



# **APPENDIX 5C-4**

PROJECT AIR EMISSION INVENTORY





# **APPENDIX 5C-4-1**

EMISSION INVENTORY FOR THE MILNE PORT OPERATIONS



# **Emission Inventory for the Milne Port Operations**

This appendix summarizes the information used to develop the emission inventory for Milne Port operations. The project base quantities, source parameters, emission factors and other assumptions used to develop the emission rate inputs for modelling are presented in Table 5C-4-1-1.

All references to AP-42 refer to the United States Environmental Protection Agency's (U.S. EPA) AP-42 emission factor documentation.

Table 5C-4-1-1: Combustion Emission Factors and Base Quantities Used to Develop the Milne Port Emission Inventory

| Power Generation -        | - Arctic Diesel Generators (Assumed Caterpillar CM43 or similar)                                                                                                                                                                                                                                                                                                          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emission factors          | <ul> <li>AP-42 Ch. 3.4 was used to calculate SO<sub>2</sub> emissions from the power generators at Milne Port</li> <li>Manufacturer specification sheet was used to calculate NO<sub>x</sub>, CO and PM<sub>2.5</sub> emissions</li> </ul>                                                                                                                                |
|                           | • All particulate matter was assumed to be in the PM <sub>2.5</sub> size fraction                                                                                                                                                                                                                                                                                         |
| Base quantities           | <ul> <li>Milne Port has 3 generators, each with a power rating of 7,200kW</li> <li>Arctic Diesel with molecular mass of 226 g/mole with ultra-low sulphur fuel (i.e., 0.4 % fuel sulphur) was assumed similar to other sites</li> </ul>                                                                                                                                   |
| Source parameters         | <ul> <li>Stack heights of 30 m was used similar to other sites</li> <li>Stack diameters of 1.09 m were calculated based on an assumed exit velocity of 27.26 m/s and from flow-rates derived from engine specification sheet</li> <li>Exhaust exit temperature is 320 °C for the generators based on the manufacturer specification sheet</li> </ul>                      |
| Emission controls         | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                         |
| Schedule of<br>Operations | 3 generators was assumed to operate 24 hours a day, 7 days a week                                                                                                                                                                                                                                                                                                         |
| Incinerator               |                                                                                                                                                                                                                                                                                                                                                                           |
| Emission factors          | • From "Characterization of Emissions from the Eco Waste Solutions Thermal Oxidizer" Report, prepared by Eco Waste Solution, provided by Aker September 2007.                                                                                                                                                                                                             |
| Base quantities           | Burns 1,000 kg/day                                                                                                                                                                                                                                                                                                                                                        |
| Source parameters         | <ul> <li>Average flow rate of 1.13m³/s, velocity of 6.15m/s and exhaust temperature of 679°C were provided in "Characterization of Emissions from the Eco Waste Solutions Thermal Oxidizer" Report, prepared by Eco Waste Solution, provided by Aker September 2007.</li> <li>Stack diameter of 0.48m was calculated using the average flow rate and velocity.</li> </ul> |
| Emission controls         | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                         |
| Schedule of<br>Operations | Assumed to operate 24 hours per day, 7 days a week.                                                                                                                                                                                                                                                                                                                       |

| Bulk Material Handling |                                                                                                                               |  |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Emission factors       | PM <sub>2.5</sub> , PM <sub>10</sub> , TSP emissions from bulk material handling operations were estimated using AP-42 13.2.4 |  |  |  |  |  |  |  |
| Base quantities        | The following sources and corresponding parameters are included in the modelling:                                             |  |  |  |  |  |  |  |

| ID              | Process                             | Material<br>Handled<br>(Hourly)<br>(Mg) | Material<br>Handled<br>(Daily)<br>(Mg) | Material<br>Handled<br>(Annual)<br>(Mg) | Site<br>Specific<br>Data<br>(y/n) | Silt<br>Content<br>(%) | Moisture<br>Content<br>(%) |
|-----------------|-------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------|------------------------|----------------------------|
| Milne Port      |                                     |                                         |                                        |                                         |                                   |                        |                            |
| 3300-SK-<br>001 | Lump/Fine Stacker                   | 2,400                                   | 57,600                                 | 17,280,000                              | у                                 | 9.5%                   | 5.4%                       |
| 3300-RC-<br>010 | Reclaimer 01                        | 6,000                                   | 144,000                                | 43,200,000                              | у                                 | 9.5%                   | 5.4%                       |
| 3300-RC-<br>011 | Reclaimer 02                        | 6,000                                   | 144,000                                | 43,200,000                              | у                                 | 9.5%                   | 5.4%                       |
| 3300-SL-<br>001 | Ship Loader 01                      | 6,000                                   | 144,000                                | 43,200,000                              | у                                 | 9.5%                   | 5.4%                       |
| 3300-SL-<br>002 | Ship Loader 02                      | 6,000                                   | 144,000                                | 43,200,000                              | у                                 | 9.5%                   | 5.4%                       |
| 3300-TR-<br>001 | Lump/Fine Tripper Chute             | 2,400                                   | 57,600                                 | 17,280,000                              | у                                 | 9.5%                   | 5.4%                       |
| 3300-CH-<br>001 | Lump/Fine Discharge Chute           | 2400                                    | 57,600                                 | 17280000                                | у                                 | 9.5%                   | 5.4%                       |
| 3300-CH-<br>002 | Reclaimer Discharge Chute 01        | 2400                                    | 57,600                                 | 17280000                                | у                                 | 9.5%                   | 5.4%                       |
| 3300-CH-<br>003 | Reclaimer Discharge Chute 02        | 2400                                    | 57,600                                 | 14400000                                | у                                 | 9.5%                   | 5.4%                       |
| 3300-CH-<br>004 | Ship Loader Discharge Chute 01      | 2400                                    | 57,600                                 | 14400000                                | у                                 | 9.5%                   | 5.4%                       |
| 3300-CH-<br>005 | Ship Loader Discharge Chute 02      | 2400                                    | 57,600                                 | 14400000                                | у                                 | 9.5%                   | 5.4%                       |
| 3300-TR-<br>002 | Ship Loader Tripper Discharge Chute | 2400                                    | 57,600                                 | 14400000                                | у                                 | 9.5%                   | 5.4%                       |

| <b>Bulk Material Hand</b> | lling (Cont'd)                                                                                                                        |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Emission controls         | No emission controls were assumed                                                                                                     |
| Schedule of               | • 24 hours a day, 90 days per year                                                                                                    |
| Operations                |                                                                                                                                       |
| Stockpiles                |                                                                                                                                       |
| Emission factors          | • PM <sub>2.5</sub> , PM <sub>10</sub> , TSP emissions from stockpiles were estimated using AP-42 13.2.5                              |
| Base quantities           | • Four (4) lump stockpiles each having a capacity of 562,500 tonnes                                                                   |
| •                         | • Two fine stockpiles, each having a capacity of 375,000 tonnes                                                                       |
| Source parameters         | • Surface roughness length of 0.003 m was applied in the calculations                                                                 |
|                           | <ul> <li>Threshold velocity for iron ore was estimated to be 6.94 m/s based on bulk<br/>sampling program conducted by RWDI</li> </ul> |
|                           | <ul> <li>Emission rates calculated on an hourly basis to vary according to wind<br/>speeds</li> </ul>                                 |
| Emission controls         | No emission controls were assumed                                                                                                     |
| Schedule of               | • 24-hours per day, 7 days per week                                                                                                   |
| Operations                |                                                                                                                                       |

| Truck Operation (Fr | om Mine Site Trucking Option Stock Piles to Milne Port Stockpiles)                                 |
|---------------------|----------------------------------------------------------------------------------------------------|
| Emission factors    | • PM <sub>2.5</sub> , PM <sub>10</sub> , TSP emissions from stockpiles were estimated using AP-42  |
|                     | 13.2.2                                                                                             |
|                     | • NO <sub>x</sub> , SO <sub>2</sub> , and CO emissions are from the U.S. EPA Tier II/III Standards |
|                     | Document Entitled: Emission Standards Reference Guide for Heavy-Duty                               |
|                     | and Nonroad Engines (http://www.epa.gov/otaq/cert/hd-cert/stds-eng.pdf).                           |
| Base quantities     | • Twenty two (22) 120 ton trucks                                                                   |
| _                   | Mean vehicle speed of 30 km/hour                                                                   |
|                     | • Total distance travelled per pass is 100 km                                                      |
| Source parameters   | Modelled as a series of area sources                                                               |
|                     | • The maximum length to width ratio for the area sources was 10:1 with an                          |
|                     | effective height of 4 m and an initial vertical dimension (sigma z) of 2 m.                        |
| Emission controls   | • A 50% emission controls were assumed due to the road maintenance using                           |
|                     | chemical suppression (CaCl <sub>2</sub> )                                                          |
| Schedule of         | Operates 24 hours a day and 300 days per year                                                      |
| Operations          |                                                                                                    |

Tables 5C-4-1-2, 5C-4-1-3 and 5C-4-1-4 provide a summary of the source parameters applied in the CALPUFF modelling of Milne Port operation for the point, area, and volume sources, respectively.

**Table 5C-4-1-2: Milne Port Point Sources** 

| Source Description                          |                                                      | Generators                                        |                                                   | Incinerator                |
|---------------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------|
| Source Name                                 | GEN01                                                | GEN02                                             | GEN03                                             | MR INCIN                   |
| Power Rating                                | 7200 kW (9MVA)                                       | 7200 kW (9MVA)                                    | 7200 kW (9MVA)                                    | 1000 kg/day                |
| # of Units                                  | 1                                                    | 1                                                 | 1                                                 | 1                          |
| Stack Height Above Grade (m)                | 30                                                   | 30                                                | 30                                                | 17.3                       |
| Stack Height Above Roof (m)                 | 18                                                   | 18                                                | 18                                                |                            |
| Stack Flow Rate (m³/s)                      | 25.44                                                | 14.13                                             | 14.13                                             | 1.127                      |
| Stack Diameter (m)                          | 1.09                                                 | 1.09                                              | 1.09                                              | 0.48                       |
| Exit Temperature (K)                        | 593                                                  | 593                                               | 593                                               | 952                        |
| Exit Velocity (m/s)                         | 27.43                                                | 27.43                                             | 27.43                                             | 6.15                       |
|                                             | NOx, CO, PM from                                     | NOx, CO, PM from                                  | NOx, CO, PM from                                  | From "Characterization of  |
|                                             | manufacturer spec sheet.<br>SO2 from US EPA AP-42 Ch | manufacturer spec sheet.<br>SO2 from US EPA AP-42 | manufacturer spec sheet.<br>SO2 from US EPA AP-42 | Emissions from the Eco     |
| Source of Emissions                         | 3.4 Large Stationary Diesel                          | Ch 3.4 Large Stationary                           | Ch 3.4 Large Stationary                           | Waste Solutions Thermal    |
|                                             | and Stationary Dual Fuel                             | Diesel and Stationary Dual                        | Diesel and Stationary Dual                        | Oxidizer Report". Provided |
|                                             | Engines                                              | Fuel Engines                                      | Fuel Engines                                      | by Aker Sept 2007.         |
| Emission Rates (g/s)                        | 2g00                                                 | . do:gcc                                          | . dogcc                                           |                            |
| NOx                                         | 57.37                                                | 57.37                                             | 57.37                                             | 2.97E-02                   |
| SO2                                         | 1.25                                                 | 1.25                                              | 1.25                                              | 4.62E-04                   |
| SO3                                         | 0.049                                                | 0.049                                             | 0.049                                             | 1.82E-05                   |
| SO4                                         | 0.040                                                | 0.040                                             | 0.040                                             | 1.46E-05                   |
| CO                                          | 1.17                                                 | 1.17                                              | 1.17                                              | 1.45E-03                   |
| PM                                          | 0.03                                                 | 0.03                                              | 0.03                                              | 1.18E-02                   |
| HCI                                         | N/A                                                  | N/A                                               | N/A                                               | 1.77E-01                   |
| HF                                          | N/A                                                  | N/A                                               | N/A                                               | 3.38E-03                   |
| Mercury                                     | N/A                                                  | N/A                                               | N/A                                               | 3.31E-05                   |
| Antimony                                    | N/A                                                  | N/A                                               | N/A                                               | 8.10E-05                   |
| Arsenic                                     |                                                      | N/A                                               | N/A                                               | 1.46E-06                   |
| Barium<br>Beryllium                         | N/A<br>N/A                                           | N/A<br>N/A                                        | N/A<br>N/A                                        | 3.27E-06<br>0.00E+00       |
| Cadmium                                     | N/A<br>N/A                                           | N/A                                               | N/A<br>N/A                                        | 1.35E-04                   |
| Chromium                                    | N/A<br>N/A                                           | N/A<br>N/A                                        | N/A                                               | 5.98E-05                   |
| Cobalt                                      |                                                      | N/A                                               | N/A                                               | 3.38E-07                   |
| Copper                                      | N/A                                                  | N/A                                               | N/A                                               | 2.41E-04                   |
| Lead                                        |                                                      | N/A                                               | N/A                                               | 2.77E-04                   |
| Manganese                                   | N/A                                                  | N/A                                               | N/A                                               | 1.62E-05                   |
| Nickel                                      | N/A                                                  | N/A                                               | N/A                                               | 5.97E-06                   |
| Selenium                                    | N/A                                                  | N/A                                               | N/A                                               | 3.16E-06                   |
| Silver                                      | N/A                                                  | N/A                                               | N/A                                               | 4.17E-06                   |
| Thallium                                    | N/A                                                  | N/A                                               | N/A                                               | 0.00E+00                   |
| Zinc                                        | N/A                                                  | N/A                                               | N/A                                               | 1.58E-04                   |
| Dioxins and Furans                          |                                                      | N/A                                               | N/A                                               | 1.005.10                   |
| 2378-T4CDD<br>12378-P5CDD                   | N/A<br>N/A                                           | N/A                                               | N/A<br>N/A                                        | 1.89E-12                   |
| 123478-H6CDD                                |                                                      | N/A<br>N/A                                        | N/A<br>N/A                                        | 1.78E-12<br>4.88E-13       |
| 123476-H6CDD                                |                                                      | N/A<br>N/A                                        | N/A<br>N/A                                        | 7.29E-13                   |
| 123789-H6CDD                                |                                                      | N/A                                               | N/A                                               | 1.32E-12                   |
| 1234678-H7CDD                               |                                                      | N/A                                               | N/A                                               | 7.51E-13                   |
| OCDD                                        |                                                      | N/A                                               | N/A                                               | 1.50E-13                   |
| 2378-T4CDF                                  |                                                      | N/A                                               | N/A                                               | 4.36E-12                   |
| 12378-P5CDF                                 |                                                      | N/A                                               | N/A                                               | 5.86E-13                   |
| 23478-P5CDF                                 |                                                      | N/A                                               | N/A                                               | 1.21E-11                   |
| 123478-H6CDF                                |                                                      | N/A                                               | N/A                                               | 7.08E-12                   |
| 123678-H6CDF                                |                                                      | N/A                                               | N/A                                               | 2.96E-12                   |
| 234678-H6CDF                                | N/A                                                  | N/A                                               | N/A                                               | 6.47E-12                   |
| 123789-H6CDF                                |                                                      | N/A                                               | N/A                                               | 5.48E-13                   |
| 1234678-H7CDF                               |                                                      | N/A                                               | N/A                                               | 1.62E-12                   |
| 1234789-H7CDF                               |                                                      | N/A<br>N/A                                        | N/A<br>N/A                                        | 6.76E-13                   |
| OCDF                                        |                                                      | N/A<br>N/A                                        | N/A<br>N/A                                        | 3.12E-13<br>4.38E-11       |
| Total Dioxins and Furans Chlorobenzenes and |                                                      | IV/A                                              | IV/A                                              | 4.30E-11                   |
| Octachlorostyrene                           |                                                      | N/A                                               | N/A                                               |                            |
| 1,2,3,5-Tetrachlorobenzene                  |                                                      | N/A                                               | N/A                                               | 5.11E-09                   |
| 1,2,4,5-Tetrachlorobenzene                  |                                                      | N/A                                               | N/A                                               | 1.62E-09                   |
| 1,2,3,4-Tetrachlorobenzene                  |                                                      | N/A                                               | N/A                                               | 4.21E-09                   |
| Pentachlorobenzene                          | N/A                                                  | N/A                                               | N/A                                               | 8.30E-09                   |

**Table 5C-4-1-2: Milne Port Point Sources** 

| Source Description          |       |       | Incinerator |          |
|-----------------------------|-------|-------|-------------|----------|
| Source Name                 | GEN01 | GEN02 | GEN03       | MR_INCIN |
| Hexachlorobenzene           | N/A   | N/A   | N/A         | 3.16E-09 |
| Total Selected CBs          | N/A   | N/A   | N/A         | 2.24E-08 |
| Octachlorostyrene           | N/A   | N/A   | N/A         | 0.00E+00 |
| Polycyclic Aromatic         |       |       |             |          |
| Hydrocarbons (PAHs)         | N/A   | N/A   | N/A         |          |
| Acenapthylene               | N/A   | N/A   | N/A         | 6.01E-10 |
| Acenpthene                  | N/A   | N/A   | N/A         | 0.00E+00 |
| Fluorene                    | N/A   | N/A   | N/A         | 1.43E-09 |
| 2-Methyl-Fluorene           | N/A   | N/A   | N/A         | 1.43E-09 |
| Phenenthrene                | N/A   | N/A   | N/A         | 1.25E-08 |
| Anthracene                  | N/A   | N/A   | N/A         | 9.01E-10 |
| Fluoranthene                | N/A   | N/A   | N/A         | 3.61E-09 |
| Pyrene                      | N/A   | N/A   | N/A         | 2.97E-09 |
| Retene                      | N/A   | N/A   | N/A         | 4.36E-09 |
| Benzo(a)Fluorene            | N/A   | N/A   | N/A         | 1.50E-10 |
| Benzo(b)Fluorene            | N/A   | N/A   | N/A         | 0.00E+00 |
| 1-Methyl-Pyrene             | N/A   | N/A   | N/A         | 1.13E-10 |
| Benzo(g,h,i)Fluoranthene    | N/A   | N/A   | N/A         | 1.13E-10 |
| Benzo(a)Anthrecene          | N/A   | N/A   | N/A         | 3.38E-10 |
| Triphenylene                | N/A   | N/A   | N/A         | 3.00E-10 |
| Chrysene                    | N/A   | N/A   | N/A         | 8.26E-10 |
| 7-Methyl-Benzo(a)Anthracene | N/A   | N/A   | N/A         | 0.00E+00 |
| Benzo(b)Fluoranthene        | N/A   | N/A   | N/A         | 1.65E-09 |
| Benzo(k)Fluoranthene        | N/A   | N/A   | N/A         | 1.88E-10 |
| Benzo(e)Pyrene              | N/A   | N/A   | N/A         | 6.01E-10 |
| Benzo(a)Pyrene              | N/A   | N/A   | N/A         | 0.00E+00 |
| Perylene                    | N/A   | N/A   | N/A         | 0.00E+00 |
| 3-Methyl-Cholanthrene       | N/A   | N/A   | N/A         | 0.00E+00 |
| Indeno(1,2,3-cd)Pyrene      | N/A   | N/A   | N/A         | 4.88E-10 |
| Dibenzo(a,h)Anthracene      | N/A   | N/A   | N/A         | 0.00E+00 |
| Benzo(b)Chrysene            | N/A   | N/A   | N/A         | 0.00E+00 |
| Benzo(g,h,i)Perylene        | N/A   | N/A   | N/A         | 3.38E-10 |
| Anthanthrene                | N/A   | N/A   | N/A         | 0.00E+00 |
| Total PAHs                  | N/A   | N/A   | N/A         | 3.31E-08 |
| Selected Volatile Organic   |       |       |             |          |
| Compounds (VOCs)            | N/A   | N/A   | N/A         |          |
| Chloromethane               | N/A   | N/A   | N/A         | 2.14E-06 |
| Vinyl Chloride              | N/A   | N/A   | N/A         | 7.21E-07 |
| 1.3-Butadiene               | N/A   | N/A   | N/A         | 2.06E-06 |
| Dichloromethane             | N/A   | N/A   | N/A         | 2.39E-06 |
| Benzene                     | N/A   | N/A   | N/A         | 2.02E-05 |
| Toluene                     | N/A   | N/A   | N/A         | 2.57E-03 |
| Chlorobenzene               | N/A   | N/A   | N/A         | 8.23E-07 |
| Ethylbenzene                | N/A   | N/A   | N/A         | 4.17E-06 |
| Euryberizene                | IN/A  | IN/A  | IN/A        | 4.17E-00 |

**Table 5C-4-1-3: Milne Port Area Sources** 

| Source Description            | AREA1 - AREA23                                                                                                                       |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Source Name                   |                                                                                                                                      |
|                               | Haul Truck -120 Tons (From Crusher to Trucking Stockpile)                                                                            |
| Power Rating                  | 1082 kW                                                                                                                              |
| # of Units                    | N/A                                                                                                                                  |
| Area (m <sup>2</sup> )        | Hauling distance 100km with a width of 10m                                                                                           |
| Sigma z (m)                   | 2.00                                                                                                                                 |
| Release Height (m) [Fugitive] | 4                                                                                                                                    |
| Source of Emission Rates      | Combustion from: US EPA AP-42 Ch 3.4 for SO2 and from US EPA TierII/III Standards Document. PM: US EPA AP-42 Ch 13.2.2 Unpaved Roads |
| Emission Rates (g/s)          |                                                                                                                                      |
| NOx                           | 3.97E+01                                                                                                                             |
| SO2                           | 1.30E-01                                                                                                                             |
| SO3                           | 5.14E-03                                                                                                                             |
| SO4                           | 4.11E-03                                                                                                                             |
| CO                            | 2.31E+01                                                                                                                             |
| PM2.5 (Combustion)            | 1.32E+00                                                                                                                             |
| TSP (Fugitive)                | 3.93E+02                                                                                                                             |
| PM10 (Fugitive)               | 1.02E+02                                                                                                                             |
| PM2.5 (Fugitive)              | 1.02E+01                                                                                                                             |
| Emission Rates (g/m2-s)       | 0.005.00                                                                                                                             |
| NOx                           | 3.97E-05                                                                                                                             |
| NO                            | N/A                                                                                                                                  |
| NO2<br>NO3                    | N/A<br>N/A                                                                                                                           |
| SO2                           | 1.30E-07                                                                                                                             |
| SO2<br>SO3                    | 1.30E-07<br>N/A                                                                                                                      |
| SO3                           | N/A                                                                                                                                  |
| CO                            | 2.31E-05                                                                                                                             |
| PM2.5 (Combustion)            | 1.32E-06                                                                                                                             |
| TSP (Fugitive)                | 3.93E-04                                                                                                                             |
| PM10 (Fugitive)               | 1.02E-04                                                                                                                             |
| PM2.5 (Fugitive)              | 1.02E-05                                                                                                                             |

Table 5C-4-1-4: Milne Port Volume Sources

| Source Description                           | Lump Stockpile                                       | Lump<br>Stockpile                                    | Lump Stockpile                                       | Lump Stockpile                                       | Fine<br>Stockpile                                       | Fine Stockpile                                          | Lump/Fine<br>Stacker                                                 | Lump/Fine<br>Reclaimer  | Lump/Fine<br>Reclaimer                                               | Lump/Fine<br>Ship Loader | Lump/Fine<br>Ship Loader                                             | Lump/Fine<br>Tripper<br>Discharge<br>Chute                           | Ship Loader<br>Tripper<br>Discharge<br>Chute | Fine/Lump<br>Stacker<br>Discharge<br>Chute                           | Fine/Lump<br>Reclaimer<br>Discharge<br>Chute                         | Fine/Lump<br>Reclaimer<br>Discharge<br>Chute | Fine/Lump<br>Ship Loader<br>Discharge<br>Chute                       | Fine/Lump<br>Ship Loader<br>Discharge<br>Chute                       |
|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Source Name                                  | MLUMP1                                               | MLUMP2                                               | MLUMP3                                               | MLUMP4                                               | MFINE1                                                  | MFINE2                                                  | 3300-SK-01                                                           | 3300-RC-01              | 3300-RC-02                                                           | 3300-SL-01               | 3300-SL-02                                                           | 3300-TR-01                                                           | 3300-TR-02                                   | 3300-CH-01                                                           | 3300-CH-02                                                           | 3300-CH-03                                   | 3300-CH-04                                                           | 3300-CH-05                                                           |
| Location [X-coord] (km)                      | 503.77                                               | 503.85                                               | 503.77                                               | 503.85                                               | 503.769                                                 | 503.85                                                  | 503.81                                                               | 503.803                 | 503.817                                                              | 503.081                  | 503.155                                                              | 503.81                                                               | 503.119                                      | 503.783                                                              | 503.803                                                              | 503.817                                      | 503.135                                                              | 503.064                                                              |
| Location [Y-coord] (km)                      | 7975.416                                             | 7975.416                                             | 7975.047                                             | 7975.048                                             | 7974.752                                                | 7974.752                                                | 7974.667                                                             | 7975.548                | 7975.548                                                             | 7976.532                 | 7976.574                                                             | 7974.642                                                             | 7976.55                                      | 7974.667                                                             | 7975.593                                                             | 7975.573                                     | 7976.609                                                             | 7976.569                                                             |
| Elevation (m ASL)                            | 44                                                   | 55                                                   | 49                                                   | 57                                                   | 51                                                      | 58                                                      | 54                                                                   | 44                      | 46                                                                   | 0                        | 0                                                                    | 54                                                                   | 0                                            | 53                                                                   | 43                                                                   | 45                                           | 0                                                                    | 0                                                                    |
| Power Rating                                 | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                     | N/A                                                                  | N/A                      | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  |
| # of Units                                   |                                                      |                                                      |                                                      |                                                      |                                                         |                                                         |                                                                      |                         |                                                                      |                          |                                                                      |                                                                      |                                              |                                                                      |                                                                      |                                              |                                                                      |                                                                      |
| Sigma y (m)                                  | 2                                                    | 2                                                    | 2                                                    | 2                                                    | 2                                                       | 2                                                       | 0.20                                                                 | 0.20                    | 0.20                                                                 | 0.20                     | 0.20                                                                 | 0.20                                                                 | 0.20                                         | 0.20                                                                 | 0.20                                                                 | 0.20                                         | 0.20                                                                 | 0.20                                                                 |
| Sigma z (m)                                  | 2.00                                                 | 2.00                                                 | 2.00                                                 | 2.00                                                 | 2.00                                                    | 2.00                                                    | 0.20                                                                 | 0.20                    | 0.20                                                                 | 0.20                     | 0.20                                                                 | 0.20                                                                 | 0.20                                         | 0.20                                                                 | 0.20                                                                 | 0.20                                         | 0.20                                                                 | 0.20                                                                 |
| Release Height (m)                           | 5                                                    | 5                                                    | 5                                                    | 5                                                    | 5                                                       | 5                                                       | 6                                                                    | 6                       | 6                                                                    | 6                        | 6                                                                    | 1                                                                    | 1                                            | 1                                                                    | 1                                                                    | 1                                            | 1                                                                    | 1                                                                    |
| Source of Emission Rates                     | US EPA AP-42 Ch<br>13.2.5 Industrial<br>Wind Erosion | US EPA AP-42<br>Ch 13.2.5<br>Industrial Wind<br>Erosion | US EPA AP-42<br>Ch 13.2.5<br>Industrial Wind<br>Erosion | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles |                         | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles |                          | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles |                                              | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles |                                              | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles |
| Emission Rates (g/s)                         |                                                      |                                                      |                                                      |                                                      |                                                         |                                                         |                                                                      |                         |                                                                      |                          |                                                                      |                                                                      |                                              |                                                                      |                                                                      |                                              |                                                                      |                                                                      |
| NO                                           | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                     | N/A                                                                  | N/A                      | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  |
| SO2                                          | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                     | N/A                                                                  | N/A                      | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  |
| SO3                                          | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                     | N/A                                                                  | N/A                      | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  |
| SO4                                          | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                     | N/A                                                                  | N/A                      | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  |
| CC                                           | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                     | N/A                                                                  | N/A                      | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  |
| PM2.5 (Combustion                            | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                     | N/A                                                                  | N/A                      | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  |
| TSP (Fugitive PM10 (Fugitive PM2.5 (Fugitive | Hourly Emission File                                 | Hourly Emission<br>File                              | Hourly Emission File                                 | Hourly Emission<br>File                              | Hourly Emission<br>File                                 | Hourly Emission<br>File                                 | Hourly Emission<br>File                                              | Hourly Emission<br>File | Hourly Emission<br>File                                              | Hourly Emission<br>File  | Hourly Emission<br>File                                              | Hourly Emission<br>File                                              | Hourly Emission<br>File                      | Hourly Emission<br>File                                              | Hourly Emission<br>File                                              | Hourly Emission<br>File                      | Hourly Emission<br>File                                              | Hourly Emission<br>File                                              |





# **APPENDIX 5C-4-2**

EMISSION INVENTORY FOR THE MINE SITE OPERATIONS



# **Emission Inventory for the Mine Site Operations**

This appendix summarizes the information used to develop the emission inventory for Mine Site operations. The project base quantities, source parameters, emission factors and other assumptions used to develop the emission rate inputs for modelling are presented in Table 5C-4-2-1.

All references to AP-42 refer to the United States Environmental Protection Agency's (U.S. EPA) AP-42 emission factor documentation.

Table 5C-4-2-1: Combustion Emission Factors and Base Quantities Used to Develop the Mine Site Emission Inventory

| Emission Inventory        |                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Generation -        | - Arctic Diesel Generators (Caterpillar CM32)                                                                                                                                                                                                                                                                                                                                     |
| Emission factors          | <ul> <li>AP-42 Ch. 3.4 was used to calculate SO<sub>2</sub> emissions from the power generators at the Mine Site</li> <li>Manufacturer specification sheet was used to calculate NO<sub>x</sub>, CO and PM<sub>2.5</sub> emissions</li> </ul>                                                                                                                                     |
|                           | • All particulate matter was assumed to be in the PM <sub>2.5</sub> size fraction                                                                                                                                                                                                                                                                                                 |
| Base quantities           | • The Mine Site has 5 generators (3 operating, 1 standby and 1 backup), each with a power rating of 5,590kW                                                                                                                                                                                                                                                                       |
|                           | Arctic Diesel with molecular mass of 226 g/mole with ultra-low sulphur fuel (i.e., 0.4 % fuel sulphur) will be used                                                                                                                                                                                                                                                               |
| Source parameters         | <ul> <li>Stack heights of 30 m confirmed by RWDI through preliminary stack height modelling</li> <li>Stack diameters of 1.09 m were calculated based on an assumed exit velocity of 15.24 m/s and from flow-rates derived from engine specification sheet</li> <li>Exhaust exit temperature is 320 °C for the generators based on the manufacturer specification sheet</li> </ul> |
| Emission controls         | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                                 |
| Schedule of<br>Operations | • 3 generators will operate 24 hours a day, 7 days a week                                                                                                                                                                                                                                                                                                                         |
| Power Generation -        | - Back-up Emergency Boilers (Cleaver Brooks)                                                                                                                                                                                                                                                                                                                                      |
| Emission factors          | <ul> <li>AP-42 Ch. 1.3 was used to calculate NO<sub>x</sub>, SO<sub>2</sub>, CO and PM<sub>2.5</sub> emissions from the power generators.</li> <li>All particulate matter was assumed to be in the PM<sub>2.5</sub> size fraction</li> </ul>                                                                                                                                      |
| Base quantities           | The Mine Site has a total of two-4.8 million BTU/hr Cleaver Brooks emergency boilers.                                                                                                                                                                                                                                                                                             |
| Source parameters         | <ul> <li>Stack heights of 30 m assumed in the assessment, based on preliminary stack height modelling</li> <li>Stack diameters of 0.05 m were calculated based on an assumed exit velocity of 15.24 m/s and from calculated flow rates</li> <li>Exhaust exit temperature is 175 °C was assumed for the boilers</li> </ul>                                                         |
| Emission controls         | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                                 |
| Schedule of<br>Operations | Boilers used for back up heat generation only and were therefore not included in the air quality impact assessment as the operation of the generators results in higher emissions compared to the boilers.                                                                                                                                                                        |

| <b>Dust Collectors</b>                  |                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emission factors                        | Dust collectors are vented back into the building, therefore are considered                                                                                                                                                                                                                                                             |
| Base quantities                         | insignificant                                                                                                                                                                                                                                                                                                                           |
| Source parameters                       |                                                                                                                                                                                                                                                                                                                                         |
| Emission controls                       |                                                                                                                                                                                                                                                                                                                                         |
| Railway                                 |                                                                                                                                                                                                                                                                                                                                         |
| Emission factors                        | <ul> <li>US EPA Technical Highlights: Emission Factors for Locomotives document was used to generate NO<sub>x</sub>, CO and PM emissions. Table 9 – Fleet Average Emission Factor for All Locomotives for Year 2016 were used.</li> <li>SO<sub>2</sub> emissions were taken from a previous study conducted by RWDI in 1995.</li> </ul> |
| Base quantities                         | <ul> <li>The trains will have 4400bhp engines, 2 locomotives and 110 wagons per train</li> <li>Design speed of 75km/hour (60 km/hour scenario more plausible)</li> <li>Transfer rate to load wagons: 6,000 tonnes per hour</li> </ul>                                                                                                   |
|                                         | Unloading rate: 1 minute per wagon                                                                                                                                                                                                                                                                                                      |
| Source parameters                       | <ul> <li>Stack heights of 4.0 m above ground level were based on previous studies conducted by RWDI</li> <li>Stack diameters of 0.5 m, exit velocity of 21.4 m/s, flow rate of 4.2m³/s and exhaust exit temperature of 149 °C were based on previous studies conducted by RWDI</li> </ul>                                               |
| Emission controls                       | No emission controls were assumed                                                                                                                                                                                                                                                                                                       |
| Schedule of<br>Operations               | 6 trains per day will travel the railway corridor (145 km) between the Mine Site and Steensby Port.                                                                                                                                                                                                                                     |
| Aircraft                                |                                                                                                                                                                                                                                                                                                                                         |
| Emission factors                        | Based on the Federal Aviation Administration's (FAA) emission inventory for aircraft entitled Emissions and Dispersion Modeling System (EDMS) for inventory purposes only.                                                                                                                                                              |
| Base quantities                         | <ul> <li>During operations, Cessnas will be bringing in workers to the Mine Site.</li> <li>737 200C combination (freight + people)</li> <li>Bell Ranger helicopters</li> </ul>                                                                                                                                                          |
| Source parameters                       | • The aircraft sources were not quantified. Specific source parameters not required.                                                                                                                                                                                                                                                    |
| Emission controls                       | No emission controls were assumed                                                                                                                                                                                                                                                                                                       |
| Schedule of<br>Operations               | <ul> <li>104 flights per year to the Mine Site (737s)</li> <li>A few Cessna flights every two weeks to coincide with shift changes</li> <li>Up to 4 helicopter flights per day.</li> <li>Due to intermittent nature of flights, the air quality impacts were not quantified explicitly.</li> </ul>                                      |
| Incinerator                             |                                                                                                                                                                                                                                                                                                                                         |
| Emission factors                        | From "Characterization of Emissions from the Eco Waste Solutions Thermal Oxidizer" Report, prepared by Eco Waste Solution, provided by Aker September 2007.                                                                                                                                                                             |
| Base quantities                         | Burns 1,000 kg/day                                                                                                                                                                                                                                                                                                                      |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                         |

| Source parameters           | <ul> <li>Average flow rate of 1.13m³/s, velocity of 6.15m/s and exhaust temperature of 679°C were provided in "Characterization of Emissions from the Eco Waste Solutions Thermal Oxidizer" Report, prepared by Eco Waste Solution, provided by Aker September 2007.</li> <li>Stack diameter of 0.48m was calculated using the average flow rate and velocity.</li> </ul>                                                                                                                                                                                                                           |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emission controls           | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Schedule of                 | Assumed to operate 24 hours per day, 7 days a week.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Operations                  | 1 1 3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Blasting, Grading an        | d Dozing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Emission factors            | • PM <sub>2.5</sub> , PM <sub>10</sub> , TSP emissions from blasting, grading and dozing operations were estimated using AP-42 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Base quantities             | <ul> <li>Blasting:</li> <li>Total area of blast is 4,000m², with a top area of 40m² and a face of 100m²</li> <li>The blasting will occur approximately every day (94 blasts simultaneously covering a blast area of 100m x 40m). 283 blasts per year are required (283 * 94 = 26602 blasts per year).</li> <li>Grading:</li> </ul>                                                                                                                                                                                                                                                                  |
|                             | • 2 graders (CAT-16H) will be operating simultaneously Dozing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | 3 track dozers (CAT D9 and D10) and 2 wheel dozers (CAT834) will be operating simultaneously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Source parameters           | <ul> <li>Blasting:</li> <li>Total area of blast is 4,000m², with a top area of 40m² and a face of 100m²</li> <li>The blasting will occur approximately every day (94 blasts simultaneously covering a blast area of 100m x 40m). 283 blasts per year are required. Grading:</li> <li>The mean vehicle speed used for graders is 30 km/hour.</li> <li>Dozing:</li> <li>Material silt content of 1.2% based on bulk sampling conducted by RWDI.</li> <li>Moisture content of 0.1% based on bulk sampling.</li> <li>Material flow of 70,000 tonnes per day (21,000,000 tonnes per year/300)</li> </ul> |
|                             | days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Emission controls           | No emission controls were assumed for blasting, grading and dozing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Schedule of                 | • One blast per day, assumed to occur at 4 pm (to coincide with shift change),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Operations                  | 365 days per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | • Grading and dozing operations were assumed to occur 20 hours per day, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Decree 1 C 2                | days per week.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Processing Operation</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Emission factors            | <ul> <li>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP emissions from drilling were estimated using AP-42 11.19.2.1</li> <li>Wet drilling emission factors are used since there are no dry drilling emission factors.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           |
| Base quantities             | Processing 21,000,000 tonnes per year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Source parameters           | <ul> <li>Material handled from drilling was calculated using the volume of a cylinder</li> <li>Blasting hole diameter is 9 inches (0.2286 m), assumed a drilling depth of 30m and a density provided by Aker Kvaerner (Process Design Criteria) of 2,620kg/m³ (3.2 tonnes/hour).</li> </ul>                                                                                                                                                                                                                                                                                                         |

| Emission controls      | Drills are equipped with dust collectors                                                                                        |  |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Schedule of            | • 20 hours a day, 7 days a week                                                                                                 |  |  |  |  |  |  |
| Operations             |                                                                                                                                 |  |  |  |  |  |  |
| Bulk Material Handling |                                                                                                                                 |  |  |  |  |  |  |
| Emission factors       | • PM <sub>2.5</sub> , PM <sub>10</sub> , TSP emissions from bulk material handling operations were estimated using AP-42 13.2.4 |  |  |  |  |  |  |
| Base quantities        | <ul> <li>The following sources and corresponding parameters are included in the<br/>modelling:</li> </ul>                       |  |  |  |  |  |  |

| ID [2]          | Process                               | Material | Material | Material   | Site     | Silt    | Moistur<br>e |
|-----------------|---------------------------------------|----------|----------|------------|----------|---------|--------------|
|                 |                                       | Handled  | Handled  | Handled    | Specific | Content | Conten       |
|                 |                                       | (Hourly) | (Daily)  | (Annual)   | Data     |         |              |
|                 |                                       | (Mg)     | (Mg)     | (Mg)       | (y/n)    | (%)     | (%)          |
| MINE SITE       |                                       |          |          |            |          |         |              |
| 2300-CH-<br>001 | Fines Yard Tripper Chute              | 1315     | 26,300   | 7,890,000  | у        | 7.0%    | 4.8%         |
| 2300-CH-<br>002 | Lump Yard Tripper Chute               | 3200     | 64,000   | 19,200,000 | у        | 9.5%    | 5.4%         |
| 2300-CH-<br>012 | Lump Yard Tripper Conveyor Feed Chute | 3,200    | 64,000   | 19,200,000 | у        | 9.5%    | 5.4%         |
| 2300-CH-<br>014 | Fine/Lump Reclaimer Discharge Chute   | 3,450    | 69,000   | 20,700,000 | у        | 9.5%    | 5.4%         |
| 2300-CH-<br>015 | Product Reclaim Conveyor Feed Chute   | 3,450    | 69,000   | 20,700,000 | у        | 9.5%    | 5.4%         |
| 2300-CH-<br>024 | Lump Tripper Chute                    | 2834     | 56,680   | 17,004,000 | у        | 9.5%    | 5.4%         |
| 2300-RC-<br>006 | Fine/Lump Reclaimer 1                 | 3,450    | 69,000   | 20,700,000 | у        | 9.5%    | 5.4%         |
| 2300-RC-<br>007 | Fine/Lump Reclaimer 2                 | 3,450    | 69,000   | 20,700,000 | у        | 9.5%    | 5.4%         |
| 2300-SK-<br>002 | Fines Mobile Stacker                  | 1,315    | 26,300   | 7,890,000  | у        | 7.0%    | 4.8%         |
| 2300-SK-<br>004 | Lump Mobile Stacker                   | 3,200    | 64,000   | 19,200,000 | у        | 9.5%    | 5.4%         |
| 2300-SK-<br>005 | Lump Mobile Stacker 2                 | 3,200    | 64,000   | 19,200,000 | у        | 9.5%    | 5.4%         |
| TRSTCK1*        | Lump/Fine Stacker 1                   | 600      | 14,400   | 4,320,000  | у        | 9.5%    | 5.4%         |
| TRSTCK2*        | Lump/Fine Stacker 2                   | 600      | 14,400   | 4,320,000  | у        | 9.5%    | 5.4%         |
| TRRC1*          | Lump/Fine Loader 1                    | 1,000    | 24,000   | 7,200,000  | у        | 9.5%    | 5.4%         |
| TRSCHUT1*       | Lump/Fine Stacker Discharge Chute 1   | 600      | 14,400   | 4,320,000  | у        | 9.5%    | 5.4%         |
| TRSCHUT2*       | Lump/Fine Stacker Discharge Chute 2   | 600      | 14,400   | 4,320,000  | у        | 9.5%    | 5.4%         |
| TRRCHUT1*       | Lump/Fine Loader Discharge Chute 1    | 600      | 14,400   | 4,320,000  | у        | 9.5%    | 5.4%         |
| TRCCHUT1*       | Truck Discharge Chute 1               | 422      | 10,125   | 3,037,500  | у        | 9.5%    | 5.4%         |

<sup>1. &</sup>quot;\*" These sources are added for trucking stockpile material handling in 2010 modelling scenario.

<sup>2.</sup> Green segment represents material handling emission sources included in both 2008 and 2010 modelling scenarios.

| Bulk Material Handling (Cont'd) |                                   |  |  |  |  |  |  |  |
|---------------------------------|-----------------------------------|--|--|--|--|--|--|--|
| Emission controls               | No emission controls were assumed |  |  |  |  |  |  |  |
| Schedule of                     | • 20 hours a day, 7 days a week.  |  |  |  |  |  |  |  |
| Operations                      |                                   |  |  |  |  |  |  |  |

| Stockpiles (Mine Sit   | e for Rail Transport to Steensby Port)                                                                                          |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Emission factors       | PM <sub>2.5</sub> , PM <sub>10</sub> , TSP emissions from stockpiles were estimated using AP-42 13.2.5                          |
| Base quantities        | Off spec fine stockpile is 100,000 tonnes                                                                                       |
| 1                      | • Fines stockpile is 300,000 tonnes                                                                                             |
|                        | Off spec lump stockpile is 300,000 tonnes                                                                                       |
|                        | • Lump stockpile is 700,000 tonnes                                                                                              |
| Source parameters      | • Surface roughness length of 0.003 m was applied in the calculations.                                                          |
| •                      | • Threshold velocity for iron ore was estimated to be 6.94 m/s based on bulk                                                    |
|                        | sampling program conducted by RWDI.                                                                                             |
|                        | Emission rates calculated on an hourly basis to vary according to wind                                                          |
|                        | speeds                                                                                                                          |
| Emission controls      | No emission controls were assumed                                                                                               |
| Schedule of Operations | • 24-hours per day, 7 days per week                                                                                             |
| Stockpiles (Trucking   | g Option for Transport to Milne Port)                                                                                           |
| Emission factors       | PM <sub>2.5</sub> , PM <sub>10</sub> , TSP emissions from stockpiles were estimated using AP-42 13.2.5                          |
| Base quantities        | Two lump stockpiles, each having a capacity of 21,600 tonnes                                                                    |
| - ···· 1······         | • Two fine stockpiles, each having a capacity of 21,600 tonnes                                                                  |
| Source parameters      | • Surface roughness length of 0.003 m was applied in the calculations.                                                          |
|                        | • Threshold velocity for iron ore was estimated to be 6.94 m/s based on bulk                                                    |
|                        | sampling program conducted by RWDI.                                                                                             |
|                        | Emission rates calculated on an hourly basis to vary according to wind                                                          |
|                        | speeds                                                                                                                          |
| Emission controls      | No emission controls were assumed                                                                                               |
| Schedule of            | • 24-hours per day, 7 days per week                                                                                             |
| Operations             |                                                                                                                                 |
|                        | rom Crusher to Trucking Option Stockpiles)                                                                                      |
| Emission factors       | • PM <sub>2.5</sub> , PM <sub>10</sub> , TSP emissions from stockpiles were estimated using AP-42 13.2.2                        |
|                        | • NO <sub>x</sub> , SO <sub>2</sub> , and CO emissions are from the U.S. EPA Tier II/III Standards                              |
|                        | Document Entitled: Emission Standards Reference Guide for Heavy-Duty                                                            |
|                        | and Nonroad Engines (http://www.epa.gov/otaq/cert/hd-cert/stds-eng.pdf).                                                        |
| Base quantities        | • Eight (8) 55 ton trucks                                                                                                       |
|                        | Mean vehicle speed of 30 km/hour                                                                                                |
|                        | Total distance travelled per pass is 1.12 km                                                                                    |
| Source parameters      | Modelled as a series of area sources                                                                                            |
|                        | • The maximum length to width ratio for the area sources was 10:1 with an effective height of 4 m and an initial sigma z of 2 m |
| Emission controls      | A 50% emission controls were assumed due to the road maintenance using                                                          |
|                        | chemical suppression (CaCl <sub>2</sub> )                                                                                       |
| Schedule of            | Operates 24 hours a day and 300 days per year                                                                                   |
| Operations             |                                                                                                                                 |

| <b>Truck Operation (F</b> | rom Trucking Option Stock Piles to Miln                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Inlet Stock                                   | Piles)                                 |                         |  |  |  |  |  |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|-------------------------|--|--|--|--|--|--|--|
| Emission factors          | <ul> <li>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP emissions from stockpiles were estimated using AP-42 13.2.2</li> <li>NO<sub>x</sub>, SO<sub>2</sub>, and CO emissions are from the U.S. EPA Tier II/III Standards Document Entitled: Emission Standards Reference Guide for Heavy-Duty and Nonroad Engines (http://www.epa.gov/otaq/cert/hd-cert/stds-eng.pdf).</li> </ul>                                                                                                                                      |                                                 |                                        |                         |  |  |  |  |  |  |  |
| Base quantities           | <ul><li>Twenty two (22) 120 ton trucks</li><li>Mean vehicle speed of 30 km/hour</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                                        |                         |  |  |  |  |  |  |  |
| Source parameters         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Modelled as a series of area sources            |                                        |                         |  |  |  |  |  |  |  |
| Emission controls         | A 50% emission controls were assumed due to the road maintenance using chemical suppression (CaCl <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                        |                         |  |  |  |  |  |  |  |
| Schedule of Operations    | Operates 24 hours a day and 300 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • Operates 24 hours a day and 300 days per year |                                        |                         |  |  |  |  |  |  |  |
| <b>Mobile Engine Emis</b> | ssions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |                                        |                         |  |  |  |  |  |  |  |
| Emission factors          | <ul> <li>The generation of SO<sub>2</sub>, NO<sub>x</sub>, CO and PM<sub>2.5</sub> from the combustion of diesel fuel in diesel engines was considered</li> <li>U.S. EPA Tier II/III Non-Road CI standards were used to calculate emission rates for the off-road fleet</li> <li>U.S. EPA Heavy-Duty Highway Engine standards were used to calculate emissions for on-road equipment (i.e. pick-up trucks)</li> <li>All engine PM emissions were assumed to be in the PM<sub>2.5</sub> size fraction</li> </ul> |                                                 |                                        |                         |  |  |  |  |  |  |  |
| Base quantities           | • The equipment fleet in the table below                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | w was provide                                   |                                        |                         |  |  |  |  |  |  |  |
|                           | Equipment Fleet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Availability                                    | Average<br>Vehicle<br>Weight<br>(tons) | Power<br>Rating<br>(kW) |  |  |  |  |  |  |  |
|                           | Production Drills - Atlas Copco_V-271                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                               | 75                                     | 555                     |  |  |  |  |  |  |  |
|                           | Drills - Atlas Copco D9-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                               | 75*                                    | 555                     |  |  |  |  |  |  |  |
|                           | Hydraulic Shovel - O&K RH200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                               | 235*                                   | 1880                    |  |  |  |  |  |  |  |
|                           | • Loader - CAT994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                               | 56                                     | 1176                    |  |  |  |  |  |  |  |
|                           | • Truck - CAT793 220t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                              | 235                                    | 1801                    |  |  |  |  |  |  |  |
|                           | Trackdozer - CATD9 and D10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                               | 57.5                                   | 370                     |  |  |  |  |  |  |  |
|                           | Wheeldozer - CAT834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                               | 47                                     | 372                     |  |  |  |  |  |  |  |
|                           | • Grader - CAT16H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                               | 25                                     | 198                     |  |  |  |  |  |  |  |
|                           | Watercart - 5000 Gallon Trucks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                               | 72.5                                   | 550*                    |  |  |  |  |  |  |  |
|                           | Backhoe - CAT385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                               | 85                                     | 382                     |  |  |  |  |  |  |  |
|                           | Service Truck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                               | 12*                                    | 200*                    |  |  |  |  |  |  |  |
|                           | • Tire Handler - CAT996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                               | 10                                     | 195                     |  |  |  |  |  |  |  |
|                           | Pickup Truck - 4-5L engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                               | 8*                                     | 190*                    |  |  |  |  |  |  |  |
| G                         | NOTES: * - values not provided therefore some assumptions were made  • Arctic Diesel with molecular mass of 226 g/mole with ultra-low sulphur fuel (i.e., 0.4 % fuel sulphur) will be used                                                                                                                                                                                                                                                                                                                      |                                                 |                                        |                         |  |  |  |  |  |  |  |
| Source parameters         | Power ratings and availability of vehi                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10103                                           |                                        |                         |  |  |  |  |  |  |  |

| Endada and and               | No emission controls were assumed                                                           |  |  |  |  |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Emission controls            | 100 emission controls were assumed                                                          |  |  |  |  |  |  |  |  |
| Schedule of                  | • 20 hours a day, 7 days a week                                                             |  |  |  |  |  |  |  |  |
| operations                   |                                                                                             |  |  |  |  |  |  |  |  |
| Haul Road Emissions (CAT793) |                                                                                             |  |  |  |  |  |  |  |  |
| Emission factors             | Dust generation from vehicular activity on surface roads was considered                     |  |  |  |  |  |  |  |  |
|                              | • AP-42 13.2.2 was used to calculate PM <sub>2.5</sub> , PM <sub>10</sub> and TSP emissions |  |  |  |  |  |  |  |  |
| Base quantities              | Seventeen (17) 220 tonnes CAT793 (see Mobile Engine Emissions)                              |  |  |  |  |  |  |  |  |
| 1                            | • A silt content of 5.2% was applied based on bulk sampling.                                |  |  |  |  |  |  |  |  |
| Source parameters            | Unpaved industrial roads                                                                    |  |  |  |  |  |  |  |  |
| Emission controls            | No emission controls were assumed                                                           |  |  |  |  |  |  |  |  |
| Schedule of                  | • 24 hours a day, 7 days a week                                                             |  |  |  |  |  |  |  |  |
| Operations                   |                                                                                             |  |  |  |  |  |  |  |  |

Tables 5C-4-2-2, 5C-4-2-3 and 5C-4-2-4 provide a summary of the source parameters applied in the CALPUFF modelling for the point, area, and volume sources, respectively.

Table 5C-4-2-2: Mine Site Point Sources

| Source Description                   |                     |                     | Incinerator             |                     |                     |                                       |
|--------------------------------------|---------------------|---------------------|-------------------------|---------------------|---------------------|---------------------------------------|
| Source Name                          | MR GEN01            | MR GEN02            | Generators<br>MR GEN03  | MR GEN04            | MR GEN05            | MR INCIN                              |
| Power Rating                         | 5590 kW             | 5590 kW             | 5590 kW                 | 5590 kW             | 5590 kW             | 1000 kg/day                           |
| # of Units                           | 1                   | 1                   | 1                       | 1                   | 1                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Stack Height Above Grade (m)         | 30                  | 30                  | 30                      | 30                  | 30                  | 17.3                                  |
| Stack Height Above Roof (m)          | 18                  | 18                  | 18                      | 18                  | 18                  |                                       |
| Stack Flow Rate (m³/s)               | 14.13               | 14.13               | 14.13                   | 14.13               | 14.13               | 1.127                                 |
| Stack Diameter (m)                   | 1.09                | 1.09                | 1.09                    | 1.09                | 1.09                | 0.48                                  |
| Exit Temperature (K)                 | 593                 | 593                 | 593                     | 593                 | 593                 | 952                                   |
| Exit Velocity (m/s)                  | 15.24               | 15.24               | 15.24                   | 15.24               | 15.24               | 6.15                                  |
|                                      | NOx, CO, PM from    | NOx, CO, PM from    | NOx, CO, PM from        | NOx, CO, PM from    | NOx, CO, PM from    | From                                  |
|                                      | manufacturer spec   | manufacturer spec   | manufacturer spec       | manufacturer spec   | manufacturer spec   | "Characterization of                  |
|                                      | sheet. SO2 from US  | sheet. SO2 from US  | sheet. SO2 from US      | sheet. SO2 from US  | sheet. SO2 from US  | Emissions from the                    |
| Source of Emissions                  | EPA AP-42 Ch 3.4    | EPA AP-42 Ch 3.4    | EPA AP-42 Ch 3.4        | EPA AP-42 Ch 3.4    | EPA AP-42 Ch 3.4    | Eco Waste Solutions                   |
|                                      |                     |                     | Large Stationary Diesel |                     | ,                   | Thermal Oxidizer                      |
|                                      | and Stationary Dual | and Stationary Dual | and Stationary Dual     | and Stationary Dual | and Stationary Dual | Report". Provided by                  |
|                                      | Fuel Engines        | Fuel Engines        | Fuel Engines            | Fuel Engines        | Fuel Engines        | Aker Sept 2007.                       |
| Emission Rates (g/s)                 |                     |                     |                         |                     |                     |                                       |
| NOx                                  | 31.87               | 31.87               | 31.87                   | 31.87               | 31.87               | 2.97E-02                              |
| SO2                                  | 0.97                | 0.97                | 0.97                    | 0.97                | 0.97                | 4.62E-04                              |
| SO3                                  | 0.038               | 0.038               | 0.038                   | 0.038               | 0.038               | 1.82E-05                              |
| SO4                                  | 0.031               | 0.031               | 0.031                   | 0.031               | 0.031               | 1.46E-05                              |
| CO                                   | 0.65                | 0.65                | 0.65                    | 0.65                | 0.65                | 1.45E-03                              |
| PM                                   | 0.02                | 0.02                | 0.02                    | 0.02                | 0.02                | 1.18E-02                              |
| HCI<br>HF                            | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A              | N/A<br>N/A          | N/A<br>N/A          | 1.77E-01<br>3.38E-03                  |
| Mercury                              | N/A<br>N/A          | N/A<br>N/A          | N/A                     | N/A<br>N/A          | N/A<br>N/A          | 3.31E-05                              |
| Antimony                             | N/A<br>N/A          | N/A                 | N/A                     | N/A                 | N/A                 | 8.10E-05                              |
| Arsenic                              | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.46E-06                              |
| Barium                               | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 3.27E-06                              |
| Beryllium                            | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 0.00E+00                              |
| Cadmium                              | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.35E-04                              |
| Chromium                             | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 5.98E-05                              |
| Cobalt                               | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 3.38E-07                              |
| Copper                               | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 2.41E-04                              |
| Lead                                 | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 2.77E-04                              |
| Manganese                            | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.62E-05                              |
| Nickel                               | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 5.97E-06                              |
| Selenium                             | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 3.16E-06                              |
| Silver<br>Thallium                   | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A              | N/A<br>N/A          | N/A<br>N/A          | 4.17E-06<br>0.00E+00                  |
| Zinc                                 | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A              | N/A<br>N/A          | N/A<br>N/A          | 1.58E-04                              |
| Dioxins and Furans                   | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.30L-04                              |
| 2378-T4CDD                           | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.89E-12                              |
| 12378-P5CDD                          | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.78E-12                              |
| 123478-H6CDD                         | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 4.88E-13                              |
| 123678-H6CDD                         | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 7.29E-13                              |
| 123789-H6CDD                         | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.32E-12                              |
| 1234678-H7CDD                        | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 7.51E-13                              |
| OCDD                                 | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.50E-13                              |
| 2378-T4CDF                           | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 4.36E-12                              |
| 12378-P5CDF                          | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 5.86E-13                              |
| 23478-P5CDF<br>123478-H6CDF          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A              | N/A<br>N/A          | N/A<br>N/A          | 1.21E-11<br>7.08E-12                  |
| 123478-H6CDF<br>123678-H6CDF         | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A              | N/A<br>N/A          | N/A<br>N/A          | 7.08E-12<br>2.96E-12                  |
| 234678-H6CDF                         | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 6.47E-12                              |
| 123789-H6CDF                         | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 5.48E-13                              |
| 1234678-H7CDF                        | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.62E-12                              |
| 1234789-H7CDF                        | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 6.76E-13                              |
| OCDF                                 | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 3.12E-13                              |
| Total Dioxins and Furans             | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 4.38E-11                              |
| Chlorobenzenes and                   |                     |                     |                         |                     |                     |                                       |
| Octachlorostyrene                    | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 |                                       |
| 1,2,3,5-Tetrachlorobenzene           | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 5.11E-09                              |
| 1,2,4,5-Tetrachlorobenzene           | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.62E-09                              |
| 1,2,3,4-Tetrachlorobenzene           | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 4.21E-09                              |
| Pentachlorobenzene                   | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A              | N/A<br>N/A          | N/A<br>N/A          | 8.30E-09                              |
| Hexachlorobenzene                    | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A              | N/A<br>N/A          | N/A<br>N/A          | 3.16E-09                              |
| Total Selected CBs Octachlorostyrene | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A              | N/A<br>N/A          | N/A<br>N/A          | 2.24E-08<br>0.00E+00                  |
| Polycyclic Aromatic                  | IV/A                | IN/A                | IV/A                    | IN/A                | IN/A                | 0.00E+00                              |
| Hydrocarbons (PAHs)                  | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | ĺ                                     |
| Acenapthylene                        | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 6.01E-10                              |
| Acenpthene                           | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 0.00E+00                              |
| Fluorene                             | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.43E-09                              |
| 2-Methyl-Fluorene                    | N/A                 | N/A                 | N/A                     | N/A                 | N/A                 | 1.43E-09                              |
|                                      |                     |                     |                         |                     |                     |                                       |

Table 5C-4-2-2: Mine Site Point Sources

| Source Description          |          |          | Generators |          |          | Incinerator |  |
|-----------------------------|----------|----------|------------|----------|----------|-------------|--|
| Source Name                 | MR_GEN01 | MR_GEN02 | MR_GEN03   | MR_GEN04 | MR_GEN05 | MR_INCIN    |  |
| Phenenthrene                | N/A      | N/A      | N/A        | N/A      | N/A      | 1.25E-08    |  |
| Anthracene                  | N/A      | N/A      | N/A        | N/A      | N/A      | 9.01E-10    |  |
| Fluoranthene                | N/A      | N/A      | N/A        | N/A      | N/A      | 3.61E-09    |  |
| Pyrene                      | N/A      | N/A      | N/A        | N/A      | N/A      | 2.97E-09    |  |
| Retene                      | N/A      | N/A      | N/A        | N/A      | N/A      | 4.36E-09    |  |
| Benzo(a)Fluorene            | N/A      | N/A      | N/A        | N/A      | N/A      | 1.50E-10    |  |
| Benzo(b)Fluorene            | N/A      | N/A      | N/A        | N/A      | N/A      | 0.00E+00    |  |
| 1-Methyl-Pyrene             | N/A      | N/A      | N/A        | N/A      | N/A      | 1.13E-10    |  |
| Benzo(g,h,i)Fluoranthene    | N/A      | N/A      | N/A        | N/A      | N/A      | 1.13E-10    |  |
| Benzo(a)Anthrecene          | N/A      | N/A      | N/A        | N/A      | N/A      | 3.38E-10    |  |
| Triphenylene                | N/A      | N/A      | N/A        | N/A      | N/A      | 3.00E-10    |  |
| Chrysene                    | N/A      | N/A      | N/A        | N/A      | N/A      | 8.26E-10    |  |
| 7-Methyl-Benzo(a)Anthracene | N/A      | N/A      | N/A        | N/A      | N/A      | 0.00E+00    |  |
| Benzo(b)Fluoranthene        | N/A      | N/A      | N/A        | N/A      | N/A      | 1.65E-09    |  |
| Benzo(k)Fluoranthene        | N/A      | N/A      | N/A        | N/A      | N/A      | 1.88E-10    |  |
| Benzo(e)Pyrene              | N/A      | N/A      | N/A        | N/A      | N/A      | 6.01E-10    |  |
| Benzo(a)Pyrene              | N/A      | N/A      | N/A        | N/A      | N/A      | 0.00E+00    |  |
| Perylene                    | N/A      | N/A      | N/A        | N/A      | N/A      | 0.00E+00    |  |
| 3-Methyl-Cholanthrene       | N/A      | N/A      | N/A        | N/A      | N/A      | 0.00E+00    |  |
| Indeno(1,2,3-cd)Pyrene      | N/A      | N/A      | N/A        | N/A      | N/A      | 4.88E-10    |  |
| Dibenzo(a,h)Anthracene      | N/A      | N/A      | N/A        | N/A      | N/A      | 0.00E+00    |  |
| Benzo(b)Chrysene            | N/A      | N/A      | N/A        | N/A      | N/A      | 0.00E+00    |  |
| Benzo(g,h,i)Perylene        | N/A      | N/A      | N/A        | N/A      | N/A      | 3.38E-10    |  |
| Anthanthrene                | N/A      | N/A      | N/A        | N/A      | N/A      | 0.00E+00    |  |
| Total PAHs                  | N/A      | N/A      | N/A        | N/A      | N/A      | 3.31E-08    |  |
| Selected Volatile Organic   |          |          |            |          |          |             |  |
| Compounds (VOCs)            | N/A      | N/A      | N/A        | N/A      | N/A      |             |  |
| Chloromethane               | N/A      | N/A      | N/A        | N/A      | N/A      | 2.14E-06    |  |
| Vinyl Chloride              | N/A      | N/A      | N/A        | N/A      | N/A      | 7.21E-07    |  |
| 1,3-Butadiene               | N/A      | N/A      | N/A        | N/A      | N/A      | 2.06E-06    |  |
| Dichloromethane             | N/A      | N/A      | N/A        | N/A      | N/A      | 2.39E-06    |  |
| Benzene                     | N/A      | N/A      | N/A        | N/A      | N/A      | 2.02E-05    |  |
| Toluene                     | N/A      | N/A      | N/A        | N/A      | N/A      | 2.57E-03    |  |
| Chlorobenzene               | N/A      | N/A      | N/A        | N/A      | N/A      | 8.23E-07    |  |
| Ethylbenzene                | N/A      | N/A      | N/A        | N/A      | N/A      | 4.17E-06    |  |

Notes

<sup>1.</sup> Three (3) of the generators out of the five (5) listed here were modelled as they operate continuously; out of the remaining generators, one (1) is standby and another is backup Total (ton/year)

Table 5C-4-2-3 Mine Site Area Sources

| Source Description            | AREA1                      |                               | AREA2                                                 |                          |                           |                            |                                                   |                                                  |                                                     | AR                                                | EA 3                                              |                                                  |                                                    |                                                   |                                                   |                                                   | AREA4 - AREA16                                   | AREA17 - AREA86                                     | AREA90 - AREA120         |
|-------------------------------|----------------------------|-------------------------------|-------------------------------------------------------|--------------------------|---------------------------|----------------------------|---------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------|
| Source Name                   | Blasting                   | Grading                       | Dozing                                                | Drilling                 |                           |                            |                                                   |                                                  |                                                     | Mo                                                | bile                                              |                                                  |                                                    |                                                   |                                                   |                                                   | Mat                                              | erial Transport through Tote                        | Road                     |
|                               |                            | 1                             |                                                       |                          | Production Drills - Atlas |                            | Hydraulic Shovel - O&K                            |                                                  | Trackdozer - CATD9 and                              |                                                   |                                                   | Watercart - 5000 Gallon                          |                                                    |                                                   |                                                   |                                                   | Haul Truck -55 Tons (Fron                        |                                                     |                          |
|                               |                            |                               |                                                       |                          | Copco_V-271               | Drills - Atlas Copco D9-11 | RH200                                             | Loader - CAT994                                  | D10                                                 | Wheeldozer - CAT834                               | Grader - CAT16H                                   | Trucks                                           | Backhoe - CAT385                                   | Service Truck                                     | Tire Handler - CAT996                             | Pickup Truck - 4-5L engine                        |                                                  | (From Crusher to Trucking                           | Truck - CAT793 220t      |
|                               |                            |                               |                                                       |                          |                           |                            |                                                   |                                                  | -                                                   |                                                   |                                                   |                                                  |                                                    |                                                   |                                                   |                                                   | Stockpile)                                       | Stockpile)                                          |                          |
| Sigma z (m)                   | 10.00                      | 1.00                          | 1.00                                                  | 2.00                     | 2.00                      | 2.00                       | 2.00                                              | 2.00                                             | 2.00                                                | 2.00                                              | 2.00                                              | 2.00                                             | 2.00                                               | 2.00                                              | 2.00                                              | 2.00                                              | 2.00                                             | 2.00                                                | 2.00                     |
| Release Height (m) [Fugitive] | 0                          | 1                             | 1                                                     | 0                        | 4                         | 4                          | 4                                                 | 4                                                | 4                                                   | 4                                                 | 4                                                 | 4                                                | 4                                                  | 4                                                 | 4                                                 | 4                                                 | 4                                                | 4                                                   | 4                        |
|                               |                            |                               |                                                       |                          |                           | Combustion from: US EPA    |                                                   | Combustion from: US EPA                          |                                                     |                                                   |                                                   |                                                  | Combustion from: US EP                             |                                                   |                                                   |                                                   |                                                  | Combustion from: US EPA                             | Combustion from: US EPA  |
|                               | US FPA AP-42 Ch 11.9       |                               |                                                       |                          | AP-42 Ch 3.4 for SO2 and  |                            | AP-42 Ch 3.4 for SO2 and                          |                                                  |                                                     | AP-42 Ch 3.4 for SO2 and                          |                                                   | AP-42 Ch 3.4 for SO2 and                         | AP-42 Ch 3.4 for SO2 and<br>from US EPA TierII/III |                                                   | AP-42 Ch 3.4 for SO2 and                          |                                                   | AP-42 Ch 3.4 for SO2 and                         |                                                     | AP-42 Ch 3.4 for SO2 and |
| Source of Emission Rates      |                            | US EPA AP-42 Ch 11.9          | US EPA AP-42 Ch 11.9<br>d Western Surface Coal Mining | S EPA AP-42 Ch 11.19.2.1 | from US EPA TierII/III    | from US EPA TierII/III     | from US EPA TierII/III                            | from US EPA TierII/III                           | from US EPA TierII/III                              | from US EPA TierII/III                            | from US EPA TierII/III                            | from US EPA TierII/III                           |                                                    | from US EPA TierII/III                            | from US EPA TierII/III                            | from US EPA TierII/III                            | from US EPA TierII/III                           | from US EPA TierII/III                              | from US EPA TierII/III   |
|                               | western Surface Coal Minir | ig western Surface Coal Minin | g western Surface Coal Mining                         |                          | US EPA AP-42 Ch 13.2.2    | US FPA AP-42 Ch 13.2.2     | Standards Document. PM:<br>US FPA AP-42 Ch 13.2.2 | Standards Document. PM<br>US FPA AP-42 Ch 13.2.2 | : Standards Document. PM:<br>US FPA AP-42 Ch 13.2.2 | Standards Document. PM:<br>US EPA AP-42 Ch 13.2.2 | Standards Document. PM:<br>US FPA AP-42 Ch 13.2.2 | Standards Document. PM<br>US EPA AP-42 Ch 13.2.2 | Standards Document. PN<br>US FPA AP-42 Ch 13.2.2   | Standards Document. PM:<br>US FPA AP-42 Ch 13.2.2 | Standards Document. PM:<br>US EPA AP-42 Ch 13.2.2 | Standards Document. PM:<br>US EPA AP-42 Ch 13.2.2 | Standards Document. PM<br>US EPA AP-42 Ch 13.2.2 | : Standards Document. PM:<br>US EPA AP-42 Ch 13.2.2 | Standards Document. PM:  |
|                               |                            |                               |                                                       |                          | Unpaved Roads             | Unpaved Roads              | Unpaved Roads                                     | Unpaved Roads                                    | Unpaved Roads                                       | Unpaved Roads                                     | Unpayed Roads                                     | Unpayed Roads                                    | Unpaved Roads                                      | Unpaved Roads                                     | Unpaved Roads                                     |                                                   |                                                  |                                                     | US EPA AP-42 Ch 13.2.2   |
| Enterte Date (c/s)            |                            |                               |                                                       |                          | Unpaved Roads             | Unpaved Roads              | Unpaved Roads                                     | Unpaved Roads                                    | Unpaved Roads                                       | Unpaved Roads                                     | Unpaved Roads                                     | Unpaved Roads                                    | Unpaved Roads                                      | Unpaved Roads                                     | Unpaved Roads                                     | Unpaved Roads                                     | Unpaved Roads                                    | Unpaved Roads                                       | Unpaved Roads            |
| Emission Rates (g/s)          | N/A                        | N/A                           | N/A                                                   | N/A                      | 1.67E+00                  | 3.36E-01                   | 9.40E+00                                          | 1.96F+00                                         | 1.11E+00                                            | 7.44E-01                                          | 3.96E-01                                          | 5.80E-01                                         | 3.82E-01                                           | 4.40E-01                                          | 1.95E-01                                          | 1.67E+00                                          | 4.42E+00                                         | 3.97E+01                                            | 5.10E+01                 |
| 903                           | N/A                        | N/A                           | N/A                                                   | N/A                      | 9.10F-03                  | 1.84E-03                   | 3.08E-02                                          | 6.43E-03                                         | 6.06E-03                                            | 4.07F-03                                          | 2.17E-03                                          | 3.17E-03                                         | 2.09E-03                                           | 2.41E-03                                          | 1.07E-03                                          | 9.10E-03                                          | 2.41E-02                                         | 1.30F-01                                            | 1.67E-01                 |
| SO3                           | N/A                        | N/A                           | N/A                                                   | N/A                      | 3.59F-04                  | 7.25E-05                   | 1.22E-03                                          | 2.54E-04                                         | 2.39E-04                                            | 1.61E-04                                          | 8.55E-05                                          | 1.25E-04                                         | 8.24E-05                                           | 9.50E-05                                          | 4.21E-05                                          | 3.59E-04                                          | 9.53E-04                                         | 5.14E-03                                            | 6.61E-03                 |
| SO4                           | N/A                        | N/A                           | N/A                                                   | N/A                      | 2.87F-04                  | 5.80F-05                   | 9.74F-04                                          | 2.03E-04                                         | 1.91E-04                                            | 1.28F-04                                          | 6.84F-05                                          | 1.00F-04                                         | 6.60E-05                                           | 7.60F-05                                          | 3.37F-05                                          | 2.87E-04                                          | 7.62F-04                                         | 4.11E-03                                            | 5.29E-03                 |
| CO                            | N/A                        | N/A                           | N/A                                                   | N/A                      | 1.62E+00                  | 3.27E-01                   | 5.48E+00                                          | 1.14E+00                                         | 1.08E+00                                            | 7.23E-01                                          | 3.85E-01                                          | 5.64E-01                                         | 3.71E-01                                           | 4.28E-01                                          | 1.90E-01                                          | 1.62E+00                                          | 4.29E+00                                         | 2.31E+01                                            | 2.98E+01                 |
| PM2.5 (Combustion             | N/A                        | N/A                           | N/A                                                   | N/A                      | 9.25E-02                  | 1.87E-02                   | 3.13E-01                                          | 6.53E-02                                         | 6.16E-02                                            | 4.13E-02                                          | 2.20E-02                                          | 3.22E-02                                         | 2.12E-02                                           | 2.44E-02                                          | 1.08E-02                                          | 9.25E-02                                          | 2.45E-01                                         | 1.32E+00                                            | 1.70E+00                 |
| TSP (Fugitive                 | 1.55E+01                   | 1.40E+02                      | 1.79E+01                                              | 2.26E-04                 | 8.19E+01                  | 2.77E+01                   | 2.18E+02                                          | 2.39E+01                                         | 7.26E+01                                            | 4.42E+01                                          | 3.33E+01                                          | 5.37E+01                                         | 2.89E+01                                           | 9.39E+00                                          | 1.10E+01                                          | 3.52E+01                                          | 6.72E+00                                         | 3.93E+02                                            | 6.14E+01                 |
| PM10 (Fugitive                | 8.04E+00                   | 2.52E+01                      | 3.10E+00                                              | 1.08E-04                 | 2.12E+01                  | 7.18E+00                   | 5.64E+01                                          | 6.20E+00                                         | 1.88E+01                                            | 1.15E+01                                          | 8.62E+00                                          | 1.39E+01                                         | 7.48E+00                                           | 2.43E+00                                          | 2.85E+00                                          | 9.11E+00                                          | 1.74E+00                                         | 1.02E+02                                            | 1.59E+01                 |
| PM2.5 (Fugitive               | 4.64E-01                   | 4.33E+00                      | 1.88E+00                                              | 1.61E-05                 | 2.12E+00                  | 7.18E-01                   | 5.64E+00                                          | 6.20E-01                                         | 1.88E+00                                            | 1.15E+00                                          | 8.62E-01                                          | 1.39E+00                                         | 7.48E-01                                           | 2.43E-01                                          | 2.85E-01                                          | 9.11E-01                                          | 1.70E-01                                         | 1.02E+01                                            | 1.59E+00                 |
| Emission Rates (g/m2-s)       |                            |                               |                                                       |                          |                           |                            |                                                   |                                                  |                                                     |                                                   |                                                   |                                                  |                                                    |                                                   |                                                   |                                                   |                                                  |                                                     |                          |
| NO <sub>2</sub>               | N/A                        | N/A                           | N/A                                                   | N/A                      | 4.16E-04                  | 8.40E-05                   | 2.35E-03                                          | 4.90E-04                                         | 2.77E-04                                            | 1.86E-04                                          | 9.90E-05                                          | 1.45E-04                                         | 9.55E-05                                           | 1.10E-04                                          | 4.88E-05                                          | 4.16E-04                                          | 3.94E-04                                         | 3.97E-05                                            | 1.83E-03                 |
| NC                            | N/A                        | N/A                           | N/A                                                   | N/A                      | N/A                       | N/A                        | N/A                                               | N/A                                              | N/A                                                 | N/A                                               | N/A                                               | N/A                                              | N/A                                                | N/A                                               | N/A                                               | N/A                                               | N/A                                              | N/A                                                 | N/A                      |
| NO2                           | N/A                        | N/A                           | N/A                                                   | N/A                      | N/A                       | N/A                        | N/A                                               | N/A                                              | N/A                                                 | N/A                                               | N/A                                               | N/A                                              | N/A                                                | N/A                                               | N/A                                               | N/A                                               | N/A                                              | N/A                                                 | N/A                      |
| NO3                           | N/A                        | N/A                           | N/A                                                   | N/A                      | N/A                       | N/A                        | N/A                                               | N/A                                              | N/A                                                 | N/A                                               | N/A                                               | N/A                                              | N/A                                                | N/A                                               | N/A                                               | N/A                                               | N/A                                              | N/A                                                 | N/A                      |
| SO2                           | N/A                        | N/A                           | N/A                                                   | N/A                      | 2.28E-06                  | 4.59E-07                   | 7.71E-06                                          | 1.61E-06                                         | 1.52E-06                                            | 1.02E-06                                          | 5.41E-07                                          | 7.93E-07                                         | 5.22E-07                                           | 6.01E-07                                          | 2.67E-07                                          | 2.28E-06                                          | 2.16E-06                                         | 1.30E-07                                            | 6.00E-06                 |
| SO3                           | N/A                        | N/A                           | N/A                                                   | N/A                      | 8.98E-08                  | 1.81E-08                   | 3.04E-07                                          | 6.35E-08                                         | 5.98E-08                                            | 4.01E-08                                          | 2.14E-08                                          | 3.13E-08                                         | 2.06E-08                                           | 2.37E-08                                          | 1.05E-08                                          | 8.98E-08                                          | N/A                                              | N/A                                                 | N/A                      |
| SO4                           | N/A                        | N/A                           | N/A                                                   | N/A                      | 7.19E-08                  | 1.45E-08                   | 2.43E-07                                          | 5.08E-08                                         | 4.78E-08                                            | 3.21E-08                                          | 1.71E-08                                          | 2.50E-08                                         | 1.65E-08                                           | 1.90E-08                                          | 8.42E-09                                          | 7.19E-08                                          | N/A                                              | N/A                                                 | N/A                      |
| CC                            | N/A                        | N/A                           | N/A                                                   | N/A                      | 4.05E-04                  | 8.17E-05                   | 1.37E-03                                          | 2.86E-04                                         | 2.69E-04                                            | 1.81E-04                                          | 9.63E-05                                          | 1.41E-04                                         | 9.28E-05                                           | 1.07E-04                                          | 4.74E-05                                          | 4.05E-04                                          | 3.83E-04                                         | 2.31E-05                                            | 1.07E-03                 |
| PM2.5 (Combustion             | ) N/A                      | N/A                           | N/A                                                   | N/A                      | 2.31E-05                  | 4.67E-06                   | 7.83E-05                                          | 1.63E-05                                         | 1.54E-05                                            | 1.03E-05                                          | 5.50E-06                                          | 8.06E-06                                         | 5.31E-06                                           | 6.11E-06                                          | 2.71E-06                                          | 2.31E-05                                          | 2.19E-05                                         | 1.32E-06                                            | 5.70E-05                 |
| TSP (Fugitive                 | 3.87E-03                   | 3.49E-02                      | 4.48E-03                                              | 5.65E-08                 | 2.05E-02                  | 6.93E-03                   | 5.45E-02                                          | 5.98E-03                                         | 1.82E-02                                            | 1.11E-02                                          | 8.32E-03                                          | 1.34E-02                                         | 7.22E-03                                           | 2.35E-03                                          | 2.76E-03                                          | 8.80E-03                                          | 6.00E-04                                         | 3.93E-04                                            | 2.20E-03                 |
| PM10 (Fugitive                | 2.01E-03                   | 6.30E-03                      | 7.75E-04                                              | 2.69E-08                 | 5.30E-03                  | 1.79E-03                   | 1.41E-02                                          | 1.55E-03                                         | 4.70E-03                                            | 2.86E-03                                          | 2.16E-03                                          | 3.48E-03                                         | 1.87E-03                                           | 6.08E-04                                          | 7.13E-04                                          | 2.28E-03                                          | 1.55E-04                                         | 1.02E-04                                            | 5.70E-04                 |
| PM2.5 (Fugitive               | 1.16E-04                   | 1.08E-03                      | 4.70E-04                                              | 4.03E-09                 | 5.30E-04                  | 1.79E-04                   | 1.41E-03                                          | 1.55E-04                                         | 4.70E-04                                            | 2.86E-04                                          | 2.16E-04                                          | 3.48E-04                                         | 1.87E-04                                           | 6.08E-05                                          | 7.14E-05                                          | 2.28E-04                                          | 1.52E-05                                         | 1.02E-05                                            | 6.10E-05                 |

**Table 5C-4-2-4: Mine Site Volume Sources** 

| Source Description                  | Railway                 | Off Spec Fine<br>Stockpile                        | Fines Stockpile                                      | Off Spec Lump<br>Stockpile                           | Lump Stockpile                                       | •                                                    | Lump Stockpile<br>(Trucking<br>Operation)            | Fines Stockpile<br>(Trucking<br>Operation)           | Fines Stockpile<br>(Trucking<br>Operation)           |
|-------------------------------------|-------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Source Name                         | MR_RAIL                 | MRFine                                            | MR1/4                                                | MROffLump                                            | MRLump                                               | TRLUMP1                                              | TRLUMP2                                              | TRFINE1                                              | TRFINE2                                              |
| Source Name                         | VOL1                    | VOL2                                              | VOL3                                                 | VOL4                                                 | VOL5                                                 | TRLUMP1                                              | TRLUMP2                                              | TRFINE1                                              | TRFINE2                                              |
| Location [X-coord] (km)             | 562.394                 | 562.386                                           | 562.285                                              | 562.456                                              | 562.29                                               | 561.712                                              | 561.725                                              | 561.778                                              | 561.845                                              |
| Location [Y-coord] (km)             | 7912.098                | 7912.277                                          | 7912.276                                             | 7912.458                                             | 7912.53                                              | 7912.82                                              | 7912.754                                             | 7912.884                                             | 7912.878                                             |
| Elevation (m ASL)                   | 188                     | 213                                               | 213                                                  | 217                                                  | 213                                                  | 206                                                  | 210                                                  | 205                                                  | 206                                                  |
| Power Rating                        | 4400 hp                 | N/A                                               | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  |
| # of Units                          | 2 locos with 110 wagons |                                                   |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| Sigma y (m)                         | 0.9                     | 2                                                 | 2                                                    | 2                                                    | 2                                                    | 2                                                    | 2                                                    | 2                                                    | 2                                                    |
| Sigma z (m)                         | 1.40                    | 2.00                                              | 2.00                                                 | 2.00                                                 | 2.00                                                 | 2.00                                                 | 2.00                                                 | 2.00                                                 | 2.00                                                 |
| Release Height (m)                  | 3                       | 5                                                 | 5                                                    | 5                                                    | 5                                                    | 5                                                    | 5                                                    | 5                                                    | 5                                                    |
| Source of Emission Rates            | Previous RWDI studies   | US EPA AP-42 Ch 13.2.5<br>Industrial Wind Erosion | US EPA AP-42 Ch<br>13.2.5 Industrial Wind<br>Erosion | US EPA AP-42 Ch<br>13.2.5 Industrial Wind<br>Erosion | US EPA AP-42 Ch<br>13.2.5 Industrial<br>Wind Erosion |
| Emission Rates (g/s)                |                         |                                                   |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| NOx                                 | 0.388                   | N/A                                               | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  |
| SO2                                 | 0.0325                  | N/A                                               | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  |
| SO3                                 | 0.0013                  | N/A                                               | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  |
| SO4                                 | 0.0010                  | N/A                                               | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  |
| CO                                  | 0.167                   | N/A                                               | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  |
| PM2.5 (Combustion)                  | 0.021                   | N/A                                               | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  | N/A                                                  |
| TSP (Fugitive)                      | N/A                     |                                                   |                                                      |                                                      | Hourly Emission                                      |
| PM10 (Fugitive)<br>PM2.5 (Fugitive) | N/A<br>N/A              | Hourly Emission File                              | Hourly Emission File                                 | Hourly Emission File                                 | File                                                 | File                                                 | File                                                 | File                                                 | File                                                 |

**Table 5C-4-2-4: Mine Site Volume Sources** 

| Source Description                              | Fines Mobile<br>Stacker                                           | Lump/Fine Stacker<br>(Trucking Option)                            | Lump/Fine<br>Stacker<br>(Trucking<br>Option)                         | Fine/Lump<br>Reclaimer 1                                             | Fine/Lump<br>Reclaimer 2                                             | Lump/Fine<br>Loader<br>(Trucking<br>Option)                          | Lump/Fine<br>Stacker<br>Discharge<br>Chute<br>(Trucking<br>Option)   | Lump/Fine<br>Stacker<br>Discharge<br>Chute<br>(Trucking<br>Option)   | Lump/Fine<br>Loader<br>Discharge<br>Chute<br>(Trucking<br>Option)    | Truck<br>Discharge<br>Chute<br>(Trucking<br>Option)                  | Fine/Lump<br>Reclaimer<br>Discharge<br>Chute                         | Product<br>Reclaim<br>Conveyor<br>Feed Chute                         |
|-------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Source Name                                     | 2300-SK-002                                                       | TRSTCK1                                                           | TRSTCK2                                                              | 2300-RC-006                                                          | 2300-RC-007                                                          | TRL1                                                                 | TRSCHUT1                                                             | TRSCHUT2                                                             | TRLCHUT1                                                             | TRCHUT1                                                              | 2300-CH-014                                                          | 2300-CH-015                                                          |
| Source Name                                     | VOL6                                                              | TRSTCK1                                                           | TRSTCK2                                                              | VOL7                                                                 | VOL8                                                                 | TRL1                                                                 | TRSCHUT1                                                             | TRSCHUT2                                                             | TRLCHUT1                                                             | TRCHUT1                                                              | VOL9                                                                 | VOL10                                                                |
| Location [X-coord] (km)                         | 562.2339                                                          | 561.735                                                           | 561.809                                                              | 562.331                                                              | 562.45                                                               | 561.856                                                              | 561.709                                                              | 561.785                                                              | 561.782                                                              | 562.025                                                              | 562.403                                                              | 562.519                                                              |
| Location [Y-coord] (km)                         | 7912.268                                                          | 7912.791                                                          | 7912.866                                                             | 7912.178                                                             | 7912.307                                                             | 7912.887                                                             | 7912.817                                                             | 7912.891                                                             | 7912.905                                                             | 7912.902                                                             | 7912.111                                                             | 7912.244                                                             |
| Northwest Corner [X-coord] (m)                  | 562290.3768                                                       |                                                                   |                                                                      | 562127.15                                                            | 562390.3327                                                          | 562390.3327                                                          |                                                                      |                                                                      |                                                                      |                                                                      | 562419.8622                                                          | 562097.8645                                                          |
| Northwest Corner [Y-coord] (m)                  | 7912558.314                                                       |                                                                   |                                                                      | 7912712.246                                                          | 7912359.715                                                          | 7912359.715                                                          |                                                                      |                                                                      |                                                                      |                                                                      | 7912392.966                                                          | 7912679.003                                                          |
| Southeast corner [X-coord] (m)                  | 562293.4292                                                       |                                                                   |                                                                      | 562132.8717                                                          | 562396.0474                                                          | 562396.0474                                                          |                                                                      |                                                                      |                                                                      |                                                                      | 562425.577                                                           | 562103.5792                                                          |
| Southeast corner [Y-coord] (m)                  | 7912558.505                                                       |                                                                   |                                                                      | 7912712.584                                                          | 7912360.053                                                          | 7912360.053                                                          |                                                                      |                                                                      |                                                                      |                                                                      | 7912393.304                                                          | 7912679.341                                                          |
| Southwest Corner [X-coord] (m)                  | 562291.8598                                                       |                                                                   |                                                                      | 562130.1834                                                          | 562393.359                                                           | 562393.359                                                           |                                                                      |                                                                      |                                                                      |                                                                      | 562422.8886                                                          | 562100.8908                                                          |
| Southwest Corner [Y-coord] (m)                  | 7912556.881                                                       |                                                                   |                                                                      | 7912709.558                                                          | 7912357.027                                                          | 7912357.027                                                          |                                                                      |                                                                      |                                                                      |                                                                      | 7912390.278                                                          | 7912676.314                                                          |
| Elevation (m ASL)                               | 213                                                               | 209                                                               | 206                                                                  | 209                                                                  | 214                                                                  | 207                                                                  | 206                                                                  | 205                                                                  | 208                                                                  | 216                                                                  | 206                                                                  | 212                                                                  |
| Power Rating                                    | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  |
| # of Units                                      |                                                                   |                                                                   |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| Sigma y (m)                                     | 0.20                                                              | 0.20                                                              | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 |
| Sigma z (m)                                     | 0.20                                                              | 0.20                                                              | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 |
| Release Height (m)                              | 6                                                                 | 6                                                                 | 6                                                                    | 6                                                                    | 6                                                                    | 6                                                                    | 6                                                                    | 6                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                    |
| Source of Emission Rates                        | US EPA AP-42 Ch 13.2.4<br>Aggregate Handling and<br>Storage Piles | US EPA AP-42 Ch 13.2.4<br>Aggregate Handling and<br>Storage Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and Storage<br>Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and Storage<br>Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles |
| Emission Rates (g/s)                            |                                                                   |                                                                   |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| NOx                                             |                                                                   | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  |
| SO2                                             |                                                                   | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  |
| SO3                                             | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  |
| SO4                                             | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  |
| CO                                              | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  |
| PM2.5 (Combustion)                              | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  |
| TSP (Fugitive) PM10 (Fugitive) PM2.5 (Fugitive) | Hourly Emission File                                              | Hourly Emission File                                              | Hourly Emission File                                                 | Hourly Emission File                                                 | Hourly Emission<br>File                                              |

**Table 5C-4-2-4: Mine Site Volume Sources** 

| Source Description                              | Lump Mobile<br>Stacker                                            | Lump Mobile Stacker<br>2                                          | Lump Yard<br>Tripper<br>Conveyor Feed<br>Chute                       | Lump Yard<br>Tripper Chute                                           | Fines Yard<br>Tripper Chute                                          | Lump Tripper<br>Chute                                                | Lump Yard Tripper and Tripper Conveyor 2300-CV-003 and                                           | Fines Yard Tripper and Tripper Conveyor 2300-CV-001 and                                          |
|-------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Source Name                                     | 2300-SK-004                                                       | 2300-SK-005                                                       | 2300-CH-012                                                          | 2300-CH-002                                                          | 2300-CH-001                                                          | 2300-CH-024                                                          | 2300-TR-003                                                                                      | 2300-TR-001                                                                                      |
| Source Name                                     | VOL11                                                             | VOL12                                                             | VOL13                                                                | VOL14                                                                | VOL15                                                                | VOL16                                                                | VOL17                                                                                            | VOL18                                                                                            |
| Location [X-coord] (km)                         | 562.404                                                           | 562.26                                                            | 562.564                                                              | 562.237                                                              | 562.323                                                              | 562.441                                                              | 562.605                                                                                          | 562.453                                                                                          |
| Location [Y-coord] (km)                         | 7912.467                                                          | 7912.602                                                          | 7912.301                                                             | 7912.577                                                             | 7912.237                                                             | 7912.484                                                             | 7912.354                                                                                         | 7912.268                                                                                         |
| Northwest Corner [X-coord] (m)                  | 562479.4036                                                       | 562134.544                                                        | 562559.6621                                                          | 562503.2844                                                          | 562317.5281                                                          | 562111.0186                                                          | 562504.9965                                                                                      | 562319.3722                                                                                      |
| Northwest Corner [Y-coord] (m)                  | 7912391.768                                                       | 7912598.408                                                       | 7912368.101                                                          | 7912418.194                                                          | 7912588.654                                                          | 791257.3993                                                          | 7912416.731                                                                                      | 7912586.877                                                                                      |
| Southeast corner [X-coord] (m)                  | 562482.456                                                        | 562137.5964                                                       | 562588.2032                                                          | 562505.7683                                                          | 562320.0121                                                          | 562113.5025                                                          | 562560.4359                                                                                      | 562563.3476                                                                                      |
| Southeast corner [Y-coord] (m)                  | 7912391.959                                                       | 7912598.599                                                       | 7912344.809                                                          | 7912418.1                                                            | 7912588.56                                                           | 7912571.305                                                          | 7912369.663                                                                                      | 7912372.281                                                                                      |
| Southwest Corner [X-coord] (m)                  | 562480.8866                                                       | 562136.0269                                                       | 562587.1588                                                          | 562504.6423                                                          | 562318.8861                                                          | 562112.3765                                                          | 562559.3423                                                                                      | 562562.2548                                                                                      |
| Southwest Corner [Y-coord] (m)                  | 7912390.335                                                       | 7912596.975                                                       | 7912343.669                                                          | 7912416.855                                                          | 7912587.315                                                          | 7912570.06                                                           | 7912368.408                                                                                      | 7912371.331                                                                                      |
| Elevation (m ASL)                               | 214                                                               | 213                                                               | 215                                                                  | 213                                                                  | 212                                                                  | 216                                                                  | 219                                                                                              | 208                                                                                              |
| Power Rating                                    | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                                              | N/A                                                                                              |
| # of Units                                      |                                                                   |                                                                   |                                                                      |                                                                      |                                                                      |                                                                      |                                                                                                  |                                                                                                  |
| Sigma y (m)                                     | 0.20                                                              | 0.20                                                              | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                                             | 0.20                                                                                             |
| Sigma z (m)                                     | 0.20                                                              | 0.20                                                              | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                                             | 0.20                                                                                             |
| Release Height (m)                              | 6                                                                 | 6                                                                 | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                                                | 1                                                                                                |
| Source of Emission Rates                        | US EPA AP-42 Ch 13.2.4<br>Aggregate Handling and<br>Storage Piles | US EPA AP-42 Ch 13.2.4<br>Aggregate Handling and<br>Storage Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and Storage<br>Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and Storage<br>Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles | US EPA AP-42 Ch<br>11.19.2.1 Crushed<br>Stone Processing<br>and Pulverized<br>Mineral Processing | US EPA AP-42 Ch<br>11.19.2.1 Crushed<br>Stone Processing<br>and Pulverized<br>Mineral Processing |
| Emission Rates (g/s)                            |                                                                   |                                                                   |                                                                      |                                                                      |                                                                      |                                                                      |                                                                                                  |                                                                                                  |
| NOx                                             | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                                              | N/A                                                                                              |
| SO2                                             | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                                              | N/A                                                                                              |
| SO3                                             | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                                              | N/A                                                                                              |
| SO4                                             | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                                              | N/A                                                                                              |
| CO                                              | -                                                                 | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                                              | N/A                                                                                              |
| PM2.5 (Combustion)                              | N/A                                                               | N/A                                                               | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                                              | N/A                                                                                              |
| TSP (Fugitive) PM10 (Fugitive) PM2.5 (Fugitive) | Hourly Emission File                                              | Hourly Emission File                                              | Hourly Emission File                                                 | Hourly Emission File                                                 | Hourly Emission<br>File                                              | Hourly Emission<br>File                                              | Hourly Emission<br>File                                                                          | Hourly Emission<br>File                                                                          |





# **APPENDIX 5C-4-3**

EMISSION INVENTORY FOR THE STEENSBY PORT OPERATIONS



# **Emission Inventory for the Steensby Port Operations**

Table 1 summarizes the information used to develop the emission inventory for Steensby Port operations. The project base quantities, source parameters, emission factors and other assumptions used to develop the emission rate inputs for modelling are presented in Table 5C-4-3-1.

All references to AP-42 refer to the United States Environmental Protection Agency's (U.S. EPA) AP-42 emission factor documentation.

Table 5C-4-3-1: Combustion Emission Factors and Base Quantities Used to Develop the Steensby Port Emission Inventory

| Port Emission Invent      | tory                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Generation -        | - Arctic Diesel Generators (Caterpillar CM32)                                                                                                                                                                                                                                                                                                                                                   |
| Emission factors          | <ul> <li>AP-42 Ch. 3.4 was used to calculate SO<sub>2</sub> emissions from the power generators</li> <li>Manufacturer specification sheet was used to calculate NO<sub>x</sub>, CO and PM<sub>2.5</sub> emissions</li> <li>All particulate matter was assumed to be in the PM<sub>2.5</sub> size fraction</li> </ul>                                                                            |
| Base quantities           | <ul> <li>Steensby Port has 6 generators (4 operating and 2 standby), each with a power rating of 5,590kW</li> <li>Arctic Diesel with molecular mass of 226 g/mole with ultra-low sulphur fuel (i.e., 0.4 % fuel sulphur) will be used</li> </ul>                                                                                                                                                |
| Source parameters         | <ul> <li>Stack heights of 30 m confirmed by RWDI through preliminary stack height modelling.</li> <li>Stack diameters of 1.09 m were calculated based on an assumed exit velocity of 15.24 m/s and from flow-rates (14.13m³/s) derived from engine specification sheet.</li> <li>Exhaust exit temperature is 320 °C for the generators based on the manufacturer specification sheet</li> </ul> |
| Emission controls         | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                                               |
| Schedule of<br>Operations | 4 generators will operate 24 hours a day, 7 days a week.                                                                                                                                                                                                                                                                                                                                        |
| <b>Power Generation -</b> | - Back-up Emergency Boilers (Cleaver Brooks)                                                                                                                                                                                                                                                                                                                                                    |
| Emission factors          | <ul> <li>AP-42 Ch. 1.3 was used to calculate NO<sub>x</sub>, SO<sub>2</sub>, CO and PM<sub>2.5</sub> emissions from the power generators</li> <li>All particulate matter was assumed to be in the PM<sub>2.5</sub> size fraction</li> </ul>                                                                                                                                                     |
| Base quantities           | • Steensby Port has a total of two-4.0 million BTU/hr Cleaver Brooks emergency boilers.                                                                                                                                                                                                                                                                                                         |
| Source parameters         | <ul> <li>Stack heights of to be confirmed by RWDI through preliminary stack height modelling</li> <li>Stack diameters of 0.04 m were calculated based on an assumed exit velocity of 15.24 m/s and from calculated flow rates</li> <li>Exhaust exit temperature is 175 °C was assumed for the boilers</li> </ul>                                                                                |
| Emission controls         | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                                               |
| Schedule of<br>Operations | Boilers to be used for back up heat generation only and were therefore not included in the air quality impact assessment as the operation of the generators results in higher emissions                                                                                                                                                                                                         |

| <b>Dust Collectors</b>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emission factors          | Dust collectors are vented back into the building, therefore are considered                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Base quantities           | insignificant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Source parameters         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Emission controls         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Incinerator               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Emission factors          | From "Characterization of Emissions from the Eco Waste Solutions Thermal Oxidizer" Report, prepared by Eco Waste Solution, provided by Aker September 2007.                                                                                                                                                                                                                                                                                                                                         |
| Base quantities           | • Burns 500 kg/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Source parameters         | <ul> <li>Average flow rate of 1.13m³/s, velocity of 6.15m/s and exhaust temperature of 679°C were provided in "Characterization of Emissions from the Eco Waste Solutions Thermal Oxidizer" Report, prepared by Eco Waste Solution, provided by Aker September 2007.</li> <li>Stack diameter of 0.48m was calculated using the average flow rate and velocity.</li> </ul>                                                                                                                           |
| Emission controls         | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Schedule of<br>Operations | • 24 hours a day, 7 days a week.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ships                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Emission factors          | <ul> <li>AP-42 Ch. 3.4 was used to calculate NO<sub>x</sub>, SO<sub>2</sub>, CO and PM<sub>2.5</sub> emissions from the "hotel power" generator located on the ship.</li> <li>Emission factors under ship operation were taken from BC Ocean Going Vessels inventory.</li> </ul>                                                                                                                                                                                                                    |
| Base quantities           | <ul> <li>Average of 12 ore carriers per month on a year round basis with up to 17 vessels per month in summer open-water season</li> <li>Ore will be loaded onto the ships at a rate of about 12,000 tonnes per hour</li> <li>10 Polar Class 4 cape-size vessels with a capacity of 135,000 dry weight tonne will transport 90-95% of annual ore production to market.</li> <li>Ships will be 300m long and 46m wide.</li> <li>Ships will be equipped with a 2MW "hotel power" generator</li> </ul> |
| Source parameters         | <ul> <li>2MW Generator</li> <li>20 m stack height</li> <li>Stack diameters of 0.8 m were calculated based on an assumed exit velocity of 15.24 m/s and from typical 2MW generator flow-rates (7.14m³/s)</li> <li>Exhaust exit temperature is assumed to be 320 °C</li> <li>22 MW Generator</li> <li>20 m stack height</li> <li>Stack diameters of 0.8 m</li> <li>25 m/s exit velocity based on flow-rates (12.57 m³/s)</li> <li>Exhaust exit temperature is assumed to be 320 °C</li> </ul>         |
| Emission controls         | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Schedule of<br>Operations           | • Ship assumed to operate under the 22 MW scenario 24 hours a day, 7 days a week. This is a conservative assumption, but accounts for other auxiliary equipment operating in the port which was not explicitly modelled (e.g.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D 11                                | tugs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Railway                             | LIGEDATE 1 1 1 11 11 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 |
| Emission factors                    | <ul> <li>US EPA Technical Highlights: Emission Factors for Locomotives document was used to generate NO<sub>x</sub>, CO and PM emissions. Table 9 – Fleet Average Emission Factor for All Locomotives for Year 2016 were used.</li> <li>SO<sub>2</sub> emissions were taken from a previous study conducted by RWDI in 1995 (RWDI Project No. 95-288T-6)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Base quantities                     | The trains will have 4400 bhp engines, 2 locomotives and 110 wagons per train                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                     | <ul> <li>6 trains per day will travel the railway corridor (145 km) between the Mine Site and Steensby Port.</li> <li>Design speed of 75km/hour (60 km/h speed more plausible)</li> <li>Transfer rate to load wagons: 6,000 tonnes per hour</li> <li>Unloading rate: 1 minute per wagon</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Source parameters                   | <ul> <li>Stack heights of 4.0 m above ground level were assumed</li> <li>Stack diameters of 0.5 m, exit velocity of 21.4 m/s, flow rate of 4.2m³/s and exhaust exit temperature of 149 °C were assumed</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Emission controls                   | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Schedule of Operations              | • 24 hours a day 7 days a week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aircraft                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Emission factors                    | The airstrip at Steensby Port will be used extensively during construction, its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Base quantities                     | use will be limited during mining operations. Therefore, it was not included in the emissions inventory and dispersion modelling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Source parameters Emission controls | Helicopter pad will be for emergency use only once the mining operations begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Stockpiles                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Emission factors                    | • PM <sub>2.5</sub> , PM <sub>10</sub> , TSP emissions from stockpiles were estimated using AP-42 13.2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Base quantities                     | <ul> <li>One (1) Lump stockpile having a capacity of 700,000 tonnes</li> <li>One (1) Lump stockpile having a capacity of 2,000,000 tonnes</li> <li>One (1) Lump stockpile having a capacity of 1,000,000 tonnes</li> <li>One (1) Lump stockpile having a capacity of 1,000,000 tonnes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Source parameters                   | Surface roughness length of 0.003 m was assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Emission controls                   | No emission controls were assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Schedule of                         | Erosion can potentially occur 24 hours a day 7 days a week.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Operations                          | Threshold velocity of iron ore is 6.94 m/s based on bulk sampling conducted by RWDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| <b>Bulk Material Hand</b> | lling                                                                                                                           |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Emission factors          | • PM <sub>2.5</sub> , PM <sub>10</sub> , TSP emissions from bulk material handling operations were estimated using AP-42 13.2.4 |
| Base quantities           | • The following sources and corresponding source parameters are included in the assessment:                                     |
| Emission controls         | No emission controls were assumed                                                                                               |
| Schedule of Operations    | • 20 hours a day 7 days a week                                                                                                  |

| ID [1]           | Process                                     | Material<br>Handled<br>(Hourly) | Material<br>Handled<br>(Daily) | Material<br>Handled<br>(Annual) | Site<br>Specific<br>Data | Silt<br>Content<br>(%) | Moisture<br>Content<br>(%) |
|------------------|---------------------------------------------|---------------------------------|--------------------------------|---------------------------------|--------------------------|------------------------|----------------------------|
|                  |                                             | (Mg)                            | (Mg)                           | (Mg)                            | (y/n)                    |                        |                            |
| 4100-CH-<br>034  | Fines Tripper Discharge Chute               | 6900                            | 138,000                        | 41,400,000                      | у                        | 7.0%                   | 4.8%                       |
| 4100-CH-<br>036  | Lump Tripper Discharge Chute                | 13800                           | 276,000                        | 82,800,000                      | у                        | 9.5%                   | 5.4%                       |
| 4100-CH-<br>041  | Lump/Fine Stacker Twin boom Discharge Chute | 6900                            | 138,000                        | 41,400,000                      | у                        | 9.5%                   | 5.4%                       |
| 4100-SK-<br>001  | Lump/Fines Stacker                          | 6900                            | 138,000                        | 41,400,000                      | у                        | 7.0%                   | 4.8%                       |
| 4100-SK-<br>002  | Lump/Fine Stacker (Twin boom)               | 6,900                           | 138,000                        | 41,400,000                      | у                        | 9.5%                   | 5.4%                       |
| 4200-CH-<br>001  | Reclaimer Discharge Chute                   | 8000                            | 160,000                        | 48,000,000                      | у                        | 9.5%                   | 5.4%                       |
| 4200-CH-<br>006  | Tripper Discharge Chute                     | 13800                           | 276,000                        | 82,800,000                      | у                        | 9.5%                   | 5.4%                       |
| 4200-RC-<br>001  | Reclaimer (Fines/Lump Product)              | 8000                            | 160,000                        | 48,000,000                      | у                        | 9.5%                   | 5.4%                       |
| 4200-RC-<br>002* | Reclaimer (Fines/Lump Product)              | 8000                            | 160,000                        | 48,000,000                      | у                        | 9.5%                   | 5.4%                       |
| 4200-CH-<br>002* | Reclaimer Discharge Chute                   | 8000                            | 160,000                        | 48,000,000                      | у                        | 9.5%                   | 5.4%                       |
| 4200-SL-<br>001* | Ship Loader                                 | 8,000                           | 160,000                        | 48,000,000                      | у                        | 9.5%                   | 5.4%                       |
| 4200-CH-<br>007* | Tripper Discharge Chute                     | 8,000                           | 160,000                        | 48,000,000                      | у                        | 9.5%                   | 5.4%                       |
| 4200-SL-<br>002* | Ship Loader                                 | 8,000                           | 160,000                        | 48,000,000                      | у                        | 9.5%                   | 5.4%                       |

#### Notes:

- 1. "\*" These sources are added in 2010 modelling scenarios, based on the equipment list received on Sep 09, 2010.
- 2. Green segment represents material handling emission sources included in both 2008 and 2010 modelling scenarios.

Tables 5C-4-3-2 and 5C-4-3-3 provide a summary of the source parameters applied in the CALPUFF modelling for the point and volume sources, respectively. Table 5C-4-3-4 presents a qualitative assessment of fugitive dust emission from ore loaded trains.

Table 5C-4-3-2: Steensby Port Point Sources

| Source Description                                         |                         |                     |                         | Gener               | rators                  |                         |                           |                       | Incinerator          |
|------------------------------------------------------------|-------------------------|---------------------|-------------------------|---------------------|-------------------------|-------------------------|---------------------------|-----------------------|----------------------|
| Source Name                                                | ST GEN01                | ST GEN02            | ST GEN03                | ST_GEN04            | ST GEN05                | ST GEN06                | SHIP 2MW                  | SHIP 22MW             | ST INCIN             |
|                                                            | 5590 kW                 | 5590 kW             | 5590 kW                 |                     | 5590 kW                 | 5590 kW                 | 2 MW                      | 22MW                  | _                    |
| Power Rating<br># of Units                                 | 2230 KVV                | 3390 KVV            | 5590 KW                 | 5590 kW             | 2280 KW                 | 5590 KVV                | Z IVIVV                   | 2210100               | 500 kg/day           |
| # of Units Stack Height Above Grade (m)                    | 30                      | 30                  | 30                      | 30                  | 30                      | 30                      | 20                        | 20                    | 17.3                 |
| Stack Height Above Grade (III) Stack Height Above Roof (m) | 18                      | 18                  | 18                      | 18                  | 18                      | 18                      | N/A                       | N/A                   | 17.3<br>N/A          |
| Stack Flow Rate (m³/s)                                     | 14.13                   | 14.13               | 14.13                   | 14.13               | 14.13                   | 14.13                   | 7.84                      | 12.57                 | 1.127                |
| Stack Plow Rate (III-/s) Stack Diameter (m)                | 1.09                    | 1.09                | 1.09                    | 1.09                | 1.09                    | 1.09                    | 0.8                       | 0.8                   | 0.48                 |
| Exit Temperature (K)                                       | 593                     | 593                 | 593                     | 593                 | 593                     | 593                     | 555                       | 555                   | 952                  |
| Exit Velocity (m/s)                                        | 15.24                   | 15.24               | 15.24                   | 15.24               | 15.24                   | 15.24                   | 15.60                     | 25.00                 | 6.15                 |
| Exit velocity (III/3)                                      |                         |                     |                         |                     |                         |                         | 13.00                     | 23.00                 |                      |
|                                                            | NOx, CO, PM from        | NOx, CO, PM from    | NOx, CO, PM from        | NOx, CO, PM from    | NOx, CO, PM from        | NOx, CO, PM from        | Stack parameters from     | Stack parameters from | From                 |
|                                                            | manufacturer spec       | manufacturer spec   | manufacturer spec       | manufacturer spec   | manufacturer spec       | manufacturer spec       | similar sized Caterpillar | WB Marine Vessel      | "Characterization of |
|                                                            | sheet. SO2 from US      | sheet. SO2 from US  | sheet. SO2 from US      | sheet. SO2 from US  | sheet. SO2 from US      | sheet. SO2 from US      | generator engine.         | Emission Project.     | Emissions from the   |
| Source of Emissions                                        | EPA AP-42 Ch 3.4        | EPA AP-42 Ch 3.4    | EPA AP-42 Ch 3.4        | EPA AP-42 Ch 3.4    | EPA AP-42 Ch 3.4        | EPA AP-42 Ch 3.4        | Emissions from 2005-      | Emissions from 2005-  | Eco Waste Solutions  |
|                                                            | Large Stationary Diesel | •                   | Large Stationary Diesel |                     | Large Stationary Diesel | Large Stationary Diesel | 2006 BC Ocean-Going       | 2006 BC Ocean-Going   | Thermal Oxidizer     |
|                                                            | and Stationary Dual     | and Stationary Dual | and Stationary Dual     | and Stationary Dual | and Stationary Dual     | and Stationary Dual     | Vessel Emissions          | Vessel Emissions      | Report". Provided by |
|                                                            | Fuel Engines            | Fuel Engines        | Fuel Engines            | Fuel Engines        | Fuel Engines            | Fuel Engines            | Inventory                 | Inventory             | Aker Sept 2007.      |
| Emission Rates (g/s)                                       |                         |                     |                         |                     |                         |                         |                           |                       |                      |
| NOx                                                        | 31.87                   | 31.87               | 31.87                   | 31.87               | 31.87                   | 31.87                   | 1.70                      | 2.40                  | 2.97E-02             |
| SO2                                                        | 0.97                    | 0.97                | 0.97                    | 0.97                | 0.97                    | 0.97                    | 0.19                      | 0.27                  | 4.62E-04             |
| SO3                                                        | 0.038                   | 0.038               | 0.038                   | 0.038               | 0.038                   | 0.038                   | 0.01                      | 0.01                  | 1.82E-05             |
| SO4                                                        | 0.031                   | 0.031               | 0.031                   | 0.031               | 0.031                   | 0.031                   | 0.01                      | 0.01                  | 1.46E-05             |
| CO                                                         | 0.65                    | 0.65                | 0.65                    | 0.65                | 0.65                    | 0.65                    | 0.13                      | 0.18                  | 1.45E-03             |
| PM                                                         | 0.02                    | 0.02                | 0.02                    | 0.02                | 0.02                    | 0.02                    | 0.13                      | 0.18                  | 1.18E-02             |
| HCI                                                        | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.77E-01             |
| HF                                                         | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 3.38E-03             |
| Mercury                                                    | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 3.31E-05             |
| Antimony                                                   | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 8.10E-05             |
| Arsenic                                                    | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.46E-06             |
| Barium                                                     | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 3.27E-06             |
| Beryllium                                                  | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 0.00E+00             |
| Cadmium                                                    | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.35E-04             |
| Chromium                                                   | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 5.98E-05             |
| Cobalt                                                     | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 3.38E-07             |
| Copper                                                     | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 2.41E-04             |
| Lead                                                       | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 2.77E-04             |
| Manganese                                                  | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.62E-05             |
| Nickel                                                     | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 5.97E-06             |
| Selenium                                                   | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 3.16E-06             |
| Silver                                                     | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 4.17E-06             |
| Thallium                                                   | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 0.00E+00             |
| Zinc                                                       | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.58E-04             |
| Dioxins and Furans                                         | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   |                      |
| 2378-T4CDD                                                 | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.89E-12             |
| 12378-P5CDD                                                | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.78E-12             |
| 123478-H6CDD                                               | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 4.88E-13             |
| 123678-H6CDD                                               | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 7.29E-13             |
| 123789-H6CDD                                               | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.32E-12             |
| 1234678-H7CDD                                              | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 7.51E-13             |
| OCDD                                                       | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.50E-13             |
| 2378-T4CDF                                                 | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 4.36E-12             |
| 12378-P5CDF                                                | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 5.86E-13             |
| 23478-P5CDF                                                | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.21E-11             |
| 123478-H6CDF                                               | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 7.08E-12             |
| 123678-H6CDF                                               | N/A                     | N/A                 | N/A                     | N/A                 | N/A<br>N/A              | N/A                     | N/A                       | N/A                   | 2.96E-12             |
| 234678-H6CDF                                               | N/A<br>N/A              | N/A<br>N/A          | N/A<br>N/A              | N/A<br>N/A          | N/A                     | N/A<br>N/A              | N/A<br>N/A                | N/A                   | 6.47E-12             |
| 123789-H6CDF                                               |                         |                     |                         |                     | N/A                     |                         |                           | N/A                   | 5.48E-13             |
| 1234678-H7CDF                                              | N/A                     | N/A<br>N/A          | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 1.62E-12             |
| 1234789-H7CDF                                              | N/A                     |                     | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 6.76E-13             |
| OCDF                                                       | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 3.12E-13             |
| Total Dioxins and Furans Chlorobenzenes and                | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | 4.38E-11             |
| Octachlorostyrene                                          | N/A                     | N/A                 | N/A                     | N/A                 | N/A                     | N/A                     | N/A                       | N/A                   | ĺ                    |
|                                                            | IN/M                    | IN/A                | IN/M                    | IN/M                | N/A<br>N/A              | N/A<br>N/A              | IN/A                      | IN/M                  |                      |

Table 5C-4-3-2: Steensby Port Point Sources

| Source Description          |          |          |          | Gene     | erators  |          |          |           | Incinerator |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|-----------|-------------|
| Source Name                 | ST_GEN01 | ST_GEN02 | ST_GEN03 | ST_GEN04 | ST_GEN05 | ST_GEN06 | SHIP_2MW | SHIP_22MW | ST_INCIN    |
| 1.2.4.5-Tetrachlorobenzene  | N/A       | 1.62E-09    |
| 1,2,3,4-Tetrachlorobenzene  | N/A       | 4.21E-09    |
| Pentachlorobenzene          | N/A       | 8.30E-09    |
| Hexachlorobenzene           | N/A       | 3.16E-09    |
| Total Selected CBs          | N/A       | 2.24E-08    |
| Octachlorostyrene           | N/A       | 0.00E+00    |
| Polycyclic Aromatic         | .,,.,    | .,       | .,,.     |          |          |          |          |           |             |
| Hydrocarbons (PAHs)         | N/A       |             |
| Acenapthylene               | N/A       | 6.01E-10    |
| Acenpthene                  | N/A       | 0.00E+00    |
| Fluorene                    | N/A       | 1.43E-09    |
| 2-Methyl-Fluorene           | N/A       | 1.43E-09    |
| Phenenthrene                | N/A       | 1.25E-08    |
| Anthracene                  | N/A       | 9.01E-10    |
| Fluoranthene                | N/A       | 3.61E-09    |
| Pyrene                      | N/A       | 2.97E-09    |
| Retene                      | N/A       | 4.36E-09    |
| Benzo(a)Fluorene            | N/A       | 1.50E-10    |
| Benzo(b)Fluorene            | N/A       | 0.00E+00    |
| 1-Methyl-Pyrene             | N/A       | 1.13E-10    |
| Benzo(g,h,i)Fluoranthene    | N/A       | 1.13E-10    |
| Benzo(a)Anthrecene          | N/A       | 3.38E-10    |
| Triphenylene                | N/A       | 3.00E-10    |
| Chrysene                    | N/A       | 8.26E-10    |
| 7-Methyl-Benzo(a)Anthracene | N/A       | 0.00E+00    |
| Benzo(b)Fluoranthene        | N/A       | 1.65E-09    |
| Benzo(k)Fluoranthene        | N/A       | 1.88E-10    |
| Benzo(e)Pyrene              | N/A       | 6.01E-10    |
| Benzo(a)Pyrene              | N/A       | 0.00E+00    |
| Perylene                    | N/A       | 0.00E+00    |
| 3-Methyl-Cholanthrene       | N/A       | 0.00E+00    |
| Indeno(1,2,3-cd)Pyrene      | N/A       | 4.88E-10    |
| Dibenzo(a,h)Anthracene      | N/A       | 0.00E+00    |
| Benzo(b)Chrysene            | N/A       | 0.00E+00    |
| Benzo(g,h,i)Perylene        | N/A       | 3.38E-10    |
| Anthanthrene                | N/A       | 0.00E+00    |
| Total PAHs                  | N/A       | 3.31E-08    |
| Selected Volatile Organic   |          |          |          |          |          |          |          |           |             |
| Compounds (VOCs)            | N/A       |             |
| Chloromethane               | N/A       | 2.14E-06    |
| Vinyl Chloride              | N/A       | 7.21E-07    |
| 1,3-Butadiene               | N/A       | 2.06E-06    |
| Dichloromethane             | N/A       | 2.39E-06    |
| Benzene                     | N/A       | 2.02E-05    |
| Toluene                     | N/A       | 2.57E-03    |
| Chlorobenzene               | N/A       | 8.23E-07    |
| Ethylbenzene                | N/A       | 4.17E-06    |
| Note:                       |          | •        |          |          |          | •        |          | •         | -           |

Note:
1. Four (4) generators out of six (6) listed here were considered for modelling as they operate continuously; the remaining two (2) are standby generators

Table 5C-4-3-3: Steensby Port Volume Sources

| Source Description       | Railway                 | Lump Stockpile                                    | Lump<br>Stockpile                                    | Fines<br>Stockpile                                      | Fines<br>Stockpile                                      | Lump<br>Stacker/Reclaimer                                            | Lump Tripper<br>Discharge<br>Chute                                   | Lump<br>Stacker/Reclaimer<br>Discharge Chute | Fines Tripper<br>Discharge<br>Chute                                  | Fines Stacker<br>Conveyor                                            | Product<br>Reclaimer<br>(Fines or Lump<br>Product)                   | Product<br>Reclaimer<br>(Fines or Lump<br>Product)                   | Product<br>Reclaimer<br>(Fines or Lump<br>Product)                   | Product<br>Reclaimer<br>(Fines or Lump<br>Product)                   | Tripper<br>Discharge<br>Chute                                        | Tripper<br>Discharge<br>Chute                                        | Ship Loader                                                          | Ship Loader                                                          | Dust Collector                                                                    | Dust Collector                                                                    |
|--------------------------|-------------------------|---------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Source Name              | ST_RAIL                 | SLump1                                            | SLump2                                               | SFine1                                                  | SFine2                                                  | 4100-SK-002                                                          | 4100-CH-036                                                          | 4100-CH-041                                  | 4100-CH-034                                                          | 4100-SK-001                                                          | 4200-RC-001                                                          | 4200-RC-002                                                          | 4200-CH-001                                                          | 4200-CH-002                                                          | 4200-CH-006                                                          | 4200-CH-007                                                          | 4200-SL-001                                                          | 4200-SL-002                                                          | 4200-DC-001                                                                       | 4200-DC-002                                                                       |
|                          |                         |                                                   |                                                      |                                                         |                                                         |                                                                      |                                                                      |                                              |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                                   |                                                                                   |
| Location [X-coord] (km)  | 594.862                 | 593.567                                           | 593.761                                              | 593.36                                                  | 593.974                                                 | 593.535                                                              | 593.482                                                              | 593.482                                      | 593.953                                                              | 593.895                                                              | 593.39                                                               | 593.942                                                              | 593.425                                                              | 593.97                                                               | 592.662                                                              | 592.622                                                              | 592.632                                                              | 592.589                                                              | 592.663                                                                           | 592.625                                                                           |
| Location [Y-coord] (km)  | 7800.769                | 7799.558                                          | 7799.916                                             | 7799.43                                                 | 7800.055                                                | 7799.522                                                             | 7799.515                                                             | 7799.515                                     | 7800.09                                                              | 7800.079                                                             | 7799.334                                                             | 7800.017                                                             | 7799.309                                                             | 7799.99                                                              | 7799.19                                                              | 7799.099                                                             | 7799.229                                                             | 7799.14                                                              | 7799.191                                                                          | 7799.102                                                                          |
| Elevation (m ASL)        | 26.4                    | 0                                                 | 0                                                    | 0                                                       | 0                                                       | 0                                                                    | 0                                                                    | 0                                            | 0                                                                    | 0                                                                    | 0                                                                    | 0                                                                    | 0                                                                    | 0                                                                    | 0                                                                    | 0                                                                    | 0                                                                    | 0                                                                    | 0                                                                                 | 0                                                                                 |
| Power Rating             | 4400 hp                 | N/A                                               | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | 10,000 cfm                                                                        | 10,000 cfm                                                                        |
| # of Units               | 2 locos with 110 wagons | 1                                                 | 1                                                    | 1                                                       | 1                                                       | 1                                                                    | 1                                                                    | 1                                            | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                                 | 1                                                                                 |
| Sigma y (m)              | 0.9                     | 2                                                 | 2                                                    | 2                                                       | 2                                                       | 0.2                                                                  | 0.2                                                                  | 0.2                                          | 0.2                                                                  | 0.2                                                                  | 0.2                                                                  | 0.2                                                                  | 0.2                                                                  | 0.2                                                                  | 0.2                                                                  | 0.2                                                                  | 0.2                                                                  | 0.2                                                                  | 0.58                                                                              | 0.58                                                                              |
| Sigma z (m)              | 1.40                    | 2.00                                              | 2.00                                                 | 2.00                                                    | 2.00                                                    | 0.20                                                                 | 0.20                                                                 | 0.20                                         | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 0.20                                                                 | 2.51                                                                              | 2.51                                                                              |
| Release Height (m)       | 3                       | 5                                                 | 5                                                    | 5                                                       | 5                                                       | 6                                                                    | 1                                                                    | 1                                            | 1                                                                    | 1                                                                    | 6                                                                    | 6                                                                    | 6                                                                    | 6                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 1                                                                    | 5.4                                                                               | 5.4                                                                               |
| Source of Emission Rates | Previous RWDI studies   | US EPA AP-42 Ch 13.2.5<br>Industrial Wind Erosion | US EPA AP-42 Ch<br>13.2.5 Industrial<br>Wind Erosion | US EPA AP-42<br>Ch 13.2.5<br>Industrial Wind<br>Erosion | US EPA AP-42<br>Ch 13.2.5<br>Industrial Wind<br>Erosion | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and Storage<br>Piles | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles |                                              | US EPA AP-42 Ch<br>13.2.4 Aggregate<br>Handling and<br>Storage Piles | Particulate Emissions<br>from Dust Collectors<br>(Spec Sheet) [0.023<br>grams/m³] | Particulate Emissions<br>from Dust Collectors<br>(Spec Sheet) [0.023<br>grams/m³] |
| Emission Rates (g/s)     |                         |                                                   |                                                      |                                                         |                                                         |                                                                      |                                                                      |                                              |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                                   |                                                                                   |
| NOx                      | 0.388                   | N/A                                               | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                               | N/A                                                                               |
| SO2                      | 0.0325                  | N/A                                               | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                               | N/A                                                                               |
| SOS                      | 0.0013                  | N/A                                               | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                               | N/A                                                                               |
| SO <sub>4</sub>          | 0.0010                  | N/A                                               | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                               | N/A                                                                               |
| CC                       | 0.167                   | N/A                                               | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                               | N/A                                                                               |
| PM2.5 (Combustion)       | 0.021                   | N/A                                               | N/A                                                  | N/A                                                     | N/A                                                     | N/A                                                                  | N/A                                                                  | N/A                                          | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                  | N/A                                                                               | N/A                                                                               |
| TSP (Fugitive            | ) N/A                   |                                                   | Hourly Emission                                      | Hourly Emission                                         | Hourly Emission                                         |                                                                      | Hourly Emission                                                      |                                              |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      | N/A                                                                               | N/A                                                                               |
| PM10 (Fugitive           | N/A                     | Hourly Emission File                              | File                                                 | File                                                    | File                                                    | Hourly Emission File                                                 | File                                                                 | Hourly Emission File                         | Hourly Emission File                                                 | Hourly Emission File                                                 | Hourly Emission File                                                 | Hourly Emission File                                                 | Hourly Emission File                                                 | Hourly Emission File                                                 | Hourly Emission File                                                 | Hourly Emission File                                                 | Hourly Emission File                                                 | Hourly Emission File                                                 | 0.109                                                                             | 0.109                                                                             |
| PM2.5 (Fugitive          | ) N/A                   |                                                   | i lie                                                | i-lie                                                   | ille                                                    |                                                                      | i lie                                                                |                                              |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      | Ī                                                                    |                                                                      | N/A                                                                               | N/A                                                                               |

### Table 5C-4-3-4: Qualitative Assessment of Fugitive Dust Emission from Train Operation

(Ore Transportation from Mine Site to Steensby Port)

#### 5C-4-3-4a. Measured Fugitive Emissions per 100 Miles

Emissions based on "Transportation of Iron Ore A Practical Experience in Environmental Control", The Annals of Occupational Hygiene, (1974)

|                         | Sample 1<br>(cwt/100<br>miles) | Sample 2<br>(cwt/100 miles) | Sample 3<br>(cwt/100<br>miles) | Sample 4<br>(cwt/100<br>miles) | Sample 5<br>(cwt/100<br>miles) | Sample 6<br>(cwt/100<br>miles) | Sample 7<br>(cwt/100<br>miles) | Average<br>(cwt/100<br>miles) | Average<br>(kg/100<br>miles | Average<br>(kg/km) |
|-------------------------|--------------------------------|-----------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|-----------------------------|--------------------|
| Kov'sky Untreated       | 7                              | 7                           | 6                              | 8.5                            | 4.5                            | 7                              | 6.25                           | 6.61                          | 336                         | 2.10               |
| Kov'sky Sprayed         | 0.25                           | 0.25                        | -                              | -                              | -                              | -                              | -                              | 0.25                          | 12.7                        | 0.08               |
| Kov'sky Watered         | 1                              | -                           | -                              | -                              | -                              | -                              | -                              | 1                             | 50.8                        | 0.32               |
| OI'sky Untreated        | 8                              | 5.5                         |                                | -                              | -                              |                                | -                              | 6.75                          | 343                         | 2.14               |
| Cerro Boliver untreated | 0.25                           | -                           | ı                              | ī                              | -                              | ı                              | -                              | 0.25                          | 12.7                        | 0.079              |

#### 5C-4-3-4b. Fugitive Dust Emission from Trains

(Based on average estimated emission from Table 9.a)

|                                                                  | Kov'sky<br>Untreated | Kov'sky Sprayed | Kov'sky<br>Watered | Ol'sky<br>Untreated | Cerro Boliver<br>Untreated |
|------------------------------------------------------------------|----------------------|-----------------|--------------------|---------------------|----------------------------|
| Length of Track (km)                                             | 143                  | 143             | 143                | 143                 | 143                        |
| Total kg/railcar/trip                                            | 300.0                | 11.4            | 45.4               | 306.5               | 11.4                       |
| Total kg/Train/Km                                                | 302.1                | 11.4            | 45.7               | 308.6               | 11.4                       |
| Tonnes/Km/Day                                                    | 0.60                 | 0.02            | 0.09               | 0.62                | 0.02                       |
| Total Emissions @ 144 Ore Cars and 2 Loaded Trips / Day (Tonnes) | 86                   | 3               | 13                 | 88                  | 3                          |

<sup>1</sup> cwt = 50.8kg

#### Sample Calculations:

Total kg/train/km (Kov'sky Untreated):

| kg         |   | 2.1 kg       | ~ | 144 Railcars | _ | 302 kg     |
|------------|---|--------------|---|--------------|---|------------|
| train * km | = | km * Railcar | ^ | Train        | _ | train * km |

#### 5C-4-3-4c. Summary of Fugitive Emissions from Truck and Train Operation

| Source                                 | Truck<br>Operation<br>(Tote Road) <sup>[1]</sup> | Train Operation<br>(Mine Site to<br>Steensby Port) <sup>[2]</sup> |
|----------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|
| Kg/Km Travelled                        | 2.0                                              | 11.4                                                              |
| Total Tonnes/Km/Day <sup>[3]</sup>     | 0.3                                              | 0.02                                                              |
| Total Emissions Full Trip/Day (Tonnes) | 34.0                                             | 3.3                                                               |

#### Notes:

- [1] Only Fugitive Dust Emissions based on AP-42 Emission Factor
- [2] Ore Blow off from Loaded Trains, 144 Ore Cars per trip. Assumes Emission Factors for Kovdorsky "Sprayed" Ore
- [3] Assumes 7 passes per hour on the Tote road and 2 loaded train trips per day