



Environmental Impact Statement
December 2010

### **APPENDIX 6B-1**

GEOCHEMICAL EVALUATION OF ORE AND WASTE ROCK







# INTERIM REPORT ON ML/ARD CHARACTERIZATION MARY RIVER PROJECT, DEPOSIT NO.1

Submitted to:
Baffinland Iron Mines Corporation
120 Adelaide St. West, Suite 1016
Toronto, Ontario
M5H 1T1

Submitted by:

AMEC Earth & Environmental, a division of AMEC Americas Limited 160 Traders Blvd., Suite 110 Mississauga, Ontario L4Z 3K7

December 2010

TC101507





16 December, 2010

TC101507

Baffinland Iron Mines Corporation 120 Adelaide St. West, Suite 1016 Toronto, Ontario M5H 1T1

Attention: Mr. Dick Matthews
Vice President of Technical Services

Re: Interim Report – ML/ARD Characterization Deposit No.1, Mary River Project Rev.1, Issued in Support of DEIS

Please find attached a final interim report on the metal leaching and acid rock drainage (ML/ARD) characterization of materials from Mary River Deposit No. 1 of Baffinland Iron Mine site.

The report presents the results and interpretation of geochemical analyses of samples and results available to November 2010.

Please do not hesitate to contact the undersigned should you have any questions.

Yours very truly,

AMEC Earth & Environmental a Division of AMEC Americas Limited

Stephan H. Theben. Dipl.-Ing. Senior Environmental Consultant







#### **EXECUTIVE SUMMARY**

AMEC was retained by Baffinland Iron Mines Corporation (Baffinland) to conduct environmental studies in support of an environmental impact assessment (EIA) for their proposed iron mine at the Mary River Site. AMEC's work included a metal leaching / acid rock drainage (ML/ARD) characterization study for the project to assist with the management of future ore and waste rock at the site. This report summarizes data collected to date, documents the findings of this work and presents a summary of future and on-going work.

AMEC has evaluated existing geochemical studies and completed additional sampling of rock materials from drill core that are expected to be representative of the waste rock produced during mining. Geochemical characterization of rock materials from this and previous studies has been completed using standardized ML/ARD assessment techniques. In addition, AMEC has evaluated drainage and runoff data from existing stockpiles at the site in order to assess the potential mine drainage quality at the site during mine operations and closure.

A total of 277 drill core waste rock samples (including an additional 180 samples from the current study) were submitted for Acid-base Accounting (ABA) testing. Results of this testing has determined that approximately 86% of the waste rock samples are unlikely to generate acidic drainage in the future. The remainder of the samples were classified as potentially acid generating (PAG) materials.

Based on testing using short term leaching tests, metal leaching from the waste rock materials is expected to be low. Drainage quality expected at the site, based on monitoring of existing ore stockpiles, is expected to be circum-neutral to mildly acidic (pH 5.5 to 6) with generally low metal concentrations. Some elevated metal concentrations observed on site, and particularly manganese, may be related to manganese-bearing siderite that is present in some of the ore stockpiles.

The current mine plan includes encapsulation of the PAG rock within the core of the waste rock stockpile. Based on the proportion of PAG samples and the findings of the ML/ARD characterization study, this proposed approach appears to be a viable method for minimizing any ML/ARD impacts on the environment. Additional geochemical studies including further kinetic testing are continuing to evaluate and refine this option. Additional testing is planned to better understand the kinetics of potential acid leaching behaviour and further refine the expected drainage quality and metal leaching behaviour from materials at the site.





## **TABLE OF CONTENTS**

|     |      |                                      | PAGE |
|-----|------|--------------------------------------|------|
| 1.0 | INTR | RODUCTION                            | 1    |
|     | 1.1  | Site Description                     | 1    |
|     | 1.2  | Objectives and Scope of Work         | 1    |
|     | 1.3  | Proposed Waste Rock Management Plan  | 2    |
| 2.0 | GEO  | LOGY                                 | 2    |
|     | 2.1  | Regional Geology                     | 2    |
|     | 2.2  | Deposit Geology                      | 3    |
| 3.0 | REV  | IEW OF PREVIOUS GEOCHEMICAL TESTWORK | 4    |
|     | 3.1  | Static Testing                       |      |
|     | 3.2  | Kinetic Testing                      |      |
|     | 3.3  | 2008 Bulk Ore Sample Testing Program |      |
| 4.0 | 2010 | TESTING PROGRAM                      | 6    |
|     | 4.1  | Sample Collection                    |      |
|     | 4.2  | Sample Analysis                      |      |
|     |      | 4.2.1 Acid Base Accounting           |      |
|     |      | 4.2.2 Net Acid Generation testing    | 8    |
|     |      | 4.2.3 Total element analyses         | 8    |
|     |      | 4.2.4 Leachable metals               |      |
|     |      | 4.2.5 Mineralogy (Rietvield XRD)     |      |
|     | 4.3  | Additional Humidity Cell Testing     | 9    |
|     | 4.4  | Stockpile Drainage Sampling          | 10   |
| 5.0 | GEO  | CHEMICAL TESTING RESULTS             | 10   |
|     | 5.1  | Acid Base Accounting (ABA)           | 11   |
|     |      | 5.1.1 Hanging wall                   |      |
|     |      | 5.1.2 Footwall                       | 13   |
|     | 5.2  | Total Metals                         | _    |
|     |      | 5.2.1 Hanging wall                   |      |
|     |      | 5.2.2 Footwall                       |      |
|     | 5.3  | Leachable Metals                     |      |
|     |      | 5.3.1 Hanging wall                   |      |
|     | - 4  | 5.3.2 Footwall                       |      |
|     | 5.4  | Mineralogy5.4.1 Hanging wall         |      |
|     |      | 3.4.1 PANOINO WAII                   |      |





|                                                     |                                                                                      | 5.4.2 | 2                                                                                                                                                                                                                         | Footwall                                                                                    |                                                                                  |                                                                                                                              |                                                              |                                          |    | 17 |
|-----------------------------------------------------|--------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|----|----|
|                                                     | 5.5                                                                                  | Stoc  | kpile I                                                                                                                                                                                                                   | Orainage                                                                                    |                                                                                  |                                                                                                                              |                                                              |                                          |    | 17 |
| 6.0                                                 | DISCU                                                                                | SSIO  | N                                                                                                                                                                                                                         |                                                                                             |                                                                                  |                                                                                                                              |                                                              |                                          |    | 18 |
|                                                     | 6.1                                                                                  | Was   | te Ro                                                                                                                                                                                                                     | ck                                                                                          |                                                                                  |                                                                                                                              |                                                              |                                          |    | 18 |
|                                                     | 6.2                                                                                  |       |                                                                                                                                                                                                                           |                                                                                             |                                                                                  |                                                                                                                              |                                                              |                                          |    |    |
|                                                     | 6.3                                                                                  | Drair | nage (                                                                                                                                                                                                                    | Quality                                                                                     |                                                                                  |                                                                                                                              |                                                              |                                          |    | 21 |
| 7.0                                                 | CONC                                                                                 | LUSI  | ONS.                                                                                                                                                                                                                      |                                                                                             |                                                                                  |                                                                                                                              |                                                              |                                          |    | 21 |
| 8.0                                                 | FUTUF                                                                                | RE W  | ORK                                                                                                                                                                                                                       |                                                                                             |                                                                                  |                                                                                                                              |                                                              |                                          |    | 23 |
| 9.0                                                 | REFER                                                                                | RENC  | ES                                                                                                                                                                                                                        |                                                                                             |                                                                                  |                                                                                                                              |                                                              |                                          |    | 23 |
|                                                     |                                                                                      |       |                                                                                                                                                                                                                           |                                                                                             |                                                                                  |                                                                                                                              |                                                              |                                          |    |    |
|                                                     |                                                                                      |       |                                                                                                                                                                                                                           |                                                                                             | LIST O                                                                           | F TABLES                                                                                                                     |                                                              |                                          |    |    |
| Table 2<br>Table 3<br>Table 4<br>Table 5<br>Table 6 | Table 1:<br>Table 2:<br>Table 3:<br>Table 4:<br>Table 5:<br>Table 6.A:<br>Table 6.B: |       | Summ<br>Summ<br>Summ<br>Summ<br>Shake<br>Modifie<br>Sample                                                                                                                                                                | ary of Net A<br>ary of Total<br>ary of Meta<br>ary of Meta<br>Flask Extra<br>ed Synthetices | Acid Gener<br>Metal Cor<br>I Enrichme<br>I Enrichme<br>action Res<br>c Precipita | rses of Wast<br>rating Testin<br>ntent of Roc<br>ent of Hangin<br>ent of Footw<br>ults of Rock<br>tion Leachin<br>ck Samples | g Results<br>k Sample<br>ng wall Ro<br>all Rock S<br>Samples | s of Rock S<br>s<br>ock Sampl<br>Samples | es |    |
|                                                     |                                                                                      |       |                                                                                                                                                                                                                           |                                                                                             | LIST OF                                                                          | FIGURES                                                                                                                      |                                                              |                                          |    |    |
| Figure 1:<br>Figure 2:<br>Figure 3:<br>Figure 4:    |                                                                                      | 5     | Borehole Locations of ML/ARD Assessment<br>Scatterplot of Sulphide versus Total Sulphur for Waste Rock<br>Scatterplot of NP versus AP for Waste Rock Samples<br>Scatterplot of NPR versus Sulphide Sulphur for Waste Rock |                                                                                             |                                                                                  |                                                                                                                              | •                                                            |                                          |    |    |
|                                                     |                                                                                      |       |                                                                                                                                                                                                                           |                                                                                             | LIST OF A                                                                        | PPENDICE                                                                                                                     | :S                                                           |                                          |    |    |
| Append<br>Append<br>Append<br>Append                | dix B<br>dix C                                                                       | S     | Summ<br>.abora                                                                                                                                                                                                            | atory Certific                                                                              | BA and Me                                                                        | etal Analyses                                                                                                                |                                                              |                                          |    |    |





#### 1.0 INTRODUCTION

AMEC was retained by Baffinland Iron Mines Corporation (Baffinland) to conduct environmental studies in support of an environmental impact assessment (EIA). AMEC conducted this additional geochemical study to expand the geochemistry knowledgebase for the project.

## 1.1 Site Description

Baffinland is planning to mine iron ore at their Mary River site located on the northern half of Baffin Island, approximately 160 km south of Mittimatalik (Pond Inlet), 270 km south-east of Nanisivik, 300 km north of Hall Beach, and 1000 km north-west of Iqaluit, the capital of Nunavut Territory, Canada. This area experiences a mean annual temperature of approximately -12°C and monthly averages below -20°C from December to March. Above freezing temperatures occur only from June to August, with an average high of 4.4°C in July.

There are currently five deposits of potential economic interest identified at the site. The current mine development relates to Deposit No.1, which is the largest and best known of the economic deposits at the site.

The current projected life of mine is about 21 years based on reserves in Deposit No.1. The proposed mine will include the open pit, crushing and screening facilities, and the ore and waste rock storage facilities. The dimension of the ultimate open pit will be approximately 2,000 m in length, 1,200 m in width and range from 195 m on the south side to 465 m on the north side in depth (Aker Kaeverner, 2008).

The economic iron deposits at the Mary River project represent high-grade examples of Algoma-type iron formation. Approximately 365 Mt of ore will be produced at the Mary River Project (Aker Kaeverner, 2008). Deposit No. 1 ores contain magnetite and hematite in different proportions. About 640 Mt of waste rock are anticipated to be produced during the life of the mine.

#### 1.2 Objectives and Scope of Work

The objective of this assessment was to characterize the metal leaching and acid rock drainage (ML/ARD) characteristics of the mine rocks that will be produced from the proposed open pit. The ML/ARD assessment results will provide the input for the management of the mine rock and also the management of the seepage and runoff from the mine rock stockpiles and open pit.

Materials characterized in this study include rock core samples that represent rock types that will be placed in waste rock stockpiles and potentially exposed on pit walls. To further improve





the understanding of the potential for acid and metal leaching from the mine rock, the seepage and run off quality of mine rock stockpiles that have been monitored over the last few years by Baffinland were also reviewed.

This report summarizes the understanding of the geochemistry of the mine rock from the Mary River Deposit No.1 based on results available up to November 2010.

## 1.3 Proposed Waste Rock Management Plan

The waste rock to be produced from the mine has been interpreted on the basis of the hanging wall and footwall zones of the deposit. It is estimated that approximately 640 Mt of waste rock will be produced, consisting of 400 Mt (63%) footwall and 240 Mt (37%) of hanging wall material (Wahl, 2010).

Results of the previous geochemical study (Knight Piésold, 2008a) indicated that some waste rock generated from the proposed open pit is potentially acid generating (PAG) material. However, the limited number of samples in the 2008 program restricted the ability to estimate the proportion of PAG waste rock. For the purpose of the waste rock stockpile design, the mine plan assumed that 20% of waste rock generated during the mine life will be PAG materials (AMEC, 2010) on the basis of the Knight Piésold work.

The current waste rock stockpile design calls for placement of PAG material as a cell encapsulated within the non-PAG waste rock stockpile. With containment of the PAG cell in this manner, it is expected that reactivity of the PAG material will be substantially reduced by introducing and maintaining permafrost conditions within the core of the waste rock stockpile.

#### 2.0 GEOLOGY

#### 2.1 Regional Geology

The northern part of Baffin Island consists of the ca. 3.0-2.5 Ga Committee Fold belt which lies within the Rae domain of the western Churchill Province (Jackson and Berman, 2000). The Committee belt extends north-east for around 2000 km from south-west of Baker Lake, Nunavut Territory to northwestern Greenland. Four major assemblages of Precambrian rocks have been identified within the Committee Belt. The iron ore deposits occur as part of the supra-crustal rocks of the Neoarchean aged (2.76-2.71 Ga) Mary River Group in the region. The Central Borden Fault Zone passes within 1 km to the south-west of the site. This fault separates the highly deformed Precambrian rocks to the north-west from the early Paleozoic relatively flat lying sedimentary rocks to the southwest.





The generalized stratigraphic sequence of the Mary River group from base to top according to Young *et al.* (2004) and Johns and Young (2006) is:

- psammite and sedimentary migmatite;
- · amphibolite;
- Algoma-type oxide- and silicate-facies iron formation;
- quartzite; and
- interbedded ultramafic and intermediate volcanic rocks.

The thickness of individual units varies considerably across the area. Ultramafic and gabbroic intrusions in the form of small sills and dykes (<10 m in thickness) may occur within the sedimentary rocks, iron formation and amphibolite units (Johns and Young, 2006). Locally these intrusions have been observed to contain thin sulphide veinlets and disseminated sulphides. At the deposit scale, the overall sequence can be complicated by inferred early isoclinal folds and ramp and flat thrust faults (Young *et al.*, 2004) which create complex and variable stratigraphic relationships. The contact between the Mary River group and gneiss basement rock are generally not directly exposed, being obscured by younger granitic intrusions.

Iron formation within the Mary River Group occurs as an oxide- and silicate- facies unit. Oxide facies iron formations vary from lean magnetite-chert to iron-ore quality deposits of magnetite and hematite (Johns and Young, 2006). Genesis of high grade iron ores is the result of the Hudsonian age deformation and metamorphism of enriched Archean Banded Iron Formation. The silicate—facies iron formation is generally thin and found in association with the oxide—facies, although it also occurs on its own. It commonly contains coarse garnet, anthophyllite, cummingtonite, and actinolite porphyroblasts.

## 2.2 Deposit Geology

Deposit No.1 occurs at the nose of a syncline plunging steeply to the north-east (Aker Kvaerner, 2008). The iron formation occupies the nose and two limbs of this feature with an ~1300 m long northern portion and an ~700 m long southern portion. The footwall to the iron formation mainly consists of gneiss with minor schist, psammitic gneiss (psammite) and amphibolite. The hanging wall is primarily composed of schist and volcanic tuff with lesser amphibolite and metasediment.

The hanging wall primarily encompasses chlorite—actinolite schist and garnetiferous amphibolites. Volcanic tuff is also a significant lithology identified in the hanging wall. The footwall mainly consists of quartz-feldspar-mica gneiss with lesser psammitic gneiss and quartz-





mica schist. Microcline and albite are the predominant feldspar within the gneiss and biotite is generally more abundant than muscovite.

The iron ore deposits at the Mary River project represent high-grade examples of Algoma-type iron formation and are composed of hematite, magnetite and mixed hematite-magnetite-specular hematite varieties of ore (Aker Kvaerner, 2008). The iron deposits consist of a number of lensoidal bodies that vary in their proportions of the main iron oxide minerals and impurity content of sulphur and silica in the ore. The massive hematite ore is the highest grade ore and also has the fewest impurities, which may indicate it was derived from relatively pure magnetite or that chert, quartzite and sulphides were leached and oxidized during alteration of the iron formation.

#### 3.0 REVIEW OF PREVIOUS GEOCHEMICAL TESTWORK

#### 3.1 Static Testing

Previous geochemical studies (Knight Piésold, 2008a) included analysis of 97 waste rock samples, 21 ore samples and 7 overburden samples. Waste rock and ore samples were collected from rock cores at 34 boreholes drilled in 2004, 2005 and 2006. All samples underwent Acid Base Accounting (ABA) analysis, total element analysis by aqua-regia leach, and whole rock analysis by X-ray Fluorescence (XRF). ABA analysis included assessment of acid potential (AP) on the basis of measured total sulphur and calculated sulphide sulphur concentrations. Assessment of neutralization potential (NP) was on the basis of total neutralization potential determined by the modified Sobek method and carbonate NP (CaNP) by measurement of total inorganic carbon.

Selected samples were additionally analysed using the Net Acid Generation (NAG) test, mineralogy by XRD, and short-term leaching tests using Standard (USEPA 1312) Synthetic Precipitation Leaching Procedure (SPLP) at pH 4.5, a modified SPLP procedure and the Toxic Characteristic Leaching Procedure (USEPA 1311). The modified SPLP procedure used deionized water at pH 5.5 and a liquid to solid ratio of 1:3 rather than 1:20 for the standard SPLP.

This report indicated that 21 of 23 (91%) footwall rock samples, 65 of 74 (88%) hanging wall samples, 11 of 16 (69%) ore samples, and all overburden samples had NPR >2 for NPR calculated using modified Sobek NP and AP based on sulphide sulphur. This suggests most samples are non-potentially acid generating (non-PAG).

Results of short-term leaching tests (SPLP and modified SPLP) indicated that several metal parameters such as aluminum, barium, iron and manganese were susceptible to leaching at concentrations greater than 1 mg/L from footwall and hanging wall samples (Knight Piésold,





2008a). However, concentrations of major and trace metals in humidity cell leachate were low to negligible.

#### 3.2 Kinetic Testing

A humidity cell testing program was conducted on ten rock samples from the Mary River project in early 2008 (Knight Piésold, 2008a). The humidity cell testing consisted of: three humidity cells containing footwall samples; and seven humidity cells containing hanging wall samples. Two samples of footwall rocks and five samples of hanging wall rock that underwent the humidity cell testing had values of NPR less than 2. The humidity cells were operated for 53 weeks. The preliminary results of humidity cell test that covered 20 week operation were reported by Knight Piésold (2008a). The complete results of the humidity cell testing including previously unreported results are presented in Appendix A.

- The pH of humidity cell leachate from week 20 until the end of the test was generally circum-neutral (Figure A-1). Leachates from four cells (two samples of footwall rocks and two samples of the hanging wall rocks) had pH somewhat lower (5.5 to 6.5) than the majority of samples. One of the samples among the set with slightly lower pH includes a sample with an NPR of 3.1. None of the samples produced strongly acidic drainage over the course of the 53 weeks of testing.
- The sulphate release rate decreased steadily during the first 20 weeks of cell operation. After this point, the rates were generally steady until the end of operation for the majority of the cells (Figure A-2). The sulphate release rates from the footwall samples were low and in a narrow range 2.8 to 3.8 mg/kg/week. The hanging wall rock also had low sulphate release rates, but exhibited greater variation ranging from 0.7 to 38 mg/kg/week. The highest sulphate loading rates were recorded from the amphibolite rock sample.
- Metal concentrations in the humidity cell leachates were relatively low. Concentrations of arsenic, chromium, copper, mercury, and silver were lower than method detection limit in most samples. Arsenic and copper concentrations were only detected in one gneiss footwall sample and one hanging wall schist sample, respectively.
- In general, the metal loading rates decreased or remained relatively stable after 20 weeks of cell operation. In contrast to these general trends, the loading rates of cadmium, cobalt, manganese, nickel and zinc from one footwall gneiss rock sample increased in the last 20 weeks of operation (Figures A-8, A-9, A-14, A-15, and A-19).
- Prediction of the lag time until acid generation begins in the PAG waste rock humidity cells was calculated based on the estimated rates of NP depletion measured from the cells. Acidic conditions were assumed to occur once all the NP in the sample had been depleted. NP depletion was calculated based on average release rate of calcium and magnesium during the last 10 weeks of the cell operation, assuming carbonate is the





only source for NP, and near-steady state conditions had been reached. The initial Sobek NP values from the ABA testing were used to calculate carbonate depletion. Based on these calculations, the NP depletion time varied from 1 to 416 years with median of 41 years (Table A -1).

- Sulphide depletion in the humidity cells was calculated based on the average sulphate release rates measured during the steady release rates operation and the initial sulphide content of the sample from the results of ABA. Based on these calculations, the sulphide depletion time ranged from 16 to 165 years (Table A-1).
- The NP and sulphide depletion results suggest that for 8 of 10 of the samples the
  estimated NP depletion time was shorter than the estimated sulphide depletion time,
  indicating that these samples could potentially generate acid in the future. The ARD
  onset time varied widely, ranging from 1 to 416 years with a median of 29 years.

#### 3.3 2008 Bulk Ore Sample Testing Program

Another geochemical testing program was conducted in 2008 as a part of the bulk ore sampling program (Knight Piésold, 2009). Twenty-three rock samples were collected from 130,000 tonnes of blasted rock from the west side of Deposit No.1. These samples represented three different ore types and varieties, including weathered ore, representative ore and non-representative high manganese ore. All of these samples were subjected to the same testing as the waste rock samples, namely ABA, total elements by aqua regia, whole rock analyses, and modified SPLP testing.

The content of sulphide sulphur in all samples was below the method detection limit (<0.01%) with the exception of one sample. The carbonate NP generally exceeded the Sobek NP. Twenty-two of 23 samples had NPR >2, indicating that the majority of these samples were Non-PAG material. However, the NP of the materials was generally very low ranging from 1 to 4.5 kg CaCO<sub>3</sub>/t.

Besides iron, manganese was generally the only parameter in the ore samples that was enriched (more than ten times higher) relative to an average basalt composition (Price 1997). Results of the SPLP testing showed that concentrations of arsenic, copper, nickel, lead, and zinc were lower in the leachates than values of the Metal Mine Effluent Regulations (MMER) SOR/2002-222 Schedule 4 and the Water License 2BB-MRY0710.

#### 4.0 2010 TESTING PROGRAM

Based on the review of previous geochemical studies, AMEC developed a geochemical testing program to augment the geochemical database for the project. The program included the collection and analysis of additional samples to increase the representativity of the data.





The approach and methodology for the collection and characterization of mine waste materials was based upon the following documents:

- Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials. MEND Report 1.20.1. (MEND, 2009); and
- Guidelines for ARD Prediction in the North (INAC, 1992).

The documents represent best practice and industry standard approaches and methodologies for ML/ARD sampling and characterization.

## 4.1 Sample Collection

The objective of the 2010 sampling program for ML/ARD characterization was to obtain samples that accurately represent the geochemical variation of the rock types to be mined. Samples were selected to capture both the spatial and geochemical variability of the proposed open pit. The pit limit, existing borehole locations and geology are provided in Figure 1.

The sampling program conducted by AMEC in July 2010 targeted the most recently recovered drill core from 2008 and 2009 drilling programs. AMEC identified that a limited number of footwall samples were collected during the previous geochemical investigation program, and this limitation was inherent in the ore delineation drilling approach utilized for resource development. Drilling that focused on ore delineation, penetrated only limited sections of footwall material. To partially address the limited number of footwall samples, AMEC also collected additional footwall samples from 2007 core. Further, in August 2010 under AMEC's direction, Baffinland drilled three new boreholes that specifically targeted the footwall region of the proposed pit (Figure 1).

In total, 180 drill core samples were collected during the 2010 sampling program. Sampled intervals were approximately 1 m lengths of core. The collected drill core consisted of 84 samples representing the footwall and 96 samples representing the hanging wall. Lithological information was established from original core logs. A description of each sample confirming lithology and identifying the presence of sulphides and/or visible alteration was made at the time of sampling.

# 4.2 Sample Analysis

The collected mine rock samples were shipped to SGS Lakefield, Ontario for laboratory testing. The analyses for the samples were comparable to those completed in the previous geochemical investigations and described below.





## 4.2.1 Acid Base Accounting

Acid Base Accounting (ABA) analyses were performed on all rock samples. The ABA testing consisted of total sulphur, sulphate sulphur, sulphide sulphur by difference, total carbon (TC), total inorganic carbon (TIC), modified Sobek neutralization potential (NP), and paste pH. Selected sample details and results are presented in Table B-1 (Appendix B), laboratory certificates are provided in Appendix C1.

Total sulphur in the samples was determined by Leco furnace. Sulphate sulphur was determined by dilute hydrochloric acid digestion and colorimetry. Sulphide sulphur was determined by difference between the two analyses. Measurement of TIC was used to determine the carbonate NP (CaNP).

## 4.2.2 Net Acid Generation testing

The single addition Net Acid Generation (NAG) test was conducted on all rock samples. In addition the sequential NAG test was performed on any samples with total sulphur of more than 1%. Laboratory certificates are provided in Appendix C2.

The NAG test is a complimentary test to ABA which provides an assessment of the potential of a sample to generate acid (AMIRA, 2000). The simplicity of the  $NAG_{pH}$  test may make it suitable as a screening tool for field characterization of rock materials, where it is sufficiently calibrated against more comprehensive ABA data. Values for  $NAG_{pH}$  greater than 4.5 indicate that a sample has little potential to produce net acidity in the future.

The sequential NAG test was conducted on samples with total sulphur more than 1%, since sulphur at these concentrations may not be completed oxidized when using the single addition test. The sequential NAG test consists of a series of single addition NAG tests. The NAG test cycle was repeated until the  $NAG_{pH}$  of the final solution is greater than 4.5. The resulting NAG value was determined by summing the values from each cycle of the single addition NAG test.

#### 4.2.3 Total element analyses

All rock samples were analysed for concentrations of a standard suite of elements (primarily metals) in aqua regia leachate with ICP/MS quantification. Laboratory certificates are provided in Appendix C3. Aqua regia digestion is considered a partial dissolution method since some resistant minerals (e.g., silicates) are not decomposed or only partially decomposed by the aqua regia leach. However, concentrations of most environmentally important metals are expected to be adequately determined by this technique.





#### 4.2.4 Leachable metals

Shake flask extraction (SFE) tests were conducted on selected rock samples to assess the presence of potentially soluble elements and their release during initial stages of weathering. Laboratory certificates are presented in Appendix C4. Testing was conducted using a 3:1 deionised water to solid ratio agitated for 24 hours (MEND, 2009). The modified SPLP test used in the previous study (Knight Piesold, 2008a) is similar to this test method. The resulting leachates were then analysed for pH and for concentrations of dissolved metals by ICP-MS. Nineteen samples representing 10 samples of footwall rocks and nine samples of hanging wall rocks sample were selected to undergo SFE testing after reviewing the results of the total elemental analysis.

#### 4.2.5 Mineralogy (Rietvield XRD)

Based on the results of ABA testing, nine samples were selected for mineralogical analysis by Reitveld XRD. Laboratory certificates are provided in Appendix C5. This technique provides a semi-quantitative to quantitative assessment of the mineral composition of a sample. Sub-samples of the selected samples were crushed to less than 10 µm then analysed as random powder mounts using an x-ray diffractometer equipped with a step-scanning goniometer. The amounts reported represent the relative amounts of crystalline mineral phases in the mounted specimens normalized to 100%. This method is effective at identifying crystalline phases present in abundance greater than a few weight percent. With favourable peak profiles and minimal overlapping peaks, phases may be detected at less than 1 weight percent.

## 4.3 Additional Humidity Cell Testing

Based on the static testing results on the 180 samples collected in 2010, samples have been selected for kinetic testing using standard humidity cells. The tests will be used to evaluate the acid and metal leaching characteristics of the deposit waste rock materials. The samples were selected to represent the major rock types within the range of critical acid generation potentials. The tests will be operated for a minimum period of 26 weeks or until the observed rates from the cells stabilize.

In addition to the standard humidity cells, specialized NP-depleted humidity cells have also been initiated. These cells are to be operated to assess the drainage chemistry of waste rock devoid of neutralization capacity and to simulate drainage under acidic conditions.





# 4.4 Stockpile Drainage Sampling

In order to better assess actual site drainage quality, AMEC evaluated site drainage data collected and analysed by Baffinland (Table 8, Appendix D). Monitoring of runoff and seepage from ore stockpiles has been completed by Baffinland since 2008. The monitoring data is limited to the short summer period in a given year due to the short annual melt and runoff period at the site. The existing stockpiles at the site include the following:

- Weathered ore and minor waste rock excavated from the surface of Deposit No. 1 (adjacent to the bulk sample pit);
- Lump and fine ore from bulk sample pit of Deposit No. 1 (site of crusher); and
- Ore grade material stored at Milne Inlet.

Initial data from these stockpiles has been previously reported (Knight Piésold, 2009). This data was for surface seepage and runoff collected directly at surface. However, for some locations it became necessary to measure the drainage by placing sampling locations into the active layer in the shallow subsurface. Thus, since 2009 a number of additional sampling strategies have been employed.

Water was sampled from a corner of the waste rock/weathered ore stockpile in 2009 and 2010. The water samples were inferred to mainly contain surface runoff with a lesser amount of seepage. Test pits were installed to the base of the active layer around the ore stored at the bulk sample crushing facility in 2009. Samples of drainage into these pits were collected in 2009 and 2010. In addition, two field lysimeters were constructed in the vicinity of the crusher stockpile in August 2010 by placing lump and fine ore on a geosynthetic liner. This allowed direct sampling of drainage from each of these materials. Three drive points were installed in 2010 to the base of the active layer around the ore-grade material stored at Milne Inlet.

In addition, a natural seep from the vicinity of the bulk sample pit has also been sampled on a two occasions.

#### 5.0 GEOCHEMICAL TESTING RESULTS

The following sections discuss the static testing results carried out on the waste rock samples. The summary of results includes the geochemical results from the previous testing program (Knight Piésold, 2008a) when applicable. The overall analysis continues to be evaluated on the basis of hanging wall and footwall materials for which estimated tonnages are available. Sampling by lithology continues to evolve on the basis of observed borehole information with the recognition that significant volumes of material, particularly in the footwall, are presently unsampled.





The 170 hanging wall rock samples consisted of approximately 41% schist, 31% volcanic tuff, and 10% amphibolite. The rest of the samples were composed of metasediment (a minor component of core sampling to date) and thin zones of mixed schist, volcanic tuff, and amphibolite.

The 107 samples of footwall rocks consisted of 57% gneiss, 26% schist, and 14% metasediment (psammitic gneiss). The remaining samples included minor footwall lithologies including amphibolite and volcanic tuff.

## 5.1 Acid Base Accounting (ABA)

A statistical summary of ABA results for waste rock samples are presented in Table 1. The statistical analyses represent the combined ABA results of 2010 sampling and previous sampling (Knight Piésold 2008a). Detailed ABA analytical results are presented in Appendix B (Table B-1). Statistical summaries of single addition NAG and sequential additional NAG test results are presented in Table 2 and the detailed data are presented in Appendix B (Table B-2).

Overall results are discussed first, followed by more detailed descriptions of hanging wall and footwall results.

The relationship of total sulphur and sulphide sulphur (Figure 2) confirms that sulphide is the main source of sulphur above 0.4% total sulphur and the relationship is similar overall between hanging wall and footwall rocks. At lower concentrations, data suggests that sulphate sulphur is a significant component in some samples.

The range in modified Sobek neutralization potential (NP) for the entire sample set is typically between 4 and 100 kg CaCO<sub>3</sub>/t (Figure 2), with the NP of footwall samples on average lower than the NP of hanging wall samples. There appears to be a small population of hanging wall samples that have very low NP (<1 kg CaCO<sub>3</sub>/t); however, these samples also exhibit a very wide range in sulphide content (and acid potential) and were reported from amphibolite, schist, and a Knight Piésold composite sample of mixed amphibolite/volcanic tuff/greywacke.

For the majority of samples, carbonate neutralization potential (CaNP) was lower compared to the Sobek NP (Table B-1) indicating that silicates may be important in providing neutralization capacity in most samples. The presence of a few samples with carbonate NP greater than Sobek NP suggests the likely presence of iron carbonates in some samples that will provide no net neutralizing potential under oxidizing conditions.

The neutralization potential ratio (NPR) which expresses the ratio of NP/AP ranged from 0.001 to 400 with a mean and median of 32 and 22 respectively. Approximately 14% of the samples





had an NPR of <2 indicating the presence of potentially acid generating (PAG) material (MEND, 2009).

#### 5.1.1 Hanging wall

Paste pH of the hanging wall samples ranged from 5.7 to 10.2 with a median paste pH of 9.5. A single outlier had a paste pH of 4.3. This low pH sample contained anomalous sulphur (12.4%) for this data set.

Concentrations of total sulphur of the hanging wall samples ranged from below the Method Detection Limit (MDL) of 0.005% to 12.4%, with mean and median values of 0.29% and 0.07%, respectively. Approximately 5% of the samples (8 of 170 samples) had a sulphur content below the MDL. Concentrations of sulphate sulphur in the hanging wall rock samples were reported from below MDL (0.01%) to 2.6%. The resulting calculated concentrations of sulphide sulphur ranged from <0.01% to 9.8% with mean and median values of 0.20% and 0.02% respectively.

Neutralization potential of hanging wall rock samples ranged from 0.2 to 129 kg CaCO<sub>3</sub>/t, with a mean and median of 22 and 17 kg CaCO<sub>3</sub>/t, respectively. CaNP for the hanging wall rock samples varied from 0.4 to 356 kg CaCO<sub>3</sub>/t, with a mean value of 9.8 kg CaCO<sub>3</sub>/t and median value of 1.7 kg CaCO<sub>3</sub>/t.

The NPR of hanging wall rock samples varied from 0.001 to 413 with mean and median values of 3.5 and 34, respectively. Approximately 14% of the samples (24 of 170 samples) had NPR <2 with 16 samples (9%) having an NPR <1 (Figure 2).

NAG<sub>PH</sub> less than 4.5 was measured from 18 of 111 (16 %) hanging wall rock samples. The NAG<sub>PH</sub> of those 18 samples varied from 1.84 to 4.47 and the NAG values ranged from 0.3 to 131 kg  $H_2SO_4/t$ . The hanging wall rock samples with NPR <2 consistently reported the NAG<sub>PH</sub> less than 4.5. NAG<sub>PH</sub> less than 4.5 was observed in four hanging wall rock samples with NPR >2.

Sequential NAG tests were conducted on the four hanging wall samples that contained total sulphur greater than 1%. The NAG result for the Sequential NAG test was almost double the NAG value of Single Addition NAG test for the sample with total sulphur content of 12.4%. For the other 3 hanging wall samples (total sulphur from 1.2 to 1.3%) the NAG values of the sequential NAG test were similar to the NAG values from the single addition NAG test.





#### 5.1.2 Footwall

Paste pH of the footwall samples ranged from 6.5 to 10.2 with the exception of an outlier at pH 5.5. This low pH sample contained anomalous sulphur (10%) for this data set. The median paste pH was 9.5.

Concentrations of total sulphur in the footwall samples ranged from below MDL (0.005%), to 6.13%, with mean and median values of 0.21% and 0.04% respectively. Approximately 12% of footwall samples had sulphur content below the MDL. Concentrations of sulphate ranged from below MDL (0.01%) to 0.06%. Sulphide sulphur ranged from <0.01% to 5.96% with mean and median values of 0.16% and 0.01% respectively.

Neutralization potential ranged from 3.7 to 64 kg CaCO<sub>3</sub>/t, with a mean and median of 12 and 10 kg CaCO<sub>3</sub>/t, respectively. CaNP for the footwall samples ranged from 0.4 to 54.5 kg CaCO<sub>3</sub>/t, with a mean and median of 2.7 and 1.3 kg CaCO<sub>3</sub>/t.

The NPR of footwall rock samples ranged from 0.08 to 100 with mean and median values of 2.6 and 33, respectively. Approximately 14% of footwall samples (15 of 107 samples) had an NPR <2, with eight of these 15 samples having an NPR <1 (Figure 2).

From the 89 footwall rock samples that underwent the NAG testing, 12 samples (13%) had NAG<sub>PH</sub> less than 4.5. The NAG<sub>PH</sub> and the NAG values of these 12 samples ranged from 2.31 to 4.45 and from 0.3 to 65 kg  $H_2SO_4/t$ , respectively. NAG<sub>PH</sub> results are generally consistent with ABA results. All footwall samples with NPR <2 had NAG<sub>PH</sub> less than 4.5. A NAG<sub>PH</sub> of less than 4.5 was observed in two samples with NPR greater than 2.

The Sequential NAG test was conducted on three footwall samples that contained total sulphur greater than 1%. The NAG values of Sequential NAG test was 40% higher compared to the NAG value of Single Addition NAG test for the sample with 6.1% total sulphur. The NAG values from single addition and sequential NAG tests were similar for 2 samples with the total sulphur of 1.1 and 1.5% suggesting the total sulphur was completed oxidized with the single addition test.

#### 5.2 Total Metals

In order to identify potential metals of environmental significance, the total metals from aqua regia leach results were screened against the average elemental abundance (Price, 1997) in a typical basalt for the amphibolite, schist, and volcanic tuff lithologies and the average crustal abundance for the gneiss and metasediment lithologies. For the purpose of the screening assessment, the concentration of an element was considered enriched if concentrations were





greater than ten times the average composition of basalt or crustal abundance as appropriate. It should be noted that the total concentration of an element does not determine the metal leaching potential of that element.

Statistical summaries of total metal contents for all waste rock samples are presented in Table 3 and complete data is presented in Table B-3 (Appendix B). The data includes results for rock samples that were previously reported (Knight Piésold, 2008a). For several metal parameters such as arsenic, bismuth, cadmium, antimony, selenium, tin, thallium and uranium the MDL for previous results (Knight Piesold, 2008a) were sometimes higher than those in the 2010 testing program.

## 5.2.1 Hanging wall

Some hanging wall samples were enriched in antimony, arsenic, bismuth, cadmium, chromium, lead, lithium, manganese, molybdenum, nickel, and selenium as summarized in Table 4.

Approximately 34% and 12% of hanging wall samples were enriched in bismuth and selenium respectively. The MDL for these parameters were at or above the ten times comparison values. Therefore the screening may underestimate the percentage of samples enriched in bismuth and selenium.

Approximately 10% (17 samples) were enriched in antimony with around half of these samples from volcanic tuff. Approximately 9% (16 samples) and 8% (13 samples) were enriched in molybdenum and arsenic respectively.

A small proportion of the samples were also enriched in cadmium (1 sample), chromium (1 sample), lead (2 samples), lithium (2 samples), manganese (1 sample), and nickel (2 samples).

#### 5.2.2 Footwall

Some footwall samples were enriched in antimony, bismuth, cadmium, chromium, lead, molybdenum, and selenium (Table 5).

Approximately 38% and 20% of footwall samples were enriched in bismuth and selenium respectively. As noted above, the MDL for these parameters were at or above the ten times comparison values. Therefore the screening may underestimate the percentage of samples enriched in bismuth and selenium.





Approximately 7% (8 samples) were enriched in antimony. Molybdenum was enriched at a similar frequency (7%) in footwall samples. Enrichment in comparison to screening criteria was also observed for cadmium (3 samples), chromium (1 sample), and lead (5 samples).

#### 5.3 Leachable Metals

Ten samples representing hanging wall rocks and nine samples representing footwall rock were selected for Shake Flask Extraction (SFE) testing. Samples were selected on the basis of total metal screening results. Samples with typical and enriched concentrations were chosen for analysis among the different rock types.

The SFE testing results are presented in Table 6a along with comparison to regulated effluent discharge values (MMER, 2002). More stringent guideline values are also provided for reference purposes only. Guidelines for the protection of aquatic life and the drinking water guidelines (e.g. CWQG-PAL and CDWG guidelines in Table 6a), which are focused on the preservation of water quality in the receiving waterbody for specific receptors (i.e., aquatic life, drinking water) are conservative since these values represent concentrations at point of use or exposure, not point of discharge. These guidelines are useful to identify parameters of interest when evaluating final discharge to receiving waters.

The modified SPLP leachate results from the previous investigations (Knight Piésold, 2008a) are presented in Table 6b. The modified SPLP testing is a method roughly comparable with the SFE test. The results from the standard SPLP and TCLP testing in previous work cannot be compared with the current results of leachable metals due to the difference in the testing method.

## 5.3.1 Hanging wall

Results of SFE analyses (Table 6a) for all hanging wall samples except one (see below), had a final pH that was neutral to alkaline with low concentrations of metals and no exceedances of MMER limits. A schist sample (MR-ARD-10-001) that contained a number of enriched metals in aqua regia leach also contained slightly elevated metal concentrations in SFE leachate. However, most were present at very low concentrations. Arsenic is perhaps most notably elevated for this sample, but is still an order of magnitude lower than the MMER limit.

The pH in SFE leachates for a number of these samples exceeded the MMER limit of 9.5. This is not unexpected for freshly exposed rock materials under agitation and at the high solid-solution ratios of the test. The high pH (and corresponding elevated aluminum concentrations) were likely related to the weak alkalinity associated with aluminosilicate mineral dissolution. It is unlikely the elevated pH (and associated aluminum) will be observed under field conditions.





The final pH of one SFE analysis was acidic (pH 4.7). This result was for rock logged as oxidized garnetiferous amphibolite at a gradational contact with high grade hematite iron formation, which reported in one sample a very low NP (0.3 kg CaCO<sub>3</sub>/t), low NPR (0.6), moderate CaNP (34), total sulphur of 0.4% and trace sulphide. Concentrations of some metals were elevated in comparison to the rest of the pH neutral to alkaline SFE samples. Elevated metals included cadmium, cobalt, copper, iron, lithium, manganese, nickel, thallium, uranium, and zinc. Concentrations of cadmium and thallium were present at very low concentrations <0.001mg/L. The concentration of nickel (0.81 mg/L) slightly exceeded the MMER limit of 0.5 mg/L.

Results of the previous (Knight Piésold, 2008a) modified SPLP results (Table 6b) are very similar to the SFE results presented above. As with the SFE data, a single sample had a similar final leachate pH of 4.5. This sample exhibited very similar elevated metal contents to the low pH sample from the SFE test including a nickel concentration that exceeded the MMER limit. This sample with low final pH, like the similar sample from the SFE testing, is from waste material in the vicinity of the ore zone.

#### 5.3.2 Footwall

Results of SFE analyses for all footwall samples (Table 6a) had leachate pH values that were neutral to alkaline with low concentrations of metals below the MMER limits. SFE leachate metal concentrations were all lower than the few somewhat elevated hanging wall results described above. The relationship described above for pH and aluminum in hanging wall samples was similarly observed for almost all footwall samples. In fact pH exceeds the MMER upper limit of 9.5 for 7 of the 9 samples. This relationship is likely related to the predominance of felsic rocks and associated aluminosilicate minerals observed in the footwall zone.

There is no evidence to suggest that the elevated total concentrations of certain metals will result in short-term leaching of those elements. Molybdenum had perhaps the most notably elevated concentrations in several of these samples; however, leached concentrations were <0.04 ppm.

Modified SPLP results from the previous investigation (Table 6b) are similar to those described above for footwall sample SFE data.

# 5.4 Mineralogy

Seven samples consisting of four footwall and three hanging wall samples expected to be fairly typical of the lithological units were analyzed by Rietveld XRD (Table 7).





## 5.4.1 Hanging wall

The three samples from the hanging wall group consisted of a single sample each of schist, volcanic tuff and amphibolite.

Sulphide bearing minerals were absent in the three hanging wall samples. Carbonate was identified only in the volcanic tuff sample with a calcite content around 0.4%. There were a number of silicate minerals with potentially acid consuming properties identified in the hanging wall samples including feldspars, and a number of phyllosilicates including phlogopite and chlorite. The hanging wall samples, particularly amphibolite and schist, also contained iron oxide.

#### 5.4.2 Footwall

The four footwall samples consisted of a single sample each of gneiss, psammite, schist and volcanic tuff.

Sulphides and carbonates were not identified in the footwall samples. Quartz was the major mineral constituent identified in gneiss, psammite, and volcanic tuff samples, ranging between approximately 29 and 39%. The footwall gneiss and the footwall psammite samples shared similar major mineral constituents but in different proportions. Both consisted of a broad range of feldspars and phyllosilicates as well as pyroxenes and amphiboles. Trace magnetite (0.1%) was also identified in both the gneiss and psammite samples. The volcanic tuff sample contained a range of phyllosilicate minerals in addition to the quartz. The fourth footwall sample (schist) was mainly composed of phylosilicates including phlogopite (44%), muscovite (22%) and chlorite (17%).

#### 5.5 Stockpile Drainage

Monitoring of results from several ore and a single mixed ore and waste rock stockpile has been conducted by Baffinland since 2008, following completion of a bulk ore sampling program. Results are provided in Table 8 and Appendix D. In general, results indicate circum-neutral (ca. pH 7) drainage with little evidence of metal leaching adjacent to these stockpiles and no concentrations reported in excess of MMER limits.

Two field lysimeters constructed in 2010, one each for lump and fine ore, offer the most direct assessment of drainage quality (Table 8). Data collected indicated sulphate concentrations of 500 to 1000 mg/L and neutral to mildly acidic pH (pH 5.8 to 6.7). The origin of the sulphate may be in part from gypsum known to be present in some ore; however, high molar sulphur to calcium ratios and the mildly acidic pH is evidence that at least some of the sulphate is likely due to sulphide oxidation. It should be noted that this monitoring includes only two rounds of





sampling conducted in the months following construction of the cells, and may represent at least in part a flushing of the ore material that had been recently disturbed for the purposes of constructing the lysimeters.

Metal concentrations were all below MMER limits. Concentrations of manganese and nickel were noticeably elevated in comparison to samples from other stockpile sampling data. A single high Fe result was noted in an initial unfiltered sampling from the lump ore stockpile. This may indicate the presence of fine particulate iron or colloidal iron that was subsequently attenuated within the stockpile during later sampling events. The elevated manganese may be related to non-representative manganese ore used in bed material for construction of the crusher pad at this location. This non-representative manganese ore contains a high fraction of Mn in siderite (iron carbonate) that is expected to be relatively soluble. The nickel may be similarly related to this non-representative ore (and perhaps even the siderite) or perhaps results from sulphide oxidation that may be occurring in this ore stockpile. Higher concentrations of cadmium (<0.0006 mg/L) than noted elsewhere, were also observed in drainage from both lysimeters.

Samples from an intermittent seep from a rock face near the Bulk Sample pit (Appendix D, Table D-4) had elevated copper (0.4 mg/L to 1 mg/L) and selenium (1 mg/L). Copper concentrations were slightly in excess of the MMER limit of 0.3. These anomalous concentrations were higher than reported from any other data at the site. However, additional information is required on the location, source and flow rate of this seep in order to understand its relevance to future mining at the site.

#### 6.0 DISCUSSION

#### 6.1 Waste Rock

Characterization of the net acid potential of the rock follows the criteria outlined in MEND (2009). The threshold between potentially acid generating (PAG) and non potentially acid generating (Non-PAG) materials is defined by the net potential ratio (NPR), a measure of the ratio of the acid potential (AP) to neutralization potential (NP). Using the guidance of MEND (2009), mine rock materials with NPR >2 are classified as Non-PAG. Mine rock samples with NPR <1 are considered PAG and materials with NPR between 1 and 2 are classified as having an uncertain potential of generating acid.

Approximately 86% of the hanging wall rock samples and a similar percentage of footwall rock samples had NPR >2, suggesting that the majority of samples are Non-PAG. However, 9% of hanging wall samples and 7% of footwall samples had an NPR <1 indicating that some of the waste rock has the potential to generate acid. The PAG rock samples were widely distributed in the proposed open pit.





The major lithologies in the hanging wall samples, schist, volcanic tuff and amphibolite, reported 7 to 18% of the samples as PAG (NPR <2) with the lowest proportion identified from the volcanic tuff lithology. The gneiss and schist lithologies from the footwall had 20 and 12% of their samples classified as PAG, respectively. All psammitic gneiss samples (14 samples) had NPR >2.

 $NAG_{pH}$  results using the standard cut-off of pH 4.5, were reasonably predictive of standard ABA results. The technique slightly over predicted the number of samples that were determined to have an NPR <2, suggesting the method may be useful as a screening tool to support the more comprehensive ABA results. In addition, for samples analysed to date, sulphide sulphur in excess of 0.3 to 0.4% appears to be a strong indicator of the potential for a sample to have an NPR <2 (Figure 4).

The 2010 testing program included fresh rock core samples from the 2010 drill holes and also core samples that had been stored onsite for several years. Assessment of the sulphur speciation indicated that the distribution of sulphur and sulphate in fresh and older core was similar, suggesting that significant sulphide oxidation had not occurred in the core samples which had been in storage.

The primary source of neutralization potential for the majority of the samples appeared to be non-carbonate minerals. The CaNP of approximately three-quarters (78%) of the rock samples only contributed up to 30% of the Sobek NP.

A very small subset of hanging wall rocks with very low neutralization potentials are all from locations in close proximity to the ore zone. Additional work is required to confirm the extent of this type of material near the ore zone and the importance in terms of potential for ML/ARD. Two samples of these materials also exhibited low pH and some elevated metals in short term leach tests and are discussed in more detail below.

The majority of the waste rock samples demonstrated little enrichment of elements compared to the average composition of basalt or continental crustal. Assessment of the content of metals identified 12% of the hanging wall and 19% of the footwall samples were enriched in selenium. The SFE results suggest that the selenium was not readily leachable from the rock samples with leachate concentrations of selenium below or near MDL. The small proportion of the hanging wall and footwall rock samples were also enriched in antimony, arsenic, and molybdenum. However, the results of SFE testing on the hanging wall and footwall samples had very low leachate concentrations.

In general metals were not leachable from the nineteen samples that underwent the SFE testing, with the exception of a single amphibolite sample. Leachate from the amphibolite sample was acidic (pH 4.7) and also had more elevated concentrations of copper, iron, nickel





and manganese compared to those metal concentrations in the leachate from the other rock samples. The nickel concentration in the amphibolite leachate was slightly higher than the MMER value. The sample was classified as PAG (NPR = 0.6). Notable the SFE results from another PAG sample (NPR = 0.7) did not produce an acidic leachate or elevated metals.

The preceding result is similar to a result from previous investigations (Knight Piésold 2008a), where a leachate sample from a similar procedure to the SFE previously described above also exhibited a low final pH with elevated metal concentrations. This sample was also from near the ore zone and in particular exhibited nickel at concentrations above the MMER limit.

The current waste rock stockpile design assumes that approximately 20% of the projected waste rock volume will be managed as PAG material. Current results, based on numbers of samples, indicate that approximately 14% of the waste rock may be classified as having NPR <2. Additional kinetic testing will be used to further refine this number.

The current geochemical results indicated that NP in the rock samples is distributed in a relatively narrow range with non-carbonate minerals as the primary NP source. Sulphur speciation results show a strong correlation between the total sulphur and sulphide content particularly at concentrations above approximately 0.3% S. These results suggest that the total sulphur content may be useful as an indicator to classify the acid generation potential of waste rock.

Results of analysis of field cell drainage of selected hanging wall and footwall materials (Knight Piésold, 2008a) are presented in Table 9. The data collected from the Mary River site reports circum-neutral pH and low dissolved metal contents all well below MMER limits. However, since these cells only underwent a single sampling round, reactivation of these tests with additional sampling or construction of new replacement cells would be necessary to better evaluate the long-term drainage quality.

#### 6.2 Pit

Sampling and testing to date has identified PAG materials within the proposed pit volume. These samples are distributed through the currently sampled pit volume with no apparent control on their distribution. Therefore, it is uncertain if PAG waste rock will be exposed on the final pit walls in any significant amount. Under the mine plan, the proposed open pit will be allowed to flood after cessation of mining, with an estimated flooding time of 85 to 147 years Knight Piésold (2008b). It is currently anticipated that the discharge from the open pit will not require treatment. However, due to the pit configuration, the upper level of the south-west side of the open pit will not be flooded and will remain exposed to weathering. It is possible that PAG materials may be exposed on the final pit walls. Depending upon the areal exposure of





these materials there is the potential for ML/ARD to be produced from the walls that could negatively impact the pit lake water quality.

At the present time there is no information on projected water quality from waste rock under acid drainage conditions. Additional humidity cell testing is being initiated to further assess the lag time until acid generation in the waste rock and pit walls, and to provide information on the water quality of acid generating PAG materials.

## 6.3 Drainage Quality

Evaluation and estimation of drainage quality has been completed for site stockpile drainage data collected by Baffinland since 2008 (Section 5.5). In addition, humidity cells were operated for 53 weeks on selected samples of waste rock (Section 3.2). Some initial monitoring of field cells of hanging wall and footwall material has also been completed. In summary, drainage quality from onsite monitoring and laboratory testing suggests the following:

- Results of the single sampling round of the field cells (Knight Piésold, 2008a) that contained selected hanging wall and footwall rocks showed circum-neutral pH and low dissolved metal contents all well below MMER limits. Existing humidity cell data consistently indicates slow onset of acid conditions in waste rock, suggesting that there is likely little concern for the rapid onset of ARD in PAG waste rock. However, it is possible that localized volumes of PAG materials in the waste rock stockpile could generate localized acidity and enhanced metal leaching that are not accounted for in current evaluations.
- Ore stockpile drainage quality is expected to be circum-neutral to mildly acidic (pH 5.5 to 6) with low dissolved metal concentrations below MMER limits. The elevated sulphate content and the slightly depressed pH were measured in lysimeters seepage at the ore stockpile that was exposed to the environment for more than two years. These results suggest the presence of sulphide oxidation in the ore stockpile. For planning purposes, drainage from PAG waste rock stored under the same conditions is assumed to be similar; however, the higher NP of the waste rock and the planned PAG management within a permafrost core is expected to result in better drainage quality than that observed in the ore stockpiles over the longer term.

#### 7.0 CONCLUSIONS

A ML/ARD characterization program has been conducted on a total of 277 samples including 180 rock core samples representing hanging wall and footwall rock samples collected in July and August 2010. Based on the results of the 2010 testing program and the previous





geochemical testing program conducted by Knight Piésold, and the seepage quality data from the waste/ore stockpiles the following conclusions are made.

- Around 49% of rock samples had low sulphide-sulphur concentrations with values of 0.01% or less. The results suggest that about 86% of hanging wall and a similar percentage of footwall rock samples were non-PAG materials. The PAG samples were distributed widely in the open pit and were present in all major rock lithologies (ranging from 7 to 20% of samples) with the only exception being psammitic gneiss from footwall material.
- Metal enrichment was not generally observed in the majority of waste rock samples with the exception of selenium. The selenium concentrations that were greater than 10 times the average concentration of basalt or crustal abundance were also close to method detection limits. A smaller proportion of rock samples were also enriched in antimony, arsenic, and molybdenum.
- Short-term metal leaching tests (SFE) indicate only very low concentrations of leachable metals including the enriched metals identified above. Some waste material in close proximity to the ore zone appears to leach metals at more elevated concentrations. Two samples reported nickel concentrations in leachate that exceeded MMER limits.
- Evaluation of drainage from existing site stockpiles suggests circum-neutral to mildly acidic pH (pH 5.5 to 6) can be expected. Drainage measured from field lysimeters suggests some evidence of localized oxidation of sulphides. Metal concentrations are typically highest at this location; however, all were below MMER limits. Manganese may be locally present in drainage where non-representative manganese-rich ore is present.
- For planning purposes at this stage of the project, waste-rock drainage should be assumed to be similar to that predicted by ore lysimeter testing, since both are expected to be driven by localized oxidation of sulphides.
- The results of humidity cell testing suggest that the ARD onset time ranged from 1 to 416 years with a median of 29 years. Due to climatic conditions, a longer lag time is expected from the waste rock at site conditions.
- The low quantities of PAG material identified in hanging wall and footwall rocks, and the apparently slow sulphide reactivity, supports the planned management of PAG materials by encapsulation within a permafrost core of the constructed stockpile. However, due to uncertainties in the current kinetic database, there remains some risk of enhanced metal leaching and lower pH drainage from the PAG materials prior to the formation of permafrost. This risk can likely be better qualified by additional characterization and managed effectively by modifying deposition methods that would enhance permafrost aggradation into the waste rock stockpile.





#### 8.0 FUTURE WORK

- Operation of additional humidity cells including cells for major waste rock lithologies with
  potential acid generation risk (NPR <2) and also NP depleted cells are currently being
  initiated. Results of these humidity cells will improve the understanding of the long-term
  ML/ARD behaviour of hanging wall and footwall waste rocks. Additional humidity cells
  may be warranted to assess low grade or uneconomic iron formation rock.</li>
- A program of field test pads and laboratory columns will be initiated to simulate and predict drainage chemistry from the proposed waste rock stockpile. Existing field test pads will be reactivated and additional pads can be constructed subject to availability of suitable material. It is recommended that leachate volumes collected in the field cells be consistently recorded to accompany analyses of samples collected for chemical analysis. Laboratory column experiments can be initiated in parallel to assess drainage chemistry without the restriction of the short summer period.
- Knowledge gained through this investigation program is being applied to the
  approximately 8,000 samples of the Baffinland ore delineation database that includes
  both ore and waste material. Application of the detailed ABA and metals interpretation
  from this geochemical investigation program to the ore delineation database may
  provide an increased understanding of ML/ARD across this much larger sample set. If
  necessary, selected additional analyses may be possible from archived sample material.

#### 9.0 REFERENCES

- Aker Kvaener. 2008. Definitive Feasibility Study Report Mary River Iron Ore Project Northern Baffin Island, Nunavut.
- AMEC. 2010. Waste stockpile schedule by period map, Baffinland Mary River DEIS. Project File no: TDM-159952-0000-170-0001, Memo, 16 July 2010.
- AMIRA. 2000. ARD Test Handbook. Prepared by Ian Wark Research Institute and Environmental Geochemistry International Pty Ltd. May, 2002.
- Canadian Council of Ministers of the Environment. 2007, Canadian Water Quality Guidelines for the Protection of Aquatic Life Health Canada, 2008, Guidelines for Canadian Drinking Water Quality.
- INAC. 1992. Mine Reclamation in Northwest Territories and Yukon, prepared by Steffen Robertson and Kirsten (B.C.) Inc. for Indian and Northern Affairs Canada, dated April Canada Council of Ministers of the Environment. 2007, Canadian Water Quality Guidelines for the Protection of Aquatic Life.





- Jackson. G.D. and Berman, R.G. 2000. Precambrian Metamorphic and Tectonic Evolution of Northern Baffin Island, Nunavut. Canada. The Canadian Mineralogist. Vol.38. p 399-421.
- Johns, S.M. and Young, M.D. 2006. Bedrock geology and economic potential of the Archean Mary River Group, northern Baffin Island, Nunavut. Geology Survey of Canada. Current Research 2006-C5.
- Knight Piésold. 2008a. Baffinland Iron Mines Corporation, Mary River Project Environmental Characterization of Deposit No.1 Waste Rock, Ore & Construction Material. Ref. No. NB102-00181/11-7. Draft Report, Prepared for Baffinland Ion Mines Corporation, 18 December 2008.
- Knight Piésold. 2008b. Mary River Project Estimated Time for Open Pit to Fill with Water (Deposit No.1). 8 September, 2008.
- Knight Piésold. 2009. Environmental Assessment of Waste Materials Originating from the Bulk Sample Program from Deposit No.1, Baffinland Mary River Project (NB09-00189, March 2009).
- MEND. 2009. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials.

  Natural Resources Canada.
- MMER. 2002. Metal Mine Effluent Regulations SOR/2002-222.
- Price, W.A. 1997, DRAFT Guidelines and Recommended Method for Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Colombia. British Colombia Ministry of Employment and Investment, Energy and Minerals Division. Smithers, B.C.
- Young, M.D., Sandeman, H., Berniolles, F., and Gertzbein, P.M. 2004. A preliminary stratigraphic and structural geology framework for the Archean Mary River Group, northern Baffin Island, Nunavut. Geology Survey of Canada. Current Research 2004-C1.
- Wahl George H. 2010. Personal Communication: George H Wahl Geological Consulting. 10 June 2010.





# **SIGNATORY PAGE**

Prepared by:

Reviewed by:

**Stephen R. Walker Ph.D.** Senior Hydrogeochemist

Styphen R Walk

Steve Sibbick, M.Sc., P.Geo Senior Associate Geochemist

JA/SW/SS/vc

P:\EM\Projects\2010\TC101507 Baffinland EIS Support\03 - Geochemistry\Correspondence\_to\_Client\MaryRiverGeochemReport\_Final\Final Baffinland MLARD Mary River Deposit\_16December 2010\_Rev1.docx





**TABLES** 





**Table 1. Summary of Acid Base Accounting Results of Rock Samples** 

|                             | Paste pH  | Total<br>Sulphur | Sulphate<br>Sulphur | Sulphide<br>Sulphur* | Total<br>Carbon | AP   | NP        | Ca-NP | NPR   | Ca-NPR |  |
|-----------------------------|-----------|------------------|---------------------|----------------------|-----------------|------|-----------|-------|-------|--------|--|
|                             | raste pri | Cuipiiui         |                     | .%)                  | Garbon          | (kg  | caCO₃/ton | ne)   | MEK   | Ca-NFR |  |
| All Waste Rock              | l         |                  |                     | ,                    |                 |      | -         |       |       |        |  |
| No. of sample               | 277       | 277              | 277                 | 277                  | 277             | 277  | 277       | 277   | 277   | 277    |  |
| Minimum .                   | 4.3       | < 0.005          | 0.01                | 0.01                 | 0.01            | 0.03 | 0.2       | 0.4   | 0.0   | 0.002  |  |
| Maximum                     | 10.2      | 12.4             | 2.63                | 9.77                 | 4.27            | 305  | 129       | 356   | 413   | 285    |  |
| Mean                        |           | 0.26             | 0.08                | 0.18                 | 0.08            | 5.6  | 18        | 7.0   | 32    | 9      |  |
| Median                      | 8.8       | 0.06             | 0.03                | 0.01                 | 0.02            | 0.4  | 14        | 1.5   | 22    | 2.7    |  |
| Standard Deviation          | 0.9       | 0.93             | 0.18                | 0.77                 | 0.31            | 24   | 16        | 26    | 43    | 27     |  |
| 10 <sup>th</sup> Percentile | 7.9       | 0.01             | 0.01                | 0.01                 | 0.01            | 0.1  | 7.4       | 0.6   | 1.3   | 0.2    |  |
| 90 <sup>th</sup> Percentile | 9.9       | 0.46             | 0.18                | 0.29                 | 0.13            | 9.2  | 31        | 11    | 76    | 13     |  |
| Hanging Wall                | <u> </u>  |                  |                     |                      |                 |      |           |       |       |        |  |
| No. of sample               | 170       | 170              | 170                 | 170                  | 170             | 170  | 170       | 170   | 170   | 170    |  |
| Minimum                     | 4.3       | <0.005           | 0.010               | 0.01                 | 0.01            | 0.03 | 0.2       | 0.4   | 0.001 | 0.01   |  |
| Maximum                     | 10.2      | 12.4             | 2.6                 | 9.8                  | 4.3             | 305  | 129       | 356   | 413   | 285    |  |
| Mean                        |           | 0.29             | 0.096               | 0.20                 | 0.12            | 6.1  | 22        | 9.8   | 3.5   | 1.6    |  |
| Median                      | 8.4       | 0.07             | 0.040               | 0.02                 | 0.02            | 0.5  | 17        | 1.7   | 34    | 3.3    |  |
| Standard Deviation          | 0.8       | 1.05             | 0.223               | 0.84                 | 0.39            | 26   | 19        | 32    | 52    | 34     |  |
| 10 <sup>th</sup> Percentile | 7.9       | 0.01             | 0.01                | 0.01                 | 0.01            | 0.1  | 8.2       | 0.7   | 1.3   | 0.2    |  |
| 90 <sup>th</sup> Percentile | 9.7       | 0.56             | 0.231               | 0.31                 | 0.21            | 9.7  | 37        | 18    | 83    | 19     |  |
| Footwall                    |           |                  |                     |                      |                 |      |           |       |       |        |  |
| No. of sample               | 107       | 107              | 107                 | 107                  | 107             | 107  | 107       | 107   | 107   | 107    |  |
| Minimum                     | 5.5       | < 0.005          | 0.01                | 0.01                 | 0.01            | 0.03 | 3.7       | 0.4   | 0.08  | 0.002  |  |
| Maximum                     | 10.2      | 6.13             | 0.63                | 5.96                 | 0.65            | 186  | 64        | 54.5  | 100   | 60     |  |
| Mean                        |           | 0.21             | 0.06                | 0.16                 | 0.03            | 4.8  | 12        | 2.69  | 2.6   | 0.6    |  |
| Median                      | 9.5       | 0.04             | 0.03                | 0.01                 | 0.02            | 0.3  | 10.4      | 1.33  | 33    | 4.3    |  |
| Standard Deviation          | 0.8       | 0.69             | 0.09                | 0.64                 | 0.07            | 20   | 7.5       | 6.0   | 22    | 8      |  |
| 10 <sup>th</sup> Percentile | 8.3       | 0.01             | 0.01                | 0.01                 | 0.01            | 0.1  | 6.8       | 0.50  | 1.5   | 0.14   |  |
| 90 <sup>th</sup> Percentile | 10.0      | 0.35             | 0.12                | 0.23                 | 0.05            | 7.2  | 22.1      | 4.50  | 50    | 7      |  |

#### Notes:

AP = Acid potential in tonnes CaCO<sub>3</sub> equivalent per 1000 tonnes of material. AP is determined from calculated sulphide sulphur content: S(T) - S(SO<sub>4</sub>).

NP = Neutralization potential in tonnes CaCO<sub>3</sub> equivalent per 1000 tonnes of material.

Ca-NP = Carbonate NP is calculated from TC originating from carbonates and is expressed in kg CaCO<sub>3</sub>/tonne.

NPR = Net Potential Ratio = NP/AP; Carb-NPR = Carb-NP/AP

\*Where NP or AP values are equal to or less than zero, NPR is calculated assuming detection limit (NP = 0.2 kg CaCO<sub>3</sub>/tonne, AP = 0.03 kg CaCO<sub>3</sub>/tonne).





**Table 2. Summary of Net Acid Generation Testing Results of Rock Samples** 

|                             | NAGpH  | NAG (pH 4.5)   | NAG (pH 7)<br>kg H2SO4/tonne |  |  |  |  |  |
|-----------------------------|--------|----------------|------------------------------|--|--|--|--|--|
|                             | ПОТОРП | kg H2SO4/tonne |                              |  |  |  |  |  |
| All Waste Rock              |        |                |                              |  |  |  |  |  |
| No. of sample               | 200    | 180            | 180                          |  |  |  |  |  |
| Minimum                     | 1.8    | 0              | 0                            |  |  |  |  |  |
| Maximum                     | 11     | 131            | 165                          |  |  |  |  |  |
| Mean                        | 6.7    | 1.8            | 3.0                          |  |  |  |  |  |
| Median                      | 7.2    | 0              | 0                            |  |  |  |  |  |
| Standard Deviation          | 1.7    | 11             | 16                           |  |  |  |  |  |
| 10 <sup>th</sup> Percentile | 3.4    | 0              | 0                            |  |  |  |  |  |
| 90 <sup>th</sup> Percentile | 8.0    | 0.3            | 3.3                          |  |  |  |  |  |
| Hanging Wall                |        |                |                              |  |  |  |  |  |
| No. of sample               | 111    | 96             | 96                           |  |  |  |  |  |
| Minimum                     | 1.8    | 0              | 0                            |  |  |  |  |  |
| Maximum                     | 11     | 131            | 165                          |  |  |  |  |  |
| Mean                        | 6.8    | 2.2            | 3.2                          |  |  |  |  |  |
| Median                      | 7.3    | 0              | 0                            |  |  |  |  |  |
| Standard Deviation          | 1.9    | 14             | 17                           |  |  |  |  |  |
| 10 <sup>th</sup> Percentile | 3.1    | 0              | 0                            |  |  |  |  |  |
| 90 <sup>th</sup> Percentile | 8.3    | 0.2            | 1.8                          |  |  |  |  |  |
| Footwall                    |        |                |                              |  |  |  |  |  |
| No. of sample               | 89     | 84             | 84                           |  |  |  |  |  |
| Minimum                     | 2.3    | 0              | 0                            |  |  |  |  |  |
| Maximum                     | 11     | 65             | 117                          |  |  |  |  |  |
| Mean                        | 6.7    | 1.4            | 2.8                          |  |  |  |  |  |
| Median                      | 7.1    | 0              | 0                            |  |  |  |  |  |
| Standard Deviation          | 1.6    | 7.5            | 13                           |  |  |  |  |  |
| 10 <sup>th</sup> Percentile | 4.3    | 0              | 0                            |  |  |  |  |  |
| 90 <sup>th</sup> Percentile | 7.7    | 0.58           | 4.3                          |  |  |  |  |  |





# Table 3. Summary of Total Metal Content of Rock Samples

|                             | Hg   | Al    | As   | Ва   | Ве   | Bi   | Ca    | Cd     | Со   | Cr   | Cu   | Fe    | K      | Li   | Mg    | Mn    | Мо   | Na    | Ni   | Pb   | Sb   | Se   | Sn   | Sr   | Ti      | TI   | U    | V    | Zn    |
|-----------------------------|------|-------|------|------|------|------|-------|--------|------|------|------|-------|--------|------|-------|-------|------|-------|------|------|------|------|------|------|---------|------|------|------|-------|
|                             | μg/g | %     | μg/g | μg/g | μg/g | μg/g | %     | μg/g   | μg/g | μg/g | μg/g | %     | %      | μg/g | %     | μg/g  | μg/g | %     | μg/g | μg/g | μg/g | μg/g | μg/g | μg/g | %       | μg/g | μg/g | μg/g | μg/g  |
| All Waste Rock              |      |       |      |      |      |      |       |        |      |      |      |       |        |      |       |       |      |       |      |      |      |      |      |      |         |      |      |      |       |
| No. of sample               | 216  | 277   | 276  | 277  | 276  | 276  | 277   | 276    | 276  | 276  | 276  | 277   | 277    | 276  | 277   | 277   | 275  | 216   | 276  | 276  | 276  | 276  | 276  | 276  | 277     | 276  | 277  | 277  | 276   |
| Minimum                     | 0.10 | 0.001 | 0.5  | 0.01 | 0.1  | 0.01 | 0.003 | < 0.02 | 0.3  | 0.5  | 0.1  | 0.003 | 0.0001 | 2.0  | 0.002 | 1.0   | 0.1  | 0.001 | 0.1  | 0.4  | 0.1  | 0.7  | 0.3  | 0.2  | 0.00001 | 0.02 | 0.02 | 1.0  | <0.7  |
| Maximum                     | 0.20 | 13    | 154  | 3000 | 19   | 34   | 10    | 6.0    | 110  | 2200 | 300  | 61    | 6.5    | 370  | 15    | 32000 | 177  | 2.20  | 2410 | 410  | 25   | 20   | 12   | 410  | 0.67    | 20   | 100  | 460  | 722   |
| Mean                        | 0.10 | 5.5   | 5.5  | 320  | 1.2  | 2.9  | 8.0   | 0.6    | 30   | 274  | 52   | 9.6   | 1.3    | 26   | 3.9   | 1216  | 6.0  | 0.06  | 141  | 14.2 | 3.5  | 3.2  | 2.6  | 20   | 0.19    | 2.4  | 20   | 108  | 70    |
| Median                      | 0.10 | 5.9   | 1.2  | 130  | 0.7  | 0.1  | 0.2   | 0.2    | 24   | 140  | 30   | 7.0   | 0.9    | 19   | 3.4   | 590   | 2.0  | 0.03  | 76   | 5.7  | 0.8  | 0.7  | 1.6  | 7.8  | 0.13    | 0.4  | 2.5  | 73   | 52    |
| Standard Deviation          | 0.01 | 2.8   | 15   | 537  | 1.6  | 8.4  | 1.6   | 1.1    | 23   | 343  | 57   | 8.7   | 1.3    | 36   | 2.9   | 2201  | 15   | 0.17  | 235  | 36   | 7.0  | 5.2  | 2.3  | 40   | 0.17    | 5.0  | 33   | 99   | 75    |
| 10 <sup>th</sup> Percentile | 0.10 | 1.7   | 0.5  | 3.7  | 0.1  | 0.1  | 0.05  | 0.1    | 6.8  | 43   | 2.7  | 2.6   | 0.02   | 3.5  | 1.0   | 280   | 0.3  | 0.01  | 7.3  | 1.7  | 8.0  | 0.7  | 0.5  | 2.9  | 0.02    | 0.03 | 0.2  | 16   | 16    |
| 90 <sup>th</sup> Percentile | 0.10 | 9.0   | 7.3  | 900  | 2.7  | 3.0  | 2.1   | 1.5    | 63   | 665  | 140  | 19    | 3.3    | 47   | 7.7   | 2576  | 13   | 0.08  | 345  | 27   | 13   | 10   | 6.0  | 45   | 0.46    | 5.0  | 75   | 290  | 120   |
| Hanging Wall                |      |       |      |      |      |      |       |        |      |      |      |       |        |      |       |       |      |       |      |      |      |      |      |      |         |      |      |      |       |
| No. of sample               | 129  | 170   | 169  | 170  | 169  | 169  | 170   | 169    | 169  | 169  | 169  | 170   | 170    | 169  | 170   | 170   | 169  | 129   | 169  | 169  | 169  | 169  | 169  | 169  | 170     | 169  | 170  | 170  | 169   |
| Minimum                     | 0.10 | 0.001 | 0.50 | 0.01 | 0.05 | 0.01 | 0.003 | 0.06   | 0.3  | 0.5  | 0.1  | 0.003 | 0.0001 | 2.00 | 0.002 | 1.0   | 0.1  | 0.001 | 0.10 | 0.4  | 0.1  | 0.7  | 0.3  | 0.2  | 0.00001 | 0.02 | 0.02 | 1.0  | < 0.7 |
| Maximum                     | 0.20 | 13    | 154  | 2500 | 19   | 34   | 10    | 4.9    | 110  | 2100 | 300  | 61    | 4.70   | 370  | 14    | 32000 | 177  | 2.20  | 2410 | 230  | 25   | 20   | 12   | 410  | 0.67    | 20   | 100  | 460  | 490   |
| Mean                        | 0.10 | 6.1   | 7.8  | 187  | 1.3  | 2.5  | 1.1   | 0.6    | 40   | 357  | 64   | 12    | 0.77   | 30   | 4.9   | 1663  | 6.8  | 0.06  | 206  | 7.9  | 3.7  | 3.4  | 2.6  | 24   | 0.16    | 2.2  | 20   | 140  | 71    |
| Median                      | 0.10 | 6.7   | 2.6  | 47   | 0.8  | 0.2  | 0.2   | 0.2    | 37   | 240  | 47   | 9.4   | 0.38   | 21   | 4.6   | 1000  | 2.0  | 0.02  | 140  | 4.6  | 0.8  | 0.7  | 1.6  | 8.7  | 0.09    | 0.2  | 1.8  | 110  | 55    |
| Standard Deviation          | 0.01 | 2.8   | 19   | 375  | 1.9  | 7.6  | 2.0   | 1.0    | 23   | 360  | 60   | 9.1   | 0.98   | 42   | 2.8   | 2704  | 17.4 | 0.21  | 275  | 19   | 7.1  | 5.0  | 2.3  | 47   | 0.18    | 4.6  | 34   | 110  | 62    |
| 10 <sup>th</sup> Percentile | 0.1  | 1.8   | 0.5  | 2.2  | 0.1  | 0.1  | 0.03  | 0.2    | 13   | 54   | 2.7  | 4.3   | 0.01   | 4.0  | 1.8   | 329   | 0.3  | 0.01  | 34   | 1.4  | 0.4  | 0.7  | 0.5  | 2.5  | 0.01    | 0.02 | 0.08 | 28   | 18    |
| 90 <sup>th</sup> Percentile | 0.1  | 9.2   | 13   | 452  | 2.8  | 3.0  | 3.8   | 1.3    | 69   | 922  | 140  | 22    | 2.2    | 49.2 | 8.4   | 3310  | 13.2 | 0.09  | 422  | 14   | 14   | 10   | 6    | 68   | 0.49    | 5.0  | 75   | 340  | 122   |
| Footwall                    |      |       |      |      |      |      |       |        |      |      |      |       |        |      |       |       |      |       |      |      |      |      |      |      |         |      |      |      |       |
| No. of sample               | 87   | 107   | 107  | 107  | 107  | 107  | 107   | 107    | 107  | 107  | 107  | 107   | 107    | 107  | 107   | 107   | 106  | 87    | 107  | 107  | 107  | 107  | 107  | 107  | 107     | 107  | 107  | 107  | 107   |
| Minimum                     | <0.1 | 0.6   | 0.5  | 2.4  | 0.07 | 0.1  | 0.007 | < 0.02 | 2    | 14   | 0.7  | 0.7   | 0.01   | 3.0  | 0.4   | 100   | 0.1  | 0.003 | 3.5  | 0.6  | 0.8  | 0.7  | 0.5  | 1.6  | 0.01    | 0.02 | 0.03 | 1.0  | 5.7   |
| Maximum                     | <0.1 | 9.2   | 16   | 1470 | 5.1  | 28   | 4.0   | 6.0    | 73   | 2200 | 260  | 60    | 6.00   | 140  | 8.6   | 2600  | 53   | 0.37  | 620  | 120  | 3.2  | 1.4  | 11   | 49   | 0.63    | 1.6  | 15   | 170  | 722   |
| Mean                        | <0.1 | 3.7   | 0.9  | 263  | 0.8  | 0.6  | 0.4   | 0.3    | 14   | 143  | 36   | 5.5   | 1.72   | 25   | 2.4   | 491   | 4.5  | 0.05  | 40   | 14   | 0.9  | 0.8  | 1.8  | 8.2  | 0.22    | 0.6  | 3.3  | 57   | 74    |
| Median                      | <0.1 | 3.1   | 0.5  | 160  | 0.6  | 0.1  | 0.2   | 0.2    | 10   | 79   | 18   | 4.1   | 1.60   | 22   | 1.6   | 430   | 1.5  | 0.04  | 13   | 7.5  | 0.8  | 0.7  | 1.3  | 5.7  | 0.21    | 0.6  | 2.6  | 38   | 50    |
| Standard Deviation          | 0    | 2.3   | 2.2  | 268  | 0.9  | 3.1  | 0.6   | 8.0    | 11   | 264  | 50   | 6.8   | 1.14   | 21   | 2.0   | 364   | 9.5  | 0.05  | 82   | 20   | 0.4  | 0.1  | 1.7  | 8.3  | 0.14    | 0.4  | 2.7  | 47   | 102   |
| 10 <sup>th</sup> Percentile | <0.1 | 1.5   | 0.5  | 52.3 | 0.2  | 0.1  | 0.1   | 0.0    | 5    | 44   | 2.3  | 2.1   | 0.36   | 7.0  | 0.8   | 230   | 0.3  | 0.02  | 5.3  | 2.5  | 0.8  | 0.7  | 0.5  | 2.9  | 0.04    | 0.1  | 0.8  | 11   | 15    |
| 90 <sup>th</sup> Percentile | <0.1 | 7.4   | 8.0  | 554  | 2.1  | 0.7  | 0.6   | 0.4    | 26   | 241  | 104  | 9.3   | 3.28   | 43   | 5.3   | 784   | 9.6  | 0.08  | 107  | 29   | 8.0  | 0.9  | 3.6  | 14.7 | 0.40    | 1.1  | 7.1  | 140  | 117   |





## Table 4. Summary of Metals Enrichment of Hanging Wall Rock Samples

| Metal Parameter | Basalt<br>Average* | Ten Times<br>Basalt<br>Average | Continental<br>Crust<br>Average* | Ten Times<br>Continental<br>Crust Average | Number of samples | Samples ex<br>10X basalt | -   | Number of samples | Samples e<br>10X contine<br>avera | ental crust | Number<br>of | Samples e<br>10<br>basalt/co<br>crust a | X<br>ntinental |
|-----------------|--------------------|--------------------------------|----------------------------------|-------------------------------------------|-------------------|--------------------------|-----|-------------------|-----------------------------------|-------------|--------------|-----------------------------------------|----------------|
|                 | ppm                | ppm                            | ppm                              | ppm                                       | - Callings        | Number of samples        | %   | - Cap.            | Number of samples                 | %           | samples      | Number<br>of<br>samples                 | %              |
| Arsenic         | 2                  | 20                             | 1.8                              | 18                                        | 166               | 13                       | 8   | 3                 | 0                                 | 0           | 169          | 13                                      | 8              |
| Bismuth**       | 0.007              | 0.07                           | 0.0085                           | 0.085                                     | 166               | 57                       | 34  | 3                 | 0                                 | 0           | 169          | 57                                      | 34             |
| Cadmium         | 0.22               | 2.22                           | 0.15                             | 1.5                                       | 166               | 1                        | 0.6 | 3                 | 0                                 | 0           | 169          | 1                                       | 1              |
| Chromium        | 170                | 1700                           | 102                              | 1020                                      | 166               | 1                        | 0.6 | 3                 | 0                                 | 0           | 169          | 1                                       | 1              |
| Lithium         | 17                 | 170                            | 20                               | 200                                       | 166               | 2                        | 1.2 | 3                 | 0                                 | 0           | 169          | 2                                       | 1              |
| Manganese       | 1500               | 1500                           | 9500                             | 95000                                     | 167               | 1                        | 1   | 3                 | 0                                 | 0           | 170          | 1                                       | 1              |
| Molybdenum      | 1.5                | 15                             | 1.2                              | 12                                        | 166               | 15                       | 9.0 | 3                 | 1                                 | 33          | 169          | 16                                      | 9              |
| Nickel          | 130                | 1300                           | 84                               | 840                                       | 166               | 2                        | 1.2 | 3                 | 0                                 | 0           | 169          | 2                                       | 1              |
| Lead            | 6                  | 60                             | 14                               | 140                                       | 166               | 2                        | 1.2 | 3                 | 0                                 | 0           | 169          | 2                                       | 1              |
| Antimony        | 0.2                | 2                              | 0.2                              | 2                                         | 166               | 17                       | 10  | 3                 | 0                                 | 0           | 169          | 17                                      | 10             |
| Selenium        | 0.05               | 0.5                            | 0.05                             | 0.5                                       | 166               | 21                       | 13  | 3                 | 0                                 | 0           | 169          | 21                                      | 12             |

Note:

<sup>\*</sup> Price (1997)

<sup>\*\*</sup> Detection limit of Bi for many samples is above 10x screening criteria





## **Table 5. Summary of Metals Enrichment of Footwall Rock Samples**

| Metal Parameter | Basalt<br>Average* | Ten Times<br>Basalt<br>Average | Continental<br>Crust<br>Average* | Ten Times<br>Continental<br>Crust Average | Number of samples | Samples ex<br>10X basalt |     | Number of samples | Samples e<br>10X contine<br>aver | ental crust | Number<br>of | Samples e<br>10X con<br>crust a | tinental |
|-----------------|--------------------|--------------------------------|----------------------------------|-------------------------------------------|-------------------|--------------------------|-----|-------------------|----------------------------------|-------------|--------------|---------------------------------|----------|
|                 | ppm                | ppm                            | ppm                              | ppm                                       |                   | Number of samples        | %   |                   | Number of samples                | %           | samples      | Number<br>of<br>samples         | %        |
| Bismuth**       | 0.007              | 0.07                           | 0.0085                           | 0.085                                     | 39                | 19                       | 49  | 68                | 19                               | 28          | 107          | 38                              | 36       |
| Cadmium         | 0.22               | 2.22                           | 0.15                             | 1.5                                       | 39                | 2                        | 5.1 | 68                | 1                                | 1           | 107          | 3                               | 3        |
| Chromium        | 170                | 1700                           | 102                              | 1020                                      | 39                | 1                        | 3   | 68                | 0                                | 0           | 107          | 1                               | 1        |
| Molybdenum      | 1.5                | 15                             | 1.2                              | 12                                        | 39                | 4                        | 10  | 68                | 4                                | 6           | 107          | 8                               | 7        |
| Lead            | 6                  | 60                             | 14                               | 140                                       | 39                | 1                        | 3   | 68                | 4                                | 6           | 107          | 5                               | 5        |
| Antimony        | 0.2                | 2                              | 0.2                              | 2                                         | 39                | 3                        | 8   | 68                | 5                                | 7           | 107          | 8                               | 7        |
| Selenium        | 0.05               | 0.5                            | 0.05                             | 0.5                                       | 39                | 9                        | 23  | 68                | 11                               | 16          | 107          | 20                              | 19       |

Note:

<sup>\*</sup> Price (1997)

<sup>\*\*</sup> Detection limit of Bi for many samples is above 10x screening criteria





## Table 6.A. Shake Flask Extraction Results of Rock Samples

|                 |           |           |                           |           |           |           |            |            |              | Hangi      | ng wall    |           |            |            |            |
|-----------------|-----------|-----------|---------------------------|-----------|-----------|-----------|------------|------------|--------------|------------|------------|-----------|------------|------------|------------|
| 0               | Unit      | MMED      | OWOO (DAL)                | CDWQ      | NWB       | Amph      | nibolite   | ,          | Volcanic Tuf | f          |            | Scl       | hist       |            | Gneiss     |
| Sample ID       | Unit      | MMER      | CWQG (PAL)                | CDWQ      | NWB       | MR ARD    | MR ARD     | MR ARD     | MR ARD       | MR ARD     | MR ARD     | MR ARD    | MR ARD     | MR ARD     | MR ARD     |
|                 |           |           |                           |           |           | 10-039    | 10-091     | 10-023     | 10-083       | 10-098     | 10-036     | 10-001    | 10-097     | 10-028     | 10-115     |
| Sample          | weight(g) |           |                           |           |           | 250       | 250        | 250        | 250          | 250        | 250        | 250       | 250        | 250        | 250        |
| Volume mL       | D.I. H2O  |           |                           |           |           | 750       | 750        | 750        | 750          | 750        | 750        | 750       | 750        | 750        | 750        |
| InitialpH       | units     |           |                           |           |           | 4.31      | 6.93       | 8.78       | 9.02         | 9.65       | 7.31       | 7.06      | 9.74       | 7.38       | 9.23       |
| Final pH        | units     | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5 | 6.0 - 9.5 | 4.70      | 7.33       | 9.34       | 8.99         | 9.70       | 7.95       | 7.63      | 9.73       | 8.16       | 9.74       |
| Mercury (Hg)    | mg/L      | •         | 0.026                     | 0.001     |           | < 0.0001  | < 0.0001   | < 0.0001   | < 0.0001     | < 0.0001   | < 0.0001   | < 0.0001  | < 0.0001   | < 0.0001   | < 0.0001   |
| Aluminum (AI)   | mg/L      | -         | 0.005-0.1 <sup>a)</sup>   | -         |           | 1.22      | 0.02       | < 0.01     | 0.03         | 0.88       | < 0.01     | < 0.01    | 0.55       | 0.06       | 2.15       |
| Antimony (Sb)   | mg/L      | •         |                           | 0.006     |           | < 0.0002  | < 0.0002   | 0.0008     | < 0.0002     | < 0.0002   | < 0.0002   | 0.0003    | < 0.0002   | 0.0003     | < 0.0002   |
| Arsenic (As)    | mg/L      | 0.5       | 0.005                     | 0.005     |           | 0.0020    | < 0.0002   | 0.0005     | 0.0006       | 0.0003     | < 0.0002   | 0.0405    | 0.0004     | 0.0005     | < 0.0002   |
| Barium (Ba)     | mg/L      | •         | -                         | 1         |           | 0.0120    | 0.00102    | 0.00539    | 0.00176      | 0.00121    | 0.00321    | 0.0197    | 0.00057    | 0.0184     | 0.00324    |
| Beryllium (Be)  | mg/L      | -         | -                         | -         |           | 0.00157   | 0.00004    | < 0.00002  | < 0.00002    | < 0.00002  | < 0.00002  | < 0.00002 | < 0.00002  | < 0.00002  | 0.00003    |
| Bismuth (Bi)    | mg/L      | -         | -                         | -         |           | < 0.00001 | < 0.00001  | < 0.00001  | < 0.00001    | < 0.00001  | < 0.00001  | < 0.00001 | < 0.00001  | < 0.00001  | < 0.00001  |
| Calcium (Ca)    | mg/L      | •         | -                         | •         |           | 42.5      | 2.62       | 9.55       | 13.0         | 3.56       | 32.2       | 24.7      | 4.14       | 7.32       | 0.04       |
| Cadmium (Cd)    | mg/L      | -         | 0.000017                  | 0.005     |           | 0.000912  | < 0.000003 | < 0.000003 | 0.000003     | < 0.000003 | < 0.000003 | 0.000047  | < 0.000003 | < 0.000003 | < 0.000003 |
| Cobalt (Co)     | mg/L      | •         | -                         | •         |           | 0.420     | 0.00177    | 0.000320   | 0.000117     | 0.000071   | 0.000307   | 0.00248   | 0.000068   | 0.000065   | 0.000037   |
| Chromium (Cr)   | mg/L      | -         | 0.001                     | 0.051     |           | < 0.0005  | < 0.0005   | < 0.0005   | < 0.0005     | < 0.0005   | < 0.0005   | < 0.0005  | < 0.0005   | < 0.0005   | < 0.0005   |
| Copper (Cu)     | mg/L      | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0      |           | 0.0259    | < 0.0005   | < 0.0005   | 0.0006       | < 0.0005   | < 0.0005   | 0.0005    | < 0.0005   | < 0.0005   | 0.0006     |
| Iron (Fe)       | mg/L      | -         | 0.3                       | <0.3      |           | 21.5      | 0.026      | < 0.002    | 0.009        | 0.035      | 0.007      | 0.006     | 0.048      | 0.037      | 0.151      |
| Lead (Pb)       | mg/L      | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01      |           | 0.00065   | 0.00058    | 0.00024    | 0.00019      | 0.00041    | 0.00015    | 0.00023   | 0.00042    | 0.00029    | 0.00114    |
| Lithium (Li)    | mg/L      |           | -                         | -         |           | 0.889     | 0.038      | 0.006      | 0.010        | 0.018      | 0.013      | 0.008     | 0.004      | 0.003      | 0.003      |
| Magnesium (Mg)  | mg/L      |           | -                         | -         |           | 193       | 8.49       | 13.8       | 9.75         | 0.513      | 42.8       | 118       | 0.931      | 7.15       | 0.139      |
| Manganese (Mn)  | mg/L      | -         | -                         | ≤0.05     |           | 39.7      | 0.179      | 0.0256     | 0.0109       | 0.00371    | 0.0725     | 0.739     | 0.00503    | 0.0117     | 0.00164    |
| Molybdenum (Mo) | mg/L      | -         | 0.073                     | -         |           | 0.00024   | 0.00021    | 0.00031    | 0.00687      | 0.00062    | 0.00173    | 0.0540    | 0.00176    | 0.00534    | 0.00101    |
| Nickel (Ni)     | mg/L      | 0.5       | 0.025-0.15 <sup>b)</sup>  | -         |           | 0.808     | 0.0037     | 0.0010     | 0.0004       | < 0.0001   | 0.0006     | 0.0306    | 0.0002     | 0.0003     | < 0.0001   |
| Potassium (K)   | mg/L      | •         | -                         |           |           | 8.75      | 4.15       | 1.06       | 11.2         | 17.8       | 3.26       | 22.4      | 8.05       | 9.00       | 4.96       |
| Selenium (Se)   | mg/L      | •         | 0.001                     |           |           | 0.002     | < 0.001    | < 0.001    | < 0.001      | < 0.001    | 0.003      | 0.001     | < 0.001    | 0.006      | < 0.001    |
| Sodium (Na)     | mg/L      | -         | -                         | -         |           | 93.4      | 1.71       | 0.46       | 5.49         | 4.27       | 0.59       | 13.9      | 7.74       | 0.97       | 9.28       |
| Strontium (Sr)  | mg/L      | -         |                           | -         |           | 0.0908    | 0.0032     | 0.0520     | 0.0545       | 0.0144     | 0.0174     | 0.156     | 0.0168     | 0.0180     | 0.0005     |
| Thallium (TI)   | mg/L      | -         |                           | •         |           | 0.00077   | < 0.00002  | < 0.00002  | < 0.00002    | < 0.00002  | < 0.00002  | 0.00004   | < 0.00002  | < 0.00002  | < 0.00002  |
| Tin (Sn)        | mg/L      | -         |                           | -         |           | < 0.00001 | < 0.00001  | < 0.00001  | < 0.00001    | < 0.00001  | < 0.00001  | < 0.00001 | < 0.00001  | < 0.00001  | < 0.00001  |
| Titanium (Ti)   | mg/L      | •         |                           | •         |           | 0.0019    | 0.0006     | < 0.0001   | 0.0004       | 0.0039     | 0.0007     | 0.0005    | 0.0045     | 0.0007     | 0.0099     |
| Uranium (U)     | mg/L      | •         |                           |           |           | 0.00132   | 0.000075   | 0.000005   | 0.000011     | 0.000002   | 0.000005   | 0.000003  | 0.000006   | 0.000007   | 0.000088   |
| Vanadium (V)    | mg/L      | -         |                           |           |           | 0.00012   | 0.00023    | 0.00009    | 0.00460      | 0.0459     | 0.00049    | 0.00019   | 0.0353     | 0.00048    | 0.00668    |
| Zinc (Zn)       | mg/L      | 0.5       | 0.03                      | ≤5.0      |           | 0.132     | 0.001      | 0.002      | < 0.001      | < 0.001    | < 0.001    | 0.001     | < 0.001    | < 0.001    | < 0.001    |





#### Table 6.A. Shake Flask Extraction Results of Rock Samples (continued)

|                 |           |           |                           |           |           |           |            |                  |           | Footwall  |            |           |                  |                   |
|-----------------|-----------|-----------|---------------------------|-----------|-----------|-----------|------------|------------------|-----------|-----------|------------|-----------|------------------|-------------------|
|                 |           |           |                           |           |           |           | Gneiss     |                  | Psar      | nmite     | Sch        | nist      | Volca            | nic tuff          |
| Sample ID       | Unit      | MMER      | CWQG (PAL)                | CDWQ      | NWB       | 5164      | 5171       | MR ARD 10<br>019 | 5145      | 5169      | 5181       | 5153      | MR ARD<br>10-077 | MR ARD 10-<br>079 |
| Sample          | weight(g) |           |                           |           |           | 250       | 250        | 250              | 250       | 250       | 250        | 250       | 250              | 250               |
| Volume mL       | D.I. H2O  |           |                           |           |           | 750       | 750        | 750              | 750       | 750       | 750        | 750       | 750              | 750               |
| InitialpH       | units     |           |                           |           |           | 9.20      | 9.68       | 7.80             | 9.20      | 9.58      | 8.91       | 9.18      | 8.52             | 9.74              |
| Final pH        | units     | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5 | 6.0 - 9.5 | 9.87      | 9.57       | 8.74             | 9.78      | 9.71      | 9.47       | 9.76      | 9.64             | 9.73              |
| Mercury (Hg)    | mg/L      | -         | 0.026                     | 0.001     |           | < 0.0001  | < 0.0001   | < 0.0001         | < 0.0001  | < 0.0001  | < 0.0001   | < 0.0001  | < 0.0001         | < 0.0001          |
| Aluminum (Al)   | mg/L      | -         | 0.005-0.1 <sup>a)</sup>   | -         |           | 1.50      | 0.62       | 0.12             | 1.24      | 0.82      | 0.65       | 0.43      | 2.70             | 0.87              |
| Antimony (Sb)   | mg/L      | -         |                           | 0.006     |           | 0.0003    | 0.0004     | 0.0004           | < 0.0002  | 0.0017    | < 0.0002   | 0.0005    | < 0.0002         | 0.0003            |
| Arsenic (As)    | mg/L      | 0.5       | 0.005                     | 0.005     |           | 0.0012    | 0.0016     | 0.0010           | < 0.0002  | 0.0042    | 0.0004     | < 0.0002  | 0.0003           | 0.0003            |
| Barium (Ba)     | mg/L      | -         | -                         | 1         |           | 0.00231   | 0.00272    | 0.00506          | 0.00111   | 0.00174   | 0.00119    | 0.00265   | 0.0136           | 0.00209           |
| Beryllium (Be)  | mg/L      | -         | -                         | -         |           | < 0.00002 | < 0.00002  | < 0.00002        | < 0.00002 | < 0.00002 | < 0.00002  | < 0.00002 | 0.00004          | < 0.00002         |
| Bismuth (Bi)    | mg/L      | -         | -                         | -         |           | < 0.00001 | < 0.00001  | < 0.00001        | < 0.00001 | < 0.00001 | < 0.00001  | < 0.00001 | < 0.00001        | < 0.00001         |
| Calcium (Ca)    | mg/L      | -         | -                         | -         |           | 0.73      | 3.90       | 18.8             | 0.16      | 2.51      | 1.67       | 0.77      | 0.07             | 6.69              |
| Cadmium (Cd)    | mg/L      | -         | 0.000017                  | 0.005     |           | 0.000004  | < 0.000003 | 0.000030         | 0.000003  | 0.000013  | < 0.000003 | 0.000010  | 0.000007         | < 0.000003        |
| Cobalt (Co)     | mg/L      | -         | -                         | -         |           | 0.000078  | 0.000073   | 0.000040         | 0.000119  | 0.000126  | 0.000029   | 0.000037  | 0.000187         | 0.000024          |
| Chromium (Cr)   | mg/L      | -         | 0.001                     | 0.051     |           | < 0.0005  | < 0.0005   | < 0.0005         | < 0.0005  | < 0.0005  | < 0.0005   | < 0.0005  | < 0.0005         | < 0.0005          |
| Copper (Cu)     | mg/L      | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0      |           | < 0.0005  | 0.0006     | < 0.0005         | 0.0007    | 0.0011    | < 0.0005   | < 0.0005  | < 0.0005         | < 0.0005          |
| Iron (Fe)       | mg/L      | -         | 0.3                       | <0.3      |           | 0.112     | 0.076      | < 0.002          | 0.148     | 0.096     | 0.069      | 0.068     | 0.452            | 0.010             |
| Lead (Pb)       | mg/L      | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01      |           | 0.00025   | 0.00058    | 0.00020          | 0.00128   | 0.00302   | 0.00030    | 0.00041   | 0.00073          | 0.00018           |
| Lithium (Li)    | mg/L      | -         | -                         | -         |           | 0.011     | 0.008      | 0.001            | 0.008     | 0.004     | 0.016      | 0.003     | 0.002            | 0.005             |
| Magnesium (Mg)  | mg/L      | -         | -                         | -         |           | 0.188     | 0.464      | 14.0             | 0.127     | 0.353     | 0.383      | 0.302     | 0.226            | 0.643             |
| Manganese (Mn)  | mg/L      | -         | -                         | ≤0.05     |           | 0.00180   | 0.00221    | 0.00535          | 0.00244   | 0.00220   | 0.00081    | 0.00117   | 0.00218          | 0.00105           |
| Molybdenum (Mo) | mg/L      | -         | 0.073                     | -         |           | 0.00553   | 0.00383    | 0.0361           | 0.00187   | 0.00819   | 0.00409    | 0.0160    | 0.0110           | 0.00052           |
| Nickel (Ni)     | mg/L      | 0.5       | 0.025-0.15 <sup>b)</sup>  | -         |           | < 0.0001  | < 0.0001   | < 0.0001         | < 0.0001  | < 0.0001  | < 0.0001   | < 0.0001  | 0.0001           | < 0.0001          |
| Potassium (K)   | mg/L      | -         | -                         | -         |           | 16.1      | 11.2       | 4.90             | 9.97      | 7.80      | 10.4       | 19.3      | 23.3             | 8.33              |
| Selenium (Se)   | mg/L      | -         | 0.001                     | -         |           | < 0.001   | 0.002      | < 0.001          | < 0.001   | < 0.001   | < 0.001    | < 0.001   | < 0.001          | < 0.001           |
| Sodium (Na)     | mg/L      | -         | -                         | -         |           | 3.67      | 7.83       | 1.52             | 3.94      | 8.16      | 2.78       | 2.21      | 1.78             | 4.38              |
| Strontium (Sr)  | mg/L      | -         |                           | -         |           | 0.0025    | 0.0206     | 0.137            | 0.0010    | 0.0158    | 0.0161     | 0.0039    | 0.0007           | 0.0133            |
| Thallium (TI)   | mg/L      | -         |                           | -         |           | < 0.00002 | < 0.00002  | < 0.00002        | < 0.00002 | < 0.00002 | < 0.00002  | < 0.00002 | < 0.00002        | < 0.00002         |
| Tin (Sn)        | mg/L      | -         |                           | -         |           | < 0.00001 | < 0.00001  | < 0.00001        | < 0.00001 | < 0.00001 | < 0.00001  | < 0.00001 | < 0.00001        | < 0.00001         |
| Titanium (Ti)   | mg/L      | -         |                           | -         |           | 0.0096    | 0.0036     | 0.0002           | 0.0139    | 0.0075    | 0.0027     | 0.0068    | 0.0271           | 0.0008            |
| Uranium (U)     | mg/L      | -         |                           | -         |           | 0.000584  | 0.0119     | 0.000126         | 0.000316  | 0.0115    | 0.000246   | 0.000020  | 0.000093         | 0.000007          |
| Vanadium (V)    | mg/L      | -         |                           | -         |           | 0.00635   | 0.00436    | 0.00023          | 0.0156    | 0.00557   | 0.00183    | 0.00884   | 0.0171           | 0.0278            |
| Zinc (Zn)       | mg/L      | 0.5       | 0.03                      | ≤5.0      |           | < 0.001   | 0.002      | < 0.001          | < 0.001   | 0.002     | < 0.001    | < 0.001   | 0.001            | 0.001             |

Note:

**Bold** value indicates exceedance of MMER limit

MMER = Metal Mining Effluent Regulation

CWGQ (PAL) = Canadian Council of Minister of the Environment (CCME) Canadian Water Quality

Guideline for the protection of Aquatic Life

CDWQ = Health Canada - Canadian Drinking Water Quality Guideline

CWGQ (PAL) and CDWQ guidelines shown for reference purpose only (see text)

NWB = Nunavut Water Board Wastewater Criterion

- a) varies with pH
- b) varies with hardness
- c) aesthetic objective





## Table 6.B. Modified Synthetic Precipitation Leaching Procedure Results of Rock Samples (Knight Piésold, 2008a)

|                 |           |           |                           |           |           |           |             |           |                        | Hangi                  | ng wall                |           |           |           |                        |
|-----------------|-----------|-----------|---------------------------|-----------|-----------|-----------|-------------|-----------|------------------------|------------------------|------------------------|-----------|-----------|-----------|------------------------|
| Sample ID       | Unit      | MMER      | CWQG (PAL)                | CDWQ      | NWB       |           | Amphibolite |           | Amphibolite/<br>Schist | Gneiss/<br>Amphibolite | Amphibolite/<br>Schist | Schist    | Schist    | Schist    | Schist/<br>Amphibolite |
|                 |           |           |                           |           |           | 07ARD11   | 07ARD17     | 07ARD27   | 07ARD07                | 07ARD21                | 07ARD 25               | 07ARD06   | 07ARD16   | 07ARD34   | 07ARD20                |
| Sample          | weight(g) |           |                           |           |           | 250       | 250         | 250       | 250                    | 250                    | 250                    | 250       | 250       | 250       | 250                    |
| Volume mL       | D.I. H2O  |           |                           |           |           | 750       | 750         | 750       | 750                    | 750                    | 750                    | 750       | 750       | 750       | 750                    |
| InitialpH       | units     |           |                           |           |           |           |             |           |                        |                        |                        |           |           |           |                        |
| Final pH        | units     | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5 | 6.0 - 9.5 | 7.64      | 8.34        | 8.08      | 8.77                   | 7.19                   | 8.12                   | 8.54      | 8.85      | 4.50      | 7.79                   |
| Mercury (Hg)    | mg/L      | -         | 0.026                     | 0.001     |           | < 0.0001  | < 0.0001    | < 0.0001  | < 0.0001               | < 0.0001               | < 0.0001               | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001               |
| Aluminum (Al)   | mg/L      | -         | 0.005-0.1 <sup>a)</sup>   | -         |           | 0.09      | 0.07        | 0.36      | 1.12                   | 0.01                   | 0.04                   | 0.84      | 1.25      | 0.02      | 3.84                   |
| Antimony (Sb)   | mg/L      | -         |                           | 0.006     |           | 0.0006    | 0.0005      | 0.0005    | 0.0029                 | < 0.0002               | 0.0007                 | 0.0015    | 0.0022    | < 0.0002  | 0.0003                 |
| Arsenic (As)    | mg/L      | 0.5       | 0.005                     | 0.005     |           | 0.0006    | 0.0014      | 0.0019    | 0.0013                 | 0.0004                 | 0.0759                 | 0.0024    | 0.0026    | 0.0009    | 0.0009                 |
| Barium (Ba)     | mg/L      | -         | -                         | 1         |           | 0.475     | 0.676       | 0.256     | 0.456                  | 0.0913                 | 0.220                  | 0.400     | 0.675     | 0.0977    | 0.128                  |
| Beryllium (Be)  | mg/L      | -         | -                         | -         |           | < 0.0004  | < 0.0004    | < 0.0004  | < 0.0004               | < 0.0004               | < 0.0004               | < 0.0004  | < 0.0004  | 0.0004    | < 0.0004               |
| Bismuth (Bi)    | mg/L      | -         | -                         | -         |           | 0.00004   | 0.00003     | < 0.00002 | 0.00008                | 0.00002                | < 0.00002              | 0.00011   | 0.00005   | < 0.00002 | 0.00006                |
| Calcium (Ca)    | mg/L      | -         | -                         | -         |           | 9.33      | 7.27        | 9.60      | 2.59                   | 34.5                   | 4.94                   | 8.13      | 4.35      | 41.7      | 5.66                   |
| Cadmium (Cd)    | mg/L      | -         | 0.000017                  | 0.005     |           | 0.00008   | < 0.00006   | < 0.00006 | < 0.00006              | < 0.00006              | < 0.00006              | < 0.00006 | < 0.00006 | 0.00011   | < 0.00006              |
| Cobalt (Co)     | mg/L      | -         | -                         | -         |           | 0.000316  | 0.000056    | 0.000244  | 0.000564               | 0.00260                | 0.000284               | 0.000801  | 0.000687  | 0.556     | 0.00179                |
| Chromium (Cr)   | mg/L      | -         | 0.001                     | 0.051     |           | 0.0006    | 0.0006      | 0.0007    | 0.0126                 | < 0.0003               | 0.0004                 | 0.0015    | 0.0145    | < 0.0003  | 0.0045                 |
| Copper (Cu)     | mg/L      | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0      |           | 0.0007    | 0.0007      | 0.0019    | 0.0015                 | 0.0009                 | 0.0006                 | 0.0022    | 0.0019    | 0.0008    | 0.0009                 |
| Iron (Fe)       | mg/L      | -         | 0.3                       | <0.3      |           | 0.02      | 0.01        | 1.19      | 1.88                   | < 0.01                 | 0.01                   | 3.19      | 2.57      | 0.75      | 6.17                   |
| Lead (Pb)       | mg/L      | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01      |           | 0.00107   | 0.00038     | 0.00055   | 0.00059                | 0.00039                | 0.00036                | 0.00068   | 0.00056   | 0.00044   | 0.00071                |
| Lithium (Li)    | mg/L      | -         | -                         | -         |           | 0.0771    | 0.0049      | 0.0033    | 0.0030                 | 0.0600                 | 0.0023                 | 0.0046    | 0.0035    | 0.0643    | 0.0055                 |
| Magnesium (Mg)  | mg/L      | -         | -                         | -         |           | 8.77      | 28.1        | 22.3      | 6.10                   | 158                    | 18.3                   | 12.0      | 7.45      | 240       | 48.3                   |
| Manganese (Mn)  | mg/L      | -         | -                         | ≤0.05     |           | 0.0294    | 0.00791     | 0.103     | 0.0348                 | 0.0878                 | 0.00598                | 0.0532    | 0.0339    | 7.51      | 0.154                  |
| Molybdenum (Mo) | mg/L      | -         | 0.073                     | -         |           | 0.00728   | 0.0158      | 0.0136    | 0.0893                 | 0.00083                | 0.0295                 | 0.0874    | 0.0320    | 0.00273   | 0.00458                |
| Nickel (Ni)     | mg/L      | 0.5       | 0.025-0.15 <sup>b)</sup>  | -         |           | 0.0016    | < 0.0007    | 0.0011    | 0.0039                 | 0.0084                 | 0.0027                 | 0.0021    | 0.0088    | 2.05      | 0.0062                 |
| Potassium (K)   | mg/L      | -         | -                         | -         |           | 2.91      | 1.08        | 1.56      | 5.73                   | 4.09                   | 1.00                   | 6.13      | 4.22      | 1.78      | 2.44                   |
| Selenium (Se)   | mg/L      | -         | 0.001                     | -         |           | 0.002     | < 0.001     | 0.018     | 0.001                  | 0.008                  | 0.002                  | 0.002     | < 0.001   | 0.008     | 0.004                  |
| Sodium (Na)     | mg/L      | -         | -                         | -         |           | 11.6      | 16.2        | 14.4      | 14.0                   | 21.0                   | 8.79                   | 14.5      | 15.2      | 14.0      | 14.7                   |
| Strontium (Sr)  | mg/L      | -         |                           | -         |           | 0.0841    | 0.0588      | 0.0321    | 0.0220                 | 0.0308                 | 0.0358                 | 0.0348    | 0.0456    | 0.0147    | 0.0356                 |
| Thallium (TI)   | mg/L      | -         |                           | -         |           | < 0.0001  | < 0.0001    | < 0.0001  | < 0.0001               | < 0.0001               | < 0.0001               | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001               |
| Tin (Sn)        | mg/L      | -         |                           | -         |           | 0.0004    | 0.0005      | 0.0004    | 0.0005                 | 0.0005                 | 0.0004                 | 0.0011    | 0.0006    | 0.0006    | 0.0004                 |
| Titanium (Ti)   | mg/L      | -         |                           | -         |           | 0.0008    | 0.0007      | 0.0013    | 0.0054                 | 0.0013                 | 0.0005                 | 0.0065    | 0.0069    | 0.0012    | 0.0547                 |
| Uranium (U)     | mg/L      | -         |                           |           |           | < 0.00002 | < 0.00002   | < 0.00002 | 0.00005                | < 0.00002              | < 0.00002              | 0.00006   | 0.00002   | 0.00091   | 0.00006                |
| Vanadium (V)    | mg/L      | -         |                           | -         |           | 0.00008   | 0.00008     | 0.00052   | 0.00258                | < 0.00006              | 0.00023                | 0.00195   | 0.00364   | 0.00008   | 0.00381                |
| Zinc (Zn)       | mg/L      | 0.5       | 0.03                      | ≤5.0      |           | 0.0814    | 0.0793      | 0.0389    | 0.152                  | 0.0906                 | 0.0429                 | 0.106     | 0.134     | 0.416     | 0.0495                 |





## Table 6.B. Modified Synthetic Precipitation Leaching Procedure Results of Rock Samples (continued) (Knight Piésold, 2008a)

|                 |           |           |                           |           |           |           |           |           |           | Hangin    | g wall    |           |           |            |           |
|-----------------|-----------|-----------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|
| Sample ID       | Unit      | MMER      | CWQG (PAL)                | CDWQ      | NWB       |           |           |           |           | Volcar    | ic tuff   |           |           |            |           |
|                 |           |           |                           |           |           | UCS2      | UCS15     | UCS16     | UCS17     | UCS18     | UCS19     | UCS20     | UCS21     | UCS25      | UCS26     |
| Sample          | weight(g) |           |                           |           |           | 300       | 300       | 300       | 300       | 300       | 100       | 300       | 100       | 300        | 100       |
| Volume mL       | D.I. H2O  |           |                           |           |           | 1         | 1         | 1         | 1         | 1         | 1         |           | 1         |            | 1         |
| InitialpH       | units     |           |                           |           |           | 900       | 900       | 900       | 900       | 900       | 300       | 900       | 300       | 900        | 300       |
| Final pH        | units     | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5 | 6.0 - 9.5 | 5.78      | 9.99      | 9.19      | 10.2      | 9.74      | 9.45      | 9.4       | 9.49      | 9.55       | 9.1       |
| Mercury (Hg)    | mg/L      | -         | 0.026                     | 0.001     |           | -         | -         | -         | -         | -         | -         | -         | -         | -          | -         |
| Aluminum (Al)   | mg/L      | -         | 0.005-0.1 <sup>a)</sup>   | -         |           | 0.05      | 0.89      | 0.56      | 1.6       | 4.23      | 11.1      | 0.18      | 4.7       | 0.43       | 0.21      |
| Antimony (Sb)   | mg/L      |           |                           | 0.006     |           | < 0.0002  | 0.0063    | < 0.0002  | 0.0023    | 0.0072    | 0.0004    | 0.0009    | 0.0004    | 0.0004     | 0.0006    |
| Arsenic (As)    | mg/L      | 0.5       | 0.005                     | 0.005     |           | < 0.0002  | < 0.0002  | < 0.0002  | < 0.0002  | < 0.0002  | 0.0006    | < 0.0002  | 0.0005    | < 0.0002   | 0.0002    |
| Barium (Ba)     | mg/L      | -         | -                         | 1         |           | 0.0044    | 0.329     | 0.338     | 0.355     | 0.279     | 0.865     | 0.529     | 0.729     | 0.0111     | 0.701     |
| Beryllium (Be)  | mg/L      | -         | -                         | -         |           | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004   | < 0.0004  |
| Bismuth (Bi)    | mg/L      | -         | -                         | -         |           | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002  | < 0.00002 |
| Calcium (Ca)    | mg/L      | -         | -                         | -         |           | 281       | 7.41      | 1.06      | 2.79      | 11.8      | 11.6      | 10.4      | 10.2      | 2.05       | 2.57      |
| Cadmium (Cd)    | mg/L      | -         | 0.000017                  | 0.005     |           | 0.00048   | < 0.00006 | < 0.00006 | < 0.00006 | < 0.00006 | < 0.00006 | < 0.00006 | < 0.00006 | < 0.00006  | < 0.00006 |
| Cobalt (Co)     | mg/L      | -         | -                         | -         |           | 0.055     | 0.000239  | 0.000245  | 0.000563  | 0.00208   | 0.00888   | 0.000031  | 0.00278   | < 0.000007 | 0.000165  |
| Chromium (Cr)   | mg/L      | -         | 0.001                     | 0.051     |           | < 0.0003  | 0.0009    | 0.0012    | 0.0055    | 0.0106    | 0.0317    | 0.0006    | 0.0102    | 0.0004     | 0.0039    |
| Copper (Cu)     | mg/L      | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0      |           | 0.0011    | 0.001     | 0.0013    | 0.001     | 0.0112    | 0.0164    | 0.0005    | 0.0078    | 0.0003     | 0.0007    |
| Iron (Fe)       | mg/L      | -         | 0.3                       | <0.3      |           | 1.26      | 0.32      | 0.35      | 0.41      | 3.11      | 10.4      | 0.05      | 4.51      | < 0.01     | 0.33      |
| Lead (Pb)       | mg/L      | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01      |           | < 0.00002 | < 0.00002 | < 0.00002 | 0.00004   | 0.00042   | 0.00067   | < 0.00002 | 0.00012   | 0.00002    | < 0.00002 |
| Lithium (Li)    | mg/L      | -         | -                         | -         |           | < 0.002   | < 0.002   | < 0.002   | < 0.002   | < 0.002   | < 0.002   | < 0.002   | < 0.002   | < 0.002    | < 0.002   |
| Magnesium (Mg)  | mg/L      | -         | -                         | -         |           | 153       | 0.674     | 1.04      | 0.446     | 2.18      | 4.94      | 1.83      | 3.25      | 0.741      | 1.44      |
| Manganese (Mn)  | mg/L      | -         | -                         | ≤0.05     |           | 24.8      | 0.0139    | 0.00238   | 0.0121    | 0.104     | 0.305     | 0.00316   | 0.168     | 0.00037    | 0.00271   |
| Molybdenum (Mo) | mg/L      | -         | 0.073                     | -         |           | 0.00009   | 0.00062   | 0.00028   | 0.00029   | 0.00026   | 0.00139   | 0.00048   | 0.00087   | 0.00029    | 0.00028   |
| Nickel (Ni)     | mg/L      | 0.5       | 0.025-0.15 <sup>b)</sup>  | -         |           | 0.454     | 0.0016    | 0.0009    | 0.0019    | 0.0106    | 0.0204    | < 0.0007  | 0.008     | < 0.0007   | 0.0014    |
| Potassium (K)   | mg/L      | -         | -                         | -         |           | 1         | 2.09      | 4.92      | 10.8      | 2.92      | 3.1       | 8.3       | 3.57      | 15.6       | 1.35      |
| Selenium (Se)   | mg/L      | -         | 0.001                     | -         |           | 0.002     | 0.001     | < 0.001   | < 0.001   | < 0.001   | < 0.001   | < 0.001   | < 0.001   | < 0.001    | < 0.001   |
| Sodium (Na)     | mg/L      | -         | -                         | -         |           | 5.57      | 8.3       | 8.83      | 11.8      | 8.22      | 9.52      | 7.55      | 9.88      | 1.96       | 7.21      |
| Strontium (Sr)  | mg/L      | -         |                           | -         |           | 0.0453    | 0.0271    | 0.0196    | 0.0192    | 0.066     | 0.0336    | 0.0355    | 0.0514    | 0.0079     | 0.035     |
| Thallium (TI)   | mg/L      | -         |                           | -         |           | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001   | < 0.0001  |
| Tin (Sn)        | mg/L      | -         |                           | -         | ,         | < 0.0003  | < 0.0003  | 0.0003    | 0.0005    | 0.0004    | < 0.0003  | < 0.0003  | < 0.0003  | < 0.0003   | < 0.0003  |
| Titanium (Ti)   | mg/L      | -         |                           | -         |           | 0.0051    | 0.0127    | 0.0088    | 0.047     | 0.0397    | 0.54      | 0.002     | 0.115     | 0.0011     | 0.0051    |
| Uranium (U)     | mg/L      | -         |                           | -         |           | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | 0.00002   | < 0.00002 | < 0.00002 | < 0.00002  | 0.0001    |
| Vanadium (V)    | mg/L      | -         |                           | -         | ,         | 0.00062   | 0.0216    | 0.00285   | 0.0409    | 0.0189    | 0.0555    | 0.0572    | 0.0269    | 0.00159    | 0.00134   |
| Zinc (Zn)       | mg/L      | 0.5       | 0.03                      | ≤5.0      |           | 0.004     | 0.0038    | 0.0136    | 0.0054    | 0.0111    | 0.184     | 0.0059    | 0.129     | 0.0004     | 0.0928    |





## Table 6.B. Modified Synthetic Precipitation Leaching Procedure Results of Rock Samples (continued) (Knight Piésold, 2008a)

|                 |           |           |                           |       |           |           |           |           |           | ŀ         | langing wa    | all       |           |           |           |           |
|-----------------|-----------|-----------|---------------------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|
| Sample ID       | Unit      | MMER      | CWQG (PAL)                | CDWQ  | NWB       |           |           |           |           |           | Volcanic tuff | :         |           |           |           |           |
|                 |           |           |                           |       |           | UCS28     | UCS29     | UCS30     | UCS31     | UCS32     | UCS33         | UCS34     | UCS35     | UCS36     | UCS37     | UCS38     |
| Sample          | weight(g) |           |                           |       |           | 100       | 300       | 100       | 100       | 100       | 100           | 100       | 100       | 100       | 100       | 100       |
| Volume mL       | D.I. H2O  |           |                           |       |           | 1         |           | 1         | 1         | 1         | 1             | 1         | 1         | 1         | 1         | 1         |
| InitialpH       | units     |           |                           |       |           | 300       | 900       | 300       | 300       | 300       | 300           | 300       | 300       | 300       | 300       | 300       |
| Final pH        | units     | 6.0 - 9.5 | 6.5 - 9.0                 |       | 6.0 - 9.5 | 9.49      | 10.03     | 9.71      | 9.6       | 9.43      | 9.41          | 9.66      | 9.41      | 9.45      | 9.48      | 9.51      |
| Mercury (Hg)    | mg/L      | -         | 0.026                     | 0.001 |           | -         | -         | -         | -         | -         | -             | -         | -         | -         | -         | -         |
| Aluminum (AI)   | mg/L      | -         | 0.005-0.1 <sup>a)</sup>   | -     |           | 9.38      | 1.12      | 9.28      | 5.12      | 6.02      | 4.94          | 7.84      | 3.3       | 2.04      | 3.01      | 6.14      |
| Antimony (Sb)   | mg/L      | -         |                           | 0.006 |           | 0.0007    | 0.0013    | 0.0006    | 0.0011    | 0.0009    | 0.0004        | 0.0003    | < 0.0002  | < 0.0002  | 0.0003    | < 0.0002  |
| Arsenic (As)    | mg/L      | 0.5       | 0.005                     | 0.005 |           | 0.0003    | < 0.0002  | 0.0004    | 0.0003    | 0.0003    | 0.0003        | 0.0005    | < 0.0002  | < 0.0002  | 0.0002    | 0.0003    |
| Barium (Ba)     | mg/L      | -         | -                         | 1     |           | 1.14      | 0.365     | 0.954     | 0.882     | 0.752     | 0.818         | 1.13      | 0.938     | 0.837     | 0.945     | 1.14      |
| Beryllium (Be)  | mg/L      | -         | -                         | -     |           | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004      | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004  |
| Bismuth (Bi)    | mg/L      | -         | -                         | -     |           | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | 0.00002   | 0.00004       | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 |
| Calcium (Ca)    | mg/L      | -         | -                         | -     |           | 8.79      | 1.81      | 8.38      | 8.76      | 9.13      | 4.6           | 4.89      | 5.58      | 5.47      | 5.81      | 5.26      |
| Cadmium (Cd)    | mg/L      | -         | 0.000017                  | 0.005 |           | < 0.00006 | < 0.00006 | < 0.00006 | < 0.00006 | < 0.00006 | < 0.00006     | < 0.00006 | < 0.00006 | < 0.00006 | < 0.00006 | < 0.00006 |
| Cobalt (Co)     | mg/L      |           | -                         | -     |           | 0.00431   | 0.000602  | 0.00719   | 0.00258   | 0.00374   | 0.004         | 0.00862   | 0.00186   | 0.0012    | 0.00226   | 0.00608   |
| Chromium (Cr)   | mg/L      | -         | 0.001                     | 0.051 |           | 0.0304    | 0.0034    | 0.0352    | 0.019     | 0.0236    | 0.0241        | 0.0397    | 0.0107    | 0.0072    | 0.0108    | 0.0303    |
| Copper (Cu)     | mg/L      | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0  |           | 0.0085    | 0.001     | 0.0077    | 0.0105    | 0.007     | 0.008         | 0.013     | 0.0022    | 0.0023    | 0.0035    | 0.0029    |
| Iron (Fe)       | mg/L      |           | 0.3                       | < 0.3 |           | 5.63      | 0.9       | 6.76      | 2.66      | 3.75      | 2.69          | 7.34      | 1.73      | 1.06      | 1.72      | 4.24      |
| Lead (Pb)       | mg/L      | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01  |           | 0.00168   | 0.00009   | 0.00032   | 0.00022   | 0.00018   | 0.00092       | 0.00099   | 0.00012   | 0.00011   | 0.0001    | 0.00042   |
| Lithium (Li)    | mg/L      | -         | -                         | -     |           | < 0.002   | < 0.002   | < 0.002   | < 0.002   | < 0.002   | < 0.002       | < 0.002   | < 0.002   | < 0.002   | < 0.002   | < 0.002   |
| Magnesium (Mg)  | mg/L      | -         | -                         | -     |           | 4.99      | 0.544     | 3.83      | 2.13      | 2.27      | 2.31          | 6.51      | 2.11      | 1.45      | 2.35      | 3.56      |
| Manganese (Mn)  | mg/L      | -         | -                         | ≤0.05 |           | 0.158     | 0.0185    | 0.132     | 0.0703    | 0.12      | 0.0548        | 0.142     | 0.0648    | 0.0469    | 0.0609    | 0.0901    |
| Molybdenum (Mo) | mg/L      | -         | 0.073                     | -     |           | 0.00098   | 0.00019   | 0.0008    | 0.00105   | 0.00125   | 0.00039       | 0.00032   | 0.0004    | 0.00017   | 0.00043   | 0.00024   |
| Nickel (Ni)     | mg/L      | 0.5       | 0.025-0.15 <sup>b)</sup>  | -     |           | 0.0135    | 0.0023    | 0.0222    | 0.0082    | 0.0121    | 0.0103        | 0.021     | 0.0043    | 0.0029    | 0.0049    | 0.0152    |
| Potassium (K)   | mg/L      | -         | -                         | -     |           | 4.6       | 5.94      | 8.68      | 2.99      | 2.56      | 4.58          | 8.7       | 4.73      | 4.58      | 6.7       | 7.99      |
| Selenium (Se)   | mg/L      | -         | 0.001                     | -     |           | < 0.001   | < 0.001   | < 0.001   | < 0.001   | < 0.001   | < 0.001       | < 0.001   | < 0.001   | < 0.001   | < 0.001   | < 0.001   |
| Sodium (Na)     | mg/L      | -         | -                         | -     |           | 11.5      | 11.4      | 12.4      | 10.7      | 10.4      | 9.28          | 14.8      | 9.15      | 9.86      | 12.7      | 13.5      |
| Strontium (Sr)  | mg/L      | -         |                           | -     |           | 0.0439    | 0.0189    | 0.0346    | 0.0584    | 0.0513    | 0.0451        | 0.0623    | 0.0408    | 0.0405    | 0.0448    | 0.0447    |
| Thallium (TI)   | mg/L      | -         |                           | -     |           | 0.0003    | < 0.0001  | 0.0001    | < 0.0001  | < 0.0001  | < 0.0001      | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001  |
| Tin (Sn)        | mg/L      | -         |                           | -     |           | < 0.0003  | < 0.0003  | < 0.0003  | < 0.0003  | < 0.0003  | < 0.0003      | < 0.0003  | < 0.0003  | < 0.0003  | < 0.0003  | < 0.0003  |
| Titanium (Ti)   | mg/L      | -         |                           | -     |           | 0.63      | 0.0628    | 0.788     | 0.207     | 0.244     | 0.285         | 1.07      | 0.309     | 0.182     | 0.205     | 0.574     |
| Uranium (U)     | mg/L      | -         |                           | -     |           | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002     | < 0.00002 | < 0.00002 | < 0.00002 |           |           |
| Vanadium (V)    | mg/L      | -         |                           | •     |           | 0.0549    | 0.0178    | 0.0578    | 0.0304    | 0.0328    | 0.0294        | 0.06      | 0.0206    | 0.0189    | 0.0267    | 0.049     |
| Zinc (Zn)       | mg/L      | 0.5       | 0.03                      | ≤5.0  |           | 0.177     | 0.0143    | 0.189     | 0.155     | 0.127     | 0.132         | 0.215     | 0.146     | 0.116     | 0.166     | 0.194     |





Table 6.B. Modified Synthetic Precipitation Leaching Procedure Results of Rock Samples (continued) (Knight Piésold, 2008a)

|                 |           |           |                           |           |           |           |           | F         | langing wa    | ıll       |                                     |                     |           | Footwall  |           |
|-----------------|-----------|-----------|---------------------------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|-------------------------------------|---------------------|-----------|-----------|-----------|
| Sample ID       | Unit      | MMER      | CWQG (PAL)                | CDWQ      | NWB       | Volcar    | nic Tuff  |           | canic tuff/Sc |           | Volcanic<br>tuff / Chert<br>/Schist | Mafic Volc.<br>Dyke | Gneiss    | Gneiss    | Gneiss    |
|                 |           |           |                           |           |           | UCS39     | UCS40     | 07ARD23   | 07ARD24       | 07ARD41   | 07ARD31                             | 07ARD08             | UCS10     | UCS12     | UCS13     |
| Sample          | weight(g) |           |                           |           |           | 100       | 100       | 250       | 250           | 250       | 250                                 | 250                 | 300       | 300       | 300       |
| Volume mL       | D.I. H2O  |           |                           |           |           | 1         | 1         | 1         | 1             | 1         | 1                                   | 1                   | 900       | 900       | 900       |
| InitialpH       | units     |           |                           |           |           | 300       | 300       | 750       | 750           | 750       | 750                                 | 750                 | 5.2       | 7.4       | 9.6       |
| Final pH        | units     | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5 | 6.0 - 9.5 | 9.2       | 9.27      | 8.40      | 8.48          | 8.43      | 7.98                                | 8.44                | 5.94      | 8.33      | 8.57      |
| Mercury (Hg)    | mg/L      | -         | 0.026                     | 0.001     |           | -         | -         | < 0.0001  | < 0.0001      | < 0.0001  | < 0.0001                            | < 0.0001            |           |           |           |
| Aluminum (Al)   | mg/L      | -         | 0.005-0.1 <sup>a)</sup>   | -         |           | 10.7      | 28.4      | 0.29      | 1.60          | 1.35      | 0.04                                | 0.02                | 0.01      | 0.66      | 0.1       |
| Antimony (Sb)   | mg/L      | -         |                           | 0.006     |           | 0.0003    | 0.0002    | 0.0010    | 0.0008        | 0.0008    | 0.0011                              | 0.0017              | < 0.0002  | < 0.0002  | 0.003     |
| Arsenic (As)    | mg/L      | 0.5       | 0.005                     | 0.005     |           | 0.0002    | < 0.0002  | 0.0004    | 0.0008        | 0.0003    | 0.0045                              | 0.0022              | < 0.0002  | < 0.0002  | < 0.0002  |
| Barium (Ba)     | mg/L      | -         | -                         | 1         |           | 1.57      | 2.32      | 0.467     | 0.674         | 0.939     | 0.625                               | 0.301               | 0.0344    | 0.223     | 0.108     |
| Beryllium (Be)  | mg/L      | -         | -                         | -         |           | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004      | < 0.0004  | < 0.0004                            | < 0.0004            | < 0.0004  | < 0.0004  | < 0.0004  |
| Bismuth (Bi)    | mg/L      | -         | -                         | -         |           | 0.00009   | 0.00004   | < 0.00002 | < 0.00002     | < 0.00002 | < 0.00002                           | 0.00007             | < 0.00002 | < 0.00002 | < 0.00002 |
| Calcium (Ca)    | mg/L      | -         | -                         | -         |           | 1.37      | 1.35      | 3.47      | 2.55          | 3.83      | 19.3                                | 26.5                | 60.2      | 2.62      | 21.3      |
| Cadmium (Cd)    | mg/L      | -         | 0.000017                  | 0.005     |           | 0.00008   | 0.00009   | < 0.00006 | < 0.00006     | < 0.00006 | < 0.00006                           | < 0.00006           | 0.00057   | < 0.00006 | < 0.00006 |
| Cobalt (Co)     | mg/L      | -         | -                         | -         |           | 0.0144    | 0.0373    | 0.000107  | 0.000683      | 0.00102   | 0.000210                            | 0.000139            | 0.0269    | 0.000231  | 0.000048  |
| Chromium (Cr)   | mg/L      | -         | 0.001                     | 0.051     |           | 0.0668    | 0.125     | 0.0016    | 0.0137        | 0.0044    | 0.0005                              | 0.0006              | < 0.0003  | 0.0008    | 0.0003    |
| Copper (Cu)     | mg/L      | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0      |           | 0.0375    | 0.0512    | 0.0006    | 0.0008        | 0.0028    | 0.0005                              | 0.0014              | 0.0013    | 0.0016    | 0.0012    |
| Iron (Fe)       | mg/L      | -         | 0.3                       | <0.3      |           | 13.1      | 31.3      | 0.33      | 3.17          | 1.49      | 0.02                                | < 0.01              | 0.23      | 0.29      | < 0.01    |
| Lead (Pb)       | mg/L      | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01      |           | 0.00205   | 0.00114   | 0.00043   | 0.00077       | 0.00055   | 0.00045                             | 0.00059             | < 0.00002 | 0.00024   | < 0.00002 |
| Lithium (Li)    | mg/L      | -         | -                         |           |           | < 0.002   | < 0.002   | 0.0028    | 0.0027        | 0.0253    | 0.0118                              | 0.0048              | 0.003     | < 0.002   | < 0.002   |
| Magnesium (Mg)  | mg/L      | -         | -                         |           |           | 6.34      | 16.9      | 16.3      | 11.7          | 6.29      | 40.7                                | 31.1                | 80.4      | 6.46      | 14.9      |
| Manganese (Mn)  | mg/L      | -         | -                         | ≤0.05     |           | 0.161     | 0.34      | 0.00972   | 0.0555        | 0.0160    | 0.158                               | 0.0137              | 10.4      | 0.0532    | 0.0103    |
| Molybdenum (Mo) | mg/L      | -         | 0.073                     | -         |           | 0.00034   | 0.00019   | 0.0305    | 0.0339        | 0.0435    |                                     | 0.105               | 0.0001    | 0.00093   | 0.01927   |
| Nickel (Ni)     | mg/L      | 0.5       | 0.025-0.15 <sup>b)</sup>  | -         |           | 0.0428    | 0.0937    | < 0.0007  | 0.0034        | 0.0038    | 12.2                                | < 0.0007            | 0.0267    | < 0.0007  | 0.0007    |
| Potassium (K)   | mg/L      | -         | -                         | -         |           | 8.07      | 15.4      | 2.73      | 1.58          | 12.7      | 4.79                                | 9.51                | 49.9      | 9.03      | 19.6      |
| Selenium (Se)   | mg/L      | -         | 0.001                     | -         |           | < 0.001   | < 0.001   | 0.006     | 0.001         | 0.002     | 0.002                               | 0.008               | 0.005     | 0.003     | 0.003     |
| Sodium (Na)     | mg/L      | -         | -                         | -         |           | 10.6      | 10.8      | 14.6      | 14.5          | 17.9      | 0.0325                              | 22.7                | 2.33      | 14.5      | 7.6       |
| Strontium (Sr)  | mg/L      | -         |                           | -         |           | 0.0294    | 0.0341    | 0.0312    | 0.0400        | 0.0447    | 0.162                               | 0.218               | 0.0049    | 0.02      | 0.0234    |
| Thallium (TI)   | mg/L      | -         |                           |           |           | 0.0001    | 0.0003    | < 0.0001  | < 0.0001      | < 0.0001  | < 0.0001                            | < 0.0001            | < 0.0001  | < 0.0001  | < 0.0001  |
| Tin (Sn)        | mg/L      | -         |                           | -         |           | < 0.0003  | 0.0004    | 0.0005    | 0.0007        | 0.0009    | 0.0004                              | 0.0008              | < 0.0003  | < 0.0003  | < 0.0003  |
| Titanium (Ti)   | mg/L      | -         |                           | -         |           | 0.652     | 1.71      | 0.0027    | 0.0176        | 0.0229    | 0.0009                              | 0.0007              | 0.0049    | 0.013     | 0.0015    |
| Uranium (U)     | mg/L      | -         |                           | -         |           | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002     | 0.00003   | < 0.00002                           | 0.00016             | 0.00003   | 0.0002    | 0.00113   |
| Vanadium (V)    | mg/L      | -         |                           | -         |           | 0.0963    | 0.198     | 0.00036   | 0.00227       | 0.00521   | 0.00018                             | 0.00057             | 0.00056   | 0.00081   | 0.00079   |
| Zinc (Zn)       | mg/L      | 0.5       | 0.03                      | ≤5.0      |           | 0.232     | 0.265     | 0.111     | 0.139         | 0.137     | 0.0539                              | 0.0457              | 0.0023    | 0.0106    | 0.0023    |





## Table 6.B. Modified Synthetic Precipitation Leaching Procedure Results of Rock Samples (continued) (Knight Piésold, 2008a)

|                 |           |           |                           |           |           |           |           | Footw     | all       |             |                           |
|-----------------|-----------|-----------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|---------------------------|
| Sample ID       | Unit      | MMER      | CWQG (PAL)                | CDWQ      | NWB       | Gneiss    | Gneiss    | Gneiss    | Gneiss    | Amphibolite | Volcanic tuff /<br>Schist |
|                 |           |           |                           |           |           | UCS23     | UCS24     | UCS49     | UCS51     | UCS9        | UCS27                     |
| Sample          | weight(g) |           |                           |           |           | 300       | 300       | 300       | 300       | 300         | 300                       |
| Volume mL       | D.I. H2O  |           |                           |           |           | 900       | 900       | 900       | 900       | 900         | 900                       |
| InitialpH       | units     |           |                           |           |           | 9         | 9.2       | 9         | 8.9       | 7.2         | 9.6                       |
| Final pH        | units     | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5 | 6.0 - 9.5 | 9.21      | 9.58      | 9.51      | 9.31      | 8.47        | 8.95                      |
| Mercury (Hg)    | mg/L      | -         | 0.026                     | 0.001     |           |           |           |           |           |             |                           |
| Aluminum (Al)   | mg/L      | -         | 0.005-0.1 <sup>a)</sup>   | -         |           | 0.75      | 0.47      | 1.91      | 0.89      | 0.41        | 0.14                      |
| Antimony (Sb)   | mg/L      | -         |                           | 0.006     |           | 0.0003    | 0.0005    | 0.0003    | 0.0002    | < 0.0002    | 0.0003                    |
| Arsenic (As)    | mg/L      | 0.5       | 0.005                     | 0.005     |           | < 0.0002  | < 0.0002  | < 0.0002  | < 0.0002  | < 0.0002    | < 0.0002                  |
| Barium (Ba)     | mg/L      | -         | -                         | 1         |           | 0.312     | 0.0162    | 0.422     | 0.336     | 0.00055     | 0.00967                   |
| Beryllium (Be)  | mg/L      |           |                           | -         |           | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004  | < 0.0004    | < 0.0004                  |
| Bismuth (Bi)    | mg/L      | •         | -                         | -         |           | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002 | < 0.00002   | < 0.00002                 |
| Calcium (Ca)    | mg/L      | -         | -                         | -         |           | 2.73      | 23.3      | 0.73      | 1.88      | 1.75        | 3.29                      |
| Cadmium (Cd)    | mg/L      | -         | 0.000017                  | 0.005     |           | < 0.00006 | 0.00076   | < 0.00006 | < 0.00006 | < 0.00006   | < 0.00006                 |
| Cobalt (Co)     | mg/L      | -         | -                         | -         |           | 0.000158  | 0.000031  | 0.000689  | 0.000225  | 0.000049    | < 0.000007                |
| Chromium (Cr)   | mg/L      | -         | 0.001                     | 0.051     |           | 0.0008    | 0.0004    | 0.0018    | 0.001     | < 0.0003    | < 0.0003                  |
| Copper (Cu)     | mg/L      | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0      |           | 0.0014    | 0.0012    | 0.0015    | 0.0013    | 0.001       | 0.0005                    |
| Iron (Fe)       | mg/L      | -         | 0.3                       | <0.3      |           | 0.83      | < 0.01    | 2.22      | 0.51      | 0.07        | < 0.01                    |
| Lead (Pb)       | mg/L      | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01      |           | 0.00034   | 0.00081   | 0.00136   | 0.00153   | < 0.00002   | 0.00043                   |
| Lithium (Li)    | mg/L      | -         | -                         | -         |           | < 0.002   | < 0.002   | < 0.002   | < 0.002   | < 0.002     | < 0.002                   |
| Magnesium (Mg)  | mg/L      | -         | -                         | -         |           | 2.04      | 7.17      | 0.776     | 0.706     | 7.08        | 1.07                      |
| Manganese (Mn)  | mg/L      | -         | -                         | ≤0.05     |           | 0.0076    | 0.0055    | 0.0237    | 0.0101    | 0.0395      | 0.00033                   |
| Molybdenum (Mo) | mg/L      | -         | 0.073                     | -         |           | 0.00074   | 0.00057   | 0.00585   | 0.00497   | 0.00293     | 0.00012                   |
| Nickel (Ni)     | mg/L      | 0.5       | 0.025-0.15 <sup>b)</sup>  | -         |           | < 0.0007  | 0.0012    | 0.001     | 0.0008    | < 0.0007    | < 0.0007                  |
| Potassium (K)   | mg/L      |           |                           | -         |           | 13.9      | 14.9      | 5.89      | 6.77      | 0.9         | 6.9                       |
| Selenium (Se)   | mg/L      | -         | 0.001                     | -         |           | < 0.001   | < 0.001   | < 0.001   | < 0.001   | 0.001       | < 0.001                   |
| Sodium (Na)     | mg/L      | -         | -                         | -         |           | 13.2      | 2.1       | 16.3      | 15.7      | 0.39        | 1.62                      |
| Strontium (Sr)  | mg/L      | -         |                           | -         |           | 0.018     | 0.0336    | 0.0127    | 0.0177    | 0.0061      | 0.0235                    |
| Thallium (TI)   | mg/L      | -         |                           | -         |           | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001    | < 0.0001                  |
| Tin (Sn)        | mg/L      |           |                           |           |           | 0.0004    | 0.0003    | < 0.0003  | 0.0005    | < 0.0003    | < 0.0003                  |
| Titanium (Ti)   | mg/L      | -         |                           | -         |           | 0.0422    | 0.0012    | 0.0921    | 0.0122    | 0.0003      | < 0.0002                  |
| Uranium (U)     | mg/L      | -         |                           | -         |           | 0.0005    | 0.00526   | 0.00041   | 0.00031   | < 0.00002   | < 0.00002                 |
| Vanadium (V)    | mg/L      | -         |                           | -         |           | 0.00187   | 0.00047   | 0.00456   | 0.0033    | 0.00067     | 0.00167                   |
| Zinc (Zn)       | mg/L      | 0.5       | 0.03                      | ≤5.0      |           | 0.0105    | 0.0004    | 0.0202    | 0.0088    | 0.0013      | 0.0007                    |

Note:

**Bold** value indicates exceedance of MMER limit

MMER = Metal Mining Effluent Regulation

CWGQ (PAL) = Canadian Council of Minister of the Environment (CCME) Canadian Water Quality

Guideline for the protection of Aquatic Life

CDWQ = Health Canada - Canadian Drinking Water Quality Guideline

CWGQ (PAL) and CDWQ guidelines shown for reference purpose only (see text)

NWB = Nunavut Water Board Wastewater Criterion

- a) varies with pH
- b) varies with hardness
- c) aesthetic objective





Table 7. Summary of Mineralogy of Rock Samples

|                           |                |                                                                                                           |                | Foo            | otwall         |                             |                             | Hanging wall                |                             |
|---------------------------|----------------|-----------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                           |                |                                                                                                           | Gneiss         | Psammite       | Schist         | Volcanic Tuff               | Amphibolite                 | Volcanic Tuff               | Schist                      |
| Mineral/Compound          |                | Ideal Formula                                                                                             | 5164<br>(wt %) | 5145<br>(wt %) | 5181<br>(wt %) | MR ARD 10-<br>077<br>(wt %) | MR ARD 10-<br>091<br>(wt %) | MR ARD 10-<br>083<br>(wt %) | MR ARD 10-<br>036<br>(wt %) |
| Calcite                   |                | CaCO <sub>3</sub>                                                                                         |                |                |                |                             |                             | 0.4                         |                             |
| Quartz                    |                | SiO <sub>2</sub>                                                                                          | 39.7           | 28.5           | 3.6            | 38.5                        | 3.8                         | 15.1                        | 43.9                        |
| Orthoclase                | S              | KAISi <sub>3</sub> O <sub>8</sub>                                                                         | 7.9            | 8.4            | 2.8            |                             |                             | 5.5                         |                             |
| Microcline                | Feldspars      | KAISi <sub>3</sub> O <sub>8</sub>                                                                         | 3.3            | 2.8            |                |                             |                             | 0.8                         |                             |
| Albite                    | elds           | NaAlSi <sub>3</sub> O <sub>5</sub>                                                                        | 7.2            | 3.5            | 2.8            |                             |                             | 12.3                        |                             |
| Anorthite                 | ь              | CaAl <sub>2</sub> Si <sub>2</sub> 0 <sub>8</sub>                                                          | 17.7           | 24.5           |                |                             |                             | 9.4                         |                             |
| Enstatite (orthopyroxene) |                | (Mg, Fe) <sub>2</sub> Si <sub>2</sub> O <sub>6</sub>                                                      | 1.1            | 0.8            |                |                             |                             |                             |                             |
| Diopside (clinopyroxene)  |                | CaMgSi₂O₅                                                                                                 | 5.1            | 5.8            | 5.0            |                             |                             | 14.7                        |                             |
| Actinolite (amphibole)    |                | Ca <sub>2</sub> (Mg,Fe <sup>2+</sup> ) <sub>5</sub> Si <sub>8</sub> O <sub>22</sub> (OH) <sub>2</sub>     | 1.1            | 1.3            |                |                             |                             | 17.0                        |                             |
| Muscovite                 | ý              | KAI <sub>3</sub> (AISi <sub>3</sub> O <sub>10</sub> )(OH) <sub>2</sub>                                    | 1.2            | 0.3            | 22.9           | 5.3                         |                             |                             |                             |
| Biotite                   | ate            | K(Mg,Fe <sup>2+</sup> ) <sub>3</sub> AlSi <sub>3</sub> O <sub>10</sub> (OH) <sub>2</sub>                  | 0.6            | 0.6            | 1.5            | 0.5                         | 4.5                         | 3.3                         |                             |
| Phlogopite                | osilo          | KMg <sub>3</sub> (AlSi <sub>3</sub> O <sub>10</sub> )(OH) <sub>3</sub>                                    | 15.0           | 23.3           | 44.1           | 40.7                        |                             |                             |                             |
| Clinochlore               | Phyllosilcates | (Mg, Fe) <sub>5</sub> (Si <sub>3</sub> Al)0 <sub>10</sub> (0H) <sub>8</sub>                               |                |                | 16.7           | 7.7                         | 67.7                        | 5.8                         | 44.3                        |
| Kaolinite                 | ₫              | Al <sub>2</sub> Si <sub>2</sub> O <sub>5</sub> (OH) <sub>4</sub>                                          |                |                | 0.6            |                             | 3.3                         |                             |                             |
| Andalusite                |                | Al <sub>2</sub> (SiO <sub>4</sub> )O                                                                      |                |                |                | 7.4                         |                             |                             |                             |
| Epidote                   |                | Ca <sub>2</sub> Al <sub>2</sub> Fe(SiO <sub>4</sub> )(Si <sub>2</sub> O <sub>7</sub> )(O,OH) <sub>2</sub> |                |                |                |                             |                             | 15.5                        |                             |
| Spinel                    |                | MgAl <sub>2</sub> O <sub>4</sub>                                                                          |                |                |                |                             |                             |                             | 3.1                         |
| Magnetite                 |                | Fe <sub>3</sub> O <sub>4</sub>                                                                            | 0.1            | 0.1            |                |                             | 3.6                         | 0.2                         | 4.3                         |
| Hematite                  |                | Fe <sub>2</sub> O <sub>3</sub>                                                                            |                |                |                |                             | 17.2                        |                             | 3.9                         |
| Chromite                  |                | FeCr <sub>2</sub> O <sub>4</sub>                                                                          |                |                |                |                             | -                           |                             | 0.5                         |
| TOTAL                     | •              |                                                                                                           | 100            | 100            | 100            | 100                         | 100                         | 100                         | 100                         |





#### Table 8. Ore Stockpile Drainage Data

|                               |       |           |                           |           |           | 822547     | 827287     | 827280     | 830899     | 830888     | 827288     | 827281     | 830900     | 830889     | Ore Sto    | ock Pile   |
|-------------------------------|-------|-----------|---------------------------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                               |       |           |                           |           |           | 2010-08-17 | 2010-09-07 | 2010-09-07 | 2010-09-19 | 2010-09-19 | 2010-09-07 | 2010-09-07 | 2010-09-19 | 2010-09-19 | Water Qu   | ality Data |
| PARAMETER                     | UNITS | MMER      | CWQG (PAL)                | CDWQ      | NWB       | MRY-11-LS- | All Sa     | mpling     |
| PARAMETER                     | UNITS | IVIIVIEN  | CWQG (FAL)                | CDWQ      | INVID     | Lump Ore   | Fine Ore   | Fine Ore   | Fine Ore   | Fine Ore   | Loca       | itions     |
|                               |       |           |                           |           |           |            |            |            |            |            |            |            |            |            |            | ndix D*)   |
|                               |       |           |                           |           |           | Total      | Dissolved  | Total      | Dissolved  | Total      | Dissolved  | Total      | Dissolved  | Total      | Max**      | Min        |
| Chloride                      | mg/L  |           | 230                       | <250      |           | 14         |            | 14         |            |            |            | 20         |            | 15         | 272        | 1          |
| N-NH3 (Ammonia)               | mg/L  |           | 1.73-38.6 <sup>d)</sup>   |           |           | 3.42       |            |            |            |            |            | 0.78       |            |            | 3.42       | 0.24       |
| N-NO3 (Nitrate)               | mg/L  |           | 13                        | 10        |           | 4.97       |            | 5          |            |            |            | 12.1       |            | 14.5       | 15.2       | 2.13       |
| рН                            |       | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5 | 6.0 - 9.5 | 5.76       |            | 5.93       |            |            |            | 6.68       |            | 6.48       | 8.15       | 5.76       |
| Sulphate                      | mg/L  |           |                           | <500°)    |           | 500        |            | 490        |            |            |            | 999        |            | 799        | 999        | 5          |
| Total Suspended Solids        | mg/L  | 15        | 5                         |           | 120       | 11         |            | 3          |            |            |            | <2         |            | <2         | 15         | 3          |
| Hardness as CaCO3 (Dissolved) | mg/L  |           |                           |           |           | 536        | 223        | 534        | 153        | 532        | 308        | 942        | 695        | 698        | 942        | 12         |
| Aluminum                      | mg/L  | -         | 0.005-0.1 <sup>a)</sup>   | -         |           | 16.3       | 0.0063     | 0.127      | < 0.015    | < 0.015    | <0.02      | < 0.02     | <0.15      | < 0.06     | 16.3       | 0.0030     |
| Antimony                      | mg/L  | -         |                           | 0.006     |           | < 0.0005   | < 0.0005   | < 0.0005   | < 0.0005   | < 0.0005   | < 0.002    | < 0.002    | < 0.005    | < 0.002    | 0.00017    | <0.0001    |
| Arsenic                       | mg/L  | 0.5       | 0.005                     | 0.005     |           | 0.00236    | < 0.0005   | <0.0005    | <0.0005    | <0.0005    | <0.002     | <0.002     | < 0.005    | <0.002     | 0.00236    | <0.0001    |
| Barium                        | mg/L  | -         | -                         | 1         |           | 0.0497     | 0.0236     | 0.0236     | 0.0215     | 0.0251     | 0.0191     | 0.0213     | 0.0104     | 0.0115     | 0.0556     | 0.0011     |
| Cadmium                       | mg/L  | -         | 0.000017                  | 0.005     |           | 0.000331   | 0.000214   | 0.000203   | 0.000213   | 0.000198   | <0.0002    | <0.0002    | <0.0005    | 0.00057    | 0.001      | 0.000011   |
| Chromium                      | mg/L  | -         | 0.001                     | 0.051     |           | 0.0345     | <0.0025    | <0.0025    | <0.0025    | <0.0025    | <0.01      | <0.01      | <0.025     | <0.01      | 0.0345     | 0.00050    |
| Copper                        | mg/L  | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0      |           | 0.0613     | 0.00124    | 0.00183    | < 0.0025   | < 0.0025   | <0.002     | < 0.002    | < 0.025    | <0.01      | 0.0613     | 0.00026    |
| Iron                          | mg/L  | -         | 0.3                       | <0.3      |           | 122        | <0.03      | 0.825      | < 0.03     | 0.031      | <0.03      | 0.041      | <0.03      | 0.082      | <u>122</u> | 0.0003     |
| Lead                          | mg/L  | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01      |           | 0.0125     | < 0.0003   | < 0.0003   | < 0.0003   | 0.001      | <0.001     | < 0.001    | < 0.003    | <0.001     | 0.0125     | 0.0001     |
| Manganese                     | mg/L  | -         | -                         | ≤0.05     |           | 15.2       | 18.1       | 18.4       | 17.8       | 21.5       | 59.7       | 65.5       | 104        | 112        | <u>112</u> | 0.0007     |
| Molybdenum                    | mg/L  | -         | 0.073                     | -         |           | 0.00082    | <0.00025   | <0.00025   | 0.00034    | <0.00025   | <0.001     | <0.001     | <0.0025    | 0.0012     | 0.00551    | 0.00019    |
| Nickel                        | mg/L  | 0.5       | 0.025-0.15 <sup>b)</sup>  | -         |           | 0.185      | 0.0961     | 0.0977     | 0.0923     | 0.107      | 0.028      | 0.035      | 0.101      | 0.113      | 0.185      | 0.0011     |
| Selenium                      | mg/L  | -         | 0.001                     |           |           | <0.005     | <0.005     | <0.005     | <0.005     | 0.0051     | <0.02      | <0.02      | <0.05      | <0.02      | 0.005      | <0.001     |
| Zinc                          | mg/L  | 0.5       | 0.03                      | ≤5.0      |           | 0.046      | < 0.005    | < 0.005    | < 0.015    | <0.015     | <0.02      | <0.02      | <0.15      | <0.06      | 0.046      | 0.0019     |

#### Note:

**Bold** value is outside of MMER limits

\* See Tables D1 to D3. Concentrations from limited pit seep sampling (Table D4) has copper in excess of MMER limit and elevated Se, but relevance of this seepage to ore stock pile drainage is yet to be determined.

\*\* Max of all data from lysimeters and other stockpile sampling locations (Tables D1 to D3). Underlined values are from lysimeter data.

MMER = Metal Mining Effluent Regulation

CWGQ (PAL) = Canadian Council of Minister of the Environment (CCME) Canadian Water Quality Guideline for the protection of Aquatic Life

CDWQ = Health Canada - Canadian Drinking Water Guideline

CWGQ (PAL) and CDWQ guidelines shown for reference purposes only (see text).

NWB = Nunavut Water Board Wastewater Criteria

- a) varies with pH
- b) varies with hardness
- c) aesthetic objective
- d) varies with pH and temperature





## Table 9. Waste Rock Drainage Data (Knight Piésold, 2008a)

|                                    |       |           |                           |                |           | Field C          | ell No.1          | Field C           | ell No.2          |
|------------------------------------|-------|-----------|---------------------------|----------------|-----------|------------------|-------------------|-------------------|-------------------|
| PARAMETER                          | UNITS | MMER      | CWQG (PAL)                | CDWQ           | NWB       | Foo              | twall             | Hangi             | ng wall           |
|                                    |       |           |                           |                |           | Total            | Dissolved         | Total             | Dissolved         |
| Alkalinity as CaCO3                | mg/L  |           |                           |                |           |                  |                   |                   |                   |
| Chemical Oxygen Demand             | mg/L  |           |                           |                |           |                  |                   |                   |                   |
| Chloride                           | mg/L  |           | 230                       | <250           |           |                  |                   | 230               |                   |
| Conductivity                       | uS/cm |           |                           |                |           |                  |                   |                   |                   |
| N-NH3 (Ammonia)                    | mg/L  |           | 1.73-38.6 <sup>d)</sup>   |                |           |                  |                   |                   |                   |
| N-NO3 (Nitrate)                    | mg/L  |           | 13                        | 10             |           |                  |                   |                   |                   |
| NO2 + NO3 as N                     | mg/L  |           |                           |                |           |                  |                   |                   |                   |
| pH                                 | _     | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5      | 6.0 - 9.5 |                  |                   | 7.03              |                   |
| Sulphate                           | mg/L  |           |                           | <500°)         |           |                  |                   | 78                |                   |
| Total Dissolved Solids (COND - CAL | mg/L  |           |                           |                |           |                  |                   |                   |                   |
| Total Kjeldahl Nitrogen            | mg/L  |           |                           |                |           |                  |                   |                   |                   |
| Total Phosphorus                   | mg/L  |           |                           |                |           | 0.03             | 0.02              | 0.01              | 0.01              |
| Total Suspended Solids             | mg/L  | 15        | 5                         |                | 120       |                  |                   |                   |                   |
| Turbidity                          | NTU   |           |                           |                |           |                  |                   |                   |                   |
| CO3 as CaCO3                       | mg/L  |           |                           |                |           |                  |                   |                   |                   |
| Hardness as CaCO3 (Dissolved)      | mg/L  |           |                           |                |           | 291              | 278               | 375               | 361               |
| HCO3 as CaCO3                      | mg/L  |           |                           |                |           | -                | -                 |                   |                   |
| Calcium                            | mg/L  |           |                           |                |           |                  |                   |                   |                   |
| Magnesium                          | mg/L  |           |                           |                |           | 34.1             | 32.0              | 46.3              | 44.1              |
| Potassium                          | mg/L  |           |                           |                |           | 6.8              | 6.13              | 5.44              | 5.28              |
| Sodium                             | mg/L  |           |                           |                |           | 16.7             | 15.8              | 27.60             | 26.30             |
| Aluminum                           | mg/L  |           | 0.005-0.1 <sup>a)</sup>   | _              |           | 0.14             | <0.01             | 0.16              | <0.01             |
| Antimony                           | mg/L  | _         | 0.000 0.1                 | 0.006          |           | 0.0004           | 0.0005            | 0.0014            | 0.0015            |
| Arsenic                            | mg/L  | 0.5       | 0.005                     | 0.005          |           | 0.0008           | 0.0008            | 0.0189            | 0.0188            |
| Barium                             | mg/L  | -         | -                         | 1              |           | 0.0274           | 0.0256            | 0.0121            | 0.0119            |
| Beryllium                          | mg/L  | _         | -                         | -              |           | <0.00004         | <0.0004           | <0.00004          | <0.00004          |
| Bismuth                            | mg/L  | _         | _                         | _              |           | <0.00001         | <0.00001          | <0.00001          | <0.00002          |
| Boron                              | mg/L  |           |                           |                |           | 0.053            | 0.052             | 0.097             | 0.094             |
| Cadmium                            | mg/L  | _         | 0.000017                  | 0.005          |           | 0.00010          | 0.00009           | <0.00006          | <0.00006          |
| Chromium                           | mg/L  | -         | 0.001                     | 0.051          |           | 0.0014           | 0.0028            | 0.0011            | 0.0009            |
| Cobalt                             | mg/L  | -         | -                         | -              |           | 0.00171          | 0.00153           | 0.000602          | 0.000348          |
| Copper                             | mg/L  | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0           |           | 0.0104           | 0.0088            | 0.0062            | 0.0054            |
| Iron                               | mg/L  | 0.5       | 0.3                       | <0.3           |           | 0.0104           | <0.01             | 0.0062            | <0.01             |
|                                    |       | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01           |           |                  |                   |                   |                   |
| Lead<br>Lithium                    | mg/L  | 0.2       | 0.001-0.007               | 0.01           |           | 0.0005<br><0.002 | 0.00008<br><0.002 | 0.00035<br><0.002 | <0.0002<br><0.002 |
|                                    | mg/L  | -         | -                         | -<br>-0.0E     |           |                  |                   |                   |                   |
| Manganese                          | mg/L  | -         | 0.026                     | ≤0.05<br>0.001 |           | 0.343            | 0.319             | 0.173             | 0.162             |
| Melyhdanum                         | mg/L  |           | 0.026                     |                |           | <0.0001          | <0.0001           | <0.0001           | <0.0001           |
| Molybdenum                         | mg/L  | -         |                           | -              |           | 0.00224          | 0.00274           | 0.0153            | 0.0109            |
| Nickel                             | mg/L  | 0.5       | 0.025-0.15 <sup>b)</sup>  | -              |           | 0.0278           | 0.0264            | 0.0044            | 0.0048            |
| Selenium                           | mg/L  | -         | 0.001                     | -              |           | <0.001           | <0.001            | 0.003             | 0.003             |
| Silicon                            | mg/L  |           |                           |                |           | 1.64             | 1.35              | 1.72              | 1.51              |
| Silver                             | mg/L  |           |                           |                |           | <0.00003         | <0.00003          | 0.00004           | <0.00003          |
| Strontium                          | mg/L  | -         |                           | -              |           | 0.400            | 0.400             | 0.050             | 0.054             |
| Thallium                           | mg/L  | -         |                           | -              |           | 0.130            | 0.126             | 0.256             | 0.251             |
| Tin                                | mg/L  | -         |                           | -              |           | <0.0003          | <0.0003           | <0.0003           | <0.0003           |
| Titanium                           | mg/L  | -         |                           | -              |           | 0.0043           | 0.0003            | 0.0036            | <0.0002           |
| Uranium                            | mg/L  | -         |                           | -              |           | 0.0009           | 0                 | 0.000090          | <0.00002          |
| Vanadium                           | mg/L  | -         | _                         | -              |           | 0.00063          | 0.00229           | 0.00194           | 0.00124           |
| Zinc                               | mg/L  | 0.5       | 0.03                      | ≤5.0           |           | 0.0188           | 0.0227            | 0.0064            | 0.0043            |

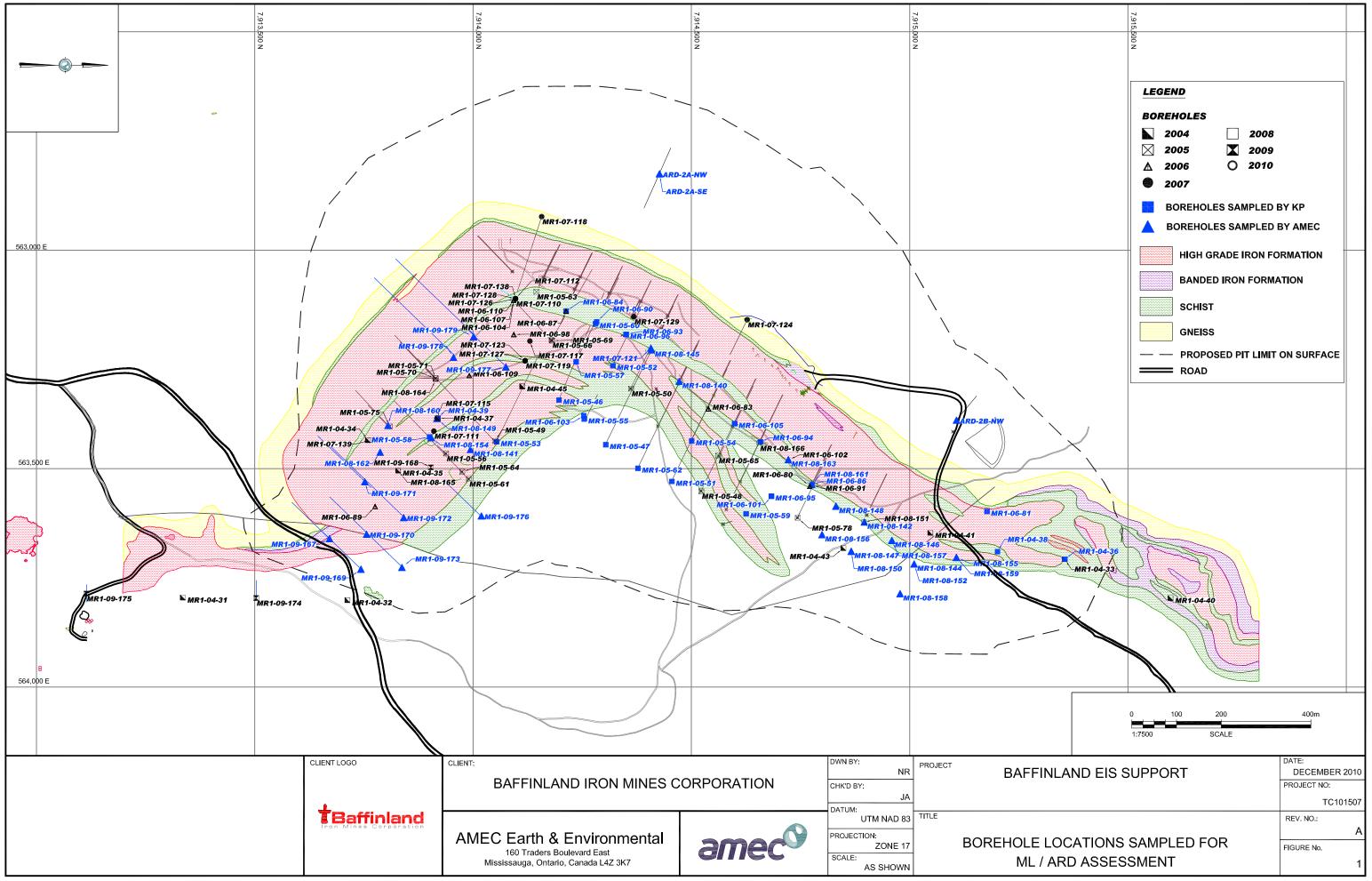
Note:

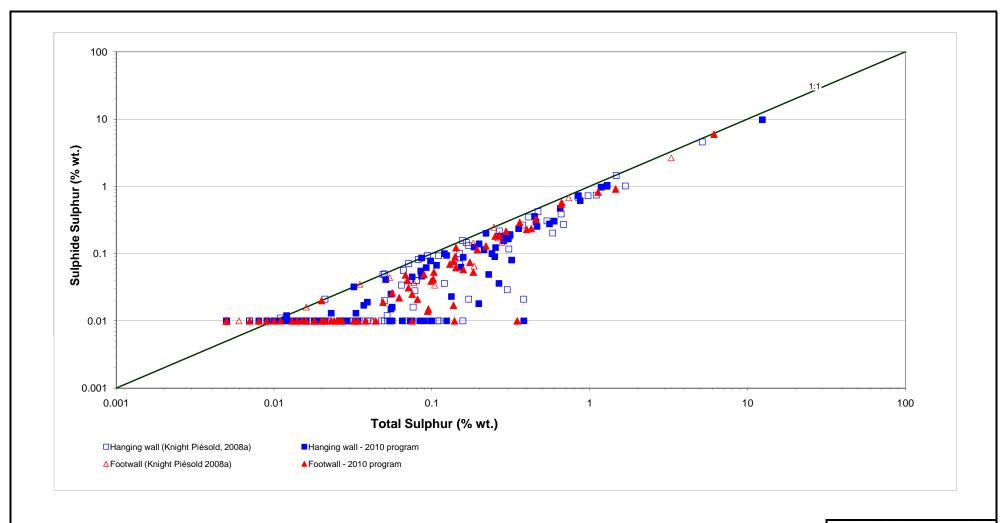
**Bold** value indicates exceedance of MMER limit

MMER = Metal Mining Effluent Regulation

CWGQ (PAL) = Canadian Council of Minister of the Environment (CCME) Canadian Water Quality Guideline for the protection of Aquatic Life CDWQ = Health Canada - Canadian Drinking Water Guideline

CWGQ (PAL) and CDWQ guidelines shown for reference purposes only (see text).


NWB = Nunavut Water Board Wastewater Criteria


- a) varies with pH
- b) varies with hardness
- c) aesthetic objective
- d) varies with pH and temperature





**FIGURES** 







Drawn by: JA Checked by: SW Date: December 2010
Project: TC101507 FIGURE 2

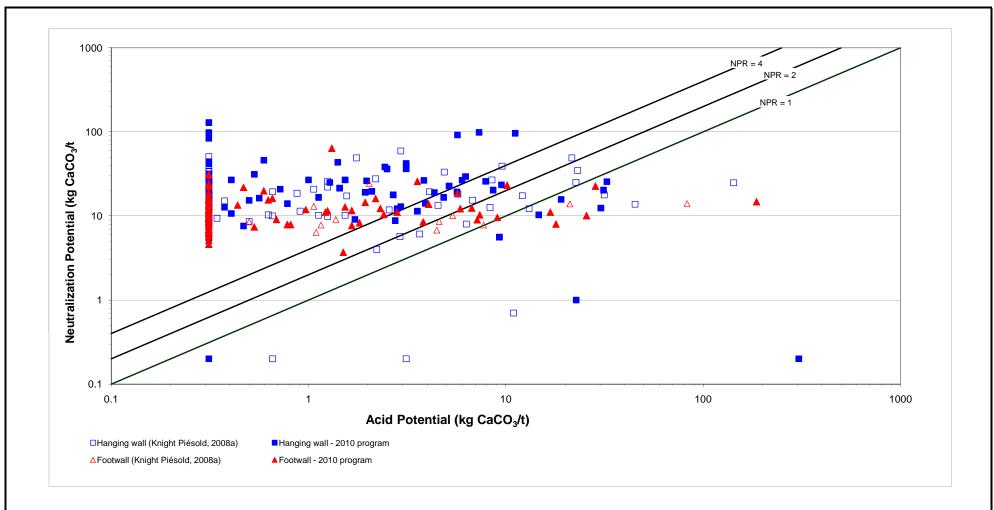
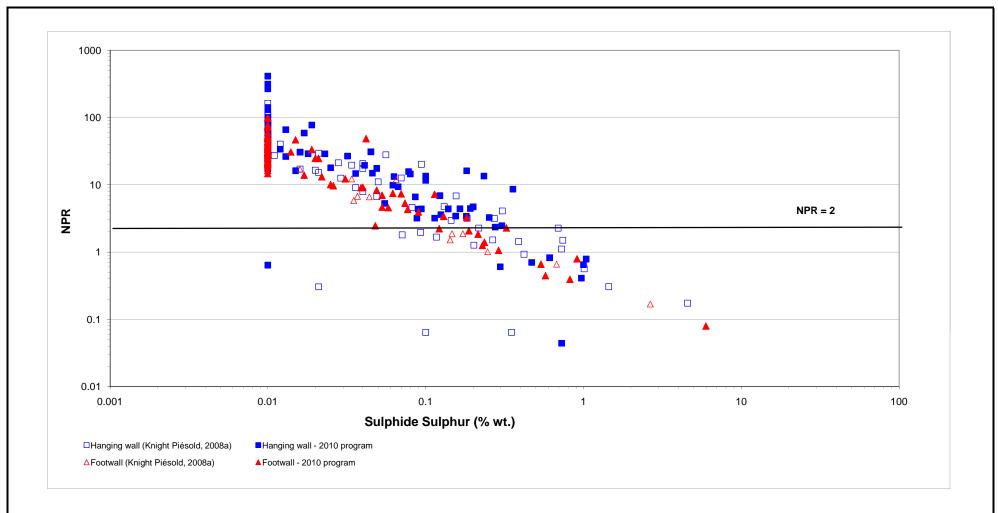






FIGURE 3





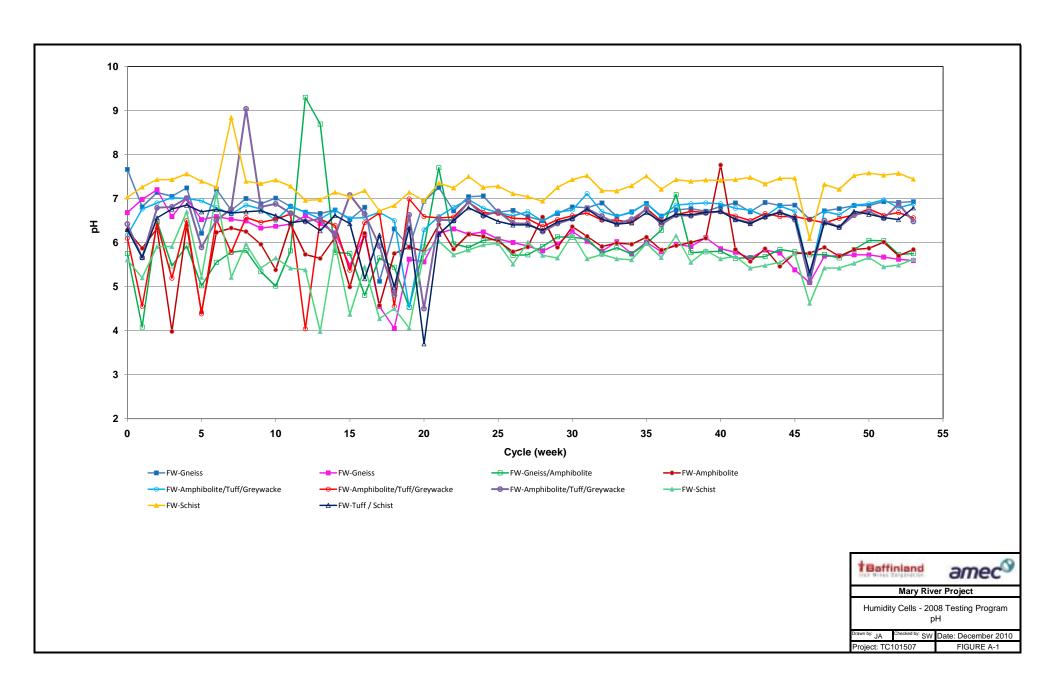


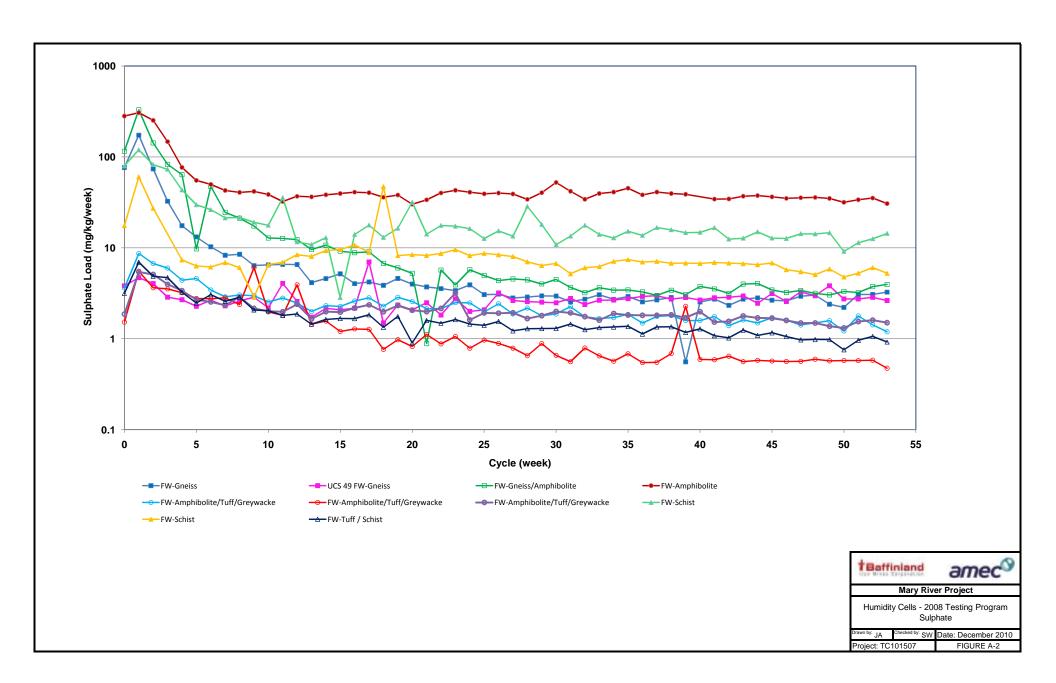


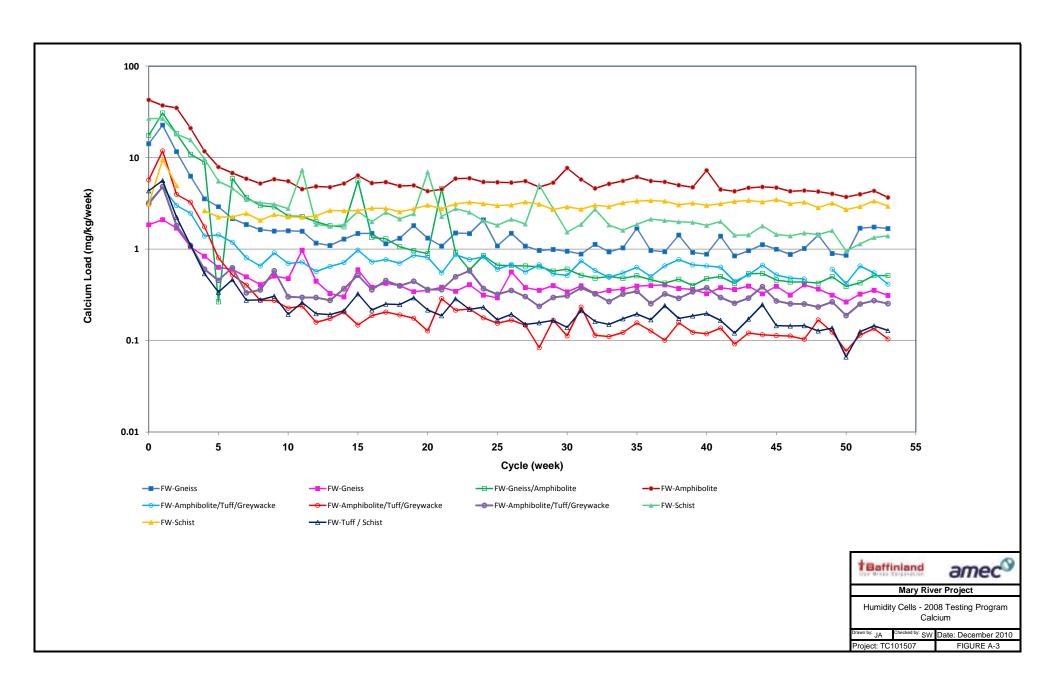
**APPENDICES** 

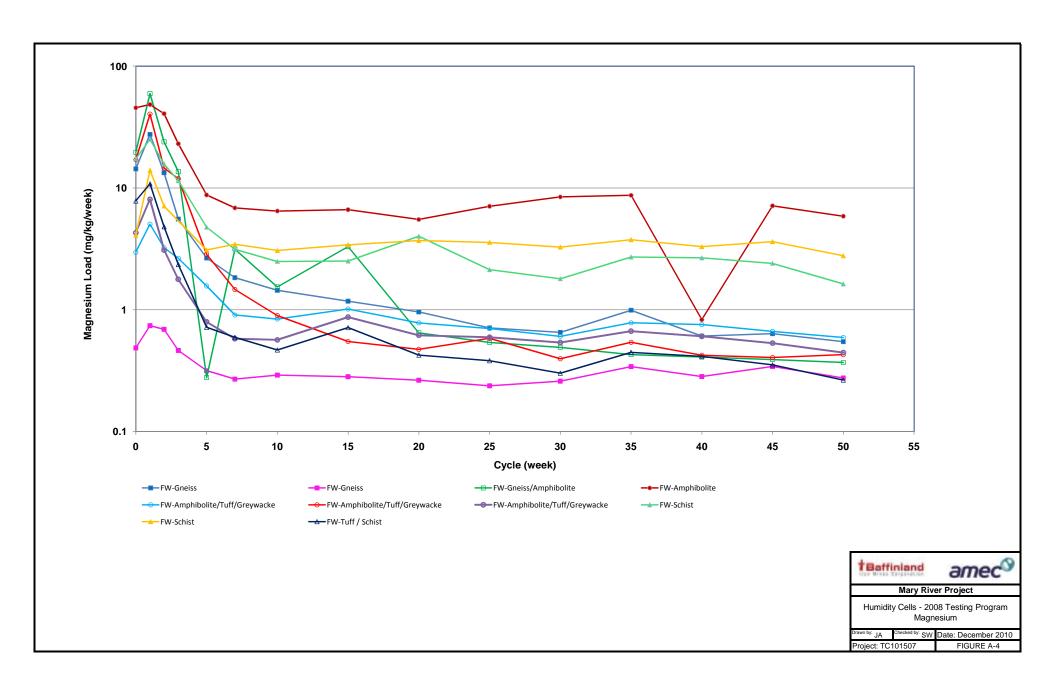


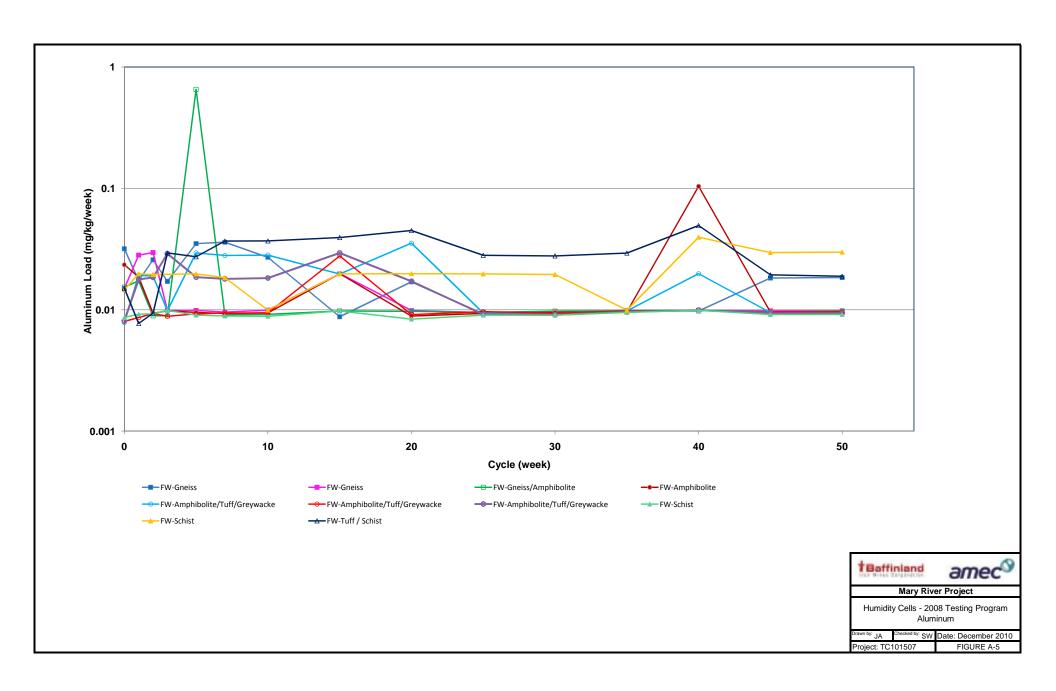


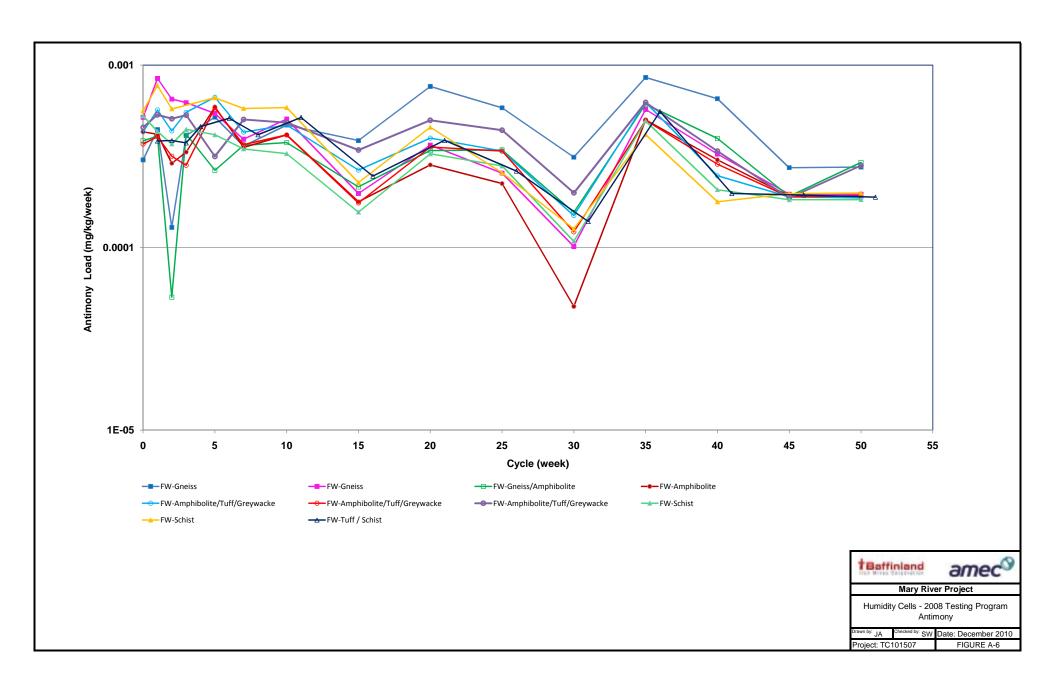

# APPENDIX A PREVIOUS KINETIC TESTING RESULTS

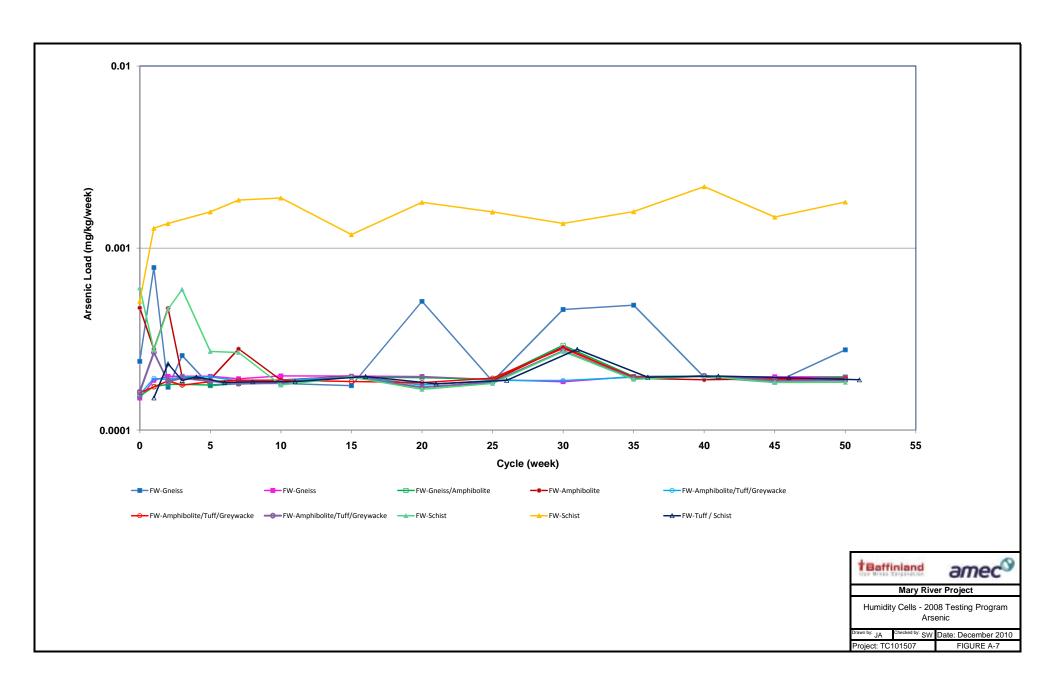


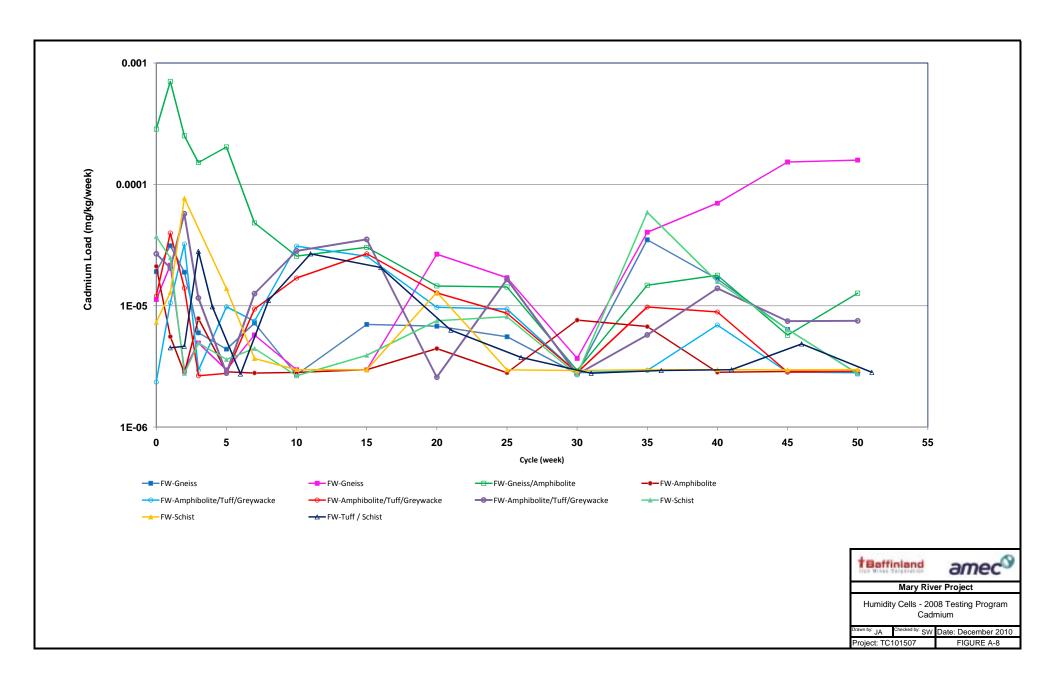



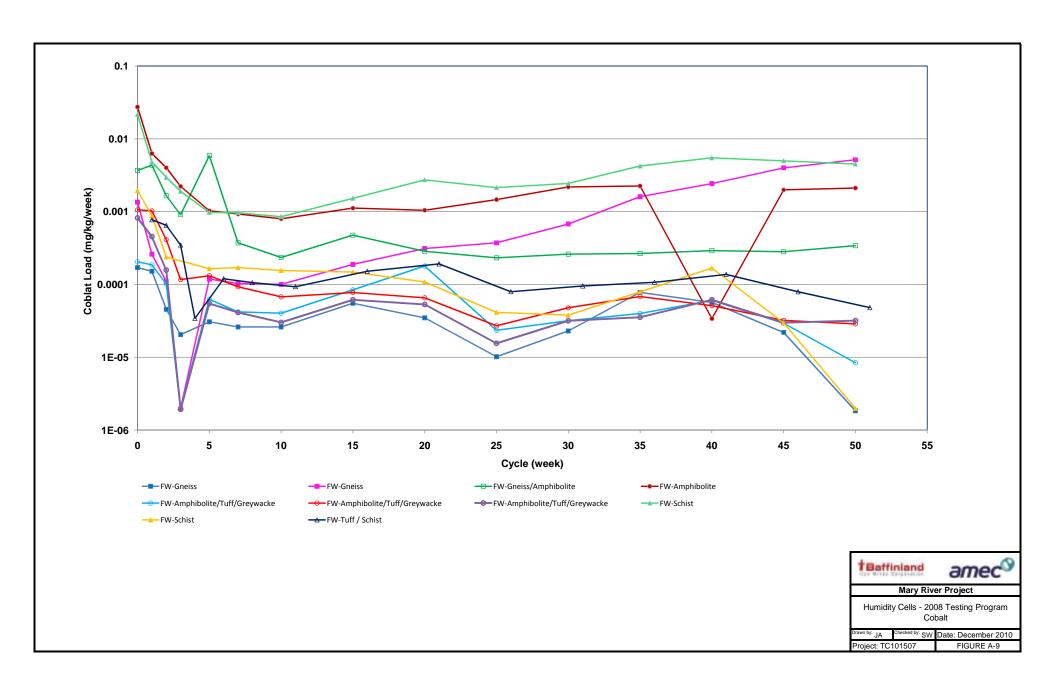


#### **LIST OF FIGURES**

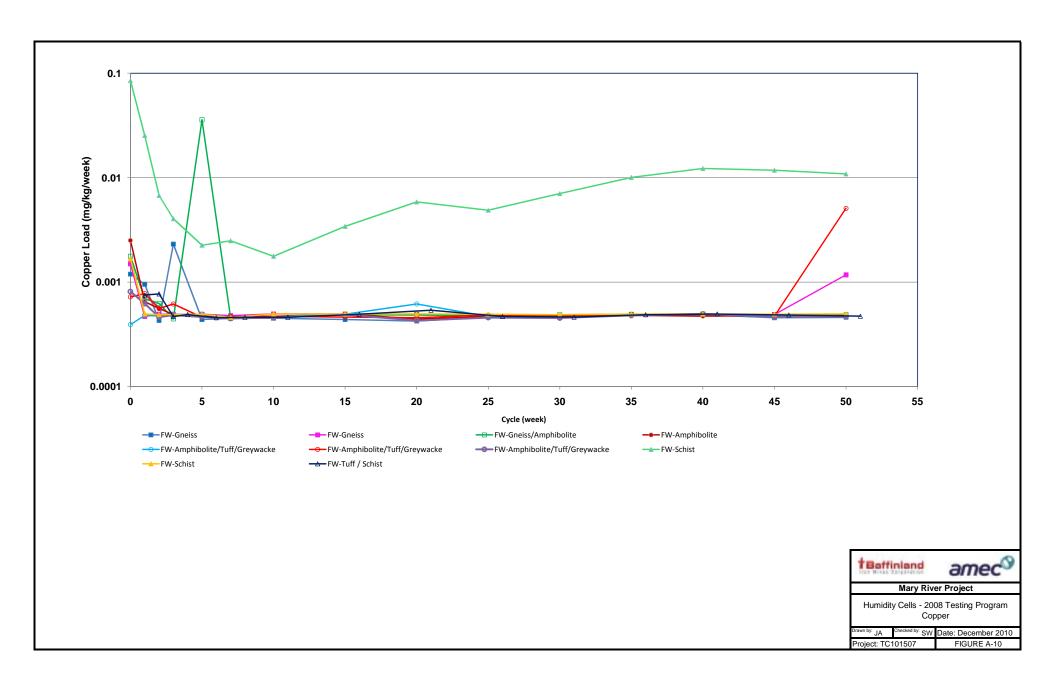

- A-1 pH Waste Rock Humidity Cells
- A-2 Sulphate Loads Waste Rock Humidity Cells
- A-3 Calcium Loads Waste Rock Humidity Cells
- A-4 Magnesium Loads Waste Rock Humidity Cells
- A-5 Aluminum Loads Waste Rock Humidity Cells
- A-6 Antimony Loads Waste Rock Humidity Cells
- A-7 Arsenic Loads Waste Rock Humidity Cells
- A-8 Cadmium Loads Waste Rock Humidity Cells
- A-9 Cobalt Loads Waste Rock Humidity Cells
- A-10 Copper Loads Waste Rock Humidity Cells
- A-11 Iron Loads Waste Rock Humidity Cells
- A-12 Lead Loads Waste Rock Humidity Cells
- A-13 Molybdenum Loads Waste Rock Humidity Cells
- A-14 Manganese Loads Waste Rock Humidity Cells
- A-15 Nickel Loads Waste Rock Humidity Cells
- A-16 Selenium Loads Waste Rock Humidity Cells
- A-17 Strontium Loads Waste Rock Humidity Cells
- A-18 Tin Loads Waste Rock Humidity Cells
- A-19 Zinc Loads Waste Rock Humidity Cells

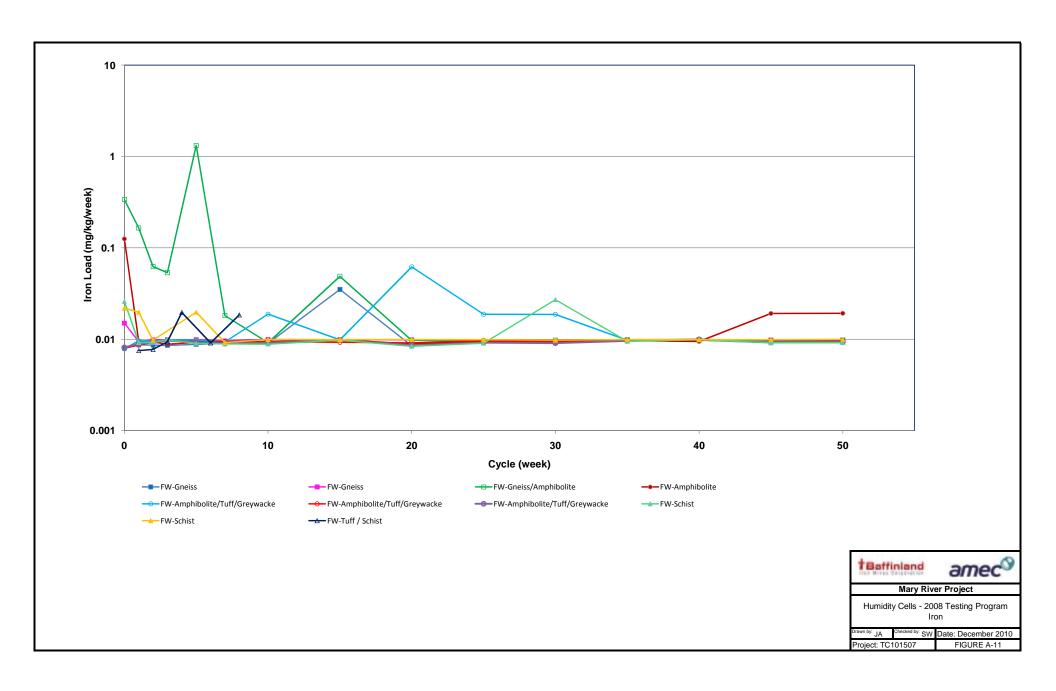


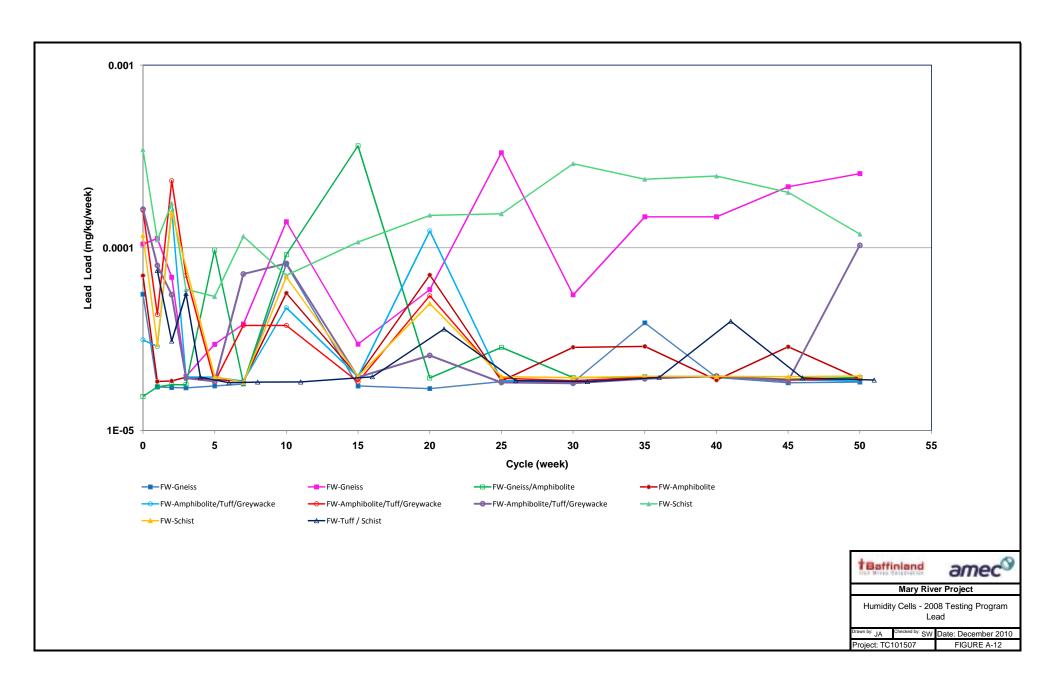



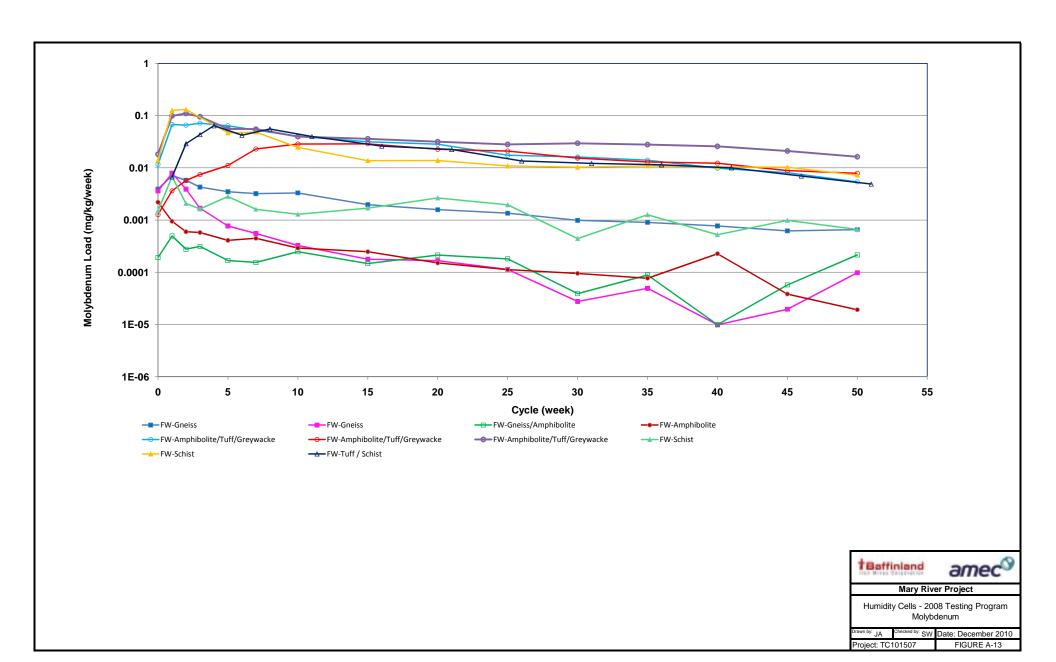



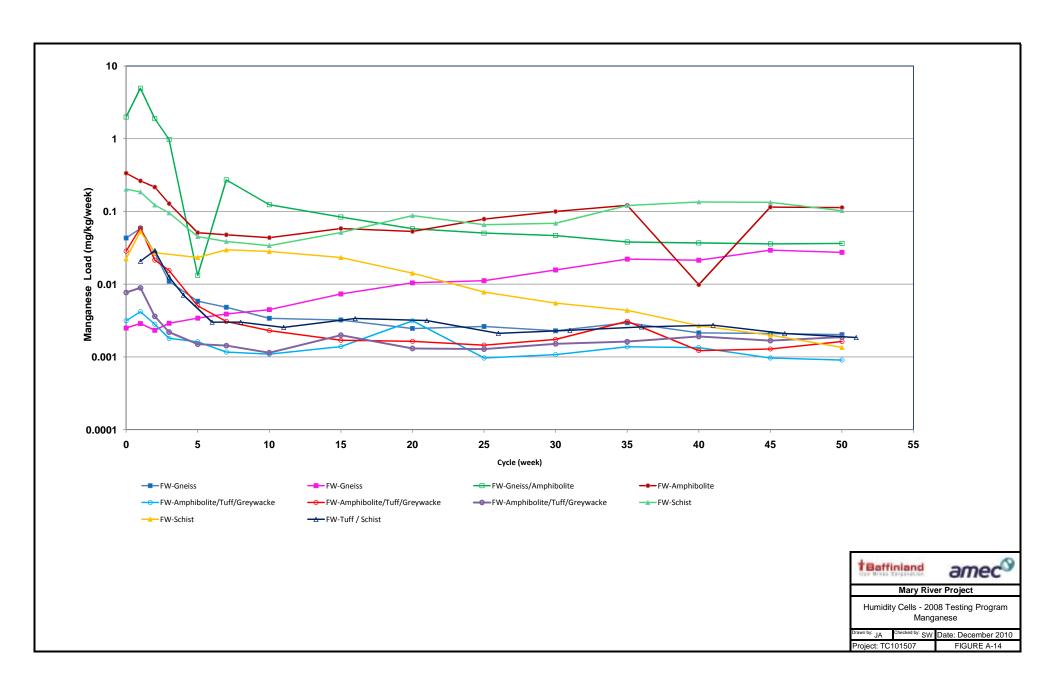



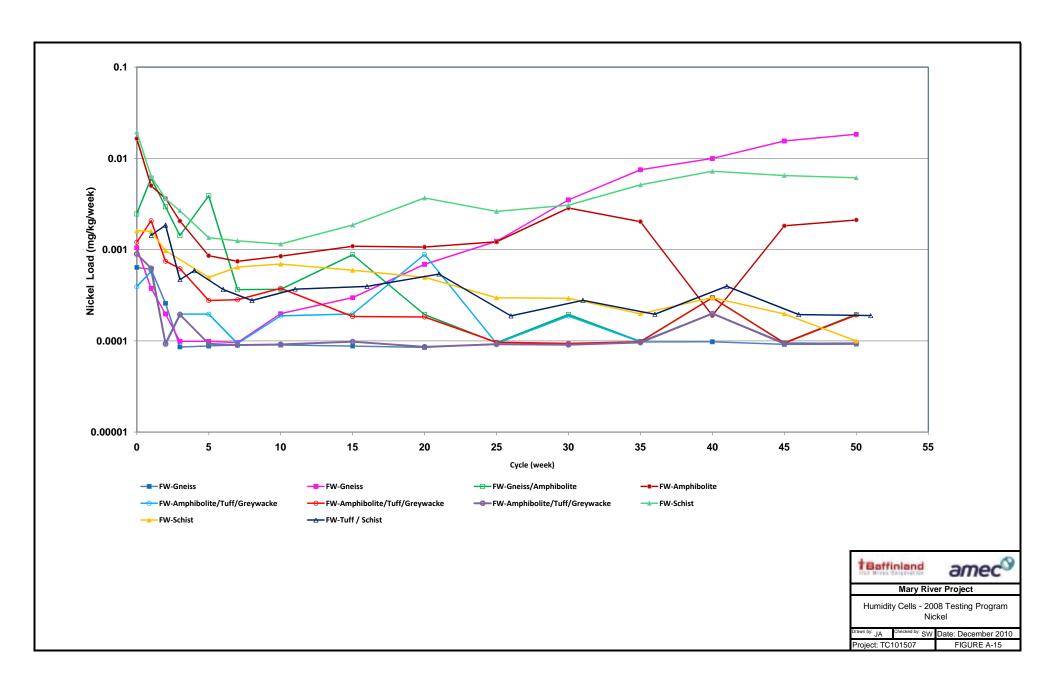



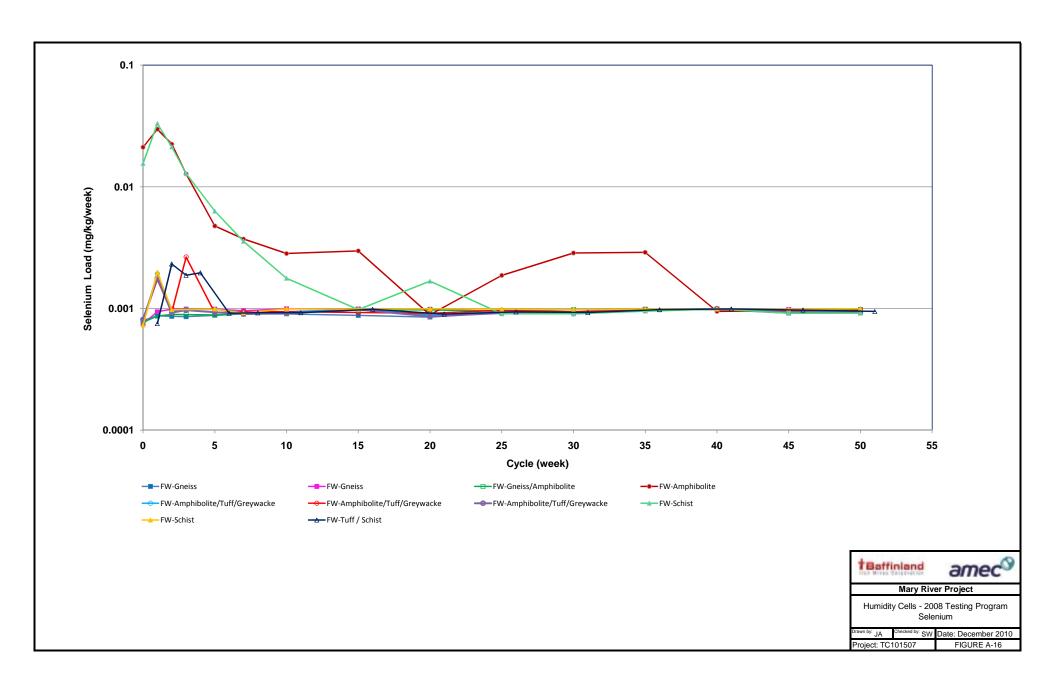



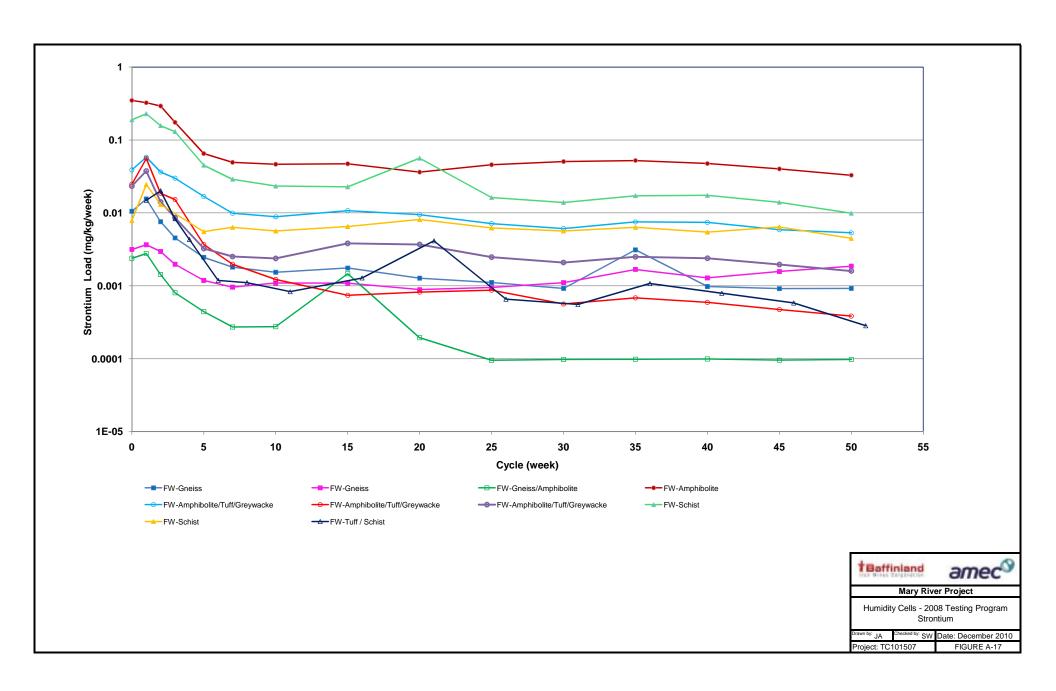



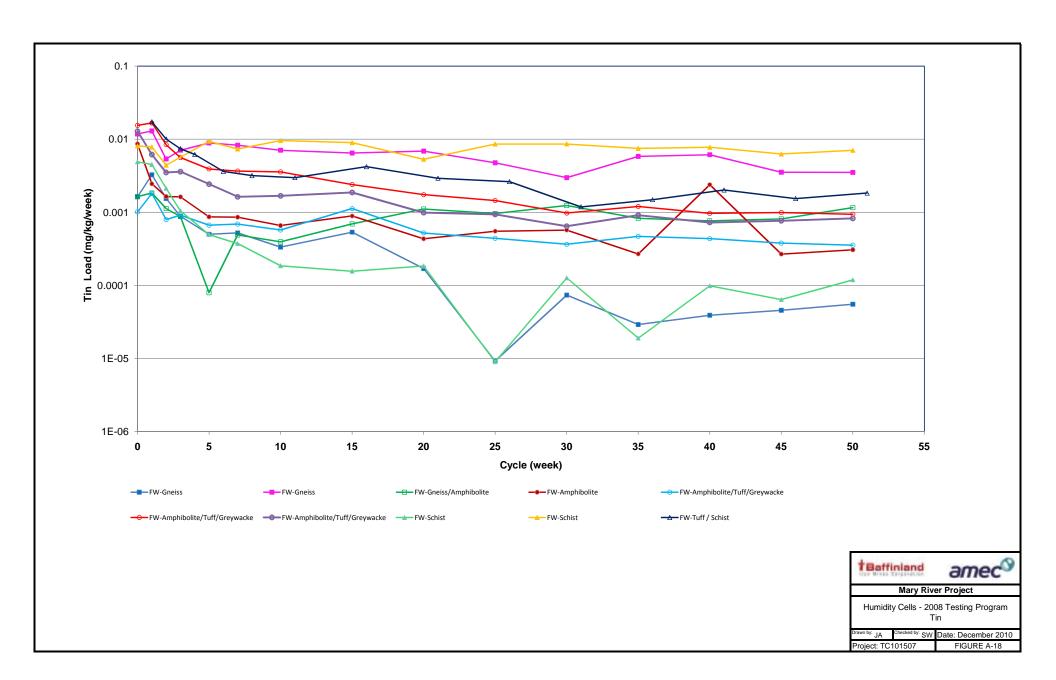



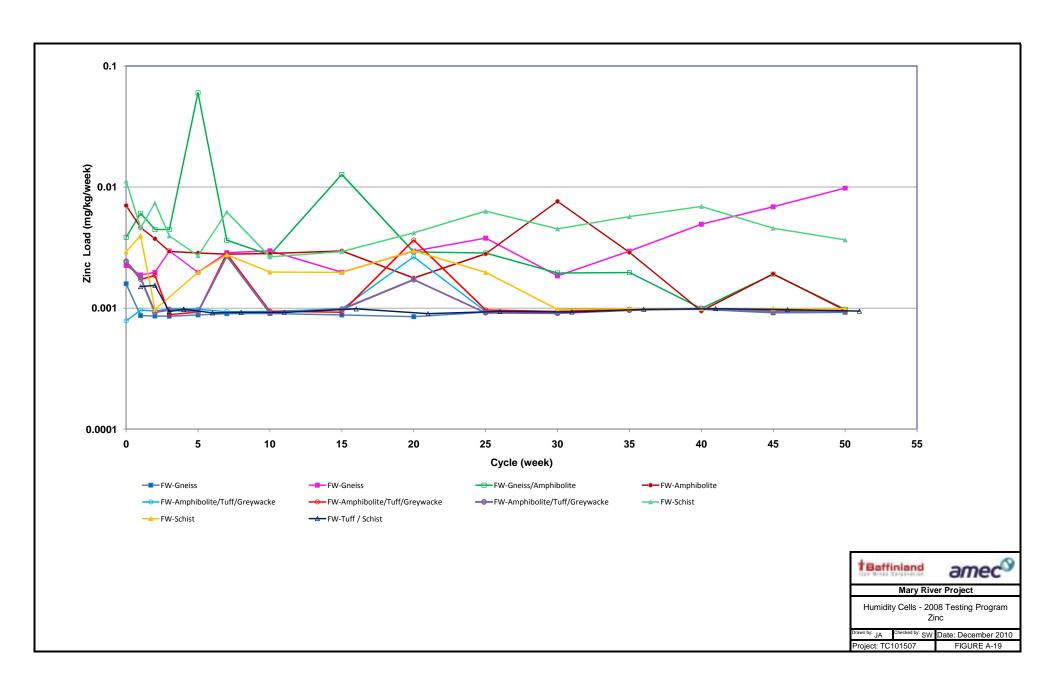


















#### **LIST OF TABLES**

- A-1 Depletion Time Calculation
- A-2 Results of Waste Rock Humidity Cells HC 1- Footwall Gneiss (UCS13)
- A-3 Results of Waste Rock Humidity Cells HC 2- Footwall Gneiss/Amphibolite (UCS11)
- A-4 Results of Waste Rock Humidity Cells HC 3- Footwall Gneiss (UCS49)
- A-5 Results of Waste Rock Humidity Cells HC 4- Hanging wall Amphibolite (07ARD10)
- A-6 Results of Waste Rock Humidity Cells HC 5- Hanging wall Amphibolite/Volcanic tuff/Greywacke (07ARD13)
- A-7 Results of Waste Rock Humidity Cells HC 6- Hanging wall Amphibolite/Schist/Volcanic tuff (07ARD30)
- A-8 Results of Waste Rock Humidity Cells HC 7- Hanging wall Schist (ARD19)
- A-9 Results of Waste Rock Humidity Cells HC 8- Hanging wall Schist (07ARD06)
- A-10 Results of Waste Rock Humidity Cells HC 9- Hanging wall Volcanic tuff/Schist (07ARD41)
- A-11 Results of Waste Rock Humidity Cells HC 10- Hanging wall Amphibolite/Volcanic tuff/Greywacke (07ARD12)





**Table A-1. Depletion Time Calculation** 

| Rock Type   | Sample ID | Borehole ID | Lithology                  | Sulphide | Acid Potential<br>(AP)    | Neutralization<br>Potential (NP) | NPR  | Sulphide<br>Depletion<br>Time | NP<br>Depletion<br>Time | Rock<br>Classification |
|-------------|-----------|-------------|----------------------------|----------|---------------------------|----------------------------------|------|-------------------------------|-------------------------|------------------------|
|             |           |             |                            | %        | tCaCO <sub>3</sub> /1000t | tCaCO <sub>3</sub> /1000t        |      | years                         | years                   |                        |
|             | UCS13     | MR1-06-81   | Gneiss                     | 0.67     | 23                        | 13.9                             | 0.61 | 156.2                         | 47.2                    | PAG                    |
| Footwall    | UCS11     | MR1-06-81   | Gneiss/Amphibolite         | 0.17     | 2.8                       | 10.1                             | 3.61 | 39.9                          | 62.1                    | NAG                    |
|             | UCS49     | MR1-06-105  | Gneiss                     | 0.26     | 7.70                      | 7.8                              | 1.0  | 50.7                          | 69.8                    | NAG                    |
|             | 07ARD10   | MR1-05-53   | Amphib.                    | 4.57     | 143                       | 24.8                             | 0.17 | 433.5                         | 21.9                    | PAG                    |
|             | 07ARD13   | MR1-06-84   | Amphibolite/Tuff/Greywacke | 0.10     | 3.2                       | -14.5                            | -4.6 | 67.2                          | 0.9                     | PAG                    |
|             | 07ARD30   | MR1-05-51   | Amhibolite/Schist/Tuff     | 0.31     | 9.6                       | 39.1                             | 4.09 | 164.1                         | 163.0                   | PAG                    |
| Hangingwall | ARD 19    | MR1-05-47   | Schist                     | 1.45     | 45.3                      | 13.8                             | 0.3  | 22.3                          | 6.8                     | PAG                    |
|             | 07ARD06   | MR1-04-39   | Schist                     | 0.69     | 21.6                      | 49.0                             | 2.3  | 657.3                         | 416.1                   | PAG                    |
|             | 07ARD41   | MR1-06-95   | Tuff/Schist                | 0.12     | 3.8                       | 6.1                              | 1.6  | 95.8                          | 35.5                    | PAG                    |
|             | 07ARD12   | MR1-05-46   | Amphibolite/Tuff/Greywacke | 0.35     | 11.0                      | 0.70                             | 0.06 | 15.5                          | 0.9                     | PAG                    |

Note:

Sulphide depeletion time was calculated based on average sulphate loadings NP depletion time was calculated based on average calcium and magnesium loadings





|           |           | Volume | Volume    |       |              |                    |                    |      | _    |          | _         |        |          |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Date      | Cycle No. | Added  | Recovered | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
| Date      | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 9-Jan-08  | 0         | 1000   | 796       | 7.66  | 284          | 7                  | < 2                | 96   | 17.8 | < 0.0001 | < 0.00001 | 0.04   | 0.0003   |
| 16-Jan-08 | 1         | 1000   | 868       | 6.81  | 437          | 5                  | < 2                | 200  | 26.1 | < 0.0001 | < 0.00001 | 0.02   | 0.0009   |
| 23-Jan-08 | 2         | 1000   | 860       | 7.14  | 226          | 7                  | < 2                | 86   | 13.5 |          | < 0.00001 | 0.03   | < 0.0002 |
| 30-Jan-08 | 3         | 1000   | 856       | 7.05  | 105          | 5                  | < 2                | 38   | 7.32 | < 0.0001 | < 0.00001 | 0.02   | 0.0003   |
| 6-Feb-08  | 4         | 1000   | 877       | 7.24  | 62           | 6                  | < 2                | 20   | 4.04 |          |           |        |          |
| 13-Feb-08 | 5         | 1000   | 878       | 6.21  | 62           | < 2                | 2                  | 15   | 3.31 | < 0.0001 | < 0.00001 | 0.04   | < 0.0002 |
| 20-Feb-08 | 6         | 1000   | 857       | 7.21  | 41           | 6                  | < 2                | 12   | 2.51 |          |           |        |          |
| 27-Feb-08 | 7         | 1000   | 900       | 6.73  | 38           | 3                  | < 2                | 9.2  | 2.06 | < 0.0001 | < 0.00001 | 0.04   | 0.0002   |
| 05-Mar-08 | 8         | 1000   | 849       | 7.00  | 41           | 5                  | < 2                | 10   | 1.92 |          |           |        |          |
| 12-Mar-08 | 9         | 1000   | 899       | 6.88  | 30           | 4                  | < 2                | 7.1  | 1.75 |          |           |        |          |
| 19-Mar-08 | 10        | 1000   | 902       | 7.01  | 37           | 4                  | < 2                | 7.2  | 1.76 | < 0.0001 | < 0.00001 | 0.03   | < 0.0002 |
| 26-Mar-08 | 11        | 1000   | 926       | 6.82  | 30           | 4                  | < 2                | 7.1  | 1.69 |          |           |        |          |
| 2-Apr-08  | 12        | 1000   | 923       | 6.69  | 22           | 4                  | < 2                | 7.1  | 1.26 |          |           |        |          |
| 9-Apr-08  | 13        | 1000   | 920       | 6.66  | 24           | 3                  | < 2                | 4.5  | 1.19 |          |           |        |          |
| 16-Apr-08 | 14        | 1000   | 938       | 6.74  | 24           | 4                  | < 2                | 4.9  | 1.37 |          |           |        |          |
| 23-Apr-08 | 15        | 1000   | 877       | 6.52  | 28           | 3                  | < 2                | 5.9  | 1.69 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 30-Apr-08 | 16        | 1000   | 961       | 6.80  | 23           | 4                  | < 2                | 4.2  | 1.55 |          |           |        |          |
| 7-May-08  | 17        | 1000   | 936       | 5.12  | 26           | < 2                | < 2                | 4.5  | 1.22 |          |           |        |          |
| 14-May-08 | 18        | 1000   | 966       | 6.31  | 22           | 5                  | < 2                | 4    | 1.36 |          |           |        |          |
| 21-May-08 | 19        | 1000   | 980       | 5.89  | 35           | 2                  | 5                  | 4.7  | 1.84 |          |           |        |          |
| 28-May-08 | 20        | 1000   | 849       | 6.94  | 28           | 4                  | < 2                | 4.7  | 1.55 | < 0.0001 | < 0.00001 | 0.02   | 0.0006   |
| 4-Jun-08  | 21        | 1000   | 928       | 7.25  | 29           | 8                  | < 2                | 4    | 1.16 |          |           |        |          |
| 11-Jun-08 | 22        | 1000   | 962       | 6.72  | 21           | 4                  | < 2                | 3.7  | 1.56 |          |           |        |          |
| 18-Jun-08 | 23        | 1000   | 966       | 7.04  | 21           | 4                  | < 2                | 3.5  | 1.53 |          |           |        |          |
| 25-Jun-08 | 24        | 1000   | 978       | 7.06  | 23           | 6                  | < 2                | 4    | 2.13 |          |           |        |          |
| 2-Jul-08  | 25        | 1000   | 926       | 6.69  | 17           | 3                  | < 2                | 3.3  | 1.17 | < 0.0001 | < 0.00001 | 0.01   | < 0.0002 |
| 9-Jul-08  | 26        | 1000   | 965       | 6.73  | 21           | 4                  | < 2                | 3.2  | 1.54 |          |           |        |          |
| 16-Jul-08 | 27        | 1000   | 936       | 6.59  | 16           | 3                  | < 2                | 3    | 1.15 |          |           |        |          |
| 23-Jul-08 | 28        | 1000   | 928       | 6.5   | 16           | 3                  | < 2                | 3.1  | 1.04 |          |           |        |          |
| 30-Jul-08 | 29        | 1000   | 925       | 6.66  | 16           | 3                  | < 2                | 3.2  | 1.07 |          |           |        |          |
| 6-Aug-08  | 30        | 1000   | 920       | 6.81  | 15           | 3                  | < 2                | 3.2  | 1.03 | < 0.0001 | < 0.00001 | < 0.01 | 0.0005   |
| 13-Aug-08 | 31        | 1000   | 910       | 6.79  | 13           | 3                  | < 2                | 2.8  | 0.97 |          |           |        |          |
| 20-Aug-08 | 32        | 1000   | 879       | 6.9   | 104          | 4                  | < 2                | 3.1  | 1.28 |          |           |        |          |
| 27-Aug-08 | 33        | 1000   | 895       | 6.59  | 16           | 3                  | < 2                | 3.4  | 1.04 |          |           |        |          |
| 3-Sep-08  | 34        | 1000   | 936       | 6.7   | 16           | 3                  | <2                 | 2.9  | 1.1  |          |           |        |          |
| 10-Sep-08 | 35        | 1000   | 972       | 6.89  | 17           | 5                  | <2                 | 3    | 1.74 | < 0.0001 | 0.00003   | < 0.01 | 0.0005   |





|           |           | Ba      | Be        | В      | Bi        | Cd         | Co       | Cr       | Cu       | Fe     | К    | Li      | Mq    | Mn      | Мо     |
|-----------|-----------|---------|-----------|--------|-----------|------------|----------|----------|----------|--------|------|---------|-------|---------|--------|
| Date      | Cycle No. |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
|           |           | mg/L    | mg/L      | mg/L   | mg/L      | mg/L       | mg/L     | mg/L     | mg/L     | mg/L   | mg/L | mg/L    | mg/L  | mg/L    | mg/L   |
| 9-Jan-08  | 0         | 0.0143  | 0.00002   | 0.0057 | 0.00002   | 0.000024   | 0.000215 | < 0.0005 | 0.0015   | < 0.01 | 4.90 | < 0.002 | 18.0  | 0.0542  | 0.0049 |
| 16-Jan-08 | 1         | 0.00855 | < 0.00002 | 0.0062 | < 0.00001 |            | 0.000175 | < 0.0005 | 0.0011   | < 0.01 | 3.83 | < 0.002 | 31.7  | 0.0671  | 0.0082 |
| 23-Jan-08 | 2         | 0.00546 | < 0.00002 | 0.008  | < 0.00001 | 0.000022   | 0.000053 | < 0.0005 | 0.0005   | 0.01   | 3.05 | < 0.002 | 15.5  | 0.03103 | 0.0067 |
| 30-Jan-08 | 3         | 0.00352 | < 0.00002 | 0.0064 | < 0.00001 | 0.000007   | 0.000024 | < 0.0005 | 0.0027   | < 0.01 | 2.22 | < 0.002 | 6.49  | 0.0128  | 0.005  |
| 6-Feb-08  | 4         |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 13-Feb-08 | 5         | 0.00279 | < 0.00002 | 0.0051 | 0.00002   | 0.000005   | 0.000035 | < 0.0005 | < 0.0005 | < 0.01 | 1.53 | < 0.002 | 3.03  | 0.00665 | 0.004  |
| 20-Feb-08 | 6         |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 27-Feb-08 | 7         | 0.00229 | < 0.00002 | 0.0048 | < 0.00001 | 0.000008   | 0.000029 | < 0.0005 | < 0.0005 | 0.01   | 1.01 | < 0.002 | 2.04  | 0.00536 | 0.0036 |
| 05-Mar-08 | 8         |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 12-Mar-08 | 9         |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 19-Mar-08 | 10        | 0.00232 | < 0.00002 | 0.0034 | < 0.00001 | 0.000003   | 0.000029 | < 0.0005 | < 0.0005 | 0.01   | 0.88 | < 0.002 | 1.6   | 0.00376 | 0.0037 |
| 26-Mar-08 | 11        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 2-Apr-08  | 12        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 9-Apr-08  | 13        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 16-Apr-08 | 14        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 23-Apr-08 | 15        | 0.00265 | < 0.00002 | 0.01   | < 0.00001 | 0.000008   | 0.000063 | < 0.0005 | < 0.0005 | 0.04   | 0.79 | 0.003   | 1.34  | 0.00367 | 0.0023 |
| 30-Apr-08 | 16        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 7-May-08  | 17        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 14-May-08 | 18        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 21-May-08 | 19        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 28-May-08 | 20        | 0.00234 | < 0.00002 | 0.0019 | 0.00001   | 0.000008   | 0.000041 | < 0.0005 | < 0.0005 | < 0.01 | 0.69 | < 0.002 | 1.13  | 0.0029  | 0.0019 |
| 4-Jun-08  | 21        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 11-Jun-08 | 22        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 18-Jun-08 | 23        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 25-Jun-08 | 24        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 2-Jul-08  | 25        | 0.00198 | < 0.00002 | 0.0014 | < 0.00001 | 0.000006   | 0.000011 | < 0.0005 | < 0.0005 | < 0.01 | 0.58 | < 0.002 | 0.767 | 0.00283 | 0.0015 |
| 9-Jul-08  | 26        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 16-Jul-08 | 27        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 23-Jul-08 | 28        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 30-Jul-08 | 29        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 6-Aug-08  | 30        | 0.00193 | < 0.00002 | 0.0009 | 0.00007   | < 0.000003 | 0.000025 | < 0.0005 | < 0.0005 | < 0.01 | 0.54 | < 0.002 | 0.709 | 0.00249 | 0.0011 |
| 13-Aug-08 | 31        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 20-Aug-08 | 32        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 27-Aug-08 | 33        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 3-Sep-08  | 34        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 10-Sep-08 | 35        | 0.00246 | 0.00003   | 0.0015 | 0.00001   | 0.000036   | 0.00008  | < 0.0005 | < 0.0005 | < 0.01 | 0.6  | < 0.002 | 1.02  | 0.00303 | 0.0009 |





|           |           | Na   | Ni       | Р      | Pb        | Sb      | Se      | Si   | Sn        | Sr     | Ti       | Th                                      | U        | v       | Zn      |
|-----------|-----------|------|----------|--------|-----------|---------|---------|------|-----------|--------|----------|-----------------------------------------|----------|---------|---------|
| Date      | Cycle No. | ITA  | 141      | •      | 1.5       | OD .    | - 56    | - Ji | Oii       | Oi     | - ''     | • • • • • • • • • • • • • • • • • • • • | -        |         | 211     |
|           |           | mg/L | mg/L     | mg/L   | mg/L      | mg/L    | mg/L    | mg/L | mg/L      | mg/L   | mg/L     | mg/L                                    | mg/L     | mg/L    | mg/L    |
| 9-Jan-08  | 0         | 1.23 | 0.00080  | < 0.01 | 0.00007   | 0.0004  | < 0.001 | 0.56 | 0.00204   | 0.0132 | 0.0002   | 0.00003                                 | 0.00037  | 0.00014 | 0.002   |
| 16-Jan-08 | 1         | 1.74 | 0.00070  | 0.01   | < 0.00002 | 0.001   | < 0.001 | 0.22 | 0.00376   | 0.0179 | < 0.0001 | 0.00001                                 | 0.00382  | 0.00012 | 0.001   |
| 23-Jan-08 | 2         | 0.92 | 0.0003   | < 0.01 | < 0.00002 | 0.00015 | < 0.001 | 0.25 | 0.0018    | 0.0088 | < 0.0001 | 0.000002                                | 0.003538 | 0.00007 | < 0.001 |
| 30-Jan-08 | 3         | 0.41 | < 0.0001 | 0.02   | < 0.00002 | 0.00048 | < 0.001 | 0.25 | 0.00103   | 0.0053 | 0.0001   | < 0.000002                              | 0.00064  | 0.00007 | < 0.001 |
| 6-Feb-08  | 4         |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 13-Feb-08 | 5         | 0.17 | < 0.0001 | 0.02   | 0.00002   | 0.00059 | < 0.001 | 0.26 | 0.00057   | 0.0028 | 0.0001   | < 0.000002                              | 0.000458 | 0.00008 | < 0.001 |
| 20-Feb-08 | 6         |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 27-Feb-08 | 7         | 0.1  | < 0.0001 | 0.01   | 0.00002   | 0.0004  | < 0.001 | 0.17 | 0.00058   | 0.002  | 0.0001   | < 0.000002                              | 0.00028  | 0.00006 | 0.001   |
| 05-Mar-08 | 8         |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 12-Mar-08 | 9         |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 19-Mar-08 | 10        | 0.07 | < 0.0001 | < 0.01 | 0.00009   | 0.00052 | < 0.001 | 0.2  | 0.00037   | 0.0017 | 0.0002   | < 0.000002                              | 0.000219 | 0.00009 | 0.001   |
| 26-Mar-08 | 11        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 2-Apr-08  | 12        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 9-Apr-08  | 13        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 16-Apr-08 | 14        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 23-Apr-08 | 15        | 0.04 | 0.0001   | < 0.01 | < 0.00002 | 0.00044 | < 0.001 | 0.16 | 0.00061   | 0.002  | 0.0001   | 0.000094                                | 0.000425 | 0.00012 | 0.001   |
| 30-Apr-08 | 16        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 7-May-08  | 17        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 14-May-08 | 18        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 21-May-08 | 19        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 28-May-08 | 20        | 0.01 | < 0.0001 | < 0.01 | 0.00002   | 0.0009  | < 0.001 | 0.16 | 0.0002    | 0.0015 | < 0.0001 | < 0.000002                              | 0.000317 | 0.00006 | < 0.001 |
| 4-Jun-08  | 21        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 11-Jun-08 | 22        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 18-Jun-08 | 23        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 25-Jun-08 | 24        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 2-Jul-08  | 25        | 0.02 | < 0.0001 | < 0.01 | < 0.00002 | 0.00063 | < 0.001 | 0.16 | < 0.00001 | 0.0012 | < 0.0001 | 0.000003                                | 0.000325 | 0.00004 | < 0.001 |
| 9-Jul-08  | 26        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 16-Jul-08 | 27        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 23-Jul-08 | 28        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 30-Jul-08 | 29        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 6-Aug-08  | 30        | 0.02 | < 0.0001 | < 0.01 | 0.00002   | 0.00034 | < 0.001 | 0.12 | 0.00008   | 0.001  | 0.0001   | < 0.000002                              | 0.000201 | 0.00005 | < 0.001 |
| 13-Aug-08 | 31        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 20-Aug-08 | 32        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 27-Aug-08 | 33        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 3-Sep-08  | 34        |      |          |        |           |         |         |      |           |        |          |                                         |          |         |         |
| 10-Sep-08 | 35        | 0.05 | < 0.0001 | < 0.01 | 0.00004   | 0.00088 | < 0.001 | 0.23 | 0.00003   | 0.0032 | < 0.0001 | 0.00007                                 | 0.000349 | 0.00004 | 0.001   |





|           |           | Volume      | Volume          | Hq    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Ца         | ٨α         | Al     | As       |
|-----------|-----------|-------------|-----------------|-------|--------------|--------------------|--------------------|------|------|------------|------------|--------|----------|
| Date      | Cycle No. | Added<br>ml | Recovered<br>ml | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | Hg<br>mg/L | Ag<br>mg/L | mg/L   | mg/L     |
| 17-Sep-08 | 36        | 1000        | 879             | 6.6   | 15           | 3                  | <2                 | 2.9  | 1.1  |            |            |        |          |
| 24-Sep-08 | 37        | 1000        | 892             | 6.74  | 15           | 3                  | <2                 | 3    | 1.05 |            |            |        |          |
| 1-Oct-08  | 38        | 1000        | 980             | 6.77  | 15           | 20                 | < 2                | 2.9  | 1.45 |            |            |        |          |
| 8-Oct-08  | 39        | 1000        | 928             | 6.71  | 15           | 3                  | <2                 | 0.6  | 0.99 |            |            |        |          |
| 15-Oct-08 | 40        | 1000        | 977             | 6.82  | 14           | 3                  | < 2                | 2.6  | 0.9  | < 0.0001   | 0.00002    | < 0.01 | < 0.0002 |
| 22-Oct-08 | 41        | 1000        | 973             | 6.9   | 19           | 4                  | < 2                | 2.8  | 1.42 |            |            |        |          |
| 29-Oct-08 | 42        | 1000        | 897             | 6.7   | 17           | < 2                | < 2                | 2.6  | 0.94 |            |            |        |          |
| 5-Nov-08  | 43        | 1000        | 881             | 6.91  | 22           | 3                  | < 2                | 3.1  | 1.09 |            |            |        |          |
| 12-Nov-08 | 44        | 1000        | 938             | 6.84  | 14           | 3                  | < 2                | 3.0  | 1.19 |            |            |        |          |
| 19-Nov-08 | 45        | 1000        | 914             | 6.85  | 13           | 3                  | < 2                | 2.9  | 1.09 | < 0.0001   | < 0.00001  | 0.02   | < 0.0002 |
| 26-Nov-08 | 46        | 1000        | 900             | 6.53  | 13           | 3                  | < 2                | 2.9  | 0.97 |            |            |        |          |
| 3-Dec-08  | 47        | 1000        | 890             | 6.72  | 16           | 2                  | < 2                | 3.3  | 1.14 |            |            |        |          |
| 10-Dec-08 | 48        | 1000        | 976             | 6.77  | 22           | 4                  | < 2                | 3.1  | 1.46 |            |            |        |          |
| 17-Dec-08 | 49        | 1000        | 923             | 6.84  | 13           | 3                  | < 2                | 2.6  | 0.97 |            |            |        |          |
| 24-Dec-08 | 50        | 1000        | 921             | 6.84  | 13           | 3                  | < 2                | 2.4  | 0.93 | 0.0001     | < 0.00001  | 0.02   | 0.0003   |
| 30-Dec-08 | 51        | 1000        | 989             | 6.93  | 19           | 5                  | < 2                | 3.1  | 1.71 |            |            |        |          |
| 7-Jan-09  | 52        | 1000        | 990             | 6.91  | 19           | 5                  | < 2                | 3.1  | 1.76 |            |            |        |          |
| 14-Jan-09 | 53        | 1000        | 987             | 6.93  | 18           | 4                  | < 2                | 3.3  | 1.70 |            |            |        |          |





| Date      | Cycle No. | Ba<br>mg/L | Be<br>mg/L | B<br>mg/L | Bi<br>mg/L | Cd<br>mg/L | Co<br>mg/L | Cr<br>mg/L | Cu<br>mg/L | Fe<br>mg/L | K<br>mg/L | Li<br>mg/L | Mg<br>mg/L | Mn<br>mg/L | Mo<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            | -         |            |            |            |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 15-Oct-08 | 40        | 0.00177    | 0.00002    | 0.0006    | < 0.00001  | 0.000017   | 0.000058   | < 0.0005   | < 0.0005   | < 0.01     | 0.5       | < 0.002    | 0.623      | 0.00219    | 0.0008     |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 19-Nov-08 | 45        | 0.00201    | < 0.00002  | 0.001     | < 0.00001  | 0.000007   | 0.000024   | < 0.0005   | < 0.0005   | < 0.01     | 0.56      | < 0.002    | 0.696      | 0.0023     | 0.0007     |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Dec-08 | 50        | 0.00188    | < 0.00002  | 0.0004    | < 0.00001  | < 0.000003 | < 0.000002 | < 0.0005   | < 0.0005   | < 0.01     | 0.5       | < 0.002    | 0.594      | 0.0022     | 0.0007     |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |





| Date      | Cycle No. | Na<br>mg/L | Ni<br>mg/L | P<br>mg/L | Pb<br>mg/L | Sb<br>mg/L | Se<br>mg/L | Si<br>mg/L | Sn<br>mg/L | Sr<br>mg/L | Ti<br>mg/L | Th<br>mg/L | U<br>mg/L | V<br>mg/L | Zn<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|-----------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 15-Oct-08 | 40        | 0.01       | 0.0001     | 0.01      | < 0.00002  | 0.00067    | < 0.001    | 0.15       | 0.00004    | 0.001      | 0.0001     | 0.000026   | 0.000483  | < 0.00003 | < 0.001    |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 19-Nov-08 | 45        | 0.02       | < 0.0001   | < 0.01    | < 0.00002  | 0.0003     | < 0.001    | 0.16       | 0.00005    | 0.001      | < 0.0001   | < 0.000002 | 0.000186  | < 0.00003 | < 0.001    |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Dec-08 | 50        | < 0.01     | < 0.0001   | < 0.01    | < 0.00002  | 0.0003     | < 0.001    | 0.15       | 0.00006    | 0.001      | < 0.0001   | < 0.000002 | 0.000233  | < 0.00003 | < 0.001    |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |





|           |           | Volume | Volume    |       |              |                    |                    |      | _    |          |           |        |          |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Date      | Cycle No. | Added  | Recovered | pН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
| Date      | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 9-Jan-08  | 0         | 1000   | 769       | 5.75  | 379          | < 2                | 6                  | 150  | 22.7 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 16-Jan-08 | 1         | 1000   | 867       | 4.08  | 809          | < 2                | 12                 | 380  | 35.4 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 23-Jan-08 | 2         | 1000   | 892       | 6.48  | 365          | < 2                | 4                  | 160  | 20.5 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 30-Jan-08 | 3         | 1000   | 891       | 5.47  | 214          | < 2                | 3                  | 93   | 12.2 | < 0.0001 | < 0.00001 | 0.01   | < 0.0002 |
| 6-Feb-08  | 4         | 1000   | 901       | 5.92  | 162          | < 2                | 3                  | 71   | 9.92 |          |           |        |          |
| 13-Feb-08 | 5         | 1000   | 884       | 5.02  | 129          | 7                  | 4                  | 11   | 0.3  | < 0.0001 | < 0.00001 | 0.74   | < 0.0002 |
| 20-Feb-08 | 6         | 1000   | 830       | 5.55  | 120          | < 2                | < 2                | 57   | 7.11 |          |           |        |          |
| 27-Feb-08 | 7         | 1000   | 909       | 5.78  | 75           | < 2                | 3                  | 27   | 4.04 | < 0.0001 | < 0.00001 | 0.01   | < 0.0002 |
| 05-Mar-08 | 8         | 1000   | 884       | 5.82  | 68           | < 2                | 3                  | 24   | 3.37 |          |           |        |          |
| 12-Mar-08 | 9         | 1000   | 914       | 5.34  | 51           | < 2                | 3                  | 19   | 3.17 |          |           |        |          |
| 19-Mar-08 | 10        | 1000   | 917       | 5.01  | 42           | < 2                | 2                  | 14   | 2.5  | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 26-Mar-08 | 11        | 1000   | 906       | 5.81  | 42           | < 2                | 3                  | 14   | 2.51 |          |           |        |          |
| 2-Apr-08  | 12        | 1000   | 948       | 9.3   | 106          | 15                 | < 2                | 13   | 2.1  |          |           |        |          |
| 9-Apr-08  | 13        | 1000   | 960       | 8.69  | 56           | 3                  | < 2                | 10   | 1.87 |          |           |        |          |
| 16-Apr-08 | 14        | 1000   | 974       | 5.78  | 34           | < 2                | 3                  | 11   | 1.8  |          |           |        |          |
| 23-Apr-08 | 15        | 1000   | 977       | 5.75  | 29           | < 2                | < 2                | 9.4  | 5.72 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 30-Apr-08 | 16        | 1000   | 970       | 4.8   | 35           | < 2                | 3                  | 9.1  | 1.38 |          |           |        |          |
| 7-May-08  | 17        | 1000   | 981       | 5.65  | 28           | < 2                | 2                  | 9.2  | 1.32 |          |           |        |          |
| 14-May-08 | 18        | 1000   | 937       | 5.44  | 26           | < 2                | 2                  | 7.2  | 1.13 |          |           |        |          |
| 21-May-08 | 19        | 1000   | 925       | 4.53  | 42           | < 2                | < 2                | 6.5  | 1.04 |          |           |        |          |
| 28-May-08 | 20        | 1000   | 971       | 5.9   | 22           | < 2                | 2                  | 5.4  | 0.92 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 4-Jun-08  | 21        | 1000   | 884       | 7.7   | 58           | 29                 | < 2                | 1    | 5.22 |          |           |        |          |
| 11-Jun-08 | 22        | 1000   | 982       | 5.97  | 35           | < 2                | < 2                | 5.8  | 0.93 |          |           |        |          |
| 18-Jun-08 | 23        | 1000   | 953       | 5.89  | 15           | < 2                | < 2                | 4.1  | 0.62 |          |           |        |          |
| 25-Jun-08 | 24        | 1000   | 988       | 6.05  | 17           | < 2                | < 2                | 5.8  | 0.86 |          |           |        |          |
| 2-Jul-08  | 25        | 1000   | 952       | 6.08  | 19           | < 2                | < 2                | 5.2  | 0.7  | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 9-Jul-08  | 26        | 1000   | 971       | 5.71  | 16           | < 2                | < 2                | 4.5  | 0.68 |          |           |        |          |
| 16-Jul-08 | 27        | 1000   | 948       | 5.72  | 17           | < 2                | 3                  | 4.8  | 0.69 |          |           |        |          |
| 23-Jul-08 | 28        | 1000   | 987       | 5.91  | 15           | < 2                | 3                  | 4.5  | 0.65 |          |           |        |          |
| 30-Jul-08 | 29        | 1000   | 976       | 6.13  | 15           | < 2                | < 2                | 4.1  | 0.59 |          |           |        |          |
| 6-Aug-08  | 30        | 1000   | 975       | 6.12  | 15           | < 2                | < 2                | 4.6  | 0.62 | < 0.0001 | < 0.00001 | < 0.01 | 0.0003   |
| 13-Aug-08 | 31        | 1000   | 942       | 6.08  | 13           | 3                  | <2                 | 3.9  | 0.55 |          |           |        |          |
| 20-Aug-08 | 32        | 1000   | 845       | 5.76  | 24           | < 2                | < 2                | 3.8  | 0.57 |          |           |        |          |
| 27-Aug-08 | 33        | 1000   | 983       | 5.88  | 21           | 3                  | <2                 | 3.7  | 0.51 |          |           |        |          |
| 3-Sep-08  | 34        | 1000   | 978       | 5.74  | 13           | < 2                | < 2                | 3.5  | 0.49 |          |           |        |          |
| 10-Sep-08 | 35        | 1000   | 984       | 5.98  | 13           | 2                  | < 2                | 3.5  | 0.52 | < 0.0001 | 0.00001   | < 0.01 | < 0.0002 |





|           |           | Ва      | Be        | В        | Bi        | Cd         | Co       | Cr       | Cu       | Fe     | K    | Li      | Mg    | Mn     | Мо      |
|-----------|-----------|---------|-----------|----------|-----------|------------|----------|----------|----------|--------|------|---------|-------|--------|---------|
| Date      | Cycle No. | mg/L    | mg/L      | mg/L     | mg/L      | mg/L       | mg/L     | mg/L     | mg/L     | mg/L   | mg/L | mg/L    | mg/L  | mg/L   | mg/L    |
| 9-Jan-08  | 0         | 0.0219  | 0.00006   | 0.0051   | 0.00002   | 0.000372   | 0.00478  | < 0.0005 | 0.0023   | 0.44   | 6.77 | < 0.002 | 25.5  | 2.59   | 0.00025 |
| 16-Jan-08 | 1         | 0.0138  | 0.00003   | 0.0111   | < 0.00001 | 0.000815   | 0.00501  | < 0.0005 | 0.0008   | 0.19   | 5.6  | 0.002   | 68.6  | 5.72   | 0.00057 |
| 23-Jan-08 | 2         | 0.00672 | 0.00003   | 0.0088   | < 0.00001 | 0.000282   | 0.001857 | < 0.0005 | 0.0007   | 0.07   | 4.75 | < 0.002 | 26.8  | 2.12   | 0.00031 |
| 30-Jan-08 | 3         | 0.00441 | 0.00003   | 0.0068   | < 0.00001 | 0.00017    | 0.00102  | < 0.0005 | < 0.0005 | 0.06   | 3.89 | < 0.002 | 15.3  | 1.1    | 0.00035 |
| 6-Feb-08  | 4         |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 13-Feb-08 | 5         | 0.00161 | 0.00006   | < 0.0002 | < 0.00001 | 0.00023    | 0.00667  | < 0.0005 | 0.0405   | 1.49   | 0.05 | < 0.002 | 0.314 | 0.0149 | 0.00019 |
| 20-Feb-08 | 6         |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 27-Feb-08 | 7         | 0.00263 | < 0.00002 | 0.0043   | < 0.00001 | 0.000053   | 0.000412 | < 0.0005 | < 0.0005 | 0.02   | 2.28 | < 0.002 | 3.46  | 0.299  | 0.00017 |
| 05-Mar-08 | 8         |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 12-Mar-08 | 9         |         |           |          |           |            |          |          |          |        |      |         |       | -      |         |
| 19-Mar-08 | 10        | 0.00216 | < 0.00002 | 0.0026   | < 0.00001 | 0.000028   | 0.000256 | < 0.0005 | < 0.0005 | 0.01   | 1.7  | < 0.002 | 1.68  | 0.135  | 0.00027 |
| 26-Mar-08 | 11        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 2-Apr-08  | 12        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 9-Apr-08  | 13        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 16-Apr-08 | 14        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 23-Apr-08 | 15        | 0.00176 | < 0.00002 | 0.0051   | < 0.00001 | 0.000031   | 0.000487 | < 0.0005 | < 0.0005 | 0.05   | 2.76 | < 0.002 | 3.38  | 0.0859 | 0.00015 |
| 30-Apr-08 | 16        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 7-May-08  | 17        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 14-May-08 | 18        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 21-May-08 | 19        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 28-May-08 | 20        | 0.00145 | < 0.00002 | 0.0014   | < 0.00001 | 0.000015   | 0.000295 | < 0.0005 | < 0.0005 | < 0.01 | 1.18 | < 0.002 | 0.665 | 0.0598 | 0.00022 |
| 4-Jun-08  | 21        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 11-Jun-08 | 22        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 18-Jun-08 | 23        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 25-Jun-08 | 24        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 2-Jul-08  | 25        | 0.0014  | < 0.00002 | 0.0013   | < 0.00001 | 0.000015   | 0.000244 | < 0.0005 | < 0.0005 | < 0.01 | 1.06 | < 0.002 | 0.567 | 0.053  | 0.0002  |
| 9-Jul-08  | 26        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 16-Jul-08 | 27        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 23-Jul-08 | 28        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 30-Jul-08 | 29        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 6-Aug-08  | 30        | 0.00121 | < 0.00002 | 0.0009   | 0.00002   | < 0.000003 | 0.000268 | < 0.0005 | < 0.0005 | < 0.01 | 0.98 | < 0.002 | 0.504 | 0.0479 | 4E-05   |
| 13-Aug-08 | 31        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 20-Aug-08 | 32        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 27-Aug-08 | 33        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 3-Sep-08  | 34        |         |           |          |           |            |          |          |          |        |      |         |       |        |         |
| 10-Sep-08 | 35        | 0.00117 | < 0.00002 | 0.001    | < 0.00001 | 0.000015   | 0.000271 | < 0.0005 | < 0.0005 | < 0.01 | 0.87 | < 0.002 | 0.436 | 0.0387 | 9E-05   |





|           |           | Na     | Ni     | Р      | Pb        | Sb      | Se      | Si   | Sn      | Sr       | Ti       | Th         | U        | V         | Zn    |
|-----------|-----------|--------|--------|--------|-----------|---------|---------|------|---------|----------|----------|------------|----------|-----------|-------|
| Date      | Cycle No. | mg/L   | mg/L   | mg/L   | mg/L      | mg/L    | mg/L    | mg/L | mg/L    | mg/L     | mg/L     | mg/L       | mg/L     | mg/L      | mg/L  |
| 9-Jan-08  | 0         | 0.94   | 0.0032 | < 0.01 | < 0.00002 | 0.0005  | < 0.001 | 0.26 | 0.00214 | 0.0031   | < 0.0001 | 0.000044   | 0.000147 | 0.00007   | 0.005 |
| 16-Jan-08 | 1         | 2.06   | 0.007  | < 0.01 | < 0.00002 | 0.00047 | < 0.001 | 0.4  | 0.00212 | 0.0032   | < 0.0001 | 0.000015   | 0.000142 | 0.00005   | 0.007 |
| 23-Jan-08 | 2         | 0.81   | 0.0033 | < 0.01 | 0.00002   | 0.00006 | < 0.001 | 0.55 | 0.00126 | 0.0016   | < 0.0001 | 0.000006   | 0.000142 | 0.00005   | 0.005 |
| 30-Jan-08 | 3         | 0.45   | 0.0016 | 0.01   | < 0.00002 | 0.00047 | < 0.001 | 0.54 | 0.00098 | 0.0009   | 0.0002   | < 0.000002 | 0.000046 | 0.00004   | 0.005 |
| 6-Feb-08  | 4         |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 13-Feb-08 | 5         | 0.03   | 0.0044 | < 0.01 | 0.00011   | 0.0003  | < 0.001 | 0.33 | 0.00009 | 0.0005   | < 0.0001 | < 0.000002 | 0.000136 | < 0.00003 | 0.068 |
| 20-Feb-08 | 6         |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 27-Feb-08 | 7         | 0.11   | 0.0004 | 0.01   | < 0.00002 | 0.0004  | < 0.001 | 0.63 | 0.00054 | 0.0003   | < 0.0001 | < 0.000002 | 0.000046 | 0.00003   | 0.004 |
| 05-Mar-08 | 8         |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 12-Mar-08 | 9         |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 19-Mar-08 | 10        | 0.06   | 0.0004 | < 0.01 | 0.0001    | 0.00041 | < 0.001 | 0.72 | 0.00043 | 0.0003   | < 0.0001 | < 0.000002 | 0.000051 | 0.00007   | 0.003 |
| 26-Mar-08 | 11        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 2-Apr-08  | 12        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 9-Apr-08  | 13        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 16-Apr-08 | 14        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 23-Apr-08 | 15        | 0.07   | 0.0009 | 0.02   | 0.00037   | 0.00022 | < 0.001 | 2.19 | 0.00071 | 0.0015   | 0.0001   | 0.000126   | 0.000046 | 0.00006   | 0.013 |
| 30-Apr-08 | 16        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 7-May-08  | 17        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 14-May-08 | 18        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 21-May-08 | 19        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 28-May-08 | 20        | < 0.01 | 0.0002 | < 0.01 | < 0.00002 | 0.00035 | < 0.001 | 0.67 | 0.00114 | 0.0002   | < 0.0001 | 0.000002   | 0.00002  | 0.00007   | 0.003 |
| 4-Jun-08  | 21        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 11-Jun-08 | 22        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 18-Jun-08 | 23        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 25-Jun-08 | 24        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 2-Jul-08  | 25        | 0.02   | 0.0001 | < 0.01 | 0.00003   | 0.00036 | < 0.001 | 0.62 | 0.00101 | 0.0001   | < 0.0001 | < 0.000002 | 0.000018 | < 0.00003 | 0.003 |
| 9-Jul-08  | 26        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 16-Jul-08 | 27        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 23-Jul-08 | 28        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 30-Jul-08 | 29        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 6-Aug-08  | 30        | 0.02   | 0.0002 | < 0.01 | < 0.00002 | 0.00016 | < 0.001 | 0.62 | 0.00127 | 0.0001   | < 0.0001 | < 0.000002 | 0.000022 | < 0.00003 | 0.002 |
| 13-Aug-08 | 31        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 20-Aug-08 | 32        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 27-Aug-08 | 33        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 3-Sep-08  | 34        |        |        |        |           |         |         |      |         |          |          |            |          |           |       |
| 10-Sep-08 | 35        | < 0.01 | 0.0001 | < 0.01 | < 0.00002 | 0.00062 | < 0.001 | 0.55 | 0.00084 | < 0.0001 | < 0.0001 | 0.000025   | 0.000054 | < 0.00003 | 0.002 |





|           |           | Volume      | Volume          | 11          | Complementicultur   | Allealinite                      | A o i alita        | 504  | 0-         | Ше         | Α          | Al     | Δ-         |
|-----------|-----------|-------------|-----------------|-------------|---------------------|----------------------------------|--------------------|------|------------|------------|------------|--------|------------|
| Date      | Cycle No. | Added<br>ml | Recovered<br>ml | pH<br>units | Conductivity  µS/cm | Alkalinity<br>mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | Ca<br>mg/L | Hg<br>mg/L | Ag<br>mg/L | Mg/L   | As<br>mg/L |
| 17-Sep-08 | 36        | 1000        | 964             | 6.28        | 14                  | < 2                              | < 2                | 3.4  | 0.48       |            |            |        |            |
| 24-Sep-08 | 37        | 1000        | 965             | 7.09        | 59                  | 8                                | <2                 | 3.1  | 0.44       |            |            |        |            |
| 1-Oct-08  | 38        | 1000        | 977             | 5.77        | 11                  | 3                                | <2                 | 3.5  | 0.48       |            |            |        |            |
| 8-Oct-08  | 39        | 1000        | 954             | 5.79        | 11                  | 2                                | < 2                | 3.2  | 0.42       |            |            |        |            |
| 15-Oct-08 | 40        | 1000        | 991             | 5.8         | 13                  | < 2                              | 3                  | 3.8  | 0.48       | < 0.0001   | < 0.00001  | < 0.01 | < 0.0002   |
| 22-Oct-08 | 41        | 1000        | 981             | 5.64        | 14                  | < 2                              | 3                  | 3.6  | 0.51       |            |            |        |            |
| 29-Oct-08 | 42        | 1000        | 981             | 5.66        | 14                  | < 2                              | 2                  | 3.2  | 0.43       |            |            |        |            |
| 5-Nov-08  | 43        | 1000        | 975             | 5.68        | 18                  | < 2                              | 2                  | 4.1  | 0.55       |            |            |        |            |
| 12-Nov-08 | 44        | 1000        | 988             | 5.84        | 12                  | < 2                              | 14                 | 4.1  | 0.55       |            |            |        |            |
| 19-Nov-08 | 45        | 1000        | 955             | 5.79        | 18                  | < 2                              | < 2                | 3.6  | 0.48       | < 0.0001   | < 0.00001  | < 0.01 | < 0.0002   |
| 26-Nov-08 | 46        | 1000        | 949             | 5.72        | 10                  | < 2                              | < 2                | 3.4  | 0.46       |            |            |        |            |
| 3-Dec-08  | 47        | 1000        | 972             | 5.73        | 12                  | < 2                              | 3                  | 3.5  | 0.45       |            |            |        |            |
| 10-Dec-08 | 48        | 1000        | 987             | 5.65        | 16                  | < 2                              | < 2                | 3.2  | 0.43       |            |            |        |            |
| 17-Dec-08 | 49        | 1000        | 978             | 5.84        | 12                  | < 2                              | < 2                | 3.1  | 0.51       |            |            |        |            |
| 24-Dec-08 | 50        | 1000        | 976             | 6.05        | 11                  | < 2                              | 2                  | 3.4  | 0.4        | < 0.0001   | 0.00003    | < 0.01 | < 0.0002   |
| 30-Dec-08 | 51        | 1000        | 975             | 6.04        | 11                  | < 2                              | < 2                | 3.3  | 0.44       |            |            |        |            |
| 7-Jan-09  | 52        | 1000        | 986             | 5.73        | 13                  | < 2                              | 4                  | 3.8  | 0.52       |            |            |        |            |
| 14-Jan-09 | 53        | 1000        | 989             | 5.75        | 12                  | < 2                              | < 2                | 4    | 0.52       |            |            |        |            |





| Date      | Cycle No. | Ba<br>mg/L | Be<br>mg/L | B<br>mg/L | Bi<br>mg/L | Cd<br>mg/L | Co<br>mg/L | Cr<br>mg/L | Cu<br>mg/L | Fe<br>mg/L | K<br>mg/L | Li<br>mg/L | Mg<br>mg/L | Mn<br>mg/L | Mo<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 15-Oct-08 | 40        | 0.0011     | 0.00002    | 0.0005    | < 0.00001  | 0.000018   | 0.000295   | < 0.0005   | < 0.0005   | < 0.01     | 0.8       | < 0.002    | 0.413      | 0.0373     | < 0.00001  |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 19-Nov-08 | 45        | 0.00115    | < 0.00002  | 0.0008    | < 0.00001  | 0.000006   | 0.000295   | < 0.0005   | < 0.0005   | < 0.01     | 0.85      | < 0.002    | 0.409      | 0.0375     | 6E-05      |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Dec-08 | 50        | 0.00132    | < 0.00002  | 0.0005    | 0.00001    | 0.000013   | 0.00035    | < 0.0005   | < 0.0005   | < 0.01     | 0.79      | < 0.002    | 0.378      | 0.0373     | 0.0002     |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |





| Date      | Cycle No. | Na<br>mg/L | Ni<br>mg/L | P<br>mg/L | Pb<br>mg/L | Sb<br>mg/L | Se<br>mg/L | Si<br>mg/L | Sn<br>mg/L | Sr<br>mg/L | Ti<br>mg/L | Th<br>mg/L | U<br>mg/L | V<br>mg/L | Zn<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|-----------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            | 1          |            |            | -          |            |           |           |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 15-Oct-08 | 40        | 0.01       | 0.0003     | 0.01      | < 0.00002  | 0.0004     | < 0.001    | 0.51       | 0.00077    | < 0.0001   | < 0.0001   | 0.000012   | 0.00005   | < 0.00003 | 0.001      |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 19-Nov-08 | 45        | 0.02       | 0.0001     | < 0.01    | < 0.00002  | 0.0002     | < 0.001    | 0.46       | 0.00085    | < 0.0001   | < 0.0001   | 0.000014   | 0.000016  | < 0.00003 | 0.002      |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Dec-08 | 50        | < 0.01     | 0.0002     | < 0.01    | < 0.00002  | 0.0003     | < 0.001    | 0.42       | 0.00119    | < 0.0001   | 0.0001     | < 0.000002 | 0.000116  | < 0.00003 | 0.001      |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |





|           |           | Volume | Volume    | 11    | 0            | Allon Books        | A = ! = !! (       | 004  | 0-   |          |           | A.1    |          |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Date      | Cycle No. | Added  | Recovered | pН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
| Date      | Cycle Ho. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 9-Jan-08  | 0         | 1000   | 750       | 6.68  | 68           | 3                  | < 2                | 5.1  | 2.46 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 16-Jan-08 | 1         | 1000   | 939       | 6.98  | 56           | 7                  | < 2                | 5    | 2.23 | < 0.0001 | < 0.00001 | 0.03   | < 0.0002 |
| 23-Jan-08 | 2         | 1000   | 986       | 7.2   | 39           | 7                  | 5                  | 4.1  | 1.72 | < 0.0001 | < 0.00001 | 0.03   | < 0.0002 |
| 30-Jan-08 | 3         | 1000   | 988       | 6.59  | 25           | 4                  | < 2                | 2.9  | 1.07 | < 0.0001 | < 0.00001 | 0.01   | < 0.0002 |
| 6-Feb-08  | 4         | 1000   | 995       | 7.01  | 18           | 5                  | < 2                | 2.7  | 0.84 |          |           |        |          |
| 13-Feb-08 | 5         | 1000   | 988       | 6.52  | 16           | 12                 | 2                  | 2.3  | 0.64 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 20-Feb-08 | 6         | 1000   | 983       | 6.59  | 14           | 2                  | < 2                | 2.7  | 0.61 |          |           |        |          |
| 27-Feb-08 | 7         | 1000   | 957       | 6.53  | 14           | 2                  | < 2                | 2.4  | 0.52 | < 0.0001 | < 0.00001 | 0.01   | < 0.0002 |
| 05-Mar-08 | 8         | 1000   | 929       | 6.49  | 15           | 2                  | < 2                | 2.8  | 0.44 |          |           |        |          |
| 12-Mar-08 | 9         | 1000   | 956       | 6.33  | 14           | < 2                | < 2                | 3    | 0.53 |          |           |        |          |
| 19-Mar-08 | 10        | 1000   | 992       | 6.37  | 13           | < 2                | < 2                | 2.2  | 0.48 | < 0.0001 | < 0.00001 | 0.01   | < 0.0002 |
| 26-Mar-08 | 11        | 1000   | 990       | 6.42  | 18           | < 2                | < 2                | 4.1  | 0.98 |          |           |        |          |
| 2-Apr-08  | 12        | 1000   | 991       | 6.61  | 12           | < 2                | < 2                | 2.6  | 0.45 |          |           |        |          |
| 9-Apr-08  | 13        | 1000   | 961       | 6.43  | 15           | < 2                | < 2                | 1.8  | 0.34 |          |           |        |          |
| 16-Apr-08 | 14        | 1000   | 938       | 6.22  | 12           | < 2                | < 2                | 2.3  | 0.32 |          |           |        |          |
| 23-Apr-08 | 15        | 1000   | 990       | 5.48  | 13           | < 2                | 3                  | 2.1  | 0.6  | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 30-Apr-08 | 16        | 1000   | 983       | 6.17  | 11           | < 2                | < 2                | 2.2  | 0.39 |          |           |        |          |
| 7-May-08  | 17        | 1000   | 984       | 4.55  | 27           | < 2                | 5                  | 7.1  | 0.43 |          |           |        |          |
| 14-May-08 | 18        | 1000   | 996       | 4.05  | 54           | < 2                | 7                  | 1.5  | 0.4  |          |           |        |          |
| 21-May-08 | 19        | 1000   | 979       | 5.62  | 16           | < 2                | 2                  | 2.4  | 0.35 |          |           |        |          |
| 28-May-08 | 20        | 1000   | 985       | 5.56  | 14           | < 2                | 2                  | 2.1  | 0.36 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 4-Jun-08  | 21        | 1000   | 956       | 6.21  | 14           | < 2                | < 2                | 2.6  | 0.4  |          |           |        |          |
| 11-Jun-08 | 22        | 1000   | 960       | 6.31  | 11           | < 2                | < 2                | 1.9  | 0.36 |          |           |        |          |
| 18-Jun-08 | 23        | 1000   | 950       | 6.19  | 12           | < 2                | < 2                | 2.9  | 0.43 |          |           |        |          |
| 25-Jun-08 | 24        | 1000   | 952       | 6.24  | 8            | < 2                | 2                  | 2.1  | 0.33 |          |           |        |          |
| 2-Jul-08  | 25        | 1000   | 947       | 6.08  | 9            | < 2                | < 2                | 2.2  | 0.31 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 9-Jul-08  | 26        | 1000   | 967       | 6     | 14           | < 2                | < 2                | 3.3  | 0.58 |          |           |        |          |
| 16-Jul-08 | 27        | 1000   | 975       | 5.92  | 11           | < 2                | 3                  | 2.7  | 0.39 |          |           |        |          |
| 23-Jul-08 | 28        | 1000   | 984       | 5.81  | 8            | < 2                | 3                  | 2.6  | 0.36 |          |           |        |          |
| 30-Jul-08 | 29        | 1000   | 971       | 5.97  | 9            | < 2                | < 2                | 2.6  | 0.41 |          |           |        |          |
| 6-Aug-08  | 30        | 1000   | 922       | 6.25  | 13           | < 2                | < 2                | 2.7  | 0.37 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 13-Aug-08 | 31        | 1000   | 992       | 6.03  | 10           | < 2                | 3                  | 2.8  | 0.4  |          |           |        |          |
| 20-Aug-08 | 32        | 1000   | 992       | 5.8   | 15           | < 2                | < 2                | 2.4  | 0.33 |          |           |        |          |
| 27-Aug-08 | 33        | 1000   | 981       | 6.02  | 11           | < 2                | 2                  | 2.7  | 0.36 |          |           |        |          |
| 3-Sep-08  | 34        | 1000   | 987       | 5.75  | 11           | <2                 | 3                  | 2.7  | 0.37 |          |           |        |          |
| 10-Sep-08 | 35        | 1000   | 985       | 6.01  | 11           | <2                 | 2                  | 2.8  | 0.4  | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |





|           |           | Ва      | Be        | В        | Bi        | Cd         | Со       | Cr       | Cu       | Fe     | К    | Li      | Mg    | Mn      | Мо      |
|-----------|-----------|---------|-----------|----------|-----------|------------|----------|----------|----------|--------|------|---------|-------|---------|---------|
| Date      | Cycle No. | mg/L    | mg/L      | mg/L     | mg/L      | mg/L       | mg/L     | mg/L     | mg/L     | mg/L   | mg/L | mg/L    | mg/L  | mg/L    | mg/L    |
| 9-Jan-08  | 0         | 0.00153 | 0.00002   | 0.001    | 0.00002   | 0.000015   | 0.0018   | < 0.0005 | 0.002    | 0.02   | 10   | < 0.002 | 0.649 | 0.00333 | 0.0048  |
| 16-Jan-08 | 1         | 0.00125 | < 0.00002 | 0.0028   | < 0.00001 | 0.000023   | 0.000278 | < 0.0005 | 0.0005   | < 0.01 | 6.9  | < 0.002 | 0.788 | 0.00307 | 0.00841 |
| 23-Jan-08 | 2         | 0.00102 | < 0.00002 | 0.0022   | < 0.00001 | < 0.000003 | 0.000112 | < 0.0005 | < 0.0005 | < 0.01 | 5.22 | < 0.002 | 0.701 | 0.00236 | 0.00397 |
| 30-Jan-08 | 3         | 0.00086 | < 0.00002 | 0.0016   | < 0.00001 | 0.000005   | <        | < 0.0005 | < 0.0005 | < 0.01 | 3.41 | < 0.002 | 0.469 | 0.00294 | 0.00171 |
| 6-Feb-08  | 4         |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 13-Feb-08 | 5         | 0.0007  | < 0.00002 | 0.0009   | 0.00005   | 0.000003   | 0.00012  | < 0.0005 | < 0.0005 | < 0.01 | 1.98 | < 0.002 | 0.32  | 0.00346 | 0.00078 |
| 20-Feb-08 | 6         |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 27-Feb-08 | 7         | 0.00066 | < 0.00002 | 0.0008   | < 0.00001 | 0.000006   | 0.000108 | < 0.0005 | < 0.0005 | < 0.01 | 1.59 | < 0.002 | 0.282 | 0.00406 | 0.00058 |
| 05-Mar-08 | 8         |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 12-Mar-08 | 9         |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 19-Mar-08 | 10        | 0.00053 | < 0.00002 | 0.0006   | < 0.00001 | < 0.000003 | 0.000101 | < 0.0005 | < 0.0005 | < 0.01 | 1.36 | < 0.002 | 0.293 | 0.00451 | 0.00033 |
| 26-Mar-08 | 11        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 2-Apr-08  | 12        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 9-Apr-08  | 13        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 16-Apr-08 | 14        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 23-Apr-08 | 15        | 0.00055 | < 0.00002 | 0.0026   | < 0.00001 | < 0.000003 | 0.000191 | < 0.0005 | < 0.0005 | < 0.01 | 1.04 | < 0.002 | 0.285 | 0.00741 | 0.00018 |
| 30-Apr-08 | 16        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 7-May-08  | 17        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 14-May-08 | 18        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 21-May-08 | 19        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 28-May-08 | 20        | 0.00073 | < 0.00002 | 0.0004   | < 0.00001 | 0.000027   | 0.000317 | < 0.0005 | < 0.0005 | < 0.01 | 0.81 | < 0.002 | 0.268 | 0.0106  | 0.00017 |
| 4-Jun-08  | 21        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 11-Jun-08 | 22        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 18-Jun-08 | 23        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 25-Jun-08 | 24        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 2-Jul-08  | 25        | 0.00081 | < 0.00002 | 0.0003   | < 0.00001 | 0.000018   | 0.00039  | < 0.0005 | < 0.0005 | < 0.01 | 0.73 | < 0.002 | 0.251 | 0.0118  | 0.0001  |
| 9-Jul-08  | 26        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 16-Jul-08 | 27        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 23-Jul-08 | 28        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 30-Jul-08 | 29        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 6-Aug-08  | 30        | 0.00108 | < 0.00002 | < 0.0002 | < 0.00001 | 0.000004   | 0.00074  | < 0.0005 | < 0.0005 | < 0.01 | 0.71 | < 0.002 | 0.281 | 0.017   | 3E-05   |
| 13-Aug-08 | 31        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 20-Aug-08 | 32        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 27-Aug-08 | 33        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 3-Sep-08  | 34        |         |           |          |           |            |          |          |          |        |      |         |       |         |         |
| 10-Sep-08 | 35        | 0.0019  | < 0.00002 | 0.0004   | < 0.00001 | 0.000041   | 0.00163  | < 0.0005 | < 0.0005 | < 0.01 | 0.73 | < 0.002 | 0.347 | 0.0225  | 5E-05   |





|           |           | Na     | Ni       | Р      | Pb        | Sb      | Se      | Si   | Sn      | Sr     | Ti       | Th                                      | U        | V         | Zn    |
|-----------|-----------|--------|----------|--------|-----------|---------|---------|------|---------|--------|----------|-----------------------------------------|----------|-----------|-------|
| Date      | Cycle No. | 144    |          |        | 1 2       |         | - 00    | O.   | Oii     | O.     |          | • • • • • • • • • • • • • • • • • • • • |          | •         |       |
|           |           | mg/L   | mg/L     | mg/L   | mg/L      | mg/L    | mg/L    | mg/L | mg/L    | mg/L   | mg/L     | mg/L                                    | mg/L     | mg/L      | mg/L  |
| 9-Jan-08  | 0         | 1.69   | 0.0014   | 0.04   | 0.00014   | 0.00069 | < 0.001 | 0.31 | 0.0157  | 0.0042 | 0.0003   | 0.000027                                | 0.000053 | 0.00021   | 0.003 |
| 16-Jan-08 | 1         | 1.03   | 0.0004   | 0.01   | 0.00012   | 0.0009  | < 0.001 | 0.44 | 0.0138  | 0.0039 | < 0.0001 | 0.000015                                | 0.000585 | 0.00015   | 0.002 |
| 23-Jan-08 | 2         | 0.68   | 0.0002   | < 0.01 | 0.00007   | 0.00066 | < 0.001 | 0.52 | 0.00544 | 0.003  | < 0.0001 | 0.00001                                 | 0.000427 | 0.00009   | 0.002 |
| 30-Jan-08 | 3         | 0.33   | 0.0001   | 0.02   | < 0.00002 | 0.00063 | < 0.001 | 0.61 | 0.00715 | 0.002  | 0.0001   | < 0.000002                              | 0.000371 | 0.00013   | 0.003 |
| 6-Feb-08  | 4         |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 13-Feb-08 | 5         | 0.17   | < 0.0001 | 0.02   | 0.00003   | 0.00055 | < 0.001 | 0.59 | 0.009   | 0.0012 | < 0.0001 | 0.000002                                | 0.000401 | 0.00012   | 0.002 |
| 20-Feb-08 | 6         |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 27-Feb-08 | 7         | 0.11   | < 0.0001 | 0.02   | 0.00004   | 0.00041 | < 0.001 | 0.52 | 0.00866 | 0.001  | < 0.0001 | < 0.000002                              | 0.000258 | 0.00012   | 0.003 |
| 05-Mar-08 | 8         |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 12-Mar-08 | 9         |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 19-Mar-08 | 10        | 0.11   | 0.0002   | < 0.01 | 0.00014   | 0.00051 | < 0.001 | 0.8  | 0.00712 | 0.0011 | < 0.0001 | < 0.000002                              | 0.000192 | 0.00015   | 0.003 |
| 26-Mar-08 | 11        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 2-Apr-08  | 12        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 9-Apr-08  | 13        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 16-Apr-08 | 14        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 23-Apr-08 | 15        | 0.09   | 0.0003   | < 0.01 | 0.00003   | 0.0002  | < 0.001 | 0.7  | 0.00653 | 0.0011 | < 0.0001 | 0.0001                                  | 0.000125 | 0.00008   | 0.002 |
| 30-Apr-08 | 16        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 7-May-08  | 17        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 14-May-08 | 18        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 21-May-08 | 19        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 28-May-08 | 20        | 0.02   | 0.0007   | < 0.01 | 0.00006   | 0.00037 | < 0.001 | 0.66 | 0.00698 | 0.0009 | < 0.0001 | 0.000003                                | 0.000092 | 0.00004   | 0.003 |
| 4-Jun-08  | 21        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 11-Jun-08 | 22        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 18-Jun-08 | 23        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 25-Jun-08 | 24        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 2-Jul-08  | 25        | 0.04   | 0.0013   | < 0.01 | 0.00035   | 0.00027 | < 0.001 | 0.61 | 0.00502 | 0.001  | < 0.0001 | < 0.000002                              | 0.0011   | 0.00003   | 0.004 |
| 9-Jul-08  | 26        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 16-Jul-08 | 27        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 23-Jul-08 | 28        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 30-Jul-08 | 29        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 6-Aug-08  | 30        | 0.04   | 0.0038   | < 0.01 | 0.00006   | 0.00011 | < 0.001 | 0.51 | 0.00323 | 0.0012 | < 0.0001 | < 0.000002                              | 0.000098 | < 0.00003 | 0.002 |
| 13-Aug-08 | 31        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 20-Aug-08 | 32        |        |          |        | -         |         |         |      |         |        |          |                                         |          |           |       |
| 27-Aug-08 | 33        |        |          |        |           |         |         |      |         |        |          |                                         |          |           |       |
| 3-Sep-08  | 34        |        |          |        | -         |         |         |      |         |        |          |                                         |          |           |       |
| 10-Sep-08 | 35        | < 0.01 | 0.0076   | < 0.01 | 0.00015   | 0.00058 | < 0.001 | 0.66 | 0.0059  | 0.0017 | < 0.0001 | 0.000021                                | 0.000162 | < 0.00003 | 0.003 |





|           |           | Volume | Volume    |       |              | A.II. II. II.      |                    | 224  |      |          | _         |        |          |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Date      | Cycle No. | Added  | Recovered | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
| Date      | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 17-Sep-08 | 36        | 1000   | 974       | 5.79  | 11           | <2                 | 2                  | 3    | 0.41 |          |           |        |          |
| 24-Sep-08 | 37        | 1000   | 990       | 5.96  | 10           | < 2                | < 2                | 3    | 0.41 |          |           |        |          |
| 1-Oct-08  | 38        | 1000   | 976       | 5.91  | 10           | <2                 | 2                  | 2.8  | 0.38 |          |           |        |          |
| 8-Oct-08  | 39        | 1000   | 980       | 6.11  | 8            | < 2                | < 2                | 2.9  | 0.37 |          |           |        |          |
| 15-Oct-08 | 40        | 1000   | 986       | 5.86  | 9            | < 2                | 2                  | 2.7  | 0.33 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 22-Oct-08 | 41        | 1000   | 971       | 5.78  | 12           | < 2                | 4                  | 2.9  | 0.39 |          |           |        |          |
| 29-Oct-08 | 42        | 1000   | 953       | 5.65  | 14           | < 2                | < 2                | 3    | 0.38 |          |           |        |          |
| 5-Nov-08  | 43        | 1000   | 985       | 5.83  | 16           | < 2                | 3                  | 3    | 0.4  |          |           |        |          |
| 12-Nov-08 | 44        | 1000   | 982       | 5.76  | 8            | < 2                | 4                  | 2.5  | 0.33 |          |           |        |          |
| 19-Nov-08 | 45        | 1000   | 981       | 5.38  | 43           | < 2                | < 2                | 3.2  | 0.4  | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 26-Nov-08 | 46        | 1000   | 952       | 5.09  | 8            | 2                  | 3                  | 2.7  | 0.33 |          |           |        |          |
| 3-Dec-08  | 47        | 1000   | 991       | 5.69  | 11           | < 2                | 3                  | 3.3  | 0.41 |          |           |        |          |
| 10-Dec-08 | 48        | 1000   | 989       | 5.7   | 16           | < 2                | 3                  | 3    | 0.37 |          |           |        |          |
| 17-Dec-08 | 49        | 1000   | 980       | 5.72  | 7            | < 2                | 3                  | 3.9  | 0.32 |          |           |        |          |
| 24-Dec-08 | 50        | 1000   | 980       | 5.72  | 9            | < 2                | 2                  | 2.8  | 0.27 | < 0.0001 | < 0.00001 | < 0.01 | 0.0002   |
| 30-Dec-08 | 51        | 1000   | 946       | 5.67  | 11           | < 2                | 4                  | 2.9  | 0.34 |          |           |        |          |
| 7-Jan-09  | 52        | 1000   | 985       | 5.62  | 10           | < 2                | < 2                | 2.9  | 0.36 |          |           |        |          |
| 14-Jan-09 | 53        | 1000   | 974       | 5.59  | 9            | < 2                | 2                  | 2.7  | 0.32 |          |           |        |          |





| Date      | Cycle No. | Ba<br>mg/L | Be<br>mg/L | B<br>mg/L | Bi<br>mg/L | Cd<br>mg/L | Co<br>mg/L | Cr<br>mg/L | Cu<br>mg/L | Fe<br>mg/L | K<br>mg/L | Li<br>mg/L | Mg<br>mg/L | Mn<br>mg/L | Mo<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 15-Oct-08 | 40        | 0.00182    | < 0.00002  | < 0.0002  | < 0.00001  | 0.000071   | 0.00247    | < 0.0005   | < 0.0005   | < 0.01     | 0.64      | < 0.002    | 0.287      | 0.0217     | < 0.00001  |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 19-Nov-08 | 45        | 0.00299    | < 0.00002  | 0.0004    | < 0.00001  | 0.000156   | 0.00408    | < 0.0005   | 0.0006     | 0.01       | 0.71      | < 0.002    | 0.349      | 0.0299     | 2E-05      |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Dec-08 | 50        | 0.00307    | < 0.00002  | < 0.0002  | < 0.00001  | 0.000162   | 0.00526    | < 0.0005   | 0.0012     | 0.01       | 0.65      | < 0.002    | 0.281      | 0.0279     | 0.0001     |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |





| Date      | Cycle No. | Na<br>mg/L | Ni<br>mg/L | P<br>mg/L | Pb<br>mg/L | Sb<br>mg/L | Se<br>mg/L | Si<br>mg/L | Sn<br>mg/L | Sr<br>mg/L | Ti<br>mg/L | Th<br>mg/L | U<br>mg/L | V<br>mg/L | Zn<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|-----------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 15-Oct-08 | 40        | 0.02       | 0.0101     | < 0.01    | 0.00015    | 0.00033    | < 0.001    | 0.58       | 0.00622    | 0.0013     | < 0.0001   | 0.000017   | 0.000158  | < 0.00003 | 0.005      |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 19-Nov-08 | 45        | 0.02       | 0.0158     | < 0.01    | 0.00022    | < 0.0002   | < 0.001    | 0.59       | 0.0036     | 0.0016     | < 0.0001   | 0.00002    | 0.000204  | < 0.00003 | 0.007      |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Dec-08 | 50        | < 0.01     | 0.0187     | < 0.01    | 0.00026    | < 0.0002   | < 0.001    | 0.52       | 0.00358    | 0.0019     | < 0.0001   | < 0.000002 | 0.000267  | < 0.00003 | 0.01       |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            | 1          |            |            |           |           |            |





|           |           | Volume | Volume    |       | 0 1 4 4      | A 11 . 12 . 24     | A 174              | 204  | •    |          |           |        |          |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Date      | Cycle No. | Added  | Recovered | pН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
|           | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 9-Jan-08  | 0         | 1000   | 783       | 6.28  | 795          | 4                  | 5                  | 360  | 54.5 | < 0.0001 | 0.00001   | 0.03   | 0.0006   |
| 16-Jan-08 | 1         | 1000   | 929       | 5.87  | 673          | < 2                | 8                  | 330  | 40   | < 0.0001 | < 0.00001 | 0.02   | 0.0003   |
| 23-Jan-08 | 2         | 1000   | 934       | 6.32  | 574          | < 2                | 8                  | 270  | 37.4 | < 0.0001 | < 0.00001 | < 0.01 | 0.0005   |
| 30-Jan-08 | 3         | 1000   | 981       | 3.98  | 365          | < 2                | 13                 | 150  | 21.4 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 6-Feb-08  | 4         | 1000   | 947       | 6.39  | 188          | < 2                | 4                  | 81   | 12.4 |          |           |        |          |
| 13-Feb-08 | 5         | 1000   | 952       | 4.42  | 161          | < 2                | 7                  | 58   | 8.29 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 20-Feb-08 | 6         | 1000   | 979       | 6.23  | 112          | < 2                | < 2                | 51   | 6.93 |          |           |        |          |
| 27-Feb-08 | 7         | 1000   | 931       | 6.33  | 119          | < 2                | 4                  | 46   | 6.32 | < 0.0001 | < 0.00001 | < 0.01 | 0.0003   |
| 05-Mar-08 | 8         | 1000   | 926       | 6.25  | 111          | < 2                | < 2                | 44   | 5.63 |          |           |        |          |
| 12-Mar-08 | 9         | 1000   | 971       | 5.96  | 102          | < 2                | 4                  | 43   | 5.97 |          |           |        |          |
| 19-Mar-08 | 10        | 1000   | 942       | 5.38  | 93           | < 2                | 4                  | 41   | 5.85 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 26-Mar-08 | 11        | 1000   | 923       | 6.42  | 92           | 2                  | 2                  | 35   | 4.89 |          |           |        |          |
| 2-Apr-08  | 12        | 1000   | 946       | 5.73  | 90           | < 2                | 3                  | 39   | 5.11 |          |           |        |          |
| 9-Apr-08  | 13        | 1000   | 956       | 5.64  | 101          | 4                  | 4                  | 38   | 4.97 |          |           |        |          |
| 16-Apr-08 | 14        | 1000   | 958       | 6.11  | 104          | < 2                | 2                  | 40   | 5.44 |          |           |        |          |
| 23-Apr-08 | 15        | 1000   | 990       | 4.99  | 104          | < 2                | 3                  | 40   | 6.43 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 30-Apr-08 | 16        | 1000   | 953       | 6.21  | 106          | < 2                | < 2                | 43   | 5.52 |          |           |        |          |
| 7-May-08  | 17        | 1000   | 962       | 4.57  | 115          | < 2                | 5                  | 42   | 5.6  |          |           |        |          |
| 14-May-08 | 18        | 1000   | 948       | 5.75  | 99           | < 2                | 2                  | 38   | 5.17 |          |           |        |          |
| 21-May-08 | 19        | 1000   | 977       | 5.9   | 100          | < 2                | 3                  | 39   | 5.08 |          |           |        |          |
| 28-May-08 | 20        | 1000   | 887       | 5.8   | 101          | 3                  | < 2                | 34   | 4.84 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 4-Jun-08  | 21        | 1000   | 937       | 6.41  | 97           | < 2                | < 2                | 36   | 4.81 |          |           |        |          |
| 11-Jun-08 | 22        | 1000   | 980       | 5.85  | 109          | < 2                | 3                  | 41   | 6.02 |          |           |        |          |
| 18-Jun-08 | 23        | 1000   | 955       | 6.19  | 115          | < 2                | 2                  | 45   | 6.23 |          |           |        |          |
| 25-Jun-08 | 24        | 1000   | 998       | 6.14  | 86           | < 2                | 43                 | 41   | 5.43 |          |           |        |          |
| 2-Jul-08  | 25        | 1000   | 935       | 6.03  | 106          | < 2                | 2                  | 42   | 5.75 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 9-Jul-08  | 26        | 1000   | 977       | 5.79  | 108          | < 2                | < 2                | 41   | 5.46 |          |           |        |          |
| 16-Jul-08 | 27        | 1000   | 954       | 5.9   | 106          | < 2                | 3                  | 41   | 5.8  |          |           |        |          |
| 23-Jul-08 | 28        | 1000   | 923       | 6.58  | 101          | 4                  | 3                  | 37   | 5.16 |          |           |        |          |
| 30-Jul-08 | 29        | 1000   | 941       | 5.89  | 103          | < 2                | 3                  | 43   | 5.65 |          |           |        |          |
| 6-Aug-08  | 30        | 1000   | 952       | 6.36  | 130          | < 2                | < 2                | 55   | 8.07 | < 0.0001 | < 0.00001 | < 0.01 | 0.0003   |
| 13-Aug-08 | 31        | 1000   | 974       | 6.14  | 105          | < 2                | 2                  | 43   | 5.92 |          |           |        |          |
| 20-Aug-08 | 32        | 1000   | 900       | 5.91  | 135          | < 2                | 2                  | 38   | 5.12 |          |           |        |          |
| 27-Aug-08 | 33        | 1000   | 942       | 5.99  | 105          | < 2                | 3                  | 42   | 5.47 |          |           |        |          |
| 3-Sep-08  | 34        | 1000   | 954       | 5.96  | 108          | < 2                | < 2                | 43   | 5.83 |          |           |        |          |
| 10-Sep-08 | 35        | 1000   | 963       | 6.12  | 117          | 3                  | < 2                | 47   | 6.38 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |





|           |           |         |           | _      |           |            | _        |          | _        |        |      |         |      |        |         |
|-----------|-----------|---------|-----------|--------|-----------|------------|----------|----------|----------|--------|------|---------|------|--------|---------|
| Date      | Cycle No. | Ва      | Be        | В      | Bi        | Cd         | Co       | Cr       | Cu       | Fe     | K    | Li      | Mg   | Mn     | Мо      |
| Date      | Cycle No. | mg/L    | mg/L      | mg/L   | mg/L      | mg/L       | mg/L     | mg/L     | mg/L     | mg/L   | mg/L | mg/L    | mg/L | mg/L   | mg/L    |
| 9-Jan-08  | 0         | 0.0117  | 0.00003   | 0.0144 | 0.00002   | 0.000027   | 0.035    | < 0.0005 | 0.0032   | 0.16   | 6.01 | < 0.002 | 58.1 | 0.43   | 0.00281 |
| 16-Jan-08 | 1         | 0.00635 | < 0.00002 | 0.0117 | < 0.00001 | 0.000006   | 0.00678  | < 0.0005 | 0.0007   | 0.01   | 3.8  | 0.002   | 52.1 | 0.284  | 0.00102 |
| 23-Jan-08 | 2         | 0.00551 | < 0.00002 | 0.0128 | < 0.00001 | < 0.000003 | 0.004292 | < 0.0005 | 0.0006   | 0.01   | 3.36 | < 0.002 | 43.6 | 0.232  | 0.00064 |
| 30-Jan-08 | 3         | 0.00393 | < 0.00002 | 0.0122 | < 0.00001 | 0.000008   | 0.00227  | < 0.0005 | < 0.0005 | < 0.01 | 2.57 | < 0.002 | 23.5 | 0.131  | 0.00059 |
| 6-Feb-08  | 4         |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 13-Feb-08 | 5         | 0.00192 | < 0.00002 | 0.0079 | < 0.00001 | < 0.000003 | 0.00108  | < 0.0005 | < 0.0005 | < 0.01 | 1.41 | < 0.002 | 9.2  | 0.0537 | 0.00043 |
| 20-Feb-08 | 6         |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 27-Feb-08 | 7         | 0.00176 | < 0.00002 | 0.0073 | < 0.00001 | 0.000003   | 0.001    | < 0.0005 | < 0.0005 | < 0.01 | 1.13 | < 0.002 | 7.36 | 0.0514 | 0.00048 |
| 05-Mar-08 | 8         |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 12-Mar-08 | 9         |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 19-Mar-08 | 10        | 0.00153 | < 0.00002 | 0.0045 | < 0.00001 | < 0.000003 | 0.000849 | < 0.0005 | < 0.0005 | < 0.01 | 0.9  | < 0.002 | 6.86 | 0.0463 | 0.00031 |
| 26-Mar-08 | 11        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 2-Apr-08  | 12        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 9-Apr-08  | 13        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 16-Apr-08 | 14        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 23-Apr-08 | 15        | 0.0014  | < 0.00002 | 0.0052 | < 0.00001 | < 0.000003 | 0.00113  | < 0.0005 | < 0.0005 | < 0.01 | 0.66 | < 0.002 | 6.7  | 0.0589 | 0.00025 |
| 30-Apr-08 | 16        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 7-May-08  | 17        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 14-May-08 | 18        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 21-May-08 | 19        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 28-May-08 | 20        | 0.00128 | < 0.00002 | 0.0023 | < 0.00001 | 0.000005   | 0.00118  | < 0.0005 | < 0.0005 | < 0.01 | 0.52 | < 0.002 | 6.21 | 0.06   | 0.00017 |
| 4-Jun-08  | 21        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 11-Jun-08 | 22        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 18-Jun-08 | 23        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 25-Jun-08 | 24        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 2-Jul-08  | 25        | 0.00139 | < 0.00002 | 0.0024 | < 0.00001 | < 0.000003 | 0.00157  | < 0.0005 | < 0.0005 | 0.01   | 0.42 | < 0.002 | 7.56 | 0.0841 | 0.0001  |
| 9-Jul-08  | 26        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 16-Jul-08 | 27        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 23-Jul-08 | 28        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 30-Jul-08 | 29        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 6-Aug-08  | 30        | 0.00172 | < 0.00002 | 0.0026 | < 0.00001 | 0.000008   | 0.0023   | < 0.0005 | < 0.0005 | 0.01   | 0.38 | < 0.002 | 8.86 | 0.105  | 0.0001  |
| 13-Aug-08 | 31        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 20-Aug-08 | 32        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 27-Aug-08 | 33        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 3-Sep-08  | 34        |         |           |        |           |            |          |          |          |        |      |         |      |        |         |
| 10-Sep-08 | 35        | 0.00157 | < 0.00002 | 0.0026 | < 0.00001 | 0.000007   | 0.00234  | < 0.0005 | < 0.0005 | < 0.01 | 0.28 | < 0.002 | 9.03 | 0.126  | 8E-05   |





|           |           | Na   | Ni     | Р      | Pb        | Sb      | Se      | Si   | Sn      | Sr     | Ti       | Th       | U        | V       | Zn    |
|-----------|-----------|------|--------|--------|-----------|---------|---------|------|---------|--------|----------|----------|----------|---------|-------|
| Date      | Cycle No. | mg/L | mg/L   | mg/L   | mg/L      | mg/L    | mg/L    | mg/L | mg/L    | mg/L   | mg/L     | mg/L     | mg/L     | mg/L    | mg/L  |
| 9-Jan-08  | 0         | 12.7 | 0.021  | 0.02   | 0.00009   | 0.00055 | 0.027   | 1.06 | 0.011   | 0.445  | 0.0002   | 0.00015  | 0.000065 | 0.00131 | 0.009 |
| 16-Jan-08 | 1         | 8.85 | 0.0054 | < 0.01 | < 0.00002 | 0.00045 | 0.032   | 0.86 | 0.00264 | 0.349  | < 0.0001 | 0.00006  | 0.000017 | 0.00085 | 0.005 |
| 23-Jan-08 | 2         | 6.7  | 0.0039 | < 0.01 | 0.00002   | 0.00031 | 0.024   | 1.03 | 0.00176 | 0.313  | 0.0001   | 0.000045 | 0.00002  | 0.00076 | 0.004 |
| 30-Jan-08 | 3         | 3.78 | 0.0021 | < 0.01 | 0.00002   | 0.00034 | 0.013   | 1.25 | 0.00166 | 0.178  | 0.0001   | 0.000029 | 0.000027 | 0.00076 | 0.003 |
| 6-Feb-08  | 4         |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 13-Feb-08 | 5         | 1.52 | 0.0009 | 0.02   | < 0.00002 | 0.00062 | 0.005   | 1.2  | 0.00091 | 0.0685 | 0.0003   | 0.000016 | 0.00001  | 0.00074 | 0.003 |
| 20-Feb-08 | 6         |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 27-Feb-08 | 7         | 0.95 | 0.0008 | 0.01   | < 0.00002 | 0.00038 | 0.004   | 1.1  | 0.00092 | 0.053  | < 0.0001 | 0.000021 | 0.000013 | 0.00069 | 0.003 |
| 05-Mar-08 | 8         |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 12-Mar-08 | 9         |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 19-Mar-08 | 10        | 0.46 | 0.0009 | < 0.01 | 0.00006   | 0.00044 | 0.003   | 1.18 | 0.0007  | 0.0493 | 0.0001   | 0.000008 | 0.000033 | 0.00052 | 0.003 |
| 26-Mar-08 | 11        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 2-Apr-08  | 12        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 9-Apr-08  | 13        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 16-Apr-08 | 14        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 23-Apr-08 | 15        | 0.28 | 0.0011 | < 0.01 | 0.00002   | 0.00018 | 0.003   | 1.09 | 0.0009  | 0.0476 | 0.0001   | 0.000108 | 0.000009 | 0.00033 | 0.003 |
| 30-Apr-08 | 16        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 7-May-08  | 17        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 14-May-08 | 18        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 21-May-08 | 19        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 28-May-08 | 20        | 0.08 | 0.0012 | < 0.01 | 0.00008   | 0.00032 | < 0.001 | 0.9  | 0.00049 | 0.0409 | < 0.0001 | 0.000008 | 0.000001 | 0.00027 | 0.002 |
| 4-Jun-08  | 21        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 11-Jun-08 | 22        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 18-Jun-08 | 23        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 25-Jun-08 | 24        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 2-Jul-08  | 25        | 0.06 | 0.0013 | < 0.01 | < 0.00002 | 0.00024 | 0.002   | 1.14 | 0.00059 | 0.049  | < 0.0001 | 0.000006 | 0.000035 | 0.00022 | 0.003 |
| 9-Jul-08  | 26        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 16-Jul-08 | 27        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 23-Jul-08 | 28        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 30-Jul-08 | 29        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 6-Aug-08  | 30        | 0.14 | 0.003  | < 0.01 | 0.00003   | 0.00005 | 0.003   | 1.13 | 0.0006  | 0.0532 | < 0.0001 | 0.000163 | 0.000011 | 0.00015 | 0.008 |
| 13-Aug-08 | 31        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 20-Aug-08 | 32        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 27-Aug-08 | 33        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 3-Sep-08  | 34        |      |        |        |           |         |         |      |         |        |          |          |          |         |       |
| 10-Sep-08 | 35        | 0.02 | 0.0021 | < 0.01 | 0.00003   | 0.00052 | 0.003   | 1.39 | 0.00028 | 0.0543 | 0.0002   | 0.000028 | 0.000023 | 0.00009 |       |





|           |           | Volume      | Volume          | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Са   | Hg       | Ag        | Al     | As       |
|-----------|-----------|-------------|-----------------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Date      | Cycle No. | Added<br>ml | Recovered<br>ml | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 17-Sep-08 | 36        | 1000        | 933             | 5.83  | 110          | 2                  | < 2                | 41   | 5.95 |          |           |        |          |
| 24-Sep-08 | 37        | 1000        | 979             | 5.93  | 103          | 3                  | < 2                | 42   | 5.54 |          |           |        |          |
| 1-Oct-08  | 38        | 1000        | 991             | 6     | 94           | 3                  | < 2                | 40   | 5.04 |          |           |        |          |
| 8-Oct-08  | 39        | 1000        | 995             | 6.1   | 95           | 3                  | < 2                | 39   | 4.76 |          |           |        |          |
| 15-Oct-08 | 40        | 1000        | 945             | 7.76  | 51           | 23                 | < 2                | 1.8  | 7.66 | < 0.0001 | < 0.00001 | 0.11   | < 0.0002 |
| 22-Oct-08 | 41        | 1000        | 982             | 5.84  | 89           | < 2                | 4                  | 35   | 4.56 |          |           |        |          |
| 29-Oct-08 | 42        | 1000        | 933             | 5.57  | 99           | < 2                | 3                  | 37   | 4.6  |          |           |        |          |
| 5-Nov-08  | 43        | 1000        | 948             | 5.86  | 102          | < 2                | 3                  | 39   | 4.93 |          |           |        |          |
| 12-Nov-08 | 44        | 1000        | 990             | 5.46  | 89           | < 2                | < 2                | 38   | 4.83 |          |           |        |          |
| 19-Nov-08 | 45        | 1000        | 958             | 5.75  | 96           | < 2                | 19                 | 38   | 4.9  | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 26-Nov-08 | 46        | 1000        | 946             | 5.76  | 87           | < 2                | 3                  | 37   | 4.53 |          |           |        |          |
| 3-Dec-08  | 47        | 1000        | 961             | 5.89  | 94           | < 2                | 5                  | 37   | 4.54 |          |           |        |          |
| 10-Dec-08 | 48        | 1000        | 944             | 5.69  | 94           | < 2                | 4                  | 38   | 4.51 |          |           |        |          |
| 17-Dec-08 | 49        | 1000        | 970             | 5.84  | 87           | < 2                | 2                  | 36   | 4.14 |          |           |        |          |
| 24-Dec-08 | 50        | 1000        | 960             | 5.87  | 82           | < 2                | 2                  | 33   | 3.87 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 30-Dec-08 | 51        | 1000        | 965             | 6.01  | 86           | < 2                | 3                  | 35   | 4.11 |          |           |        |          |
| 7-Jan-09  | 52        | 1000        | 954             | 5.7   | 92           | < 2                | 3                  | 37   | 4.54 |          |           |        |          |
| 14-Jan-09 | 53        | 1000        | 929             | 5.84  | 81           | < 2                | < 2                | 33   | 3.94 |          |           |        |          |





| Date      | Cycle No. | Ba<br>mg/L | Be<br>mg/L | B<br>mg/L | Bi<br>mg/L | Cd<br>mg/L | Co<br>mg/L | Cr<br>mg/L | Cu<br>mg/L | Fe<br>mg/L | K<br>mg/L | Li<br>mg/L | Mg<br>mg/L | Mn<br>mg/L | Mo<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 15-Oct-08 | 40        | 0.00061    | < 0.00002  | 0.0004    | < 0.00001  | < 0.000003 | 0.000036   | < 0.0005   | < 0.0005   | < 0.01     | 0.41      | < 0.002    | 0.878      | 0.0104     | 0.0002     |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 19-Nov-08 | 45        | 0.00117    | < 0.00002  | 0.0016    | < 0.00001  | 0.000003   | 0.00208    | < 0.0005   | < 0.0005   | 0.02       | 0.18      | < 0.002    | 7.45       | 0.12       | 4E-05      |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Dec-08 | 50        | 0.001      | < 0.00002  | 0.0013    | < 0.00001  | < 0.000003 | 0.002198   | < 0.0005   | < 0.0005   | 0.02       | 0.11      | < 0.002    | 6.1        | 0.118      | 2E-05      |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |





| Date      | Cycle No. | Na<br>mg/L | Ni<br>mg/L | P<br>mg/L | Pb<br>mg/L | Sb<br>mg/L | Se<br>mg/L | Si<br>mg/L | Sn<br>mg/L | Sr<br>mg/L | Ti<br>mg/L | Th<br>mg/L | U<br>mg/L | V<br>mg/L | Zn<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|-----------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |            |            |           |           | 0.003      |
| 24-Sep-08 | 37        |            |            |           |            |            |            | -          |            | -          |            |            |           |           |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 15-Oct-08 | 40        | 0.15       | 0.0002     | 0.03      | 0.00002    | 0.00032    | < 0.001    | 0.55       | 0.00253    | 0.0503     | < 0.0001   | 0.000004   | 0.000077  | 0.00316   | < 0.001    |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 19-Nov-08 | 45        | 0.04       | 0.0019     | < 0.01    | 0.00003    | < 0.0002   | 0.001      | 1.23       | 0.00028    | 0.0418     | < 0.0001   | 0.000006   | 0.000006  | 0.00004   | 0.002      |
| 26-Nov-08 | 46        |            |            |           |            |            |            | -          |            | -          |            |            |           |           |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            | -          |            |            |            |            |           |           |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Dec-08 | 50        | 0.03       | 0.0022     | < 0.01    | < 0.00002  | < 0.0002   | 0.001      | 1.2        | 0.00032    | 0.0342     | 0.0002     | < 0.000002 | 0.000015  | < 0.00003 | 0.001      |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |





|           |           | Volume | Volume    |       |              |                    |                    |      |      |          |           |        |          |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Date      | Cycle No. | Added  | Recovered | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
| Date      | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 9-Jan-08  | 0         | 1000   | 802       | 6.1   | 278          | < 2                | 3                  | 1.9  | 7.1  | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 16-Jan-08 | 1         | 1000   | 863       | 4.55  | 609          | < 2                | 6                  | 6.4  | 13.7 | < 0.0001 | < 0.00001 | < 0.01 | 0.0002   |
| 23-Jan-08 | 2         | 1000   | 932       | 6.43  | 196          | < 2                | 3                  | 3.9  | 4.25 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 30-Jan-08 | 3         | 1000   | 883       | 5.19  | 169          | < 2                | < 2                | 4    | 3.69 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 6-Feb-08  | 4         | 1000   | 866       | 6.5   | 91           | < 2                | < 2                | 3.7  | 2.02 |          |           |        |          |
| 13-Feb-08 | 5         | 1000   | 924       | 4.38  | 62           | < 2                | 7                  | 3    | 0.87 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 20-Feb-08 | 6         | 1000   | 886       | 6.53  | 33           | < 2                | < 2                | 3.1  | 0.59 |          |           |        |          |
| 27-Feb-08 | 7         | 1000   | 940       | 5.78  | 32           | < 2                | < 2                | 3    | 0.43 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 05-Mar-08 | 8         | 1000   | 916       | 6.57  | 21           | 2                  | < 2                | 2.6  | 0.3  |          |           |        |          |
| 12-Mar-08 | 9         | 1000   | 947       | 6.46  | 16           | < 2                | < 2                | 6.4  | 0.29 |          |           |        |          |
| 19-Mar-08 | 10        | 1000   | 941       | 6.53  | 15           | < 2                | < 2                | 2.1  | 0.24 | < 0.0001 | < 0.00001 | 0.01   | < 0.0002 |
| 26-Mar-08 | 11        | 1000   | 954       | 6.65  | 16           | 3                  | < 2                | 1.9  | 0.25 |          |           |        |          |
| 2-Apr-08  | 12        | 1000   | 934       | 4.04  | 50           | < 2                | 7                  | 4.2  | 0.17 |          |           |        |          |
| 9-Apr-08  | 13        | 1000   | 964       | 6.53  | 14           | 3                  | < 2                | 1.5  | 0.18 |          |           |        |          |
| 16-Apr-08 | 14        | 1000   | 978       | 6.39  | 15           | 3                  | < 2                | 1.6  | 0.21 |          |           |        |          |
| 23-Apr-08 | 15        | 1000   | 925       | 5.37  | 13           | < 2                | 67                 | 1.3  | 0.16 | < 0.0001 | < 0.00001 | 0.03   | < 0.0002 |
| 30-Apr-08 | 16        | 1000   | 986       | 6.45  | 11           | 3                  | < 2                | 1.3  | 0.19 |          |           |        |          |
| 7-May-08  | 17        | 1000   | 977       | 6.67  | 14           | 3                  | < 2                | 1.3  | 0.21 |          |           |        |          |
| 14-May-08 | 18        | 1000   | 954       | 4.55  | 35           | < 2                | 4                  | 0.8  | 0.2  |          |           |        |          |
| 21-May-08 | 19        | 1000   | 976       | 6.99  | 14           | 3                  | < 2                | 1    | 0.18 |          |           |        |          |
| 28-May-08 | 20        | 1000   | 912       | 6.59  | 13           | < 2                | < 2                | 0.9  | 0.14 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 4-Jun-08  | 21        | 1000   | 927       | 6.56  | 13           | < 2                | < 2                | 1.2  | 0.31 |          |           |        |          |
| 11-Jun-08 | 22        | 1000   | 976       | 6.58  | 9            | 3                  | < 2                | 0.9  | 0.22 |          |           |        |          |
| 18-Jun-08 | 23        | 1000   | 962       | 6.92  | 13           | 4                  | < 2                | 1.1  | 0.23 |          |           |        |          |
| 25-Jun-08 | 24        | 1000   | 984       | 6.68  | 8            | 3                  | 56                 | 0.8  | 0.18 |          |           |        |          |
| 2-Jul-08  | 25        | 1000   | 966       | 6.66  | 11           | 3                  | < 2                | 1    | 0.16 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 9-Jul-08  | 26        | 1000   | 986       | 6.55  | 8            | 2                  | < 2                | 0.9  | 0.17 |          |           |        |          |
| 16-Jul-08 | 27        | 1000   | 983       | 6.54  | 8            | 3                  | < 2                | 0.8  | 0.15 |          |           |        |          |
| 23-Jul-08 | 28        | 1000   | 928       | 6.36  | 6            | 2                  | < 2                | 0.7  | 0.09 |          |           |        |          |
| 30-Jul-08 | 29        | 1000   | 983       | 6.52  | 7            | 3                  | < 2                | 0.9  | 0.17 |          |           |        |          |
| 6-Aug-08  | 30        | 1000   | 938       | 6.61  | 6            | 2                  | < 2                | 0.7  | 0.12 | < 0.0001 | < 0.00001 | < 0.01 | 0.0003   |
| 13-Aug-08 | 31        | 1000   | 931       | 6.67  | 6            | < 2                | < 2                | 0.6  | 0.25 |          |           |        |          |
| 20-Aug-08 | 32        | 1000   | 879       | 6.51  | 10           | 3                  | < 2                | 0.9  | 0.13 |          |           |        |          |
| 27-Aug-08 | 33        | 1000   | 924       | 6.51  | 7            | 2                  | < 2                | 0.7  | 0.13 |          |           |        |          |
| 3-Sep-08  | 34        | 1000   | 944       | 6.46  | 7            | < 2                | < 2                | 0.6  | 0.12 |          |           |        |          |
| 10-Sep-08 | 35        | 1000   | 976       | 6.78  | 7            | 2                  | <2                 | 0.0  | 0.13 | < 0.0001 | < 0.00001 |        | < 0.0002 |
| 10-3ep-06 | აა        | 1000   | 910       | 0.70  | 1            |                    | <∠                 | 0.7  | 0.10 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |





|           |           | Ba      | Be        | В      | Bi        | Cd         | Со       | Cr             | Cu       | Fe     | К    | Li      | Mg    | Mn      | Мо      |
|-----------|-----------|---------|-----------|--------|-----------|------------|----------|----------------|----------|--------|------|---------|-------|---------|---------|
| Date      | Cycle No. |         | De        |        |           | Ou         |          | O <sub>1</sub> | Ou       |        |      |         |       | 14111   |         |
|           |           | mg/L    | mg/L      | mg/L   | mg/L      | mg/L       | mg/L     | mg/L           | mg/L     | mg/L   | mg/L | mg/L    | mg/L  | mg/L    | mg/L    |
| 9-Jan-08  | 0         | 0.00199 | < 0.00002 | 0.0024 | 0.00001   | 0.000015   | 0.00132  | < 0.0005       | 0.0009   | < 0.01 | 1.32 | < 0.002 | 21.2  | 0.0356  | 0.00159 |
| 16-Jan-08 | 1         | 0.00272 | < 0.00002 | 0.0026 | < 0.00001 | 0.000046   | 0.00119  | < 0.0005       | 0.0009   | < 0.01 | 1.27 | < 0.002 | 46.8  | 0.0689  | 0.00421 |
| 23-Jan-08 | 2         | 0.00111 | < 0.00002 | 0.003  | < 0.00001 | 0.000015   | 0.000445 | < 0.0005       | 0.0006   | < 0.01 | 1    | < 0.002 | 15.6  | 0.02302 | 0.00615 |
| 30-Jan-08 | 3         | 0.0009  | < 0.00002 | 0.0028 | < 0.00001 | < 0.000003 | 0.000132 | < 0.0005       | 0.0007   | < 0.01 | 0.93 | < 0.002 | 13.5  | 0.0175  | 0.0084  |
| 6-Feb-08  | 4         |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 13-Feb-08 | 5         | 0.00029 | < 0.00002 | 0.0026 | < 0.00001 | < 0.000003 | 0.000143 | < 0.0005       | < 0.0005 | < 0.01 | 0.54 | < 0.002 | 3.09  | 0.00545 | 0.012   |
| 20-Feb-08 | 6         |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 27-Feb-08 | 7         | 0.00017 | < 0.00002 | 0.0024 | < 0.00001 | 0.00001    | 0.000099 | < 0.0005       | < 0.0005 | < 0.01 | 0.4  | < 0.002 | 1.56  | 0.00327 | 0.0244  |
| 05-Mar-08 | 8         |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 12-Mar-08 | 9         |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 19-Mar-08 | 10        | 0.00012 | < 0.00002 | 0.002  | < 0.00001 | 0.000018   | 0.000072 | < 0.0005       | < 0.0005 | < 0.01 | 0.37 | < 0.002 | 0.952 | 0.00244 | 0.0304  |
| 26-Mar-08 | 11        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 2-Apr-08  | 12        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 9-Apr-08  | 13        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 16-Apr-08 | 14        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 23-Apr-08 | 15        | 0.00011 | < 0.00002 | 0.0024 | < 0.00001 | 0.000029   | 0.000084 | < 0.0005       | < 0.0005 | < 0.01 | 0.29 | < 0.002 | 0.594 | 0.00183 | 0.0312  |
| 30-Apr-08 | 16        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 7-May-08  | 17        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 14-May-08 | 18        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 21-May-08 | 19        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 28-May-08 | 20        | 0.00008 | < 0.00002 | 0.0011 | < 0.00001 | 0.000014   | 0.000072 | < 0.0005       | < 0.0005 | < 0.01 | 0.3  | < 0.002 | 0.519 | 0.0018  | 0.0248  |
| 4-Jun-08  | 21        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 11-Jun-08 | 22        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 18-Jun-08 | 23        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 25-Jun-08 | 24        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 2-Jul-08  | 25        | 0.00009 | < 0.00002 | 0.0013 | < 0.00001 | 0.000009   | 0.000028 | < 0.0005       | < 0.0005 | < 0.01 | 0.34 | < 0.002 | 0.604 | 0.0015  | 0.0217  |
| 9-Jul-08  | 26        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 16-Jul-08 | 27        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 23-Jul-08 | 28        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 30-Jul-08 | 29        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 6-Aug-08  | 30        | 0.00006 | < 0.00002 | 0.0005 | < 0.00001 | < 0.000003 | 0.000051 | < 0.0005       | < 0.0005 | < 0.01 | 0.29 | < 0.002 | 0.422 | 0.00186 | 0.0164  |
| 13-Aug-08 | 31        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 20-Aug-08 | 32        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 27-Aug-08 | 33        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 3-Sep-08  | 34        |         |           |        |           |            |          |                |          |        |      |         |       |         |         |
| 10-Sep-08 | 35        | 0.00011 | < 0.00002 | 0.0012 | < 0.00001 | 0.00001    | 0.00007  | < 0.0005       | < 0.0005 | < 0.01 | 0.33 | < 0.002 | 0.554 | 0.00316 | 0.0133  |





| Date         Cycle No.         Na         Ni         P         Pb         Sb         Se         Si         Sn         Sr         Ti         Th           9-Jan-08         0         2.24         0.0015         0.03         0.0002         0.00046         < 0.001         0.2         0.0193         0.0308         < 0.0001         0.00054           16-Jan-08         1         3.23         0.0024         0.0005         0.00047         0.002         0.18         0.0193         0.0647         < 0.0001         0.000054           23-Jan-08         2         1.93         0.0008         < 0.01         0.000025         0.00034         0.001         0.26         0.00904         0.0199         < 0.0001         0.000015           30-Jan-08         3         1.69         0.0007         0.01         0.00008         0.0032         0.003         0.23         0.00635         0.0173         < 0.0001         0.00001           6-Feb-08         4                            - | U mg/L 0.000003 < 0.000001 0.000001 | 0.00019   | <b>Zn mg/L</b> 0.003 0.002 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|----------------------------|
| 16-Jan-08         1         3.23         0.0024         0.02         0.00005         0.00047         0.002         0.18         0.0193         0.0647         < 0.0001         0.00012           23-Jan-08         2         1.93         0.0008         < 0.01         0.00025         0.00034         0.001         0.26         0.00904         0.0199         < 0.0001         0.000015           30-Jan-08         3         1.69         0.0007         0.01         0.00008         0.00032         0.003         0.23         0.00635         0.0173         < 0.0001         0.000006           6-Feb-08         4                                                       <                                                                                                                                                                                                                                                                                                                 | < 0.000001<br>0.000002<br>0.000001  | 0.00019   |                            |
| 23-Jan-08         2         1.93         0.0008         < 0.01         0.00025         0.00034         0.001         0.26         0.00904         0.0199         < 0.0001         0.000015           30-Jan-08         3         1.69         0.0007         0.01         0.00008         0.00032         0.003         0.23         0.00635         0.0173         < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000002<br>0.000001                |           | 0.000                      |
| 30-Jan-08         3         1.69         0.0007         0.01         0.00008         0.00032         0.003         0.23         0.00635         0.0173         < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000001                            | 2 0.00021 | 0.002                      |
| 6-Feb-08         4                                                                                                      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | - 0.0002  | 0.002                      |
| 13-Feb-08       5       0.72       0.0003       0.02       < 0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 1 0.00026 | 0.001                      |
| 20-Feb-08       6                                                                                                               <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |           |                            |
| 20-Feb-08       6                                                                                                               <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000002                            | 2 0.00036 | < 0.001                    |
| 27-Feb-08       7       0.55       0.0003       < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |           |                            |
| 05-Mar-08         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000004                            | 4 0.00045 | 0.003                      |
| 12-Mar-08     9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |           |                            |
| 19-Mar-08       10       0.38       0.0004       < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |           |                            |
| 26-Mar-08       11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000021                            | 1 0.00065 | < 0.001                    |
| 2-Apr-08     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |           |                            |
| 9-Apr-08     13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |           |                            |
| 16-Apr-08     14                                                                                                                          -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |           |                            |
| 23-Apr-08     15     0.28     0.0002     0.01     < 0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |           | <b></b>                    |
| 30-Apr-08 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.000001                          | 0.00052   | < 0.001                    |
| 7-May-08 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |           |                            |
| 21-May-08 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |                            |
| 28-May-08 20 0.18 0.0002 < 0.01 0.00006 0.00039 < 0.001 0.21 0.00191 0.0009 < 0.0001 < 0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.000001                          | 0.00073   | 0.004                      |
| 4-Jun-08 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |           |                            |
| 11-Jun-08 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |                            |
| 18-Jun-08 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |                            |
| 25-Jun-08 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |                            |
| 2-Jul-08 25 0.17 < 0.0001 < 0.01 < 0.0002 0.00035 < 0.001 0.27 0.0015 0.0009 < 0.0001 < 0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000078                            | 8 0.00077 | < 0.001                    |
| 9-Jul-08 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |           |                            |
| 16-Jul-08 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |                            |
| 23-Jul-08 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |                            |
| 30-Jul-08 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |                            |
| 6-Aug-08 30 0.13 0.0001 < 0.01 < 0.00002 0.00013 < 0.001 0.19 0.00104 0.0006 < 0.0001 < 0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.000001                          |           | < 0.001                    |
| 13-Aug-08 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                                   |           |                            |
| 20-Aug-08 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |                            |
| 27-Aug-08 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |                            |
| 3-Sep-08 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |           |                            |
| 10-Sep-08 35 0.09 < 0.0001 < 0.01 < 0.00002 0.00051 < 0.001 0.27 0.00123 0.0007 < 0.0001 0.000017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |           |                            |





|           |           | Volume | Volume    |       |              |                    |                    |      |      |          |           |        | _        |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Data      | Cycle No  | Added  | Recovered | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
| Date      | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 17-Sep-08 | 36        | 1000   | 912       | 6.49  | 6            | < 2                | < 2                | 0.6  | 0.14 |          |           |        |          |
| 24-Sep-08 | 37        | 1000   | 918       | 6.63  | 5            | 2                  | <2                 | 0.6  | 0.11 |          |           |        |          |
| 1-Oct-08  | 38        | 1000   | 980       | 6.71  | 6            | 3                  | <2                 | 0.7  | 0.16 |          |           |        |          |
| 8-Oct-08  | 39        | 1000   | 948       | 6.68  | 6            | 2                  | <2                 | 2.4  | 0.13 |          |           |        |          |
| 15-Oct-08 | 40        | 1000   | 987       | 6.7   | 6            | 2                  | < 2                | 0.6  | 0.12 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 22-Oct-08 | 41        | 1000   | 980       | 6.6   | 7            | 2                  | < 2                | 0.6  | 0.14 |          |           |        |          |
| 29-Oct-08 | 42        | 1000   | 918       | 6.5   | 7            | < 2                | < 2                | 0.7  | 0.1  |          |           |        |          |
| 5-Nov-08  | 43        | 1000   | 932       | 6.66  | 7            | < 2                | < 2                | 0.6  | 0.13 |          |           |        |          |
| 12-Nov-08 | 44        | 1000   | 965       | 6.59  | 5            | < 2                | < 2                | 0.6  | 0.12 |          |           |        |          |
| 19-Nov-08 | 45        | 1000   | 946       | 6.59  | 5            | < 2                | < 2                | 0.6  | 0.12 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 26-Nov-08 | 46        | 1000   | 936       | 6.52  | 5            | < 2                | < 2                | 0.6  | 0.12 |          |           |        |          |
| 3-Dec-08  | 47        | 1000   | 940       | 6.45  | 6            | < 2                | 3                  | 0.6  | 0.11 |          |           |        |          |
| 10-Dec-08 | 48        | 1000   | 991       | 6.55  | 13           | 2                  | < 2                | 0.6  | 0.17 |          |           |        |          |
| 17-Dec-08 | 49        | 1000   | 952       | 6.63  | 5            | < 2                | < 2                | 0.6  | 0.13 |          |           |        |          |
| 24-Dec-08 | 50        | 1000   | 960       | 6.76  | 8            | 2                  | < 2                | 0.6  | 0.08 | < 0.0001 | < 0.00001 | 0.01   | < 0.0002 |
| 30-Dec-08 | 51        | 1000   | 958       | 6.62  | 5            | < 2                | < 2                | 0.6  | 0.12 |          |           |        |          |
| 7-Jan-09  | 52        | 1000   | 968       | 6.68  | 6            | 2                  | < 2                | 0.6  | 0.14 |          |           |        |          |
| 14-Jan-09 | 53        | 1000   | 948       | 6.56  | 5            | < 2                | < 2                | 0.5  | 0.11 |          |           |        |          |





| Date      | Cycle No. | Ba<br>mg/L | Be<br>mg/L | B<br>mg/L | Bi<br>mg/L | Cd<br>mg/L | Co<br>mg/L | Cr<br>mg/L | Cu<br>mg/L | Fe<br>mg/L | K<br>mg/L | Li<br>mg/L | Mg<br>mg/L | Mn<br>mg/L | Mo<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 15-Oct-08 | 40        | 0.00006    | < 0.00002  | 0.0006    | < 0.00001  | 0.000009   | 0.000052   | < 0.0005   | < 0.0005   | < 0.01     | 0.3       | < 0.002    | 0.429      | 0.00124    | 0.0124     |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 19-Nov-08 | 45        | 0.0001     | < 0.00002  | 0.0007    | < 0.00001  | < 0.000003 | 0.000034   | < 0.0005   | < 0.0005   | < 0.01     | 0.29      | < 0.002    | 0.429      | 0.00136    | 0.0093     |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Dec-08 | 50        | 0.00002    | < 0.00002  | 0.0003    | < 0.00001  | < 0.000003 | 0.00003    | < 0.0005   | 0.0053     | < 0.01     | 0.27      | < 0.002    | 0.446      | 0.0017     | 0.0082     |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |





| Date      | Cycle No. | Na<br>mg/L | Ni<br>mg/L | P<br>mg/L | Pb<br>mg/L | Sb<br>mg/L | Se<br>mg/L | Si<br>mg/L | Sn<br>mg/L | Sr<br>mg/L | Ti<br>mg/L | Th<br>mg/L | U<br>mg/L  | V<br>mg/L | Zn<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|
| 17-Sep-08 | 36        |            |            | -         |            |            |            |            |            |            |            |            |            |           |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 15-Oct-08 | 40        | 0.08       | 0.0003     | 0.01      | < 0.00002  | 0.00029    | < 0.001    | 0.22       | 0.00098    | 0.0006     | < 0.0001   | 0.000003   | 0.000059   | 0.00077   | < 0.001    |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 19-Nov-08 | 45        | 0.07       | < 0.0001   | < 0.01    | < 0.00002  | < 0.0002   | < 0.001    | 0.22       | 0.00105    | 0.0005     | < 0.0001   | < 0.000002 | < 0.000001 | 0.00073   | < 0.001    |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 24-Dec-08 | 50        | 0.05       | 0.0002     | < 0.01    | < 0.00002  | < 0.0002   | < 0.001    | 0.23       | 0.00098    | 0.0004     | 0.0033     | < 0.000002 | 0.000011   | 0.00073   | < 0.001    |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |            |            |            |           |            |
| 14-Jan-09 | 53        |            |            | -         |            |            |            |            |            |            |            |            |            |           |            |





# Table A-7. Results of Waste Rock Humidity Cells - HC 6 Hanging wall - Amphibolite/Schist/Volcanic Tuff (07ARD30)

|           |           | Volume | Volume    |       |              |                    |                    |      |      |          |           |        |          |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Date      | Cycle No. | Added  | Recovered | pН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
|           | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 9-Jan-08  | 0         | 1000   | 813       | 6.42  | 105          | < 2                | < 2                | 2.3  | 3.85 | < 0.0001 | < 0.00001 | 0.01   | 0.0002   |
| 16-Jan-08 | 1         | 1000   | 890       | 5.66  | 157          | < 2                | 5                  | 6.1  | 5.41 | < 0.0001 | < 0.00001 | 0.02   | 0.0003   |
| 23-Jan-08 | 2         | 1000   | 924       | 6.79  | 65           | 4                  | < 2                | 5.5  | 1.96 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 30-Jan-08 | 3         | 1000   | 967       | 6.81  | 35           | 4                  | < 2                | 4.1  | 1.13 | < 0.0001 | < 0.00001 | 0.03   | < 0.0002 |
| 6-Feb-08  | 4         | 1000   | 912       | 7.01  | 22           | 4                  | < 2                | 3.7  | 0.66 |          |           |        |          |
| 13-Feb-08 | 5         | 1000   | 929       | 5.89  | 23           | 44                 | 8                  | 2.9  | 0.49 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 20-Feb-08 | 6         | 1000   | 978       | 6.51  | 18           | 2                  | < 2                | 2.6  | 0.64 |          |           |        |          |
| 27-Feb-08 | 7         | 1000   | 899       | 6.76  | 20           | 3                  | < 2                | 2.6  | 0.37 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 05-Mar-08 | 8         | 1000   | 896       | 9.04  | 38           | 7                  | < 2                | 3.2  | 0.4  |          |           |        |          |
| 12-Mar-08 | 9         | 1000   | 980       | 6.81  | 17           | 4                  | < 2                | 2.2  | 0.59 |          |           |        |          |
| 19-Mar-08 | 10        | 1000   | 913       | 6.88  | 16           | 3                  | < 2                | 2.2  | 0.33 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 26-Mar-08 | 11        | 1000   | 900       | 6.67  | 14           | 2                  | < 2                | 2.2  | 0.33 |          |           |        |          |
| 2-Apr-08  | 12        | 1000   | 922       | 6.48  | 12           | < 2                | < 2                | 2.6  | 0.32 |          |           |        |          |
| 9-Apr-08  | 13        | 1000   | 918       | 6.54  | 13           | 2                  | < 2                | 1.8  | 0.3  |          |           |        |          |
| 16-Apr-08 | 14        | 1000   | 945       | 6.15  | 17           | < 2                | < 2                | 2.1  | 0.39 |          |           |        |          |
| 23-Apr-08 | 15        | 1000   | 979       | 7.08  | 19           | 27                 | < 2                | 2    | 0.53 | < 0.0001 | < 0.00001 | 0.03   | < 0.0002 |
| 30-Apr-08 | 16        | 1000   | 947       | 6.65  | 13           | 3                  | < 2                | 2.3  | 0.38 |          |           |        |          |
| 7-May-08  | 17        | 1000   | 944       | 5.92  | 19           | < 2                | < 2                | 2.5  | 0.48 |          |           |        |          |
| 14-May-08 | 18        | 1000   | 942       | 4.8   | 27           | < 2                | 4                  | 2.1  | 0.42 |          |           |        |          |
| 21-May-08 | 19        | 1000   | 967       | 6.63  | 17           | 3                  | < 2                | 2.4  | 0.46 |          |           |        |          |
| 28-May-08 | 20        | 1000   | 859       | 4.5   | 31           | < 2                | 4                  | 2.4  | 0.42 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 4-Jun-08  | 21        | 1000   | 903       | 6.52  | 14           | < 2                | < 2                | 2.2  | 0.4  |          |           |        |          |
| 11-Jun-08 | 22        | 1000   | 978       | 6.5   | 16           | 3                  | < 2                | 2.2  | 0.51 |          |           |        |          |
| 18-Jun-08 | 23        | 1000   | 964       | 6.93  | 19           | 4                  | < 2                | 3.3  | 0.6  |          |           |        |          |
| 25-Jun-08 | 24        | 1000   | 948       | 6.61  | 11           | 2                  | 45                 | 1.7  | 0.39 |          |           |        |          |
| 2-Jul-08  | 25        | 1000   | 916       | 6.71  | 14           | 3                  | < 2                | 2.1  | 0.35 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 9-Jul-08  | 26        | 1000   | 955       | 6.44  | 12           | 2                  | < 2                | 2    | 0.37 |          |           |        |          |
| 16-Jul-08 | 27        | 1000   | 918       | 6.43  | 11           | < 2                | < 2                | 2.1  | 0.33 |          |           |        |          |
| 23-Jul-08 | 28        | 1000   | 877       | 6.25  | 8            | < 2                | < 2                | 1.9  | 0.27 |          |           |        |          |
| 30-Jul-08 | 29        | 1000   | 897       | 6.43  | 8            | < 2                | < 2                | 2    | 0.33 |          |           |        |          |
| 6-Aug-08  | 30        | 1000   | 907       | 6.54  | 10           | < 2                | < 2                | 2.2  | 0.34 | < 0.0001 | < 0.00001 | < 0.01 | 0.0003   |
| 13-Aug-08 | 31        | 1000   | 963       | 6.77  | 11           | 3                  | < 2                | 2    | 0.39 |          |           |        |          |
| 20-Aug-08 | 32        | 1000   | 876       | 6.6   | 22           | < 2                | < 2                | 2    | 0.37 |          |           |        |          |
| 27-Aug-08 | 33        | 1000   | 889       | 6.43  | 11           | 2                  | < 2                | 1.8  | 0.3  |          |           |        |          |
| 3-Sep-08  | 34        | 1000   | 947       | 6.53  | 11           | 2                  | <2                 | 2    | 0.34 |          |           |        |          |
| 10-Sep-08 | 35        | 1000   | 960       | 6.75  | 12           | 3                  | <2                 | 1.9  | 0.36 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |





|           |           | Ва      | Be        | В      | Bi        | Cd         | Со         | Cr       | Cu       | Fe     | К    | Li      | Mg    | Mn      | Мо     |
|-----------|-----------|---------|-----------|--------|-----------|------------|------------|----------|----------|--------|------|---------|-------|---------|--------|
| Date      | Cycle No. | mg/L    | mg/L      | mg/L   | mg/L      | mg/L       | mg/L       | mg/L     | mg/L     | mg/L   | mg/L | mg/L    | mg/L  | mg/L    | mg/L   |
| 9-Jan-08  | 0         | 0.0006  | < 0.00002 | 0.0064 | 0.00001   | 0.000033   | 0.00101    | < 0.0005 | 0.001    | 0.01   | 2.62 | < 0.002 | 5.27  | 0.00945 | 0.0225 |
| 16-Jan-08 | 1         | 0.00064 | < 0.00002 | 0.0075 | < 0.00001 | 0.000023   | 0.000511   | < 0.0005 | 0.0007   | < 0.01 | 1.97 | < 0.002 | 9.05  | 0.01    | 0.111  |
| 23-Jan-08 | 2         | 0.00028 | < 0.00002 | 0.0089 | < 0.00001 | 0.000062   | 0.000171   | < 0.0005 | < 0.0005 | < 0.01 | 1.38 | < 0.002 | 3.34  | 0.00391 | 0.119  |
| 30-Jan-08 | 3         | 0.00018 | < 0.00002 | 0.0091 | < 0.00001 | 0.000012   | < 0.000002 | < 0.0005 | < 0.0005 | < 0.01 | 1.14 | < 0.002 | 1.84  | 0.00227 | 0.0984 |
| 6-Feb-08  | 4         |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 13-Feb-08 | 5         | 0.00008 | < 0.00002 | 0.0051 | < 0.00001 | < 0.000003 | 0.000059   | < 0.0005 | < 0.0005 | < 0.01 | 0.76 | < 0.002 | 0.857 | 0.00161 | 0.0599 |
| 20-Feb-08 | 6         |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 27-Feb-08 | 7         | 0.0001  | < 0.00002 | 0.0046 | < 0.00001 | 0.000014   | 0.000046   | < 0.0005 | < 0.0005 | < 0.01 | 0.61 | < 0.002 | 0.644 | 0.00159 | 0.0613 |
| 05-Mar-08 | 8         |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 12-Mar-08 | 9         |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 19-Mar-08 | 10        | 0.00009 | < 0.00002 | 0.0033 | < 0.00001 | 0.000031   | 0.000033   | < 0.0005 | < 0.0005 | < 0.01 | 0.57 | < 0.002 | 0.62  | 0.00125 | 0.0433 |
| 26-Mar-08 | 11        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 2-Apr-08  | 12        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 9-Apr-08  | 13        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 16-Apr-08 | 14        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 23-Apr-08 | 15        | 0.00012 | < 0.00002 | 0.0046 | < 0.00001 | 0.000036   | 0.000063   | < 0.0005 | < 0.0005 | < 0.01 | 0.64 | < 0.002 | 0.89  | 0.00203 | 0.0367 |
| 30-Apr-08 | 16        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 7-May-08  | 17        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 14-May-08 | 18        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 21-May-08 | 19        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 28-May-08 | 20        | 0.0004  | < 0.00002 | 0.0026 | < 0.00001 | < 0.000003 | 0.000062   | < 0.0005 | < 0.0005 | < 0.01 | 0.67 | < 0.002 | 0.719 | 0.00152 | 0.0369 |
| 4-Jun-08  | 21        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 11-Jun-08 | 22        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 18-Jun-08 | 23        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 25-Jun-08 | 24        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 2-Jul-08  | 25        | 0.0001  | < 0.00002 | 0.0024 | < 0.00001 | 0.000018   | 0.000017   | < 0.0005 | < 0.0005 | < 0.01 | 0.57 | < 0.002 | 0.649 | 0.0014  | 0.0306 |
| 9-Jul-08  | 26        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 16-Jul-08 | 27        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 23-Jul-08 | 28        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 30-Jul-08 | 29        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 6-Aug-08  | 30        | 0.0001  | < 0.00002 | 0.0017 | < 0.00001 | 0.000003   | 0.000035   | < 0.0005 | < 0.0005 | < 0.01 | 0.54 | < 0.002 | 0.593 | 0.00167 | 0.0326 |
| 13-Aug-08 | 31        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 20-Aug-08 | 32        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 27-Aug-08 | 33        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 3-Sep-08  | 34        |         |           |        |           |            |            |          |          |        |      |         |       |         |        |
| 10-Sep-08 | 35        | 0.00018 | < 0.00002 | 0.0024 | < 0.00001 | 0.000006   | 0.000037   | < 0.0005 | < 0.0005 | < 0.01 | 0.57 | < 0.002 | 0.695 | 0.00169 | 0.0291 |





|           |           | Na   | Ni       | Р      | Pb        | Sb      | Se      | Si   | Sn      | Sr     | Ti       | Th         | U          | ٧       | Zn      |
|-----------|-----------|------|----------|--------|-----------|---------|---------|------|---------|--------|----------|------------|------------|---------|---------|
| Date      | Cycle No. | mg/L | mg/L     | mg/L   | mg/L      | mg/L    | mg/L    | mg/L | mg/L    | mg/L   | mg/L     | mg/L       | mg/L       | mg/L    | mg/L    |
| 9-Jan-08  | 0         | 3.05 | 0.0011   | < 0.01 | 0.0002    | 0.00056 | < 0.001 | 0.24 | 0.0158  | 0.0286 | < 0.0001 | 0.000056   | 0.000005   | 0.00029 | 0.003   |
| 16-Jan-08 | 1         | 3.74 | 0.0007   | 0.01   | 0.00009   | 0.0006  | 0.002   | 0.22 | 0.00693 | 0.0421 | < 0.0001 | 0.000024   | 0.000009   | 0.0003  | 0.002   |
| 23-Jan-08 | 2         | 2.09 | < 0.0001 | 0.01   | 0.00006   | 0.00055 | 0.001   | 0.28 | 0.0038  | 0.0153 | < 0.0001 | 0.00002    | 0.000007   | 0.0003  | 0.001   |
| 30-Jan-08 | 3         | 1.3  | 0.0002   | 0.02   | < 0.00002 | 0.00055 | < 0.001 | 0.4  | 0.00372 | 0.0089 | 0.0001   | < 0.000002 | 0.000007   | 0.00035 | < 0.001 |
| 6-Feb-08  | 4         |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 13-Feb-08 | 5         | 0.66 | < 0.0001 | 0.02   | < 0.00002 | 0.00034 | < 0.001 | 0.29 | 0.00261 | 0.0035 | < 0.0001 | < 0.000002 | < 0.000001 | 0.00043 | < 0.001 |
| 20-Feb-08 | 6         |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 27-Feb-08 | 7         | 0.46 | < 0.0001 | 0.02   | 0.00008   | 0.00056 | < 0.001 | 0.22 | 0.00181 | 0.0028 | < 0.0001 | 0.000003   | 0.000012   | 0.00049 | 0.003   |
| 05-Mar-08 | 8         |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 12-Mar-08 | 9         |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 19-Mar-08 | 10        | 0.32 | 0.0001   | < 0.01 | 0.00009   | 0.00053 | < 0.001 | 0.26 | 0.00184 | 0.0026 | 0.0002   | < 0.000002 | 0.000017   | 0.00048 | 0.001   |
| 26-Mar-08 | 11        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 2-Apr-08  | 12        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 9-Apr-08  | 13        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 16-Apr-08 | 14        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 23-Apr-08 | 15        | 0.2  | 0.0001   | < 0.01 | < 0.00002 | 0.00035 | < 0.001 | 0.32 | 0.00191 | 0.0039 | < 0.0001 | 0.000098   | 0.000006   | 0.00043 | < 0.001 |
| 30-Apr-08 | 16        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 7-May-08  | 17        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 14-May-08 | 18        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 21-May-08 | 19        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 28-May-08 | 20        | 0.13 | 0.0001   | < 0.01 | 0.00003   | 0.00058 | < 0.001 | 0.27 | 0.00115 | 0.0043 | < 0.0001 | 0.000004   | 0.000013   | 0.00049 | 0.002   |
| 4-Jun-08  | 21        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 11-Jun-08 | 22        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 18-Jun-08 | 23        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 25-Jun-08 | 24        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 2-Jul-08  | 25        | 0.09 | < 0.0001 | < 0.01 | < 0.00002 | 0.00048 | < 0.001 | 0.27 | 0.00102 | 0.0027 | < 0.0001 | < 0.000002 | 0.000004   | 0.00053 | 0.001   |
| 9-Jul-08  | 26        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 16-Jul-08 | 27        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 23-Jul-08 | 28        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 30-Jul-08 | 29        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 6-Aug-08  | 30        | 0.09 | 0.0001   | < 0.01 | < 0.00002 | 0.00022 | < 0.001 | 0.23 | 0.00071 | 0.0023 | < 0.0001 | < 0.000002 | 0.000001   | 0.00052 | 0.001   |
| 13-Aug-08 | 31        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 20-Aug-08 | 32        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 27-Aug-08 | 33        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 3-Sep-08  | 34        |      |          |        |           |         |         |      |         |        |          |            |            |         |         |
| 10-Sep-08 | 35        | 0.03 | < 0.0001 | < 0.01 | < 0.00002 | 0.00065 | < 0.001 | 0.33 | 0.00095 | 0.0026 | < 0.0001 | 0.000013   | 0.000014   | 0.00046 | < 0.001 |





| _         |           | Volume<br>Added | Volume<br>Recovered | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
|-----------|-----------|-----------------|---------------------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Date      | Cycle No. | ml              | ml                  | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 17-Sep-08 | 36        | 1000            | 904                 | 6.41  | 8            | < 2                | < 2                | 2    | 0.28 |          |           |        |          |
| 24-Sep-08 | 37        | 1000            | 952                 | 6.62  | 10           | 2                  | <2                 | 1.9  | 0.34 |          |           |        |          |
| 1-Oct-08  | 38        | 1000            | 964                 | 6.61  | 9            | < 2                | < 2                | 1.9  | 0.3  |          |           |        |          |
| 8-Oct-08  | 39        | 1000            | 948                 | 6.67  | 11           | 2                  | 2                  | 1.8  | 0.36 |          |           |        |          |
| 15-Oct-08 | 40        | 1000            | 994                 | 6.71  | 11           | 2                  | < 2                | 2    | 0.38 | < 0.0001 | < 0.00001 | 0.01   | < 0.0002 |
| 22-Oct-08 | 41        | 1000            | 954                 | 6.53  | 11           | < 2                | 5                  | 1.6  | 0.31 |          |           |        |          |
| 29-Oct-08 | 42        | 1000            | 914                 | 6.45  | 12           | < 2                | < 2                | 1.7  | 0.28 |          |           |        |          |
| 5-Nov-08  | 43        | 1000            | 936                 | 6.58  | 12           | < 2                | < 2                | 1.9  | 0.31 |          |           |        |          |
| 12-Nov-08 | 44        | 1000            | 996                 | 6.69  | 9            | < 2                | < 2                | 1.7  | 0.39 |          |           |        |          |
| 19-Nov-08 | 45        | 1000            | 934                 | 6.52  | 8            | < 2                | < 2                | 1.8  | 0.29 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 26-Nov-08 | 46        | 1000            | 935                 | 5.11  | 8            | < 2                | < 2                | 1.7  | 0.27 |          |           |        |          |
| 3-Dec-08  | 47        | 1000            | 931                 | 6.5   | 7            | < 2                | < 2                | 1.6  | 0.27 |          |           |        |          |
| 10-Dec-08 | 48        | 1000            | 930                 | 6.35  | 12           | < 2                | < 2                | 1.6  | 0.25 |          |           |        |          |
| 17-Dec-08 | 49        | 1000            | 981                 | 6.62  | 6            | < 2                | < 2                | 1.4  | 0.27 |          |           |        |          |
| 24-Dec-08 | 50        | 1000            | 939                 | 6.71  | 13           | < 2                | < 2                | 1.4  | 0.2  | < 0.0001 | 0.00004   | < 0.01 | < 0.0002 |
| 30-Dec-08 | 51        | 1000            | 965                 | 6.55  | 8            | < 2                | < 2                | 1.6  | 0.26 |          |           |        |          |
| 7-Jan-09  | 52        | 1000            | 942                 | 6.88  | 11           | 3                  | < 2                | 1.7  | 0.29 |          |           |        |          |
| 14-Jan-09 | 53        | 1000            | 939                 | 6.48  | 7            | < 2                | < 2                | 1.6  | 0.27 |          |           |        |          |





| Date      | Cycle No. | Ba<br>mg/L | Be<br>mg/L | B<br>mg/L | Bi<br>mg/L | Cd<br>mg/L | Co<br>mg/L | Cr<br>mg/L | Cu<br>mg/L | Fe<br>mg/L | K<br>mg/L | Li<br>mg/L | Mg<br>mg/L | Mn<br>mg/L | Mo<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 15-Oct-08 | 40        | 0.00009    | < 0.00002  | 0.0015    | < 0.00001  | 0.000014   | 0.000062   | < 0.0005   | < 0.0005   | < 0.01     | 0.5       | < 0.002    | 0.609      | 0.00192    | 0.026      |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 19-Nov-08 | 45        | 0.00012    | < 0.00002  | 0.0014    | < 0.00001  | 0.000008   | 0.000032   | < 0.0005   | < 0.0005   | < 0.01     | 0.48      | < 0.002    | 0.57       | 0.00179    | 0.0225     |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Dec-08 | 50        | 0.00025    | < 0.00002  | 0.0012    | 0.00003    | 0.000008   | 0.000034   | < 0.0005   | < 0.0005   | < 0.01     | 0.4       | < 0.002    | 0.474      | 0.00199    | 0.0173     |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |





| Date      | Cycle No. | Na   | Ni       | Р      | Pb        | Sb      | Se      | Si   | Sn      | Sr     | Ti       | Th         | U        | V       | Zn      |
|-----------|-----------|------|----------|--------|-----------|---------|---------|------|---------|--------|----------|------------|----------|---------|---------|
|           |           | mg/L | mg/L     | mg/L   | mg/L      | mg/L    | mg/L    | mg/L | mg/L    | mg/L   | mg/L     | mg/L       | mg/L     | mg/L    | mg/L    |
| 17-Sep-08 | 36        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 24-Sep-08 | 37        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 1-Oct-08  | 38        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 8-Oct-08  | 39        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 15-Oct-08 | 40        | 0.06 | 0.0002   | < 0.01 | < 0.00002 | 0.00034 | < 0.001 | 0.33 | 0.00073 | 0.0024 | < 0.0001 | 0.00001    | 0.00006  | 0.00046 | < 0.001 |
| 22-Oct-08 | 41        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 29-Oct-08 | 42        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 5-Nov-08  | 43        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 12-Nov-08 | 44        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 19-Nov-08 | 45        | 0.03 | < 0.0001 | < 0.01 | < 0.00002 | 0.0002  | < 0.001 | 0.28 | 0.00082 | 0.0021 | < 0.0001 | 0.000003   | 0.000007 | 0.00041 | < 0.001 |
| 26-Nov-08 | 46        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 3-Dec-08  | 47        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 10-Dec-08 | 48        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 17-Dec-08 | 49        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 24-Dec-08 | 50        | 0.02 | < 0.0001 | < 0.01 | 0.00011   | 0.0003  | < 0.001 | 0.25 | 0.00088 | 0.0017 | 0.0001   | < 0.000002 | 0.000114 | 0.00045 | < 0.001 |
| 30-Dec-08 | 51        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 7-Jan-09  | 52        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 14-Jan-09 | 53        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |





|           |           | Volume | Volume    |       |              |                    |                    |      | _    |          | _         |        |          |         |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|---------|
| Doto      | Cycle No. | Added  | Recovered | pН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       | Ва      |
| Date      | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     | mg/L    |
| 9-Jan-08  | 0         | 1000   | 864       | 5.61  | 395          | < 2                | 4                  | 92   | 30.9 | < 0.0001 | 0.00001   | < 0.01 | 0.0007   | 0.0053  |
| 16-Jan-08 | 1         | 1000   | 920       | 5.2   | 452          | < 2                | < 2                | 130  | 29.1 | < 0.0001 | < 0.00001 | < 0.01 | 0.0003   | 0.00323 |
| 23-Jan-08 | 2         | 1000   | 924       | 5.91  | 286          | < 2                | 4                  | 89   | 19.5 | < 0.0001 | < 0.00001 | < 0.01 | 0.0005   | 0.00217 |
| 30-Jan-08 | 3         | 1000   | 988       | 5.91  | 195          | < 2                | 2                  | 74   | 15.8 | < 0.0001 | < 0.00001 | 0.01   | 0.0006   | 0.00188 |
| 6-Feb-08  | 4         | 1000   | 922       | 6.7   | 141          | 3                  | 3                  | 47   | 10.5 |          |           |        |          |         |
| 13-Feb-08 | 5         | 1000   | 902       | 5.21  | 104          | < 2                | 2                  | 33   | 6.12 | < 0.0001 | < 0.00001 | < 0.01 | 0.0003   | 0.00077 |
| 20-Feb-08 | 6         | 1000   | 975       | 7.13  | 86           | 4                  | 5                  | 27   | 4.76 |          |           |        |          |         |
| 27-Feb-08 | 7         | 1000   | 890       | 5.21  | 72           | < 2                | 3                  | 24   | 3.9  | < 0.0001 | < 0.00001 | < 0.01 | 0.0003   | 0.00064 |
| 05-Mar-08 | 8         | 1000   | 864       | 5.97  | 71           | < 2                | < 2                | 25   | 3.71 |          |           |        |          |         |
| 12-Mar-08 | 9         | 1000   | 956       | 5.42  | 53           | < 2                | 3                  | 20   | 3.24 |          |           |        |          |         |
| 19-Mar-08 | 10        | 1000   | 884       | 5.65  | 50           | < 2                | 2                  | 20   | 3.13 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 | 0.00047 |
| 26-Mar-08 | 11        | 1000   | 912       | 5.42  | 100          | < 2                | 3                  | 39   | 8.02 |          |           |        |          |         |
| 2-Apr-08  | 12        | 1000   | 894       | 5.38  | 36           | < 2                | 2                  | 13   | 2.08 |          |           |        |          |         |
| 9-Apr-08  | 13        | 1000   | 906       | 3.98  | 86           | < 2                | 11                 | 12   | 1.96 |          |           |        |          |         |
| 16-Apr-08 | 14        | 1000   | 923       | 5.98  | 40           | < 2                | < 2                | 14   | 2    |          |           |        |          |         |
| 23-Apr-08 | 15        | 1000   | 978       | 4.37  | 72           | < 2                | 5                  | 2.9  | 2.65 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 | 0.00049 |
| 30-Apr-08 | 16        | 1000   | 936       | 5.45  | 41           | < 2                | 2                  | 15   | 2.13 |          |           |        |          |         |
| 7-May-08  | 17        | 1000   | 936       | 4.27  | 69           | < 2                | 5                  | 19   | 2.69 |          |           |        |          |         |
| 14-May-08 | 18        | 1000   | 930       | 4.5   | 60           | < 2                | 4                  | 14   | 2.3  |          |           |        |          |         |
| 21-May-08 | 19        | 1000   | 966       | 4.06  | 84           | < 2                | 7                  | 17   | 2.52 |          |           |        |          |         |
| 28-May-08 | 20        | 1000   | 837       | 5.77  | 104          | < 2                | < 2                | 38   | 8.29 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 | 0.0012  |
| 4-Jun-08  | 21        | 1000   | 884       | 6.03  | 49           | < 2                | < 2                | 16   | 2.57 |          |           |        |          |         |
| 11-Jun-08 | 22        | 1000   | 978       | 5.72  | 53           | < 2                | < 2                | 18   | 2.83 |          |           |        |          |         |
| 18-Jun-08 | 23        | 1000   | 962       | 5.83  | 51           | < 2                | < 2                | 18   | 2.63 |          |           |        |          |         |
| 25-Jun-08 | 24        | 1000   | 956       | 5.95  | 37           | < 2                | 3                  | 17   | 2.13 |          |           |        |          |         |
| 2-Jul-08  | 25        | 1000   | 903       | 5.98  | 41           | < 2                | < 2                | 14   | 2.02 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 | 0.00043 |
| 9-Jul-08  | 26        | 1000   | 960       | 5.51  | 47           | < 2                | 3                  | 16   | 2.21 |          |           |        |          |         |
| 16-Jul-08 | 27        | 1000   | 896       | 6.01  | 44           | < 2                | < 2                | 15   | 2.1  |          |           |        |          |         |
| 23-Jul-08 | 28        | 1000   | 840       | 5.71  | 81           | < 2                | 4                  | 34   | 5.97 |          |           |        |          |         |
| 30-Jul-08 | 29        | 1000   | 862       | 5.65  | 57           | < 2                | 3                  | 21   | 3.21 |          |           |        |          |         |
| 6-Aug-08  | 30        | 1000   | 903       | 6.18  | 34           | < 2                | < 2                | 12   | 1.7  | < 0.0001 | < 0.00001 | < 0.01 | 0.0003   | 0.00065 |
| 13-Aug-08 | 31        | 1000   | 962       | 5.63  | 39           | < 2                | 3                  | 14   | 1.94 |          |           |        |          |         |
| 20-Aug-08 | 32        | 1000   | 842       | 5.73  | 81           | < 2                | < 2                | 21   | 3.23 |          |           |        |          |         |
| 27-Aug-08 | 33        | 1000   | 880       | 5.63  | 43           | < 2                | < 2                | 16   | 2.08 |          |           |        |          |         |
| 3-Sep-08  | 34        | 1000   | 918       | 5.61  | 39           | < 2                | < 2                | 14   | 1.75 |          |           |        |          |         |
| 10-Sep-08 | 35        | 1000   | 950       | 5.98  | 43           | <2                 | 3                  | 16   | 1.96 | < 0.0001 | 0.00005   | < 0.01 | < 0.0002 | 0.00076 |





|           |           | Be        | В      | Bi        | Cd         | Со       | Cr       | Cu     | Fe     | K    | Li      | Mg   | Mn     | Мо      | Na     | Ni     |
|-----------|-----------|-----------|--------|-----------|------------|----------|----------|--------|--------|------|---------|------|--------|---------|--------|--------|
| Date      | Cycle No. | De        |        | ы         | Cu         | - 60     | - Ci     | Cu     | 16     | IX.  | L1      | IVIG | IVIII  | IVIO    | INA    | INI    |
|           |           | mg/L      | mg/L   | mg/L      | mg/L       | mg/L     | mg/L     | mg/L   | mg/L   | mg/L | mg/L    | mg/L | mg/L   | mg/L    | mg/L   | mg/L   |
| 9-Jan-08  | 0         | 0.00002   | 0.0161 | < 0.00001 | 0.000043   | 0.0251   | < 0.0005 | 0.0985 | 0.03   | 3.13 | < 0.002 | 20   | 0.235  | 0.00173 | 3.63   | 0.0225 |
| 16-Jan-08 | 1         | < 0.00002 | 0.0253 | < 0.00001 | 0.000027   | 0.00522  | 0.0198   | 0.0276 | < 0.01 | 2.44 | < 0.002 | 27.3 | 0.202  | 0.0074  | 4.03   | 0.0069 |
| 23-Jan-08 | 2         | < 0.00002 | 0.0245 | < 0.00001 | < 0.000003 | 0.003202 | < 0.0005 | 0.0073 | < 0.01 | 1.78 | < 0.002 | 17   | 0.133  | 0.00225 | 2.29   | 0.0039 |
| 30-Jan-08 | 3         | < 0.00002 | 0.0255 | < 0.00001 | 0.000005   | 0.00193  | < 0.0005 | 0.0041 | < 0.01 | 1.59 | < 0.002 | 11.6 | 0.0967 | 0.00165 | 1.38   | 0.0027 |
| 6-Feb-08  | 4         |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 13-Feb-08 | 5         | < 0.00002 | 0.0146 | < 0.00001 | 0.000004   | 0.00108  | < 0.0005 | 0.0025 | < 0.01 | 0.9  | < 0.002 | 5.28 | 0.0501 | 0.00314 | 0.62   | 0.0015 |
| 20-Feb-08 | 6         |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 27-Feb-08 | 7         | < 0.00002 | 0.0142 | < 0.00001 | 0.000005   | 0.00109  | < 0.0005 | 0.0028 | < 0.01 | 0.66 | < 0.002 | 3.52 | 0.0435 | 0.00181 | 0.35   | 0.0014 |
| 05-Mar-08 | 8         |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 12-Mar-08 | 9         |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 19-Mar-08 | 10        | < 0.00002 | 0.0099 | < 0.00001 | < 0.000003 | 0.000967 | < 0.0005 | 0.002  | < 0.01 | 0.53 | < 0.002 | 2.82 | 0.0384 | 0.00146 | 0.16   | 0.0013 |
| 26-Mar-08 | 11        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 2-Apr-08  | 12        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 9-Apr-08  | 13        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 16-Apr-08 | 14        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 23-Apr-08 | 15        | < 0.00002 | 0.0091 | < 0.00001 | 0.000004   | 0.00156  | < 0.0005 | 0.0035 | < 0.01 | 0.44 | 0.002   | 2.57 | 0.0526 | 0.00173 | 0.08   | 0.0019 |
| 30-Apr-08 | 16        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 7-May-08  | 17        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 14-May-08 | 18        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 21-May-08 | 19        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 28-May-08 | 20        | < 0.00002 | 0.0085 | < 0.00001 | 0.000009   | 0.00327  | < 0.0005 | 0.007  | < 0.01 | 0.62 | < 0.002 | 4.79 | 0.105  | 0.00317 | 0.04   | 0.0044 |
| 4-Jun-08  | 21        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 11-Jun-08 | 22        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 18-Jun-08 | 23        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 25-Jun-08 | 24        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 2-Jul-08  | 25        | < 0.00002 | 0.0056 | < 0.00001 | 0.000009   | 0.00237  | < 0.0005 | 0.0054 | < 0.01 | 0.33 | < 0.002 | 2.36 | 0.0729 | 0.0022  | 0.03   | 0.0029 |
| 9-Jul-08  | 26        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 16-Jul-08 | 27        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 23-Jul-08 | 28        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 30-Jul-08 | 29        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 6-Aug-08  | 30        | < 0.00002 | 0.0043 | < 0.00001 | < 0.000003 | 0.0027   | < 0.0005 | 0.0078 | 0.03   | 0.27 | < 0.002 | 1.99 | 0.0763 | 0.0005  | 0.05   | 0.0034 |
| 13-Aug-08 | 31        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 20-Aug-08 | 32        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 27-Aug-08 | 33        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 3-Sep-08  | 34        |           |        |           |            |          |          |        |        |      |         |      |        |         |        |        |
| 10-Sep-08 | 35        | 0.00009   | 0.005  | 0.00004   | 0.000062   | 0.00446  | < 0.0005 | 0.0106 | < 0.01 | 0.29 | < 0.002 | 2.85 | 0.127  | 0.0013  | < 0.01 | 0.0054 |





|           |           | Р      | Pb      | Sb      | Se      | Si   | Sn        | Sr     | Ti       | Th         | U        | ٧         | Zn    |
|-----------|-----------|--------|---------|---------|---------|------|-----------|--------|----------|------------|----------|-----------|-------|
| Date      | Cycle No. |        |         |         |         |      |           |        |          |            |          |           |       |
|           |           | mg/L   | mg/L    | mg/L    | mg/L    | mg/L | mg/L      | mg/L   | mg/L     | mg/L       | mg/L     | mg/L      | mg/L  |
| 9-Jan-08  | 0         | 0.01   | 0.0004  | 0.00061 | 0.018   | 0.29 | 0.00567   | 0.219  | 0.0001   | 0.000133   | 0.000083 | 0.00014   | 0.013 |
| 16-Jan-08 | 1         | 0.01   | 0.00012 | 0.00047 | 0.036   | 0.29 | 0.00489   | 0.249  | < 0.0001 | 0.000055   | 0.000034 | 0.00003   | 0.005 |
| 23-Jan-08 | 2         | 0.01   | 0.00019 | 0.0004  | 0.023   | 0.32 | 0.0023    | 0.17   | < 0.0001 | 0.000036   | 0.000017 | 0.00013   | 0.008 |
| 30-Jan-08 | 3         | 0.01   | 0.00006 | 0.00045 | 0.013   | 0.54 | 0.00106   | 0.132  | 0.0001   | 0.000014   | 0.000021 | 0.00012   | 0.004 |
| 6-Feb-08  | 4         |        |         |         |         |      |           |        |          |            |          |           |       |
| 13-Feb-08 | 5         | 0.02   | 0.00006 | 0.00046 | 0.007   | 0.32 | 0.00055   | 0.0499 | 0.0002   | 0.000007   | 0.000028 | 0.0001    | 0.003 |
| 20-Feb-08 | 6         |        |         |         |         |      |           |        |          |            |          |           |       |
| 27-Feb-08 | 7         | 0.03   | 0.00013 | 0.00039 | 0.004   | 0.25 | 0.00042   | 0.0325 | < 0.0001 | 0.000009   | 0.000018 | 0.00008   | 0.007 |
| 05-Mar-08 | 8         |        |         |         |         |      |           |        |          |            |          |           |       |
| 12-Mar-08 | 9         |        |         |         |         |      |           |        |          |            |          |           |       |
| 19-Mar-08 | 10        | < 0.01 | 0.00008 | 0.00037 | 0.002   | 0.27 | 0.00021   | 0.0264 | < 0.0001 | < 0.000002 | 0.000012 | 0.00011   | 0.003 |
| 26-Mar-08 | 11        |        |         |         |         |      |           |        |          |            |          |           |       |
| 2-Apr-08  | 12        |        |         |         |         |      |           |        |          |            |          |           |       |
| 9-Apr-08  | 13        |        |         |         |         |      |           |        |          |            |          |           |       |
| 16-Apr-08 | 14        |        |         |         |         |      |           |        |          |            |          |           |       |
| 23-Apr-08 | 15        | < 0.01 | 0.00011 | 0.00016 | 0.001   | 0.51 | 0.00016   | 0.0233 | < 0.0001 | 0.000104   | 0.000014 | 0.00006   | 0.003 |
| 30-Apr-08 | 16        |        |         |         |         |      |           |        |          |            |          |           |       |
| 7-May-08  | 17        |        |         |         |         |      |           |        |          |            |          |           |       |
| 14-May-08 | 18        |        |         |         |         |      |           |        |          |            |          |           |       |
| 21-May-08 | 19        |        |         |         |         |      |           |        |          |            |          |           |       |
| 28-May-08 | 20        | < 0.01 | 0.00018 | 0.00039 | 0.002   | 0.35 | 0.00022   | 0.0672 | < 0.0001 | 0.00001    | 0.000032 | 0.00005   | 0.005 |
| 4-Jun-08  | 21        |        |         |         |         |      |           |        |          |            |          |           |       |
| 11-Jun-08 | 22        |        |         |         |         |      |           |        |          |            |          |           |       |
| 18-Jun-08 | 23        |        |         |         |         |      |           |        |          |            |          |           |       |
| 25-Jun-08 | 24        |        |         |         |         |      |           |        |          |            |          |           |       |
| 2-Jul-08  | 25        | < 0.01 | 0.00017 | 0.00031 | < 0.001 | 0.35 | < 0.00001 | 0.018  | < 0.0001 | 0.000019   | 0.00001  | < 0.00003 | 0.007 |
| 9-Jul-08  | 26        |        |         |         |         |      |           |        |          |            |          |           |       |
| 16-Jul-08 | 27        |        |         |         |         |      |           |        |          |            |          |           |       |
| 23-Jul-08 | 28        |        |         |         |         |      |           |        |          |            |          |           |       |
| 30-Jul-08 | 29        |        |         |         |         |      |           |        |          |            |          |           |       |
| 6-Aug-08  | 30        | < 0.01 | 0.00032 | 0.00012 | 0.001   | 0.31 | 0.00014   | 0.0154 | 0.0001   | 0.000003   | 0.00002  | < 0.00003 | 0.005 |
| 13-Aug-08 | 31        |        |         |         |         |      |           |        |          |            |          |           |       |
| 20-Aug-08 | 32        |        |         |         |         |      |           |        |          |            |          |           |       |
| 27-Aug-08 | 33        |        |         |         |         |      |           |        |          |            |          |           |       |
| 3-Sep-08  | 34        |        |         |         |         |      |           |        |          |            |          |           |       |
| 10-Sep-08 | 35        | < 0.01 | 0.00025 | 0.00052 | 0.001   | 0.58 | 0.00002   | 0.0181 | < 0.0001 | 0.000094   | 0.000129 | 0.00008   | 0.006 |





|           |           | Volume      | Volume          | Hq    | Conductivity | Alkalinity         | Acidity            | SO4  | Са   | Hg       | Ag        | Al     | As       | Ва      |
|-----------|-----------|-------------|-----------------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|---------|
| Date      | Cycle No. | Added<br>ml | Recovered<br>ml | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     | mg/L    |
| 17-Sep-08 | 36        | 1000        | 913             | 5.66  | 44           | <2                 | 3                  | 15   | 2.33 |          |           |        |          |         |
| 24-Sep-08 | 37        | 1000        | 983             | 6.16  | 44           | < 2                | < 2                | 17   | 2.09 |          |           |        |          |         |
| 1-Oct-08  | 38        | 1000        | 988             | 5.55  | 43           | <2                 | 3                  | 16   | 2.01 |          |           |        |          |         |
| 8-Oct-08  | 39        | 1000        | 980             | 5.82  | 42           | <2                 | 7                  | 15   | 2    |          |           |        |          |         |
| 15-Oct-08 | 40        | 1000        | 988             | 5.63  | 44           | < 2                | 6                  | 15   | 1.84 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 | 0.0005  |
| 22-Oct-08 | 41        | 1000        | 980             | 5.69  | 48           | < 2                | 5                  | 17   | 2.04 |          |           |        |          |         |
| 29-Oct-08 | 42        | 1000        | 892             | 5.42  | 41           | < 2                | 3                  | 14   | 1.59 |          |           |        |          |         |
| 5-Nov-08  | 43        | 1000        | 911             | 5.48  | 42           | < 2                | < 2                | 14   | 1.57 |          |           |        |          |         |
| 12-Nov-08 | 44        | 1000        | 1000            | 5.55  | 38           | < 2                | 2                  | 15   | 1.79 |          |           |        |          |         |
| 19-Nov-08 | 45        | 1000        | 914             | 5.75  | 38           | < 2                | 2                  | 14   | 1.58 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 | 0.00042 |
| 26-Nov-08 | 46        | 1000        | 904             | 4.62  | 31           | < 2                | 2                  | 14   | 1.54 |          |           |        |          |         |
| 3-Dec-08  | 47        | 1000        | 893             | 5.42  | 44           | < 2                | 9                  | 16   | 1.68 |          |           |        |          |         |
| 10-Dec-08 | 48        | 1000        | 888             | 5.42  | 47           | < 2                | 4                  | 16   | 1.62 |          |           |        |          |         |
| 17-Dec-08 | 49        | 1000        | 977             | 5.53  | 40           | < 2                | 2                  | 15   | 1.63 |          |           |        |          |         |
| 24-Dec-08 | 50        | 1000        | 915             | 5.66  | 30           | < 2                | < 2                | 10   | 1.04 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 | 0.00043 |
| 30-Dec-08 | 51        | 1000        | 949             | 5.45  | 32           | < 2                | 3                  | 12   | 1.2  |          |           |        |          |         |
| 7-Jan-09  | 52        | 1000        | 899             | 5.49  | 38           | < 2                | 2                  | 14   | 1.49 |          |           |        |          |         |
| 14-Jan-09 | 53        | 1000        | 900             | 5.62  | 42           | < 2                | 2                  | 16   | 1.55 |          |           |        |          |         |





| Date      | Cycle No. | Be        | В      | Bi        | Cd         | Co      | Cr       | Cu     | Fe     | Κ    | Li      | Mg   | Mn    | Mo     | Na     | Ni     |
|-----------|-----------|-----------|--------|-----------|------------|---------|----------|--------|--------|------|---------|------|-------|--------|--------|--------|
|           |           | mg/L      | mg/L   | mg/L      | mg/L       | mg/L    | mg/L     | mg/L   | mg/L   | mg/L | mg/L    | mg/L | mg/L  | mg/L   | mg/L   | mg/L   |
| 17-Sep-08 | 36        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 24-Sep-08 | 37        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 1-Oct-08  | 38        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 8-Oct-08  | 39        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 15-Oct-08 | 40        | 0.00002   | 0.0037 | < 0.00001 | 0.000016   | 0.00556 | < 0.0005 | 0.0124 | < 0.01 | 0.24 | < 0.002 | 2.7  | 0.137 | 0.0005 | 0.04   | 0.0073 |
| 22-Oct-08 | 41        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 29-Oct-08 | 42        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 5-Nov-08  | 43        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 12-Nov-08 | 44        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 19-Nov-08 | 45        | < 0.00002 | 0.0028 | < 0.00001 | 0.000007   | 0.00547 | < 0.0005 | 0.0129 | 0.01   | 0.18 | < 0.002 | 2.63 | 0.146 | 0.0011 | 0.02   | 0.0071 |
| 26-Nov-08 | 46        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 3-Dec-08  | 47        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 10-Dec-08 | 48        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 17-Dec-08 | 49        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 24-Dec-08 | 50        | < 0.00002 | 0.0018 | < 0.00001 | < 0.000003 | 0.00493 | < 0.0005 | 0.0119 | < 0.01 | 0.11 | < 0.002 | 1.78 | 0.112 | 0.0007 | < 0.01 | 0.0067 |
| 30-Dec-08 | 51        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 7-Jan-09  | 52        |           |        |           |            |         |          |        |        |      |         |      |       |        |        |        |
| 14-Jan-09 | 53        |           |        |           |            |         |          |        |        | -    |         |      |       |        |        |        |





| Date      | Cycle No. | Р      | Pb      | Sb       | Se      | Si   | Sn      | Sr     | Ti       | Th         | U        | V         | Zn    |
|-----------|-----------|--------|---------|----------|---------|------|---------|--------|----------|------------|----------|-----------|-------|
|           |           | mg/L   | mg/L    | mg/L     | mg/L    | mg/L | mg/L    | mg/L   | mg/L     | mg/L       | mg/L     | mg/L      | mg/L  |
| 17-Sep-08 | 36        |        |         |          |         |      |         |        |          |            |          |           |       |
| 24-Sep-08 | 37        |        |         |          |         |      |         |        |          |            |          |           |       |
| 1-Oct-08  | 38        |        |         |          |         |      |         |        |          |            |          |           |       |
| 8-Oct-08  | 39        |        |         |          |         |      |         |        |          |            |          |           |       |
| 15-Oct-08 | 40        | 0.02   | 0.00025 | 0.00021  | < 0.001 | 0.78 | 0.0001  | 0.0176 | < 0.0001 | 0.000032   | 0.000047 | < 0.00003 | 0.007 |
| 22-Oct-08 | 41        |        |         |          |         |      |         |        |          |            |          |           |       |
| 29-Oct-08 | 42        |        |         |          |         |      |         |        |          |            |          |           |       |
| 5-Nov-08  | 43        |        |         |          |         |      |         |        |          |            |          |           |       |
| 12-Nov-08 | 44        |        |         |          |         |      |         |        |          |            |          |           |       |
| 19-Nov-08 | 45        | < 0.01 | 0.00022 | < 0.0002 | < 0.001 | 0.38 | 0.00007 | 0.0153 | < 0.0001 | < 0.000002 | 0.000068 | < 0.00003 | 0.005 |
| 26-Nov-08 | 46        |        |         |          |         |      |         |        |          |            |          |           |       |
| 3-Dec-08  | 47        |        |         |          |         |      |         |        |          |            |          |           |       |
| 10-Dec-08 | 48        |        |         |          |         |      |         |        |          |            |          |           |       |
| 17-Dec-08 | 49        |        |         |          |         |      |         |        |          |            |          |           |       |
| 24-Dec-08 | 50        | < 0.01 | 0.00013 | < 0.0002 | 0.001   | 0.34 | 0.00013 | 0.0108 | 0.0001   | < 0.000002 | 0.000078 | < 0.00003 | 0.004 |
| 30-Dec-08 | 51        |        |         |          |         |      |         |        |          |            |          |           |       |
| 7-Jan-09  | 52        |        |         |          |         |      |         |        |          |            |          |           |       |
| 14-Jan-09 | 53        |        |         |          |         |      |         |        |          |            |          |           |       |





|           |           | Volume | Volume    |       |              |                    |                    |      |      |          | _         |      |        | _       |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|------|--------|---------|
| Date      | Cycle No. | Added  | Recovered | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al   | As     | Ва      |
| Date      | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L | mg/L   | mg/L    |
| 9-Jan-08  | 0         | 1000   | 730       | 7.03  | 111          | 8                  | < 2                | 24   | 4.24 | < 0.0001 | < 0.00001 | 0.02 | 0.0007 | 0.00505 |
| 16-Jan-08 | 1         | 1000   | 989       | 7.26  | 211          | 16                 | < 2                | 61   | 9.64 | < 0.0001 | < 0.00001 | 0.02 | 0.0013 | 0.0107  |
| 23-Jan-08 | 2         | 1000   | 975       | 7.43  | 115          | 16                 | < 2                | 28   | 5.09 | < 0.0001 | < 0.00001 | 0.02 | 0.0014 | 0.00743 |
| 30-Jan-08 | 3         | 1000   | *         | 7.43  | 85           | 33                 | < 2                | 15   | 4.24 | < 0.0001 | < 0.00001 | 0.03 | 0.0018 | 0.00723 |
| 6-Feb-08  | 4         | 1000   | 983       | 7.56  | 51           | 16                 | < 2                | 7.5  | 2.67 |          |           |      |        |         |
| 13-Feb-08 | 5         | 1000   | 988       | 7.39  | 52           | 14                 | < 2                | 6.4  | 2.27 | < 0.0001 | < 0.00001 | 0.02 | 0.0016 | 0.00379 |
| 20-Feb-08 | 6         | 1000   | 978       | 7.26  | 44           | 12                 | < 2                | 6.3  | 2.3  |          |           |      |        |         |
| 27-Feb-08 | 7         | 1000   | 918       | 8.84  | 66           | 23                 | < 2                | 7.5  | 2.68 | < 0.0001 | < 0.00001 | 0.02 | 0.002  | 0.00469 |
| 05-Mar-08 | 8         | 1000   | 995       | 7.39  | 50           | 15                 | < 2                | 6.1  | 2.08 |          |           |      |        |         |
| 12-Mar-08 | 9         | 1000   | 993       | 7.34  | 45           | 15                 | < 2                | 2.9  | 2.4  |          |           |      |        |         |
| 19-Mar-08 | 10        | 1000   | 992       | 7.42  | 44           | 15                 | < 2                | 6.6  | 2.27 | < 0.0001 | < 0.00001 | 0.01 | 0.0019 | 0.00356 |
| 26-Mar-08 | 11        | 1000   | 990       | 7.28  | 47           | 13                 | < 2                | 7    | 2.26 |          |           |      |        |         |
| 2-Apr-08  | 12        | 1000   | 988       | 6.96  | 44           | 13                 | < 2                | 8.5  | 2.33 |          |           |      |        |         |
| 9-Apr-08  | 13        | 1000   | 972       | 6.97  | 52           | 15                 | < 2                | 8.3  | 2.72 |          |           |      |        |         |
| 16-Apr-08 | 14        | 1000   | 990       | 7.14  | 55           | 13                 | < 2                | 9.4  | 2.65 |          |           |      |        |         |
| 23-Apr-08 | 15        | 1000   | 988       | 7.04  | 49           | 12                 | < 2                | 9.7  | 2.67 | < 0.0001 | < 0.00001 | 0.02 | 0.0012 | 0.00326 |
| 30-Apr-08 | 16        | 1000   | 976       | 7.18  | 57           | 13                 | < 2                | 11   | 2.87 |          |           |      |        |         |
| 7-May-08  | 17        | 1000   | 890       | 6.72  | 61           | 10                 | < 2                | 10   | 3.13 |          |           |      |        |         |
| 14-May-08 | 18        | 1000   | 983       | 6.84  | 50           | 12                 | < 2                | 48   | 2.6  |          |           |      |        |         |
| 21-May-08 | 19        | 1000   | 990       | 7.14  | 47           | 14                 | < 2                | 8.3  | 2.78 |          |           |      |        |         |
| 28-May-08 | 20        | 1000   | 992       | 6.95  | 64           | 9                  | < 2                | 8.5  | 3.05 | < 0.0001 | < 0.00001 | 0.02 | 0.0018 | 0.00327 |
| 4-Jun-08  | 21        | 1000   | 996       | 7.35  | 52           | 15                 | < 2                | 8.3  | 2.77 |          |           |      |        |         |
| 11-Jun-08 | 22        | 1000   | 973       | 7.24  | 56           | 15                 | < 2                | 8.9  | 3.2  |          |           |      |        |         |
| 18-Jun-08 | 23        | 1000   | 956       | 7.5   | 60           | 14                 | < 2                | 10   | 3.41 |          |           |      |        |         |
| 25-Jun-08 | 24        | 1000   | 989       | 7.25  | 47           | 14                 | < 2                | 8.3  | 3.17 |          |           |      |        |         |
| 2-Jul-08  | 25        | 1000   | 987       | 7.28  | 53           | 14                 | < 2                | 8.8  | 3.03 | < 0.0001 | < 0.00001 | 0.02 | 0.0016 | 0.00277 |
| 9-Jul-08  | 26        | 1000   | 988       | 7.11  | 55           | 15                 | < 2                | 8.5  | 3.07 |          |           |      |        |         |
| 16-Jul-08 | 27        | 1000   | 980       | 7.04  | 54           | 15                 | < 2                | 8.2  | 3.34 |          |           |      |        |         |
| 23-Jul-08 | 28        | 1000   | 989       | 6.94  | 47           | 16                 | < 2                | 7.1  | 3.13 |          |           |      |        |         |
| 30-Jul-08 | 29        | 1000   | 819       | 7.25  | 52           | 17                 | < 2                | 7.8  | 3.31 |          |           |      |        |         |
| 6-Aug-08  | 30        | 1000   | 975       | 7.43  | 48           | 15                 | < 2                | 6.9  | 2.97 | < 0.0001 | < 0.00001 | 0.02 | 0.0014 | 0.00242 |
| 13-Aug-08 | 31        | 1000   | 979       | 7.52  | 42           | 14                 | < 2                | 5.3  | 2.79 |          |           |      |        |         |
| 20-Aug-08 | 32        | 1000   | 990       | 7.18  | 69           | 15                 | < 2                | 6.1  | 3.05 |          |           |      |        |         |
| 27-Aug-08 | 33        | 1000   | 986       | 7.17  | 45           | 16                 | < 2                | 6.3  | 2.95 |          |           |      |        |         |
| 3-Sep-08  | 34        | 1000   | 986       | 7.29  | 49           | 16                 | <2                 | 7.2  | 3.26 |          |           |      |        |         |
| 10-Sep-08 | 35        | 1000   | 991       | 7.51  | 52           | 16                 | <2                 | 7.5  | 3.39 | < 0.0001 | < 0.00001 | 0.01 | 0.0016 | 0.00255 |





| Doto      | Cycle No  | Be        | В      | Bi        | Cd         | Со       | Cr       | Cu       | Fe     | K    | Li      | Mg   | Mn      | Мо     | Na   | Ni     |
|-----------|-----------|-----------|--------|-----------|------------|----------|----------|----------|--------|------|---------|------|---------|--------|------|--------|
| Date      | Cycle No. | mg/L      | mg/L   | mg/L      | mg/L       | mg/L     | mg/L     | mg/L     | mg/L   | mg/L | mg/L    | mg/L | mg/L    | mg/L   | mg/L | mg/L   |
| 9-Jan-08  | 0         | < 0.00002 | 0.0083 | 0.00001   | 0.00001    | 0.00268  | < 0.0005 | 0.0023   | 0.03   | 4.05 | < 0.002 | 5.6  | 0.0306  | 0.0191 | 1.81 | 0.0022 |
| 16-Jan-08 | 1         | < 0.00002 | 0.0153 | < 0.00001 | 0.000013   | 0.000883 | < 0.0005 | 0.0005   | 0.02   | 4.81 | < 0.002 | 14.1 | 0.0536  | 0.127  | 2.79 | 0.0016 |
| 23-Jan-08 | 2         | < 0.00002 | 0.0146 | < 0.00001 | 0.000079   | 0.000244 | < 0.0005 | < 0.0005 | 0.01   | 3.46 | < 0.002 | 7.28 | 0.02782 | 0.134  | 1.75 | 0.001  |
| 30-Jan-08 | 3         | < 0.00002 | 0.0135 | < 0.00001 | < 0.000003 | 0.000075 | < 0.0005 | < 0.0005 | 0.01   | 3.39 | < 0.002 | 6.06 | 0.0356  | 0.108  | 1.31 | 0.0011 |
| 6-Feb-08  | 4         |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 13-Feb-08 | 5         | < 0.00002 | 0.006  | < 0.00001 | 0.000014   | 0.000167 | < 0.0005 | < 0.0005 | 0.02   | 1.78 | < 0.002 | 3.13 | 0.0236  | 0.0474 | 0.57 | 0.0005 |
| 20-Feb-08 | 6         |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 27-Feb-08 | 7         | < 0.00002 | 0.0069 | < 0.00001 | 0.000004   | 0.000186 | < 0.0005 | < 0.0005 | 0.01   | 1.89 | < 0.002 | 3.76 | 0.0323  | 0.0526 | 0.52 | 0.0007 |
| 05-Mar-08 | 8         |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 12-Mar-08 | 9         |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 19-Mar-08 | 10        | < 0.00002 | 0.0044 | < 0.00001 | < 0.000003 | 0.000157 | < 0.0005 | < 0.0005 | < 0.01 | 1.47 | < 0.002 | 3.09 | 0.0284  | 0.0249 | 0.3  | 0.0007 |
| 26-Mar-08 | 11        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 2-Apr-08  | 12        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 9-Apr-08  | 13        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 16-Apr-08 | 14        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 23-Apr-08 | 15        | < 0.00002 | 0.0031 | < 0.00001 | < 0.000003 | 0.00015  | < 0.0005 | < 0.0005 | < 0.01 | 1.48 | < 0.002 | 3.45 | 0.0236  | 0.0139 | 0.21 | 0.0006 |
| 30-Apr-08 | 16        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 7-May-08  | 17        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 14-May-08 | 18        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 21-May-08 | 19        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 28-May-08 | 20        | < 0.00002 | 0.0024 | < 0.00001 | 0.000013   | 0.000109 | < 0.0005 | < 0.0005 | < 0.01 | 1.43 | < 0.002 | 3.73 | 0.0143  | 0.0139 | 0.14 | 0.0005 |
| 4-Jun-08  | 21        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 11-Jun-08 | 22        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 18-Jun-08 | 23        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 25-Jun-08 | 24        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 2-Jul-08  | 25        | < 0.00002 | 0.002  | < 0.00001 | < 0.000003 | 0.000042 | < 0.0005 | < 0.0005 | < 0.01 | 1.27 | < 0.002 | 3.62 | 0.00791 | 0.011  | 0.12 | 0.0003 |
| 9-Jul-08  | 26        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 16-Jul-08 | 27        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 23-Jul-08 | 28        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 30-Jul-08 | 29        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 6-Aug-08  | 30        | < 0.00002 | 0.0014 | < 0.00001 | < 0.000003 | 0.000039 | < 0.0005 | < 0.0005 | < 0.01 | 1.3  | < 0.002 | 3.35 | 0.00565 | 0.0105 | 0.08 | 0.0003 |
| 13-Aug-08 | 31        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 20-Aug-08 | 32        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 27-Aug-08 | 33        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 3-Sep-08  | 34        |           |        |           |            |          |          |          |        |      |         |      |         |        |      |        |
| 10-Sep-08 | 35        | < 0.00002 | 0.0017 | < 0.00001 | < 0.000003 | 0.00008  | < 0.0005 | < 0.0005 | < 0.01 | 1.24 | < 0.002 | 3.79 | 0.00442 | 0.011  | 0.04 | 0.0002 |





|           |           |        |           | 1       |         |      | Ī       |        |          |            |          |         | <u> </u> |
|-----------|-----------|--------|-----------|---------|---------|------|---------|--------|----------|------------|----------|---------|----------|
| Data      | Ossala Na | Р      | Pb        | Sb      | Se      | Si   | Sn      | Sr     | Ti       | Th         | U        | V       | Zn       |
| Date      | Cycle No. | mg/L   | mg/L      | mg/L    | mg/L    | mg/L | mg/L    | mg/L   | mg/L     | mg/L       | mg/L     | mg/L    | mg/L     |
| 9-Jan-08  | 0         | 0.03   | 0.00016   | 0.00077 | < 0.001 | 1.13 | 0.0111  | 0.0108 | 0.0002   | 0.000007   | 0.000028 | 0.00191 | 0.004    |
| 16-Jan-08 | 1         | 0.02   | 0.00003   | 0.00078 | 0.002   | 1.87 | 0.00787 | 0.0248 | 0.0001   | 0.000008   | 0.000612 | 0.00308 | 0.004    |
| 23-Jan-08 | 2         | < 0.01 | 0.00016   | 0.00059 | < 0.001 | 2.07 | 0.00453 | 0.0134 | 0.0001   | 0.000008   | 0.000255 | 0.00463 | 0.001    |
| 30-Jan-08 | 3         | 0.02   | < 0.00002 | 0.00058 | < 0.001 | 2.55 | 0.0127  | 0.0113 | 0.0002   | < 0.000002 | 0.000341 | 0.00498 | 0.003    |
| 6-Feb-08  | 4         |        |           |         |         |      |         |        |          |            |          |         |          |
| 13-Feb-08 | 5         | 0.02   | < 0.00002 | 0.00067 | < 0.001 | 1.73 | 0.00947 | 0.0056 | < 0.0001 | < 0.000002 | 0.000143 | 0.00473 | 0.002    |
| 20-Feb-08 | 6         |        |           |         |         |      |         |        |          |            |          |         |          |
| 27-Feb-08 | 7         | 0.01   | 0.00002   | 0.00063 | < 0.001 | 1.72 | 0.00798 | 0.0069 | < 0.0001 | < 0.000002 | 0.00024  | 0.00554 | 0.003    |
| 05-Mar-08 | 8         |        |           |         |         |      |         |        |          |            |          |         |          |
| 12-Mar-08 | 9         |        |           |         |         |      |         |        |          |            |          |         |          |
| 19-Mar-08 | 10        | < 0.01 | 0.00007   | 0.00059 | < 0.001 | 1.83 | 0.00965 | 0.0057 | 0.0002   | < 0.000002 | 0.000135 | 0.0047  | 0.002    |
| 26-Mar-08 | 11        |        |           |         |         |      |         |        |          |            |          |         |          |
| 2-Apr-08  | 12        |        |           |         |         |      |         |        |          |            |          |         |          |
| 9-Apr-08  | 13        |        |           |         |         |      |         |        |          |            |          |         |          |
| 16-Apr-08 | 14        |        |           |         |         |      |         |        |          |            |          |         |          |
| 23-Apr-08 | 15        | < 0.01 | < 0.00002 | 0.00023 | < 0.001 | 1.52 | 0.00909 | 0.0066 | 0.0001   | 0.000093   | 0.000135 | 0.00373 | 0.002    |
| 30-Apr-08 | 16        |        |           |         |         |      |         |        |          |            |          |         |          |
| 7-May-08  | 17        |        |           |         |         |      |         |        |          |            |          |         |          |
| 14-May-08 | 18        |        |           |         |         |      |         |        |          |            |          |         |          |
| 21-May-08 | 19        |        |           |         |         |      |         |        |          |            |          |         |          |
| 28-May-08 | 20        | < 0.01 | 0.00005   | 0.00046 | < 0.001 | 1.62 | 0.00536 | 0.0082 | < 0.0001 | < 0.000002 | 0.000165 | 0.0047  | 0.003    |
| 4-Jun-08  | 21        |        |           |         |         |      |         |        |          |            |          |         |          |
| 11-Jun-08 | 22        |        |           |         |         |      |         |        |          |            |          |         |          |
| 18-Jun-08 | 23        |        |           |         |         |      |         |        |          |            |          |         |          |
| 25-Jun-08 | 24        |        |           |         |         |      |         |        |          |            |          |         |          |
| 2-Jul-08  | 25        | < 0.01 | < 0.00002 | 0.00026 | < 0.001 | 1.62 | 0.00869 | 0.0063 | 0.0001   | < 0.000002 | 0.000087 | 0.00405 | 0.002    |
| 9-Jul-08  | 26        |        |           |         |         |      |         |        |          |            |          |         |          |
| 16-Jul-08 | 27        |        |           |         |         |      |         |        |          |            |          |         |          |
| 23-Jul-08 | 28        |        |           |         |         |      |         |        |          |            |          |         |          |
| 30-Jul-08 | 29        |        |           |         |         |      |         |        |          |            |          |         |          |
| 6-Aug-08  | 30        | < 0.01 | < 0.00002 | 0.00013 | < 0.001 | 1.51 | 0.00882 | 0.0058 | < 0.0001 | < 0.000002 | 0.00011  | 0.00338 | < 0.001  |
| 13-Aug-08 | 31        |        |           |         |         |      |         |        |          |            |          |         |          |
| 20-Aug-08 | 32        |        |           |         |         |      |         |        |          |            |          |         |          |
| 27-Aug-08 | 33        |        |           |         |         |      |         |        |          |            |          |         |          |
| 3-Sep-08  | 34        |        |           |         |         |      |         |        |          |            |          |         |          |
| 10-Sep-08 | 35        | < 0.01 | < 0.00002 | 0.00042 | < 0.001 | 1.72 | 0.00755 | 0.0064 | < 0.0001 | 0.000008   | 0.00014  | 0.00384 | 0.001    |





|           |           | Volume      | Volume          | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al   | As     | Ba      |
|-----------|-----------|-------------|-----------------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|------|--------|---------|
| Date      | Cycle No. | Added<br>ml | Recovered<br>ml | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L | mg/L   | mg/L    |
| 17-Sep-08 | 36        | 1000        | 984             | 7.21  | 52           | 16                 | <2                 | 7.1  | 3.45 |          |           |      |        |         |
| 24-Sep-08 | 37        | 1000        | 987             | 7.43  | 50           | 16                 | <2                 | 7.2  | 3.38 |          |           |      |        |         |
| 1-Oct-08  | 38        | 1000        | 980             | 7.39  | 45           | 15                 | <2                 | 6.9  | 3.11 |          |           |      |        |         |
| 8-Oct-08  | 39        | 1000        | 985             | 7.42  | 46           | 14                 | <2                 | 6.9  | 3.23 |          |           |      |        |         |
| 15-Oct-08 | 40        | 1000        | 990             | 7.41  | 48           | 15                 | < 2                | 6.8  | 3.04 | < 0.0001 | < 0.00001 | 0.04 | 0.0022 | 0.00204 |
| 22-Oct-08 | 41        | 1000        | 987             | 7.43  | 49           | 15                 | < 2                | 7    | 3.17 |          |           |      |        |         |
| 29-Oct-08 | 42        | 1000        | 983             | 7.48  | 56           | 16                 | < 2                | 6.9  | 3.37 |          |           |      |        |         |
| 5-Nov-08  | 43        | 1000        | 985             | 7.33  | 54           | 17                 | < 2                | 6.8  | 3.46 |          |           |      |        |         |
| 12-Nov-08 | 44        | 1000        | 989             | 7.46  | 45           | 12                 | < 2                | 6.6  | 3.31 |          |           |      |        |         |
| 19-Nov-08 | 45        | 1000        | 987             | 7.46  | 50           | 16                 | < 2                | 6.9  | 3.53 | < 0.0001 | < 0.00001 | 0.03 | 0.0015 | 0.00198 |
| 26-Nov-08 | 46        | 1000        | 991             | 6.09  | 27           | 14                 | < 2                | 5.8  | 3.17 |          |           |      |        |         |
| 3-Dec-08  | 47        | 1000        | 994             | 7.32  | 46           | 16                 | < 2                | 5.5  | 3.28 |          |           |      |        |         |
| 10-Dec-08 | 48        | 1000        | 994             | 7.21  | 45           | 14                 | < 2                | 5.1  | 2.86 |          |           |      |        |         |
| 17-Dec-08 | 49        | 1000        | 993             | 7.52  | 46           | 15                 | < 2                | 5.9  | 3.2  |          |           |      |        |         |
| 24-Dec-08 | 50        | 1000        | 995             | 7.58  | 46           | 14                 | < 2                | 4.8  | 2.72 | < 0.0001 | < 0.00001 | 0.03 | 0.0018 | 0.00157 |
| 30-Dec-08 | 51        | 1000        | 992             | 7.53  | 43           | 14                 | < 2                | 5.3  | 2.94 |          |           |      |        |         |
| 7-Jan-09  | 52        | 1000        | 994             | 7.57  | 47           | 15                 | < 2                | 6.1  | 3.37 |          |           |      |        |         |
| 14-Jan-09 | 53        | 1000        | 991             | 7.44  | 41           | 14                 | < 2                | 5.3  | 2.97 |          |           |      |        |         |





| Date      | Cycle No. | Be<br>mg/L | B<br>mg/L | Bi<br>mg/L | Cd<br>mg/L | Co<br>mg/L | Cr<br>mg/L | Cu<br>mg/L | Fe<br>mg/L | K<br>mg/L | Li<br>mg/L | Mg<br>mg/L | Mn<br>mg/L | Mo<br>mg/L | Na<br>mg/L | Ni<br>mg/L |
|-----------|-----------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|
| 17-Sep-08 | 36        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 24-Sep-08 | 37        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 1-Oct-08  | 38        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 8-Oct-08  | 39        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 15-Oct-08 | 40        | < 0.00002  | 0.0009    | < 0.00001  | < 0.000003 | 0.00017    | < 0.0005   | < 0.0005   | < 0.01     | 1.15      | < 0.002    | 3.33       | 0.00272    | 0.0105     | 0.06       | 0.0003     |
| 22-Oct-08 | 41        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 29-Oct-08 | 42        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 5-Nov-08  | 43        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 12-Nov-08 | 44        |            | -         |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 19-Nov-08 | 45        | < 0.00002  | 0.0012    | < 0.00001  | < 0.000003 | 0.00003    | < 0.0005   | < 0.0005   | < 0.01     | 1.18      | < 0.002    | 3.67       | 0.00202    | 0.0104     | 0.06       | 0.0002     |
| 26-Nov-08 | 46        |            | -         |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 3-Dec-08  | 47        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 10-Dec-08 | 48        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 17-Dec-08 | 49        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 24-Dec-08 | 50        | < 0.00002  | 0.0005    | < 0.00001  | < 0.000003 | < 0.000002 | < 0.0005   | < 0.0005   | < 0.01     | 0.98      | < 0.002    | 2.79       | 0.00136    | 0.0073     | 0.03       | 0.0001     |
| 30-Dec-08 | 51        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 7-Jan-09  | 52        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |
| 14-Jan-09 | 53        |            |           |            |            |            |            |            |            |           |            |            |            |            |            |            |





| Date      | Cycle No. | P<br>mg/L | Pb<br>mg/L | Sb<br>mg/L | Se<br>mg/L | Si<br>mg/L | Sn<br>mg/L | Sr<br>mg/L | Ti<br>mg/L | Th<br>mg/L | U<br>mg/L | V<br>mg/L | Zn<br>mg/L |
|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|-----------|------------|
| 17-Sep-08 | 36        |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Sep-08 | 37        |           |            |            |            |            |            |            |            |            |           |           |            |
| 1-Oct-08  | 38        |           |            |            |            |            |            |            |            |            |           |           |            |
| 8-Oct-08  | 39        |           |            |            |            |            |            |            |            |            |           |           |            |
| 15-Oct-08 | 40        | 0.02      | < 0.00002  | 0.00018    | < 0.001    | 1.65       | 0.00782    | 0.0055     | < 0.0001   | 0.000007   | 0.000194  | 0.00398   | < 0.001    |
| 22-Oct-08 | 41        |           |            |            |            |            |            |            |            |            |           |           |            |
| 29-Oct-08 | 42        |           |            |            |            |            |            |            |            |            |           |           |            |
| 5-Nov-08  | 43        |           |            |            |            |            |            |            |            |            |           |           |            |
| 12-Nov-08 | 44        |           |            |            |            |            |            |            |            |            |           |           |            |
| 19-Nov-08 | 45        | < 0.01    | < 0.00002  | < 0.0002   | < 0.001    | 1.66       | 0.00637    | 0.0065     | < 0.0001   | < 0.000002 | 0.000144  | 0.00377   | < 0.001    |
| 26-Nov-08 | 46        |           |            |            |            |            |            |            |            |            |           |           |            |
| 3-Dec-08  | 47        |           |            |            |            |            |            |            |            |            |           |           |            |
| 10-Dec-08 | 48        |           |            |            |            |            |            |            |            |            |           |           |            |
| 17-Dec-08 | 49        |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Dec-08 | 50        | < 0.01    | < 0.00002  | < 0.0002   | < 0.001    | 1.26       | 0.00707    | 0.0045     | < 0.0001   | < 0.000002 | 0.000112  | 0.00369   | < 0.001    |
| 30-Dec-08 | 51        |           |            |            |            |            |            |            |            |            |           |           |            |
| 7-Jan-09  | 52        |           |            |            |            |            |            |            |            |            |           |           |            |
| 14-Jan-09 | 53        |           |            |            |            |            |            |            |            |            |           |           |            |





|           |           | Volume | Volume    |       |              | A.I. II I          |                    | 224  | _    | l        |           |        |          |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| Date      | Cycle No. | Added  | Recovered | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
| Date      | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 9-Jan-08  | 0         | 1000   | 752       | 6.3   | 170          | < 2                | 2                  | 4.2  | 5.76 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 16-Jan-08 | 1         | 1000   | 772       | 5.66  | 215          | < 2                | 4                  | 9    | 7.28 | < 0.0001 | < 0.00001 | 0.01   | 0.0003   |
| 23-Jan-08 | 2         | 1000   | 937       | 6.56  | 81           | 2                  | < 2                | 5.2  | 2.38 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 30-Jan-08 | 3         | 1000   | 980       | 6.76  | 41           | 3                  | < 2                | 4.8  | 1.13 | < 0.0001 | < 0.00001 | 0.03   | 0.0002   |
| 6-Feb-08  | 4         | 1000   | 929       | 6.85  | 24           | 3                  | < 2                | 3.5  | 0.58 |          |           |        |          |
| 13-Feb-08 | 5         | 1000   | 913       | 6.7   | 20           | 2                  | < 2                | 2.7  | 0.37 | < 0.0001 | < 0.00001 | 0.03   | < 0.0002 |
| 20-Feb-08 | 6         | 1000   | 986       | 6.75  | 19           | 3                  | < 2                | 3.1  | 0.47 |          |           |        |          |
| 27-Feb-08 | 7         | 1000   | 922       | 6.67  | 17           | < 2                | < 2                | 2.8  | 0.3  | < 0.0001 | < 0.00001 | 0.04   | < 0.0002 |
| 05-Mar-08 | 8         | 1000   | 897       | 6.7   | 19           | 3                  | < 2                | 3.2  | 0.31 |          |           |        |          |
| 12-Mar-08 | 9         | 1000   | 986       | 6.72  | 14           | 3                  | < 2                | 2.1  | 0.31 |          |           |        |          |
| 19-Mar-08 | 10        | 1000   | 923       | 6.61  | 14           | 2                  | < 2                | 2.2  | 0.21 | < 0.0001 | < 0.00001 | 0.04   | < 0.0002 |
| 26-Mar-08 | 11        | 1000   | 902       | 6.45  | 13           | < 2                | < 2                | 2    | 0.29 |          |           |        |          |
| 2-Apr-08  | 12        | 1000   | 937       | 6.5   | 12           | 3                  | < 2                | 2    | 0.21 |          |           |        |          |
| 9-Apr-08  | 13        | 1000   | 963       | 6.27  | 13           | < 2                | 2                  | 1.5  | 0.2  |          |           |        |          |
| 16-Apr-08 | 14        | 1000   | 961       | 6.62  | 13           | 3                  | < 2                | 1.7  | 0.22 |          |           |        |          |
| 23-Apr-08 | 15        | 1000   | 985       | 6.43  | 15           | 2                  | < 2                | 1.7  | 0.33 | < 0.0001 | < 0.00001 | 0.04   | < 0.0002 |
| 30-Apr-08 | 16        | 1000   | 981       | 5.18  | 17           | < 2                | 4                  | 1.7  | 0.22 |          |           |        |          |
| 7-May-08  | 17        | 1000   | 966       | 6.17  | 14           | < 2                | < 2                | 1.9  | 0.26 |          |           |        |          |
| 14-May-08 | 18        | 1000   | 954       | 4.99  | 31           | < 2                | 3                  | 1.4  | 0.26 |          |           |        |          |
| 21-May-08 | 19        | 1000   | 979       | 6.34  | 19           | 2                  | < 2                | 1.8  | 0.3  |          |           |        |          |
| 28-May-08 | 20        | 1000   | 899       | 3.7   | 96           | < 2                | 13                 | 1    | 0.24 | < 0.0001 | < 0.00001 | 0.05   | < 0.0002 |
| 4-Jun-08  | 21        | 1000   | 936       | 6.19  | 13           | < 2                | < 2                | 1.7  | 0.2  |          |           |        |          |
| 11-Jun-08 | 22        | 1000   | 986       | 6.5   | 16           | 3                  | < 2                | 1.5  | 0.29 |          |           |        |          |
| 18-Jun-08 | 23        | 1000   | 956       | 6.79  | 12           | 3                  | < 2                | 1.7  | 0.23 |          |           |        |          |
| 25-Jun-08 | 24        | 1000   | 966       | 6.63  | 11           | 3                  | 44                 | 1.5  | 0.24 |          |           |        |          |
| 2-Jul-08  | 25        | 1000   | 938       | 6.48  | 9            | < 2                | < 2                | 1.5  | 0.18 | < 0.0001 | < 0.00001 | 0.03   | < 0.0002 |
| 9-Jul-08  | 26        | 1000   | 969       | 6.4   | 11           | 2                  | < 2                | 1.6  | 0.2  |          |           |        |          |
| 16-Jul-08 | 27        | 1000   | 940       | 6.4   | 8            | < 2                | < 2                | 1.3  | 0.16 |          |           |        |          |
| 23-Jul-08 | 28        | 1000   | 922       | 6.28  | 7            | < 2                | < 2                | 1.4  | 0.17 |          |           |        |          |
| 30-Jul-08 | 29        | 1000   | 925       | 6.47  | 7            | < 2                | < 2                | 1.4  | 0.18 |          |           |        |          |
| 6-Aug-08  | 30        | 1000   | 927       | 6.55  | 7            | < 2                | < 2                | 1.4  | 0.15 | < 0.0001 | < 0.00001 | 0.03   | 0.0003   |
| 13-Aug-08 | 31        | 1000   | 967       | 6.76  | 9            | < 2                | < 2                | 1.5  | 0.22 |          |           |        |          |
| 20-Aug-08 | 32        | 1000   | 900       | 6.53  | 11           | < 2                | < 2                | 1.4  | 0.18 |          |           |        |          |
| 27-Aug-08 | 33        | 1000   | 884       | 6.42  | 10           | < 2                | < 2                | 1.5  | 0.17 |          |           |        |          |
| 3-Sep-08  | 34        | 1000   | 962       | 6.45  | 10           | < 2                | < 2                | 1.4  | 0.18 |          |           |        |          |
| 10-Sep-08 | 35        | 1000   | 977       | 6.68  | 10           | 2                  | <2                 | 1.4  | 0.2  | < 0.0001 | < 0.00001 | 0.03   | < 0.0002 |





| Data      | Cycle Ne  | Ва      | Be        | В      | Bi        | Cd         | Со       | Cr       | Cu       | Fe     | K    | Li      | Mg    | Mn      | Мо      |
|-----------|-----------|---------|-----------|--------|-----------|------------|----------|----------|----------|--------|------|---------|-------|---------|---------|
| Date      | Cycle No. | mg/L    | mg/L      | mg/L   | mg/L      | mg/L       | mg/L     | mg/L     | mg/L     | mg/L   | mg/L | mg/L    | mg/L  | mg/L    | mg/L    |
| 9-Jan-08  | 0         | 0.00458 | < 0.00002 | 0.0218 | < 0.00001 | 0.000006   | 0.00103  | < 0.0005 | 0.001    | 0.01   | 5.05 | < 0.002 | 10.4  | 0.0275  | 0.00887 |
| 16-Jan-08 | 1         | 0.00645 | < 0.00002 | 0.0192 | < 0.00001 | 0.000006   | 0.000841 | < 0.0005 | 0.001    | 0.01   | 4.68 | < 0.002 | 14    | 0.0376  | 0.0376  |
| 23-Jan-08 | 2         | 0.00216 | < 0.00002 | 0.0182 | < 0.00001 | 0.00003    | 0.000372 | < 0.0005 | 0.0005   | < 0.01 | 2.57 | < 0.002 | 5.12  | 0.01348 | 0.04616 |
| 30-Jan-08 | 3         | 0.00108 | < 0.00002 | 0.0233 | < 0.00001 | 0.00001    | 0.000035 | < 0.0005 | < 0.0005 | 0.02   | 2.25 | < 0.002 | 2.4   | 0.00723 | 0.0654  |
| 6-Feb-08  | 4         |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 13-Feb-08 | 5         | 0.0004  | < 0.00002 | 0.0138 | < 0.00001 | < 0.000003 | 0.000131 | < 0.0005 | < 0.0005 | 0.01   | 1.3  | < 0.002 | 0.787 | 0.0033  | 0.0462  |
| 20-Feb-08 | 6         |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 27-Feb-08 | 7         | 0.0003  | < 0.00002 | 0.0161 | < 0.00001 | 0.000012   | 0.000115 | < 0.0005 | < 0.0005 | 0.02   | 1.15 | < 0.002 | 0.644 | 0.00326 | 0.0603  |
| 05-Mar-08 | 8         |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 12-Mar-08 | 9         |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 19-Mar-08 | 10        | 0.00025 | < 0.00002 | 0.0124 | < 0.00001 | 0.000029   | 0.000101 | < 0.0005 | < 0.0005 | 0.03   | 0.97 | < 0.002 | 0.507 | 0.00276 | 0.0431  |
| 26-Mar-08 | 11        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 2-Apr-08  | 12        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 9-Apr-08  | 13        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 16-Apr-08 | 14        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 23-Apr-08 | 15        | 0.00041 | < 0.00002 | 0.0123 | < 0.00001 | 0.000021   | 0.000154 | < 0.0005 | < 0.0005 | < 0.01 | 1.17 | < 0.002 | 0.724 | 0.00343 | 0.0265  |
| 30-Apr-08 | 16        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 7-May-08  | 17        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 14-May-08 | 18        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 21-May-08 | 19        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 28-May-08 | 20        | 0.00067 | < 0.00002 | 0.0118 | < 0.00001 | 0.000007   | 0.000213 | < 0.0005 | 0.0006   | 0.04   | 1.01 | < 0.002 | 0.472 | 0.00352 | 0.025   |
| 4-Jun-08  | 21        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 11-Jun-08 | 22        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 18-Jun-08 | 23        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 25-Jun-08 | 24        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 2-Jul-08  | 25        | 0.00023 | < 0.00002 | 0.0094 | < 0.00001 | 0.000004   | 0.000085 | < 0.0005 | < 0.0005 | 0.03   | 0.94 | < 0.002 | 0.407 | 0.00225 | 0.0144  |
| 9-Jul-08  | 26        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 16-Jul-08 | 27        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 23-Jul-08 | 28        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 30-Jul-08 | 29        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 6-Aug-08  | 30        | 0.00021 | < 0.00002 | 0.0073 | < 0.00001 | < 0.000003 | 0.000103 | < 0.0005 | < 0.0005 | 0.02   | 0.84 | < 0.002 | 0.325 | 0.00251 | 0.0131  |
| 13-Aug-08 | 31        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 20-Aug-08 | 32        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 27-Aug-08 | 33        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 3-Sep-08  | 34        |         |           |        |           |            |          |          |          |        |      |         |       |         |         |
| 10-Sep-08 | 35        | 0.00043 | < 0.00002 | 0.0104 | < 0.00001 | < 0.000003 | 0.00011  | < 0.0005 | < 0.0005 | 0.02   | 0.93 | < 0.002 | 0.457 | 0.00265 | 0.0117  |





|           |           | Na   | Ni     | Р      | Pb        | Sb      | Se      | Si   | Sn      | Sr     | Ti       | Th         | U          | V       | Zn      |
|-----------|-----------|------|--------|--------|-----------|---------|---------|------|---------|--------|----------|------------|------------|---------|---------|
| Date      | Cycle No. | INA  | INI    | -      | FD        | 30      | 36      | JI . | JII     | JI JI  | 1.1      | 111        | -          | ٧       | 211     |
|           |           | mg/L | mg/L   | mg/L   | mg/L      | mg/L    | mg/L    | mg/L | mg/L    | mg/L   | mg/L     | mg/L       | mg/L       | mg/L    | mg/L    |
| 9-Jan-08  | 0         | 2.03 | 0.0019 | 0.02   | 0.0001    | 0.00051 | < 0.001 | 0.3  | 0.023   | 0.0198 | < 0.0001 | 0.000034   | 0.000008   | 0.00097 | 0.002   |
| 16-Jan-08 | 1         | 2.02 | 0.0024 | 0.02   | 0.00004   | 0.0005  | 0.003   | 0.28 | 0.013   | 0.026  | 0.0001   | 0.00001    | 0.000015   | 0.00134 | 0.002   |
| 23-Jan-08 | 2         | 1.06 | 0.0005 | < 0.01 | 0.00006   | 0.0004  | 0.002   | 0.27 | 0.0079  | 0.0089 | < 0.0001 | 0.00001    | 0.000016   | 0.00221 | 0.001   |
| 30-Jan-08 | 3         | 0.84 | 0.0006 | 0.02   | < 0.00002 | 0.00047 | 0.002   | 0.42 | 0.0063  | 0.0044 | 0.0001   | < 0.000002 | 0.000016   | 0.00274 | < 0.001 |
| 6-Feb-08  | 4         |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 13-Feb-08 | 5         | 0.37 | 0.0004 | 0.02   | < 0.00002 | 0.00056 | < 0.001 | 0.31 | 0.00396 | 0.0013 | < 0.0001 | < 0.000002 | 0.000014   | 0.00347 | < 0.001 |
| 20-Feb-08 | 6         |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 27-Feb-08 | 7         | 0.32 | 0.0003 | 0.02   | < 0.00002 | 0.00045 | < 0.001 | 0.25 | 0.00344 | 0.0012 | 0.0001   | < 0.000002 | 0.000018   | 0.00396 | < 0.001 |
| 05-Mar-08 | 8         |      |        |        |           | -       |         |      |         |        |          |            |            |         |         |
| 12-Mar-08 | 9         |      |        |        |           | -       |         |      |         |        |          |            |            |         |         |
| 19-Mar-08 | 10        | 0.22 | 0.0004 | 0.01   | < 0.00002 | 0.00056 | < 0.001 | 0.3  | 0.00323 | 0.0009 | 0.0003   | < 0.000002 | 0.000016   | 0.00364 | < 0.001 |
| 26-Mar-08 | 11        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 2-Apr-08  | 12        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 9-Apr-08  | 13        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 16-Apr-08 | 14        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 23-Apr-08 | 15        | 0.2  | 0.0004 | < 0.01 | < 0.00002 | 0.00025 | < 0.001 | 0.33 | 0.00427 | 0.0013 | < 0.0001 | 0.000091   | 0.000012   | 0.00276 | 0.001   |
| 30-Apr-08 | 16        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 7-May-08  | 17        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 14-May-08 | 18        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 21-May-08 | 19        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 28-May-08 | 20        | 0.13 | 0.0006 | < 0.01 | 0.00004   | 0.00043 | < 0.001 | 0.28 | 0.00325 | 0.0046 | 0.0003   | 0.000002   | 0.00001    | 0.00449 | < 0.001 |
| 4-Jun-08  | 21        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 11-Jun-08 | 22        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 18-Jun-08 | 23        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 25-Jun-08 | 24        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 2-Jul-08  | 25        | 0.12 | 0.0002 | < 0.01 | < 0.00002 | 0.00028 | < 0.001 | 0.28 | 0.0028  | 0.0007 | < 0.0001 | < 0.000002 | < 0.000001 | 0.00408 | < 0.001 |
| 9-Jul-08  | 26        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 16-Jul-08 | 27        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 23-Jul-08 | 28        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 30-Jul-08 | 29        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 6-Aug-08  | 30        | 0.09 | 0.0003 | < 0.01 | < 0.00002 | 0.00015 | < 0.001 | 0.23 | 0.00128 | 0.0006 | 0.0002   | < 0.000002 | 0.000001   | 0.00403 | < 0.001 |
| 13-Aug-08 | 31        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 20-Aug-08 | 32        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 27-Aug-08 | 33        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 3-Sep-08  | 34        |      |        |        |           |         |         |      |         |        |          |            |            |         |         |
| 10-Sep-08 | 35        | 0.05 | 0.0002 | < 0.01 | < 0.00002 | 0.00057 | < 0.001 | 0.34 | 0.00152 | 0.0011 | 0.0001   | 0.000017   | 0.000019   | 0.00381 | < 0.001 |





| Dete      | 0 1 1     | Volume<br>Added | Volume<br>Recovered | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al   | As       |
|-----------|-----------|-----------------|---------------------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|------|----------|
| Date      | Cycle No. | ml              | ml                  | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L | mg/L     |
| 17-Sep-08 | 36        | 1000            | 939                 | 6.47  | 8            | < 2                | < 2                | 1.2  | 0.18 |          |           |      |          |
| 24-Sep-08 | 37        | 1000            | 964                 | 6.64  | 9            | 2                  | <2                 | 1.4  | 0.25 |          |           |      |          |
| 1-Oct-08  | 38        | 1000            | 968                 | 6.63  | 7            | < 2                | < 2                | 1.4  | 0.18 |          |           |      |          |
| 8-Oct-08  | 39        | 1000            | 978                 | 6.69  | 8            | < 2                | < 2                | 1.2  | 0.19 |          |           |      |          |
| 15-Oct-08 | 40        | 1000            | 990                 | 6.71  | 8            | < 2                | < 2                | 1.3  | 0.2  | < 0.0001 | < 0.00001 | 0.05 | < 0.0002 |
| 22-Oct-08 | 41        | 1000            | 980                 | 6.52  | 10           | < 2                | < 2                | 1.1  | 0.17 |          |           |      |          |
| 29-Oct-08 | 42        | 1000            | 929                 | 6.43  | 10           | < 2                | 2                  | 1.1  | 0.13 |          |           |      |          |
| 5-Nov-08  | 43        | 1000            | 956                 | 6.59  | 22           | 5                  | < 2                | 1.3  | 0.18 |          |           |      |          |
| 12-Nov-08 | 44        | 1000            | 989                 | 6.69  | 9            | 3                  | < 2                | 1.1  | 0.25 |          |           |      |          |
| 19-Nov-08 | 45        | 1000            | 970                 | 6.57  | 5            | < 2                | 6                  | 1.2  | 0.15 | < 0.0001 | < 0.00001 | 0.02 | < 0.0002 |
| 26-Nov-08 | 46        | 1000            | 963                 | 5.31  | 6            | < 2                | < 2                | 1.1  | 0.15 |          |           |      |          |
| 3-Dec-08  | 47        | 1000            | 972                 | 6.45  | 6            | < 2                | < 2                | 1    | 0.15 |          |           |      |          |
| 10-Dec-08 | 48        | 1000            | 981                 | 6.35  | 10           | 77                 | < 2                | 1    | 0.13 |          |           |      |          |
| 17-Dec-08 | 49        | 1000            | 979                 | 6.71  | 6            | < 2                | < 2                | 1    | 0.14 |          |           |      |          |
| 24-Dec-08 | 50        | 1000            | 945                 | 6.64  | 7            | < 2                | < 2                | 0.8  | 0.07 | < 0.0001 | < 0.00001 | 0.02 | < 0.0002 |
| 30-Dec-08 | 51        | 1000            | 962                 | 6.57  | 7            | < 2                | 2                  | 1    | 0.13 |          |           |      |          |
| 7-Jan-09  | 52        | 1000            | 966                 | 6.52  | 7            | < 2                | < 2                | 1.1  | 0.15 |          |           |      |          |
| 14-Jan-09 | 53        | 1000            | 921                 | 6.79  | 6            | < 2                | < 2                | 1    | 0.14 |          |           |      |          |





| Date      | Cycle No. | Ba<br>mg/L | Be<br>mg/L | B<br>mg/L | Bi<br>mg/L | Cd<br>mg/L | Co<br>mg/L | Cr<br>mg/L | Cu<br>mg/L | Fe<br>mg/L | K<br>mg/L | Li<br>mg/L | Mg<br>mg/L | Mn<br>mg/L | Mo<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 15-Oct-08 | 40        | 0.00028    | < 0.00002  | 0.0085    | < 0.00001  | < 0.000003 | 0.000139   | < 0.0005   | < 0.0005   | 0.03       | 0.91      | < 0.002    | 0.419      | 0.00276    | 0.0101     |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 19-Nov-08 | 45        | 0.00027    | < 0.00002  | 0.0071    | < 0.00001  | 0.000005   | 0.000082   | < 0.0005   | < 0.0005   | 0.02       | 0.84      | < 0.002    | 0.364      | 0.00216    | 0.0072     |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 24-Dec-08 | 50        | 0.00015    | < 0.00002  | 0.0064    | < 0.00001  | < 0.000003 | 0.000051   | < 0.0005   | < 0.0005   | 0.01       | 0.72      | < 0.002    | 0.28       | 0.00196    | 0.0052     |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            |            |           |            |            |            |            |





| Date      | Cycle No. | Na<br>mg/L | Ni<br>mg/L | P<br>mg/L | Pb<br>mg/L | Sb<br>mg/L | Se<br>mg/L | Si<br>mg/L | Sn<br>mg/L | Sr<br>mg/L | Ti<br>mg/L | Th<br>mg/L | U<br>mg/L | V<br>mg/L | Zn<br>mg/L |
|-----------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|-----------|------------|
| 17-Sep-08 | 36        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Sep-08 | 37        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 1-Oct-08  | 38        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 8-Oct-08  | 39        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 15-Oct-08 | 40        | 0.08       | 0.0004     | 0.02      | 0.00004    | 0.0002     | < 0.001    | 0.35       | 0.00204    | 0.0008     | 0.0002     | 0.000004   | 0.000053  | 0.00376   | 0.001      |
| 22-Oct-08 | 41        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 29-Oct-08 | 42        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 5-Nov-08  | 43        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 12-Nov-08 | 44        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 19-Nov-08 | 45        | 0.05       | 0.0002     | < 0.01    | < 0.00002  | < 0.0002   | < 0.001    | 0.3        | 0.00159    | 0.0006     | < 0.0001   | < 0.000002 | 0.000012  | 0.00342   | < 0.001    |
| 26-Nov-08 | 46        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 3-Dec-08  | 47        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 10-Dec-08 | 48        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 17-Dec-08 | 49        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 24-Dec-08 | 50        | 0.03       | 0.0002     | < 0.01    | < 0.00002  | < 0.0002   | < 0.001    | 0.23       | 0.00194    | 0.0003     | < 0.0001   | < 0.000002 | 0.000065  | 0.00328   | < 0.001    |
| 30-Dec-08 | 51        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 7-Jan-09  | 52        |            |            |           |            |            |            |            |            |            |            |            |           |           |            |
| 14-Jan-09 | 53        |            |            |           |            |            |            |            |            | -          |            |            |           |           |            |





|           |           | Volume | Volume    |       |              |                    |                    |      |      |          |           |      |          |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|------|----------|
|           |           | Added  | Recovered | рН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | ΑI   | As       |
| Date      | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L | mg/L     |
| 9-Jan-08  | 0         | 1000   | 785       | 6.17  | 3            | 5                  | 87                 | 4.6  | 4.16 | < 0.0001 | < 0.00001 | 0.01 | 0.0002   |
| 16-Jan-08 | 1         | 1000   | 963       | 6.76  | 4            | < 2                | 107                | 9    | 4.95 | < 0.0001 | < 0.00001 | 0.02 | < 0.0002 |
| 23-Jan-08 | 2         | 1000   | 947       | 6.9   | 4            | < 2                | 70                 | 7.1  | 3.16 | < 0.0001 | < 0.00001 | 0.02 | < 0.0002 |
| 30-Jan-08 | 3         | 1000   | 983       | 7.02  | 7            | < 2                | 52                 | 6.1  | 2.51 | < 0.0001 | < 0.00001 | 0.01 | < 0.0002 |
| 6-Feb-08  | 4         | 1000   | 937       | 7     | 4            | < 2                | 31                 | 4.7  | 1.48 |          |           |      |          |
| 13-Feb-08 | 5         | 1000   | 980       | 6.95  | 5            | < 2                | 36                 | 4.7  | 1.46 | < 0.0001 | < 0.00001 | 0.03 | < 0.0002 |
| 20-Feb-08 | 6         | 1000   | 982       | 6.79  | 3            | < 2                | 24                 | 3.5  | 1.21 |          |           |      |          |
| 27-Feb-08 | 7         | 1000   | 933       | 6.65  | 3            | < 2                | 20                 | 3.1  | 0.86 | < 0.0001 | < 0.00001 | 0.03 | < 0.0002 |
| 05-Mar-08 | 8         | 1000   | 920       | 6.85  | 4            | < 2                | 22                 | 3.3  | 0.71 |          |           |      |          |
| 12-Mar-08 | 9         | 1000   | 990       | 6.76  | 4            | < 2                | 20                 | 3    | 0.92 |          |           |      |          |
| 19-Mar-08 | 10        | 1000   | 940       | 6.5   | < 2          | < 2                | 18                 | 2.7  | 0.74 | < 0.0001 | < 0.00001 | 0.03 | < 0.0002 |
| 26-Mar-08 | 11        | 1000   | 904       | 6.83  | 5            | < 2                | 19                 | 3.1  | 0.8  |          |           |      |          |
| 2-Apr-08  | 12        | 1000   | 947       | 6.69  | 4            | < 2                | 15                 | 2.6  | 0.6  |          |           |      |          |
| 9-Apr-08  | 13        | 1000   | 950       | 6.54  | 3            | < 2                | 17                 | 2.1  | 0.68 |          |           |      |          |
| 16-Apr-08 | 14        | 1000   | 963       | 6.73  | 3            | < 2                | 19                 | 2.4  | 0.74 |          |           |      |          |
| 23-Apr-08 | 15        | 1000   | 985       | 6.55  | 3            | < 2                | 20                 | 2.3  | 0.99 | < 0.0001 | < 0.00001 | 0.02 | < 0.0002 |
| 30-Apr-08 | 16        | 1000   | 964       | 6.57  | < 2          | < 2                | 18                 | 2.7  | 0.75 |          |           |      |          |
| 7-May-08  | 17        | 1000   | 971       | 6.69  | 10           | < 2                | 18                 | 2.9  | 0.79 |          |           |      |          |
| 14-May-08 | 18        | 1000   | 947       | 6.5   | 3            | < 2                | 19                 | 2.4  | 0.74 |          |           |      |          |
| 21-May-08 | 19        | 1000   | 984       | 4.53  | < 2          | 5                  | 37                 | 2.9  | 0.87 |          |           |      |          |
| 28-May-08 | 20        | 1000   | 884       | 6.29  | < 2          | < 2                | 23                 | 2.9  | 0.92 | < 0.0001 | < 0.00001 | 0.04 | < 0.0002 |
| 4-Jun-08  | 21        | 1000   | 929       | 6.59  | 3            | <2                 | 13                 | 2.3  | 0.59 |          |           |      |          |
| 11-Jun-08 | 22        | 1000   | 976       | 6.8   | 4            | < 2                | 17                 | 2.2  | 0.89 |          |           |      |          |
| 18-Jun-08 | 23        | 1000   | 959       | 6.98  | 4            | < 2                | 18                 | 2.6  | 0.8  |          |           |      |          |
| 25-Jun-08 | 24        | 1000   | 992       | 6.78  | 4            | 47                 | 15                 | 2.5  | 0.83 |          |           |      |          |
| 2-Jul-08  | 25        | 1000   | 939       | 6.68  | 3            | < 2                | 14                 | 2.1  | 0.64 | < 0.0001 | < 0.00001 | 0.01 | < 0.0002 |
| 9-Jul-08  | 26        | 1000   | 971       | 6.61  | 3            | < 2                | 16                 | 2.5  | 0.7  |          |           |      |          |
| 16-Jul-08 | 27        | 1000   | 935       | 6.7   | 4            | < 2                | 15                 | 2    | 0.6  |          |           |      |          |
| 23-Jul-08 | 28        | 1000   | 990       | 6.49  | 3            | < 2                | 14                 | 2.2  | 0.68 |          |           |      |          |
| 30-Jul-08 | 29        | 1000   | 941       | 6.69  | 4            | < 2                | 13                 | 1.9  | 0.57 |          |           |      |          |
| 6-Aug-08  | 30        | 1000   | 936       | 6.74  | 3            | < 2                | 12                 | 2    | 0.55 | < 0.0001 | < 0.00001 | 0.01 | < 0.0002 |
| 13-Aug-08 | 31        | 1000   | 977       | 7.11  | 4            | < 2                | 15                 | 2.3  | 0.76 |          |           |      |          |
| 20-Aug-08 | 32        | 1000   | 870       | 6.7   | 3            | < 2                | 23                 | 2    | 0.67 |          |           |      |          |
| 27-Aug-08 | 33        | 1000   | 927       | 6.6   | 3            | < 2                | 12                 | 1.8  | 0.53 |          |           |      |          |
| 3-Sep-08  | 34        | 1000   | 946       | 6.68  | 3            | <2                 | 13                 | 1.8  | 0.58 |          |           |      |          |
| 10-Sep-08 | 35        | 1000   | 976       | 6.89  | 3            | <2                 | 14                 | 1.9  | 0.65 | < 0.0001 | < 0.00001 | 0.01 | < 0.0002 |





|           |           | D-      | D-        | _      | D:        | 0.1        | 0-         | 0        | 0        |        | 1/   |         |       | N. 4    |         |
|-----------|-----------|---------|-----------|--------|-----------|------------|------------|----------|----------|--------|------|---------|-------|---------|---------|
| Date      | Cycle No. | Ва      | Be        | В      | Bi        | Cd         | Со         | Cr       | Cu       | Fe     | K    | Li      | Mg    | Mn      | Мо      |
|           |           | mg/L    | mg/L      | mg/L   | mg/L      | mg/L       | mg/L       | mg/L     | mg/L     | mg/L   | mg/L | mg/L    | mg/L  | mg/L    | mg/L    |
| 9-Jan-08  | 0         | 0.00039 | < 0.00002 | 0.0478 | < 0.00001 | < 0.000003 | 0.000261   | < 0.0005 | < 0.0005 | < 0.01 | 1.68 | < 0.002 | 3.77  | 0.00401 | 0.0148  |
| 16-Jan-08 | 1         | 0.00045 | < 0.00002 | 0.0621 | < 0.00001 | 0.000011   | 0.000193   | < 0.0005 | < 0.0005 | < 0.01 | 1.32 | < 0.002 | 5.23  | 0.00434 | 0.07    |
| 23-Jan-08 | 2         | 0.00041 | < 0.00002 | 0.0626 | < 0.00001 | 0.000034   | 0.000107   | < 0.0005 | < 0.0005 | 0.01   | 1.14 | < 0.002 | 3.41  | 0.00297 | 0.06928 |
| 30-Jan-08 | 3         | 0.00029 | < 0.00002 | 0.063  | < 0.00001 | < 0.000003 | < 0.000002 | < 0.0005 | < 0.0005 | < 0.01 | 1.12 | < 0.002 | 2.69  | 0.00183 | 0.0729  |
| 6-Feb-08  | 4         |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 13-Feb-08 | 5         | 0.00018 | < 0.00002 | 0.0479 | < 0.00001 | 0.00001    | 0.000064   | < 0.0005 | < 0.0005 | 0.01   | 0.84 | < 0.002 | 1.6   | 0.00165 | 0.0653  |
| 20-Feb-08 | 6         |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 27-Feb-08 | 7         | 0.00012 | < 0.00002 | 0.0381 | < 0.00001 | 0.000008   | 0.000045   | < 0.0005 | < 0.0005 | 0.01   | 0.62 | < 0.002 | 0.971 | 0.00125 | 0.0564  |
| 05-Mar-08 | 8         |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 12-Mar-08 | 9         |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 19-Mar-08 | 10        | 0.0001  | < 0.00002 | 0.0265 | < 0.00001 | 0.000033   | 0.000043   | < 0.0005 | < 0.0005 | 0.02   | 0.6  | < 0.002 | 0.893 | 0.00116 | 0.0425  |
| 26-Mar-08 | 11        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 2-Apr-08  | 12        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 9-Apr-08  | 13        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 16-Apr-08 | 14        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 23-Apr-08 | 15        | 0.00019 | < 0.00002 | 0.0237 | < 0.00001 | 0.000026   | 0.000086   | < 0.0005 | < 0.0005 | < 0.01 | 0.61 | < 0.002 | 1.03  | 0.00141 | 0.0321  |
| 30-Apr-08 | 16        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 7-May-08  | 17        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 14-May-08 | 18        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 21-May-08 | 19        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 28-May-08 | 20        | 0.00023 | < 0.00002 | 0.0173 | 0.00002   | 0.000011   | 0.000203   | < 0.0005 | 0.0007   | 0.07   | 0.59 | < 0.002 | 0.883 | 0.00354 | 0.0321  |
| 4-Jun-08  | 21        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 11-Jun-08 | 22        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 18-Jun-08 | 23        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 25-Jun-08 | 24        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 2-Jul-08  | 25        | 0.00014 | < 0.00002 | 0.0142 | < 0.00001 | 0.00001    | 0.000025   | < 0.0005 | < 0.0005 | 0.02   | 0.52 | < 0.002 | 0.748 | 0.00103 | 0.0186  |
| 9-Jul-08  | 26        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 16-Jul-08 | 27        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 23-Jul-08 | 28        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 30-Jul-08 | 29        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 6-Aug-08  | 30        | 0.0001  | < 0.00002 | 0.0113 | < 0.00001 | < 0.000003 | 0.000034   | < 0.0005 | < 0.0005 | 0.02   | 0.48 | < 0.002 | 0.647 | 0.00115 | 0.0172  |
| 13-Aug-08 | 31        |         |           |        |           |            |            |          |          |        |      |         |       | -       |         |
| 20-Aug-08 | 32        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 27-Aug-08 | 33        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 3-Sep-08  | 34        |         |           |        |           |            |            |          |          |        |      |         |       |         |         |
| 10-Sep-08 | 35        | 0.00015 | < 0.00002 | 0.0147 | 0.00001   | 0.000003   | 0.000041   | < 0.0005 | < 0.0005 | 0.01   | 0.52 | < 0.002 | 0.8   | 0.00141 | 0.0144  |





|           |           | Na   | NI:      | _      | Pb        | Ch      | Co      | C:   | C       | C      | т:       | Th         |          | V       | 7       |
|-----------|-----------|------|----------|--------|-----------|---------|---------|------|---------|--------|----------|------------|----------|---------|---------|
| Date      | Cycle No. | Na   | Ni       | Р      | PD        | Sb      | Se      | Si   | Sn      | Sr     | Ti       | Th         | U        | V       | Zn      |
| Dute      | Oyole No. | mg/L | mg/L     | mg/L   | mg/L      | mg/L    | mg/L    | mg/L | mg/L    | mg/L   | mg/L     | mg/L       | mg/L     | mg/L    | mg/L    |
| 9-Jan-08  | 0         | 2.93 | 0.0005   | 0.02   | 0.00004   | 0.00055 | < 0.001 | 0.48 | 0.00129 | 0.0495 | < 0.0001 | 0.00001    | 0.000007 | 0.00042 | < 0.001 |
| 16-Jan-08 | 1         | 2.83 | 0.0006   | 0.02   | 0.00003   | 0.00059 | 0.002   | 0.5  | 0.00188 | 0.0603 | < 0.0001 | 0.000008   | 0.000145 | 0.00102 | 0.001   |
| 23-Jan-08 | 2         | 2.06 | < 0.0001 | < 0.01 | 0.00017   | 0.00046 | < 0.001 | 0.51 | 0.00084 | 0.0384 | 0.0001   | 0.000009   | 0.000101 | 0.00126 | 0.001   |
| 30-Jan-08 | 3         | 1.64 | 0.0002   | 0.01   | < 0.00002 | 0.00056 | < 0.001 | 0.67 | 0.00093 | 0.0304 | 0.0002   | < 0.000002 | 0.000148 | 0.00149 | < 0.001 |
| 6-Feb-08  | 4         |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 13-Feb-08 | 5         | 1.03 | 0.0002   | 0.02   | < 0.00002 | 0.00068 | < 0.001 | 0.62 | 0.00068 | 0.0172 | < 0.0001 | < 0.000002 | 0.000118 | 0.00206 | 0.001   |
| 20-Feb-08 | 6         |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 27-Feb-08 | 7         | 0.66 | < 0.0001 | 0.02   | < 0.00002 | 0.00046 | < 0.001 | 0.41 | 0.00074 | 0.0106 | < 0.0001 | < 0.000002 | 0.000092 | 0.0024  | 0.001   |
| 05-Mar-08 | 8         |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 12-Mar-08 | 9         |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 19-Mar-08 | 10        | 0.48 | 0.0002   | < 0.01 | 0.00005   | 0.0005  | < 0.001 | 0.5  | 0.00061 | 0.0094 | < 0.0001 | < 0.000002 | 0.000074 | 0.00244 | < 0.001 |
| 26-Mar-08 | 11        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 2-Apr-08  | 12        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 9-Apr-08  | 13        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 16-Apr-08 | 14        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 23-Apr-08 | 15        | 0.37 | 0.0002   | < 0.01 | < 0.00002 | 0.00027 | < 0.001 | 0.52 | 0.00114 | 0.0109 | < 0.0001 | 0.000093   | 0.000076 | 0.00239 | 0.001   |
| 30-Apr-08 | 16        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 7-May-08  | 17        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 14-May-08 | 18        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 21-May-08 | 19        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 28-May-08 | 20        | 0.46 | 0.001    | < 0.01 | 0.00014   | 0.00045 | < 0.001 | 0.43 | 0.00059 | 0.0107 | 0.0001   | < 0.000002 | 0.000191 | 0.00313 | 0.003   |
| 4-Jun-08  | 21        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 11-Jun-08 | 22        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 18-Jun-08 | 23        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 25-Jun-08 | 24        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 2-Jul-08  | 25        | 0.16 | < 0.0001 | < 0.01 | < 0.00002 | 0.00036 | < 0.001 | 0.46 | 0.00047 | 0.0076 | < 0.0001 | < 0.000002 | 0.000032 | 0.00315 | < 0.001 |
| 9-Jul-08  | 26        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 16-Jul-08 | 27        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 23-Jul-08 | 28        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 30-Jul-08 | 29        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 6-Aug-08  | 30        | 0.13 | 0.0002   | < 0.01 | < 0.00002 | 0.00016 | < 0.001 | 0.39 | 0.00039 | 0.0065 | < 0.0001 | < 0.000002 | 0.000053 | 0.00333 | < 0.001 |
| 13-Aug-08 | 31        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 20-Aug-08 | 32        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 27-Aug-08 | 33        |      |          |        |           | -       |         | -    |         |        |          |            |          |         |         |
| 3-Sep-08  | 34        |      |          |        |           |         |         |      |         |        |          |            |          |         |         |
| 10-Sep-08 | 35        | 0.07 | < 0.0001 | < 0.01 | < 0.00002 | 0.00064 | < 0.001 | 0.56 | 0.00048 | 0.0077 | < 0.0001 | 0.000008   | 0.000087 | 0.00351 | < 0.001 |





|           |           | Volume | Volume    |       |              |                    |                    |      |      |          |           |        |          |
|-----------|-----------|--------|-----------|-------|--------------|--------------------|--------------------|------|------|----------|-----------|--------|----------|
| 5.4       |           | Added  | Recovered | pН    | Conductivity | Alkalinity         | Acidity            | SO4  | Ca   | Hg       | Ag        | Al     | As       |
| Date      | Cycle No. | ml     | ml        | units | μS/cm        | mg/L (as<br>CaCO3) | mg/L (as<br>CaCO3) | mg/L | mg/L | mg/L     | mg/L      | mg/L   | mg/L     |
| 17-Sep-08 | 36        | 1000   | 929       | 6.58  | 3            | <2                 | 12                 | 1.6  | 0.54 |          |           |        |          |
| 24-Sep-08 | 37        | 1000   | 980       | 6.85  | 4            | <2                 | 13                 | 1.8  | 0.67 |          |           |        |          |
| 1-Oct-08  | 38        | 1000   | 998       | 6.88  | 4            | <2                 | 14                 | 1.8  | 0.77 |          |           |        |          |
| 8-Oct-08  | 39        | 1000   | 990       | 6.9   | 4            | <2                 | 13                 | 1.6  | 0.68 |          |           |        |          |
| 15-Oct-08 | 40        | 1000   | 990       | 6.88  | 4            | < 2                | 15                 | 1.6  | 0.66 | < 0.0001 | < 0.00001 | 0.02   | < 0.0002 |
| 22-Oct-08 | 41        | 1000   | 973       | 6.78  | 3            | < 2                | 15                 | 1.8  | 0.65 |          |           |        |          |
| 29-Oct-08 | 42        | 1000   | 927       | 6.73  | 3            | < 2                | 14                 | 1.5  | 0.48 |          |           |        |          |
| 5-Nov-08  | 43        | 1000   | 948       | 6.6   | 2            | < 2                | 25                 | 1.7  | 0.55 |          |           |        |          |
| 12-Nov-08 | 44        | 1000   | 996       | 6.83  | 2            | 4                  | 11                 | 1.5  | 0.67 |          |           |        |          |
| 19-Nov-08 | 45        | 1000   | 948       | 6.71  | 3            | < 2                | 11                 | 1.8  | 0.55 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 26-Nov-08 | 46        | 1000   | 946       | 5.24  | < 2          | 2                  | 8                  | 1.7  | 0.51 |          |           |        |          |
| 3-Dec-08  | 47        | 1000   | 945       | 6.71  | 3            | < 2                | 11                 | 1.5  | 0.5  |          |           |        |          |
| 10-Dec-08 | 48        | 1000   | 6.63      | 48    | < 2          | 12                 | 1.4                | 0.45 |      |          |           |        |          |
| 17-Dec-08 | 49        | 1000   | 987       | 6.85  | 3            | < 2                | 12                 | 1.6  | 0.61 |          |           |        |          |
| 24-Dec-08 | 50        | 1000   | 935       | 6.88  | 3            | < 2                | 16                 | 1.3  | 0.45 | < 0.0001 | < 0.00001 | < 0.01 | < 0.0002 |
| 30-Dec-08 | 51        | 1000   | 990       | 6.97  | 4            | < 2                | 13                 | 1.8  | 0.66 |          |           |        |          |
| 7-Jan-09  | 52        | 1000   | 947       | 6.79  | 3            | < 2                | 11                 | 1.5  | 0.58 |          |           |        |          |
| 14-Jan-09 | 53        | 1000   | 919       | 6.88  | 3            | < 2                | 11                 | 1.3  | 0.45 |          |           |        |          |





| Date      | Cycle No. | Ва      | Ве        | В      | Bi        | Cd         | Со       | Cr       | Cu       | Fe     | К    | Li      | Mg    | Mn      | Мо     |
|-----------|-----------|---------|-----------|--------|-----------|------------|----------|----------|----------|--------|------|---------|-------|---------|--------|
| Date      | Cycle No. | mg/L    | mg/L      | mg/L   | mg/L      | mg/L       | mg/L     | mg/L     | mg/L     | mg/L   | mg/L | mg/L    | mg/L  | mg/L    | mg/L   |
| 17-Sep-08 | 36        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 24-Sep-08 | 37        |         |           | -      |           |            |          |          |          |        | -    |         |       |         |        |
| 1-Oct-08  | 38        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 8-Oct-08  | 39        |         |           | -      |           |            |          |          |          |        | -    |         |       |         |        |
| 15-Oct-08 | 40        | 0.00013 | < 0.00002 | 0.0105 | < 0.00001 | 0.000007   | 0.000061 | < 0.0005 | < 0.0005 | 0.01   | 0.49 | < 0.002 | 0.764 | 0.00136 | 0.01   |
| 22-Oct-08 | 41        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 29-Oct-08 | 42        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 5-Nov-08  | 43        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 12-Nov-08 | 44        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 19-Nov-08 | 45        | 0.00015 | < 0.00002 | 0.0078 | < 0.00001 | < 0.000003 | 0.000031 | < 0.0005 | < 0.0005 | 0.01   | 0.47 | < 0.002 | 0.7   | 0.00102 | 0.0085 |
| 26-Nov-08 | 46        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 3-Dec-08  | 47        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 10-Dec-08 | 48        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 17-Dec-08 | 49        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 24-Dec-08 | 50        | 0.00005 | < 0.00002 | 0.0073 | < 0.00001 | < 0.000003 | 0.000009 | < 0.0005 | < 0.0005 | < 0.01 | 0.41 | < 0.002 | 0.633 | 0.00097 | 0.0058 |
| 30-Dec-08 | 51        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 7-Jan-09  | 52        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |
| 14-Jan-09 | 53        |         |           |        |           |            |          |          |          |        |      |         |       |         |        |





| Data      | OI- NI-   | Na   | Ni       | Р      | Pb        | Sb       | Se      | Si   | Sn      | Sr     | Ti       | Th         | U        | V       | Zn      |
|-----------|-----------|------|----------|--------|-----------|----------|---------|------|---------|--------|----------|------------|----------|---------|---------|
| Date      | Cycle No. | mg/L | mg/L     | mg/L   | mg/L      | mg/L     | mg/L    | mg/L | mg/L    | mg/L   | mg/L     | mg/L       | mg/L     | mg/L    | mg/L    |
| 17-Sep-08 | 36        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 24-Sep-08 | 37        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 1-Oct-08  | 38        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 8-Oct-08  | 39        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 15-Oct-08 | 40        | 0.08 | 0.0002   | < 0.01 | < 0.00002 | 0.00025  | < 0.001 | 0.6  | 0.00044 | 0.0075 | < 0.0001 | 0.000003   | 0.000055 | 0.00329 | < 0.001 |
| 22-Oct-08 | 41        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 29-Oct-08 | 42        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 5-Nov-08  | 43        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 12-Nov-08 | 44        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 19-Nov-08 | 45        | 0.05 | < 0.0001 | < 0.01 | < 0.00002 | < 0.0002 | < 0.001 | 0.49 | 0.0004  | 0.0062 | < 0.0001 | < 0.000002 | 0.000054 | 0.00316 | < 0.001 |
| 26-Nov-08 | 46        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 3-Dec-08  | 47        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 10-Dec-08 | 48        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 17-Dec-08 | 49        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 24-Dec-08 | 50        | 0.04 | 0.0001   | < 0.01 | < 0.00002 | < 0.0002 | < 0.001 | 0.48 | 0.00038 | 0.0057 | < 0.0001 | < 0.000002 | 0.000066 | 0.00324 | < 0.001 |
| 30-Dec-08 | 51        |      |          |        |           |          |         | -    |         |        |          |            |          |         |         |
| 7-Jan-09  | 52        |      |          |        |           |          |         |      |         |        |          |            |          |         |         |
| 14-Jan-09 | 53        |      |          |        |           |          |         | 1    |         |        |          |            |          |         |         |





# APPENDIX B SUMMARY OF ALL ABA AND METAL ANALYSES





#### **LIST OF TABLES**

- B-1 Acid Base Accounting Results by Lithology
  B-2 Net Acid Generation Test Results by Lithology
  B-3 Total Metal Concentrations by Lithology





#### Table B-1. Acid Base Accounting Results by Lithology

|                            |                          |                                                                |                                                      |              | Total          | Sulphate        | Sulphide       | Total          |            | ND                        | C- ND    |            |             |
|----------------------------|--------------------------|----------------------------------------------------------------|------------------------------------------------------|--------------|----------------|-----------------|----------------|----------------|------------|---------------------------|----------|------------|-------------|
| Sample ID                  | Borehole ID              | Lithology                                                      | Sampling Program                                     | Paste<br>pH  | Sulphur        | Sulphur<br>(wt. | Sulphur*       | Carbon         | AP         | NP<br>CaCO <sub>3</sub> / | Ca-NP    | NPR        | Ca-NPR      |
| Hanging wall               |                          |                                                                | <u> </u>                                             |              |                | (wt.            | . 70)          |                | (Ng        | J CaCO <sub>3</sub>       | torine)  |            |             |
| ARD12                      | MR1-05-47                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 8.24         | 0.007          | 0.057           | <0.01          | 0.016          | 0.3        | 27                        | 1        | 85         | 4.3         |
| ARD14                      | MR1-05-59<br>MR1-05-51   | Amphibolite                                                    | Knight Piesold 2006-2007                             | 8.1          | 0.014          | <0.01           | 0.014          | 0.019          | 0.4        | 9.4<br>24                 | 2        | 21         | 3.6         |
| ARD15<br>ARD16             | MR1-05-51                | Amphibolite Amphibolite                                        | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.48<br>8.65 | 0.05<br>0.12   | 0.044           | 0.010<br>0.036 | 0.22<br>0.015  | 0.3        | 10                        | 18       | 78<br>9.1  | 59<br>1.1   |
| ARD17                      | MR1-05-51                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 8.48         | 0.009          | 0.039           | <0.01          | 0.014          | 0.3        | 18                        | 1        | 56         | 3.7         |
| ARD23                      | MR1-05-76                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 9.05         | 0.019          | 0.049           | <0.01          | 0.014          | 0.3        | 16                        | 1        | 50         | 3.7         |
| ARD24                      | MR1-05-76                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 9            | 0.014          | 0.014           | <0.01          | 0.009          | 0.3        | 7.6                       | 1        | 24         | 2.4         |
| 07ARD10<br>07ARD11         | MR1-05-53<br>MR1-05-46   | Amphibolite Amphibolite                                        | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 7.86<br>7.89 | 5.16<br>0.071  | 0.59<br><0.01   | 4.570<br>0.071 | 0.019          | 143<br>2.2 | 25<br>4.0                 | 2        | 0.2<br>1.8 | 0.01<br>1.6 |
| 07ARD17                    | MR1-05-57                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 8.51         | 0.022          | 0.02            | <0.01          | 0.007          | 0.3        | 15                        | 1        | 49         | 1.9         |
| 07ARD19                    | MR1-05-60                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 8.39         | 0.031          | 0.03            | <0.01          | 0.012          | 0.3        | 34                        | 1        | 108        | 3.2         |
| 07ARD27                    | MR1-05-62                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 8.31         | 0.682          | 0.41            | 0.272          | 0.058          | 8.5        | 27                        | 5        | 3.2        | 0.6         |
| 07ARD28<br>MRARD10-038     | MR1-05-62<br>MR1-08-160  | Amphibolite Amphibolite                                        | Knight Piesold 2006-2007<br>AMEC 2010                | 8.42<br>8.3  | 0.068<br>0.124 | 0.07<br>0.12    | <0.01<br><0.01 | 0.022          | 0.3        | 51<br>32                  | 2        | 163<br>101 | 5.9<br>5.9  |
| MRARD10-039                | MR1-08-160               | Amphibolite                                                    | AMEC 2010                                            | 5.7          | 0.382          | 0.38            | <0.01          | 0.126          | 0.3        | 0.20                      | 11       | 0.6        | 34          |
| MRARD10-091                | MR1-08-143               | Amphibolite                                                    | AMEC 2010                                            | 8.3          | 0.013          | 0.01            | <0.01          | 0.006          | 0.3        | 8.5                       | 1        | 27         | 1.6         |
| MRARD10-108                | MR1-08-150               | Amphibolite                                                    | AMEC 2010                                            | 8.4          | 0.012          | 0.01            | <0.01          | 0.008          | 0.3        | 22                        | 1        | 70         | 2.1         |
| MRARD10-131<br>ARD21       | MR1-08-160<br>MR1-05-77  | Amphibolite Amphibolite/Gneiss                                 | AMEC 2010<br>Knight Piesold 2006-2007                | 8.0<br>9.77  | 0.292          | 0.11            | 0.182<br>0.020 | 4.27<br>0.012  | 5.7<br>0.6 | 92<br>10                  | 356<br>1 | 16<br>16   | 63<br>1.6   |
| 07ARD38                    | MR1-05-67                | Amphibolite/Gneiss                                             | Knight Piesold 2006-2007                             | 9.75         | 0.041          | 0.03            | <0.01          | 0.039          | 0.3        | 36                        | 3        | 114        | 10          |
| 07ARD07                    | MR1-05-76                | Amphibolite/Schist/Volcanic Tuff                               | Knight Piesold 2006-2007                             | 8.68         | 0.082          | <0.01           | 0.082          | 0.062          | 2.6        | 12                        | 5        | 4.6        | 2.0         |
| 07ARD30                    | MR1-05-51                | Amphibolite/Schist/Volcanic Tuff                               | Knight Piesold 2006-2007                             | 8.61         | 0.536          | 0.23            | 0.306          | 0.022          | 9.6        | 39                        | 2        | 4.1        | 0.2         |
| ARD10<br>ARD11             | MR1-05-77<br>MR1-05-77   | Amphibolite/Volcanic Tuff Amphibolite/Volcanic Tuff            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 8.33<br>8.04 | 0.11<br>0.072  | 0.017<br>0.032  | 0.093<br>0.040 | 0.011          | 2.9        | 5.7<br>9.9                | 1        | 2.0<br>7.9 | 0.3         |
| 07ARD13                    | MR1-05-77<br>MR1-06-84   | Amphibolite/Volcanic Tuff Amphibolite/Volcanic Tuff /Greywacke | Knight Piesold 2006-2007 Knight Piesold 2006-2007    | 8.43         | 0.072          | 0.032           | 0.040          | 0.01           | 3.1        | 0.2                       | 2        | 0.1        | 0.8         |
| 07ARD12                    | MR1-05-46                | Amphibolite/Volcanic Tuff /Greywacke                           | Knight Piesold 2006-2007                             | 8.01         | 0.410          | 0.06            | 0.350          | 0.033          | 11         | 0.7                       | 3        | 0.1        | 0.3         |
| 07ARD37                    | MR1-04-36                | Amphibolite/Volcanic Tuff /Schist /Gneiss                      | Knight Piesold 2006-2007                             | 9.33         | 0.150          | 0.08            | 0.070          | 0.087          | 2.2        | 28                        | 7        | 13         | 3.3         |
| 07ARD25<br>07ARD29         | MR1-05-52<br>MR1-05-59   | Amphibolte/Schist Amphibolte/Schist                            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 8.21<br>8.40 | 0.582<br>0.050 | 0.38            | 0.202<br><0.01 | 0.013          | 6.3<br>0.3 | 8.0<br>15                 | 1        | 1.3<br>47  | 0.2<br>2.9  |
| MRARD10-010                | MR1-09-176               | Gneiss                                                         | AMEC 2010                                            | 8.5          | <0.005         | <0.05           | <0.01          | 0.011          | 0.3        | 11                        | 1        | 34         | 4.3         |
| MRARD10-115                | MR1-07-121               | Gneiss                                                         | AMEC 2010                                            | 9.3          | 0.012          | <0.01           | 0.012          | 0.012          | 0.4        | 13                        | 1        | 34         | 2.7         |
| MRARD10-040                | MR1-08-158               | Gneiss/Amphibolite                                             | AMEC 2010                                            | 9.4          | 0.133          | 0.11            | 0.023          | 0.070          | 0.7        | 21                        | 6        | 29         | 8.1         |
| ARD 13                     | MR1-05-59<br>MR1-08-144  | Metasediment                                                   | Knight Piesold 2006-2007                             | 8.3          | 0.035          | 0.035           | <0.01          | 0.028          | 0.3        | 11                        | 2        | 36         | 7.5         |
| MRARD10-090<br>ARD 18      | MR1-08-144<br>MR1-05-47  | Metasediment<br>Schist                                         | AMEC 2010<br>Knight Piesold 2006-2007                | 9.5<br>8.45  | 0.012          | 0.01<br>0.271   | <0.01<br>0.029 | 0.009          | 0.3        | 13<br>11                  | 1 2      | 41<br>13   | 2.4         |
| ARD19                      | MR1-05-47                | Schist                                                         | Knight Piesold 2006-2007                             | 8.49         | 1.47           | 0.024           | 1.446          | 0.014          | 45         | 14                        | 1        | 0.3        | 0.03        |
| UCS14                      | MR1-04-38                | Schist                                                         | Knight Piesold 2006-2007                             | 8.7          | 0.376          | 0.11            | 0.266          | 0.1            | 8.3        | 13                        | 8        | 1.5        | 1.0         |
| 07ARD06                    | MR1-04-39                | Schist                                                         | Knight Piesold 2006-2007                             | 8.88         | 0.841          | 0.15            | 0.691          | 0.418          | 22         | 49                        | 35       | 2.3        | 1.6         |
| 07ARD16<br>07ARD33         | MR1-05-58<br>MR1-06-105  | Schist<br>Schist                                               | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 8.16<br>9.11 | 0.313<br>0.076 | 0.13<br>0.06    | 0.183<br>0.016 | 0.009          | 5.7<br>0.5 | 18<br>8.6                 | 1        | 3.2<br>17  | 0.1<br>1.3  |
| 07ARD34                    | MR1-06-94                | Schist                                                         | Knight Piesold 2006-2007                             | 6.75         | 0.381          | 0.36            | 0.021          | 0.006          | 0.7        | 0.2                       | 1        | 0          | 0.8         |
| MRARD10-001                | MR1-09-171               | Schist                                                         | AMEC 2010                                            | 7.6          | 0.320          | 0.24            | 0.080          | 0.029          | 2.5        | 36                        | 2        | 14         | 1.0         |
| MRARD10-002                | MR1-09-179               | Schist                                                         | AMEC 2010                                            | 8.4          | 0.016          | 0.02            | <0.01          | 0.017          | 0.3        | 10                        | 1        | 32         | 4.5         |
| MRARD10-003<br>MRARD10-006 | MR1-09-179<br>MR1-09-177 | Schist<br>Schist                                               | AMEC 2010<br>AMEC 2010                               | 7.7<br>8.3   | 0.029<br>0.056 | 0.03            | <0.01<br>0.016 | 0.407          | 0.3        | 7.9<br>15                 | 34<br>2  | 25<br>31   | 109<br>3.2  |
| MRARD10-007                | MR1-09-177               | Schist                                                         | AMEC 2010                                            | 8.5          | 0.198          | 0.18            | 0.018          | 0.023          | 0.6        | 16                        | 2        | 29         | 3.4         |
| MRARD10-008                | MR1-09-176               | Schist                                                         | AMEC 2010                                            | 8.4          | 0.075          | 0.08            | <0.01          | 0.017          | 0.3        | 14                        | 1        | 45         | 4.5         |
| MRARD10-009                | MR1-09-176               | Schist                                                         | AMEC 2010                                            | 8.4          | 0.285          | 0.13            | 0.155          | 0.017          | 4.8        | 17                        | 1        | 3.4        | 0.3         |
| MRARD10-013<br>MRARD10-014 | MR1-09-176<br>MR1-09-176 | Schist<br>Schist                                               | AMEC 2010<br>AMEC 2010                               | 8.5<br>8.4   | 0.098          | 0.10            | <0.01<br><0.01 | 0.026          | 0.3        | 42<br>28                  | 2        | 133<br>89  | 6.9<br>5.1  |
| MRARD10-014                | MR1-09-172               | Schist                                                         | AMEC 2010                                            | 8.7          | 0.023          | 0.09            | 0.181          | 0.026          | 5.7        | 19                        | 2        | 3.4        | 0.4         |
| MRARD10-017                | MR1-09-172               | Schist                                                         | AMEC 2010                                            | 8.6          | 0.153          | 0.09            | 0.063          | 0.024          | 2.0        | 26                        | 2        | 13         | 1.0         |
| MRARD10-020                | MR1-09-172               | Schist                                                         | AMEC 2010                                            | 8.0          | 0.463          | 0.21            | 0.253          | 0.015          | 7.9        | 26                        | 1        | 3.3        | 0.2         |
| MRARD10-022<br>MRARD10-024 | MR1-09-176<br>MR1-09-173 | Schist<br>Schist                                               | AMEC 2010<br>AMEC 2010                               | 8.1<br>8.5   | 0.026<br>0.055 | 0.03<br>0.04    | <0.01<br>0.015 | 0.018<br>0.014 | 0.3        | 26<br>7.6                 | 1        | 83<br>16   | 4.8<br>2.5  |
|                            | MR1-09-173               | Schist                                                         | AMEC 2010                                            | 8.3          | 0.556          | 0.28            | 0.276          | 0.021          | 8.6        | 20                        | 2        | 2.4        | 0.2         |
|                            | MR1-09-169               |                                                                | AMEC 2010                                            | 8.5          | 0.034          | 0.03            | <0.01          | 0.030          | 0.3        | 15                        | 3        | 47         | 8.0         |
| MRARD10-028                | MR1-09-169               | Schist                                                         | AMEC 2010                                            | 8.2          | 0.650          | 0.18            | 0.470          | 0.010          | 14.7       | 10                        | 1        | 0.7        | 0.1         |
| MRARD10-032<br>MRARD10-036 | MR1-09-169<br>MR1-08-161 | Schist<br>Schist                                               | AMEC 2010<br>AMEC 2010                               | 8.3<br>8.2   | 0.084<br>0.250 | 0.08<br>0.16    | <0.01<br>0.090 | 0.017<br>0.015 | 0.3<br>2.8 | 11<br>12                  | 1        | 36<br>4.3  | 4.5<br>0.4  |
| MRARD10-030                | MR1-08-158               | Schist                                                         | AMEC 2010                                            | 8.3          | 0.073          | 0.07            | <0.01          | 0.041          | 0.3        | 25                        | 3        | 79         | 10.9        |
| MRARD10-047                | MR1-08-163               | Schist                                                         | AMEC 2010                                            | 8.5          | <0.005         | <0.01           | <0.010         | 0.011          | 0.3        | 14                        | 1        | 46         | 2.9         |
| MRARD10-048                | MR1-08-163               | Schist                                                         | AMEC 2010<br>AMEC 2010                               | 7.9          | 0.214          | 0.10            | 0.114          | 0.030          | 3.6        | 11                        | 3        | 3.2        | 0.7         |
| MRARD10-050<br>MRARD10-052 | MR1-08-152<br>MR1-08-158 | Schist<br>Schist                                               | AMEC 2010<br>AMEC 2010                               | 7.9<br>8.2   | 0.014<br>0.055 | 0.01            | <0.01<br>0.025 | 0.029          | 0.3        | 18<br>14                  | 7        | 56<br>18   | 7.7<br>9    |
| MRARD10-056                | MR1-08-152               | Schist                                                         | AMEC 2010                                            | 8.3          | 0.008          | <0.01           | <0.01          | 0.009          | 0.3        | 17                        | 1        | 54         | 2.4         |
| MRARD10-060                | MR1-08-157               | Schist                                                         | AMEC 2010                                            | 8.1          | 0.185          | 0.06            | 0.125          | 0.006          | 3.9        | 14                        | 1        | 3.6        | 0.1         |
| MRARD10-061                | MR1-08-159               | Schist<br>Sekist                                               | AMEC 2010<br>AMEC 2010                               | 8.6          | 0.009          | <0.01           | <0.01          | 0.019          | 0.3        | 26                        | 2        | 83         | 5.1         |
| MRARD10-062<br>MRARD10-063 | MR1-08-155<br>MR1-08-157 | Schist<br>Schist                                               | AMEC 2010<br>AMEC 2010                               | 8.1<br>8.1   | 0.065<br>0.305 | 0.06<br>0.14    | <0.01<br>0.165 | 0.069          | 0.3<br>5.2 | 24<br>23                  | 6        | 77<br>4.4  | 18<br>0.3   |
| MRARD10-063                | MR1-08-157               | Schist                                                         | AMEC 2010<br>AMEC 2010                               | 7.2          | 0.303          | 0.14            | 0.036          | 0.017          | 1.1        | 17                        | 4        | 15         | 3.2         |
| MRARD10-065                | MR1-08-150               | Schist                                                         | AMEC 2010                                            | 8.0          | 0.023          | 0.01            | 0.013          | <0.005         | 0.4        | 11                        | 0        | 26         | 1.0         |
| MRARD10-068                | MR1-08-140               | Schist                                                         | AMEC 2010                                            | 7.6          | 1.18           | 0.21            | 0.970          | 0.007          | 30.3       | 12                        | 1        | 0.4        | 0.02        |
| MRARD10-070<br>MRARD10-071 | MR1-08-140<br>MR1-08-160 | Schist<br>Schist                                               | AMEC 2010<br>AMEC 2010                               | 8.1<br>8.0   | 0.028          | 0.03            | <0.01<br>0.078 | <0.005         | 0.3<br>2.4 | 13<br>38                  | 0        | 40<br>16   | 1.3<br>0.4  |
| MRARD10-071                | MR1-08-149               | Schist                                                         | AMEC 2010<br>AMEC 2010                               | 8.0          | 0.034          | 0.02            | <0.078         | 0.008          | 0.3        | 44                        | 1        | 141        | 2.1         |
| MRARD10-073                | MR1-08-155               | Schist                                                         | AMEC 2010                                            | 7.7          | 0.018          | 0.02            | <0.01          | 0.009          | 0.3        | 21                        | 1        | 67         | 2.4         |
| MRARD10-075                | MR1-08-148               | Schist                                                         | AMEC 2010                                            | 7.7          | 0.026          | 0.03            | <0.01          | <0.005         | 0.3        | 11                        | 0        | 36         | 1.3         |
| MRARD10-078                | MR1-08-153               | Schist                                                         | AMEC 2010                                            | 8.3          | 0.124          | 0.03            | 0.094          | <0.005         | 2.9        | 13                        | 0        | 4.4        | 0.1         |
| MRARD10-086<br>MRARD10-092 | MR1-08-147<br>MR1-08-142 | Schist<br>Schist                                               | AMEC 2010<br>AMEC 2010                               | 8.4<br>7.7   | 0.107<br>0.594 | 0.04<br>0.29    | 0.067<br>0.304 | 0.012          | 2.1<br>9.5 | 20<br>23                  | 1        | 9.4<br>2.5 | 0.5<br>0.1  |
| MRARD10-092<br>MRARD10-093 | MR1-08-145               | Schist                                                         | AMEC 2010<br>AMEC 2010                               | 7.2          | 0.015          | 0.02            | <0.01          | 0.000          | 0.3        | 5.4                       | 2        | 17         | 5.6         |
| MRARD10-094                | MR1-08-147               | Schist                                                         | AMEC 2010                                            | 8.2          | 0.253          | 0.13            | 0.123          | 0.017          | 3.8        | 27                        | 1        | 6.9        | 0.4         |
| MRARD10-097                | MR1-08-143               | Schist                                                         | AMEC 2010                                            | 9.6          | 0.019          | 0.02            | <0.01          | 0.087          | 0.3        | 17                        | 7        | 53         | 23          |
| MRARD10-101<br>MRARD10-102 | MR1-08-153<br>MR1-08-143 | Schist<br>Schist                                               | AMEC 2010<br>AMEC 2010                               | 8.2<br>8.9   | 0.086          | 0.04            | 0.046<br><0.01 | 0.012          | 1.4<br>0.3 | 21<br>9.8                 | 4        | 15<br>31   | 0.7         |
| MRARD10-102<br>MRARD10-103 | MR1-08-143<br>MR1-08-141 | Schist                                                         | AMEC 2010<br>AMEC 2010                               | 8.9          | 0.013          | 0.01            | <0.01          | 0.042          | 0.3        | 9.8                       | 2        | 57         | 5.3         |
| MRARD10-106                | MR1-08-148               | Schist                                                         | AMEC 2010                                            | 8.5          | 0.158          | 0.07            | 0.088          | <0.005         | 2.8        | 8.8                       | 0        | 3.2        | 0.2         |
| MRARD10-109                | MR1-08-141               | Schist                                                         | AMEC 2010                                            | 7.6          | 0.229          | 0.18            | 0.049          | 0.032          | 1.5        | 27                        | 3        | 18         | 1.7         |





#### Table B-1. Acid Base Accounting Results by Lithology (continued)

| Sample ID                  | Borehole ID              | Lithology                                              | Sampling Program                                     | Paste<br>pH   | Total<br>Sulphur | Sulphate<br>Sulphur                                                                                                       | Sulphide<br>Sulphur*                                                                        | Total<br>Carbon | AP          | NP                  | Ca-NP    | NPR        | Ca-NPR     |
|----------------------------|--------------------------|--------------------------------------------------------|------------------------------------------------------|---------------|------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------|-------------|---------------------|----------|------------|------------|
|                            |                          |                                                        |                                                      | рп            |                  | (wt.                                                                                                                      | %)                                                                                          |                 | (kc         | CaCO <sub>3</sub> / | tonne)   |            |            |
| MRARD10-111                | MR1-08-144               | Schist                                                 | AMEC 2010                                            | 8.3           | 0.010            | 0.01                                                                                                                      | <0.01                                                                                       | 0.009           | 0.3         | 12                  | 1        | 38         | 2.4        |
| MRARD10-114<br>MRARD10-116 | MR1-07-121<br>MR1-07-121 | Schist<br>Schist                                       | AMEC 2010<br>AMEC 2010                               | 9.5<br>7.3    | 0.085<br>1.29    | 0.03<br>0.25                                                                                                              | 0.055<br>1.040                                                                              | 0.006           | 1.7<br>32.5 | 9.1<br>26           | 3        | 5.3<br>0.8 | 0.3        |
| MRARD10-116                | MR1-07-121               | Schist<br>Schist                                       | AMEC 2010<br>AMEC 2010                               | 8.9           | 0.086            | <0.01                                                                                                                     | 0.086                                                                                       | 0.036           | 2.7         | 18                  | 2        | 6.6        | 0.1        |
| MRARD10-118                | MR1-07-121               | Schist                                                 | AMEC 2010                                            | 8.5           | 0.009            | <0.01                                                                                                                     | <0.01                                                                                       | 0.015           | 0.3         | 18                  | 1        | 57         | 4.0        |
| MRARD10-119<br>MRARD10-120 | MR1-08-156<br>MR1-08-148 | Schist<br>Schist                                       | AMEC 2010<br>AMEC 2010                               | 8.0<br>8.2    | 0.021<br>0.457   | 0.02<br>0.16                                                                                                              | <0.01<br>0.297                                                                              | 0.007           | 0.31<br>9.3 | 19<br>5.6           | 1        | 59<br>0.6  | 1.9<br>0.1 |
| MRARD10-120                | MR1-08-156               | Schist                                                 | AMEC 2010<br>AMEC 2010                               | 8.5           | 0.437            | 0.10                                                                                                                      | 0.192                                                                                       | 0.013           | 6.0         | 27                  | 1        | 4.4        | 0.1        |
| MRARD10-124                | MR1-08-143               | Schist                                                 | AMEC 2010                                            | 8.5           | 0.005            | <0.01                                                                                                                     | <0.01                                                                                       | 0.009           | 0.3         | 8.2                 | 1        | 26         | 2.4        |
| MRARD10-126<br>MRARD10-127 | MR1-08-145<br>MR1-08-143 | Schist<br>Schist                                       | AMEC 2010<br>AMEC 2010                               | 7.4<br>8.1    | 0.011<br>0.005   | <0.01<br><0.01                                                                                                            | 0.011<br><0.01                                                                              | 0.012           | 0.3         | 8.1<br>15           | 1 2      | 24<br>49   | 2.9<br>5.9 |
| MRARD10-127<br>MRARD10-128 | MR1-08-141               | Schist                                                 | AMEC 2010<br>AMEC 2010                               | 8.4           | 0.005            | 0.02                                                                                                                      | 0.200                                                                                       | 0.022           | 6.3         | 29                  | 1        | 4.7        | 0.2        |
| MRARD10-129                | MR1-08-154               | Schist                                                 | AMEC 2010                                            | 4.3           | 12.4             | 2.63                                                                                                                      | 9.770                                                                                       | 1.50            | 305.3       | 0.20                | 125      | 0.001      | 0.4        |
| MRARD10-130<br>07ARD21     | MR1-08-153<br>MR1-06-90  | Schist Schist /Amphibolite/Volcanic Tuff               | AMEC 2010<br>Knight Piesold 2006-2007                | 8.7<br>8.17   | 0.051<br>1.68    | <0.01<br>0.67                                                                                                             | 0.051<br>1.010                                                                              | 0.117           | 1.6         | 25<br>18            | 10<br>3  | 16<br>0.6  | 6.1<br>0.1 |
| 07ARD21<br>07ARD20         | MR1-05-60                | Schist/Amphibolite                                     | Knight Piesold 2006-2007                             | 8.02          | 0.47             | 0.05                                                                                                                      | 0.420                                                                                       | 0.207           | 13.1        | 12                  | 17       | 1          | 1          |
| 07ARD15                    | MR1-05-68                | Schist/Volcanic Tuff                                   | Knight Piesold 2006-2007                             | 8.47          | 0.021            | <0.01                                                                                                                     | 0.021                                                                                       | 0.009           | 0.7         | 10                  | 1        | 15         | 1.1        |
| 07ARD39<br>07ARD40         | MR1-06-96<br>MR1-05-54   | Schist/Volcanic Tuff Schist/Volcanic Tuff /Amphibolite | Knight Piesold 2006-2007                             | 8.53<br>8.44  | 0.039<br>0.017   | 0.04                                                                                                                      | <0.01<br><0.01                                                                              | 0.018<br>0.022  | 0.3         | 34<br>19            | 2        | 108<br>61  | 4.8<br>5.9 |
| 07ARD40<br>07ARD14         | MR1-05-54                | Schist/Volcanic Tuff/Gneiss                            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 8.10          | 0.017            | 0.02                                                                                                                      | 0.034                                                                                       | 0.022           | 1.1         | 21                  | 4        | 20         | 3.4        |
| ARD20                      | MR1-05-59                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 8.45          | 0.048            | 0.048                                                                                                                     | <0.01                                                                                       | 0.023           | 0.3         | 13                  | 2        | 40         | 6.1        |
| ARD22                      | MR1-05-77                | Volcanic Tuff Volcanic Tuff                            | Knight Piesold 2006-2007                             | 9.43          | 0.03             | 0.03                                                                                                                      | <0.01                                                                                       | 0.027           | 0.3         | 12                  | 2        | 38         | 7.2        |
| ARD25<br>ARD26             | MR1-06-86<br>MR1-06-86   | Volcanic Tuff Volcanic Tuff                            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.48<br>9.75  | 0.007<br>0.066   | 0.02                                                                                                                      | <0.01<br>0.056                                                                              | 0.096<br>0.507  | 0.3<br>1.8  | 18<br>49            | 8<br>42  | 58<br>28   | 26<br>24   |
| UCS2                       | MR1-06-81                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 6.26          | 0.157            | 0.16                                                                                                                      | <0.01                                                                                       | 0.012           | 0.3         | 12                  | 1        | 38         | 3.2        |
| UCS15                      | MR1-05-77                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.89          | 0.171            | 0.04                                                                                                                      | 0.131                                                                                       | 0.138           | 4.1         | 19                  | 12       | 5          | 2.8        |
| UCS16<br>UCS17             | MR1-06-86<br>MR1-06-86   | Volcanic Tuff Volcanic Tuff                            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.03          | 0.05<br>0.022    | <0.01<br>0.02                                                                                                             | 0.050<br><0.01                                                                              | 0.026           | 1.6<br>0.3  | 17<br>25            | 3        | 11<br>80   | 1.4        |
| UCS18                      | MR1-06-86                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.64          | 0.267            | 0.05                                                                                                                      | 0.217                                                                                       | 0.033           | 6.8         | 15                  | 7        | 2          | 1.1        |
| UCS19                      | MR1-06-86                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.69          | 0.08             | 0.04                                                                                                                      | 0.040                                                                                       | 0.015           | 1.3         | 22                  | 1        | 18         | 1.0        |
| UCS20<br>UCS21             | MR1-06-86<br>MR1-06-86   | Volcanic Tuff Volcanic Tuff                            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.14          | 0.094            | <0.01<br>0.04                                                                                                             | 0.094<br>0.040                                                                              | 0.496<br>0.244  | 2.9         | 59<br>26            | 41<br>20 | 20<br>21   | 14<br>16   |
| UCS25                      | MR1-06-81                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.66          | 0.156            | <0.04                                                                                                                     | 0.040                                                                                       | 0.244           | 4.9         | 33                  | 1        | 7          | 0.2        |
| UCS26                      | MR1-06-81                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.14          | 0.019            | 0.03                                                                                                                      | <0.01                                                                                       | 0.012           | 0.3         | 6.1                 | 1        | 20         | 3.2        |
| UCS28                      | MR1-06-86                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.77          | 0.005            | <0.01                                                                                                                     | <0.01                                                                                       | 0.009           | 0.3         | 11                  | 1        | 34         | 2.4        |
| UCS29<br>UCS30             | MR1-06-86<br>MR1-06-86   | Volcanic Tuff Volcanic Tuff                            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.72<br>9.76  | 0.165<br><0.005  | 0.02<br><0.01                                                                                                             | 0.145<br><0.01                                                                              | 0.021<br>0.025  | 4.5<br>0.3  | 13<br>26            | 2        | 3<br>84    | 0.4<br>6.7 |
| UCS31                      | MR1-06-91                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.98          | 0.007            | <0.01                                                                                                                     | <0.01                                                                                       | 0.132           | 0.3         | 15                  | 11       | 49         | 35         |
| UCS32                      | MR1-06-91                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.64          | 0.049            | <0.01                                                                                                                     | 0.049                                                                                       | 0.043           | 1.5         | 10                  | 4        | 7          | 2.3        |
| UCS33<br>UCS34             | MR1-06-91<br>MR1-06-91   | Volcanic Tuff Volcanic Tuff                            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 10.03<br>9.81 | 0.01<br><0.005   | <0.01<br><0.01                                                                                                            | 0.010<br><0.01                                                                              | 0.02            | 0.3         | 15<br>22            | 1        | 48<br>69   | 5.3<br>3.7 |
| UCS35                      | MR1-06-91                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.65          | <0.005           | <0.01                                                                                                                     | <0.01                                                                                       | 0.037           | 0.3         | 12                  | 3        | 39         | 9.9        |
| UCS36                      | MR1-06-91                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.51          | <0.005           | 0.02                                                                                                                      | <0.01                                                                                       | 0.161           | 0.3         | 20                  | 13       | 65         | 43         |
| UCS37<br>UCS38             | MR1-06-91<br>MR1-06-91   | Volcanic Tuff Volcanic Tuff                            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.58<br>9.79  | <0.005<br><0.005 | <0.01<br><0.01                                                                                                            | <0.01<br><0.01                                                                              | 0.213           | 0.3         | 26<br>8.6           | 18<br>3  | 83<br>28   | 57<br>8.0  |
| UCS39                      | MR1-06-91                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 9.81          | 0.011            | <0.01                                                                                                                     | 0.011                                                                                       | 0.034           | 0.3         | 9.4                 | 3        | 27         | 8.2        |
| UCS40                      | MR1-06-91                | Volcanic Tuff                                          | Knight Piesold 2006-2007                             | 10.01         | 0.007            | <0.01                                                                                                                     | <0.01                                                                                       | 0.008           | 0.3         | 9.5                 | 1        | 30         | 2.1        |
| 07ARD08<br>07ARD36         | MR1-05-53<br>MR1-06-95   | Volcanic Tuff Volcanic Tuff                            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 8.26<br>9.26  | 1.10<br>0.078    | 0.36<br>0.05                                                                                                              | 0.740<br>0.028                                                                              | 0.041           | 23.1<br>0.9 | 35<br>19            | 3        | 2 21       | 0.1<br>1.4 |
| MRARD10-012                | MR1-09-173               | Volcanic Tuff                                          | AMEC 2010                                            | 9.1           | 0.055            | 0.06                                                                                                                      | <0.01                                                                                       | 1.07            | 0.3         | 129                 | 89       | 413        | 285        |
| MRARD10-021                | MR1-09-173               | Volcanic Tuff                                          | AMEC 2010                                            | 9.0           | 0.099            | 0.09                                                                                                                      | <0.01                                                                                       | 0.012           | 0.3         | 13                  | 1        | 40         | 3.2        |
| MRARD10-023<br>MRARD10-025 | MR1-09-173<br>MR1-09-173 | Volcanic Tuff Volcanic Tuff                            | AMEC 2010<br>AMEC 2010                               | 9.0<br>8.1    | 0.054<br>0.056   | 0.05<br>0.06                                                                                                              | <0.01<br><0.01                                                                              | 0.738<br>0.021  | 0.3         | 98<br>18            | 62<br>2  | 314<br>57  | 197<br>5.6 |
| MRARD10-023                | MR1-08-178               | Volcanic Tuff                                          | AMEC 2010<br>AMEC 2010                               | 9.2           | 0.039            | 0.00                                                                                                                      | 0.019                                                                                       | 0.362           | 0.6         | 46                  | 30       | 77         | 5.0        |
| MRARD10-051                | MR1-08-158               | Volcanic Tuff                                          | AMEC 2010                                            | 8.1           | 0.354            | 0.12                                                                                                                      | 0.234                                                                                       | 0.967           | 7.3         | 99                  | 81       | 13         | 11         |
| MRARD10-053<br>MRARD10-054 | MR1-08-152<br>MR1-08-158 | Volcanic Tuff                                          | AMEC 2010<br>AMEC 2010                               | 9.5<br>9.0    | 0.092            | 0.03<br><0.01                                                                                                             | 0.062<br><0.01                                                                              | 0.126<br>0.177  | 1.9         | 19<br>27            | 11<br>15 | 10<br>85   | 5.4<br>47  |
|                            | MR1-08-152               |                                                        | AMEC 2010<br>AMEC 2010                               | 9.4           | 0.009            | <0.01                                                                                                                     | <0.01                                                                                       | 0.013           | 0.3         | 14                  | 1        | 44         | 3.5        |
| MRARD10-066                | MR1-08-150               | Volcanic Tuff                                          | AMEC 2010                                            | 8.3           | 0.199            | 0.06                                                                                                                      | 0.139                                                                                       | 0.016           | 4.3         | 19                  | 1        | 4.4        | 0.3        |
| MRARD10-067<br>MRARD10-069 | MR1-08-150<br>MR1-08-141 | Volcanic Tuff Volcanic Tuff                            | AMEC 2010<br>AMEC 2010                               | 8.6<br>6.1    | 0.019<br>0.847   | 0.02<br>0.12                                                                                                              | <0.01<br>0.727                                                                              | 0.008<br>1.14   | 0.3<br>22.7 | 1.0                 | 1<br>95  | 45<br>0.04 | 2.1<br>4.2 |
| MRARD10-069                | MR1-08-141               | Volcanic Tuff                                          | AMEC 2010<br>AMEC 2010                               | 8.2           | 0.037            | 0.12                                                                                                                      | 0.727                                                                                       | 0.081           | 0.5         | 31                  | 7        | 59         | 13         |
| MRARD10-080                | MR1-08-149               | Volcanic Tuff                                          | AMEC 2010                                            | 7.9           | 1.28             | 0.28                                                                                                                      | 1.000                                                                                       | 0.009           | 31.3        | 20                  | 1        | 0.6        | 0.02       |
| MRARD10-082<br>MRARD10-083 | MR1-08-150<br>MR1-08-145 | Volcanic Tuff Volcanic Tuff                            | AMEC 2010<br>AMEC 2010                               | 8.8<br>8.9    | 0.120<br>0.016   | 0.02                                                                                                                      | 0.100<br><0.01                                                                              | 0.437<br>0.045  | 3.1<br>0.3  | 42<br>14            | 36<br>4  | 13<br>45   | 12<br>12   |
| MRARD10-083<br>MRARD10-084 | MR1-08-145<br>MR1-08-147 | Volcanic Tuff                                          | AMEC 2010                                            | 8.9           | 0.016            | 0.02                                                                                                                      | <0.01                                                                                       | 0.045           | 0.3         | 18                  | 3        | 45<br>56   | 11         |
| MRARD10-087                | MR1-08-147               | Volcanic Tuff                                          | AMEC 2010                                            | 8.8           | 0.447            | 0.09                                                                                                                      | 0.357                                                                                       | 0.966           | 11.2        | 96                  | 81       | 8.6        | 7.2        |
| MRARD10-088<br>MRARD10-089 | MR1-08-147<br>MR1-08-147 | Volcanic Tuff Volcanic Tuff                            | AMEC 2010<br>AMEC 2010                               | 8.5<br>8.7    | 0.033<br>0.075   | 0.02                                                                                                                      | 0.013<br>0.045                                                                              | 0.110<br>0.212  | 0.4<br>1.4  | 27<br>44            | 9<br>18  | 66<br>31   | 23<br>13   |
| MRARD10-089<br>MRARD10-098 | MR1-08-147<br>MR1-08-153 | Volcanic Tuff                                          | AMEC 2010                                            | 9.5           | 0.075            | <0.03                                                                                                                     | <0.01                                                                                       | 0.212           | 0.3         | 15                  | 18       | 46         | 12         |
| MRARD10-105                | MR1-08-141               | Volcanic Tuff                                          | AMEC 2010                                            | 8.2           | 0.870            | 0.26                                                                                                                      | 0.610                                                                                       | 0.065           | 19.1        | 16                  | 5        | 0.8        | 0.3        |
| MRARD10-112<br>MRARD10-113 | MR1-08-156<br>MR1-08-144 | Volcanic Tuff Volcanic Tuff                            | AMEC 2010<br>AMEC 2010                               | 9.0<br>8.6    | 0.009            | <0.01<br><0.01                                                                                                            | <0.01<br>0.032                                                                              | 0.871<br>0.014  | 1.0         | 84<br>27            | 73<br>1  | 268<br>27  | 232<br>1.2 |
| FC No. 2                   | IVIIX I =UO= 144         | Volcanic Tuff Volcanic Tuff /Amphibolite/Schist        | Knight Piesold 2006-2007                             | 8.28          | 0.032            | 0.27                                                                                                                      | 0.032                                                                                       | 0.014           | 1.0         | 17                  | 2        | 1          | 0.2        |
| 07ARD31                    | MR1-05-54                | Volcanic Tuff /Chert /Schist                           | Knight Piesold 2006-2007                             | 8.06          | 0.975            | 0.25                                                                                                                      | 0.725                                                                                       | 0.020           | 22.7        | 25                  | 2        | 1.1        | 0.1        |
| MRARD10-029<br>07ARD23     | MR1-09-170<br>MR1-06-103 | Volcanic Tuff /Schist<br>Volcanic Tuff /Schist         | AMEC 2010<br>Knight Piesold 2006-2007                | 8.1<br>8.21   | 0.240<br>0.171   | 0.14<br>0.15                                                                                                              | 0.100<br>0.021                                                                              | 0.018           | 3.1<br>0.7  | 36<br>19            | 2        | 12<br>30   | 0.5<br>2.0 |
| 07ARD23<br>07ARD24         | MR1-05-55                | Volcanic Tuff /Schist                                  | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 8.53          | 0.171            | 0.15                                                                                                                      | <0.021                                                                                      | 0.016           | 0.7         | 34                  | 1        | 107        | 4.0        |
| 07ARD26                    | MR1-06-93                | Volcanic Tuff /Schist                                  | Knight Piesold 2006-2007                             | 7.83          | 0.109            | 0.11                                                                                                                      | <0.01                                                                                       | 0.163           | 0.3         | 30                  | 14       | 95         | 43         |
| 07ARD35                    | MR!-06-101               | Volcanic Tuff /Schist                                  | Knight Piesold 2006-2007                             | 9.78          | 0.052            | 0.04                                                                                                                      | 0.012                                                                                       | 0.071           | 0.4         | 15                  | 6        | 40         | 16         |
| 07ARD41<br>Footwall        | MR1-06-95                | Volcanic Tuff /Schist                                  | Knight Piesold 2006-2007                             | 8.19          | 0.307            | 0.19                                                                                                                      | 0.117                                                                                       | 0.008           | 3.7         | 6.1                 | 1        | 2          | 0.2        |
| UCS9                       | MR1-06-81                | Amphibolite                                            | Knight Piesold 2006-2007                             | 7.14          | 0.022            | 0.02                                                                                                                      | <0.01                                                                                       | 0.019           | 0.3         | 13.2                | 2        | 42         | 5.1        |
| MRARD10-107                | MR1-08-154               | Amphibolite                                            | AMEC 2010                                            | 8.3           | 0.049            | 0.03                                                                                                                      | 0.019                                                                                       | 0.007           | 0.6         | 19.9                | 0.6      | 34         | 1.0        |
| ARD1<br>ARD2               | MR1-05-72<br>MR1-05-72   | Gneiss<br>Gneiss                                       | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.78<br>10.03 | 0.006<br><0.005  | 0.016<br><0.01                                                                                                            | <0.01<br><0.01                                                                              | 0.012<br>0.011  | 0.3         | 9.6<br>9.4          | 1        | 31<br>30   | 3.2<br>2.9 |
| ARD3                       | MR1-05-72                | Gneiss                                                 | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 10.03         | 0.042            | 0.042                                                                                                                     | <0.01                                                                                       | 0.011           | 0.3         | 9.4                 | 1        | 29         | 2.9        |
| ARD4                       | MR1-05-73                | Gneiss                                                 | Knight Piesold 2006-2007                             | 9.93          | < 0.005          | <0.01                                                                                                                     | <0.01                                                                                       | 0.016           | 0.3         | 9.5                 | 1        | 30         | 4.3        |
| ARD5                       | MR1-05-73                | Gneiss<br>Gneiss                                       | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.75<br>9.58  | 0.008            | <0.01<br><0.01                                                                                                            | <0.01<br><0.01                                                                              | 0.01            | 0.3         | 9.2                 | 1        | 29<br>28   | 2.7<br>4.0 |
| ARD6                       | MR1-05-73                | Oneigo                                                 | pringrit Fiesolu 2006-2007                           | ჟ.ეგ          | <0.005           | <u.ut< td=""><td><u.u1< td=""><td>0.015</td><td>0.3</td><td>8.9</td><td></td><td>20</td><td>4.0</td></u.u1<></td></u.ut<> | <u.u1< td=""><td>0.015</td><td>0.3</td><td>8.9</td><td></td><td>20</td><td>4.0</td></u.u1<> | 0.015           | 0.3         | 8.9                 |          | 20         | 4.0        |





#### Table B-1. Acid Base Accounting Results by Lithology (continued)

|                            |                          |                                |                                                      |               | Total           | Sulphate       | Sulphide                                                                                         | Total           |             |                      |            |            |             |
|----------------------------|--------------------------|--------------------------------|------------------------------------------------------|---------------|-----------------|----------------|--------------------------------------------------------------------------------------------------|-----------------|-------------|----------------------|------------|------------|-------------|
| Sample ID                  | Borehole ID              | Lithology                      | Sampling Program                                     | Paste<br>pH   | Sulphur         | Sulphur        | Sulphur*                                                                                         | Carbon          | AP          | NP                   | Ca-NP      | NPR        | Ca-NPR      |
| ADDZ                       | MD4 05 74                | Oneira                         | Kaiaht Biasald 0000 0007                             | 0.07          | 0.005           | (wt.           |                                                                                                  | 0.04            |             | CaCO <sub>3</sub> /1 |            | - 00       | 0.7         |
| ARD7<br>ARD8               | MR1-05-74<br>MR1-05-74   | Gneiss<br>Gneiss               | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.67<br>10.07 | <0.005<br>0.035 | <0.01<br><0.01 | <0.01<br>0.035                                                                                   | 0.01            | 0.3         | 6.3<br>6.4           | 1          | 20<br>5.9  | 2.7<br>0.8  |
| ARD9                       | MR1-05-74                | Gneiss                         | Knight Piesold 2006-2007                             | 9.98          | <0.005          | <0.01          | <0.01                                                                                            | 0.013           | 0.3         | 6.8                  | 1          | 22         | 3.5         |
| UCS10                      | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007                             | 6.48          | 3.28            | 0.63           | 2.650                                                                                            | 0.005           | 82.8        | 14                   | 0          | 0.2        | 0.0         |
| UCS12<br>UCS13             | MR1-06-81<br>MR1-06-81   | Gneiss<br>Gneiss               | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.51<br>9.55  | 0.02<br>0.735   | 0.02<br>0.06   | <0.01<br>0.675                                                                                   | 0.026<br>0.029  | 0.3<br>21.1 | 6.2<br>13.9          | 2          | 20<br>0.7  | 6.9<br>0.1  |
| UCS22                      | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007                             | 9.28          | 0.077           | 0.04           | 0.037                                                                                            | 0.012           | 1.2         | 7.8                  | 1          | 6.7        | 0.9         |
| UCS23                      | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007                             | 10.05         | 0.054           | 0.01           | 0.044                                                                                            | 0.007           | 1.4         | 9.1                  | 1          | 6.6        | 0.4         |
| UCS24<br>UCS49             | MR1-06-81<br>MR1-06-105  | Gneiss<br>Gneiss               | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 9.69<br>9.91  | 0.183<br>0.247  | 0.04<br><0.01  | 0.143<br>0.247                                                                                   | 0.09            | 4.5<br>7.7  | 6.8<br>7.8           | 8          | 1.5<br>1.0 | 1.7<br>0.1  |
| UCS51                      | MR1-06-105               | Gneiss                         | Knight Piesold 2006-2007                             | 9.57          | 0.016           | <0.01          | 0.016                                                                                            | 0.03            | 0.5         | 8.5                  | 3          | 17         | 5.0         |
| 07ARD22                    | MR1-06-90                | Gneiss                         | Knight Piesold 2006-2007                             | 7.61          | 0.104           | 0.07           | 0.034                                                                                            | 0.009           | 1.1         | 13.0                 | 1          | 12         | 0.7         |
| 07ARD32<br>MRARD10-004     | MR1-06-81<br>MR1-09-179  | Gneiss<br>Gneiss               | Knight Piesold 2006-2007<br>AMEC 2010                | 9.26<br>9.5   | 0.185<br>0.016  | 0.12<br>0.02   | 0.065<br><0.01                                                                                   | 0.018           | 2.0<br>0.3  | 24.2<br>9.7          | 2<br>1.1   | 12<br>31   | 0.7<br>3.5  |
| MRARD10-005                | MR1-09-179               | Gneiss                         | AMEC 2010                                            | 9.4           | 0.015           | 0.02           | <0.01                                                                                            | 0.009           | 0.3         | 5.8                  | 0.8        | 19         | 2.4         |
| MRARD10-011                | MR1-09-178               | Gneiss                         | AMEC 2010                                            | 8.1           | 0.026           | 0.03           | <0.01                                                                                            | 0.014           | 0.3         | 15.9                 | 1.2        | 51         | 3.7         |
| MRARD10-015<br>MRARD10-018 | MR1-09-178<br>MR1-09-172 | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                               | 8.9<br>8.7    | 0.016<br>0.142  | 0.02<br>0.02   | <0.01<br>0.122                                                                                   | 0.013<br>0.284  | 0.3<br>3.8  | 7.8<br>8.5           | 1.1<br>24  | 25<br>2.2  | 3.5<br>6.2  |
| MRARD10-019                | MR1-09-172               | Gneiss                         | AMEC 2010                                            | 8.5           | 0.075           | 0.08           | <0.01                                                                                            | 0.048           | 0.3         | 31.4                 | 4.0        | 100        | 13          |
| MRARD10-030                | MR1-09-170               | Gneiss                         | AMEC 2010                                            | 8.6           | 0.268           | 0.08           | 0.188                                                                                            | 0.015           | 5.9         | 12.2                 | 1.3        | 2.1        | 0.2         |
| MRARD10-031<br>MRARD10-033 | MR1-09-170<br>MR1-08-162 | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                               | 9.2<br>9.4    | 0.009           | <0.01<br>0.02  | <0.01<br><0.01                                                                                   | <0.005          | 0.3         | 4.6<br>6.5           | 0.4        | 15<br>21   | 1.3         |
| MRARD10-033<br>MRARD10-034 | MR1-08-162               | Gneiss                         | AMEC 2010                                            | 9.4           | 0.016           | 0.02           | 0.053                                                                                            | 0.012           | 1.7         | 7.7                  | 1.0        | 4.6        | 0.6         |
| MRARD10-043                | MR1-09-167               | Gneiss                         | AMEC 2010                                            | 9.5           | 0.020           | 0.02           | <0.01                                                                                            | 0.006           | 0.3         | 10.0                 | 0.5        | 32         | 1.6         |
| MRARD10-044<br>MRARD10-045 | MR1-09-167               | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                               | 8.5<br>9.6    | 1.130<br>0.025  | 0.31<br>0.02   | 0.820<br><0.01                                                                                   | 0.012<br><0.005 | 26<br>0.3   | 10.1<br>6.4          | 1.0<br>0.4 | 0.4<br>20  | 0.04<br>1.3 |
| MRARD10-045<br>MRARD10-046 | MR1-09-167<br>MR1-09-167 | Gneiss                         | AMEC 2010<br>AMEC 2010                               | 9.6           | <0.005          | <0.02          | <0.01                                                                                            | <0.005          | 0.3         | 6.7                  | 0.4        | 21         | 1.3         |
| MRARD10-055                | MR1-08-159               | Gneiss                         | AMEC 2010                                            | 9.2           | 0.360           | 0.07           | 0.290                                                                                            | 0.006           | 9.1         | 9.6                  | 0.5        | 1.1        | 0.1         |
| MRARD10-057<br>MRARD10-074 | MR1-08-161               | Gneiss                         | AMEC 2010                                            | 9.5           | 0.426           | 0.19           | 0.236                                                                                            | 0.014           | 7.4         | 10.3                 | 1.2        | 1.4        | 0.2         |
| MRARD10-074<br>MRARD10-104 | MR1-08-149<br>MR1-08-140 | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                               | 7.3<br>8.4    | 0.664<br>0.009  | <0.09          | 0.574<br><0.01                                                                                   | 0.019<br><0.005 | 17.9<br>0.3 | 8.0<br>8.7           | 1.6<br>0.4 | 0.4<br>28  | 0.1<br>1.3  |
| MRARD10-110                | MR1-08-154               | Gneiss                         | AMEC 2010                                            | 9.0           | <0.005          | <0.01          | <0.01                                                                                            | 0.010           | 0.3         | 6.9                  | 0.8        | 22         | 2.7         |
| MRARD10-123                | MR1-08-155               | Gneiss                         | AMEC 2010                                            | 9.2           | 0.455           | 0.13           | 0.325                                                                                            | <0.005          | 10.2        | 23.2                 | 0.4        | 2.3        | 0.0         |
| MRARD10-125<br>5141        | MR1-08-144<br>ARD-2A-NW  | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                               | 9.3           | <0.005<br>0.142 | <0.01<br>0.08  | <0.01<br>0.062                                                                                   | 0.010           | 0.3<br>1.9  | 6.2<br>14.5          | 0.8<br>1.8 | 20<br>7.5  | 2.7<br>0.9  |
| 5142                       | ARD-2A-NW                | Gneiss                         | AMEC 2010                                            | 9.9           | 0.142           | 0.05           | 0.090                                                                                            | 0.021           | 2.8         | 11.1                 | 2.0        | 3.9        | 0.7         |
| 5157                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | 9.9           | 0.103           | 0.05           | 0.053                                                                                            | 0.020           | 1.7         | 11.6                 | 1.7        | 7.0        | 1.0         |
| 5158<br>5159               | ARD-2A-SE<br>ARD-2A-SE   | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                               | 10.0<br>9.5   | 0.174<br>0.220  | 0.10           | 0.074<br>0.130                                                                                   | 0.017<br>0.018  | 2.3<br>4.1  | 12.3<br>13.8         | 1.4<br>1.5 | 5.3<br>3.4 | 0.6         |
| 5160                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | 9.7           | 0.220           | 0.03           | <0.01                                                                                            | 0.018           | 0.3         | 11.6                 | 4.5        | 3.4        | 14.4        |
| 5164                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | 10.1          | 0.056           | 0.03           | 0.026                                                                                            | 0.017           | 0.8         | 7.9                  | 1.4        | 10         | 1.7         |
| 5165                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | 9.8           | 0.014           | 0.01           | <0.01                                                                                            | 0.109           | 0.3         | 15.6                 | 9.1        | 50         | 29.1        |
| 5166<br>5171               | ARD-2A-SE<br>ARD-2A-SE   | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                               | 9.9<br>5.5    | 0.034           | 0.03<br>0.17   | <0.01<br>0.229                                                                                   | 0.019<br>0.054  | 0.3<br>7.2  | 10.7<br>9.0          | 1.6<br>4.5 | 34<br>1.3  | 5.1<br>0.6  |
| 5172                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | 9.2           | 0.137           | 0.06           | 0.077                                                                                            | 0.066           | 2.4         | 10.4                 | 5.5        | 4.3        | 2.3         |
| 5174                       | ARD-2B-NW                | Gneiss                         | AMEC 2010                                            | 9.2           | 0.068           | 0.02           | 0.048                                                                                            | 0.014           | 1.5         | 3.7                  | 1.2        | 2.5        | 0.8         |
| 5175<br>UCS11              | ARD-2B-NW<br>MR1-06-81   | Gneiss Gneiss/Amphibolite      | AMEC 2010<br>Knight Piesold 2006-2007                | 9.0<br>7.36   | 0.010<br>0.262  | 0.01           | <0.01<br>0.172                                                                                   | 0.012           | 0.3<br>5.4  | 5.1<br>10.1          | 1.0        | 16<br>1.9  | 3.2<br>0.2  |
| 5182                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                                            | 9.5           | 0.658           | 0.12           | 0.538                                                                                            | 0.013           | 16.8        | 11.1                 | 1.1        | 0.7        | 0.1         |
| 5183                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                                            | 9.8           | 0.032           | 0.03           | <0.01                                                                                            | 0.014           | 0.3         | 7.4                  | 1.2        | 24         | 3.7         |
| 5184<br>5186               | ARD-2B-NW<br>ARD-2B-NW   | Gneiss/Schist<br>Gneiss/Schist | AMEC 2010<br>AMEC 2010                               | 9.8<br>9.5    | 0.021           | 0.02           | <0.01<br>0.014                                                                                   | 0.026           | 0.31        | 12.4<br>13.5         | 2.2<br>1.7 | 40<br>31   | 6.9<br>3.8  |
| 5187                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                                            | 9.3           | 0.034           | 0.08           | 0.003                                                                                            | 0.020           | 0.4         | 11.4                 | 1.7        | 122        | 13.3        |
| 5188                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                                            | 9.8           | 0.018           | 0.02           | <0.01                                                                                            | 0.023           | 0.3         | 10.5                 | 1.9        | 34         | 6.1         |
| 5189<br>FC No. 1           | ARD-2B-NW                | Gneiss/Schist<br>Gneiss/Schist | AMEC 2010<br>Knight Piesold 2006-2007                | 9.3<br>8.61   | 0.020<br>0.277  | 0.02<br>0.13   | <0.01<br>0.147                                                                                   | 0.013           | 0.3<br>4.6  | 13.6<br>8.6          | 1.1        | 44<br>1.9  | 3.5<br>0.7  |
|                            | MR1-08-142               | Metasediment                   | AMEC 2010                                            | 9.3           | <0.005          | <0.01          | <0.01                                                                                            | 0.036           | 0.3         | 8.1                  | 0.6        | 26         | 1.9         |
| MRARD10-095                | MR1-08-146               | Metasediment                   | AMEC 2010                                            | 9.3           | 0.252           | 0.07           | 0.182                                                                                            | 0.087           | 5.7         | 18.7                 | 7.3        | 3.3        | 1.3         |
|                            |                          | Metasediment<br>Metasediment   | AMEC 2010                                            | 9.4           | 0.018           | 0.02           | <0.01                                                                                            | 0.225           | 0.3         | 30.6                 | 19         | 98         | 60          |
| 5143<br>5144               | ARD-2A-NW<br>ARD-2A-NW   | Metasediment<br>Metasediment   | AMEC 2010<br>AMEC 2010                               | 9.9           | 0.027<br>0.347  | 0.03<br>0.35   | <0.01<br><0.01                                                                                   | 0.016           | 0.3         | 9.5<br>9.1           | 1.3        | 30<br>29   | 4.3<br>5.3  |
| 5145                       | ARD-2A-NW                | Metasediment                   | AMEC 2010                                            | 9.9           | 0.008           | <0.01          | <0.01                                                                                            | 0.015           | 0.3         | 11.0                 | 1.3        | 35         | 4.0         |
| 5147<br>5148               | ARD-2A-NW                | Metasediment<br>Metasediment   | AMEC 2010<br>AMEC 2010                               | 10.0          | 0.075           | 0.05<br>0.01   | 0.025<br><0.01                                                                                   | 0.024           | 0.8         | 7.9                  | 2.0        | 10         | 2.6         |
| 5148<br>5149               | ARD-2A-NW<br>ARD-2A-NW   | Metasediment<br>Metasediment   | AMEC 2010<br>AMEC 2010                               | 10.0          | 0.013<br>0.099  | 0.01           | 0.039                                                                                            | 0.025<br>0.029  | 0.3<br>1.2  | 11.7<br>11.1         | 2.1        | 37<br>9.1  | 6.7<br>2.0  |
| 5161                       | ARD-2A-SE                | Metasediment                   | AMEC 2010                                            | 10.1          | 0.011           | 0.01           | <0.01                                                                                            | 0.013           | 0.31        | 9.3                  | 1.1        | 30         | 3.5         |
| 5162                       | ARD-2A-SE                | Metasediment<br>Metasediment   | AMEC 2010                                            | 10.1          | <0.005          | <0.01          | <0.010                                                                                           | 0.016           | 0.3         | 8.7                  | 1.3        | 28         | 4.3         |
| 5163<br>5167               | ARD-2A-SE<br>ARD-2A-SE   | Metasediment<br>Metasediment   | AMEC 2010<br>AMEC 2010                               | 10.1<br>10.0  | 0.008           | <0.01<br>0.04  | <0.01<br>0.031                                                                                   | 0.014<br>0.024  | 1.0         | 8.5<br>11.9          | 1.2<br>2.0 | 27<br>12   | 3.7<br>2.1  |
| 5168                       | ARD-2A-SE                | Metasediment                   | AMEC 2010                                            | 10.1          | 0.021           | 0.02           | <0.01                                                                                            | 0.032           | 0.31        | 12.0                 | 2.7        | 38         | 8.5         |
| 5169                       | ARD-2A-SE                | Metasediment                   | AMEC 2010                                            | 10.2          | 0.137           | 0.12           | 0.017                                                                                            | 0.038           | 0.5         | 7.4                  | 3.2        | 14         | 6.0         |
| 5176<br>5177               | ARD-2B-NW<br>ARD-2B-NW   | Schist<br>Schist               | AMEC 2010<br>AMEC 2010                               | 8.8<br>9.0    | 0.095<br>0.139  | 0.08<br>0.14   | 0.015<br><0.010                                                                                  | 0.017           | 0.5         | 21.9<br>24.4         | 1.4<br>1.5 | 47<br>78   | 3.0<br>4.8  |
| 5178                       | ARD-2B-NW                | Schist                         | AMEC 2010                                            | 8.5           | 1.460           | 0.55           | 0.910                                                                                            | 0.018           | 28.4        | 22.6                 | 1.5        | 8.0        | 0.1         |
| MRARD10-035                | MR1-08-163               | Schist                         | AMEC 2010                                            | 7.9           | 0.007           | <0.01          | <0.01                                                                                            | 0.020           | 0.3         | 9.7                  | 1.7        | 31         | 5.3         |
| MRARD10-037<br>MRARD10-049 | MR1-08-160<br>MR1-08-163 | Schist<br>Schist               | AMEC 2010<br>AMEC 2010                               | 8.9<br>8.2    | 0.158<br>0.014  | 0.10<br>0.01   | 0.058<br><0.01                                                                                   | 0.020           | 1.8         | 8.3<br>16.3          | 1.7<br>1.8 | 4.6<br>52  | 0.9<br>5.6  |
| MRARD10-049<br>MRARD10-058 | MR1-08-159               | Schist                         | AMEC 2010                                            | 9.9           | 0.295           | 0.01           | 0.215                                                                                            | <0.005          | 6.7         | 12.4                 | 0.4        | 1.8        | 0.1         |
| MRARD10-085                | MR1-08-144               | Schist                         | AMEC 2010                                            | 7.8           | 6.130           | 0.17           | 5.960                                                                                            | 0.005           | 186.3       | 14.8                 | 0.4        | 0.1        | 0.0         |
|                            | MR1-08-146               | Schist<br>Schist               | AMEC 2010                                            | 8.9           | 0.009           | <0.01<br><0.01 | <0.01<br><0.01                                                                                   | 0.079           | 0.3         | 23.4                 | 6.6        | 75<br>60   | 21          |
| MRARD10-099<br>MRARD10-121 | MR1-08-144<br>MR1-08-155 | Schist                         | AMEC 2010<br>AMEC 2010                               | 9.0<br>9.7    | <0.005<br>0.020 | <0.01          | 0.010                                                                                            | 0.010           | 0.3         | 18.8<br>15.5         | 0.8        | 60<br>50   | 2.7<br>1.9  |
| 5146                       | ARD-2A-NW                | Schist                         | AMEC 2010                                            | 9.6           | 0.044           | 0.04           | <0.01                                                                                            | 0.029           | 0.3         | 17.0                 | 2.4        | 54         | 7.7         |
| 5150                       | ARD-2A-NW                | Schist                         | AMEC 2010                                            | 9.4           | 0.024           | 0.02           | <0.01                                                                                            | 0.028           | 0.3         | 15.9                 | 2.3        | 51         | 7.5         |
| 5151<br>5152               | ARD-2A-NW<br>ARD-2A-NW   | Schist<br>Schist               | AMEC 2010<br>AMEC 2010                               | 9.8           | 0.130<br>0.062  | 0.06<br>0.04   | 0.070<br>0.022                                                                                   | 0.019           | 2.2<br>0.7  | 16.1<br>9.1          | 1.6        | 7.4<br>13  | 0.7<br>1.9  |
| 5153                       | ARD-2A-NW                | Schist                         | AMEC 2010                                            | 9.0           | 0.081           | 0.04           | 0.022                                                                                            | 0.010           | 0.7         | 16.2                 | 1.8        | 25         | 2.8         |
| 5154                       | ARD-2A-NW                | Schist                         | AMEC 2010                                            | 10.1          | 0.032           | 0.03           | <0.01                                                                                            | 0.021           | 0.3         | 8.5                  | 1.8        | 27         | 5.6         |
| 5170<br>5173               | ARD-2A-SE<br>ARD-2A-SE   | Schist<br>Schist               | AMEC 2010<br>AMEC 2010                               | 9.9<br>8.3    | 0.194<br>0.018  | 0.08           | 0.114<br><0.01                                                                                   | 0.125<br>0.101  | 3.6<br>0.3  | 25.8<br>22.4         | 10<br>8.4  | 7.2<br>72  | 2.9<br>26.9 |
| 0110                       | AND-ZA-OE                | Othiat                         | AIVIEU 2010                                          | 0.3           | 0.010           | 0.02           | <u.u1< td=""><td>0.101</td><td>0.3</td><td>42.4</td><td>0.4</td><td>12</td><td>∠∪.9</td></u.u1<> | 0.101           | 0.3         | 42.4                 | 0.4        | 12         | ∠∪.9        |





#### Table B-1. Acid Base Accounting Results by Lithology (continued)

| Sample ID   | Borehole ID | Lithology             | Sampling Program         | Paste<br>pH | Total<br>Sulphur | Sulphate<br>Sulphur | Sulphide<br>Sulphur* | Total<br>Carbon | AP  | NP                   | Ca-NP | NPR  | Ca-NPR |
|-------------|-------------|-----------------------|--------------------------|-------------|------------------|---------------------|----------------------|-----------------|-----|----------------------|-------|------|--------|
|             |             |                       |                          |             |                  | (wt.                | .%)                  |                 | (kg | CaCO <sub>3</sub> /t | onne) |      |        |
| 5179        | ARD-2B-NW   | Schist                | AMEC 2010                | 8.8         | 0.038            | 0.04                | <0.01                | 0.023           | 0.3 | 9.3                  | 1.9   | 29.8 | 6.1    |
| 5180        | ARD-2B-NW   | Schist                | AMEC 2010                | 8.9         | 0.034            | 0.03                | < 0.01               | 0.020           | 0.3 | 13.2                 | 1.7   | 42.2 | 5.3    |
| 5181        | ARD-2B-NW   | Schist                | AMEC 2010                | 8.8         | 0.027            | 0.03                | < 0.01               | 0.016           | 0.3 | 14.1                 | 1.3   | 45.1 | 4.3    |
| 5185        | ARD-2B-NW   | Schist                | AMEC 2010                | 9.6         | 0.089            | 0.04                | 0.049                | 0.018           | 1.5 | 12.8                 | 1.5   | 8.4  | 1.0    |
| 5155        | ARD-2A-NW   | Schist/Gneiss         | AMEC 2010                | 9.3         | < 0.005          | < 0.01              | < 0.01               | 0.013           | 0.3 | 7.0                  | 1.1   | 22   | 3.5    |
| 5156        | ARD-2A-NW   | Schist/Gneiss         | AMEC 2010                | 9.8         | 0.070            | 0.03                | 0.040                | 0.015           | 1.3 | 11.5                 | 1.3   | 9.2  | 1.0    |
| UCS27       | MR1-06-81   | Volcanic Tuff /Schist | Knight Piesold 2006-2007 | 9.11        | 0.02             | 0.02                | < 0.01               | 0.016           | 0.3 | 24                   | 1     | 77   | 4.3    |
| MRARD10-077 | MR1-08-146  | Volcanic tuff         | AMEC 2010                | 9.8         | < 0.005          | <0.01               | < 0.01               | 0.006           | 0.3 | 15.2                 | 0.5   | 49   | 1.6    |
| MRARD10-079 | MR1-08-146  | Volcanic tuff         | AMEC 2010                | 9.3         | 0.102            | 0.06                | 0.042                | 0.654           | 1.3 | 63.9                 | 55    | 49   | 42     |

#### Notes:

 $AP = A cid \ potential \ in \ tonnes \ CaCO_3 \ equivalent \ per \ 1000 \ tonnes \ of \ material. \ AP \ is \ determined \ from \ calculated \ sulphide \ sulphur \ content: \ S(T) - S(SO_4).$ 

NP = Neutralization potential in tonnes CaCO<sub>3</sub> equivalent per 1000 tonnes of material.

 $\label{lem:carbonate_NP} \textbf{Carbonate NP} \ \text{is calculated from TC originating from carbonates and is expressed in kg CaCO} \\ \textbf{J} \text{tonne.}$ 

NPR = Net Potential Ratio = NP/AP; Carb-NPR = Carb-NP/AP
\*Where NP or AP values are equal to or less than zero, NPR is calculated assuming detection limit (NP = 0.2 kg CaCO<sub>3</sub>/tonne, AP = 0.03 kg CaCO<sub>3</sub>/tonne).





#### Table B-2. Net Acid Generation Test Results by Lithology

|                                       |                          |                                                                                |                                                      | Single     | Addition        | NAG           |                 | ential<br>n NAG |
|---------------------------------------|--------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|------------|-----------------|---------------|-----------------|-----------------|
| Sample ID                             | Borehole ID              | Lithology                                                                      | Sampling Program                                     | NAGpH      | NAG<br>(pH 4.5) | NAG (pH<br>7) | NAG<br>(pH 4.5) | NAG<br>(pH 7)   |
|                                       |                          |                                                                                |                                                      |            | kg H2S          | O4/tonne      | kg H2S0         | 04/tonne        |
| Hanging wall<br>ARD12                 | MR1-05-47                | Amphibolite                                                                    | Knight Piesold 2006-2007                             |            |                 | 1             | 1               |                 |
| ARD14                                 | MR1-05-59                | Amphibolite                                                                    | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| ARD15                                 | MR1-05-51                | Amphibolite                                                                    | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| ARD16                                 | MR1-05-51                | Amphibolite                                                                    | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| ARD17                                 | MR1-05-51                | Amphibolite                                                                    | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| ARD23                                 | MR1-05-76                | Amphibolite                                                                    | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| ARD24                                 | MR1-05-76                | Amphibolite                                                                    | Knight Piesold 2006-2007                             | 2.0        |                 |               |                 |                 |
| 07ARD10<br>07ARD11                    | MR1-05-53<br>MR1-05-46   | Amphibolite Amphibolite                                                        | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 2.9        |                 |               |                 |                 |
| 07ARD11<br>07ARD17                    | MR1-05-46                | Amphibolite                                                                    | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| 07ARD19                               | MR1-05-60                | Amphibolite                                                                    | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| 07ARD27                               | MR1-05-62                | Amphibolite                                                                    | Knight Piesold 2006-2007                             | 3.9        | 1               |               |                 |                 |
| 07ARD28                               | MR1-05-62                | Amphibolite                                                                    | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| MRARD10-038                           | MR1-08-160               | Amphibolite                                                                    | AMEC 2010                                            | 7.6        | 0               | 0.0           |                 |                 |
| MRARD10-039                           | MR1-08-160               | Amphibolite                                                                    | AMEC 2010                                            | 5.3        | 0               | 1.3           |                 |                 |
|                                       | MR1-08-143               | Amphibolite                                                                    | AMEC 2010                                            | 7.3        | 0               | 0             |                 |                 |
| MRARD10-108<br>MRARD10-131            | MR1-08-150<br>MR1-08-160 | Amphibolite Amphibolite                                                        | AMEC 2010<br>AMEC 2010                               | 7.7<br>8.1 | 0               | 0             |                 |                 |
| ARD21                                 | MR1-08-160<br>MR1-05-77  | Amphibolite/Amphibolite/Gneiss                                                 | Knight Piesold 2006-2007                             | 0.1        | "               | U             |                 |                 |
| 07ARD38                               | MR1-05-67                | Amphibolite/Gneiss                                                             | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| 07ARD07                               | MR1-05-76                | Amphibolite/Schist/Volcanic Tuff                                               | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| 07ARD30                               | MR1-05-51                | Amphibolite/Schist/Volcanic Tuff                                               | Knight Piesold 2006-2007                             | 4.0        |                 |               |                 |                 |
| ARD10                                 | MR1-05-77                | Amphibolite/Volcanic Tuff                                                      | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| ARD11                                 | MR1-05-77                | Amphibolite/Volcanic Tuff                                                      | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| 07ARD13<br>07ARD12                    | MR1-06-84                | Amphibolite/Volcanic Tuff /Greywacke                                           | Knight Piesold 2006-2007                             | 5.5<br>5.0 |                 |               |                 |                 |
| 07ARD12<br>07ARD37                    | MR1-05-46<br>MR1-04-36   | Amphibolite/Volcanic Tuff /Greywacke Amphibolite/Volcanic Tuff /Schist /Gneiss | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 5.0        |                 |               |                 |                 |
| 07ARD25                               | MR1-05-52                | Amphibolite/Schist                                                             | Knight Piesold 2006-2007                             | 3.3        |                 |               |                 |                 |
| 07ARD29                               | MR1-05-59                | Amphibolte/Schist                                                              | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
| MRARD10-010                           | MR1-09-176               | Gneiss                                                                         | AMEC 2010                                            | 7.6        | 0               | 0             |                 |                 |
| MRARD10-115                           | MR1-07-121               | Gneiss                                                                         | AMEC 2010                                            | 7.4        | 0               | 0             |                 |                 |
| MRARD10-040                           | MR1-08-158               | Gneiss/Amphibolite                                                             | AMEC 2010                                            | 8.0        | 0               | 0             |                 |                 |
| ARD 13                                | MR1-05-59                | Metasediment                                                                   | Knight Piesold 2006-2007<br>AMEC 2010                | 7.4        | 0               | 0             |                 |                 |
| MRARD10-090<br>ARD 18                 | MR1-08-144<br>MR1-05-47  | Metasediment<br>Schist                                                         | Knight Piesold 2006-2007                             | 7.1        | 0               | 0             |                 |                 |
| ARD 18<br>ARD19                       | MR1-05-47                | Schist                                                                         | Knight Piesold 2006-2007                             | 3.0        |                 |               |                 |                 |
| UCS14                                 | MR1-04-38                | Schist                                                                         | Knight Piesold 2006-2007                             | 0.0        |                 |               |                 |                 |
| 07ARD06                               | MR1-04-39                | Schist                                                                         | Knight Piesold 2006-2007                             | 6.1        |                 |               |                 |                 |
| 07ARD16                               | MR1-05-58                | Schist                                                                         | Knight Piesold 2006-2007                             | 5.6        |                 |               |                 |                 |
| 07ARD33                               | MR1-06-105               | Schist                                                                         | Knight Piesold 2006-2007                             |            |                 |               |                 |                 |
|                                       | MR1-06-94                | Schist                                                                         | Knight Piesold 2006-2007                             | 7.0        |                 |               |                 |                 |
| MRARD10-001<br>MRARD10-002            | MR1-09-171               | Schist                                                                         | AMEC 2010                                            | 7.2<br>7.7 | 0               | 0             |                 |                 |
| MRARD10-002<br>MRARD10-003            | MR1-09-179<br>MR1-09-179 | Schist Schist                                                                  | AMEC 2010<br>AMEC 2010                               | 7.7        | 0               | 0             |                 |                 |
|                                       | MR1-09-179               | Schist                                                                         | AMEC 2010<br>AMEC 2010                               | 7.7        | 0               | 0             |                 |                 |
| MRARD10-007                           | MR1-09-177               | Schist                                                                         | AMEC 2010                                            | 6.9        | 0               | 0.3           |                 |                 |
| MRARD10-008                           | MR1-09-176               | Schist                                                                         | AMEC 2010                                            | 7.9        | 0               | 0             |                 |                 |
| MRARD10-009                           | MR1-09-176               | Schist                                                                         | AMEC 2010                                            | 6.7        | 0               | 0.3           |                 |                 |
|                                       | MR1-09-176               | Schist                                                                         | AMEC 2010                                            | 7.6        | 0               | 0             |                 |                 |
|                                       | MR1-09-176<br>MR1-09-172 | Schist                                                                         | AMEC 2010                                            | 8.0        | 0               | 0             |                 |                 |
| MRARD10-016<br>MRARD10-017            | MR1-09-172<br>MR1-09-172 | Schist Schist                                                                  | AMEC 2010<br>AMEC 2010                               | 6.8<br>7.4 | 0               | 0.3           |                 |                 |
|                                       | MR1-09-172               | Schist                                                                         | AMEC 2010<br>AMEC 2010                               | 5.8        | 0               | 1.0           |                 |                 |
| MRARD10-022                           | MR1-09-176               | Schist                                                                         | AMEC 2010                                            | 8.0        | 0               | 0             |                 |                 |
| MRARD10-024                           | MR1-09-173               | Schist                                                                         | AMEC 2010                                            | 7.3        | 0               | 0             |                 |                 |
| MRARD10-026                           | MR1-09-173               | Schist                                                                         | AMEC 2010                                            | 4.5        | 0.3             | 2.2           |                 | -               |
|                                       | MR1-09-169               | Schist                                                                         | AMEC 2010                                            | 7.2        | 0.0             | 0             |                 |                 |
| MRARD10-028                           | MR1-09-169               | Schist                                                                         | AMEC 2010                                            | 3.1        | 5.7             | 11            |                 |                 |
| MRARD10-032                           | MR1-09-169               | Schist                                                                         | AMEC 2010                                            | 7.6        | 0               | 0             |                 |                 |
| MRARD10-036<br>MRARD10-041            | MR1-08-161<br>MR1-08-158 | Schist Schist                                                                  | AMEC 2010<br>AMEC 2010                               | 6.8<br>7.8 | 0               | 0.3           |                 |                 |
| MRARD10-041                           | MR1-08-163               | Schist                                                                         | AMEC 2010<br>AMEC 2010                               | 7.6        | 0               | 0             |                 |                 |
| MRARD10-047                           | MR1-08-163               | Schist                                                                         | AMEC 2010                                            | 6.5        | 0               | 0.3           |                 |                 |
|                                       | MR1-08-152               | Schist                                                                         | AMEC 2010                                            | 8.0        | 0               | 0             |                 |                 |
| ···· ·· · · · · · · · · · · · · · · · |                          | Schist                                                                         | AMEC 2010                                            | 8.0        | 0               | 0             |                 |                 |





|                            |                          |                                           |                                                      | Single             | Addition        | NAG      |                 | ential<br>on NAG                                 |
|----------------------------|--------------------------|-------------------------------------------|------------------------------------------------------|--------------------|-----------------|----------|-----------------|--------------------------------------------------|
| Sample ID                  | Borehole ID              | Lithology                                 | Sampling Program                                     | NAG <sub>p</sub> н | NAG<br>(pH 4.5) | NAG (pH  | NAG<br>(pH 4.5) | NAG<br>(pH 7)                                    |
|                            |                          |                                           |                                                      |                    | kg H2S          | O4/tonne | kg H2S0         | 04/tonne                                         |
| MRARD10-056                | MR1-08-152               | Schist                                    | AMEC 2010                                            | 7.4                | 0               | 0        |                 |                                                  |
| MRARD10-060                | MR1-08-157               | Schist                                    | AMEC 2010                                            | 6.4                | 0               | 1.3      |                 |                                                  |
| MRARD10-061                | MR1-08-159               | Schist                                    | AMEC 2010                                            | 7.3                | 0               | 0        |                 |                                                  |
| MRARD10-062                | MR1-08-155               | Schist                                    | AMEC 2010                                            | 7.3                | 0               | 0        |                 |                                                  |
| MRARD10-063<br>MRARD10-064 | MR1-08-157<br>MR1-08-155 | Schist<br>Schist                          | AMEC 2010<br>AMEC 2010                               | 7.0<br>7.1         | 0               | 0        |                 |                                                  |
| MRARD10-064                | MR1-08-150               | Schist                                    | AMEC 2010<br>AMEC 2010                               | 7.1                | 0               | 0        |                 |                                                  |
| MRARD10-068                | MR1-08-140               | Schist                                    | AMEC 2010                                            | 2.8                | 15              | 24       | 14.0            | 23.0                                             |
| MRARD10-070                | MR1-08-140               | Schist                                    | AMEC 2010                                            | 7.3                | 0               | 0        |                 | 20.0                                             |
| MRARD10-071                | MR1-08-160               | Schist                                    | AMEC 2010                                            | 7.2                | 0               | 0        |                 |                                                  |
| MRARD10-072                | MR1-08-149               | Schist                                    | AMEC 2010                                            | 7.5                | 0               | 0        |                 |                                                  |
| MRARD10-073                | MR1-08-155               | Schist                                    | AMEC 2010                                            | 6.9                | 0               | 0.7      |                 |                                                  |
| MRARD10-075                | MR1-08-148               | Schist                                    | AMEC 2010                                            | 7.2                | 0               | 0        |                 |                                                  |
| MRARD10-078                | MR1-08-153               | Schist                                    | AMEC 2010                                            | 6.9                | 0               | 0.3      |                 | <u> </u>                                         |
| MRARD10-086                | MR1-08-147               | Schist                                    | AMEC 2010                                            | 7.2                | 0               | 0        |                 |                                                  |
| MRARD10-092<br>MRARD10-093 | MR1-08-142<br>MR1-08-145 | Schist<br>Schist                          | AMEC 2010<br>AMEC 2010                               | 4.3<br>7.4         | 0.3             | 3.3      |                 |                                                  |
| MRARD10-093<br>MRARD10-094 | MR1-08-145<br>MR1-08-147 | Schist                                    | AMEC 2010<br>AMEC 2010                               | 6.9                | 0               | 0.3      |                 |                                                  |
| MRARD10-094                | MR1-08-147               | Schist                                    | AMEC 2010<br>AMEC 2010                               | 8.1                | 0               | 0.3      |                 |                                                  |
| MRARD10-101                | MR1-08-153               | Schist                                    | AMEC 2010                                            | 7.2                | 0               | 0        |                 |                                                  |
| MRARD10-102                | MR1-08-143               | Schist                                    | AMEC 2010                                            | 7.6                | 0               | 0        |                 |                                                  |
| MRARD10-103                | MR1-08-141               | Schist                                    | AMEC 2010                                            | 7.1                | 0               | 0        |                 |                                                  |
| MRARD10-106                | MR1-08-148               | Schist                                    | AMEC 2010                                            | 6.7                | 0               | 0.3      |                 |                                                  |
| MRARD10-109                | MR1-08-141               | Schist                                    | AMEC 2010                                            | 7.0                | 0               | 0.3      |                 |                                                  |
| MRARD10-111                | MR1-08-144               | Schist                                    | AMEC 2010                                            | 7.1                | 0               | 0        |                 |                                                  |
| MRARD10-114                | MR1-07-121               | Schist                                    | AMEC 2010                                            | 6.0                | 0               | 0.3      |                 |                                                  |
| MRARD10-116                | MR1-07-121               | Schist                                    | AMEC 2010                                            | 2.8                | 16              | 25       | 16.4            | 26.4                                             |
| MRARD10-117                | MR1-08-156               | Schist                                    | AMEC 2010                                            | 7.0                | 0.0             | 0.3      |                 |                                                  |
| MRARD10-118<br>MRARD10-119 | MR1-07-121<br>MR1-08-156 | Schist<br>Schist                          | AMEC 2010<br>AMEC 2010                               | 7.5<br>8.3         | 0               | 0        |                 |                                                  |
| MRARD10-119                | MR1-08-148               | Schist                                    | AMEC 2010<br>AMEC 2010                               | 3.0                | 7.0             | 11       |                 |                                                  |
| MRARD10-122                | MR1-08-156               | Schist                                    | AMEC 2010                                            | 6.6                | 0               | 1.3      |                 |                                                  |
| MRARD10-124                | MR1-08-143               | Schist                                    | AMEC 2010                                            | 7.3                | 0               | 0        |                 |                                                  |
| MRARD10-126                | MR1-08-145               | Schist                                    | AMEC 2010                                            | 7.5                | 0               | 0        |                 |                                                  |
| MRARD10-127                | MR1-08-143               | Schist                                    | AMEC 2010                                            | 7.4                | 0               | 0        |                 |                                                  |
| MRARD10-128                | MR1-08-141               | Schist                                    | AMEC 2010                                            | 6.9                | 0               | 0.3      |                 |                                                  |
| MRARD10-129                | MR1-08-154               | Schist                                    | AMEC 2010                                            | 1.8                | 131             | 165      | 226.6           | 276.8                                            |
| MRARD10-130                | MR1-08-153               | Schist                                    | AMEC 2010                                            | 9.0                | 0               | 0        |                 |                                                  |
| 07ARD21                    | MR1-06-90                | Schist /Amphibolite/Volcanic Tuff         | Knight Piesold 2006-2007                             | 2.8                |                 |          |                 |                                                  |
| 07ARD20                    | MR1-05-60                | Schist/Amphibolite                        | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| 07ARD15<br>07ARD39         | MR1-05-68<br>MR1-06-96   | Schist/Volcanic Tuff Schist/Volcanic Tuff | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |                    |                 |          |                 |                                                  |
| 07ARD39<br>07ARD40         | MR1-05-54                | Schist/Volcanic Tuff /Amphibolite         | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| 07ARD14                    | MR1-06-84                | Schist/Volcanic Tuff/Gneiss               | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| ARD20                      | MR1-05-59                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| ARD22                      | MR1-05-77                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| ARD25                      | MR1-06-86                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| ARD26                      | MR1-06-86                | Volcanic Tuff                             | Knight Piesold 2006-2007                             | _                  |                 |          |                 |                                                  |
| UCS2                       | MR1-06-81                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS15                      | MR1-05-77                | Volcanic Tuff                             | Knight Piesold 2006-2007                             | 7.6                |                 |          |                 |                                                  |
| UCS16                      | MR1-06-86                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS17<br>UCS18             | MR1-06-86                | Volcanic Tuff Volcanic Tuff               | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS18                      | MR1-06-86<br>MR1-06-86   | Volcanic Tuff                             | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |                    | 1               |          |                 |                                                  |
| UCS20                      | MR1-06-86                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS21                      | MR1-06-86                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS25                      | MR1-06-81                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS26                      | MR1-06-81                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS28                      | MR1-06-86                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS29                      | MR1-06-86                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS30                      | MR1-06-86                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    | ļ               |          |                 | <u> </u>                                         |
| UCS31                      | MR1-06-91                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS32                      | MR1-06-91                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS33                      | MR1-06-91                | Volcanic Tuff                             | Knight Piesold 2006-2007                             |                    |                 |          |                 |                                                  |
| UCS34<br>UCS35             | MR1-06-91<br>MR1-06-91   | Volcanic Tuff Volcanic Tuff               | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |                    |                 |          |                 | <del>                                     </del> |
| 00000                      | IVII \ I = 0 0 = 3       | voicanic ruii                             | Imigut Flesoid 2000-2007                             |                    | 1               |          |                 | 1                                                |





|                            |                          |                                   |                                                      | Single             | Addition        | NAG           |                 | ential<br>on NAG                                 |
|----------------------------|--------------------------|-----------------------------------|------------------------------------------------------|--------------------|-----------------|---------------|-----------------|--------------------------------------------------|
| Sample ID                  | Borehole ID              | Lithology                         | Sampling Program                                     | NAG <sub>p</sub> н | NAG<br>(pH 4.5) | NAG (pH<br>7) | NAG<br>(pH 4.5) | NAG<br>(pH 7)                                    |
|                            |                          |                                   |                                                      |                    | kg H2S          | 04/tonne      | kg H2S0         | 04/tonne                                         |
| UCS36                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| UCS37                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| UCS38                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| UCS39                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| UCS40<br>07ARD08           | MR1-06-91<br>MR1-05-53   | Volcanic Tuff Volcanic Tuff       | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 4.6                |                 |               |                 |                                                  |
| 07ARD06<br>07ARD36         | MR1-06-95                | Volcanic Tuff                     | Knight Piesold 2006-2007                             | 4.0                |                 |               |                 |                                                  |
| MRARD10-012                | MR1-09-173               | Volcanic Tuff                     | AMEC 2010                                            | 9.4                | 0               | 0             |                 |                                                  |
| MRARD10-021                | MR1-09-173               | Volcanic Tuff                     | AMEC 2010                                            | 7.0                | 0               | 0             |                 |                                                  |
| MRARD10-023                | MR1-09-173               | Volcanic Tuff                     | AMEC 2010                                            | 9.1                | 0               | 0             |                 |                                                  |
| MRARD10-025                | MR1-09-173               | Volcanic Tuff                     | AMEC 2010                                            | 8.0                | 0               | 0             |                 |                                                  |
| MRARD10-042                | MR1-08-158               | Volcanic Tuff                     | AMEC 2010                                            | 9.7                | 0               | 0             |                 |                                                  |
| MRARD10-051                | MR1-08-158               | Volcanic Tuff                     | AMEC 2010                                            | 10.8               | 0               | 0             |                 |                                                  |
| MRARD10-053                | MR1-08-152               | Volcanic Tuff                     | AMEC 2010                                            | 8.1                | 0               | 0             |                 |                                                  |
| MRARD10-054                | MR1-08-158               | Volcanic Tuff                     | AMEC 2010                                            | 9.3                | 0               | 0             |                 |                                                  |
| MRARD10-059                | MR1-08-152               | Volcanic Tuff                     | AMEC 2010                                            | 7.4                | 0               | 0             |                 |                                                  |
| MRARD10-066                | MR1-08-150               | Volcanic Tuff                     | AMEC 2010                                            | 7.2                | 0               | 0             |                 |                                                  |
| MRARD10-067                | MR1-08-150               | Volcanic Tuff                     | AMEC 2010                                            | 7.7                | 0               | 0             |                 |                                                  |
| MRARD10-069                | MR1-08-141               | Volcanic Tuff                     | AMEC 2010                                            | 2.5                | 21              | 26            |                 |                                                  |
| MRARD10-076                | MR1-08-157               | Volcanic Tuff                     | AMEC 2010                                            | 7.7                | 0               | 0             |                 |                                                  |
| MRARD10-080                | MR1-08-149               | Volcanic Tuff                     | AMEC 2010                                            | 2.9                | 11              | 18            | 8.4             | 13.6                                             |
| MRARD10-082                | MR1-08-150               | Volcanic Tuff                     | AMEC 2010                                            | 9.5                | 0               | 0             |                 |                                                  |
| MRARD10-083                | MR1-08-145               | Volcanic Tuff                     | AMEC 2010                                            | 7.5                | 0               | 0             |                 |                                                  |
| MRARD10-084                | MR1-08-147               | Volcanic Tuff                     | AMEC 2010                                            | 8.0                | 0               | 0             |                 |                                                  |
| MRARD10-087<br>MRARD10-088 | MR1-08-147               | Volcanic Tuff Volcanic Tuff       | AMEC 2010                                            | 10.6               | 0               | 0             |                 |                                                  |
| MRARD10-088                | MR1-08-147<br>MR1-08-147 | Volcanic Tuff                     | AMEC 2010<br>AMEC 2010                               | 9.5<br>9.5         | 0               | 0             |                 |                                                  |
| MRARD10-089                | MR1-08-153               | Volcanic Tuff                     | AMEC 2010<br>AMEC 2010                               | 7.7                | 0               | 0             |                 |                                                  |
| MRARD10-036                | MR1-08-141               | Volcanic Tuff                     | AMEC 2010                                            | 3.4                | 2.9             | 8.3           |                 |                                                  |
| MRARD10-112                | MR1-08-156               | Volcanic Tuff                     | AMEC 2010                                            | 9.8                | 0               | 0             |                 |                                                  |
| MRARD10-113                | MR1-08-144               | Volcanic Tuff                     | AMEC 2010                                            | 7.6                | 0               | 0             |                 |                                                  |
| FC No. 2                   |                          | Volcanic Tuff /Amphibolite/Schist | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| 07ARD31                    | MR1-05-54                | Volcanic Tuff /Chert /Schist      | Knight Piesold 2006-2007                             | 2.8                |                 |               |                 |                                                  |
| 07ARD23                    | MR1-06-103               | Volcanic Tuff /Schist             | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| 07ARD24                    | MR1-05-55                | Volcanic Tuff /Schist             | Knight Piesold 2006-2007                             | 5.9                |                 |               |                 |                                                  |
| 07ARD26                    | MR1-06-93                | Volcanic Tuff /Schist             | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| 07ARD35                    | MR!-06-101               | Volcanic Tuff /Schist             | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| 07ARD41                    | MR1-06-95                | Volcanic Tuff /Schist             | Knight Piesold 2006-2007                             | 3.1                |                 |               |                 |                                                  |
| MRARD10-029                | MR1-09-170               | Volcanic Tuff /Schist             | AMEC 2010                                            | 7.3                | 0               | 0             |                 |                                                  |
| Footwall                   | I                        | T                                 | T                                                    |                    | 1               | 1             |                 | 1                                                |
| UCS9                       | MR1-06-81                | Amphibolite                       | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
|                            | MR1-08-154               | Amphibolite                       | AMEC 2010                                            | 7.5                | 0               | 0             |                 |                                                  |
| ARD1                       | MR1-05-72                | Gneiss                            | Knight Piesold 2006-2007                             | 7.6                |                 |               |                 |                                                  |
| ARD2<br>ARD3               | MR1-05-72<br>MR1-05-72   | Gneiss<br>Gneiss                  | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |                    |                 |               |                 |                                                  |
| ARD3<br>ARD4               | MR1-05-72<br>MR1-05-73   | Gneiss                            | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |                    |                 |               |                 |                                                  |
| ARD5                       | MR1-05-73                | Gneiss                            | Knight Piesold 2006-2007 Knight Piesold 2006-2007    |                    |                 |               |                 |                                                  |
| ARD6                       | MR1-05-73                | Gneiss                            | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| ARD7                       | MR1-05-74                | Gneiss                            | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| ARD8                       | MR1-05-74                | Gneiss                            | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| ARD9                       | MR1-05-74                | Gneiss                            | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| UCS10                      | MR1-06-81                | Gneiss                            | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| UCS12                      | MR1-06-81                | Gneiss                            | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| UCS13                      | MR1-06-81                | Gneiss                            | Knight Piesold 2006-2007                             | 3.5                |                 |               |                 |                                                  |
| UCS22                      | MR1-06-81                | Gneiss                            | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| UCS23                      | MR1-06-81                | Gneiss                            | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| UCS24                      | MR1-06-81                | Gneiss                            | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| UCS49                      | MR1-06-105               | Gneiss                            | Knight Piesold 2006-2007                             | 5.3                |                 |               |                 |                                                  |
| UCS51                      | MR1-06-105               | Gneiss                            | Knight Piesold 2006-2007                             |                    |                 |               |                 |                                                  |
| 07ARD22                    | MR1-06-90                | Gneiss                            | Knight Piesold 2006-2007                             | 6.9                |                 |               |                 |                                                  |
| 07ARD32                    | MR1-06-81                | Gneiss                            | Knight Piesold 2006-2007                             |                    | _               |               |                 | <b> </b>                                         |
| MRARD10-004                | MR1-09-179               | Gneiss                            | AMEC 2010                                            | 7.7                | 0               | 0             |                 | <del>                                     </del> |
| MRARD10-005                | MR1-09-179               | Gneiss                            | AMEC 2010                                            | 7.3                | 0               | 0             |                 | <del>                                     </del> |
| MRARD10-011<br>MRARD10-015 | MR1-09-178<br>MR1-09-178 | Gneiss<br>Gneiss                  | AMEC 2010<br>AMEC 2010                               | 7.6<br>7.5         | 0               | 0             |                 |                                                  |
| MRARD10-015<br>MRARD10-018 | MR1-09-178<br>MR1-09-172 |                                   | AMEC 2010<br>AMEC 2010                               | 7.5<br>5.0         | 0               | 1.0           |                 |                                                  |
| או ה-הו העצעוייי           | INIU 1-02-117            | Gneiss                            | IVIEC 5010                                           | 5.0                | U               | 1.∪           |                 | 1                                                |





|                            |                          |                                |                          | Single             | Addition        | NAG        |                 | ential<br>on NAG                                 |
|----------------------------|--------------------------|--------------------------------|--------------------------|--------------------|-----------------|------------|-----------------|--------------------------------------------------|
| Sample ID                  | Borehole ID              | Lithology                      | Sampling Program         | NAG <sub>p</sub> н | NAG<br>(pH 4.5) | NAG (pH    | NAG<br>(pH 4.5) | NAG<br>(pH 7)                                    |
|                            |                          |                                |                          |                    | kg H2S          | O4/tonne   | kg H2S0         | 04/tonne                                         |
| MRARD10-019                | MR1-09-172               | Gneiss                         | AMEC 2010                | 7.9                | 0               | 0          |                 |                                                  |
| MRARD10-030                | MR1-09-170               | Gneiss                         | AMEC 2010                | 4.5                | 0.3             | 1.3        |                 |                                                  |
| MRARD10-031                | MR1-09-170               | Gneiss                         | AMEC 2010                | 7.0                | 0               | 0.3        |                 |                                                  |
| MRARD10-033                | MR1-08-162               | Gneiss                         | AMEC 2010                | 7.1                | 0               | 0          |                 |                                                  |
| MRARD10-034<br>MRARD10-043 | MR1-08-162<br>MR1-09-167 | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010   | 5.5<br>7.5         | 0               | 0.3        |                 |                                                  |
| MRARD10-043                | MR1-09-167               | Gneiss                         | AMEC 2010<br>AMEC 2010   | 2.8                | 14              | 22         | 14.2            | 21.4                                             |
| MRARD10-045                | MR1-09-167               | Gneiss                         | AMEC 2010                | 6.8                | 0.0             | 0.3        | 17.2            | 21.7                                             |
| MRARD10-046                | MR1-09-167               | Gneiss                         | AMEC 2010                | 7.2                | 0               | 0          |                 |                                                  |
| MRARD10-055                | MR1-08-159               | Gneiss                         | AMEC 2010                | 4.4                | 0.3             | 3.6        |                 |                                                  |
| MRARD10-057                | MR1-08-161               | Gneiss                         | AMEC 2010                | 3.5                | 2.3             | 5.2        |                 |                                                  |
| MRARD10-074                | MR1-08-149               | Gneiss                         | AMEC 2010                | 3.1                | 6.5             | 12         |                 |                                                  |
| MRARD10-104                | MR1-08-140               | Gneiss                         | AMEC 2010                | 7.4                | 0               | 0          |                 |                                                  |
| MRARD10-110<br>MRARD10-123 | MR1-08-154<br>MR1-08-155 | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010   | 7.1<br>4.2         | 1.0             | 0<br>6.6   |                 |                                                  |
| MRARD10-123<br>MRARD10-125 | MR1-08-155               | Gneiss                         | AMEC 2010<br>AMEC 2010   | 6.9                | 0               | 0.7        |                 |                                                  |
| 5141                       | ARD-2A-NW                | Gneiss                         | AMEC 2010<br>AMEC 2010   | 6.8                | 0               | 0.7        |                 |                                                  |
| 5142                       | ARD-2A-NW                | Gneiss                         | AMEC 2010                | 5.6                | 0               | 0.7        |                 |                                                  |
| 5157                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                | 6.4                | 0               | 0.6        |                 |                                                  |
| 5158                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                | 5.8                | 0               | 0.3        |                 |                                                  |
| 5159                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                | 4.9                | 0               | 1.0        |                 |                                                  |
| 5160                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                | 7.4                | 0               | 0          |                 |                                                  |
| 5164<br>5165               | ARD-2A-SE                | Gneiss<br>Gneiss               | AMEC 2010                | 6.4                | 0               | 0.7        |                 |                                                  |
| 5166                       | ARD-2A-SE<br>ARD-2A-SE   | Gneiss                         | AMEC 2010<br>AMEC 2010   | 7.9<br>7.2         | 0               | 0          |                 |                                                  |
| 5171                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                | 3.1                | 4.8             | 6.8        |                 |                                                  |
| 5172                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                | 7.1                | 0               | 0          |                 |                                                  |
| 5174                       | ARD-2B-NW                | Gneiss                         | AMEC 2010                | 5.3                | 0               | 1.3        |                 |                                                  |
| 5175                       | ARD-2B-NW                | Gneiss                         | AMEC 2010                | 7.1                | 0               | 0          |                 |                                                  |
| UCS11                      | MR1-06-81                | Gneiss/Amphibolite             | Knight Piesold 2006-2007 | 6.0                |                 |            |                 |                                                  |
| FC No. 1                   | ADD OD NIM               | Gneiss/Schist                  | Knight Piesold 2006-2007 | 2.0                | 0.0             | 4.4        |                 |                                                  |
| 5182<br>5183               | ARD-2B-NW<br>ARD-2B-NW   | Gneiss/Schist<br>Gneiss/Schist | AMEC 2010<br>AMEC 2010   | 3.0<br>7.3         | 8.2             | 14<br>0    |                 |                                                  |
| 5184                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                | 7.5                | 0               | 0          |                 |                                                  |
| 5186                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                | 7.0                | 0               | 0          |                 |                                                  |
| 5187                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                | 7.5                | 0               | 0          |                 |                                                  |
| 5188                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                | 7.4                | 0               | 0          |                 |                                                  |
| 5189                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                | 7.5                | 0               | 0          |                 |                                                  |
| MRARD10-081                | MR1-08-142               | Metasediment                   | AMEC 2010                | 7.3                | 0               | 0          |                 |                                                  |
| MRARD10-095                | MR1-08-146               | Metasediment                   | AMEC 2010                | 6.9                | 0               | 0.3        |                 |                                                  |
| MRARD10-100<br>5143        | MR1-08-146<br>ARD-2A-NW  | Metasediment                   | AMEC 2010<br>AMEC 2010   | 9.9<br>7.1         | 0               | 0          |                 |                                                  |
| 5143                       | ARD-2A-NW                | Metasediment Metasediment      | AMEC 2010<br>AMEC 2010   | 7.1                | 0               | 0          |                 |                                                  |
| 5145                       | ARD-2A-NW                | Metasediment                   | AMEC 2010                | 7.2                | 0               | 0          |                 |                                                  |
| 5147                       | ARD-2A-NW                | Metasediment                   | AMEC 2010                | 6.6                | 0               | 0.7        |                 |                                                  |
| 5148                       | ARD-2A-NW                | Metasediment                   | AMEC 2010                | 7.2                | 0               | 0          |                 |                                                  |
| 5149                       | ARD-2A-NW                | Metasediment                   | AMEC 2010                | 6.6                | 0               | 0.7        |                 |                                                  |
| 5161                       | ARD-2A-SE                | Metasediment                   | AMEC 2010                | 7.0                | 0               | 0          |                 |                                                  |
| 5162                       | ARD-2A-SE                | Metasediment                   | AMEC 2010                | 7.1                | 0               | 0          |                 | ļ                                                |
| 5163<br>5167               | ARD-2A-SE                | Metasediment Metasediment      | AMEC 2010<br>AMEC 2010   | 7.1<br>6.8         | 0               | 0<br>1.3   |                 | <del>                                     </del> |
| 5167                       | ARD-2A-SE<br>ARD-2A-SE   | Metasediment Metasediment      | AMEC 2010<br>AMEC 2010   | 7.3                | 0               | 0          |                 |                                                  |
| 5169                       | ARD-2A-SE                | Metasediment                   | AMEC 2010                | 5.2                | 0               | 1.0        |                 |                                                  |
| 5176                       | ARD-2B-NW                | Schist                         | AMEC 2010                | 7.3                | 0               | 0          |                 |                                                  |
| 5177                       | ARD-2B-NW                | Schist                         | AMEC 2010                | 7.6                | 0               | 0          |                 |                                                  |
| 5178                       | ARD-2B-NW                | Schist                         | AMEC 2010                | 2.7                | 18              | 27         | 15.2            | 24.2                                             |
| MRARD10-035                | MR1-08-163               | Schist                         | AMEC 2010                | 7.6                | 0               | 0          |                 |                                                  |
| MRARD10-037                | MR1-08-160               | Schist                         | AMEC 2010                | 6.6                | 0               | 0.3        |                 | ļ                                                |
| MRARD10-049                | MR1-08-163               | Schiat                         | AMEC 2010                | 7.6                | 0               | 0          |                 | <del>                                     </del> |
| MRARD10-058<br>MRARD10-085 | MR1-08-159<br>MR1-08-144 | Schist<br>Schist               | AMEC 2010<br>AMEC 2010   | 4.3<br>2.3         | 0.7<br>65       | 4.6<br>117 | 88.6            | 133.0                                            |
| MRARD10-085                | MR1-08-144<br>MR1-08-146 | Schist                         | AMEC 2010<br>AMEC 2010   | 9.1                | 0               | 0          | 0.00            | 133.0                                            |
| MRARD10-090                | MR1-08-144               | Schist                         | AMEC 2010                | 8.0                | 0               | 0          |                 |                                                  |
| MRARD10-121                | MR1-08-155               | Schist                         | AMEC 2010                | 6.4                | 0               | 1.0        |                 |                                                  |
| 5146                       | ARD-2A-NW                | Schist                         | AMEC 2010                | 7.4                | 0               | 0          |                 |                                                  |
| 5150                       | ARD-2A-NW                | Schist                         | AMEC 2010                | 7.4                | 0               | 0          |                 |                                                  |
|                            |                          |                                |                          |                    |                 |            |                 |                                                  |





|             |             |                       |                          | Single | Addition        | NAG           |                 | ential<br>n NAG |
|-------------|-------------|-----------------------|--------------------------|--------|-----------------|---------------|-----------------|-----------------|
| Sample ID   | Borehole ID | Lithology             | Sampling Program         | NAGpH  | NAG<br>(pH 4.5) | NAG (pH<br>7) | NAG<br>(pH 4.5) | NAG<br>(pH 7)   |
|             |             |                       |                          |        | kg H2S          | O4/tonne      | kg H2S0         | 04/tonne        |
| 5151        | ARD-2A-NW   | Schist                | AMEC 2010                | 6.7    | 0               | 0.6           |                 |                 |
| 5152        | ARD-2A-NW   | Schist                | AMEC 2010                | 6.7    | 0               | 0.3           |                 |                 |
| 5153        | ARD-2A-NW   | Schist                | AMEC 2010                | 7.0    | 0               | 0.3           |                 |                 |
| 5154        | ARD-2A-NW   | Schist                | AMEC 2010                | 7.0    | 0               | 0.3           |                 |                 |
| 5170        | ARD-2A-SE   | Schist                | AMEC 2010                | 9.1    | 0               | 0             |                 |                 |
| 5173        | ARD-2A-SE   | Schist                | AMEC 2010                | 8.3    | 0               | 0             |                 |                 |
| 5179        | ARD-2B-NW   | Schist                | AMEC 2010                | 7.5    | 0               | 0             |                 |                 |
| 5180        | ARD-2B-NW   | Schist                | AMEC 2010                | 7.5    | 0               | 0             |                 |                 |
| 5181        | ARD-2B-NW   | Schist                | AMEC 2010                | 7.7    | 0               | 0             |                 |                 |
| 5185        | ARD-2B-NW   | Schist                | AMEC 2010                | 6.9    | 0               | 0.9           |                 |                 |
| 5155        | ARD-2A-NW   | Schist/Gneiss         | AMEC 2010                | 7.0    | 0               | 0.0           |                 |                 |
| 5156        | ARD-2A-NW   | Schist/Gneiss         | AMEC 2010                | 6.6    | 0               | 0.3           |                 |                 |
| MRARD10-077 | MR1-08-146  | Volcanic tuff         | AMEC 2010                | 7.6    | 0               | 0             |                 |                 |
| MRARD10-079 | MR1-08-146  | Volcanic tuff         | AMEC 2010                | 10.7   | 0               | 0             |                 |                 |
| UCS27       | MR1-06-81   | Volcanic Tuff /Schist | Knight Piesold 2006-2007 |        |                 |               |                 |                 |





#### Table B.3 Total Metal Concentrations by Lithology

| Sample ID                        | Borehole ID              | Rock Type                                                   | Sampling Program                                     | Hg           | Al         | As             | Ва          | Be           | Bi             | Ca         | Cd           | Co        | Cr          | Cu        | Fe         | K              | Li        | Mg          | Mn             | Мо         |
|----------------------------------|--------------------------|-------------------------------------------------------------|------------------------------------------------------|--------------|------------|----------------|-------------|--------------|----------------|------------|--------------|-----------|-------------|-----------|------------|----------------|-----------|-------------|----------------|------------|
|                                  |                          | **                                                          | oumpaning i rogium                                   | μg/g         | %          | μg/g           | μg/g        | μg/g         | μg/g           | %          | μg/g         | μg/g      | μg/g        | μg/g      | %          | %              | μg/g      | %           | μg/g           | μg/g       |
| Average Concer                   |                          |                                                             |                                                      | 0.09         | 7.8        | 2              | 330         | 1            | 0.007          | 7.6        | 0.22         | 48        | 170         | 87        | 8.6        | 0.83           | 17        | 4.6         | 1500           | 1.5        |
| Ten Times Aver<br>Average Concer |                          |                                                             |                                                      | 0.9          | 78<br>8.23 | 20<br>1.8      | 3300<br>425 | 10<br>3      | 0.07           | 76<br>4.15 | 2.2<br>0.15  | 480<br>25 | 1700<br>102 | 870<br>60 | 86<br>5.63 | 8.3<br>2.085   | 170<br>20 | 46<br>2.33  | 15000<br>950   | 15<br>1.2  |
| Ten Times Aver                   |                          | ,                                                           |                                                      | 0.085        | 82.3       | 1.8            | 4250        | 30           | 0.0085         | 41.5       | 1.5          | 250       | 1020        | 600       | 56.3       | 20.85          | 200       | 23.3        | 9500           | 1.2        |
| Hanging Wall                     | age Concentra            | tion (Crustal)                                              |                                                      | 0.05         | 02.3       | 10             | 4230        | 30           | 0.003          | 41.5       | 1.5          | 230       | 1020        | 000       | 30.3       | 20.03          | 200       | 23.3        | 9300           | 12         |
| ARD12                            | MR1-05-47                | Amphibolite                                                 | Knight Piesold 2006-2007                             | l .          | 9.2        | <6             | 200         | 5.1          | <3             | 0.13       | 1            | 51        | 370         | 41        | 11         | 0.49           | 30        | 12          | 3,400          | <2         |
| ARD14                            | MR1-05-59                | Amphibolite                                                 | Knight Piesold 2006-2007                             |              | 6.3        | 78             | 250         | 1.3          | <3             | 0.12       | 2            | 49        | 950         | 180       | 5          | 1.60           | 12        | 3.5         | 1,100          | 29         |
| ARD15                            | MR1-05-51                | Amphibolite                                                 | Knight Piesold 2006-2007                             |              | 8.3        | 30             | 170         | 0.12         | <3             | 6.50       | 4.9          | 59        | 260         | 96        | 5          | 0.70           | <3        | 1.8         | 2,200          | <2         |
| ARD16                            | MR1-05-51                | Amphibolite                                                 | Knight Piesold 2006-2007                             |              | 7.6        | <6             | 31          | 0.099        | <3             | 0.79       | 1.4          | 49        | 170         | 130       | 13         | 0.27           | 7         | 3.6         | 6,400          | 7          |
| ARD17                            | MR1-05-51                | Amphibolite                                                 | Knight Piesold 2006-2007                             |              | 13.0       | <6             | 30          | 2.1          | <3             | 0.15       | 1            | 85        | 350         | 120       | 10         | 0.79           | 33        | 11          | 2,300          | 3          |
| ARD23                            | MR1-05-76                | Amphibolite                                                 | Knight Piesold 2006-2007                             |              | 7.2        | <6             | 590         | 2.6          | <3             | 0.08       | 0.5          | 4.4       | 13          | 4.1       | 5          | 2.10           | 13        | 4.8         | 860            | 2          |
| ARD24                            | MR1-05-76                | Amphibolite                                                 | Knight Piesold 2006-2007                             |              | 7.2        | <6             | 300         | 1.3          | <3             | 0.06       | 0.4          | 8.2       | 8           | 1.6       | 6          | 2.50           | 8         | 1.7         | 420            | 9          |
| 07ARD10                          | MR1-05-53                | Amphibolite                                                 | Knight Piesold 2006-2007                             | <0.1         | 4.2        | 32             | 5           | 0.9          | 1.7            | 0.23       | 0.13         | 42        | 100         | 27        | 32         | 0.01           | 34        | 8.3         | 450            | 7.9        |
| 07ARD11                          | MR1-05-46                | Amphibolite                                                 | Knight Piesold 2006-2007                             | <0.1         | 4.0        | 2              | 10          | 2.2          | 0.08           | 0.03       | 0.25         | 29        | 660         | 38        | 43         | 0.06           | 70        | 1.8         | 360            | 5.0        |
| 07ARD17<br>07ARD19               | MR1-05-57<br>MR1-05-60   | Amphibolite                                                 | Knight Piesold 2006-2007                             | <0.1         | 4.3        | <2             | 14<br>14    | 1.6          | 0.04           | 0.28       | 0.10         | 22<br>42  | 230         | 22<br>6.0 | 38         | 0.03           | 33        | 5.8<br>8.4  | 1,100<br>1,600 | 1.9        |
| 07ARD19<br>07ARD27               | MR1-05-62                | Amphibolite Amphibolite                                     | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | <0.1         | 8.4<br>6.2 | 2<br><b>25</b> | 52          | 1.3<br>0.7   | 0.25           | 0.20       | 0.24         | 26        | 590<br>79   | 120       | 17<br>22   | 0.11           | 16<br>16  | 5.6         | 5,100          | 3.4<br>4.3 |
| 07ARD28                          | MR1-05-62                | Amphibolite                                                 | Knight Piesold 2006-2007                             | <0.1         | 8.3        | 2              | 350         | 4.0          | 0.26           | 0.23       | 0.13         | 61        | 370         | 82        | 10         | 0.80           | 36        | 11          | 2,900          | 2.8        |
| MRARD10-038                      | MR1-08-160               | Amphibolite                                                 | AMEC 2010                                            | <0.1         | 5.5        | 0.8            | 2.2         | 1.7          | <0.09          | 0.14       | <0.2         | 29        | 930         | 2.9       | 15         | 0.017          | 39        | 5.9         | 1000           | 1.1        |
| MRARD10-039                      | MR1-08-160               | Amphibolite                                                 | AMEC 2010                                            | <0.1         | 8.9        | 12             | 5.8         | 3.4          | <0.09          | 0.021      | <0.2         | 53        | 48          | 46        | 13         | 0.08           | 330       | 4           | 620            | 74         |
| MRARD10-091                      | MR1-08-143               | Amphibolite                                                 | AMEC 2010                                            | <0.1         | 3.8        | <0.5           | 5.7         | 3.2          | < 0.09         | 0.021      | <0.2         | 22        | 61          | 0.9       | 7.1        | 0.15           | 18        | 3.4         | 320            | 0.5        |
| MRARD10-108                      | MR1-08-150               | Amphibolite                                                 | AMEC 2010                                            | <0.1         | 5.9        | <0.5           | 0.90        | 2.2          | 0.19           | 0.49       | <0.2         | 24        | 390         | 6.4       | 15         | 0.018          | 29        | 5.9         | 490            | 0.3        |
| MRARD10-131                      | MR1-08-160               | Amphibolite                                                 | AMEC 2010                                            | <0.1         | 0.71       | 27             | 1.6         | 0.44         | <0.09          | 0.18       | <0.2         | 10.0      | 40          | 31        | 0.69       | 0.019          | 5         | 2           | 32000          | 56         |
| ARD21                            | MR1-05-77                | Amphibolite/Gneiss                                          | Knight Piesold 2006-2007                             | 1            | 6.8        | <6             | 200         | 0.34         | <3             | 0.18       | 0.7          | 56        | 200         | 90        | 7          | 1.60           | 17        | 2.7         | 1,100          | 3          |
| 07ARD38                          | MR1-05-67                | Amphibolite/Gneiss                                          | Knight Piesold 2006-2007                             | <0.1         | 8.5        | <2             | 1800        | 1.1          | 0.30           | 0.71       | 0.18         | 32        | 330         | 43        | 9          | 3.30           | 32        | 5.5         | 1,100          | 22         |
| 07ARD07                          | MR1-05-76                | Amphibolite/Schist/Volcanic Tuff                            | Knight Piesold 2006-2007                             | <0.1         | 6.2        | 5              | 130         | 2.8          | 0.04           | 0.09       | 0.13         | 31        | 540         | 24        | 14         | 1.20           | 36        | 7.5         | 1,700          | 14         |
| 07ARD30<br>ARD10                 | MR1-05-51<br>MR1-05-77   | Amphibolite/Schist/Volcanic Tuff  Amphibolite/Volcanic Tuff | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | <0.1         | 7.9<br>8.0 | 4<br><6        | 280<br>30   | 1.6<br>0.77  | 0.24<br><3     | 0.19       | 0.40         | 32<br>56  | 210<br>360  | 73<br>62  | 14<br>12   | 0.83           | 25<br>130 | 7.3<br>4.2  | 2,400<br>680   | 11<br><2   |
| ARD10<br>ARD11                   | MR1-05-77                | Amphibolite/Volcanic Tuff                                   | Knight Piesold 2006-2007                             |              | 7.3        | <6             | 12          | 19           | <3             | 0.03       | 0.5          | 43        | 250         | 16        | 6          | 0.81           | 27        | 7.4         | 680            | 4          |
| 07ARD13                          | MR1-06-84                | Amphibolite/Volcanic Tuff /Greywacke                        | Knight Piesold 2006-2007                             | <0.1         | 7.4        | 11             | 14          | 0.8          | 0.63           | 0.16       | 0.73         | 40        | 450         | 43        | 20         | 0.05           | 18        | 6.6         | 900            | 8.2        |
| 07ARD12                          | MR1-05-46                | Amphibolite/Volcanic Tuff /Greywacke                        | Knight Piesold 2006-2007                             | <0.1         | 7.2        | 4              | 72          | 2.7          | 0.33           | 0.09       | 0.35         | 25        | 310         | 83        | 16         | 0.61           | 24        | 7.6         | 2,000          | 8.4        |
| 07ARD37                          | MR1-04-36                | Amphibolite/Volcanic Tuff /Schist /Gneiss                   | Knight Piesold 2006-2007                             | <0.1         | 7.4        | <2             | 130         | 0.9          | 3.1            | 4.30       | 0.15         | 48        | 240         | 78        | 9          | 1.30           | 17        | 4.9         | 1,800          | 18         |
| 07ARD25                          | MR1-05-52                | Amphibolte/Schist                                           | Knight Piesold 2006-2007                             | <0.1         | 10.0       | 45             | 67          | 8.0          | 0.36           | 0.05       | 0.67         | 65        | 1000        | 52        | 23         | 0.01           | 5         | 7.2         | 2,900          | 7.4        |
| 07ARD29                          | MR1-05-59                | Amphibolte/Schist                                           | Knight Piesold 2006-2007                             | <0.1         | 7.4        | 7              | 50          | 1.8          | 0.10           | 0.19       | 0.31         | 43        | 420         | 41        | 13         | 0.55           | 17        | 7.2         | 2,500          | 4.6        |
| MRARD10-010                      | MR1-09-176               | Gneiss                                                      | AMEC 2010                                            | <0.1         | 5.9        | 1.7            | 150         | 0.73         | <0.09          | 0.11       | <0.2         | 31        | 310         | 47        | 8.2        | 0.95           | 8         | 3.2         | 2000           | 0.6        |
| MRARD10-115                      | MR1-07-121               | Gneiss                                                      | AMEC 2010                                            | <0.1         | 4.8        | <0.5           | 470         | 1.9          | <0.09          | 0.2        | <0.2         | 7.8       | 75          | 2.8       | 4.2        | 2.3            | 24        | 3.1         | 300            | 1.1        |
| MRARD10-040                      | MR1-08-158               | Gneiss/Amphibolite                                          | AMEC 2010                                            | 0.2          | 4.5        | <0.5           | 300         | 0.37         | <0.09          | 1.8        | <0.2         | 23        | 220         | 57        | 4.1        | 1.8            | 20        | 2.6         | 680            | 1.1        |
| ARD 13<br>MRARD10-090            | MR1-05-59<br>MR1-08-144  | Greywacke<br>Psammite                                       | Knight Piesold 2006-2007<br>AMEC 2010                | <0.1         | 5.9<br>3.5 | 7<br><0.5      | 340<br>190  | 1.6          | <3<br><0.09    | 0.08       | 0.8<br><0.2  | 21<br>5.7 | 54<br>53    | 1.2       | 7<br>3.6   | 1.40<br>2.2    | <3<br>13  | 3.7<br>1.9  | 2,000<br>310   | 44         |
| ARD 18                           | MR1-05-47                | Schist                                                      | Knight Piesold 2006-2007                             | <0.1         | 9.0        | <6             | 15          | 3.9          | <3             | 0.39       | 1            | 37        | 1300        | 8.7       | 12         | 0.14           | <3        | 1.9         | 8,500          | <2         |
| ARD19                            | MR1-05-47                | Schist                                                      | Knight Piesold 2006-2007                             |              | 11.0       | 11             | 340         | 3.1          | <3             | 0.15       | 1.1          | 45        | 1700        | 130       | 12         | 1.50           | 6         | 9.6         | 6,700          | 2          |
| UCS14                            | MR1-04-38                | Schist                                                      | Knight Piesold 2006-2007                             |              | 10.0       | <6             | 7           | 0.061        | <34            | 0.08       | <4           | 57        | 330         | 220       | 19         | 0.02           | <3        | 9.5         | 2,000          | <2         |
| 07ARD06                          | MR1-04-39                | Schist                                                      | Knight Piesold 2006-2007                             | <0.1         | 3.3        | 17             | 60          | 1.0          | 0.50           | 0.24       | 0.10         | 24        | 130         | 40        | 25         | 0.77           | 21        | 5.5         | 1,900          | 9.7        |
| 07ARD16                          | MR1-05-58                | Schist                                                      | Knight Piesold 2006-2007                             | <0.1         | 5.2        | 3              | 130         | 2.3          | 0.19           | 0.27       | 0.14         | 52        | 740         | 60        | 17         | 0.58           | 36        | 7.6         | 1,900          | 3.0        |
| 07ARD33                          | MR1-06-105               | Schist                                                      | Knight Piesold 2006-2007                             | <0.1         | 10.0       | 4              | 1300        | 1.9          | 0.14           | 0.21       | 0.35         | 84        | 83          | 37        | 13         | 4.70           | 23        | 3.3         | 720            | 64         |
| 07ARD34                          | MR1-06-94                | Schist                                                      | Knight Piesold 2006-2007                             | <0.1         | 8.7        | 2              | 49          | 2.4          | 0.15           | 0.07       | 0.39         | 61        | 1000        | 66        | 26         | 0.14           | 7         | 6.7         | 2,200          | 34         |
| MRARD10-001                      | MR1-09-171               | Schist                                                      | AMEC 2010                                            | <0.1         | 5.6        | 63             | 9.4         | 2.9          | 0.37           | 0.069      | <0.2         | 82        | 1450        | 99        | 17         | 0.09           | 30        | 5.4         | 1300           | 5.4        |
| MRARD10-002<br>MRARD10-003       | MR1-09-179<br>MR1-09-179 | Schist Schist                                               | AMEC 2010<br>AMEC 2010                               | <0.1         | 3.2<br>5.5 | 4.2<br>5.4     | 15<br>6.8   | 0.73<br>0.58 | 0.13<br>0.14   | 0.13       | <0.2<br><0.2 | 22<br>30  | 310<br>44   | 11<br>47  | 10<br>17   | 0.018          | 12<br>13  | 2.3<br>4.9  | 140<br>1200    | 2.1        |
| MRARD10-003                      | MR1-09-179               | Schist                                                      | AMEC 2010                                            | <0.1         | 3.9        | 2.4            | 9.7         | 1.1          | 0.14           | 0.08       | <0.2         | 30        | 300         | 23        | 9.1        | 0.0063         | 160       | 3.7         | 320            | 0.6        |
| MRARD10-007                      | MR1-09-177               | Schist                                                      | AMEC 2010                                            | <0.1         | 8.4        | 6.8            | 17          | 2.7          | 0.40           | 0.074      | <0.2         | 29        | 21          | 44        | 16         | 0.00           | 35        | 8.4         | 1000           | 1.5        |
| MRARD10-008                      | MR1-09-176               | Schist                                                      | AMEC 2010                                            | <0.1         | 8.1        | 8.0            | 15          | 0.83         | <0.09          | 0.14       | <0.2         | 68        | 770         | 44        | 10         | 0.044          | 16        | 7.2         | 3300           | 0.3        |
| MRARD10-009                      | MR1-09-176               | Schist                                                      | AMEC 2010                                            | <0.1         | 5.6        | 2.1            | 88          | 0.41         | <0.09          | 0.1        | <0.2         | 48        | 320         | 130       | 9.3        | 0.12           | 14        | 6           | 2400           | 0.4        |
| MRARD10-013                      | MR1-09-176               | Schist                                                      | AMEC 2010                                            | <0.1         | 7.2        | 0.6            | 12          | 5.0          | <0.09          | 0.4        | <0.2         | 27        | 380         | 129       | 13         | 0.044          | 40        | 6.7         | 1800           | <0.1       |
| MRARD10-014                      | MR1-09-176               | Schist                                                      | AMEC 2010                                            | <0.1         | 7.7        | 0.6            | 39          | 2.8          | <0.09          | 0.17       | <0.2         | 14        | 91          | 15        | 13         | 0.48           | 38        | 7           | 1800           | 8.0        |
| MRARD10-016                      | MR1-09-172               | Schist                                                      | AMEC 2010                                            | <0.1         | 1.6        | 2.9            | 2.4         | 0.52         | <0.09          | 0.082      | <0.2         | 6.9       | 17          | 1.5       | 9.3        | 0.047          | 14        | 2.9         | 460            | 1.2        |
| MRARD10-017                      | MR1-09-172               | Schist                                                      | AMEC 2010                                            | <0.1         | 4.6        | 0.6            | 20          | 2.1          | <0.09          | 0.31       | <0.2         | 17        | 280         | 24        | 7          | 0.08           | 38        | 4.1         | 480            | 0.9        |
| MRARD10-020                      | MR1-09-172               | Schist                                                      | AMEC 2010                                            | <0.1         | 6.6        | 8.4            | 5.2         | 0.64         | 0.59           | 0.27       | <0.2         | 9.7       | 58          | 21        | 25         | 0.02           | 14        | 6.3         | 1900           | 1.4        |
| MRARD10-022<br>MRARD10-024       | MR1-09-176               | Schist<br>Schiet                                            | AMEC 2010                                            | <0.1         | 8.5        | <0.5           | 830         | 4.4          | <0.09          | 0.059      | <0.2         | 15        | 80          | 1.2       | 19         | 0.73           | 30        | 6.5         | 1300           | 4.5        |
| MRARD10-024<br>MRARD10-026       | MR1-09-173<br>MR1-09-173 | Schist<br>Schist                                            | AMEC 2010<br>AMEC 2010                               | <0.1<br><0.1 | 1.6<br>6.1 | <0.5<br>11     | 22<br>28    | 0.53         | <0.09<br><0.09 | 0.026      | <0.2         | 1.7<br>29 | 150<br>350  | 5.1<br>33 | 3.1<br>13  | 0.043<br>0.035 | 9         | 0.81<br>4.7 | 260<br>580     | 3.3<br>2.0 |
| MRARD10-026<br>MRARD10-027       | MR1-09-173               | Schist                                                      | AMEC 2010                                            | <0.1         | 3.6        | 3.6            | 860         | 1.4          | <0.09          | 0.27       | <0.2         | 17        | 220         | 44        | 6.7        | 0.035          | 12        | 2.6         | 770            | 1.2        |
| MRARD10-027                      | MR1-09-169               | Schist                                                      | AMEC 2010                                            | <0.1         | 2.6        | 16             | 450         | 0.86         | <0.09          | 0.16       | <0.2         | 17        | 170         | 24        | 7          | 0.46           | 6         | 1.4         | 320            | 1.3        |
| MRARD10-032                      | MR1-09-169               | Schist                                                      | AMEC 2010                                            | <0.1         | 5          | 0.7            | 140         | 1.1          | <0.09          | 0.11       | <0.2         | 27        | 180         | 47        | 6.1        | 1.7            | 21        | 2.7         | 830            | 0.8        |
|                                  |                          |                                                             |                                                      |              |            |                |             | •            |                |            |              |           |             |           |            |                |           |             |                |            |





Table B-3. Total Metal Concentrations by Lithology (continued)

| Sample ID                       | Borehole ID              | Rock Type                                                      | Sampling Program                                     | Na              | Ni         | Pb         | Sb          | Se         | Sn         | Sr          | Ti            | TI           | U           | ٧           | Zn        |
|---------------------------------|--------------------------|----------------------------------------------------------------|------------------------------------------------------|-----------------|------------|------------|-------------|------------|------------|-------------|---------------|--------------|-------------|-------------|-----------|
| _                               |                          | •••                                                            | Sampling Program                                     | %               | μg/g       | μg/g       | μg/g        | μg/g       | μg/g       | μg/g        | %             | μg/g         | μg/g        | μg/g        | μg/g      |
| Average Concen                  |                          |                                                                |                                                      | 1.8             | 130        | 6          | 0.2         | 0.05       | 1.5        | 465         | 1.38          | 2.1          | 1           | 250         | 105       |
| Ten Times Avera                 |                          |                                                                |                                                      | 18              | 1300       | 60         | 2           | 0.5        | 15         | 4650        | 13.8          | 21           | 10          | 2500        | 1050      |
| Average Concen                  | •                        | ,                                                              |                                                      | 2.355<br>23.55  | 84<br>840  | 14<br>140  | 0.2         | 0.05       | 2.3        | 370<br>3700 | 0.565<br>5.65 | 0.85<br>8.5  | 2.7         | 120<br>1200 | 70<br>700 |
| Ten Times Avera<br>Hanging Wall | ige Concentra            | tion (Crustal)                                                 |                                                      | 23.33           | 040        | 140        |             | 0.5        | 23         | 3700        | 5.65          | 0.5          | 21          | 1200        | 700       |
| ARD12                           | MR1-05-47                | Amphibolite                                                    | Knight Piesold 2006-2007                             |                 | 210        | 11         | <25         | <6         | <6         | 4.5         | 0.13          | <5           | <75         | 330         | 95        |
| ARD14                           | MR1-05-59                | Amphibolite                                                    | Knight Piesold 2006-2007                             |                 | 370        | 230        | <25         | <6         | <6         | 5.2         | 0.13          | <5           | <75         | 69          | 260       |
| ARD15                           | MR1-05-51                | Amphibolite                                                    | Knight Piesold 2006-2007                             |                 | 180        | 68         | <25         | <6         | <6         | 140         | 0.53          | <5           | <75         | 270         | 490       |
| ARD16                           | MR1-05-51                | Amphibolite                                                    | Knight Piesold 2006-2007                             |                 | 130        | 9          | <25         | <6         | <6         | 10          | 0.45          | <5           | <75         | 320         | 120       |
| ARD17                           | MR1-05-51                | Amphibolite                                                    | Knight Piesold 2006-2007                             |                 | 240        | 12         | <25         | <6         | <6         | 5.8         | 0.13          | <5           | <75         | 460         | 100       |
| ARD23                           | MR1-05-76                | Amphibolite                                                    | Knight Piesold 2006-2007                             |                 | 13         | 25         | <25         | <6         | <6         | 35          | 0.09          | <5           | <75         | 15          | 39        |
| ARD24                           | MR1-05-76                | Amphibolite                                                    | Knight Piesold 2006-2007                             |                 | 12         | 17         | <25         | <6         | <6         | 28          | 0.09          | <5           | <75         | 13          | 15        |
| 07ARD10                         | MR1-05-53                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 0.014<br>0.0085 | 140<br>170 | 15<br>4.0  | 3.2<br>0.4  | 2<br><1    | 1.7<br>0.3 | 18<br>4.6   | 0.028         | 0.2<br><0.02 | 1.8<br>3.4  | 54<br>120   | 39<br>46  |
| 07ARD11<br>07ARD17              | MR1-05-46<br>MR1-05-57   | Amphibolite Amphibolite                                        | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 0.0065          | 120        | 2.9        | 0.4         | 2          | 1.4        | 15          | 0.3<br>0.053  | 0.02         | 4.0         | 45          | 39        |
| 07ARD17<br>07ARD19              | MR1-05-60                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 0.0072          | 330        | 6.2        | 0.3         | <1         | 2.0        | 23          | 0.033         | 0.1          | 2.7         | 130         | 78        |
| 07ARD15                         | MR1-05-62                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 0.010           | 94         | 4.4        | <0.1        | <1         | 3.7        | 9.3         | 0.06          | 0.2          | 2.6         | 59          | 63        |
| 07ARD28                         | MR1-05-62                | Amphibolite                                                    | Knight Piesold 2006-2007                             | 0.051           | 380        | 5.1        | 3.4         | 2          | 3.2        | 15          | 0.16          | 0.3          | 2.5         | 200         | 71        |
| MRARD10-038                     | MR1-08-160               | Amphibolite                                                    | AMEC 2010                                            | 0.014           | 540        | 1.1        | <0.8        | <0.7       | 0.7        | 4.9         | 0.012         | <0.02        | 0.94        | 51          | 31        |
| MRARD10-039                     | MR1-08-160               | Amphibolite                                                    | AMEC 2010                                            | 0.042           | 180        | 2.6        | <0.8        | <0.7       | 1.8        | 1.7         | 0.088         | 0.23         | 1.8         | 110         | 106       |
| MRARD10-091                     | MR1-08-143               | Amphibolite                                                    | AMEC 2010                                            | 0.018           | 40         | 1.3        | <0.8        | <0.7       | <0.5       | 0.69        | 0.099         | 0.05         | 4.3         | 65          | 25        |
| MRARD10-108                     | MR1-08-150               | Amphibolite                                                    | AMEC 2010                                            | 0.0097          | 140        | 4.0        | 1.4         | <0.7       | 2.9        | 6.4         | 0.065         | 0.05         | 3.4         | 78          | 36        |
| MRARD10-131<br>ARD21            | MR1-08-160<br>MR1-05-77  | Amphibolite                                                    | AMEC 2010<br>Knight Piesold 2006-2007                | 0.0069          | 25<br>210  | 1.2<br>8   | <0.8<br><25 | <0.7<br><6 | 1.2        | 1.9<br>16   | 0.019         | 0.03<br><5   | 0.39<br><75 | 24<br>370   | 13<br>41  |
| 07ARD38                         | MR1-05-67                | Amphibolite/Gneiss Amphibolite/Gneiss                          | Knight Piesold 2006-2007                             | 0.23            | 150        | 5.3        | <0.1        | <1         | 1.6        | 42          | 0.42          | 1.0          | 2.3         | 100         | 73        |
| 07ARD07                         | MR1-05-76                | Amphibolite/Schist/Volcanic Tuff                               | Knight Piesold 2006-2007                             | 0.028           | 260        | 5.5        | <0.1        | <1         | 1.0        | 10.0        | 0.094         | 0.3          | 0.79        | 54          | 39        |
| 07ARD30                         | MR1-05-51                | Amphibolite/Schist/Volcanic Tuff                               | Knight Piesold 2006-2007                             | 0.026           | 140        | 5.7        | 2.3         | 2          | 4.8        | 9.6         | 0.15          | 0.4          | 1.4         | 130         | 110       |
| ARD10                           | MR1-05-77                | Amphibolite/Volcanic Tuff                                      | Knight Piesold 2006-2007                             |                 | 290        | 18         | <25         | <6         | <6         | 5.2         | 0.078         | <5           | <75         | 200         | 109       |
| ARD11                           | MR1-05-77                | Amphibolite/Volcanic Tuff                                      | Knight Piesold 2006-2007                             |                 | 130        | 14         | <25         | <6         | <6         | 1.7         | 0.1           | <5           | <75         | 83          | 90        |
| 07ARD13                         | MR1-06-84                | Amphibolite/Volcanic Tuff /Greywacke                           | Knight Piesold 2006-2007                             | 0.0056          | 330        | 6.9        | 1.2         | 2          | 1.7        | 13          | 0.053         | 0.2          | 2.5         | 100         | 210       |
| 07ARD12                         | MR1-05-46                | Amphibolite/Volcanic Tuff /Greywacke                           | Knight Piesold 2006-2007                             | 0.025           | 140        | 7.3        | 1.9         | <1         | 2.6        | 42          | 0.16          | 0.3          | 4.7         | 89          | 52        |
| 07ARD37<br>07ARD25              | MR1-04-36<br>MR1-05-52   | Amphibolite/Volcanic Tuff /Schist /Gneiss<br>Amphibolte/Schist | Knight Piesold 2006-2007                             | 1 0 0000        | 160<br>390 | 5.3<br>5.9 | 0.3<br><0.1 | <1<br>2    | 1.1        | 61<br>5.0   | 0.28          | 0.4          | 0.91        | 200<br>130  | 71<br>340 |
| 07ARD25<br>07ARD29              | MR1-05-52                | Amphibolte/Schist                                              | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 0.0086<br>0.012 | 260        | 2.7        | 2.4         | 3          | 2.2        | 4.7         | 0.08          | 0.2          | 3.5<br>1.7  | 150         | 93        |
| MRARD10-010                     | MR1-09-176               | Gneiss                                                         | AMEC 2010                                            | 0.012           | 170        | 2.7        | <0.8        | <0.7       | 1.9        | 6.1         | 0.17          | 0.28         | 0.86        | 120         | 46        |
| MRARD10-115                     | MR1-07-121               | Gneiss                                                         | AMEC 2010                                            | 0.063           | 7.3        | 4.7        | <0.8        | <0.7       | 1.7        | 6.8         | 0.18          | 0.68         | 1.5         | 38          | 41        |
| MRARD10-040                     | MR1-08-158               | Gneiss/Amphibolite                                             | AMEC 2010                                            | 0.048           | 110        | 3.7        | <0.8        | <0.7       | 1.0        | 12          | 0.22          | 0.28         | 0.90        | 110         | 46        |
| ARD 13                          | MR1-05-59                | Greywacke                                                      | Knight Piesold 2006-2007                             |                 | 48         | 29         | <25         | <6         | <6         | 12          | 0.2           | <5           | <75         | 57          | 60        |
| MRARD10-090                     | MR1-08-144               | Psammite                                                       | AMEC 2010                                            | 0.058           | 7.3        | 14         | <0.8        | <0.7       | 1.2        | 5.5         | 0.095         | 0.97         | 5.8         | 7           | 32        |
| ARD 18                          | MR1-05-47                | Schist                                                         | Knight Piesold 2006-2007                             |                 | 140        | 16         | <25         | <6         | <6         | 4.5         | 0.2           | <5           | <75         | 150         | 180       |
| ARD19                           | MR1-05-47                | Schist                                                         | Knight Piesold 2006-2007                             |                 | 180        | 25         | <25         | <6         | <6         | 9.9         | 0.23          | <5           | <75         | 190         | 190       |
| UCS14<br>07ARD06                | MR1-04-38<br>MR1-04-39   | Schist<br>Schist                                               | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 0.028           | 240<br>71  | 15<br>8.0  | 9           | <20<br><1  | <6<br>1.7  | 1.5<br>45   | 0.18          | <20<br>0.2   | <100<br>2.1 | 310<br>47   | 100<br>41 |
| 07ARD06<br>07ARD16              | MR1-04-39                | Schist                                                         | Knight Piesold 2006-2007                             | 0.028           | 660        | 5.6        | 0.6         | <1         | 1.7        | 24          | 0.092         | 0.2          | 1.3         | 94          | 52        |
| 07ARD10<br>07ARD33              | MR1-06-105               | Schist                                                         | Knight Piesold 2006-2007                             | 0.038           | 240        | 27         | 1.1         | 2          | 4.7        | 14          | 0.13          | 1.7          | 8.6         | 170         | 34        |
| 07ARD34                         | MR1-06-94                | Schist                                                         | Knight Piesold 2006-2007                             | 0.0042          | 360        | 14         | 0.8         | 2          | 1.0        | 4.1         | 0.23          | 0.2          | 5.0         | 180         | 98        |
| MRARD10-001                     | MR1-09-171               | Schist                                                         | AMEC 2010                                            | 0.022           | 490        | 2.9        | <0.8        | <0.7       | <0.5       | 4.2         | 0.0091        | 0.08         | 0.55        | 52          | 21        |
| MRARD10-002                     | MR1-09-179               | Schist                                                         | AMEC 2010                                            | 0.0078          | 160        | 2.9        | <0.8        | <0.7       | 1.9        | 4.2         | 0.033         | 0.04         | 1.9         | 82          | 34        |
| MRARD10-003                     | MR1-09-179               | Schist                                                         | AMEC 2010                                            | 0.0075          | 120        | 2.5        | <0.8        | <0.7       | 2.9        | 9.2         | 0.044         | <0.02        | 1.5         | 15          | 44        |
| MRARD10-006                     | MR1-09-177               | Schist                                                         | AMEC 2010                                            | 0.015           | 82         | 2.0        | <0.8        | <0.7       | 1.3        | 3.9         | 0.021         | <0.02        | 0.84        | 47          | 18        |
| MRARD10-007                     | MR1-09-177               | Schist                                                         | AMEC 2010                                            | 0.011           | 140        | 3.4        | <0.8        | <0.7       | 1.1        | 4.7         | 0.091         | 0.05         | 1.0         | 43          | 57        |
| MRARD10-008<br>MRARD10-009      | MR1-09-176<br>MR1-09-176 | Schiet<br>Schiet                                               | AMEC 2010<br>AMEC 2010                               | 0.01            | 470<br>230 | 1.6<br>5.5 | <0.8        | <0.7       | 2.1<br>0.8 | 2.0<br>3.2  | 0.043         | <0.02        | 0.24        | 140<br>120  | 71<br>103 |
| MRARD10-009<br>MRARD10-013      | MR1-09-176<br>MR1-09-176 | Schist Schist                                                  | AMEC 2010<br>AMEC 2010                               | 0.0093          | 200        | 5.5        | <0.8        | <0.7       | 12         | 3.2         | 0.0033        | <0.02        | 2.1         | 87          | 26        |
| MRARD10-013                     | MR1-09-176               | Schist                                                         | AMEC 2010                                            | 0.013           | 55         | 4.6        | <0.8        | <0.7       | 4.6        | 6.8         | 0.042         | 0.12         | 1.3         | 53          | 53        |
| MRARD10-016                     | MR1-09-172               | Schist                                                         | AMEC 2010                                            | 0.016           | 22         | 1.7        | <0.8        | <0.7       | 0.5        | 3.4         | 0.0085        | <0.02        | 0.80        | 3           | 12        |
| MRARD10-017                     | MR1-09-172               | Schist                                                         | AMEC 2010                                            | 0.021           | 110        | 5.1        | <0.8        | <0.7       | <0.5       | 21          | 0.018         | 0.03         | 1.9         | 65          | 21        |
| MRARD10-020                     | MR1-09-172               | Schist                                                         | AMEC 2010                                            | 0.0099          | 25         | 5.6        | <0.8        | <0.7       | 1.6        | 9.5         | 0.014         | 0.02         | 1.3         | 70          | 43        |
| MRARD10-022                     | MR1-09-176               | Schist                                                         | AMEC 2010                                            | 0.016           | 56         | 11         | <0.8        | <0.7       | 1.2        | 4.3         | 0.083         | 0.54         | 2.6         | 75          | 81        |
| MRARD10-024                     | MR1-09-173               | Schist                                                         | AMEC 2010                                            | 0.018           | 18         | 3.3        | <0.8        | <0.7       | 2.2        | 2.4         | 0.019         | 0.02         | 2.8         | 2           | 9.6       |
| MRARD10-026                     | MR1-09-173               | Schist                                                         | AMEC 2010                                            | 0.0093          | 110        | 3.7        | <0.8        | <0.7       | 1.2        | 7.8         | 0.024         | 0.03         | 0.50        | 170         | 51        |
| MRARD10-027                     | MR1-09-169               | Schist                                                         | AMEC 2010                                            | 0.024           | 63         | 4.3        | <0.8        | <0.7       | 0.9        | 3.4         | 0.078         | 0.16         | 0.47        | 170         | 23        |
| MRARD10-028                     | MR1-09-169               | Schist<br>Schiet                                               | AMEC 2010                                            | 0.022           | 69         | 8.9        | <0.8        | <0.7       | <0.5       | 7.2         | 0.065         | 0.19         | 0.71        | 71          | 18        |
| MRARD10-032                     | MR1-09-169               | Schist                                                         | AMEC 2010                                            | 0.044           | 92         | 8.3        | <0.8        | < 0.7      | 1.5        | 2.9         | 0.19          | 0.41         | 0.48        | 110         | 55        |





Table B-3. Total Metal Concentrations by Lithology (continued)

| Sample ID                      | Borehole ID              | Rock Type                                            | Sampling Program                                     | Hg           | Al          | As           | Ва           | Be            | Bi             | Ca            | Cd           | Со        | Cr          | Cu         | Fe          | K              | Li       | Mg          | Mn             | Мо         |
|--------------------------------|--------------------------|------------------------------------------------------|------------------------------------------------------|--------------|-------------|--------------|--------------|---------------|----------------|---------------|--------------|-----------|-------------|------------|-------------|----------------|----------|-------------|----------------|------------|
|                                |                          | • • • • • • • • • • • • • • • • • • • •              | Sampling Frogram                                     | μg/g         | %           | μg/g         | μg/g         | μg/g          | μg/g           | %             | μg/g         | μg/g      | μg/g        | μg/g       | %           | %              | μg/g     | %           | μg/g           | μg/g       |
| Average Concen                 |                          |                                                      |                                                      | 0.09         | 7.8         | 2            | 330          | 1             | 0.007          | 7.6           | 0.22         | 48        | 170         | 87         | 8.6         | 0.83           | 17       | 4.6         | 1500           | 1.5        |
| Ten Times Avera                |                          |                                                      |                                                      | 0.9          | 78          | 20           | 3300         | 10            | 0.07           | 76            | 2.2          | 480       | 1700        | 870        | 86          | 8.3            | 170      | 46          | 15000          | 15         |
| Average Concen                 |                          |                                                      |                                                      | 0.085        | 8.23        | 1.8          | 425          | 3             | 0.0085         | 4.15          | 0.15         | 25        | 102         | 60         | 5.63        | 2.085          | 20       | 2.33        | 950            | 1.2        |
| Ten Times Avera<br>MRARD10-036 |                          | Schist                                               | AMEC 2010                                            | 0.85<br><0.1 | 82.3<br>4.6 | 18<br>0.7    | 4250<br>0.71 | 30<br>1.3     | 0.085<br><0.09 | 41.5<br>0.1   | 1.5<br><0.2  | 250<br>32 | 1020<br>470 | 600<br>30  | 56.3<br>7.4 | 20.85<br>0.022 | 200<br>9 | 23.3<br>4.1 | 9500<br>490    | 12         |
| MRARD10-036                    |                          | Schist                                               | AMEC 2010                                            | <0.1         | 6.1         | <0.5         | 3.1          | 0.27          | <0.09          | 0.29          | <0.2         | 37        | 520         | 123        | 5.9         | 0.022          | 5        | 5.5         | 390            | 0.3        |
| MRARD10-047                    | MR1-08-163               | Schist                                               | AMEC 2010                                            | <0.1         | 5.6         | <0.5         | 3.9          | 0.49          | <0.09          | 0.21          | <0.2         | 25        | 500         | 2.1        | 6.4         | 0.016          | 2        | 4.4         | 540            | 0.6        |
| MRARD10-048                    |                          | Schist                                               | AMEC 2010                                            | <0.1         | 7.4         | <0.5         | 1.3          | 1.6           | <0.09          | 0.011         | <0.2         | 41        | 240         | 48         | 17          | 0.015          | 3        | 5.4         | 700            | 0.7        |
| MRARD10-050                    | MR1-08-152               | Schist                                               | AMEC 2010                                            | <0.1         | 3.4         | 1.5          | 8.6          | 0.33          | 0.38           | 0.34          | <0.2         | 19        | 170         | 6.9        | 32.8        | 0.031          | 9        | 2.1         | 460            | 2.4        |
| MRARD10-052                    | MR1-08-158               | Schist                                               | AMEC 2010                                            | <0.1         | 1.8         | <0.5         | 25           | 0.06          | 0.12           | 1             | <0.2         | 27        | 110         | 92         | 3.1         | 0.16           | 13       | 0.88        | 960            | 0.9        |
| MRARD10-056                    | MR1-08-152               | Schist                                               | AMEC 2010                                            | <0.1         | 10          | <0.5         | 5.6          | 0.68          | 0.18           | 0.18          | <0.2         | 33        | 180         | 0.6        | 14          | 0.023          | 7        | 6.2         | 730            | 9.2        |
| MRARD10-060                    | MR1-08-157               | Schist                                               | AMEC 2010                                            | <0.1         | 6.2         | 1.5          | 410          | 0.76          | 0.14           | 0.064         | <0.2         | 91        | 950         | 131        | 8.7         | 0.29           | 26       | 4           | 590            | 0.5        |
| MRARD10-061<br>MRARD10-062     | MR1-08-159<br>MR1-08-155 | Schist<br>Schist                                     | AMEC 2010<br>AMEC 2010                               | <0.1<br><0.1 | 7.1<br>8.7  | <0.5<br>0.7  | 6.6<br>2.9   | 0.87          | <0.09          | 0.52<br>0.65  | <0.2<br><0.2 | 25<br>25  | 580<br>530  | 2.9<br>4.8 | 9.1<br>13.5 | 0.013          | 6        | 5.5<br>5.8  | 560<br>570     | 0.3        |
| MRARD10-062                    | MR1-08-157               | Schist                                               | AMEC 2010                                            | <0.1         | 8.5         | 2.2          | 0.58         | 0.89          | 3.3            | 0.03          | <0.2         | 27        | 110         | 2.1        | 14.8        | 0.0047         | 24       | 9.3         | 190            | 7.0        |
| MRARD10-063                    | MR1-08-155               | Schist                                               | AMEC 2010                                            | <0.1         | 7.8         | <0.5         | 5.8          | 1.2           | 0.24           | 0.12          | <0.2         | 31        | 170         | 7.4        | 15          | 0.049          | 39       | 6.3         | 310            | 3.8        |
| MRARD10-065                    | MR1-08-150               | Schist                                               | AMEC 2010                                            | <0.1         | 1.4         | 1.4          | 8.0          | 1.8           | <0.09          | 0.18          | <0.2         | 29        | 33          | 0.5        | 50.3        | 0.09           | 18       | 1.3         | 590            | 0.3        |
| MRARD10-068                    | MR1-08-140               | Schist                                               | AMEC 2010                                            | <0.1         | 9.2         | 7.5          | 1.8          | 0.60          | 0.33           | 0.0046        | <0.2         | 19        | 49          | 30         | 19          | 0.0069         | <2       | 6           | 860            | 6.1        |
| MRARD10-070                    | MR1-08-140               | Schist                                               | AMEC 2010                                            | <0.1         | 2.2         | 1.9          | 3.5          | 1.2           | <0.09          | 0.12          | <0.2         | 12        | 48          | 2.1        | 34          | 0.011          | 18       | 2           | 490            | 1.2        |
| MRARD10-071                    | MR1-08-160               | Schist                                               | AMEC 2010                                            | <0.1         | 6.8         | 1.3          | 0.08         | 3.1           | <0.09          | 0.16          | <0.2         | 39        | 920         | 37         | 16          | 0.011          | 47       | 7.6         | 1900           | 1.5        |
| MRARD10-072                    | MR1-08-149               | Schist                                               | AMEC 2010                                            | <0.1         | 7.1         | <0.5         | <0.01        | 2.4           | <0.09          | 0.14          | <0.2         | 37        | 1260        | 15         | 17          | 0.0082         | 47       | 8.2         | 1500           | 1.0        |
| MRARD10-073<br>MRARD10-075     | MR1-08-155<br>MR1-08-148 | Schist<br>Schist                                     | AMEC 2010<br>AMEC 2010                               | <0.1<br><0.1 | 7.1<br>4    | <0.5<br><0.5 | 3.7<br>19    | 1.8           | <0.09          | 0.45<br>0.026 | <0.2<br><0.2 | 30<br>16  | 280<br>52   | 1.5<br>0.8 | 16<br>7.4   | 0.027<br>0.16  | 67<br>26 | 5.4<br>3.6  | 550<br>510     | 0.5        |
| MRARD10-078                    | MR1-08-148               | Schist                                               | AMEC 2010                                            | <0.1         | 6.4         | <0.5         | 530          | 0.31          | <0.09          | 0.026         | <0.2         | 45        | 240         | 97         | 7.4         | 1.6            | 49       | 3.8         | 340            | 0.3        |
| MRARD10-086                    | MR1-08-147               | Schist                                               | AMEC 2010                                            | <0.1         | 6.5         | <0.5         | 330          | 1.2           | <0.09          | 0.09          | <0.2         | 65        | 650         | 26         | 7.1         | 0.82           | 38       | 5.1         | 290            | 1.2        |
| MRARD10-092                    | MR1-08-142               | Schist                                               | AMEC 2010                                            | <0.1         | 6.4         | <0.5         | <0.01        | 1.7           | 0.29           | 0.4           | <0.2         | 37        | 130         | 2.3        | 15          | 0.0077         | 19       | 5.8         | 460            | 4.8        |
| MRARD10-093                    | MR1-08-145               | Schist                                               | AMEC 2010                                            | <0.1         | 3.8         | 3.2          | 25           | 3.0           | <0.09          | 0.046         | <0.2         | 73        | 350         | 9.6        | 20          | 0.021          | 150      | 2.3         | 4000           | 2.3        |
| MRARD10-094                    | MR1-08-147               | Schist                                               | AMEC 2010                                            | <0.1         | 6.9         | <0.5         | 0.30         | 0.57          | 0.17           | 0.34          | <0.2         | 48        | 1090        | 1.8        | 8.2         | 0.0057         | 3        | 6.2         | 430            | 1.0        |
| MRARD10-097                    | MR1-08-143               | Schist                                               | AMEC 2010                                            | <0.1         | 1.8         | <0.5         | 16           | 0.15          | <0.09          | 1.1           | <0.2         | 17        | 110         | 98         | 1.7         | 0.24           | 24       | 1           | 360            | 0.4        |
| MRARD10-101<br>MRARD10-102     | MR1-08-153               | Schist                                               | AMEC 2010                                            | <0.1         | 6.2         | <0.5         | 4.1          | 0.78<br>0.49  | <0.09          | 0.31          | <0.2         | 27        | 320         | 54         | 7.1         | 0.045          | 15       | 5.2         | 710<br>1000    | 0.3        |
| MRARD10-102<br>MRARD10-103     | MR1-08-143<br>MR1-08-141 | Schist<br>Schist                                     | AMEC 2010<br>AMEC 2010                               | <0.1<br><0.1 | 4<br>10     | <0.5<br>0.7  | 130<br>15    | 5.0           | 0.43<br><0.09  | 0.026         | <0.2         | 17<br>15  | 79<br>68    | 48<br>1.9  | 6.8<br>13   | 0.88<br>0.12   | 38<br>13 | 2.7<br>8.9  | 5900           | 3.8<br>2.5 |
| MRARD10-103                    | MR1-08-141               | Schist                                               | AMEC 2010                                            | <0.1         | 3.4         | 0.7          | 2.9          | 0.93          | 0.68           | 0.19          | <0.2         | 16        | 71          | 6.5        | 13          | 0.12           | 47       | 2.7         | 1200           | 5.7        |
| MRARD10-109                    | MR1-08-141               | Schist                                               | AMEC 2010                                            | <0.1         | 6.7         | 8.1          | 0.43         | 0.87          | 0.32           | 0.29          | <0.2         | 20        | 430         | 78         | 20          | 0.0082         | 36       | 7.4         | 1000           | 0.8        |
| MRARD10-111                    | MR1-08-144               | Schist                                               | AMEC 2010                                            | <0.1         | 8.2         | <0.5         | 1300         | 1.1           | <0.09          | 0.021         | <0.2         | 42        | 170         | 75         | 8.8         | 1.5            | 21       | 5.1         | 510            | 0.2        |
| MRARD10-114                    | MR1-07-121               | Schist                                               | AMEC 2010                                            | <0.1         | 1.7         | <0.5         | 96           | 0.47          | <0.09          | 0.22          | <0.2         | 7.6       | 130         | 51         | 2.6         | 0.74           | 8        | 0.8         | 180            | 12         |
| MRARD10-116                    | MR1-07-121               | Schist                                               | AMEC 2010                                            | <0.1         | 7.3         | <0.5         | 510          | 1.1           | 0.19           | 1.2           | <0.2         | 55        | 74          | 33         | 15.5        | 3.1            | 17       | 1.9         | 140            | 18         |
| MRARD10-117                    | MR1-08-156               | Schist                                               | AMEC 2010                                            | <0.1         | 4.5         | <0.5         | 100          | 0.12          | <0.09          | 0.12          | <0.2         | 40        | 230         | 141        | 5.6         | 1.5            | 35       | 2.5         | 220            | 0.6        |
| MRARD10-118                    | MR1-07-121               | Schist                                               | AMEC 2010                                            | <0.1         | 8.1         | <0.5         | 4.2          | 1.1           | <0.09          | 0.015         | <0.2         | 43        | 730         | 8.0        | 13.2        | 0.0073         | <2       | 7           | 940            | 0.2        |
| MRARD10-119<br>MRARD10-120     | MR1-08-156<br>MR1-08-148 | Schist<br>Schist                                     | AMEC 2010<br>AMEC 2010                               | <0.1<br><0.1 | 6.6<br>0.74 | <0.5<br>1.8  | 690<br>7.3   | 0.40          | <0.09          | 0.41          | <0.2<br><0.2 | 48<br>14  | 250<br>38   | 145<br>4.5 | 7.7<br>60.7 | 1.9<br>0.014   | 64<br>6  | 3.7<br>0.87 | 370<br>460     | 0.2<br>3.6 |
| MRARD10-120                    | MR1-08-156               | Schist                                               | AMEC 2010                                            | <0.1         | 5           | 0.6          | 0.64         | 0.57          | 0.16           | 0.033         | <0.2         | 25        | 200         | 80         | 6.8         | 0.0065         | 5        | 4.9         | 540            | 4.5        |
| MRARD10-124                    | MR1-08-143               | Schist                                               | AMEC 2010                                            | <0.1         | 3.8         | <0.5         | 18           | 2.4           | <0.09          | 0.026         | <0.2         | 7.8       | 150         | 0.9        | 7.4         | 0.33           | 52       | 2.8         | 420            | 0.1        |
| MRARD10-126                    | MR1-08-145               | Schist                                               | AMEC 2010                                            | <0.1         | 8.4         | 6.9          | 31           | 3.5           | 0.17           | 0.081         | <0.2         | 44        | 130         | 29         | 21.6        | 0.06           | 370      | 4.6         | 630            | 0.8        |
| MRARD10-127                    | MR1-08-143               | Schist                                               | AMEC 2010                                            | <0.1         | 11.6        | <0.5         | 560          | 1.3           | < 0.09         | 0.25          | <0.2         | 67        | 580         | 94         | 14.5        | 1              | 32       | 11          | 850            | 0.8        |
| MRARD10-128                    | MR1-08-141               | Schist                                               | AMEC 2010                                            | <0.1         | 4.1         | 3.5          | 5.9          | 1.7           | 0.10           | 0.13          | <0.2         | 26        | 600         | 29         | 9.8         | 0.024          | 32       | 3.5         | 600            | 1.2        |
| MRARD10-129                    | MR1-08-154               | Schist                                               | AMEC 2010                                            | <0.1         | 2.9         | 154          | 2.1          | 0.86          | 1.0            | 0.035         | <0.2         | 72        | 170         | 207        | 22.5        | 0.01           | 70       | 0.28        | 570            | 177        |
| MRARD10-130                    | MR1-08-153               | Schist                                               | AMEC 2010                                            | <0.1         | 2.5         | 1.2          | 56           | 0.12          | <0.09          | 0.74          | <0.2         | 21        | 120         | 165        | 3.3         | 0.5            | 39       | 2.4         | 590            | 1.7        |
| 07ARD21<br>07ARD20             | MR1-06-90<br>MR1-05-60   | Schist /Amphibolite/Volcanic Tuff Schist/Amphibolite | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | <0.1         | 6.5<br>7.4  | <2<br>6      | 9<br>130     | 1.6<br>2.6    | 0.47<br>0.45   | 0.04          | 0.13         | 63<br>30  | 120<br>140  | 21<br>8.8  | 29<br>18    | 0.28<br>0.84   | 50<br>17 | 6.7<br>6.9  | 570<br>3,200   | 62<br>7.1  |
| 07ARD20<br>07ARD15             | MR1-05-68                | Schist/Volcanic Tuff                                 | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | <0.1         | 7.4         | 5            | 140          | 0.5           | 0.45           | 0.04          | 0.22         | 54        | 170         | 120        | 18          | 0.84           | 45       | 4.9         | 1,100          | 6.8        |
| 07ARD13                        | MR1-06-96                | Schist/Volcanic Tuff                                 | Knight Piesold 2006-2007                             | <0.1         | 9.4         | 19           | 32           | 2.3           | 1.1            | 0.04          | 0.22         | 110       | 630         | 51         | 18          | 0.32           | 18       | 8.3         | 2,100          | 9.7        |
| 07ARD40                        | MR1-05-54                | Schist/Volcanic Tuff /Amphibolite                    | Knight Piesold 2006-2007                             | <0.1         | 6.8         | 2            | 150          | 1.5           | 0.26           | 0.12          | 0.19         | 39        | 420         | 74         | 14          | 0.74           | 17       | 6.2         | 3,400          | 16         |
| 07ARD14                        | MR1-06-84                | Schist/Volcanic Tuff/Gneiss                          | Knight Piesold 2006-2007                             | <0.1         | 5.6         | 4            | 300          | 1.7           | 0.17           | 0.10          | 0.26         | 19        | 290         | 43         | 8           | 1.43           | 27       | 2.6         | 890            | 16         |
| ARD20                          | MR1-05-59                | Volcanic Tuff                                        | Knight Piesold 2006-2007                             |              | 8.7         | <6           | 5            | 0.5           | 3              | 0.19          | 2.1          | 48        | 440         | 170        | 20          | 0.02           | 6        | 8.2         | 3,000          | <2         |
| ARD22                          | MR1-05-77                | Volcanic Tuff                                        | Knight Piesold 2006-2007                             |              | 8.7         | <6           | 90           | 0.1           | <3             | 3.70          | 1.1          | 55        | 230         | 120        | 9           | 0.78           | 18       | 6.1         | 2,000          | 3          |
| ARD25                          | MR1-06-86                | Volcanic Tuff                                        | Knight Piesold 2006-2007                             |              | 7.4         | <6           | 120          | 0.087         | <2             | 4.70          | 1.5          | 59        | 190         | 110        | 10          | 2.20           | 38       | 5           | 3,800          | <2         |
| ARD26<br>UCS2                  | MR1-06-86<br>MR1-06-81   | Volcanic Tuff                                        | Knight Piesold 2006-2007                             |              | 6.2         | <6<br><6     | 130          | 0.11          | <2<br><34      | 10.00         | 1.3          | 51<br>72  | 210         | 140        | 8           | 0.73<br>0.02   | <3       | 3.5         | 3,900<br>1,500 | <2         |
| UCS2<br>UCS15                  | MR1-06-81<br>MR1-05-77   | Volcanic Tuff Volcanic Tuff                          | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | -            | 9.6<br>8.2  | <6           | 15<br>85     | 0.85<br>0.059 | <34            | 0.73<br>9.70  | <4<br><4     | 53        | 1500<br>270 | 8.9<br>110 | 19<br>10    | 0.02           | <3<br>4  | 8.9<br>3.3  | 3,700          | <2<br><2   |
| UCS16                          | MR1-06-86                | Volcanic Tuff                                        | Knight Piesold 2006-2007                             |              | 8.7         | <6           | 180          | 0.039         | <34            | 0.48          | <4           | 64        | 300         | 300        | 12          | 1.10           | 58       | 4.9         | 2,000          | <2         |
| UCS17                          | MR1-06-86                | Volcanic Tuff                                        | Knight Piesold 2006-2007                             |              | 9.9         | <6           | 270          | 0.14          | <34            | 5.50          | <4           | 46        | 410         | 140        | 4           | 2.80           | 7        | 3.6         | 2,300          | <2         |
| UCS18                          | MR1-06-86                | Volcanic Tuff                                        | Knight Piesold 2006-2007                             |              | 9.8         | <6           | 180          | 0.16          | <34            | 9.10          | <4           | 46        | 460         | 140        | 9           | 0.95           | 4        | 4           | 3,900          | <2         |
| UCS19                          | MR1-06-86                | Volcanic Tuff                                        | Knight Piesold 2006-2007                             |              | 8.4         | <6           | 98           | 0.13          | <2             | 6.90          | 1.3          | 65        | 270         | 140        | 9           | 0.84           | 3        | 3.8         | 3,400          | 2          |





Table B-3. Total Metal Concentrations by Lithology (continued)

| Sample ID                         | Borehole ID              | Rock Type                                               | Sampling Program                                     | Na          | Ni         | Pb          | Sb         | Se           | Sn          | Sr          | Ti            | TI         | U            | ٧           | Zn         |
|-----------------------------------|--------------------------|---------------------------------------------------------|------------------------------------------------------|-------------|------------|-------------|------------|--------------|-------------|-------------|---------------|------------|--------------|-------------|------------|
|                                   |                          |                                                         | pgg                                                  | %           | μg/g       | μg/g        | μg/g       | μg/g         | μg/g        | μg/g        | %             | μg/g       | μg/g         | μg/g        | μg/g       |
| Average Concen                    |                          |                                                         |                                                      | 1.8         | 130        | 6           | 0.2        | 0.05         | 1.5         | 465         | 1.38          | 2.1        | 1            | 250         | 105        |
| Ten Times Avera<br>Average Concen |                          |                                                         |                                                      | 18<br>2.355 | 1300<br>84 | 60<br>14    | 0.2        | 0.5          | 15<br>2.3   | 4650<br>370 | 13.8<br>0.565 | 21<br>0.85 | 10<br>2.7    | 2500<br>120 | 1050<br>70 |
| Ten Times Avera                   |                          |                                                         |                                                      | 23.55       | 840        | 140         | 2          | 0.05         | 2.3         | 3700        | 5.65          | 8.5        | 2.7          | 1200        | 700        |
| MRARD10-036                       | MR1-08-161               | Schist                                                  | AMEC 2010                                            | 0.0086      | 160        | 1.4         | <0.8       | <0.7         | <0.5        | 6.1         | 0.028         | <0.02      | 1.2          | 66          | 48         |
| MRARD10-041                       | MR1-08-158               | Schist                                                  | AMEC 2010                                            | 0.0082      | 220        | 1.7         | <0.8       | <0.7         | <0.5        | 2.4         | 0.020         | <0.02      | 0.72         | 130         | 50         |
| MRARD10-047                       | MR1-08-163               | Schist                                                  | AMEC 2010                                            | 0.0064      | 190        | 1.9         | <0.8       | <0.7         | 0.9         | 3.3         | 0.023         | <0.02      | 1.2          | 91          | 61         |
| MRARD10-048                       | MR1-08-163               | Schist                                                  | AMEC 2010                                            | 0.0063      | 130        | 2.3         | <0.8       | <0.7         | <0.5        | 1.2         | 0.024         | <0.02      | 2.5          | 190         | 42         |
| MRARD10-050                       | MR1-08-152               | Schist                                                  | AMEC 2010                                            | 0.014       | 410        | 1.4         | 1.4        | <0.7         | 2.2         | 7.5         | 0.012         | 0.52       | 3.2          | 97          | 38         |
| MRARD10-052                       | MR1-08-158               | Schist                                                  | AMEC 2010                                            | 0.129       | 88         | 3.3         | <0.8       | <0.7         | 1.0         | 11          | 0.087         | 0.27       | 0.29         | 79          | 80         |
| MRARD10-056                       | MR1-08-152               | Schist                                                  | AMEC 2010                                            | 0.0071      | 88         | 0.76        | <0.8       | <0.7         | 0.6         | 3.4         | 0.013         | 0.08       | 0.46         | 190         | 63         |
| MRARD10-060                       | MR1-08-157               | Schist                                                  | AMEC 2010                                            | 0.017       | 1040       | 1.9         | <0.8       | <0.7         | 0.9         | 1.3         | 0.025         | 0.11       | 0.24         | 100         | 47         |
| MRARD10-061                       | MR1-08-159               | Schist                                                  | AMEC 2010                                            | 0.0095      | 150        | 1.7         | <0.8       | <0.7         | <0.5        | 12          | 0.027         | 0.03       | 1.2          | 120         | 45         |
| MRARD10-062<br>MRARD10-063        | MR1-08-155               | Schist<br>Schiot                                        | AMEC 2010                                            | 0.0071      | 93<br>210  | 2.4<br>9.0  | <0.8       | <0.7         | <0.5<br>0.6 | 15<br>4.4   | 0.02          | 0.08       | 1.2<br>0.79  | 140<br>99   | 37<br>44   |
| MRARD10-063<br>MRARD10-064        | MR1-08-157<br>MR1-08-155 | Schist<br>Schist                                        | AMEC 2010<br>AMEC 2010                               | 0.01        | 130        | 2.1         | <0.8       | <0.7<br><0.7 | 1.4         | 15          | 0.0037        | 1.5        | 1.00         | 62          | 99         |
| MRARD10-065                       | MR1-08-150               | Schist                                                  | AMEC 2010                                            | 0.0087      | 35         | 1.8         | <0.8       | <0.7         | <0.5        | 6.4         | 0.0076        | 0.04       | 8.2          | 16          | 18         |
| MRARD10-068                       | MR1-08-140               | Schist                                                  | AMEC 2010                                            | 0.0078      | 53         | 3.9         | <0.8       | <0.7         | <0.5        | 0.59        | 0.03          | 0.03       | 3.4          | 45          | 81         |
| MRARD10-070                       | MR1-08-140               | Schist                                                  | AMEC 2010                                            | 0.0084      | 47         | 1.5         | <0.8       | <0.7         | <0.5        | 3.4         | 0.027         | 0.03       | 0.52         | 28          | 15         |
| MRARD10-071                       | MR1-08-160               | Schist                                                  | AMEC 2010                                            | 0.013       | 550        | 1.7         | <0.8       | <0.7         | 1.0         | 4.7         | 0.0068        | <0.02      | 0.85         | 62          | 45         |
| MRARD10-072                       | MR1-08-149               | Schist                                                  | AMEC 2010                                            | 0.015       | 430        | 1.4         | <0.8       | <0.7         | 1.3         | 4.7         | 0.0068        | < 0.02     | 1.8          | 64          | 50         |
| MRARD10-073                       | MR1-08-155               | Schist                                                  | AMEC 2010                                            | 0.03        | 120        | 2.6         | <0.8       | <0.7         | 1.8         | 11          | 0.049         | 0.02       | 1.6          | 92          | 58         |
| MRARD10-075                       | MR1-08-148               | Schist                                                  | AMEC 2010                                            | 0.013       | 27         | 1.4         | <0.8       | <0.7         | <0.5        | 4.3         | 0.078         | 0.04       | 3.9          | 51          | 19         |
| MRARD10-078                       | MR1-08-153               | Schist                                                  | AMEC 2010                                            | 0.028       | 120        | 1.8         | <0.8       | <0.7         | 0.8         | 6.3         | 0.086         | 0.23       | 0.028        | 190         | 52         |
| MRARD10-086                       | MR1-08-147               | Schist                                                  | AMEC 2010                                            | 0.027       | 530        | 5.1         | <0.8       | <0.7         | 1.0         | 5.3         | 0.045         | 0.10       | 0.026        | 130         | 30         |
| MRARD10-092<br>MRARD10-093        | MR1-08-142               | Schist<br>Schist                                        | AMEC 2010                                            | 0.011       | 45<br>160  | 2.1         | <0.8       | <0.7         | 0.5         | 9.2         | 0.031         | 0.04       | 1.4<br>2.2   | 94<br>66    | 30<br>48   |
| MRARD10-093                       | MR1-08-145<br>MR1-08-147 | Schist                                                  | AMEC 2010<br>AMEC 2010                               | 0.0094      | 240        | 2.3         | <0.8       | <0.7         | 1.1<br>0.9  | 3.9         | 0.029         | 0.12       | 0.88         | 120         | 50         |
| MRARD10-094                       | MR1-08-143               | Schist                                                  | AMEC 2010                                            | 0.0094      | 48         | 5.8         | <0.8       | <0.7         | 1.3         | 15          | 0.016         | 0.02       | 0.10         | 75          | 29         |
| MRARD10-101                       | MR1-08-153               | Schist                                                  | AMEC 2010                                            | 0.012       | 94         | 2.7         | <0.8       | <0.7         | 1.2         | 3.5         | 0.011         | <0.02      | 1.8          | 98          | 53         |
| MRARD10-102                       | MR1-08-143               | Schist                                                  | AMEC 2010                                            | 0.05        | 38         | 3.0         | <0.8       | <0.7         | 2.3         | 4.7         | 0.17          | 0.25       | 2.5          | 48          | 77         |
| MRARD10-103                       | MR1-08-141               | Schist                                                  | AMEC 2010                                            | 0.011       | 49         | 1.7         | <0.8       | <0.7         | 2.5         | 3.4         | 0.14          | 0.04       | 1.5          | 77          | 72         |
| MRARD10-106                       | MR1-08-148               | Schist                                                  | AMEC 2010                                            | 0.014       | 39         | 1.4         | 14         | 1.0          | 4.8         | 2.5         | 0.053         | 0.54       | 2.1          | 44          | 111        |
| MRARD10-109                       | MR1-08-141               | Schist                                                  | AMEC 2010                                            | 0.016       | 170        | 2.3         | <0.8       | <0.7         | 1.0         | 5.1         | 0.007         | 0.06       | 1.2          | 73          | 57         |
| MRARD10-111                       | MR1-08-144               | Schist                                                  | AMEC 2010                                            | 0.034       | 170        | 7.2         | <0.8       | <0.7         | 1.2         | 1.9         | 0.11          | 0.35       | 0.058        | 180         | 60         |
| MRARD10-114                       | MR1-07-121               | Schist                                                  | AMEC 2010                                            | 0.024       | 16         | 3.7         | <0.8       | <0.7         | 0.6         | 4.7         | 0.041         | 0.27       | 2.1          | 7           | 18         |
| MRARD10-116                       | MR1-07-121               | Schist                                                  | AMEC 2010                                            | 0.055       | 70         | 15          | <0.8       | <0.7         | 1.9         | 35          | 0.17          | 1.6        | 2.6          | 28          | 26         |
| MRARD10-117<br>MRARD10-118        | MR1-08-156<br>MR1-07-121 | Schist                                                  | AMEC 2010                                            | 0.039       | 120<br>290 | 0.91<br>2.2 | <0.8       | <0.7<br><0.7 | 0.7<br><0.5 | 11          | 0.12          | 0.20       | 0.047<br>2.4 | 210<br>110  | 23<br>96   |
| MRARD10-118<br>MRARD10-119        | MR1-07-121               | Schist<br>Schist                                        | AMEC 2010<br>AMEC 2010                               | 0.0089      | 140        | 1.7         | <0.8       | <0.7         | 2.1         | 1.8         | 0.023         | 0.05       | 0.022        | 180         | 60         |
| MRARD10-119                       | MR1-08-148               | Schist                                                  | AMEC 2010                                            | 0.0071      | 20         | 1.5         | <0.8       | 2.6          | <0.5        | 1.1         | 0.038         | <0.02      | 0.022        | 28          | 9.9        |
| MRARD10-122                       | MR1-08-156               | Schist                                                  | AMEC 2010                                            | 0.007       | 55         | 2.5         | 14         | 1.4          | 4.6         | 12          | 0.017         | 0.50       | 2.2          | 58          | 44         |
| MRARD10-124                       | MR1-08-143               | Schist                                                  | AMEC 2010                                            | 0.029       | 26         | 2.5         | <0.8       | <0.7         | <0.5        | 5.6         | 0.069         | 0.07       | 5.6          | 48          | 13         |
| MRARD10-126                       | MR1-08-145               | Schist                                                  | AMEC 2010                                            | 0.017       | 200        | 5.7         | <0.8       | <0.7         | 1.5         | 7.9         | 0.075         | 0.04       | 3.9          | 55          | 143        |
| MRARD10-127                       | MR1-08-143               | Schist                                                  | AMEC 2010                                            | 0.035       | 310        | 3.6         | <0.8       | <0.7         | 1.0         | 3.6         | 0.1           | 0.19       | 0.89         | 150         | 73         |
| MRARD10-128                       | MR1-08-141               | Schist                                                  | AMEC 2010                                            | 0.017       | 320        | 3.6         | <0.8       | <0.7         | 0.9         | 11          | 0.015         | < 0.02     | 1.2          | 64          | 20         |
| MRARD10-129                       | MR1-08-154               | Schist                                                  | AMEC 2010                                            | 0.025       | 170        | 29          | 1.0        | 8.9          | 1.9         | 3.5         | 0.031         | 0.67       | 1.4          | 120         | 8.8        |
| MRARD10-130                       | MR1-08-153               | Schist                                                  | AMEC 2010                                            | 0.025       | 59         | 1.0         | <0.8       | <0.7         | 2.0         | 12          | 0.12          | 0.09       | 0.031        | 140         | 16         |
| 07ARD21<br>07ARD20                | MR1-06-90                | Schist /Amphibolite/Volcanic Tuff<br>Schist/Amphibolite | Knight Piesold 2006-2007                             | 0.015       | 180        | 12          | 0.3        | 1            | 2.0         | 1.9<br>11   | 0.047<br>0.17 | 0.2        | 2.4          | 85          | 94<br>78   |
| 07ARD20<br>07ARD15                | MR1-05-60<br>MR1-05-68   | Schist/Volcanic Tuff                                    | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 0.024       | 100<br>130 | 8.5<br>5.7  | <0.1       | 1<br><1      | 1.2         | 11<br>5.6   | 0.17          | 0.3        | 3.4<br>0.18  | 84<br>340   | 130        |
| 07ARD15<br>07ARD39                | MR1-06-96                | Schist/Volcanic Tuff                                    | Knight Piesold 2006-2007                             | 0.019       | 430        | 5.4         | 0.6        | <1           | 3.0         | 4.1         | 0.26          | 0.4        | 3.6          | 140         | 250        |
| 07ARD40                           | MR1-05-54                | Schist/Volcanic Tuff /Amphibolite                       | Knight Piesold 2006-2007                             | 0.099       | 210        | 4.6         | <0.1       | <1           | 2.1         | 18          | 0.14          | 0.3        | 1.7          | 120         | 81         |
| 07ARD14                           | MR1-06-84                | Schist/Volcanic Tuff/Gneiss                             | Knight Piesold 2006-2007                             | 0.05        | 58         | 7.8         | 1.0        | 2            | 2.4         | 9.1         | 0.14          | 0.6        | 6.5          | 47          | 80         |
| ARD20                             | MR1-05-59                | Volcanic Tuff                                           | Knight Piesold 2006-2007                             |             | 170        | 12          | <25        | <6           | <6          | 8.6         | 0.052         | <5         | <75          | 250         | 180        |
| ARD22                             | MR1-05-77                | Volcanic Tuff                                           | Knight Piesold 2006-2007                             |             | 140        | 10          | <25        | <6           | <6          | 74          | 0.32          | <5         | <75          | 300         | 150        |
| ARD25                             | MR1-06-86                | Volcanic Tuff                                           | Knight Piesold 2006-2007                             |             | 130        | 5           | <2         | <10          | <6          | 66          | 0.49          | <5         | <75          | 330         | 100        |
| ARD26                             | MR1-06-86                | Volcanic Tuff                                           | Knight Piesold 2006-2007                             |             | 120        | 5           | <2         | <10          | <6          | 80          | 0.5           | <5         | <75          | 290         | 93         |
| UCS2                              | MR1-06-81                | Volcanic Tuff                                           | Knight Piesold 2006-2007                             |             | 450        | 14          | 21         | <20          | <6          | 20          | 0.16          | <20        | <100         | 290         | 110        |
| UCS15                             | MR1-05-77                | Volcanic Tuff                                           | Knight Piesold 2006-2007                             | 1           | 170        | 8           | 6          | <20          | <6          | 72          | 0.57          | <20        | <100         | 340         | 130        |
| UCS16                             | MR1-06-86                | Volcanic Tuff                                           | Knight Piesold 2006-2007                             |             | 180        | 9           | 8          | <20          | <6          | 20          | 0.29          | <20        | <100         | 360         | 99         |
| UCS17<br>UCS18                    | MR1-06-86<br>MR1-06-86   | Volcanic Tuff<br>Volcanic Tuff                          | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 1           | 170<br>190 | 6<br>10     | 5<br>10    | <20<br><20   | <6<br><6    | 92<br>100   | 0.59<br>0.45  | <20<br><20 | <100<br><100 | 340<br>350  | 75<br>250  |
| UCS19                             |                          | Volcanic Tuff                                           | Knight Piesold 2006-2007                             |             | 150        | 6           | <2         | <10          | <6          | 60          | 0.45          | <5         | <70          | 350         | 120        |
| 00019                             | 1711 1 1-00-00           | volodino i uli                                          | 1111ght 1 1630ld 2000*2001                           | 1           | 100        | U           | \ <u>_</u> | \ 10         | \0          | 00          | 0.43          | <b>\</b> 0 | 110          | 550         | 120        |





Table B-3. Total Metal Concentrations by Lithology (continued)

|                            | I                        |                                   |                                                      | Hg           | Al          | As           | Ва         | Be           | Bi            | Ca           | Cd           | Co         | Cr         | Cu        | Fe         | K             | Li       | Mg         | Mn             | Мо        |
|----------------------------|--------------------------|-----------------------------------|------------------------------------------------------|--------------|-------------|--------------|------------|--------------|---------------|--------------|--------------|------------|------------|-----------|------------|---------------|----------|------------|----------------|-----------|
| Sample ID                  | Borehole ID              | Rock Type                         | Sampling Program                                     | μg/g         | %           | μg/g         | μg/g       | μg/g         | μg/g          | %            | μg/g         | μg/g       | μg/g       | μg/g      | %          | %             | μg/g     | %          | μg/g           | μg/g      |
| Average Concen             | tration (Basal           | t)*                               | 1                                                    | 0.09         | 7.8         | 2            | 330        | 1            | 0.007         | 7.6          | 0.22         | 48         | 170        | 87        | 8.6        | 0.83          | 17       | 4.6        | 1500           | 1.5       |
| Ten Times Avera            | age Concentra            | tion (Basalt)                     |                                                      | 0.9          | 78          | 20           | 3300       | 10           | 0.07          | 76           | 2.2          | 480        | 1700       | 870       | 86         | 8.3           | 170      | 46         | 15000          | 15        |
| Average Concen             | tration (Conti           | nental Crustal)*                  |                                                      | 0.085        | 8.23        | 1.8          | 425        | 3            | 0.0085        | 4.15         | 0.15         | 25         | 102        | 60        | 5.63       | 2.085         | 20       | 2.33       | 950            | 1.2       |
| Ten Times Avera            | age Concentra            | tion (Crustal)                    |                                                      | 0.85         | 82.3        | 18           | 4250       | 30           | 0.085         | 41.5         | 1.5          | 250        | 1020       | 600       | 56.3       | 20.85         | 200      | 23.3       | 9500           | 12        |
| UCS20                      | MR1-06-86                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 7.7         | <6           | 180        | 0.2          | <34           | 4.40         | <4           | 43         | 240        | 170       | 8          | 2.70          | 64       | 5.4        | 3,200          | <2        |
| UCS21                      | MR1-06-86                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 7.9         | <6           | 150        | 0.11         | <2            | 7.00         | 1.6          | 61         | 230        | 91        | 11         | 1.80          | 41       | 4.6        | 4,400          | <2        |
| UCS25                      | MR1-06-81                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 6.2         | <6           | 150        | 1.4          | <34           | 0.62         | <4           | 45         | 940        | 84        | 9          | 0.93          | 6        | 7.9        | 840            | <2        |
| UCS26                      | MR1-06-81                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 8.4         | <6           | 17         | 0.95         | <2            | 0.64         | 1.8          | 72         | 2100       | 6.4       | 9          | 0.06          | 7        | 13         | 910            | <2        |
| UCS28<br>UCS29             | MR1-06-86<br>MR1-06-86   | Volcanic Tuff<br>Volcanic Tuff    | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |              | 8.2<br>8.7  | <6<br><6     | 160<br>220 | 0.24         | <2<br><34     | 4.70<br>7.20 | 0.9          | 53<br>53   | 260<br>280 | 86<br>180 | 6<br>12    | 2.20<br>1.30  | 32<br>14 | 3.6<br>4.8 | 2,900<br>3,800 | <2<br><2  |
| UCS30                      | MR1-06-86                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 8.4         | <6           | 400        | 0.1          | <2            | 4.90         | 0.8          | 56         | 230        | 88        | 6          | 1.80          | 12       | 3          | 2,100          | <2        |
| UCS31                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 9.1         | <6           | 160        | 0.26         | <2            | 6.50         | 0.8          | 53         | 320        | 190       | 5          | 1.90          | 10       | 3.1        | 1,700          | <2        |
| UCS32                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 9.8         | <6           | 320        | 0.18         | <2            | 5.70         | 0.9          | 73         | 340        | 150       | 6          | 2.40          | 23       | 2.6        | 2,100          | <2        |
| UCS33                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 9.5         | <6           | 170        | 0.13         | <2            | 5.20         | 0.6          | 58         | 290        | 150       | 5          | 1.70          | 13       | 3          | 1,500          | <2        |
| UCS34                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 8.8         | <6           | 410        | 0.2          | <2            | 3.00         | 0.8          | 65         | 240        | 170       | 6          | 4.70          | 37       | 3.7        | 1,600          | <2        |
| UCS35                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 8.3         | <6           | 390        | 0.2          | <2            | 3.00         | 0.6          | 49         | 210        | 67        | 5          | 3.00          | 24       | 3.7        | 2,400          | <2        |
| UCS36                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 9.6         | <6           | 750        | 0.18         | <2            | 2.30         | 0.7          | 61         | 240        | 100       | 5          | 4.10          | 43       | 4.4        | 2,500          | <2        |
| UCS37                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 9.2         | <6           | 840        | 0.29         | <2            | 3.40         | 0.7          | 64         | 290        | 140       | 5          | 3.20          | 37       | 4.8        | 3,000          | <2        |
| UCS38                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 9.7         | <6           | 2500       | 0.33         | <2            | 2.10         | 0.7          | 65         | 300        | 25        | 5          | 3.60          | 22       | 3.6        | 1,600          | <2        |
| UCS39                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 8.1         | <6           | 2000       | 1.9          | <2            | 0.16         | 1.1          | 62         | 340        | 250       | 6          | 1.80          | 28       | 3.4        | 1,900          | <2        |
| UCS40                      | MR1-06-91                | Volcanic Tuff                     | Knight Piesold 2006-2007                             |              | 9.2         | <6           | 2200       | 1.4          | <2            | 0.16         | 1.4          | 81         | 260        | 200       | 8          | 2.50          | 37       | 4.2        | 4,100          | <2        |
| 07ARD08                    | MR1-05-53                | Volcanic Tuff                     | Knight Piesold 2006-2007                             | <0.1         | 6.9         | 30           | 94         | 3.6          | 0.57          | 0.17         | 0.13         | 44         | 86         | 8.1       | 20         | 0.93          | 28       | 9.5        | 1,500          | 17        |
| 07ARD36                    | MR1-06-95                | Volcanic Tuff                     | Knight Piesold 2006-2007                             | <0.1         | 0.0         | 0.0          | 2          | 0.40         | .0.00         | 0.00         | .0.0         | 400        | 500        | 0.0       | 0          | 0.00          |          | 0.0045     | 1              | 0.4       |
| MRARD10-012                | MR1-09-173               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 0.54        | 2.9<br>0.7   | 5.5<br>330 | 0.10<br>0.74 | <0.09         | 1.6          | <0.2         | 100        | 530        | 6.0       | 5.4        | 0.013         | <2       | 13         | 1300           | 0.4       |
| MRARD10-021<br>MRARD10-023 | MR1-09-173<br>MR1-09-173 | Volcanic Tuff<br>Volcanic Tuff    | AMEC 2010<br>AMEC 2010                               | <0.1<br><0.1 | 5.9<br>0.06 | 2.6          | 4.3        | 0.74         | <0.09         | 0.19<br>1.1  | <0.2         | 8.9<br>110 | 55<br>330  | 11        | 6.7<br>5.7 | 2.1<br>0.0039 | 35<br><2 | 2.6<br>14  | 360<br>960     | 13<br>0.5 |
| MRARD10-025                | MR1-09-173               | Volcanic Tuff                     | AMEC 2010<br>AMEC 2010                               | <0.1         | 8.8         | 0.7          | 31         | 2.4          | <0.09         | 0.18         | <0.2         | 85         | 1220       | 40        | 7.9        | 0.0039        | 22       | 8.6        | 1800           | 0.5       |
| MRARD10-023                | MR1-08-158               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 4.4         | <0.5         | 420        | 0.13         | <0.09         | 2.2          | <0.2         | 33         | 260        | 55        | 5.8        | 1.6           | 23       | 2.1        | 1230           | 0.5       |
| MRARD10-051                | MR1-08-158               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 3.1         | 1.0          | 12         | 0.16         | 0.46          | 3.4          | <0.2         | 23         | 75         | 98        | 5.1        | 0.1           | 75       | 3.8        | 950            | 1.8       |
| MRARD10-053                | MR1-08-152               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 1.6         | <0.5         | 9.6        | 0.07         | <0.09         | 1.4          | <0.2         | 13         | 73         | 115       | 1.7        | 0.18          | 14       | 0.73       | 440            | 0.1       |
| MRARD10-054                | MR1-08-158               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 2.6         | <0.5         | 5.6        | 0.06         | < 0.09        | 1.1          | <0.2         | 18         | 150        | 130       | 2.2        | 0.13          | 43       | 2.3        | 630            | 0.2       |
| MRARD10-059                | MR1-08-152               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 2.4         | < 0.5        | 65         | 0.09         | < 0.09        | 0.5          | <0.2         | 23         | 130        | 106       | 2.2        | 0.55          | 21       | 2.2        | 270            | 0.2       |
| MRARD10-066                | MR1-08-150               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 7.1         | <0.5         | 200        | 0.62         | <0.09         | 0.085        | <0.2         | 85         | 1500       | 37        | 12.1       | 0.48          | 25       | 5.5        | 380            | 0.5       |
| MRARD10-067                | MR1-08-150               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 6.1         | <0.5         | 160        | 0.83         | <0.09         | 0.08         | <0.2         | 53         | 1070       | 111       | 6.1        | 1.3           | 31       | 4.5        | 330            | 0.6       |
| MRARD10-069                | MR1-08-141               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 0.43        | 49           | 1.4        | 0.27         | 0.33          | 0.027        | <0.2         | 20         | 66         | 5.2       | 41.7       | 0.009         | 10       | 0.16       | 2560           | 30        |
| MRARD10-076                | MR1-08-157               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 5.6         | <0.5         | 73         | 1.1          | <0.09         | 0.78         | <0.2         | 31         | 190        | 70        | 8.5        | 0.89          | 54       | 5.1        | 800            | 0.6       |
| MRARD10-080                | MR1-08-149               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 1.3         | 59           | 2.8        | 0.48         | 0.49          | 0.34         | <0.2         | 12         | 19         | 8.8       | 21         | 0.041         | 6        | 2.4        | 170            | 39        |
| MRARD10-082                | MR1-08-150               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 0.1         | <0.5         | 0.22       | 0.16         | <0.09         | 1.5          | <0.2         | 1.1        | 93         | 7.7       | 9.6        | 0.011         | <2       | 0.45       | 1190           | 0.5       |
| MRARD10-083                | MR1-08-145               | Volcanic Tuff                     | AMEC 2010<br>AMEC 2010                               | <0.1<br><0.1 | 1.4<br>4.7  | <0.5<br><0.5 | 16<br>74   | 0.15<br>0.19 | <0.09         | 0.86         | <0.2<br><0.2 | 18<br>38   | 89<br>440  | 77<br>65  | 2.1        | 0.24<br>0.72  | 14<br>34 | 1.2<br>3.8 | 680            | 0.3       |
| MRARD10-084<br>MRARD10-087 | MR1-08-147<br>MR1-08-147 | Volcanic Tuff<br>Volcanic Tuff    | AMEC 2010<br>AMEC 2010                               | <0.1         | 2.5         | <0.5         | 41         | 0.19         | 0.18          | 3.1          | <0.2         | 20         | 160        | 69        | 5.6<br>4.3 | 0.72          | 41       | 2.5        | 410<br>1360    | 1.5       |
| MRARD10-087                | MR1-08-147               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 4.8         | <0.5         | 45         | 0.15         | <0.09         | 0.7          | <0.2         | 28         | 150        | 76        | 7.5        | 0.44          | 75       | 4.6        | 1020           | 4.2       |
| MRARD10-089                | MR1-08-147               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 5.3         | <0.5         | 74         | 0.27         | <0.09         | 0.62         | <0.2         | 57         | 290        | 58        | 6.6        | 1             | 47       | 6.7        | 880            | 0.6       |
| MRARD10-098                | MR1-08-153               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 3.3         | <0.5         | 120        | 0.13         | <0.09         | 1.6          | <0.2         | 24         | 120        | 90        | 2.1        | 0.85          | 31       | 1.2        | 590            | 0.2       |
| MRARD10-105                | MR1-08-141               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 1.2         | 9.5          | 3.6        | 0.87         | 0.33          | 0.26         | <0.2         | 5.7        | 25         | 9.4       | 20         | 0.43          | 7        | 2.3        | 1100           | 0.9       |
| MRARD10-112                | MR1-08-156               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 2           | 0.7          | 27         | 0.06         | <0.09         | 3.6          | <0.2         | 13         | 54         | 111       | 2          | 0.3           | 37       | 1.6        | 940            | 0.2       |
| MRARD10-113                | MR1-08-144               | Volcanic Tuff                     | AMEC 2010                                            | <0.1         | 0.001       | 1.7          | 0.51       | 0.08         | 0.13          | 0.0025       | <0.2         | 0.25       | <0.5       | 0.1       | 0.0033     | 0.0001        | <2       | 0.0019     | 2.3            | 0.5       |
| FC No. 2                   |                          | Volcanic Tuff /Amphibolite/Schist | Knight Piesold 2006-2007                             | <0.1         | 8.2         | 18           | 190        | 1.3          | 0.05          | 1.30         | 0.30         | 56         | 210        | 140       | 11         | 1.70          | 47       | 5.9        | 1,900          | 10        |
| 07ARD31                    | MR1-05-54                | Volcanic Tuff /Chert /Schist      | Knight Piesold 2006-2007                             | <0.1         | 3.0         | 140          | 18         | 0.6          | 0.05          | 0.07         | 0.06         | 25         | 720        | 9.4       | 26         | 0.12          | 6        | 3          | 940            | 8.1       |
| 07ARD23                    | MR1-06-103               | Volcanic Tuff /Schist             | Knight Piesold 2006-2007                             | <0.1         | 7.4         | 4            | 110        | 3.1          | 0.22          | 0.08         | 0.25         | 25         | 430        | 8.4       | 14         | 0.63          | 24       | 10         | 2,600          | 6.0       |
| 07ARD24                    | MR1-05-55                | Volcanic Tuff /Schist             | Knight Piesold 2006-2007                             | <0.1         | 6.9         | 4            | 120        | 2.5          | 0.14          | 0.12         | 0.25         | 26         | 580        | 8.0       | 14         | 0.57          | 21       | 9.6        | 2,400          | 5.8       |
| 07ARD26                    | MR1-06-93                | Volcanic Tuff /Schist             | Knight Piesold 2006-2007                             | <0.1         | 8.6         | 24           | 180        | 1.0          | 0.47          | 0.22         | 1.1          | 81         | 1100       | 77        | 26         | 0.04          | 16       | 4.8        | 2,700          | 13        |
| 07ARD35                    | MR!-06-101               | Volcanic Tuff /Schist             | Knight Piesold 2006-2007                             | <0.1         | 9.0         | <2           | 210        | 0.3          | 0.01          | 5.20         | 0.28         | 61         | 220        | 240       | 7          | 0.90          | 18       | 3.3        | 1,400          | 12        |
| 07ARD41                    | MR1-06-95<br>MR1-09-170  | Volcanic Tuff /Schist             | Knight Piesold 2006-2007                             | <0.1<br><0.1 | 7.4<br>3.3  | <2<br>1.2    | 520<br>4.9 | 0.9          | 0.04<br><0.09 | 0.11<br>0.14 | 0.10<br><0.2 | 86<br>45   | 720<br>610 | 79<br>38  | 16<br>8.2  | 2.50<br>0.08  | 52<br>36 | 3.7<br>4   | 1,400<br>830   | 10<br>0.9 |
| MRARD10-029<br>Footwall    | IVIK 1-09-170            | Volcanic Tuff /Schist             | AMEC 2010                                            | <0.1         | 3.3         | 1.2          | 4.9        | 1.3          | <0.09         | 0.14         | <0.2         | 45         | טוט        | აგ        | ŏ.∠        | 0.08          | 30       | 4          | 830            | 0.9       |
| UCS9                       | MR1-06-81                | Amphibolite                       | Knight Piesold 2006-2007                             | 1            | 9           | <6           | 7          | 0.56         | <34           | 0.26         | <4           | 20         | 260        | 3.6       | 19         | 0.012         | <3       | 4.3        | 1800           | <2        |
| MRARD10-107                | MR1-08-154               | Amphibolite                       | AMEC 2010                                            | <0.1         | 5.3         | 1.2          | 31         | 0.70         | <0.09         | 0.20         | <0.2         | 7.2        | 92         | 8.0       | 8.5        | 0.012         | 11       | 3.8        | 510            | 1.7       |
| ARD1                       | MR1-05-72                | Gneiss                            | Knight Piesold 2006-2007                             | -3.1         | 12          | <6           | 2200       | 5.2          | <3            | 0.17         | 0.3          | 7.1        | 12         | 22        | 8.9        | 6.5           | 5        | 1.4        | 440            | 5         |
| ARD2                       | MR1-05-72                | Gneiss                            | Knight Piesold 2006-2007                             |              | 8.5         | <6           | 490        | 1            | <3            | 1.5          | 0.3          | 12         | 8          | 6.3       | 4.4        | 2.5           | 10       | 1.2        | 780            | 4         |
| ARD3                       | MR1-05-72                | Gneiss                            | Knight Piesold 2006-2007                             |              | 5.8         | <6           | 1700       | 4.9          | <3            | 0.14         | 0.2          | 6.4        | 12         | 37        | 3.4        | 3.1           | <3       | 1          | 260            | 8         |
| ARD4                       | MR1-05-73                | Gneiss                            | Knight Piesold 2006-2007                             |              | 7.6         | <6           | 1700       | 0.48         | <3            | 0.26         | 0.2          | 8.3        | 12         | 5.5       | 4.2        | 4.5           | 11       | 1.4        | 550            | <2        |
| ARD5                       | MR1-05-73                | Gneiss                            | Knight Piesold 2006-2007                             |              | 7.4         | <6           | 1500       | 0.56         | <3            | 0.19         | 0.2          | 9.6        | 12         | 14        | 4.8        | 3.6           | 5        | 1.4        | 610            | 2         |
| ARD6                       | MR1-05-73                | Gneiss                            | Knight Piesold 2006-2007                             |              | 5           | <6           | 1200       | 0.52         | <3            | 0.13         | 0.2          | 8.8        | 12         | 10        | 4.3        | 3.3           | 4        | 1.2        | 370            | 3         |





Table B-3. Total Metal Concentrations by Lithology (continued)

| Sample ID                         | Borehole ID                           | Rock Type                                       | Sampling Program                                     | Na          | Ni          | Pb          | Sb         | Se           | Sn                                                                                         | Sr          | Ti            | TI            | U          | ٧           | Zn          |
|-----------------------------------|---------------------------------------|-------------------------------------------------|------------------------------------------------------|-------------|-------------|-------------|------------|--------------|--------------------------------------------------------------------------------------------|-------------|---------------|---------------|------------|-------------|-------------|
|                                   |                                       |                                                 | Camping Frogram                                      | %           | μg/g        | μg/g        | μg/g       | μg/g         | μg/g                                                                                       | μg/g        | %             | μg/g          | μg/g       | μg/g        | μg/g        |
| Average Concen                    |                                       |                                                 |                                                      | 1.8         | 130         | 6           | 0.2        | 0.05         | 1.5                                                                                        | 465         | 1.38          | 2.1           | 1          | 250         | 105         |
| Ten Times Avera                   |                                       |                                                 |                                                      | 18<br>2.355 | 1300<br>84  | 60          | 2          | 0.5          | 15<br>2.3                                                                                  | 4650<br>370 | 13.8          | 21            | 10         | 2500        | 1050<br>70  |
| Average Concen<br>Ten Times Avera |                                       |                                                 |                                                      | 2.355       | 840         | 14<br>140   | 0.2        | 0.05         | 2.3                                                                                        | 3700        | 0.565<br>5.65 | 0.85<br>8.5   | 2.7<br>27  | 120<br>1200 | 700         |
| UCS20                             | MR1-06-86                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             | 23.33       | 130         | 6           | 5          | <20          | <6                                                                                         | 58          | 0.32          | <20           | <100       | 320         | 700         |
| UCS21                             | MR1-06-86                             | Volcanic Tuff                                   | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |             | 150         | 6           | <2         | <10          | <6                                                                                         | 94          | 0.32          | <5            | <70        | 340         | 120         |
| UCS25                             | MR1-06-81                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 420         | 28          | 11         | <20          | <6                                                                                         | 11          | 0.35          | <20           | <100       | 180         | 160         |
| UCS26                             | MR1-06-81                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 870         | 9           | <2         | <10          | <6                                                                                         | 13          | 0.2           | <5            | <70        | 200         | 140         |
| UCS28                             | MR1-06-86                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 140         | 4           | <2         | <10          | <6                                                                                         | 99          | 0.51          | <5            | <70        | 320         | 83          |
| UCS29                             | MR1-06-86                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 160         | 13          | 5          | <20          | <6                                                                                         | 66          | 0.49          | <20           | <100       | 360         | 160         |
| UCS30                             | MR1-06-86                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 160         | 4           | <2         | <10          | <6                                                                                         | 77          | 0.66          | <5            | <70        | 320         | 81          |
| UCS31                             | MR1-06-91                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 140         | 5           | <2         | <10          | <6                                                                                         | 180         | 0.56          | <b>&lt;</b> 5 | <70        | 340         | 70          |
| UCS32                             | MR1-06-91                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 230         | 5           | <2         | <10          | <6                                                                                         | 220         | 0.64          | <5            | <70        | 380         | 70          |
| UCS33                             | MR1-06-91                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 140         | 6           | 3          | <10          | <6                                                                                         | 240         | 0.59          | <5            | <70        | 360         | 82          |
| UCS34                             | MR1-06-91                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 150         | 6           | <2         | <10          | <6                                                                                         | 410         | 0.57          | <5            | <70        | 350         | 110         |
| UCS35                             | MR1-06-91                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 110         | 4           | <2         | <10          | <6                                                                                         | 68          | 0.51          | <5            | <70        | 280         | 97          |
| UCS36                             | MR1-06-91                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             |             | 140         | 4           | <2         | <10          | <6                                                                                         | 84          | 0.67          | <5            | <70        | 350         | 89          |
| UCS37                             | MR1-06-91<br>MR1-06-91                | Volcanic Tuff                                   | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |             | 140<br>160  | 4<br>6      | <2<br><2   | <10<br><10   | <6<br><6                                                                                   | 68<br>92    | 0.5<br>0.53   | <5<br><5      | <70<br><70 | 330<br>350  | 91<br>91    |
| UCS38<br>UCS39                    | MR1-06-91<br>MR1-06-91                | Volcanic Tuff Volcanic Tuff                     | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |             | 160         | 7           | <2<br><2   | <10          | <6                                                                                         | 10          | 0.53          | <5<br><5      | <70<br><70 | 350         | 91<br>64    |
| UCS40                             | MR1-06-91                             | Volcanic Tuff                                   | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |             | 180         | 6           | <2         | <10          | <6                                                                                         | 16          | 0.53          | <5<br><5      | <70        | 410         | 97          |
| 07ARD08                           | MR1-05-53                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             | 0.018       | 180         | 8.6         | 4.2        | 3            | 3.3                                                                                        | 12          | 0.07          | 0.3           | 2.7        | 81          | 73          |
| 07ARD36                           | MR1-06-95                             | Volcanic Tuff                                   | Knight Piesold 2006-2007                             | 0.0015      | 100         | 0.0         | 7.2        |              | 0.0                                                                                        | 12          | 0.0004        | 0.0           | 0          | 2           | -70         |
| MRARD10-012                       | MR1-09-173                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.0074      | 1950        | 4.4         | <0.8       | <0.7         | <0.5                                                                                       | 10          | 0.0089        | <0.02         | 1.3        | 15          | 25          |
| MRARD10-021                       | MR1-09-173                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.082       | 22          | 30          | <0.8       | <0.7         | 4.2                                                                                        | 8.7         | 0.14          | 0.67          | 0.62       | 83          | 47          |
| MRARD10-023                       | MR1-09-173                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.0079      | 2410        | 7.6         | <0.8       | < 0.7        | < 0.5                                                                                      | 22          | 0.0074        | < 0.02        | 0.23       | 8           | 59          |
| MRARD10-025                       | MR1-09-173                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.013       | 760         | 2.6         | <0.8       | < 0.7        | 1.5                                                                                        | 6.6         | 0.062         | 0.12          | 0.20       | 100         | 47          |
| MRARD10-042                       | MR1-08-158                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.137       | 130         | 0.85        | <0.8       | < 0.7        | 1.3                                                                                        | 12          | 0.29          | 0.26          | 0.077      | 180         | 45          |
| MRARD10-051                       | MR1-08-158                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.038       | 48          | 18          | 1.7        | 1.1          | 2.1                                                                                        | 14          | 0.12          | 0.63          | 0.59       | 130         | 38          |
| MRARD10-053                       | MR1-08-152                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.091       | 36          | 1.6         | <0.8       | <0.7         | <0.5                                                                                       | 13          | 0.073         | 0.06          | 0.066      | 43          | 20          |
| MRARD10-054                       | MR1-08-158                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.143       | 53          | 14          | <0.8       | <0.7         | 0.6                                                                                        | 13          | 0.043         | 0.03          | 0.066      | 120         | 39          |
| MRARD10-059                       | MR1-08-152                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.126       | 66          | 0.42        | <0.8       | <0.7         | <0.5                                                                                       | 9.3         | 0.13          | 0.10          | 0.046      | 120         | 23          |
| MRARD10-066                       | MR1-08-150                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.022       | 750<br>610  | 4.1         | <0.8       | <0.7<br><0.7 | 2.4<br>0.6                                                                                 | 6.5         | 0.038         | 0.06<br>0.14  | 0.078      | 120<br>110  | 31<br>19    |
| MRARD10-067<br>MRARD10-069        | MR1-08-150<br>MR1-08-141              | Volcanic Tuff Volcanic Tuff                     | AMEC 2010<br>AMEC 2010                               | 0.027       | 30          | 3.0         | <0.8       | <0.7         | 1.0                                                                                        | 4.5<br>1.8  | 0.079         | 0.14          | 0.020      | 9           | 4.3         |
| MRARD10-069                       | MR1-08-141                            | Volcanic Tuff                                   | AMEC 2010<br>AMEC 2010                               | 0.013       | 110         | 5.2         | <0.8       | <0.7         | <0.5                                                                                       | 7.2         | 0.011         | 0.04          | 0.099      | 150         | 88          |
| MRARD10-070                       | MR1-08-149                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.016       | 46          | 3.3         | 0.9        | <0.7         | 1.1                                                                                        | 8.4         | 0.0053        | 0.15          | 0.63       | 13          | 12          |
| MRARD10-082                       | MR1-08-150                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.016       | 6.8         | 1.5         | <0.8       | <0.7         | 0.7                                                                                        | 4.4         | 0.0059        | <0.02         | 0.085      | 25          | 3.8         |
| MRARD10-083                       | MR1-08-145                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.087       | 61          | 0.63        | <0.8       | <0.7         | <0.5                                                                                       | 8.5         | 0.12          | 0.04          | 0.36       | 59          | 19          |
| MRARD10-084                       | MR1-08-147                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.027       | 230         | 0.45        | <0.8       | <0.7         | 0.7                                                                                        | 3.5         | 0.087         | 0.08          | 0.016      | 150         | 41          |
| MRARD10-087                       | MR1-08-147                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.037       | 62          | 4.7         | <0.8       | <0.7         | <0.5                                                                                       | 10          | 0.061         | 0.10          | 0.070      | 110         | 70          |
| MRARD10-088                       | MR1-08-147                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.038       | 75          | 2.2         | <0.8       | <0.7         | 0.9                                                                                        | 5.1         | 0.1           | 0.08          | 0.23       | 120         | 41          |
| MRARD10-089                       | MR1-08-147                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.021       | 360         | 1.1         | <0.8       | <0.7         | 0.5                                                                                        | 8.8         | 0.089         | 0.16          | 0.074      | 150         | 41          |
| MRARD10-098                       | MR1-08-153                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.214       | 66          | 1.8         | <0.8       | <0.7         | <0.5                                                                                       | 36          | 0.18          | 0.19          | 0.027      | 140         | 26          |
| MRARD10-105                       | MR1-08-141                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.012       | 6.9         | 3.0         | <0.8       | <0.7         | 0.7                                                                                        | 14          | 0.01          | 0.04          | 0.58       | 14          | 9.4         |
| MRARD10-112                       | MR1-08-156                            | Volcanic Tuff                                   | AMEC 2010                                            | 0.051       | 35          | 0.52        | <0.8       | <0.7         | <0.5                                                                                       | 16          | 0.082         | 0.06          | 0.034      | 56          | 20          |
| MRARD10-113<br>FC No. 2           | MR1-08-144                            | Volcanic Tuff Volcanic Tuff /Amphibolite/Schist | AMEC 2010<br>Knight Piesold 2006-2007                | 0.0009      | <0.1<br>210 | 0.40<br>6.8 | <0.8       | <0.7         | <0.5<br>1.2                                                                                | 0.22<br>28  | 0.00001       | 0.27          | 0.22       | 1<br>240    | <0.7<br>120 |
| 07ARD31                           | MR1-05-54                             | Volcanic Tuff /Chert /Schist                    | Knight Piesold 2006-2007 Knight Piesold 2006-2007    | 0.24        | 150         | 3.3         | 1.3        | 4            | 0.9                                                                                        | 5.5         | 0.06          | 0.7           | 0.53       | 39          | 42          |
| 07ARD31<br>07ARD23                | MR1-05-54                             | Volcanic Tuff /Schist                           | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 | 0.032       | 140         | 5.2         | <0.1       | <1           | 3.2                                                                                        | 2.8         | 0.06          | 0.2           | 3.3        | 72          | 86          |
| 07ARD23<br>07ARD24                | MR1-05-55                             | Volcanic Tuff /Schist                           | Knight Piesold 2006-2007                             | 0.0094      | 120         | 3.5         | <0.1       | <1           | 2.5                                                                                        | 5.2         | 0.13          | 0.4           | 2.8        | 91          | 65          |
| 07ARD24<br>07ARD26                | MR1-06-93                             | Volcanic Tuff /Schist                           | Knight Piesold 2006-2007                             | 0.0066      | 380         | 5.5         | <0.1       | <1           | 1.9                                                                                        | 7.8         | 0.13          | 0.2           | 3.1        | 100         | 200         |
| 07ARD35                           | MR!-06-101                            | Volcanic Tuff /Schist                           | Knight Piesold 2006-2007                             | 2.2         | 170         | 4.8         | 0.4        | <1           | 0.8                                                                                        | 140         | 0.48          | 0.4           | 0.06       | 290         | 110         |
| 07ARD41                           | MR1-06-95                             | Volcanic Tuff /Schist                           | Knight Piesold 2006-2007                             | 0.083       | 340         | 16          | <0.1       | <1           | 1.4                                                                                        | 11          | 0.27          | 0.8           | 1.4        | 260         | 56          |
| MRARD10-029                       | MR1-09-170                            | Volcanic Tuff /Schist                           | AMEC 2010                                            | 0.022       | 440         | 4.0         | <0.8       | <0.7         | 1.0                                                                                        | 5.7         | 0.013         | 0.08          | 0.54       | 36          | 14          |
| Footwall                          | · · · · · · · · · · · · · · · · · · · |                                                 |                                                      |             |             |             |            |              |                                                                                            |             |               |               |            |             |             |
| UCS9                              | MR1-06-81                             | Amphibolite                                     | Knight Piesold 2006-2007                             |             | 84          | 410         | 9          | <20          | 10                                                                                         | 3.5         | 0.13          | <20           | <100       | 140         | 140         |
| MRARD10-107                       | MR1-08-154                            | Amphibolite                                     | AMEC 2010                                            | 0.01        | 15          | 3.1         | 3.1        | <0.7         | 2.3                                                                                        | 6.0         | 0.04          | 0.18          | 2.7        | 26          | 48          |
| ARD1                              | MR1-05-72                             | Gneiss                                          | Knight Piesold 2006-2007                             |             | 7           | 34          | <25        | <6           | <6                                                                                         | 13          | 0.27          | <5            | <75        | 47          | 16          |
| ARD2                              | MR1-05-72                             | Gneiss                                          | Knight Piesold 2006-2007                             |             | 22          | 25          | <25        | <6           | <6                                                                                         | 170         | 0.31          | <5            | <75        | 76          | 53          |
| ARD3                              | MR1-05-72                             | Gneiss                                          | Knight Piesold 2006-2007                             |             | 9           | 26          | <25        | <6           | <6                                                                                         | 15          | 0.28          | <5            | <75        | 31          | 14          |
| ARD4                              | MR1-05-73                             | Gneiss                                          | Knight Piesold 2006-2007                             |             | 9           | 22          | <25        | <6           | <6                                                                                         | 31          | 0.32          | <5            | <75        | 57          | 61          |
| ARD5                              | MR1-05-73                             | Gneiss<br>Gneiss                                | Knight Piesold 2006-2007                             |             | 15          | 17<br>14    | <25<br><25 | <6           | <6<br><6                                                                                   | 21<br>13    | 0.21          | <5<br><5      | <75        | 54<br>50    | 66<br>29    |
| ARD6                              | MR1-05-73                             | Gneiss                                          | Knight Piesold 2006-2007                             |             | 11          | 14          | <25        | <6           | <b< td=""><td>13</td><td>0.19</td><td>&lt;5</td><td>&lt;75</td><td>50</td><td>29</td></b<> | 13          | 0.19          | <5            | <75        | 50          | 29          |





Table B-3. Total Metal Concentrations by Lithology (continued)

| Sample ID                  | Borehole ID              | Rock Type                      | Sampling Program                                     | Hg    | Al         | As           | Ва           | Be           | Bi           | Ca           | Cd    | Со         | Cr        | Cu         | Fe         | K          | Li       | Mg          | Mn         | Мо        |
|----------------------------|--------------------------|--------------------------------|------------------------------------------------------|-------|------------|--------------|--------------|--------------|--------------|--------------|-------|------------|-----------|------------|------------|------------|----------|-------------|------------|-----------|
|                            |                          | • •                            | Sampling Frogram                                     | μg/g  | %          | μg/g         | μg/g         | μg/g         | μg/g         | %            | μg/g  | μg/g       | μg/g      | μg/g       | %          | %          | μg/g     | %           | μg/g       | μg/g      |
| Average Concer             |                          |                                |                                                      | 0.09  | 7.8        | 2            | 330          | 1            | 0.007        | 7.6          | 0.22  | 48         | 170       | 87         | 8.6        | 0.83       | 17       | 4.6         | 1500       | 1.5       |
| Ten Times Avera            |                          |                                |                                                      | 0.9   | 78         | 20           | 3300         | 10           | 0.07         | 76           | 2.2   | 480        | 1700      | 870        | 86         | 8.3        | 170      | 46          | 15000      | 15        |
| Average Concer             |                          |                                |                                                      | 0.085 | 8.23       | 1.8          | 425          | 3            | 0.0085       | 4.15         | 0.15  | 25         | 102       | 60         | 5.63       | 2.085      | 20       | 2.33        | 950        | 1.2       |
| Ten Times Avera            |                          |                                | IK STATE BY A STATE OF THE OWNER.                    | 0.85  | 82.3       | 18           | 4250         | 30           | 0.085        | 41.5         | 1.5   | 250        | 1020      | 600        | 56.3       | 20.85      | 200      | 23.3        | 9500       | 12        |
| ARD7<br>ARD8               | MR1-05-74<br>MR1-05-74   | Gneiss<br>Gneiss               | Knight Piesold 2006-2007<br>Knight Piesold 2006-2007 |       | 5.7<br>7.1 | <6<br><6     | 1400<br>2000 | 1.1<br>0.9   | <3<br><3     | 0.072        | 0.2   | 5.5<br>6   | 8<br>10   | 2.8<br>15  | 3.5<br>2.9 | 3.2        | <3<br><3 | 0.84        | 350<br>420 | 4         |
| ARD9                       | MR1-05-74                | Gneiss                         | Knight Piesold 2006-2007                             |       | 7.1        | <6           | 2100         | 1            | <3           | 0.093        | 0.3   | 5          | 9         | 21         | 3.1        | 3.4        | <3       | 1.2         | 560        | 43        |
| UCS10                      | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007                             |       | 7.3        | <6           | 750          | 1.1          | <34          | 0.080        | <4    | 29         | 72        | 150        | 16         | 3.8        | 14       | 3.4         | 570        | 4         |
| UCS12                      | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007                             |       | 6          | <6           | 1800         | 1.6          | <34          | 0.076        | <4    | <8         | 140       | 3.9        | 2.7        | 3          | <3       | 0.74        | 300        | <2        |
| UCS13                      | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007                             |       | 7          | 7            | 2400         | 2.1          | <34          | 0.31         | <4    | 14         | 120       | 72         | 6.1        | 3.4        | <3       | 1.7         | 590        | 4         |
| UCS22                      | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007                             |       | 7.3        | <6           | 2900         | 1.9          | <2           | 0.22         | 0.7   | 17         | 130       | 7.5        | 5.1        | 3.8        | <3       | 1.2         | 720        | <2        |
| UCS23                      | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007                             |       | 5.2        | <6           | 1400         | 0.2          | <34          | 0.12         | <4    | <8         | 140       | 15         | 5.5        | 3.1        | 5        | 1.7         | 550        | <2        |
| UCS24                      | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007                             |       | 6.1        | <6           | 3000         | 1.3          | <34          | 0.12         | <4    | <8         | 110       | 19         | 1.2        | 4.5        | <3       | 0.39        | 140        | <2        |
| UCS49                      | MR1-06-105               | Gneiss                         | Knight Piesold 2006-2007                             |       | 7          | <6           | 1000         | 1            | <34          | 0.14         | <4    | 13         | 130       | 78         | 5.2        | 3.4        | 4        | 1.5         | 500        | <2        |
| UCS51                      | MR1-06-105               | Gneiss                         | Knight Piesold 2006-2007                             |       | 8.1        | <6           | 1400         | 1.6          | <34          | 0.16         | <4    | 12         | 120       | 4.2        | 4.7        | 3.6        | 7        | 1.9         | 430        | <2        |
| 07ARD22                    | MR1-06-90                | Gneiss                         | Knight Piesold 2006-2007                             | <0.1  | 6.8        | 3            | 520          | 2.3          | 0.19         | 0.066        | 0.42  | 14         | 180       | 25         | 11         | 1.8        | 27       | 3.8         | 250        | 9.9       |
| 07ARD32                    | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007                             | <0.1  | 7.4        | 7            | 1500         | 1.3          | 0.06         | 0.24         | 0.38  | 12         | 140       | 25         | 7.4        | 4          | 9        | 2.4         | 440        | 10        |
| MRARD10-004                | MR1-09-179               | Gneiss                         | AMEC 2010                                            | <0.1  | 3.4        | 0.6          | 520          | 0.32         | <0.09        | 0.17         | <0.2  | 7.7        | 100       | 9.3        | 5.3        | 1.8        | 8<br>7   | 1.7         | 130        | 4.4       |
| MRARD10-005<br>MRARD10-011 | MR1-09-179<br>MR1-09-178 | Gneiss                         | AMEC 2010<br>AMEC 2010                               | <0.1  | 1.7<br>8.3 | 0.7          | 99<br>230    | 0.62<br>2.5  | <0.09        | 0.048        | <0.2  | 5.3<br>18  | 120<br>28 | 79<br>1.8  | 2.3        | 0.86       | 36       | 0.83<br>8.2 | 100<br>310 | 2.4<br>15 |
| MRARD10-011<br>MRARD10-015 | MR1-09-178<br>MR1-09-178 | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                               | <0.1  | 2.5        | <0.5         | 160          | 0.71         | <0.09        | 0.18         | <0.2  | 6.7        | 91        | 2.8        | 3.4        | 0.65       | 10       | 1.6         | 310        | 0.5       |
| MRARD10-018                | MR1-09-172               | Gneiss                         | AMEC 2010                                            | <0.1  | 0.79       | 16           | 3.0          | 0.58         | <0.09        | 0.16         | <0.2  | 6.8        | 19        | 3.9        | 60         | 0.013      | 3        | 0.8         | 2600       | 1.7       |
| MRARD10-019                | MR1-09-172               | Gneiss                         | AMEC 2010                                            | <0.1  | 8.9        | 0.7          | 2.4          | 1.3          | <0.09        | 1.6          | <0.2  | 20         | 210       | 1.7        | 13         | 0.016      | 3        | 7.3         | 1000       | 3.1       |
| MRARD10-030                | MR1-09-170               | Gneiss                         | AMEC 2010                                            | <0.1  | 3.8        | 0.6          | 380          | 0.69         | <0.09        | 0.081        | <0.2  | 13         | 95        | 5.8        | 6.4        | 1.8        | 12       | 1.6         | 260        | 3.4       |
| MRARD10-031                | MR1-09-170               | Gneiss                         | AMEC 2010                                            | <0.1  | 1          | <0.5         | 69           | 0.24         | < 0.09       | 0.016        | <0.2  | 4.6        | 87        | 6.8        | 1          | 0.64       | 6        | 0.6         | 150        | 2.7       |
| MRARD10-033                | MR1-08-162               | Gneiss                         | AMEC 2010                                            | <0.1  | 1.6        | < 0.5        | 140          | 0.17         | < 0.09       | 0.076        | <0.2  | 6.3        | 67        | 5.1        | 2.2        | 0.88       | 8        | 0.85        | 380        | 1.1       |
| MRARD10-034                | MR1-08-162               | Gneiss                         | AMEC 2010                                            | <0.1  | 2          | 0.7          | 120          | 0.24         | <0.09        | 0.088        | <0.2  | 6.5        | 92        | 19         | 3.2        | 0.45       | 7        | 1.2         | 670        | 1.1       |
| MRARD10-043                | MR1-09-167               | Gneiss                         | AMEC 2010                                            | <0.1  | 5.9        | <0.5         | 450          | 0.71         | < 0.09       | 0.1          | <0.2  | 8.6        | 55        | 11         | 7.7        | 3.4        | 17       | 2.5         | 320        | 4.4       |
| MRARD10-044                | MR1-09-167               | Gneiss                         | AMEC 2010                                            | <0.1  | 1.4        | <0.5         | 31           | 0.18         | 0.24         | 0.51         | <0.2  | 31         | 670       | 52         | 4.2        | 0.29       | 11       | 0.86        | 340        | 0.6       |
| MRARD10-045                | MR1-09-167               | Gneiss                         | AMEC 2010                                            | <0.1  | 2.1        | <0.5         | 160          | 0.20         | <0.09        | 0.094        | <0.2  | 7.6        | 73        | 11         | 3          | 1.4        | 7        | 0.8         | 120        | 15        |
| MRARD10-046                | MR1-09-167               | Gneiss                         | AMEC 2010                                            | <0.1  | 1.7        | <0.5         | 320          | 0.29         | 0.14         | 0.095        | <0.2  | 6.1        | 100       | 11         | 2.2        | 1          | 12       | 0.75        | 420        | 10        |
| MRARD10-055<br>MRARD10-057 | MR1-08-159               | Gneiss                         | AMEC 2010<br>AMEC 2010                               | <0.1  | 2.3<br>4.4 | 1.2<br><0.5  | 180          | 0.66         | <0.09        | 0.15<br>0.15 | <0.2  | 28<br>12   | 75<br>77  | 30<br>29   | 2.8        | 1.2<br>2.7 | 10<br>11 | 1.2         | 280<br>310 | 16        |
| MRARD10-057                | MR1-08-161<br>MR1-08-149 | Gneiss<br>Gneiss               | AMEC 2010                                            | <0.1  | 3.1        | 2.9          | 690<br>420   | 0.61<br>1.1  | <0.09        | 0.15         | <0.2  | 14         | 130       | 29         | 6.2<br>9.9 | 1.1        | 13       | 1.8<br>1.5  | 400        | 2.2       |
| MRARD10-074                | MR1-08-149               | Gneiss                         | AMEC 2010                                            | <0.1  | 3.3        | <0.5         | 130          | 0.89         | <0.09        | 0.13         | <0.2  | 10         | 76        | 6.2        | 4.5        | 1.1        | 19       | 1.9         | 470        | 1.0       |
| MRARD10-104                | MR1-08-154               | Gneiss                         | AMEC 2010                                            | <0.1  | 2.1        | <0.5         | 110          | 0.72         | <0.09        | 0.14         | <0.2  | 5.5        | 95        | 5.1        | 2.8        | 0.73       | 8        | 1.2         | 280        | 2.1       |
| MRARD10-123                | MR1-08-155               | Gneiss                         | AMEC 2010                                            | <0.1  | 8.8        | 0.5          | 510          | 1.5          | 0.20         | 0.37         | <0.2  | 17         | 17        | 31         | 13.4       | 4          | 18       | 4.4         | 380        | 1.7       |
| MRARD10-125                | MR1-08-144               | Gneiss                         | AMEC 2010                                            | <0.1  | 2.1        | < 0.5        | 260          | 1.1          | < 0.09       | 0.092        | <0.2  | 7.8        | 85        | 2.3        | 2.1        | 1.2        | 15       | 1.1         | 150        | 0.7       |
| 5141                       | ARD-2A-NW                | Gneiss                         | AMEC 2010                                            | <0.1  | 4.3        | < 0.5        | 250          | 0.95         | 0.14         | 0.31         | 0.06  | 26         | 130       | 79         | 6.7        | 1.8        | 52       | 3.4         | 820        | 1.9       |
| 5142                       | ARD-2A-NW                | Gneiss                         | AMEC 2010                                            | <0.1  | 2.9        | <0.5         | 150          | 0.18         | 0.12         | 0.29         | 0.30  | 10         | 60        | 35         | 4.8        | 2.3        | 32       | 1.3         | 500        | 4.5       |
| 5157                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | <0.1  | 2.1        | <0.5         | 450          | 0.21         | 0.12         | 0.38         | 0.13  | 9.3        | 83        | 28         | 3.6        | 1.6        | 25       | 1.2         | 770        | 2.0       |
| 5158                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | <0.1  | 2.9        | <0.5         | 390          | 0.24         | 0.22         | 0.49         | 0.10  | 8.4        | 58        | 26         | 4.9        | 2.3        | 27       | 1.4         | 790        | 8.7       |
| 5159                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | <0.1  | 3.5        | <0.5         | 680          | 0.19         | 0.18         | 0.34         | 0.40  | 9.1        | 58        | 48         | 5.8        | 2.7        | 30       | 1.7         | 800        | 1.7       |
| 5160                       | ARD-2A-SE<br>ARD-2A-SE   | Gneiss                         | AMEC 2010                                            | <0.1  | 1.7<br>2.0 | <0.5<br><0.5 | 130          | 0.95         | 1.3<br><0.09 | 0.82         | 0.08  | 6.1<br>7.2 | 87        | 12         | 2.6        | 1.3<br>1.6 | 28       | 1.0         | 510        | 1.4       |
| 5164<br>5165               | ARD-2A-SE                | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                               | <0.1  | 0.6        | 0.7          | 130<br>41    | 0.16<br>0.62 | 0.23         | 0.13         | 0.07  | 2.1        | 80<br>78  | 6.8<br>7.1 | 2.9        | 0.3        | 30<br>9  | 1.0<br>0.5  | 430<br>370 | 0.4       |
| 5166                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | <0.1  | 3.0        | <0.5         | 170          | 0.02         | <0.09        | 0.47         | 0.00  | 9.2        | 65        | 21         | 4.7        | 2.3        | 35       | 1.6         | 760        | 1.5       |
| 5171                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | <0.1  | 0.9        | 0.6          | 67           | 0.27         | 0.49         | 0.47         | 0.22  | 5.1        | 67        | 92         | 2.0        | 0.8        | 20       | 0.7         | 360        | 0.2       |
| 5172                       | ARD-2A-SE                | Gneiss                         | AMEC 2010                                            | <0.1  | 0.8        | 0.7          | 78           | 0.84         | 0.76         | 0.32         | 0.22  | 3.5        | 120       | 43         | 1.6        | 0.5        | 17       | 0.5         | 330        | 0.7       |
| 5174                       | ARD-2B-NW                | Gneiss                         | AMEC 2010                                            | <0.1  | 0.7        | 0.6          | 38           | 0.45         | <0.09        | 0.01         | 0.28  | 2.7        | 140       | 17         | 0.8        | 0.3        | 6        | 0.4         | 110        | 1.9       |
| 5175                       | ARD-2B-NW                | Gneiss                         | AMEC 2010                                            | <0.1  | 2.0        | <0.5         | 79           | 2.3          | <0.09        | 0.02         | 0.20  | 4.3        | 110       | 7.7        | 1.6        | 0.9        | 16       | 1.6         | 320        | 0.4       |
| UCS11                      | MR1-06-81                | Gneiss/Amphibolite             | Knight Piesold 2006-2007                             |       | 7.7        | <6           | 2000         | 1.7          | <2           | 0.32         | 0.9   | 22         | 130       | 25         | 5.7        | 4.3        | <3       | 1.8         | 410        | <2        |
| FC No. 1                   |                          | Gneiss/Schist                  | Knight Piesold 2006-2007                             | <0.1  | 9.4        | <2           | 1800         | 2            | 0.5          | 0.52         | 0     | 21         | 87        | 39         | 6.7        | 4.4        | 19       | 2.6         | 610        | 15        |
| 5182                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                                            | <0.1  | 3.3        | 0.5          | 220          | 0.90         | 0.24         | 0.29         | 0.39  | 22         | 82        | 200        | 4.9        | 2.1        | 23       | 1.9         | 290        | 0.3       |
| 5183                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                                            | <0.1  | 3.3        | <0.5         | 260          | 0.72         | <0.09        | 0.11         | 0.10  | 21         | 64        | 29         | 3.7        | 2.2        | 26       | 2.1         | 340        | 0.3       |
| 5184                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                                            | <0.1  | 5.9        | <0.5         | 560          | 1.0          | <0.09        | 0.35         | <0.02 | 20         | 69        | 1.5        | 5.7        | 3.8        | 28       | 3.8         | 530        | 2.1       |
| 5186                       | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                                            | <0.1  | 3.7        | <0.5         | 270          | 1.0          | 0.16         | 1.60         | 0.04  | 16         | 67        | 29         | 4.5        | 1.5        | 22       | 1.7         | 410        | 0.2       |
| 5187<br>5188               | ARD-2B-NW<br>ARD-2B-NW   | Gneiss/Schist                  | AMEC 2010<br>AMEC 2010                               | <0.1  | 4.7<br>2.8 | <0.5<br><0.5 | 280<br>150   | 1.5<br>0.52  | <0.09        | 0.17<br>0.27 | <0.02 | 22<br>15   | 27<br>74  | 2.4        | 5.3<br>3.3 | 2.5<br>1.6 | 25<br>15 | 3.0<br>1.8  | 320<br>270 | 0.1       |
| 5189                       | ARD-2B-NW                | Gneiss/Schist<br>Gneiss/Schist | AMEC 2010                                            | <0.1  | 7.0        | <0.5         | 700          | 0.52         | 0.12         | 0.27         | <0.02 | 24         | 47        | 20         | 6.9        | 4.5        | 33       | 4.4         | 570        | 1.3       |
| MRARD10-081                | MR1-08-142               | Metasediment                   | AMEC 2010                                            | <0.1  | 2.8        | <0.5         | 160          | 1.2          | <0.09        | 0.33         | <0.02 | 9.9        | 74        | 1.6        | 3.5        | 1.1        | 11       | 1.5         | 320        | 2.0       |
| MRARD10-081                | MR1-08-146               | Metasediment                   | AMEC 2010                                            | <0.1  | 3.3        | <0.5         | 180          | 0.12         | <0.09        | 1.7          | <0.2  | 26         | 120       | 134        | 3.3        | 1.1        | 15       | 1.5         | 630        | 0.3       |
| MRARD10-099                | MR1-08-146               |                                | AMEC 2010                                            | <0.1  | 4.4        | <0.5         | 89           | 0.12         | <0.09        | 2.6          | <0.2  | 30         | 220       | 117        | 2.1        | 0.79       | 19       | 1.3         | 510        | 0.2       |
| 5143                       |                          | Metasediment                   | AMEC 2010                                            | <0.1  | 2.5        | <0.5         | 140          | 0.20         | <0.09        | 0.20         | 0.07  | 11         | 57        | 19         | 3.6        | 2.0        | 31       | 1.3         | 360        | 1.9       |
|                            |                          |                                |                                                      |       |            |              |              |              |              |              |       |            |           |            |            |            |          |             |            |           |





Table B-3. Total Metal Concentrations by Lithology (continued)

| Sample ID                         | Borehole ID              | Rock Type                      | Sampling Program                      | Na          | Ni         | Pb        | Sb          | Se           | Sn         | Sr          | Ti            | TI          | U          | ٧           | Zn         |
|-----------------------------------|--------------------------|--------------------------------|---------------------------------------|-------------|------------|-----------|-------------|--------------|------------|-------------|---------------|-------------|------------|-------------|------------|
|                                   |                          | •                              | Camping Frogram                       | %           | μg/g       | μg/g      | μg/g        | μg/g         | μg/g       | μg/g        | %             | μg/g        | μg/g       | μg/g        | μg/g       |
| Average Concen                    |                          |                                |                                       | 1.8         | 130        | 6         | 0.2         | 0.05         | 1.5        | 465         | 1.38          | 2.1         | 1          | 250         | 105        |
| Ten Times Avera                   |                          |                                |                                       | 18<br>2.355 | 1300<br>84 | 60<br>14  | 2           | 0.5          | 15         | 4650<br>370 | 13.8          | 21          | 10         | 2500        | 1050<br>70 |
| Average Concen<br>Ten Times Avera |                          |                                |                                       | 2.355       | 840        | 140       | 0.2         | 0.05         | 2.3        | 3700        | 0.565<br>5.65 | 0.85<br>8.5 | 2.7<br>27  | 120<br>1200 | 700        |
| ARD7                              | MR1-05-74                | Gneiss                         | Knight Piesold 2006-2007              | 23.33       | 6          | 15        | <25         | <6           | <6         | 15          | 0.13          | <5          | <75        | 28          | 38         |
| ARD8                              | MR1-05-74                | Gneiss                         | Knight Piesold 2006-2007              |             | 7          | 16        | <25         | <6           | <6         | 23          | 0.13          | <5<br><5    | <75        | 26          | 37         |
| ARD9                              | MR1-05-74                | Gneiss                         | Knight Piesold 2006-2007              |             | 7          | 20        | <25         | <6           | <6         | 16          | 0.22          | <5          | <75        | 27          | 41         |
| UCS10                             | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007              |             | 15         | 43        | 5           | <20          | <6         | 16          | 0.56          | <20         | <100       | 78          | 37         |
| UCS12                             | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007              |             | 12         | 30        | 2           | <20          | <6         | 21          | 0.16          | <20         | <100       | 23          | 43         |
| UCS13                             | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007              |             | 19         | 48        | 3           | <20          | <6         | 28          | 0.32          | <20         | <100       | 46          | 80         |
| UCS22                             | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007              |             | 5          | 16        | <2          | <10          | <6         | 22          | 0.44          | <5          | <70        | 35          | 47         |
| UCS23                             | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007              |             | 14         | 23        | 3           | <20          | <6         | 11          | 0.31          | <20         | <100       | 37          | 16         |
| UCS24                             | MR1-06-81                | Gneiss                         | Knight Piesold 2006-2007              |             | 18         | 250       | <2          | <20          | <6         | 160         | 0.10          | <20         | <100       | 4.8         | 87         |
| UCS49                             | MR1-06-105               | Gneiss                         | Knight Piesold 2006-2007              |             | 12         | 36        | 3           | <20          | <6         | 17          | 0.34          | <20         | <100       | 45          | 65         |
| UCS51                             | MR1-06-105               | Gneiss                         | Knight Piesold 2006-2007              |             | 30         | 13        | <2          | <20          | <6         | 22          | 0.25          | <20         | <100       | 76          | 54         |
| 07ARD22                           | MR1-06-90                | Gneiss                         | Knight Piesold 2006-2007              | 0.084       | 35         | 7.7       | <0.1        | <1           | 2.5        | 22<br>16    | 0.17<br>0.40  | 0.4<br>1.0  | 4.4        | 46<br>50    | 48<br>42   |
| 07ARD32<br>MRARD10-004            | MR1-06-81<br>MR1-09-179  | Gneiss<br>Gneiss               | Knight Piesold 2006-2007<br>AMEC 2010 | 0.067       | 22<br>14   | 26<br>3.7 | 1.1<br><0.8 | <1<br><0.7   | 3.3<br>3.7 | 7.5         | 0.40          | 0.60        | 5.5<br>1.5 | 32          | 5.7        |
| MRARD10-004<br>MRARD10-005        | MR1-09-179               | Gneiss                         | AMEC 2010                             | 0.043       | 8.4        | 4.9       | <0.8        | <0.7         | 0.6        | 3.2         | 0.20          | 0.86        | 7.3        | 5           | 7.5        |
| MRARD10-003                       | MR1-09-179               | Gneiss                         | AMEC 2010                             | 0.024       | 85         | 2.3       | <0.8        | <0.7         | 3.3        | 6.3         | 0.04          | 0.30        | 1.8        | 46          | 22         |
| MRARD10-015                       | MR1-09-178               | Gneiss                         | AMEC 2010                             | 0.025       | 7.5        | 2.4       | <0.8        | <0.7         | 0.7        | 3.2         | 0.07          | 0.24        | 1.2        | 19          | 24         |
| MRARD10-018                       | MR1-09-172               | Gneiss                         | AMEC 2010                             | 0.012       | 18         | 1.9       | <0.8        | <0.7         | 0.7        | 3.0         | 0.02          | <0.02       | 0.35       | 11          | 7.0        |
| MRARD10-019                       | MR1-09-172               | Gneiss                         | AMEC 2010                             | 0.0087      | 110        | 21        | <0.8        | <0.7         | <0.5       | 44          | 0.02          | <0.02       | 7.1        | 120         | 59         |
| MRARD10-030                       | MR1-09-170               | Gneiss                         | AMEC 2010                             | 0.042       | 46         | 15        | <0.8        | <0.7         | 0.9        | 4.6         | 0.14          | 0.63        | 1.1        | 17          | 14         |
| MRARD10-031                       | MR1-09-170               | Gneiss                         | AMEC 2010                             | 0.016       | 13         | 2.7       | <0.8        | <0.7         | 0.7        | 3.1         | 0.01          | 0.20        | 3.2        | 1           | 16         |
| MRARD10-033                       | MR1-08-162               | Gneiss                         | AMEC 2010                             | 0.019       | 7.9        | 3.0       | <0.8        | <0.7         | 0.7        | 2.9         | 0.07          | 0.32        | 2.0        | 6           | 46         |
| MRARD10-034                       | MR1-08-162               | Gneiss                         | AMEC 2010                             | 0.016       | 7.8        | 2.6       | <0.8        | <0.7         | <0.5       | 2.9         | 0.04          | 0.11        | 1.4        | 8           | 39         |
| MRARD10-043                       | MR1-09-167               | Gneiss                         | AMEC 2010                             | 0.086       | 18         | 16        | <0.8        | <0.7         | 1.1        | 2.9         | 0.21          | 1.6         | 2.5        | 21          | 15         |
| MRARD10-044<br>MRARD10-045        | MR1-09-167               | Gneiss                         | AMEC 2010                             | 0.022       | 350        | 46<br>4.2 | <0.8        | <0.7<br><0.7 | 0.8        | 4.8<br>3.6  | 0.06          | 0.14        | 0.44       | 28          | 17<br>21   |
| MRARD10-045                       | MR1-09-167<br>MR1-09-167 | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                | 0.037       | 9.4<br>8.5 | 5.6       | <0.8        | <0.7         | 1.3        | 9.8         | 0.13<br>0.11  | 0.41        | 1.3        | 14<br>7     | 40         |
| MRARD10-055                       | MR1-08-159               | Gneiss                         | AMEC 2010                             | 0.029       | 50         | 16        | <0.8        | <0.7         | 0.7        | 3.2         | 0.11          | 1.3         | 5.2        | 31          | 722        |
| MRARD10-057                       | MR1-08-161               | Gneiss                         | AMEC 2010                             | 0.061       | 15         | 15        | <0.8        | <0.7         | 1.5        | 4.4         | 0.22          | 0.71        | 2.9        | 38          | 24         |
| MRARD10-074                       | MR1-08-149               | Gneiss                         | AMEC 2010                             | 0.031       | 37         | 5.7       | <0.8        | <0.7         | 1.4        | 7.3         | 0.11          | 0.41        | 2.5        | 28          | 32         |
| MRARD10-104                       | MR1-08-140               | Gneiss                         | AMEC 2010                             | 0.025       | 23         | 2.2       | <0.8        | <0.7         | 0.6        | 2.9         | 0.08          | 0.25        | 2.0        | 32          | 17         |
| MRARD10-110                       | MR1-08-154               | Gneiss                         | AMEC 2010                             | 0.025       | 8.6        | 2.3       | 1.3         | <0.7         | 0.9        | 8.1         | 0.06          | 0.21        | 2.0        | 11          | 16         |
| MRARD10-123                       | MR1-08-155               | Gneiss                         | AMEC 2010                             | 0.084       | 6.0        | 29        | 3.2         | <0.7         | 5.0        | 5.7         | 0.35          | 1.5         | 3.3        | 160         | 21         |
| MRARD10-125                       | MR1-08-144               | Gneiss                         | AMEC 2010                             | 0.035       | 8.8        | 6.5       | <0.8        | <0.7         | 0.6        | 6.0         | 0.09          | 0.48        | 3.6        | 10          | 27         |
| 5141                              | ARD-2A-NW                | Gneiss                         | AMEC 2010                             | 0.041       | 64         | 6.8       | <0.8        | <0.7         | 2.2        | 4.1         | 0.44          | 0.48        | 3.0        | 140         | 93         |
| 5142                              | ARD-2A-NW                | Gneiss                         | AMEC 2010                             | 0.042       | 5.7        | 19        | <0.8        | <0.7         | 3.5        | 4.4         | 0.47          | 0.69        | 7.1        | 24          | 100        |
| 5157                              | ARD-2A-SE                | Gneiss                         | AMEC 2010                             | 0.068       | 7.0        | 5.2       | <0.8        | 0.9          | 1.0        | 8.5         | 0.29          | 0.54        | 1.6        | 26          | 67         |
| 5158<br>5159                      | ARD-2A-SE<br>ARD-2A-SE   | Gneiss<br>Gneiss               | AMEC 2010<br>AMEC 2010                | 0.074       | 4.7<br>7.8 | 8.0<br>13 | <0.8        | <0.7<br><0.7 | 1.5<br>4.3 | 11<br>8.2   | 0.47          | 0.61        | 4.8<br>5.6 | 20<br>35    | 78<br>110  |
| 5160                              | ARD-2A-SE<br>ARD-2A-SE   | Gneiss                         | AMEC 2010                             | 0.054       | 8.1        | 4.7       | <0.8        | 0.7          | 2.4        | 8.2<br>15   | 0.47          | 0.82        | 1.5        | 23          | 56         |
| 5164                              | ARD-2A-SE                | Gneiss                         | AMEC 2010                             | 0.045       | 7.1        | 3.7       | <0.8        | <0.7         | 0.5        | 3.3         | 0.27          | 0.55        | 0.64       | 24          | 49         |
| 5165                              | ARD-2A-SE                | Gneiss                         | AMEC 2010                             | 0.029       | 4.0        | 18        | <0.8        | 0.9          | <0.5       | 13          | 0.07          | 0.16        | 0.78       | 4           | 18         |
| 5166                              | ARD-2A-SE                | Gneiss                         | AMEC 2010                             | 0.051       | 9.4        | 7.4       | <0.8        | <0.7         | 1.2        | 9.9         | 0.43          | 0.64        | 3.1        | 29          | 74         |
| 5171                              | ARD-2A-SE                | Gneiss                         | AMEC 2010                             | 0.035       | 4.0        | 20        | <0.8        | 0.9          | 1.0        | 13          | 0.09          | 0.40        | 8.1        | 11          | 26         |
| 5172                              | ARD-2A-SE                | Gneiss                         | AMEC 2010                             | 0.065       | 5.1        | 24        | <0.8        | 1.2          | 1.7        | 18          | 0.08          | 0.20        | 8.4        | 6           | 17         |
| 5174                              | ARD-2B-NW                | Gneiss                         | AMEC 2010                             | 0.008       | 5.7        | 55        | <0.8        | 1.0          | <0.5       | 1.6         | 0.01          | 0.08        | 8.3        | 23          | 30         |
| 5175                              | ARD-2B-NW                | Gneiss                         | AMEC 2010                             | 0.014       | 6.6        | 11        | <0.8        | 1.1          | <0.5       | 2.2         | 0.02          | 0.30        | 12         | 27          | 30         |
| UCS11                             | MR1-06-81                | Gneiss/Amphibolite             | Knight Piesold 2006-2007              | 0.000       | 6          | 35        | <2          | <10          | <6         | 26          | 0.53          | <5          | <70        | 67          | 35         |
| FC No. 1                          | ADD OD NIM               | Gneiss/Schist                  | Knight Piesold 2006-2007              | 0.800       | 67         | 37        | <0.1        | 1            | 3          | 82          | 0.37          | 1           | 5.8        | 59          | 78         |
| 5182<br>5183                      | ARD-2B-NW<br>ARD-2B-NW   | Gneiss/Schist<br>Gneiss/Schist | AMEC 2010<br>AMEC 2010                | 0.030       | 16<br>35   | 18<br>15  | <0.8        | 1.4          | 0.6        | 3.6         | 0.24          | 0.73        | 2.7<br>3.7 | 62<br>120   | 62<br>63   |
| 5183                              | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010<br>AMEC 2010                | 0.039       | 35         | 15        | <0.8        | <0.7         | 1.8        | 7.2         | 0.28          | 1.1         | 4.7        | 150         | 75         |
| 5186                              | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                             | 0.073       | 13         | 9.7       | <0.8        | 1.3          | 1.8        | 15          | 0.41          | 0.56        | 2.7        | 64          | 53         |
| 5187                              | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                             | 0.043       | 33         | 5.1       | <0.8        | 0.7          | 1.0        | 3.4         | 0.27          | 0.72        | 2.7        | 170         | 74         |
| 5188                              | ARD-2B-NW                | Gneiss/Schist                  | AMEC 2010                             | 0.033       | 17         | 12        | <0.8        | 1.3          | <0.5       | 2.6         | 0.22          | 0.72        | 1.9        | 38          | 48         |
| 5189                              |                          | Gneiss/Schist                  | AMEC 2010                             | 0.089       | 30         | 10        | <0.8        | 0.8          | 1.5        | 5.3         | 0.47          | 1.3         | 3.5        | 140         | 80         |
| MRARD10-081                       | MR1-08-142               | Metasediment                   | AMEC 2010                             | 0.03        | 14         | 2.8       | <0.8        | <0.7         | 0.8        | 3.7         | 0.07          | 0.42        | 1.7        | 21          | 22         |
| MRARD10-095                       | MR1-08-146               | Metasediment                   | AMEC 2010                             | 0.108       | 57         | 2.2       | <0.8        | <0.7         | <0.5       | 14          | 0.24          | 0.24        | 0.14       | 160         | 42         |
| MRARD10-100                       | MR1-08-146               | Metasediment                   | AMEC 2010                             | 0.373       | 120        | 0.60      | <0.8        | <0.7         | <0.5       | 25          | 0.19          | 0.09        | 0.032      | 120         | 23         |
| 5143                              | ARD-2A-NW                | Metasediment                   | AMEC 2010                             | 0.043       | 8.9        | 5.4       | <0.8        | <0.7         | 1.6        | 4.9         | 0.37          | 0.59        | 2.2        | 66          | 61         |





Table B-3. Total Metal Concentrations by Lithology (continued)

| Sample ID       | Borehole ID | Rock Type             | Sampling Program         | Hg    | Al   | As   | Ва   | Be   | Bi     | Ca    | Cd    | Со   | Cr   | Cu   | Fe   | K     | Li   | Mg   | Mn    | Мо       |
|-----------------|-------------|-----------------------|--------------------------|-------|------|------|------|------|--------|-------|-------|------|------|------|------|-------|------|------|-------|----------|
|                 |             | ,                     | Sampling Frogram         | μg/g  | %    | μg/g | μg/g | μg/g | μg/g   | %     | μg/g  | μg/g | μg/g | μg/g | %    | %     | μg/g | %    | μg/g  | μg/g     |
| Average Concen  |             |                       |                          | 0.09  | 7.8  | 2    | 330  | 1    | 0.007  | 7.6   | 0.22  | 48   | 170  | 87   | 8.6  | 0.83  | 17   | 4.6  | 1500  | 1.5      |
| Ten Times Avera |             |                       |                          | 0.9   | 78   | 20   | 3300 | 10   | 0.07   | 76    | 2.2   | 480  | 1700 | 870  | 86   | 8.3   | 170  | 46   | 15000 | 15       |
| Average Concen  |             |                       |                          | 0.085 | 8.23 | 1.8  | 425  | 3    | 0.0085 | 4.15  | 0.15  | 25   | 102  | 60   | 5.63 | 2.085 | 20   | 2.33 | 950   | 1.2      |
| Ten Times Avera |             |                       | T                        | 0.85  | 82.3 | 18   | 4250 | 30   | 0.085  | 41.5  | 1.5   | 250  | 1020 | 600  | 56.3 | 20.85 | 200  | 23.3 | 9500  | 12       |
|                 |             | Metasediment          | AMEC 2010                | <0.1  | 2.8  | <0.5 | 150  | 0.24 | <0.09  | 0.20  | 0.03  | 11   | 72   | 6.2  | 4.0  | 2.1   | 33   | 1.5  | 490   | 0.3      |
| 5145            |             | Metasediment          | AMEC 2010                | <0.1  | 3.1  | <0.5 | 130  | 0.23 | <0.09  | 0.23  | 0.06  | 11   | 67   | 13   | 4.2  | 2.4   | 35   | 2.1  | 570   | 2.6      |
| 5147            | ARD-2A-NW   |                       | AMEC 2010                | <0.1  | 1.8  | <0.5 | 110  | 0.27 | <0.09  | 0.14  | 0.18  | 6.8  | 77   | 25   | 2.3  | 1.4   | 20   | 1.0  | 530   | 3.9      |
| 5148            | ARD-2A-NW   |                       | AMEC 2010                | <0.1  | 2.3  | <0.5 | 140  | 0.23 | 0.13   | 0.21  | 0.20  | 8.8  | 88   | 36   | 2.8  | 1.7   | 24   | 1.5  | 520   | 0.7      |
| 5149            | ARD-2A-NW   | Metasediment          | AMEC 2010                | <0.1  | 1.6  | <0.5 | 170  | 0.17 | 3.9    | 0.15  | 6.0   | 6.9  | 89   | 100  | 2.6  | 1.3   | 19   | 1.1  | 650   | 1.3      |
| 5161            | ARD-2A-SE   | Metasediment          | AMEC 2010                | <0.1  | 2.6  | <0.5 | 95   | 0.12 | <0.09  | 0.21  | 0.06  | 11   | 70   | 9.0  | 3.6  | 2.2   | 30   | 1.5  | 570   | 0.4      |
| 5162            | ARD-2A-SE   | Metasediment          | AMEC 2010                | <0.1  | 1.9  | <0.5 | 120  | 0.14 | <0.09  | 0.17  | 0.09  | 7.1  | 63   | 3.3  | 2.6  | 1.6   | 26   | 1.0  | 460   | 0.4      |
| 5163            | ARD-2A-SE   | Metasediment          | AMEC 2010                | <0.1  | 2.5  | <0.5 | 120  | 0.16 | <0.09  | 0.15  | 0.04  | 8.8  | 60   | 2.9  | 3.5  | 2.1   | 35   | 1.4  | 520   | 0.5      |
| 5167            | ARD-2A-SE   | Metasediment          | AMEC 2010                | <0.1  | 2.1  | <0.5 | 190  | 0.23 | <0.09  | 0.37  | 0.05  | 7.6  | 67   | 24   | 3.0  | 1.6   | 24   | 1.4  | 590   | 0.4      |
| 5168            | ARD-2A-SE   | Metasediment          | AMEC 2010                | <0.1  | 2.5  | <0.5 | 170  | 0.49 | 0.09   | 0.34  | 0.05  | 9.2  | 69   | 14   | 3.6  | 2.1   | 32   | 1.7  | 690   | 6.6      |
| 5169            | ARD-2A-SE   | Metasediment          | AMEC 2010                | <0.1  | 0.9  | <0.5 | 52   | 0.21 | 0.12   | 0.12  | 2.9   | 4.6  | 96   | 41   | 1.3  | 0.7   | 9    | 0.6  | 200   | 0.7      |
| 5176            | ARD-2B-NW   | Schist                | AMEC 2010                | <0.1  | 9.2  | 8.0  | 95   | 2.4  | 0.09   | 0.34  | 0.25  | 34   | 700  | 13   | 9.4  | 3.7   | 35   | 8.6  | 860   | 0.7      |
| 5177            | ARD-2B-NW   | Schist                | AMEC 2010                | <0.1  | 8.0  | 13   | 67   | 3.6  | <0.09  | 0.40  | 2.6   | 36   | 780  | 8.0  | 9.1  | 2.5   | 26   | 8.6  | 280   | 53       |
| 5178            | ARD-2B-NW   | Schist                | AMEC 2010                | <0.1  | 7.1  | 0.9  | 2.6  | 0.63 | 0.09   | 0.59  | 0.26  | 73   | 2200 | 67   | 7.7  | 0.0   | 7    | 7.4  | 430   | 0.9      |
| MRARD10-035     | MR1-08-163  | Schist                | AMEC 2010                | <0.1  | 8.1  | <0.5 | 1470 | 3.3  | <0.09  | 0.16  | <0.2  | 9.1  | 14   | 5.8  | 7.5  | 3.4   | 140  | 3.7  | 480   | 0.4      |
| MRARD10-037     | MR1-08-160  | Schist                | AMEC 2010                | <0.1  | 3.6  | 1.5  | 220  | 0.49 | 0.28   | 0.025 | <0.2  | 5.1  | 110  | 40   | 5.4  | 1.4   | 7    | 1.7  | 250   | 2.3      |
| MRARD10-049     | MR1-08-163  | Schist                | AMEC 2010                | <0.1  | 9.1  | <0.5 | 3.9  | 0.88 | <0.09  | 0.22  | <0.2  | 25   | 31   | 2.3  | 13   | 0.012 | 10   | 5.2  | 2300  | 1.2      |
| MRARD10-058     | MR1-08-159  | Schist                | AMEC 2010                | <0.1  | 4.7  | <0.5 | 960  | 0.35 | 0.11   | 0.19  | <0.2  | 18   | 59   | 70   | 6.3  | 2.9   | 5    | 2.1  | 170   | 1.0      |
| MRARD10-085     | MR1-08-144  | Schist                | AMEC 2010                | <0.1  | 6    | 1.1  | 160  | 2.5  | 28     | 0.17  | <0.2  | 48   | 150  | 169  | 16   | 1.1   | 36   | 3.3  | 530   | 1.9      |
| MRARD10-096     | MR1-08-146  | Schist                | AMEC 2010                | <0.1  | 4.3  | <0.5 | 75   | 0.19 | <0.09  | 0.36  | <0.2  | 26   | 250  | 32   | 4.1  | 0.42  | 42   | 5.4  | 560   | 0.2      |
| MRARD10-099     | MR1-08-144  | Schist                | AMEC 2010                | <0.1  | 7.2  | <0.5 | 410  | 0.80 | <0.09  | 0.18  | <0.2  | 10   | 42   | 1.7  | 9.9  | 1.2   | 11   | 4.1  | 230   | 1.1      |
| MRARD10-121     | MR1-08-155  | Schist                | AMEC 2010                | <0.1  | 4.6  | <0.5 | 1000 | 0.44 | <0.09  | 0.21  | <0.2  | 11   | 83   | 4.8  | 6.5  | 2.6   | 8    | 2.3  | 280   | 0.5      |
| 5146            | ARD-2A-NW   | Schist                | AMEC 2010                | <0.1  | 7.5  | <0.5 | 540  | 0.37 | <0.09  | 0.22  | 0.03  | 28   | 180  | 11   | 8.9  | 6.0   | 49   | 5.7  | 810   | 31       |
| 5150            | ARD-2A-NW   | Schist                | AMEC 2010                | <0.1  | 3.3  | <0.5 | 350  | 0.60 | 3.1    | 0.36  | 0.17  | 24   | 260  | 66   | 4.1  | 2.1   | 49   | 3.4  | 550   | 2.9      |
| 5151            | ARD-2A-NW   | Schist                | AMEC 2010                | <0.1  | 4.0  | <0.5 | 650  | 0.43 | 0.73   | 0.49  | 1.1   | 23   | 310  | 150  | 4.9  | 3.0   | 43   | 3.3  | 550   | 0.8      |
| 5152            | ARD-2A-NW   | Schist                | AMEC 2010                | <0.1  | 2.9  | <0.5 | 450  | 0.30 | 0.34   | 0.14  | 2.1   | 11   | 74   | 260  | 4.1  | 2.2   | 32   | 1.6  | 490   | 2.1      |
| 5153            | ARD-2A-NW   | Schist                | AMEC 2010                | <0.1  | 4.9  | <0.5 | 370  | 0.96 | 4.2    | 0.37  | 0.56  | 24   | 100  | 170  | 6.5  | 2.3   | 69   | 4.2  | 880   | 6.3      |
| 5154            | ARD-2A-NW   | Schist                | AMEC 2010                | <0.1  | 2.0  | <0.5 | 250  | 0.12 | 0.70   | 0.23  | 0.14  | 7.0  | 75   | 20   | 3.1  | 1.5   | 22   | 0.9  | 460   | 37       |
| 5170            | ARD-2A-SE   | Schist                | AMEC 2010                | <0.1  | 1.8  | 0.7  | 93   | 0.54 | 0.34   | 1.10  | 0.45  | 21   | 390  | 110  | 2.6  | 1.5   | 27   | 1.7  | 290   | 1.1      |
| 5173            | ARD-2A-SE   | Schist                | AMEC 2010                | <0.1  | 1.5  | 0.5  | 70   | 0.31 | <0.09  | 1.00  | 0.10  | 15   | 370  | 34   | 2.3  | 1.3   | 34   | 1.4  | 260   | 1.3      |
| 5179            | ARD-2B-NW   | Schist                | AMEC 2010                | <0.1  | 5.5  | <0.5 | 160  | 5.1  | 0.10   | 0.09  | 0.03  | 10   | 100  | 1.9  | 3.8  | 2.1   | 52   | 4.5  | 490   | 2.1      |
| 5180            | ARD-2B-NW   | Schist                | AMEC 2010                | <0.1  | 7.3  | <0.5 | 270  | 3.3  | <0.09  | 0.18  | <0.02 | 6.4  | 17   | 0.7  | 3.1  | 3.5   | 92   | 5.7  | 440   | 0.8      |
| 5181            | ARD-2B-NW   | Schist                | AMEC 2010                | <0.1  | 8.4  | <0.5 | 490  | 3.2  | <0.09  | 0.31  | 0.02  | 14   | 34   | 7.6  | 5.5  | 4.3   | 81   | 5.6  | 420   | 0.6      |
| 5185            | ARD-2B-NW   | Schist                | AMEC 2010                | <0.1  | 3.7  | <0.5 | 220  | 0.57 | 0.14   | 0.54  | 0.03  | 21   | 49   | 36   | 5.0  | 2.0   | 24   | 2.3  | 410   | 0.2      |
| 5155            | ARD-2A-NW   | Schist/Gneiss         | AMEC 2010                | <0.1  | 1.6  | <0.5 | 83   | 0.56 | 0.71   | 0.11  | 0.26  | 4.3  | 110  | 12   | 2.1  | 1.0   | 31   | 1.0  | 400   | 6.2      |
| 5156            | ARD-2A-NW   | Schist/Gneiss         | AMEC 2010                | <0.1  | 2.3  | <0.5 | 250  | 0.25 | 0.17   | 0.32  | 0.27  | 8.3  | 72   | 15   | 4.1  | 1.8   | 24   | 1.2  | 560   | 47       |
| UCS27           | MR1-06-81   | Volcanic Tuff /Schist | Knight Piesold 2006-2007 |       | 9.3  | <6   | 38   | 1.1  | <34    | 0.6   | <4    | 56   | 1400 | 12   | 10   | 0.19  | 12   | 14.7 | 1300  | <u> </u> |
| MRARD10-077     | MR1-08-146  | Volcanic tuff         | AMEC 2010                | <0.1  | 4.9  | <0.5 | 1200 | 0.95 | <0.09  | 0.22  | <0.2  | 18   | 60   | 2.5  | 6.1  | 2.8   | 15   | 2.5  | 230   | 3.0      |
| MRARD10-079     | MR1-08-146  | Volcanic tuff         | AMEC 2010                | <0.1  | 3.8  | <0.5 | 53   | 0.07 | <0.09  | 4     | <0.2  | 16   | 88   | 105  | 1.1  | 0.22  | 8    | 0.52 | 510   | 0.1      |





Table B-3. Total Metal Concentrations by Lithology (continued)

|                 | B 1 - 1 - 1B   | Bard Tone             | OI' B                    | Na     | Ni   | Pb   | Sb   | Se    | Sn    | Sr   | Ti    | TI    | U     | ٧    | Zn   |
|-----------------|----------------|-----------------------|--------------------------|--------|------|------|------|-------|-------|------|-------|-------|-------|------|------|
| Sample ID       | Borehole ID    | Rock Type             | Sampling Program         | %      | μg/g | μg/g | μg/g | μg/g  | μg/g  | μg/g | %     | μg/g  | μg/g  | μg/g | μg/g |
| Average Concen  | tration (Basa  | t)*                   |                          | 1.8    | 130  | 6    | 0.2  | 0.05  | 1.5   | 465  | 1.38  | 2.1   | 1     | 250  | 105  |
| Ten Times Avera | age Concentra  | ation (Basalt)        |                          | 18     | 1300 | 60   | 2    | 0.5   | 15    | 4650 | 13.8  | 21    | 10    | 2500 | 1050 |
| Average Concen  | tration (Conti | nental Crustal)*      |                          | 2.355  | 84   | 14   | 0.2  | 0.05  | 2.3   | 370  | 0.565 | 0.85  | 2.7   | 120  | 70   |
| Ten Times Avera | age Concentra  | ation (Crustal)       |                          | 23.55  | 840  | 140  | 2    | 0.5   | 23    | 3700 | 5.65  | 8.5   | 27    | 1200 | 700  |
| 5144            | ARD-2A-NW      | Metasediment          | AMEC 2010                | 0.043  | 9.3  | 3.5  | <0.8 | < 0.7 | 2.6   | 4.1  | 0.37  | 0.60  | 1.8   | 69   | 69   |
| 5145            | ARD-2A-NW      | Metasediment          | AMEC 2010                | 0.059  | 18   | 3.4  | <0.8 | <0.7  | 1.9   | 5.4  | 0.38  | 0.78  | 1.4   | 73   | 68   |
| 5147            | ARD-2A-NW      | Metasediment          | AMEC 2010                | 0.057  | 6.7  | 6.9  | <0.8 | <0.7  | 1.8   | 7.8  | 0.20  | 0.54  | 4.2   | 26   | 65   |
| 5148            | ARD-2A-NW      | Metasediment          | AMEC 2010                | 0.045  | 8.2  | 9.4  | <0.8 | <0.7  | 7.2   | 6.5  | 0.20  | 0.51  | 6.7   | 43   | 97   |
| 5149            | ARD-2A-NW      | Metasediment          | AMEC 2010                | 0.056  | 7.1  | 39   | <0.8 | < 0.7 | 3.9   | 8.0  | 0.20  | 0.70  | 4.8   | 21   | 350  |
| 5161            | ARD-2A-SE      | Metasediment          | AMEC 2010                | 0.043  | 17   | 5.8  | <0.8 | <0.7  | 1.6   | 4.7  | 0.39  | 0.70  | 1.8   | 73   | 68   |
| 5162            | ARD-2A-SE      | Metasediment          | AMEC 2010                | 0.039  | 7.4  | 6.9  | <0.8 | 0.8   | 1.4   | 3.7  | 0.29  | 0.52  | 2.6   | 56   | 50   |
| 5163            | ARD-2A-SE      | Metasediment          | AMEC 2010                | 0.037  | 8.3  | 6.1  | <0.8 | < 0.7 | 2.0   | 3.9  | 0.33  | 0.72  | 3.1   | 53   | 60   |
| 5167            | ARD-2A-SE      | Metasediment          | AMEC 2010                | 0.066  | 7.9  | 9.3  | <0.8 | < 0.7 | 0.9   | 13   | 0.27  | 0.60  | 1.9   | 62   | 69   |
| 5168            | ARD-2A-SE      | Metasediment          | AMEC 2010                | 0.057  | 7.7  | 8.0  | <0.8 | < 0.7 | 1.7   | 9.3  | 0.33  | 0.74  | 2.7   | 63   | 61   |
| 5169            | ARD-2A-SE      | Metasediment          | AMEC 2010                | 0.079  | 4.8  | 52   | <0.8 | 0.8   | 1.2   | 14   | 0.11  | 0.26  | 7.6   | 13   | 67   |
| 5176            | ARD-2B-NW      | Schist                | AMEC 2010                | 0.057  | 150  | 13   | <0.8 | < 0.7 | 1.6   | 3.9  | 0.31  | 1.4   | 3.2   | 83   | 170  |
| 5177            | ARD-2B-NW      | Schist                | AMEC 2010                | 0.054  | 180  | 12   | <0.8 | <0.7  | 1.3   | 5.2  | 0.37  | 0.94  | 1.9   | 140  | 450  |
| 5178            | ARD-2B-NW      | Schist                | AMEC 2010                | 0.003  | 620  | 27   | <0.8 | 0.8   | <0.5  | 3.9  | 0.04  | 0.21  | 1.8   | 91   | 100  |
| MRARD10-035     | MR1-08-163     | Schist                | AMEC 2010                | 0.08   | 3.5  | 12   | <0.8 | <0.7  | 3.3   | 10   | 0.17  | 0.59  | 7.0   | 21   | 52   |
| MRARD10-037     | MR1-08-160     | Schist                | AMEC 2010                | 0.039  | 12   | 6.2  | <0.8 | < 0.7 | 1.0   | 2.5  | 0.11  | 0.36  | 1.2   | 16   | 9.9  |
| MRARD10-049     | MR1-08-163     | Schist                | AMEC 2010                | 0.0083 | 35   | 1.5  | <0.8 | <0.7  | <0.5  | 3.3  | 0.02  | <0.02 | 3.9   | 59   | 68   |
| MRARD10-058     | MR1-08-159     | Schist                | AMEC 2010                | 0.075  | 17   | 32   | <0.8 | < 0.7 | 3.0   | 8.4  | 0.26  | 0.71  | 1.4   | 140  | 9.3  |
| MRARD10-085     | MR1-08-144     | Schist                | AMEC 2010                | 0.027  | 92   | 113  | 1.2  | 0.7   | 1.2   | 2.8  | 0.09  | 0.89  | 0.88  | 130  | 26   |
| MRARD10-096     | MR1-08-146     | Schist                | AMEC 2010                | 0.022  | 110  | 4.2  | <0.8 | < 0.7 | < 0.5 | 5.4  | 0.13  | 0.11  | 0.044 | 110  | 26   |
| MRARD10-099     | MR1-08-144     | Schist                | AMEC 2010                | 0.021  | 9.5  | 5.0  | <0.8 | < 0.7 | 1.4   | 4.6  | 0.12  | 0.67  | 3.8   | 70   | 48   |
| MRARD10-121     | MR1-08-155     | Schist                | AMEC 2010                | 0.063  | 8.0  | 13   | <0.8 | <0.7  | 4.6   | 6.3  | 0.25  | 0.58  | 2.6   | 140  | 7.7  |
| 5146            | ARD-2A-NW      | Schist                | AMEC 2010                | 0.065  | 70   | 4.7  | <0.8 | < 0.7 | 1.2   | 4.0  | 0.63  | 1.6   | 0.47  | 170  | 170  |
| 5150            | ARD-2A-NW      | Schist                | AMEC 2010                | 0.043  | 110  | 3.7  | <0.8 | <0.7  | 2.7   | 7.1  | 0.33  | 1.0   | 2.3   | 98   | 120  |
| 5151            | ARD-2A-NW      | Schist                | AMEC 2010                | 0.064  | 110  | 7.6  | <0.8 | < 0.7 | 5.1   | 12   | 0.38  | 1.3   | 2.7   | 73   | 230  |
| 5152            | ARD-2A-NW      | Schist                | AMEC 2010                | 0.059  | 7.4  | 21   | <0.8 | <0.7  | 11    | 5.6  | 0.26  | 0.86  | 7.1   | 34   | 270  |
| 5153            | ARD-2A-NW      | Schist                | AMEC 2010                | 0.034  | 40   | 120  | <0.8 | <0.7  | 6.0   | 6.0  | 0.48  | 0.74  | 2.6   | 100  | 270  |
| 5154            | ARD-2A-NW      | Schist                | AMEC 2010                | 0.073  | 4.9  | 4.2  | <0.8 | <0.7  | 2.5   | 6.2  | 0.28  | 0.47  | 2.1   | 33   | 71   |
| 5170            | ARD-2A-SE      | Schist                | AMEC 2010                | 0.034  | 100  | 55   | <0.8 | 0.8   | 0.7   | 36   | 0.25  | 0.94  | 3.9   | 58   | 36   |
| 5173            | ARD-2A-SE      | Schist                | AMEC 2010                | 0.043  | 65   | 7.0  | <0.8 | 0.8   | <0.5  | 26   | 0.25  | 0.76  | 2.1   | 63   | 29   |
| 5179            | ARD-2B-NW      | Schist                | AMEC 2010                | 0.039  | 26   | 14   | <0.8 | 0.7   | 1.3   | 4.3  | 0.08  | 0.61  | 15    | 27   | 42   |
| 5180            | ARD-2B-NW      | Schist                | AMEC 2010                | 0.063  | 4.9  | 12   | <0.8 | <0.7  | 1.5   | 15   | 0.04  | 0.73  | 8.2   | 31   | 46   |
| 5181            | ARD-2B-NW      | Schist                | AMEC 2010                | 0.076  | 23   | 26   | <0.8 | <0.7  | 1.8   | 14   | 0.25  | 0.90  | 2.9   | 79   | 58   |
| 5185            | ARD-2B-NW      | Schist                | AMEC 2010                | 0.037  | 8.8  | 5.9  | <0.8 | <0.7  | 0.8   | 6.1  | 0.36  | 0.73  | 3.5   | 48   | 66   |
| 5155            | ARD-2A-NW      | Schist/Gneiss         | AMEC 2010                | 0.049  | 5.6  | 28   | <0.8 | <0.7  | 1.6   | 4.3  | 0.14  | 0.33  | 2.2   | 19   | 100  |
| 5156            | ARD-2A-NW      | Schist/Gneiss         | AMEC 2010                | 0.062  | 5.0  | 3.4  | <0.8 | <0.7  | 2.6   | 6.7  | 0.37  | 0.62  | 2.4   | 38   | 95   |
| UCS27           | MR1-06-81      | Volcanic Tuff /Schist | Knight Piesold 2006-2007 |        | 370  | 200  | 17   | <20   | <6    | 13   | 0.17  | <20   | <100  | 190  | 140  |
| MRARD10-077     | MR1-08-146     | Volcanic tuff         | AMEC 2010                | 0.062  | 10   | 12   | 8.0  | <0.7  | 2.5   | 6.7  | 0.26  | 1.1   | 1.8   | 150  | 44   |
| MRARD10-079     | MR1-08-146     | Volcanic tuff         | AMEC 2010                | 0.323  | 76   | 1.6  | <0.8 | < 0.7 | 1.0   | 49   | 0.10  | 0.07  | 0.069 | 43   | 10   |

\*Price (1997)

**Bold** value indicates an elevated concentration relatived to the compared values





### APPENDIX C LABORATORY CERTIFICATES OF ANALYSIS





### **LIST OF LABORATORY CERTIFICATES OF ANALYSIS**

- C-1 Acid Base Accounting
- C-2 Net Acid Generation Test
- C-3 Metals by Aqua-regia ExtractionC-4 Shake Flask Extraction Results
- C-5 Mineralogy by Rietveld XRD





# APPENDIX C-1 ACID BASE ACCOUNTING



Phone: 705-652-2000 FAX: 705-652-6365

### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Wednesday, October 20, 2010

31 August 2010 Date Rec. : LR Report: CA11531-AUG10

Copy: #2

### CERTIFICATE OF ANALYSIS

### Final Report - Revised

| Sample ID                 | Paste pH<br>units | Fizz Rate | Sample<br>weight(g) | HCI added<br>mL | HCI<br>Normality | NaOH<br>Normality | NaOH to<br>pH=8.3 mL | Final pH<br>units |
|---------------------------|-------------------|-----------|---------------------|-----------------|------------------|-------------------|----------------------|-------------------|
| 3: Analysis Approval Date | 29-Sep-10         | 29-Sep-10 | 29-Sep-10           | 29-Sep-10       | 29-Sep-10        | 29-Sep-10         | 29-Sep-10            | 29-Sep-10         |
| 4: Analysis Approval Time | 10:40             | 10:40     | 10:40               | 10:40           | 10:40            | 10:40             | 10:40                | 10:40             |
| 5: MR ARD-10-002          | 8.37              | 1         | 1.95                | 25.00           | 0.10             | 0.10              | 21.08                | 1.64              |
| 6: MR ARD-10-004          | 9.50              | 1         | 2.02                | 20.00           | 0.10             | 0.10              | 16.08                | 1.96              |
| 7: MR ARD-10-005          | 9.40              | 1         | 2.05                | 20.00           | 0.10             | 0.10              | 17.64                | 1.49              |
| 8: MR ARD-10-011          | 8.08              | 1         | 1.97                | 35.10           | 0.10             | 0.10              | 28.82                | 1.64              |
| 9: MR ARD-10-014          | 8.44              | 1         | 1.97                | 60.30           | 0.10             | 0.10              | 49.39                | 1.72              |
| 10: MR ARD-10-015         | 8.86              | 1         | 1.95                | 20.00           | 0.10             | 0.10              | 16.95                | 1.44              |
| 11: MR ARD-10-018         | 8.69              | 1         | 1.98                | 20.00           | 0.10             | 0.10              | 16.63                | 1.39              |
| 12: MR ARD-10-021         | 8.99              | 1         | 1.95                | 27.50           | 0.10             | 0.10              | 22.63                | 1.99              |
| 13: MR ARD-10-022         | 8.08              | 1         | 1.96                | 56.80           | 0.10             | 0.10              | 46.69                | 1.81              |
| 14: MR ARD-10-024         | 8.49              | 1         | 2.05                | 20.00           | 0.10             | 0.10              | 16.87                | 1.88              |
| 15: MR ARD-10-003         | 7.74              | 1         | 1.99                | 20.00           | 0.10             | 0.10              | 16.86                | 1.60              |
| 16: MR ARD-10-007         | 8.50              | 1         | 1.98                | 35.70           | 0.10             | 0.10              | 29.26                | 1.61              |
| 17: MR ARD-10-008         | 8.35              | 1         | 2.01                | 27.00           | 0.10             | 0.10              | 21.28                | 1.63              |
| 18: MR ARD-10-009         | 8.40              | 1         | 1.98                | 35.50           | 0.10             | 0.10              | 28.91                | 1.61              |
| 19: MR ARD-10-010         | 8.53              | 1         | 2.02                | 26.50           | 0.10             | 0.10              | 22.26                | 1.64              |
| 20: MR ARD-10-012         | 9.12              | 1         | 1.97                | 69.70           | 0.10             | 0.10              | 18.87                | 1.81              |
| 21: MR ARD-10-023         | 9.02              | 1         | 1.96                | 59.80           | 0.10             | 0.10              | 21.32                | 1.61              |
| 22: MR ARD-10-025         | 8.09              | 1         | 2.00                | 26.60           | 0.10             | 0.10              | 19.49                | 1.99              |
| 23: MR ARD-10-001         | 7.56              | 1         | 2.00                | 68.00           | 0.10             | 0.10              | 53.50                | 1.84              |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report :

| Sample ID         | Paste pH<br>units | Fizz Rate<br> | Sample<br>weight(g) | HCI added<br>mL | HCI<br>Normality | NaOH<br>Normality | NaOH to<br>pH=8.3 mL | Final pH<br>units |
|-------------------|-------------------|---------------|---------------------|-----------------|------------------|-------------------|----------------------|-------------------|
| 24: MR ARD-10-006 | 8.32              | 1             | 1.99                | 26.40           | 0.10             | 0.10              | 20.33                | 1.90              |
| 25: MR ARD-10-016 | 8.66              | 1             | 1.98                | 26.20           | 0.10             | 0.10              | 18.56                | 1.67              |
| 26: MR ARD-10-017 | 8.58              | 1             | 1.99                | 49.00           | 0.10             | 0.10              | 38.62                | 1.64              |
| 27: MR ARD-10-019 | 8.45              | 1             | 2.01                | 44.40           | 0.10             | 0.10              | 31.77                | 1.61              |
| 28: MR ARD-10-020 | 7.96              | 1             | 2.02                | 53.30           | 0.10             | 0.10              | 42.87                | 1.67              |
| 29: MR ARD-10-029 | 8.12              | 1             | 1.98                | 62.50           | 0.10             | 0.10              | 48.09                | 1.76              |
| 30: MR ARD-10-030 | 8.60              | 1             | 1.97                | 33.10           | 0.10             | 0.10              | 28.31                | 1.60              |
| 31: MR ARD-10-013 | 8.47              | 1             | 2.04                | 66.60           | 0.10             | 0.10              | 49.64                | 1.72              |
| 32: MR ARD-10-036 | 8.17              | 1             | 1.98                | 20.00           | 0.10             | 0.10              | 15.15                | 1.86              |
| 33: MR ARD-10-037 | 8.88              | 1             | 2.00                | 26.60           | 0.10             | 0.10              | 23.27                | 1.53              |
| 34: MR ARD-10-038 | 8.30              | 1             | 1.95                | 56.50           | 0.10             | 0.10              | 44.14                | 1.66              |
| 35: MR ARD-10-039 | 5.66              | 1             | 2.02                | 32.90           | 0.10             | 0.10              | 33.35                | 1.61              |
| 36: MR ARD-10-040 | 9.41              | 1             | 2.05                | 26.50           | 0.10             | 0.10              | 17.99                | 1.70              |
| 37: MR ARD-10-041 | 8.25              | 1             | 1.99                | 34.10           | 0.10             | 0.10              | 24.22                | 1.63              |
| 38: MR ARD-10-057 | 9.49              | 1             | 1.97                | 20.00           | 0.10             | 0.10              | 15.93                | 1.96              |
| 39: MR ARD-10-026 | 8.33              | 1             | 1.99                | 37.10           | 0.10             | 0.10              | 29.02                | 1.66              |
| 40: MR ARD-10-032 | 8.26              | 1             | 2.01                | 26.30           | 0.10             | 0.10              | 21.76                | 1.90              |
| 41: MR ARD-10-034 | 9.00              | 1             | 1.98                | 20.00           | 0.10             | 0.10              | 16.95                | 1.48              |
| 42: MR ARD-10-035 | 7.89              | 1             | 1.98                | 27.10           | 0.10             | 0.10              | 23.27                | 1.63              |
| 43: MR ARD-10-046 | 9.05              | 1             | 1.99                | 20.00           | 0.10             | 0.10              | 17.34                | 1.37              |
| 44: MR ARD-10-047 | 8.50              | 1             | 1.97                | 20.00           | 0.10             | 0.10              | 14.31                | 1.85              |
| 45: MR ARD-10-048 | 7.94              | 1             | 2.01                | 25.80           | 0.10             | 0.10              | 21.23                | 1.89              |
| 46: MR ARD-10-049 | 8.15              | 1             | 2.02                | 36.00           | 0.10             | 0.10              | 29.40                | 1.60              |
| 47: MR ARD-10-027 | 8.46              | 1             | 2.03                | 37.60           | 0.10             | 0.10              | 31.61                | 1.58              |
| 48: MR ARD-10-028 | 8.18              | 1             | 1.98                | 20.00           | 0.10             | 0.10              | 15.90                | 1.95              |
| 49: MR ARD-10-031 | 9.23              | 1             | 1.96                | 20.00           | 0.10             | 0.10              | 18.20                | 1.22              |
| 50: MR ARD-10-033 | 9.36              | 1             | 2.00                | 20.00           | 0.10             | 0.10              | 17.40                | 1.36              |
| 51: MR ARD-10-043 | 9.53              | 1             | 2.05                | 26.20           | 0.10             | 0.10              | 22.10                | 1.63              |
| 52: MR ARD-10-045 | 9.61              | 1             | 2.03                | 20.00           | 0.10             | 0.10              | 17.40                | 1.46              |
| 53: MR ARD-10-103 | 7.97              | 1             | 1.96                | 27.60           | 0.10             | 0.10              | 20.60                | 1.71              |
| 54: MR ARD-10-044 | 8.48              | 1             | 1.99                | 20.00           | 0.10             | 0.10              | 16.00                | 1.68              |
| 55: MR ARD-10-100 | 9.42              | 2             | 1.96                | 35.30           | 0.10             | 0.10              | 23.30                | 1.65              |
| 56: MR ARD-10-102 | 8.91              | 1             | 1.99                | 26.20           | 0.10             | 0.10              | 22.30                | 1.61              |
| 57: MR ARD-10-104 | 8.41              | 1             | 1.96                | 20.00           | 0.10             | 0.10              | 16.60                | 1.63              |
| 58: MR ARD-10-105 | 8.20              | 1             | 2.04                | 28.00           | 0.10             | 0.10              | 21.60                | 1.78              |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report: CA11531-AUG10

| Sample ID         | Paste pH<br>units | Fizz Rate | Sample<br>weight(g) | HCI added<br>mL | HCI<br>Normality | NaOH<br>Normality | NaOH to<br>pH=8.3 mL | Final pH<br>units |
|-------------------|-------------------|-----------|---------------------|-----------------|------------------|-------------------|----------------------|-------------------|
| 59: MR ARD-10-106 | 8.52              | 1         | 2.00                | 20.00           | 0.10             | 0.10              | 16.50                | 1.89              |
| 60: MR ARD-10-107 | 8.27              | 1         | 1.98                | 37.20           | 0.10             | 0.10              | 29.30                | 1.71              |
| 61: MR ARD-10-108 | 8.35              | 1         | 1.96                | 27.40           | 0.10             | 0.10              | 18.80                | 1.81              |
| 62: MR ARD-10-109 | 7.64              | 1         | 1.98                | 42.50           | 0.10             | 0.10              | 31.90                | 2.00              |
| 63: MR ARD-10-092 | 7.67              | 1         | 1.97                | 39.20           | 0.10             | 0.10              | 30.00                | 1.55              |
| 64: MR ARD-10-093 | 7.15              | 1         | 2.04                | 20.00           | 0.10             | 0.10              | 17.80                | 1.72              |
| 65: MR ARD-10-094 | 8.17              | 1         | 1.98                | 37.10           | 0.10             | 0.10              | 26.60                | 1.62              |
| 66: MR ARD-10-095 | 9.27              | 1         | 1.98                | 27.20           | 0.10             | 0.10              | 19.80                | 1.68              |
| 67: MR ARD-10-096 | 8.88              | 1         | 1.99                | 27.50           | 0.10             | 0.10              | 18.20                | 1.71              |
| 68: MR ARD-10-098 | 9.53              | 1         | 2.00                | 27.70           | 0.10             | 0.10              | 21.90                | 1.61              |
| 69: MR ARD-10-099 | 8.99              | 1         | 2.00                | 40.60           | 0.10             | 0.10              | 33.10                | 1.76              |
| 70: MR ARD-10-101 | 8.16              | 1         | 1.96                | 33.30           | 0.10             | 0.10              | 24.90                | 1.65              |
| 71: MR ARD-10-080 | 7.94              | 1         | 2.04                | 26.50           | 0.10             | 0.10              | 18.20                | 1.86              |
| 72: MR ARD-10-085 | 7.80              | 1         | 2.03                | 38.40           | 0.10             | 0.10              | 32.40                | 1.71              |
| 73: MR ARD-10-087 | 8.83              | 3         | 1.96                | 74.90           | 0.10             | 0.10              | 37.20                | 1.65              |
| 74: MR ARD-10-088 | 8.52              | 1         | 2.00                | 37.40           | 0.10             | 0.10              | 26.70                | 1.77              |
| 75: MR ARD-10-089 | 8.72              | 1         | 2.01                | 45.80           | 0.10             | 0.10              | 28.30                | 1.80              |
| 76: MR ARD-10-090 | 9.54              | 1         | 1.97                | 20.00           | 0.10             | 0.10              | 15.00                | 1.66              |
| 77: MR ARD-10-091 | 8.26              | 1         | 2.00                | 20.00           | 0.10             | 0.10              | 16.60                | 1.69              |
| 78: MR ARD-10-097 | 9.63              | 1         | 1.95                | 20.00           | 0.10             | 0.10              | 13.50                | 1.70              |
| 79: MR ARD-10-077 | 9.81              | 1         | 2.00                | 27.70           | 0.10             | 0.10              | 21.60                | 1.92              |
| 80: MR ARD-10-078 | 8.33              | 1         | 1.97                | 27.90           | 0.10             | 0.10              | 22.80                | 1.79              |
| 81: MR ARD-10-079 | 9.28              | 3         | 2.01                | 51.20           | 0.10             | 0.10              | 25.50                | 1.69              |
| 82: MR ARD-10-081 | 9.34              | 1         | 1.98                | 20.00           | 0.10             | 0.10              | 16.80                | 1.72              |
| 83: MR ARD-10-083 | 8.90              | 1         | 1.98                | 20.00           | 0.10             | 0.10              | 14.40                | 1.59              |
| 84: MR ARD-10-084 | 8.69              | 1         | 1.96                | 26.60           | 0.10             | 0.10              | 19.70                | 1.72              |
| 85: MR ARD-10-086 | 8.43              | 1         | 2.02                | 38.90           | 0.10             | 0.10              | 31.00                | 1.69              |
| 86: MR ARD-10-067 | 8.63              | 1         | 1.98                | 28.50           | 0.10             | 0.10              | 22.90                | 1.67              |
| 87: MR ARD-10-068 | 7.58              | 1         | 1.98                | 28.70           | 0.10             | 0.10              | 23.80                | 2.00              |
| 88: MR ARD-10-070 | 8.07              | 1         | 2.02                | 20.00           | 0.10             | 0.10              | 14.90                | 1.72              |
| 89: MR ARD-10-071 | 8.00              | 1         | 2.05                | 65.50           | 0.10             | 0.10              | 49.80                | 1.78              |
| 90: MR ARD-10-072 | 7.99              | 1         | 1.96                | 67.70           | 0.10             | 0.10              | 50.40                | 1.85              |
| 91: MR ARD-10-074 | 7.31              | 1         | 2.05                | 25.00           | 0.10             | 0.10              | 21.70                | 1.60              |
| 92: MR ARD-10-075 | 7.72              | 1         | 1.97                | 20.00           | 0.10             | 0.10              | 15.50                | 1.87              |
| 93: MR ARD-10-076 | 8.19              | 1         | 1.98                | 47.80           | 0.10             | 0.10              | 35.40                | 1.65              |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11531-AUG10

| Sample ID          | Paste pH<br>units | Fizz Rate<br> | Sample<br>weight(g) | HCI added<br>mL | HCI<br>Normality | NaOH<br>Normality | NaOH to<br>pH=8.3 mL | Final pH<br>units |
|--------------------|-------------------|---------------|---------------------|-----------------|------------------|-------------------|----------------------|-------------------|
| 94: MR ARD-10-082  | 8.77              | 1             | 1.96                | 27.20           | 0.10             | 0.10              | 10.70                | 1.74              |
| 95: MR ARD-10-060  | 8.07              | 1             | 1.99                | 29.80           | 0.10             | 0.10              | 24.20                | 1.91              |
| 96: MR ARD-10-062  | 8.07              | 1             | 1.97                | 36.00           | 0.10             | 0.10              | 26.50                | 1.66              |
| 97: MR ARD-10-063  | 8.14              | 1             | 1.96                | 37.20           | 0.10             | 0.10              | 28.30                | 1.69              |
| 98: MR ARD-10-064  | 7.20              | 1             | 1.99                | 38.80           | 0.10             | 0.10              | 32.20                | 1.71              |
| 99: MR ARD-10-065  | 8.01              | 1             | 1.97                | 20.00           | 0.10             | 0.10              | 15.80                | 1.73              |
| 100: MR ARD-10-066 | 8.31              | 1             | 1.95                | 36.80           | 0.10             | 0.10              | 29.40                | 1.65              |
| 101: MR ARD-10-069 | 6.14              | 1             | 2.05                | 20.00           | 0.10             | 0.10              | 19.60                | 1.22              |
| 102: MR ARD-10-073 | 7.72              | 1             | 2.00                | 33.60           | 0.10             | 0.10              | 25.20                | 1.64              |
| 103: MR ARD-10-042 | 9.22              | 2             | 2.00                | 53.90           | 0.10             | 0.10              | 35.50                | 1.62              |
| 104: MR ARD-10-050 | 7.88              | 1             | 2.00                | 27.90           | 0.10             | 0.10              | 20.90                | 1.93              |
| 105: MR ARD-10-052 | 8.15              | 1             | 1.96                | 20.00           | 0.10             | 0.10              | 14.50                | 1.71              |
| 106: MR ARD-10-055 | 9.21              | 1             | 1.97                | 20.00           | 0.10             | 0.10              | 16.20                | 1.83              |
| 107: MR ARD-10-056 | 8.30              | 1             | 2.00                | 37.90           | 0.10             | 0.10              | 31.20                | 1.61              |
| 108: MR ARD-10-058 | 9.87              | 1             | 1.98                | 26.00           | 0.10             | 0.10              | 21.10                | 1.64              |
| 109: MR ARD-10-059 | 9.40              | 1             | 1.99                | 20.00           | 0.10             | 0.10              | 14.50                | 1.87              |
| 110: MR ARD-10-61  | 8.55              | 1             | 2.02                | 36.30           | 0.10             | 0.10              | 25.80                | 1.67              |
| 111: MR ARD-10-053 | 9.50              | 2             | 1.99                | 20.00           | 0.10             | 0.10              | 12.40                | 1.72              |
| 112: MR ARD-10-054 | 9.04              | 2             | 1.99                | 27.20           | 0.10             | 0.10              | 16.60                | 1.78              |
| 113: MR ARD-10-119 | 8.04              | 1             | 1.97                | 37.10           | 0.10             | 0.10              | 29.80                | 1.61              |
| 114: MR ARD-10-120 | 8.24              | 1             | 1.97                | 20.00           | 0.10             | 0.10              | 17.80                | 1.27              |
| 115: MR ARD-10-121 | 9.67              | 1             | 2.00                | 27.00           | 0.10             | 0.10              | 20.80                | 1.91              |
| 116: MR ARD-10-122 | 8.46              | 1             | 2.01                | 28.10           | 0.10             | 0.10              | 17.40                | 1.90              |
| 117: MR ARD-10-123 | 9.23              | 1             | 1.98                | 46.10           | 0.10             | 0.10              | 36.90                | 1.66              |
| 118: MR ARD-10-110 | 9.02              | 1             | 1.97                | 20.00           | 0.10             | 0.10              | 17.30                | 1.40              |
| 119: MR ARD-10-111 | 8.30              | 1             | 2.02                | 27.30           | 0.10             | 0.10              | 22.50                | 2.01              |
| 120: MR ARD-10-112 | 9.02              | 3             | 1.99                | 60.10           | 0.10             | 0.10              | 26.80                | 1.61              |
| 121: MR ARD-10-116 | 7.33              | 1             | 1.97                | 48.80           | 0.10             | 0.10              | 38.70                | 1.70              |
| 122: MR ARD-10-051 | 8.09              | 3             | 2.05                | 75.20           | 0.10             | 0.10              | 34.80                | 1.65              |
| 123: MR ARD-10-113 | 8.61              | 1             | 1.96                | 37.30           | 0.10             | 0.10              | 26.80                | 1.70              |
| 124: MR ARD-10-114 | 9.53              | 1             | 2.03                | 20.00           | 0.10             | 0.10              | 16.30                | 1.59              |
| 125: MR ARD-10-115 | 9.29              | 1             | 2.04                | 20.00           | 0.10             | 0.10              | 14.80                | 1.99              |
| 126: MR ARD-10-117 | 8.86              | 1             | 1.97                | 38.50           | 0.10             | 0.10              | 31.50                | 1.60              |
| 127: MR ARD-10-118 | 8.46              | 1             | 2.02                | 25.20           | 0.10             | 0.10              | 18.00                | 1.69              |
| 128: MR ARD-10-124 | 8.47              | 1             | 2.00                | 20.00           | 0.10             | 0.10              | 16.70                | 1.96              |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11531-AUG10

| Sample ID          | Paste pH<br>units | Fizz Rate | Sample<br>weight(g) | HCI added<br>mL | HCI<br>Normality | NaOH<br>Normality | NaOH to<br>pH=8.3 mL | Final pH<br>units |
|--------------------|-------------------|-----------|---------------------|-----------------|------------------|-------------------|----------------------|-------------------|
| 129: MR ARD-10-125 | 9.26              | 1         | 2.00                | 20.00           | 0.10             | 0.10              | 17.50                | 1.37              |
| 130: MR ARD-10-126 | 7.44              | 1         | 1.98                | 26.40           | 0.10             | 0.10              | 23.20                | 1.66              |
| 131: MR ARD-10-127 | 8.10              | 1         | 2.04                | 25.60           | 0.10             | 0.10              | 19.40                | 1.65              |
| 132: MR ARD-10-128 | 8.40              | 1         | 1.99                | 52.30           | 0.10             | 0.10              | 40.60                | 1.76              |
| 133: MR ARD-10-129 | 4.26              | 1         | 2.01                | 20.00           | 0.10             | 0.10              | 22.60                | 1.56              |
| 134: MR ARD-10-130 | 8.74              | 1         | 2.00                | 32.60           | 0.10             | 0.10              | 22.60                | 1.65              |
| 135: MR ARD-10-131 | 8.02              | 1         | 1.99                | 90.60           | 0.10             | 0.10              | 54.00                | 1.70              |

Brian Graha**l**n B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Wednesday, October 20, 2010

**Date Rec. :** 31 August 2010 **CA11531-AUG10** 

**Copy:** #2

# CERTIFICATE OF ANALYSIS Final Report - Revised

| Sample ID                 | NP<br>t CaCO3/1000t | AP<br>t CaCO3/1000 t | Net NP<br>t CaCO3/1000 t | NP/AP<br>ratio | Total<br>Sulphur | Acid Leachable<br>SO4-S | Sulphide-S<br>% | Total<br>Carbon | Carbonate<br>(CO3) |
|---------------------------|---------------------|----------------------|--------------------------|----------------|------------------|-------------------------|-----------------|-----------------|--------------------|
|                           |                     |                      |                          |                | %                | %                       |                 | %               | %                  |
| 3: Analysis Approval Date | 29-Sep-10           | 29-Sep-10            | 29-Sep-10                | 29-Sep-10      | 29-Sep-10        | 29-Sep-10               | 27-Sep-10       | 30-Sep-10       | 21-Sep-10          |
| 4: Analysis Approval Time | 10:40               | 10:51                | 10:51                    | 10:51          | 10:47            | 10:47                   | 16:20           | 09:39           | 13:07              |
| 5: MR ARD-10-002          | 10.1                | 0.31                 | 9.79                     | 32.6           | 0.016            | 0.02                    | < 0.01          | 0.017           | 0.037              |
| 6: MR ARD-10-004          | 9.7                 | 0.31                 | 9.39                     | 31.3           | 0.016            | 0.02                    | < 0.01          | 0.013           | 0.026              |
| 7: MR ARD-10-005          | 5.8                 | 0.31                 | 5.49                     | 18.7           | 0.015            | 0.02                    | < 0.01          | 0.009           | 0.011              |
| 8: MR ARD-10-011          | 15.9                | 0.31                 | 15.6                     | 51.3           | 0.026            | 0.03                    | < 0.01          | 0.014           | < 0.005            |
| 9: MR ARD-10-014          | 27.7                | 0.31                 | 27.4                     | 89.4           | 0.029            | 0.03                    | < 0.01          | 0.019           | 0.022              |
| 10: MR ARD-10-015         | 7.8                 | 0.31                 | 7.49                     | 25.2           | 0.016            | 0.02                    | < 0.01          | 0.013           | 0.033              |
| 11: MR ARD-10-018         | 8.5                 | 3.68                 | 4.82                     | 2.31           | 0.142            | 0.02                    | 0.12            | 0.284           | 1.19               |
| 12: MR ARD-10-021         | 12.5                | 0.42                 | 12.1                     | 29.4           | 0.099            | 0.09                    | 0.01            | 0.012           | 0.035              |
| 13: MR ARD-10-022         | 25.8                | 0.31                 | 25.5                     | 83.2           | 0.026            | 0.03                    | < 0.01          | 0.018           | 0.030              |
| 14: MR ARD-10-024         | 7.6                 | 0.31                 | 7.29                     | 24.5           | 0.055            | 0.04                    | 0.01            | 0.014           | 0.035              |
| 15: MR ARD-10-003         | 7.9                 | 0.31                 | 7.59                     | 25.5           | 0.029            | 0.03                    | < 0.01          | 0.407           | 1.57               |
| 16: MR ARD-10-007         | 16.3                | 0.62                 | 15.7                     | 26.3           | 0.198            | 0.18                    | 0.02            | 0.023           | 0.053              |
| 17: MR ARD-10-008         | 14.2                | 0.31                 | 13.9                     | 45.8           | 0.075            | 0.08                    | < 0.01          | 0.017           | 0.026              |
| 18: MR ARD-10-009         | 16.6                | 4.77                 | 11.8                     | 3.48           | 0.285            | 0.13                    | 0.15            | 0.017           | 0.027              |
| 19: MR ARD-10-010         | 10.5                | 0.31                 | 10.2                     | 33.9           | < 0.005          | < 0.01                  | < 0.01          | 0.016           | 0.116              |
| 20: MR ARD-10-012         | 129                 | 0.31                 | 129                      | 416            | 0.055            | 0.06                    | < 0.01          | 1.07            | 4.54               |
| 21: MR ARD-10-023         | 98.2                | 0.31                 | 97.9                     | 317            | 0.054            | 0.05                    | < 0.01          | 0.738           | 2.97               |
| 22: MR ARD-10-025         | 17.8                | 0.31                 | 17.5                     | 57.4           | 0.056            | 0.06                    | < 0.01          | 0.021           | 0.148              |
| 23: MR ARD-10-001         | 36.2                | 2.40                 | 33.8                     | 15.1           | 0.320            | 0.24                    | 0.08            | 0.029           | < 0.005            |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report :

| Sample ID         | NP<br>t CaCO3/1000t | AP<br>t CaCO3/1000 t | Net NP<br>t CaCO3/1000 t | NP/AP<br>ratio | Total<br>Sulphur<br>% | Acid Leachable<br>SO4-S<br>% | Sulphide-S<br>% | Total<br>Carbon<br>% | Carbonate<br>(CO3)<br>% |
|-------------------|---------------------|----------------------|--------------------------|----------------|-----------------------|------------------------------|-----------------|----------------------|-------------------------|
| 24: MR ARD-10-006 | 15.3                | 0.62                 | 14.7                     | 24.7           | 0.056                 | 0.04                         | 0.02            | 0.019                | 0.007                   |
| 25: MR ARD-10-016 | 19.3                | 5.65                 | 13.6                     | 3.41           | 0.271                 | 0.09                         | 0.18            | 0.026                | 0.047                   |
| 26: MR ARD-10-017 | 26.1                | 2.18                 | 23.9                     | 12.0           | 0.153                 | 0.09                         | 0.07            | 0.024                | 0.030                   |
| 27: MR ARD-10-019 | 31.4                | 0.31                 | 31.1                     | 101            | 0.075                 | 0.08                         | < 0.01          | 0.048                | 0.015                   |
| 28: MR ARD-10-020 | 25.8                | 7.88                 | 17.9                     | 3.27           | 0.463                 | 0.21                         | 0.25            | 0.015                | 0.015                   |
| 29: MR ARD-10-029 | 36.4                | 3.28                 | 33.1                     | 11.1           | 0.240                 | 0.14                         | 0.10            | 0.018                | < 0.005                 |
| 30: MR ARD-10-030 | 12.2                | 5.80                 | 6.40                     | 2.10           | 0.268                 | 0.08                         | 0.19            | 0.015                | 0.050                   |
| 31: MR ARD-10-013 | 41.6                | 0.31                 | 41.3                     | 134            | 0.098                 | 0.10                         | < 0.01          | 0.026                | 0.011                   |
| 32: MR ARD-10-036 | 12.2                | 2.81                 | 9.39                     | 4.34           | 0.250                 | 0.16                         | 0.09            | 0.015                | 0.051                   |
| 33: MR ARD-10-037 | 8.3                 | 1.56                 | 6.74                     | 5.32           | 0.158                 | 0.10                         | 0.05            | 0.020                | 0.057                   |
| 34: MR ARD-10-038 | 31.7                | 0.31                 | 31.4                     | 102            | 0.124                 | 0.12                         | < 0.01          | 0.022                | < 0.005                 |
| 35: MR ARD-10-039 | -1.10               | 0.31                 | -1.41                    | -3.55          | 0.382                 | 0.38                         | < 0.01          | 0.126                | 0.538                   |
| 36: MR ARD-10-040 | 20.8                | 0.62                 | 20.2                     | 33.5           | 0.133                 | 0.11                         | 0.02            | 0.070                | 0.176                   |
| 37: MR ARD-10-041 | 24.8                | 0.31                 | 24.5                     | 80.0           | 0.073                 | 0.07                         | < 0.01          | 0.041                | 0.045                   |
| 38: MR ARD-10-057 | 10.3                | 7.41                 | 2.89                     | 1.39           | 0.426                 | 0.19                         | 0.24            | 0.014                | 0.042                   |
| 39: MR ARD-10-026 | 20.3                | 8.58                 | 11.7                     | 2.36           | 0.556                 | 0.28                         | 0.27            | 0.021                | 0.019                   |
| 40: MR ARD-10-032 | 11.3                | 0.31                 | 11.0                     | 36.5           | 0.084                 | 0.08                         | < 0.01          | 0.017                | < 0.005                 |
| 41: MR ARD-10-034 | 7.7                 | 1.56                 | 6.14                     | 4.94           | 0.183                 | 0.13                         | 0.05            | 0.012                | 0.009                   |
| 42: MR ARD-10-035 | 9.7                 | 0.31                 | 9.39                     | 31.3           | 0.007                 | < 0.01                       | < 0.01          | 0.020                | 0.207                   |
| 43: MR ARD-10-046 | 6.7                 | 0.31                 | 6.39                     | 21.6           | < 0.005               | < 0.01                       | < 0.01          | < 0.005              | 0.045                   |
| 44: MR ARD-10-047 | 14.4                | 0.31                 | 14.1                     | 46.5           | < 0.005               | < 0.01                       | < 0.01          | 0.011                | < 0.005                 |
| 45: MR ARD-10-048 | 11.4                | 3.43                 | 7.97                     | 3.32           | 0.214                 | 0.10                         | 0.11            | 0.030                | < 0.005                 |
| 46: MR ARD-10-049 | 16.3                | 0.31                 | 16.0                     | 52.6           | 0.014                 | 0.01                         | < 0.01          | 0.021                | < 0.005                 |
| 47: MR ARD-10-027 | 14.7                | 0.31                 | 14.4                     | 47.4           | 0.034                 | 0.03                         | < 0.01          | 0.030                | 0.065                   |
| 48: MR ARD-10-028 | 10.3                | 14.6                 | -4.28                    | 0.71           | 0.650                 | 0.18                         | 0.47            | 0.010                | 0.013                   |
| 49: MR ARD-10-031 | 4.6                 | 0.31                 | 4.29                     | 14.8           | 0.009                 | < 0.01                       | < 0.01          | < 0.005              | < 0.005                 |
| 50: MR ARD-10-033 | 6.5                 | 0.31                 | 6.19                     | 21.0           | 0.016                 | 0.02                         | < 0.01          | < 0.005              | < 0.005                 |
| 51: MR ARD-10-043 | 10.0                | 0.31                 | 9.69                     | 32.3           | 0.020                 | 0.02                         | < 0.01          | 0.006                | < 0.005                 |
| 52: MR ARD-10-045 | 6.4                 | 0.31                 | 6.09                     | 20.6           | 0.025                 | 0.01                         | 0.01            | < 0.005              | < 0.005                 |
| 53: MR ARD-10-103 | 17.9                | 0.31                 | 17.6                     | 57.7           | 0.089                 | 0.09                         | < 0.01          | 0.020                | 0.062                   |
| 54: MR ARD-10-044 | 10.1                | 25.6                 | -15.5                    | 0.39           | 1.13                  | 0.31                         | 0.82            | 0.012                | < 0.005                 |
| 55: MR ARD-10-100 | 30.6                | 0.31                 | 30.3                     | 98.7           | 0.018                 | 0.02                         | < 0.01          | 0.225                | 0.921                   |
| 56: MR ARD-10-102 | 9.8                 | 0.31                 | 9.49                     | 31.6           | 0.013                 | 0.01                         | < 0.01          | 0.042                | 0.094                   |
| 57: MR ARD-10-104 | 8.7                 | 0.31                 | 8.39                     | 28.1           | 0.009                 | < 0.01                       | < 0.01          | < 0.005              | < 0.005                 |
| 58: MR ARD-10-105 | 15.7                | 18.9                 | -3.23                    | 0.83           | 0.870                 | 0.26                         | 0.61            | 0.065                | 0.079                   |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report :

| Sample ID         | NP<br>t CaCO3/1000t | AP<br>t CaCO3/1000 t | Net NP<br>t CaCO3/1000 t | NP/AP<br>ratio | Total<br>Sulphur<br>% | Acid Leachable<br>SO4-S<br>% | Sulphide-S<br>% | Total<br>Carbon<br>% | Carbonate<br>(CO3)<br>% |
|-------------------|---------------------|----------------------|--------------------------|----------------|-----------------------|------------------------------|-----------------|----------------------|-------------------------|
| 59: MR ARD-10-106 | 8.8                 | 2.83                 | 5.97                     | 3.11           | 0.158                 | 0.07                         | 0.09            | < 0.005              | 0.026                   |
| 60: MR ARD-10-107 | 19.9                | 0.62                 | 19.3                     | 32.1           | 0.049                 | 0.03                         | 0.02            | 0.007                | < 0.005                 |
| 61: MR ARD-10-108 | 21.9                | 0.31                 | 21.6                     | 70.6           | 0.012                 | 0.01                         | < 0.01          | 0.008                | 0.026                   |
| 62: MR ARD-10-109 | 26.8                | 1.25                 | 25.6                     | 21.4           | 0.229                 | 0.18                         | 0.04            | 0.032                | < 0.005                 |
| 63: MR ARD-10-092 | 23.4                | 9.54                 | 13.9                     | 2.45           | 0.594                 | 0.29                         | 0.31            | 0.006                | < 0.005                 |
| 64: MR ARD-10-093 | 5.4                 | 0.31                 | 5.09                     | 17.4           | 0.015                 | 0.02                         | < 0.01          | 0.021                | 0.059                   |
| 65: MR ARD-10-094 | 26.5                | 3.93                 | 22.6                     | 6.75           | 0.253                 | 0.13                         | 0.13            | 0.017                | 0.012                   |
| 66: MR ARD-10-095 | 18.7                | 5.74                 | 13.0                     | 3.26           | 0.252                 | 0.07                         | 0.18            | 0.087                | 0.257                   |
| 67: MR ARD-10-096 | 23.4                | 0.31                 | 23.1                     | 75.5           | 0.009                 | < 0.01                       | < 0.01          | 0.079                | 0.200                   |
| 68: MR ARD-10-098 | 14.5                | 0.31                 | 14.2                     | 46.8           | 0.009                 | < 0.01                       | < 0.01          | 0.045                | 0.086                   |
| 69: MR ARD-10-099 | 18.8                | 0.31                 | 18.5                     | 60.6           | < 0.005               | <0.01                        | < 0.01          | 0.010                | < 0.005                 |
| 70: MR ARD-10-101 | 21.4                | 1.25                 | 20.2                     | 17.1           | 0.086                 | 0.04                         | 0.04            | 0.012                | < 0.005                 |
| 71: MR ARD-10-080 | 20.3                | 31.2                 | -10.9                    | 0.65           | 1.28                  | 0.28                         | 1.00            | 0.009                | 0.008                   |
| 72: MR ARD-10-085 | 14.8                | 186                  | -172                     | 0.08           | 6.13                  | 0.17                         | 5.96            | 0.005                | < 0.005                 |
| 73: MR ARD-10-087 | 96.2                | 11.1                 | 85.1                     | 8.67           | 0.447                 | 0.09                         | 0.36            | 0.966                | 4.31                    |
| 74: MR ARD-10-088 | 26.8                | 0.62                 | 26.2                     | 43.2           | 0.033                 | 0.02                         | 0.02            | 0.110                | 0.315                   |
| 75: MR ARD-10-089 | 43.5                | 1.56                 | 41.9                     | 27.9           | 0.075                 | 0.03                         | 0.05            | 0.212                | 0.780                   |
| 76: MR ARD-10-090 | 12.7                | 0.31                 | 12.4                     | 41.0           | 0.012                 | 0.01                         | < 0.01          | 0.009                | < 0.005                 |
| 77: MR ARD-10-091 | 8.5                 | 0.31                 | 8.19                     | 27.4           | 0.013                 | 0.01                         | < 0.01          | 0.006                | < 0.005                 |
| 78: MR ARD-10-097 | 16.7                | 0.31                 | 16.4                     | 53.9           | 0.019                 | 0.02                         | < 0.01          | 0.087                | 0.268                   |
| 79: MR ARD-10-077 | 15.2                | 0.31                 | 14.9                     | 49.0           | < 0.005               | < 0.01                       | < 0.01          | 0.006                | 0.015                   |
| 80: MR ARD-10-078 | 12.9                | 2.92                 | 9.98                     | 4.41           | 0.124                 | 0.03                         | 0.09            | < 0.005              | < 0.005                 |
| 81: MR ARD-10-079 | 63.9                | 1.25                 | 62.6                     | 51.1           | 0.102                 | 0.06                         | 0.04            | 0.654                | 2.82                    |
| 82: MR ARD-10-081 | 8.1                 | 0.31                 | 7.79                     | 26.1           | < 0.005               | < 0.01                       | < 0.01          | 0.007                | 0.013                   |
| 83: MR ARD-10-083 | 14.1                | 0.31                 | 13.8                     | 45.5           | 0.016                 | 0.02                         | < 0.01          | 0.045                | 0.069                   |
| 84: MR ARD-10-084 | 17.6                | 0.31                 | 17.3                     | 56.8           | 0.016                 | 0.02                         | < 0.01          | 0.040                | 0.067                   |
| 85: MR ARD-10-086 | 19.6                | 2.19                 | 17.4                     | 8.95           | 0.107                 | 0.04                         | 0.07            | 0.012                | < 0.005                 |
| 86: MR ARD-10-067 | 14.1                | 0.31                 | 13.8                     | 45.5           | 0.019                 | 0.02                         | < 0.01          | 0.008                | 0.181                   |
| 87: MR ARD-10-068 | 12.4                | 30.3                 | -17.94                   | 0.41           | 1.18                  | 0.21                         | 0.97            | 0.007                | 0.144                   |
| 88: MR ARD-10-070 | 12.6                | 0.31                 | 12.3                     | 40.6           | 0.028                 | 0.03                         | < 0.01          | < 0.005              | 0.033                   |
| 89: MR ARD-10-071 | 38.3                | 2.50                 | 35.8                     | 15.3           | 0.098                 | 0.02                         | 0.08            | 0.013                | < 0.005                 |
| 90: MR ARD-10-072 | 44.1                | 0.31                 | 43.8                     | 142            | 0.034                 | 0.03                         | < 0.01          | 0.008                | < 0.005                 |
| 91: MR ARD-10-074 | 8.0                 | 18.0                 | -10.0                    | 0.44           | 0.664                 | 0.09                         | 0.58            | 0.019                | 0.288                   |
| 92: MR ARD-10-075 | 11.4                | 0.31                 | 11.1                     | 36.8           | 0.026                 | 0.03                         | < 0.01          | < 0.005              | < 0.005                 |
| 93: MR ARD-10-076 | 31.3                | 0.31                 | 31.0                     | 101.0          | 0.037                 | 0.02                         | 0.01            | 0.081                | 0.164                   |



P.O. Box 4300 - 185 Concession St.

Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365 LR Report :

| Sample ID          | NP<br>t CaCO3/1000t | AP<br>t CaCO3/1000 t | Net NP<br>t CaCO3/1000 t | NP/AP<br>ratio | Total<br>Sulphur<br>% | Acid Leachable<br>SO4-S<br>% | Sulphide-S<br>% | Total<br>Carbon<br>% | Carbonate<br>(CO3)<br>% |
|--------------------|---------------------|----------------------|--------------------------|----------------|-----------------------|------------------------------|-----------------|----------------------|-------------------------|
| 94: MR ARD-10-082  | 42.1                | 3.12                 | 39.0                     | 13.5           | 0.120                 | 0.02                         | 0.10            | 0.437                | 1.55                    |
| 95: MR ARD-10-060  | 14.1                | 3.88                 | 10.2                     | 3.63           | 0.185                 | 0.06                         | 0.12            | 0.006                | < 0.005                 |
| 96: MR ARD-10-062  | 24.1                | 0.31                 | 23.8                     | 77.7           | 0.065                 | 0.06                         | < 0.01          | 0.069                | < 0.005                 |
| 97: MR ARD-10-063  | 22.7                | 5.13                 | 17.6                     | 4.42           | 0.305                 | 0.14                         | 0.16            | 0.017                | < 0.005                 |
| 98: MR ARD-10-064  | 16.6                | 0.94                 | 15.7                     | 17.7           | 0.266                 | 0.23                         | 0.03            | 0.043                | 0.026                   |
| 99: MR ARD-10-065  | 10.7                | 0.31                 | 10.4                     | 34.5           | 0.023                 | 0.01                         | 0.01            | < 0.005              | 0.100                   |
| 100: MR ARD-10-066 | 19.0                | 4.33                 | 14.7                     | 4.39           | 0.199                 | 0.06                         | 0.14            | 0.016                | 0.026                   |
| 101: MR ARD-10-069 | 1.0                 | 22.6                 | -21.6                    | 0.04           | 0.847                 | 0.12                         | 0.72            | 1.14                 | 5.24                    |
| 102: MR ARD-10-073 | 21.0                | 0.31                 | 20.7                     | 67.7           | 0.018                 | 0.02                         | < 0.01          | 0.009                | 0.005                   |
| 103: MR ARD-10-042 | 46.0                | 0.62                 | 45.4                     | 74.2           | 0.039                 | 0.02                         | 0.02            | 0.362                | 1.34                    |
| 104: MR ARD-10-050 | 17.5                | 0.31                 | 17.2                     | 56.5           | 0.014                 | 0.01                         | < 0.01          | 0.029                | < 0.005                 |
| 105: MR ARD-10-052 | 14.0                | 0.62                 | 13.4                     | 22.6           | 0.055                 | 0.03                         | 0.02            | 0.084                | 0.195                   |
| 106: MR ARD-10-055 | 9.6                 | 9.16                 | 0.44                     | 1.05           | 0.360                 | 0.07                         | 0.29            | 0.006                | < 0.005                 |
| 107: MR ARD-10-056 | 16.8                | 0.31                 | 16.5                     | 54.2           | 0.008                 | < 0.01                       | < 0.01          | 0.009                | 0.010                   |
| 108: MR ARD-10-058 | 12.4                | 6.60                 | 5.80                     | 1.88           | 0.295                 | 0.08                         | 0.21            | < 0.005              | 0.019                   |
| 109: MR ARD-10-059 | 13.8                | 0.31                 | 13.5                     | 44.5           | 0.008                 | < 0.01                       | < 0.01          | 0.013                | 0.263                   |
| 110: MR ARD-10-61  | 26.0                | 0.31                 | 25.7                     | 83.9           | 0.009                 | < 0.01                       | < 0.01          | 0.019                | < 0.005                 |
| 111: MR ARD-10-053 | 19.1                | 1.87                 | 17.2                     | 10.2           | 0.092                 | 0.03                         | 0.06            | 0.126                | 0.616                   |
| 112: MR ARD-10-054 | 26.6                | 0.31                 | 26.3                     | 85.8           | 0.009                 | < 0.01                       | < 0.01          | 0.177                | 0.632                   |
| 113: MR ARD-10-119 | 18.5                | 0.31                 | 18.2                     | 59.7           | 0.021                 | 0.02                         | < 0.01          | 0.007                | < 0.005                 |
| 114: MR ARD-10-120 | 5.6                 | 9.22                 | -3.62                    | 0.61           | 0.457                 | 0.16                         | 0.30            | 0.013                | 0.178                   |
| 115: MR ARD-10-121 | 15.5                | 0.31                 | 15.2                     | 50.0           | 0.020                 | < 0.01                       | 0.01            | 0.007                | 0.119                   |
| 116: MR ARD-10-122 | 26.6                | 5.88                 | 20.7                     | 4.53           | 0.312                 | 0.12                         | 0.19            | 0.012                | < 0.005                 |
| 117: MR ARD-10-123 | 23.2                | 10.2                 | 13.0                     | 2.27           | 0.455                 | 0.13                         | 0.33            | < 0.005              | < 0.005                 |
| 118: MR ARD-10-110 | 6.9                 | 0.31                 | 6.59                     | 22.3           | < 0.005               | < 0.01                       | < 0.01          | 0.010                | < 0.005                 |
| 119: MR ARD-10-111 | 11.9                | 0.31                 | 11.6                     | 38.4           | 0.010                 | 0.01                         | < 0.01          | 0.009                | < 0.005                 |
| 120: MR ARD-10-112 | 83.7                | 0.31                 | 83.4                     | 270            | 0.009                 | < 0.01                       | < 0.01          | 0.871                | 4.03                    |
| 121: MR ARD-10-116 | 25.6                | 32.7                 | -7.14                    | 0.78           | 1.29                  | 0.25                         | 1.05            | 0.036                | 0.120                   |
| 122: MR ARD-10-051 | 98.5                | 7.42                 | 91.1                     | 13.3           | 0.354                 | 0.12                         | 0.24            | 0.967                | 3.79                    |
| 123: MR ARD-10-113 | 26.8                | 1.25                 | 25.6                     | 21.4           | 0.032                 | < 0.01                       | 0.04            | 0.014                | < 0.005                 |
| 124: MR ARD-10-114 | 9.1                 | 1.87                 | 7.23                     | 4.87           | 0.085                 | 0.03                         | 0.06            | 0.006                | < 0.005                 |
| 125: MR ARD-10-115 | 12.7                | 0.31                 | 12.4                     | 41.0           | 0.012                 | < 0.01                       | 0.01            | 0.012                | < 0.005                 |
| 126: MR ARD-10-117 | 17.8                | 3.12                 | 14.7                     | 5.71           | 0.086                 | < 0.01                       | 0.10            | 0.018                | 0.033                   |
| 127: MR ARD-10-118 | 17.8                | 0.31                 | 17.5                     | 57.4           | 0.009                 | <0.01                        | < 0.01          | 0.015                | 0.008                   |
| 128: MR ARD-10-124 | 8.2                 | 0.31                 | 7.89                     | 26.5           | 0.005                 | <0.01                        | < 0.01          | 0.009                | < 0.005                 |

SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11531-AUG10

| Sample ID          | NP<br>t CaCO3/1000t | AP<br>t CaCO3/1000 t | Net NP<br>t CaCO3/1000 t | NP/AP<br>ratio | Total<br>Sulphur<br>% | Acid Leachable<br>SO4-S<br>% | Sulphide-S<br>% | Total<br>Carbon<br>% | Carbonate<br>(CO3)<br>% |
|--------------------|---------------------|----------------------|--------------------------|----------------|-----------------------|------------------------------|-----------------|----------------------|-------------------------|
| 129: MR ARD-10-125 | 6.2                 | 0.31                 | 5.89                     | 20.0           | < 0.005               | < 0.01                       | < 0.01          | 0.010                | 0.011                   |
| 130: MR ARD-10-126 | 8.1                 | 0.42                 | 7.68                     | 19.2           | 0.011                 | < 0.01                       | 0.01            | 0.012                | < 0.005                 |
| 131: MR ARD-10-127 | 15.2                | 0.33                 | 14.9                     | 46.3           | 0.005                 | < 0.01                       | 0.01            | 0.022                | < 0.005                 |
| 132: MR ARD-10-128 | 29.4                | 6.29                 | 23.1                     | 4.67           | 0.220                 | 0.02                         | 0.20            | 0.012                | 0.026                   |
| 133: MR ARD-10-129 | -6.50               | 305                  | -312                     | -0.02          | 12.4                  | 2.63                         | 9.77            | 1.50                 | 6.67                    |
| 134: MR ARD-10-130 | 25.0                | 1.59                 | 23.4                     | 15.7           | 0.051                 | < 0.01                       | 0.05            | 0.117                | 0.381                   |
| 135: MR ARD-10-131 | 92.0                | 5.76                 | 86.2                     | 16.0           | 0.292                 | 0.11                         | 0.18            | 4.27                 | 7.90                    |

\*NP (Neutralization Potential)
= 50 x (N of HCL x Total HCL added - N NaOH x NaOH added)

Weight of Sample

\*AP (Acid Potential) = % Sulphide Sulphur x 31.25 \*Net NP (Net Neutralization Potential) = NP-AP

NP/AP Ratio = NP/AP

\*Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material Samples with a % Sulphide value of <0.01 will be calculated using a 0.01 value.

Sulphur analysis performed following BC ARD Guidelines (Price 1997)

Brian Graha**l**n B.Sc. Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West, Toronto, ON

Canada, M5H 1T1

Phone: 416-364-8820, Fax:pdf

Tuesday, October 05, 2010

Date Rec.: 16 September 2010 LR Report: CA11049-SEP10

**Copy:** #1

# CERTIFICATE OF ANALYSIS Final Report

| Analysis                 | 3:<br>Analysis<br>Approval<br>Date | 4:<br>Analysis<br>Approval<br>Time | 5:<br>5141 | 6:<br>5142 | 7:<br>5143 | 8:<br>5144 | 9:<br>5145 | 10:<br>5146 | 11:<br>5147 | 12:<br>5148 | 13:<br>5149 | 14:<br>5150 | 15:<br>5151 |
|--------------------------|------------------------------------|------------------------------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sample Date & Time       |                                    |                                    | Date:N/A   | Date:N/A   | Date:N/A   | Date:N/A   | Date:N/A   | Date:N/A    | Date:N/A    | Date:N/A    | Date:N/A    | Date:N/A    | Date:N/A    |
| Paste pH [units]         | 29-Sep-10                          | 13:45                              | 9.01       | 9.93       | 9.92       | 9.86       | 9.88       | 9.58        | 10.03       | 10.03       | 9.98        | 9.43        | 9.78        |
| Fizz Rate []             | 29-Sep-10                          | 13:45                              | 1          | 1          | 1          | 1          | 1          | 1           | 1           | 1           | 1           | 1           | 1           |
| Sample [weight(g)]       | 29-Sep-10                          | 13:45                              | 2.03       | 1.98       | 1.99       | 1.97       | 1.95       | 2.03        | 1.95        | 2.01        | 1.99        | 1.98        | 1.96        |
| HCl added [mL]           | 29-Sep-10                          | 13:45                              | 25.70      | 20.00      | 20.00      | 20.00      | 20.00      | 26.40       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       |
| HCI [Normality]          | 29-Sep-10                          | 13:45                              | 0.10       | 0.10       | 0.10       | 0.10       | 0.10       | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        |
| NaOH [Normality]         | 29-Sep-10                          | 13:45                              | 0.10       | 0.10       | 0.10       | 0.10       | 0.10       | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        |
| NaOH to [pH=8.3 mL]      | 29-Sep-10                          | 13:45                              | 19.80      | 15.60      | 16.20      | 16.40      | 15.70      | 19.50       | 16.90       | 15.30       | 15.60       | 13.70       | 13.70       |
| Final pH [units]         | 29-Sep-10                          | 13:45                              | 1.63       | 1.68       | 1.48       | 1.47       | 1.56       | 1.64        | 1.34        | 1.57        | 1.46        | 1.82        | 1.94        |
| NP [t CaCO3/1000t]       | 29-Sep-10                          | 13:45                              | 14.5       | 11.1       | 9.5        | 9.1        | 11.0       | 17.0        | 7.9         | 11.7        | 11.1        | 15.9        | 16.1        |
| AP [t CaCO3/1000 t]      | 30-Sep-10                          | 14:14                              | 1.87       | 2.81       | 0.31       | 0.31       | 0.31       | 0.31        | 0.62        | 0.31        | 1.25        | 0.31        | 2.19        |
| Net NP [t CaCO3/1000 t]  | 30-Sep-10                          | 14:14                              | 12.6       | 8.29       | 9.19       | 8.79       | 10.7       | 16.7        | 7.28        | 11.4        | 9.85        | 15.6        | 13.9        |
| NP/AP [ratio]            | 30-Sep-10                          | 14:14                              | 7.75       | 3.95       | 30.6       | 29.4       | 35.5       | 54.8        | 12.7        | 37.7        | 8.88        | 51.3        | 7.35        |
| Total Sulphur [%]        | 30-Sep-10                          | 09:39                              | 0.142      | 0.140      | 0.027      | 0.347      | 0.008      | 0.044       | 0.075       | 0.013       | 0.099       | 0.024       | 0.130       |
| Acid Leachable SO4-S [%] | 30-Sep-10                          | 14:12                              | 0.08       | 0.05       | 0.03       | 0.35       | < 0.01     | 0.04        | 0.05        | 0.01        | 0.06        | 0.02        | 0.06        |
| Sulphide-S [%]           | 30-Sep-10                          | 14:13                              | 0.06       | 0.09       | < 0.01     | < 0.01     | < 0.01     | < 0.01      | 0.02        | < 0.01      | 0.04        | < 0.01      | 0.07        |
| Total Carbon [%]         | 30-Sep-10                          | 09:40                              | 0.021      | 0.024      | 0.016      | 0.020      | 0.015      | 0.029       | 0.024       | 0.025       | 0.029       | 0.028       | 0.019       |
| Carbonate (CO3) [%]      | 28-Sep-10                          | 14:41                              | < 0.005    | < 0.005    | 0.008      | < 0.005    | < 0.005    | 0.051       | 0.021       | 0.025       | < 0.005     | 0.020       | 0.012       |



I P Poport : CA1

P.O. Box 4300 - 185 Concession St.

Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365 LR Report :

CA11049-SEP10

Brian Graha**l**m B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West, Toronto, ON

Canada, M5H 1T1

Phone: 416-364-8820, Fax:pdf

Tuesday, October 05, 2010

Date Rec.: 16 September 2010 LR Report: CA11049-SEP10

**Copy:** #1

## CERTIFICATE OF ANALYSIS Final Report

| Analysis                 | 16:<br>5152 | 17:<br>5153 | 18:<br>5154 | 19:<br>5155 | 20:<br>5156 | 21:<br>5157 | 22:<br>5158 | 23:<br>5159 | 24:<br>5160 | 25:<br>5161 | 26:<br>5162 | 27:<br>5163 | 28:<br>5164 |
|--------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                          | 0102        | 0100        | 0104        | 0100        | 0100        | 0107        | 0100        | 0100        | 0100        | 0.01        | 0102        | 0100        | 0104        |
| Sample Date & Time       | Date:N/A    |
| Paste pH [units]         | 9.99        | 8.99        | 10.07       | 9.27        | 9.82        | 9.89        | 10.03       | 9.48        | 9.70        | 10.06       | 10.09       | 10.10       | 10.08       |
| Fizz Rate []             | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           |
| Sample [weight(g)]       | 1.98        | 1.97        | 2.01        | 1.99        | 1.96        | 1.99        | 1.99        | 1.96        | 1.99        | 2.05        | 2.02        | 1.95        | 1.95        |
| HCl added [mL]           | 20.00       | 25.80       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 25.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       |
| HCI [Normality]          | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        |
| NaOH [Normality]         | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        |
| NaOH to [pH=8.3 mL]      | 16.40       | 19.40       | 16.60       | 17.20       | 15.50       | 15.40       | 15.10       | 19.60       | 15.40       | 16.20       | 16.50       | 16.70       | 16.90       |
| Final pH [units]         | 1.55        | 1.60        | 1.35        | 1.27        | 1.57        | 1.62        | 1.88        | 1.65        | 1.42        | 1.38        | 1.34        | 1.37        | 1.35        |
| NP [t CaCO3/1000t]       | 9.1         | 16.2        | 8.5         | 7.0         | 11.5        | 11.6        | 12.3        | 13.8        | 11.6        | 9.3         | 8.7         | 8.5         | 7.9         |
| AP [t CaCO3/1000 t]      | 0.62        | 0.62        | 0.31        | 0.31        | 1.25        | 1.56        | 2.50        | 4.06        | 0.31        | 0.31        | 0.31        | 0.31        | 0.62        |
| Net NP [t CaCO3/1000 t]  | 8.48        | 15.6        | 8.19        | 6.69        | 10.2        | 10.0        | 9.80        | 9.74        | 11.3        | 8.99        | 8.39        | 8.19        | 7.28        |
| NP/AP [ratio]            | 14.7        | 26.1        | 27.4        | 22.6        | 9.20        | 7.45        | 4.92        | 3.40        | 37.4        | 30.0        | 28.1        | 27.4        | 12.7        |
| Total Sulphur [%]        | 0.062       | 0.081       | 0.032       | < 0.005     | 0.070       | 0.103       | 0.174       | 0.220       | 0.013       | 0.011       | < 0.005     | 0.008       | 0.056       |
| Acid Leachable SO4-S [%] | 0.04        | 0.06        | 0.03        | < 0.01      | 0.03        | 0.05        | 0.10        | 0.09        | 0.01        | 0.01        | < 0.01      | < 0.01      | 0.03        |
| Sulphide-S [%]           | 0.02        | 0.02        | < 0.01      | < 0.01      | 0.04        | 0.05        | 0.08        | 0.13        | < 0.01      | < 0.01      | < 0.01      | < 0.01      | 0.02        |
| Total Carbon [%]         | 0.016       | 0.022       | 0.021       | 0.013       | 0.015       | 0.020       | 0.017       | 0.018       | 0.054       | 0.013       | 0.016       | 0.014       | 0.017       |
| Carbonate (CO3) [%]      | 0.007       | 0.010       | 0.010       | 0.012       | 0.020       | 0.033       | 0.012       | 0.011       | 0.177       | 0.017       | 0.048       | 0.021       | 0.031       |



I P Poport : CA1

P.O. Box 4300 - 185 Concession St.

Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365 LR Report :

CA11049-SEP10

Brian Graha**l**m B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West, Toronto, ON

Canada, M5H 1T1

Phone: 416-364-8820, Fax:pdf

Tuesday, October 05, 2010

Date Rec.: 16 September 2010 LR Report: CA11049-SEP10

**Copy:** #1

## CERTIFICATE OF ANALYSIS Final Report

| Analysis                 | 29:<br>5165 | 30:<br>5166 | 31:<br>5167 | 32:<br>5168 | 33:<br>5169 | 34:<br>5170 | 35:<br>5171 | 36:<br>5172 | 37:<br>5173 | 38:<br>5174 | 39:<br>5175 | 40:<br>5176 |
|--------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                          | 0.00        | 0.00        |             | 0.00        | 0.00        | ••          | •           | · · · · -   | 00          | •           | ••          |             |
| Sample Date & Time       | Date:N/A    |
| Paste pH [units]         | 9.80        | 9.94        | 10.03       | 10.05       | 10.18       | 9.87        | 5.53        | 9.24        | 8.27        | 9.24        | 9.04        | 8.81        |
| Fizz Rate []             | 2           | 1           | 1           | 1           | 1           | 2           | 1           | 1           | 1           | 1           | 1           | 1           |
| Sample [weight(g)]       | 1.96        | 2.01        | 2.01        | 2.05        | 1.96        | 1.96        | 2.01        | 2.02        | 1.99        | 2.04        | 2.04        | 1.96        |
| HCl added [mL]           | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 27.50       |
| HCI [Normality]          | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        |
| NaOH [Normality]         | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        |
| NaOH to [pH=8.3 mL]      | 13.90       | 15.70       | 15.20       | 15.10       | 17.10       | 9.90        | 16.40       | 15.80       | 11.10       | 18.50       | 17.90       | 18.90       |
| Final pH [units]         | 1.31        | 1.70        | 1.58        | 1.52        | 1.17        | 1.88        | 1.20        | 1.34        | 1.77        | 1.16        | 1.24        | 1.76        |
| NP [t CaCO3/1000t]       | 15.6        | 10.7        | 11.9        | 12.0        | 7.4         | 25.8        | 9.0         | 10.4        | 22.4        | 3.7         | 5.1         | 21.9        |
| AP [t CaCO3/1000 t]      | 0.31        | 0.31        | 0.94        | 0.31        | 0.62        | 3.75        | 7.18        | 2.57        | 0.31        | 1.56        | 0.31        | 0.62        |
| Net NP [t CaCO3/1000 t]  | 15.3        | 10.4        | 11.0        | 11.7        | 6.78        | 22.0        | 1.82        | 7.83        | 22.1        | 2.14        | 4.79        | 21.3        |
| NP/AP [ratio]            | 50.3        | 34.5        | 12.7        | 38.7        | 11.9        | 6.88        | 1.25        | 4.05        | 72.3        | 2.37        | 16.5        | 35.3        |
| Total Sulphur [%]        | 0.014       | 0.034       | 0.071       | 0.021       | 0.137       | 0.194       | 0.399       | 0.137       | 0.018       | 0.068       | 0.010       | 0.095       |
| Acid Leachable SO4-S [%] | 0.01        | 0.03        | 0.04        | 0.02        | 0.12        | 0.08        | 0.17        | 0.06        | 0.02        | 0.02        | 0.01        | 0.08        |
| Sulphide-S [%]           | < 0.01      | < 0.01      | 0.03        | < 0.01      | 0.02        | 0.12        | 0.23        | 80.0        | < 0.01      | 0.05        | < 0.01      | 0.02        |
| Total Carbon [%]         | 0.109       | 0.019       | 0.024       | 0.032       | 0.038       | 0.125       | 0.054       | 0.066       | 0.101       | 0.014       | 0.012       | 0.017       |
| Carbonate (CO3) [%]      | 0.396       | 0.022       | 0.027       | 0.083       | 0.062       | 0.434       | 0.168       | 0.178       | 0.289       | < 0.005     | 0.017       | 0.041       |



I P Poport : CA1

P.O. Box 4300 - 185 Concession St.

Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365 LR Report :

CA11049-SEP10

Brian Graha**l**m B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West, Toronto, ON

Canada, M5H 1T1

Phone: 416-364-8820, Fax:pdf

Tuesday, October 05, 2010

Date Rec.: 16 September 2010 LR Report: CA11049-SEP10

**Copy:** #1

## CERTIFICATE OF ANALYSIS Final Report

| Analysis                 | 41:<br>5177 | 42:<br>5178 | 43:<br>5179 | 44:<br>5180 | 45:<br>5181 | 46:<br>5182 | 47:<br>5183 | 48:<br>5184 | 49:<br>5185 | 50:<br>5186 | 51:<br>5187 | 52:<br>5188 | 53:<br>5189 |
|--------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                          |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Sample Date & Time       | Date:N/A    |
| Paste pH [units]         | 9.02        | 8.45        | 8.79        | 8.88        | 8.81        | 9.53        | 9.81        | 9.76        | 9.62        | 9.49        | 9.27        | 9.78        | 9.32        |
| Fizz Rate []             | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           |
| Sample [weight(g)]       | 1.95        | 1.97        | 1.98        | 2.04        | 1.99        | 1.99        | 2.02        | 2.01        | 1.99        | 1.97        | 2.01        | 2.05        | 1.98        |
| HCl added [mL]           | 27.20       | 27.10       | 20.00       | 20.00       | 25.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       | 20.00       |
| HCI [Normality]          | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        |
| NaOH [Normality]         | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        |
| NaOH to [pH=8.3 mL]      | 17.70       | 18.20       | 16.30       | 14.60       | 19.40       | 15.60       | 17.00       | 15.00       | 14.90       | 14.70       | 15.40       | 15.70       | 14.60       |
| Final pH [units]         | 1.79        | 1.67        | 1.45        | 1.81        | 1.64        | 1.79        | 1.44        | 1.80        | 1.81        | 1.91        | 1.72        | 1.49        | 1.84        |
| NP [t CaCO3/1000t]       | 24.4        | 22.6        | 9.3         | 13.2        | 14.1        | 11.1        | 7.4         | 12.4        | 12.8        | 13.5        | 11.4        | 10.5        | 13.6        |
| AP [t CaCO3/1000 t]      | 0.31        | 28.4        | 0.31        | 0.31        | 0.31        | 16.8        | 0.31        | 0.31        | 1.56        | 0.62        | 0.31        | 0.31        | 0.31        |
| Net NP [t CaCO3/1000 t]  | 24.1        | -5.77       | 8.99        | 12.9        | 13.8        | -5.66       | 7.09        | 12.1        | 11.2        | 12.9        | 11.1        | 10.2        | 13.3        |
| NP/AP [ratio]            | 78.7        | 0.80        | 30.0        | 42.6        | 45.5        | 0.66        | 23.9        | 40.0        | 8.21        | 21.8        | 36.8        | 33.9        | 43.9        |
| Total Sulphur [%]        | 0.139       | 1.46        | 0.038       | 0.034       | 0.027       | 0.658       | 0.032       | 0.021       | 0.089       | 0.094       | 0.023       | 0.018       | 0.020       |
| Acid Leachable SO4-S [%] | 0.14        | 0.55        | 0.04        | 0.03        | 0.03        | 0.12        | 0.03        | 0.02        | 0.04        | 80.0        | 0.02        | 0.02        | 0.02        |
| Sulphide-S [%]           | < 0.01      | 0.91        | < 0.01      | < 0.01      | < 0.01      | 0.54        | < 0.01      | < 0.01      | 0.05        | 0.02        | < 0.01      | < 0.01      | < 0.01      |
| Total Carbon [%]         | 0.018       | 0.018       | 0.023       | 0.020       | 0.016       | 0.013       | 0.014       | 0.026       | 0.018       | 0.020       | 0.015       | 0.023       | 0.013       |
| Carbonate (CO3) [%]      | < 0.005     | 0.152       | < 0.005     | < 0.005     | < 0.005     | < 0.005     | < 0.005     | 0.021       | 0.078       | < 0.005     | < 0.005     | 0.040       | < 0.005     |

SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11049-SEP10

\*NP (Neutralization Potential)
= 50 x (N of HCL x Total HCL added - N NaOH x NaOH added)
Weight of Sample

\*AP (Acid Potential) = % Sulphide Sulphur x 31.25
\*Net NP (Net Neutralization Potential) = NP-AP
NP/AP Ratio = NP/AP

\*Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material Samples with a % Sulphide value of <0.01 will be calculated using a 0.01 value.

Sulphur analysis performed following BC ARD Guidelines (Price 1997)

Brian Graha**i**n B.Sc. Project Specialist





## APPENDIX C-2 NET ACID GENERATION TEST



P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

**Baffinland Iron Mines Corp** 

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Wednesday, September 29, 2010

Date Rec.: 31 August 2010 LR Report: CA11532-AUG10

**Copy:** #1

| Sample ID                 | Sample<br>weight(g) | vol H2O2<br>mL | Final pH<br>units | NaOH<br>Normality | Vol NaOH to PH 4.5<br>mL | Vol NaOH to PH 7.0<br>mL | NAG (pH 4.5)<br>kg H2SO4/tonne | NAG (pH 7.0)<br>kg H2SO4/tonne |
|---------------------------|---------------------|----------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------------|--------------------------------|
| 3: Analysis Approval Date | 24-Sep-10           | 24-Sep-10      | 24-Sep-10         | 24-Sep-10         | 24-Sep-10                | 24-Sep-10                | 24-Sep-10                      | 24-Sep-10                      |
| 4: Analysis Approval Time | 08:56               | 08:56          | 08:56             | 08:56             | 08:56                    | 08:56                    | 08:56                          | 08:56                          |
| 5: MR ARD-10-002          | 1.48                | 150            | 7.67              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 6: MR ARD-10-004          | 1.52                | 150            | 7.72              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 7: MR ARD-10-005          | 1.54                | 150            | 7.30              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 8: MR ARD-10-011          | 1.46                | 150            | 7.64              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 9: MR ARD-10-014          | 1.48                | 150            | 7.98              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 10: MR ARD-10-015         | 1.50                | 150            | 7.47              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 11: MR ARD-10-018         | 1.46                | 150            | 4.96              | 0.10              | 0.00                     | 0.30                     | 0.0                            | 1.0                            |
| 12: MR ARD-10-021         | 1.54                | 150            | 7.00              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 13: MR ARD-10-022         | 1.51                | 150            | 7.97              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 14: MR ARD-10-024         | 1.49                | 150            | 7.33              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 15: MR ARD-10-003         | 1.47                | 150            | 7.40              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 16: MR ARD-10-007         | 1.52                | 150            | 6.90              | 0.10              | 0.00                     | 0.10                     | 0.0                            | 0.3                            |
| 17: MR ARD-10-008         | 1.46                | 150            | 7.88              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 18: MR ARD-10-009         | 1.47                | 150            | 6.74              | 0.10              | 0.00                     | 0.10                     | 0.0                            | 0.3                            |
| 19: MR ARD-10-010         | 1.53                | 150            | 7.63              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 20: MR ARD-10-012         | 1.46                | 150            | 9.37              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 21: MR ARD-10-023         | 1.50                | 150            | 9.09              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 22: MR ARD-10-025         | 1.46                | 150            | 8.02              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 23: MR ARD-10-001         | 1.49                | 150            | 7.17              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 24: MR ARD-10-006         | 1.51                | 150            | 7.73              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report: CA11532-AUG10

| Sample ID         | Sample    | vol H2O2 | Final pH | NaOH      | Vol NaOH to PH 4.5 | Vol NaOH to PH 7.0 | NAG (pH 4.5)   | NAG (pH 7.0)   |
|-------------------|-----------|----------|----------|-----------|--------------------|--------------------|----------------|----------------|
|                   | weight(g) | mL       | units    | Normality | mL                 | mL                 | kg H2SO4/tonne | kg H2SO4/tonne |
| 25: MR ARD-10-016 | 1.49      | 150      | 6.77     | 0.10      | 0.00               | 0.10               | 0.0            | 0.3            |
| 26: MR ARD-10-017 | 1.50      | 150      | 7.43     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 27: MR ARD-10-019 | 1.50      | 150      | 7.85     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 28: MR ARD-10-020 | 1.51      | 150      | 5.80     | 0.10      | 0.00               | 0.00 0.30          |                | 1.0            |
| 29: MR ARD-10-029 | 1.48      | 150      | 7.26     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 30: MR ARD-10-030 | 1.50      | 150      | 4.45     | 0.10      | 0.10               | 0.40               | 0.3            | 1.3            |
| 31: MR ARD-10-013 | 1.50      | 150      | 7.63     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 32: MR ARD-10-036 | 1.49      | 150      | 6.81     | 0.10      | 0.00               | 0.10               | 0.0            | 0.3            |
| 33: MR ARD-10-037 | 1.50      | 150      | 6.57     | 0.10      | 0.00               | 0.10               | 0.0            | 0.3            |
| 34: MR ARD-10-038 | 1.53      | 150      | 7.64     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 35: MR ARD-10-039 | 1.54      | 150      | 5.29     | 0.10      | 0.00               | 0.40               | 0.0            | 1.3            |
| 36: MR ARD-10-040 | 1.47      | 150      | 8.02     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 37: MR ARD-10-041 | 1.53      | 150      | 7.84     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 38: MR ARD-10-057 | 1.52      | 150      | 3.46     | 0.10      | 0.70               | 1.60               | 2.3            | 5.2            |
| 39: MR ARD-10-026 | 1.53      | 150      | 4.47     | 0.10      | 0.10               | 0.70               | 0.3            | 2.2            |
| 40: MR ARD-10-032 | 1.53      | 150      | 7.57     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 41: MR ARD-10-034 | 1.54      | 150      | 5.50     | 0.10      | 0.00               | 0.10               | 0.0            | 0.3            |
| 42: MR ARD-10-035 | 1.55      | 150      | 7.64     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 43: MR ARD-10-046 | 1.54      | 150      | 7.24     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 44: MR ARD-10-047 | 1.47      | 150      | 7.56     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 45: MR ARD-10-048 | 1.52      | 150      | 6.49     | 0.10      | 0.00               | 0.10               | 0.0            | 0.3            |
| 46: MR ARD-10-049 | 1.55      | 150      | 7.55     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 47: MR ARD-10-027 | 1.46      | 150      | 7.23     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 48: MR ARD-10-028 | 1.47      | 150      | 3.12     | 0.10      | 1.70               | 3.20               | 5.7            | 11             |
| 49: MR ARD-10-031 | 1.47      | 150      | 6.99     | 0.10      | 0.00               | 0.10               | 0.0            | 0.3            |
| 50: MR ARD-10-033 | 1.50      | 150      | 7.07     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 51: MR ARD-10-043 | 1.49      | 150      | 7.48     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 52: MR ARD-10-045 | 1.52      | 150      | 6.76     | 0.10      | 0.00               | 0.10               | 0.0            | 0.3            |
| 53: MR ARD-10-103 | 1.51      | 150      | 7.11     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 54: MR ARD-10-044 | 1.50      | 150      | 2.76     | 0.10      | 4.40               | 6.70               | 14             | 22             |
| 55: MR ARD-10-100 | 1.51      | 150      | 9.91     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 56: MR ARD-10-102 | 1.52      | 150      | 7.58     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 57: MR ARD-10-104 | 1.54      | 150      | 7.35     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |
| 58: MR ARD-10-105 | 1.54      | 150      | 3.44     | 0.10      | 0.90               | 2.60               | 2.9            | 8.3            |
| 59: MR ARD-10-106 | 1.51      | 150      | 6.70     | 0.10      | 0.00               | 0.10               | 0.0            | 0.3            |
| 60: MR ARD-10-107 | 1.49      | 150      | 7.48     | 0.10      | 0.00               | 0.00               | 0.0            | 0.0            |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report: CA11532-AUG10

| Sample ID         | Sample<br>weight(g) | vol H2O2<br>mL | Final pH<br>units | NaOH<br>Normality | Vol NaOH to PH 4.5<br>mL | Vol NaOH to PH 7.0 mL | NAG (pH 4.5)<br>kg H2SO4/tonne | NAG (pH 7.0)<br>kg H2SO4/tonne |
|-------------------|---------------------|----------------|-------------------|-------------------|--------------------------|-----------------------|--------------------------------|--------------------------------|
| 61: MR ARD-10-108 | 1.50                | 150            | 7.73              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 62: MR ARD-10-109 | 1.50                | 150            | 6.95              | 0.10              | 0.00                     | 0.10                  | 0.0                            | 0.3                            |
| 63: MR ARD-10-092 | 1.48                | 150            | 4.27              | 0.10              | 0.10                     | 1.00                  | 0.3                            | 3.3                            |
| 64: MR ARD-10-093 | 1.48                | 150            | 7.41              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 65: MR ARD-10-094 | 1.55                | 150            | 6.92              | 0.10              | 0.00                     | 0.10                  | 0.0                            | 0.3                            |
| 66: MR ARD-10-095 | 1.49                | 150            | 6.85              | 0.10              | 0.00                     | 0.10                  | 0.0                            | 0.3                            |
| 67: MR ARD-10-096 | 1.48                | 150            | 9.07              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 68: MR ARD-10-098 | 1.46                | 150            | 7.70              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 69: MR ARD-10-099 | 1.50                | 150            | 8.01              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 70: MR ARD-10-101 | 1.50                | 150            | 7.18              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 71: MR ARD-10-080 | 1.48                | 150            | 2.91              | 0.10              | 3.30                     | 5.60                  | 11                             | 18                             |
| 72: MR ARD-10-085 | 1.47                | 150            | 2.31              | 0.10              | 19.50                    | 35.00                 | 65                             | 117                            |
| 73: MR ARD-10-087 | 1.50                | 150            | 10.56             | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 74: MR ARD-10-088 | 1.48                | 150            | 9.54              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 75: MR ARD-10-089 | 1.49                | 150            | 9.48              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 76: MR ARD-10-090 | 1.48                | 150            | 7.11              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 77: MR ARD-10-091 | 1.53                | 150            | 7.26              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 78: MR ARD-10-097 | 1.48                | 150            | 8.07              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 79: MR ARD-10-077 | 1.49                | 150            | 7.59              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 80: MR ARD-10-078 | 1.49                | 150            | 6.86              | 0.10              | 0.00                     | 0.10                  | 0.0                            | 0.3                            |
| 81: MR ARD-10-079 | 1.50                | 150            | 10.68             | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 82: MR ARD-10-081 | 1.46                | 150            | 7.34              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 83: MR ARD-10-083 | 1.49                | 150            | 7.53              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 84: MR ARD-10-084 | 1.49                | 150            | 8.00              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 85: MR ARD-10-086 | 1.51                | 150            | 7.24              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 86: MR ARD-10-067 | 1.46                | 150            | 7.71              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 87: MR ARD-10-068 | 1.50                | 150            | 2.80              | 0.10              | 4.50                     | 7.30                  | 15                             | 24                             |
| 88: MR ARD-10-070 | 1.47                | 150            | 7.28              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 89: MR ARD-10-071 | 1.51                | 150            | 7.23              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 90: MR ARD-10-072 | 1.51                | 150            | 7.54              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 91: MR ARD-10-074 | 1.50                | 150            | 3.14              | 0.10              | 2.00                     | 3.60                  | 6.5                            | 12                             |
| 92: MR ARD-10-075 | 1.47                | 150            | 7.19              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 93: MR ARD-10-076 | 1.50                | 150            | 7.74              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 94: MR ARD-10-082 | 1.51                | 150            | 9.50              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |
| 95: MR ARD-10-060 | 1.51                | 150            | 6.37              | 0.10              | 0.00                     | 0.40                  | 0.0                            | 1.3                            |
| 96: MR ARD-10-062 | 1.55                | 150            | 7.29              | 0.10              | 0.00                     | 0.00                  | 0.0                            | 0.0                            |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11532-AUG10

| Sample ID          | Sample<br>weight(g) | vol H2O2<br>mL | Final pH<br>units | NaOH<br>Normality | Vol NaOH to PH 4.5<br>mL | Vol NaOH to PH 7.0<br>mL | NAG (pH 4.5)<br>kg H2SO4/tonne | NAG (pH 7.0)<br>kg H2SO4/tonne |
|--------------------|---------------------|----------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------------|--------------------------------|
| 97: MR ARD-10-063  | 1.49                | 150            | 7.04              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 98: MR ARD-10-064  | 1.54                | 150            | 7.05              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 99: MR ARD-10-065  | 1.51                | 150            | 7.20              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 100: MR ARD-10-066 | 1.50                | 150            | 7.22              | 0.10              | 0.00 0.00                |                          | 0.0                            | 0.0                            |
| 101: MR ARD-10-069 | 1.53                | 150            | 2.51              | 0.10              | 6.50 8.00                |                          | 21                             | 26                             |
| 102: MR ARD-10-073 | 1.49                | 150            | 6.89              | 0.10              | 0.00                     | 0.20                     | 0.0                            | 0.7                            |
| 103: MR ARD-10-042 | 1.51                | 150            | 9.71              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 104: MR ARD-10-050 | 1.53                | 150            | 8.02              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 105: MR ARD-10-052 | 1.55                | 150            | 8.04              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 106: MR ARD-10-055 | 1.49                | 150            | 4.39              | 0.10              | 0.10                     | 1.10                     | 0.3                            | 3.6                            |
| 107: MR ARD-10-056 | 1.46                | 150            | 7.38              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 108: MR ARD-10-058 | 1.49                | 150            | 4.31              | 0.10              | 0.20                     | 1.40                     | 0.7                            | 4.6                            |
| 109: MR ARD-10-059 | 1.49                | 150            | 7.36              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 110: MR ARD-10-61  | 1.49                | 150            | 7.25              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 111: MR ARD-10-053 | 1.49                | 150            | 8.13              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 112: MR ARD-10-054 | 1.55                | 150            | 9.33              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 113: MR ARD-10-119 | 1.50                | 150            | 8.33              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 114: MR ARD-10-120 | 1.48                | 150            | 3.00              | 0.10              | 2.10                     | 3.20                     | 7.0                            | 11                             |
| 115: MR ARD-10-121 | 1.51                | 150            | 6.37              | 0.10              | 0.00                     | 0.30                     | 0.0                            | 1.0                            |
| 116: MR ARD-10-122 | 1.54                | 150            | 6.64              | 0.10              | 0.00                     | 0.40                     | 0.0                            | 1.3                            |
| 117: MR ARD-10-123 | 1.49                | 150            | 4.21              | 0.10              | 0.30                     | 2.00                     | 1.0                            | 6.6                            |
| 118: MR ARD-10-110 | 1.50                | 150            | 7.06              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 119: MR ARD-10-111 | 1.54                | 150            | 7.06              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 120: MR ARD-10-112 | 1.54                | 150            | 9.80              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 121: MR ARD-10-116 | 1.47                | 150            | 2.80              | 0.10              | 4.70                     | 7.50                     | 16                             | 25                             |
| 122: MR ARD-10-051 | 1.46                | 150            | 10.84             | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 123: MR ARD-10-113 | 1.54                | 150            | 7.61              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 124: MR ARD-10-114 | 1.51                | 150            | 6.03              | 0.10              | 0.00                     | 0.10                     | 0.0                            | 0.3                            |
| 125: MR ARD-10-115 | 1.53                | 150            | 7.35              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 126: MR ARD-10-117 | 1.55                | 150            | 6.96              | 0.10              | 0.00                     | 0.10                     | 0.0                            | 0.3                            |
| 127: MR ARD-10-118 | 1.47                | 150            | 7.52              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 128: MR ARD-10-124 | 1.47                | 150            | 7.27              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 129: MR ARD-10-125 | 1.46                | 150            | 6.86              | 0.10              | 0.00                     | 0.20                     | 0.0                            | 0.7                            |
| 130: MR ARD-10-126 | 1.54                | 150            | 7.50              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 131: MR ARD-10-127 | 1.55                | 150            | 7.36              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 132: MR ARD-10-128 | 1.51                | 150            | 6.90              | 0.10              | 0.00                     | 0.10                     | 0.0                            | 0.3                            |



SGS SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11532-AUG10

| Sample ID          | Sample<br>weight(g) | vol H2O2<br>mL | Final pH<br>units | NaOH<br>Normality | Vol NaOH to PH 4.5<br>mL | Vol NaOH to PH 7.0<br>mL | NAG (pH 4.5)<br>kg H2SO4/tonne | NAG (pH 7.0)<br>kg H2SO4/tonne |
|--------------------|---------------------|----------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------------|--------------------------------|
| 133: MR ARD-10-129 | 1.53                | 150            | 1.84              | 0.50              | 8.20                     | 10.30                    | 131                            | 165                            |
| 134: MR ARD-10-130 | 1.47                | 150            | 9.04              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |
| 135: MR ARD-10-131 | 1.50                | 150            | 8.14              | 0.10              | 0.00                     | 0.00                     | 0.0                            | 0.0                            |

 $NAG = (49 \times Vol. \text{ of base } \times N \text{ of base})/\text{sample weight kg H2SO4/tonne}$ 

Brian Graham B.Sc. Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West, Toronto, ON

Canada, M5H 1T1

Phone: 416-364-8820, Fax:pdf

Tuesday, October 05, 2010

Date Rec.: 16 September 2010 LR Report: CA11050-SEP10

**Copy:** #1

| Sample ID                 | Sample Date &<br>Time | Sample<br>weight(g) | vol H2O2<br>mL | Final pH<br>units | NaOH<br>Normality | Vol NaOH to<br>PH 4.5<br>mL | Vol NaOH to<br>PH 7.0<br>mL | NAG (pH 4.5)<br>kg H2SO4/tonne | NAG (pH 7.0)<br>kg H2SO4/tonne |
|---------------------------|-----------------------|---------------------|----------------|-------------------|-------------------|-----------------------------|-----------------------------|--------------------------------|--------------------------------|
| 3: Analysis Approval Date |                       | 30-Sep-10           | 30-Sep-10      | 30-Sep-10         | 30-Sep-10         | 30-Sep-10                   | 30-Sep-10                   | 30-Sep-10                      | 30-Sep-10                      |
| 4: Analysis Approval Time |                       | 13:45               | 13:45          | 13:45             | 13:45             | 13:45                       | 13:45                       | 13:45                          | 13:45                          |
| 5: 5141                   | Date:N/A              | 1.45                | 150            | 6.81              | 0.10              | 0.00                        | 0.10                        | 0.0                            | 0.3                            |
| 6: 5142                   | Date:N/A              | 1.45                | 150            | 5.60              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.7                            |
| 7: 5143                   | Date:N/A              | 1.45                | 150            | 7.08              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 8: 5144                   | Date:N/A              | 1.46                | 150            | 7.16              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 9: 5145                   | Date:N/A              | 1.47                | 150            | 7.18              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 10: 5146                  | Date:N/A              | 1.55                | 150            | 7.43              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 11: 5147                  | Date:N/A              | 1.48                | 150            | 6.63              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.7                            |
| 12: 5148                  | Date:N/A              | 1.47                | 150            | 7.18              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 13: 5149                  | Date:N/A              | 1.50                | 150            | 6.59              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.7                            |
| 14: 5150                  | Date:N/A              | 1.48                | 150            | 7.42              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 15: 5151                  | Date:N/A              | 1.51                | 150            | 6.68              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.6                            |
| 16: 5152                  | Date:N/A              | 1.48                | 150            | 6.68              | 0.10              | 0.00                        | 0.10                        | 0.0                            | 0.3                            |
| 17: 5153                  | Date:N/A              | 1.48                | 150            | 6.99              | 0.10              | 0.00                        | 0.10                        | 0.0                            | 0.3                            |
| 18: 5154                  | Date:N/A              | 1.48                | 150            | 6.95              | 0.10              | 0.00                        | 0.10                        | 0.0                            | 0.3                            |
| 19: 5155                  | Date:N/A              | 1.52                | 150            | 7.02              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 20: 5156                  | Date:N/A              | 1.53                | 150            | 6.60              | 0.10              | 0.00                        | 0.10                        | 0.0                            | 0.3                            |
| 21: 5157                  | Date:N/A              | 1.54                | 150            | 6.44              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.6                            |
| 22: 5158                  | Date:N/A              | 1.48                | 150            | 5.80              | 0.10              | 0.00                        | 0.10                        | 0.0                            | 0.3                            |
| 23: 5159                  | Date:N/A              | 1.48                | 150            | 4.86              | 0.10              | 0.00                        | 0.30                        | 0.0                            | 1.0                            |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11050-SEP10

| Sample ID | Sample Date &<br>Time | Sample<br>weight(g) | vol H2O2<br>mL | Final pH<br>units | NaOH<br>Normality | Vol NaOH to<br>PH 4.5<br>mL | Vol NaOH to<br>PH 7.0<br>mL | NAG (pH 4.5)<br>kg H2SO4/tonne | NAG (pH 7.0)<br>kg H2SO4/tonne |
|-----------|-----------------------|---------------------|----------------|-------------------|-------------------|-----------------------------|-----------------------------|--------------------------------|--------------------------------|
| 24: 5160  | Date:N/A              | 1.48                | 150            | 7.42              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 25: 5161  | Date:N/A              | 1.52                | 150            | 7.03              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 26: 5162  | Date:N/A              | 1.55                | 150            | 7.08              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 27: 5163  | Date:N/A              | 1.49                | 150            | 7.08              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 28: 5164  | Date:N/A              | 1.48                | 150            | 6.42              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.7                            |
| 29: 5165  | Date:N/A              | 1.50                | 150            | 7.90              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 30: 5166  | Date:N/A              | 1.48                | 150            | 7.18              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 31: 5167  | Date:N/A              | 1.53                | 150            | 6.84              | 0.10              | 0.00                        | 0.40                        | 0.0                            | 1.3                            |
| 32: 5168  | Date:N/A              | 1.48                | 150            | 7.32              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 33: 5169  | Date:N/A              | 1.49                | 150            | 5.16              | 0.10              | 0.00                        | 0.30                        | 0.0                            | 1.0                            |
| 34: 5170  | Date:N/A              | 1.50                | 150            | 9.05              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 35: 5171  | Date:N/A              | 1.52                | 150            | 3.12              | 0.10              | 1.50                        | 2.10                        | 4.8                            | 6.8                            |
| 36: 5172  | Date:N/A              | 1.48                | 150            | 7.08              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 37: 5173  | Date:N/A              | 1.46                | 150            | 8.33              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 38: 5174  | Date:N/A              | 1.48                | 150            | 5.28              | 0.10              | 0.00                        | 0.40                        | 0.0                            | 1.3                            |
| 39: 5175  | Date:N/A              | 1.49                | 150            | 7.06              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 40: 5176  | Date:N/A              | 1.49                | 150            | 7.28              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 41: 5177  | Date:N/A              | 1.51                | 150            | 7.60              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 42: 5178  | Date:N/A              | 1.50                | 150            | 2.74              | 0.10              | 5.60                        | 8.20                        | 18                             | 27                             |
| 43: 5179  | Date:N/A              | 1.47                | 150            | 7.48              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 44: 5180  | Date:N/A              | 1.51                | 150            | 7.50              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 45: 5181  | Date:N/A              | 1.54                | 150            | 7.73              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 46: 5182  | Date:N/A              | 1.49                | 150            | 2.95              | 0.10              | 2.50                        | 4.20                        | 8.2                            | 14                             |
| 47: 5183  | Date:N/A              | 1.55                | 150            | 7.29              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 48: 5184  | Date:N/A              | 1.50                | 150            | 7.48              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 49: 5185  | Date:N/A              | 1.55                | 150            | 6.86              | 0.10              | 0.00                        | 0.30                        | 0.0                            | 0.9                            |
| 50: 5186  | Date:N/A              | 1.51                | 150            | 7.02              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 51: 5187  | Date:N/A              | 1.51                | 150            | 7.52              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 52: 5188  | Date:N/A              | 1.50                | 150            | 7.37              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |
| 53: 5189  | Date:N/A              | 1.49                | 150            | 7.48              | 0.10              | 0.00                        | 0.00                        | 0.0                            | 0.0                            |



Phone: 705-652-2000 FAX: 705-652-6365

**NAG Test** 

LR Report :

CA11050-SEP10

 $NAG = (49 \times Vol. \text{ of base } \times N \text{ of base})/\text{sample weight kg H2SO4/tonne}$ 

Brian Graha**l**m B.Sc.

Project Specialist



#### SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

**Baffinland Iron Mines Corp** 

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1

Canada

Phone: 416-364-8820

Fax:pdf

### Sunday, October 31, 2010

Date Rec.: 07 October 2010 LR Report: CA10202-OCT10

**Copy:** #1

| Sample ID                 | Sample<br>weight(g) | vol H2O2<br>mL | Final pH<br>units | NaOH<br>Normality | Vol NaOH to<br>PH 4.5<br>mL | Vol NaOH to<br>PH 7.0<br>mL | NAG (pH 4.5)<br>kg H2SO4/tonne | NAG (pH7.0)<br>kg H2SO4/tonne |
|---------------------------|---------------------|----------------|-------------------|-------------------|-----------------------------|-----------------------------|--------------------------------|-------------------------------|
| 3: Analysis Approval Date | 29-Oct-10           | 29-Oct-10      | 29-Oct-10         | 29-Oct-10         | 29-Oct-10                   | 29-Oct-10                   | 29-Oct-10                      | 29-Oct-10                     |
| 4: Analysis Approval Time | 07:00               | 07:00          | 07:00             | 07:00             | 07:00                       | 07:00                       | 07:00                          | 07:00                         |
| 5: MR ARD-10-044          | 2.48                | 250            | 2.68              | 0.10              | 7.20                        | 10.10                       | 14                             | 20                            |
| 11-DUP: MR ARD-10-044     | 2.48                | 250            | 4.34              | 0.10              | 0.10                        | 0.40                        | 0.2                            | 8.0                           |
| 17-DUP: MR ARD-10-044     | 2.48                | 250            | 5.20              | 0.10              | 0.00                        | 0.10                        | 0.0                            | 0.2                           |
| 23-DUP: MR ARD-10-044     | 2.48                | 250            | 5.54              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.4                           |
| 6: MR ARD-10-080          | 2.46                | 250            | 2.89              | 0.10              | 4.10                        | 5.80                        | 8.2                            | 12                            |
| 12-DUP: MR ARD-10-080     | 2.46                | 250            | 4.27              | 0.10              | 0.10                        | 0.40                        | 0.2                            | 0.8                           |
| 18-DUP: MR ARD-10-080     | 2.46                | 250            | 4.99              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.4                           |
| 24-DUP: MR ARD-10-080     | 2.46                | 250            | 5.73              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.4                           |
| 7: MR ARD-10-085          | 2.48                | 250            | 2.27              | 0.10              | 29.70                       | 46.30                       | 59                             | 92                            |
| 13-DUP: MR ARD-10-085     | 2.48                | 250            | 2.45              | 0.10              | 14.50                       | 19.70                       | 29                             | 39                            |
| 19-DUP: MR ARD-10-085     | 2.48                | 250            | 3.89              | 0.10              | 0.30                        | 0.60                        | 0.6                            | 1.2                           |
| 25-DUP: MR ARD-10-085     | 2.48                | 250            | 4.50              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.4                           |
| 31-DUP: MR ARD-10-085     | 2.48                | 250            | 4.74              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.4                           |
| 8: MR ARD-10-068          | 2.49                | 250            | 2.82              | 0.10              | 6.40                        | 9.90                        | 13                             | 20                            |
| 14-DUP: MR ARD-10-068     | 2.49                | 250            | 3.96              | 0.10              | 0.40                        | 0.60                        | 0.8                            | 1.2                           |
| 20-DUP: MR ARD-10-068     | 2.49                | 250            | 4.45              | 0.10              | 0.10                        | 0.30                        | 0.2                            | 0.6                           |
| 26-DUP: MR ARD-10-068     | 2.49                | 250            | 4.89              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.4                           |
| 32-DUP: MR ARD-10-068     | 2.49                | 250            | 4.98              | 0.10              | 0.00                        | 0.40                        | 0.0                            | 0.8                           |
| 9: MR ARD-10-116          | 2.48                | 250            | 2.69              | 0.10              | 8.30                        | 12.50                       | 16                             | 25                            |
| 15-DUP: MR ARD-10-116     | 2.48                | 250            | 4.36              | 0.10              | 0.20                        | 0.30                        | 0.4                            | 0.6                           |
| 21-DUP: MR ARD-10-116     | 2.48                | 250            | 5.19              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.4                           |
| 27-DUP: MR ARD-10-116     | 2.48                | 250            | 5.72              | 0.10              | 0.00                        | 0.20                        | 0.0                            | 0.4                           |
| 10: MR ARD-10-129         | 2.47                | 250            | 1.91              | 0.50              | 12.20                       | 15.10                       | 121                            | 150                           |
| 16-DUP: MR ARD-10-129     | 2.47                | 250            | 1.96              | 0.50              | 8.60                        | 9.90                        | 85                             | 98                            |
| 22-DUP: MR ARD-10-129     | 2.47                | 250            | 2.33              | 0.10              | 9.80                        | 11.40                       | 19                             | 23                            |
| 28-DUP: MR ARD-10-129     | 2.47                | 250            | 3.57              | 0.10              | 0.50                        | 1.00                        | 1.0                            | 2.0                           |
| 34-DUP: MR ARD-10-129     | 2.47                | 250            | 4.07              | 0.10              | 0.20                        | 0.50                        | 0.4                            | 1.0                           |
| 40-DUP: MR ARD-10-129     | 2.47                | 250            | 4.44              | 0.10              | 0.10                        | 0.50                        | 0.2                            | 1.0                           |
| 46-DUP: MR ARD-10-129     | 2.47                | 250            | 4.75              | 0.10              | 0.00                        | 0.30                        | 0.0                            | 0.6                           |
| 52-DUP: MR ARD-10-129     | 2.47                | 250            | 4.80              | 0.10              | 0.00                        | 0.60                        | 0.0                            | 1.2                           |





SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA10202-OCT10

NAG =  $(49 \times Vol. \text{ of base } \times N \text{ of base})/\text{sample weight}$  kg H2SO4/tonne

Brian Grahan B.Sc.

Project Specialist





### APPENDIX C-3 METALS BY AQUA-REGIA EXTRACTION



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

**Date Rec. :** 31 August 2010 **CA11533-AUG10** 

**Copy:** #1

| Analysis           | 39:<br>MR<br>ARD-10-026 | 40:<br>MR<br>ARD-10-032 | 41:<br>MR<br>ARD-10-034 | 42:<br>MR<br>ARD-10-035 | 43:<br>MR<br>ARD-10-046 | 44:<br>MR<br>ARD-10-047 | 45:<br>MR<br>ARD-10-048 | 46:<br>MR<br>ARD-10-049 | 47:<br>MR<br>ARD-10-027 | 48:<br>MR<br>ARD-10-028 | 49:<br>MR<br>ARD-10-031 | 50:<br>MR<br>ARD-10-033 |
|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                    |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Sample Date & Time | Date:NA                 |
| Mercury [µg/g]     | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   |
| Aluminum [µg/g]    | 61000                   | 50000                   | 20000                   | 81000                   | 17000                   | 56000                   | 74000                   | 91000                   | 36000                   | 26000                   | 10000                   | 16000                   |
| Arsenic [µg/g]     | 11                      | 0.7                     | 0.7                     | < 0.5                   | < 0.5                   | < 0.5                   | < 0.5                   | < 0.5                   | 3.6                     | 16                      | < 0.5                   | < 0.5                   |
| Barium [µg/g]      | 28                      | 140                     | 120                     | 1470                    | 320                     | 3.9                     | 1.3                     | 3.9                     | 860                     | 450                     | 69                      | 140                     |
| Beryllium [µg/g]   | 0.69                    | 1.1                     | 0.24                    | 3.3                     | 0.29                    | 0.49                    | 1.6                     | 0.88                    | 1.4                     | 0.86                    | 0.24                    | 0.17                    |
| Bismuth [µg/g]     | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | 0.14                    | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  |
| Calcium [µg/g]     | 2700                    | 1100                    | 880                     | 1600                    | 950                     | 2100                    | 110                     | 2200                    | 1100                    | 1600                    | 160                     | 760                     |
| Cadmium [µg/g]     | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   |
| Cobalt [µg/g]      | 29                      | 27                      | 6.5                     | 9.1                     | 6.1                     | 25                      | 41                      | 25                      | 17                      | 17                      | 4.6                     | 6.3                     |
| Chromium [µg/g]    | 350                     | 180                     | 92                      | 14                      | 100                     | 500                     | 240                     | 31                      | 220                     | 170                     | 87                      | 67                      |
| Copper [µg/g]      | 33                      | 47                      | 19                      | 5.8                     | 11                      | 2.1                     | 48                      | 2.3                     | 44                      | 24                      | 6.8                     | 5.1                     |
| Iron [µg/g]        | 130000                  | 61000                   | 32000                   | 75000                   | 22000                   | 64000                   | 170000                  | 130000                  | 67000                   | 70000                   | 10000                   | 22000                   |
| Potassium [µg/g]   | 350                     | 17000                   | 4500                    | 34000                   | 10000                   | 160                     | 150                     | 120                     | 4000                    | 4600                    | 6400                    | 8800                    |
| Lithium [µg/g]     | 9                       | 21                      | 7                       | 140                     | 12                      | 2                       | 3                       | 10                      | 12                      | 6                       | 6                       | 8                       |
| Magnesium [µg/g]   | 47000                   | 27000                   | 12000                   | 37000                   | 7500                    | 44000                   | 54000                   | 52000                   | 26000                   | 14000                   | 6000                    | 8500                    |
| Manganese [µg/g]   | 580                     | 830                     | 670                     | 480                     | 420                     | 540                     | 700                     | 2300                    | 770                     | 320                     | 150                     | 380                     |
| Molybdenum [µg/g]  | 2.0                     | 0.8                     | 1.1                     | 0.4                     | 10                      | 0.6                     | 0.7                     | 1.2                     | 1.2                     | 1.3                     | 2.7                     | 1.1                     |
| Sodium [µg/g]      | 93                      | 440                     | 160                     | 800                     | 310                     | 64                      | 63                      | 83                      | 240                     | 220                     | 160                     | 190                     |
| Nickel [µg/g]      | 110                     | 92                      | 7.8                     | 3.5                     | 8.5                     | 190                     | 130                     | 35                      | 63                      | 69                      | 13                      | 7.9                     |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 39:<br>MR<br>ARD-10-026 | 40:<br>MR<br>ARD-10-032 | 41:<br>MR<br>ARD-10-034 | 42:<br>MR<br>ARD-10-035 | 43:<br>MR<br>ARD-10-046 | 44:<br>MR<br>ARD-10-047 | 45:<br>MR<br>ARD-10-048 | 46:<br>MR<br>ARD-10-049 | 47:<br>MR<br>ARD-10-027 | 48:<br>MR<br>ARD-10-028 | 49:<br>MR<br>ARD-10-031 | 50:<br>MR<br>ARD-10-033 |
|------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                  | AND-10-020              | AND-10-032              | AND-10-034              | AND-10-033              | AND-10-040              | AKD-10-047              | AKD-10-040              | AILD-10-049             | AND-10-027              | AND-10-020              | AND-10-031              | AKD-10-033              |
| Lead [µg/g]      | 3.7                     | 8.3                     | 2.6                     | 12                      | 5.6                     | 1.9                     | 2.3                     | 1.5                     | 4.3                     | 8.9                     | 2.7                     | 3.0                     |
| Antimony [µg/g]  | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   |
| Selenium [µg/g]  | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   |
| Tin [µg/g]       | 1.2                     | 1.5                     | < 0.5                   | 3.3                     | 1.0                     | 0.9                     | < 0.5                   | < 0.5                   | 0.9                     | < 0.5                   | 0.7                     | 0.7                     |
| Strontium [µg/g] | 7.8                     | 2.9                     | 2.9                     | 10                      | 9.8                     | 3.3                     | 1.2                     | 3.3                     | 3.4                     | 7.2                     | 3.1                     | 2.9                     |
| Titanium [µg/g]  | 240                     | 1900                    | 350                     | 1700                    | 1100                    | 230                     | 240                     | 180                     | 780                     | 650                     | 110                     | 690                     |
| Thallium [µg/g]  | 0.03                    | 0.41                    | 0.11                    | 0.59                    | 0.47                    | < 0.02                  | < 0.02                  | < 0.02                  | 0.16                    | 0.19                    | 0.20                    | 0.32                    |
| Uranium [µg/g]   | 0.50                    | 0.48                    | 1.4                     | 7.0                     | 1.3                     | 1.2                     | 2.5                     | 3.9                     | 0.47                    | 0.71                    | 3.2                     | 2.0                     |
| Vanadium [µg/g]  | 170                     | 110                     | 8                       | 21                      | 7                       | 91                      | 190                     | 59                      | 170                     | 71                      | 1                       | 6                       |
| Zinc [µg/g]      | 51                      | 55                      | 39                      | 52                      | 40                      | 61                      | 42                      | 68                      | 23                      | 18                      | 16                      | 46                      |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

**Date Rec. :** 31 August 2010 **CA11533-AUG10** 

**Copy:** #1

| Analysis           | 15:<br>MR<br>ARD-10-003 | 16:<br>MR<br>ARD-10-007 | 17:<br>MR<br>ARD-10-008 | 18:<br>MR<br>ARD-10-009 | 19:<br>MR<br>ARD-10-010 | 20:<br>MR<br>ARD-10-012 | 21:<br>MR<br>ARD-10-023 | 22:<br>MR<br>ARD-10-025 | 23:<br>MR<br>ARD-10-001 | 24:<br>MR<br>ARD-10-006 | 25:<br>MR<br>ARD-10-016 | 26:<br>MR<br>ARD-10-017 |
|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Sample Date & Time | Date:NA                 |
| Mercury [µg/g]     | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   |
| Aluminum [µg/g]    | 55000                   | 84000                   | 81000                   | 56000                   | 59000                   | 5400                    | 600                     | 88000                   | 56000                   | 39000                   | 16000                   | 46000                   |
| Arsenic [µg/g]     | 5.4                     | 6.8                     | 8.0                     | 2.1                     | 1.7                     | 2.9                     | 2.6                     | 0.7                     | 63                      | 2.4                     | 2.9                     | 0.6                     |
| Barium [µg/g]      | 6.8                     | 17                      | 15                      | 88                      | 150                     | 5.5                     | 4.3                     | 31                      | 9.4                     | 9.7                     | 2.4                     | 20                      |
| Beryllium [µg/g]   | 0.58                    | 2.7                     | 0.83                    | 0.41                    | 0.73                    | 0.10                    | 0.05                    | 2.4                     | 2.9                     | 1.1                     | 0.52                    | 2.1                     |
| Bismuth [µg/g]     | 0.14                    | 0.34                    | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | 0.37                    | 0.46                    | < 0.09                  | < 0.09                  |
| Calcium [µg/g]     | 800                     | 1700                    | 1400                    | 1000                    | 1100                    | 16000                   | 11000                   | 1800                    | 690                     | 740                     | 820                     | 3100                    |
| Cadmium [µg/g]     | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   |
| Cobalt [µg/g]      | 30                      | 29                      | 68                      | 48                      | 31                      | 100                     | 110                     | 85                      | 82                      | 30                      | 6.9                     | 17                      |
| Chromium [µg/g]    | 44                      | 21                      | 770                     | 320                     | 310                     | 530                     | 330                     | 1220                    | 1450                    | 300                     | 17                      | 280                     |
| Copper [µg/g]      | 47                      | 44                      | 44                      | 130                     | 47                      | 6.0                     | 11                      | 40                      | 99                      | 23                      | 1.5                     | 24                      |
| Iron [µg/g]        | 170000                  | 160000                  | 100000                  | 93000                   | 82000                   | 54000                   | 57000                   | 79000                   | 170000                  | 91000                   | 93000                   | 70000                   |
| Potassium [µg/g]   | 83                      | 2000                    | 440                     | 1200                    | 9500                    | 130                     | 39                      | 1300                    | 900                     | 600                     | 470                     | 800                     |
| Lithium [µg/g]     | 13                      | 35                      | 16                      | 14                      | 8                       | < 2                     | < 2                     | 22                      | 30                      | 160                     | 14                      | 38                      |
| Magnesium [µg/g]   | 49000                   | 84000                   | 72000                   | 60000                   | 32000                   | 130000                  | 140000                  | 86000                   | 54000                   | 37000                   | 29000                   | 41000                   |
| Manganese [µg/g]   | 1200                    | 1000                    | 3300                    | 2400                    | 2000                    | 1300                    | 960                     | 1800                    | 1300                    | 320                     | 460                     | 480                     |
| Molybdenum [µg/g]  | 2.3                     | 1.5                     | 0.3                     | 0.4                     | 0.6                     | 0.4                     | 0.5                     | 0.5                     | 5.4                     | 0.6                     | 1.2                     | 0.9                     |
| Sodium [µg/g]      | 75                      | 110                     | 100                     | 93                      | 270                     | 74                      | 79                      | 130                     | 220                     | 150                     | 160                     | 210                     |
| Nickel [µg/g]      | 120                     | 140                     | 470                     | 230                     | 170                     | 1950                    | 2410                    | 760                     | 490                     | 82                      | 22                      | 110                     |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 15:<br>MR  | 16:<br>MR  | 17:<br>MR  | 18:<br>MR  | 19:<br>MR  | 20:<br>MR  | 21:<br>MR  | 22:<br>MR  | 23:<br>MR  | 24:<br>MR  | 25:<br>MR  | 26:<br>MR  |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ARD-10-003 | ARD-10-007 | ARD-10-008 | ARD-10-009 | ARD-10-010 | ARD-10-012 | ARD-10-023 | ARD-10-025 | ARD-10-001 | ARD-10-006 | ARD-10-016 | ARD-10-017 |
| Lead [µg/g]      | 2.5        | 3.4        | 1.6        | 5.5        | 2.7        | 4.4        | 7.6        | 2.6        | 2.9        | 2.0        | 1.7        | 5.1        |
| Antimony [µg/g]  | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      |
| Selenium [µg/g]  | < 0.7      | < 0.7      | < 0.7      | 0.8        | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      |
| Tin [µg/g]       | 2.9        | 1.1        | 2.1        | 0.8        | 1.9        | < 0.5      | < 0.5      | 1.5        | < 0.5      | 1.3        | 0.5        | < 0.5      |
| Strontium [µg/g] | 9.2        | 4.7        | 2.0        | 3.2        | 6.1        | 10         | 22         | 6.6        | 4.2        | 3.9        | 3.4        | 21         |
| Titanium [µg/g]  | 440        | 910        | 430        | 33         | 1300       | 89         | 74         | 620        | 91         | 210        | 85         | 180        |
| Thallium [µg/g]  | < 0.02     | 0.05       | < 0.02     | < 0.02     | 0.28       | < 0.02     | < 0.02     | 0.12       | 0.08       | < 0.02     | < 0.02     | 0.03       |
| Uranium [µg/g]   | 1.5        | 1.0        | 0.24       | 0.41       | 0.86       | 1.3        | 0.23       | 0.20       | 0.55       | 0.84       | 0.80       | 1.9        |
| Vanadium [µg/g]  | 15         | 43         | 140        | 120        | 120        | 15         | 8          | 100        | 52         | 47         | 3          | 65         |
| Zinc [µg/g]      | 44         | 57         | 71         | 103        | 46         | 25         | 59         | 47         | 21         | 18         | 12         | 21         |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

**Date Rec. :** 31 August 2010 **CA11533-AUG10** 

**Copy:** #1

| Analysis           | 3:<br>Analysis<br>Approval<br>Date | 4:<br>Analysis<br>Approval<br>Time | 5:<br>MR<br>ARD-10-002 | 6:<br>MR<br>ARD-10-004 | 7:<br>MR<br>ARD-10-005 | 8:<br>MR<br>ARD-10-011 | 9:<br>MR<br>ARD-10-014 | 10:<br>MR<br>ARD-10-015 | 11:<br>MR<br>ARD-10-018 | 12:<br>MR<br>ARD-10-021 | 13:<br>MR<br>ARD-10-022 | 14:<br>MR<br>ARD-10-024 |
|--------------------|------------------------------------|------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Sample Date & Time |                                    |                                    | Date:NA                | Date:NA                | Date:NA                | Date:NA                | Date:NA                | Date:NA                 | Date:NA                 | Date:NA                 | Date:NA                 | Date:NA                 |
| Mercury [µg/g]     | 29-Sep-10                          | 11:48                              | < 0.1                  | < 0.1                  | < 0.1                  | < 0.1                  | < 0.1                  | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   |
| Aluminum [µg/g]    | 26-Sep-10                          | 19:46                              | 32000                  | 34000                  | 17000                  | 83000                  | 77000                  | 25000                   | 7900                    | 59000                   | 85000                   | 16000                   |
| Arsenic [µg/g]     | 27-Sep-10                          | 11:17                              | 4.2                    | 0.6                    | 0.7                    | 0.6                    | 0.6                    | < 0.5                   | 16                      | 0.7                     | < 0.5                   | < 0.5                   |
| Barium [µg/g]      | 26-Sep-10                          | 19:13                              | 15                     | 520                    | 99                     | 230                    | 39                     | 160                     | 3.0                     | 330                     | 830                     | 22                      |
| Beryllium [µg/g]   | 26-Sep-10                          | 19:13                              | 0.73                   | 0.32                   | 0.62                   | 2.5                    | 2.8                    | 0.71                    | 0.58                    | 0.74                    | 4.4                     | 0.53                    |
| Bismuth [µg/g]     | 26-Sep-10                          | 19:13                              | 0.13                   | < 0.09                 | < 0.09                 | < 0.09                 | < 0.09                 | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  |
| Calcium [µg/g]     | 26-Sep-10                          | 19:49                              | 1300                   | 1700                   | 480                    | 1800                   | 1700                   | 1700                    | 1600                    | 1900                    | 590                     | 260                     |
| Cadmium [µg/g]     | 26-Sep-10                          | 19:13                              | < 0.2                  | < 0.2                  | < 0.2                  | < 0.2                  | < 0.2                  | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   |
| Cobalt [µg/g]      | 26-Sep-10                          | 19:13                              | 22                     | 7.7                    | 5.3                    | 18                     | 14                     | 6.7                     | 6.8                     | 8.9                     | 15                      | 1.7                     |
| Chromium [µg/g]    | 26-Sep-10                          | 19:13                              | 310                    | 100                    | 120                    | 28                     | 91                     | 91                      | 19                      | 55                      | 80                      | 150                     |
| Copper [µg/g]      | 26-Sep-10                          | 19:13                              | 11                     | 9.3                    | 79                     | 1.8                    | 15                     | 2.8                     | 3.9                     | 12                      | 1.2                     | 5.1                     |
| Iron [μg/g]        | 28-Sep-10                          | 07:54                              | 100000                 | 53000                  | 23000                  | 130000                 | 130000                 | 34000                   | 600000                  | 67000                   | 190000                  | 31000                   |
| Potassium [µg/g]   | 26-Sep-10                          | 19:53                              | 180                    | 18000                  | 8600                   | 10000                  | 4800                   | 6500                    | 130                     | 21000                   | 7300                    | 430                     |
| Lithium [µg/g]     | 26-Sep-10                          | 19:13                              | 12                     | 8                      | 7                      | 36                     | 38                     | 10                      | 3                       | 35                      | 30                      | 9                       |
| Magnesium [µg/g]   | 26-Sep-10                          | 19:55                              | 23000                  | 17000                  | 8300                   | 82000                  | 70000                  | 16000                   | 8000                    | 26000                   | 65000                   | 8100                    |
| Manganese [µg/g]   | 26-Sep-10                          | 19:13                              | 140                    | 130                    | 100                    | 310                    | 1800                   | 330                     | 2600                    | 360                     | 1300                    | 260                     |
| Molybdenum [µg/g]  | 26-Sep-10                          | 19:13                              | 2.1                    | 4.4                    | 2.4                    | 15                     | 8.0                    | 0.5                     | 1.7                     | 13                      | 4.5                     | 3.3                     |
| Sodium [µg/g]      | 27-Sep-10                          | 11:15                              | 78                     | 430                    | 240                    | 280                    | 160                    | 250                     | 120                     | 820                     | 160                     | 180                     |
| Nickel [µg/g]      | 26-Sep-10                          | 19:13                              | 160                    | 14                     | 8.4                    | 85                     | 55                     | 7.5                     | 18                      | 22                      | 56                      | 18                      |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 3:<br>Analysis<br>Approval | 4:<br>Analysis<br>Approval | 5:<br>MR<br>ARD-10-002 | 6:<br>MR<br>ARD-10-004 | 7:<br>MR<br>ARD-10-005 | 8:<br>MR<br>ARD-10-011 | 9:<br>MR<br>ARD-10-014 | 10:<br>MR<br>ARD-10-015 | 11:<br>MR<br>ARD-10-018 | 12:<br>MR<br>ARD-10-021 | 13:<br>MR<br>ARD-10-022 | 14:<br>MR<br>ARD-10-024 |
|------------------|----------------------------|----------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                  | Date                       | Time                       |                        |                        |                        |                        |                        |                         |                         |                         |                         |                         |
| Lead [µg/g]      | 26-Sep-10                  | 19:13                      | 2.9                    | 3.7                    | 4.9                    | 2.3                    | 4.6                    | 2.4                     | 1.9                     | 30                      | 11                      | 3.3                     |
| Antimony [µg/g]  | 26-Sep-10                  | 19:13                      | < 0.8                  | < 0.8                  | < 0.8                  | < 0.8                  | < 0.8                  | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   | < 0.8                   |
| Selenium [µg/g]  | 26-Sep-10                  | 19:13                      | < 0.7                  | < 0.7                  | < 0.7                  | < 0.7                  | < 0.7                  | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   | < 0.7                   |
| Tin [µg/g]       | 26-Sep-10                  | 19:13                      | 1.9                    | 3.7                    | 0.6                    | 3.3                    | 4.6                    | 0.7                     | 0.7                     | 4.2                     | 1.2                     | 2.2                     |
| Strontium [µg/g] | 26-Sep-10                  | 19:13                      | 4.2                    | 7.5                    | 3.2                    | 6.3                    | 6.8                    | 3.2                     | 3.0                     | 8.7                     | 4.3                     | 2.4                     |
| Titanium [µg/g]  | 26-Sep-10                  | 19:13                      | 330                    | 2000                   | 440                    | 1100                   | 420                    | 690                     | 180                     | 1400                    | 830                     | 190                     |
| Thallium [µg/g]  | 26-Sep-10                  | 19:13                      | 0.04                   | 0.60                   | 0.36                   | 0.21                   | 0.12                   | 0.24                    | < 0.02                  | 0.67                    | 0.54                    | 0.02                    |
| Uranium [µg/g]   | 26-Sep-10                  | 19:13                      | 1.9                    | 1.5                    | 7.3                    | 1.8                    | 1.3                    | 1.2                     | 0.35                    | 0.62                    | 2.6                     | 2.8                     |
| Vanadium [µg/g]  | 26-Sep-10                  | 19:13                      | 82                     | 32                     | 5                      | 46                     | 53                     | 19                      | 11                      | 83                      | 75                      | 2                       |
| Zinc [µg/g]      | 26-Sep-10                  | 19:13                      | 34                     | 5.7                    | 7.5                    | 22                     | 53                     | 24                      | 7.0                     | 47                      | 81                      | 9.6                     |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

**Date Rec. :** 31 August 2010 **CA11533-AUG10** 

**Copy:** #1

| Analysis           | 27:<br>MR<br>ARD-10-019 | 28:<br>MR<br>ARD-10-020 | 29:<br>MR<br>ARD-10-029 | 30:<br>MR<br>ARD-10-030 | 31:<br>MR<br>ARD-10-013 | 32:<br>MR<br>ARD-10-036 | 33:<br>MR<br>ARD-10-037 | 34:<br>MR<br>ARD-10-038 | 35:<br>MR<br>ARD-10-039 | 36:<br>MR<br>ARD-10-040 | 37:<br>MR<br>ARD-10-041 | 38:<br>MR<br>ARD-10-057 |
|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Sample Date & Time | Date:NA                 |
| Mercury [µg/g]     | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | 0.2                     | < 0.1                   | < 0.1                   |
| Aluminum [µg/g]    | 89000                   | 66000                   | 33000                   | 38000                   | 72000                   | 46000                   | 36000                   | 55000                   | 89000                   | 45000                   | 61000                   | 44000                   |
| Arsenic [µg/g]     | 0.7                     | 8.4                     | 1.2                     | 0.6                     | 0.6                     | 0.7                     | 1.5                     | 0.8                     | 12                      | < 0.5                   | < 0.5                   | < 0.5                   |
| Barium [µg/g]      | 2.4                     | 5.2                     | 4.9                     | 380                     | 12                      | 0.71                    | 220                     | 2.2                     | 5.8                     | 300                     | 3.1                     | 690                     |
| Beryllium [µg/g]   | 1.3                     | 0.64                    | 1.3                     | 0.69                    | 5.0                     | 1.3                     | 0.49                    | 1.7                     | 3.4                     | 0.37                    | 0.27                    | 0.61                    |
| Bismuth [µg/g]     | < 0.09                  | 0.59                    | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | 0.28                    | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  |
| Calcium [µg/g]     | 16000                   | 2700                    | 1400                    | 810                     | 4000                    | 1000                    | 250                     | 1400                    | 210                     | 18000                   | 2900                    | 1500                    |
| Cadmium [µg/g]     | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   |
| Cobalt [µg/g]      | 20                      | 9.7                     | 45                      | 13                      | 27                      | 32                      | 5.1                     | 29                      | 53                      | 23                      | 37                      | 12                      |
| Chromium [µg/g]    | 210                     | 58                      | 610                     | 95                      | 380                     | 470                     | 110                     | 930                     | 48                      | 220                     | 520                     | 77                      |
| Copper [µg/g]      | 1.7                     | 21                      | 38                      | 5.8                     | 129                     | 30                      | 40                      | 2.9                     | 46                      | 57                      | 123                     | 29                      |
| Iron [µg/g]        | 130000                  | 250000                  | 82000                   | 64000                   | 130000                  | 74000                   | 54000                   | 150000                  | 130000                  | 41000                   | 59000                   | 62000                   |
| Potassium [µg/g]   | 160                     | 200                     | 800                     | 18000                   | 440                     | 220                     | 14000                   | 170                     | 800                     | 18000                   | 97                      | 27000                   |
| Lithium [µg/g]     | 3                       | 14                      | 36                      | 12                      | 40                      | 9                       | 7                       | 39                      | 330                     | 20                      | 5                       | 11                      |
| Magnesium [µg/g]   | 73000                   | 63000                   | 40000                   | 16000                   | 67000                   | 41000                   | 17000                   | 59000                   | 40000                   | 26000                   | 55000                   | 18000                   |
| Manganese [µg/g]   | 1000                    | 1900                    | 830                     | 260                     | 1800                    | 490                     | 250                     | 1000                    | 620                     | 680                     | 390                     | 310                     |
| Molybdenum [µg/g]  | 3.1                     | 1.4                     | 0.9                     | 3.4                     | < 0.1                   | 1.1                     | 2.3                     | 1.1                     | 74                      | 1.1                     | 0.3                     | 2.2                     |
| Sodium [µg/g]      | 87                      | 99                      | 220                     | 420                     | 130                     | 86                      | 390                     | 140                     | 420                     | 480                     | 82                      | 610                     |
| Nickel [µg/g]      | 110                     | 25                      | 440                     | 46                      | 200                     | 160                     | 12                      | 540                     | 180                     | 110                     | 220                     | 15                      |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 27:<br>MR  | 28:<br>MR  | 29:<br>MR  | 30:<br>MR  | 31:<br>MR  | 32:<br>MR  | 33:<br>MR  | 34:<br>MR  | 35:<br>MR  | 36:<br>MR  | 37:<br>MR  | 38:<br>MR  |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ARD-10-019 | ARD-10-020 | ARD-10-029 | ARD-10-030 | ARD-10-013 | ARD-10-036 | ARD-10-037 | ARD-10-038 | ARD-10-039 | ARD-10-040 | ARD-10-041 | ARD-10-057 |
| Lead [µg/g]      | 21         | 5.6        | 4.0        | 15         | 5.0        | 1.4        | 6.2        | 1.1        | 2.6        | 3.7        | 1.7        | 15         |
| Antimony [µg/g]  | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      |
| Selenium [µg/g]  | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      |
| Tin [µg/g]       | < 0.5      | 1.6        | 1.0        | 0.9        | 12         | < 0.5      | 1.0        | 0.7        | 1.8        | 1.0        | < 0.5      | 1.5        |
| Strontium [µg/g] | 44         | 9.5        | 5.7        | 4.6        | 30         | 6.1        | 2.5        | 4.9        | 1.7        | 12         | 2.4        | 4.4        |
| Titanium [µg/g]  | 190        | 140        | 130        | 1400       | 110        | 280        | 1100       | 120        | 880        | 2200       | 300        | 2200       |
| Thallium [µg/g]  | < 0.02     | 0.02       | 0.08       | 0.63       | < 0.02     | < 0.02     | 0.36       | < 0.02     | 0.23       | 0.28       | < 0.02     | 0.71       |
| Uranium [µg/g]   | 7.1        | 1.3        | 0.54       | 1.1        | 2.1        | 1.2        | 1.2        | 0.94       | 1.8        | 0.90       | 0.72       | 2.9        |
| Vanadium [µg/g]  | 120        | 70         | 36         | 17         | 87         | 66         | 16         | 51         | 110        | 110        | 130        | 38         |
| Zinc [µg/g]      | 59         | 43         | 14         | 14         | 26         | 48         | 9.9        | 31         | 106        | 46         | 50         | 24         |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

Date Rec.: 31 August 2010 LR Report: CA11533-AUG10

**Copy:** #1

| Analysis           | 51:<br>MR<br>ARD-10-043 | 52:<br>MR<br>ARD-10-045 | 53:<br>MR<br>ARD-10-103 | 54:<br>MR<br>ARD-10-044 | 55:<br>MR<br>ARD-10-100 | 56:<br>MR<br>ARD-10-102 | 57:<br>MR<br>ARD-10-104 | 58:<br>MR<br>ARD-10-105 | 59:<br>MR<br>ARD-10-106 | 60:<br>MR<br>ARD-10-107 | 61:<br>MR<br>ARD-10-108 | 62:<br>MR<br>ARD-10-109 |
|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Sample Date & Time | Date:NA                 |
| Mercury [µg/g]     | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   |
| Aluminum [µg/g]    | 59000                   | 21000                   | 100000                  | 14000                   | 44000                   | 40000                   | 33000                   | 12000                   | 34000                   | 53000                   | 59000                   | 67000                   |
| Arsenic [µg/g]     | < 0.5                   | < 0.5                   | 0.7                     | < 0.5                   | < 0.5                   | < 0.5                   | < 0.5                   | 9.5                     | 0.7                     | 1.2                     | < 0.5                   | 8.1                     |
| Barium [µg/g]      | 450                     | 160                     | 15                      | 31                      | 89                      | 130                     | 130                     | 3.6                     | 2.9                     | 31                      | 0.90                    | 0.43                    |
| Beryllium [µg/g]   | 0.71                    | 0.20                    | 5.0                     | 0.18                    | 0.10                    | 0.49                    | 0.89                    | 0.87                    | 0.93                    | 0.70                    | 2.2                     | 0.87                    |
| Bismuth [µg/g]     | < 0.09                  | < 0.09                  | < 0.09                  | 0.24                    | < 0.09                  | 0.43                    | < 0.09                  | 0.33                    | 0.68                    | < 0.09                  | 0.19                    | 0.32                    |
| Calcium [µg/g]     | 1000                    | 940                     | 1900                    | 5100                    | 26000                   | 260                     | 1400                    | 2600                    | 170                     | 1400                    | 4900                    | 2900                    |
| Cadmium [µg/g]     | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | 0.2                     | < 0.2                   | < 0.2                   | < 0.2                   |
| Cobalt [µg/g]      | 8.6                     | 7.6                     | 15                      | 31                      | 30                      | 17                      | 10                      | 5.7                     | 16                      | 7.2                     | 24                      | 20                      |
| Chromium [µg/g]    | 55                      | 73                      | 68                      | 670                     | 220                     | 79                      | 76                      | 25                      | 71                      | 92                      | 390                     | 430                     |
| Copper [µg/g]      | 11                      | 11                      | 1.9                     | 52                      | 117                     | 48                      | 6.2                     | 9.4                     | 6.5                     | 8.0                     | 6.4                     | 78                      |
| Iron [μg/g]        | 77000                   | 30000                   | 130000                  | 42000                   | 21000                   | 68000                   | 45000                   | 200000                  | 130000                  | 85000                   | 150000                  | 200000                  |
| Potassium [µg/g]   | 34000                   | 14000                   | 1200                    | 2900                    | 7900                    | 8800                    | 11000                   | 4300                    | 410                     | 1300                    | 180                     | 82                      |
| Lithium [µg/g]     | 17                      | 7                       | 13                      | 11                      | 19                      | 38                      | 19                      | 7                       | 47                      | 11                      | 29                      | 36                      |
| Magnesium [µg/g]   | 25000                   | 8000                    | 89000                   | 8600                    | 13000                   | 27000                   | 19000                   | 23000                   | 27000                   | 38000                   | 59000                   | 74000                   |
| Manganese [µg/g]   | 320                     | 120                     | 5900                    | 340                     | 510                     | 1000                    | 470                     | 1100                    | 1200                    | 510                     | 490                     | 1000                    |
| Molybdenum [µg/g]  | 4.4                     | 15                      | 2.5                     | 0.6                     | 0.2                     | 3.8                     | 1.0                     | 0.9                     | 5.7                     | 1.7                     | 0.3                     | 8.0                     |
| Sodium [µg/g]      | 860                     | 370                     | 110                     | 220                     | 3730                    | 500                     | 250                     | 120                     | 140                     | 100                     | 97                      | 160                     |
| Nickel [µg/g]      | 18                      | 9.4                     | 49                      | 350                     | 120                     | 38                      | 23                      | 6.9                     | 39                      | 15                      | 140                     | 170                     |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 51:<br>MR  | 52:<br>MR  | 53:<br>MR  | 54:<br>MR  | 55:<br>MR  | 56:<br>MR  | 57:<br>MR  | 58:<br>MR  | 59:<br>MR  | 60:<br>MR  | 61:<br>MR  | 62:<br>MR  |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ARD-10-043 | ARD-10-045 | ARD-10-103 | ARD-10-044 | ARD-10-100 | ARD-10-102 | ARD-10-104 | ARD-10-105 | ARD-10-106 | ARD-10-107 | ARD-10-108 | ARD-10-109 |
| Lead [µg/g]      | 16         | 4.2        | 1.7        | 46         | 0.60       | 3.0        | 2.2        | 3.0        | 1.4        | 3.1        | 4.0        | 2.3        |
| Antimony [µg/g]  | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | 14         | 3.1        | 1.4        | < 0.8      |
| Selenium [µg/g]  | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | 1.0        | < 0.7      | < 0.7      | < 0.7      |
| Tin [µg/g]       | 1.1        | 1.3        | 2.5        | 0.8        | < 0.5      | 2.3        | 0.6        | 0.7        | 4.8        | 2.3        | 2.9        | 1.0        |
| Strontium [µg/g] | 2.9        | 3.6        | 3.4        | 4.8        | 25         | 4.7        | 2.9        | 14         | 2.5        | 6.0        | 6.4        | 5.1        |
| Titanium [µg/g]  | 2100       | 1300       | 1400       | 560        | 1900       | 1700       | 810        | 100        | 530        | 370        | 650        | 70         |
| Thallium [µg/g]  | 1.6        | 0.41       | 0.04       | 0.14       | 0.09       | 0.25       | 0.25       | 0.04       | 0.54       | 0.18       | 0.05       | 0.06       |
| Uranium [µg/g]   | 2.5        | 1.3        | 1.5        | 0.44       | 0.032      | 2.5        | 2.0        | 0.58       | 2.1        | 2.7        | 3.4        | 1.2        |
| Vanadium [µg/g]  | 21         | 14         | 77         | 28         | 120        | 48         | 32         | 14         | 44         | 26         | 78         | 73         |
| Zinc [µg/g]      | 15         | 21         | 72         | 17         | 23         | 77         | 17         | 9.4        | 111        | 48         | 36         | 57         |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

**Date Rec. :** 31 August 2010 **CA11533-AUG10** 

**Copy:** #1

| Analysis           | 63:<br>MR<br>ARD-10-092 | 64:<br>MR<br>ARD-10-093 | 65:<br>MR<br>ARD-10-094 | 66:<br>MR<br>ARD-10-095 | 67:<br>MR<br>ARD-10-096 | 68:<br>MR<br>ARD-10-098 | 69:<br>MR<br>ARD-10-099 | 70:<br>MR<br>ARD-10-101 | 71:<br>MR<br>ARD-10-080 | 72:<br>MR<br>ARD-10-085 | 73:<br>MR<br>ARD-10-087 | 74:<br>MR<br>ARD-10-088 |
|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Sample Date & Time | Date:NA                 |
| Mercury [µg/g]     | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   |
| Aluminum [µg/g]    | 64000                   | 38000                   | 69000                   | 33000                   | 43000                   | 33000                   | 72000                   | 62000                   | 13000                   | 60000                   | 25000                   | 48000                   |
| Arsenic [µg/g]     | < 0.5                   | 3.2                     | < 0.5                   | < 0.5                   | < 0.5                   | < 0.5                   | < 0.5                   | < 0.5                   | 59                      | 1.1                     | < 0.5                   | < 0.5                   |
| Barium [µg/g]      | < 0.01                  | 25                      | 0.30                    | 180                     | 75                      | 120                     | 410                     | 4.1                     | 2.8                     | 160                     | 41                      | 45                      |
| Beryllium [µg/g]   | 1.7                     | 3.0                     | 0.57                    | 0.12                    | 0.19                    | 0.13                    | 0.80                    | 0.78                    | 0.48                    | 2.5                     | 0.15                    | 0.25                    |
| Bismuth [µg/g]     | 0.29                    | < 0.09                  | 0.17                    | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | < 0.09                  | 0.49                    | 28                      | 0.18                    | < 0.09                  |
| Calcium [µg/g]     | 4000                    | 460                     | 3400                    | 17000                   | 3600                    | 16000                   | 1800                    | 3100                    | 3400                    | 1700                    | 31000                   | 7000                    |
| Cadmium [µg/g]     | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | 0.2                     | < 0.2                   |
| Cobalt [µg/g]      | 37                      | 73                      | 48                      | 26                      | 26                      | 24                      | 10                      | 27                      | 12                      | 48                      | 20                      | 28                      |
| Chromium [µg/g]    | 130                     | 350                     | 1090                    | 120                     | 250                     | 120                     | 42                      | 320                     | 19                      | 150                     | 160                     | 150                     |
| Copper [µg/g]      | 2.3                     | 9.6                     | 1.8                     | 134                     | 32                      | 90                      | 1.7                     | 54                      | 8.8                     | 169                     | 69                      | 76                      |
| Iron [µg/g]        | 150000                  | 200000                  | 82000                   | 33000                   | 41000                   | 21000                   | 99000                   | 71000                   | 210000                  | 160000                  | 43000                   | 75000                   |
| Potassium [µg/g]   | 77                      | 210                     | 57                      | 10000                   | 4200                    | 8500                    | 12000                   | 450                     | 410                     | 11000                   | 4400                    | 4600                    |
| Lithium [µg/g]     | 19                      | 150                     | 3                       | 15                      | 42                      | 31                      | 11                      | 15                      | 6                       | 36                      | 41                      | 75                      |
| Magnesium [µg/g]   | 58000                   | 23000                   | 62000                   | 15000                   | 54000                   | 12000                   | 41000                   | 52000                   | 24000                   | 33000                   | 25000                   | 46000                   |
| Manganese [µg/g]   | 460                     | 4000                    | 430                     | 630                     | 560                     | 590                     | 230                     | 710                     | 170                     | 530                     | 1360                    | 1020                    |
| Molybdenum [µg/g]  | 4.8                     | 2.3                     | 1.0                     | 0.3                     | 0.2                     | 0.2                     | 1.1                     | 0.3                     | 39                      | 1.9                     | 1.5                     | 4.2                     |
| Sodium [µg/g]      | 110                     | 130                     | 94                      | 1080                    | 220                     | 2140                    | 210                     | 120                     | 160                     | 270                     | 370                     | 380                     |
| Nickel [µg/g]      | 45                      | 160                     | 240                     | 57                      | 110                     | 66                      | 9.5                     | 94                      | 46                      | 92                      | 62                      | 75                      |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 63:<br>MR  | 64:<br>MR  | 65:<br>MR  | 66:<br>MR  | 67:<br>MR  | 68:<br>MR  | 69:<br>MR  | 70:<br>MR  | 71:<br>MR  | 72:<br>MR  | 73:<br>MR  | 74:<br>MR  |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ARD-10-092 | ARD-10-093 | ARD-10-094 | ARD-10-095 | ARD-10-096 | ARD-10-098 | ARD-10-099 | ARD-10-101 | ARD-10-080 | ARD-10-085 | ARD-10-087 | ARD-10-088 |
|                  |            |            |            |            |            |            |            |            |            |            |            |            |
| Lead [µg/g]      | 2.1        | 2.3        | 2.2        | 2.2        | 4.2        | 1.8        | 5.0        | 2.7        | 3.3        | 113        | 4.7        | 2.2        |
| Antimony [µg/g]  | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | 0.9        | 1.2        | < 0.8      | < 0.8      |
| Selenium [µg/g]  | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | 0.7        | < 0.7      | < 0.7      |
| Tin [μg/g]       | 0.5        | 1.1        | 0.9        | < 0.5      | < 0.5      | < 0.5      | 1.4        | 1.2        | 1.1        | 1.2        | < 0.5      | 0.9        |
| Strontium [µg/g] | 9.2        | 3.4        | 3.9        | 14         | 5.4        | 36         | 4.6        | 3.5        | 8.4        | 2.8        | 10         | 5.1        |
| Titanium [µg/g]  | 310        | 290        | 160        | 2400       | 1300       | 1800       | 1200       | 110        | 53         | 930        | 610        | 1000       |
| Thallium [µg/g]  | 0.04       | 0.12       | 0.02       | 0.24       | 0.11       | 0.19       | 0.67       | < 0.02     | 0.15       | 0.89       | 0.10       | 0.08       |
| Uranium [µg/g]   | 1.4        | 2.2        | 0.88       | 0.14       | 0.044      | 0.027      | 3.8        | 1.8        | 0.63       | 0.88       | 0.070      | 0.23       |
| Vanadium [µg/g]  | 94         | 66         | 120        | 160        | 110        | 140        | 70         | 98         | 13         | 130        | 110        | 120        |
| Zinc [µg/g]      | 30         | 48         | 50         | 42         | 26         | 26         | 48         | 53         | 12         | 26         | 70         | 41         |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

**Date Rec. :** 31 August 2010 **CA11533-AUG10** 

**Copy:** #1

| Analysis           | 86:<br>MR<br>ARD-10-067 | 87:<br>MR<br>ARD-10-068 | 88:<br>MR  | 89:<br>MR<br>ARD-10-071 | 90:<br>MR<br>ARD-10-072 | 91:<br>MR<br>ARD-10-074 | 92:<br>MR<br>ARD-10-075 | 93:<br>MR<br>ARD-10-076 | 94:<br>MR<br>ARD-10-082 | 95:<br>MR<br>ARD-10-060 | 96:<br>MR<br>ARD-10-062 | 97:<br>MR<br>ARD-10-063 |
|--------------------|-------------------------|-------------------------|------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                    | ARD-10-067              | ARD-10-000              | ARD-10-070 | ARD-10-071              | ARD-10-072              | ARD-10-074              | ARD-10-075              | ARD-10-076              | AKD-10-062              | ARD-10-000              | ARD-10-062              | AKD-10-063              |
| Sample Date & Time | Date:NA                 | Date:NA                 | Date:NA    | Date:NA                 | Date:NA                 | Date:NA                 | Date:NA                 | Date:NA                 | Date:NA                 | Date:NA                 | Date:NA                 | Date:NA                 |
| Mercury [µg/g]     | < 0.1                   | < 0.1                   | < 0.1      | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   | < 0.1                   |
| Aluminum [µg/g]    | 61000                   | 92000                   | 22000      | 68000                   | 71000                   | 31000                   | 40000                   | 56000                   | 1000                    | 62000                   | 87000                   | 85000                   |
| Arsenic [µg/g]     | < 0.5                   | 7.5                     | 1.9        | 1.3                     | < 0.5                   | 2.9                     | < 0.5                   | < 0.5                   | < 0.5                   | 1.5                     | 0.7                     | 2.2                     |
| Barium [µg/g]      | 160                     | 1.8                     | 3.5        | 0.08                    | < 0.01                  | 420                     | 19                      | 73                      | 0.22                    | 410                     | 2.9                     | 0.58                    |
| Beryllium [µg/g]   | 0.83                    | 0.60                    | 1.2        | 3.1                     | 2.4                     | 1.1                     | 10                      | 1.1                     | 0.16                    | 0.76                    | 0.69                    | 0.82                    |
| Bismuth [µg/g]     | < 0.09                  | 0.33                    | < 0.09     | < 0.09                  | < 0.09                  | 0.58                    | < 0.09                  | < 0.09                  | < 0.09                  | 0.14                    | 0.11                    | 3.3                     |
| Calcium [µg/g]     | 800                     | 46                      | 1200       | 1600                    | 1400                    | 1500                    | 260                     | 7800                    | 15000                   | 640                     | 6500                    | 1200                    |
| Cadmium [µg/g]     | < 0.2                   | < 0.2                   | < 0.2      | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   | 0.6                     | < 0.2                   | < 0.2                   | < 0.2                   | < 0.2                   |
| Cobalt [µg/g]      | 53                      | 19                      | 12         | 39                      | 37                      | 14                      | 16                      | 31                      | 1.1                     | 91                      | 25                      | 27                      |
| Chromium [µg/g]    | 1070                    | 49                      | 48         | 920                     | 1260                    | 130                     | 52                      | 190                     | 93                      | 950                     | 530                     | 110                     |
| Copper [µg/g]      | 111                     | 30                      | 2.1        | 37                      | 15                      | 22                      | 8.0                     | 70                      | 7.7                     | 131                     | 4.8                     | 2.1                     |
| Iron [µg/g]        | 61000                   | 190000                  | 340000     | 160000                  | 170000                  | 99000                   | 74000                   | 85000                   | 96000                   | 87000                   | 135000                  | 148000                  |
| Potassium [µg/g]   | 13000                   | 69                      | 110        | 110                     | 82                      | 11000                   | 1600                    | 8900                    | 110                     | 2900                    | 47                      | 63                      |
| Lithium [µg/g]     | 31                      | < 2                     | 18         | 47                      | 47                      | 13                      | 26                      | 54                      | < 2                     | 26                      | 6                       | 24                      |
| Magnesium [µg/g]   | 45000                   | 60000                   | 20000      | 76000                   | 82000                   | 15000                   | 36000                   | 51000                   | 4500                    | 40000                   | 58000                   | 93000                   |
| Manganese [µg/g]   | 330                     | 860                     | 490        | 1900                    | 1500                    | 400                     | 510                     | 800                     | 1190                    | 590                     | 570                     | 190                     |
| Molybdenum [µg/g]  | 0.6                     | 6.1                     | 1.2        | 1.5                     | 1.0                     | 25                      | 0.3                     | 0.6                     | 0.5                     | 0.5                     | 0.3                     | 7.0                     |
| Sodium [µg/g]      | 270                     | 78                      | 84         | 130                     | 150                     | 310                     | 130                     | 420                     | 160                     | 170                     | 71                      | 100                     |
| Nickel [μg/g]      | 610                     | 53                      | 47         | 550                     | 430                     | 37                      | 27                      | 110                     | 6.8                     | 1040                    | 93                      | 210                     |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 86:<br>MR  | 87:<br>MR  | 88:<br>MR  | 89:<br>MR  | 90:<br>MR  | 91:<br>MR  | 92:<br>MR  | 93:<br>MR  | 94:<br>MR  | 95:<br>MR  | 96:<br>MR  | 97:<br>MR  |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ARD-10-067 | ARD-10-068 | ARD-10-070 | ARD-10-071 | ARD-10-072 | ARD-10-074 | ARD-10-075 | ARD-10-076 | ARD-10-082 | ARD-10-060 | ARD-10-062 | ARD-10-063 |
|                  |            |            |            |            |            |            |            |            |            |            |            |            |
| Lead [µg/g]      | 3.0        | 3.9        | 1.5        | 1.7        | 1.4        | 5.7        | 1.4        | 5.2        | 1.5        | 1.9        | 2.4        | 9.0        |
| Antimony [µg/g]  | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      |
| Selenium [µg/g]  | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      |
| Tin [µg/g]       | 0.6        | < 0.5      | < 0.5      | 1.0        | 1.3        | 1.4        | < 0.5      | < 0.5      | 0.7        | 0.9        | < 0.5      | 0.6        |
| Strontium [µg/g] | 4.5        | 0.59       | 3.4        | 4.7        | 4.7        | 7.3        | 4.3        | 7.2        | 4.4        | 1.3        | 15         | 4.4        |
| Titanium [µg/g]  | 790        | 300        | 270        | 68         | 68         | 1100       | 780        | 1500       | 59         | 250        | 200        | 37         |
| Thallium [µg/g]  | 0.14       | 0.03       | 0.03       | < 0.02     | < 0.02     | 0.41       | 0.04       | 0.13       | < 0.02     | 0.11       | 0.08       | 0.04       |
| Uranium [µg/g]   | 0.020      | 3.4        | 0.52       | 0.85       | 1.8        | 2.5        | 3.9        | 0.099      | 0.085      | 0.24       | 1.2        | 0.79       |
| Vanadium [µg/g]  | 110        | 45         | 28         | 62         | 64         | 28         | 51         | 150        | 25         | 100        | 140        | 99         |
| Zinc [µg/g]      | 19         | 81         | 15         | 45         | 50         | 32         | 19         | 88         | 3.8        | 47         | 37         | 44         |

Brian Graham B.Sc.

Project Specialist



P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

**Baffinland Iron Mines Corp** 

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

Date Rec.: 31 August 2010 LR Report: CA11533-AUG10

**Copy:** #1

| Analysis           | 109:<br>MR<br>ARD-10-059 | 110:<br>MR<br>ARD-10-61 | 111:<br>MR<br>ARD-10-053 | 112:<br>MR<br>ARD-10-054 | 113:<br>MR<br>ARD-10-119 | 114:<br>MR<br>ARD-10-120 | 115:<br>MR<br>ARD-10-121 | 116:<br>MR<br>ARD-10-122 | 117:<br>MR<br>ARD-10-123 |
|--------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Sample Date & Time | Date:NA                  | Date:NA                 | Date:NA                  | Date:NA                  | Date:NA                  | Date:NA                  | Date:NA                  | Date:NA                  | Date:NA                  |
| Mercury [µg/g]     | < 0.1                    | < 0.1                   | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    |
| Aluminum [µg/g]    | 24000                    | 71000                   | 16000                    | 26000                    | 66000                    | 7400                     | 46000                    | 50000                    | 88000                    |
| Arsenic [µg/g]     | < 0.5                    | < 0.5                   | < 0.5                    | < 0.5                    | < 0.5                    | 1.8                      | < 0.5                    | 0.6                      | 0.5                      |
| Barium [µg/g]      | 65                       | 6.6                     | 9.6                      | 5.6                      | 690                      | 7.3                      | 1000                     | 0.64                     | 510                      |
| Beryllium [µg/g]   | 0.09                     | 0.87                    | 0.07                     | 0.06                     | 0.40                     | 0.33                     | 0.44                     | 0.57                     | 1.5                      |
| Bismuth [µg/g]     | < 0.09                   | < 0.09                  | < 0.09                   | < 0.09                   | < 0.09                   | 0.16                     | < 0.09                   | 0.57                     | 0.20                     |
| Calcium [µg/g]     | 5000                     | 5200                    | 14000                    | 11000                    | 4100                     | 330                      | 2100                     | 5000                     | 3700                     |
| Cadmium [µg/g]     | < 0.2                    | < 0.2                   | < 0.2                    | < 0.2                    | < 0.2                    | < 0.2                    | < 0.2                    | < 0.2                    | 0.4                      |
| Cobalt [µg/g]      | 23                       | 25                      | 13                       | 18                       | 48                       | 14                       | 11                       | 25                       | 17                       |
| Chromium [µg/g]    | 130                      | 580                     | 73                       | 150                      | 250                      | 38                       | 83                       | 200                      | 17                       |
| Copper [µg/g]      | 106                      | 2.9                     | 115                      | 130                      | 145                      | 4.5                      | 4.8                      | 80                       | 31                       |
| Iron [µg/g]        | 22000                    | 91000                   | 17000                    | 22000                    | 77000                    | 607000                   | 65000                    | 68000                    | 134000                   |
| Potassium [µg/g]   | 5500                     | 130                     | 1800                     | 1300                     | 19000                    | 140                      | 26000                    | 65                       | 40000                    |
| Lithium [µg/g]     | 21                       | 6                       | 14                       | 43                       | 64                       | 6                        | 8                        | 5                        | 18                       |
| Magnesium [µg/g]   | 22000                    | 55000                   | 7300                     | 23000                    | 37000                    | 8700                     | 23000                    | 49000                    | 44000                    |
| Manganese [µg/g]   | 270                      | 560                     | 440                      | 630                      | 370                      | 460                      | 280                      | 540                      | 380                      |
| Molybdenum [µg/g]  | 0.2                      | 0.3                     | 0.1                      | 0.2                      | 0.2                      | 3.6                      | 0.5                      | 4.5                      | 1.7                      |
| Sodium [µg/g]      | 1260                     | 95                      | 910                      | 1430                     | 380                      | 71                       | 630                      | 70                       | 840                      |
| Nickel [µg/g]      | 66                       | 150                     | 36                       | 53                       | 140                      | 20                       | 8.0                      | 55                       | 6.0                      |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 109:<br>MR | 110:<br>MR | 111:<br>MR | 112:<br>MR | 113:<br>MR | 114:<br>MR | 115:<br>MR | 116:<br>MR | 117:<br>MR |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ARD-10-059 | ARD-10-61  | ARD-10-053 | ARD-10-054 | ARD-10-119 | ARD-10-120 | ARD-10-121 | ARD-10-122 | ARD-10-123 |
| Lead [µg/g]      | 0.42       | 1.7        | 1.6        | 14         | 1.7        | 1.5        | 13         | 2.5        | 29         |
| Antimony [µg/g]  | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | 14         | 3.2        |
| Selenium [µg/g]  | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | 2.6        | < 0.7      | 1.4        | < 0.7      |
| Tin [µg/g]       | < 0.5      | < 0.5      | < 0.5      | 0.6        | 2.1        | < 0.5      | 4.6        | 4.6        | 5.0        |
| Strontium [µg/g] | 9.3        | 12         | 13         | 13         | 14         | 1.1        | 6.3        | 12         | 5.7        |
| Titanium [µg/g]  | 1300       | 270        | 730        | 430        | 980        | 190        | 2500       | 270        | 3500       |
| Thallium [µg/g]  | 0.10       | 0.03       | 0.06       | 0.03       | 0.25       | < 0.02     | 0.58       | 0.50       | 1.5        |
| Uranium [µg/g]   | 0.046      | 1.2        | 0.066      | 0.066      | 0.022      | 0.59       | 2.6        | 2.2        | 3.3        |
| Vanadium [µg/g]  | 120        | 120        | 43         | 120        | 180        | 28         | 140        | 58         | 160        |
| Zinc [µg/g]      | 23         | 45         | 20         | 39         | 60         | 9.9        | 7.7        | 44         | 21         |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

**Date Rec. :** 31 August 2010 **CA11533-AUG10** 

**Copy:** #1

| Analysis           | 75:<br>MR  | 76:<br>MR  | 77:<br>MR  | 78:<br>MR  | 79:<br>MR  | 80:<br>MR  | 81:<br>MR  | 82:<br>MR  | 83:<br>MR  | 84:<br>MR  | 85:<br>MR  |
|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                    | ARD-10-089 | ARD-10-090 | ARD-10-091 | ARD-10-097 | ARD-10-077 | ARD-10-078 | ARD-10-079 | ARD-10-081 | ARD-10-083 | ARD-10-084 | ARD-10-086 |
| Sample Date & Time | Date:NA    |
| Mercury [µg/g]     | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      |
| Aluminum [µg/g]    | 53000      | 35000      | 38000      | 18000      | 49000      | 64000      | 38000      | 28000      | 14000      | 47000      | 65000      |
| Arsenic [µg/g]     | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      |
| Barium [µg/g]      | 74         | 190        | 5.7        | 16         | 1200       | 530        | 53         | 160        | 16         | 74         | 330        |
| Beryllium [µg/g]   | 0.27       | 1.00       | 3.2        | 0.15       | 0.95       | 0.31       | 0.07       | 1.2        | 0.15       | 0.19       | 1.2        |
| Bismuth [µg/g]     | < 0.09     | < 0.09     | < 0.09     | < 0.09     | < 0.09     | < 0.09     | < 0.09     | < 0.09     | < 0.09     | < 0.09     | < 0.09     |
| Calcium [µg/g]     | 6200       | 3900       | 210        | 11000      | 2200       | 1100       | 40000      | 640        | 8600       | 1800       | 900        |
| Cadmium [µg/g]     | < 0.2      | < 0.2      | < 0.2      | < 0.2      | < 0.2      | < 0.2      | < 0.2      | < 0.2      | < 0.2      | < 0.2      | < 0.2      |
| Cobalt [µg/g]      | 57         | 5.7        | 22         | 17         | 18         | 45         | 16         | 9.9        | 18         | 38         | 65         |
| Chromium [µg/g]    | 290        | 53         | 61         | 110        | 60         | 240        | 88         | 74         | 89         | 440        | 650        |
| Copper [µg/g]      | 58         | 1.2        | 0.9        | 98         | 2.5        | 97         | 105        | 1.6        | 77         | 65         | 26         |
| Iron [µg/g]        | 66000      | 36000      | 71000      | 17000      | 61000      | 78000      | 11000      | 35000      | 21000      | 56000      | 71000      |
| Potassium [µg/g]   | 10000      | 22000      | 1500       | 2400       | 28000      | 16000      | 2200       | 11000      | 2400       | 7200       | 8200       |
| Lithium [µg/g]     | 47         | 13         | 18         | 24         | 15         | 49         | 8          | 11         | 14         | 34         | 38         |
| Magnesium [µg/g]   | 67000      | 19000      | 34000      | 10000      | 25000      | 38000      | 5200       | 15000      | 12000      | 38000      | 51000      |
| Manganese [µg/g]   | 880        | 310        | 320        | 360        | 230        | 340        | 510        | 320        | 680        | 410        | 290        |
| Molybdenum [µg/g]  | 0.6        | 44         | 0.5        | 0.4        | 3.0        | 0.4        | 0.1        | 2.0        | 0.3        | 0.4        | 1.2        |
| Sodium [µg/g]      | 210        | 580        | 180        | 1400       | 620        | 280        | 3230       | 300        | 870        | 270        | 270        |
| Nickel [µg/g]      | 360        | 7.3        | 40         | 48         | 10         | 120        | 76         | 14         | 61         | 230        | 530        |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 75:<br>MR  | 76:<br>MR  | 77:<br>MR  | 78:<br>MR  | 79:<br>MR  | 80:<br>MR  | 81:<br>MR  | 82:<br>MR  | 83:<br>MR  | 84:<br>MR  | 85:<br>MR  |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ARD-10-089 | ARD-10-090 | ARD-10-091 | ARD-10-097 | ARD-10-077 | ARD-10-078 | ARD-10-079 | ARD-10-081 | ARD-10-083 | ARD-10-084 | ARD-10-086 |
| Lead [µg/g]      | 1.1        | 14         | 1.3        | 5.8        | 12         | 1.8        | 1.6        | 2.8        | 0.63       | 0.45       | 5.1        |
| Antimony [µg/g]  | < 0.8      | < 0.8      | < 0.8      | < 0.8      | 8.0        | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      |
| Selenium [µg/g]  | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      |
| Tin [µg/g]       | 0.5        | 1.2        | < 0.5      | 1.3        | 2.5        | 0.8        | 1.0        | 8.0        | < 0.5      | 0.7        | 1.0        |
| Strontium [µg/g] | 8.8        | 5.5        | 0.69       | 15         | 6.7        | 6.3        | 49         | 3.7        | 8.5        | 3.5        | 5.3        |
| Titanium [µg/g]  | 890        | 950        | 990        | 1400       | 2600       | 860        | 990        | 700        | 1200       | 870        | 450        |
| Thallium [µg/g]  | 0.16       | 0.97       | 0.05       | 0.05       | 1.1        | 0.23       | 0.07       | 0.42       | 0.04       | 0.08       | 0.10       |
| Uranium [µg/g]   | 0.074      | 5.8        | 4.3        | 0.10       | 1.8        | 0.028      | 0.069      | 1.7        | 0.36       | 0.016      | 0.026      |
| Vanadium [µg/g]  | 150        | 7          | 65         | 75         | 150        | 190        | 43         | 21         | 59         | 150        | 130        |
| Zinc [µg/g]      | 41         | 32         | 25         | 29         | 44         | 52         | 10         | 22         | 19         | 41         | 30         |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

**Date Rec. :** 31 August 2010 **CA11533-AUG10** 

**Copy:** #1

| Analysis           | 98:<br>MR  | 99:<br>MR  | 100:<br>MR | 101:<br>MR | 102:<br>MR | 103:<br>MR | 104:<br>MR | 105:<br>MR | 106:<br>MR | 107:<br>MR | 108:<br>MR |
|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                    | ARD-10-064 | ARD-10-065 | ARD-10-066 | ARD-10-069 | ARD-10-073 | ARD-10-042 | ARD-10-050 | ARD-10-052 | ARD-10-055 | ARD-10-056 | ARD-10-058 |
| Sample Date & Time | Date:NA    |
| Mercury [µg/g]     | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1      |
| Aluminum [µg/g]    | 78000      | 14000      | 71000      | 4300       | 71000      | 44000      | 34000      | 18000      | 23000      | 100000     | 47000      |
| Arsenic [µg/g]     | < 0.5      | 1.4        | < 0.5      | 49         | < 0.5      | < 0.5      | 1.5        | < 0.5      | 1.2        | < 0.5      | < 0.5      |
| Barium [µg/g]      | 5.8        | 8.0        | 200        | 1.4        | 3.7        | 420        | 8.6        | 25         | 180        | 5.6        | 960        |
| Beryllium [µg/g]   | 1.2        | 1.8        | 0.62       | 0.27       | 1.8        | 0.13       | 0.33       | 0.06       | 0.66       | 0.68       | 0.35       |
| Bismuth [µg/g]     | 0.24       | < 0.09     | < 0.09     | 0.33       | < 0.09     | < 0.09     | 0.38       | 0.12       | < 0.09     | 0.18       | 0.11       |
| Calcium [µg/g]     | 1500       | 1800       | 850        | 270        | 4500       | 22000      | 3400       | 10000      | 1500       | 1800       | 1900       |
| Cadmium [µg/g]     | < 0.2      | < 0.2      | < 0.2      | < 0.2      | < 0.2      | < 0.2      | 2.2        | 0.4        | 3.0        | < 0.2      | < 0.2      |
| Cobalt [µg/g]      | 31         | 29         | 85         | 20         | 30         | 33         | 19         | 27         | 28         | 33         | 18         |
| Chromium [µg/g]    | 170        | 33         | 1500       | 66         | 280        | 260        | 170        | 110        | 75         | 180        | 59         |
| Copper [µg/g]      | 7.4        | 0.5        | 37         | 5.2        | 1.5        | 55         | 6.9        | 92         | 30         | 0.6        | 70         |
| Iron [µg/g]        | 150000     | 503000     | 121000     | 417000     | 160000     | 58000      | 328000     | 31000      | 28000      | 140000     | 63000      |
| Potassium [µg/g]   | 490        | 900        | 4800       | 90         | 270        | 16000      | 310        | 1600       | 12000      | 230        | 29000      |
| Lithium [µg/g]     | 39         | 18         | 25         | 10         | 67         | 23         | 9          | 13         | 10         | 7          | 5          |
| Magnesium [µg/g]   | 63000      | 13000      | 55000      | 1600       | 54000      | 21000      | 21000      | 8800       | 12000      | 62000      | 21000      |
| Manganese [µg/g]   | 310        | 590        | 380        | 2560       | 550        | 1230       | 460        | 960        | 280        | 730        | 170        |
| Molybdenum [µg/g]  | 3.8        | 0.3        | 0.5        | 30         | 0.5        | 0.5        | 2.4        | 0.9        | 16         | 9.2        | 1.0        |
| Sodium [µg/g]      | 87         | 140        | 220        | 130        | 300        | 1370       | 140        | 1290       | 290        | 71         | 750        |
| Nickel [µg/g]      | 130        | 35         | 750        | 30         | 120        | 130        | 410        | 88         | 50         | 88         | 17         |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 98:<br>MR  | 99:<br>MR  | 100:<br>MR | 101:<br>MR | 102:<br>MR | 103:<br>MR | 104:<br>MR | 105:<br>MR | 106:<br>MR | 107:<br>MR | 108:<br>MR |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ARD-10-064 | ARD-10-065 | ARD-10-066 | ARD-10-069 | ARD-10-073 | ARD-10-042 | ARD-10-050 | ARD-10-052 | ARD-10-055 | ARD-10-056 | ARD-10-058 |
| Lead [µg/g]      | 2.1        | 1.8        | 4.1        | 3.9        | 2.6        | 0.85       | 1.4        | 3.3        | 16         | 0.76       | 32         |
| Antimony [µg/g]  | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | 1.4        | < 0.8      | < 0.8      | < 0.8      | < 0.8      |
| Selenium [µg/g]  | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      |
| Tin [µg/g]       | 1.4        | < 0.5      | 2.4        | 1.0        | 1.8        | 1.3        | 2.2        | 1.0        | 0.7        | 0.6        | 3.0        |
| Strontium [µg/g] | 15         | 6.4        | 6.5        | 1.8        | 11         | 12         | 7.5        | 11         | 3.2        | 3.4        | 8.4        |
| Titanium [µg/g]  | 76         | 180        | 380        | 110        | 490        | 2900       | 120        | 870        | 1400       | 130        | 2600       |
| Thallium [µg/g]  | 1.5        | 0.04       | 0.06       | 0.04       | 0.02       | 0.26       | 0.52       | 0.27       | 1.3        | 0.08       | 0.71       |
| Uranium [µg/g]   | 1.00       | 8.2        | 0.078      | 0.39       | 1.6        | 0.077      | 3.2        | 0.29       | 5.2        | 0.46       | 1.4        |
| Vanadium [µg/g]  | 62         | 16         | 120        | 9          | 92         | 180        | 97         | 79         | 31         | 190        | 140        |
| Zinc [µg/g]      | 99         | 18         | 31         | 4.3        | 58         | 45         | 38         | 80         | 722        | 63         | 9.3        |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

31 August 2010 Date Rec. : LR Report: CA11533-AUG10

Copy: #1

| Analysis           | 118:<br>MR<br>ARD-10-110 | 119:<br>MR<br>ARD-10-111 | 120:<br>MR<br>ARD-10-112 | 121:<br>MR<br>ARD-10-116 | 122:<br>MR<br>ARD-10-051 | 123:<br>MR<br>ARD-10-113 | 124:<br>MR<br>ARD-10-114 | 125:<br>MR<br>ARD-10-115 | 126:<br>MR<br>ARD-10-117 |
|--------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Sample Date & Time | Date:NA                  |
| Mercury [µg/g]     | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    |
| Aluminum [µg/g]    | 21000                    | 82000                    | 20000                    | 73000                    | 31000                    | 10                       | 17000                    | 48000                    | 45000                    |
| Arsenic [µg/g]     | < 0.5                    | < 0.5                    | 0.7                      | < 0.5                    | 1.0                      | 1.7                      | < 0.5                    | < 0.5                    | < 0.5                    |
| Barium [µg/g]      | 110                      | 1300                     | 27                       | 510                      | 12                       | 0.51                     | 96                       | 470                      | 100                      |
| Beryllium [µg/g]   | 0.72                     | 1.1                      | 0.06                     | 1.1                      | 0.16                     | 0.08                     | 0.47                     | 1.9                      | 0.12                     |
| Bismuth [µg/g]     | < 0.09                   | < 0.09                   | < 0.09                   | 0.19                     | 0.46                     | 0.13                     | < 0.09                   | < 0.09                   | < 0.09                   |
| Calcium [µg/g]     | 1000                     | 210                      | 36000                    | 12000                    | 34000                    | 25                       | 2200                     | 2000                     | 1200                     |
| Cadmium [µg/g]     | < 0.2                    | < 0.2                    | < 0.2                    | < 0.2                    | 0.5                      | 0.2                      | < 0.2                    | < 0.2                    | < 0.2                    |
| Cobalt [µg/g]      | 5.5                      | 42                       | 13                       | 55                       | 23                       | 0.25                     | 7.6                      | 7.8                      | 40                       |
| Chromium [µg/g]    | 95                       | 170                      | 54                       | 74                       | 75                       | < 0.5                    | 130                      | 75                       | 230                      |
| Copper [µg/g]      | 5.1                      | 75                       | 111                      | 33                       | 98                       | 0.1                      | 51                       | 2.8                      | 141                      |
| Iron [μg/g]        | 28000                    | 88000                    | 20000                    | 155000                   | 51000                    | 33                       | 26000                    | 42000                    | 56000                    |
| Potassium [µg/g]   | 7300                     | 15000                    | 3000                     | 31000                    | 1000                     | < 1                      | 7400                     | 23000                    | 15000                    |
| Lithium [µg/g]     | 8                        | 21                       | 37                       | 17                       | 75                       | < 2                      | 8                        | 24                       | 35                       |
| Magnesium [µg/g]   | 12000                    | 51000                    | 16000                    | 19000                    | 38000                    | 19                       | 8000                     | 31000                    | 25000                    |
| Manganese [µg/g]   | 280                      | 510                      | 940                      | 140                      | 950                      | 2.3                      | 180                      | 300                      | 220                      |
| Molybdenum [µg/g]  | 2.1                      | 0.2                      | 0.2                      | 18                       | 1.8                      | 0.5                      | 12                       | 1.1                      | 0.6                      |
| Sodium [µg/g]      | 250                      | 340                      | 510                      | 550                      | 380                      | 9                        | 240                      | 630                      | 390                      |
| Nickel [µg/g]      | 8.6                      | 170                      | 35                       | 70                       | 48                       | < 0.1                    | 16                       | 7.3                      | 120                      |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 118:<br>MR | 119:<br>MR | 120:<br>MR | 121:<br>MR | 122:<br>MR | 123:<br>MR | 124:<br>MR | 125:<br>MR | 126:<br>MR |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ARD-10-110 | ARD-10-111 | ARD-10-112 | ARD-10-116 | ARD-10-051 | ARD-10-113 | ARD-10-114 | ARD-10-115 | ARD-10-117 |
| Lead [µg/g]      | 2.3        | 7.2        | 0.52       | 15         | 18         | 0.40       | 3.7        | 4.7        | 0.91       |
| Antimony [µg/g]  | 1.3        | < 0.8      | < 0.8      | < 0.8      | 1.7        | < 0.8      | < 0.8      | < 0.8      | < 0.8      |
| Selenium [µg/g]  | < 0.7      | < 0.7      | < 0.7      | < 0.7      | 1.1        | < 0.7      | < 0.7      | < 0.7      | < 0.7      |
| Tin [μg/g]       | 0.9        | 1.2        | < 0.5      | 1.9        | 2.1        | < 0.5      | 0.6        | 1.7        | 0.7        |
| Strontium [µg/g] | 8.1        | 1.9        | 16         | 35         | 14         | 0.22       | 4.7        | 6.8        | 11         |
| Titanium [µg/g]  | 640        | 1100       | 820        | 1700       | 1200       | < 0.1      | 410        | 1800       | 1200       |
| Thallium [µg/g]  | 0.21       | 0.35       | 0.06       | 1.6        | 0.63       | 0.27       | 0.27       | 0.68       | 0.20       |
| Uranium [µg/g]   | 2.0        | 0.058      | 0.034      | 2.6        | 0.59       | 0.22       | 2.1        | 1.5        | 0.047      |
| Vanadium [µg/g]  | 11         | 180        | 56         | 28         | 130        | 1          | 7          | 38         | 210        |
| Zinc [µg/g]      | 16         | 60         | 20         | 26         | 38         | < 0.7      | 18         | 41         | 23         |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Thursday, September 30, 2010

31 August 2010 Date Rec. : LR Report: CA11533-AUG10

Copy: #1

| Analysis           | 127:<br>MR<br>ARD-10-118 | 128:<br>MR<br>ARD-10-124 | 129:<br>MR<br>ARD-10-125 | 130:<br>MR<br>ARD-10-126 | 131:<br>MR<br>ARD-10-127 | 132:<br>MR<br>ARD-10-128 | 133:<br>MR<br>ARD-10-129 | 134:<br>MR<br>ARD-10-130 | 135:<br>MR<br>ARD-10-131 |
|--------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Sample Date & Time | Date:NA                  |
| Mercury [µg/g]     | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    | < 0.1                    |
| Aluminum [µg/g]    | 81000                    | 38000                    | 21000                    | 84000                    | 116000                   | 41000                    | 29000                    | 25000                    | 7100                     |
| Arsenic [µg/g]     | < 0.5                    | < 0.5                    | < 0.5                    | 6.9                      | < 0.5                    | 3.5                      | 154                      | 1.2                      | 27                       |
| Barium [µg/g]      | 4.2                      | 18                       | 260                      | 31                       | 560                      | 5.9                      | 2.1                      | 56                       | 1.6                      |
| Beryllium [µg/g]   | 1.1                      | 2.4                      | 1.1                      | 3.5                      | 1.3                      | 1.7                      | 0.86                     | 0.12                     | 0.44                     |
| Bismuth [µg/g]     | < 0.09                   | < 0.09                   | < 0.09                   | 0.17                     | < 0.09                   | 0.10                     | 1.0                      | < 0.09                   | < 0.09                   |
| Calcium [µg/g]     | 150                      | 260                      | 920                      | 810                      | 2500                     | 1300                     | 350                      | 7400                     | 1800                     |
| Cadmium [µg/g]     | < 0.2                    | < 0.2                    | < 0.2                    | < 0.2                    | < 0.2                    | < 0.2                    | < 0.2                    | < 0.2                    | < 0.2                    |
| Cobalt [µg/g]      | 43                       | 7.8                      | 7.8                      | 44                       | 67                       | 26                       | 72                       | 21                       | 10.0                     |
| Chromium [µg/g]    | 730                      | 150                      | 85                       | 130                      | 580                      | 600                      | 170                      | 120                      | 40                       |
| Copper [µg/g]      | 8.0                      | 0.9                      | 2.3                      | 29                       | 94                       | 29                       | 207                      | 165                      | 31                       |
| Iron [µg/g]        | 132000                   | 74000                    | 21000                    | 216000                   | 145000                   | 98000                    | 225000                   | 33000                    | 6900                     |
| Potassium [µg/g]   | 73                       | 3300                     | 12000                    | 600                      | 10000                    | 240                      | 100                      | 5000                     | 190                      |
| Lithium [µg/g]     | < 2                      | 52                       | 15                       | 370                      | 32                       | 32                       | 70                       | 39                       | 5                        |
| Magnesium [µg/g]   | 70000                    | 28000                    | 11000                    | 46000                    | 110000                   | 35000                    | 2800                     | 24000                    | 20000                    |
| Manganese [µg/g]   | 940                      | 420                      | 150                      | 630                      | 850                      | 600                      | 570                      | 590                      | 32000                    |
| Molybdenum [µg/g]  | 0.2                      | 0.1                      | 0.7                      | 0.8                      | 0.8                      | 1.2                      | 177                      | 1.7                      | 56                       |
| Sodium [µg/g]      | 89                       | 290                      | 350                      | 170                      | 350                      | 170                      | 250                      | 250                      | 69                       |
| Nickel [µg/g]      | 290                      | 26                       | 8.8                      | 200                      | 310                      | 320                      | 170                      | 59                       | 25                       |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11533-AUG10

| Analysis         | 127:<br>MR | 128:<br>MR | 129:<br>MR | 130:<br>MR | 131:<br>MR | 132:<br>MR | 133:<br>MR | 134:<br>MR | 135:<br>MR |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ARD-10-118 | ARD-10-124 | ARD-10-125 | ARD-10-126 | ARD-10-127 | ARD-10-128 | ARD-10-129 | ARD-10-130 | ARD-10-131 |
| Lead [µg/g]      | 2.2        | 2.5        | 6.5        | 5.7        | 3.6        | 3.6        | 29         | 1.0        | 1.2        |
| Antimony [µg/g]  | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | 1.0        | < 0.8      | < 0.8      |
| Selenium [µg/g]  | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | 8.9        | < 0.7      | < 0.7      |
| Tin [μg/g]       | < 0.5      | < 0.5      | 0.6        | 1.5        | 1.0        | 0.9        | 1.9        | 2.0        | 1.2        |
| Strontium [µg/g] | 1.8        | 5.6        | 6.0        | 7.9        | 3.6        | 11         | 3.5        | 12         | 1.9        |
| Titanium [µg/g]  | 230        | 690        | 850        | 750        | 1000       | 150        | 310        | 1200       | 190        |
| Thallium [µg/g]  | 0.05       | 0.07       | 0.48       | 0.04       | 0.19       | < 0.02     | 0.67       | 0.09       | 0.03       |
| Uranium [µg/g]   | 2.4        | 5.6        | 3.6        | 3.9        | 0.89       | 1.2        | 1.4        | 0.031      | 0.39       |
| Vanadium [µg/g]  | 110        | 48         | 10         | 55         | 150        | 64         | 120        | 140        | 24         |
| Zinc [µg/g]      | 96         | 13         | 27         | 143        | 73         | 20         | 8.8        | 16         | 13         |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

#### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West, Toronto, ON

Canada, M5H 1T1

Phone: 416-364-8820, Fax:pdf

Friday, October 08, 2010

Date Rec.: 16 September 2010 LR Report: CA11051-SEP10

**Copy:** #1

| Analysis           | 3:                           | 4:                           | 5:       | 6:       | 7:       | 8:       | 9:       | 10:      | 11:      | 12:      | 13:      | 14:      |
|--------------------|------------------------------|------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                    | Analysis<br>Approval<br>Date | Analysis<br>Approval<br>Time | 5141     | 5142     | 5143     | 5144     | 5145     | 5146     | 5147     | 5148     | 5149     | 5150     |
| Sample Date & Time |                              |                              | Date:N/A |
| Mercury [µg/g]     | 06-Oct-10                    | 08:00                        | < 0.1    | < 0.1    | < 0.1    | < 0.1    | < 0.1    | < 0.1    | < 0.1    | < 0.1    | < 0.1    | < 0.1    |
| Aluminum [µg/g]    | 06-Oct-10                    | 13:05                        | 43000    | 29000    | 25000    | 28000    | 31000    | 75000    | 18000    | 23000    | 16000    | 33000    |
| Arsenic [µg/g]     | 06-Oct-10                    | 09:57                        | < 0.5    | < 0.5    | < 0.5    | < 0.5    | < 0.5    | < 0.5    | < 0.5    | < 0.5    | < 0.5    | < 0.5    |
| Barium [µg/g]      | 06-Oct-10                    | 09:57                        | 250      | 150      | 140      | 150      | 130      | 540      | 110      | 140      | 170      | 350      |
| Beryllium [µg/g]   | 06-Oct-10                    | 09:57                        | 0.95     | 0.18     | 0.20     | 0.24     | 0.23     | 0.37     | 0.27     | 0.23     | 0.17     | 0.60     |
| Bismuth [µg/g]     | 06-Oct-10                    | 09:57                        | 0.14     | 0.12     | < 0.09   | < 0.09   | < 0.09   | < 0.09   | < 0.09   | 0.13     | 3.9      | 3.1      |
| Calcium [µg/g]     | 06-Oct-10                    | 13:06                        | 3100     | 2900     | 2000     | 2000     | 2300     | 2200     | 1400     | 2100     | 1500     | 3600     |
| Cadmium [µg/g]     | 06-Oct-10                    | 09:57                        | 0.06     | 0.30     | 0.07     | 0.03     | 0.06     | 0.03     | 0.18     | 0.20     | 6.0      | 0.17     |
| Cobalt [µg/g]      | 06-Oct-10                    | 09:57                        | 26       | 10       | 11       | 11       | 11       | 28       | 6.8      | 8.8      | 6.9      | 24       |
| Chromium [µg/g]    | 06-Oct-10                    | 09:57                        | 130      | 60       | 57       | 72       | 67       | 180      | 77       | 88       | 89       | 260      |
| Copper [µg/g]      | 06-Oct-10                    | 09:57                        | 79       | 35       | 19       | 6.2      | 13       | 11       | 25       | 36       | 100      | 66       |
| Iron [μg/g]        | 06-Oct-10                    | 13:07                        | 67000    | 48000    | 36000    | 40000    | 42000    | 89000    | 23000    | 28000    | 26000    | 41000    |
| Potassium [µg/g]   | 06-Oct-10                    | 13:08                        | 18000    | 23000    | 20000    | 21000    | 24000    | 60000    | 14000    | 17000    | 13000    | 21000    |
| Lithium [µg/g]     | 06-Oct-10                    | 09:57                        | 52       | 32       | 31       | 33       | 35       | 49       | 20       | 24       | 19       | 49       |
| Magnesium [µg/g]   | 06-Oct-10                    | 13:09                        | 34000    | 13000    | 13000    | 15000    | 21000    | 57000    | 10000    | 15000    | 11000    | 34000    |
| Manganese [µg/g]   | 06-Oct-10                    | 09:57                        | 820      | 500      | 360      | 490      | 570      | 810      | 530      | 520      | 650      | 550      |
| Molybdenum [µg/g]  | 06-Oct-10                    | 09:57                        | 1.9      | 4.5      | 1.9      | 0.3      | 2.6      | 31       | 3.9      | 0.7      | 1.3      | 2.9      |
| Sodium [µg/g]      | 07-Oct-10                    | 12:29                        | 410      | 420      | 430      | 430      | 590      | 650      | 570      | 450      | 560      | 430      |
| Nickel [μg/g]      | 06-Oct-10                    | 09:57                        | 64       | 5.7      | 8.9      | 9.3      | 18       | 70       | 6.7      | 8.2      | 7.1      | 110      |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11051-SEP10

| Analysis         | 3:<br>Analysis<br>Approval<br>Date | 4:<br>Analysis<br>Approval<br>Time | 5:<br>5141 | 6:<br>5142 | 7:<br>5143 | 8:<br>5144 | 9:<br>5145 | 10:<br>5146 | 11:<br>5147 | 12:<br>5148 | 13:<br>5149 | 14:<br>5150 |
|------------------|------------------------------------|------------------------------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|
| Lead [µg/g]      | 06-Oct-10                          | 09:57                              | 6.8        | 19         | 5.4        | 3.5        | 3.4        | 4.7         | 6.9         | 9.4         | 39          | 3.7         |
| Antimony [µg/g]  | 06-Oct-10                          | 09:57                              | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8       | < 0.8       | < 0.8       | < 0.8       | < 0.8       |
| Selenium [µg/g]  | 06-Oct-10                          | 09:57                              | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7      | < 0.7       | < 0.7       | < 0.7       | < 0.7       | < 0.7       |
| Tin [μg/g]       | 06-Oct-10                          | 09:57                              | 2.2        | 3.5        | 1.6        | 2.6        | 1.9        | 1.2         | 1.8         | 7.2         | 3.9         | 2.7         |
| Strontium [µg/g] | 06-Oct-10                          | 09:57                              | 4.1        | 4.4        | 4.9        | 4.1        | 5.4        | 4.0         | 7.8         | 6.5         | 8.0         | 7.1         |
| Titanium [µg/g]  | 06-Oct-10                          | 13:11                              | 4400       | 4700       | 3700       | 3700       | 3800       | 6300        | 2000        | 2000        | 2000        | 3300        |
| Thallium [µg/g]  | 06-Oct-10                          | 09:57                              | 0.48       | 0.69       | 0.59       | 0.60       | 0.78       | 1.6         | 0.54        | 0.51        | 0.70        | 1.0         |
| Uranium [µg/g]   | 06-Oct-10                          | 09:57                              | 3.0        | 7.1        | 2.2        | 1.8        | 1.4        | 0.47        | 4.2         | 6.7         | 4.8         | 2.3         |
| Vanadium [µg/g]  | 06-Oct-10                          | 09:57                              | 140        | 24         | 66         | 69         | 73         | 170         | 26          | 43          | 21          | 98          |
| Zinc [µg/g]      | 06-Oct-10                          | 09:57                              | 93         | 100        | 61         | 69         | 68         | 170         | 65          | 97          | 350         | 120         |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West, Toronto, ON

Canada, M5H 1T1

Phone: 416-364-8820, Fax:pdf

Friday, October 08, 2010

Date Rec.: 16 September 2010 LR Report: CA11051-SEP10

**Copy:** #1

| Analysis           | 15:<br>5151 | 16:<br>5152 | 17:<br>5153 | 18:<br>5154 | 19:<br>5155 | 20:<br>5156 | 21:<br>5157 | 22:<br>5158 | 23:<br>5159 | 24:<br>5160 | 25:<br>5161 | 26:<br>5162 | 27:<br>5163 |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                    | 3131        | 3132        | 3133        | 3134        | 3133        | 3130        | 3137        | 3130        | 3139        | 3100        | 3101        | 3102        | 3103        |
|                    |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Sample Date & Time | Date:N/A    |
| Mercury [µg/g]     | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       |
| Aluminum [µg/g]    | 40000       | 29000       | 49000       | 20000       | 16000       | 23000       | 21000       | 29000       | 35000       | 17000       | 26000       | 19000       | 25000       |
| Arsenic [µg/g]     | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       |
| Barium [µg/g]      | 650         | 450         | 370         | 250         | 83          | 250         | 450         | 390         | 680         | 130         | 95          | 120         | 120         |
| Beryllium [µg/g]   | 0.43        | 0.30        | 0.96        | 0.12        | 0.56        | 0.25        | 0.21        | 0.24        | 0.19        | 0.95        | 0.12        | 0.14        | 0.16        |
| Bismuth [µg/g]     | 0.73        | 0.34        | 4.2         | 0.70        | 0.71        | 0.17        | 0.12        | 0.22        | 0.18        | 1.3         | < 0.09      | < 0.09      | < 0.09      |
| Calcium [µg/g]     | 4900        | 1400        | 3700        | 2300        | 1100        | 3200        | 3800        | 4900        | 3400        | 8200        | 2100        | 1700        | 1500        |
| Cadmium [µg/g]     | 1.1         | 2.1         | 0.56        | 0.14        | 0.26        | 0.27        | 0.13        | 0.10        | 0.40        | 0.08        | 0.06        | 0.09        | 0.04        |
| Cobalt [µg/g]      | 23          | 11          | 24          | 7.0         | 4.3         | 8.3         | 9.3         | 8.4         | 9.1         | 6.1         | 11          | 7.1         | 8.8         |
| Chromium [µg/g]    | 310         | 74          | 100         | 75          | 110         | 72          | 83          | 58          | 58          | 87          | 70          | 63          | 60          |
| Copper [µg/g]      | 150         | 260         | 170         | 20          | 12          | 15          | 28          | 26          | 48          | 12          | 9.0         | 3.3         | 2.9         |
| Iron [µg/g]        | 49000       | 41000       | 65000       | 31000       | 21000       | 41000       | 36000       | 49000       | 58000       | 26000       | 36000       | 26000       | 35000       |
| Potassium [µg/g]   | 30000       | 22000       | 23000       | 15000       | 10000       | 18000       | 16000       | 23000       | 27000       | 13000       | 22000       | 16000       | 21000       |
| Lithium [µg/g]     | 43          | 32          | 69          | 22          | 31          | 24          | 25          | 27          | 30          | 28          | 30          | 26          | 35          |
| Magnesium [µg/g]   | 33000       | 16000       | 42000       | 9300        | 10000       | 12000       | 12000       | 14000       | 17000       | 10000       | 15000       | 10000       | 14000       |
| Manganese [µg/g]   | 550         | 490         | 880         | 460         | 400         | 560         | 770         | 790         | 800         | 510         | 570         | 460         | 520         |
| Molybdenum [µg/g]  | 0.8         | 2.1         | 6.3         | 37          | 6.2         | 47          | 2.0         | 8.7         | 1.7         | 1.4         | 0.4         | 0.4         | 0.5         |
| Sodium [µg/g]      | 640         | 590         | 340         | 730         | 490         | 620         | 680         | 740         | 540         | 430         | 430         | 390         | 370         |
| Nickel [µg/g]      | 110         | 7.4         | 40          | 4.9         | 5.6         | 5.0         | 7.0         | 4.7         | 7.8         | 8.1         | 17          | 7.4         | 8.3         |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11051-SEP10

| Analysis         | 15:   | 16:   | 17:   | 18:   | 19:   | 20:   | 21:   | 22:   | 23:   | 24:   | 25:   | 26:   | 27:   |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  | 5151  | 5152  | 5153  | 5154  | 5155  | 5156  | 5157  | 5158  | 5159  | 5160  | 5161  | 5162  | 5163  |
|                  |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Lead [µg/g]      | 7.6   | 21    | 120   | 4.2   | 28    | 3.4   | 5.2   | 8.0   | 13    | 4.7   | 5.8   | 6.9   | 6.1   |
| Antimony [µg/g]  | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 |
| Selenium [µg/g]  | < 0.7 | < 0.7 | < 0.7 | < 0.7 | < 0.7 | < 0.7 | 0.9   | < 0.7 | < 0.7 | 0.7   | < 0.7 | 8.0   | < 0.7 |
| Tin [μg/g]       | 5.1   | 11    | 6.0   | 2.5   | 1.6   | 2.6   | 1.0   | 1.5   | 4.3   | 2.4   | 1.6   | 1.4   | 2.0   |
| Strontium [µg/g] | 12    | 5.6   | 6.0   | 6.2   | 4.3   | 6.7   | 8.5   | 11    | 8.2   | 15    | 4.7   | 3.7   | 3.9   |
| Titanium [µg/g]  | 3800  | 2600  | 4800  | 2800  | 1400  | 3700  | 2900  | 4700  | 4700  | 2000  | 3900  | 2900  | 3300  |
| Thallium [µg/g]  | 1.3   | 0.86  | 0.74  | 0.47  | 0.33  | 0.62  | 0.54  | 0.61  | 0.82  | 0.48  | 0.70  | 0.52  | 0.72  |
| Uranium [µg/g]   | 2.7   | 7.1   | 2.6   | 2.1   | 2.2   | 2.4   | 1.6   | 4.8   | 5.6   | 1.5   | 1.8   | 2.6   | 3.1   |
| Vanadium [µg/g]  | 73    | 34    | 100   | 33    | 19    | 38    | 26    | 20    | 35    | 23    | 73    | 56    | 53    |
| Zinc [µg/g]      | 230   | 270   | 270   | 71    | 100   | 95    | 67    | 78    | 110   | 56    | 68    | 50    | 60    |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West, Toronto, ON

Canada, M5H 1T1

Phone: 416-364-8820, Fax:pdf

Friday, October 08, 2010

Date Rec.: 16 September 2010 LR Report: CA11051-SEP10

**Copy:** #1

| Analysis           | 28:      | 29:<br>5165 | 30:<br>5166 | 31:      | 32:      | 33:      | 34:      | 35:      | 36:<br>5472 | 37:<br>5472 | 38:      | 39:      | 40:<br>5476 |
|--------------------|----------|-------------|-------------|----------|----------|----------|----------|----------|-------------|-------------|----------|----------|-------------|
|                    | 5164     | 3103        | 3100        | 5167     | 5168     | 5169     | 5170     | 5171     | 5172        | 5173        | 5174     | 5175     | 5176        |
|                    |          |             |             |          |          |          |          |          |             |             |          |          |             |
| Sample Date & Time | Date:N/A | Date:N/A    | Date:N/A    | Date:N/A | Date:N/A | Date:N/A | Date:N/A | Date:N/A | Date:N/A    | Date:N/A    | Date:N/A | Date:N/A | Date:N/A    |
| Mercury [µg/g]     | < 0.1    | < 0.1       | < 0.1       | < 0.1    | < 0.1    | < 0.1    | < 0.1    | < 0.1    | < 0.1       | < 0.1       | < 0.1    | < 0.1    | < 0.1       |
| Aluminum [µg/g]    | 20000    | 6200        | 30000       | 21000    | 25000    | 8900     | 18000    | 9300     | 7500        | 15000       | 6700     | 20000    | 92000       |
| Arsenic [µg/g]     | < 0.5    | 0.7         | < 0.5       | < 0.5    | < 0.5    | < 0.5    | 0.7      | 0.6      | 0.7         | 0.5         | 0.6      | < 0.5    | 8.0         |
| Barium [µg/g]      | 130      | 41          | 170         | 190      | 170      | 52       | 93       | 67       | 78          | 70          | 38       | 79       | 95          |
| Beryllium [µg/g]   | 0.16     | 0.62        | 0.27        | 0.23     | 0.49     | 0.21     | 0.54     | 0.34     | 0.84        | 0.31        | 0.45     | 2.3      | 2.4         |
| Bismuth [µg/g]     | < 0.09   | 0.23        | < 0.09      | < 0.09   | 0.09     | 0.12     | 0.34     | 0.49     | 0.76        | < 0.09      | < 0.09   | < 0.09   | 0.09        |
| Calcium [µg/g]     | 1300     | 6700        | 4700        | 3700     | 3400     | 1200     | 11000    | 2100     | 3200        | 10000       | 71       | 230      | 3400        |
| Cadmium [µg/g]     | 0.07     | 0.06        | 0.22        | 0.05     | 0.05     | 2.9      | 0.45     | 0.15     | 0.22        | 0.10        | 0.28     | 0.20     | 0.25        |
| Cobalt [µg/g]      | 7.2      | 2.1         | 9.2         | 7.6      | 9.2      | 4.6      | 21       | 5.1      | 3.5         | 15          | 2.7      | 4.3      | 34          |
| Chromium [µg/g]    | 80       | 78          | 65          | 67       | 69       | 96       | 390      | 67       | 120         | 370         | 140      | 110      | 700         |
| Copper [µg/g]      | 6.8      | 7.1         | 21          | 24       | 14       | 41       | 110      | 92       | 43          | 34          | 17       | 7.7      | 13          |
| Iron [µg/g]        | 29000    | 7200        | 47000       | 30000    | 36000    | 13000    | 26000    | 20000    | 16000       | 23000       | 8200     | 16000    | 94000       |
| Potassium [µg/g]   | 16000    | 3300        | 23000       | 16000    | 21000    | 6600     | 15000    | 7700     | 5000        | 13000       | 3200     | 9000     | 37000       |
| Lithium [µg/g]     | 30       | 9           | 35          | 24       | 32       | 9        | 27       | 20       | 17          | 34          | 6        | 16       | 35          |
| Magnesium [µg/g]   | 10000    | 4900        | 16000       | 14000    | 17000    | 6100     | 17000    | 6500     | 4500        | 14000       | 3600     | 16000    | 86000       |
| Manganese [µg/g]   | 430      | 370         | 760         | 590      | 690      | 200      | 290      | 360      | 330         | 260         | 110      | 320      | 860         |
| Molybdenum [µg/g]  | 1.5      | 0.4         | 1.5         | 0.4      | 6.6      | 0.7      | 1.1      | 0.2      | 0.7         | 1.3         | 1.9      | 0.4      | 0.7         |
| Sodium [µg/g]      | 450      | 290         | 510         | 660      | 570      | 790      | 340      | 350      | 650         | 430         | 80       | 140      | 570         |
| Nickel [µg/g]      | 7.1      | 4.0         | 9.4         | 7.9      | 7.7      | 4.8      | 100      | 4.0      | 5.1         | 65          | 5.7      | 6.6      | 150         |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11051-SEP10

| Analysis         | 28:   | 29:   | 30:   | 31:   | 32:   | 33:   | 34:   | 35:   | 36:   | 37:   | 38:   | 39:   | 40:   |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  | 5164  | 5165  | 5166  | 5167  | 5168  | 5169  | 5170  | 5171  | 5172  | 5173  | 5174  | 5175  | 5176  |
|                  |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Lead [µg/g]      | 3.7   | 18    | 7.4   | 9.3   | 8.0   | 52    | 55    | 20    | 24    | 7.0   | 55    | 11    | 13    |
| Antimony [µg/g]  | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 |
| Selenium [µg/g]  | < 0.7 | 0.9   | < 0.7 | < 0.7 | < 0.7 | 8.0   | 8.0   | 0.9   | 1.2   | 8.0   | 1.0   | 1.1   | < 0.7 |
| Tin [µg/g]       | 0.5   | < 0.5 | 1.2   | 0.9   | 1.7   | 1.2   | 0.7   | 1.0   | 1.7   | < 0.5 | < 0.5 | < 0.5 | 1.6   |
| Strontium [µg/g] | 3.3   | 13    | 9.9   | 13    | 9.3   | 14    | 36    | 13    | 18    | 26    | 1.6   | 2.2   | 3.9   |
| Titanium [µg/g]  | 2700  | 670   | 4300  | 2700  | 3300  | 1100  | 2500  | 930   | 830   | 2500  | 65    | 220   | 3100  |
| Thallium [µg/g]  | 0.55  | 0.16  | 0.64  | 0.60  | 0.74  | 0.26  | 0.94  | 0.40  | 0.20  | 0.76  | 0.08  | 0.30  | 1.4   |
| Uranium [µg/g]   | 0.64  | 0.78  | 3.1   | 1.9   | 2.7   | 7.6   | 3.9   | 8.1   | 8.4   | 2.1   | 8.3   | 12    | 3.2   |
| Vanadium [µg/g]  | 24    | 4     | 29    | 62    | 63    | 13    | 58    | 11    | 6     | 63    | 23    | 27    | 83    |
| Zinc [µg/g]      | 49    | 18    | 74    | 69    | 61    | 67    | 36    | 26    | 17    | 29    | 30    | 30    | 170   |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West, Toronto, ON

Canada, M5H 1T1

Phone: 416-364-8820, Fax:pdf

Friday, October 08, 2010

Date Rec.: 16 September 2010 LR Report: CA11051-SEP10

**Copy:** #1

| Analysis           | 41:<br>5177 | 42:<br>5178 | 43:<br>5179 | 44:<br>5180 | 45:<br>5181 | 46:<br>5182 | 47:<br>5183 | 48:<br>5184 | 49:<br>5185 | 50:<br>5186 | 51:<br>5187 | 52:<br>5188 | 53:<br>5189 |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                    | 3177        | 3176        | 3179        | 3100        | 3101        | 3102        | 3103        | 3104        | 3103        | 3100        | 3107        | 3100        | 3103        |
|                    |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Sample Date & Time | Date:N/A    |
| Mercury [µg/g]     | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | < 0.1       | 0.1         | < 0.1       |
| Aluminum [µg/g]    | 80000       | 71000       | 55000       | 73000       | 84000       | 33000       | 33000       | 59000       | 37000       | 37000       | 47000       | 28000       | 70000       |
| Arsenic [µg/g]     | 13          | 0.9         | < 0.5       | < 0.5       | < 0.5       | 0.5         | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       | < 0.5       |
| Barium [µg/g]      | 67          | 2.6         | 160         | 270         | 490         | 220         | 260         | 560         | 220         | 270         | 280         | 150         | 700         |
| Beryllium [µg/g]   | 3.6         | 0.63        | 5.1         | 3.3         | 3.2         | 0.90        | 0.72        | 1.0         | 0.57        | 1.0         | 1.5         | 0.52        | 0.89        |
| Bismuth [µg/g]     | < 0.09      | 0.09        | 0.10        | < 0.09      | < 0.09      | 0.24        | < 0.09      | < 0.09      | 0.14        | 0.16        | < 0.09      | < 0.09      | 0.12        |
| Calcium [µg/g]     | 4000        | 5900        | 880         | 1800        | 3100        | 2900        | 1100        | 3500        | 5400        | 16000       | 1700        | 2700        | 3300        |
| Cadmium [µg/g]     | 2.6         | 0.26        | 0.03        | < 0.02      | 0.02        | 0.39        | 0.10        | < 0.02      | 0.03        | 0.04        | < 0.02      | 0.10        | < 0.02      |
| Cobalt [µg/g]      | 36          | 73          | 10          | 6.4         | 14          | 22          | 21          | 20          | 21          | 16          | 22          | 15          | 24          |
| Chromium [µg/g]    | 780         | 2200        | 100         | 17          | 34          | 82          | 64          | 69          | 49          | 67          | 27          | 74          | 47          |
| Copper [µg/g]      | 8.0         | 67          | 1.9         | 0.7         | 7.6         | 200         | 29          | 1.5         | 36          | 29          | 2.4         | 26          | 22          |
| Iron [µg/g]        | 91000       | 77000       | 38000       | 31000       | 55000       | 49000       | 37000       | 57000       | 50000       | 45000       | 53000       | 33000       | 69000       |
| Potassium [µg/g]   | 25000       | 440         | 21000       | 35000       | 43000       | 21000       | 22000       | 38000       | 20000       | 15000       | 25000       | 16000       | 45000       |
| Lithium [µg/g]     | 26          | 7           | 52          | 92          | 81          | 23          | 26          | 28          | 24          | 22          | 25          | 15          | 33          |
| Magnesium [µg/g]   | 86000       | 74000       | 45000       | 57000       | 56000       | 19000       | 21000       | 38000       | 23000       | 17000       | 30000       | 18000       | 44000       |
| Manganese [µg/g]   | 280         | 430         | 490         | 440         | 420         | 290         | 340         | 530         | 410         | 410         | 320         | 270         | 570         |
| Molybdenum [µg/g]  | 53          | 0.9         | 2.1         | 8.0         | 0.6         | 0.3         | 0.3         | 2.1         | 0.2         | 0.2         | 0.1         | 0.6         | 1.3         |
| Sodium [µg/g]      | 540         | 30          | 390         | 630         | 760         | 300         | 390         | 730         | 370         | 450         | 430         | 330         | 890         |
| Nickel [µg/g]      | 180         | 620         | 26          | 4.9         | 23          | 16          | 35          | 38          | 8.8         | 13          | 33          | 17          | 30          |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11051-SEP10

| Analysis         | 41:   | 42:   | 43:   | 44:   | 45:<br>54.94 | 46:   | 47:   | 48:   | 49:   | 50:   | 51:   | 52:   | 53:   |
|------------------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  | 5177  | 5178  | 5179  | 5180  | 5181         | 5182  | 5183  | 5184  | 5185  | 5186  | 5187  | 5188  | 5189  |
| Lead [µg/g]      | 12    | 27    | 14    | 12    | 26           | 18    | 15    | 11    | 5.9   | 9.7   | 5.1   | 12    | 10    |
| Antimony [µg/g]  | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8        | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 | < 0.8 |
| Selenium [µg/g]  | < 0.7 | 0.8   | 0.7   | < 0.7 | < 0.7        | 1.4   | 1.0   | < 0.7 | < 0.7 | 1.3   | 0.7   | 1.3   | 0.8   |
| Tin [µg/g]       | 1.3   | < 0.5 | 1.3   | 1.5   | 1.8          | 0.6   | 0.7   | 1.8   | 0.8   | 1.0   | 1.0   | < 0.5 | 1.5   |
| Strontium [µg/g] | 5.2   | 3.9   | 4.3   | 15    | 14           | 3.6   | 3.3   | 7.2   | 6.1   | 15    | 3.4   | 2.6   | 5.3   |
| Titanium [µg/g]  | 3700  | 380   | 840   | 440   | 2500         | 2400  | 2800  | 4100  | 3600  | 2800  | 2700  | 2200  | 4700  |
| Thallium [µg/g]  | 0.94  | 0.21  | 0.61  | 0.73  | 0.90         | 0.73  | 0.77  | 1.1   | 0.73  | 0.56  | 0.72  | 0.53  | 1.3   |
| Uranium [µg/g]   | 1.9   | 1.8   | 15    | 8.2   | 2.9          | 2.7   | 3.7   | 4.7   | 3.5   | 2.7   | 2.7   | 1.9   | 3.5   |
| Vanadium [µg/g]  | 140   | 91    | 27    | 31    | 79           | 62    | 120   | 150   | 48    | 64    | 170   | 38    | 140   |
| Zinc [µg/g]      | 450   | 100   | 42    | 46    | 58           | 62    | 63    | 75    | 66    | 53    | 74    | 48    | 80    |

Brian Graham B.Sc.

Project Specialist





# APPENDIX C-4 SHAKE FLASK EXTRACTION RESULTS



P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

**Baffinland Iron Mines Corp** 

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Wednesday, November 17, 2010

Date Rec.: 26 October 2010 LR Report: CA11386-OCT10

**Copy:** #1

| Analysis             | 3:<br>Analysis<br>Approval<br>Date | 4:<br>Analysis<br>Approval<br>Time | 5:<br>5164 | 6:<br>5171 | 7:<br>MR ARD<br>10-019 | 8:<br>5145 | 9:<br>5169 | 10:<br>5181 | 11:<br>5153 | 12:<br>MR ARD<br>10-077 | 13:<br>MR ARD<br>10-079 |
|----------------------|------------------------------------|------------------------------------|------------|------------|------------------------|------------|------------|-------------|-------------|-------------------------|-------------------------|
| Sample Date & Time   |                                    |                                    | Date: N/A  | Date: N/A  | Date: N/A              | Date: N/A  | Date: N/A  | Date: N/A   | Date: N/A   | Date: N/A               | Date: N/A               |
| Sample [weight(g)]   | 12-Nov-10                          | 09:39                              | 250        | 250        | 250                    | 250        | 250        | 250         | 250         | 250                     | 250                     |
| Volume mL [D.I. H2O] | 12-Nov-10                          | 09:39                              | 750        | 750        | 750                    | 750        | 750        | 750         | 750         | 750                     | 750                     |
| InitialpH [units]    | 12-Nov-10                          | 09:39                              | 9.20       | 9.68       | 7.80                   | 9.20       | 9.58       | 8.91        | 9.18        | 8.52                    | 9.74                    |
| Final pH [units]     | 12-Nov-10                          | 09:39                              | 9.87       | 9.57       | 8.74                   | 9.78       | 9.71       | 9.47        | 9.76        | 9.64                    | 9.73                    |
| Mercury [mg/L]       | 16-Nov-10                          | 15:31                              | < 0.0001   | < 0.0001   | < 0.0001               | < 0.0001   | < 0.0001   | < 0.0001    | < 0.0001    | < 0.0001                | < 0.0001                |
| Aluminum [mg/L]      | 16-Nov-10                          | 15:32                              | 1.50       | 0.62       | 0.12                   | 1.24       | 0.82       | 0.65        | 0.43        | 2.70                    | 0.87                    |
| Arsenic [mg/L]       | 17-Nov-10                          | 13:05                              | 0.0012     | 0.0016     | 0.0010                 | < 0.0002   | 0.0042     | 0.0004      | < 0.0002    | 0.0003                  | 0.0003                  |
| Barium [mg/L]        | 17-Nov-10                          | 13:05                              | 0.00231    | 0.00272    | 0.00506                | 0.00111    | 0.00174    | 0.00119     | 0.00265     | 0.0136                  | 0.00209                 |
| Beryllium [mg/L]     | 17-Nov-10                          | 13:05                              | < 0.00002  | < 0.00002  | < 0.00002              | < 0.00002  | < 0.00002  | < 0.00002   | < 0.00002   | 0.00004                 | < 0.00002               |
| Bismuth [mg/L]       | 17-Nov-10                          | 13:05                              | < 0.00001  | < 0.00001  | < 0.00001              | < 0.00001  | < 0.00001  | < 0.00001   | < 0.00001   | < 0.00001               | < 0.00001               |
| Calcium [mg/L]       | 16-Nov-10                          | 15:32                              | 0.73       | 3.90       | 18.8                   | 0.16       | 2.51       | 1.67        | 0.77        | 0.07                    | 6.69                    |
| Cadmium [mg/L]       | 17-Nov-10                          | 13:05                              | 0.000004   | < 0.000003 | 0.000030               | 0.000003   | 0.000013   | < 0.000003  | 0.000010    | 0.000007                | < 0.000003              |
| Cobalt [mg/L]        | 17-Nov-10                          | 13:05                              | 0.000078   | 0.000073   | 0.000040               | 0.000119   | 0.000126   | 0.000029    | 0.000037    | 0.000187                | 0.000024                |
| Chromium [mg/L]      | 17-Nov-10                          | 13:05                              | < 0.0005   | < 0.0005   | < 0.0005               | < 0.0005   | < 0.0005   | < 0.0005    | < 0.0005    | < 0.0005                | < 0.0005                |
| Copper [mg/L]        | 17-Nov-10                          | 13:05                              | < 0.0005   | 0.0006     | < 0.0005               | 0.0007     | 0.0011     | < 0.0005    | < 0.0005    | < 0.0005                | < 0.0005                |
| Iron [mg/L]          | 16-Nov-10                          | 15:32                              | 0.112      | 0.076      | < 0.002                | 0.148      | 0.096      | 0.069       | 0.068       | 0.452                   | 0.010                   |
| Potassium [mg/L]     | 16-Nov-10                          | 15:32                              | 16.1       | 11.2       | 4.90                   | 9.97       | 7.80       | 10.4        | 19.3        | 23.3                    | 8.33                    |
| Lithium [mg/L]       | 17-Nov-10                          | 13:05                              | 0.011      | 0.008      | 0.001                  | 0.008      | 0.004      | 0.016       | 0.003       | 0.002                   | 0.005                   |
| Magnesium [mg/L]     | 17-Nov-10                          | 13:15                              | 0.188      | 0.464      | 14.0                   | 0.127      | 0.353      | 0.383       | 0.302       | 0.226                   | 0.643                   |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11386-OCT10

| Analysis          | 3:<br>Analysis<br>Approval<br>Date | 4:<br>Analysis<br>Approval<br>Time | 5:<br>5164 | 6:<br>5171 | 7:<br>MR ARD<br>10-019 | 8:<br>5145 | 9:<br>5169 | 10:<br>5181 | 11:<br>5153 | 12:<br>MR ARD<br>10-077 | 13:<br>MR ARD<br>10-079 |
|-------------------|------------------------------------|------------------------------------|------------|------------|------------------------|------------|------------|-------------|-------------|-------------------------|-------------------------|
| Manganese [mg/L]  | 17-Nov-10                          | 13:15                              | 0.00180    | 0.00221    | 0.00535                | 0.00244    | 0.00220    | 0.00081     | 0.00117     | 0.00218                 | 0.00105                 |
| Molybdenum [mg/L] | 17-Nov-10                          | 13:05                              | 0.00553    | 0.00383    | 0.0361                 | 0.00187    | 0.00819    | 0.00409     | 0.0160      | 0.0110                  | 0.00052                 |
| Sodium [mg/L]     | 16-Nov-10                          | 15:31                              | 3.67       | 7.83       | 1.52                   | 3.94       | 8.16       | 2.78        | 2.21        | 1.78                    | 4.38                    |
| Nickel [mg/L]     | 17-Nov-10                          | 13:05                              | < 0.0001   | < 0.0001   | < 0.0001               | < 0.0001   | < 0.0001   | < 0.0001    | < 0.0001    | 0.0001                  | < 0.0001                |
| Lead [mg/L]       | 17-Nov-10                          | 13:05                              | 0.00025    | 0.00058    | 0.00020                | 0.00128    | 0.00302    | 0.00030     | 0.00041     | 0.00073                 | 0.00018                 |
| Antimony [mg/L]   | 17-Nov-10                          | 13:05                              | 0.0003     | 0.0004     | 0.0004                 | < 0.0002   | 0.0017     | < 0.0002    | 0.0005      | < 0.0002                | 0.0003                  |
| Selenium [mg/L]   | 17-Nov-10                          | 13:05                              | < 0.001    | 0.002      | < 0.001                | < 0.001    | < 0.001    | < 0.001     | < 0.001     | < 0.001                 | < 0.001                 |
| Tin [mg/L]        | 17-Nov-10                          | 13:05                              | < 0.00001  | < 0.00001  | < 0.00001              | < 0.00001  | < 0.00001  | < 0.00001   | < 0.00001   | < 0.00001               | < 0.00001               |
| Strontium [mg/L]  | 16-Nov-10                          | 15:31                              | 0.0025     | 0.0206     | 0.137                  | 0.0010     | 0.0158     | 0.0161      | 0.0039      | 0.0007                  | 0.0133                  |
| Titanium [mg/L]   | 17-Nov-10                          | 13:05                              | 0.0096     | 0.0036     | 0.0002                 | 0.0139     | 0.0075     | 0.0027      | 0.0068      | 0.0271                  | 0.0008                  |
| Thallium [mg/L]   | 17-Nov-10                          | 13:05                              | < 0.00002  | < 0.00002  | < 0.00002              | < 0.00002  | < 0.00002  | < 0.00002   | < 0.00002   | < 0.00002               | < 0.00002               |
| Uranium [mg/L]    | 17-Nov-10                          | 13:05                              | 0.000584   | 0.0119     | 0.000126               | 0.000316   | 0.0115     | 0.000246    | 0.000020    | 0.000093                | 0.000007                |
| Vanadium [mg/L]   | 17-Nov-10                          | 13:05                              | 0.00635    | 0.00436    | 0.00023                | 0.0156     | 0.00557    | 0.00183     | 0.00884     | 0.0171                  | 0.0278                  |
| Zinc [mg/L]       | 17-Nov-10                          | 13:05                              | < 0.001    | 0.002      | < 0.001                | < 0.001    | 0.002      | < 0.001     | < 0.001     | 0.001                   | 0.001                   |

Brian Graham B.Sc.

Project Specialist



Phone: 705-652-2000 FAX: 705-652-6365

### **Baffinland Iron Mines Corp**

Attn: Michael Zurowski

1016-120 Adelaide Street West Toronto, ON, M5H 1T1 Canada

Phone: 416-364-8820

Fax:pdf

Wednesday, November 17, 2010

Date Rec. : 26 October 2010 LR Report: CA11386-OCT10

Copy: #1

| Analysis             | 14:<br>MR ARD<br>10-039 | 15:<br>MR ARD<br>10-091 | 16:<br>MR ARD<br>10-023 | 17:<br>MR ARD<br>10-083 | 18:<br>MR ARD<br>10-098 | 19:<br>MR ARD<br>10-036 | 20:<br>MR ARD<br>10-001 | 21:<br>MR ARD<br>10-097 | 22:<br>MR ARD<br>10-028 | 23:<br>MR ARD<br>10-115 |
|----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Sample Date & Time   | Date: N/A               |
| Sample [weight(g)]   | 250                     | 250                     | 250                     | 250                     | 250                     | 250                     | 250                     | 250                     | 250                     | 250                     |
| Volume mL [D.I. H2O] | 750                     | 750                     | 750                     | 750                     | 750                     | 750                     | 750                     | 750                     | 750                     | 750                     |
| InitialpH [units]    | 4.31                    | 6.93                    | 8.78                    | 9.02                    | 9.65                    | 7.31                    | 7.06                    | 9.74                    | 7.38                    | 9.23                    |
| Final pH [units]     | 4.70                    | 7.33                    | 9.34                    | 8.99                    | 9.70                    | 7.95                    | 7.63                    | 9.73                    | 8.16                    | 9.74                    |
| Mercury [mg/L]       | < 0.0001                | < 0.0001                | < 0.0001                | < 0.0001                | < 0.0001                | < 0.0001                | < 0.0001                | < 0.0001                | < 0.0001                | < 0.0001                |
| Aluminum [mg/L]      | 1.22                    | 0.02                    | < 0.01                  | 0.03                    | 0.88                    | < 0.01                  | < 0.01                  | 0.55                    | 0.06                    | 2.15                    |
| Arsenic [mg/L]       | 0.0020                  | < 0.0002                | 0.0005                  | 0.0006                  | 0.0003                  | < 0.0002                | 0.0405                  | 0.0004                  | 0.0005                  | < 0.0002                |
| Barium [mg/L]        | 0.0120                  | 0.00102                 | 0.00539                 | 0.00176                 | 0.00121                 | 0.00321                 | 0.0197                  | 0.00057                 | 0.0184                  | 0.00324                 |
| Beryllium [mg/L]     | 0.00157                 | 0.00004                 | < 0.00002               | < 0.00002               | < 0.00002               | < 0.00002               | < 0.00002               | < 0.00002               | < 0.00002               | 0.00003                 |
| Bismuth [mg/L]       | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               |
| Calcium [mg/L]       | 42.5                    | 2.62                    | 9.55                    | 13.0                    | 3.56                    | 32.2                    | 24.7                    | 4.14                    | 7.32                    | 0.04                    |
| Cadmium [mg/L]       | 0.000912                | < 0.000003              | < 0.000003              | 0.000003                | < 0.000003              | < 0.000003              | 0.000047                | < 0.000003              | < 0.000003              | < 0.000003              |
| Cobalt [mg/L]        | 0.420                   | 0.00177                 | 0.000320                | 0.000117                | 0.000071                | 0.000307                | 0.00248                 | 0.000068                | 0.000065                | 0.000037                |
| Chromium [mg/L]      | < 0.0005                | < 0.0005                | < 0.0005                | < 0.0005                | < 0.0005                | < 0.0005                | < 0.0005                | < 0.0005                | < 0.0005                | < 0.0005                |
| Copper [mg/L]        | 0.0259                  | < 0.0005                | < 0.0005                | 0.0006                  | < 0.0005                | < 0.0005                | 0.0005                  | < 0.0005                | < 0.0005                | 0.0006                  |
| Iron [mg/L]          | 21.5                    | 0.026                   | < 0.002                 | 0.009                   | 0.035                   | 0.007                   | 0.006                   | 0.048                   | 0.037                   | 0.151                   |
| Potassium [mg/L]     | 8.75                    | 4.15                    | 1.06                    | 11.2                    | 17.8                    | 3.26                    | 22.4                    | 8.05                    | 9.00                    | 4.96                    |
| Lithium [mg/L]       | 0.889                   | 0.038                   | 0.006                   | 0.010                   | 0.018                   | 0.013                   | 0.008                   | 0.004                   | 0.003                   | 0.003                   |
| Magnesium [mg/L]     | 193                     | 8.49                    | 13.8                    | 9.75                    | 0.513                   | 42.8                    | 118                     | 0.931                   | 7.15                    | 0.139                   |



Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11386-OCT10

| Analysis          | 14:<br>MR ARD<br>10-039 | 15:<br>MR ARD<br>10-091 | 16:<br>MR ARD<br>10-023 | 17:<br>MR ARD<br>10-083 | 18:<br>MR ARD<br>10-098 | 19:<br>MR ARD<br>10-036 | 20:<br>MR ARD<br>10-001 | 21:<br>MR ARD<br>10-097 | 22:<br>MR ARD<br>10-028 | 23:<br>MR ARD<br>10-115 |
|-------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Manganese [mg/L]  | 39.7                    | 0.179                   | 0.0256                  | 0.0109                  | 0.00371                 | 0.0725                  | 0.739                   | 0.00503                 | 0.0117                  | 0.00164                 |
| Molybdenum [mg/L] | 0.00024                 | 0.00021                 | 0.00031                 | 0.00687                 | 0.00062                 | 0.00173                 | 0.0540                  | 0.00176                 | 0.00534                 | 0.00101                 |
| Sodium [mg/L]     | 93.4                    | 1.71                    | 0.46                    | 5.49                    | 4.27                    | 0.59                    | 13.9                    | 7.74                    | 0.97                    | 9.28                    |
| Nickel [mg/L]     | 0.808                   | 0.0037                  | 0.0010                  | 0.0004                  | < 0.0001                | 0.0006                  | 0.0306                  | 0.0002                  | 0.0003                  | < 0.0001                |
| Lead [mg/L]       | 0.00065                 | 0.00058                 | 0.00024                 | 0.00019                 | 0.00041                 | 0.00015                 | 0.00023                 | 0.00042                 | 0.00029                 | 0.00114                 |
| Antimony [mg/L]   | < 0.0002                | < 0.0002                | 0.0008                  | < 0.0002                | < 0.0002                | < 0.0002                | 0.0003                  | < 0.0002                | 0.0003                  | < 0.0002                |
| Selenium [mg/L]   | 0.002                   | < 0.001                 | < 0.001                 | < 0.001                 | < 0.001                 | 0.003                   | 0.001                   | < 0.001                 | 0.006                   | < 0.001                 |
| Tin [mg/L]        | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               | < 0.00001               |
| Strontium [mg/L]  | 0.0908                  | 0.0032                  | 0.0520                  | 0.0545                  | 0.0144                  | 0.0174                  | 0.156                   | 0.0168                  | 0.0180                  | 0.0005                  |
| Titanium [mg/L]   | 0.0019                  | 0.0006                  | < 0.0001                | 0.0004                  | 0.0039                  | 0.0007                  | 0.0005                  | 0.0045                  | 0.0007                  | 0.0099                  |
| Thallium [mg/L]   | 0.00077                 | < 0.00002               | < 0.00002               | < 0.00002               | < 0.00002               | < 0.00002               | 0.00004                 | < 0.00002               | < 0.00002               | < 0.00002               |
| Uranium [mg/L]    | 0.00132                 | 0.000075                | 0.000005                | 0.000011                | 0.000002                | 0.000005                | 0.000003                | 0.000006                | 0.000007                | 0.000088                |
| Vanadium [mg/L]   | 0.00012                 | 0.00023                 | 0.00009                 | 0.00460                 | 0.0459                  | 0.00049                 | 0.00019                 | 0.0353                  | 0.00048                 | 0.00668                 |
| Zinc [mg/L]       | 0.132                   | 0.001                   | 0.002                   | < 0.001                 | < 0.001                 | < 0.001                 | 0.001                   | < 0.001                 | < 0.001                 | < 0.001                 |

Brian Graha**l**m B.Sc.

Project Specialist





# APPENDIX C-5 MINERALOGY BY RIETVELD XRD



#### Quantitative X-Ray Diffraction by Reitveld Refinement

Report Prepared for:

Enviromental - Analytical

Project Number/ LIMS No. Custom XRD/MI4512-OCT10

Reporting Date:

November 8, 2010

Instrument:

BRUKER AXS D8 Advance Diffractometer

**Test Conditions:** 

Co radiation, 40 kV, 35 mA

Regular Scanning: Step: 0.02°, Step time: 1s, 20 range: 3-80°

Interpretations:

PDF2/PDF4 powder diffraction databases issued by the International Center

for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.

Detection Limit:

0.5-2%. Strongly dependent on crystallinity.

Contents:

1) Method Summary

2) Summary of Mineral Asemblages

3) Semi-Quantitative XRD Results

4) Chemical Balance(s)

5) XRD Pattern(s)

Anita Coppaway

Mineralogical Technologis

Senior Mineralogist



#### **Method Summary**

#### Mineral Identification and Interpretation:

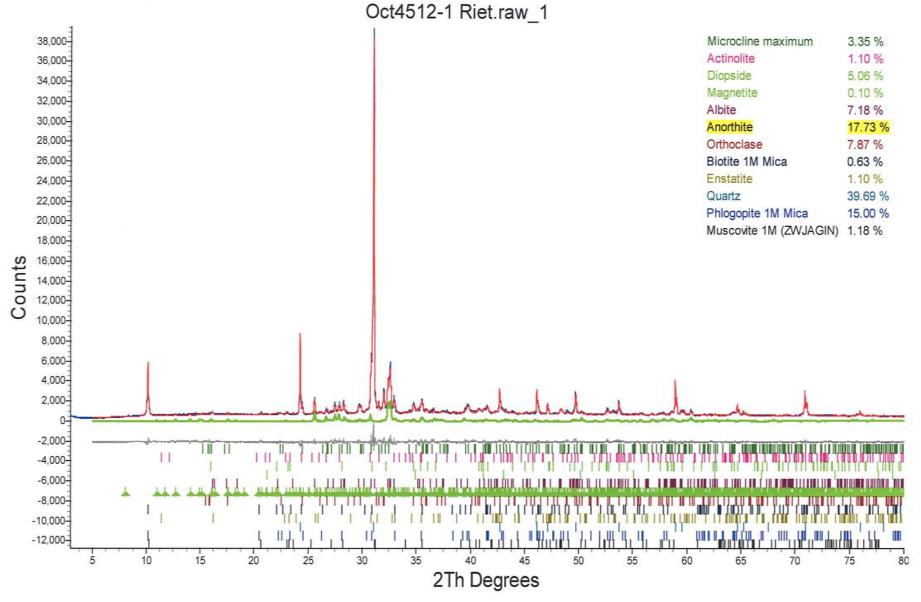
Mineral identification and interpretation involve matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Minerals or compounds identification and quantitative analysis results should be accompanied by supporting chemical assay data or other tests.

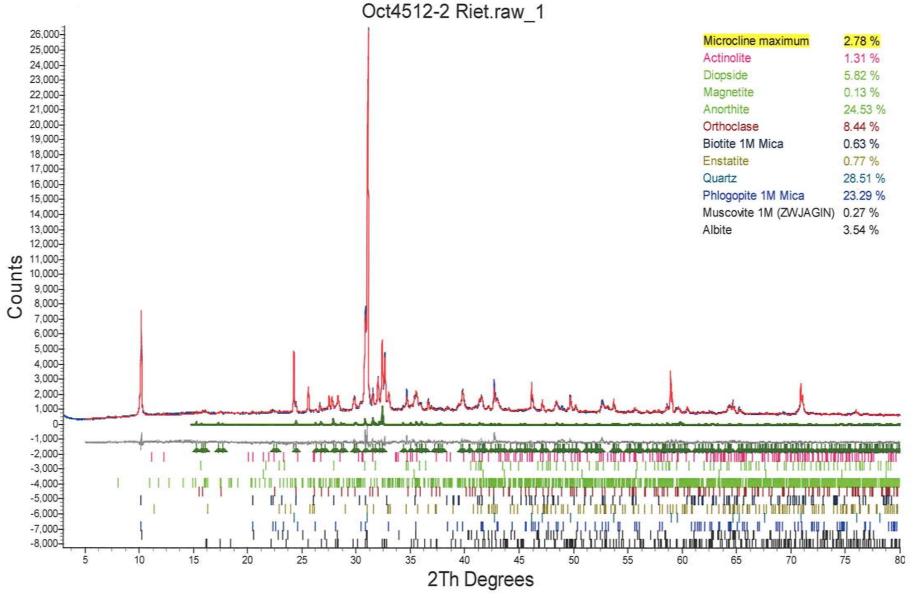
#### Rietveld Method Quantitative Analysis:

Whole-pattern Rietveld Method Quantitative Analysis is performed by using Topas 4.1 (Bruker AXS), a graphics based profile analysis program built around a general non-linear least squares fitting system, to determine the amount of different phases in a multicomponents sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental factors and specimen. Instead other peak intensity-based methods, the Rietveld method uses a least square approach to refine a theoretical line profile until it matches the obtained experimental patterns.

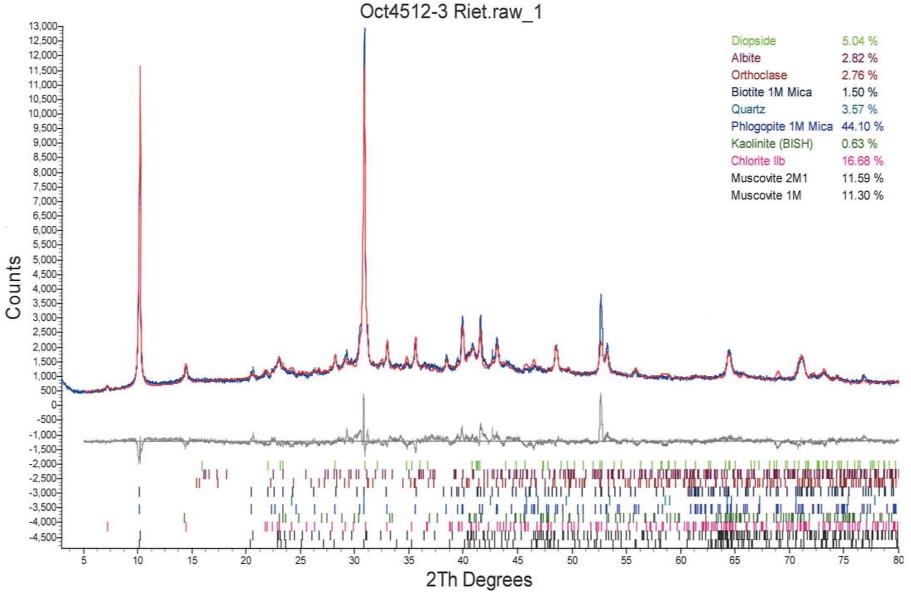



#### Summary of Rietveld Quantitative Analysis X-ray Diffraction Results

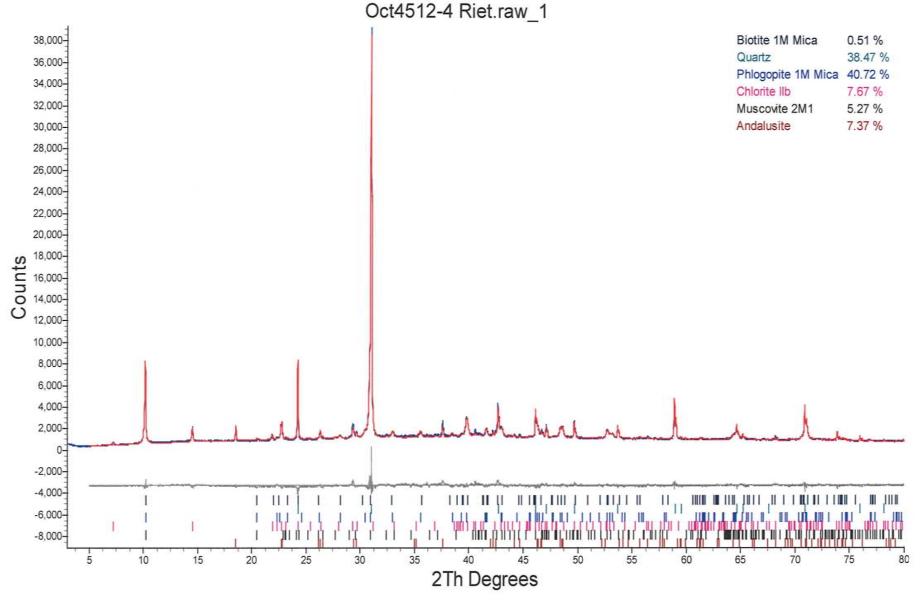
#### **Quantitative X-ray Diffraction Results**


| Mineral/Compound | 5164   | 5145   | 6181   | MR ARD 10-077 | MR ARD 10-091 | MR ARD 10-083 | MR ARD 10-036 |
|------------------|--------|--------|--------|---------------|---------------|---------------|---------------|
|                  | (wt %) | (wt %) | (wt %) | (wt %)        | (wt %)        | (wt %)        | (wt %)        |
| Actinolite       | 1.1    | 1.3    |        | -             |               | 17.0          |               |
| Enstatite        | 1.1    | 0.8    |        | -             |               |               |               |
| Diopside         | 5.1    | 5.8    | 5.0    |               |               | 14.7          | 221           |
| Albite           | 7.2    | 3.5    | 2.8    |               |               | 12.3          |               |
| Anorthite        | 17.7   | 24.5   |        |               |               | 9.4           |               |
| Orthoclase       | 7.9    | 8.4    | 2.8    | -             |               | 5.5           |               |
| Microcline       | 3.3    | 2.8    |        |               | 122           | 0.8           |               |
| Quartz           | 39.7   | 28.5   | 3.6    | 38.5          | 3.8           | 15.1          | 43.9          |
| Biotite          | 0.6    | 0.6    | 1.5    | 0.5           | 4.5           | 3.3           | ш.            |
| Phlogopite       | 15.0   | 23.3   | 44.1   | 40.7          | -             |               |               |
| Muscovite        | 1.2    | 0.3    | 22.9   | 5.3           |               |               |               |
| Kaolinite        |        | 199    | 0.6    | -             | 3.3           |               |               |
| Clinochlore      |        |        | 16.7   | 7.7           | 67.7          | 5.8           | 44.3          |
| Andalusite       |        |        |        | 7.4           |               |               | ***           |
| Epidote          |        |        |        | -             | 1.22          | 15.5          | 223           |
| Magnetite        | 0.1    | 0.1    |        |               | 3.6           | 0.2           | 4.3           |
| Hematite         |        |        | 3      |               | 17.2          |               | 3.9           |
| Spinel           | 100    |        |        | -             |               |               | 3.1           |
| Chromite         | 124    |        |        |               | 12-2          |               | 0.5           |
| Calcite          | 177    |        | 650    |               |               | 0.4           | ##1           |
| TOTAL            | 100.0  | 100.0  | 100.0  | 100.0         | 100.0         | 100.0         | 100.0         |

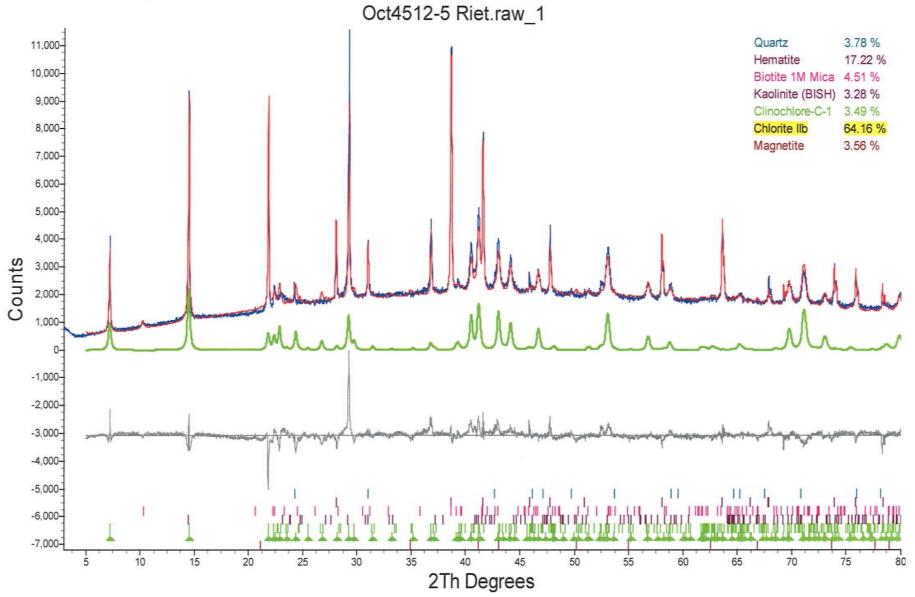
| Mineral/Compound | Formula                                                                                                   |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Actinolite       | Ca <sub>2</sub> (Mg,Fe) <sub>5</sub> Si <sub>8</sub> O <sub>22</sub> (OH) <sub>2</sub>                    |  |  |  |  |  |
| Albite           | NaAlSi <sub>3</sub> O <sub>8</sub>                                                                        |  |  |  |  |  |
| Andalusite       | Al <sub>2</sub> (SiO <sub>4</sub> )O                                                                      |  |  |  |  |  |
| Anorthite        | CaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub>                                                          |  |  |  |  |  |
| Biotite          | K(Mg,Fe) <sub>3</sub> (AlSi <sub>3</sub> O <sub>10</sub> )(OH) <sub>2</sub>                               |  |  |  |  |  |
| Calcite          | CaCO <sub>3</sub>                                                                                         |  |  |  |  |  |
| Chromite         | FeCr <sub>2</sub> O <sub>4</sub>                                                                          |  |  |  |  |  |
| Clinochlore      | (Mg, Fe) <sub>5</sub> (Si <sub>3</sub> Al)O <sub>10</sub> (OH) <sub>8</sub>                               |  |  |  |  |  |
| Diopside         | CaMgSi <sub>2</sub> O <sub>6</sub>                                                                        |  |  |  |  |  |
| Enstatite        | (Mg, Fe) <sub>2</sub> Si <sub>2</sub> O <sub>6</sub>                                                      |  |  |  |  |  |
| Epidote          | Ca <sub>2</sub> Al <sub>2</sub> Fe(SiO <sub>4</sub> )(Si <sub>2</sub> O <sub>7</sub> )(O,OH) <sub>2</sub> |  |  |  |  |  |
| Hematite         | Fe <sub>2</sub> O <sub>3</sub>                                                                            |  |  |  |  |  |
| Kaolinite        | Al <sub>2</sub> Si <sub>2</sub> O <sub>5</sub> (OH) <sub>4</sub>                                          |  |  |  |  |  |
| Magnetite        | Fe <sub>3</sub> O <sub>4</sub>                                                                            |  |  |  |  |  |
| Microcline       | KAISi <sub>3</sub> O <sub>8</sub>                                                                         |  |  |  |  |  |
| Muscovite        | KAI <sub>3</sub> (AISi <sub>3</sub> O <sub>10</sub> )(OH) <sub>2</sub>                                    |  |  |  |  |  |
| Orthoclase       | KAISi <sub>3</sub> O <sub>8</sub>                                                                         |  |  |  |  |  |
| Phlogopite       | KMg <sub>3</sub> (AlSi <sub>3</sub> O <sub>10</sub> )(OH) <sub>3</sub>                                    |  |  |  |  |  |
| Quartz           | SiO <sub>2</sub>                                                                                          |  |  |  |  |  |
| Spinel           | MgAl <sub>2</sub> O <sub>4</sub>                                                                          |  |  |  |  |  |



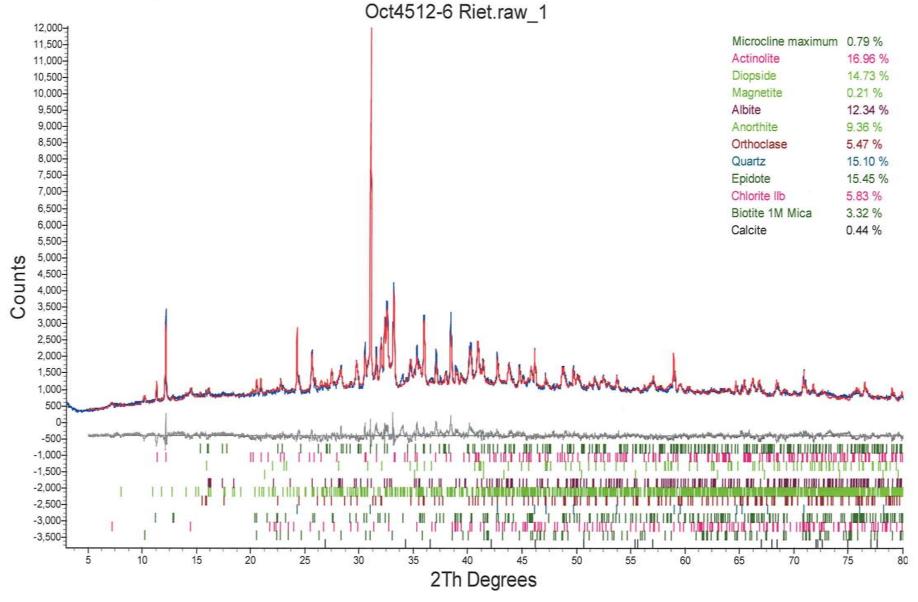


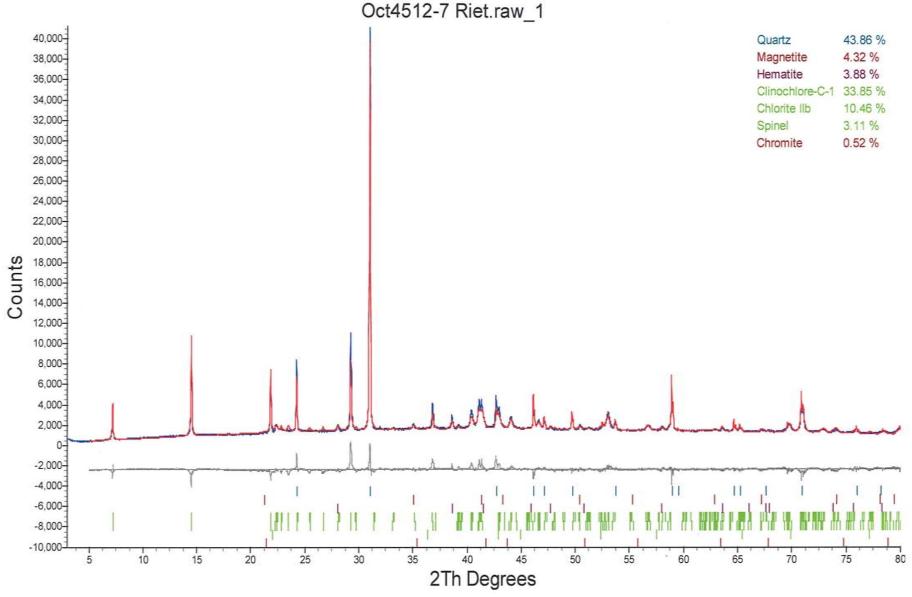





















## APPENDIX D BAFFINLAND SITE DRAINAGE RESULTS





### **LIST OF TABLES**

- D-1 Weathered Ore and Waste Rock Stockpile Drainage Data Near Bulk Sample Pit (MRY-10)
- D-2 Ore Stockpile Drainage Data at Crusher Site (MRY-11 Test Pits)
- D-3 Ore Stockpile Drainage Data at Milne Inlet (MRY-12 Drive Points)
- D-4 Seepage Data from Rock Face Near Bulk Sample Pit (MRY-9)

Note: Site Drainage Sampling Data (crusher site lysimeter results presented in Table 8)





### Table D-1. Weathered Ore and Waste Rock Stockpile Drainage Data Near Bulk Sample Pit (MRY-10)

| PARAMETER              |       |           |                           | CDWQ      |           | 652435     | 821636     | 726623     | 737178     | 827284     | 827277     |
|------------------------|-------|-----------|---------------------------|-----------|-----------|------------|------------|------------|------------|------------|------------|
|                        |       | MMER      | CWQG (PAL)                |           | NWB       | 2008-08-16 | 2010-08-13 | 2009-06-29 | 2009-06-29 | 2010-09-07 | 2010-09-07 |
|                        | UNITS |           |                           |           |           | MRY-10     | MRY-10     | MRY-10     | MRY-10     | MRY-10     | MRY-10     |
|                        |       |           |                           |           |           | Total      | Total      | Dissolved  | Total      | Dissolved  | Total      |
| Chloride               | mg/L  |           | 230                       | <250      |           |            |            |            | <1         |            | 2          |
| N-NH3 (Ammonia)        | mg/L  |           | 1.73-38.6 <sup>d)</sup>   |           |           |            |            |            |            |            | 1.25       |
| N-NO3 (Nitrate)        | mg/L  |           | 13                        | 10        |           |            |            |            | <0.10      |            | 9.94       |
| рН                     |       | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5 | 6.0 - 9.5 |            |            |            | 7.23       |            | 7.68       |
| Sulphate               | mg/L  |           |                           | <500°)    |           |            |            |            | <1         |            | 5          |
| Total Suspended Solids | mg/L  | 15        | 5                         |           | 120       |            |            |            | 8          |            | 3          |
| Aluminum               | mg/L  | -         | 0.005-0.1 <sup>a)</sup>   | -         |           | 0.05       | 2.16       | 0.0041     | 0.226      | 0.0073     | 0.367      |
| Antimony               | mg/L  | -         |                           | 0.006     |           |            | 0.00017    | <0.0001    | <0.0001    | <0.0001    | <0.0001    |
| Arsenic                | mg/L  | 0.5       | 0.005                     | 0.005     |           | <0.001     | 0.00032    | <0.0001    | <0.0001    | <0.0001    | <0.0001    |
| Barium                 | mg/L  | -         | -                         | 1         |           | <0.01      | 0.0556     | 0.00114    | 0.00217    | 0.0104     | 0.0127     |
| Cadmium                | mg/L  | -         | 0.000017                  | 0.005     |           | <0.0001    | 0.000012   | <0.00001   | <0.00001   | <0.00001   | <0.00001   |
| Chromium               | mg/L  | -         | 0.001                     | 0.051     |           | < 0.001    | 0.00715    | < 0.0005   | 0.00097    | < 0.0005   | 0.00135    |
| Copper                 | mg/L  | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0      |           | <0.001     | 0.00475    | 0.00078    | < 0.0005   | 0.00068    | 0.00154    |
| Iron                   | mg/L  | -         | 0.3                       | <0.3      |           | 0.07       | 3.07       | < 0.03     | 0.237      | < 0.03     | 0.505      |
| Lead                   | mg/L  | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01      |           | <0.001     | 0.00581    | < 0.00005  | 0.00016    | < 0.00005  | 0.00067    |
| Manganese              | mg/L  | -         | -                         | ≤0.05     |           | <0.01      | 0.106      | 0.000703   | 0.00576    | 0.00743    | 0.016      |
| Mercury                | mg/L  | -         | 0.026                     | 0.001     |           |            | <0.00001   | <0.0001    | <0.00001   | 0.000014   | 0.000018   |
| Molybdenum             | mg/L  | -         | 0.073                     | -         |           | <0.005     | 0.000341   | <0.00005   | <0.00005   | 0.000192   | 0.00028    |
| Nickel                 | mg/L  | 0.5       | 0.025-0.15 <sup>b)</sup>  | -         |           | < 0.005    | 0.00742    | <0.0005    | <0.0008    | <0.0005    | 0.00146    |
| Selenium               | mg/L  | -         | 0.001                     | -         |           | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |
| Zinc                   | mg/L  | 0.5       | 0.03                      | ≤5.0      |           | <0.01      | 0.0059     | <0.001     | 0.0019     | <0.001     | 0.003      |

Note:

**Bold** value indicates exceedance of MMER limit

MMER = Metal Mining Effluent Regulation

CWGQ (PAL) = Canadian Council of Minister of the Environment (CCME) Canadian Water Quality Guideline for the protection of Aquatic Life

CDWQ = Health Canada - Canadian Drinking Water Quality Guideline

CWGQ (PAL) and CDWQ guidelines shown for reference purposes only (see text).

- a) varies with pH
- b) varies with hardness
- c) aesthetic objective
- d) varies with pH and temperature





### Table D-2. Ore Stockpile Drainage Data at Crusher Site (MRY-11 Test Pit)

|                        |       | MMER      | CWQG (PAL)                | CDWQ               | NWB       | 827285     | 827278     | 821633     | 821634     | 821635     | 827286     | 827279     |
|------------------------|-------|-----------|---------------------------|--------------------|-----------|------------|------------|------------|------------|------------|------------|------------|
| PARAMETER              |       |           |                           |                    |           | 2010-09-07 | 2010-09-07 | 2010-08-13 | 2010-08-13 | 2010-08-13 | 2010-09-07 | 2010-09-07 |
|                        | UNITS |           |                           |                    |           | MRY-TP1    | MRY-TP1    | MRY-TP2    | MRY-TP3    | MRY-TP4    | MRY-TP4    | MRY-TP4    |
|                        |       |           |                           |                    |           | Dissolved  | Total      | Total      | Total      | Total      | Dissolved  | Total      |
| Chloride               | mg/L  |           | 230                       | <250               |           |            | 1          |            |            |            |            | 3          |
| N-NH3 (Ammonia)        | mg/L  |           | 1.73-38.6 <sup>d)</sup>   |                    |           |            | <0.02      |            |            |            |            | <0.02      |
| N-NO3 (Nitrate)        | mg/L  |           | 13                        | 10                 |           |            | <0.10      |            |            |            |            | 2.13       |
| pН                     |       | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5          | 6.0 - 9.5 |            | 7.58       |            |            |            |            | 7.99       |
| Sulphate               | mg/L  |           |                           | <500 <sup>c)</sup> |           |            | 16         |            |            |            |            | 32         |
| Total Suspended Solids | mg/L  | 15        | 5                         |                    | 120       |            | 5          |            |            |            |            | 15         |
| Aluminum               | mg/L  | -         | 0.005-0.1 <sup>a)</sup>   | -                  |           | 0.0104     | 0.387      | 0.0904     | 0.0482     | 0.0629     | 0.0061     | 0.58       |
| Antimony               | mg/L  | -         |                           | 0.006              |           | <0.0001    | <0.0001    | <0.0002    | <0.0001    | <0.0001    | <0.0001    | <0.0001    |
| Arsenic                | mg/L  | 0.5       | 0.005                     | 0.005              |           | <0.0001    | <0.0001    | 0.00025    | <0.0001    | 0.00015    | <0.0001    | 0.00012    |
| Barium                 | mg/L  | -         | -                         | 1                  |           | 0.00486    | 0.00664    | 0.0389     | 0.0157     | 0.041      | 0.0194     | 0.0162     |
| Cadmium                | mg/L  | -         | 0.000017                  | 0.005              |           | < 0.00001  | 0.000015   | 0.000021   | < 0.00001  | 0.000011   | <0.00001   | 0.000019   |
| Chromium               | mg/L  | -         | 0.001                     | 0.051              |           | < 0.0005   | 0.00141    | <0.001     | 0.00076    | 0.00078    | < 0.0005   | 0.00147    |
| Copper                 | mg/L  | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0               |           | 0.00026    | 0.00151    | 0.00259    | 0.00141    | 0.00201    | 0.00101    | 0.00213    |
| Iron                   | mg/L  | -         | 0.3                       | <0.3               |           | < 0.03     | 0.746      | 0.134      | 0.044      | 0.076      | < 0.03     | 0.874      |
| Lead                   | mg/L  | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01               |           | < 0.00005  | 0.00129    | 0.0002     | 0.00008    | 0.00013    | <0.00005   | 0.00089    |
| Manganese              | mg/L  | -         | -                         | ≤0.05              |           | 0.00891    | 0.028      | 0.0151     | 0.00821    | 0.0668     | 0.0237     | 0.0779     |
| Mercury                | mg/L  | -         | 0.026                     | 0.001              |           | <0.00001   | <0.00001   | 0.000018   | 0.000017   | <0.00001   | <0.00001   | 0.000035   |
| Molybdenum             | mg/L  | -         | 0.073                     | -                  |           | 0.00153    | 0.00128    | 0.00042    | 0.000288   | 0.000453   | 0.000632   | 0.000525   |
| Nickel                 | mg/L  | 0.5       | 0.025-0.15 <sup>b)</sup>  | -                  |           | <0.0005    | 0.00196    | 0.0033     | 0.0011     | 0.00457    | 0.00116    | 0.00263    |
| Selenium               | mg/L  | -         | 0.001                     | -                  |           | <0.001     | <0.001     | <0.002     | <0.001     | <0.001     | <0.001     | <0.001     |
| Zinc                   | mg/L  | 0.5       | 0.03                      | ≤5.0               |           | <0.001     | 0.0029     | 0.0275     | 0.0032     | 0.0162     | < 0.001    | 0.0035     |

Note:

**Bold** value indicates exceedance of MMER limit

MMER = Metal Mining Effluent Regulation

CWGQ (PAL) = Canadian Council of Minister of the Environment (CCME) Canadian Water Quality Guideline for the protection of Aquatic Life

CDWQ = Health Canada - Canadian Drinking Water Quality Guideline

CWGQ (PAL) and CDWQ guidelines shown for reference purposes only (see text).

- a) varies with pH
- b) varies with hardness
- c) aesthetic objective
- d) varies with pH and temperature





#### Table D-3. Ore Stockpile Drainage Data at Milne Inlet (MRY-12 Drive Points)

|                        |       |           |                           |           |           | 828062     | 828058     | 828063       | 828059       | 828064     | 828064     | 828065     | 828061     |
|------------------------|-------|-----------|---------------------------|-----------|-----------|------------|------------|--------------|--------------|------------|------------|------------|------------|
|                        |       |           |                           |           |           | 2010-09-09 | 2010-09-09 | 2010-09-09   | 2010-09-09   | 2010-09-09 | 2010-09-09 | 2010-09-09 | 2010-09-09 |
| PARAMETER              | UNITS | MMER      | CWQG (PAL)                | CDWQ      | NWB       | MRY-12-DP1 | MRY-12-DP1 | MRY-12-DP101 | MRY-12-DP101 | MRY-12-DP2 | MRY-12-DP2 | MRY-12-    | MRY-12-    |
|                        |       |           | , ,                       |           |           |            |            |              |              |            |            | DP3        | DP3        |
|                        |       |           |                           |           |           | Dissolved  | Total *    | Dissolved    | Total *      | Dissolved  | Total *    | Dissolved  | Total *    |
| Chloride               | mg/L  |           | 230                       | <250      |           |            | 199        |              | 188          |            | 272        |            | 120        |
| N-NH3 (Ammonia)        | mg/L  |           | 1.73-38.6 <sup>d)</sup>   |           |           |            | <0.02      |              | <0.02        |            | 0.24       |            | < 0.02     |
| N-NO3 (Nitrate)        | mg/L  |           | 13                        | 10        |           |            | 4.47       |              | 4.62         |            | 2.16       |            | 15.2       |
| рН                     |       | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5 | 6.0 - 9.5 |            | 8.07       |              | 8.07         |            | 8.15       |            | 7.64       |
| Sulphate               | mg/L  |           |                           | <500°)    |           |            | 457        |              | 434          |            | 123        |            | 48         |
| Total Suspended Solids | mg/L  | 15        | 5                         |           | 120       |            | 11900      |              | 4170         |            | 230        |            | 417        |
| Aluminum               | mg/L  | -         | 0.005-0.1 <sup>a)</sup>   | -         |           | 0.0034     | 12         | 0.003        | 8.39         | 0.0035     | 7.77       | 0.0032     | 2.35       |
| Antimony               | mg/L  | -         |                           | 0.006     |           | <0.0002    | < 0.0005   | <0.0002      | < 0.0005     | <0.0002    | <0.0002    | <0.0002    | <0.0002    |
| Arsenic                | mg/L  | 0.5       | 0.005                     | 0.005     |           | <0.0014    | 0.0541     | <0.0016      | 0.0343       | <0.0018    | <0.006     | 0.00048    | 0.00095    |
| Barium                 | mg/L  | -         | -                         | 1         |           | 0.00246    | 0.0768     | 0.00271      | 0.0541       | 0.00646    | 0.0329     | 0.00654    | 0.0165     |
| Cadmium                | mg/L  | -         | 0.000017                  | 0.005     |           | < 0.00002  | 0.000141   | 0.00002      | 0.000115     | < 0.00002  | 0.000056   | < 0.00002  | 0.000023   |
| Chromium               | mg/L  |           | 0.001                     | 0.051     |           | <0.001     | 0.102      | <0.001       | 0.0602       | <0.006     | 0.148      | 0.0016     | 0.0597     |
| Copper                 | mg/L  | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0      |           | < 0.004    | 0.0457     | < 0.004      | 0.031        | 0.00237    | 0.0215     | 0.00249    | 0.0139     |
| Iron                   | mg/L  | -         | 0.3                       | <0.3      |           | < 0.03     | 45.4       | < 0.03       | 30.1         | 0.036      | 7.96       | < 0.03     | 2.86       |
| Lead                   | mg/L  | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01      |           | <0.0001    | 0.0162     | <0.0001      | 0.0107       | <0.0001    | 0.0053     | <0.0001    | 0.0015     |
| Manganese              | mg/L  | -         | -                         | ≤0.05     |           | 0.0509     | 0.726      | 0.0479       | 0.497        | 0.0378     | 0.177      | 0.00453    | 0.0817     |
| Mercury                | mg/L  | -         | 0.026                     | 0.001     |           | 0.000015   | 0.000013   | 0.000015     | 0.00003      | < 0.00001  | 0.000058   | <0.00001   | <0.00001   |
| Molybdenum             | mg/L  | -         | 0.073                     | -         |           | 0.00551    | 0.00903    | 0.00537      | 0.00754      | 0.00412    | 0.00539    | 0.00342    | 0.00359    |
| Nickel                 | mg/L  | 0.5       | 0.025-0.15 <sup>b)</sup>  | -         |           | 0.0056     | 0.0595     | 0.0035       | 0.04         | 0.0102     | 0.0764     | 0.0031     | 0.029      |
| Selenium               | mg/L  | -         | 0.001                     | -         |           | <0.008     | <0.005     | <0.008       | <0.005       | <0.006     | <0.008     | < 0.002    | <0.002     |
| Zinc                   | mg/L  | 0.5       | 0.03                      | ≤5.0      |           | <0.002     | 0.0352     | <0.002       | 0.0275       | 0.0039     | 0.0217     | 0.0025     | 0.0118     |

#### Note:

\* Elevated suspended solids due to silting of drive points during sampling. Total metal concentrations may not be representative and are not included in Max and Min statistics reported in Table 8. **Bold** value indicates exceedance of MMER limit

MMER = Metal Mining Effluent Regulation

CWGQ (PAL) = Canadian Council of Minister of the Environment (CCME) Canadian Water Quality Guideline for the protection of Aquatic Life

CDWQ = Health Canada - Canadian Drinking Water Quality Guideline

CWGQ (PAL) and CDWQ guidelines shown for reference purposes only (see text).

- a) varies with pH
- b) varies with hardness
- c) aesthetic objective
- d) varies with pH and temperature





Table D-4. Seepage Data from Rock Face Near Bulk Sample Pit (MRY-9)

|                        |       |           |                           |           |           | 645776     | 827276     |
|------------------------|-------|-----------|---------------------------|-----------|-----------|------------|------------|
| PARAMETER              |       |           |                           |           |           | 2008-07-25 | 2010-09-07 |
|                        | UNITS | MMER      | CWQG (PAL)                | CDWQ      | NWB       | MRY-9      | MRY-9      |
|                        |       |           |                           |           |           | Total      | Total      |
| Chloride               | mg/L  |           | 230                       | <250      |           |            |            |
| N-NH3 (Ammonia)        | mg/L  |           | 1.73-38.6 <sup>d)</sup>   |           |           |            |            |
| N-NO3 (Nitrate)        | mg/L  |           | 13                        | 10        |           |            |            |
| pH                     |       | 6.0 - 9.5 | 6.5 - 9.0                 | 6.5 - 8.5 | 6.0 - 9.5 |            |            |
| Sulphate               | mg/L  |           |                           | <500°)    |           |            |            |
| Total Suspended Solids | mg/L  | 15        | 5                         |           | 120       |            |            |
| Aluminum               | mg/L  | -         | 0.005-0.1 <sup>a)</sup>   | -         |           |            | <0.0001    |
| Antimony               | mg/L  | -         |                           | 0.006     |           | <0.001     | <0.0001    |
| Arsenic                | mg/L  | 0.5       | 0.005                     | 0.005     |           | 0.02       | 0.00679    |
| Barium                 | mg/L  | -         | -                         | 1         |           |            | < 0.0005   |
| Cadmium                | mg/L  | -         | 0.000017                  | 0.005     |           | 0.003      | 0.00106    |
| Chromium               | mg/L  | -         | 0.001                     | 0.051     |           | 0.0030     | 0.0005     |
| Copper                 | mg/L  | 0.3       | 0.002-0.004 <sup>b)</sup> | ≤1.0      |           | 1.11       | 0.382      |
| Iron                   | mg/L  | -         | 0.3                       | <0.3      |           | 0.016      | 0.00033    |
| Lead                   | mg/L  | 0.2       | 0.001-0.007 <sup>b)</sup> | 0.01      |           |            | < 0.005    |
| Manganese              | mg/L  | -         | -                         | ≤0.05     |           |            | <0.00001   |
| Mercury                | mg/L  | -         | 0.026                     | 0.001     |           | <0.005     | 0.000164   |
| Molybdenum             | mg/L  | -         | 0.073                     | -         |           | < 0.005    | 0.00101    |
| Nickel                 | mg/L  | 0.5       | 0.025-0.15 <sup>b)</sup>  | -         |           | <0.001     | <0.001     |
| Selenium               | mg/L  | -         | 0.001                     | -         |           |            | 1.08       |
| Zinc                   | mg/L  | 0.5       | 0.03                      | ≤5.0      |           | <0.01      | 0.0059     |

Note:

**Bold** value indicates exceedance of MMER limit

MMER = Metal Mining Effluent Regulation

CWGQ (PAL) = Canadian Council of Minister of the Environment (CCME) Canadian Water Quality Guideline for the protection of Aquatic Life CDWQ = Health Canada - Canadian Drinking Water Quality Guideline

CWGQ (PAL) and CDWQ guidelines shown for reference purposes only (see text).

- a) varies with pH
- b) varies with hardness
- c) aesthetic objective
- d) varies with pH and temperature