MARY RIVER PROJECT

Final Environmental Impact Statement February 2012

APPENDIX 8C-2

UNDERWATER NOISE MODELLING FOR MILNE INLET AND ECLIPSE SOUND

Assessment of Underwater Noise for the Mary River Iron Mine

Construction and Operation of the Milne Inlet Port Facility.

Submitted to:
Ted Elliott
LGL Limited (King City)
Contact: telliott@lgl.com

Authors: Mikhail Zykov Marie-Noël R. Matthews

2010 December 12 P001104-002 Version 2.1 432 - 1496 Lower Water Street Halifax, NS, Canada, B3J 1R9 T. +1.902.405.3336 F. +1.902.405.3337 www.jasco.com

Document Version Control

Version	Date	Name	Change
1.0	2010 Nov 05	M. Zykov	Copy released to Ted Elliott.
2.0	2010 Nov 15	M. Zykov	Addressed comments by C. Greene. Updated Ore carriers classes. Added bubble curtain effect section. Added results for mitigated pile driving. Added adjustment tables for vessel length and velocity
2.1	2010 Dec 12	S. Carr	Addressed comments.

Suggested citation:

Zykov, M., and Matthews, M.N.R. (2010). Assessment of Underwater Noise for the Mary River Iron Mine Construction and Operation of the Milne Inlet Port Facility. Version 2.1. Technical report prepared for LGL Limited (King City) by JASCO Applied Sciences.

Contents

1. Introduction	1
2. Source Levels	2
2.1. PILE DRIVING	
2.1.1. Source levels	
2.1.2. Effect of mitigations techniques	4
2.2. Dredging	5
2.3. Tug	6
2.4. Ore Carriers	8
3. MODELLING SOUND PROPAGATION	10
3.1. MODELING LOCATIONS	10
3.2. Environment	12
3.2.1. Bathymetry	12
3.2.2. Geoacoustics	13
3.2.3. Sound Speed Profiles	14
3.3. PROPAGATION MODELLING APPROACH	17
3.4. M-WEIGHTING	18
4. RESULTS	19
4.1. PILE DRIVING	20
4.2. Dredging	21
4.3. PORT OPERATIONS – TUG	21
4.4. SHIPPING OPERATIONS AND ORE CARRIERS	22
5. DISCUSSION	23
Estimated source level adjustments for the ore carriers	
REFERENCES	25
APPENDIX A. A-1	
A.1. UNWEIGHTED SOUND FIELD – PILE DRIVING OPERATIONS	A-1
A.2. THRESHOLD DISTANCES – PILE DRIVING OPERATIONS	A-3
A.3. UNWEIGHTED SOUND FIELDS – DREDGING OPERATIONS	A-4
A.4. THRESHOLD DISTANCES – DREDGING OPERATIONS	A-5
A.5. UNWEIGHTED SOUND FIELDS – TUG OPERATIONS	A-6
A.6. THRESHOLD DISTANCES – TUG OPERATIONS	A-8
A.7. UNWEIGHTED SOUND FIELDS – ORE CARRIERS	A-9
A.7.1. Panamax-size Ore Carrier	
A.7.2. Post-Panamax-size Ore Carrier	
A.8. THRESHOLD DISTANCES – ORE CARRIERS	
A.8.1. Panamax-size Ore Carrier	
A.8.2. Post-Panamax-size Ore Carrier	A-19

Tables

Table 1. Broad band received levels from various measurements of impact pile driving	
operation.	3
Table 2. Specifications comparison for the proposed Milne Inlet tug and two tugs for which	7
source levels have been calculated from JASCO recordings (Zykov, et al., 2008)	
Table 3. Vessels specifications.	
Table 4. Modeling locations.	
Table 5. Bathymetry datasets used in preparation of the environment model	. 12
Table 6. Geoacoustic parameters – Assomption Harbour, Koluktoo Bay area, and Milne Inlet.	. 13
Table 7. Geoacoustic parameters – Eclipse Sound.	. 14
Table 8. Geoacoustic parameters – Pond Inlet	. 14
Table 9. Low frequency and high frequency cut off parameters for standard marine mammal M-weighting curves.	. 19
Table 10. Threshold distances from pile driving operations at the Ore Dock, calculated from broadband (10 – 2000 Hz) sound fields.	. 21
Table 11. Threshold distances from dredging operations at the Freight Dock, calculated from broadband (10 – 2000 Hz) sound fields	. 21
Table 12. Comparison between predicted unweighted threshold distances from tug operations at 2 locations along the shipping route, in open water conditions. Distances calculated from broadband (10 – 2000 Hz) sound field.	. 22
Table 13. Modeling details for Ore Carriers modeling locations.	. 22
Table 14. Comparison between predicted unweighted threshold distances from ore carriers, at four locations along the shipping route, in open water conditions. Distances calculated from broadband $(10 - 2000 \text{ Hz})$ sound field	. 23
Table 15. Estimated adjustments to the source levels of ore carriers due to vessel length change.	. 24
Table 16. Estimated adjustments to the source levels of ore carriers due to vessel length change.	. 24
Table 17. Comparison between predicted m-weighted and unweighted threshold distances from unmitigated pile driving operations at the Ore Dock (Assomption Harbour). Distances calculated from broadband (10 – 2000 Hz) sound field.	A-3
Table 18. Comparison between predicted m-weighted and unweighted threshold distances from mitigated pile driving operations at the Ore Dock (Assomption Harbour). Distances calculated from broadband (10 – 2000 Hz) sound field.	A-3
Table 19. Comparison between predicted m-weighted and unweighted threshold distances from dredging operations at the Freight Dock (Assomption Harbour), in open water conditions. Distances calculated from broadband (10 – 2000 Hz) sound field	A-5
Table 20. Comparison between predicted m-weighted and unweighted threshold distances from tug operations close to the Ore Loading Dock (Assomption Harbour), in open water conditions. Distances calculated from broadband (10 – 2000 Hz) sound field	A-8

ii Version 2.1

Table 21. Comparison between predicted m-weighted and unweighted threshold distances from tug operations in Pond Inlet, in open water conditions. Distances calculated from broadband $(10-2000\ Hz)$ sound field
Table 22. Comparison between predicted m-weighted and unweighted threshold distances from a Panamax-size ore carrier in transit in the Koluktoo Bay area, in open water conditions. Distances calculated from broadband $(10-2000\ Hz)$ sound field
Table 23. Comparison between predicted m-weighted and unweighted threshold distances from a Panamax-size ore carrier in transit in Milne Inlet, in open water conditions. Distances calculated from broadband $(10-2000\ Hz)$ sound field
Table 24. Comparison between predicted m-weighted and unweighted threshold distances from a Panamax-size ore carrier in transit in Eclipse Sound, in open water conditions. Distances calculated from broadband $(10-2000\ Hz)$ sound field
Table 25. Comparison between predicted m-weighted and unweighted threshold distances from a Panamax-size ore carrier in transit in Pond Inlet, in open water conditions. Distances calculated from broadband $(10-2000\ Hz)$ sound field
Table 26. Comparison between predicted m-weighted and unweighted threshold distances from a Post-Panamax-size ore carrier in transit in the Koluktoo Bay area, in open water conditions. Distances calculated from broadband $(10 - 2000 \text{ Hz})$ sound field
Table 27. Comparison between predicted m-weighted and unweighted threshold distances from a Post-Panamax-size ore carrier in transit in Milne Inlet, in open water conditions. Distances calculated from broadband (10 – 2000 Hz) sound field
Table 28. Comparison between predicted m-weighted and unweighted threshold distances from a Post-Panamax-size ore carrier in transit in Eclipse Sound, in open water conditions. Distances calculated from broadband (10 – 2000 Hz) sound field
Table 29. Comparison between predicted m-weighted and unweighted threshold distances from a Post-Panamax-size ore carrier in transit in Pond Inlet, in open water conditions. Distances calculated from broadband (10 – 2000 Hz) sound field
Figures
Figure 2. Bubble curtain effect in 1/3 octave bands observed during various studies and assumed effect for this study
Figure 3. Estimated source levels for cutter-suctions dredges with winch and thruster steering mechanisms. <i>Aquarius</i> – thrusters, <i>Beaver Mackenzie</i> – winch (Malme et al., 1989); <i>JFJ de Nul</i> – thrusters (Hannay et al., 2007); <i>Columbia</i> – winch (Zykov et al., 2007) 5
Figure 4. Assumed 1/3-octave band source levels for modelling of the dredging operation 6
Figure 5. Third-octave band source levels for the tug <i>Kuparuk River</i> and the <i>Britoil 51</i> , calculated from JASCO recordings (Zykov et al., 2008)
Figure 6. Assumed source level for 50 t BP tug proposed to be used at Milne Inlet port facility (broad band source level is 203.7 dB re μ Pa @ 1 m)
Figure 7. Assumed third-octave band source levels for Carrier 1, Carrier 2, and the Milne Inlet tug used in the modelling
Figure 8. Modelling locations for the shipping and tug operations

Figure 9. Modeling locations in the vicinity of the port (tug operation, dredging, and pile driving)
Figure 10: Sound speed profiles at different sites of area of interest for the months of open water season: (a) Koluktoo Bay; (b) Milne Inlet; (c) Eclipse Sound; (d) Pond Inlet
Figure 11. Plot of standard M-weighting curves for low-frequency, mid-frequency, and high-frequency cetaceans and for pinnipeds in water
Figure A-1. Estimated broadband $(10 - 2000 \text{ Hz})$ sound pressure levels around unmitigated pile driving operations at the Ore Dock (Assomption Harbour)
Figure A-2. Estimated broadband $(10 - 2000 \text{ Hz})$ sound pressure levels around mitigated pile driving operations at the Ore Dock (Assomption Harbour)
Figure A-3. Estimated broadband ($10 - 2000 \text{ Hz}$) sound pressure levels around dredging operations at the Freight Dock (Assomption Harbour), in open water conditions
Figure A-4. Estimated broadband $(10 - 2000 \text{ Hz})$ sound pressure levels around tug operations close to the Ore Loading Dock (Assomption Harbour), in open water conditions A-6
Figure A-5. Estimated broadband (10 – 2000 Hz) sound pressure levels around tug operations in Pond Inlet, in open water conditions
Figure A-6. Estimated broadband $(10 - 2000 \text{ Hz})$ sound pressure levels around a Panamax-size ore carrier in transit in the Koluktoo Bay area, in open water conditions
Figure A-7. Estimated broadband (10 – 2000 Hz) sound pressure levels around a Panamax-size ore carrier in transit in Milne Inlet, in open water conditions
Figure A-8. Estimated broadband (10 – 2000 Hz) sound pressure levels around a Panamax-size ore carrier in transit in Eclipse Sound, in open water conditions
Figure A-9. Estimated broadband (10 – 2000 Hz) sound pressure levels around a Panamax-size ore carrier in transit in Pond Inlet, in open water conditions
Figure A-10. Estimated broadband (10 – 2000 Hz) sound pressure levels around a Post-Panamax-size ore carrier in transit in the Koluktoo Bay area, in open water conditions A-13
Figure A-11. Estimated broadband (10 – 2000 Hz) sound pressure levels around a Post-Panamax-size ore carrier in transit in Milne Inlet, in open water conditions
Figure A-12. Estimated broadband (10 – 2000 Hz) sound pressure levels around a Post-Panamax-size ore carrier in transit in Eclipse Sound, in open water conditions
Figure A-13. Estimated broadband (10 – 2000 Hz) sound pressure levels around a Post-Panamax-size ore carrier in transit in Pond Inlet, in open water conditions

iv Version 2.1

1. Introduction

JASCO Applied Sciences has performed an acoustic modelling study of the underwater noise expected from construction and operation of the Milne Inlet Port Facility for the Mary River Iron Mine.

The Mary River Iron Mine is located on North Baffin Island, Nunavut. A dock facility will be built to the north of the mine in Milne Inlet for seasonal shipping operations of the iron ore with large ore-carriers. The proposed shipping route is from Milne Inlet, through the Eclipse sound, Pond Inlet, and into the Baffin Bay. The operating period of the port will be limited by the open water season, which occurs from mid-August to mid-October in this region.

The construction of the freight dock will require deepening of the sea bottom. The bottom of Milne Inlet is represented by granitic gneiss with thin cover of coarse sediments. The sediment dredging will be performed using cutter-suction. For the construction of ore-loading dock facility pile driving will be needed. The piles will be installed near the shore in 2–3 meters of water.

The operation of the port facility will involve tug maneuvers in the vicinity of the port (ore-carriers assisted docking) and ore-carriers passing along the shipping route. Tugs with 50 tonne bollard pull are expected to be used. The ore carriers of two classes will be involved in shipping: Panamax-class with 70,000 DWT and Post-Panamax carrier with 90,000 DWT. The ore carriers were modelled at four locations along the shipping route. The tug was modelled at two locations: one in the vicinity of the port, the other at one of the locations along the shipping route (Pond Inlet) at which the ore carriers were also modelled.

The modelling of the construction and shipping operations was performed for one season. The sound speed profile for the month of August was used in the environment model.

The modelling was performed for an extended frequency range — 10–20,000 Hz. The source levels for each of the modelled noise sources were estimated based on an extensive literature review as well as JASCO's own source level database.

The results of the modelling are presented in different forms suitable for further noise impact assessment. For each modelling scenario the following output produced:

- Areal map of Sound Pressure Level (SPL) field distribution contoured with 10 dB step (based on 10 Hz 2000 Hz frequency range)
- Tables of threshold distances to the broadband levels, calculated based on flat-weighted as well as M-weighted (4 different curves) result (based on 10 Hz 2000 Hz frequency range)
- Tables of estimated maximum sound levels at specified distances for 1/3 octave band central frequency from 10 Hz to 20,000 Hz. The tables are presented in a separate Excel spread sheet document.

2. Source Levels

2.1. Pile driving

2.1.1. Source levels

The pile driving operation for the Milne Inlet port construction is to take place at the ore dock site. Standard sheet piles 7–8 m long are expected to be used for creating a perimeter that will be filled with rocks. The water depth at the pile driving location is approximately 2–3 m. The details of the pile driving technique (vibratory or impact) have not been determined and hence were not available for this evaluation.

With the increase of interest in the noise effects during construction operations, a number of datasets for received levels measurements became available in recent years (ex. Illingworth & Rodkin, 2010, Racca et al., 2007, MacGillivray et al., 2006, Washington State Department of Transportation (WSDT), 2004). The measurements were conducted for various types of piles (steel sheet, steel pipe, concrete, etc.) and sizes using different machinery (vibratory or impact pile drivers).

Table 1 presents broad band received levels for the impact pile driving operation as measured at different constructions sites. Most of the data for the table were taken from ICF Jones & Stokes and Illingworth & Rodkin (2009). The report summarizes data from many technical reports. The data were provided in form of broadband received levels with indication of the distance from the source. The source levels were calculated by back-propagating to 1 m assuming spherical spreading law $(20 \cdot \log R)$. The received level from Blackwell (2005) were back-propagated assuming spherical spreading law $(20 \cdot \log R)$ for the first 20 m from the source and cylindrical spreading law $(10 \cdot \log R)$ for the rest of the distance.

The table shows distinct correlation of the broadband source levels with the size of the pile. The received levels at the same distance are higher for a larger pile as higher impact energy is required to drive the pile into the ground.

Spectrum composition of a typical pulse (Figure 1) from Blackwell (2005, Figure 12a) was used as the starting point for the estimation of the pile driving source levels for the Milne Inlet construction project. The broadband received level of the pulse reported by Blackwell (2005) was 189.3 dB re μ Pa and after back-propagation, the source level was estimated at 220.2 dB re μ Pa @ 1 m. It was assumed that the source level for the pile driving operation at Milne inlet construction site would be similar to the source level of a 24 in AZ steel sheet pile (209 dB re μ Pa @ 1 m) (Table 1). The spectrum by Blackwell was adjusted accordingly to provide the assumed spectrum for the pile driving operation (Figure 1). Furthermore, it was assumed that lower frequencies (less than 63 Hz) were attenuated at higher rates. In order to account for this fact, all 1/3 octave bands below 63 Hz were assumed to have constant level equal to the one for the 63 Hz band (182.0 dB re μ Pa @ 1 m).

The assumed spectrum should be considered as a worst case scenario. There are several ways to reduce the acoustic energy emission into the water during the pile driving operation.

First, the use of a vibratory pile driver can lead to reduction of up to 25 dB in broad band source level for the same pile. Examination of the data provided in ICF Jones & Stokes and Illingworth & Rodkin (2009) reveals that typical reduction of the source levels with the substitution of the impact driver by a vibratory driver is 10–20 dB.

Second, various mitigation techniques can be used such as air bubble curtains, isolation casings, and cushion blocks. Air bubble curtains can provide an attenuation factor as high as 30 dB, however in general the reduction is about 5 dB for piles less than 14 inch in size (ICF Jones & Stokes and Illingworth & Rodkin, 2009). The air bubble curtains are most effective in reducing the acoustic energy in the frequency range between 100 Hz and 8000 Hz.

Table 1. Broad band received levels from various measurements of impact pile driving operation.

pile type	size	water depth [m]	energy [kJ]	receiver distance [m]	received level [dB re µPa]	source level [dB re μPa @ 1 m]
Steel H pile ¹	10 in	2		10	175 (rms)	195
Steel pipe ¹	12 in	1–2		10	177 (rms)	197
Steel H pile1	15 in	2–3		10	180 (rms)	200
Steel pipe ¹	20 in	3–4		10	187 (rms)	207
AZ steel sheet ¹	24 in	15		5	195 (rms)	209
Steel pipe ²	36 in	10–17	223	62	189.3 (rms)	220.2
CISS steel pipe ¹	156 in	15	358	10	206 (rms)	226

¹ ICF Jones & Stokes and Illingworth & Rodkin (2009)

² Blackwell (2005)

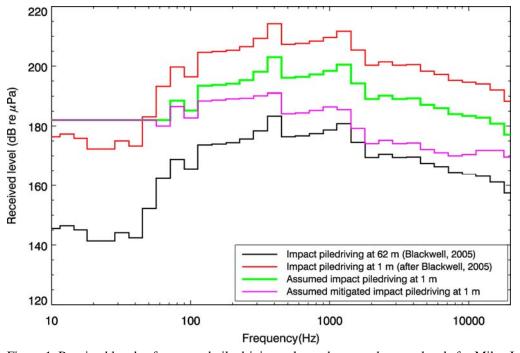


Figure 1. Received levels of measured pile driving pulse and assumed source levels for Milne Inlet construction project.

2.1.2. Effect of mitigations techniques

As it was mentioned in the previous section, various mitigation techniques can be utilized in order to reduce the acoustic energy emitted from the pile driving site. An air bubble curtain and isolation casing are examples of practical noise suppression measures.

In recent years a great number of controlled and uncontrolled experiments had been conducted in order to quantify the effectiveness of bubble curtains. During a controlled experiment acoustic energy was measured with the bubble curtain on and off while all other variables, such as the pile, the driving energy, the distance to the receiver, and the like, were kept as steady as possible (ex. Matuschek & Betke, 2009). The reported numbers for the acoustic energy reduction from several papers are presented in Figure 2.

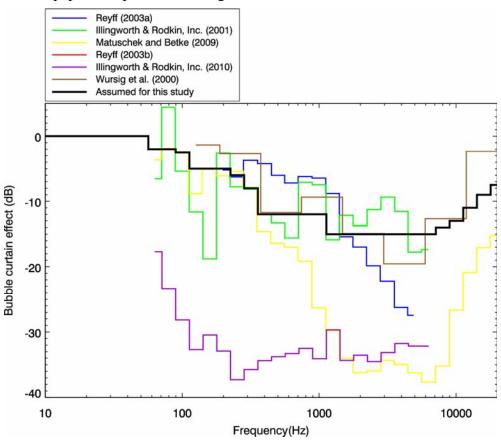


Figure 2. Bubble curtain effect in 1/3 octave bands observed during various studies and assumed effect for this study.

As shown on the graph (Figure 2) the apparent effect of a bubble curtain can vary drastically from 0 dB to -38 dB. Such spread in the numbers may be explained by the differences in the pile driving specifications, measurement techniques, and the environment, e.g. pile driving energy, air blow rate, bubble curtain type, distance to the source, water depth, ambient noise. Despite these differences, it is clear that a bubble curtain is very effective in reducing the energy over the frequency range from 100 Hz to 8000 Hz.

The presented bubble curtain effect curves were analyzed and an assumed curve was created by applying subjective averaging to the data. The conservative approach was utilized by giving the lower values greater weight. The assumed curve is presented in thick black line in Figure 2.

In order to model the acoustic impact of mitigated pile driving operation, the assumed reduction values were subtracted from the levels of unmitigated pile driving source (Figure 1).

2.2. Dredging

The dredging phase is scheduled to occur during the open water season, using suction dredges with cutter head.

Suction dredges utilize a wide pipe (up to 1 m in diameter) and a high power pump to suck water and loose material from the bottom into a hopper or directly to a discharge location. Often a cutter head is used to help with loosing up the sediments. The intake pipe with the cutter head can be steered by winches or thrusters. The dredge vessel itself can be moved by main thrusters or winches. Cutter-suction dredges operate in more or less continuous mode. The noise sources for the cutter suction dredge include the power plant, the suction pump, the cutter head, and the cutter head thrusters. The noisiest suction dredges are those which use thrusters to steer the intake pipe (Figure 3).

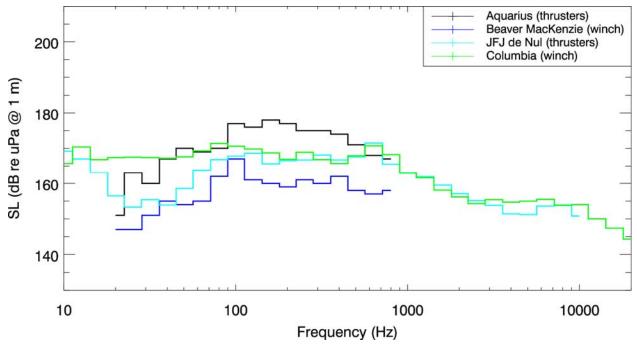


Figure 3. Estimated source levels for cutter-suctions dredges with winch and thruster steering mechanisms. *Aquarius* – thrusters, *Beaver Mackenzie* – winch (Malme et al., 1989); *JFJ de Nul* – thrusters (Hannay et al., 2007); *Columbia* – winch (Zykov et al., 2007).

In order to produce conservative estimates of the source levels produced by dredging operations in Milne Inlet, the maximum levels were extracted from the four spectra presented on Figure 3. The vertical position of the source is assumed to be 1 m above the sea floor.

Where the available data did not provide the source levels for higher frequencies, extrapolation was used by taking the level for the highest available band and reducing the value by 10 dB per decade (or 1 dB per 1/3 octave band) as suggested by Ross (1976). The assumed source levels to be used for modelling of the dredging operation are presented in Figure 4.

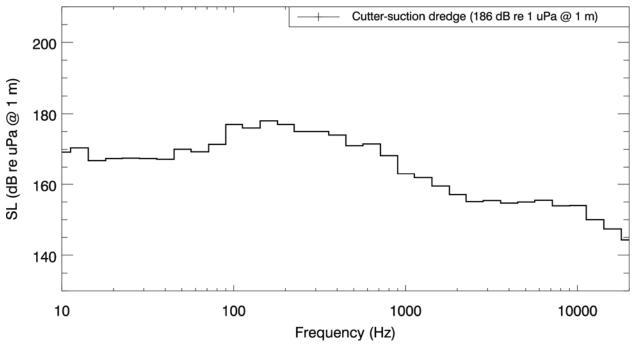


Figure 4. Assumed 1/3-octave band source levels for modelling of the dredging operation.

2.3. Tug

2010 SVITZER Canada Ltd. is expected to provide two Azimuth Stern Drive (ASD) harbour tugs with bollard pull (BP) of 50 t and two 50 t BP ASD ice class tugs in support of the Milne Inlet project.

Source level measurements from previous JASCO experiments were used to estimate the spectrum of a 50 t BP ASD tug. Table 2 presents the known specifications of the pertinent tugs recorded by JASCO, and Figure 5 presents the calculated spectra.

Table 2. Specifications comparison for the proposed Milne Inlet tug and two tugs for which source levels have been calculated from JASCO recordings (Zykov, *et al.*, 2008).

	Milne Inlet Tug	Kuparuk River	Britoil 51
Tonnage		104 DWT	605 DWT
Length		19.5 m	45 m
Beam		8.2 m	11.8 m
Draft	~ 4.15 m	1.7 m	5.5 m (max)
Main engine	2 x 4 stroke diesel engines	1095 hp diesel	2 x 3300 hp MAK diesel
Propulsion	2 x 2.1 m D, 4 bladed propeller in nozzles	3 x 1.0 m D, 5 bladed propeller on screw	- 2 x 3.2 m D, 4 bladed propeller in nozzles
Bollard pull	50 t	~ 13 t	90 t
NCR rating	2 x 3600 hp at 1500 rpm, for a vessel speed of 12 knots		
MCR rating	2 x 4900 kW at 1800 rpm, for a vessel speed of 12 knots		
Propeller rpm @ speed	280 rpm @ 12 knots		190 rpm @ 13 knots
Recorded activity		Pushing a barge	In transit / Pulling anchor
Reference		Zykov et al., 2008	Hannay et al., 2007

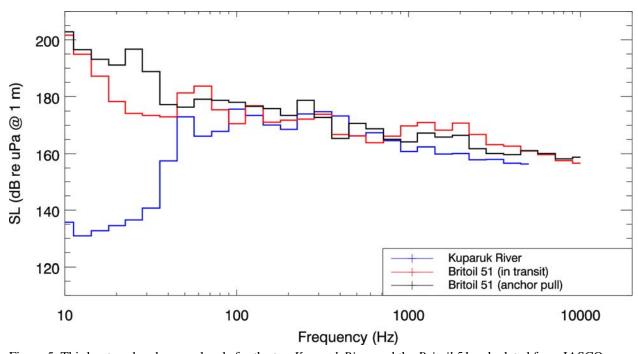


Figure 5. Third-octave band source levels for the tug *Kuparuk River* and the *Britoil 51*, calculated from JASCO recordings (Zykov et al., 2008).

Since the *Kuparuk River* was monitored in very shallow waters (8.5 m depth) the source levels at low frequencies (< 50 Hz) may be underestimated (Zykov et al., 2008). The size and the bollard pull of the *Kuparuk River* and the *Britoil 51* are different. However, the two tugs produce similar source levels (at frequencies > 50 Hz). According to the specifications, the tugs proposed for usage at the Milne Inlet port fit in between the *Kuparuk River* and the *Britoil 51* by the size and power output. Considering the facts mentioned above and in order to exercise conservative approach, the maximum values out of three presented spectra were selected in each 1/3-octave band to construct the assumed spectrum of the Milne Inlet 50 t BP ASD tug (Figure 6). The broad band source level for the tug is 203.7 dB re μPa @ 1 m.

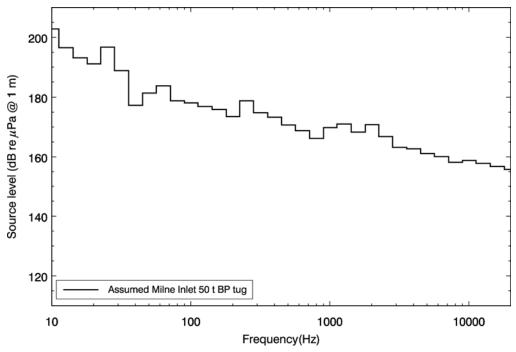


Figure 6. Assumed source level for 50 t BP tug proposed to be used at Milne Inlet port facility (broad band source level is 203.7 dB re μ Pa @ 1 m).

2.4. Ore Carriers

While in transit, ships emit underwater noise from their various components, including onboard machinery and propellers underwater. Noise spectra from large ships are generally dominated by propeller cavitation noise. Ross (1976) has shown that the intensity of propeller cavitation noise depends on the total number of blades, the propeller diameter, and the propeller tip speed. Based on multiple recordings of large merchant ships, he developed an equation to estimate the overall (broadband and omnidirectional) noise level of ships over 100 m in length, operating in calm open waters:

$$L = 175 + 60\log(u/25) + 10\log(B/4),\tag{1}$$

where L is the broadband source level, u is the propeller tip speed (m/s), and B is the number of propeller blades. This equation gives the total energy produced by the propeller cavitation at

frequencies between 100 Hz and 10 kHz. This equation is valid for propeller tip speed between 15 and 50 m/s (Ross, 1976).

Based on Ross' equation and the examination of recorded spectra, Scrimger and Heitmeyer (1991) and Hamson (1997) developed the following equation to provide an estimate source level spectrum for very large merchant ships:

$$SL = SV(f) + 60\log(V/12) + 20\log(Le/300),$$
 (2)

where V is the vessel speed (knots), Le is the vessel length overall (feet), and SV(f) is the reference level for a merchant ship noise spectrum. The reference spectrum was estimated based on 50 recorded spectra of merchant ships (Hamson, 1997).

In the present study, source levels from two generic panama- and Post-Panamax-size carriers were estimated as follows. First, the reference spectrum from Hamson (1997) was adjusted to provide the broadband level as calculated with Equation (1) using specified propeller diameter and propeller tip speed. The spectrum was used as the reference spectrum (SV(f) in Equation (2) and the assumed spectra were obtained based on the speed and length of the vessels. Table 3 presents the specific values used in the equations (1) and (2). The assumed spectra for the ore carriers are presented in Figure 7. The assumed spectrum for the 50 t BP harbour tug is also presented on the same. The broad band level of each spectrum is provided in the legend of the graph.

Since at the time of modeling the exact specifications were not known, most common values were selected based on the vessel class.

Table 3. Vessels specifications.

		Carrier 2 (Post-Panamax)
DWT (thousands)	70	90
Length overall (Le)	190 m	300 m
Draft	13 m	15 m
Transit speed (V)	14 knots	14 knots
Number of propellers	1 x fixed-pitch	1 x fixed-pitch
Propeller diameter	7.6 m	8.0 m
Propeller speed	95 rpm	85 rpm
Number of blades (B)	4	5

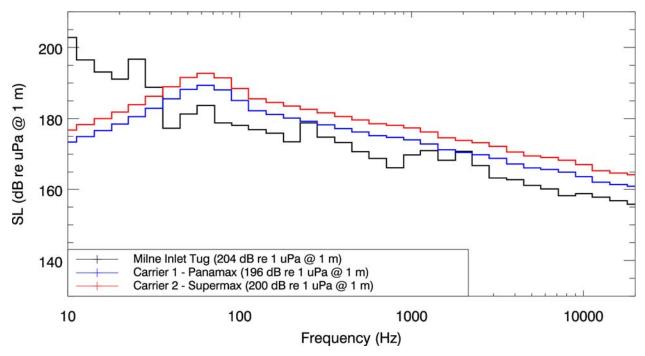


Figure 7. Assumed third-octave band source levels for Carrier 1, Carrier 2, and the Milne Inlet tug used in the modelling.

3. Modelling Sound Propagation

3.1. Modeling Locations

Underwater sound resulting from operations related to the Milne Inlet Project was modeled at four locations along the nominal shipping route and three locations in the vicinity of the Port.

According to the construction plan the dredging is planned to be used at the freight dock site, while the pile driving is scheduled to occur at the ore dock construction site, hence these sites were modelled for each source respectively.

Four modeling locations for the ore carriers were chosen along the shipping route in Koluktoo Bay area, Milne Inlet, Eclipse Sound, and Pond Inlet. The exact coordinates for the sources were obtained from LGL. The locations were chosen with consideration of having a direct line of sight into multiple smaller inlets and investigation of sound field penetration into those small areas.

The sound field modeling from the tug was performed at two locations: at the Assomption Harbour (in the vicinity of the port) and in Pond Inlet (same location as for the ore carrier).

Table 4 and Figures 8 and 7 provide information about the different modeling locations.

Table 4. Modeling locations.

Activities	Locations			Water depth
Ore Carrier in transit	Koluktoo Bay area (1)	72° 02.879' N	80° 40.246' W	285 m
	Milne Inlet (2) 72° 15.725' N 80° 33.919' W		410 m	
	Eclipse Sound (3) 72° 39.431' N 79° 38.381' W		410 m	
	Pond Inlet (4)	72° 50.406' N	77° 58.906' W	950 m
Tug operations	Pond Inlet (4)	72° 50.406' N	77° 58.906' W	950 m
	Assomption Harbour (5)	71° 53.502' N	80° 52.806' W	53 m
Dredging operations	Assomption Harbour, Freight Dock (6)	71° 53.436' N	80° 53.601' W	19.5 m
Pile driving operations	Assomption Harbour, Ore Dock (7)	71°53.334' N	80°55.045' W	4 m

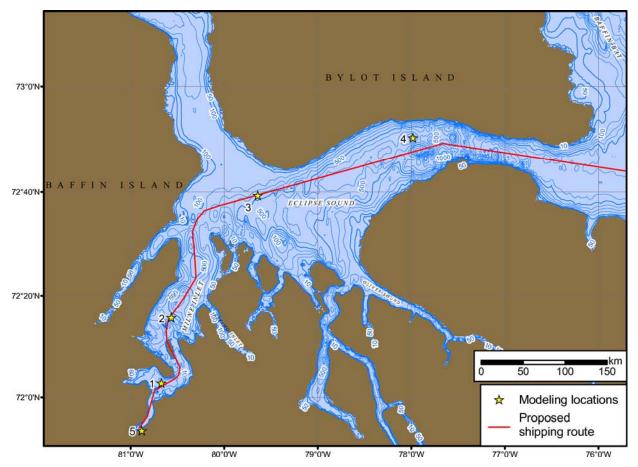


Figure 8. Modelling locations for the shipping and tug operations.

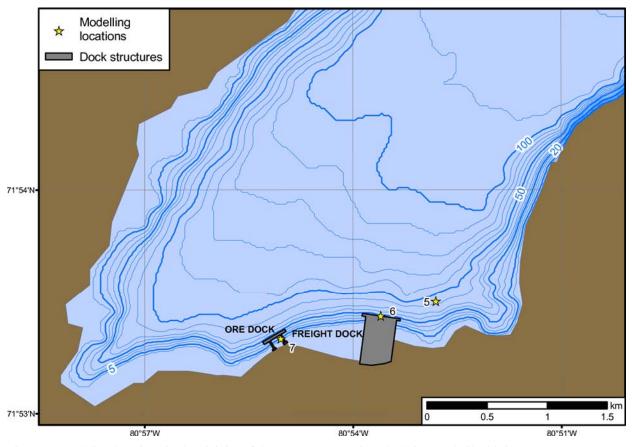


Figure 9. Modeling locations in the vicinity of the port (tug operation, dredging, and pile driving).

3.2. Environment

3.2.1. Bathymetry

The accuracy of sound propagation model results depends on the quality of bathymetry data used. Several sources were used to create the bathymetry grid for the environment model.

Table 5. Bathymetry datasets used in preparation of the environment model.

dataset name	coverage	resolution	reference
SRTM 30+	global	0.5'x0.5' (300 x 900 m)	Becker et al., 2009
Global self-consistent hierarchical high-resolution shorelines v2.0, 2009	global 9	1:75,000	Wessel and Smith, 1996
Canadian Hydrographic Survey 347	7 Milne Inlet south of 72° 15'	1 200 x 200 m	
Terra Remote Sensing Inc. echosounding data (2008)	Port shore area to 40-50 m isobath	10 x 10 m	

The SRTM 30+ in conjunction with the shoreline data provided the global coverage for the area, while CHS 3477 and Terra Remote datasets provided higher resolution insight for the southern part of Milne Inlet.

In order to prepare the bathymetry grid, all available datasets were combined and gridded using Minimum curvature gridding method. Note, the data points from the lower resolution datasets were excluded for the areas where higher resolution data were available.

Two bathymetry grids were created: one covering the whole area of Milne Inlet, Eclipse Sound, and Pond inlet, with 125 x 125 m cell size; and the other covering only the southern part of the Milne Inlet, with 20 x 20 m resolution. The first grid was used for modelling the shipping and tug operations. The second grid was used in the modelling of dredging operation at the port.

3.2.2. Geoacoustics

Drillhole logs from the ore and freight dock areas were provided by LGL Ltd. The logs indicate that the surficial sediments in the nearshore area are composed of a layer of compact, grey sand with traces of silt, 20-m thick, followed by a layer of cobbles size rocks.

Little is known about the sediment type at depth greater than 24 m below the seafloor, in the studied area. Generally, permafrost soils carried in river pack ice tend to be coarser in the nearshore areas. As the sediment is carried farther away, the material is re-worked and the grain size reduced. Consequently, offshore Arctic glacial sediments tend to be silts and clays. Dewing et al. (2007) describe the geological history of the area, explaining the presence of a pre-Cambrian basement around Baffin Island and Foxe Basin. No references to the depth of the basement layer or the thickness of surficial sediment were available.

To produce generic geoacoustic profiles representing the different modelling areas, silt content in the surficial layer of compact sand was assumed to increase with increasing water depth and distance from Assomption Harbour. The thickness of the surficial and semi-consolidated sediments was estimated based on previous literature review for the area of Steensby Inlet and Foxe Basin (Matthews and Zykov, 2010). P-wave velocity and attenuation were estimated using Hamilton (1980), Ellis and Hughes (1989), Buckingham (2005), and Barton (2007); S-wave velocity and attenuation were estimated based on the sediment type and grain size values through the grain-shearing model (Buckingham, 2005). Tables 6 to 8 present the generic geoacoustic profiles used in the present study.

 $Table\ 6.\ Geoacoustic\ parameters-Assomption\ Harbour,\ Koluktoo\ Bay\ area,\ and\ Milne\ Inlet.$

Layers	Depth [m bsf]	Density [g/cm ³]	P-wave velocity [m/s]	P-Attenuation [dB/λ]	S-wave velocity [m/s]	S-Attenuation [dB/λ]
compact sand	0 – 20	2.07 – 2.10	1700 – 2050	0.24 – 1.3	300 – 580	0.024 - 0.76
cobbles to granitic gneiss	20 – 350	2.1 – 2.4	2050 – 3500	1.3 – 0.35	580 – 3300	0.76 – 0.54
pre-Cambrian basement	350 - ∞	2.6	5500	0.275	3000	0.3

Layers	Depth [m bsf]	Density [g/cm ³]	P-wave velocity [m/s]	P-Attenuation [dB/λ]	S-wave velocity [m/s]	S-Attenuation [dB/λ]
silty sand to compact sand	0 – 20	2.04 – 2.10	1670 – 2050	0.19 – 1.3	300	0.024
cobbles to granitic gneiss	20 – 350	2.1 – 2.4	2050 – 3500	1.3 – 0.35	-	-
pre-Cambrian basement	350 - ∞	2.6	5500	0.275	-	-

Table 7. Geoacoustic parameters – Eclipse Sound.

Table 8. Geoacoustic parameters – Pond Inlet.

Layers	Depth [m bsf]	Density [g/cm³]	P-wave velocity [m/s]	P-Attenuation [dB/λ]	S-wave velocity [m/s]	S-Attenuation [dB/λ]
silty sand to compact sand	0 – 20	1.80 – 2.10	1550 – 2050	0.11 – 1.3	150 – 580	0.004 - 0.76
cobbles to granitic gneiss	20 – 350	2.1 – 2.4	2050 – 3500	1.3 – 0.35	-	-
pre-Cambrian basement	350 - ∞	2.6	5500	0.275	-	-

3.2.3. Sound Speed Profiles

Sound speed profiles for the different modeling locations were obtained from the U.S. Naval Oceanographic Office Generalized Digital Environmental Model (GDEM) database (Teague et al., 1990). The latest release of the GDEM database (version 3.0, October 2003) (Naval Oceanographic Office, 2003) provides average monthly profiles of temperature and salinity for the World's oceans on a latitude/longitude grid with 0.25° resolution. Profiles in GDEM are provided at 78 fixed depth points up to a maximum depth of 6800 m. The profiles in GDEM are based on historical observations of global temperature and salinity from the U.S. Navy's Master Oceanographic Observational Data Set (MOODS).

Temperature and salinity data were extracted from the GDEM database for the months of August, September, and October. Based on the data the sound speed profiles were calculated using the equations of Coppens (1981):

$$c(z,T,S) = 1449.05 + 45.7T - 5.21t^{2} - 0.23t^{3} + (1.333 - 0.126t + 0.009t^{2})(S - 35) + \Delta$$

$$\Delta = 16.3Z + 0.18Z^{2} ,$$

$$Z = (z/1000)(1 - 0.0026\cos(2\phi))$$

$$t = T/10$$
(3)

Here z is depth in meters, T is temperature in degrees Celsius, S is salinity in psu, and ϕ is latitude (in radians). Resulting profiles for four locations along the shipping route are presented

in Figure 10. Only months of open water season, when the shipping activity is expected to occur, were selected. These months include August, September, and October.

The profiles present little variation along the expected shipping route (maximum variation of 2 m/s between Koluktoo Bay and Milne Inlet during the month of August). The difference between sound speed profiles for August and September is virtually nil. These two observations, most likely, reflect the lack of data for the area.

The sound speed profile for October changes significantly compared to August and September profiles. The changes are in both the sound speed values and its shape. August and September sound speed profiles feature well pronounced sound channel with axis depth of 50 m. During the month of October the mid-water column sound channel goes deeper (the axis depth gets to 100–120 m) and widens. In addition to the deeper sound channel, October's sound speed profiles feature surface duct with 2 m/s velocity variation between the maximum and minimum.

In most of the places around the area of interest the water depth quickly becomes deeper than 100 m. At such depths the resulting sound channel for August and September profiles favours sound propagation. Consequently the sound speed profile for the month of August was chosen to be incorporated into the acoustic propagation model as a conservative approach.

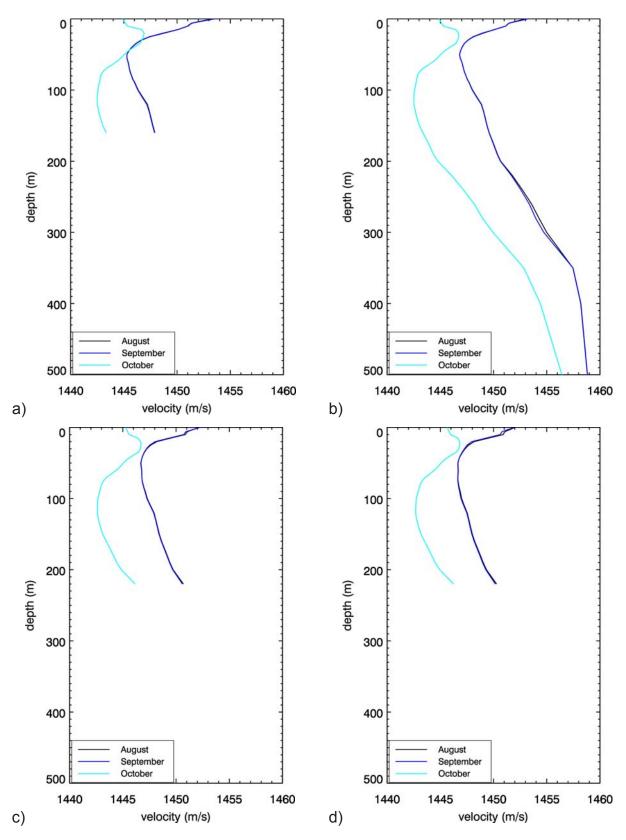


Figure 10: Sound speed profiles at different sites of area of interest for the months of open water season: (a) Koluktoo Bay; (b) Milne Inlet; (c) Eclipse Sound; (d) Pond Inlet.

3.3. Propagation Modelling Approach

The acoustic propagation model used to model the acoustic sources at frequencies below 10 kHz is JASCO's Marine Operations Noise Model (MONM). MONM computes received Sound Exposure Levels (SEL) for impulsive sources if SEL source levels are input. For a continuous source, such as a vessel, dredge or drill rig, MONM outputs RMS levels.

MONM treats sound propagation in range-varying acoustic environments through a wide-angled parabolic equation (PE) solution to the acoustic wave equation. The parabolic equation code used by MONM is based on a version of the Naval Research Laboratory's Range-dependent Acoustic Model (RAM), which has been modified to account for an elastic seabed. The Parabolic Equation method has been extensively benchmarked and is widely employed in the underwater acoustics community (Collins, 1993).

MONM computes acoustic fields in three dimensions by modelling transmission loss along evenly spaced 2-D radial traverses covering a 360° swath from the source, an approach commonly referred to as N×2-D. The model fully accounts for depth and/or range dependence of several environmental parameters including bathymetry and sound speed profiles in the water column and the sub-bottom. It also accounts for the additional reflection loss at the seabed that is due to partial conversion of incident compressional waves to shear waves at the seabed and sub-bottom interfaces. It includes wave attenuations in all layers. The acoustic environment is sampled at a fixed range step along radial traverses.

MONM treats frequency dependence by computing acoustic transmission loss at the center frequencies of 1/3-octave bands between 10 Hz and 10 kHz. This frequency range includes the important bandwidth of noise emissions for the operating vessel or construction activity. The 1/3-octave band received levels are computed by subtracting band transmission loss values from the corresponding directional source levels. Broadband received levels are then computed by summing the received band levels. MONM's sound level predictions have been extensively validated against experimental data (Hannay & Racca, 2005). The modelling of the sources at frequencies from 10 kHz to 20 kHz was done using the BELLHOP acoustic raytrace model (Porter and Liu, 1994). BELLHOP also computes received Sound Exposure Levels (SEL).

BELLHOP models transmission loss in the ocean using the Gaussian beam tracing technique. In addition to other types of attenuation, BELLHOP accounts for sound attenuation due to energy absorption through ion relaxation and viscosity of water (Fisher and Simmons, 1977). This type of attenuation is large for frequencies higher than 5 kHz and cannot be neglected without noticeable effect on the modelling results at increasing distances from the source.

Similar to MONM, BELLHOP computes sound propagation along a single 2-D radial profile in range and depth. In order to obtain the 3-D spatial distribution of the sound field around the source, a series of 2-D profiles is projected from the source covering a 360° swath in azimuth.

The acoustic models take into account the variability of the sound levels emitted in different directions from the source. This variability is referred to as source directivity. Source directivity is specified to the model as a function of both azimuthal and depression angle where azimuthal angle is the sideways direction relative to north, and depression angle is the vertical angle relative to horizontal. The BELLHOP modelling code estimates sound pressure levels at various horizontal distances from the source as well as at different depths.

3.4. M-Weighting

The potential for noise to affect marine species depends on how well the species can hear the sounds produced (Martin et al., 2010). Noises are less likely to disturb animals if they are at frequencies that the animal cannot hear well. An exception is when the sound pressure is so high that it can cause physical injury. For non-injurious sound levels, frequency weighting curves based on audiograms may be applied to weight the importance of sound levels at particular frequencies in a manner reflective of the receiver's sensitivity to those frequencies (Nedwell and Turnpenny, 1998).

A NMFS-sponsored Noise Criteria Committee has proposed standard frequency weighting curves — referred to as M-weighting filters — for use with marine mammal species (Gentry et al., 2004). M-weighting filters are band-pass filter networks that are designed to reduce the importance of inaudible or less-audible frequencies for four broad classes of marine mammals:

- 1. Low-frequency cetaceans,
- 2. Mid-frequency cetaceans,
- 3. High-frequency cetaceans, and
- 4. Pinnipeds.

The amount of discount applied by M-weighting filters for less-audible frequencies is not as great as would be indicated by the corresponding audiograms for these groups of species. The rationale for applying a smaller discount than would be suggested by the audiogram is in part due to an observed characteristic of mammalian hearing that perceived equal loudness curves increasingly have less rapid roll-off outside the most sensitive hearing frequency range as sound levels increase. This is the reason that C-weighting curves for humans, used for assessing very loud sounds such as blasts, are flatter than A-weighting curves used for quiet to mid-level sounds. Additionally, out-of-band frequencies, although less audible, can still cause physical injury if pressure levels are very high. The M-weighting filters therefore are primarily intended to be applied at high sound levels where effects such as temporary or permanent hearing threshold shifts may occur. The use of M-weighting should be considered precautionary (in the sense of overestimating the potential for an effect) when applied to lower level interactions such as onset of behavioural response. Figure 11 shows the decibel frequency weighting of the four standard underwater M-weighting filters.

These filters have unity gain (0 dB) through the pass band and their high and low frequency roll-off is approximately –12 dB per octave. The amplitude response of the M-weighting filters is defined in the frequency domain by the following function:

$$G(f) = -20\log_{10}\left[\left(1 + \frac{f_{lo}^{2}}{f^{2}}\right)\left(1 + \frac{f^{2}}{f_{hi}^{2}}\right)\right] , \qquad (4)$$

The roll-off and pass band of these filters are controlled by the two parameters f_{lo} and f_{hi} ; the parameter values that are used for the four different standard M-weighing curves are given in Table 9.

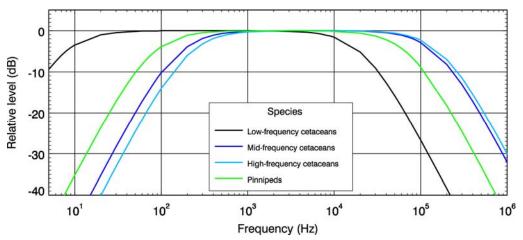


Figure 11. Plot of standard M-weighting curves for low-frequency, mid-frequency, and high-frequency cetaceans and for pinnipeds in water.

Table 9. Low frequency and high frequency cut off parameters for standard marine mammal M-weighting curves.

M-weighting filter	f _{io} (Hz)	f _{hi} (Hz)
Low frequency cetaceans	7	22 000
Mid-frequency cetaceans	150	160 000
High-frequency cetaceans	200	180 000
Pinnipeds underwater	75	75 000

4. Results

Sound propagation modelling was performed using two geographic coverage methods:

- (a) areal coverage up to a 200 km x 200 km zone centered on each modelling location, using a 20 m modelling step size in horizontal range, for frequencies between 10 Hz and 2 kHz, and
- (b) along three individual profiles in the direction of the maximum sound field extension (as determined with the results from the areal modelling) up to the distance where the broad band levels drop below 100 dB re μ Pa, using a 5 m modelling step size in horizontal range, for frequencies between 10 Hz and 20 kHz.

Regime (a) provides high resolution area map of the sound field around each source, while regime (b) provides a full-band, high resolution assessment of the sound field in the directions of maximum sound propagation. The extent of the frequency range used in regime (b) would make the modelling at all azimuths around the source too computationally intensive for approach (a).

Processing of the output data from the modelling code involved gridding of the data points in horizontal planes corresponding to multiple receiver depths. The resulting stack of grids was collapsed to a single grid using a maximum-over-depth rule; that is, the sound level at each geographic location was taken to be the maximum value that occurred over all modelled depths for that location.

Four M-weighting filters (Table 9) were applied to the modelled sound fields by weighting the modelled sound levels according to Equation (4). M-weighting is applied to each third-octave band separately. After the filter is applied the individual values in each band are summed to compute the broadband sound levels.

The presented maps of ensonification levels were calculated using the results from the geographic approach (a). Consequently, these maps represent the maximum-over-depth levels in the 10 to 2000 Hz band.

The calculations of maximum distances to specific broadband sound levels were performed based on the grids of the broadband $(10-2000~{\rm Hz})$ levels from areal modelling results complemented with modelling along three profiles if the threshold level extended beyond the modelling area. Since the source levels for frequencies higher than 2000 Hz are appreciably lower than the ones for lower frequencies, the usage of reduced band (only up to 2000 Hz, rather than 20,000 Hz) for calculation of the broadband levels did not affect the results.

For each level, two distances are reported: (1) R_{max} – the maximum distance at which the specific sound level was registered in the modelled field; and (2) $R_{95\%}$ – the maximum distance to a grid point at which the specific sound level was registered after exclusion of the 5% farthest points.

The calculations of maximum-over-depth sound levels in each third-octave band at specific distances were performed using the results of the modelling along three extended profiles exclusively for the full frequency range (from 10 Hz to 20,000 Hz). These threshold levels are reported in Appendix B (separate document).

4.1. Pile Driving

Two source level scenarios were modelled: unmitigated and mitigated pile driving operations.

Sound levels were modelled at 18 receiver depths between 1 m to 200 m below the surface. This modelling was performed using a source depth of 2 m below the sea surface, representing an acoustic energy wave emitted from the centre of a vibrating pile (water depth is 4 m at the location).

The maximum distances to specific sound levels produced by pile driving operations are presented in Table 10. The resulting ensonification field maps are presented in Figure A-1 (unmitigated pile driving) and Figure A-2 (mitigated). The black lines in this figure indicate the direction of the geographic method (b) extended frequency band modelling profiles. Table 17 presents the R_{max} and $R_{95\%}$ distances calculated with and without M-weighting filters applied. The longest range from the source to a shore along a line of sight was 11.5 km.

-								
DMO ODI	Threshold distances (m)							
RMS SPL (dB re 1 µPa)	Unmit	igated	mitigated					
(dB te t pt a)	R_{max}	R _{95%}	R_{max}	R _{95%}				
200	< 5	< 5	-	_				
190	25	25	< 5	< 5				
180	165	125	25	20				
170	1,700	600	130	115				
160	5,500	2,600	1,600	600				
150	shore	limited	5,020	2,580				
140			shore	limited				

Table 10. Threshold distances from pile driving operations at the Ore Dock, calculated from broadband (10 - 2000 Hz) sound fields.

4.2. Dredging

Sound levels from dredging were modelled at 18 receiver depths between 1 m to 200 m below the surface. This modelling was performed using a source depth of 17 m below the surface, representing cutter-suction dredging with thrusters.

The maximum distances to specific sound levels produced by dredging operations are presented in Table 11. The resulting ensonification field map is presented in Figure A-3. The black lines in this figure indicate the direction of the geographic method (b) extended frequency band modelling profiles. Table 19 presents the R_{max} and $R_{95\%}$ distances calculated with and without M-weighting filters applied. The longest range from the source to a shore along a line of sight was 21.8 km.

Table 11. Threshold distances from dredging operations at the Freight Dock, calculated from broadband (10 –
2000 Hz) sound fields.

RMS SPL (dB re 1 µPa)	Threshold distances (m)				
(db ic i pi d)	R_{max}	R _{95%}			
180	< 5	< 5			
170	10	10			
160	45	40			
150	350	250			
140	2,750	2,250			
130	11,125	8,775			
120	shore	limited			

4.3. Port Operations - Tug

The tug's propeller depth is estimated at 3.1 m below the surface (at its centre). Assuming the effective source depth to be located below the top of the propeller blade arc by an amount between 15 and 25% of the propeller diameter (Gray and Greeley, 1980; Wales and Heitmeyer,

2002), the source depth was modeled at 2.0 m below the sea surface. The sound levels produced by tug operations were modelled at 17 depths between 1 m and 200 m below the sea surface in Assomption Harbour, and 26 depths between 1 m and 1100 m below the sea surface in Pond Inlet.

The maximum distances to specific sound levels are presented in Table 12. The resulting ensonification field maps are presented in Figures A-4 and A-5. The black lines in these figures indicate the directions of the geographic method (b) extended bandwidth modelling profiles. Tables A-20 and A-21 present the R_{max} and $R_{95\%}$ distances calculated with and without M-weighting filters applied for each source. The longest range from the source to a shore along a line of sight was 21.8 km at the Assomption Harbour modeling location. There were no shore limits at the Pond Inlet site.

Table 12. Comparison between predicted unweighted threshold distances from tug operations at 2 locations along
the shipping route, in open water conditions. Distances calculated from broadband (10 – 2000 Hz) sound field.

	Threshold di	stances (m)
RMS SPL (dB re 1 µPa)	Assomption Harbour	Pond Inlet
' '	Tug	Tug
170	< 20	<20
160	50	< 20
150	200	100
140	2,500	350
130	10,200	2,300
120	shore limited	12,700
110		40,000
100		150,500

4.4. Shipping Operations and Ore Carriers

Assuming the effective source depth to be located below the top of the propeller blade arc by an amount between 15 and 25% of the propeller diameter (Gray and Greeley, 1980; Wales and Heitmeyer, 2002), the source depth for the Panamax-size ore carrier was modelled at 7.0 m, and the source depth for the Post-Panamax-size ore carrier was modelled at 9.0 m below the sea surface. The sound levels produced by tug operations were modelled at varying depths, depending on the modelling location. These numbers are detailed in Table 13.

Table 13. Modeling details for Ore Carriers modeling locations.

_	=		
Locations	Number of receivers	Depth of receivers	Shore limit (km)
Koluktoo Bay area (1)	18	between 1 m and 300 m	19.5
Milne Inlet (2)	24	between 1 m and 900 m	77.5
Eclipse Sound (3)	26	between 1 m and 1100 m	104
Pond Inlet (4)	26	between 1 m and 1100 m	no shore limit

The maximum distances to specific sound levels are presented in Table 14. The resulting ensonification field maps are presented in Figures A-6 to A-13. The black lines in these figures indicate the directions of the geographic method (b) extended bandwidth modelling profiles. Tables A-22 to A-29 present the R_{max} and $R_{95\%}$ distances calculated with and without M-weighting filters applied for each source.

The longest ranges from the source to a shore along a line of sight for each modelled location are presented in Table 13

Table 14. Comparison between predicted unweighted threshold distances from ore carriers, at four locations along the shipping route, in open water conditions. Distances calculated from broadband (10 - 2000 Hz) sound field

	Threshold distances (meters)									
RMS	Koluktoo	Bay area	Milne	e Inlet	Eclipse	Sound	Pond Inlet			
SPL (dB re 1 µPa)	Panamax Carrier	Post- Panamax Carrier	Panamax Carrier	Post- Panamax Carrier	Panamax Carrier	Post- Panamax Carrier	Panamax Carrier	Post- Panamax Carrier		
180		< 20	< 20	< 20	< 20	< 20	< 20	< 20		
170	< 20	40	30	40	30	40	30	40		
160	80	125	80	125	85	125	80	125		
150	500	1,100	280	875	280	900	260	450		
140	4,150	8,150	3,650	10,600	3,180	8,350	2,300	5,000		
130	9,200	12,000	16,600	30,800	19,750	38,000	10,000	20,700		
120	14,000	shore limited	39,750	67,250	59,500	79,500	41,200	71,200		
110	shore Iimited		70,000	72,700	102,800	102,800	137,700	167,000		
100		_	shore limited		shore limited		>170,000	>170,000		

5. Discussion

Pile driving is expected to be the loudest sound source of all source discussed in the report. However, due to the configuration of the Milne Inlet and the position of the pile driving location most of the sound will not propagate farther than 11.5 km from the site. At that distance the received broadband level is expected to be about 158–160 dB re μ Pa. As discussed in Section 4.1, the acoustic effect from pile driving operation can be measurably reduced by using mitigation methods such as bubble curtains or a non-impact method of pile driving.

A notable feature of the received acoustic field can be observed on the maps for pile driving and dredging operations. The sound field tends to amplify when the acoustic wave reaches the opposite shore. This amplification phenomenon can be explained by the fact that the water depth decreases towards the shoreline thereby reducing the height of the waveguide (water column). With the reduction of the wave-guide cross-section and constant acoustic energy flux (attenuation due to interaction with the hard bottom is minimal) the acoustic energy density increases.

The effect of M-weighting on broadband threshold distances depends directly on the long-range propagating frequencies. Thus, the effect of M-weighting depends on the locations of the source and the water conditions.

Because of the higher attenuation coefficient at higher frequencies, acoustic energy propagating at frequencies above 5000 Hz has limited contribution to the broadband level and, therefore, to the threshold distances. This is especially true for the distances more than 10 km.

In most studied cases, the difference between the low-frequency cutoff parameters for M-weighting filters and the frequency of maximum source level influences the reduction of the broadband threshold distances. For example, the sound field from tug operations is affected by all M-weighting filters. However, because of a 63-Hz peak in the source level spectrum, the ore carrier's broadband threshold distances are not affected by the low-frequency cetaceans filter (cutoff at 7 Hz). This is also true in the case of the dredging operations, however, the percentage of reduction from the M-weighting filters is less because most of the source energy is propagated at higher frequencies (source spectrum maximum is at approximately 200 Hz).

Estimated source level adjustments for the ore carriers

If the specifications of the ore carrier vessels to be used for shipping at the Milne Inlet port facility are different from the specifications assumed in this report it is possible to apply adjustments to the provided results. For the purpose of the modeling two classes of the ore carriers were chosen — Panamax and Post-Panamax — with the length of 190 m and 300 m respectively. The normal velocity for both classes was assumed to be 14 knots.

The adjustments can be calculated using the Equation (2), where the second term of the equation reflects the variation of the source level with the vessel velocity and the third term reflects the variation of the source level with the vessel length. The estimated adjustments for variations in vessel length and velocity are presented in Table 15 and Table 16 respectively. It should be noted that in case the actual vessel velocity differs from the normal velocity by more than 5 knots the adjustment value would lose accuracy.

Table 15. Estimated adjustments to the source levels of ore carriers due to vessel length change.

Length (m)	160	180	200	220	240	260	280	300	320
Correction (dB)	-5.5	-4.4	-3.5	-2.7	-1.9	-1.2	-0.6	0.0	0.6

Table 16. Estimated adjustments to the source levels of ore carriers due to vessel length change.

Velocity (knots)	5	6	7	8	9	10	11	12	13	14	15	16
Correction (dB)	-26.8	-22.1	-18.1	-14.6	-11.5	-8.8	-6.3	-4.0	-1.9	0.0	1.8	3.5

References

- Barton, N. (2007). *Rock quality, seismic velocity, attenuation, and anisotropy*. Published by Taylor and Francis, CIP Bath Press, 729 pp.
- Becker, J. J., D. T. Sandwell, W. H. F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. Ingalls, S-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer, J. Von Rosenberg, G. Wallace, P. Weatherall., 2009. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, *Marine Geodesy*, **32** (4): 355-371
- Blackwell, S.B. (2005). *Underwater measurements of pile driving sounds during the Port MacKenzie dock modifications, 13-16 August 2004*. Greeneridge Rep. 328-1. Report from Greeneridge Sciences Inc., Santa Barbara, CA, for Knik Arm Bridge and Toll Authority (KABATA), Anchorage, AK, 33 pp.
- Buckingham, M. J. (2005). Compressional and shear wave properties of marine sediments: Comparison between theory and data. *J. Acoust. Soc. Am.*, **117**(1), 137-152.
- Church, I., Clarke, J. E. H., & Haigh, S. (2007). Use of a nested finite-element hydrodynamic model to predict phase and amplitude modification of tide within narrow fjords. United States Hydrographic Conference 2007
- Collins, M.D. (1993). The split-step Padé solution for the parabolic equation method. *J. Acoust. Soc. Am.* 93:1736-1742.
- Coppens, A. B. (1981). Simple equations for the speed of sound in Neptunian waters. *J. Acoust. Soc. Am.*, 69 (3), 862-863.
- Dewing, K., Turner, E., & Harrison, J.C. (2007). Geological history, mineral occurances and mineral potential of the sedimentary rocks of the Canadian Arctic Archipelago, in *Goodfellow*, W.D., ed., Mineral Deposits of Canada: A synthesis of major deposit-types, District Metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Depostis Division, Special Publication No. 5, p. 733-753.
- Ellis, D., & Hugues, S. (1989). Estimates of sediment properties for ARPS. DREA Memorandum TIAT-27, 2 pp.
- Fisher, F. H., & Simmons, V. P. (1977). Absorption of sound in sea water. J. Acoust. Soc. Am., 62 (3), 558-564.
- Gentry, R., Bowles, A., Ellison, W., Finneran, J., Greene, C., Kastak, D., et al. (2004). Noise exposure criteria. *Presentation to U.S. Mar. Mamm. Commis. Advis. Commit.*
- Gray, L. M., & Greeley, D. S. (1980). Source level model for propeller blade rte radiation for the world's merchant fleet. *J. Acoust. Soc. Am.*, 67, 516–522.
- Hamilton, E.L. (1980). Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am. 68(5):1313-1340.
- Hamson, R. M. (1997). The modelling of ambient noise due to shipping and wind sources in complex environments. *Applied Acoustics*, 51, 251–287.
- Hannay, D. E., & Racca, R. G. (2005). *Acoustic Model Validation*. Technical Report for: Sakhalin Energy Investment Corporation.
- Hannay, D., MacGillivray, A., Laurinolli, M., & Racca, R. (2007). *Source level measurements from 2004 acoustics program*, JASCO Report presented to Sakhalin Energy (extended version for JASCO use).
- Hemphil, M. A., Lawrence, R. B., Rogers, A. R., Pulkkinen, H. W., & Thompson, E. (1966). Milne Inlet (Low Island to Phillips Creek). Canadian Hydrographic Service. Sounding Field Sheet 3477.
- ICF Jones & Stokes and Illingworth & Rodkin (2009). *Technical Guidance for Assessment and Mitigation of the Hydroacoustic Effects of Pile Driving on Fish*. Technical paper prepared for California Department of Transportation by ICF Jones & Stokes, Sacramento, CA and Illingworth & Rodkin, Inc, Petaluma, CA. 298 pp.

- Illingworth & Rodkin, Inc. (2001). Noise and Vibration Measurements Associated with the Pile Installation
 Demonstration Project for the San Francisco-Oakland Bay Bridge East Span. Final Data Report, Appendix
 D-8901.
- Illingworth & Rodkin, Inc. (2010). *Underwater Sound Levels Associated with Driving Steel Piles for the State Route* 520 Bridge Replacement and HOV Project Pile Installation Test Program. Technical report prepared for Washington State Department of Transportation, Office of Air Quality and Noise by Illingworth & Rodkin, Inc.
- Leggat, L. J., Merklinger, H. M., Kennedy, J. L. (1981). *LNG Carrier underwater noise study for Baffin Bay*. DREA Report 81/3, 32 pp.
- MacGillivray, A., Ziegler, E. & Laughlin, J. (2006). *Underwater acoustic measurements from Washington State Ferries 2006 Mukilteo Ferry Terminal Test Pile Project*. Technical report prepared by JASCO Research Ltd., Victoria BC, for Washington State Ferries and Washington State Department of Transportation.
- Malme, C. I., Miles, P. R., Miller, G. W., Richardson, W. J., Roseneau, D. G., Thomson, D. H., & Greene, C. R. (1989). Analysis and ranking of the acoustic disturbance potential of petroleum industry activities and other sources of noise in the environment of marine mammals in Alaska. BBN Systems and Technologies Corporation for Minerals Management Service U.S. Department of the Interior.
- Martin, B., Hannay, D., Whitt, C., Mouy, X., & Bohan, R. (2010). Chukchi Sea acoustic monitoring program, (Chapter 5) In Funk, D.W, Ireland, D.S., Rodrigues, R., & Koski, W.R. (Eds.), Joint Monitoring Program in the Chukchi and Beaufort seas, open water seasons, 2006–2008. LGL Alaska Report P1050-2, Report from LGL Alaska Research Associates, Inc., LGL Ltd., Greeneridge Sciences, Inc., and JASCO Research, Ltd., for Shell Offshore, Inc. and Other Industry Contributors, and National Marine Fisheries Service, U.S. Fish and Wildlife Service. 506 p. plus Appendices
- Matthews, M. N. R., Zykov, M., & Deveau, T. (2010). Assessment of Underwater Noise for the Mary River Iron Mine: Construction and Operation of the Steensby Inlet Port Facility. Version 1.0. Technical report prepared for LGL Limited (King City) by JASCO Applied Sciences.
- Matuschek, R. and Betke, K. (2009). Measurements of Construction Noise During Pile Driving of Offshore Research Platforms and Wind Farms. *Proc. NAG/DAGA Int. Conference on Acoustics*, Rotterdam, March 2009. pp. 262–265.
- Naval Oceanographic Office. (2003). Database description for the generalized digital environmental model (GDEM-V) (U), version 3.0. Oceanographic Data Bases Division, Stennis Space Center, MS 39522-5003.
- Nedwell, J. R., & Turnpenny, A. W. (1998). The use of a generic frequency weighting scale in estimating environmental effect. *Workshop on Seismics and Marine Mammals*. 23–25th June 1998. London, UK.
- Porter, M. B., & Liu, Y.-C. (1994). Finite-Element Ray Tracing. In Lee, D., & Schultz, M. H. (Eds.) *Theoretical and Computational Acoustics*, 2, 947–956.
- Racca, R., MacGillivray, A., & Laurinolli, M. (2007). *NaiKun meteo mast installation: Underwater sound level monitoring of pile driving operations.* Technical report prepared for NaiKun Wind Development by JASCO Research Ltd, Victoria BC.
- Reyff, J. A. (2003a). Underwater sound pressures associated with the restrike of the pile installation demonstration project piles. Report prepared by Illingworth & Rodkin, Inc. for State of California, Department of transportation.
- Reyff, J. A. (2003b). Underwater Sound Levels Associated with Construction of the Benicia-Martinez Bridge: Acoustical Evaluation of an Unconfined Air-Bubble Curtain System at Pier 13. Illingworth & Rodkin, Inc., Petaluma, Calif., 2003.
- Ross, D. (1976). Mechanics of Underwater Noise, Pergamon Press, New York, 375 pp.
- Scrimger, P., & Heitmeyer, R.M. (1991). Acoustic source-level measurements for a variety of merchant ships. *J. Acoust. Soc. Am.*, 89, 691–699.
- Southall, B. L., Bowles, A. E., Ellison, W. T., et al. (2007). Marine mammal noise exposure criteria: Initial scientific recommendations. *Aquatic Mammals* 33(4).

- Teague, W. J., Carron, M. J., & Hogan, P. J. (1990). A comparison between the generalized digital environmental model and Levitus climatologies. *J. Geophys. Res.* **95**(C5): 7167–7183.
- Wales, S. C., & Heitmeyer, R. M. (2002). An ensemble source spectra model for merchant ship-radiated noise. *J. Acoust. Soc. Am.*, 111(3), 1211–1231.
- Washington State Department of Transportation, (2004). *Underwater Sound Levels Associated with Construction of the SR-240 Bridge on the Yakima River at Richland*. Technical report prepared by Jim Laughlin, Washington State Department of Transportation, Office of Air Quality and Noise.
- Wessel, P., & Smith, W. H. F. (1996). A global, self-consistent, hierarchical, high-resolution shoreline database. *J. Geophys. Res.*, 101(B4)
- Würsig, B., Greene, C. R. Jr., and Jefferson, T. A. (2000). Development of an air bubble curtain to reduce underwater noise of percussive piling. *Marine Environmental Research* **49**, pp. 79–93.
- Zykov M., MacGillivray A., Austin M., McHugh O., Wheeler B., & Fraker, M. (2007). Source Level Study of the Dredge Columbia and Killer Whale Acoustics Impact Report Update by Jacques Whitford AXYS and JASCO Research Ltd. for Vancouver Port Authority.
- Zykov, M., Hannay, D., MacGillivray, A., Austin, M., & Warner, G. (2008). *Oooguruk Island Acoustic measurements, 2006: Vessel and Construction Equipment Source Levels.* JASCO Report presented to Pioneer Natural Resources Alaska, Inc. and FEX LP, 76 pp.

Appendix A.

A.1. Unweighted Sound Field – Pile Driving Operations

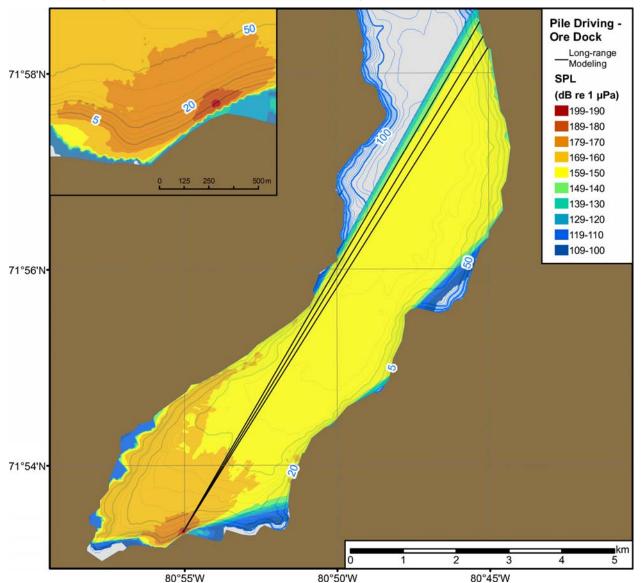


Figure A-1. Estimated broadband (10 - 2000 Hz) sound pressure levels around unmitigated pile driving operations at the Ore Dock (Assomption Harbour).

Version 2.1 A-1

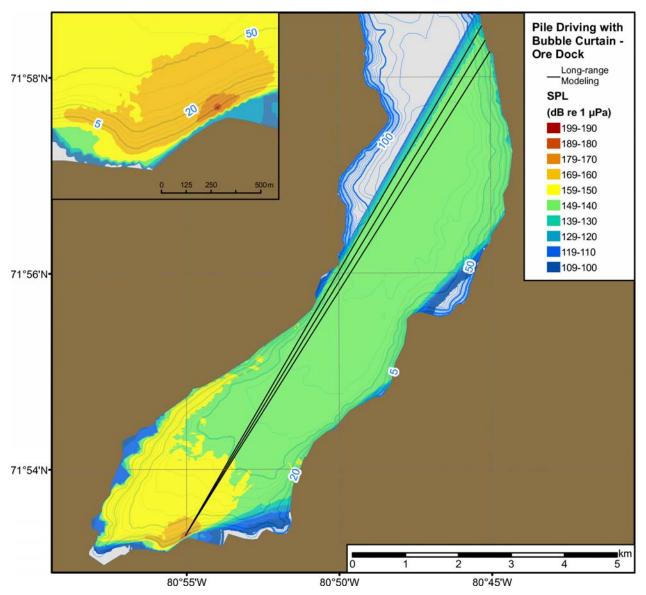


Figure A-2. Estimated broadband $(10-2000\ Hz)$ sound pressure levels around mitigated pile driving operations at the Ore Dock (Assomption Harbour).

A-2 Version 2.1

A.2. Threshold Distances - Pile Driving Operations

Table 17. Comparison between predicted m-weighted and unweighted threshold distances from unmitigated pile driving operations at the Ore Dock (Assomption Harbour). Distances calculated from broadband (10 - 2000 Hz) sound field.

RMS				Thr	eshold dista	ances (mete	ers)			
SPL	No wei	ghting			Cetac	eans			Dinni	nodo
(dB re 1	арр	lied	Low-fre	quency	Mid-fre	quency	High-fre	quency	Pinni	peus
μPa)	R _{max}	R _{95%}								
200	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
190	25	25	25	20	25	20	20	20	25	25
180	165	125	165	125	145	115	140	110	150	120
170	1,700	600	1,700	600	795	560	755	555	1,700	600
160	5,500	2,600	5,500	2,600	5,000	2,500	5,000	2,400	5,150	2,575
150	11,400	11,400	11,400	11,400	11,400	11,400	11,400	11,400	11,400	11,400

Table 18. Comparison between predicted m-weighted and unweighted threshold distances from mitigated pile driving operations at the Ore Dock (Assomption Harbour). Distances calculated from broadband (10 - 2000 Hz) sound field.

RMS				Thr	eshold dista	ances (mete	ers)			
SPL	No wei	ghting			Cetac	ceans			Pinni	node
(dB re 1	appl	ied	Low-free	quency	Mid-fre	quency	High-fre	quency		peus
μPa)	R _{max}	R _{95%}	R_{max}	R _{95%}	R_{max}	R _{95%}	R_{max}	R _{95%}	R_{max}	R _{95%}
190	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
180	25	20	25	20	15	15	15	15	20	20
170	130	115	130	115	120	90	100	80	125	100
160	1,600	600	1,600	600	750	550	700	500	750	560
150	5,020	2,580	5,020	2,580	5,000	2,350	4,500	2,050	5,000	2,550
140	11,400	11,400	11,400	11,400	11,400	11,400	10,950	8,800	11,400	11,400
130							11,400	11,400		

A.3. Unweighted Sound Fields – Dredging Operations

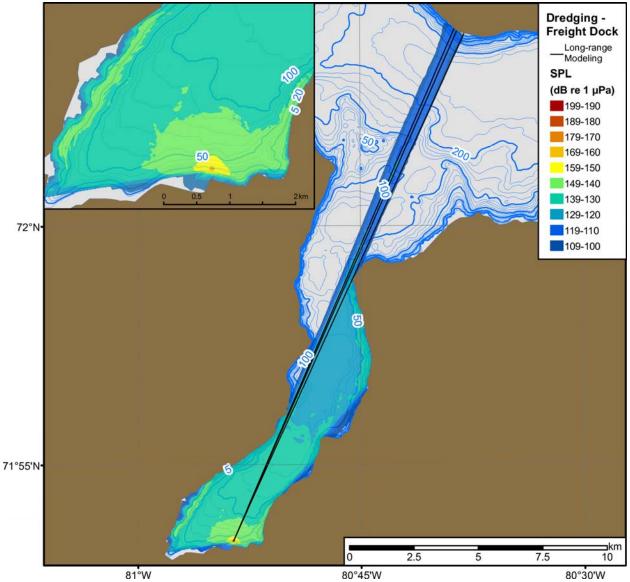


Figure A-3. Estimated broadband (10 - 2000 Hz) sound pressure levels around dredging operations at the Freight Dock (Assomption Harbour), in open water conditions.

A-4 Version 2.1

A.4. Threshold Distances - Dredging Operations

Table 19. Comparison between predicted m-weighted and unweighted threshold distances from dredging operations at the Freight Dock (Assomption Harbour), in open water conditions. Distances calculated from broadband ($10 - 2000 \, \mathrm{Hz}$) sound field.

RMS				Thr	eshold dista	ances (mete	ers)				
SPL	No wei				Ceta	ceans			Dinni	ipeds	
(dB re 1	арр	lied	Low-fre	quency	Mid-fre	quency	High-fre	quency	FIIIII	peus	
μPa)	R _{max}	R _{95%}	R _{max}	R _{95%}	R_{max}	R _{95%}	R_{max}	R _{95%}	R _{max}	R _{95%}	
180	< 5	< 5	< 5	< 5					< 5	< 5	
170	10	10	10	10	< 5	< 5	< 5	< 5	10	10	
160	45	40	45	40	25	25	20	20	30	30	
150	350	250	345	250	150	125	115	100	250	175	
140	2,750	2,250	2,750	2,250	1,350	1,050	1,200	600	2,500	1,200	
130	11,125	8,775	11,125	8,775	10,350	3,000	10,275	2,700	11,000	5,000	
120	shoi	re limited	shoi	shore limited		12,000 9,750		11,800 9,675		10,000	
110					sho	re limited	sho	re limited	shore limited		

A.5. Unweighted Sound Fields - Tug Operations

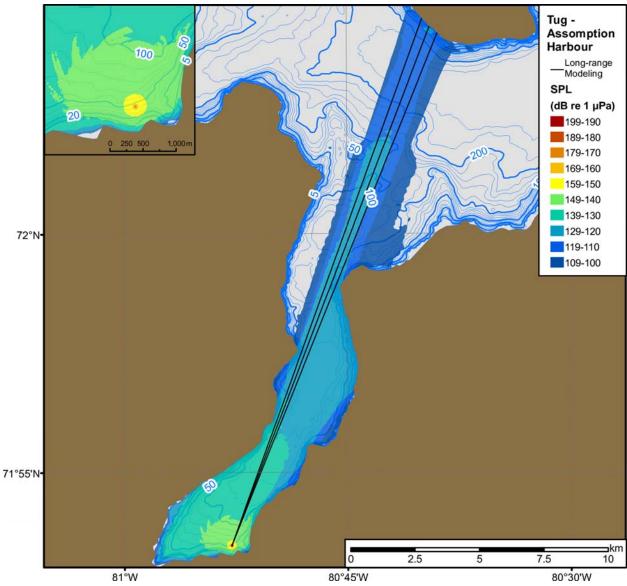


Figure A-4. Estimated broadband (10 - 2000 Hz) sound pressure levels around tug operations close to the Ore Loading Dock (Assomption Harbour), in open water conditions.

A-6 Version 2.1

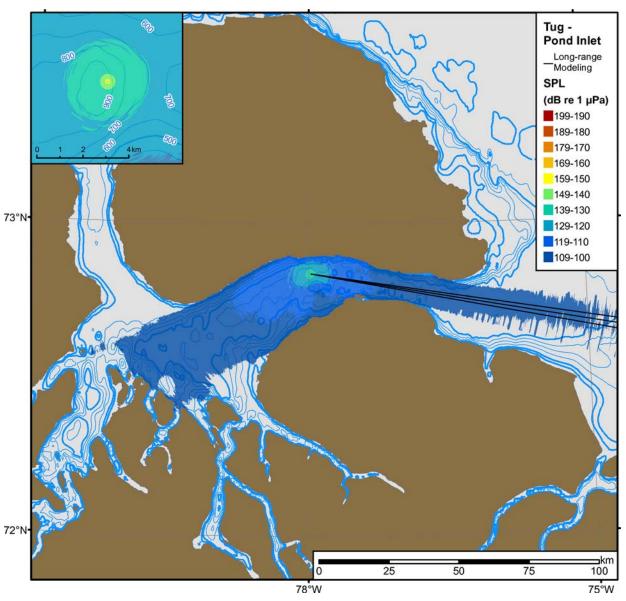


Figure A-5. Estimated broadband (10 - 2000 Hz) sound pressure levels around tug operations in Pond Inlet, in open water conditions.

A.6. Threshold Distances - Tug operations

Table 20. Comparison between predicted m-weighted and unweighted threshold distances from tug operations close to the Ore Loading Dock (Assomption Harbour), in open water conditions. Distances calculated from broadband (10 – 2000 Hz) sound field.

RMS				Thre	eshold dista	ances (mete	ers)			
SPL	No wei		Ce			eans			Pinni	neds
(dB re 1	appl	lied	Low-fre	quency	Mid-fre	quency	High-fre	quency	1 111111	pcus
μPa)	R_{max}	R _{95%}								
170	< 20	< 20	< 20	< 20						
160	50	50	35	35	< 20	< 20	< 20	< 20	< 20	< 20
150	200	175	180	165	125	125	100	100	140	130
140	2,500	1,200	1,500	1,100	700	500	625	400	1,100	650
130	10,200	4,400	10,000	4,100	4,750	2,700	4,000	2,500	5,250	3,000
120	shore limited	15,000	shore limited	14,850	16,800	9,900	16,600	9,700	21,400	11,300
110		shore limited		shore limited						

Table 21. Comparison between predicted m-weighted and unweighted threshold distances from tug operations in Pond Inlet, in open water conditions. Distances calculated from broadband (10 - 2000 Hz) sound field.

RMS				Thr	eshold dista	ances (mete	ers)			
SPL	No we	ighting			Cetac	ceans			Pinni	node
(dB	арр	lied	Low-fre	quency	Mid-fre	quency	High-fre	quency	FIIIII	peus
re 1 µPa)	R _{max}	R _{95%}	R_{max}	R _{95%}						
160	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
150	100	100	100	100	60	60	45	45	60	60
140	350	325	320	300	175	175	160	160	220	220
130	2,300	1,850	2,300	1,650	550	550	450	450	700	675
120	12,700	7,350	10,500	6,700	9,150	3,750	6,800	2,900	9,200	4,000
110	40,000	25,500	38,700	24,000	29,200	18,500	19,200	17,750	31,000	19,400
100	150,500	123,250	144,500	119,750	144,500	115,750	144,500	115,750	145,000	116,000

A-8 Version 2.1

A.7. Unweighted Sound Fields - Ore Carriers

A.7.1. Panamax-size Ore Carrier

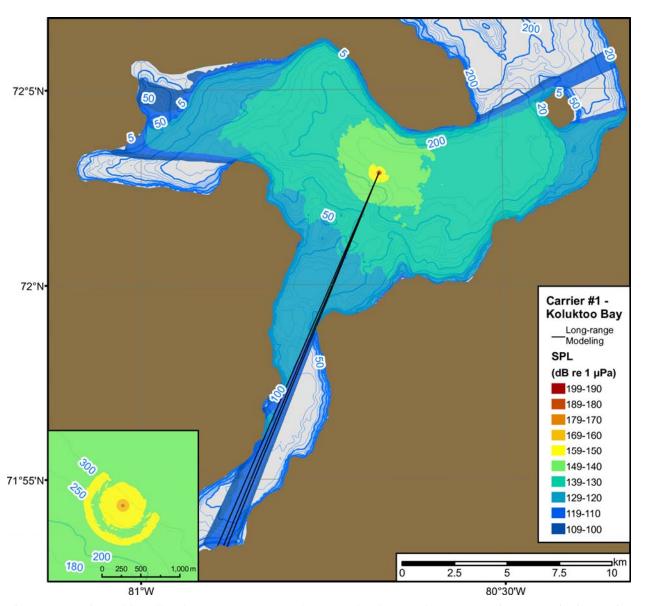


Figure A-6. Estimated broadband (10 - 2000 Hz) sound pressure levels around a Panamax-size ore carrier in transit in the Koluktoo Bay area, in open water conditions.

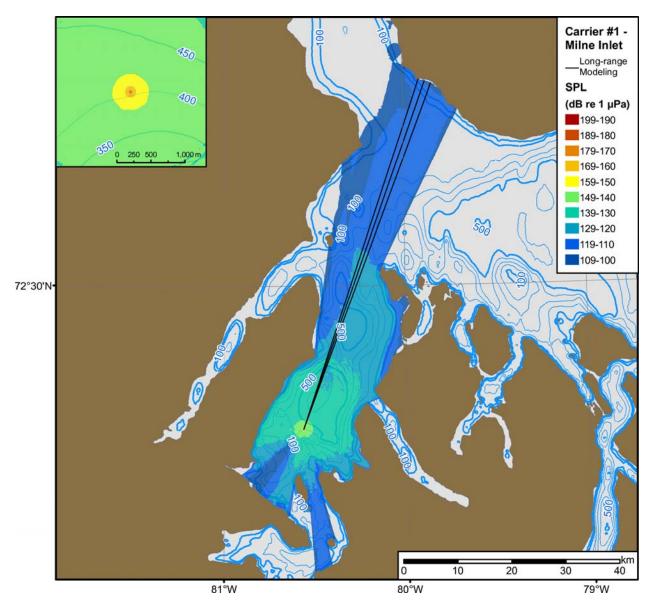


Figure A-7. Estimated broadband (10 - 2000 Hz) sound pressure levels around a Panamax-size ore carrier in transit in Milne Inlet, in open water conditions.

A-10 *Version 2.1*

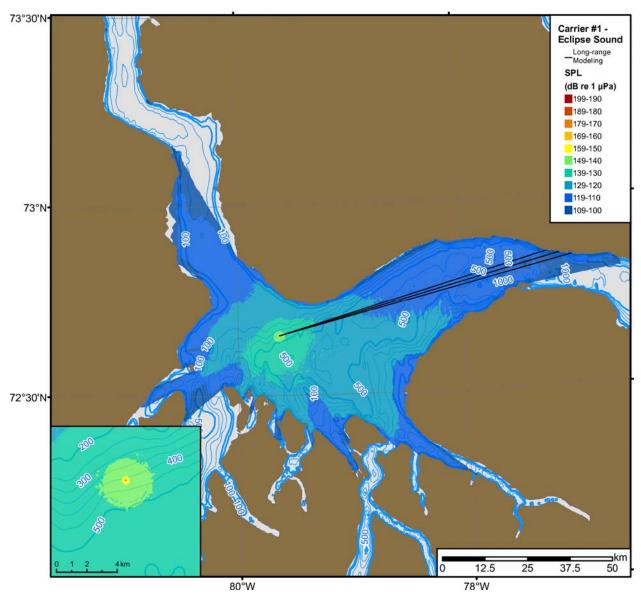


Figure A-8. Estimated broadband (10 - 2000 Hz) sound pressure levels around a Panamax-size ore carrier in transit in Eclipse Sound, in open water conditions.

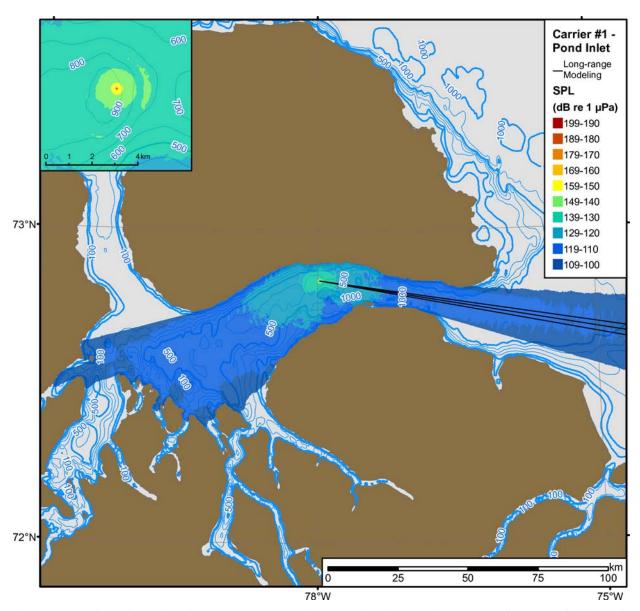


Figure A-9. Estimated broadband (10 - 2000 Hz) sound pressure levels around a Panamax-size ore carrier in transit in Pond Inlet, in open water conditions.

A-12 *Version 2.1*

A.7.2. Post-Panamax-size Ore Carrier

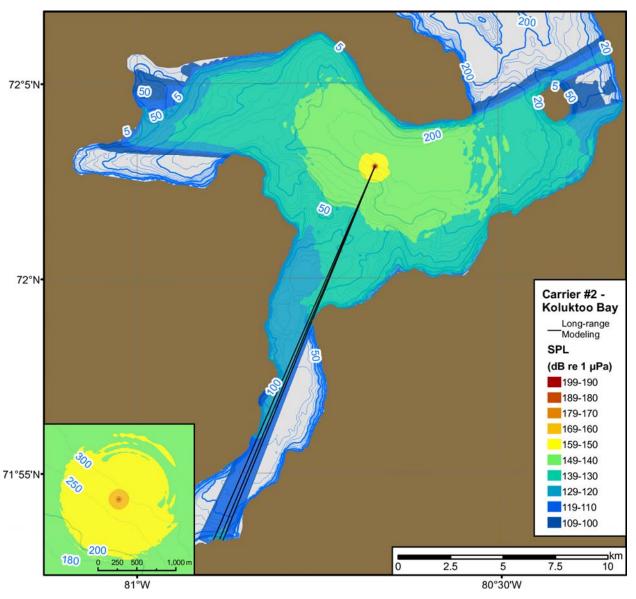


Figure A-10. Estimated broadband (10 - 2000 Hz) sound pressure levels around a Post-Panamax-size ore carrier in transit in the Koluktoo Bay area, in open water conditions.

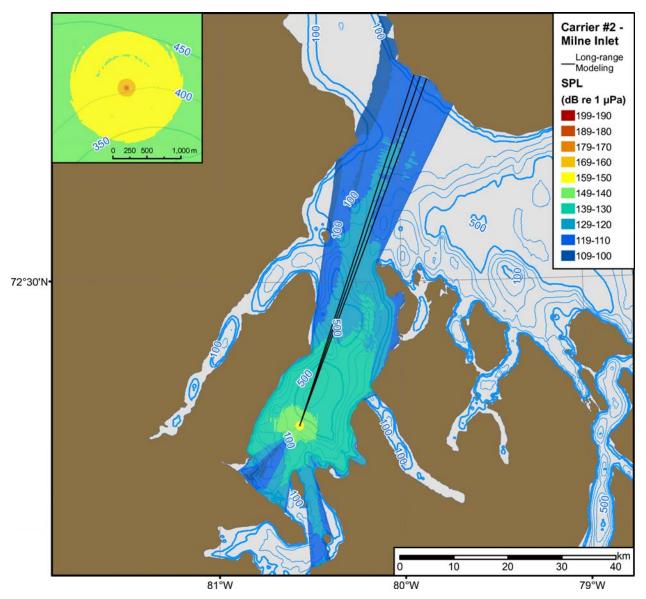


Figure A-11. Estimated broadband (10 - 2000 Hz) sound pressure levels around a Post-Panamax-size ore carrier in transit in Milne Inlet, in open water conditions.

A-14 *Version 2.1*

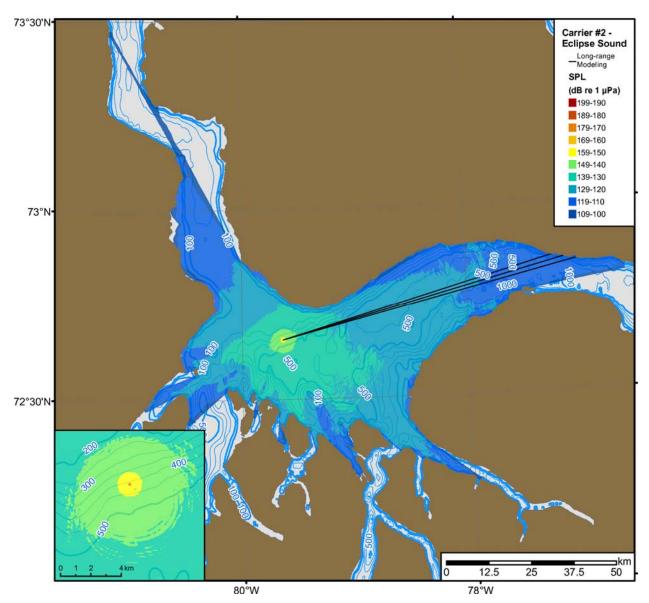


Figure A-12. Estimated broadband (10 - 2000 Hz) sound pressure levels around a Post-Panamax-size ore carrier in transit in Eclipse Sound, in open water conditions.

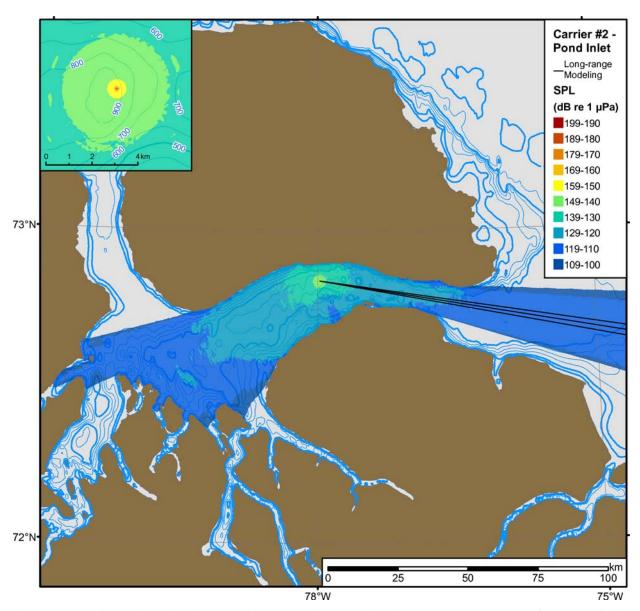


Figure A-13. Estimated broadband (10 - 2000 Hz) sound pressure levels around a Post-Panamax-size ore carrier in transit in Pond Inlet, in open water conditions.

A-16 *Version 2.1*

A.8. Threshold Distances - Ore Carriers

A.8.1. Panamax-size Ore Carrier

Table 22. Comparison between predicted m-weighted and unweighted threshold distances from a Panamax-size ore carrier in transit in the Koluktoo Bay area, in open water conditions. Distances calculated from broadband (10 - 2000 Hz) sound field.

RMS				Thr	eshold dista	ances (mete	ers)				
SPL	No wei	0 0	Cetaceans						Pinni	neds	
(dB re 1	арр	lied	Low-fre	quency	Mid-fre	quency	High-fre	quency	1 111111	pcus	
μPa)	R_{max}	R _{95%}									
170	< 20	< 20	< 20	< 20	< 20	< 20			< 20	< 20	
160	80	80	80	80	30	30	< 20	< 20	50	50	
150	500	500	500	500	100	100	100	100	150	150	
140	4,150	2,550	4,150	2,500	600	550	500	500	2,200	850	
130	9,200	7,550	9,000	7,550	6,750	3,550	6,000	3,000	8,850	5,950	
120	14,000	9,700	14,000	9,650	13,600	9,275	1,300	9,100	13,800	9,500	
110	shore limited	11,600	shore limited	11,600	shore limited	10,900	shore limited	10,650	shore limited	11,300	
100		shore limited									

Table 23. Comparison between predicted m-weighted and unweighted threshold distances from a Panamax-size ore carrier in transit in Milne Inlet, in open water conditions. Distances calculated from broadband (10 - 2000 Hz) sound field.

RMS				Thr	eshold dista	ances (mete	ers)			
SPL	No wei	ighting			Cetac	ceans			Pinni	neds
(dB re 1	арр	lied	Low-fre	quency	Mid-fre	quency	High-fre	quency	1 111111	peus
μPa)	R _{max}	R _{95%}								
180	< 20	< 20	< 20	< 20						
170	30	30	30	30	< 20	< 20	< 20	< 20	< 20	< 20
160	80	80	80	80	30	30	30	30	45	45
150	280	260	280	260	100	100	85	85	150	150
140	3,650	2,150	3,650	2,050	330	320	275	265	980	900
130	16,600	12,500	16,600	12,300	6,450	3,150	4,200	2,500	11,500	5,800
120	39,750	29,500	39,750	29,500	29,000	15,150	29,100	12,000	31,900	25,900
110	70,000	61,500	70,000	61,500	67,000	35,700	66,100	32,100	69,400	54,800
100	shore	limited								

Table 24. Comparison between predicted m-weighted and unweighted threshold distances from a Panamax-size ore carrier in transit in Eclipse Sound, in open water conditions. Distances calculated from broadband (10 - 2000 Hz) sound field.

RMS				Thr	eshold dista	nces (mete	ers)			
SPL	No weig	ghting			Cetace	eans			Pinnip	ade
(dB re 1	appli	ed	Low-fred	luency	Mid-freq	uency	High-fred	quency	· ······podo	
μPa)	R _{max}	R _{95%}	R_{max}	R _{95%}	R _{max}	R _{95%}	R _{max}	R _{95%}	R_{max}	R _{95%}
180	< 20	< 20	< 20	< 20						
170	30	30	30	30	< 20	< 20	< 20	< 20	< 20	< 20
160	85	85	80	80	30	30	30	30	45	45
150	280	260	270	260	100	100	85	85	150	150
140	3,180	1,850	3,170	1,800	330	315	275	265	980	900
130	19,750	13,200	19,200	13,000	4,000	2,200	2,500	1,550	8,600	5,000
120	59,500	41,300	58,800	41,100	29,100	17,200	23,000	12,700	40,900	28,700
110	102,800	64,500	102,800	67,200	102,800	50,200	102,800	46,500	102,800	60,200
100	shore li	mited								

Table 25. Comparison between predicted m-weighted and unweighted threshold distances from a Panamax-size ore carrier in transit in Pond Inlet, in open water conditions. Distances calculated from broadband (10 - 2000 Hz) sound field.

	1									1
RMS				Thr	eshold dist	ances (met	ers)			
SPL	No we	eighting			Ceta	ceans			Dinn	ipeds
(dB	арр	olied	Low-fre	equency	Mid-fre	quency	High-fre	equency	1 11111	ipeus
re 1 µPa)	R _{max}	R _{95%}								
180	< 20	< 20	< 20	< 20						
170	30	30	30	30	< 20	< 20	< 20	< 20	< 20	< 20
160	80	80	80	80	30	30	30	30	45	45
150	260	250	260	250	100	100	85	85	150	150
140	2,300	1,450	2,300	1,400	325	300	275	270	500	470
130	10,000	6,550	10,000	3,400	2,200	1,900	950	900	5,100	2,900
120	41,200	24,300	41,200	24,000	21,000	12,000	21,000	10,800	26,200	19,500
110	137,700	116,300	137,700	116,000	106,700	70,800	106,600	62,700	116,400	80,300
100	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000

A-18 Version 2.1

A.8.2. Post-Panamax-size Ore Carrier

Table 26. Comparison between predicted m-weighted and unweighted threshold distances from a Post-Panamax-size ore carrier in transit in the Koluktoo Bay area, in open water conditions. Distances calculated from broadband (10 - 2000 Hz) sound field.

RMS				Thr	eshold dista	ances (mete	ers)				
SPL	No we				Cetad	ceans			Pinni	node	
(dB re 1	арр	lied	Low-fre	quency	Mid-fre	quency	High-fre	quency	FIIIII	podo	
μPa)	R _{max}	R _{95%}	R _{max}	R _{95%}	R_{max}	R _{95%}	R_{max}	R _{95%}	R_{max}	R _{95%}	
180	< 20	< 20	< 20	< 20							
170	40	40	40	40	< 20	< 20	< 20	< 20	< 20	< 20	
160	125	125	125	125	45	45	25	25	75	75	
150	1,100	770	1,100	770	150	150	125	125	480	450	
140	8,150	5,300	8,150	5,300	2,500	850	1,750	680	3,750	2,200	
130	12,000	8,600	12,000	8,600	11,900	6,150	10,300	5,300	11,900	7,900	
120	shore limited	10,300	shore limited	10,300	19,300	9,800	13,900	9,750	19,300	10,000	
110		shore limited		shore limited	shore limited	11,700	shore limited	11,600	shore limited	12,000	
100			-			shore limited		shore limited		shore limited	

Table 27. Comparison between predicted m-weighted and unweighted threshold distances from a Post-Panamax-size ore carrier in transit in Milne Inlet, in open water conditions. Distances calculated from broadband (10 - 2000 Hz) sound field.

RMS				Thr	eshold dista	ances (mete	ers)			
SPL	No we	ighting			Cetac	eans			Pinnipeds	
(dB re 1	арр	lied	Low-fre	quency	Mid-fre	quency	High-fre	quency	1 11111	peus
μPa)	R _{max}	R _{95%}	R _{max}	R _{95%}	R_{max}	R _{95%}	R_{max}	R _{95%}	R _{max}	R _{95%}
180	< 20	< 20	< 20	< 20						
170	40	40	40	40	< 20	< 20	< 20	< 20	< 20	< 20
160	125	125	125	125	45	45	25	25	75	75
150	875	800	875	800	150	150	125	125	250	225
140	10,600	4,500	10,600	4,400	900	850	725	680	3,400	1,400
130	30,800	19,200	30,800	18,700	9,500	5,350	9,500	3,850	16,500	10,200
120	67,250	43,500	67,250	42,500	34,200	26,600	32,000	23,200	41,600	29,800
110	72,700	63,500	72,300	63,500	69,900	58,800	69,200	56,000	70,000	62,600
100	shore	limited	shore	limited	shore	limited	shore	limited	shore limited	

Table 28. Comparison between predicted m-weighted and unweighted threshold distances from a Post-Panamax-size ore carrier in transit in Eclipse Sound, in open water conditions. Distances calculated from broadband $(10 - 2000 \, \text{Hz})$ sound field.

RMS				Thr	eshold dista	nces (mete	ers)			
SPL	No weig	, ,			Cetace	eans			Pinnip	ede
(dB re 1	appli	ied	Low-free	luency	Mid-freq	uency	High-fred	quency	ГІППР	eus
μPa)	R _{max}	R _{95%}	R _{max}	R _{95%}	R _{max}	R _{95%}	R_{max}	R _{95%}	R_{max}	R _{95%}
180	< 20	< 20	< 20	< 20						
170	40	40	40	40	< 20	< 20	< 20	< 20	< 20	< 20
160	125	125	125	125	45	45	30	30	70	70
150	900	800	900	800	150	150	125	125	250	225
140	8,350	4,400	8,350	4,300	900	825	750	675	1,750	1,350
130	38,000	26,000	38,000	25,600	8,950	4,600	6,000	3,400	18,000	11,200
120	79,500	52,500	79,500	52,000	43,800	29,500	36,000	23,000	58,500	40,500
110	102,800	73,800	102,800	73,700	102,800	66,900	102,800	63,400	102,800	71,600
100	shore li	mited								

Table 29. Comparison between predicted m-weighted and unweighted threshold distances from a Post-Panamax-size ore carrier in transit in Pond Inlet, in open water conditions. Distances calculated from broadband (10 - 2000 Hz) sound field.

RMS				Thr	eshold dist	ances (met	ers)			
SPL	No we	ighting			Ceta	ceans			Dinni	peds
(dB re 1	арр	lied	Low-fre	equency	Mid-fre	quency	High-fre	equency	1 11111	peus
μPa)	R _{max}	R _{95%}								
180	< 20	< 20	< 20	< 20						
170	40	40	40	40	< 20	< 20	< 20	< 20	< 20	< 20
160	125	125	125	125	45	45	30	30	75	75
150	450	400	425	400	150	150	125	125	225	225
140	5,000	2,575	3,850	2,500	500	480	400	400	775	725
130	20,700	13,000	20,700	12,900	6,000	2,700	5,800	2,300	10,000	7,000
120	71,200	45,700	71,200	45,300	35,500	19,700	33,000	19,000	41,200	28,000
110	167,000	148,200	167,000	146,000	138,200	117,000	133,800	115,800	142,800	132,000
100	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000	> 170,000

A-20 Version 2.1

Table1a. Estimated sound levels at set radii from a tug operating in the port area (Assomption Harbour), during open water conditions.

						I							I																						ľ
Range	broad	Frequ	lency (Hz)																															
Œ	band	10	13	16	20	52	32	40	90	63	80 1	100 12	125 16	160 200	00 250	315	5 400	0 200	630	008	1000	1250	1600	2000	2500	3150	4000	2000	0089	8000	10000	12500	16000	2000	0
100	157	147	142	138	138	150	142	133 1	138 1	144 1	141	141 12	141 14	143 14	11 149	9 145	5 144	140	138	135	140	140	137	139	136	132	131	127	126	125	124	123	122	12′	_
300	150	141	136	133	130	143	136	127	132 1	137 1	133 1	134 13	134 13	135 13	136 141	.1 136	137	7 133	130	132	133	134	133	134	130	126	126	125	122	120	118	117	115	114	4
1,000	143	135	130	126	128	135	130	120 1	127 1	131 1	128 1	128 13	129 12	129 13	130 136	13	1 132	129	126	125	127	128	126	129	127	120	122	119	118	119	112	110	108	106	وي
3,000	136	127	122	119	118	128	122	113 1	119 1	124 1	120 1	122 13	122 12	124 12	21 129	127	7 124	122	120	118	121	123	120	124	119	116	115	113	112	109	103	101	97	92	2
10,000	132	121	117	114	113	123	117	108	115 1	120 1	116 1	118 17	118 12	120 11	118 125	124	122	120	118	114	120	119	118	119	113	109	110	107	105	102	06	183	73	99	6
20,000	127	112	108	108	108	116	113	102	109 1	114 1	109	110 1	115 11	114 11	111 11	119 117	7 116	114	111	110	113	112	110	110	105	100	66	96	76	91					

Г	_	9	6	109	86	_	9				П	
		2000	119	10	6	91						
		16000	120	111	100	96	74	16				
		12500	121	112	102	66	83	44				
		10000	122	113	104	102	88	19		_		
		8000	125	115	106	102	104	46	90	90	90	
		6300	126	117	108	103	105	96	91	91	88	
		5000	127	118	109	104	105	96	85	92	90	
		4000	128	119	110	106	109	101	92	92	90	
		3150	129	120	110	107	110	102	96	94	91	
		2500	133	123	114	110	113	105	66 (46 6	94	
		0 2000	137	5 127	118	114	117	109	100	66 96	2 96	
		0 1600	134	128 125	118 116	3 112	1 111	104	26 26	6 96	93 92	
2		1250	136 137	126 12	117 11	112 113	111	104 104	6 96	6 26	91 9	
		800 100	132 13	123 12	113 11	110 11	108 111	100	92 6	6 06	98	
5		630 8	135 1:	125 1:	117 1	112 1	109 1	101	93	93	88	
		200	137	127	, 111	113	109	102	94	93	87	
3	ı	400	139	129	119	116	110	104	96	93	68	
1		315	140	130	121	116	110	104	96	93	88	
		250	143	133	125	119	113	106	86	96	90	
		200	136	127	119	112	105	100	90	88	83	
		160	138	128	120	113	107	100	92	91	85	
		125	137	127	120	112	106	100	93	91	85	
,		100	136	127	118	113	107	100	92	88	28	
		80	135	126	117	111	105	98	91	88	83	
2		63	138	129	120	114	110	103	94	92	87	
		50	134	125	116	111	105	86	90	88	83	
		2 40	8 128	119	111	4 105	66 6	2 91	3 85	1 83	8/ 9	
		5 32	138	129	121	114	5 109	8 102	1 93	91	4 86	
3		0 25	5 144	134	128	3 122	7 115	108	3 101	96 0	94	
		5 20	7 136	128	3 122	5 113	107	100	3 93	90	98 9	
2	X(Hz)	3 16	137	128	3 123	116	108	100	4 93	88 2	4 86	
Table ID. Estimateu sound levels at set fadir floht a tug operating in the Portu milet area, dufing open water conditions.	neuc	0 13	3 138	3 129	9 123	1117	3 110	6 102	7 94	5 92	7 84	
ומובי	broad Frequency (Hz)	d 10	152 143	143 133	134 129	128 121	123 113	115 106	107 97	105 95	104 87	
		band										
5	Range	Ξ	100	300	1,000	3,000	10,000	30,000	100,000	130,000	160,000	

Table2a. Estimated sound levels at set radii from panamax-size ore carrier in the vicinity of Koluktoo Bay, during open water conditions.

		_	<u></u>	_	(0)	_	
	2000	124	118	110	96	29	
	16000	125	118	111	100	72	
	12500	126	119	113	104	82	
	10000	127	120	115	107	88	
	0008	131	122	117	115	100	92
	6300	132	122	118	115	66	95
	2000	132	123	119	116	103	96
	4000	133	125	119	117	104	101
	3150	135	126	122	121	107	102
	2500	136	127	124	121	108	108
	2000	136	128	124	122	109	108
	1600	136	128	126	124	111	108
	1250	138	130	128	124	111	110
	1000	139	132	128	125	113	111
	800	141	132	129	125	113	115
	630	141	133	129	125	113	115
	200	142	135	130	125	114	116
	400	143	135	133	127	114	116
	315	144	136	134	128	115	116
	250	145	136	131	127	115	114
	200	146	138	133	127	114	114
	160	147	138	134	126	114	113
	125	147	139	135	125	111	111
	100	150	142	138	126	113	112
	80	152	144	139	129	113	114
	63	153	146	139	129	112	114
	09	150	144	137	126	109	108
	40	146	140	133	121	105	103
	32	142	137	129	117	101	100
	25	139	132	126	113	26 8	94
	3 20	134	127	122	108	93	68 1
/ (Hz)	16	131	125	117	107	89	84
uency	13	128	121	117	105	92	8
Freq	10	124	118	108	100	84	28
broad	band	160	152	146	137	124	123
Range	Œ	100	300	1,000	3,000	10,000	18,000

Table2b. Estimated sound levels at set radii from panamax-size ore carrier in the Milne Inlet area, during open water conditions.

	0	ıo	œ	œ	0	₩		
	2000	125	118	108	90	64		
	16000	125	118	110	95	11	19	
	12500	126	119	111	86	87	47	
	10000	128	120	113	102	93	99	15
	0008	131	122	113	110	110	102	91
	6300	132	122	116	111	110	103	94
	2000	132	123	116	110	112	104	92
	4000	134	125	118	113	112	105	97
	3150	135	126	120	114	114	107	99
	2500	136	127	121	115	114	109	101
	2000	136	127	122	116	115	109	101
	1600	137	128	123	111	113	111	103
	1250	139	130	124	119	115	113	104
	1000	140	131	125	120	117	113	105
	800	141	131	126	121	119	114	107
	630	141	132	127	120	119	115	107
	200	142	134	127	122	120	115	108
	400	143	135	129	123	118	115	108
	315	144	136	129	124	119	116	107
	250	145	136	132	125	121	117	108
	200	146	137	130	125	120	117	111
	160	147	139	132	126	122	119	111
	125	148	139	134	127	123	120	111
	100	150	141	136	129	127	120	109
	80	152	144	139	133	129	122	112
	63	153	146	139	133	129	121	109
	90	151	143	136	130	127	118	110
	40	147	140	133	127	125	115	100
	32	142	136	129	123	119	110	92
	52	139	131	126	119	114	105	96
	70	135	128	121	117	110	102	98
cy (Hz)	16	132	125	119	112	107	86	85
nency (13	129	121	115	110	102	90	73
Frequ	10	125	118	111	107	101	88	72
proad	band	160	151	145	139	134	128	121
Range	Œ	100	300	1,000	3,000	10,000	30,000	68,000
			_		_		_	

Table2c. Estimated sound levels at set radii from panamax-size ore carrier in Eclipse Sound, during open water conditions.

Range	broad	Frequency (Hz)	ency	(ZH																														
Ē	band	10	13	16	20	25	32	40	50 6	63 8	80 100	0 125	5 160	200	250	315	400	200	630	800	1000	1250 1	1600 20	2000 2	2500 31	3150 40	4000 50	5000 63	6300 80	8000 100	10000 12	12500 16000	00 20000	00
100	160	126	128	132	135	139 1	142 14	148 15	150 15	3 153	150	0 148	147	146	145	144	143	142	141	141	140	139	137	136	, 981	135 1	134	132 1	132 1	131	128	126 1	125 1	125
300	151	117	122	125	129	131 1	136 13	139 14	143 14	143	.3 14′	1 138	139	137	136	135	136	134	132	131	131	130	128	127	127	126 1	125	123 1	122	122	120	119 1	18 1	118
1,000	146	113	116	120	123	127 1	130 13	134 13	137 14	11 139	137	7 134	133	131	131	130	129	128	127	125	126	124	122	, 221	121	120 1	118	117 1	116 1	116 1	113	111 1	110 1	108
3,000	141	108	110	114	118	121	125 13	129 13	133 13	136	133	3 129	128	125	125	125	124	124	122	123	123	121	118	119	117	116 1	114	113 1	112 1	111	103	100	96	92
10,000	136	100	103	108	111	114 1	120 1:	124 12	128 13;	130	128	8 126	124	123	122	121	121	121	119	119	118	117	115	114	, 114	115 1	112 1	113	110 1	111	94	87	2.2	64
30,000	124	88	91	94	100	103	110 1	112 17	116 11	119	9 117	7 117	114	114	113	111	112	111	112	112	110	110	108	107	106	107	102	104	103	101	92	47	18	
100,000	117	84	22	89	96	95 1	100	103 10	108 11	112	2 109	9 107	7 107	107	108	108	107	108	108	108	107	106	103	104	, 901	106	105	102	66	86	Н		Ц	

Table2d. Estimated sound levels at set radii from panamax-size ore carrier in Pond Inlet, during open water conditions.

																																			1
Rande	broad	Frequen	?	(Hz)																															
Œ	band	10	13	16	20	25	32	40	90	63	80	100	125	160 2	200	250 3	315 4	400 5	9 009	930 80	800 100	000 12	1250 16	1600 2000	00 2500	00 3150	50 4000	00 2000	00 6300	008 00	10000	0 12500	16000	0 20000	0(
100	160	124	127	131	134	138	143	146	151	153	152	150	148	147	146 1	145 1	144	143	142 14	141 14	141 14	1 04	39 1:	137 13	136 1:	136 13	135 13	134	132 13	132 131	127	7 126	125		124
300	150	114	119	122	125	129	133	137	141	143	143	140	138	137	137 1	136 1	135 1	134	133 13	132 13	131 13	_	130	128 12	127 1:	127 12	126 12	125 1:	123 12	122 12	122 120	119	118	`	118
1,000	141	1 110	112	117	120	123	126	129	133	134	134	131	128	128	127 1	127 1	126 1	125 1	125 12	123 12	123 12	121	120	18 1	18 1	17 11	15 11	114	113 11	113 11:	112 113	3 111	109		108
3,000	136	5 103	3 106	111	111	117	119	123	128	130	130	129	125	125	123 1	122	120 1	120	11	119 11	19 11	17 1	16 1	15 1′	15 1	14 11	13 11	10 1	109 10	108	10.	1 97	5.025	93	68
10,000	131	1 94	99	103	105	110	114	118	122	125	124	123	120	120	118	119 1	118 1	118	118 11	118 11	118 11	117 1	115 1	113 17	13 1	13 11	13 11	12 1	111 11	10 110	10 93	3 86		2.2	64
30,000	124	4 88	3 91	95	86	102	106	109	115	118	117	116	114	113	112 1	112 1	111 1	112 1	110 11	112 11	112 10	1 60	107	107	108	105 10	10 10	103	105 10	104 101	11 64	4 47	200	18	
100,000	116	5 79	98	87	91	96	98	104	108	109	111	108	107	106	105 1	104	105 1	104	104 10	104 10	105 10	103	103	103 10	103	103 101	ا ۱	00	6 66	6 86	96				
130,000	114	1 76	81	84	88	93	96	102	106	108	107	105	105	104	103	103	103	103	103 10	103 10	103 10	102	10	101	102	102 10	6 00	66	6 66	6 86	96				
160,000	113	9 69	7.3	81	84	88	91	97	100	102	102	100	100	100	66	99	100	99	100	100	100	901	66	66	86	6 86	6 96	95	6 96	94 9:	93				

A-22 *Version 2.1*

Table3a. Estimated sound levels at set radii from Post-Panamax-size ore carrier in the vicinity of Koluktoo Bay, during open water conditions.

50 63 80 100 125 160 200 250 356 316 155 157 156 153 151 150 149 148 147 142 144 144 142 139 137 137 137 131 135 134 143 130 131 132 137 137 131 136 134 131 130 131 132 131 143 148 148 148 148 148 132 131	Range	broad	Frequ	uency	(Hz)																															
164 129 133 137 139 144 147 161 165 167 166 163 161 169 167 166 163 161 160 148 <th>(m)</th> <th>band</th> <th>10</th> <th></th> <th>16</th> <th>20</th> <th>25</th> <th></th> <th></th> <th></th> <th>63</th> <th>80 1</th> <th>0</th> <th>,</th> <th>Ε.</th> <th></th> <th>-</th> <th>15 400</th> <th>)O 20</th> <th>00 630</th> <th>30 80</th> <th>100</th> <th>1250</th> <th>50 160</th> <th>00 200</th> <th>00 250</th> <th>3150</th> <th>50 40</th> <th>00 56</th> <th>00 6</th> <th>8 0069</th> <th>1 000</th> <th>0000</th> <th>12500</th> <th>16000</th> <th>20000</th>	(m)	band	10		16	20	25				63	80 1	0	,	Ε.		-	15 400)O 20	00 630	30 80	100	1250	50 160	00 200	00 250	3150	50 40	00 56	00 6	8 0069	1 000	0000	12500	16000	20000
156 123 127 130 132 138 142 145 148 150 148 144 144 142 142 140 140 130 137 130 137 130 137 130 137 130 137 130 137 130 137 130 137 130 137 130 137 130 137 130 137 130 137 130 137 130 131 130 131 130 131 130 131 130 131 130 131 130 130	100	164	129		137				_	100			_	1	_		`		146 14	145 14	144 144	,	143 141	11 14	0	140 13	139 13	138 1	137 1	135 ′	135 ′	134	131	129	128	128
151 113 122 123 127 131 134 138 142 144 144 142 139 137 136 137 137 137 137 137 137 137 137 137 137	300	156	10 31		130			1877		8		8	,	,	,	6 3		,	138 13	137 13	136 13	135 13	135 13	133 13	1	131 13	130 12	129 1	127 1	126 ′	, 921	125	122	120	119	118
141 105 110 112 113 119 122 127 131 135 134 131 130 131 132 132 131 130 131 132 132 131 130 129 89 90 95 98 102 106 111 115 118 119 119 118 116 119 119 120	1,000	151	113		123	127	_	1000				#				10.00	Ċ	•	135 13	134 13	134 132	32 13	31 13	_	129 12	129 13	128 12	126 1	123 1	123 ′	122	120	118	116	115	113
129 89 90 95 98 102 106 111 115 118 119 118 116 119 119 120 120	3,000	141	105	110	112	113						4	-		1	,		ш	129 12	127 12	128 12	128 12	127 12	129 12	125 12	126 13	125 12	123 1	122 1	120	119	117	110	107	103	66
	10,000	129	9	90	95	25		1			118 1	1000			`	1	_		119 11	118 11	116 11	116 11	15 11	16 11	13 17	11 1	11 11	109 1	108	105	105	101	92	85	75	63
18,000	18,000	128			88	100			_	#		Ò			18 1	`	`		120 12	120 11	118 11	118 11	11	11	114 10	109 1	110 10	105 1	104 1	102	100	26				

Table3b. Estimated sound levels at set radii from Post-Panamax-size ore carrier in the Milne Inlet area, during open water conditions.

			-			_		
	20000	128	118	112	93	69		
	16000	129	119	113	86	82	22	
	12500	129	120	114	101	91	20	
	10000	131	122	116	105	86	89	18
	8000	134	125	111	113	113	105	96
	6300	135	126	119	115	113	108	96
	2000	136	126	120	114	115	107	86
	4000	137	127	121	116	115	109	101
	3150	138	129	123	117	117	110	103
	2500	139	130	124	119	117	113	106
	2000	140	131	125	119	119	112	105
	1600	141	131	126	120	118	114	106
	1250	142	133	128	123	119	116	107
	1000	144	134	128	122	120	117	110
	0 800	145 144	135 135	130 129	5 122	122 123	118 118	1 110
	0 630	,	`	_	5 125	`.	,	1 11
	0 50(147 146	138 136	1 13	126 125	124 122	119 119	114 11
	315 400	148 14	139 13	133 13	127 12	123 12	120 11	112 11
	250 3°	149 12	140 13	133 13	129 13	125 13	120 13	112 1
	_	1 09	41 1	136	129 1	124 1	121	15 1
	160 200	150 15	141 14	135 13	129 12	125 12	122 12	15 11
	125 1	152 1	143 1	137 1	129 1	126 1	124 1	115 1
	00	154	145	140	132	130	125	114
	80	156		143	137		127	118
	63	157	149	144	137	134	126	115
	20	155	147	141	135	132	124	115
	40	151	144	138	132	130	120	106
	32	147	141	134	128	124	115	100
	25	144	136	132	124	120	111	102
	20	140	134	127	122	115	107	92
7	16	138	131	124	117	112	103	91
nency	13	135	126	121	115	108	92	19
3	10	130	123	116	113	107	93	92 9
חוח	band	164	155	150	143	138	133	125
Ralige	(m)	100	300	1,000	3,000	10,000	30,000	68,000

Table3c. Estimated sound levels at set radii from Post-Panamax-size ore carrier in Eclipse Sound, during open water conditions.

	ו מבוכסכ: בסוווומנסם ססמוום וסנסום מו ספו וממון וו סוון ו									3	מוומוומע	5	SIZO OLO CALLIOL III ESIIPSO				3	,	5		3	daling open water conditions.	5		3										1
Range	broad	Frequ	uency	(Hz)																															
Œ	band	10	13	91	20	25	32	40	9 09	8 8	80 100	0 125	160	200	250	315	400	009	930	008	1000	1250	1600	2000	2500	3150	4000	0009	6300	8000	10000	12500	16000	00007	_
100	164	131	134	137	140	144	147 1	152 1	155 15	157 15	157 154	151	151	150	149	147	147	146	145	144	144	142	141	140	139	138	137	136	135	134	131	129	129	128	<u> </u>
300	155	122	127	130	134	137 1	141	144	147 14	148 14	147 144	4 142	142	141	140	139	139	137	135	135	134	133	131	131	130	129	127	126	126	125	122	120	119		~
1,000	150	119	121	125	128	132 1	135 1	139 1	142 14	144 14	143 140	0 138	135	135	134	133	132	132	130	130	129	128	126	125	124	123	122	120	120	119	116	114	113	112	~
3,000	145	114	116	120	123	126 1	130 1	134	138 14	140 14	40 136	6 131	1 129	130	130	130	128	126	126	126	125	124	121	122	120	119	117	116	116	115	106	103	100	96	10
10,000	140	106	109	114	116	120 1	126 1	129 1	133 13	136 13	134 132	2 129	9 128	127	125	124	126	123	122	122	122	120	119	117	118	116	115	115	114	114	98	91	82	69	_
30,000	129	94	46	100	105	108	115 1	117 1	122 12	123 12	122	120	117	118	115	116	115	115	115	114	113	112	111	109	111	109	107	101	106	106	29	49	21		
100,000	122	06	90	94	101	100	105 1	109 1	113 11	115 11	117 113	3 111	111	112	113	113	112	112	112	111	111	109	107	107	109	111	107	102	103	103					_

Table3d. Estimated sound levels at set radii from Post-Panamax-size ore carrier in Pond Inlet, during open water conditions.

)															8
Range	broad	Frequ	luency	:y (Hz)																															
Œ	band	10	13	16	20	52	32	40	90	63	80 1	1001	125 1	160 2	200 2	250 31	315 400) os oc	069 00	008 01	1000	1250	160	0 200	00 2500	3150		4000 500	000	08	1000	1250	1	6000 2	0000
100	164	130	133	137	140	144	148	151	155	157	157 1	154 1	151	151	150 14	149 14	147 14	147 14	146 14	145 144	ļ	142	.2 147		140 13	139 13	138 1:	137 13	136 13	135 13	134 1	131 1	129	128	128
300	154	120	124	127	131	134	138	142	146	148	147 1	144	142	141	13	139 13	138 13	137 13	136 13	135 135	20	134 133	13 13	13	1	130 12	129 1:	127 12	126 12	126 1	125 1	121 1	119	119	118
1,000	145	116	118	123	125	128	131	134	137	139 ′	138 1	134 1	132	132 1	131 13	131 12	129 12	128 12	128 12	126 126	8	125 12	123 122	12	1	120 11	119 1	11 11	17 17	16 1	15 1	16 1	114	113	112
3,000	141	108	112	116	117	122	125	129	133	135 ′	134 1	132 1	129 1	126 1	126 13	125 12	125 12	124 12	123 12	123 124	8	122 120	119		117 11	117 11	115 1	114 11	113 17	12 1	111 1	104	001	96	92
10,000	135	100	104	108	111	115	120	123	127	130	129 1	127 1	124 1	124 1	122 13	122 12	122 12	123 12	123 121	120		118 118	117	,	116 11	117 11	115 1	115 11	114 1	114 1	113	86	91	82	69
30,000	128	3 93	97	100	104	108	112	115	121	123 ′	122	120 1	118 1	18 1	15 1′	16 11	15 11	116 11	115 11	116 113	13 11	11 111	11 11	1 1	109 111	_	108 11	106 10	108 10	106 10	105	29	49	21	
100,000	121	84	. 89	92	97	101	104	109	113	115 /	116 1	113 1	112 1	110	109	11	10 10	109 10	108 10	108 108	,	106 10	106 107		105 10	105 10	107 11	102 10	102 10		66	-		_	
130,000	118	82	86	89	94	86	101	107	112	113	112 1	109 1	109	108	107 10	107 10	108 10	108 10	108 107	106	972.5 95 - 95	105 105	104	258	103 10	106 10	103 1	101 10′	_	100	66	52-5		_	
160,000	117	74	. 78	98	88	94	26	102	106	108	107	105 1	104	105	103 10	104 10	105 10	104 10	104 10	104 104		103 10	102 102	101	È	102 10	101	99 10	100 10	00	26				

Table4. Estimated sound levels at set radii from dredging operating at the Freight Dock, during open water conditions.

ange	Ξ	100	300	1,000	3,000	10,000	20,000
broad	band	156	150	141	135	135	125
Fred	10	124	117	1114	5 105	96 9	5 84
luency (13	131	124	122	111	104	1 93
(Hz)	16	133	127	120	112	108	3 97
	5 20	3 136	130	123	116	111	103
	25	138	131	125	3 117	114	104
	32	138	131	123	117	115	107
	40	137	131	122	116	116	106
	09	139	133	125	119	111	108
	63	140	133	125	119	119	106
	80	141	135	126	121	121	112
	100	148	143	135	127	127	114
	125	147	139	132	127	127	113
	160	149	141	134	129	127	113
	200	147	140	133	127	127	119
	250	145	138	131	125	127	112
	315 4	145	140	129	125	125	116
	400	146 1	139 1	130	124	124 1	114
	9 009	142 1	136 1	128 1	123 1	123 1	112 1
	8 089	143 1	136 1	128 1	124 1	124 1	113 1
	00 10	140 1	132 1	124 1	120 1	118 1	1 09 1
	17	134	129 1	119 1	116 1	115 1	101
	1250 16	134	128	119 1	116 1	112 1	26
	1600 20	132	125 1	118	112 1	109	92
	000	129	122	115	109	106	91
	2500 3	125	122	114	107	103	06
	3150 4	127	121	113	108	102	68
	4000 5	126	120	112	107	101	98
	9 000	126	119	111	107	66	85
	300 80	124	122	112	107	66	87
	100	123	117	111	104	26	84
	0000	123	116	107	101	87	
	12500 10	119	112	103	98	2.2	
	16000	116	109	99	90	65	

A-24 *Version 2.1*

Table5a. Estimated sound levels at set radii from sheet pile driving operating at the Ore Dock, during open water conditions.

Range broad		Inency	Ē													-	İ	-	-		-	-	ł	-		-	ł	ŀ	ł	ł	ŀ	ł	
band	10 10	13	16	20	25	32	40	50 6	63 8	80 100	0 125	160	200	250	315	400	200	630	800	1000	1250 1	1600	2000	2500 3	3150 4	4000 5	2000	8 0089	8000 10	0000	2500 10	6000 2	20000
181	109	110	112	118	120	127 1	132 13	137 142		53 152	2 162	164	165	167	171	175	169	166	169	171	174	165	162	165	163	163	162	159	157	154	153	151	147
300	174 102	108	111	115	118	122 1	126 13	130 13	134 145	145	5 156	157	158	160	164	170	159	162	162	165	168	160	155	157	156	155	153	153	150	146	146	143	139
1000,	101 591	106	111	111	113	114 1	118 13	122 12	126 137	37 136	147	149	149	152	153	160	153	152	156	157	158	150	145	148	149	150	143	144	142	139	137	135	130
3,000 15	159 95	5 96	100	101	102	106 1	111 1	115 12	120 130	30 130	0 140	141	143	146	148	153	148	149	151	151	154	146	141	143	142	143	142	138	137	130	128	123	116
0,000	98 691	88	93	96	66	104	110 1	114 119		130 137	1 141	144	145	148	152	156	149	149	149	150	152	145	141	140	139	137	134	134	130	119	112	100	83

8		9	0	7	21	@	9/
		0007	140	132	122	108	7
		16000	142	134	126	114	91
		12500	142	135	126	117	101
		00001	141	133	126	117	106
		8000	143	136	129	123	116
		9300	144	138	129	123	119
		2000	147	138	128	127	119
		4000	147	140	135	128	122
tions		3150	148	141	134	127	124
=		2500	150	142	133	128	125
operating with bubble curtains at the Ore Dock, during open water conc		2000	147	140	130	126	126
) uado		1600	150	145	135	131	130
ring c		1250	159	153	143	139	137
ck, du		1000	159	153	145	139	138
e Do		800	157	150	143	139	137
ne Or		089	154	150	140	137	137
s at th		200	157	147	141	136	137
rtain		400	163	158	148	141	144
le cu		315	163	156	145	140	144
pubb		250	161	154	146	140	142
with		200	160	153	144	138	140
ating		160	159	152	144	136	139
opera		125	157	151	142	135	136
driving c		100	149	142	133	127	129
ø.		80	151	143	135	128	128
Ε		63	140	132	124	118	117
from sheet		90	137	130	122	115	114
fron		40	132	126	118	111	110
adii		32	127	122	114	106	104
at set		25	120	118	113	102	66
vels		20	118	115	111	101	96
nd le	(Hz)	16	113	111	111	100	93
nos t	uency	13	110	108	106	96	88
natec	Frequ	10	109	103	101	98	86
ile5b. Estimated sound levels at set r	broad	band	170	163	154	148	149
Table5b	Range	Œ	100	300	1,000	3,000	10,000