarries) is required to be constructed at least 31 m from the ordinary high-water mark of any water body unless otherwise approved by the NWB.

The Air Quality and Noise Abatement Management Plan (BAF-PH1-830-P16-0002) describes mitigation for managing dust along site access roads and the airstrip, including the application of water, calcium chloride, Dust Stop®, EK35®, and other dust suppressant products as approved by the Government of Nunavut. Dust suppressants will be applied in accordance with applicable guidelines to minimize runoff into local watercourses.

As shown in Appendix B, drainage structures have been installed to divert surface water runoff to specific points of discharge to facilitate monitoring of site contact water as required by the Type 'A' Water Licence.

	issue Date: March 31, 2021	Page 28 of
Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44
	Next Revision: March 31, 2022	

Sustainable Development

Document #: BAF-PH1-830-P16-0026

Jesus Date: March 21 2021

7.2 Tote Road

The Tote Road is the primary transportation route between Milne Port and the Mine Site and is used daily to transport ore, equipment, material, fuel, and supplies between the Project sites.

7.2.1 IMPACTS ON SURFACE WATER

The requirement and selection of effective sedimentation and erosion controls to be employed at areas along the Tote Road will be subject to Project authorizations and applicable DFO guidance, and informed by in field monitoring and site experience. Water crossings have been designed and constructed to minimize the potential loss of fish habitat. Erosion and sedimentation controls for water crossings as outlined in Section 6.3 of this Plan will be utilized as required to address erosion and sedimentation from construction and ongoing operations of the Tote Road. Scheduled monitoring for fish, fish habitat and water quality at water crossings along the Tote Road is outlined Section 9 of this Plan.

Construction areas established along the Tote Road will be designed and prepared such that surface water runoff is effectively channelled/diverted to allow for water quality monitoring to ensure compliance with Part D, Item 15 of the Type 'A' Water Licence.

7.2.2 MITIGATION MEASURES

Erosion and sedimentation controls as outlined in Sections 6.2 and 6.3 of this Plan will be utilized as required to address erosion and sedimentation concerns along the Tote Road.

To minimize impacts on surface drainage and water quality, the Project footprint (i.e. laydowns, roads, quarries) is required to be constructed at least 31 m from the ordinary high-water mark of any water body unless otherwise approved by the NWB.

The Road Management Plan and Air Quality and Noise Abatement Management Plan (BAF-PH1-830-P16-0023; BAF-PH1-830-P16-0002) describes mitigation for managing dust along the Tote Road, including the application of water, calcium chloride, Dust Stop®, and other dust suppressant products as approved by the Government of Nunavut. Dust suppressants will be applied in accordance with applicable guidelines to minimize runoff into local watercourses.

The Tote Road Earthworks Execution Plan (TREEP) (Golder, 2017) was developed to address sedimentation concerns observed along the Tote Road by improving the road's surface water drainage infrastructure. Improvements outlined in the TREEP include culvert extensions, lining drainage ditches with riprap, improving road bed material and stabilizing road embankments. Improvements outlined in the TREEP along with the Issued-For-Construction drawings developed by Hatch for the Early Revenue Phase of the Project will continue to be implemented along the Tote Road as required by Project operations. Scheduled monitoring of water quality, water quantity and fish passage at water crossings along the Tote Road, as detailed in Section 9 of this Plan, will be used to inform and prioritize Tote Road maintenance activities and surface water drainage improvements.

Surface Water and	Aquatic Ecosysten	n Management Plan

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 29 of 44

Sustainable Development

Document #: BAF-PH1-830-P16-0026

8 SURFACE WATER MANAGEMENT – MINING OPERATIONS

Surface water management infrastructure required for mining operations continue to be developed to ensure compliance with applicable regulations. Where required, these structures will be maintained throughout the lifecycle of the Project. Open pit mine, ROM stockpile and waste rock stockpile management activities and accountabilities will progress over time to accommodate future development and changes, management reviews, incident investigations, regulatory changes or other Project related modifications.

8.1.1 MITIGATION MEASURES

Erosion and sedimentation controls as outlined in Sections 6.2 and 6.3 of this Plan will be utilized as required to address erosion and sedimentation concerns from construction and ongoing operations associated with Mining Operations. Routine monitoring shall be completed to ensure compliance with applicable regulations and prescribed threshold values.

8.1.2 Deposit No. 1 Mining Facilities

The following facilities have been designed and have, or will be, constructed at the Mine Site to facilitate Deposit No. 1 mining operations at the Project:

- Open Pit
- Mine Haul Road;
- Run-of-Mine (ROM) Ore Stockpile Facility;
- Crusher Facility; and,
- Waste Rock Facility.

The surface water runoff associated with these facilities is directed to appropriate surface water management ponds where it is monitored and treated if required to ensure effluent meets applicable water quality discharge criteria outlined in Baffinland's Type A Water Licence and Metal and Diamond Mining Effluent Regulations (MDMER). The details regarding mitigation measures associated with surface runoff from the above mentioned project facilities are addressed in Appendix H of the FWSSWMP.

The Air Quality and Noise Abatement Management Plan (BAF-PH1-830-P16-0002) describes mitigation for managing dust along the haul road and access roads, including the application of water, calcium chloride, Dust Stop®, and other dust suppressant products as approved by the Government of Nunavut. Dust suppressants will be applied in accordance with applicable guidelines to minimize runoff into local watercourses.

The general drainage/monitoring figure for the Mine Site, provided in Appendix B, shows the local drainage routes and their flow direction. Estimated surface water runoff quantities for Mine Site

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 30 of 44

Sustainable Development

Document #: BAF-PH1-830-P16-0026

catchment areas were outlined in a Knight Piésold report provided in the FEIS, Volume 7 – *Freshwater Aquatic Environment*.

8.1.2.1 OPEN PIT

The open pit will be excavated using a conventional bench configuration with access via ramps. Predicted dimensions of the final open pit, determined by the preliminary design presented in the FEIS are:

Maximum length: 2.0 km;

• Maximum width: 1.2 km; and

Maximum depth: 465 m (northern side) to 195 m (southern side).

It is anticipated that groundwater inflows will be minimal below the active zone at the open pit. An assessment was completed to compare operations at three (3) mine sites at northern latitudes, including the Polaris, Ekati, and Diavik mines. From this assessment, it was determined that the Ekati mine is most similar to the Project's Mine Site. The Ekati pits were developed in competent granite that was cut by moderate faults. The base of permafrost at the Ekati mine was encountered at approximately 350 to 400 m. With the exception of the near surface layer, groundwater was not encountered in the pits until mining reached limits below permafrost. From the assessment, it was determined that the Project's Deposit No. 1 pit will receive negligible groundwater inflow below the active layer because mining activities will take place in competent bedrock characterized by colder mean temperatures, topographically higher elevations, minimal faulting, and a deeper permafrost zone.

Geotechnical investigations at Deposit 1 are detailed in the Phase 1 Waste Rock Management Plan (BAF-PH1-830-P16-0029). The thermistor monitoring indicates permafrost conditions will allow only shallow seasonal groundwater flows. It is anticipated that water inflows into the pit will be minor, consisting of shallow seasonal groundwater flows and direct contribution from precipitation events. Drifting snow is not expected to significantly contribute to in-pit water volumes.

Mining commenced on a hill crest outcrop, and will progress until Year 10 to 12 of operation at full production volume (based on a nominal 21.5 Mtpa) before an Open Pit is formed. Open Pit surface water may be transferred to a surface water management pond through truck transfer or pumping, and monitored and treated, if required, prior to discharge to the receiving environment. The current surface water management pond and associated FDP (MS-08) may be used to manage this pit surface water, where all effluent discharged is monitored to ensure it meets the applicable water quality discharge criteria outlined in Baffinland's Type 'A' Water License and MDMER.

8.1.2.2 Run-of-Mine Ore Stockpile Facility

Run-of-mine ore from the Deposit No. 1 is stockpiled prior to crushing activities at the Run-of-Mine (ROM) Ore Stockpile Facility located on the Mine Haul Road.

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 31 of 44

Sustainable Development

Document #: BAF-PH1-830-P16-0026

The surface water runoff from the ROM Facility's pad and ore stockpiles is directed to the ROM Facility's surface water management pond (ROM Facility Pond) using ditches that run along the Facility's perimeter. Runoff retained in the ROM Facility Pond will be monitored and treated if required to ensure effluent discharged from the ROM Facility meets the applicable water quality discharge criteria outlined in Baffinland's Type 'A' Water Licence and MDMER.

Mitigation measures will include routine inspections of the ROM Facility to ensure surface water infrastructure, such as culverts, ditches and the ROM Facility Pond, are operating as designed and the use of a water treatment plant at the ROM Facility Pond, if required, to ensure effluent water quality compliance under the MDMER and Type 'A' Water Licence during controlled effluent discharges from the ROM Facility. Refer to the Project's FWSSWMP (BAF-PH1-830-P16-0010) for additional information on the water treatment processes approved for Project effluents.

8.1.2.3 MINE SITE CRUSHER FACILITY

Run-of-mine ore from the Deposit No. 1 is processed by crushing ore into lump and fines at Mine Site Crusher Facility.

The surface water runoff from the Crusher Facility's pad and ore stockpiles is directed to the Crusher Facility's surface water management pond (Crusher Facility Pond) using ditches that run along the Facility's perimeter. Runoff retained in the Crusher Facility Pond will be monitored and treated if required to ensure effluent discharged from the Crusher Facility meets the applicable water quality discharge criteria outlined in Baffinland's Type 'A' Water Licence and MDMER.

Mitigation measures will include routine inspections of the Crusher Facility to ensure surface water infrastructure, such as culverts, ditches and the Crusher Facility Pond, are operating as designed and the use of a water treatment plant at the Crusher Facility Pond, if required, to ensure effluent water quality compliance under the MDMER and Type 'A' Water Licence during controlled effluent discharges from Crusher Facility. Refer to the FWSSWMP (BAF-PH1-830-P16-0010) for additional information on the water treatment processes approved for Project effluents.

8.1.2.4 WASTE ROCK FACILITY

Waste rock generated from mining operations on Deposit 1 will be directed to the Waste Rock Facility (WRF) located northeast of Deposit No. 1. Waste rock generated by Deposit No. 1 mining operations will be managed in accordance with the Project's Phase 1 Waste Rock Management Plan (BAF-PH1-830-P16-0029) and Life-of-Mine Waste Rock Management Plan (BAF-PH1-830-P16-0031). As additional geological, geotechnical and geochemical data is collected, Baffinland will continue update the Project's Phase 1 Waste Rock Management Plan and Life-of-Mine Waste Rock Management Plan (BAF-PH1-830-P16-0031) to optimize the Project's waste rock management practices and strategies.

Sustainable Development

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 32 of 44

Document #: BAF-PH1-830-P16-0026

Surface water runoff from waste rock deposited at the WRF is directed to a surface water management pond (WRF Pond) using ditches and swales that run along the WRF's perimeter. Runoff retained in the WRF Pond will be monitored and treated if required to ensure effluent discharged from the Facility meets the applicable water quality discharge criteria outlined in Baffinland's Type 'A' Water Licence and MDMER.

Mitigation measures will include routine inspections of the Waste Rock Facility to ensure surface water infrastructure, such as culverts, ditches and the WRF Pond, are operating as designed and the use of a water treatment plant at the WRF Pond to ensure effluent water quality compliance under the MDMER and Type 'A' Water Licence during controlled effluent discharges from WRF. Refer to the Project's FWSSWMP (BAF-PH1-830-P16-0010) for additional information on the water treatment processes approved for Project effluents.

∄Baffinland	Surface Water and Aquatic Ecosystem Management Plan	Issue Date: March 31, 2021	Page 33 of
		Rev.: 7	44
		Next Revision: March 31, 2022	
	Sustainable Development	Document #: BAF-PH1-830-P16-0026	

9 MONITORING

9.1 ROUTINE INSPECTIONS

In addition to the specific monitoring and reporting requirements subject to applicable regulatory approvals, routine inspections of Project areas will be conducted. Routine surface water management inspections shall be conducted at drill sites, Project camp sites and infrastructure, roadways, and other areas associated with Project development. Where required, inspection locations will be modified to reflect current Project infrastructure and activities.

Table 9-1 outlines the basic components of typical routine inspections conducted at the Project. For the current compliance inspection forms used, refer to the Project's EPP (BAF-PH1-830-P16-0008).

Table 9-1 - Routine Inspections and Monitoring Requirements

Site / Area		Routine Inspections	3
Milne Port	- Water management systems and infrastructure		
Mine Site	- Sediment and erosion	n control structures	
	- Fuel storage and tran	sfer operations	
	- Drip pans and equipm	nent condition (i.e. leaks, h	nydrocarbon staining)
	- Use of secondary con	tainment (i.e. lined contai	nment areas, spill trays, etc.)
	- Water intakes		
	- Flow meter readings		
	1	vehicle rutting) and const	ruction projects
	- Spill kits		
	 Snow stockpiles 		
Tote Road	_	systems and infrastructure	
	- Sediment and erosion control structures		
	- Use of secondary containment (i.e. lined containment areas, spill trays, etc.)		
	- Water intakes		
	- Snow stockpiles		
	- Land disturbance (i.e. vehicle rutting) and construction projects		
Borrow Sites	- Drip pans and equipment condition (i.e. leaks, hydrocarbon staining)		
Quarries	- Fuel transfer operation		
	- Sediment and erosion	n control structures	
D 111 611	- Spill kits	0 :11: 0 : 1	0 . 0
Drill Sites	Pre-Drilling	Drilling Period	Post-Drilling
	- Drill hole	- Fuel leaks	- Fuel leaks
	coordinates	- Sediment and	- Sediment and
	- Water source	erosion control	erosion control
	coordinates	structures	structures Drin nans
	- Site photo	- Drip pans	- Drip pans
	- Water source photo	- Equipment condition	- Equipment condition

Sustainable Development

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 34 of 44

Document #: BAF-PH1-830-P16-0026

Site / Area	Routine Inspections		
	- Distance to nearest	- Rutting by	- Rutting by
	water source	vehicles	vehicles
	 Archaeological 	- Water intake	- Water intake
	approval	- Water management	- Water management
	 Wildlife survey 	- Flow meter reading	- Flow meter reading
Waste Rock Facility	- Water management s	systems and infrastructure	
	- Sediment and erosion	n control structures	
	- Drip pans and equipn	nent condition (i.e. leaks, h	nydrocarbon staining)
	- Deposition of Waste	Rock to encapsulate PAG	
Bulk Fuel Storage Areas	- Primary containment structure		
	- Evidence of hydrocarbon staining or leaks from containment devices		
	- Equipment condition		
	- Spill kits		
	- Transfer pipelines to other Project infrastructure		
Explosives Storage	- Primary containment structure		
Areas	- Access and security		
	- Equipment condition		
Laydown and Storage	- Sediment and erosion control structures		
Areas	- Evidence of hydrocarbon staining or leaks from containment devices		
	- Fuel leaks		
	- Drip pans		
	- Equipment condition		

9.2 TRIGGER ACTION RESPONSE PLAN (TARP) FOR POTENTIAL EROSION AND SEDIMENT

A Trigger Action Response Plan (TARP) for Potential Erosion and Sediment Release Events (Table 9-2) provides a summary of the monitoring required and responsibilities in managing environmental monitoring of erosion and sediment events. The TARP outlines indicators and triggers, and will be utilized to outline appropriate actions and responses to possible erosion and sediment release events. Associated responsibilities are also detailed in the TARP.

Table 9-2 - Trigger Action Response Plan - Erosion and Sediment Release Events

Trigger	Action	Response	Responsibility
Observations identifying potential causes of erosion and sediment issues.	Investigate and identify potential sources and activities that may lead to an exceedance in total suspended solids. This can include, but not limited to: construction based activities on land or near water (e.g. ditching, roads, signs of erosion, drilling, sediment deposition, run-off, etc.), effectiveness of erosion and sediment controls, contact water movement. Refer to coordination meetings in preparation for freshet, and allocation of responsibilities as per each department. Ensure equipment is readily available.	Contact Baffinland Environment and assist in implementing appropriate control measures focused at the source of the issue. Reference Table 6-1 for a list of erosion and sediment control measures.	All employees working for the Operation (via visual observation). Report to Supervisor immediately, who will report to Environment. Environment to advise Departments based on specific needs.
Severe weather period in the forecast, as per on-site weather stations and weather alerts.	Assess risk for site and plan appropriate mitigation measures. This includes but is not limited to Table 6-1 Sediment and Erosion Controls. Complete snow removal in prioritized areas as per the Snow Management Plan.	Communicate with Environment to develop an incident (sediment release, melting event, freshet, high precipitation) specific response plan. Communicate plan to workforce which may include: Implementing additional mitigation techniques and/or facilities Reducing or re-scheduling tasks (e.g., Reduce activities to nonground disturbing related tasks)	Environment Mine Operations Road Maintenance
TSS Exceedance of Water Licence Criteria	During and after a suspected exceedance of the authorized limit, water samples will be taken at key locations for TSS testing. Record results, investigate and communicate to external stakeholders in line with regulatory requirements and Baffinland's Spill Contingency Plan (BAF-PH1-830-P16-0036).	If sediment attributed to Project Infrastructure, review and modify controls. Communicate incident investigation outcomes with regulatory authority via follow up spill reports and the QIA NWB Annual Report for Operations.	All employees working for the Operation (via visual observation). Report to Supervisor immediately, who will report to Environment. Environment to advise Departments based on specific needs.
Regulatory Feedback	Record feedback details, investigate and communicate to external stakeholders in line with Baffinland management plans.	If sediment is attributed to Project Infrastructure, review and modify controls. Respond to regulatory authority with outcomes of the investigation.	Environment Operations

	Sustainable Develonment	Document #: BAF-PH1-830-P16-0026	
	, ,	Next Revision: March 31, 2022	
	Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44
		Issue Date: March 31, 2021	Page 36 of

9.3 Snow Management Monitoring

The monitoring of snowmelt and surface water runoff at the Mine Site and Milne Port will be monitored via the Surveillance Network Program (SNP) stipulated by the Project's Type 'A' Water License, and along the Tote Road via the Tote Road Monitoring Program (TRMP). Additional temporary monitoring locations may be established during freshet to support the SNP and TRMP for areas down gradient of snow stockpile locations. The frequency of water quality monitoring will be consistent with existing monitoring programs (i.e. SNP, TRMP). For further details, refer to Baffinland's Snow Management Plan (BAF-PH1-300-P16-0002) where it outlines required monitoring of snow management and snow stockpiles at the Project.

9.4 Area-Specific Surface Water and Aquatic Ecosystem Monitoring

Baffinland has developed and/or implemented several monitoring programs at the Project to fulfill surface water and aquatic effects monitoring requirements outlined in the Project's Type 'A' Water Licence, Project Certificate and other applicable regulations (i.e. MDMER, etc.). The following subsections describe the area-specific freshwater monitoring requirements and monitoring programs conducted at Project.

9.4.1 MILNE PORT AND MINE SITE

Surface water and aquatic ecosystem monitoring programs implemented at Milne Port and Mine Site focus on fulfilling the monitoring requirements outlined in Schedule I of the Project's Type 'A' Water Licence, Project Certificate, and other applicable regulations, including the MDMER.

9.4.1.1 Type 'A' WATER LICENCE

Type 'A' Water Licence water quality and quantity monitoring requirements for surface water include:

- The monitoring of volumes and water quality of surface water runoff and storm water retained by Project infrastructure (e.g. surface water management ponds, containment areas) and discharged to the receiving environment;
- The monitoring of volumes and water quality of specific surface water drainage systems downstream of Project areas;
- The monitoring of water quality of surface water drainage downstream of active quarries and borrows sources; and,
- The monitoring of water volumes withdrawn from approved water sources.

Volumes of effluent discharged from the Project infrastructure are monitored using inline flow meters and/or flow rate extrapolation. Weir boxes, water level data loggers and instream flow measurements are used to monitor flow volumes at monitored surface water drainages downstream of Project areas. Volumes of water withdrawn from approved water sources are monitored using inline flow meters and/or flow rate extrapolation. Water withdrawal limits for approved water sources are outlined in Table 3 of the Type 'A' Water Licence and discussed further in the FWSSWMP (BAF-PH1-830-P16-0010).

	N	Document #: BAF-PH1-830-P16-0026	
		Next Revision: March 31, 2022	
		Rev.: 7	44
		Issue Date: March 31, 2021	Page 37 of

Sampling frequency, monitored parameters and water quality discharge criteria for monitoring stations are outlined in Part F and Schedule I of the Type 'A' Water Licence.

Table 9-3 and Table 9-4 provides the select storm water and surface water monitoring stations outlined in Schedule I of the Type 'A' Water Licence for Milne Port and the Mine Site, including each monitoring station's current status. Monitoring requirements for developed quarries and borrow sources near Milne Port (i.e. Q1) and the Mine Site (i.e. QMR2), as stipulated by the Type 'A' Water Licence, are discussed in Section 9.8 of this Plan.

Table 9-3 – Milne Port – Water Licence Monitoring Stations²

Monitoring			ordinates D83)	_	
Station	Description	Easting	Northing	Status	
		(m)	(m)		
MP-04	Milne Port Landfarm Facility - Storm water (Contaminated Snow/Water Containment)	503710	7975574	Active	
MP-05	Milne Port Ore Stockpile Facility – East Surface Water Management Pond	503469	7976383	Active	
MP-06	Milne Port Ore Stockpile Facility – West Surface Water Management Pond	503125	7976364	Active	
MP-C-A		503214	7976483	Inactive	
МР-С-В	502836	7975732	Active		
MP-C-B01		502981	7975330	Active	
MP-C-C	Surface water drainage	503436	7975427	Inactive	
MP-C-D	downstream of construction and	503651	7976363	Inactive	
MP-C-E	operation areas at Milne Port.	503736	7976346	Active	
MP-C-F		503922	7976304	Active	
MP-C-H		504113	7976509	Active	
MP-C-J		502940	7974760	Active	
MS-MRY-6	Exploration Camp Bulk Fuel Storage Facility (Bladder Farm) - Storm water (Contaminated Snow/Water Containment)	558341	7914508	Active	
MS-06	Mine Site Crusher Facility Surface Water Management Pond	561475	7913000	Active	

⁻

² Refer to Schedule I of the Type 'A' Water Licence for a complete list of all water licence monitoring stations.

Surface Water and Aquatic Ecosystem Management Plan

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 38 of 44

Sustainable Development #: BAF-PH1-830-P16-0026

Monitoring		UTM Coordinates (NAD83)			
Station	Description	Easting	Northing	Status	
		(m)	(m)	Active	
MS-07	Run-of-Mine Ore Stockpile Facility Surface Water Management Pond	563583	7913074	Active	
MS-08	Waste Rock Stockpile West Surface Water Management Pond	563217	7916789	Active	
MS-09	Waste Rock Stockpile East Surface Water Management Pond	562984	7916316	Inactive	
MS-MRY-09	Deposit No. 1 surface water drainage (including the Bulk Sample Open Pit)	561080	7915078	Active	
MS-MRY-10	Deposit No. 1 downstream surface water drainage	563823	7914627	Active	
MS-MRY-13A	Non-Hazardous Waste Landfill Facility - Downstream Surface	560754	7912484	Active	
MS-MRY-13B	Water Drainage	560642	7912527	Active	
MS-C-A		561263	7913571	Active	
MS-C-B		561454	7913537	Active	
MS-C-C		561110	7913199	Active	
MS-C-D	Surface water drainage	561008	7913280	Active	
MS-C-E	downstream.	560980	7913388	Active	
MS-C-F		561797	7913278	Active	
MS-C-G		561813	7911830	Active	
MS-C-H	MS-C-H	561162	7912067	Active	

9.4.1.2 METAL & DIAMOND MINING EFFLUENT REGULATIONS

The MDMER were developed primarily under subsection 36(5) of the Fisheries Act and are designed to protect fish, fish habitat and fish use from effects in receiving waters from the release of effluents from metals and diamond producing mines. At the Mine Site, runoff and effluent managed at the Crusher Facility, Run-of-Mine Facility and Waste Rock Facility are regulated under the MDMER and are identified as monitoring locations MS-06, MS-07, MS-08 and MS-09 under the Type 'A' Water Licence, respectively.

Sampling frequency, monitored water quality parameters and discharge criteria for effluent discharges from facilities regulated under the MDMER at the Mine Site are fully discussed in the FWSSWMP (BAF-PH1-830-P16-0010). For details on the Project's Environmental Effects Monitoring (EEM) Program required for receiving water bodies of regulated effluents under MDMER, refer to Project's FWSSWMP

Sustainable Develonment	Document #: BAF-PH1-830-P16-0	026
. ,	Next Revision: March 31, 2022	
Surface Water and Aquatic Ecosystem Management Plan R	ent Plan Rev.: 7	44
	Issue Date: March 31, 2021	Page 39 of

(BAF-PH1-830-P16-0010) and the Project's AEMP (BAF-PH1-830-P16-0039), discussed in Section 9.4.3.3 below.

9.4.1.3 AQUATIC EFFECTS MONITORING PLAN

The Aquatic Effects Monitoring Plan describes how monitoring of the aquatic environment will be undertaken at the Mine Site. The Aquatic Effects Monitoring Program (AEMP) was identified as a follow-up monitoring program in Baffinland's FEIS (Baffinland, 2012) and is prescribed by the Type 'A' Water Licence. The AEMP, specifically, is a monitoring program designed to:

- Detect the short-term and long-term effects of the Project's activities on the surrounding aquatic environment;
- Evaluate the accuracy of impact predictions;
- Assess the effectiveness of planned mitigation measures; and,
- Identify additional mitigation measures to avert or reduce unforeseen environmental effects.

The AEMP focuses on the key potential impacts to freshwater environment valued ecosystems components (VECs), as identified in the FEIS and Addendum for the Early Revenue Phase (ERP). The freshwater VECs include water quantity, sediment quality, and freshwater biota and fish habitat. The AEMP has been structured to serve as an overarching 'umbrella' that conceptually provides an opportunity to integrate results of individually monitored but related aquatic monitoring programs.

The following are the component studies that comprise the Project's AEMP.

- Core Receiving Environment Monitoring Program (CREMP), provides a basis for the evaluation of any mine-related influences on water quality, sediment quality and/or biota (including phytoplankton, benthic invertebrates and/or fish) within aquatic environments located near the Mine Site.
- Lake Sedimentation Monitoring Program evaluates baseline and Project-influenced lake sedimentation rates at Sheardown Lake NW.
- Hydrometric Monitoring Program assesses flow in several streams and rivers near Project sites and supports the AEMP.
- Dustfall Monitoring Program evaluates dustfall rates in proximity to the Tote Road, Milne Port and Mine Site and informs aquatic effects monitoring programs on the potential effects of dust generated by the Project on surrounding aquatic ecosystems and water bodies.
- Stream Diversion Barrier Study was an initial study evaluating the potential for fish barriers under natural conditions and due to Project-related stream diversions. This study has been deferred due to the low impact anticipated by the reduced footprint of the Waste Rock Facility during the Early Revenue Phase of the Project.

Sustainable Development	nable Development #: BAF-PH1-830-P16-0	
	Next Revision: March 31, 2022	
Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44
		Page 40 of

Environmental Effects Monitoring (EEM) Program, as required under the MDMER, includes both
water quality, benthic and fish monitoring studies in the receiving water bodies of effluent
discharges at the Mine Site.

Monitoring data collected requires a systematic data evaluation process, as well as management responses that would be taken, in response to certain data evaluation outcomes. An assessment and management response framework is described in detail in Section 5 of the Aquatic Effects Monitoring Plan. For additional details on the aquatic effects monitoring programs, refer to Baffinland's Aquatic Effects Monitoring Plan (BAF-PH1-830-P16-0039).

9.4.2 TOTE ROAD

Surface water and aquatic ecosystem monitoring programs specific to the Tote Road focus on meeting the monitoring requirements stipulated by Baffinland's Type 'A' Water Licence and DFO authorizations for water crossings as well as fulfilling commitments made to stakeholders and regulators.

9.4.2.1 Type 'A' WATER LICENCE

Type 'A' Water Licence monitoring requirements for surface water along the Tote Road focus on:

- The monitoring of water volumes withdrawn from approved water sources along the Tote Road, outlined in Tables 2 and 3 of the Type 'A' Water Licence; and,
- The monitoring of water quality of surface water drainage downstream of active quarries and borrows sources.

Volumes of water withdrawn from approved water sources along the Tote Road are monitored using inline flow meters and/or flow rate extrapolation. Water withdrawal limits for approved water sources along the Tote Road are outlined in Tables 2-3 and 3 of the Type 'A' Water Licence and discussed further in the FWSSWMP (BAF-PH1-830-P16-0010).

Monitoring requirements for developed quarries and borrow sources stipulated by the Type 'A' Water Licence are discussed in Section 9.8 of this Plan.

9.4.2.2 Annual Assessment of Tote Road Fisheries Crossings

In accordance with Baffinland's DFO authorizations, Letters of Advice and other related amendments, Baffinland continues to conduct an annual assessment each year of identified fisheries water crossings along the Tote Road (HADD and compensation crossings). Annual assessments are conducted by a Professional Fisheries Biologist to confirm compliance with Baffinland's Fish Habitat No-Net-Loss and Monitoring Plan (Knight Pièsold, 2007) by assessing the presence of fish, changes in quality of fish habitat and condition of fish passage at each identified fisheries crossing. Concerns identified during the annual assessment are promptly addressed by the Road Maintenance Department. It should be noted that two (2) fisheries crossings at the Mine Site (CV-187, CV-186) are included in this annual assessment.

Sustainable Development	Document #: BAF-PH1-830-P16-0026		
	Next Revision: March 31, 2022		
ouride vide and Adadic Leosystem Management I am	Rev.: 7	44	
	issue Date: March 31, 2021	Page 41 of	

Sustainable Development

9.4.2.3 TOTE ROAD MONITORING PROGRAM (TRMP)

The Tote Road Monitoring Program (TRMP) was developed to monitor the water quality of surface water flows at select water crossing (culverts, bridges) along the Tote Road, with a primary focus on monitoring total suspended solids (TSS) concentrations upstream and downstream of Tote Road water crossings. Monitoring data collected under the TRMP is used by the Project to:

- Inform Project operations of potential water quality impacts from Project activities at water crossings along the Tote Road;
- Guide and prioritize Tote Road maintenance work, corrective actions and improvements projects for surface water management infrastructure;
- Adjust mitigation measures and management strategies for Project activities along the Tote Road; and,
- Expand the Project's understanding of natural water quality conditions along the Tote Road (upstream) and the natural factors that contribute to changes in surface water quality.

Water crossings monitored under the TRMP have been selected to give a geographically representative sample set of water crossings for each given watershed intersected by the Tote Road (Phillips Creek, Ravn River, Mary River). In selecting the Tote Road water crossings within each watershed, the following factors were considered:

- Key depositional habitats downstream of the Tote Road (e.g. fish habitat);
- Areas historically prone to sedimentation events;
- Historical borrow source locations; and,
- Existing monitoring locations and programs.

In addition to TSS, the TRMP monitors for additional parameters, including metals, nutrients, oil & grease, and routine chemistry, such as dissolved anions (e.g. chloride), turbidity and total dissolved solids (TDS).

For additional details on the TRMP's sampling frequency, monitored parameters and response action frameworks and action levels refer to the Project's Roads Management Plan (BAF-PH1-830-P16-0023).

9.4.2.4 WATER CROSSING CONSTRUCTION MONITORING

In order safely and effectively transport ore from the Mine Site to Milne Port, the Project roads network, including the Tote Road, continues to be upgraded to address concerns regarding surface water drainage, sedimentation and erosion, operations and safety.

Monitoring associated with construction activities at Project water crossings is detailed in the Roads Management Plan (BAF-PH1-830-P16-0023), including sampling frequency, monitored parameters, response action frameworks and action levels.

Surface Water and Aquatic Ecosystem Management Plan

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 42 of 44

Sustainable Development

Document #: BAF-PH1-830-P16-0026

To limit the potential water quality impacts of maintenance and construction activities at Project water crossings during periods of flow, in water work will be avoided whenever feasible, with the majority of water crossing maintenance and construction planned and occurring before the onset of freshet (mid-May) and following freeze up (September/October).

9.4.3 STEENSBY PORT

The construction of Steensby Port and associated railway has not commenced to date. As a result, water quality or quantity monitoring programs have not been initiated at the Steensby Port location. This plan will be updated prior to the commencement of construction of Steensby Port and the associated railway to reflect planned surface water management and monitoring.

9.5 GROUNDWATER MONITORING

Condition 23 of the Project Certificate requires groundwater monitoring to be conducted at the Project. Initiated in 2017, Baffinland continues to conduct and expand a preliminary groundwater monitoring program at the Project's Mine Site Landfill Facility to assess the feasibility and utility of monitoring groundwater quality near Project infrastructure using drive-point piezometers. The current monitoring program involves establishing shallow groundwater wells up-gradient and down-gradient of the Landfill Facility using drive-point piezometers and collecting water samples near the depth of the active layer during September of year; the time of year where the active layer should be at its maximum depth. As more data is collected and monitoring methodologies are further assessed, Baffinland will provide recommendations and plans to NWB and other agencies regarding the Project's groundwater monitoring program.

9.6 Type 'B' Water Licence Monitoring

Surface water monitoring requirements stipulated under the Type B Water Licence are related to exploration and geotechnical drilling programs and the establishment of satellite camps required to support these programs. Due to temporary and transitory nature of drilling programs, water quality monitoring programs will be established for drilling programs on as needed basis and in accordance with the monitoring requirements outlined in the Type 'B' Water Licence. Proposed water quality monitoring programs will be included in Baffinland's notification(s) to regulators and stakeholders for planned drilling programs and satellite camps.

9.7 Monitoring at Project Quarries and Borrow Sources

Aggregate and sand for the Project may be sourced from a number of approved borrow pits and quarries located at the Mine Site, Milne Port and along the Tote Road. Baffinland's Water Licence prescribes the conditions applying to the development of quarries and borrow pits. Baffinland manages the potential environmental effects of borrow pit and quarry development and operation through the Borrow Pits and

Surface Water and Aquatic Ecosystem Management Plan

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 43 of 44

Sustainable Development

Document #: BAF-PH1-830-P16-0026

Quarries Management Plan (BAF-PH1-830-P16-0004) and individual borrow source and quarry specific plans (BAF-PH1-830-P16-0032, BAF-PH1-830-P16-0040 and BAF-PH1-830-P16-0017). Monitoring locations for developed quarries and borrows sources are documented in these individual borrow source and quarry specific management plans.

Table 9-4 - Project Quarries and Borrow Sources - Water Licence Monitoring Stations

		UTM Coordinates (NAD83)			
Monitoring Station	Description	Easting	Northing	Status	
5.00.000		(m)	(m)	Active Active Active	
MP-Q1-01	Downstream of Q1	503838	7974473	Active	
MP-Q1-02	Downstream of Q1	503827	7975418	Active	
TR-BP-01	Borrow Pit at KM97	556021	7914684	Active	
MQ-C-A		559478	7914398	Active	
MQ-C-B	Downstream of QMR2	560076	7913889	Active	
MQ-C-D		559421	7914221	Active	
MQ-C-E	Downstream of D1Q2	563351	7912902	Active	

In accordance with Part I, Items 24 of the Type 'A' Water Licence, during periods of flow and following major precipitation events, Baffinland conducts monthly water quality monitoring of surface water flows downstream of active quarries and borrows sources. Water quality parameters that are monitored are in accordance with Part I, Item 23 of the Type 'A' Water Licence.

In accordance with Part D, Item 15 of the Type 'A' Water Licence, weekly water quality sampling is also completed where it is determined that surface water runoff from active quarries flows directly or indirectly into a water body, to ensure that water quality of the flows is in compliance with the water quality criteria outlined in Part D, Item 15.

As required, Baffinland will implement best management practices including sediment and erosion control measures installed as per Section 5 of this Plan. Berms and other drainage control measures shall be established where necessary to minimize or prevent surface runoff from nearby water bodies entering active quarries and borrow sources. Details regarding specific mitigation measures are provided in the above mentioned quarry management plans.

9.8 Changes to Monitoring Programs

Conditional to the Project's construction and/or operations activities, it may be determined that additional monitoring stations may need to be established to effectively assess, and adequately monitor site-specific surface runoff and effluents. In these cases, Baffinland will provide notification to the NWB and other relevant agencies, and update this Plan accordingly.

Sustainable Development	Document #: BAF-PH1-830-P16-0	0026	
	Next Revision: March 31, 2022		
Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44	
	44	Page 44 of	

10 DATA MANAGEMENT AND REPORTING

10.1 DATA MANAGEMENT

The on-site Environmental Superintendent in concert with the corporate Sustainable Development team is responsible for data management and reporting related to surface water management and monitoring. The data management system includes conducting routine inspections and monitoring, and forwarding results to appropriate parties as prescribed by Baffinland's applicable approvals, permits and authorizations.

10.2 REPORTING

Table 10-1 summarizes the reporting associated with the monitoring programs outlined Section 9 of this Plan.

Table 10-1 – Reporting Summary for Monitoring Programs

Monitoring Program	Applicable Regulatory Instrument	Reporting
Type 'A' Water Licence (Schedule I; Part I)	Type 'A' Water Licence	Monthly Monitoring Reports Annual QIA & NWB Report for Operations
Fisheries Crossings Assessment	Applicable DFO Authorizations and Letters of Advice	Annual DFO Tote Road Monitoring Report Annual QIA & NWB Report for Operations
Tote Road Monitoring Program	-	Annual QIA & NWB Report for Operations
Snow Stockpile Monitoring	-	Annual QIA & NWB Report for Operations
MDMER (Effluent and Receiving Environment Water Quality Monitoring)	MDMER	Quarterly Effluent Monitoring Reports Annual ECCC MDMER Report
MDMER (Biological EEM)	MDMER	Annual QIA & NWB Report for Operations Annual ECCC MDMER Report (for applicable years)
AEMP (excluding Dustfall Program)	Type 'A' Water Licence Project Certificate	Annual QIA & NWB Report for Operations
Groundwater Monitoring	Project Certificate	Annual QIA & NWB Report for Operations
Type 'B' Water Licence (Part B, Item 6)	Type 'B' Water Licence	Annual QIA & NWB Report for Exploration and Geotechnical Activities
Dustfall Program	Type 'A' Water Licence Project Certificate	Annual Terrestrial Environment Monitoring Report

Surface Water and Aquatic Ecosystem Management Plan

Issue Date: March 31, 2021

Rev.: 7

Next Revision: March 31, 2022

Page 45 of 44

Document #: BAF-PH1-830-P16-0026

11 REFERENCES

BAF-PH1-300-P16-0002 – Snow Management Plan

Sustainable Development

BAF-PH1-320-T07-0004 - Landfill Operation Maintenance and Monitoring Manual

BAF-PH1-320-T07-0005 - Landfarm Operation Maintenance and Monitoring Manual

BAF-PH1-800-POL-0001 – Health, Safety and Environment Policy

BAF-PH1-800-POL-0002 - Sustainable Development and Human Rights Policy

BAF-PH1-830-P16-0004 - Borrow Pit and Quarry Management Plan

BAF-PH1-830-P16-0008 - Environmental Protection Plan

BAF-PH1-830-P16-0010 - Fresh Water Supply, Sewage and Wastewater Management Plan

BAF-PH1-830-P16-0017 - Q1 Quarry Management Plan

BAF-PH1-830-P16-0023 - Roads Management Plan

BAF-PH1-830-P16-0029 - Phase 1 Waste Rock Management Plan

BAF-PH1-830-P16-0031 – Life of Mine Waste Rock Management Plan

BAF-PH1-830-P16-0032 - Borrow Source Management Plan - Kilometer 97

BAF-PH1-830-P16-0036 - Spill Contingency Plan

BAF-PH1-830-P16-0039 – Aquatic Effects Monitoring Plan

BAF-PH1-830-P16-0040 - QMR2 Quarry Management Plan

Baffinland Iron Mines Corporation (Baffinland), 2012. *Mary River Project - Final Environmental Impact Statement*. February.

Baffinland Iron Mines Corporation (Baffinland), 2013. Mary River Project - Early Revenue Phase - Addendum to the Final Environmental Impact Statement. June.

Fisheries and Oceans Canada, 2001. *Policy for the Management of Fish Habitat*. Cat. No. Fs 23-98/1986E ISBN 0-662-15033-3. January 9.

Fisheries and Oceans Canada, 2007. Milne Inlet Tote Road (Tote Road) Fisheries Authorization No. NU-06-0084

Surface Water and Aquatic Ecosystem Management Plan Rev.: 7 Next Revision: March 31, 2021 Page 46 of 44

Sustainable Development #: BAF-PH1-830-P16-0026

Golder Associates Ltd. (Golder), 2016. Dust Mitigation Action Plan.

Golder Associates Ltd. (Golder), 2016. Sedimentation Mitigation Action Plan.

Golder Associates Ltd. (Golder), 2017. *Mary River Project - Tote Road Earthworks Execution Plan*. April. Rev. 0. Report Number: 1667708.

Knight Piésold 2007. Baffinland Iron Mines Corporation - Mary River Project - Bulk Sampling Program - Fish Habitat No Net Loss and Monitoring Plan. Ref. No. NB102-00181/10-4, Rev. 0, August 30.

Nunavut Water Board (NWB), 2015. Licence No. 2AM-MRY1325 - Amendment No. 1.

Wright, D.G., and G.E. Hopky, 1998. Guidelines for the Use of Explosives In or Near Canadian Fisheries Waters. Can. Tech. Rep. Fish. Aquat. Sci. 2017: iv + 34p.

	Sustainable Development	Document #: BAF-PH1-830-P16-	0026
E Baffinland		Next Revision: March 31, 2022	
<u>.</u>	Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44
		Issue Date: March 31, 2021	Page 47 of

APPENDIX A CORPORATE POLICIES

Issue Date: March 07, 2016

Revision: 1

Page 1 of 5

Company Wide

Document #: BAF-PH1-800-POL-0002

Baffinland Iron Mines Corporation

SUSTAINABLE DEVELOPMENT POLICY BAF-PH1-800-POL-0002

Rev 1

Approved By: Brian Penney

Title:

Chief Executive Officer

Date:

March 7, 2016

Signature:

The information contained herein is proprietary to Baffinland Iron Mines Corporation and is used solely for the purpose for which it is supplied.

It shall not be disclosed in whole or in party to any other party, without the express permission in writing by Baffinland Iron Mines Corporation.

Sustainable Development Policy

Issue Date: March 07, 2016

Revision: 1

Page 2 of 5

Company Wide

Document #: BAF-PH1-800-POL-0002

DOCUMENT REVISION RECORD

Issue Date MM/DD/YY	Revision	Prepared By	Approved By	Issue Purpose
05/07/15	0	EM	TP	For Use
03/07/16	1	JS	BPGO	Minor edits
			7	

Company Wide	Document #: BAF-PH1-800-PO	L-0002
Sustainable Development Policy	Revision: 1	
Sustainable Development Policy	Issue Date: March 07, 2016	Page 3 of 5

At Baffinland Iron Mines Corporation (Baffinland), we are committed to conducting all aspects of our business in accordance with the principles of sustainable development & corporate responsibility and always with the needs of future generations in mind. Baffinland conducts its business in accordance with the Universal Declaration of Human Rights and ArcelorMittal's Human Rights Policy which applies to all employees and affiliates globally.

Everything we do is underpinned by our responsibility to protect the environment, to operate safely and fiscally responsibly and with utmost respect for the cultural values and legal rights of Inuit. We expect each and every employee, contractor, and visitor to demonstrate courageous leadership in personally committing to this policy through their actions. The Sustainable Development and Human Rights Policy is communicated to the public, all employees and contractors and it will be reviewed and revised as necessary on a regular basis. These four pillars form the foundation of our corporate responsibility strategy:

- 1. Health and Safety
- 2. Environment
- 3. Upholding Human Rights of Stakeholders
- 4. Transparent Governance

1.0 HEALTH AND SAFETY

- We strive to achieve the safest workplace for our employees and contractors; free from occupational injury and illness, where everyone goes home safe everyday of their working life.
 Why? Because our people are our greatest asset. Nothing is as important as their health and safety. Our motto is "Safety First, Always".
- We report, manage and learn from injuries, illnesses and high potential incidents to foster a workplace culture focused on safety and the prevention of incidents.
- We foster and maintain a positive culture of shared responsibility based on participation, behaviour, awareness and promoting active courageous leadership. We allow our employees and contractors the right to stop any work if and when they see something that is not safe.

2.0 ENVIRONMENT

- Baffinland employs a balance of the best scientific and traditional Inuit knowledge to safeguard the environment.
- Baffinland applies the principles of pollution prevention, waste reduction and continuous improvement to minimize ecosystem impacts, and facilitate biodiversity conservation.
- We continuously seek to use energy, raw materials and natural resources more efficiently and effectively. We strive to develop more sustainable practices.
- Baffinland ensures that an effective closure strategy is in place at all stages of project development to ensure reclamation objectives are met.

Company Wide	Document #: BAF-PH1-800-POL-0002	
Sustainable Development Policy	Revision: 1	
Sustainable Davelanment Balisy	Issue Date: March 07, 2016	Page 4 of 5

3.0 UPHOLDING HUMAN RIGHTS OF STAKEHOLDERS

- We respect human rights, the dignity of others and the diversity in our workforce. Baffinland honours and respects the unique cultural values and traditions of Inuit.
- Baffinland does not tolerate discrimination against individuals on the basis of race, colour, gender, religion, political opinion, nationality or social origin, or harassment of individuals freely employed.
- Baffinland contributes to the social, cultural and economic development of sustainable communities in the North Baffin Region.
- We honour our commitments by being sensitive to local needs and priorities through engagement with local communities, governments, employees and the public. We work in active partnership to create a shared understanding of relevant social, economic and environmental issues, and take their views into consideration when making decisions.
- We expect our employees and contractors, as well as community members, to bring human rights concerns to our attention through our external grievance mechanism and internal human resources channels. Baffinland is committed to engaging with our communities of interest on our human rights impacts and to reporting on our performance.

4.0 TRANSPARENT GOVERNANCE

- Baffinland will take steps to understand, evaluate and manage risks on a continuing basis, including those that may impact the environment, employees, contractors, local communities, customers and shareholders.
- Baffinland endeavours to ensure that adequate resources are available and that systems are in place to implement risk-based management systems, including defined standards and objectives for continuous improvement.
- We measure and review performance with respect to our safety, health, environmental, socioeconomic commitments and set annual targets and objectives.
- Baffinland conducts all activities in compliance with the highest applicable legal & regulatory requirements and internal standards.
- We strive to employ our shareholder's capital effectively and efficiently and demonstrate honesty and integrity by applying the highest standards of ethical conduct.

4.1 FURTHER INFORMATION

Please refer to the following policies and documents for more information on Baffinland's commitment to operating in an environmentally and socially responsible manner:

Health, Safety and Environment Policy
Workplace Conduct Policy
Inuktitut in the Workplace Policy
Site Access Policy
Hunting and Fishing (Harvesting) Policy
Annual Report to Nunavut Impact Review Board

The information contained herein is proprietary to Baffinland Iron Mines Corporation and is used solely for the purpose for which it is supplied. It shall not be disclosed in whole or in part, to any other party, without the express permission in writing by Baffinland Iron Mines Corporation.

Sustainable Development Policy	Issue Date: March 07, 2016	Page 5 of 5	
	Revision: 1		
Company Wide Document #: BAF-PH1		Document #: BAF-PH1-800-PO	L-0002

Arcelor Mittal Canada Sustainability and Corporate Responsibility Report

If you have questions about Baffinland's commitment to upholding human rights, please direct them to contact@baffinland.com.

Brian Penney Chief Executive Officer March 2016

Health. Safety and Environment Policy	Issue Date: April 20, 2018	Page 1 of 4
	Revision: 2	
Company Wide	mpany Wide Document #: BAF-PH1-800-POL-0001	

Baffinland Iron Mines Corporation

Health, Safety and Environment Policy

BAF-PH1-800-POL-0001

Rev 2

Bui Pan

Approved By: Brian Penney

Title: Chief Executive Officer

Date: April 20th, 2018

Signature:

Company Wide	Document #: BAF-PH1-800-PO	L-0001	
Health, Safety and Environment Policy	Revision: 2		
Health, Safety and Environment Policy	Issue Date: April 20, 2018	Page 2 of 4	

DOCUMENT REVISION RECORD

Issue Date MM/DD/YY	Revision	Prepared By	Approved By	Issue Purpose
05/07/15	0	EM	TP	For Use
03/07/16	1	JS	BP	Minor edits
04/20/18	2	TS	SA/BP	Minor edits

Health. Safety and Environment Policy	Issue Date: April 20, 2018	Page 3 of 4
	Revision: 2	
Company Wide	Vide Document #: BAF-PH1-800-POL-0001	

This Baffinland Iron Mines Corporation Policy on Health, Safety and Environment is a statement of our commitment to achieving a safe, healthy and environmentally responsible workplace. We will not compromise this policy for the achievement of any other organizational goals.

We implement this Policy through the following commitments:

- Continual improvement of safety, occupational health and environmental performance
- Meeting or exceeding the requirements of regulations and company policies
- Integrating sustainable development principles into our decision-making processes
- Maintaining an effective Health, Safety and Environmental Management System
- Sharing and adopting improved technologies and best practices to prevent injuries, occupational illnesses and environmental impacts
- Engaging stakeholders through open and transparent communication.
- Efficiently using resources, and practicing responsible minimization, reuse, recycling and disposal of waste.
- Reclamation of lands to a condition acceptable to stakeholders.

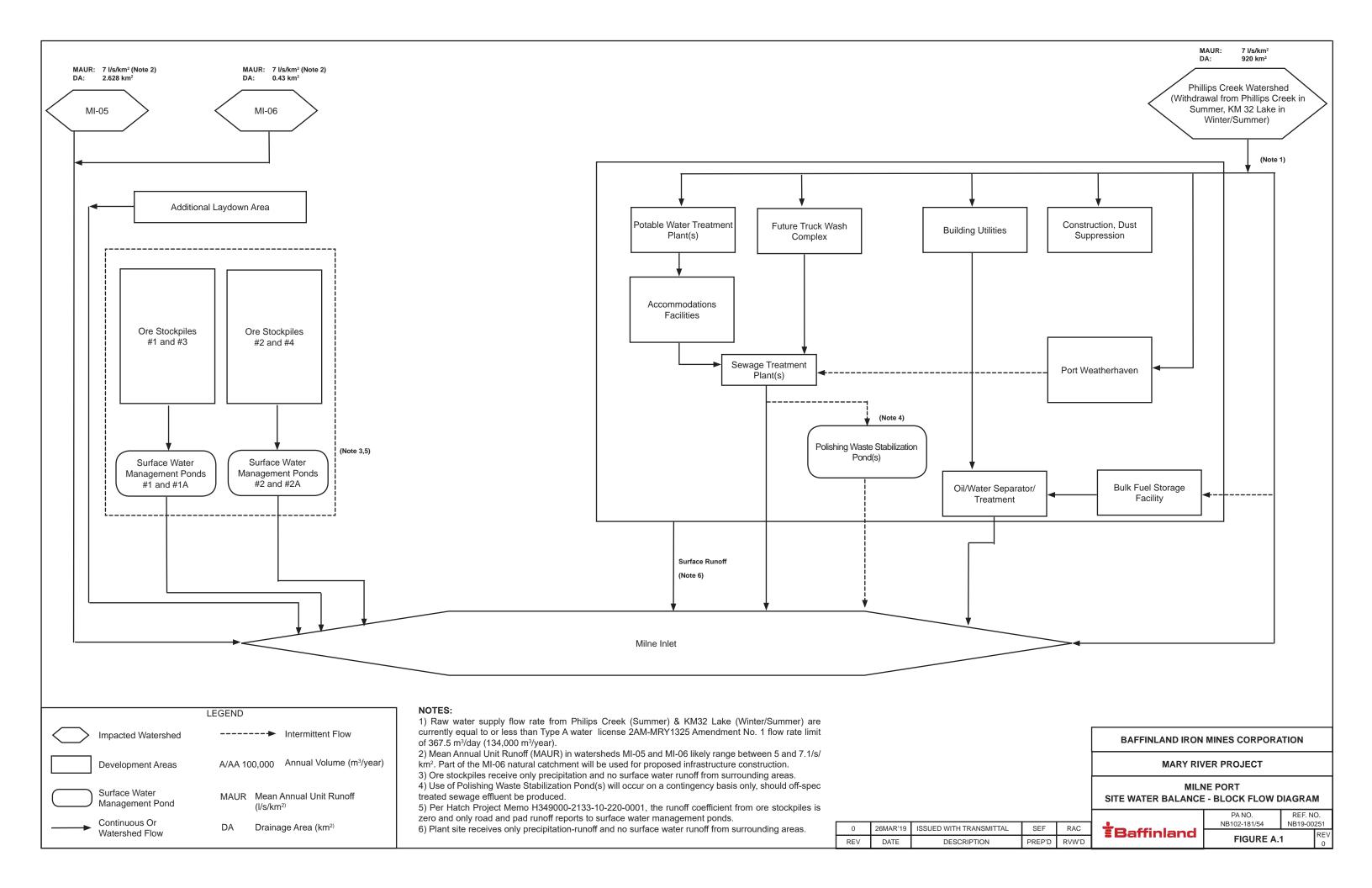
Our commitment to provide the leadership and action necessary to accomplish this policy is exemplified by the following principles:

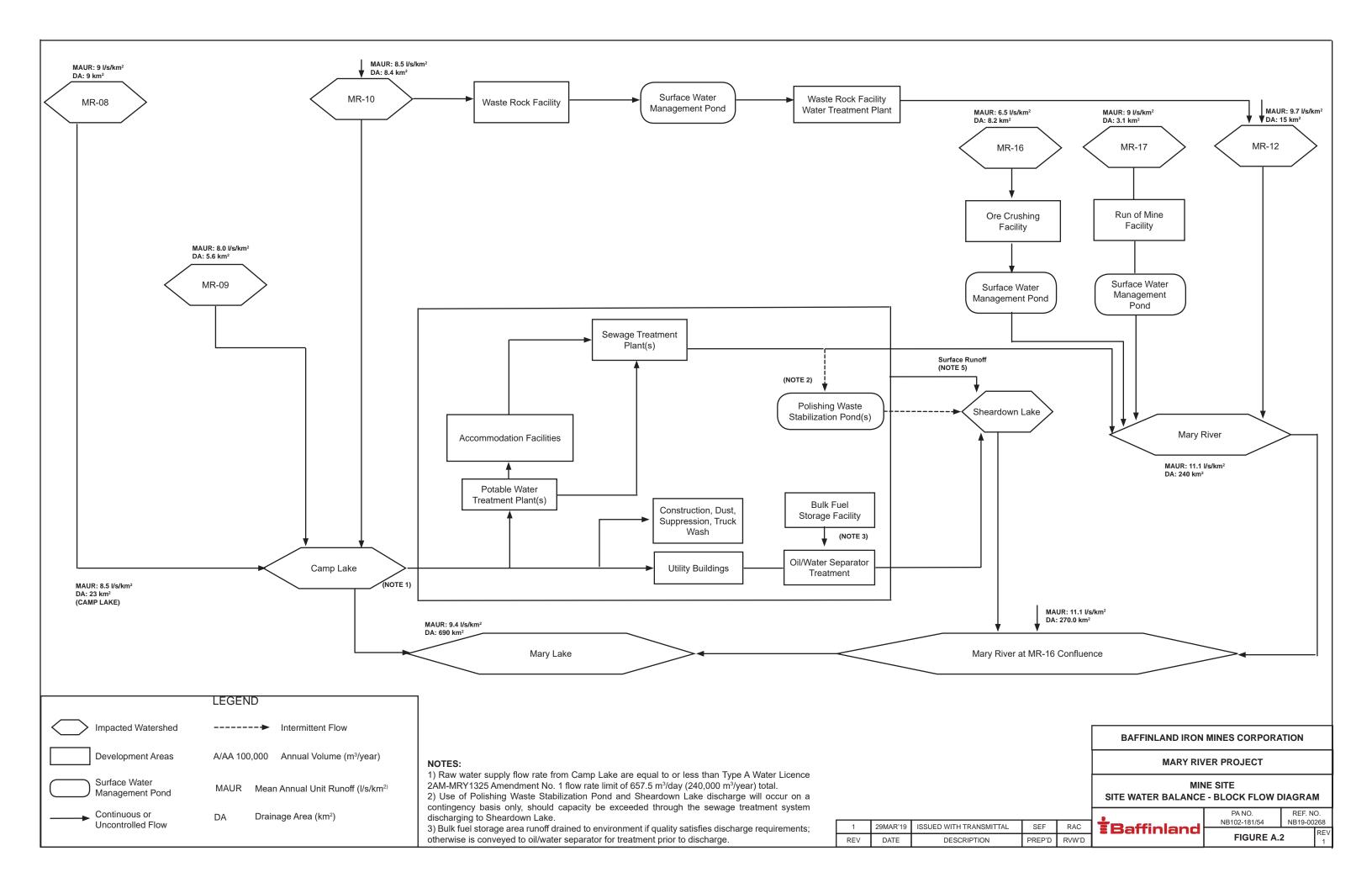
- As evidenced by our motto "Safety First, Always" and our actions Health and Safety of personnel and protection of the environment are values not priorities.
- All injuries, occupational illnesses and environmental impacts can be prevented.
- Employee involvement and active contribution through courageous leadership is essential for preventing injuries, occupational illnesses and environmental impacts.
- Working in a manner that is healthy, safe and environmentally sound is a condition of employment.
- All operating exposures can be safeguarded.
- Training employees to work in a manner that is healthy, safe and environmentally sound is essential.
- Prevention of personal injuries, occupational illnesses and environmental impacts is good business.
- Respect for the communities in which we operate is the basis for productive relationships.

Company Wide		Document #: BAF-PH1-800-POL-0001		
	Health, Safety and Environment Policy	Revision: 2		
	Health Safaty and Environment Policy	Issue Date: April 20, 2018	Page 4 of 4	1

We have a responsibility to provide a safe workplace and utilize systems of work to meet this goal. All employees must be clear in understanding the personal responsibilities and accountabilities in relation to the tasks we undertake.

The health and safety of all people working at our operation and responsible management of the environment are core values to Baffinland. In ensuring our overall profitability and business success every Baffinland and business partner employee working at our work sites is required to adhere to this Policy.

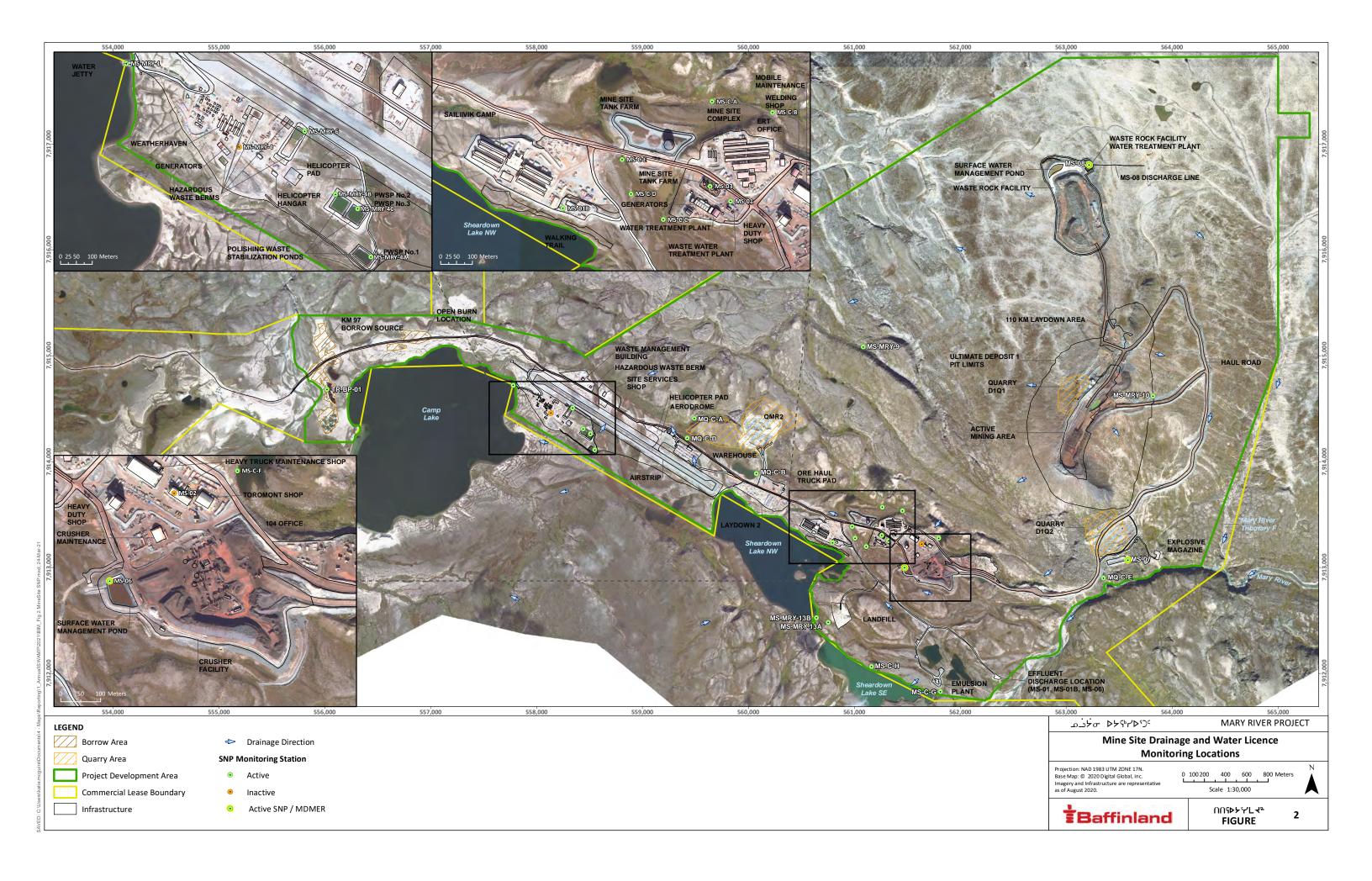

Brian Penney


Chief Executive Officer

April 2018

	Sustainable Development	Document #: BAF-PH1-830-P16-	0026
Baffinland		Next Revision: March 31, 2022	
	Surface Water and Aquatic Ecosystem Management Plan	Rev.: 7	44
		Issue Date: March 31, 2021	Page 49 of

APPENDIX B SITE WATER BALANCE – FIGURES



∄Baffinland	Surface Water and Aquatic Ecosystem Management Plan	Issue Date: March 31, 2021	Page 51 of
		Rev.: 7	44
		Next Revision: March 31, 2022	
	Sustainable Development	Document #: BAF-PH1-830-P16-	0026

APPENDIX C SITE DRAINAGE AND MONITORING FIGURES

